Sample records for controlled synthesis characterization

  1. Functional Nanomaterial’s Synthesis and Characterization

    DTIC Science & Technology

    2015-04-28

    synthesis and characterization of nanoparticles and polymers. Current progress is being made at Argonne National Labs (ANL) and at AFRL in characterization... currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. Florida A&M University 1700 Lee Hall Drive 400 Foote-Hilyer Admin...at Florida A&M University (FAMU) which will play a key role in synthesis and characterization of nanoparticles and polymers. Current progress is

  2. Controlling Magnetic and Ferroelectric Order Through Geometry: Synthesis, Ab Initio Theory, Characterization of New Multi-Ferric Fluoride Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halasyamani, Shiv; Fennie, Craig

    2016-11-03

    We have focused on the synthesis, characterization, and ab initio theory on multi-functional mixed-metal fluorides. With funding from the DOE, we have successfully synthesized and characterized a variety of mixed metal fluoride materials.

  3. Synthesis and Characterization of Compounds Related to Lisinopril

    PubMed Central

    Raghava Reddy, Ambati V.; Garaga, Srinivas; Takshinamoorthy, Chandiran; Naidu, Andra; Dandala, Ramesh

    2016-01-01

    Lisinopril is a drug of the angiotensin-converting enzyme (ACE) inhibitor class that is primarily used in the treatment of hypertension. During the scale-up of the lisinopril process, one unknown impurity was observed and is identified. The present work describes the origin, synthesis, characterization, and control of this impurity. This paper also describes the synthesis and characterization of three other impurities listed in the European Pharmacopoeia 8.4 (Impurity C, D, and F). PMID:27222603

  4. Refined Synthesis and Characterization of Controlled Diameter, Narrow Size Distribution Microparticles for Aerospace Research Applications

    NASA Technical Reports Server (NTRS)

    Tiemsin, Pacita I.; Wohl, Christopher J.

    2012-01-01

    Flow visualization using polystyrene microspheres (PSL)s has enabled researchers to learn a tremendous amount of information via particle based diagnostic techniques. To better accommodate wind tunnel researchers needs, PSL synthesis via dispersion polymerization has been carried out at NASA Langley Research Center since the late 1980s. When utilizing seed material for flow visualization, size and size distribution are of paramount importance. Therefore, the work described here focused on further refinement of PSL synthesis and characterization. Through controlled variation of synthetic conditions (chemical concentrations, solution stirring speed, temperature, etc.) a robust, controllable procedure was developed. The relationship between particle size and salt concentration, MgSO4, was identified enabling the determination of PSL diameters a priori. Suggestions of future topics related to PSL synthesis, stability, and size variation are also described.

  5. Modal control theory and application to aircraft lateral handling qualities design

    NASA Technical Reports Server (NTRS)

    Srinathkumar, S.

    1978-01-01

    A multivariable synthesis procedure based on eigenvalue/eigenvector assignment is reviewed and is employed to develop a systematic design procedure to meet the lateral handling qualities design objectives of a fighter aircraft over a wide range of flight conditions. The closed loop modal characterization developed provides significant insight into the design process and plays a pivotal role in the synthesis of robust feedback systems. The simplicity of the synthesis algorithm yields an efficient computer aided interactive design tool for flight control system synthesis.

  6. Synthesis and Characterization of Silver Nanoparticles for an Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Orbaek, Alvin W.; McHale, Mary M.; Barron, Andrew R.

    2015-01-01

    The aim of this simple, quick, and safe laboratory exercise is to provide undergraduate students an introduction to nanotechnology using nanoparticle (NP) synthesis. Students are provided two procedures that allow for the synthesis of different yet controlled sizes of silver NPs. After preparing the NPs, the students perform UV-visible…

  7. Nonlinear multivariable design by total synthesis. [of gas turbine engine control systems

    NASA Technical Reports Server (NTRS)

    Sain, M. K.; Peczkowski, J. L.

    1982-01-01

    The Nominal Design Problem (NDP) is extended to nonlinear cases, and a new case study of robust feedback synthesis for gas turbine control design is presented. The discussion of NDP extends and builds on earlier Total Synthesis Problem theory and ideas. Some mathematical preliminaries are given in which a bijection from a set S onto a set T is considered, with T admitting the structure of an F-vector space. NDP is then discussed for a nonlinear plant, and nonlinear nominal design is defined and characterized. The design of local controllers for a turbojet and the scheduling of these controls into a global control are addressed.

  8. An improved divergent synthesis of comb-type branched oligodeoxyribonucleotides (bDNA) containing multiple secondary sequences.

    PubMed

    Horn, T; Chang, C A; Urdea, M S

    1997-12-01

    The divergent synthesis of branched DNA (bDNA) comb structures is described. This new type of bDNA contains one unique oligonucleotide, the primary sequence, covalently attached through a comb-like branch network to many identical copies of a different oligonucleotide, the secondary sequence. The bDNA comb structures were assembled on a solid support and several synthesis parameters were investigated and optimized. The bDNA comb molecules were characterized by polyacrylamide gel electrophoretic methods and by controlled cleavage at periodate-cleavable moieties incorporated during synthesis. The developed chemistry allows synthesis of bDNA comb molecules containing multiple secondary sequences. In the accompanying article we describe the synthesis and characterization of large bDNA combs containing all four deoxynucleotides for use as signal amplifiers in nucleic acid quantification assays.

  9. An improved divergent synthesis of comb-type branched oligodeoxyribonucleotides (bDNA) containing multiple secondary sequences.

    PubMed Central

    Horn, T; Chang, C A; Urdea, M S

    1997-01-01

    The divergent synthesis of branched DNA (bDNA) comb structures is described. This new type of bDNA contains one unique oligonucleotide, the primary sequence, covalently attached through a comb-like branch network to many identical copies of a different oligonucleotide, the secondary sequence. The bDNA comb structures were assembled on a solid support and several synthesis parameters were investigated and optimized. The bDNA comb molecules were characterized by polyacrylamide gel electrophoretic methods and by controlled cleavage at periodate-cleavable moieties incorporated during synthesis. The developed chemistry allows synthesis of bDNA comb molecules containing multiple secondary sequences. In the accompanying article we describe the synthesis and characterization of large bDNA combs containing all four deoxynucleotides for use as signal amplifiers in nucleic acid quantification assays. PMID:9365265

  10. Synthesis, Surface Studies, Composition and Structural Characterization of CdSe, Core/Shell, and Biologically Active Nanocrystals

    PubMed Central

    Rosenthal, Sandra J.; McBride, James; Pennycook, Stephen J.; Feldman, Leonard C.

    2011-01-01

    Nanostructures, with their very large surface to volume ratio and their non-planar geometry, present an important challenge to surface scientists. New issues arise as to surface characterization, quantification and interface formation. This review summarizes the current state of the art in the synthesis, composition, surface and interface control of CdSe nanocrystal systems, one of the most studied and useful nanostructures. PMID:21479151

  11. The Total Synthesis Problem of linear multivariable control. II - Unity feedback and the design morphism

    NASA Technical Reports Server (NTRS)

    Sain, M. K.; Antsaklis, P. J.; Gejji, R. R.; Wyman, B. F.; Peczkowski, J. L.

    1981-01-01

    Zames (1981) has observed that there is, in general, no 'separation principle' to guarantee optimality of a division between control law design and filtering of plant uncertainty. Peczkowski and Sain (1978) have solved a model matching problem using transfer functions. Taking into consideration this investigation, Peczkowski et al. (1979) proposed the Total Synthesis Problem (TSP), wherein both the command/output-response and command/control-response are to be synthesized, subject to the plant constraint. The TSP concept can be subdivided into a Nominal Design Problem (NDP), which is not dependent upon specific controller structures, and a Feedback Synthesis Problem (FSP), which is. Gejji (1980) found that NDP was characterized in terms of the plant structural matrices and a single, 'good' transfer function matrix. Sain et al. (1981) have extended this NDP work. The present investigation is concerned with a study of FSP for the unity feedback case. NDP, together with feedback synthesis, is understood as a Total Synthesis Problem.

  12. Controlled Synthesis of Atomically Layered Hexagonal Boron Nitride via Chemical Vapor Deposition.

    PubMed

    Liu, Juanjuan; Kutty, R Govindan; Liu, Zheng

    2016-11-29

    Hexagonal boron nitrite (h-BN) is an attractive material for many applications including electronics as a complement to graphene, anti-oxidation coatings, light emitters, etc. However, the synthesis of high-quality h-BN is still a great challenge. In this work, via controlled chemical vapor deposition, we demonstrate the synthesis of h-BN films with a controlled thickness down to atomic layers. The quality of as-grown h-BN is confirmed by complementary characterizations including high-resolution transition electron microscopy, atomic force microscopy, Raman spectroscopy and X-ray photo-electron spectroscopy. This work will pave the way for production of large-scale and high-quality h-BN and its applications as well.

  13. Endocrine and metabolic aspects of the acute toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorski, J.R.

    1988-01-01

    Toxic responses to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) were characterized in male Sprague-Dawley rats in order to elucidate the mechanism of acute toxicity of this potent halogenated hydrocarbon. Studies in TCDD-treated, pair-fed control and ad libitum-fed control rates, as well as in thyroidectomized, adrenalectomized and hypophysectomized, revealed differential hormonal, toxicologic and histophathologic responses suggesting that these manifestations of TCDD exposure are the results of an insult to intermediary metabolism. Tissue specific alterations in de novo fatty acid synthesis were directly related to differential changes observed in thyroid hormone homeostasis. The increased hepatic de novo fatty acid synthesis provided a likely mechanism for themore » documented fact that TCDD-treated rats lose more body weight than corresponding pair-fed controls because de novo fatty acid synthesis represents an energy inefficient metabolic process. Experiments in adrenalectomized and hypophysectomized rats led to the hypothesis that severe hypoglycemia due to inhibition of gluconeogenesis is the cause of TCDD-induced death. A subsequent characterization of gluconeogenesis in TCDD-treated rats confirmed this hypothesis.« less

  14. Incorporation of the zosteric sodium salt in silica nanocapsules: synthesis and characterization of new fillers for antifouling coatings

    NASA Astrophysics Data System (ADS)

    Ruggiero, Ludovica; Crociani, Laura; Zendri, Elisabetta; El Habra, Naida; Guerriero, Paolo

    2018-05-01

    In the last decade many commercial biocides were gradually banned for toxicity. This work reports, for the first time, the synthesis and characterization of silica nanocontainers loaded with a natural product antifoulant (NPA), the zosteric sodium salt which is a non-commercial and environmentally friendly product with natural origin. The synthesis approach is a single step dynamic self-assembly with tetraethoxysilane (TEOS) as silica precursor. Unlike conventional mesoporous silica nanoparticles, the structure of these silica nanocontainers provides loading capacity and allows prolonged release of biocide species. The obtained nanocapsules have been characterized morphologically by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The encapsulation was checked by FTIR ATR spectroscopy and thermogravimetric analyses. The results of the release studies show the great potential of the here presented newly developed nanofillers in all applications where a controlled release of non-toxic and environmentally friendly biocides is required.

  15. Aloe barbadensis Miller mediated green synthesis of mono-disperse copper oxide nanoparticles: Optical properties

    NASA Astrophysics Data System (ADS)

    Gunalan, Sangeetha; Sivaraj, Rajeshwari; Venckatesh, Rajendran

    2012-11-01

    In this paper, we report on the synthesis of nanostructured copper oxide particles by both chemical and biological method. A facile and efficient synthesis of copper oxide nanoparticles was carried out with controlled surface properties via green chemistry approach. The CuO nanoparticles synthesized are monodisperse and versatile and were characterized with the help of UV-Vis, PL, FT-IR, XRD, SEM, and TEM techniques. The particles are crystalline in nature and average sizes were between 15 and 30 nm. The morphology of the nanoparticles can be controlled by tuning the amount of Aloe vera extract. This new eco-friendly approach of synthesis is a novel, cheap, and convenient technique suitable for large scale commercial production and health related applications of CuO nanoparticles.

  16. Controlled green synthesis of silver nanoparticles by Allium cepa and Musa acuminata with strong antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Sahni, Geetika; Panwar, Amit; Kaur, Balpreet

    2015-02-01

    A controlled "green synthesis" approach to synthesize silver nanoparticles by Allium cepa and Musa acuminata plant extract has been reported. The effect of different process parameters, such as pH, temperature and time, on synthesis of Ag nanoparticles from plant extracts has been highlighted. The work reports an easy approach to control the kinetics of interaction of metal ions with reducing agents, stabilized by ammonia to achieve sub-10 nm particles with narrow size distribution. The nanoparticles have been characterized by UV-Visible spectra and TEM analysis. Excellent antimicrobial activity at extremely low concentration of the nanoparticles was observed against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis and Fusarium oxysporum which may allow their exploitation as a new generation nanoproduct in biomedical and agricultural applications.

  17. Synthesis and characterization of luminescent aluminium selenide nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balitskii, O.A., E-mail: balitskii@electronics.wups.lviv.ua; Demchenko, P.Yu.; Mijowska, E.

    Highlights: ► Synthesis procedure of size and sharp controlled Al{sub 2}Se{sub 3} nanocrystals is introduced. ► Obtained nanoparticles are highly crystalline of hexagonal wurtzite type. ► Colloidal Al{sub 2}Se{sub 3} nanocrystals are highly luminescent in the near UV spectral region. ► They can be implemented in light emitters/collectors, concurring with II–VI nanodots. -- Abstract: We propose the synthesis and characterization of colloidal aluminium selenide nanocrystals using trioctylphosphine as a solvent. The nanoparticles have several absorption bands in the spectral region 330–410 nm and are bright UV-blue luminescent, which is well demanded in light collecting and emitting devices, e.g. for tuningmore » their spectral characteristics to higher energy solar photons.« less

  18. Hypersonic vehicle control law development using H(infinity) and micron-synthesis

    NASA Technical Reports Server (NTRS)

    Gregory, Irene M.; Mcminn, John D.; Shaughnessy, John D.; Chowdhry, Rajiv S.

    1993-01-01

    Hypersonic vehicle control law development using H(infinity) and mu-synthesis is discussed. Airbreathing SSTO vehicles has a mutli-faceted mission that includes orbital operations, as well as re-entry and descent culminating in horizontal landing. However, the most challenging part of the operations is the ascent to orbit. The airbreathing propulsion requires lengthy atmospheric flight that may last as long as 30 minutes and take the vehicle half way around the globe. The vehicles's ascent is characterized by tight payload to orbit margins which translate into minimum fuel orbit as the performance criteria. Issues discussed include: SSTO airbreathing vehicle issues; control system performance requirements; robust control law framework; H(infinity) controller frequency analysis; and mu controller frequency analysis.

  19. A synthetic biology approach to engineer a functional reversal of the β-oxidation cycle.

    PubMed

    Clomburg, James M; Vick, Jacob E; Blankschien, Matthew D; Rodríguez-Moyá, María; Gonzalez, Ramon

    2012-11-16

    While we have recently constructed a functional reversal of the β-oxidation cycle as a platform for the production of fuels and chemicals by engineering global regulators and eliminating native fermentative pathways, the system-level approach used makes it difficult to determine which of the many deregulated enzymes are responsible for product synthesis. This, in turn, limits efforts to fine-tune the synthesis of specific products and prevents the transfer of the engineered pathway to other organisms. In the work reported here, we overcome the aforementioned limitations by using a synthetic biology approach to construct and functionally characterize a reversal of the β-oxidation cycle. This was achieved through the in vitro kinetic characterization of each functional unit of the core and termination pathways, followed by their in vivo assembly and functional characterization. With this approach, the four functional units of the core pathway, thiolase, 3-hydroxyacyl-CoA dehydrogenase, enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydratase, and acyl-CoA dehydrogenase/trans-enoyl-CoA reductase, were purified and kinetically characterized in vitro. When these four functional units were assembled in vivo in combination with thioesterases as the termination pathway, the synthesis of a variety of 4-C carboxylic acids from a one-turn functional reversal of the β-oxidation cycle was realized. The individual expression and modular construction of these well-defined core components exerted the majority of control over product formation, with only highly selective termination pathways resulting in shifts in product formation. Further control over product synthesis was demonstrated by overexpressing a long-chain thiolase that enables the operation of multiple turns of the reversal of the β-oxidation cycle and hence the synthesis of longer-chain carboxylic acids. The well-defined and self-contained nature of each functional unit makes the engineered reversal of the β-oxidation cycle "chassis neutral" and hence transferrable to the host of choice for efficient fuel or chemical production.

  20. Synthesis and characterization of TiO₂ and TiO₂/Ag for use in photodegradation of methylviologen, with kinetic study by laser flash photolysis.

    PubMed

    Ramos, Dayana Doffinger; Bezerra, Paula C S; Quina, Frank H; Dantas, Renato F; Casagrande, Gleison A; Oliveira, Silvio C; Oliveira, Márcio R S; Oliveira, Lincoln C S; Ferreira, Valdir S; Oliveira, Samuel L; Machulek, Amilcar

    2015-01-01

    This paper reports the synthesis, characterization, and application of TiO2 and TiO2/Ag nanoparticles for use in photocatalysis, employing the herbicide methylviologen (MV) as a substrate for photocatalytic activity testing. At suitable metal to oxide ratios, increases in silver surface coating on TiO2 enhanced the efficiency of heterogeneous photocatalysis by increasing the electron transfer constant. The sol-gel method was used for TiO2 synthesis. P25 TiO2 was the control material. Both oxides were subjected to the same silver incorporation process. The materials were characterized by conventional spectroscopy, SEM micrography, X-ray diffraction, calculation of surface area per mass of catalyst, and thermogravimetry. Also, electron transfers between TiO2 or TiO2/Ag and MV in the absence and presence of sodium formate were investigated using laser flash photolysis. Oxides synthesized with 2.0 % silver exhibited superior photocatalytic activity for MV degradation.

  1. Robust Stabilization of Uncertain Systems Based on Energy Dissipation Concepts

    NASA Technical Reports Server (NTRS)

    Gupta, Sandeep

    1996-01-01

    Robust stability conditions obtained through generalization of the notion of energy dissipation in physical systems are discussed in this report. Linear time-invariant (LTI) systems which dissipate energy corresponding to quadratic power functions are characterized in the time-domain and the frequency-domain, in terms of linear matrix inequalities (LMls) and algebraic Riccati equations (ARE's). A novel characterization of strictly dissipative LTI systems is introduced in this report. Sufficient conditions in terms of dissipativity and strict dissipativity are presented for (1) stability of the feedback interconnection of dissipative LTI systems, (2) stability of dissipative LTI systems with memoryless feedback nonlinearities, and (3) quadratic stability of uncertain linear systems. It is demonstrated that the framework of dissipative LTI systems investigated in this report unifies and extends small gain, passivity, and sector conditions for stability. Techniques for selecting power functions for characterization of uncertain plants and robust controller synthesis based on these stability results are introduced. A spring-mass-damper example is used to illustrate the application of these methods for robust controller synthesis.

  2. Nanoparticle Additives for Multiphase Systems: Synthesis, Formulation and Characterization

    DTIC Science & Technology

    2012-01-01

    ADDITIVES FOR MULTIPHASE SYSTEMS: SYNTHESIS , FORMULATION AND CHARACTERIZATION Vinod Kanniah University of Kentucky, vinodkanniah@gmail.com This Doctoral...UKnowledge@lsv.uky.edu. Recommended Citation Kanniah, Vinod, "NANOPARTICLE ADDITIVES FOR MULTIPHASE SYSTEMS: SYNTHESIS , FORMULATION AND CHARACTERIZATION...00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE Nanoparticle Additives for Multiphase Systems: Synthesis , Formulation and Characterization 5a

  3. Synthesis and characterization of microporous titanosilicate ETS-10 obtained with different Ti sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casado, Clara; Amghouz, Zakariae; Garcia, Jose R.

    2009-06-03

    Titanosilicate ETS-10 crystals were prepared by hydrothermal synthesis varying Ti source (TiCl{sub 3} and commercial TiO{sub 2}-anatase), time in autoclave and seeding with previously prepared ETS-10 crystals. The crystalline powders were characterized by X-ray diffraction, N{sub 2} adsorption, thermogravimetric analysis, and scanning and transmission electron microscopies. Control of the particle size of ETS-10 crystals ranging from 0.32 {mu}m x 0.41 {mu}m to 16.4 {mu}m x 32.5 {mu}m was successfully achieved varying the seeding and synthesis conditions. In particular, it was found that the use of TiO{sub 2}-anatase alone or together with TiCl{sub 3} promotes heterogeneous primary nucleation. Transmission electron microscopymore » demonstrated that the largest crystals obtained here were twinned.« less

  4. Facile synthesis of SiO{sub 2} nanoparticles for biomedical applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scano, A., E-mail: alescano80@tiscali.it; Pilloni, M., E-mail: alescano80@tiscali.it; Cabras, V., E-mail: alescano80@tiscali.it

    Silica nanoparticles (SiO{sub 2} NPs) for biomedical applications have been prepared by using a facile modified Stöber-synthesis. Potassium borohydride (KBH{sub 4}) has been introduced in the synthesis procedure in order to control NP size. Several samples have been prepared varying tetraethylorthosilicate (TEOS) concentration, and using different process conditions (temperature, reaction time and atmosphere). In order to study the influence of the process conditions on the NP size, morphology and properties, several characterization techniques were used. Size and morphology of the as-prepared SiO{sub 2} NPs have been studied by using Transmission Electron Microscope (TEM) and Dynamic Light Scattering (DLS) techniques. Structuralmore » characterization was carried out by X-ray powder diffraction. To investigate the SiO{sub 2} NP fluorescence emission properties the fluorescence spectroscopy was also used.« less

  5. Cholesterol oversynthesis markers define familial combined hyperlipidemia versus other genetic hypercholesterolemias independently of body weight.

    PubMed

    Baila-Rueda, Lucía; Cenarro, Ana; Lamiquiz-Moneo, Itziar; Perez-Calahorra, Sofía; Bea, Ana M; Marco-Benedí, Victoria; Jarauta, Estíbaliz; Mateo-Gallego, Rocío; Civeira, Fernando

    2018-03-01

    Primary hypercholesterolemia of genetic origin, negative for mutations in LDLR, APOB, PCSK9 and APOE genes (non-FH GH), and familial combined hyperlipidemia (FCHL) are polygenic genetic diseases that occur with hypercholesterolemia, and both share a very high cardiovascular risk. In order to better characterize the metabolic abnormalities associated with these primary hypercholesterolemias, we used noncholesterol sterols, as markers of cholesterol metabolism, to determine their potential differences. Hepatic cholesterol synthesis markers (desmosterol and lanosterol) and intestinal cholesterol absorption markers (sitosterol and campesterol) were determined in non-FH GH (n=200), FCHL (n=100) and genetically defined heterozygous familial hypercholesterolemia subjects (FH) (n=100) and in normolipidemic controls (n=100). FCHL subjects had lower cholesterol absorption and higher cholesterol synthesis than non-FH GH, FH and controls (P<.001). When noncholesterol sterols were adjusted by body mass index (BMI), FCHL subjects had higher cholesterol synthesis than non-FG GH, FH and controls (P<.001). An increase in BMI was accompanied by increased cholesterol synthesis and decreased cholesterol absorption in non-FH GH, FH and controls. However, this association between BMI and cholesterol synthesis was not observed in FCHL. Non-high-density-lipoprotein cholesterol showed a positive correlation with cholesterol synthesis markers similar to that of BMI in non-FH GH, FH and normolipemic controls, but there was no correlation in FCHL. These results suggest that FCHL and non-FH GH have different mechanisms of production. Cholesterol synthesis and absorption are dependent of BMI in non-FH GH, but cholesterol synthesis is increased as a pathogenic mechanism in FCHL independently of age, gender, APOE and BMI. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Environment friendly approach for size controllable synthesis of biocompatible Silver nanoparticles using diastase.

    PubMed

    Maddinedi, Sireesh Babu; Mandal, Badal Kumar; Anna, Kiran Kumar

    2017-01-01

    A green, facile method for the size selective synthesis of silver nanoparticles (AgNPs) using diastase as green reducing and stabilizing agent is reported. The thiol groups present in the diastase are mainly responsible for the rapid reaction rate of silver nanoparticles synthesis. The variation in the size and morphology of AgNPs were studied by changing the pH of diastase. The prepared silver nanoparticles were characterized by using UV-vis, XRD, FTIR, TEM and SAED. The FTIR analysis revealed the stabilization of diastase molecules on the surface of AgNPs. Additionally, in-vitro cytotoxicity experiments concluded that the cytotoxicity of the as-synthesized AgNPs towards mouse fibroblast (3T3) cell lines is dose and size dependent. Furthermore, the present method is an alternative to the traditional chemical methods of size controlled AgNPs synthesis. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Fluorescent silica nanoparticles with chemically reactive surface: Controlling spatial distribution in one-step synthesis.

    PubMed

    Vera, María L; Cánneva, Antonela; Huck-Iriart, Cristián; Requejo, Felix G; Gonzalez, Mónica C; Dell'Arciprete, María L; Calvo, Alejandra

    2017-06-15

    The encapsulation of fluorescent dyes inside silica nanoparticles is advantageous to improve their quality as probes. Inside the particle, the fluorophore is protected from the external conditions and its main emission parameters remains unchanged even in the presence of quenchers. On the other hand, the amine-functionalized nanoparticle surface enables a wide range of applications, as amino groups could be easily linked with different biomolecules for targeting purposes. This kind of nanoparticle is regularly synthesized by methods that employ templates, additional nanoparticle formation or multiple pathway process. However, a one-step synthesis will be an efficient approach in this sort of bifunctional hybrid nanoparticles. A co-condensation sol-gel synthesis of hybrid fluorescent silica nanoparticle where developed. The chemical and morphological characterization of the particles where investigated by DRIFTS, XPS, SEM and SAXS. The nanoparticle fluorescent properties were also assessed by excitation-emission matrices and time resolved experiments. We have developed a one-pot synthesis method that enables the simultaneous incorporation of functionalities, the fluorescent molecule and the amino group, by controlling co-condensation process. An exhaustive characterization allows the definition of the spatial distribution of the fluorescent probe, fluorescein isothiocyanate, inside the particle and reactive amino groups on the surface of the nanoparticle with diameter about 100nm. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Chirality-Controlled Synthesis and Applications of Single-Wall Carbon Nanotubes.

    PubMed

    Liu, Bilu; Wu, Fanqi; Gui, Hui; Zheng, Ming; Zhou, Chongwu

    2017-01-24

    Preparation of chirality-defined single-wall carbon nanotubes (SWCNTs) is the top challenge in the nanotube field. In recent years, great progress has been made toward preparing single-chirality SWCNTs through both direct controlled synthesis and postsynthesis separation approaches. Accordingly, the uses of single-chirality-dominated SWCNTs for various applications have emerged as a new front in nanotube research. In this Review, we review recent progress made in the chirality-controlled synthesis of SWCNTs, including metal-catalyst-free SWCNT cloning by vapor-phase epitaxy elongation of purified single-chirality nanotube seeds, chirality-specific growth of SWCNTs on bimetallic solid alloy catalysts, chirality-controlled synthesis of SWCNTs using bottom-up synthetic strategy from carbonaceous molecular end-cap precursors, etc. Recent major progresses in postsynthesis separation of single-chirality SWCNT species, as well as methods for chirality characterization of SWCNTs, are also highlighted. Moreover, we discuss some examples where single-chirality SWCNTs have shown clear advantages over SWCNTs with broad chirality distributions. We hope this review could inspire more research on the chirality-controlled preparation of SWCNTs and equally important inspire the use of single-chirality SWCNT samples for more fundamental studies and practical applications.

  9. Effect of synthesis conditions on the nanopowder properties of Ce{sub 0.9}Zr{sub 0.1}O{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimicz, M.G.; Fabregas, I.O.; Lamas, D.G.

    Graphical abstract: . The synthesis of nanocrystalline Ce{sub 0.9}Zr{sub 0.1}O{sub 2} powders via the gel-combustion method, using different fuels, and following either stoichiometric or non-stoichiometric pH-controlled routes is investigated. Research highlights: {yields} All samples exhibited the fluorite-type crystal structure, nanometric average crystallite size and negligible carbon content. {yields} Synthesis conditions strongly affect the average crystallite size, the degree of agglomeration, the specific surface area and the pore volume. {yields} Our results indicate that, by controlling the synthesis conditions it is possible to obtain solids with custom-made morphological properties. -- Abstract: In this work, the synthesis of nanocrystalline Ce{sub 0.9}Zr{sub 0.1}O{submore » 2} powders via the gel-combustion method, using different fuels, and following either stoichiometric or non-stoichiometric pH-controlled routes is investigated. The objective is to evaluate the effect of synthesis conditions on the textural and morphological properties, and the crystal structure of the synthesized materials. The solids were characterized by nitrogen physisorption, Scanning Electron Microscopy (SEM), X-ray powder diffraction (XPD), and Carbon-Hydrogen-Nitrogen Elemental Analysis (CHN). All the powders exhibited nanometric crystallite size, fluorite-type structure and negligible carbon content. Synthesis conditions strongly affect the average crystallite size, the degree of agglomeration, the specific surface area and the pore volume. Our results indicate that, by controlling the synthesis conditions it is possible to obtain solids with custom-made morphological properties.« less

  10. Interface-Assisted Synthesis of 2D Materials: Trend and Challenges.

    PubMed

    Dong, Renhao; Zhang, Tao; Feng, Xinliang

    2018-06-18

    The discovery of graphene one decade ago has triggered enormous interest in developing two-dimensional materials (2DMs)-that is 2D allotropes of various elements or compounds (consisting of two or more covalently bonded elements) or molecular frameworks with periodic structures. At present, various synthesis strategies have been exploited to produce 2DMs, such as top-down exfoliation and bottom-up chemical vapor deposition and solution synthesis methods. In this review article, we will highlight the interfacial roles toward the controlled synthesis of inorganic and organic 2DMs with varied structural features. We will summarize the state-of-the-art progress on interfacial synthesis strategies and address their advancements in the structural, morphological, and crystalline control by the direction of the arrangement of the molecules or precursors at a confined 2D space. First, we will provide an overview of the interfaces and introduce their advantages and uniqueness for the synthesis of 2DMs, followed by a brief classification of inorganic and organic 2DMs achieved by interfacial synthesis. Next, the currently developed interfacial synthesis strategies combined with representative inorganic and organic 2DMs are summarized, including the description of method details, the corresponding structural features, and the insights into the advantages and limitations of the synthesis methods, along with some recommendable characterization methods for understanding the interfacial assembly of the precursors and crystal growth of 2DMs. After that, we will discuss several classes of emerging organic 2DMs with particular emphasis on the structural control by the interfacial synthesis strategies. Note that, inorganic 2DMs will not be categorized separately due to the fact that a number of review articles have covered the synthesis, structure, processing, and applications. Finally, the challenges and perspectives are provided regarding the future development of interface-assisted synthesis of 2DMs with diverse structural and functional control.

  11. Combinatorial electrochemical synthesis and screening of Pt-WO3 catalysts for electro-oxidation of methanol

    NASA Astrophysics Data System (ADS)

    Jayaraman, Shrisudersan; Baeck, Sung-Hyeon; Jaramillo, Thomas F.; Kleiman-Shwarsctein, Alan; McFarland, Eric W.

    2005-06-01

    An automated system for high-throughput electrochemical synthesis and screening of fuel cell electro-oxidation catalysts is described. This system consists of an electrode probe that contains counter and reference electrodes that can be positioned inside an array of electrochemical cells created within a polypropylene block. The electrode probe is attached to an automated of X-Y-Z motion system. An externally controlled potentiostat is used to apply the electrochemical potential to the catalyst substrate. The motion and electrochemical control are integrated using a user-friendly software interface. During automated synthesis the deposition potential and/or current may be controlled by a pulse program triggered by the software using a data acquisition board. The screening includes automated experiments to obtain cyclic voltammograms. As an example, a platinum-tungsten oxide (Pt-WO3) library was synthesized and characterized for reactivity towards methanol electro-oxidation.

  12. Synthesis, characterization and wound healing imitation of Fe3O4 magnetic nanoparticle grafted by natural products

    NASA Astrophysics Data System (ADS)

    Pala, Sravan Kumar

    This research focused on the study of the core-shelled magnetic nanomaterials derived from a colloidal chemistry. The goals are four-fold: (1) synthesis of Fe3O4MNMs using colloidal chemistry. The Fe 3O4 MNMs were then grafted with extracts derived from natural products, namely Olecraceavar italica (broccoli), Boletus edulis (mushroom)and Solanum lycopersicum (tomato);(2)characterization of natural products by chromatography and mass spectrometry;(3) characterization of MNMs to determine their crystallinity, morphological and elemental composition by the state-of-the-art instruments; and (4) biological evaluation using Gram-negative and Gram-positive bacteria. The approach provides advantages to precisely control the composition and homogeneity. The second advantage of the colloidal chemistry is its user friendliness and feasibility. Due to the nature of the natural products, the compatibility of MNM is anticipated to be enhanced.In this chapter, the nanomaterials will be discussed from four perspectives,§1.1 Nanotechnology (§1.1), §1.2 Synthesis of nanomaterials; §1.3 The natural product extract,; §1.4 Characterization of nanomaterials; and §1.5Biological application of nanomaterials.Fig. 1 summarized the overarching goals of this study.

  13. Acacia nilotica (Babool) leaf extract mediated size-controlled rapid synthesis of gold nanoparticles and study of its catalytic activity

    NASA Astrophysics Data System (ADS)

    Majumdar, Rakhi; Bag, Braja Gopal; Maity, Nabasmita

    2013-09-01

    The leaf extract of Acacia nilotica (Babool) is rich in different types of plant secondary metabolites such as flavanoids, tannins, triterpenoids, saponines, etc. We have demonstrated the use of the leaf extract for the synthesis of gold nanoparticles in water at room temperature under very mild conditions. The synthesis of the gold nanoparticles was complete in several minutes, and no extra stabilizing or capping agents were necessary. The size of the nanoparticles could be controlled by varying the concentration of the leaf extract. The gold nanoparticles were characterized by HRTEM, surface plasmon resonance spectroscopy, and X-ray diffraction studies. The synthesized gold nanoparticles have been used as an efficient catalyst for the reduction of 4-nitrophenol to 4-aminophenol in water at room temperature.

  14. Synthesis procedure optimization and characterization of europium (III) tungstate nanoparticles

    NASA Astrophysics Data System (ADS)

    Rahimi-Nasrabadi, Mehdi; Pourmortazavi, Seied Mahdi; Ganjali, Mohammad Reza; Reza Banan, Ali; Ahmadi, Farhad

    2014-09-01

    Taguchi robust design as a statistical method was applied for the optimization of process parameters in order to tunable, facile and fast synthesis of europium (III) tungstate nanoparticles. Europium (III) tungstate nanoparticles were synthesized by a chemical precipitation reaction involving direct addition of europium ion aqueous solution to the tungstate reagent solved in an aqueous medium. Effects of some synthesis procedure variables on the particle size of europium (III) tungstate nanoparticles were studied. Analysis of variance showed the importance of controlling tungstate concentration, cation feeding flow rate and temperature during preparation of europium (III) tungstate nanoparticles by the proposed chemical precipitation reaction. Finally, europium (III) tungstate nanoparticles were synthesized at the optimum conditions of the proposed method. The morphology and chemical composition of the prepared nano-material were characterized by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, FT-IR spectroscopy and fluorescence.

  15. Nanostructured cerium oxide: preparation, characterization, and application in energy and environmental catalysis

    DOE PAGES

    Tang, Wen-Xiang; Gao, Pu-Xian

    2016-11-10

    Nanostructured cerium oxide (CeO 2) with outstanding physical and chemical properties has attracted extensive interests over the past few decades in environment and energy-related applications. With controllable synthesis of nanostructured CeO 2, much more features were technologically brought out from defect chemistry to structure-derived effects. This paper highlights recent progress on the synthesis and characterization of nanostructured ceria-based materials as well as the traditional and new applications. Specifically, several typical applications based on the desired ceria nanostructures are focused to showcase the importance of nanostructure-derived effects. Moreover, some challenges and perspectives on the nanostructured ceria are presented, such as defectsmore » controlling and retainment, scale-up fabrication, and monolithic devices. Hopefully, this paper can provide an improved understanding of nanostructured CeO 2 and offer new opportunities to promote the further research and applications in the future.« less

  16. Jeffrey Blackburn | NREL

    Science.gov Websites

    -dimensional carbon and includes the synthesis, purification, separation, and characterization of single-walled conversion Synthesis, purification, separation, and characterization of single-walled carbon nanotubes Synthesis, characterization, and device integration of graphen Hydrogen storage Photovoltaic materials and

  17. Catalase anabolism in yeast: loss of regulation by oxygen of catalase apoprotein synthesis after mutation.

    PubMed

    Berte, C; Sels, A

    1979-04-17

    A mutant of Saccharomyces cerevisiae which displays catalase activity when grown under strictly anaerobic conditions has been selected on solid media. Although some preformed holoenzyme has accumulated in anaerobic cells, a sharp increase of activity is still measured during adaptation to oxygen in glucose-buffer; however, a striking difference with the wild-type strain is that in the mutant, catalase formation is observed in the presence of cycloheximide that totally inhibits cytoplasmic translation. It is concluded that kat 80 mutant has lost the regulatory control by oxygen of apocatalase synthesis; the later precursor, characterized as apocatalase synthesis; the latter precursor, characterized as apocatalase T, is thought to be activated in vivo, under aerobic conditions, by inclusion of prosthetic group. Regulation of enzyme synthesis by catabolite repression (glucose erfect) persists, unmodified by reference to the wild-type parental strain. Mutation kat 80 specifically hits catalase anabolism, as no significant variations were observed for the edification of the respiratory system and (apo)cytochrome c peroxidase production. Genetic analysis shows that kat 80 phenotype, recessive in heterozygotes, results from a single nuclear mutation.

  18. Chemical synthesis and characterization of branched oligodeoxyribonucleotides (bDNA) for use as signal amplifiers in nucleic acid quantification assays.

    PubMed

    Horn, T; Chang, C A; Urdea, M S

    1997-12-01

    The divergent synthesis of bDNA structures is described. This new type of branched DNA contains one unique oligonucleotide, the primary sequence, covalently attached through a comb-like branching network to many identical copies of a different oligonucleotide, the secondary sequence. The bDNA comb molecules were assembled on a solid support using parameters optimized for bDNA synthesis. The chemistry was used to synthesize bDNA comb molecules containing 15 secondary sequences. The bDNA comb molecules were elaborated by enzymatic ligation into branched amplification multimers, large bDNA molecules (a total of 1068 nt) containing an average of 36 repeated DNA oligomer sequences, each capable of hybridizing specifically to an alkaline phosphatase-labeled oligonucleotide. The bDNA comb molecules were characterized by electrophoretic methods and by controlled cleavage at periodate-cleavable moieties incorporated during synthesis. The branched amplification multimers have been used as signal amplifiers in nucleic acid quantification assays for detection of viral infection. It is possible to detect as few as 50 molecules with bDNA technology.

  19. Chemical synthesis and characterization of branched oligodeoxyribonucleotides (bDNA) for use as signal amplifiers in nucleic acid quantification assays.

    PubMed Central

    Horn, T; Chang, C A; Urdea, M S

    1997-01-01

    The divergent synthesis of bDNA structures is described. This new type of branched DNA contains one unique oligonucleotide, the primary sequence, covalently attached through a comb-like branching network to many identical copies of a different oligonucleotide, the secondary sequence. The bDNA comb molecules were assembled on a solid support using parameters optimized for bDNA synthesis. The chemistry was used to synthesize bDNA comb molecules containing 15 secondary sequences. The bDNA comb molecules were elaborated by enzymatic ligation into branched amplification multimers, large bDNA molecules (a total of 1068 nt) containing an average of 36 repeated DNA oligomer sequences, each capable of hybridizing specifically to an alkaline phosphatase-labeled oligonucleotide. The bDNA comb molecules were characterized by electrophoretic methods and by controlled cleavage at periodate-cleavable moieties incorporated during synthesis. The branched amplification multimers have been used as signal amplifiers in nucleic acid quantification assays for detection of viral infection. It is possible to detect as few as 50 molecules with bDNA technology. PMID:9365266

  20. Synthesis, structure characterization and catalytic activity of nickel tungstate nanoparticles

    NASA Astrophysics Data System (ADS)

    Pourmortazavi, Seied Mahdi; Rahimi-Nasrabadi, Mehdi; Khalilian-Shalamzari, Morteza; Zahedi, Mir Mahdi; Hajimirsadeghi, Seiedeh Somayyeh; Omrani, Ismail

    2012-12-01

    Taguchi robust design was applied to optimize experimental parameters for controllable, simple and fast synthesis of nickel tungstate nanoparticles. NiWO4 nanoparticles were synthesized by precipitation reaction involving addition of nickel ion solution to the tungstate aqueous reagent and then formation of nickel tungstate nucleolus which are insoluble in aqueous media. Effects of various parameters such as nickel and tungstate concentrations, flow rate of reagent addition and reactor temperature on diameter of synthesized nickel tungstate nanoparticles were investigated experimentally by the aid of orthogonal array design. The results for analysis of variance (ANOVA) showed that particle size of nickel tungstate can be effectively tuned by controlling significant variables involving nickel and tungstate concentrations and flow rate; while, temperature of the reactor has a no considerable effect on the size of NiWO4 particles. The ANOVA results proposed the optimum conditions for synthesis of nickel tungstate nanoparticles via this technique. Also, under optimum condition nanoparticles of NiWO4 were prepared and their structure and chemical composition were characterized by means of EDAX, XRD, SEM, FT-IR spectroscopy, UV-vis spectroscopy, and photoluminescence. Finally, catalytic activity of the nanoparticles in a cycloaddition reaction was examined.

  1. One-step, low-temperature fabrication of CdS quantum dots by watermelon rind: a green approach

    PubMed Central

    Lakshmipathy, Rajasekhar; Sarada, Nallani Chakravarthula; Chidambaram, K; Pasha, Sk Khadeer

    2015-01-01

    We investigated the one-step synthesis of CdS nanoparticles via green synthesis that used aqueous extract of watermelon rind as a capping and stabilizing agent. Preliminary phytochemical analysis depicted the presence of carbohydrates which can act as capping and stabilizing agents. Synthesized CdS nanoparticles were characterized using UV-visible, Fourier transform infrared spectroscopy, X-ray diffraction, EDX, dynamic light scattering, transmission electron microscopy, and atomic force microscopy techniques. The CdS nanoparticles were found to be size- and shape-controlled and were stable even after 3 months of synthesis. The results suggest that watermelon rind, an agro-waste, can be used for synthesis of CdS nanoparticles without any addition of stabilizing and capping agents. PMID:26491319

  2. Controlled synthesis of the antiperovskite oxide superconductor Sr3‑x SnO

    NASA Astrophysics Data System (ADS)

    Hausmann, J. N.; Oudah, M.; Ikeda, A.; Yonezawa, S.; Maeno, Y.

    2018-05-01

    A large variety of perovskite oxide superconductors are known, including some of the most prominent high-temperature and unconventional superconductors. However, superconductivity among the oxidation state inverted material class, the antiperovskite oxides, was recently reported for the first time. In this superconductor, Sr3‑x SnO, the unconventional ionic state Sn4‑ is realized and possible unconventional superconductivity due to a band inversion has been discussed. Here, we discuss an improved facile synthesis method, making it possible to control the strontium deficiency in Sr3‑x SnO. Additionally, a synthesis method above the melting point of Sr3SnO is presented. We show temperature dependence of magnetization and electrical resistivity for superconducting strontium deficient Sr3‑x SnO (T c ∼ 5 K) and for Sr3SnO without a superconducting transition in alternating current susceptibility down to 0.15 K. Further, we reveal a significant effect of strontium raw material purity on the superconductivity and achieve substantially increased M/M Meissner (∼1) compared to the highest value reported so far. More detailed characterizations utilizing powder x-ray diffraction and energy-dispersive x-ray spectroscopy show that a minor cubic phase, previously suggested to be another Sr3‑x SnO phase with a slightly larger lattice parameter, is SrO. The improved characterization and controlled synthesis reported herein enable detailed investigations on the superconducting nature and its dependency on the strontium deficiency in Sr3‑x SnO.

  3. Synthesis of high-quality libraries of long (150mer) oligonucleotides by a novel depurination controlled process

    PubMed Central

    LeProust, Emily M.; Peck, Bill J.; Spirin, Konstantin; McCuen, Heather Brummel; Moore, Bridget; Namsaraev, Eugeni; Caruthers, Marvin H.

    2010-01-01

    We have achieved the ability to synthesize thousands of unique, long oligonucleotides (150mers) in fmol amounts using parallel synthesis of DNA on microarrays. The sequence accuracy of the oligonucleotides in such large-scale syntheses has been limited by the yields and side reactions of the DNA synthesis process used. While there has been significant demand for libraries of long oligos (150mer and more), the yields in conventional DNA synthesis and the associated side reactions have previously limited the availability of oligonucleotide pools to lengths <100 nt. Using novel array based depurination assays, we show that the depurination side reaction is the limiting factor for the synthesis of libraries of long oligonucleotides on Agilent Technologies’ SurePrint® DNA microarray platform. We also demonstrate how depurination can be controlled and reduced by a novel detritylation process to enable the synthesis of high quality, long (150mer) oligonucleotide libraries and we report the characterization of synthesis efficiency for such libraries. Oligonucleotide libraries prepared with this method have changed the economics and availability of several existing applications (e.g. targeted resequencing, preparation of shRNA libraries, site-directed mutagenesis), and have the potential to enable even more novel applications (e.g. high-complexity synthetic biology). PMID:20308161

  4. A microfluidic tubing method and its application for controlled synthesis of polymeric nanoparticles.

    PubMed

    Wang, Jidong; Chen, Wenwen; Sun, Jiashu; Liu, Chao; Yin, Qifang; Zhang, Lu; Xianyu, Yunlei; Shi, Xinghua; Hu, Guoqing; Jiang, Xingyu

    2014-05-21

    This report describes a straightforward but robust tubing method for connecting polydimethylsiloxane (PDMS) microfluidic devices to external equipment. The interconnection is irreversible and can sustain a pressure of up to 4.5 MPa that is characterized experimentally and theoretically. To demonstrate applications of this high-pressure tubing technique, we fabricate a semicircular microfluidic channel to implement a high-throughput, size-controlled synthesis of poly(lactic-co-glycolic acid) (PLGA) nanoparticles ranging from 55 to 135 nm in diameter. This microfluidic device allows for a total flow rate of 410 mL h(-1), resulting in enhanced convective mixing which can be utilized to precipitate small size nanoparticles with a good dispersion. We expect that this tubing technique would be widely used in microfluidic chips for nanoparticle synthesis, cell manipulation, and potentially nanofluidic applications.

  5. Effect of solvent on the synthesis of SnO{sub 2} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Virender; Singh, Karamjit; Singh, Kulwinder

    Tin oxide (SnO{sub 2}) nanoparticles have been synthesized by co-precipitation method. The synthesized nanoparticles have been characterized by X-ray diffraction (XRD) and Ultraviolet-Visible spectroscopy (UV-VIS). XRD analysis confirmed the formation of single phase of SnO{sub 2} nanoparticles. It has been found that solvents played important role in controlling the crystallite size of SnO{sub 2} nanoparticles. The XRD analysis showed well crystallized tetragonal SnO{sub 2} nanoparticles. The crystallite size of SnO{sub 2} nanoparticles varies with the solvent. Tauc plot showed that optical band gap was also tailored by controlling the solvent during synthesis.

  6. Regiochemically controlled synthesis of a β-4-β' [70]fullerene bis-adduct

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerón, Maira R.; Castro, Edison; Neti, Venkata S. Pavan K.

    2016-12-22

    A β-4-β' C 70 bis-adduct regioisomer and an uncommon mono-adduct β-malonate C 70 derivative were synthesized by using a Diels–Alder cycloaddition followed by an addition–elimination of bromo-ethylmalonate and a retro-Diels–Alder cycloaddition reaction. Here, we also report the regioselective synthesis and spectroscopic characterization of C s-symmetric tris- and C 2v-symmetric tetra-adducts of C 70, which are the precursors of the mono- and bis-adduct final products.

  7. Synthesis and Characterization of Molybdenum Based Colloidal Particles.

    PubMed

    Moreno; Vidoni; Ovalles; Chaudret; Urbina; Krentzein

    1998-11-15

    The synthesis and characterization of molybdenum colloidal particles were evaluated using thermal and sonochemical methods and starting from different metal precursors, Mo(CO)6 and (NH4)2MoS4. The products were characterized by elemental analysis, spectroscopic (UV, FTIR), and surface analysis (XPS) techniques, as well as by transmission electron microscopy (TEM) for determining the particle sizes. Using Mo(CO)6 as metal source, particle sizes with an average diameter of 1.5 nm can be obtained using tert-amyl alcohol as solvent and tetrahydrothiophene as sulfurating ligand. The characterization of these particles showed that they are composed of molybdenum oxide MoO3. Using (NH4)2MoS4 as metal precursor, particles with average diameters of 4.7 and 2.5 nm were synthesized using thermal and sonochemical methods, respectively. The characterization of these particles showed them to be composed of molybdenum sulfide, MoS2. The sonochemical method proved to be the fastest and most convenient synthetic pathway of obtaining small colloidal particles at low temperatures and with control of the average size. Copyright 1998 Academic Press.

  8. Interactive modeling-synthesis-characterization approach towards controllable in situ self-assembly of artificial pinning centers in RE-123 films

    NASA Astrophysics Data System (ADS)

    Wu, Judy; Shi, Jack

    2017-10-01

    Raising critical current density J c in high temperature superconductors (HTSs) is an important strategy towards performance-cost balanced HTS technology for commercialization. The development of strong nanoscale artificial pinning centers (APCs) in HTS, such as YBa2Cu3O7 or RE-123 in general, represents one of the most exciting progressions in HTS material research in the last decade. Significantly raised J c has been demonstrated in APC/RE-123 nanocomposites by enhanced pinning on magnetic vortices in magnetic fields towards that demanded in practical applications. Among other processes, strain-mediated self-organization has been explored extensively for in situ formation of the APCs based on fundamental physics design rules. The desire in controlling the morphology, dimension, orientation, and concentration of APCs has led to a fundamental question on how strains interact in determining APCs at a macroscopic scale. Answering this question demands an interactive modeling-synthesis-characterization approach towards a thorough understanding of fundamental physics governing the strain-mediated self-organization of the APCs in the APC/RE-123 nanocomposites. Such an understanding is the key for a leap forward from the traditionally empirical method to materials-by-design to enable an optimal APC landscape to be achieved in epitaxial films of APC/YBCO nanocomposites under a precise guidance of fundamental physics. The paper intends to provide a review of recent progress made in the controllable generation of APCs using the interactive modeling-synthesis-characterization approach. The emphasis will be given to the understanding so far achieved using such an approach on the collective effect of the strain field on the morphology, dimension, and orientation of APCs in epitaxial APC/RE-123 nanocomposite films.

  9. Virus-induced gene silencing (VIGS)-mediated functional characterization of two genes involved in lignocellulosic secondary cell wall formation.

    PubMed

    Pandey, Shashank K; Nookaraju, Akula; Fujino, Takeshi; Pattathil, Sivakumar; Joshi, Chandrashekhar P

    2016-11-01

    Functional characterization of two tobacco genes, one involved in xylan synthesis and the other, a positive regulator of secondary cell wall formation, is reported. Lignocellulosic secondary cell walls (SCW) provide essential plant materials for the production of second-generation bioethanol. Therefore, thorough understanding of the process of SCW formation in plants is beneficial for efficient bioethanol production. Recently, we provided the first proof-of-concept for using virus-induced gene silencing (VIGS) approach for rapid functional characterization of nine genes involved in cellulose, hemicellulose and lignin synthesis during SCW formation. Here, we report VIGS-mediated functional characterization of two tobacco genes involved in SCW formation. Stems of VIGS plants silenced for both selected genes showed increased amount of xylem formation but thinner cell walls than controls. These results were further confirmed by production of stable transgenic tobacco plants manipulated in expression of these genes. Stems of stable transgenic tobacco plants silenced for these two genes showed increased xylem proliferation with thinner walls, whereas transgenic tobacco plants overexpressing these two genes showed increased fiber cell wall thickness but no change in xylem proliferation. These two selected genes were later identified as possible members of DUF579 family involved in xylan synthesis and KNAT7 transcription factor family involved in positive regulation of SCW formation, respectively. Glycome analyses of cell walls showed increased polysaccharide extractability in 1 M KOH extracts of both VIGS-NbDUF579 and VIGS-NbKNAT7 lines suggestive of cell wall loosening. Also, VIGS-NbDUF579 and VIGS-NbKNAT7 lines showed increased saccharification rates (74.5 and 40 % higher than controls, respectively). All these properties are highly desirable for producing higher quantities of bioethanol from lignocellulosic materials of bioenergy plants.

  10. Facet-controlled facilitation of PbS nanoarchitectures by understanding nanocrystal growth

    NASA Astrophysics Data System (ADS)

    Loc, Welley Siu; Quan, Zewei; Lin, Cuikun; Pan, Jinfong; Wang, Yuxuan; Yang, Kaikun; Jian, Wen-Bin; Zhao, Bo; Wang, Howard; Fang, Jiye

    2015-11-01

    Nanostructured lead sulphide is a significant component in a number of energy-related sustainable applications such as photovoltaic cells and thermoelectric components. In many micro-packaging processes, dimensionality-controlled nano-architectures as building blocks with unique properties are required. This study investigates different facet-merging growth behaviors through a wet-chemical synthetic strategy to produce high-quality controlled nanostructures of lead sulphide in various dimensionalities. It was found that 1D nanowires or 2D nanosheets can be obtained by the merging of reactive {111}- or {110}-facets, respectively, while promoting {100} facets in the early stages after nucleation leads to the growth of 0D nanocubes. The influence of temperature, capping ligands and co-solvent in facilitating the crystal facet growth of each intermediate seed is also demonstrated. The novelty of this work is characterized by the delicate manipulation of various PbS nanoarchitectures based on the comprehension of the facet-merging evolution. The synthesis of facet-controlled PbS nanostructures could provide novel building blocks with desired properties for use in many applications.Nanostructured lead sulphide is a significant component in a number of energy-related sustainable applications such as photovoltaic cells and thermoelectric components. In many micro-packaging processes, dimensionality-controlled nano-architectures as building blocks with unique properties are required. This study investigates different facet-merging growth behaviors through a wet-chemical synthetic strategy to produce high-quality controlled nanostructures of lead sulphide in various dimensionalities. It was found that 1D nanowires or 2D nanosheets can be obtained by the merging of reactive {111}- or {110}-facets, respectively, while promoting {100} facets in the early stages after nucleation leads to the growth of 0D nanocubes. The influence of temperature, capping ligands and co-solvent in facilitating the crystal facet growth of each intermediate seed is also demonstrated. The novelty of this work is characterized by the delicate manipulation of various PbS nanoarchitectures based on the comprehension of the facet-merging evolution. The synthesis of facet-controlled PbS nanostructures could provide novel building blocks with desired properties for use in many applications. Electronic supplementary information (ESI) available: Experimental section (chemicals, synthesis, characterization methods), synthesis conditions, AFM image of NSs, SEM and TEM images of NWs prepared without OAm, and TEM images of truncated NCbs grown for 7.5 min at 180 °C. See DOI: 10.1039/c5nr04181c

  11. Control mechanisms operating for lipid biosynthesis differ in oil-palm (Elaeis guineensis Jacq.) and olive (Olea europaea L.) callus cultures.

    PubMed Central

    Ramli, Umi S; Baker, Darren S; Quant, Patti A; Harwood, John L

    2002-01-01

    As a prelude to detailed flux control analysis of lipid synthesis in plants, we have examined the latter in tissue cultures from two important oil crops, olive (Olea europaea L.) and oil palm (Elaeis guineensis Jacq.). Temperature was used to manipulate the overall rate of lipid formation in order to characterize and validate the system to be used for analysis. With [1-14C]acetate as a precursor, an increase in temperature from 20 to 30 degrees C produced nearly a doubling of total lipid labelling. This increase in total lipids did not change the radioactivity in the intermediate acyl-(acyl carrier protein) or acyl-CoA pools, indicating that metabolism of these pools did not exert any significant constraint for overall synthesis. In contrast, there were some differences in the proportional labelling of fatty acids and of lipid classes at the two temperatures. The higher temperature caused a decrease in polyunsaturated fatty acid labelling and an increase in the proportion of triacylglycerol labelling in both calli. The intermediate diacylglycerol was increased in olive, but not in oil palm. Overall the data indicate the suitability of olive and oil-palm cultures for the study of lipid synthesis and indicate that de novo fatty acid synthesis may exert more flux control than complex lipid assembly. In olive, diacylglycerol acyltransferase may exert significant flux control when lipid synthesis is rapid. PMID:12023881

  12. Graphene Synthesis by Plasma-Enhanced CVD Growth with Ethanol

    DOE PAGES

    Campo, Teresa; Cotto, María; Márquez, Francisco; ...

    2016-03-01

    A modified route to synthesize graphene flakes is proposed using the Chemical Vapor Deposition (CVD) technique, by using copper substrates as supports. The carbon source used was ethanol, the synthesis temperature was 950°C and the pressure was controlled along the whole process. In this CVD synthesis process the incorporation of the carbon source was produced at low pressure and 950°C inducing the appearance of a plasma blue flash inside the quartz tube. Apparently, the presence of this plasma blue flash is required for obtaining graphene flakes. The synthesized graphene was characterized by different techniques, showing the presence of non-oxidized graphenemore » with high purity.« less

  13. Transgenic cotton over-producing spinach sucrose phosphate synthase showed enhanced leaf sucrose synthesis and improved fiber quality under controlled environmental conditions.

    PubMed

    Haigler, Candace H; Singh, Bir; Zhang, Deshui; Hwang, Sangjoon; Wu, Chunfa; Cai, Wendy X; Hozain, Mohamed; Kang, Wonhee; Kiedaisch, Brett; Strauss, Richard E; Hequet, Eric F; Wyatt, Bobby G; Jividen, Gay M; Holaday, A Scott

    2007-04-01

    Prior data indicated that enhanced availability of sucrose, a major product of photosynthesis in source leaves and the carbon source for secondary wall cellulose synthesis in fiber sinks, might improve fiber quality under abiotic stress conditions. To test this hypothesis, a family of transgenic cotton plants (Gossypium hirsutum cv. Coker 312 elite) was produced that over-expressed spinach sucrose-phosphate synthase (SPS) because of its role in regulation of sucrose synthesis in photosynthetic and heterotrophic tissues. A family of 12 independent transgenic lines was characterized in terms of foreign gene insertion, expression of spinach SPS, production of spinach SPS protein, and development of enhanced extractable V (max) SPS activity in leaf and fiber. Lines with the highest V (max) SPS activity were further characterized in terms of carbon partitioning and fiber quality compared to wild-type and transgenic null controls. Leaves of transgenic SPS over-expressing lines showed higher sucrose:starch ratio and partitioning of (14)C to sucrose in preference to starch. In two growth chamber experiments with cool nights, ambient CO(2) concentration, and limited light below the canopy, the transgenic line with the highest SPS activity in leaf and fiber had higher fiber micronaire and maturity ratio associated with greater thickness of the cellulosic secondary wall.

  14. Gaining Control over Radiolytic Synthesis of Uniform Sub-3-nanometer Palladium Nanoparticles: Use of Aromatic Liquids in the Electron Microscope.

    PubMed

    Abellan, Patricia; Parent, Lucas R; Al Hasan, Naila; Park, Chiwoo; Arslan, Ilke; Karim, Ayman M; Evans, James E; Browning, Nigel D

    2016-02-16

    Synthesizing nanomaterials of uniform shape and size is of critical importance to access and manipulate the novel structure-property relationships arising at the nanoscale, such as catalytic activity. In this work, we synthesize Pd nanoparticles with well-controlled size in the sub-3 nm range using scanning transmission electron microscopy (STEM) in combination with an in situ liquid stage. We use an aromatic hydrocarbon (toluene) as a solvent that is very resistant to high-energy electron irradiation, which creates a net reducing environment without the need for additives to scavenge oxidizing radicals. The primary reducing species is molecular hydrogen, which is a widely used reductant in the synthesis of supported metal catalysts. We propose a mechanism of particle formation based on the effect of tri-n-octylphosphine (TOP) on size stabilization, relatively low production of radicals, and autocatalytic reduction of Pd(II) compounds. We combine in situ STEM results with insights from in situ small-angle X-ray scattering (SAXS) from alcohol-based synthesis, having similar reduction potential, in a customized microfluidic device as well as ex situ bulk experiments. This has allowed us to develop a fundamental growth model for the synthesis of size-stabilized Pd nanoparticles and demonstrate the utility of correlating different in situ and ex situ characterization techniques to understand, and ultimately control, metal nanostructure synthesis.

  15. Aerosol Route Synthesis and Applications of Doped Nanostructured Materials

    NASA Astrophysics Data System (ADS)

    Sahu, Manoranjan

    Nanotechnology presents an attractive opportunity to address various challenges in air and water purification, energy, and other environment issues. Thus, the development of new nanoscale materials in low-cost scalable synthesis processes is important. Furthermore, the ability to independently manipulate the material properties as well as characterize the material at different steps along the synthesis route will aide in product optimization. In addition, to ensure safe and sustainable development of nanotechnology applications, potential impacts need to be evaluated. In this study, nanomaterial synthesis in a single-step gas phase reactor to continuously produce doped metal oxides was demonstrated. Copper-doped TiO2 nanomaterial properties (composition, size, and crystal phase) were independently controlled based on nanoparticle formation and growth mechanisms dictated by process control parameters. Copper dopant found to significantly affect TiO2 properties such as particle size, crystal phase, stability in the suspension, and absorption spectrum (shift from UV to visible light absorption). The in-situ charge distribution characterization of the synthesized nanomaterials was carried out by integrating a tandem differential mobility analyzer (TDMA) set up with the flame reactor synthesis system. Both singly- and doubly- charged nanoparticles were measured, with the charged fractions dependent on particle mobility and dopant concentration. A theoretical calculation was conducted to evaluate the relative importance of the two charging mechanisms, diffusion and thermo-ionization, in the flame. Nanoparticle exposure characterization was conducted during synthesis as a function of operating condition, product recovery and handling technique, and during maintenance of the reactors. Strategies were then indentified to minimize the exposure risk. The nanoparticle exposure potential varied depending on the operating conditions such as precursor feed rate, working conditions of the fume hood, ventilation system, and distance from the reactors. Nanoparticle exposure varied during product recovery and handling depending on the quantity of nanomaterial handled. Most nanomaterial applications require nanomaterials to be in solution. Thus, the role of nanomaterial physio-chemical properties (size, crystal phase, dopant types and concentrations) on dispersion properties was investigated based on hydrodynamic size and surface charge. Dopant type and concentration were found to significantly affect iso-electric point (IEP)-shifting the IEP to a high or lower pH value compared to pristine TiO2 based on the oxidation state of the dopant. The microbial inactivation effectiveness of as-synthesized nanomaterials was investigated under different light irradiation conditions. Microbial inactivation was found to strongly depend on the light irradiation condition as well as on material properties such chemical composition, crystal phase, and particle size. The potential interaction mechanisms of copper-doped TiO2 nanomaterial with microbes were also explored. The studies conducted as part of this dissertation addressed issues in nanomaterial synthesis, characterization and their potential environmental applications.

  16. Assessment of exhaust emissions from carbon nanotube production and particle collection by sampling filters.

    PubMed

    Tsai, Candace Su-Jung; Hofmann, Mario; Hallock, Marilyn; Ellenbecker, Michael; Kong, Jing

    2015-11-01

    This study performed a workplace evaluation of emission control using available air sampling filters and characterized the emitted particles captured in filters. Characterized particles were contained in the exhaust gas released from carbon nanotube (CNT) synthesis using chemical vapor deposition (CVD). Emitted nanoparticles were collected on grids to be analyzed using transmission electron microscopy (TEM). CNT clusters in the exhaust gas were collected on filters for investigation. Three types of filters, including Nalgene surfactant-free cellulose acetate (SFCA), Pall A/E glass fiber, and Whatman QMA quartz filters, were evaluated as emission control measures, and particles deposited in the filters were characterized using scanning transmission electron microscopy (STEM) to further understand the nature of particles emitted from this CNT production. STEM analysis for collected particles on filters found that particles deposited on filter fibers had a similar morphology on all three filters, that is, hydrophobic agglomerates forming circular beaded clusters on hydrophilic filter fibers on the collecting side of the filter. CNT agglomerates were found trapped underneath the filter surface. The particle agglomerates consisted mostly of elemental carbon regardless of the shapes. Most particles were trapped in filters and no particles were found in the exhaust downstream from A/E and quartz filters, while a few nanometer-sized and submicrometer-sized individual particles and filament agglomerates were found downstream from the SFCA filter. The number concentration of particles with diameters from 5 nm to 20 µm was measured while collecting particles on grids at the exhaust piping. Total number concentration was reduced from an average of 88,500 to 700 particle/cm(3) for the lowest found for all filters used. Overall, the quartz filter showed the most consistent and highest particle reduction control, and exhaust particles containing nanotubes were successfully collected and trapped inside this filter. As concern for the toxicity of engineered nanoparticles grows, there is a need to characterize emission from carbon nanotube synthesis processes and to investigate methods to prevent their environmental release. At this time, the particles emitted from synthesis were not well characterized when collected on filters, and limited information was available about filter performance to such emission. This field study used readily available sampling filters to collect nanoparticles from the exhaust gas of a carbon nanotube furnace. New agglomerates were found on filters from such emitted particles, and the performance of using the filters studied was encouraging in terms of capturing emissions from carbon nanotube synthesis.

  17. Stoichiometric Control of Multiple Different Tectons in Coordination-Driven Self-assembly

    PubMed Central

    Lee, Junseong; Ghosh, Koushik; Stang, Peter J.

    2009-01-01

    We present a general strategy for the synthesis of stable, multi-component fused polygon complexes where coordination-driven self-assembly allows for single supramolecular species can be formed from multi-component self-assembly and the shape of the obtained polygons can be controlled by simply changing the ratio of individual components. The compounds are characterized by Multinuclear NMR, ESI Mass spectrometry. PMID:19663439

  18. Electrochemical synthesis and characterization of zinc oxalate nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shamsipur, Mojtaba, E-mail: mshamsipur@yahoo.com; Roushani, Mahmoud; Department of Chemistry, Ilam University, Ilam

    2013-03-15

    Highlights: ► Synthesis of zinc oxalate nanoparticles via electrolysis of a zinc plate anode in sodium oxalate solutions. ► Design of a Taguchi orthogonal array to identify the optimal experimental conditions. ► Controlling the size and shape of particles via applied voltage and oxalate concentration. ► Characterization of zinc oxalate nanoparticles by SEM, UV–vis, FT-IR and TG–DTA. - Abstract: A rapid, clean and simple electrodeposition method was designed for the synthesis of zinc oxalate nanoparticles. Zinc oxalate nanoparticles in different size and shapes were electrodeposited by electrolysis of a zinc plate anode in sodium oxalate aqueous solutions. It was foundmore » that the size and shape of the product could be tuned by electrolysis voltage, oxalate ion concentration, and stirring rate of electrolyte solution. A Taguchi orthogonal array design was designed to identify the optimal experimental conditions. The morphological characterization of the product was carried out by scanning electron microscopy. UV–vis and FT-IR spectroscopies were also used to characterize the electrodeposited nanoparticles. The TG–DTA studies of the nanoparticles indicated that the main thermal degradation occurs in two steps over a temperature range of 350–430 °C. In contrast to the existing methods, the present study describes a process which can be easily scaled up for the production of nano-sized zinc oxalate powder.« less

  19. DGAT inhibitors for obesity.

    PubMed

    Matsuda, Daisuke; Tomoda, Hiroshi

    2007-10-01

    Obesity is characterized by the accumulation of triacylglycerol in adipocytes. Diacylglycerol acyltransferase (DGAT) catalyzes the final reaction of triacylgycerol synthesis. Two isozymes of DGAT, DGAT1 and DGAT2, have been reported. Increased DGAT2 activity has a role in steatosis, while DGAT1 plays a role in very (V)LDL synthesis; increased plasma VLDL concentrations may promote obesity and thus DGAT1 is considered a potential therapeutic target of inhibition for obesity control. Several DGAT inhibitors of natural and synthetic origin have been reported, and their future prospect as anti-obesity drugs is discussed in this review.

  20. Programmable Triplet Formation and Decay in Metal-Organic Chromophores

    DTIC Science & Technology

    2011-12-13

    potential applications in optical limiting molecules has resulted in the synthesis and characterization of many new classes of chromophores in...Castellano, F.N. Inorg. Chem. 2006, 45, 4304-4306. Inorganic Chemistry Cover May 29, 2006. The synthesis , structural characterization, and...The synthesis , photophysics, electronic structure, and electrochemical characterization of 4′-tert- butylacetylene-2,2′:6′,2″-terpyridineplatinum(II

  1. One-dimensional zinc oxide nanomaterials synthesis and photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Weintraub, Benjamin A.

    As humanly engineered materials systems approach the atomic scale, top-down manufacturing approaches breakdown and following nature's example, bottom-up or self-assembly methods have the potential to emerge as the dominant paradigm. Synthesis of one-dimensional nanomaterials takes advantage of such self-assembly manufacturing techniques, but until now most efforts have relied on high temperature vapor phase schemes which are limited in scalability and compatibility with organic materials. The solution-phase approach is an attractive low temperature alternative to overcome these shortcomings. To this end, this thesis is a study of the rationale solution-phase synthesis of ZnO nanowires and applications in photovoltaics. The following thesis goals have been achieved: rationale synthesis of a single ZnO nanowire on a polymer substrate without seeding, design of a wafer-scale technique to control ZnO nanowire array density using layer-by-layer polymers, determination of optimal nanowire field emitter density to maximize the field enhancement factor, design of bridged nanowires across metal electrodes to order to circumvent post-synthesis manipulation steps, electrical characterization of bridged nanowires, rationale solution-phase synthesis of long ZnO nanowires on optical fibers, fabrication of ZnO nanowire dye-sensitized solar cells on optical fibers, electrical and optical characterization of solar cell devices, comparison studies of 2-D versus 3-D nanowire dye-sensitized solar cell devices, and achievement of 6-fold solar cell power conversion efficiency enhancement using a 3-D approach. The thesis results have implications in nanomanufacturing scale-up and next generation photovoltaics.

  2. A remote-controlled adaptive medchem lab: an innovative approach to enable drug discovery in the 21st Century.

    PubMed

    Godfrey, Alexander G; Masquelin, Thierry; Hemmerle, Horst

    2013-09-01

    This article describes our experiences in creating a fully integrated, globally accessible, automated chemical synthesis laboratory. The goal of the project was to establish a fully integrated automated synthesis solution that was initially focused on minimizing the burden of repetitive, routine, rules-based operations that characterize more established chemistry workflows. The architecture was crafted to allow for the expansion of synthetic capabilities while also providing for a flexible interface that permits the synthesis objective to be introduced and manipulated as needed under the judicious direction of a remote user in real-time. This innovative central synthesis suite is herein described along with some case studies to illustrate the impact such a system is having in expanding drug discovery capabilities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Tyrosine assisted size controlled synthesis of silver nanoparticles and their catalytic, in-vitro cytotoxicity evaluation.

    PubMed

    Maddinedi, Sireesh Babu; Mandal, Badal Kumar; Anna, Kiran Kumar

    2017-04-01

    A simple, green approach for the size controllable preparation of silver nanoparticles (SNPs) using tyrosine as reducing and capping agent is shown here. The size of SNPs is controlled by varying the pH of tyrosine solution. The as synthesized SNPs are characterized by using XRD, UV-Visible, DLS, TEM and SAED. Zeta potential measurements revealed the stability of tyrosine capped silver nanocolloids. Furthermore, catalytic activity studies concluded that the smaller SNPs acts as good catalyst and the catalytic activity depends on size of the nanoparticles. Further, the in-vitro cytotoxicity experiments concluded that the cytotoxicity of the prepared SNPs towards mouse fibroblast (3T3) cell lines is size and dose dependent. Additionally, the present approach is substitute to the traditional methods that are being used now-a-days for size controlled synthesis of SNPs. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Raman Spectrometer for the Characterization of Advanced Materials and Nanomaterials

    DTIC Science & Technology

    2016-04-18

    Capannelli, F. Canepa, M. Napoletano, M.R. Cimberle, et al., Synthesis and magnetic characterization of Ni nanoparticles and Ni nanoparticles in...Hennig, R.D. Robinson, Unintended phosphorus doping of nickel nanoparticles during synthesis with TOP: a discovery through structural analysis...Davar, Z. Fereshteh, M. Salavati-Niasari, Nanoparticles Ni and NiO: Synthesis , characterization and magnetic properties, J. Alloys Compd. 476 (2009) 797–801.

  5. Responsive Copolymers for Enhanced Petroleum Recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, C.; Hester, R.

    The objectives of this work was to: synthesize responsive copolymer systems; characterize molecular structure and solution behavior; measure rheological properties of aqueous fluids in fixed geometry flow profiles; and to tailor final polymer compositions for in situ rheology control under simulated conditions. This report focuses on the synthesis and characterization of novel stimuli responsive copolymers, the investigation of dilute polymer solutions in extensional flow and the design of a rheometer capable of measuring very dilute aqueous polymer solutions at low torque.

  6. The preparation and characterization of novel Pt/C electrocatalysts with controlled porosity and cluster size

    DOE PAGES

    Coker, Eric N.; Steen, William A.; Miller, Jeffrey T.; ...

    2007-05-23

    Small platinum clusters have been prepared in zeolite hosts through ion exchange and controlled calcination/reduction processes. In order to enable electrochemical application, the pores of the Pt-zeolite were filled with electrically conductive carbon via infiltration with carbon precursors, polymerization, and pyrolysis. The zeolite host was then removed by acid washing, to leave a Pt/C electrocatalyst possessing quasi-zeolitic porosity and Pt clusters of well-controlled size. The electrocatalysts were characterized by TEM, XRD, EXAFS, nitrogen adsorption and electrochemical techniques. Depending on the synthesis conditions, average Pt cluster sizes in the Pt/C catalysts ranged from 1.3 to 2.0 nm. The presence of orderedmore » porosity/structure in the catalysts was evident in TEM images as lattice fringes, and in XRD as a low-angle diffraction peak with d-spacing similar to the parent zeolite. The catalysts possess micro- and meso-porosity, with pore size distributions that depend upon synthesis variables. Finally, electroactive surface areas as high as 112 m 2 g Pt -1 have been achieved in Pt/C electrocatalysts which show oxygen reduction performance comparable to standard industrial catalysts.« less

  7. Influence of Synthesis Temperature on the Growth and Surface Morphology of Co₃O₄ Nanocubes for Supercapacitor Applications.

    PubMed

    Samal, Rashmirekha; Dash, Barsha; Sarangi, Chinmaya Kumar; Sanjay, Kali; Subbaiah, Tondepu; Senanayake, Gamini; Minakshi, Manickam

    2017-10-31

    A facile hydrothermal route to control the crystal growth on the synthesis of Co₃O₄ nanostructures with cube-like morphologies has been reported and tested its suitability for supercapacitor applications. The chemical composition and morphologies of the as-prepared Co₃O₄ nanoparticles were extensively characterized using X-ray diffraction (XRD) and transmission electron microscopy (TEM). Varying the temperature caused considerable changes in the morphology, the electrochemical performance increased with rising temperature, and the redox reactions become more reversible. The results showed that the Co₃O₄ synthesized at a higher temperature (180 °C) demonstrated a high specific capacitance of 833 F/g. This is attributed to the optimal temperature and the controlled growth of nanocubes.

  8. Morphology controlled synthesis of platinum nanoparticles performed on the surface of graphene oxide using a gas-liquid interfacial reaction and its application for high-performance electrochemical sensing.

    PubMed

    Bai, Wushuang; Sheng, Qinglin; Zheng, Jianbin

    2016-07-21

    In this paper, we report a novel morphology-controlled synthetic method. Platinum (Pt) nanoparticles with three kinds of morphology (aggregation-like, cube-like and globular) were grown on the surface of graphene oxide (GO) using a simple gas-liquid interfacial reaction and Pt/GO nanocomposites were obtained successfully. According to the experimental results, the morphology of the Pt nanoparticles can be controlled by adjusting the reaction temperature with the protection of chitosan. The obtained Pt/GO nanocomposites were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD) and fourier transform infrared spectroscopy (FTIR). Then the Pt/GO nanocomposites with the three kinds of morphology were all used to fabricate electrochemical sensors. The electrochemical experimental results indicated that compared with various reported electrochemical sensors, the Pt/GO modified sensors in this work exhibit a low detection limit, high sensitivity and an extra wide linear range for the detection of nitrite. In addition, the synthesis of Pt particles based on a gas-liquid interfacial reaction provides a new platform for the controllable synthesis of nanomaterials.

  9. Synthesis and characterization of metal oxide-polyaniline emeraldine salt based nanocomposite

    NASA Astrophysics Data System (ADS)

    Kumar, K. Siva; Kavitha, B.; Prabakar, K.; Srinivasu, D.; Srinivas, Ch.; Narsimlu, N.

    2013-02-01

    This paper describes the synthesis of TiO2 (core)/Polyaniline (shell) core-shell structured nanocomposites and characterization of the synthesized material. The morphological characterization is performed with XRD, SEM, DLS and SANS. Spectroscopic characterization is performed with FTIR, UV/Visible and ESR techniques.

  10. Synthesis of compounds related to the anti-migraine drug eletriptan hydrobromide.

    PubMed

    Madasu, Suri Babu; Vekariya, Nagaji Ambabhai; Kiran, M N V D Hari; Gupta, Badarinadh; Islam, Aminul; Douglas, Paul S; Babu, Korupolu Raghu

    2012-01-01

    Eletriptan hydrobromide (1) is a selective serotonin (5-HT(1)) agonist, used for the acute treatment of the headache phase of migraine attacks. During the manufacture of eletriptan hydrobromide the formation of various impurities were observed and identified by LC-MS. To control the formation of these impurities during the preparation of active pharmaceutical ingredients, the structure of the impurities must be known. Major impurities of the eletriptan hydrobromide synthesis were prepared and characterized by using various spectroscopic techniques, i.e., mass spectroscopy, FTIR , (1)H NMR, (13)C NMR/DEPT, and further confirmed by co-injection in HPLC. The present study will be of great help in the synthesis of highly pure eletriptan hydrobromide related compounds.

  11. Synthesis of compounds related to the anti-migraine drug eletriptan hydrobromide

    PubMed Central

    Madasu, Suri Babu; Kiran, M N V D Hari; Gupta, Badarinadh; Islam, Aminul; Douglas, Paul S; Babu, Korupolu Raghu

    2012-01-01

    Summary Eletriptan hydrobromide (1) is a selective serotonin (5-HT1) agonist, used for the acute treatment of the headache phase of migraine attacks. During the manufacture of eletriptan hydrobromide the formation of various impurities were observed and identified by LC–MS. To control the formation of these impurities during the preparation of active pharmaceutical ingredients, the structure of the impurities must be known. Major impurities of the eletriptan hydrobromide synthesis were prepared and characterized by using various spectroscopic techniques, i.e., mass spectroscopy, FTIR , 1H NMR, 13C NMR/DEPT, and further confirmed by co-injection in HPLC. The present study will be of great help in the synthesis of highly pure eletriptan hydrobromide related compounds. PMID:23019477

  12. Effect of Temperature, Precursor Type and Dripping Time on the Crystallite Size of Nano ZnO Obtained by One-Pot Synthesis: 2 k Full Factorial Design Analysis.

    PubMed

    Machado, Morgana de Medeiros; Savi, Bruna Martinello; Perucchi, Mariana Borges; Benedetti, Alessandro; Oliveira, Luis Felipe Silva; Bernardin, Adriano Michael

    2018-06-01

    The aim of this work was to determine the effect of temperature, precursor and dripping time on the crystallite size of ZnO nanoparticles synthesized by controlled precipitation according a 2k full factorial design. ZnCl2, Zn(NO3)2 and NaOH were used as precursors. After synthesis, the nano crystalline powder was characterized by XRD (Cu Kα), UV-Vis, and HR-TEM. The nano ZnO particles presented a crystallite size between 210 and 260 Å (HR-TEM and XRD). The results show that the crystallite size depends on the type of precursor and temperature of synthesis, but not on the dripping time.

  13. Silicate Esters of Paclitaxel and Docetaxel: Synthesis, Hydrophobicity, Hydrolytic Stability, Cytotoxicity, and Prodrug Potential

    PubMed Central

    2015-01-01

    We report here the synthesis and selected properties of various silicate ester derivatives (tetraalkoxysilanes) of the taxanes paclitaxel (PTX) and docetaxel (DTX) [i.e., PTX-OSi(OR)3 and DTX-OSi(OR)3]. Both the hydrophobicity and hydrolytic lability of these silicates can be (independently) controlled by choice of the alkyl group (R). The synthesis, structural characterization, hydrolytic reactivity, and in vitro cytotoxicity against the MDA-MB-231 breast cancer cell line of most of these derivatives are described. We envision that the greater hydrophobicity of these silicates (vis-à-vis PTX or DTX itself) should be advantageous from the perspective of preparation of stable aqueous dispersions of amphiphilic block-copolymer-based nanoparticle formulations. PMID:24564494

  14. Material Property Characterization of Potential Nanocarbon Metal-Matrix Composite: An Investigational Study

    NASA Astrophysics Data System (ADS)

    Zavala, Mitchel

    Metal-matrix composites (MMCs) are engineered combinations of two or more materials. Tailored properties are achieved by systematic combinations of different constituents. Specialized design and synthesis procedures allow unique sets of material properties in composites. Covetics are a new type of metal-matrix nano-composite (MMnC) material. These materials are formed from FCC metals which are super-saturated with up to 10 wt. % of activated nano-carbon powder. The idea is that the nano-carbon particles will enhance the material properties of the base metal matrix, however most of the physical and mechanical properties of covetics have not been well characterized. The foci of this study are to optimize the covetic casting synthesis process under controlled conditions, to understand and analyze the microstructures of the synthesized copper and aluminum covetic, to provide a thorough analysis of the chemical composition of the synthesized covetic materials, and to characterize physical and mechanical properties of both of these materials using meticulously prepared samples and test procedures.

  15. Synthesis and characterization of attosecond light vortices in the extreme ultraviolet

    PubMed Central

    Géneaux, R.; Camper, A.; Auguste, T.; Gobert, O.; Caillat, J.; Taïeb, R.; Ruchon, T.

    2016-01-01

    Infrared and visible light beams carrying orbital angular momentum (OAM) are currently thoroughly studied for their extremely broad applicative prospects, among which are quantum information, micromachining and diagnostic tools. Here we extend these prospects, presenting a comprehensive study for the synthesis and full characterization of optical vortices carrying OAM in the extreme ultraviolet (XUV) domain. We confirm the upconversion rules of a femtosecond infrared helically phased beam into its high-order harmonics, showing that each harmonic order carries the total number of OAM units absorbed in the process up to very high orders (57). This allows us to synthesize and characterize helically shaped XUV trains of attosecond pulses. To demonstrate a typical use of these new XUV light beams, we show our ability to generate and control, through photoionization, attosecond electron beams carrying OAM. These breakthroughs pave the route for the study of a series of fundamental phenomena and the development of new ultrafast diagnosis tools using either photonic or electronic vortices. PMID:27573787

  16. Synthesis, characterization of thiolated karaya gum and evaluation of effect of pH on its mucoadhesive and sustained release properties.

    PubMed

    Bahulkar, Swati S; Munot, Neha M; Surwase, Sachin S

    2015-10-05

    Present study aims at synthesis and characterization of thiolated gum karaya by reacting karaya gum with 80% thioglycolic acid resulting in esterification and immobilization of thiol groups on polymeric backbone. Immobilized thiol groups were found to be 5.026 mM/g determined by Ellman's method. It was characterized by FTIR, DSC and XRD. Directly compressible tablets prepared using thiolated gum displayed more disintegration time, swelling and mucoadhesion with increase in pH of medium simulating gastric and intestinal environment than plain gum. Controlled drug release for more than 24h by Fickian diffusion following Korsemeyer-Peppas model was observed with Metoprolol Succinate as a model drug as compared to plain gum which released more than 90% of the drug within 2h. Synthesized thiomer showed no cytotoxicity determined using HepG2 cell line. According to these results, thiolated gum karaya seems to be promising excipient for the development of mucoadhesive drug delivery systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Synthesis and characterization of Mn quantum dots by bioreduction with water hyacinth.

    PubMed

    Rosano-Ortega, G; Schabes-Retchkiman, P; Zorrilla, C; Liu, H B; Canizal, G; Avila-Pérez, P; Ascencio, J A

    2006-01-01

    The bio-reduction method is reported as a part of a complimentary self-sustained technology, where bioremediation and metal particle production are related. The use of the characterization methods in this self sustainable technique open the expectative to be used for several other elements and with other plants, which will be discussed. However, the particular case of Mn nanoparticles involves an important option to generate nanoparticles in the range of 1-4 nanometers with a well controlled size and with a structure based on an fcc-like geometry for the smallest clusters and with more complex arrays for cluster greater than four shells, which involves magnetic moments significantly related to their atomistic configuration. At the same time, the use of the characterization methods establishes the dependence of the nanoparticle's size on the pH conditions used during the synthesis; small clusters in the range of 1-2 nm were generated using pH=5, and it was shown that for the smallest aggregates, simple polyhedron shapes are stable.

  18. Dynamic in vivo imaging of dual-triggered microspheres for sustained release applications: synthesis, characterization and cytotoxicity study.

    PubMed

    Efthimiadou, Eleni K; Tapeinos, Christos; Chatzipavlidis, Alexandros; Boukos, Nikos; Fragogeorgi, Eirini; Palamaris, Lazaros; Loudos, George; Kordas, George

    2014-01-30

    This paper deals with the synthesis, characterization and property evaluation of drug-loaded magnetic microspheres with pH-responsive cross-linked polymer shell. The synthetic procedure consists of 3 steps, of which the first two comprise the synthesis of a poly methyl methacrylate (PMMA) template and the synthesis of a shell by using acrylic acid (AA) and methyl methacrylate (MMA) as monomers, and divinyl benzene (DVB) as cross-linker. The third step of the procedure refers to the formation of magnetic nanoparticles on the microsphere's surface. AA that attaches pH-sensitivity in the microspheres and magnetic nanoparticles in the inner and the outer surface of the microspheres, enhance the efficacy of this intelligent drug delivery system (DDS), which constitutes a promising approach toward cancer therapy. A number of experimental techniques were used to characterize the resulting microspheres. In order to investigate the in vitro controlled release behavior of the synthesized microspheres, we studied the Dox release percentage under different pH conditions and under external magnetic field. Hyperthermia caused by an alternating magnetic field (AFM) is used in order to study the doxorubicin (Dox) release behavior from microspheres with pH functionality. The in vivo fate of these hybrid-microspheres was tracked by labeling them with the γ-emitting radioisotope (99m)Tc after being intravenously injected in normal mice. According to our results, microsphere present a pH depending and a magnetic heating, release behavior. As expected, labeled microspheres were mainly found in the mononuclear phagocyte system (MPS). The highlights of the current research are: (i) to illustrate the advantages of controlled release by combining hyperthermia and pH-sensitivity and (ii) to provide noninvasive, in vivo information on the spatiotemporal biodistribution of these microsphere by dynamic γ-imaging. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Nanoscale zero-valent metals: a review of synthesis, characterization, and applications to environmental remediation.

    PubMed

    Li, Lingyun; Hu, Jiwei; Shi, Xuedan; Fan, Mingyi; Luo, Jin; Wei, Xionghui

    2016-09-01

    Engineered nanoscale zero-valent metals (NZVMs) representing the forefront of technologies have been considered as promising materials for environmental remediation and antimicrobial effect, due to their high reducibility and strong adsorption capability. This review is focused on the methodology for synthesis of bare NZVMs, supported NZVMs, modified NZVMs, and bimetallic systems with both traditional and green methods. Recent studies have demonstrated that self-assembly methods can play an important role for obtaining ordered, controllable, and tunable NZVMs. In addition to common characterization methods, the state-of-the-art methods have been developed to obtain the properties of NZVMs (e.g., granularity, size distribution, specific surface area, shape, crystal form, and chemical bond) with the resolution down to subnanometer scale. These methods include spherical aberration corrected scanning transmission electron microscopy (Cs-corrected STEM), electron energy-loss spectroscopy (EELS), and near edge X-ray absorption fine structure (NEXAFS). A growing body of experimental data has proven that nanoscale zero-valent iron (NZVI) is highly effective and versatile. This article discusses the applications of NZVMs to treatment of heavy metals, halogenated organic compounds, polycyclic aromatic hydrocarbons, nutrients, radioelements, and microorganisms, using both ex situ and in situ methods. Furthermore, this paper briefly describes the ecotoxicological effects for NZVMs and the research prospects related to their synthesis, modification, characterization, and applications.

  20. Synthesis, characterization, and reactivity of pentamethylcyclopentadienyl complexes of divalent cobalt and nickel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Michael Edward

    1993-10-01

    The thesis is divided into the following 4 chapters: synthesis, characterization, and reactivity of trinuclear pentamethylcyclopentadienyl cobalt and nickel clusters with triply-bridging methylidyne groups; chemical and physical properties of pentamethylcyclopentadienyl acetylacetonate complexes of Co(II) and Ni(II); synthesis, characterization, and reactivity of pentamethylcyclopentadienyl halide complexes of Co and Ni; and crystallographic studies of distortions in metallocenes with C 5-symmetrical cyclopentadienyl rings.

  1. New triethoxysilylated 10-vertex closo-decaborate clusters. Synthesis and controlled immobilization into mesoporous silica.

    PubMed

    Abi-Ghaida, Fatima; Laila, Zahra; Ibrahim, Ghassan; Naoufal, Daoud; Mehdi, Ahmad

    2014-09-14

    Novel silylated hydroborate clusters comprising the closo-decaborate cage were prepared and characterized by (1)H, (13)C, (11)B, (29)Si NMR and mass spectroscopy ESI. The synthesis of such silylated clusters was achieved using reactive derivatives of [B10H10](2-), [1-B10H9N2](-) and [2-B10H9CO](-). These silylated decaborate clusters constitute a new class of precursors that can be covalently anchored onto various silica supports without any prior surface modification. As a proof of concept, the synthesized precursors were successfully anchored on mesoporous silica, SBA-15 type, in different percentages, where the mesoporous material retained its structure. All materials modified with closo-decaborate were characterized by (11)B and (29)Si solid state NMR, XRD, TEM and nitrogen sorption.

  2. Electrolytic synthesis of aqueous aluminum nanoclusters and in situ characterization by femtosecond Raman spectroscopy and computations

    PubMed Central

    Wang, Wei; Liu, Weimin; Chang, I-Ya; Wills, Lindsay A.; Zakharov, Lev N.; Boettcher, Shannon W.; Cheong, Paul Ha-Yeon; Fang, Chong; Keszler, Douglas A.

    2013-01-01

    The selective synthesis and in situ characterization of aqueous Al-containing clusters is a long-standing challenge. We report a newly developed integrated platform that combines (i) a selective, atom-economical, step-economical, scalable synthesis of Al-containing nanoclusters in water via precision electrolysis with strict pH control and (ii) an improved femtosecond stimulated Raman spectroscopic method covering a broad spectral range of ca. 350–1,400 cm−1 with high sensitivity, aided by ab initio computations, to elucidate Al aqueous cluster structures and formation mechanisms in real time. Using this platform, a unique view of flat [Al13(μ3-OH)6(μ2-OH)18(H2O)24](NO3)15 nanocluster formation is observed in water, in which three distinct reaction stages are identified. The initial stage involves the formation of an [Al7(μ3-OH)6(μ2-OH)6(H2O)12]9+ cluster core as an important intermediate toward the flat Al13 aqueous cluster. PMID:24167254

  3. Synthesis and characterization of barium silicide (BaSi2) nanowire arrays for potential solar applications.

    PubMed

    Pokhrel, Ankit; Samad, Leith; Meng, Fei; Jin, Song

    2015-11-07

    In order to utilize nanostructured materials for potential solar and other energy-harvesting applications, scalable synthetic techniques for these materials must be developed. Herein we use a vapor phase conversion approach to synthesize nanowire (NW) arrays of semiconducting barium silicide (BaSi2) in high yield for the first time for potential solar applications. Dense arrays of silicon NWs obtained by metal-assisted chemical etching were converted to single-crystalline BaSi2 NW arrays by reacting with Ba vapor at about 930 °C. Structural characterization by X-ray diffraction and high-resolution transmission electron microscopy confirm that the converted NWs are single-crystalline BaSi2. The optimal conversion reaction conditions allow the phase-pure synthesis of BaSi2 NWs that maintain the original NW morphology, and tuning the reaction parameters led to a controllable synthesis of BaSi2 films on silicon substrates. The optical bandgap and electrochemical measurements of these BaSi2 NWs reveal a bandgap and carrier concentrations comparable to previously reported values for BaSi2 thin films.

  4. Procedure optimization for green synthesis of silver nanoparticles by aqueous extract of Eucalyptus oleosa.

    PubMed

    Pourmortazavi, Seied Mahdi; Taghdiri, Mehdi; Makari, Vajihe; Rahimi-Nasrabadi, Mehdi

    2015-02-05

    The present study is dealing with the green synthesis of silver nanoparticles using the aqueous extract of Eucalyptus oleosa as a green synthesis procedure without any catalyst, template or surfactant. Colloidal silver nanoparticles were synthesized by reacting aqueous AgNO3 with E. oleosa leaf extract at non-photomediated conditions. The significance of some synthesis conditions such as: silver nitrate concentration, concentration of the plant extract, time of synthesis reaction and temperature of plant extraction procedure on the particle size of synthesized silver particles was investigated and optimized. The participations of the studied factors in controlling the particle size of reduced silver were quantitatively evaluated via analysis of variance (ANOVA). The results of this investigation showed that silver nanoparticles could be synthesized by tuning significant parameters, while performing the synthesis procedure at optimum conditions leads to form silver nanoparticles with 21nm as averaged size. Ultraviolet-visible spectroscopy was used to monitor the development of silver nanoparticles formation. Meanwhile, produced silver nanoparticles were characterized by scanning electron microscopy, energy-dispersive X-ray, and FT-IR techniques. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Synthesis and characterization of zinc borophosphates with ANA-zeotype framework by the microwave method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Yu, E-mail: songyu@dlpu.edu.cn; Ding, Ling; An, Qingda

    2013-06-15

    Zinc borophosphate (NH{sub 4}){sub 16}[Zn{sub 16}B{sub 8}P{sub 24}O{sub 96}] (denoted as ZnBP-ANA) with ANA-zeotype structure has been synthesized by employing microwave-assisted solvothermal synthesis in the reaction system ZnCl{sub 2}∙6H{sub 2}O-(NH{sub 4}){sub 2}HPO{sub 4}–H{sub 3}BO{sub 3} using ethylene glycol as a co-solvent. The influences of various experimental parameters, such as reaction temperature, solvent ratio, zinc precursors and reactive power, have been systematically investigated. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA), and so on. Small and homogeneous ZnBP-ANA single crystal with regular cube morphology are crystallized by using microwave solvothermal synthesis method withinmore » a shorter time, and its grain size decreases with power. - Graphical abstract: Tailor-made ANA zeolites with varied size can be prepared by simply changing the reaction power. - Highlights: • Zinc borophosphate zeolites with ANA-zeotype structures were prepared by microwave technique. • The size of crystals could be controlled by tuning power. • Synthesis period can be significantly reduced by raising reaction temperature.« less

  6. A protocol for preparing, characterizing and using three RNA-specific, live cell imaging probes: E36, E144 and F22.

    PubMed

    Li, Qian; Chang, Young-Tae

    2006-01-01

    This protocol outlines a methodology for the preparation and characterization of three RNA-specific fluorescent probes (E36, E144 and F22) and their use in live cell imaging. It describes a detailed procedure for their chemical synthesis and purification; serial product characterization and quality control tests, including measurements of their fluorescence properties in solution, measurement of RNA specificity and analysis of cellular toxicity; and live cell staining and counterstaining with Hoechst or DAPI. Preparation and application of these RNA imaging probes takes 1 week.

  7. Facile and green synthesis of mesoporous Co3O4 nanocubes and their applications for supercapacitors

    NASA Astrophysics Data System (ADS)

    Liu, Xiangmei; Long, Qing; Jiang, Chunhui; Zhan, Beibei; Li, Chen; Liu, Shujuan; Zhao, Qiang; Huang, Wei; Dong, Xiaochen

    2013-06-01

    Nanostructured Co3O4 materials attracted significant attention due to their exceptional electrochemical (pseudo-capacitive) properties. However, rigorous preparation conditions are needed to control the size (especially nanosize), morphology and size distribution of the products obtained by conventional methods. Herein, we describe a novel one step shape-controlled synthesis of uniform Co3O4 nanocubes with a size of 50 nm with the existence of mesoporous carbon nanorods (meso-CNRs). In this synthesis process, meso-CNRs not only act as a heat receiver to directly obtain Co3O4 eliminating the high-temperature post-calcination, but also control the morphology of the resulting Co3O4 to form nanocubes with uniform distribution. More strikingly, mesoporous Co3O4 nanocubes are obtained by further thermal treatment. The structure and morphology of the samples were characterized by scanning electron microscopy, transmission electron microscopy and X-ray diffraction. A possible formation mechanism of mesoporous Co3O4 nanocubes is proposed here. Electrochemical tests have revealed that the prepared mesoporous Co3O4 nanocubes demonstrate a remarkable performance in supercapacitor applications due to the porous structure, which endows fast ion and electron transfer.Nanostructured Co3O4 materials attracted significant attention due to their exceptional electrochemical (pseudo-capacitive) properties. However, rigorous preparation conditions are needed to control the size (especially nanosize), morphology and size distribution of the products obtained by conventional methods. Herein, we describe a novel one step shape-controlled synthesis of uniform Co3O4 nanocubes with a size of 50 nm with the existence of mesoporous carbon nanorods (meso-CNRs). In this synthesis process, meso-CNRs not only act as a heat receiver to directly obtain Co3O4 eliminating the high-temperature post-calcination, but also control the morphology of the resulting Co3O4 to form nanocubes with uniform distribution. More strikingly, mesoporous Co3O4 nanocubes are obtained by further thermal treatment. The structure and morphology of the samples were characterized by scanning electron microscopy, transmission electron microscopy and X-ray diffraction. A possible formation mechanism of mesoporous Co3O4 nanocubes is proposed here. Electrochemical tests have revealed that the prepared mesoporous Co3O4 nanocubes demonstrate a remarkable performance in supercapacitor applications due to the porous structure, which endows fast ion and electron transfer. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00495c

  8. Sol Gel-Derived SBA-16 Mesoporous Material

    PubMed Central

    Rivera-Muñoz, Eric M.; Huirache-Acuña, Rafael

    2010-01-01

    The aim of this article is to review current knowledge related to the synthesis and characterization of sol gel-derived SBA-16 mesoporous silicas, as well as a review of the state of the art in this issue, to take stock of knowledge about current and future applications. The ease of the method of preparation, the orderly structure, size and shape of their pores and control, all these achievable through simple changes in the method of synthesis, makes SBA-16 a very versatile material, potentially applicable in many areas of science and molecular engineering of materials. PMID:20957080

  9. Stoichiometric control of multiple different tectons in coordination-driven self-assembly: preparation of fused metallacyclic polygons.

    PubMed

    Lee, Junseong; Ghosh, Koushik; Stang, Peter J

    2009-09-02

    We present a general strategy for the synthesis of stable, multicomponent fused polygon complexes in which coordination-driven self-assembly allows for single supramolecular species to be formed from multicomponent self-assembly and the shape of the obtained polygons can be controlled simply by changing the ratio of individual components. The compounds have been characterized by multinuclear NMR spectroscopy and electrospray ionization mass spectrometry.

  10. Synthesis and characterization of sodium vanadium oxide gels: the effects of water (n) and sodium (x) content on the electrochemistry of Na(x)V2O5·nH2O.

    PubMed

    Lee, Chia-Ying; Marschilok, Amy C; Subramanian, Aditya; Takeuchi, Kenneth J; Takeuchi, Esther S

    2011-10-28

    Sodium vanadium oxide gels, Na(x)V(2)O(5)·nH(2)O, of varying sodium content (0.12 < x < 0.32) were prepared by careful control of an ion exchange process. The water content (0.23 > n > 0.01) and interlayer spacing were found to be inversely proportional to the sodium level (x), thus control of sodium (x) content provided a direct, chimie douce approach for control of hydration level (n) and interlayer spacing, without the need for high temperature treatment to affect dehydration. Notably, the use of high temperatures to modify hydration levels can result in crystallization and collapse of the interlayer structure, highlighting the distinct advantage of our novel chimie douce synthesis strategy. Subsequent to synthesis and characterization, results from an electrochemical study of a series of Na(x)V(2)O(5)·nH(2)O samples highlight the significant impact of interlayer water on delivered capacity of the layered materials. Specifically, the sodium vanadium oxide gels with higher sodium content and lower water content provided higher capacities in lithium based cells, where capacity delivered to 2.0 V under C/20 discharge ranged from 170 mAh/g for Na(0.12)V(2)O(5)·0.23H(2)O to 300 mAh/g for Na(0.32)V(2)O(5)·0.01H(2)O. The capacity differences were maintained as the cells were cycled. This journal is © the Owner Societies 2011

  11. Gary Grim | NREL

    Science.gov Websites

    @nrel.gov | 303-384-7781 Research Interests Synthesis and characterization of heterogeneous catalysts for Chemie (2014) "Synthesis and Characterization of sI Clathrate Hydrates Containing Hydrogen," J

  12. Synthesis and pH-dependent assembly of isotropic and anisotropic gold nanoparticles functionalized with hydroxyl-bearing amino acids

    NASA Astrophysics Data System (ADS)

    Swami, Anuradha; Mittal, Sherry; Chopra, Adity; Sharma, Rohit K.; Wangoo, Nishima

    2018-03-01

    In recent years, the synthesis of gold nanostructures of controllable shapes and dimensions has become a subject of intensive and interesting studies. Especially, anisotropic gold nanostructures such as nanoplates, nanoribbons, nanoprisms and nanorods have attracted much attention due to their striking optical properties and promising applications in electronics, photonics, sensing and biomedicine. Keeping this in mind, in the present report, an unprecedented, facile and one pot synthesis of isotropic (spherical) and anisotropic (triangular, pentagonal, hexagonal, rod shaped) gold nanomaterials via pH controlled shape modulation using hydroxyl moeity containing α-amino acids (Serine, Threonine, Tyrosine) as both reducing and capping agents is reported. The synthesized nanostructures have been further characterized by UV-Vis spectroscopy and transmission electron microscopy. It was deduced from these studies that pH played a key role in the anisotropic growth of gold nanostructures. These gold nanoparticles can be further used for applications in biosensing, plasmonics, and electrocatalysis and others involving surface enhanced raman scattering. This study is therefore, important from the point of view of using amino acids for the synthesis of gold nanoparticles of different shapes and sizes leading towards the development of inventive biosensors and biocompatible nanoconstructs.

  13. A polyhedron made of tRNAs.

    PubMed

    Severcan, Isil; Geary, Cody; Chworos, Arkadiusz; Voss, Neil; Jacovetty, Erica; Jaeger, Luc

    2010-09-01

    Supramolecular assembly is a powerful strategy used by nature to build nanoscale architectures with predefined sizes and shapes. With synthetic systems, however, numerous challenges remain to be solved before precise control over the synthesis, folding and assembly of rationally designed three-dimensional nano-objects made of RNA can be achieved. Here, using the transfer RNA molecule as a structural building block, we report the design, efficient synthesis and structural characterization of stable, modular three-dimensional particles adopting the polyhedral geometry of a non-uniform square antiprism. The spatial control within the final architecture allows the precise positioning and encapsulation of proteins. This work demonstrates that a remarkable degree of structural control can be achieved with RNA structural motifs for the construction of thermostable three-dimensional nano-architectures that do not rely on helix bundles or tensegrity. RNA three-dimensional particles could potentially be used as carriers or scaffolds in nanomedicine and synthetic biology.

  14. A polyhedron made of tRNAs

    PubMed Central

    Severcan, Isil; Geary, Cody; Chworos, Arkadiusz; Voss, Neil; Jacovetty, Erica; Jaeger, Luc

    2010-01-01

    Supra-molecular assembly is a powerful strategy used by nature for building nano-scale architectures with predefined sizes and shapes. Numerous challenges remain however to be solved in order to demonstrate precise control over the synthesis, folding and assembly of rationally designed three-dimensional (3D) nano-objects made of RNA. Using the transfer RNA molecule as a structural building block, we report the design, efficient synthesis and structural characterization of stable, modular 3D particles adopting the polyhedral geometry of a non-uniform square antiprism. The spatial control within the final architecture allows precise positioning and encapsulation of proteins. This work demonstrates that a remarkable degree of structural control can be achieved with RNA structural motifs to build thermostable 3D nano-architectures that do not rely on helix bundles or tensegrity. RNA 3D particles can potentially be used as carriers or scaffolds in nano-medicine and synthetic biology. PMID:20729899

  15. Complex-Morphology Metal-Based Nanostructures: Fabrication, Characterization, and Applications

    PubMed Central

    Gentile, Antonella; Ruffino, Francesco; Grimaldi, Maria Grazia

    2016-01-01

    Due to their peculiar qualities, metal-based nanostructures have been extensively used in applications such as catalysis, electronics, photography, and information storage, among others. New applications for metals in areas such as photonics, sensing, imaging, and medicine are also being developed. Significantly, most of these applications require the use of metals in the form of nanostructures with specific controlled properties. The properties of nanoscale metals are determined by a set of physical parameters that include size, shape, composition, and structure. In recent years, many research fields have focused on the synthesis of nanoscale-sized metallic materials with complex shape and composition in order to optimize the optical and electrical response of devices containing metallic nanostructures. The present paper aims to overview the most recent results—in terms of fabrication methodologies, characterization of the physico-chemical properties and applications—of complex-morphology metal-based nanostructures. The paper strongly focuses on the correlation between the complex morphology and the structures’ properties, showing how the morphological complexity (and its nanoscale control) can often give access to a wide range of innovative properties exploitable for innovative functional device production. We begin with an overview of the basic concepts on the correlation between structural and optical parameters of nanoscale metallic materials with complex shape and composition, and the possible solutions offered by nanotechnology in a large range of applications (catalysis, electronics, photonics, sensing). The aim is to assess the state of the art, and then show the innovative contributions that can be proposed in this research field. We subsequently report on innovative, versatile and low-cost synthesis techniques, suitable for providing a good control on the size, surface density, composition and geometry of the metallic nanostructures. The main purpose of this study is the fabrication of functional nanoscale-sized materials, whose properties can be tailored (in a wide range) simply by controlling the structural characteristics. The modulation of the structural parameters is required to tune the plasmonic properties of the nanostructures for applications such as biosensors, opto-electronic or photovoltaic devices and surface-enhanced Raman scattering (SERS) substrates. The structural characterization of the obtained nanoscale materials is employed in order to define how the synthesis parameters affect the structural characteristics of the resulting metallic nanostructures. Then, macroscopic measurements are used to probe their electrical and optical properties. Phenomenological growth models are drafted to explain the processes involved in the growth and evolution of such composite systems. After the synthesis and characterization of the metallic nanostructures, we study the effects of the incorporation of the complex morphologies on the optical and electrical responses of each specific device. PMID:28335236

  16. Synthesis of gold nanoparticles using renewable Punica granatum juice and study of its catalytic activity

    NASA Astrophysics Data System (ADS)

    Dash, Shib Shankar; Bag, Braja Gopal

    2014-01-01

    Punica granatum juice, a delicious multivitamin drink of great medicinal significance, is rich in different types of phytochemicals, such as terpenoids, alkaloids, sterols, polyphenols, sugars, fatty acids, aromatic compounds, amino acids, tocopherols, etc. We have demonstrated the use of the juice for the synthesis of gold nanoparticles (AuNPs) at room temperature under very mild conditions. The synthesis of the AuNPs was complete in few minutes and no extra stabilizing or capping agents were necessary. The size of the nanoparticles could be controlled by varying the concentration of the fruit extract. The AuNPs were characterized by surface plasmon resonance spectroscopy, high resolution transmission electron microscopy, fourier transform infrared spectroscopy and X-ray diffraction studies. Catalytic activity of the synthesized colloidal AuNPs has also been demonstrated.

  17. Influence of Synthesis Temperature on the Growth and Surface Morphology of Co3O4 Nanocubes for Supercapacitor Applications

    PubMed Central

    Samal, Rashmirekha; Dash, Barsha; Sarangi, Chinmaya Kumar; Subbaiah, Tondepu; Senanayake, Gamini; Minakshi, Manickam

    2017-01-01

    A facile hydrothermal route to control the crystal growth on the synthesis of Co3O4 nanostructures with cube-like morphologies has been reported and tested its suitability for supercapacitor applications. The chemical composition and morphologies of the as-prepared Co3O4 nanoparticles were extensively characterized using X-ray diffraction (XRD) and transmission electron microscopy (TEM). Varying the temperature caused considerable changes in the morphology, the electrochemical performance increased with rising temperature, and the redox reactions become more reversible. The results showed that the Co3O4 synthesized at a higher temperature (180 °C) demonstrated a high specific capacitance of 833 F/g. This is attributed to the optimal temperature and the controlled growth of nanocubes. PMID:29088061

  18. Pseudotannins Self-assembled into Antioxidant Complexes

    PubMed Central

    Cheng, H. A.; Drinnan, C. T.; Pleshko, N.; Fisher, O. Z.

    2015-01-01

    Natural tannins are attractive as building blocks for biomaterials due to their antioxidant properties and ability to form interpolymer complexes (IPCs) with other macromolecules. One of the major challenges to tannin usage in biomedical applications is their instability at physiological conditions and a lack of control over the purity and reactivity. Herein, we report the synthesis and characterization of tannin-like polymers with controlled architecture, reactivity, and size. These pseudotannins were synthesized by substituting linear dextran chains with gallic, resorcylic, and protocatechuic pendant groups to mimic the structure of natural hydrolysable tannins. We demonstrate that these novel materials can self-assemble to form reductive and colloidally stable nanoscale and microscale particles. Specifically, the synthesis, turbidity, particle size, antioxidant power, and cell uptake of IPCs derived from pseudotannins and poly(ethylene glycol) was evaluated. PMID:26313262

  19. Pseudotannins self-assembled into antioxidant complexes.

    PubMed

    Cheng, H A; Drinnan, C T; Pleshko, N; Fisher, O Z

    2015-10-21

    Natural tannins are attractive as building blocks for biomaterials due to their antioxidant properties and ability to form interpolymer complexes (IPCs) with other macromolecules. One of the major challenges to tannin usage in biomedical applications is their instability at physiological conditions and a lack of control over the purity and reactivity. Herein, we report the synthesis and characterization of tannin-like polymers with controlled architecture, reactivity, and size. These pseudotannins were synthesized by substituting linear dextran chains with gallic, resorcylic, and protocatechuic pendant groups to mimic the structure of natural hydrolysable tannins. We demonstrate that these novel materials can self-assemble to form reductive and colloidally stable nanoscale and microscale particles. Specifically, the synthesis, turbidity, particle size, antioxidant power, and cell uptake of IPCs derived from pseudotannins and poly(ethylene glycol) was evaluated.

  20. Engineering Platinum Alloy Electrocatalysts in Nanoscale for PEMFC Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Ting

    2016-03-01

    Fuel cells are expected to be a key next-generation energy source used for vehicles and homes, offering high energy conversion efficiency and minimal pollutant emissions. However, due to large overpotentials on anode and cathode, the efficiency is still much lower than theoretically predicted. During the past decades, considerable efforts have been made to investigate synergy effect of platinum alloyed with base metals. But, engineering the alloy particles in nanoscale has been a challenge. Most important challenges in developing nanostructured materials are the abilities to control size, monodispersity, microcomposition, and even morphology or self-assembly capability, so called Nanomaterials-by-Design, which requires interdisciplinarymore » collaborations among computational modeling, chemical synthesis, nanoscale characterization as well as manufacturing processing. Electrocatalysts, particularly fuel cell catalysts, are dramatically different from heterogeneous catalysts because the surface area in micropores cannot be electrochemically controlled on the same time scale as more transport accessible surfaces. Therefore, electrocatalytic architectures need minimal microporous surface area while maximizing surfaces accessible through mesopores or macropores, and to "pin" the most active, highest performance physicochemical state of the materials even when exposed to thermodynamic forces, which would otherwise drive restructuring, crystallization, or densification of the nanoscale materials. In this presentation, results of engineering nanoscale platinum alloy particles down to 2 ~ 4 nm will be discussed. Based on nature of alloyed base metals, various synthesis technologies have been studied and developed to achieve capabilities of controlling particle size and particle microcomposition, namely, core-shell synthesis, microemulsion technique, thermal decomposition process, surface organometallic chemical method, etc. The results show that by careful engineering the particle size and microcomposition in nanoscale, it is able to achieve superior electrocatalytic activities comparing with traditional preparative methods. Examples to be discussed are high surface area carbon supported Pt, PtM binary, and PtMN ternary alloys, their synthesis processes, characterizations and electrocatalytic activities towards molecular oxygen reduction.« less

  1. A new approach for crystallization of copper(ii) oxide hollow nanostructures with superior catalytic and magnetic response

    NASA Astrophysics Data System (ADS)

    Singh, Inderjeet; Landfester, Katharina; Chandra, Amreesh; Muñoz-Espí, Rafael

    2015-11-01

    We report the synthesis of copper(ii) oxide hollow nanostructures at ambient pressure and close to room temperature by applying the soft templating effect provided by the confinement of droplets in miniemulsion systems. Particle growth can be explained by considering a mechanism that involves both diffusion and reaction control. The catalytic reduction of p-nitrophenol in aqueous media is used as a model reaction to prove the catalytic activity of the materials: the synthesized hollow structures show nearly 100 times higher rate constants than solid CuO microspheres. The kinetic behavior and the order of the reduction reaction change due to the increase of the surface area of the hollow structures. The synthesis also leads to modification of physical properties such as magnetism.We report the synthesis of copper(ii) oxide hollow nanostructures at ambient pressure and close to room temperature by applying the soft templating effect provided by the confinement of droplets in miniemulsion systems. Particle growth can be explained by considering a mechanism that involves both diffusion and reaction control. The catalytic reduction of p-nitrophenol in aqueous media is used as a model reaction to prove the catalytic activity of the materials: the synthesized hollow structures show nearly 100 times higher rate constants than solid CuO microspheres. The kinetic behavior and the order of the reduction reaction change due to the increase of the surface area of the hollow structures. The synthesis also leads to modification of physical properties such as magnetism. Electronic supplementary information (ESI) available: Associated structural and morphological analysis, XPS characterization, BET surface area, catalytic measurements, recycle tests of the catalyst, and magnetic characterizations. See DOI: 10.1039/c5nr05579b

  2. TOPICAL REVIEW: Surface modification and characterization for dispersion stability of inorganic nanometer-scaled particles in liquid media

    NASA Astrophysics Data System (ADS)

    Kamiya, Hidehiro; Iijima, Motoyuki

    2010-08-01

    Inorganic nanoparticles are indispensable for science and technology as materials, pigments and cosmetics products. Improving the dispersion stability of nanoparticles in various liquids is essential for those applications. In this review, we discuss why it is difficult to control the stability of nanoparticles in liquids. We also overview the role of surface interaction between nanoparticles in their dispersion and characterization, e.g. by colloid probe atomic force microscopy (CP-AFM). Two types of surface modification concepts, post-synthesis and in situ modification, were investigated in many previous studies. Here, we focus on post-synthesis modification using adsorption of various kinds of polymer dispersants and surfactants on the particle surface, as well as surface chemical reactions of silane coupling agents. We discuss CP-AFM as a technique to analyze the surface interaction between nanoparticles and the effect of surface modification on the nanoparticle dispersion in liquids.

  3. Synthesis and Characterization of Positively Charged Pentacationic [60]Fullerene Monoadducts for Antimicrobial Photodynamic Inactivation

    PubMed Central

    Thota, Sammaiah; Wang, Min; Jeon, Seaho; Maragani, Satyanarayana; Hamblin, Michael R.; Chiang, Long Y.

    2012-01-01

    We designed and synthesized two analogous pentacationic [60]fullerenyl monoadducts, C60(>ME1N6+C3) (1) and C60(>ME3N6+C3) (2), with variation of the methoxyethyleneglycol length. Each of these derivatives bears a well-defined number of cationic charges aimed to enhance and control their ability to target pathogenic Gram-positive and Gram-negative bacterial cells for allowing photodynamic inactivation. The synthesis was achieved by the use of a common synthon of pentacationic N,N’,N,N,N,N-hexapropyl-hexa(aminoethyl)amine arm (C3N6+) having six attached propyl groups, instead of methyl or ethyl groups, to provide a well-balanced hydrophobicity–hydrophilicity character of pentacationic precursor intermediates and better compatibility with the highly hydrophobic C60 cage moiety. We demonstrated two plausible synthetic routes for the preparation of 1 and 2 with the product characterization via various spectroscopic methods. PMID:22565476

  4. Chemometric study of Maya Blue from the voltammetry of microparticles approach.

    PubMed

    Doménech, Antonio; Doménech-Carbó, María Teresa; de Agredos Pascual, María Luisa Vazquez

    2007-04-01

    The use of the voltammetry of microparticles at paraffin-impregnated graphite electrodes allows for the characterization of different types of Maya Blue (MB) used in wall paintings from different archaeological sites of Campeche and YucatAn (Mexico). Using voltammetric signals for electron-transfer processes involving palygorskite-associated indigo and quinone functionalities generated by scratching the graphite surface, voltammograms provide information on the composition and texture of MB samples. Application of hierarchical cluster analysis and other chemometric methods allows us to characterize samples from different archaeological sites and to distinguish between samples proceeding from different chronological periods. Comparison between microscopic, spectroscopic, and electrochemical examination of genuine MB samples and synthetic specimens indicated that the preparation procedure of the pigment evolved in time via successive steps anticipating modern synthetic procedures, namely, hybrid organic-inorganic synthesis, temperature control of chemical reactivity, and template-like synthesis.

  5. Synthesis and characterization of amorphous mesoporous silica using TEMPO-functionalized amphiphilic templates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vries, Wilke de; Doerenkamp, Carsten; Zeng, Zhaoyang

    Inorganic–organic hybrid materials based on amorphous mesoporous silica containing organized nitroxide radicals within its mesopores have been prepared using the micellar self-assembly of TEOS solutions containing the nitroxide functionalized amphiphile (4-(N,N-dimethyl-N-hexadecylammonium)-2,2,6, 6-tetramethyl-piperidin-N-oxyl-iodide) (CAT-16). This template has been used both in its pure form and in various mixtures with cetyl trimethylammonium bromide (CTAB). The samples have been characterized by chemical analysis, N{sub 2} sorption studies, magnetic susceptibility measurements, and various spectroscopic methods. While electron paramagnetic resonance (EPR) spectra indicate that the strength of the intermolecular spin–spin interactions can be controlled via the CAT-16/CTAB ratio, nuclear magnetic resonance (NMR) data suggest thatmore » these interactions are too weak to facilitate cooperative magnetism. - Graphical abstract: The amphiphilic radical CAT-16 is used as a template for the synthesis of amorphous mesoporous silica. The resulting paramagnetic hybrid materials are characterized by BET, FTIR, NMR, EPR and magnetic susceptibility studies. - Highlights: • Amphiphilic CAT-16 as a template for mesoporous silica. • Comprehensive structural characterization by BET, FTIR; EPR and NMR. • Strength of radical-radical interactions tuable within CAT-16/CTAB mixtures.« less

  6. Facile and green synthesis of mesoporous Co3O4 nanocubes and their applications for supercapacitors.

    PubMed

    Liu, Xiangmei; Long, Qing; Jiang, Chunhui; Zhan, Beibei; Li, Chen; Liu, Shujuan; Zhao, Qiang; Huang, Wei; Dong, Xiaochen

    2013-07-21

    Nanostructured Co3O4 materials attracted significant attention due to their exceptional electrochemical (pseudo-capacitive) properties. However, rigorous preparation conditions are needed to control the size (especially nanosize), morphology and size distribution of the products obtained by conventional methods. Herein, we describe a novel one step shape-controlled synthesis of uniform Co3O4 nanocubes with a size of 50 nm with the existence of mesoporous carbon nanorods (meso-CNRs). In this synthesis process, meso-CNRs not only act as a heat receiver to directly obtain Co3O4 eliminating the high-temperature post-calcination, but also control the morphology of the resulting Co3O4 to form nanocubes with uniform distribution. More strikingly, mesoporous Co3O4 nanocubes are obtained by further thermal treatment. The structure and morphology of the samples were characterized by scanning electron microscopy, transmission electron microscopy and X-ray diffraction. A possible formation mechanism of mesoporous Co3O4 nanocubes is proposed here. Electrochemical tests have revealed that the prepared mesoporous Co3O4 nanocubes demonstrate a remarkable performance in supercapacitor applications due to the porous structure, which endows fast ion and electron transfer.

  7. Controllable Synthesis of Formaldehyde Modified Manganese Oxide Based on Gas-Liquid Interfacial Reaction and Its Application of Electrochemical Sensing.

    PubMed

    Bai, Wushuang; Sheng, Qinglin; Nie, Fei; Zheng, Jianbin

    2015-12-30

    Controllable synthesis of manganese oxides was performed via a simple one-step synthetic method. Then obtained manganese oxides which exhibit flower-like, cloud-like, hexagon-like, and rod-like morphologies were modified by formaldehyde based on a simple self-made gas-liquid reaction device respectively and the modified manganese oxides with coral-like, scallop-like and rod-like morphology were synthesized accordingly. The obtained materials were characterized and the formation mechanism was also researched. Then the modified manganese oxides were used to fabricate electrochemical sensors to detect H2O2. Comparison of electrochemical properties between three kinds of modified manganese oxides was investigated and the best one has been successfully employed as H2O2 sensor which shows a low detection limit of 0.01 μM, high sensitivity of 162.69 μA mM(-1) cm(-2), and wide linear range of 0.05 μM-12.78 mM. The study provides a new method for controllable synthesis of metal oxides, and electrochemical application of formaldehyde modified manganese oxides will provides a new strategy for electrochemical sensing with high performance, low cost, and simple fabrication.

  8. Disruption of melatonin synthesis is associated with impaired 14-3-3 and miR-451 levels in patients with autism spectrum disorders.

    PubMed

    Pagan, Cécile; Goubran-Botros, Hany; Delorme, Richard; Benabou, Marion; Lemière, Nathalie; Murray, Kerren; Amsellem, Frédérique; Callebert, Jacques; Chaste, Pauline; Jamain, Stéphane; Fauchereau, Fabien; Huguet, Guillaume; Maronde, Erik; Leboyer, Marion; Launay, Jean-Marie; Bourgeron, Thomas

    2017-05-18

    Autism spectrum disorders (ASD) are characterized by a wide genetic and clinical heterogeneity. However, some biochemical impairments, including decreased melatonin (crucial for circadian regulation) and elevated platelet N-acetylserotonin (the precursor of melatonin) have been reported as very frequent features in individuals with ASD. To address the mechanisms of these dysfunctions, we investigated melatonin synthesis in post-mortem pineal glands - the main source of melatonin (9 patients and 22 controls) - and gut samples - the main source of serotonin (11 patients and 13 controls), and in blood platelets from 239 individuals with ASD, their first-degree relatives and 278 controls. Our results elucidate the enzymatic mechanism for melatonin deficit in ASD, involving a reduction of both enzyme activities contributing to melatonin synthesis (AANAT and ASMT), observed in the pineal gland as well as in gut and platelets of patients. Further investigations suggest new, post-translational (reduced levels of 14-3-3 proteins which regulate AANAT and ASMT activities) and post-transcriptional (increased levels of miR-451, targeting 14-3-3ζ) mechanisms to these impairments. This study thus gives insights into the pathophysiological pathways involved in ASD.

  9. Molten salt synthesis of La0.8Sr0.2MnO3 powders for SOFC cathode electrode

    NASA Astrophysics Data System (ADS)

    Gu, Sin-il; Shin, Hyo-soon; Hong, Youn-woo; Yeo, Dong-hun; Kim, Jong-hee; Nahm, Sahn; Yoon, Sang-ok

    2012-08-01

    For La0.8Sr0.2MnO3 (LSM) perovskite, used as the cathode material for solid oxide fuel cells (SOFC), it is known that the formation of a triple-phase-boundary is restrained due to the formation of a second phase at the YSZ/electrode interface at high temperature. To decrease the 2nd phase, lowering the sintering temperature has been used. LSM powder was synthesized by molten salt synthesis method to control its particle size, shape, and agglomeration. We have characterized the phase formation, particle size, shape, and sintering behavior of LSM in the synthesis using the variation of KCl, LiCl, KF and its mixed salts as raw materials. In the case of KCl and KCl-KF salts, the particle size and shape of the LSM was well controlled and synthesized. However, in the case of LiCl and KCl-LiCl salts, LiMnOx as 2nd phase and LSM were synthesized simultaneously. In the case of the mixed salt of KCl-KF, the growth mechanism of the LSM particle was changed from `diffusion-controlled' to `reaction-controlled' according to the amount of mixed salt. The sintering temperature can be decreased below 1000 °C by using the synthesized LSM powder.

  10. Novel synthesis of silver nanoparticles using Bauhinia variegata: a recent eco-friendly approach for mosquito control.

    PubMed

    Govindarajan, Marimuthu; Rajeswary, Mohan; Veerakumar, Kaliyan; Muthukumaran, Udaiyan; Hoti, S L; Mehlhorn, Heinz; Barnard, Donald R; Benelli, Giovanni

    2016-02-01

    Mosquito vectors are responsible for transmitting diseases such as malaria, dengue, chikungunya, Japanese encephalitis, dengue, and lymphatic filariasis. The use of synthetic insecticides to control mosquito vectors has caused physiological resistance and adverse environmental effects, in addition to high operational cost. Biosynthesis of silver nanoparticles has been proposed as an alternative to traditional control tools. In the present study, green synthesis of silver nanoparticles (AgNPs) using aqueous leaf extract of Bauhinia variegata by reduction of Ag(+) ions from silver nitrate solution has been investigated. The bioreduced silver nanoparticles were characterized by UV–visible spectrophotometry, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray analysis (EDX), and X-ray diffraction analysis (XRD). Leaf extract and synthesized AgNPs were evaluated against the larvae of Anopheles subpictus, Aedes albopictus, and Culex tritaeniorhynchus. Compared to aqueous extract, synthesized AgNPs showed higher toxicity against An. subpictus, Ae. albopictus, and Cx. tritaeniorhynchus with LC50 and LC90 values of 41.96, 46.16, and 51.92 μg/mL and 82.93, 89.42, and 97.12 μg/mL, respectively. Overall, this study proves that B. variegata is a potential bioresource for stable, reproducible nanoparticle synthesis and may be proposed as an efficient mosquito control agent.

  11. The Synthesis and Characterization of Some Fluoride Perovskites: An Undergraduate Experiment in Solid State Chemistry.

    ERIC Educational Resources Information Center

    Langley, Richard H.; And Others

    1984-01-01

    Describes a senior-level experiment dealing with the synthesis and characterization of a perovskite. Since most perovskites are cubic, their characterization by x-ray diffraction is simplified. In addition, magnetic ordering may be observed and the effects of a Jahn-Teller distortion seen. (JN)

  12. Altered macrophage arachidonic acid metabolism induced by endotoxin tolerance: characterization and mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, T.S.

    Altered macrophage arachidonic acid (AA) metabolism may play a role in endotoxic shock and the phenomenon of endotoxin tolerance induced by repeated injections of endotoxin. Studies were initiated to characterize both lipoxygenase and cyclooxygenase metabolite formation by endotoxin tolerant and non-tolerant macrophages in response to 4 different stimuli, i.e., endotoxin, glucan, zymosan, and the calcium ionophore A23187. In contrast to previous reports of decreased prostaglandin synthesis by tolerant macrophages, A23187-stimulated immunoreactive (i) leukotriene (LT) C/sub 4/D/sub 4/ and prostaglandin (PG) E/sub 2/ production by tolerant cells was greater than that by non-tolerant controls (p <0.001). However, A23187-stimulated i6-keto PGF/sub 1a/more » levels were lower in tolerant macrophages compared to controls (P < 0.05). iL TC/sub 4/D/sub 4/ production was not significantly stimulated by endotoxin or glucan, but was stimulated by zymosan in non-tolerant cells. Synthesis of iLTB/sub 4/ by control macrophages was stimulated by endotoxin (p <0.01). The effect of tolerance on factors that affect AA release was investigated by measuring /sup 14/C-AA incorporation and release and phospholipase A/sub 2/ activity« less

  13. The effect of hyperglycemic hyperinsulinemia on small-intestinal mucosal protein synthesis in patients after surgical stress.

    PubMed

    Rittler, Peter; Schiefer, Beatrice; Demmelmair, Hans; Koletzko, Berthold; Vogeser, Michael; Alpers, David H; Jauch, Karl-Walter; Hartl, Wolfgang H

    2006-01-01

    Hyperglycemic hyperinsulinemia cannot stimulate intestinal protein synthesis in healthy individuals but does so in conditions characterized by an altered somatotropic axis such as diabetes. Only in a state of growth hormone resistance (high growth hormone but low insulin like growth factor [IGF-1] concentrations), extra insulin may acutely reverse the impaired, growth-hormone-induced IGF-1 release, thereby exerting anabolic actions at the intestinal tract. Growth hormone resistance can be also found in patients after surgical stress. Therefore, we wanted to test the hypothesis whether hyperglycemic hyperinsulinemia would stimulate ileal protein synthesis in the latter condition. Mass spectrometry techniques (capillary gas chromatography/combustion isotope ratio mass spectrometry) were used to directly determine the incorporation rate of 1-[(13)C]-leucine into ileal mucosal protein. All subjects had an ileostomy, which allowed easy access to the ileal mucosa, and consecutive sampling from the same tissue was performed during continuous isotope infusion (0.16 mumol/kg min). Isotopic enrichments and fractional protein synthesis were determined at baseline (period I) and after a 4-hour glucose infusion (170 mg/kg/h) or after infusion of saline (control group) (period II). In controls, ileal protein synthesis declined significantly during prolonged isotope infusion (period I: 1.11 +/- 0.14%/h, period II: 0.39 +/- 0.13%/h, p < .01). In contrast, ileal protein synthesis remained constant during glucose infusion (period I: 1.32 +/- 0.35%/h, period II: 1.33 +/- 0.21%/h, n.s. vs period I, but p < .005 vs the corresponding value at the end of period II in the control group). Using the continuous tracer infusion technique, ileal protein synthesis seemingly declines over a short time in control subjects. We found evidence that this artificial decline was due to mass effects of a rapidly turning over mucosa protein pool in which an isotopic plateau was reached during the experiment and of which the size amounted to approximately 4% of the total mixed protein pool. Maintenance of ileal protein synthesis during glucose infusion therefore indicates a rise of ileal protein synthesis in a slowly turning over protein pool. This effect in postsurgical patients would be compatible with the concept of intestinal insulin action to depend on the specific clinical state (eg, growth hormone resistance).

  14. Synthesis and characterization of rare-earth-doped calcium tungstate nanocrystals

    NASA Astrophysics Data System (ADS)

    Suneeta, P.; Rajesh, Ch.; Ramana, M. V.

    2018-02-01

    In this paper, we report synthesis and characterization of rare-earth-ion-doped calcium tungstate (CaWO4) nanocrystals (NCs). Rare-earth ions, such as gadolinium (Gd), neodymium (Nd), praseodymium (Pr), samarium (Sm) and holmium (Ho), were successfully doped in the CaWO4 NCs by changing the synthesis conditions. The adopted synthesis route was found to be fast and eco-friendly. Structural characterizations, such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and compositional analysis, were performed using energy dispersive analysis of X-rays (EDAX) on as-synthesized NCs. The results indicate the size of the NCs ranging between 47 to 68nm and incorporation of rare-earth ions in CaWO4 NCs.

  15. Feedback control laws for highly maneuverable aircraft

    NASA Technical Reports Server (NTRS)

    Garrard, William L.; Balas, Gary J.

    1994-01-01

    During the first half of the year, the investigators concentrated their efforts on completing the design of control laws for the longitudinal axis of the HARV. During the second half of the year they concentrated on the synthesis of control laws for the lateral-directional axes. The longitudinal control law design efforts can be briefly summarized as follows. Longitudinal control laws were developed for the HARV using mu synthesis design techniques coupled with dynamic inversion. An inner loop dynamic inversion controller was used to simplify the system dynamics by eliminating the aerodynamic nonlinearities and inertial cross coupling. Models of the errors resulting from uncertainties in the principal longitudinal aerodynamic terms were developed and included in the model of the HARV with the inner loop dynamic inversion controller. This resulted in an inner loop transfer function model which was an integrator with the modeling errors characterized as uncertainties in gain and phase. Outer loop controllers were then designed using mu synthesis to provide robustness to these modeling errors and give desired response to pilot inputs. Both pitch rate and angle of attack command following systems were designed. The following tasks have been accomplished for the lateral-directional controllers: inner and outer loop dynamic inversion controllers have been designed; an error model based on a linearized perturbation model of the inner loop system was derived; controllers for the inner loop system have been designed, using classical techniques, that control roll rate and Dutch roll response; the inner loop dynamic inversion and classical controllers have been implemented on the six degree of freedom simulation; and lateral-directional control allocation scheme has been developed based on minimizing required control effort.

  16. Plant-Mediated Synthesis of Silver Nanoparticles: Their Characteristic Properties and Therapeutic Applications

    NASA Astrophysics Data System (ADS)

    Chung, Ill-Min; Park, Inmyoung; Seung-Hyun, Kim; Thiruvengadam, Muthu; Rajakumar, Govindasamy

    2016-01-01

    Interest in "green nanotechnology" in nanoparticle biosynthesis is growing among researchers. Nanotechnologies, due to their physicochemical and biological properties, have applications in diverse fields, including drug delivery, sensors, optoelectronics, and magnetic devices. This review focuses on the green synthesis of silver nanoparticles (AgNPs) using plant sources. Green synthesis of nanoparticles is an eco-friendly approach, which should be further explored for the potential of different plants to synthesize nanoparticles. The sizes of AgNPs are in the range of 1 to 100 nm. Characterization of synthesized nanoparticles is accomplished through UV spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, and scanning electron microscopy. AgNPs have great potential to act as antimicrobial agents. The green synthesis of AgNPs can be efficiently applied for future engineering and medical concerns. Different types of cancers can be treated and/or controlled by phytonanotechnology. The present review provides a comprehensive survey of plant-mediated synthesis of AgNPs with specific focus on their applications, e.g., antimicrobial, antioxidant, and anticancer activities.

  17. Novel Magnetic Fluids for Breast Cancer Therapy

    DTIC Science & Technology

    2005-04-01

    synthesis and characterization efforts concerning nickel-based alloys have been reported previously [5]. Nano-material has been obtained using an inverse...gar gel d ork his task regularly accompanies the synthesis work. Characterization analysis includes size, composition, magnetic pro perties. The...currently available magnetic fluids used in hyperthermia. The specific goals are: 1. Develop a synthesis process to fabricate magnetic nano

  18. Microwave-assisted synthesis of C-doped TiO2 and ZnO hybrid nanostructured materials as quantum-dots sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Rangel-Mendez, Jose R.; Matos, Juan; Cházaro-Ruiz, Luis F.; González-Castillo, Ana C.; Barrios-Yáñez, Guillermo

    2018-03-01

    The microwave-assisted solvothermal synthesis of C-doped TiO2 and ZnO hybrid materials was performed. Saccharose, titanium isopropoxide and zinc acetate were used as organic and inorganic sources for the synthesis. The influence of temperature and reaction time on the textural and optoelectronic properties of the hybrid materials was verified. Carbon quantum-dots of TiO2 and ZnO nanostructured spheres were obtained in a second pot by controlled calcination steps of the precursor hybrid materials. A carefully characterization by adsorption-desorption N2 isotherms, XRD, XPS, SEM, UV-vis/DR and electro- and photo-electrochemistry properties of the carbon quantum-dots TiO2 and ZnO spheres was performed. The photoelectrochemical activity of TiO2-C and ZnO-C films proved to be dependent on the conditions of synthesis. It was found a red-shift in the energy band gap of the semiconductors with values of 3.02 eV and 3.13 eV for the TiO2-C and ZnO-C, respectively, clearly lower than those on bare semiconductors, which is associated with the C-doping effect. From the photo-electrochemistry characterization of C-doped TiO2 and ZnO films can be concluded that the present materials have potential applications as photoelectrodes for quantum-dots sensitized solar cells.

  19. Nitrogen-doped graphene catalysts: High energy wet ball milling synthesis and characterizations of functional groups and particle size variation with time and speed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhuang, Shiqiang; Nunna, Bharath Babu; Boscoboinik, Jorge Anibal

    Nitrogen-doped graphene (N-G) catalyst emerges as one of the promising non-platinum group metal (non-PGM) catalysts with the advantages of low cost, high oxygen reduction reaction (ORR) activity, stability, and selectivity to replace expensive PGM catalysts in electrochemical systems. This research investigated nanoscale high energy wet (NHEW) ball milling for the synthesis of N-G catalysts to make conventional problems such as sintering or localized overheating issues negligible. The successful synthesis of N-G catalysts with comparable catalytic performance to 10 wt% Pt/C by using this method has been published. This paper focuses on understanding the effect of grinding speed and grinding timemore » on the particle size and chemical state of N-G catalysts through the physical and chemical characterization. The research result shows that (1) the final particle size, nitrogen doping percentage, and nitrogen bonding composition of synthesized N-G catalysts are predictable and controllable by adjusting the grinding time, the grinding speed, and other relative experimental parameters; (2) the final particle size of N-G catalysts could be estimated from the derived relation between the cracking energy density and the particle size of ground material in the NHEW ball milling process with specified experimental parameters; and (3) the chemical composition of N-G catalysts synthesized by NHEW ball milling is controllable by adjusting the grinding time and grinding speed.« less

  20. Nitrogen-doped graphene catalysts: High energy wet ball milling synthesis and characterizations of functional groups and particle size variation with time and speed

    DOE PAGES

    Zhuang, Shiqiang; Nunna, Bharath Babu; Boscoboinik, Jorge Anibal; ...

    2017-07-26

    Nitrogen-doped graphene (N-G) catalyst emerges as one of the promising non-platinum group metal (non-PGM) catalysts with the advantages of low cost, high oxygen reduction reaction (ORR) activity, stability, and selectivity to replace expensive PGM catalysts in electrochemical systems. This research investigated nanoscale high energy wet (NHEW) ball milling for the synthesis of N-G catalysts to make conventional problems such as sintering or localized overheating issues negligible. The successful synthesis of N-G catalysts with comparable catalytic performance to 10 wt% Pt/C by using this method has been published. This paper focuses on understanding the effect of grinding speed and grinding timemore » on the particle size and chemical state of N-G catalysts through the physical and chemical characterization. The research result shows that (1) the final particle size, nitrogen doping percentage, and nitrogen bonding composition of synthesized N-G catalysts are predictable and controllable by adjusting the grinding time, the grinding speed, and other relative experimental parameters; (2) the final particle size of N-G catalysts could be estimated from the derived relation between the cracking energy density and the particle size of ground material in the NHEW ball milling process with specified experimental parameters; and (3) the chemical composition of N-G catalysts synthesized by NHEW ball milling is controllable by adjusting the grinding time and grinding speed.« less

  1. Synthesis, characterization and antibacterial studies of 2-chloro-5-fluoro-N-[dibenzyl carbamothioyl] benzamide thiourea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sapari, Suhaila; Yamin, Bohari M.; Hasbullah, Aishah

    Synthesis, characterization and antibacterial studies of 2-chloro-5-fluoro-N-[dibenzyl carbamothioyl] benzamide thiourea has been reported. The compound characterized by using elementary analysis CHNS, IR, {sup 1}H NMR and {sup 13}C NMR spectroscopies. The compounds have been screened for their antibacterial studies.

  2. Actinide Corroles: Synthesis and Characterization of Thorium(IV) and Uranium(IV) bis(-chloride) Dimers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Ashleigh L.; Buckley, Heather L.; Gryko, Daniel T.

    2013-12-01

    The first synthesis and structural characterization of actinide corroles is presented. Thorium(IV) and uranium(IV) macrocycles of Mes2(p-OMePh)corrole were synthesised and characterized by single-crystal X-ray diffraction, UV-Visible spectroscopy, variable-temperature 1H NMR, ESI mass spectrometry and cyclic voltammetry.

  3. Responsive copolymers for enhanced petroleum recovery. Annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, C.; Hester, R.

    1994-08-01

    A coordinated research program involving synthesis, characterization, and rheology has been undertaken to develop advanced polymer system which should be significantly more efficient than polymers presently used for mobility control and conformance. Unlike the relatively inefficient, traditional EOR polymers, these advanced polymer systems possess microstructural features responsive to temperature, electrolyte concentration, and shear conditions. Contents of this report include the following chapters. (1) First annual report responsive copolymers for enhanced oil recovery. (2) Copolymers of acrylamide and sodium 3-acrylamido-3-methylbutanoate. (3) Terpolymers of NaAMB, Am, and n-decylacrylamide. (4) Synthesis and characterization of electrolyte responsive terpolymers of acrylamide, N-(4-butyl)phenylacrylamide, and sodium acrylate,more » sodium-2-acrylamido-2-methylpropanesulphonate or sodium-3-acrylamido-3-methylbutanoate. (5) Synthesis and solution properties of associative acrylamido copolymers with pyrensulfonamide fluorescence labels. (6) Photophysical studies of the solution behavior of associative pyrenesulfonamide-labeled polyacrylamides. (7) Ampholytic copolymers of sodium 2-(acrylamido)-2-methylpropanesulfonate with [2-(acrylamido)-2-methypropyl]trimethylammonium chloride. (8) Ampholytic terpolymers of acrylamide with sodium 2-acrylamido-2-methylpropanesulphoante and 2-acrylamido-2-methylpropanetrimethyl-ammonium chloride and (9) Polymer solution extensional behavior in porous media.« less

  4. Synthesis and characterization of poly(3-sulfopropylmethacrylate) brushes for potential antibacterial applications.

    PubMed

    Ramstedt, Madeleine; Cheng, Nan; Azzaroni, Omar; Mossialos, Dimitris; Mathieu, Hans Jörg; Huck, Wilhelm T S

    2007-03-13

    This article describes the aqueous atom transfer radical polymerization synthesis of poly(3-sulfopropylmethacrylate) brushes onto gold and Si/SiO2 surfaces in a controlled manner. The effect of Cu(I)/Cu(II) ratio was examined, and a quartz crystal microbalance was used to study the kinetics of the brush synthesis. The synthesized brushes displayed a thickness from a few nanometers to several hundred nanometers and were characterized using atomic force microscopy, ellipsometry, Fourier transform infrared spectroscopy (FTIR), contact angle measurements, and X-ray photoelectron spectroscopy (XPS). The as-synthesized sulfonate brushes had very good ion-exchange properties for the ions tested in this study, i.e., Na+, K+, Cu2+, and Ag+. FTIR and XPS show that the metal ions are coordinating to sulfonate moieties inside the brushes. The brushes were easily loaded with silver ions, and the effect of silver ion concentration on silver loading of the brush was examined. The silver-loaded brushes were shown to be antibacterial toward both gram negative and gram positive bacteria. The silver leaching was studied through leaching experiments into water, NaNO3, and NaCl (physiological medium). The results from these leaching experiments are compared and discussed in the article.

  5. One-Dimensional Perovskite Manganite Oxide Nanostructures: Recent Developments in Synthesis, Characterization, Transport Properties, and Applications

    NASA Astrophysics Data System (ADS)

    Li, Lei; Liang, Lizhi; Wu, Heng; Zhu, Xinhua

    2016-03-01

    One-dimensional nanostructures, including nanowires, nanorods, nanotubes, nanofibers, and nanobelts, have promising applications in mesoscopic physics and nanoscale devices. In contrast to other nanostructures, one-dimensional nanostructures can provide unique advantages in investigating the size and dimensionality dependence of the materials' physical properties, such as electrical, thermal, and mechanical performances, and in constructing nanoscale electronic and optoelectronic devices. Among the one-dimensional nanostructures, one-dimensional perovskite manganite nanostructures have been received much attention due to their unusual electron transport and magnetic properties, which are indispensable for the applications in microelectronic, magnetic, and spintronic devices. In the past two decades, much effort has been made to synthesize and characterize one-dimensional perovskite manganite nanostructures in the forms of nanorods, nanowires, nanotubes, and nanobelts. Various physical and chemical deposition techniques and growth mechanisms are explored and developed to control the morphology, identical shape, uniform size, crystalline structure, defects, and homogenous stoichiometry of the one-dimensional perovskite manganite nanostructures. This article provides a comprehensive review of the state-of-the-art research activities that focus on the rational synthesis, structural characterization, fundamental properties, and unique applications of one-dimensional perovskite manganite nanostructures in nanotechnology. It begins with the rational synthesis of one-dimensional perovskite manganite nanostructures and then summarizes their structural characterizations. Fundamental physical properties of one-dimensional perovskite manganite nanostructures are also highlighted, and a range of unique applications in information storages, field-effect transistors, and spintronic devices are discussed. Finally, we conclude this review with some perspectives/outlook and future researches in these fields.

  6. One-Dimensional Perovskite Manganite Oxide Nanostructures: Recent Developments in Synthesis, Characterization, Transport Properties, and Applications.

    PubMed

    Li, Lei; Liang, Lizhi; Wu, Heng; Zhu, Xinhua

    2016-12-01

    One-dimensional nanostructures, including nanowires, nanorods, nanotubes, nanofibers, and nanobelts, have promising applications in mesoscopic physics and nanoscale devices. In contrast to other nanostructures, one-dimensional nanostructures can provide unique advantages in investigating the size and dimensionality dependence of the materials' physical properties, such as electrical, thermal, and mechanical performances, and in constructing nanoscale electronic and optoelectronic devices. Among the one-dimensional nanostructures, one-dimensional perovskite manganite nanostructures have been received much attention due to their unusual electron transport and magnetic properties, which are indispensable for the applications in microelectronic, magnetic, and spintronic devices. In the past two decades, much effort has been made to synthesize and characterize one-dimensional perovskite manganite nanostructures in the forms of nanorods, nanowires, nanotubes, and nanobelts. Various physical and chemical deposition techniques and growth mechanisms are explored and developed to control the morphology, identical shape, uniform size, crystalline structure, defects, and homogenous stoichiometry of the one-dimensional perovskite manganite nanostructures. This article provides a comprehensive review of the state-of-the-art research activities that focus on the rational synthesis, structural characterization, fundamental properties, and unique applications of one-dimensional perovskite manganite nanostructures in nanotechnology. It begins with the rational synthesis of one-dimensional perovskite manganite nanostructures and then summarizes their structural characterizations. Fundamental physical properties of one-dimensional perovskite manganite nanostructures are also highlighted, and a range of unique applications in information storages, field-effect transistors, and spintronic devices are discussed. Finally, we conclude this review with some perspectives/outlook and future researches in these fields.

  7. Functional overexpression and characterization of lipogenesis-related genes in the oleaginous yeast Yarrowia lipolytica.

    PubMed

    Silverman, Andrew M; Qiao, Kangjian; Xu, Peng; Stephanopoulos, Gregory

    2016-04-01

    Single cell oil (SCO) is an attractive energy source due to scalability, utilization of low-cost renewable feedstocks, and type of product(s) made. Engineering strains capable of producing high lipid titers and yields is crucial to the economic viability of these processes. However, lipid synthesis in cells is a complex phenomenon subject to multiple layers of regulation, making gene target identification a challenging task. In this study, we aimed to identify genes in the oleaginous yeast Yarrowia lipolytica whose overexpression enhances lipid production by this organism. To this end, we examined the effect of the overexpression of a set of 44 native genes on lipid production in Y. lipolytica, including those involved in glycerolipid synthesis, fatty acid synthesis, central carbon metabolism, NADPH generation, regulation, and metabolite transport and characterized each resulting strain's ability to produce lipids growing on both glucose and acetate as a sole carbon source. Our results suggest that a diverse subset of genes was effective at individually influencing lipid production in Y. lipolytica, sometimes in a substrate-dependent manner. The most productive strain on glucose overexpressed the diacylglycerol acyltransferase DGA2 gene, increasing lipid titer, cellular content, and yield by 236, 165, and 246 %, respectively, over our control strain. On acetate, our most productive strain overexpressed the acylglycerol-phosphate acyltransferase SLC1 gene, with a lipid titer, cellular content, and yield increase of 99, 91, and 151 %, respectively, over the control strain. Aside from genes encoding enzymes that directly catalyze the reactions of lipid synthesis, other ways by which lipogenesis was increased in these cells include overexpressing the glycerol-3-phosphate dehydrogenase (GPD1) gene to increase production of glycerol head groups and overexpressing the 6-phosphogluconolactonase (SOL3) gene from the oxidative pentose phosphate pathway to increase NADPH availability for fatty acid synthesis. Taken together, our study demonstrates that the overall kinetics of microbial lipid synthesis is sensitive to a wide variety of factors. Fully optimizing a strain for single cell oil processes could involve manipulating and balancing many of these factors, and, due to mechanistic differences by which each gene product investigated here impacts lipid synthesis, there is a high likelihood that many of these genes will work synergistically to further increase lipid production when simultaneously overexpressed.

  8. The Synthesis and Characterization of Gold-Core/LDH-Shell Nanoparticles

    NASA Astrophysics Data System (ADS)

    Rearick, Colton

    In recent years, the field of nanomedicine has progressed at an astonishing rate, particularly with respect to applications in cancer treatment and molecular imaging. Although organic systems have been the frontrunners, inorganic systems have also begun to show promise, especially those based upon silica and magnetic nanoparticles (NPs). Many of these systems are being designed for simultaneous therapeutic and diagnostic capabilities, thus coining the term, theranostics. A unique class of inorganic systems that shows great promise as theranostics is that of layered double hydroxides (LDH). By synthesis of a core/shell structures, e.g. a gold nanoparticle (NP) core and LDH shell, the multifunctional theranostic may be developed without a drastic increase in the structural complexity. To demonstrate initial proof-of-concept of a potential (inorganic) theranostic platform, a Au-core/LDH-shell nanovector has been synthesized and characterized. The LDH shell was heterogeneously nucleated and grown on the surface of silica coated gold NPs via a coprecipitation method. Polyethylene glycol (PEG) was introduced in the initial synthesis steps to improve crystallinity and colloidal stability. Additionally, during synthesis, fluorescein isothiocyanate (FITC) was intercalated into the interlayer spacing of the LDH. In contrast to the PEG stabilization, a post synthesis citric acid treatment was used as a method to control the size and short-term stability. The heterogeneous core-shell system was characterized with scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDX), dynamic light scattering (DLS), and powder x-ray diffraction (PXRD). A preliminary in vitro study carried out with the assistance of Dr. Kaushal Rege's group at Arizona State University was to demonstrate the endocytosis capability of homogeneously-grown LDH NPs. The DLS measurements of the core-shell NPs indicated an average particle size of 212nm. The PXRD analysis showed that PEG greatly improved the crystallinity of the system while simultaneously preventing aggregation of the NPs. The preliminary in vitro fluorescence microscopy revealed a moderate uptake of homogeneous LDH NPs into the cells.

  9. Microfluidic reactor synthesis and photocatalytic behavior of Cu@Cu2O nanocomposite

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Srinivasakannan, C.; Peng, Jinhui; Yan, Mi; Zhang, Di; Zhang, Libo

    2015-03-01

    The Cu@Cu2O nanocomposites were synthesized by solution-phase synthesis of Cu nanoparticles in microfluidic reactor at room temperature, followed by controlling the oxidation process. The size, morphology, elemental compositions, and the chemical composition on the surface of Cu@Cu2O nanocomposite were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Experimental results demonstrated that the surface of the Cu nanoparticles was oxidized to Cu2O which serves as the shell of nanoparticle. The amount of Cu2O can be controlled by varying the drying temperature. Additionally the binary Cu@Cu2O nanocomposite along with H2O2 exhibited its potential as an excellent photocatalyst for degradation of methylene blue (MB) under UV irradiation.

  10. Sonochemical synthesis of silica particles and their size control

    NASA Astrophysics Data System (ADS)

    Kim, Hwa-Min; Lee, Chang-Hyun; Kim, Bonghwan

    2016-09-01

    Using an ultrasound-assisted sol-gel method, we successfully synthesized very uniformly shaped, monodisperse, and size-controlled spherical silica particles from a mixture of ethanol, water, and tetraethyl orthosilicate in the presence of ammonia as catalyst, at room temperature. The diameters of the silica particles were distributed in the range from 40 to 400 nm; their morphology was well characterized by scanning electron microscopy. The silica particle size could be adjusted by choosing suitable concentrations of ammonium hydroxide and water, which in turn determined the nucleation and growth rates of the particles during the reaction. This sonochemical-based silica synthesis offers an alternative way to produce spherical silica particles in a relatively short reaction time. Thus, we suggest that this simple, low-cost, and efficient method of preparing uniform silica particles of various sizes will have practical and wide-ranging industrial applicability.

  11. Green synthesis of silver nanoparticles using a Melissa officinalis leaf extract with antibacterial properties

    NASA Astrophysics Data System (ADS)

    de Jesús Ruíz-Baltazar, Álvaro; Reyes-López, Simón Yobbany; Larrañaga, Daniel; Estévez, Miriam; Pérez, Ramiro

    The exceptional properties of the silver nanoparticles offer several applications in the biomedicine field. The development of antibiotics which are clinically useful against bacteria and drug resistant microorganisms, it is one of the main approaches of silver nanoparticles. However, it is necessary to develop environmentally friendly methods for their synthesis. In this sense, the main objective of this work is focused on to propose a simplified and efficient green synthesis of silver nanoparticles with proven antibacterial properties. The green synthesis route is based on the use of the Melissa officinalis as reducing agent of the silver ions in aqueous solution at room temperature. Complementary, the antibacterial activity of the silver nanoparticles against Staphylococcus aureus and Escherichia coli was confirmed. The silver nanoparticles obtained were characterized by transmission electron microscopy, X-ray diffraction, UV-vis, Raman and FT-IR spectroscopy. The observed results suggested that using Melissa officinalis, it is possible to performed silver nanoparticles with controlled characteristics and with significant inhibitory activity against the Staphylococcus aureus and Escherichia coli.

  12. Polymer support oligonucleotide synthesis XVIII: use of beta-cyanoethyl-N,N-dialkylamino-/N-morpholino phosphoramidite of deoxynucleosides for the synthesis of DNA fragments simplifying deprotection and isolation of the final product.

    PubMed Central

    Sinha, N D; Biernat, J; McManus, J; Köster, H

    1984-01-01

    Various 5'O-N-protected deoxynucleoside-3'-O-beta-cyanoethyl-N,N-dialkylamino-/N- morpholinophosphoramidites were prepared from beta-cyanoethyl monochlorophosphoramidites of N,N-dimethylamine, N,N-diisopropylamine and N-morpholine. These active deoxynucleoside phosphates have successfully been used for oligodeoxynucleotide synthesis on controlled pore glass as polymer support and are very suitable for automated DNA-synthesis due to their stability in solution. The intermediate dichloro-beta- cyanoethoxyphosphine can easily be prepared free from any PC1(3) contamination. The active monomers obtained from beta-cyanoethyl monochloro N,N- diisopropylaminophosphoramidites are favoured. Cleavage of the oligonucleotide chain from the polymer support, N-deacylation and deprotection of beta-cyanoethyl group from the phosphate triester moiety can be performed in one step with concentrated aqueous ammonia. Mixed oligodeoxynucleotides are characterized by the sequencing method of Maxam and Gilbert. Images PMID:6547529

  13. Substructural controller synthesis

    NASA Technical Reports Server (NTRS)

    Su, Tzu-Jeng; Craig, Roy R., Jr.

    1989-01-01

    A decentralized design procedure which combines substructural synthesis, model reduction, decentralized controller design, subcontroller synthesis, and controller reduction is proposed for the control design of flexible structures. The structure to be controlled is decomposed into several substructures, which are modeled by component mode synthesis methods. For each substructure, a subcontroller is designed by using the linear quadratic optimal control theory. Then, a controller synthesis scheme called Substructural Controller Synthesis (SCS) is used to assemble the subcontrollers into a system controller, which is to be used to control the whole structure.

  14. Size-controlled green synthesis of silver nanoparticles mediated by gum ghatti (Anogeissus latifolia) and its biological activity

    PubMed Central

    2012-01-01

    Background Gum ghatti is a proteinaceous edible, exudate tree gum of India and is also used in traditional medicine. A facile and ecofriendly green method has been developed for the synthesis of silver nanoparticles from silver nitrate using gum ghatti (Anogeissus latifolia) as a reducing and stabilizing agent. The influence of concentration of gum and reaction time on the synthesis of nanoparticles was studied. UV–visible spectroscopy, transmission electron microscopy and X-ray diffraction analytical techniques were used to characterize the synthesized nanoparticles. Results By optimizing the reaction conditions, we could achieve nearly monodispersed and size controlled spherical nanoparticles of around 5.7 ± 0.2 nm. A possible mechanism involved in the reduction and stabilization of nanoparticles has been investigated using Fourier transform infrared spectroscopy and Raman spectroscopy. Conclusions The synthesized silver nanoparticles had significant antibacterial action on both the Gram classes of bacteria. As the silver nanoparticles are encapsulated with functional group rich gum, they can be easily integrated for various biological applications. PMID:22571686

  15. Synthesis, characterization and monoamine transporter activity of the new psychoactive substance mexedrone and its N-methoxy positional isomer, N-methoxymephedrone

    PubMed Central

    McLaughlin, Gavin; Morris, Noreen; Kavanagh, Pierce V.; Power, John D.; Dowling, Geraldine; Twamley, Brendan; O'Brien, John; Talbot, Brian; Walther, Donna; Partilla, John S.; Baumann, Michael H.; Brandt, Simon D.

    2017-01-01

    3-Methoxy-2-(methylamino)-1-(4-methylphenyl)propan-1-one (mexedrone) appeared in 2015 and was advertised by UK Internet retailers as a non-controlled mephedrone derivative (2-(methylamino)-1-(4-methylphenyl)propan-1-one), which was of particular interest to countries who operate generic drugs legislation. This study describes the synthesis and analytical characterization of mexedrone and the differentiation from its isomer, N-methoxymephedrone, which was predicted to be a suitable candidate before the identity of mexedrone was revealed. A full analytical characterization is described using various chromatographic, spectroscopic and mass spectrometric platforms and X-ray crystal structure analysis. The analytical data obtained for a vendor sample were consistent with the synthesized mexedrone reference standard and analytical differentiation between the mexedrone and N-methoxymephedrone positional isomers was achieved. Furthermore, α-chloromethylmephedrone was identified as a by-product during mexedrone synthesis. All three substances were also studied for their uptake and releasing properties at dopamine transporters (DAT), norepinephrine transporters (NET) and serotonin transporters (SERT) using in vitro monoamine transporter assays in rat brain synaptosomes and compared to mephedrone. Mexedrone was a weak non-selective uptake blocker with IC50 values in the low μM range. It was also devoid of releasing activity at DAT and NET but displayed weak releasing activity at SERT (EC50= 2.5 μM). The isomer N-methoxymephedrone was found to be a weak uptake blocker at DAT, NET and SERT, as well as a fully efficacious substrate-type releasing agent across all three transporters with EC50 values in the low micromolar range. The synthesis by-product α-chloromethylmephedrone was inactive in all assays. PMID:27524685

  16. Synthesis, characterization and monoamine transporter activity of the new psychoactive substance mexedrone and its N-methoxy positional isomer, N-methoxymephedrone.

    PubMed

    McLaughlin, Gavin; Morris, Noreen; Kavanagh, Pierce V; Power, John D; Dowling, Geraldine; Twamley, Brendan; O'Brien, John; Talbot, Brian; Walther, Donna; Partilla, John S; Baumann, Michael H; Brandt, Simon D

    2017-03-01

    3-Methoxy-2-(methylamino)-1-(4-methylphenyl)propan-1-one (mexedrone) appeared in 2015 and was advertised by UK Internet retailers as a non-controlled mephedrone derivative (2-(methylamino)-1-(4-methylphenyl)propan-1-one), which was of particular interest to countries who operate generic drugs legislation. This study describes the synthesis and analytical characterization of mexedrone and the differentiation from its isomer, N-methoxymephedrone, which was predicted to be a suitable candidate before the identity of mexedrone was revealed. A full analytical characterization is described using various chromatographic, spectroscopic and mass spectrometric platforms and X-ray crystal structure analysis. The analytical data obtained for a vendor sample were consistent with the synthesized mexedrone reference standard and analytical differentiation between the mexedrone and N-methoxymephedrone positional isomers was achieved. Furthermore, α-chloromethylmephedrone was identified as a by-product during mexedrone synthesis. All three substances were also studied for their uptake and releasing properties at dopamine transporters (DAT), norepinephrine transporters (NET) and serotonin transporters (SERT) using in vitro monoamine transporter assays in rat brain synaptosomes and compared to mephedrone. Mexedrone was a weak non-selective uptake blocker with IC 50 values in the low μM range. It was also devoid of releasing activity at DAT and NET but displayed weak releasing activity at SERT (EC 50  = 2.5 μM). The isomer N-methoxymephedrone was found to be a weak uptake blocker at DAT, NET and SERT, as well as a fully efficacious substrate-type releasing agent across all three transporters with EC 50 values in the low micromolar range. The synthesis by-product α-chloromethylmephedrone was inactive in all assays. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Synthesis and characterization of luminescent materials for thermal sensing and proton dosimetry

    NASA Astrophysics Data System (ADS)

    Doull, Brandon Arthur

    The work presented in this thesis is the materials synthesis, investigation of synthesis parameters, and basic luminescent characterizations of MgB 4O7, Li2B4O7, and MgO for the applications of thermal sensing using thermoluminescence (TL) and proton dosimetry using optically stimulated luminescence (OSL). The materials were synthesized using solution combustion synthesis and characterized by x-ray diffraction, radioluminescence, thermoluminescence, and optically stimulated luminescence. Based upon the basic characterizations MgB 4O7:Li,Dy and Li2B4O7:Cu,Ag were selected for their potential for use as TL materials for thermal sensing while MgB4O7:Li,Ce and MgO:Li were chosen for use as OSL materials in proton dosimetry. Furthermore, MgB4O7:Li,Ce and MgO:Li were fabricated into detector assemblies and exposed to a clinical proton beam for analysis.

  18. Zeolite catalysis in the synthesis of isobutylene from hydrous ethanol

    NASA Astrophysics Data System (ADS)

    Phillips, Cory Bernard

    1999-11-01

    This work deals with the synthesis of isobutylene from a hydrous ethanol feedstock over zeolites. The synthesis is accomplished in three steps: (1) low-temperature direct ethanol conversion to ethylene on H-ZSM-5 zeolite, (2) ethylene conversion to butene products over metal-exchanged zeolites, and (3) butene skeletal rearrangement to isobutylene over FER zeolites. The key to understanding and optimizing each synthesis step lies in the ability to control and regulate the zeolite acidity (Bronsted and Lewis)---both strength and number. Therefore, the continuous temperature programmed amine desorption (CTPAD) technique was further developed to simultaneously count the Bronsted acid sites and quantitatively characterize their strength. The adsorption of ethanol, reaction products, amines, coke and ethanol-derived residue (EDR) were monitored gravimetrically using the highly sensitive, novel Tapered Element Oscillating Microreactor (TEOM) apparatus. The TEOM was also used also in conjunction with CTPAD to characterize Bronsted acidity which is a new application for the instrument. For the first synthesis step, a parallel reaction exists which simultaneously produces diethyl ether and ethylene directly over H-ZSM-5. The reaction rates for each pathway were measured directly using a differential reactor operating at low temperatures (<473 K). Water in the ethanol feed enhances the rate of ethylene formation. A mechanism and kinetic expression are proposed for this reaction over H-ZSM-5, with diethyl-ether desorption and ethylene formation as the rate limiting steps. Heat of adsorption values measured from the independent microcalorimetry work reported in the literature are incorporated into the kinetic analysis which reduces the number of regressed parameters. For the remaining synthesis steps, several zeolite structures (ZSM-5, Y, FER) partially exchanged with Pd, Ti, Ni and Au were prepared and tested. It was determined from this screening study that the zeolites containing Pd are the most efficient catalysts for the dimerization reaction. Characterization results from x-ray diffraction (XRD), electron paramagnetic resonance (EPR) spectroscopy, and CTPAD suggest a stable, Pd species with a low oxidation state as part of the active site in Pd-exchanged zeolites. Isobutylene was present in the C4 fraction at reasonable quantities for most of the catalyst candidates, especially those containing an alkali metal co-cation.

  19. Sample-based synthesis of two-scale structures with anisotropy

    DOE PAGES

    Liu, Xingchen; Shapiro, Vadim

    2017-05-19

    A vast majority of natural or synthetic materials are characterized by their anisotropic properties, such as stiffness. Such anisotropy is effected by the spatial distribution of the fine-scale structure and/or anisotropy of the constituent phases at a finer scale. In design, proper control of the anisotropy may greatly enhance the efficiency and performance of synthesized structures. In this paper, we propose a sample-based two-scale structure synthesis approach that explicitly controls anisotropic effective material properties of the structure on the coarse scale by orienting sampled material neighborhoods at the fine scale. We first characterize the non-uniform orientations distribution of the samplemore » structure by showing that the principal axes of an orthotropic material may be determined by the eigenvalue decomposition of its effective stiffness tensor. Such effective stiffness tensors can be efficiently estimated based on the two-point correlation functions of the fine-scale structures. Then we synthesize the two-scale structure by rotating fine-scale structures from the sample to follow a given target orientation field. Finally, the effectiveness of the proposed approach is demonstrated through examples in both 2D and 3D.« less

  20. Sample-based synthesis of two-scale structures with anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xingchen; Shapiro, Vadim

    A vast majority of natural or synthetic materials are characterized by their anisotropic properties, such as stiffness. Such anisotropy is effected by the spatial distribution of the fine-scale structure and/or anisotropy of the constituent phases at a finer scale. In design, proper control of the anisotropy may greatly enhance the efficiency and performance of synthesized structures. In this paper, we propose a sample-based two-scale structure synthesis approach that explicitly controls anisotropic effective material properties of the structure on the coarse scale by orienting sampled material neighborhoods at the fine scale. We first characterize the non-uniform orientations distribution of the samplemore » structure by showing that the principal axes of an orthotropic material may be determined by the eigenvalue decomposition of its effective stiffness tensor. Such effective stiffness tensors can be efficiently estimated based on the two-point correlation functions of the fine-scale structures. Then we synthesize the two-scale structure by rotating fine-scale structures from the sample to follow a given target orientation field. Finally, the effectiveness of the proposed approach is demonstrated through examples in both 2D and 3D.« less

  1. Synthesis and characterization of superabsorbent polymer prepared by radiation-induced graft copolymerization of acrylamide onto carboxymethyl cellulose for controlled release of agrochemicals

    NASA Astrophysics Data System (ADS)

    Hemvichian, Kasinee; Chanthawong, Auraruk; Suwanmala, Phiriyatorn

    2014-10-01

    Superabsorbent polymer (SAP) was synthesized by radiation-induced grafting of acrylamide (AM) onto carboxymethyl cellulose (CMC) in the presence of a crosslinking agent, N,N‧-methylenebisacrylamide (MBA). The effects of various parameters, such as dose, the amount of CMC, AM, MBA and ionic strength on the swelling ratio were investigated. In order to evaluate its controlled release potential, SAP was loaded with potassium nitrate (KNO3) as an agrochemical model and its potential for controlled release of KNO3 was studied. The amount of released KNO3 was analyzed by an inductively coupled plasma mass spectrometry (ICP-MS). The results from controlled release experiment agreed very well with the results from swelling experiment. The synthesized SAP was characterized by Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). The obtained SAP exhibited a swelling ratio of 190 g/g of dry gel.

  2. mTOR-dependent synthesis of Bcl-3 controls the retraction of fibrin clots by activated human platelets

    PubMed Central

    Weyrich, Andrew S.; Denis, Melvin M.; Schwertz, Hansjorg; Tolley, Neal D.; Foulks, Jason; Spencer, Eliott; Kraiss, Larry W.; Albertine, Kurt H.; McIntyre, Thomas M.

    2007-01-01

    New activities of human platelets continue to emerge. One unexpected response is new synthesis of proteins from previously transcribed RNAs in response to activating signals. We previously reported that activated human platelets synthesize B-cell lymphoma-3 (Bcl-3) under translational control by mammalian target of rapamycin (mTOR). Characterization of the ontogeny and distribution of the mTOR signaling pathway in CD34+ stem cell–derived megakaryocytes now demonstrates that they transfer this regulatory system to developing proplatelets. We also found that Bcl-3 is required for condensation of fibrin by activated platelets, demonstrating functional significance for mTOR-regulated synthesis of the protein. Inhibition of mTOR by rapamycin blocks clot retraction by human platelets. Platelets from wild-type mice synthesize Bcl-3 in response to activation, as do human platelets, and platelets from mice with targeted deletion of Bcl-3 have defective retraction of fibrin in platelet-fibrin clots mimicking treatment of human platelets with rapamycin. In contrast, overexpression of Bcl-3 in a surrogate cell line enhanced clot retraction. These studies identify new features of post-transcriptional gene regulation and signal-dependant protein synthesis in activated platelets that may contribute to thrombus and wound remodeling and suggest that posttranscriptional pathways are targets for molecular intervention in thrombotic disorders. PMID:17110454

  3. Biogenic silver nanoparticles based on trichoderma harzianum: synthesis, characterization, toxicity evaluation and biological activity

    NASA Astrophysics Data System (ADS)

    Guilger, Mariana; Pasquoto-Stigliani, Tatiane; Bilesky-Jose, Natália; Grillo, Renato; Abhilash, P. C.; Fraceto, Leonardo Fernandes; Lima, Renata De

    2017-03-01

    White mold is an agricultural disease caused by the fungus Sclerotinia sclerotiorum, which affects important crops. There are different ways of controlling this organism, but none provides inhibition of its resistance structures (sclerotia). Nanotechnology offers promising applications in agricultural area. Here, silver nanoparticles were biogenically synthesized using the fungus Trichoderma harzianum and characterized. Cytotoxicity and genotoxicity were evaluated, and the nanoparticles were initially tested against white mold sclerotia. Their effects on soybean were also investigated with no effects observed. The nanoparticles showed potential against S. sclerotiorum, inhibiting sclerotia germination and mycelial growth. Nanoparticle characterization data indicated spherical morphology, satisfactory polydispersity and size distribution. Cytotoxicity and genotoxicity assays showed that the nanoparticles caused both the effects, although, the most toxic concentrations were above those applied for white mold control. Given the potential of the nanoparticles against S. sclerotiorum, we conclude that this study presents a first step for a new alternative in white mold control.

  4. Phosphatase control of 4E-BP1 phosphorylation state is central for glycolytic regulation of retinal protein synthesis.

    PubMed

    Gardner, Thomas W; Abcouwer, Steven F; Losiewicz, Mandy K; Fort, Patrice E

    2015-09-15

    Control of protein synthesis in insulin-responsive tissues has been well characterized, but relatively little is known about how this process is regulated in nervous tissues. The retina exhibits a relatively high protein synthesis rate, coinciding with high basal Akt and metabolic activities, with the majority of retinal ATP being derived from aerobic glycolysis. We examined the dependency of retinal protein synthesis on the Akt-mTOR signaling and glycolysis using ex vivo rat retinas. Akt inhibitors significantly reduced retinal protein synthesis but did not affect glycolytic lactate production. Surprisingly, the glycolytic inhibitor 2-deoxyglucose (2-DG) markedly inhibited Akt1 and Akt3 activities, as well as protein synthesis. The effects of 2-DG, and 2-fluorodeoxyglucose (2-FDG) on retinal protein synthesis correlated with inhibition of lactate production and diminished ATP content, with all these effects reversed by provision of d-mannose. 2-DG treatment was not associated with increased AMPK, eEF2, or eIF2α phosphorylation; instead, it caused rapid dephosphorylation of 4E-BP1. 2-DG reduced total mTOR activity by 25%, but surprisingly, it did not reduce mTORC1 activity, as indicated by unaltered raptor-associated mTOR autophosphorylation and ribosomal protein S6 phosphorylation. Dephosphorylation of 4E-BP1 was largely prevented by inhibition of PP1/PP2A phosphatases with okadaic acid and calyculin A, and inhibition of PPM1 phosphatases with cadmium. Thus, inhibition of retinal glycolysis diminished Akt and protein synthesis coinciding with accelerated dephosphorylation of 4E-BP1 independently of mTORC1. These results demonstrate a novel mechanism regulating protein synthesis in the retina involving an mTORC1-independent and phosphatase-dependent regulation of 4E-BP1. Copyright © 2015 the American Physiological Society.

  5. Organic Materials as Electrodes for Li-ion Batteries

    DTIC Science & Technology

    2015-09-04

    Various macrocycles, their synthesis, characterization and subsequent use in lithium - ion batteries were attempted. Ellagic acid, alizarin and...Various macrocycles, their synthesis, characterization and subsequent use in lithium - ion batteries were attempted. Ellagic acid, alizarin and...characterization and subsequent use in lithium - ion batteries have been attempted to. Lithium -based batteries are at the forefront of battery

  6. Immunolocalization of steroidogenic enzymes in the vaginal mucous of Galea spixii during the estrous cycle.

    PubMed

    Dos Santos, Amilton Cesar; Conley, Alan James; de Oliveira, Moacir Franco; Oliveira, Gleidson Benevides; Viana, Diego Carvalho; Assis Neto, Antônio Chaves de

    2017-04-24

    The synthesis of sex steroids is controlled by several enzymes such as17α-hydroxylase cytochrome P450 (P450c17) catalyzing androgen synthesis and aromatase cytochrome P450 (P450arom) catalyzing estrogen synthesis, both of which must complex with the redox partner NADPH-cytochrome P450 oxidoreductase (CPR) for activity. Previous studies have identified expression of steroidogenic enzymes in vaginal tissue, suggesting local sex steroid synthesis. The current studies investigate P450c17, P450aromatase and CPR expression in vaginal mucosa of Galea spixii (Spix cavy) by immuno-histochemical and western immunoblot analyses. Stages of estrous cyclicity were monitored by vaginal exfoliative cytology. After euthanasia, vaginal tissues were retrieved, fixed and frozen at diestrus, proestrus, estrus and metestrus. The ovaries and testis were used as positive control tissues for immunohistochemistry. Data from cytological study allowed identification of different estrous cycle phases. Immunohistochemical analysis showed different sites of expression of steroidogenic enzymes along with tissue response throughout different phases of the estrous cycle. However, further studies are needed to characterize the derived hormones synthesized by, and the enzymes activities associated with, vaginal tissues. Current results not only support the expression of enzymes involved in sex steroid synthesis in the wall of the vagina, they also indicate that expression changes with the stage of the cycle, both the levels and types of cells exhibiting expression. Thus, changes in proliferation of vaginal epithelial cells and the differentiation of the mucosa may be influenced by local steroid synthesis as well as circulating androgens and estrogens.

  7. Synthesis, Characterization and Reactivity of a Hexane-Soluble Silver Salt

    ERIC Educational Resources Information Center

    Stockland, Robert A. Jr.; Wilson, Brian D.; Goodman, Caton C.; Giese, Barret J.; Shrimp, Frederick L., II

    2007-01-01

    The connectivity of a hexane-soluble silver salt is established by using NMR spectroscopy to describe the synthesis, characterization and reactivity of the salt. The results found hexane-soluble silver to be an effective transfer agent.

  8. Thiophene-based covalent organic frameworks

    PubMed Central

    Bertrand, Guillaume H. V.; Michaelis, Vladimir K.; Ong, Ta-Chung; Griffin, Robert G.; Dincă, Mircea

    2013-01-01

    We report the synthesis and characterization of covalent organic frameworks (COFs) incorporating thiophene-based building blocks. We show that these are amenable to reticular synthesis, and that bent ditopic monomers, such as 2,5-thiophenediboronic acid, are defect-prone building blocks that are susceptible to synthetic variations during COF synthesis. The synthesis and characterization of an unusual charge transfer complex between thieno[3,2-b]thiophene-2,5-diboronic acid and tetracyanoquinodimethane enabled by the unique COF architecture is also presented. Together, these results delineate important synthetic advances toward the implementation of COFs in electronic devices. PMID:23479656

  9. Synthesis of t-Butyl (2R)-Hydroxyisovalerate, A Precursor of Aureobasidin B

    NASA Astrophysics Data System (ADS)

    Maharani, R.; Puspitasari, D.; Taufiqqurahman; Huspa, D. H. P.; Hidayat, A. T.; Sumiarsa, D.; Hidayat, I. W.

    2017-02-01

    Aureobasidins are a family of cyclodepsipeptides have antifungal properties. They were isolated from the black yeast Aureobasidium pullulans R106 and over 30 derivatives have been successfully characterized. There are few publications reporting the total synthesis of aureobasidins. The limited reports of the synthesis of the aureobasidin derivatives are due to the difficult access to the preparations of precursors. The aim of this research is to synthesise a precursor of aureobasidin B, t-butyl (2R)-hydroxyisovalerate (t-Bu-Hiv), that is prepared for the total synthesis of aureobasidin B. The synthesis of AbB is planned to be undertaken by using a solid phase method, so the ester formation between t-Bu-Hiv and the Fmoc-β-hydroxymethylvaline will be carried out in solution phase to form depsidipeptide. The t-butyl group was used as protecting agent that is due to the straightforward elimination of the protecting group from the Fmoc-depsidipeptide. The t-Bu-Hiv acid was prepared from D-valine through diazotisation to form (2R)-acetyloxyisovaleric acid in 62.7% yield. Product of the first step was then protected by t-butyl group by using Boc-anhydride in t-butanol to give t-butil (2R)-acetyloxyisovalerate in 44% yield. In the last step, the acetyloxy group was eliminated by using potassium carbonate in methanol/water to give the desired product, t-Bu-Hiv in 33.5% yield. The t-Bu-Hiv is ready to be combined with Fmoc-β-hydroxymethylvaline to result in depsidipeptide that will be attached to the resin in the total synthesis of AbB. Each stage of this synthesis was controlled by thin layer chromatography and all products were purified by open column chromatography. All the synthesized products were characterized by various spectroscopic techniques, including infrared spectrophotometer, mass spectroscopy (ESI-MS), 1H-NMR and 13C-NMR.

  10. Nitric oxide synthesis leads to vascular endothelial growth factor synthesis via the NO/cyclic guanosine 3',5'-monophosphate (cGMP) pathway in human corpus cavernosal smooth muscle cells.

    PubMed

    Komori, Kazuhiko; Tsujimura, Akira; Takao, Tetsuya; Matsuoka, Yasuhiro; Miyagawa, Yasushi; Takada, Shingo; Nonomura, Norio; Okuyama, Akihiko

    2008-07-01

    Vascular smooth muscle cells express endothelial nitric oxide synthase (eNOS) and produce nitric oxide (NO). Recently, increased NO production has been reported to induce the synthesis and secretion of vascular endothelial growth factor (VEGF) via the NO/cyclic guanosine 3',5'-monophosphate (cGMP) pathway. L-arginine (L-arg), the precursor of NO, and selective phosphodiesterase type 5 (PDE-5) inhibitors that increase levels of intracellular cGMP may complementarily enhance VEGF synthesis in corpus cavernosal smooth muscle cells (CCSMCs), and may consequently restore impaired endothelial function. Expression of eNOS in corpus cavernosal smooth muscle has also been reported. However, it is unclear whether CCSMCs can generate NO. To elucidate whether CCSMCs can synthesize NO and whether NO synthesis enhances VEGF synthesis via the NO/cGMP pathway. Corpus cavernosal cells were cultured and characterized by immunocytochemistry and immunoblotting. CCSMCs were treated with L-arg. CCSMCs were also incubated with L-arg and with vardenafil, an inhibitor of PDE-5. Release of NO from cells was confirmed by assay of NO metabolites (NOx). Intracellular cGMP concentration and VEGF concentration in the medium were measured. Isolated cells were determined to be CCSMCs. The expression of eNOS by CCSMCs was also identified. NOx and cGMP levels in the L-arg-treated group were significantly greater than those in the control group. VEGF and cGMP levels in the L-arg-treated group were also significantly greater than those in the control group. VEGF and cGMP levels in the L-arg + vardenafil-treated group were significantly greater than those in the L-arg-treated group and the control group. CCSMCs express eNOS and synthesize NO. NO synthesis leads to enhancement of VEGF synthesis via the NO/cGMP pathway. Combined L-arg and vardenafil treatment, which can enhance VEGF production, may provide a novel therapeutic strategy for the treatment of erectile dysfunction as well as endothelial dysfunction in general.

  11. Hydrothermal Synthesis and Characterization of a Metal-Organic Framework by Thermogravimetric Analysis, Powder X-Ray Diffraction, and Infrared Spectroscopy: An Integrative Inorganic Chemistry Experiment

    ERIC Educational Resources Information Center

    Crane, Johanna L.; Anderson, Kelly E.; Conway, Samantha G.

    2015-01-01

    This advanced undergraduate laboratory experiment involves the synthesis and characterization of a metal-organic framework with microporous channels that are held intact via hydrogen bonding of the coordinated water molecules. The hydrothermal synthesis of Co[subscript 3](BTC)[subscript 2]·12H[subscript 2]O (BTC = 1,3,5-benzene tricarboxylic acid)…

  12. Highly Efficient Flexible Hybrid Photovoltaic Cells Based on Low-Band-Gap Conjugated Polymers Sensitized by Nanoparticle-Grafted Carbon

    DTIC Science & Technology

    2010-09-01

    modeling, synthesis , and characterization of several series functional and processable electro-active conjugated polymers with evolving frontier...tasks as a basic obligation of this award: Task #1. Low Band Gap Polymers The awardee (Professor Sun’s group at NSU) shall design, synthesis , and...design, modeling, synthesis , and characterizations of several series functional and processable electro-active conjugated polymers with evolving

  13. [Synthesis and Characterization of a Sugar Based Electrolyte for Thin-film Polymer Batteries

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The work performed during the current renewal period, March 1,1998 focused primarily on the synthesis and characterization of a sugar based electrolyte for thin-film polymer batteries. The initial phase of the project involved developing a suitable sugar to use as the monomer in the polymeric electrolyte synthesis. The monomer has been synthesized and characterized completely. Overall the yield of this material is high and it can be produced in relatively large quantity easily and in high purity. The scheme used for the preparation of the monomer is outlined along with pertinent yields.

  14. Evidence for a Contribution of ALA Synthesis to Plastid-To-Nucleus Signaling

    PubMed Central

    Czarnecki, Olaf; Gläßer, Christine; Chen, Jin-Gui; Mayer, Klaus F. X.; Grimm, Bernhard

    2012-01-01

    The formation of 5-aminolevulinic acid (ALA) in tetrapyrrole biosynthesis is widely controlled by environmental and metabolic feedback cues that determine the influx into the entire metabolic path. Because of its central role as the rate-limiting step, we hypothesized a potential role of ALA biosynthesis in tetrapyrrole-mediated retrograde signaling and exploited the direct impact of ALA biosynthesis on nuclear gene expression (NGE) by using two different approaches. Firstly, the Arabidopsis gun1, hy1 (gun2), hy2 (gun3), gun4 mutants showing uncoupled NGE from the physiological state of chloroplasts were thoroughly examined for regulatory modifications of ALA synthesis and transcriptional control in the nucleus. We found that reduced ALA-synthesizing capacity is common to analyzed gun mutants. Inhibition of ALA synthesis by gabaculine (GAB) that inactivates glutamate-1-semialdehyde aminotransferase and ALA feeding of wild-type and mutant seedlings corroborate the expression data of gun mutants. Transcript level of photosynthetic marker genes were enhanced in norflurazon (NF)-treated seedlings upon additional GAB treatment, while enhanced ALA amounts diminish these RNA levels in NF-treated wild-type in comparison to the solely NF-treated seedlings. Secondly, the impact of posttranslationally down-regulated ALA synthesis on NGE was investigated by global transcriptome analysis of GAB-treated Arabidopsis seedlings and the gun4-1 mutant, which is also characterized by reduced ALA formation. A common set of significantly modulated genes was identified indicating ALA synthesis as a potential signal emitter. The over-represented gene ontology categories of genes with decreased or increased transcript abundance highlight a few biological processes and cellular functions, which are remarkably affected in response to plastid-localized ALA biosynthesis. These results support the hypothesis that ALA biosynthesis correlates with retrograde signaling-mediated control of NGE. PMID:23112801

  15. Reproducible, high-throughput synthesis of colloidal nanocrystals for optimization in multidimensional parameter space.

    PubMed

    Chan, Emory M; Xu, Chenxu; Mao, Alvin W; Han, Gang; Owen, Jonathan S; Cohen, Bruce E; Milliron, Delia J

    2010-05-12

    While colloidal nanocrystals hold tremendous potential for both enhancing fundamental understanding of materials scaling and enabling advanced technologies, progress in both realms can be inhibited by the limited reproducibility of traditional synthetic methods and by the difficulty of optimizing syntheses over a large number of synthetic parameters. Here, we describe an automated platform for the reproducible synthesis of colloidal nanocrystals and for the high-throughput optimization of physical properties relevant to emerging applications of nanomaterials. This robotic platform enables precise control over reaction conditions while performing workflows analogous to those of traditional flask syntheses. We demonstrate control over the size, size distribution, kinetics, and concentration of reactions by synthesizing CdSe nanocrystals with 0.2% coefficient of variation in the mean diameters across an array of batch reactors and over multiple runs. Leveraging this precise control along with high-throughput optical and diffraction characterization, we effectively map multidimensional parameter space to tune the size and polydispersity of CdSe nanocrystals, to maximize the photoluminescence efficiency of CdTe nanocrystals, and to control the crystal phase and maximize the upconverted luminescence of lanthanide-doped NaYF(4) nanocrystals. On the basis of these demonstrative examples, we conclude that this automated synthesis approach will be of great utility for the development of diverse colloidal nanomaterials for electronic assemblies, luminescent biological labels, electroluminescent devices, and other emerging applications.

  16. Synthesis and characterization of dextran-coated iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Predescu, Andra Mihaela; Matei, Ecaterina; Berbecaru, Andrei Constantin; Pantilimon, Cristian; Drăgan, Claudia; Vidu, Ruxandra; Predescu, Cristian; Kuncser, Victor

    2018-03-01

    Synthesis and characterization of iron oxide nanoparticles coated with a large molar weight dextran for environmental applications are reported. The first experiments involved the synthesis of iron oxide nanoparticles which were coated with dextran at different concentrations. The synthesis was performed by a co-precipitation technique, while the coating of iron oxide nanoparticles was carried out in solution. The obtained nanoparticles were characterized by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction spectrometry, Fourier transform infrared spectroscopy and superconducting quantum interference device magnetometry. The results demonstrated a successful coating of iron oxide nanoparticles with large molar weight dextran, of which agglomeration tendency depended on the amount of dextran in the coating solution. SEM and TEM observations have shown that the iron oxide nanoparticles are of about 7 nm in size.

  17. A facile and green approach for the controlled synthesis of porous SnO₂ nanospheres: application as an efficient photocatalyst and an excellent gas sensing material.

    PubMed

    Manjula, P; Boppella, Ramireddy; Manorama, Sunkara V

    2012-11-01

    A facile and elegant methodology invoking the principles of Green Chemistry for the synthesis of porous tin dioxide nanospheres has been described. The low-temperature (∼50 °C) synthesis of SnO₂ nanoparticles and their self-assembly into organized, uniform, and monodispersed porous nanospheres with high surface area is facilitated by controlling the concentration of glucose, which acts as a stabilizing as well as structure-directing agent. A systematic control on the stannate to glucose molar concentration ratio determines the exact conditions to obtain monodispersed nanospheres, preferentially over random aggregation. Detailed characterization of the structure, morphology, and chemical composition reveals that the synthesized material, 50 nm SnO₂ porous nanospheres possess BET surface area of about 160 m²/g. Each porous nanosphere consists of a few hundred nanoparticles ∼2-3 nm in diameter with tetragonal cassiterite crystal structure. The SnO₂ nanospheres exhibit elevated photocatalytic activity toward methyl orange with good recyclability. Because of the high activity and stability of this photocatalyst, the material is ideal for applications in environmental remediation. Moreover, SnO₂ nanospheres display excellent gas sensing capabilities toward hydrogen. Surface modification of the nanospheres with Pd transforms this sensing material into a highly sensitive and selective room-temperature hydrogen sensor.

  18. Aerosol emission monitoring in the production of silicon carbide nanoparticles by induction plasma synthesis

    NASA Astrophysics Data System (ADS)

    Thompson, Drew; Leparoux, Marc; Jaeggi, Christian; Buha, Jelena; Pui, David Y. H.; Wang, Jing

    2013-12-01

    In this study, the synthesis of silicon carbide (SiC) nanoparticles in a prototype inductively coupled thermal plasma reactor and other supporting processes, such as the handling of precursor material, the collection of nanoparticles, and the cleaning of equipment, were monitored for particle emissions and potential worker exposure. The purpose of this study was to evaluate the effectiveness of engineering controls and best practice guidelines developed for the production and handling of nanoparticles, identify processes which result in a nanoparticle release, characterize these releases, and suggest possible administrative or engineering controls which may eliminate or control the exposure source. No particle release was detected during the synthesis and collection of SiC nanoparticles and the cleaning of the reactor. This was attributed to most of these processes occurring in closed systems operated at slight underpressure. Other tasks occurring in more open spaces, such as the disconnection of a filter assembly from the reactor system and the use of compressed air for the cleaning of filters where synthesized SiC nanoparticles were collected, resulted in releases of submicrometer particles with a mode size of 170-180 nm. Observation of filter samples under scanning electron microscope confirmed that the particles were agglomerates of SiC nanoparticles.

  19. Synthesis and Characterization of Cellulose Derivatives for Water Repellent Properties

    USDA-ARS?s Scientific Manuscript database

    In this presentation, we will discuss the synthesis and structural characterizations of nitro-benzyl cellulose (1), amino-benzyl cellulose (2) and pentafluoro –benzyl cellulose (3). All cellulose derivatives are synthesized by etherification process in lithium chloride/N,N-dimethylacetamide homogene...

  20. Poly/diphenylsiloxy/arylazines. I - Synthesis and characterization

    NASA Technical Reports Server (NTRS)

    Goldsberry, R. E.; Adamson, M. J.; Reinisch, R. F.

    1973-01-01

    A detailed description is presented for the synthesis of poly(diphenylsiloxy)arylazines by the melt polymerization of hydroxyarylazines and bis(anilino)diphenylsilane. The resulting polymers have been characterized by elemental analysis, gel-permeation chromatography, vapor-phase osmometry, and UV-VIS-IR optical spectroscopy.

  1. Synthesis of Silver nanoparticles (AgNPs) with Antibacterial Activity

    NASA Astrophysics Data System (ADS)

    Campillo Gloria, E.; Ederley, Vélez; Gladis, Morales; César, Hincapié; Jaime, Osorio; Oscar, Arnache; Uribe José, Ignacio; Franklin, Jaramillo

    2017-06-01

    The synthesis of nanomaterials is currently one of the most active in nanoscience branches; especially those help improve the human quality life. Silver nanoparticles (AgNPs) are an example of this as it is known to have inhibitory and bactericidal effects. In this work, we report the synthesis of silver nanoparticles by chemical reduction method of silver nitrate (AgNO3) from aqueous solution, using a mix of polivinyl pyrrolidone (PVP) - Aloe Vera as reducing agent and for stabilization and control of particle size. Silver nanoparticles obtained were characterized by Scanning Electron Microscopy (SEM), UV-visible spectroscopy and measurements using Zetasizer Nano ZS were applied to size estimation. The existence of surface plasmon resonance peak at λmax ~ 420 nm is evidence of silver nanoparticles formation. It was possible to standardize an appropriate protocol for the evaluation of bactericidal activity of the nanoparticles, for mesophilic microorganisms. Bactericidal activity above 90% against these kinds of bacteria was demonstrated.

  2. Template-directed synthesis of MS (M=Cd, Zn) hollow microsphere via hydrothermal method

    NASA Astrophysics Data System (ADS)

    Wang, Shi-Ming; Wang, Qiong-Sheng; Wan, Qing-Li

    2008-05-01

    CdS, ZnS hollow microspheres were prepared with chitosan as the synthesis template at 140 and 150 °C, respectively, by hydrothermal method. The resultant products were characterized by X-ray diffraction (XRD) measurements in order to determine the crystalline phase of the products. The structural and morphological features of the nanoparticles were investigated by transmission electron microscopy (TEM) and ultraviolet-visible diffuse reflection spectroscopy (DRS). The experimental results indicated that all the nanoparticles aggregated into hollow microspheres and chitosan as a template played an important role in the formation of hollow microspheres. In addition, an intermediate complex structure-controlling possible reaction mechanism was proposed in this paper.

  3. Controllable biosynthesis of gold nanoparticles from a Eucommia ulmoides bark aqueous extract

    NASA Astrophysics Data System (ADS)

    Guo, Mingxia; Li, Wei; Yang, Feng; Liu, Huihong

    2015-05-01

    The present work reports the green synthesis of gold nanoparticles (AuNPs) by water extract of Eucommia ulmoides (E. ulmoides) bark. The effects of various parameters such as the concentration of reactants, pH of the reaction mixture, temperature and the time of incubation were explored to the controlled formation of gold nanoparticles. The characterization through high resolution-transmission electron microscopic (HRTEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) infer that the as-synthesized AuNPs were spherical in shape with a face cubic crystal (FCC) structure. The results from zeta potential and dynamic light scattering (DLS) suggest the good stability and narrow size distribution of the AuNPs. This method for synthesis of AuNPs is simple, economic, nontoxic and efficient. The as-synthesized AuNPs show excellent catalytic activity for the catalytic reducing decoloration of model compounds of azo-dye: reactive yellow 179 and Congo red.

  4. Epitaxial growth of hybrid nanostructures

    NASA Astrophysics Data System (ADS)

    Tan, Chaoliang; Chen, Junze; Wu, Xue-Jun; Zhang, Hua

    2018-02-01

    Hybrid nanostructures are a class of materials that are typically composed of two or more different components, in which each component has at least one dimension on the nanoscale. The rational design and controlled synthesis of hybrid nanostructures are of great importance in enabling the fine tuning of their properties and functions. Epitaxial growth is a promising approach to the controlled synthesis of hybrid nanostructures with desired structures, crystal phases, exposed facets and/or interfaces. This Review provides a critical summary of the state of the art in the field of epitaxial growth of hybrid nanostructures. We discuss the historical development, architectures and compositions, epitaxy methods, characterization techniques and advantages of epitaxial hybrid nanostructures. Finally, we provide insight into future research directions in this area, which include the epitaxial growth of hybrid nanostructures from a wider range of materials, the study of the underlying mechanism and determining the role of epitaxial growth in influencing the properties and application performance of hybrid nanostructures.

  5. Polymer-Carbon Nanotube Composites, A Literature Review

    DTIC Science & Technology

    2004-08-01

    have led to improvements in product controllability, yield, and cost . Other aspects of nanotube synthesis currently under scrutiny include study of...progress in many areas of characterization and applications was initially hindered by the high cost of production, as well as the requirement of...processing the nanotubes. In recent years, the production costs have decreased dramatically as a result of the development of new, high-throughput

  6. Center for Alternative Energy Storage Research and Technology

    DTIC Science & Technology

    2013-03-28

    measurement systems needed for characterization of the resulting exfoliated graphite coated metal nanowires for their evaluation in supercapacitors...Synthesis of exfoliated graphite nanoplatelet (xGnP) composite carbon aerogels for use in supercapacitors,” oral presentation at the Spring, Materials...Research Society Meeting in San Francisco, CA. W. Qian, J. Cintron-Rivera, S. Han, X. Lu and F. Z. Peng, “Management and control of energy storage

  7. Biodegradable polydepsipeptides.

    PubMed

    Feng, Yakai; Guo, Jintang

    2009-02-01

    This paper reviews the synthesis, characterization, biodegradation and usage of bioresorbable polymers based on polydepsipeptides. The ring-opening polymerization of morpholine-2,5-dione derivatives using organic Sn and enzyme lipase is discussed. The dependence of the macroscopic properties of the block copolymers on their structure is also presented. Bioresorbable polymers based on polydepsipeptides could be used as biomaterials in drug controlled release, tissue engineering scaffolding and shape-memory materials.

  8. An NAD(P)H:quinone oxidoreductase 1 (NQO1) enzyme responsive nanocarrier based on mesoporous silica nanoparticles for tumor targeted drug delivery in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Gayam, Srivardhan Reddy; Venkatesan, Parthiban; Sung, Yi-Ming; Sung, Shuo-Yuan; Hu, Shang-Hsiu; Hsu, Hsin-Yun; Wu, Shu-Pao

    2016-06-01

    The synthesis and characterization of an NAD(P)H:quinone oxidoreductase 1 (NQO1) enzyme responsive nanocarrier based on mesoporous silica nanoparticles (MSNPs) for on-command delivery applications has been described in this paper. Gatekeeping of MSNPs is achieved by the integration of mechanically interlocked rotaxane nanovalves on the surface of MSNPs. The rotaxane nanovalve system is composed of a linear stalk anchoring on the surface of MSNPs, an α-cyclodextrin ring that encircles it and locks the payload ``cargo'' molecules in the mesopores, and a benzoquinone stopper incorporated at the end of the stalk. The gate opening and controlled release of the cargo are triggered by cleavage of the benzoquinone stopper using an endogenous NQO1 enzyme. In addition to having efficient drug loading and controlled release mechanisms, this smart biocompatible carrier system showed obvious uptake and consequent release of the drug in tumor cells, could selectively induce the tumor cell death and enhance the capability of inhibition of tumor growth in vivo. The controlled drug delivery system demonstrated its use as a potential theranostic material.The synthesis and characterization of an NAD(P)H:quinone oxidoreductase 1 (NQO1) enzyme responsive nanocarrier based on mesoporous silica nanoparticles (MSNPs) for on-command delivery applications has been described in this paper. Gatekeeping of MSNPs is achieved by the integration of mechanically interlocked rotaxane nanovalves on the surface of MSNPs. The rotaxane nanovalve system is composed of a linear stalk anchoring on the surface of MSNPs, an α-cyclodextrin ring that encircles it and locks the payload ``cargo'' molecules in the mesopores, and a benzoquinone stopper incorporated at the end of the stalk. The gate opening and controlled release of the cargo are triggered by cleavage of the benzoquinone stopper using an endogenous NQO1 enzyme. In addition to having efficient drug loading and controlled release mechanisms, this smart biocompatible carrier system showed obvious uptake and consequent release of the drug in tumor cells, could selectively induce the tumor cell death and enhance the capability of inhibition of tumor growth in vivo. The controlled drug delivery system demonstrated its use as a potential theranostic material. Electronic supplementary information (ESI) available: Synthesis and characterization of the functional molecules and MSNPs is available in the ESI. See DOI: 10.1039/c6nr03525f

  9. Mechanism of plant-mediated synthesis of silver nanoparticles - A review on biomolecules involved, characterisation and antibacterial activity.

    PubMed

    Rajeshkumar, S; Bharath, L V

    2017-08-01

    Engineering a reliable and eco-accommodating methodology for the synthesis of metal nanoparticles is a crucial step in the field of nanotechnology. Plant-mediated synthesis of metal nanoparticles has been developed as a substitute to defeat the limitations of conventional synthesis approaches such as physical and chemical methods. Biomolecules, such as proteins, amino acids, enzymes, flavonoids, and terpenoids from several plant extracts have been used as a stabilising and reducing agents for the synthesis of AgNPs. Regardless of an extensive range of biomolecules assistance in the synthesis procedure, researchers are facing a significant challenge to synthesise stable and geometrically controlled AgNPs. In the past decade, several efforts were made to develop Plant-mediated synthesis methods to produce stable, cost effective and eco-friendly AgNPs. More than hundred different plants extract sources for synthesising AgNPs were described in the last decade by several researchers. Most of the reviews were focused on various plant sources for synthesis, various characterization techniques for characteristic analysis, and antibacterial activity against bacterial. There are many reviews are available for the plant-mediated synthesis of AgNPs as well as antibacterial activity of AgNPs but this is the first review article mainly focused on biomolecules of plants and its various parts and operating conditions involved in the synthesis. Apart from, this review includes the characterisation of AgNPs and antibacterial activity of such nanoparticles with size, shape and method used for this study. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. The Scaled-Up Synthesis of Nanostructured Ultra-High-Temperature Ceramics and Resistance Sintering of Tantalum Carbide Nanopowders and Composites

    NASA Astrophysics Data System (ADS)

    Kelly, James P.

    Ultra-high temperature ceramics (UHTCs) are a unique class of materials with the potential to withstand harsh environments due to covalent bonding, which gives these materials high melting temperatures, although decomposition temperatures should also be considered. For example, the melting temperature of TaC is near 4000 K, but may vaporize at lower temperatures. The high melting temperatures also make them difficult to process without high pressures and temperatures and to achieve dense ceramics with a nanostructure. Such materials however are appealing for aerospace technologies. The ability to generate high density compacts and maintain a nanostructure could allow for unprecedented control and improvement to the mechanical properties. The goal of this work is to develop processes for the synthesis and consolidation of nanostructured UHTCs. A self-propagating solvothermal synthesis technique for making UHTC nanopowders is presented. The technique is fast, scalable, and requires minimal external energy input. Synthesis of transition metal boride, carbide, and nitride powders is demonstrated. TaC is synthesized using a range of synthesis conditions and characterized to determine the fundamental mechanisms controlling the nanopowder characteristics. Discussion on purification of the powders is also presented. The sintering of TaC nanopowders produced by the solvothermal synthesis method is performed by resistance sintering. The effects of temperature, heating rate, and dwell time on densification and grain growth is presented. Adequate powder processing, carbon content, volatilization, and additives are found to be critical factors affecting the densification, microstructure, and grain growth. The optimal range of carbon addition for minimizing oxygen content is determined. WC and ZrC are evaluated as additives for reducing grain growth of TaC. Secondary phases and/or solid solutions are capable of suppressing grain growth. A unified approach to solid solution chemistries to control the densification, microstructure, and properties of UHTCs in general is presented. This work has important consequences on advancing the properties of UHTCs.

  11. Synthesis and characterization of a NaSICON series with general formula Na 2.8Zr 2-ySi 1.8-4yP 1.2+4yO 12 (0⩽ y⩽0.45)

    NASA Astrophysics Data System (ADS)

    Essoumhi, A.; Favotto, C.; Mansori, M.; Satre, P.

    2004-12-01

    In this work, we present the synthesis and the characterization of ionic conducting ceramics of NaSICON-type (Natrium super ionic conductor). The properties of this ceramic make it suitable for use in electrochemical devices. These solid electrolytes can be used as sensors for application in the manufacturing of potentiometric gas sensors, for the detection of pollutant emissions and for environment control. The family of NaSICON that we studied has as a general formula Na 2.8Zr 2-ySi 1.8-4yP 1.2+4yO 12 with 0⩽ y⩽0.45. The various compositions were synthesized by produced using the sol-gel method. The electric properties of these compositions were carried out by impedance spectroscopy. The results highlight the good conductivity of the Na 2.8Zr 1.775Si 0.9P 2.1O 12 composition.

  12. Characterization of nanoparticles of lidocaine in w/o microemulsions using small-angle neutron scattering and dynamic light scattering

    NASA Astrophysics Data System (ADS)

    Shukla, A.; Kiselev, M. A.; Hoell, A.; Neubert, R. H. H.

    2004-08-01

    Microemulsions (MEs) are of special interest because a variety of Reactants can be introduced into the nanometer-sized aqueous domains, leading to materials with controlled size and shape [1,2]. In the past few years, significant research has been conducted in the reverse ME-mediated synthesis of organic nanoparticles [3,4]. In this study, a w/o ME medium was employed for the synthesis of lidocaine by direct precipitation in w/o microemulsion systems: water/isopropylpalmitat/Tween80/Span80. The particle size as well as the location of nanoparticles in the ME droplet were characterized by means of dynamic light scattering (DLS) and small angle neutron scattering (SANS). It is observed that lidocaine precipitated in the aqueous cores because of its insolubility in water. Hydrodynamic radius and gyration radius of microemulsion droplets were estimated as ~15 nm and ~4.50 nm from DLS and SANS respectively. Furthermore, different size parameters obtained by DLS and SANS experiments were compared

  13. Synthesis and characterization of attosecond light vortices in the extreme ultraviolet

    DOE PAGES

    Géneaux, R.; Camper, A.; Auguste, T.; ...

    2016-08-30

    Infrared and visible light beams carrying orbital angular momentum (OAM) are currently thoroughly studied for their extremely broad applicative prospects, among which are quantum information, micromachining and diagnostic tools. Here we extend these prospects, presenting a comprehensive study for the synthesis and full characterization of optical vortices carrying OAM in the extreme ultraviolet (XUV) domain. We confirm the upconversion rules of a femtosecond infrared helically phased beam into its high-order harmonics, showing that each harmonic order carries the total number of OAM units absorbed in the process up to very high orders (57). This allows us to synthesize and characterizemore » helically shaped XUV trains of attosecond pulses. To demonstrate a typical use of these new XUV light beams, we show our ability to generate and control, through photoionization, attosecond electron beams carrying OAM. Furthermore, these breakthroughs pave the route for the study of a series of fundamental phenomena and the development of new ultrafast diagnosis tools using either photonic or electronic vortices.« less

  14. MW-assisted synthesis of LiFePO 4 for high power applications

    NASA Astrophysics Data System (ADS)

    Beninati, Sabina; Damen, Libero; Mastragostino, Marina

    LiFePO 4/C was prepared by solid-state reaction from Li 3PO 4, Fe 3(PO 4) 2·8H 2O, carbon and glucose in a few minutes in a scientific MW (microwave) oven with temperature and power control. The material was characterized by X-ray diffraction, scanning electron microscopy and by TGA analysis to evaluate carbon content. The electrochemical characterization as positive electrode in EC (ethylene carbonate)-DMC (dimethylcarbonate) 1 M LiPF 6 was performed by galvanostatic charge-discharge cycles at C/10 to evaluate specific capacity and by sequences of 10 s discharge-charge pulses, at different high C-rates (5-45C) to evaluate pulse-specific power in simulate operative conditions for full-HEV application. The maximum pulse-specific power and, particularly, pulse efficiency values are quite high and make MW synthesis a very promising route for mass production of LiFePO 4/C for full-HEV batteries at low energy costs.

  15. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles

    PubMed Central

    Ali, Attarad; Zafar, Hira; Zia, Muhammad; ul Haq, Ihsan; Phull, Abdul Rehman; Ali, Joham Sarfraz; Hussain, Altaf

    2016-01-01

    Recently, iron oxide nanoparticles (NPs) have attracted much consideration due to their unique properties, such as superparamagnetism, surface-to-volume ratio, greater surface area, and easy separation methodology. Various physical, chemical, and biological methods have been adopted to synthesize magnetic NPs with suitable surface chemistry. This review summarizes the methods for the preparation of iron oxide NPs, size and morphology control, and magnetic properties with recent bioengineering, commercial, and industrial applications. Iron oxides exhibit great potential in the fields of life sciences such as biomedicine, agriculture, and environment. Nontoxic conduct and biocompatible applications of magnetic NPs can be enriched further by special surface coating with organic or inorganic molecules, including surfactants, drugs, proteins, starches, enzymes, antibodies, nucleotides, nonionic detergents, and polyelectrolytes. Magnetic NPs can also be directed to an organ, tissue, or tumor using an external magnetic field for hyperthermic treatment of patients. Keeping in mind the current interest in iron NPs, this review is designed to report recent information from synthesis to characterization, and applications of iron NPs. PMID:27578966

  16. Fluorescent DNA-templated silver nanoclusters

    NASA Astrophysics Data System (ADS)

    Lin, Ruoqian

    Because of the ultra-small size and biocompatibility of silver nanoclusters, they have attracted much research interest for their applications in biolabeling. Among the many ways of synthesizing silver nanoclusters, DNA templated method is particularly attractive---the high tunability of DNA sequences provides another degree of freedom for controlling the chemical and photophysical properties. However, systematic studies about how DNA sequences and concentrations are controlling the photophysical properties are still lacking. The aim of this thesis is to investigate the binding mechanisms of silver clusters binding and single stranded DNAs. Here in this thesis, we report synthesis and characterization of DNA-templated silver nanoclusters and provide a systematic interrogation of the effects of DNA concentrations and sequences, including lengths and secondary structures. We performed a series of syntheses utilizing five different sequences to explore the optimal synthesis condition. By characterizing samples with UV-vis and fluorescence spectroscopy, we achieved the most proper reactants ratio and synthesis conditions. Two of them were chosen for further concentration dependence studies and sequence dependence studies. We found that cytosine-rich sequences are more likely to produce silver nanoclusters with stronger fluorescence signals; however, sequences with hairpin secondary structures are more capable in stabilizing silver nanoclusters. In addition, the fluorescence peak emission intensities and wavelengths of the DNA templated silver clusters have sequence dependent fingerprints. This potentially can be applied to sequence sensing in the future. However all the current conclusions are not warranted; there is still difficulty in formulating general rules in DNA strand design and silver nanocluster production. Further investigation of more sequences could solve these questions in the future.

  17. Development of new inorganic luminescent materials by organic-metal complex route

    NASA Astrophysics Data System (ADS)

    Manavbasi, Alp

    The development of novel inorganic luminescent materials has provided important improvements in lighting, display, and other technologically-important optical devices. The optical characteristics of inorganic luminescent materials (phosphors) depend on their physicochemical characteristics, including the atomic structure, homogeneity in composition, microstructure, defects, and interfaces which are all controlled by thermodynamics and kinetics of synthesis from various raw materials. A large variety of technologically-important phosphors have been produced using conventional high-temperature solid-state methods. For the synthesis of functional ceramic materials with ionic dopants in a host lattice, (such as phosphors), synthesis using organic-metal complex methods and other wet chemistry routes have been found to be excellent techniques. These methods have inherent advantages such as good control of stoichiometry by molecular level of mixing, product homogeneity, simpler synthesis procedures, and use of relatively-low calcination temperatures. Supporting evidence for this claim is accomplished by a comparison of photoluminescence characteristics of a commercially available green phosphor, Zn2SiO4:Mn, with the same material system synthesized by organic-metal synthesis route. In this study, new inorganic luminescent materials were produced using rare-earth elements (Eu3+, Ce3+, Tb3+ ) and transition metals (Cu+, Pb2+) as dopants within the crystalline host lattices; SrZnO2, Ba2YAlO 5, M3Al2O6 (M=Ca,Sr,Ba). These novel phosphors were prepared using the organic-metal complex route. Polyvinyl alcohol, sucrose, and adipic acid were used as the organic component to prepare the ceramic precursors. Materials characterization of the synthesized precursor powders and calcined phosphor samples was performed usingX-Ray Diffraction, Scanning Electron Microscopy, Photon-Correlation spectroscopy, and Fourier Transform Infrared Spectroscopy techniques. In addition to the Fluorescence Spectrometer, and Diffuse Reflectance Spectroscopy, the Time Resolved Spectroscopy technique was also used to study the photoluminescence characteristics of the synthesized phosphors. Using these characterization techniques, and through careful comparisons with related studies in the literature, the mechanisms of luminescence for each of the new phosphor materials synthesized here was discussed in a detail.

  18. Ru-assisted synthesis of Pd/Ru nanodendrites with high activity for ethanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Zhang, Ke; Bin, Duan; Yang, Beibei; Wang, Caiqin; Ren, Fangfang; Du, Yukou

    2015-07-01

    Due to the specific physical and chemical properties of a highly branched noble metal, the controllable synthesis has attracted much attention. This article reports the synthesis of Pd/Ru nanodendrites by a facile method using an oil bath in the presence of polyvinyl pyrrolidone, potassium bromide and ascorbic acid. The morphology, structure, and composition of the as-prepared catalysts were characterized by means of X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy. In the electrochemical measurement, the as-prepared Pd7/Ru1 bimetallic nanodendrites provide a large electrochemically active surface area and exhibit high peak current density in the forward scan toward ethanol electrooxidation, which is nearly four times higher than those of a pure Pd catalyst. The as-prepared Pd7/Ru1 catalysts also exhibit significantly enhanced cycling stability toward ethanol oxidation in alkaline medium, which are mainly ascribed to the synergetic effect between Pd and Ru. This indicates that the Pd7/Ru1 catalysts should have great potential applications in direct ethanol fuel cells.Due to the specific physical and chemical properties of a highly branched noble metal, the controllable synthesis has attracted much attention. This article reports the synthesis of Pd/Ru nanodendrites by a facile method using an oil bath in the presence of polyvinyl pyrrolidone, potassium bromide and ascorbic acid. The morphology, structure, and composition of the as-prepared catalysts were characterized by means of X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy. In the electrochemical measurement, the as-prepared Pd7/Ru1 bimetallic nanodendrites provide a large electrochemically active surface area and exhibit high peak current density in the forward scan toward ethanol electrooxidation, which is nearly four times higher than those of a pure Pd catalyst. The as-prepared Pd7/Ru1 catalysts also exhibit significantly enhanced cycling stability toward ethanol oxidation in alkaline medium, which are mainly ascribed to the synergetic effect between Pd and Ru. This indicates that the Pd7/Ru1 catalysts should have great potential applications in direct ethanol fuel cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02713f

  19. Synthesis and characterization of transparent conductive zinc oxide thin films by sol-gel spin coating method

    NASA Astrophysics Data System (ADS)

    Winarski, David

    Zinc oxide has been given much attention recently as it is promising for various semiconductor device applications. ZnO has a direct band gap of 3.3 eV, high exciton binding energy of 60 meV and can exist in various bulk powder and thin film forms for different applications. ZnO is naturally n-type with various structural defects, which sparks further investigation into the material properties. Although there are many potential applications for this ZnO, an overall lack of understand and control of intrinsic defects has proven difficult to obtain consistent, repeatable results. This work studies both synthesis and characterization of zinc oxide in an effort to produce high quality transparent conductive oxides. The sol-gel spin coating method was used to obtain highly transparent ZnO thin films with high UV absorbance. This research develops a new more consistent method for synthesis of these thin films, providing insight for maintaining quality control for each step in the procedure. A sol-gel spin coating technique is optimized, yielding highly transparent polycrystalline ZnO thin films with tunable electrical properties. Annealing treatment in hydrogen and zinc atmospheres is researched in an effort to increase electrical conductivity and better understand intrinsic properties of the material. These treatment have shown significant effects on the properties of ZnO. Characterization of doped and undoped ZnO synthesized by the sol-gel spin coating method was carried out using scanning electron microscopy, UV-Visible range absorbance, X-ray diffraction, and the Hall Effect. Treatment in hydrogen shows an overall decrease in the number of crystal phases and visible absorbance while zinc seems to have the opposite effect. The Hall Effect has shown that both annealing environments increase the n-type conductivity, yielding a ZnO thin film with a carrier concentration as high as 3.001 x 1021 cm-3.

  20. Robotics-based synthesis of human motion.

    PubMed

    Khatib, O; Demircan, E; De Sapio, V; Sentis, L; Besier, T; Delp, S

    2009-01-01

    The synthesis of human motion is a complex procedure that involves accurate reconstruction of movement sequences, modeling of musculoskeletal kinematics, dynamics and actuation, and characterization of reliable performance criteria. Many of these processes have much in common with the problems found in robotics research. Task-based methods used in robotics may be leveraged to provide novel musculoskeletal modeling methods and physiologically accurate performance predictions. In this paper, we present (i) a new method for the real-time reconstruction of human motion trajectories using direct marker tracking, (ii) a task-driven muscular effort minimization criterion and (iii) new human performance metrics for dynamic characterization of athletic skills. Dynamic motion reconstruction is achieved through the control of a simulated human model to follow the captured marker trajectories in real-time. The operational space control and real-time simulation provide human dynamics at any configuration of the performance. A new criteria of muscular effort minimization has been introduced to analyze human static postures. Extensive motion capture experiments were conducted to validate the new minimization criterion. Finally, new human performance metrics were introduced to study in details an athletic skill. These metrics include the effort expenditure and the feasible set of operational space accelerations during the performance of the skill. The dynamic characterization takes into account skeletal kinematics as well as muscle routing kinematics and force generating capacities. The developments draw upon an advanced musculoskeletal modeling platform and a task-oriented framework for the effective integration of biomechanics and robotics methods.

  1. Synthesis and characterization of polycrystalline CdSiP2

    NASA Astrophysics Data System (ADS)

    Bereznaya, S. A.; Korotchenko, Z. V.; Sarkisov, S. Yu; Korolkov, I. V.; Kuchumov, B. M.; Saprykin, A. I.; Atuchin, V. V.

    2018-05-01

    A modified method is proposed for the CdSiP2 compound synthesis from elemental starting components. The developed technique allows completing the synthesis process within 30 h. The phase and chemical composition of the synthesized material were confirmed by the x-ray diffraction analysis and scanning electron microscopy with energy-dispersive spectroscopy. The transparent crystal block sized 3 × 3 × 2 mm3 was cut from the polycrystalline ingot and characterized by optical methods.

  2. Low-Cost and Facile Synthesis of the Vanadium Oxides V2O3, VO2, and V2O5 and Their Magnetic, Thermochromic and Electrochromic Properties.

    PubMed

    Mjejri, Issam; Rougier, Aline; Gaudon, Manuel

    2017-02-06

    In this study, vanadium sesquioxide (V 2 O 3 ), dioxide (VO 2 ), and pentoxide (V 2 O 5 ) were all synthesized from a single polyol route through the precipitation of an intermediate precursor: vanadium ethylene glycolate (VEG). Various annealing treatments of the VEG precursor, under controlled atmosphere and temperature, led to the successful synthesis of the three pure oxides, with sub-micrometer crystallite size. To the best of our knowledge, the synthesis of the three oxides V 2 O 5 , VO 2 , and V 2 O 3 from a single polyol batch has never been reported in the literature. In a second part of the study, the potentialities brought about by the successful preparation of sub-micrometer V 2 O 5 , VO 2 , and V 2 O 3 are illustrated by the characterization of the electrochromic properties of V 2 O 5 films, a discussion about the metal to insulator transition of VO 2 on the basis of in situ measurements versus temperature of its electrical and optical properties, and the characterization of the magnetic transition of V 2 O 3 powder from SQUID measurements. For the latter compound, the influence of the crystallite size on the magnetic properties is discussed.

  3. Serotonin synthesis rate and the tryptophan hydroxylase-2: G-703T polymorphism in social anxiety disorder.

    PubMed

    Furmark, Tomas; Marteinsdottir, Ina; Frick, Andreas; Heurling, Kerstin; Tillfors, Maria; Appel, Lieuwe; Antoni, Gunnar; Hartvig, Per; Fischer, Håkan; Långström, Bengt; Eriksson, Elias; Fredrikson, Mats

    2016-10-01

    It is disputed whether anxiety disorders, like social anxiety disorder, are characterized by serotonin over- or underactivity. Here, we evaluated whether our recent finding of elevated neural serotonin synthesis rate in patients with social anxiety disorder could be reproduced in a separate cohort, and whether allelic variation in the tryptophan hydroxylase-2 (TPH2) G-703T polymorphism relates to differences in serotonin synthesis assessed with positron emission tomography. Eighteen social anxiety disorder patients and six healthy controls were scanned during 60 minutes in a resting state using positron emission tomography and 5-hydroxy-L-[β -(11)C]tryptophan, [(11)C]5-HTP, a substrate of the second enzymatic step in serotonin synthesis. Parametric images were generated, using the reference Patlak method, and analysed using Statistical Parametric Mapping (SPM8). Blood samples for genotyping of the TPH2 G-703T polymorphism were obtained from 16 social anxiety disorder patients (T carriers: n=5, GG carriers: n=11). A significantly elevated [(11)C]5-HTP accumulation rate, indicative of enhanced decarboxylase activity and thereby serotonin synthesis capacity, was detected in social anxiety disorder patients compared with controls in the hippocampus and basal ganglia nuclei and, at a more lenient (uncorrected) statistical threshold, in the amygdala and anterior cingulate cortex. In patients, the serotonin synthesis rate in the amygdala and anterior cingulate cortex was significantly elevated in TPH2 T carriers in comparison with GG homozygotes. Our results support that social anxiety disorder entails an overactive presynaptic serotonergic system that, in turn, seems functionally influenced by the TPH2 G-703T polymorphism in emotionally relevant brain regions. © The Author(s) 2016.

  4. Single chain technology: Toward the controlled synthesis of polymer nanostructures

    NASA Astrophysics Data System (ADS)

    Lyon, Christopher

    A technique for fabricating advanced polymer nanostructures enjoying recent popularity is the collapse or folding of single polymer chains in highly dilute solution mediated by intramolecular cross-linking. We term the resultant structures single-chain nanoparticles (SCNP). This technique has proven particularly valuable in the synthesis of nanomaterials on the order of 5 -- 20 nm. Many different types of covalent and non-covalent chemistries have been used to this end. This dissertation investigates the use of so-called single-chain technology to synthesize nanoparticles using modular techniques that allow for easy incorporation of functionality or special structural or characteristic features. Specifically, the synthesis of linear polymers functionalized with pendant monomer units and the subsequent intramolecular polymerization of these monomer units is discussed. In chapter 2, the synthesis of SCNP using alternating radical polymerization is described. Polymers functionalized with pendant styrene and stilbene groups are synthesized via a modular post-polymerization Wittig reaction. These polymers were exposed to radical initiators in the presence (and absence) of maleic anhydride and other electron deficient monomers in order to form intramolecular cross-links. Chapter 3 discusses templated acyclic diene metathesis (ADMET) polymerization using single-chain technology, starting with the controlled ring-opening polymerization of a glycidyl ether functionalized with an ADMET monomer. This polymer was then exposed to Grubbs' catalyst to polymerize the ADMET monomer units. The ADMET polymer was hydrolytically cleaved from the template and separated. Upon characterization, it was found that the daughter ADMET polymer had a similar degree of polymerization, but did not retain the low dispersity of the template. Chapter 4 details the synthesis of aldehyde- and diol-functionalized polymers toward the synthesis of SCNP containing dynamic, acid-degradable acetal cross-links. SCNP fabrication with these materials is beyond the scope of this dissertation.

  5. Simultaneous phase and morphology controllable synthesis of copper selenide films by microwave-assisted nonaqueous approach

    NASA Astrophysics Data System (ADS)

    Li, Jing; Fa, Wenjun; Li, Yasi; Zhao, Hongxiao; Gao, Yuanhao; Zheng, Zhi

    2013-02-01

    Copper selenide films with different phase and morphology were synthesized on copper substrate through controlling reaction solvent by microwave-assisted nonaqueous approach. The films were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The result showed that the pure films could be obtained using cyclohexyl alcohol or benzyl alcohol as solvent. The cubic Cu2-xSe dendrites were synthesized in cyclohexyl alcohol reaction system and hexagonal CuSe flaky crystals were obtained with benzyl alcohol as solvent.

  6. Hypersonic vehicle model and control law development using H(infinity) and micron synthesis

    NASA Astrophysics Data System (ADS)

    Gregory, Irene M.; Chowdhry, Rajiv S.; McMinn, John D.; Shaughnessy, John D.

    1994-10-01

    The control system design for a Single Stage To Orbit (SSTO) air breathing vehicle will be central to a successful mission because a precise ascent trajectory will preserve narrow payload margins. The air breathing propulsion system requires the vehicle to fly roughly halfway around the Earth through atmospheric turbulence. The turbulence, the high sensitivity of the propulsion system to inlet flow conditions, the relatively large uncertainty of the parameters characterizing the vehicle, and continuous acceleration make the problem especially challenging. Adequate stability margins must be provided without sacrificing payload mass since payload margins are critical. Therefore, a multivariable control theory capable of explicitly including both uncertainty and performance is needed. The H(infinity) controller in general provides good robustness but can result in conservative solutions for practical problems involving structured uncertainty. Structured singular value mu framework for analysis and synthesis is potentially much less conservative and hence more appropriate for problems with tight margins. An SSTO control system requires: highly accurate tracking of velocity and altitude commands while limiting angle-of-attack oscillations, minimized control power usage, and a stabilized vehicle when atmospheric turbulence and system uncertainty are present. The controller designs using H(infinity) and mu-synthesis procedures were compared. An integrated flight/propulsion dynamic mathematical model of a conical accelerator vehicle was linearized as the vehicle accelerated through Mach 8. Vehicle acceleration through the selected flight condition gives rise to parametric variation that was modeled as a structured uncertainty. The mu-analysis approach was used in the frequency domain to conduct controller analysis and was confirmed by time history plots. Results demonstrate the inherent advantages of the mu framework for this class of problems.

  7. Hypersonic vehicle model and control law development using H(infinity) and micron synthesis

    NASA Technical Reports Server (NTRS)

    Gregory, Irene M.; Chowdhry, Rajiv S.; Mcminn, John D.; Shaughnessy, John D.

    1994-01-01

    The control system design for a Single Stage To Orbit (SSTO) air breathing vehicle will be central to a successful mission because a precise ascent trajectory will preserve narrow payload margins. The air breathing propulsion system requires the vehicle to fly roughly halfway around the Earth through atmospheric turbulence. The turbulence, the high sensitivity of the propulsion system to inlet flow conditions, the relatively large uncertainty of the parameters characterizing the vehicle, and continuous acceleration make the problem especially challenging. Adequate stability margins must be provided without sacrificing payload mass since payload margins are critical. Therefore, a multivariable control theory capable of explicitly including both uncertainty and performance is needed. The H(infinity) controller in general provides good robustness but can result in conservative solutions for practical problems involving structured uncertainty. Structured singular value mu framework for analysis and synthesis is potentially much less conservative and hence more appropriate for problems with tight margins. An SSTO control system requires: highly accurate tracking of velocity and altitude commands while limiting angle-of-attack oscillations, minimized control power usage, and a stabilized vehicle when atmospheric turbulence and system uncertainty are present. The controller designs using H(infinity) and mu-synthesis procedures were compared. An integrated flight/propulsion dynamic mathematical model of a conical accelerator vehicle was linearized as the vehicle accelerated through Mach 8. Vehicle acceleration through the selected flight condition gives rise to parametric variation that was modeled as a structured uncertainty. The mu-analysis approach was used in the frequency domain to conduct controller analysis and was confirmed by time history plots. Results demonstrate the inherent advantages of the mu framework for this class of problems.

  8. Low‐Temperature Combustion Synthesis of a Spinel NiCo2O4 Hole Transport Layer for Perovskite Photovoltaics

    PubMed Central

    Papadas, Ioannis T.; Ioakeimidis, Apostolos; Armatas, Gerasimos S.

    2018-01-01

    Abstract The synthesis and characterization of low‐temperature solution‐processable monodispersed nickel cobaltite (NiCo2O4) nanoparticles (NPs) via a combustion synthesis is reported using tartaric acid as fuel and the performance as a hole transport layer (HTL) for perovskite solar cells (PVSCs) is demonstrated. NiCo2O4 is a p‐type semiconductor consisting of environmentally friendly, abundant elements and higher conductivity compared to NiO. It is shown that the combustion synthesis of spinel NiCo2O4 using tartaric acid as fuel can be used to control the NPs size and provide smooth, compact, and homogeneous functional HTLs processed by blade coating. Study of PVSCs with different NiCo2O4 thickness as HTL reveals a difference on hole extraction efficiency, and for 15 nm, optimized thickness enhanced hole carrier collection is achieved. As a result, p‐i‐n structure of PVSCs with 15 nm NiCo2O4 HTLs shows reliable performance and power conversion efficiency values in the range of 15.5% with negligible hysteresis. PMID:29876223

  9. Size-controlled synthesis of NiFe2O4 nanospheres via a PEG assisted hydrothermal route and their catalytic properties in oxidation of alcohols by periodic acid

    NASA Astrophysics Data System (ADS)

    Paul, Bappi; Purkayastha, Debraj Dhar; Dhar, Siddhartha Sankar

    2016-05-01

    A novel and facile approach for synthesis of spinel nickel ferrites (NiFe2O4) nanoparticles (NPs) employing homogeneous chemical precipitation followed by hydrothermal heating is reported. The synthesis involves use of tributylamine (TBA) as a hydroxylating agent in synthesis of nickel ferrites. Polyethylene glycol (PEG) 4000 was used as surfactant. As-synthesized NiFe2O4 NPs were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption-desorption isotherm (BET) and vibrating sample magnetometry (VSM). The XRD pattern revealed formation of cubic face-centered NiFe2O4 and TEM image showed spherical particles of sizes 2-10 nm. These NiFe2O4 NPs were used as magnetically recoverable catalyst in oxidation of cyclic alcohols to their corresponding aldehydes by periodic acid. This eco-friendly procedure affords products in very high yield and selectivity. The reusability of the catalyst is proved to be noteworthy as the material exhibits no significant changes in its catalytic activity even after five cycles of reuse.

  10. Microfluidic Synthesis of Composite Cross-Gradient Materials for Investigating Cell–Biomaterial Interactions

    PubMed Central

    He, Jiankang; Du, Yanan; Guo, Yuqi; Hancock, Matthew J.; Wang, Ben; Shin, Hyeongho; Wu, Jinhui; Li, Dichen; Khademhosseini, Ali

    2010-01-01

    Combinatorial material synthesis is a powerful approach for creating composite material libraries for the high-throughput screening of cell–material interactions. Although current combinatorial screening platforms have been tremendously successful in identifying target (termed “hit”) materials from composite material libraries, new material synthesis approaches are needed to further optimize the concentrations and blending ratios of the component materials. Here we employed a microfluidic platform to rapidly synthesize composite materials containing cross-gradients of gelatin and chitosan for investigating cell–biomaterial interactions. The microfluidic synthesis of the cross-gradient was optimized experimentally and theoretically to produce quantitatively controllable variations in the concentrations and blending ratios of the two components. The anisotropic chemical compositions of the gelatin/chitosan cross-gradients were characterized by Fourier transform infrared spectrometry and X-ray photoelectron spectrometry. The three-dimensional (3D) porous gelatin/chitosan cross-gradient materials were shown to regulate the cellular morphology and proliferation of smooth muscle cells (SMCs) in a gradient-dependent manner. We envision that our microfluidic cross-gradient platform may accelerate the material development processes involved in a wide range of biomedical applications. PMID:20721897

  11. Exploring the Fundamentals of Microreactor Technology with Multidisciplinary Lab Experiments Combining the Synthesis and Characterization of Inorganic Nanoparticles

    ERIC Educational Resources Information Center

    Emmanuel, Noemie; Emonds-Alt, Gauthier; Lismont, Marjorie; Eppe, Gauthier; Monbaliu, Jean-Christophe M.

    2017-01-01

    Multidisciplinary lab experiments combining microfluidics, nanoparticle synthesis, and characterization are presented. These experiments rely on the implementation of affordable yet efficient microfluidic setups based on perfluoroalkoxyalkane (PFA) capillary coils and standard HPLC connectors in upper undergraduate chemistry laboratories.…

  12. Stereoselective Synthesis of Cyclometalated Iridium (III) Complexes: Characterization and Photophysical Properties

    PubMed Central

    Yang, Liangru; von Zelewsky, Alex; Nguyen, Huong P.; Muller, Gilles; Labat, Gaël; Stoeckli-Evans, Helen

    2009-01-01

    The stereoselective synthesis of a highly luminescent neutral Ir(III) complex comprising two bidentate chiral, cyclometalating phenylpyridine derivatives, and one acetylacetonate as ligands is described. The final complex and some intermediates were characterized by X-ray structural analysis, NMR-, CD-, and CPL-spectroscopy. PMID:20161195

  13. Synthesis and characterization of germa[n]pericyclynes.

    PubMed

    Tanimoto, Hiroki; Nagao, Tomohiko; Nishiyama, Yasuhiro; Morimoto, Tsumoru; Iseda, Fumiyasu; Nagato, Yuko; Suzuka, Toshimasa; Tsutsumi, Ken; Kakiuchi, Kiyomi

    2014-06-14

    The synthesis and characterization of novel pericyclynes comprising germanium atoms and acetylenes, germa[n]pericyclynes, are described. The prepared germa[4]-, [6]-, and [8]pericyclynes were compared by (13)C NMR spectroscopy, X-ray crystallography, cyclic voltammetry, UV-visible spectroscopy, fluorescence emission spectroscopy, Raman spectroscopy, and density functional theory calculation analyses.

  14. Synthesis Characterization and Decomposition Studies of tris[N-N-dibenzyidithocarbaso)Indium (III) Chemical Spray Deposition of Polycrystalline CuInS2 on Copper Films

    NASA Technical Reports Server (NTRS)

    Hehemann, David G.; Lau, J. Eva; Harris, Jerry D.; Hoops, Michael D.; Duffy, Norman V.

    2005-01-01

    This paper presents the results of the synthesis characterization and decomposition studies of tris[N-N-dibenzyidithocarbaso)Indium (III) with chemical spray deposition of polycrystalline CuInS2 on Copper Films.

  15. Synthesis, characterization and reactivity of 3-mercaptopyruvic acid.

    PubMed

    Galardon, Erwan; Lec, Jean-Chrstophe

    2018-05-20

    A synthesis of the sulfur metabolic compound 3-mercaptopyruvic acid (3-MPH) is reported and allowed its isolation and characterization for the first time. Detailed kinetic, thermodynamic and spectroscopic studies of its complex behaviour in solution are discussed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Malonyl-coenzyme-A is a potential mediator of cytotoxicity induced by fatty-acid synthase inhibition in human breast cancer cells and xenografts.

    PubMed

    Pizer, E S; Thupari, J; Han, W F; Pinn, M L; Chrest, F J; Frehywot, G L; Townsend, C A; Kuhajda, F P

    2000-01-15

    A biologically aggressive subset of human breast cancers and other malignancies is characterized by elevated fatty-acid synthase (FAS) enzyme expression, elevated fatty acid (FA) synthesis, and selective sensitivity to pharmacological inhibition of FAS activity by cerulenin or the novel compound C75. In this study, inhibition of FA synthesis at the physiologically regulated step of carboxylation of acetyl-CoA to malonyl-CoA by 5-(tetradecyloxy)-2-furoic acid (TOFA) was not cytotoxic to breast cancer cells in clonogenic assays. FAS inhibitors induced a rapid increase in intracellular malonyl-CoA to several fold above control levels, whereas TOFA reduced intracellular malonyl-CoA by 60%. Simultaneous exposure of breast cancer cells to TOFA and an FAS inhibitor resulted in significantly reduced cytotoxicity and apoptosis. Subcutaneous xenografts of MCF7 breast cancer cells in nude mice treated with C75 showed FA synthesis inhibition, apoptosis, and inhibition of tumor growth to less than 1/8 of control volumes, without comparable toxicity in normal tissues. The data suggest that differences in intermediary metabolism render tumor cells susceptible to toxic fluxes in malonyl-CoA, both in vitro and in vivo.

  17. A laser-deposition approach to compositional-spread discovery of materials on conventional sample sizes

    NASA Astrophysics Data System (ADS)

    Christen, Hans M.; Ohkubo, Isao; Rouleau, Christopher M.; Jellison, Gerald E., Jr.; Puretzky, Alex A.; Geohegan, David B.; Lowndes, Douglas H.

    2005-01-01

    Parallel (multi-sample) approaches, such as discrete combinatorial synthesis or continuous compositional-spread (CCS), can significantly increase the rate of materials discovery and process optimization. Here we review our generalized CCS method, based on pulsed-laser deposition, in which the synchronization between laser firing and substrate translation (behind a fixed slit aperture) yields the desired variations of composition and thickness. In situ alloying makes this approach applicable to the non-equilibrium synthesis of metastable phases. Deposition on a heater plate with a controlled spatial temperature variation can additionally be used for growth-temperature-dependence studies. Composition and temperature variations are controlled on length scales large enough to yield sample sizes sufficient for conventional characterization techniques (such as temperature-dependent measurements of resistivity or magnetic properties). This technique has been applied to various experimental studies, and we present here the results for the growth of electro-optic materials (SrxBa1-xNb2O6) and magnetic perovskites (Sr1-xCaxRuO3), and discuss the application to the understanding and optimization of catalysts used in the synthesis of dense forests of carbon nanotubes.

  18. Low temperature synthesis of silicon quantum dots with plasma chemistry control in dual frequency non-thermal plasmas.

    PubMed

    Sahu, Bibhuti Bhusan; Yin, Yongyi; Han, Jeon Geon; Shiratani, Masaharu

    2016-06-21

    The advanced materials process by non-thermal plasmas with a high plasma density allows the synthesis of small-to-big sized Si quantum dots by combining low-temperature deposition with superior crystalline quality in the background of an amorphous hydrogenated silicon nitride matrix. Here, we make quantum dot thin films in a reactive mixture of ammonia/silane/hydrogen utilizing dual-frequency capacitively coupled plasmas with high atomic hydrogen and nitrogen radical densities. Systematic data analysis using different film and plasma characterization tools reveals that the quantum dots with different sizes exhibit size dependent film properties, which are sensitively dependent on plasma characteristics. These films exhibit intense photoluminescence in the visible range with violet to orange colors and with narrow to broad widths (∼0.3-0.9 eV). The observed luminescence behavior can come from the quantum confinement effect, quasi-direct band-to-band recombination, and variation of atomic hydrogen and nitrogen radicals in the film growth network. The high luminescence yields in the visible range of the spectrum and size-tunable low-temperature synthesis with plasma and radical control make these quantum dot films good candidates for light emitting applications.

  19. Synthesis and characterization of colloidal CdTe nanocrystals

    NASA Astrophysics Data System (ADS)

    Semendy, Fred; Jaganathan, Gomatam; Dhar, Nibir; Trivedi, Sudhir; Bhat, Ishwara; Chen, Yuanping

    2008-08-01

    We synthesized CdTe nano crystals (NCs) in uniform sizes and in good quality as characterized by photoluminescence (PL), AFM, and X-ray diffraction. In this growth procedure, CdTe nano-crystal band gap is strongly dependent on the growth time and not on the injection temperature or organic ligand concentration. This is very attractive because of nano-crystal size can be easily controlled by the growth time only and is very attractive for large scale synthesis. The color of the solution changes from greenish yellow to light orange then to deep orange and finally grayish black to black over a period of one hour. This is a clear indication of the gradual growth of different size (and different band gap) of CdTe nano-crystals as a function of the growth time. In other words, the size of the nano-crystal and its band gap can be controlled by adjusting the growth time after injection of the tellurium. The prepared CdTe NCs were characterized by absorption spectra, photoluminescence (PL), AFM and X-ray diffraction. Measured absorption maxima are at 521, 560, 600 and 603 nm corresponding to band gaps of 2.38, 2.21,2,07 and 2.04 eV respectively for growth times of 15, 30, 45 and 60 minutes. From the absorption data nano-crystal growth size saturates out after 45 minutes. AFM scanning of these materials indicate that the size of these particles is between 4 - 10 nm in diameter for growth time of 45 minutes. XD-ray diffraction indicates that these nano crystals are of cubic zinc blende phase. This paper will present growth and characterization data on CdTe nano crystals for various growth times.

  20. Synthesis and Characterization of High Molecular Weight Peptide Polymers and Copolymers Containing L-Dopa Residues

    DTIC Science & Technology

    1988-07-01

    polymerize E- aminocaproic acid with DPPA for the S same period of time. Portions of each sample were then mixed together and the polymerization was...copolymers between GLUE polypeptides and poly(?c.-amino caproic acid ). Concurrent enzymatic oxidation studies with GLUE peptidesihas given some...insight into the crosslinking mechanisms which control relative reactivities of specific amino acid residues towards intramolecular or intermolecular bond

  1. Synthesis and Characterization of Ionically Crosslinked Elastomers

    DTIC Science & Technology

    2015-05-12

    SECURITY CLASSIFICATION OF: In this research poly(n-butyl acrylate) (PBA) elastomers were investigated as model systems to study the thermomechanical...subject to any oenalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO...Ionically Crosslinked Elastomers Report Title In this research poly(n-butyl acrylate) (PBA) elastomers were investigated as model systems to study the

  2. Size-controlled synthesis of Pd nanocrystals using a specific multifunctional peptide

    NASA Astrophysics Data System (ADS)

    Chiu, Chin-Yi; Li, Yujing; Huang, Yu

    2010-06-01

    Here we report a peptide-mediated synthesis of Pd NCs in aqueous solution with controllable size in the sub-10 nanometre regime. The specific multifunctional peptide Q7 selected using the phage display technique can bind to the Pd NC surface and act as a stabilizer to mediate Pd crystal nucleation and growth. At the nucleation stage, Q7 bound to and helped stabilize the different-sized small Pd NC nuclei achieved using different concentrations of the external reducing agent, NaBH4. At the growth stage, Q7 played the dual role of binding to and reducing the precursor onto the existing nuclei, which led to the further controllable growth of the Pd NCs. By using the variable sizes of nuclei as seeds, and by introducing different amounts of precursors Pd NCs with tunable sizes from 2.6 to 6.6 nm were achieved with good size distribution.Here we report a peptide-mediated synthesis of Pd NCs in aqueous solution with controllable size in the sub-10 nanometre regime. The specific multifunctional peptide Q7 selected using the phage display technique can bind to the Pd NC surface and act as a stabilizer to mediate Pd crystal nucleation and growth. At the nucleation stage, Q7 bound to and helped stabilize the different-sized small Pd NC nuclei achieved using different concentrations of the external reducing agent, NaBH4. At the growth stage, Q7 played the dual role of binding to and reducing the precursor onto the existing nuclei, which led to the further controllable growth of the Pd NCs. By using the variable sizes of nuclei as seeds, and by introducing different amounts of precursors Pd NCs with tunable sizes from 2.6 to 6.6 nm were achieved with good size distribution. Electronic Supplementary Information (ESI) available. Experimental details for peptide selection, peptide synthesis and Pd NCs synthesis; Q7 peptide sequence molecular structure and characterization; TEM images of Pd NCs. See DOI: 10.1039/c0nr00194e/

  3. Synthesis, Characterization, and Handling of Eu(II)-Containing Complexes for Molecular Imaging Applications

    NASA Astrophysics Data System (ADS)

    Basal, Lina A.; Allen, Matthew J.

    2018-03-01

    Considerable research effort has focused on the in vivo use of responsive imaging probes that change imaging properties upon reacting with oxygen because hypoxia is relevant to diagnosing, treating, and monitoring diseases. One promising class of compounds for oxygen-responsive imaging is Eu(II)-containing complexes because the Eu(II/III) redox couple enables imaging with multiple modalities including magnetic resonance and photoacoustic imaging. The use of Eu(II) requires care in handling to avoid unintended oxidation during synthesis and characterization. This review describes recent advances in the field of imaging agents based on discrete Eu(II)-containing complexes with specific focus on the synthesis, characterization, and handling of aqueous Eu(II)-containing complexes.

  4. Synthesis and Characterization of Stimuli Responsive Block Copolymers, Self-Assembly Behavior and Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Determan, Michael Duane

    The central theme of this thesis work is to develop new block copolymer materials for biomedical applications. While there are many reports of stimuli-responsive amphiphilic [19-21] and crosslinked hydrogel materials [22], the development of an in situ gel forming, pH responsive pentablock copolymer is a novel contribution to the field, Figure 1.1 is a sketch of an ABCBA pentablock copolymer. The A blocks are cationic tertiary amine methacrylates blocked to a central Pluronic F127 triblock copolymer. In addition to the prerequisite synthetic and macromolecular characterization of these new materials, the self-assembled supramolecular structures formed by the pentablock were experimentally evaluated.more » This synthesis and characterization process serves to elucidate the important structure property relationships of these novel materials, The pH and temperature responsive behavior of the pentablock copolymer were explored especially with consideration towards injectable drug delivery applications. Future synthesis work will focus on enhancing and tuning the cell specific targeting of DNA/pentablock copolymer polyplexes. The specific goals of this research are: (1) Develop a synthetic route for gel forming pentablock block copolymers with pH and temperature sensitive properties. Synthesis of these novel copolymers is accomplished with ATRP, yielding low polydispersity and control of the block copolymer architecture. Well defined macromolecular characteristics are required to tailor the phase behavior of these materials. (2) Characterize relationship between the size and shape of pentablock copolymer micelles and gel structure and the pH and temperature of the copolymer solutions with SAXS, SANS and CryoTEM. (3) Evaluate the temperature and pH induced phase separation and macroscopic self-assembly phenomenon of the pentablock copolymer. (4) Utilize the knowledge gained from first three goals to design and formulate drug delivery formulations based on the multi-responsive properties of the pentablock copolymer. Demonstrate potential biomedical applications of these materials with in vitro drug release studies from pentablock copolymer hydrogels. The intent of this work is to contribute to the knowledge necessary for further tailoring of these, and other functional block copolymer materials for biomedical applications.« less

  5. Synthesis and Characterization of Exfoliated Graphene- and Graphene Oxide-Based Composites

    NASA Astrophysics Data System (ADS)

    Rasmi, K. R.; Chakrapani, K.; Sampath, S.

    Graphene- and graphene oxide-based composites have attracted significant research interest in recent years, owing to their important applications in various technological fields. In the present study, we report the synthesis and characterization of graphene-bimetallic alloy composite and its use in sensing of a neurotransmitter, dopamine. The preparation and characterization of graphene oxide with metal oxides such as RuOx and Co3O4 are also presented.

  6. Laser assisted processing; Proceedings of the Meeting, Hamburg, Federal Republic of Germany, Sept. 19, 20, 1988

    NASA Astrophysics Data System (ADS)

    Laude, Lucien D.; Rauscher, Gerhard

    The use of lasers in industrial material processing is discussed in reviews and reports. Sections are devoted to high-precision laser machining, deposition methods, ablation and polymers, and synthesis and oxidation. Particular attention is given to laser cutting of steel sheets, laser micromachining of material surfaces, process control in laser soldering, laser-induced CVD of doped Si stripes on SOS and their characterization by piezoresistivity measurements, laser CVD of Pt spots on glass, laser deposition of GaAs, UV-laser photoablation of polymers, ArF excimer-laser ablation of HgCdTe semiconductor, pulsed laser synthesis of Ti silicides and nitrides, the kinetics of laser-assisted oxidation of metallic films, and excimer-laser-assisted etching of solids for microelectronics.

  7. The synthesis of biocompatible and SERS-active gold nanoparticles using chitosan.

    PubMed

    Potara, Monica; Maniu, Dana; Astilean, Simion

    2009-08-05

    In this study we present a clean, nontoxic, environmentally friendly synthesis procedure to generate a large variety of gold nanoparticles (GNPs) by using chitosan, a biocompatible, biodegradable, natural polymer, as reducing and stabilizing agent. The formation of gold-chitosan nanocomposites was characterized by UV-vis absorption spectroscopy, transmission electron microscopy (TEM), x-ray diffraction (XRD) and Raman spectroscopy. The results show that the reaction temperature plays a crucial role in controlling the size, shape and crystalline structure of GNPs. In addition, it is demonstrated that chitosan can perform as a scaffold for the assembly of GNPs, which were successfully applied as substrate for surface-enhanced Raman scattering (SERS). To test the SERS activity, a relevant biological molecule--tryptophan--was adopted as the analyte.

  8. Illuminating the Chemistry of Life: Design, Synthesis, and Applications of “Caged” and Related Photoresponsive Compounds

    PubMed Central

    Lee, Hsienming; Larson, Daniel R.; Lawrence, David S.

    2009-01-01

    Biological systems are characterized by a level of spatial and temporal organization that often lies beyond the grasp of present day methods. Light-modulated bioreagents, including analogs of low molecular weight compounds, peptides, proteins, and nucleic acids, represent a compelling strategy to probe, perturb, or sample biological phenomena with the requisite control to address many of these organizational complexities. Although this technology has created considerable excitement in the chemical community, its application to biological questions has been relatively limited. We describe the challenges associated with the design, synthesis, and use of light-responsive bioreagents, the scope and limitations associated with the instrumentation required for their application, and recent chemical and biological advances in this field. PMID:19298086

  9. Illuminating the chemistry of life: design, synthesis, and applications of "caged" and related photoresponsive compounds.

    PubMed

    Lee, Hsien-Ming; Larson, Daniel R; Lawrence, David S

    2009-06-19

    Biological systems are characterized by a level of spatial and temporal organization that often lies beyond the grasp of present day methods. Light-modulated bioreagents, including analogs of low molecular weight compounds, peptides, proteins, and nucleic acids, represent a compelling strategy to probe, perturb, or sample biological phenomena with the requisite control to address many of these organizational complexities. Although this technology has created considerable excitement in the chemical community, its application to biological questions has been relatively limited. We describe the challenges associated with the design, synthesis, and use of light-responsive bioreagents; the scope and limitations associated with the instrumentation required for their application; and recent chemical and biological advances in this field.

  10. Synthesis of gold nanoflowers using deep eutectic solvent with high surface enhanced Raman scattering properties

    NASA Astrophysics Data System (ADS)

    Aghakhani Mahyari, Farzaneh; Tohidi, Maryam; Safavi, Afsaneh

    2016-09-01

    A facile, seed-less and one-pot method was developed for synthesis of gold nanoflowers with multiple tips through reduction of HAuCl4 with deep eutectic solvent at room temperature. This solvent is eco-friendly, low-cost, non-toxic and biodegradable and can act as both reducing and shape-controlling agent. In this protocol, highly branched and stable gold nanoflowers were obtained without using any capping agent. The obtained products were characterized by different techniques including, field emission scanning electron microscopy, transmission electron microscopy, x-ray diffraction and UV-vis spectroscopy. The as-prepared gold nanoflowers exhibit efficient surface-enhanced Raman scattering (SERS) properties which can be used as excellent substrates for SERS.

  11. Synthesis and Characterization of Heterobimetallic Iridium-Aluminum and Rhodium-Aluminum Complexes.

    PubMed

    Brewster, Timothy P; Nguyen, Tan H; Li, Zhongjing; Eckenhoff, William T; Schley, Nathan D; DeYonker, Nathan J

    2018-02-05

    We demonstrate the synthesis and characterization of a new class of late-transition-metal-aluminum heterobimetallic complexes via a novel synthetic pathway. Complexes of this type are exceedingly rare. Joint experimental and theoretical data sheds light on the electronic effect of ligands containing aluminum moieties on late-transition-metal complexes.

  12. The Self-Assembly Properties of a Benzene-1,3,5-tricarboxamide Derivative

    ERIC Educational Resources Information Center

    Stals, Patrick J. M.; Haveman, Jan F.; Palmans, Anja R. A.; Schenning, Albertus P. H. J.

    2009-01-01

    A series of experiments involving the synthesis and characterization of a benzene-1,3,5-tricarboxamide derivative and its self-assembly properties are reported. These laboratory experiments combine organic synthesis, self-assembly, and physical characterization and are designed for upper-level undergraduate students to introduce the topic of…

  13. Biocatalyzed Regioselective Synthesis in Undergraduate Organic Laboratories: Multistep Synthesis of 2-Arachidonoylglycerol

    ERIC Educational Resources Information Center

    Johnston, Meghan R.; Makriyannis, Alexandros; Whitten, Kyle M.; Drew, Olivia C.; Best, Fiona A.

    2016-01-01

    In order to introduce the concepts of biocatalysis and its utility in synthesis to organic chemistry students, a multistep synthesis of endogenous cannabinergic ligand 2-arachidonoylglycerol (2-AG) was tailored for use as a laboratory exercise. Over four weeks, students successfully produced 2-AG, purifying and characterizing products at each…

  14. Biomimetic Mineralization of Gold Nanoclusters as Multifunctional Thin Films for Glass Nanopore Modification, Characterization, and Sensing.

    PubMed

    Cao, Sumei; Ding, Shushu; Liu, Yingzi; Zhu, Anwei; Shi, Guoyue

    2017-08-01

    Hurdles of nanopore modification and characterization restrain the development of glass capillary-based nanopore sensing platforms. In this article, a simple but effective biomimetic mineralization method was developed to decorate glass nanopore with a thin film of bovine serum albumin-protected Au nanocluster (BSA-Au NC). The BSA-Au NC film emitted a strong red fluorescence whereby nondestructive characterization of Au film decorated at the inner surface of glass nanopore can be facilely achieved by a fluorescence microscopy. Besides, the BSA molecules played dual roles in the fabrication of functionalized Au thin film in glass nanopore: they not only directed the synthesis of fluorescent Au thin film but also provided binding sites for recognition, thus achieving synthesis-modification integration. This occurred due to the ionized carboxyl groups (-COO - ) of a BSA coating layer on Au NCs which can interacted with arginine (Arg) via guanidinium groups. The added Arg selectively led to the change in the charge and ionic current of BSA-Au NC film-decorated glass nanopore. Such ionic current responses can be used for quantifying Arg with a detection limit down to 1 fM, which was more sensitive than that of previous sensing systems. Together, the designed method exhibited great promise in providing a facile and controllable solution for glass nanopore modification, characterization, and sensing.

  15. Renin knockout rat: control of adrenal aldosterone and corticosterone synthesis in vitro and adrenal gene expression

    PubMed Central

    Gehrand, Ashley; Bruder, Eric D.; Hoffman, Matthew J.; Engeland, William C.; Moreno, Carol

    2014-01-01

    The classic renin-angiotensin system is partly responsible for controlling aldosterone secretion from the adrenal cortex via the peptide angiotensin II (ANG II). In addition, there is a local adrenocortical renin-angiotensin system that may be involved in the control of aldosterone synthesis in the zona glomerulosa (ZG). To characterize the long-term control of adrenal steroidogenesis, we utilized adrenal glands from renin knockout (KO) rats and compared steroidogenesis in vitro and steroidogenic enzyme expression to wild-type (WT) controls (Dahl S rat). Adrenal capsules (ZG; aldosterone production) and subcapsules [zona reticularis/fasciculata (ZFR); corticosterone production] were separately dispersed and studied in vitro. Plasma renin activity and ANG II concentrations were extremely low in the KO rats. Basal and cAMP-stimulated aldosterone production was significantly reduced in renin KO ZG cells, whereas corticosterone production was not different between WT and KO ZFR cells. As expected, adrenal renin mRNA expression was lower in the renin KO compared with the WT rat. Real-time PCR and immunohistochemical analysis showed a significant decrease in P450aldo (Cyp11b2) mRNA and protein expression in the ZG from the renin KO rat. The reduction in aldosterone synthesis in the ZG of the renin KO adrenal seems to be accounted for by a specific decrease in P450aldo and may be due to the absence of chronic stimulation of the ZG by circulating ANG II or to a reduction in locally released ANG II within the adrenal gland. PMID:25394830

  16. Cell cycle progression is regulated by intertwined redox oscillators.

    PubMed

    da Veiga Moreira, Jorgelindo; Peres, Sabine; Steyaert, Jean-Marc; Bigan, Erwan; Paulevé, Loïc; Nogueira, Marcel Levy; Schwartz, Laurent

    2015-05-29

    The different phases of the eukaryotic cell cycle are exceptionally well-preserved phenomena. DNA decompaction, RNA and protein synthesis (in late G1 phase) followed by DNA replication (in S phase) and lipid synthesis (in G2 phase) occur after resting cells (in G0) are committed to proliferate. The G1 phase of the cell cycle is characterized by an increase in the glycolytic metabolism, sustained by high NAD+/NADH ratio. A transient cytosolic acidification occurs, probably due to lactic acid synthesis or ATP hydrolysis, followed by cytosolic alkalinization. A hyperpolarized transmembrane potential is also observed, as result of sodium/potassium pump (NaK-ATPase) activity. During progression of the cell cycle, the Pentose Phosphate Pathway (PPP) is activated by increased NADP+/NADPH ratio, converting glucose 6-phosphate to nucleotide precursors. Then, nucleic acid synthesis and DNA replication occur in S phase. Along with S phase, unpublished results show a cytosolic acidification, probably the result of glutaminolysis occurring during this phase. In G2 phase there is a decrease in NADPH concentration (used for membrane lipid synthesis) and a cytoplasmic alkalinization occurs. Mitochondria hyperfusion matches the cytosolic acidification at late G1/S transition and then triggers ATP synthesis by oxidative phosphorylation. We hypothesize here that the cytosolic pH may coordinate mitochondrial activity and thus the different redox cycles, which in turn control the cell metabolism.

  17. Fabrication of MCM-41 fibers with well-ordered hexagonal mesostructure controlled in acidic and alkaline media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jafarzadeh, A.; Sohrabnezhad, Sh., E-mail: sohrabnezhad@guilan.ac.ir; Zanjanchi, M.A.

    In this paper, synthesis and characterization of two type morphologies of the MCM-41mesoporous material, nano and microfibers, were investigated by electrospinning technique. The synthesis was performed in acidic and alkaline media, separately. The MCM-41 morphologies were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray powder diffraction (XRD), and nitrogen adsorption–desorption measurement. Tetraethylorthosilicate (TEOS) and cetyltrimethylammonium bromide (CTAB) were used as silica and template sources for the synthesis of MCM-41 morphologies, respectively. The SEM results showed that MCM-41 nanofibers were spun in acidic media and microfibers of MCM-41 were produced in alkaline media. The XRD study revealed amore » long range structural ordering of mesoporous materials. The TEM results indicated rough surfaces with uniform average diameter 200 nm for nanofibers and 2 µm for microfibers. The pore diameter and surface area of calcined MCM-41 nanofibers were 2.2 nm and 970 m{sup 2}/g, respectively. For the MCM-41 microfibers, pore sizes of 2.7 nm and surface areas 420 m{sup 2}/g was measured. - Graphical abstract: Electrospinning method was used for fabricating of MCM-41 microfibers from TEOS in alkaline media (top) and MCM-41 nanofibers in acidic media (bottom). - Highlights: • Synthesis of MCM-41 nanofibers and microfibers by electrospinning technique. • MCM-41 nanofibers were synthesized in acidic media. • MCM-41 manofibers spun in alkaline media. • Electrospinning was a simple method for preparing of fibers with respect to chemical method.« less

  18. Controllable synthesis and electrochemical hydrogen storage properties of Sb₂Se₃ ultralong nanobelts with urchin-like structures.

    PubMed

    Jin, Rencheng; Chen, Gang; Pei, Jian; Sun, Jingxue; Wang, Yang

    2011-09-01

    The controlled synthesis of one-dimensional and three-dimensional Sb(2)Se(3) nanostructures has been achieved by a facile solvothermal process in the presence of citric acid. By simply controlling the concentration of citric acid, the nucleation, growth direction and exposed facet can be readily tuned, which brings the different morphologies and nanostructures to the final products. The as-prepared products have been characterized by means of X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM and selected area electron diffraction. Based on the electron microscope observations, a possible growth mechanism of Sb(2)Se(3) with distinctive morphologies including ultralong nanobelts, hierarchical urchin-like nanostructures is proposed and discussed in detail. The electrochemical hydrogen storage measurements reveal that the morphology plays a key role on the hydrogen storage capacity of Sb(2)Se(3) nanostructures. The Sb(2)Se(3) ultralong nanobelts with high percentage of {-111} facets exhibit higher hydrogen storage capacity (228.5 mA h g(-1)) and better cycle stability at room temperature.

  19. Growth efficiency in transgenic tilapia (Oreochromis sp.) carrying a single copy of an homologous cDNA growth hormone.

    PubMed

    Martínez, R; Juncal, J; Zaldívar, C; Arenal, A; Guillén, I; Morera, V; Carrillo, O; Estrada, M; Morales, A; Estrada, M P

    2000-01-07

    Growth hormone (GH) has been shown to have a profound impact on fish physiology and metabolism. However, detailed studies in transgenic fish have not been conducted. We have characterized the food conversion efficiency, protein profile, and biochemical correlates of growth rate in transgenic tilapia expressing the tilapia GH cDNA under the control of human cytomegalovirus regulatory sequences. Transgenic tilapia exhibited about 3.6-fold less food consumption than nontransgenic controls (P < 0.001). The food conversion efficiency was significantly (P < 0.05) higher (290%) in transgenic tilapia (2.3 +/- 0.4) than in the control group (0.8 +/- 0.2). Efficiency of growth, synthesis retention, anabolic stimulation, and average protein synthesis were higher in transgenic than in nontransgenic tilapia. Distinctive metabolic differences were found in transgenic juvenile tilapia. We had found differences in hepatic glucose, and in agreement with previous results we observed differences in the level of enzymatic activities in target organs. We conclude that GH-transgenic juvenile tilapia show altered physiological and metabolic conditions and are biologically more efficient. Copyright 2000 Academic Press.

  20. Direct measurement and characterization of active photosynthesis zones inside wastewater remediating and biofuel producing microalgal biofilms.

    PubMed

    Bernstein, Hans C; Kesaano, Maureen; Moll, Karen; Smith, Terence; Gerlach, Robin; Carlson, Ross P; Miller, Charles D; Peyton, Brent M; Cooksey, Keith E; Gardner, Robert D; Sims, Ronald C

    2014-03-01

    Microalgal biofilm based technologies are of keen interest due to their high biomass concentrations and ability to utilize light and CO2. While photoautotrophic biofilms have long been used for wastewater remediation, biofuel production represents a relatively new and under-represented focus area. However, the direct measurement and characterization of fundamental parameters required for industrial control are challenging due to biofilm heterogeneity. This study evaluated oxygenic photosynthesis and respiration on two distinct microalgal biofilms cultured using a novel rotating algal biofilm reactor operated at field- and laboratory-scales. Clear differences in oxygenic photosynthesis and respiration were observed based on different culturing conditions, microalgal composition, light intensity and nitrogen availability. The cultures were also evaluated as potential biofuel synthesis strategies. Nitrogen depletion was not found to have the same effect on lipid accumulation compared to traditional planktonic microalgal studies. Physiological characterizations of these microalgal biofilms identify fundamental parameters needed to understand and control process optimization. Published by Elsevier Ltd.

  1. Facile solvothermal synthesis of cube-like Ag@AgCl: a highly efficient visible light photocatalyst

    NASA Astrophysics Data System (ADS)

    Han, Lei; Wang, Ping; Zhu, Chengzhou; Zhai, Yueming; Dong, Shaojun

    2011-07-01

    In this paper, a stable and highly efficient plasmonic photocatalyst, Ag@AgCl, with cube-like morphology, has been successfully prepared via a simple hydrothermal method. Using methylene dichloride as chlorine source in the synthesis can efficiently control the morphology of Ag@AgCl, due to the low release rate of chloride ions. Scanning electron microscopy (SEM), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV-vis diffuse reflectance spectra were used to characterize the obtained product. The photocatalytic activity of the obtained product was evaluated by the photodegradation of methyl orange (MO) under visible light irradiation, and it was found, interestingly, that Ag@AgCl exhibits high visible light photocatalytic activity and good stability.In this paper, a stable and highly efficient plasmonic photocatalyst, Ag@AgCl, with cube-like morphology, has been successfully prepared via a simple hydrothermal method. Using methylene dichloride as chlorine source in the synthesis can efficiently control the morphology of Ag@AgCl, due to the low release rate of chloride ions. Scanning electron microscopy (SEM), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV-vis diffuse reflectance spectra were used to characterize the obtained product. The photocatalytic activity of the obtained product was evaluated by the photodegradation of methyl orange (MO) under visible light irradiation, and it was found, interestingly, that Ag@AgCl exhibits high visible light photocatalytic activity and good stability. Electronic supplementary information (ESI) available: SEM images of the AgCl samples synthesized by changing the addition amount of PVP and AgNO3. See DOI: 10.1039/c1nr10247h

  2. Synthesis and colloidal properties of anisotropic hydrothermal barium titanate

    NASA Astrophysics Data System (ADS)

    Yosenick, Timothy James

    2005-11-01

    Nanoparticles of high dielectric constant materials, especially BaTiO3, are required to achieve decreased layer thickness in multilayer ceramic capacitors (MLCCs). Tabular metal nanoparticles can produce thin metal layers with low surface roughness via electrophoretic deposition (EPD). To achieve similar results with dielectric layers requires the synthesis and dispersion of tabular BaTiO3 nanoparticles. The goal of this study was to investigate the deposition of thin BaTiO3 layers using a colloidal process. The synthesis, interfacial chemistry and colloidal properties of hydrothermal BaTiO3 a model particle system, was investigated. After characterization of the material system particulates were deposited to form thin layers using EPD. In the current study, the synthesis of BaTiO3 has been investigated using a hydrothermal route. TEM and AFM analyses show that the synthesized particles are single crystal with a majority of the particle having a <111> zone axis and {111} large face. The particles have a median thickness of 5.8 +/- 3.1 nm and face diameter of 27.1 +/- 12.3 nm. Particle growth was likely controlled by the formation of {111} twins and the synthesis pH which stabilizes the {111} face during growth. With limited growth in the <111> direction, the particles developed a plate-like morphology. Physical property characterization shows the powder was suitable for further processing with high purity, low hydrothermal defect concentration, and controlled stoichiometry. TEM observations of thermally treated powders indicate that the particles begin to loose the plate-like morphology by 900 °C. The aqueous passivation, dispersion, and doping of nanoscale BaTiO 3 powders was investigated. Passivation BaTiO3 was achieved through the addition of oxalic acid. The oxalic acid selectively adsorbs onto the particle surface and forms a chemically stable 2-3 nm layer of barium oxalate. The negative surface charge of the oxalate effectively passivated the BaTiO3 providing a surface suitable for the use of a cationic dispersant, polyethylenimine (PEI). Rheological properties indicate the presence of an oxalate-PEI interaction which can be detrimental to dispersion. With a better understanding of the aqueous surface chemistry of BaTiO3 the surface chemistry was manipulated to control the adsorption of aqueous soluble complexes of Co, Nb, and Bi, three common dopants in the processing of BaTiO3 Surface charge, TEM, and EDS analysis showed that while in suspension the dopants selectively absorbed onto the particle surface forming an engineered coating. (Abstract shortened by UMI.)

  3. Responsive copolymers for enhanced petroleum recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, Charles; Hester, Roger

    The objectives of this work were to: synthesize responsive, amphiphilic systems; characterize molecular structure and solution behavior; measure rheological properties of the aqueous fluids including behavior in fixed geometry flow profiles and beds; and to tailor final polymer compositions for in situ rheology control under simulated reservoir conditions. This report focuses on the first phase of the research emphasizing synthesis and the development of photophysical techniques and rheological means of following segmental organization at the structural level.

  4. Down-regulation of collagen synthesis and matrix metalloproteinase expression in myofibroblasts from Dupuytren nodule using adenovirus-mediated relaxin gene therapy.

    PubMed

    Kang, Young-Mi; Choi, Yun-Rak; Yun, Chae-Ok; Park, Jin-Oh; Suk, Kyung-Soo; Kim, Hak-Sun; Park, Moon-Soo; Lee, Byung-Ho; Lee, Hwan-Mo; Moon, Seong-Hwan

    2014-04-01

    Dupuytren's disease is a fibroproliferative connective tissue disorder characterized by contracture of the palmer fascia of the hand. Relaxin (RLN) is a multifunctional factor which contributes to the remodeling of the pelvic ligament by inhibiting fibrosis and inflammatory activities. The aim of this study was to investigate the effect of the RLN gene on the inhibition of fibrosis in myofibroblastic cells. Myofibroblast cells with adenovirus LacZ (Ad-LacZ) as a marker gene or adenovirus relaxin (Ad-RLN) as therapeutic gene showed transgene expressions in beta-galactosidase assay and Western blot analysis. Myofibroblastic cells with Ad-RLN demonstrated a 22% and 48% reduction in collagen I and III mRNA expressions respectively, a 50% decrease in MMP-1, 70% decrease in MMP-2, 80% decrease in MMP-9, and a 15% reduction in MMP-13 protein expression compared with cultures with viral control and saline control. In addition, myofibroblastic cells with Ad-RLN showed a 40% decrease in TIMP 1 and a 15% increase in TIMP 3 protein expression at 48 h compared to cultures with viral control and saline control. Also, myofibroblastic cell with Ad-RLN demonstrated a 74% inhibition of fibronectin and a 52% decrease in total collagen synthesis at 48 h compared with cultures with viral control and saline control. In conclusion, the RLN gene render antifibrogenic effect on myofibroblastic cells from Dupuytren's nodule via direct inhibition of collagen synthesis not through collagenolytic pathway such as MMP-1, -13, TIMP 1, and 3. Therefore relaxin can be an alternative therapeutic strategy in initial stage of Dupuytren's disease by its antifibrogenic effect. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  5. Synthesis and Characterization of Processable Polyimides with Enhanced Thermal Stability

    NASA Technical Reports Server (NTRS)

    Harris, Frank W.

    1999-01-01

    The following is a summary report of the research carried out under NASA Grant NAG-1-448. The work was divided into four major areas: 1) Enhanced polyimide processing through the use of reactive plasticizers 2) Development of processable polyhenylquinoxalines 3) Synthesis and characterization of perfluorovinylether-terminated imide oligomers and 4) Fluorosilicones containing perfuorocyclobutane rings.

  6. A synthetic auxin (NAA) suppresses secondary wall cellulose synthesis and enhances elongation in cultured cotton fiber.

    PubMed

    Singh, Bir; Cheek, Hannah D; Haigler, Candace H

    2009-07-01

    Use of a synthetic auxin (naphthalene-1-acetic acid, NAA) to start (Gossypium hirsutum) ovule/fiber cultures hindered fiber secondary wall cellulose synthesis compared with natural auxin (indole-3-acetic acid, IAA). In contrast, NAA promoted fiber elongation and ovule weight gain, which resulted in larger ovule/fiber units. To reach these conclusions, fiber and ovule growth parameters were measured and cell wall characteristics were examined microscopically. The differences in fiber from NAA and IAA culture were underpinned by changes in the expression patterns of marker genes for three fiber developmental stages (elongation, the transition stage, and secondary wall deposition), and these gene expression patterns were also analyzed quantitatively in plant-grown fiber. The results demonstrate that secondary wall cellulose synthesis: (1) is under strong transcriptional control that is influenced by auxin; and (2) must be specifically characterized in the cotton ovule/fiber culture system given the many protocol variables employed in different laboratories.

  7. Synthesis, characterization and evaluation of effect of phytogenic zinc nanoparticles on soil exo-enzymes

    NASA Astrophysics Data System (ADS)

    Sri Sindhura, K.; Prasad, T. N. V. K. V.; Panner Selvam, P.; Hussain, O. M.

    2014-10-01

    Nanobiotechnology, the bio-branch of nanotechnology is considered to be one of the fastest emerging research fields. Biosynthesis of metallic nanoparticles is currently under exploitation. Use of plant and plant materials for the synthesis of Zinc nanoparticles is relatively new and exciting research field. The biogenic zinc nanoparticles were synthesized using the leaves of Parthenium hysterophorous by green synthesis route. UV-VIS absorption spectroscopy was used to monitor the quantitative formation of zinc nanoparticles. The characteristics of the synthesized zinc nanoparticles were studied using scanning electron microscopy and nanoparticle analyzer. Zinc nanoparticles were observed to be spherical in shape with size range of 16 to 108.5 nm. The measured zeta potentials varied from 100.4 to 117.20 mV indicate high dispersion of the zinc nanoparticles. The synthesized zinc nanoparticles showed good enzymatic activity and microbial activity. The physiological parameters increased from 30 to 60 days of sowing when compared to control.

  8. Facile one-pot synthesis of gold and silver nanocatalysts using edible coconut oil

    NASA Astrophysics Data System (ADS)

    Meena Kumari, M.; Philip, Daizy

    2013-07-01

    The use of edible oil for the synthesis of metal nanoparticles by wet chemical method is reported for the first time. The paper presents an environmentally benign bottom up approach for the synthesis of gold and silver nanoparticles using edible coconut oil at 373 K. The formation of silver nanoparticles is signaled by the brownish yellow color and that of gold nanoparticles by the purple color. Fine control over the nanoparticle size and shape from triangular to nearly spherical is achieved by varying the quantity of coconut oil. The nanoparticles have been characterized by UV-Visible, Transmission Electron Microscopy and X-ray Diffraction. The chemical interaction of capping agents with metal nanoparticles is manifested using Fourier Transform Infrared Spectroscopy. The stable and crystalline nanoparticles obtained using this simple method show remarkable size-dependent catalytic activity in the reduction of the cationic dye methylene blue (MB) to leuco methylene blue (LMB). The first order rate constants calculated uphold the size dependent catalytic activity of the synthesized nanoparticles.

  9. Synthesis of nanometer-sized sodalite without adding organic additives.

    PubMed

    Fan, Wei; Morozumi, Kazumasa; Kimura, Riichiro; Yokoi, Toshiyuki; Okubo, Tatsuya

    2008-06-01

    Aggregates (80 nm) of sodalite nanocrystals with crystallite sizes ranging from 20 to 40 nm have been synthesized from a sodium aluminosilicate solution at low temperature, without adding any organic additives, while paying attention to the key factors for the synthesis of nanosized zeolite crystals. The physical properties of nanosized sodalite crystals were characterized by X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, 29Si solid-state magic-angle spinning (MAS) NMR, and N2 adsorption. As expected, the external surface area of nanosized sodalite crystals is significantly increased compared with that of microsized sodalite crystals. The size of synthesized sodalite crystals can be controlled from 20 nm to 10 microm. It is found that the preparation of a homogeneous aluminosilicate solution followed by the formation of an aluminosilicate hard gel by adjusting the initial composition, for example, SiO2/Al2O3 and Na2O/H2O ratios, is critical for synthesis.

  10. Peptide synthesis in early earth hydrothermal systems

    USGS Publications Warehouse

    Lemke, K.H.; Rosenbauer, R.J.; Bird, D.K.

    2009-01-01

    We report here results from experiments and thermodynamic calculations that demonstrate a rapid, temperature-enhanced synthesis of oligopeptides from the condensation of aqueous glycine. Experiments were conducted in custom-made hydrothermal reactors, and organic compounds were characterized with ultraviolet-visible procedures. A comparison of peptide yields at 260??C with those obtained at more moderate temperatures (160??C) gives evidence of a significant (13 kJ ?? mol-1) exergonic shift. In contrast to previous hydrothermal studies, we demonstrate that peptide synthesis is favored in hydrothermal fluids and that rates of peptide hydrolysis are controlled by the stability of the parent amino acid, with a critical dependence on reactor surface composition. From our study, we predict that rapid recycling of product peptides from cool into near-supercritical fluids in mid-ocean ridge hydrothermal systems will enhance peptide chain elongation. It is anticipated that the abundant hydrothermal systems on early Earth could have provided a substantial source of biomolecules required for the origin of life. Astrobiology 9, 141-146. ?? 2009 Mary Ann Liebert, Inc. 2009.

  11. Applications of AVHRR-Derived Ice Motions for the Arctic and Antarctic

    NASA Technical Reports Server (NTRS)

    Maslanik, James; Emery, William

    1998-01-01

    Characterization and diagnosis of sea ice/atmosphere/ocean interactions require a synthesis of observations and modeling to identify the key mechanisms controlling the ice/climate system. In this project, we combined product generation, observational analyses, and modeling to define and interpret variability in ice motion in conjunction with thermodynamic factors such as surface temperature and albedo. The goals of this work were twofold: (1) to develop and test procedures to produce an integrated set of polar products from remotely-sensed and supporting data; and (2) to apply these data to understand processes at work in controlling sea ice distribution.

  12. Synthesis of multifunctional clustered nano-Fe3O4 chitosan nanocomposite for biomedical applications

    NASA Astrophysics Data System (ADS)

    Villamin, Maria Emma; Kitamoto, Yoshitaka

    2018-01-01

    Clustered iron oxide nanoparticles covered with chitosan hydrogel (FeOx/Ch NC) have multiple potential functionalities in biomedical applications such as pH-controlled drug release, magnetic hyperthermia, and magnetic non-contact pH sensing. In the present study, the synthesis and characterization of FeOx/Ch NC are demonstrated. Moreover, the heating capability of the nanocomposites is also explored for the potential magnetic hyperthermia application by measuring the temperature curves under different AC frequencies (900 kHz to 2500 kHz). Monodispersed FeOx NPs are first synthesized via thermal decomposition. Then, dried FeOx NPs are combined with chitosan using a homogenizer to form the clustered composites. Synthesized composites are then characterized using XRD, TEM, and FTIR. Temperature curves are measured via a custom-built hyperthermia setup. Results show successful synthesis of clustered Fe3O4-chitosan nanocomposite with XRD peaks corresponding to magnetite (Fe3O4) structure. FTIR results show the presence of functional groups of chitosan (N-H, C-O) and FeOx NPs (Fe-O). These confirms the successful fabrication of FeOx/Ch NC. The temperature curves show maximum temperature changes of about 2°C to 22°C depending on the AC frequency. The heating rate is found to increase with the frequency, which suggests that the resonance frequency is higher than 2500 kHz.

  13. Crystal-growth kinetics of magnetite (Fe3O4) nanoparticles with Ostwald Ripening Model approach

    NASA Astrophysics Data System (ADS)

    Utami, S. P.; Fadli, A.; Sari, E. O.; Addabsi, A. S.

    2018-04-01

    Magnetite (Fe3O4) nanoparticles is a magnetic nanomaterial that have potential properties to be applied as drug delivery The purpose of this study was to determine the influence of time and temperature synthesis of magnetie characteristics and determine its crystal growth kinetics model with Ostwald ripening model approach. Magnetite nanoparticles synthesized from FeCl3, citrate, urea and polyethylene glycol with hydrothermal method at 180, 200 and 220 °C for 1,3,5,7,9 and 12 hours. Characterization by X-ray Diffraction (XRD) indicated that magnetite formed at temperatures of 200 and 220 °C. Magnetite crystallite diameter obtained was 10-29 nm. Characterization by Transmission Electron Mycroscope (TEM) shows that magnetite nanoparticles have uniform size and non-agglomerated. Core-shell shaped particles formed at 200 °C and 220 °C for 3 hours. Irregular shape obtained at 220 °C for 12 hour synthesis with particle diameter about 120 nm. Characterization using Vibrating Sample Magnetometer (VSM) shown that magnetite has super paramagnetism behaviour with the highest saturation magnetization (Ms) was 70.27 emu/g. magnetite crystal growth data at temperature of 220 °C can be fitted by Ostwald ripening growth model with growth controlled by the dissolution of surface reaction (n≈4) with the percent error of 2.53%.

  14. Facile fabrication and characterization of chitosan-based zinc oxide nanoparticles and evaluation of their antimicrobial and antibiofilm activity

    NASA Astrophysics Data System (ADS)

    Dhillon, Gurpreet Singh; Kaur, Surinder; Brar, Satinder Kaur

    2014-06-01

    The present investigation deals with the facile synthesis and characterization of chitosan (CTS)-based zinc oxide (ZnO) nanoparticles (NPs) and their antimicrobial activities against pathogenic microorganisms. ZnO-CTS NPs were synthesized through two different methods: nano spray drying and precipitation, using various organic compounds (citric acid, glycerol, starch and whey powder) as stabilizers. Both the synthesis methods were simple and were devoid of any chemical usage. The detailed characterization of the NPs was carried out using UV-Vis spectroscopy, dynamic light scattering particle size analysis, zeta potential measurements and scanning electron microscopy, which confirmed the fabrication of NPs with different shapes and sizes. Antimicrobial assay of synthesized ZnO-CTS NPs was carried out against different pathogenic microbial strains ( Candida albicans, Micrococcus luteus and Staphylococcus aureus). The significant ( p < 0.05) inhibition of growth was observed for both M. luteus and S. aureus with ZnO-CTS NPs (with a concentration ranging from 0.625 to 0.156 mg/ml) as compared to control treatment. ZnO-CTS NPs also showed significant biofilm inhibition activity ( p < 0.05) against M. luteus and S. aureus. The study demonstrated the potential of ZnO-CTS NPs as antimicrobial and antibiofilm agents.

  15. Hydroxyapatite nanocrystals: simple preparation, characterization and formation mechanism.

    PubMed

    Mohandes, Fatemeh; Salavati-Niasari, Masoud; Fathi, Mohammadhossein; Fereshteh, Zeinab

    2014-12-01

    Crystalline hydroxyapatite (HAP) nanoparticles and nanorods have been successfully synthesized via a simple precipitation method. To control the shape and particle size of HAP nanocrystals, coordination ligands derived from 2-hydroxy-1-naphthaldehyde were first prepared, characterized by Fourier transform infrared (FT-IR) and proton nuclear magnetic resonance ((1)H-NMR) spectroscopies, and finally applied in the synthesis process of HAP. On the other hand, the HAP nanocrystals were also characterized by several techniques including powder X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). According to the FE-SEM and TEM micrographs, it was found that the morphology and crystallinity of the HAP powders depended on the coordination mode of the ligands. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Colloid Science of Metal Nanoparticle Catalysts in 2D and 3D Structures. Challenges of Nucleation, Growth, Composition, Particle Shape, Size Control and their Influence on Activity and Selectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somorjai, Gabor A.; Park, Jeong Y.

    2008-02-13

    Recent breakthroughs in synthesis in nanosciences have achieved control of size and shapes of nanoparticles that are relevant for catalyst design. In this article, we review the advance of synthesis of nanoparticles, fabrication of two and three dimensional model catalyst system, characterization, and studies of activity and selectivity. The ability to synthesize monodispersed platinum and rhodium nanoparticles in the 1-10 nm range permitted us to study the influence of composition, structure, and dynamic properties of monodispersed metal nanoparticle on chemical reactivity and selectivity. We review the importance of size and shape of nanoparticles to determine the reaction selectivity in multi-pathmore » reactions. The influence of metal-support interaction has been studied by probing the hot electron flows through the metal-oxide interface in catalytic nanodiodes. Novel designs of nanoparticle catalytic systems are discussed.« less

  17. Novel hierarchical microparticles super-assembled from nanoparticles with the induction of casein micelles

    NASA Astrophysics Data System (ADS)

    Xiong, Xiaopeng; Duan, Jiangjiang; Wang, Yong; Yu, Zhaoju

    2013-08-01

    We have demonstrated a solution-based synthesis of novel waxberry-like hierarchical ZnO microparticles in the presence casein micelles under mild conditions. The microstructures of the sub-micrometer-sized hierarchical microparticles were characterized, and the synthesis conditions were optimized. The formation mechanism of the hierarchical microparticle was analyzed through control experiments. The hierarchical ZnO microparticles are found to be super-assemblies of 30-70 nm ZnO nanoparticles, which are thought to be based on casein micelle induction followed by Ostwald ripening. In the same manner, copper-based hierarchical microparticles with a similar morphology have also been successfully synthesized. By controlling the synthetic time or temperature, solid or hollow microparticles can be fabricated. The narrowly distributed ZnO microparticles have a high specific surface area, exhibiting great potential application in fields such as photocatalytic and energy conversion. Our findings may meanwhile open a new bottom-up strategy in order to construct structurally sophisticated nanomaterials.

  18. Synthesis of valproic acid amides of a melatonin derivative, a piracetam and amantadine for biological tests.

    PubMed

    Chatterjie, N; Alexander, G; Wang, H

    2001-10-01

    Three new amide derivatives of valproic acid have been synthesized and characterized by spectrophotometric studies. The rationale for the preparation of such agents has been based on the observation that chemical combination of the anticonvulsant pharmacophore, valproic acid with amine moieties produces more effective and less toxic amides. The amine components selected in this work also exhibit neuroactivity with the prospect of these agents being biologically active in controlling not just seizures and but also possessing neuroprotective properties. We report here the synthesis and properties of the valproylamides of 5-methoxytryptamine, related to melatonin (1), of N-substituted 2-pyrrolidinone related to piracetam (2), and of adamantylamine related to amantadine (3). In preliminary tests these compounds showed low toxicity and a variety of anticonvulsive properties, including a delay in onset of activity. These compounds and their derivatives are now available to be tested additionally for control of subclinical seizures, enhancement of cognition, behavior modification and alleviation of symptoms and disorders due to neuronal damage.

  19. Controllable synthesis of protein-conjugated lead sulfide nanocubes by using bovine hemoglobin as a capping agent

    NASA Astrophysics Data System (ADS)

    Yang, Guangrui; Qin, Dezhi; Zhang, Li

    2014-06-01

    A simple, convenient, and controllable strategy was reported in this contribution for protein-assisted synthesis BHb-conjugated PbS nanocubes. Powder X-ray diffraction, energy disperse X-ray spectroscopy, transmission electron microscopy, high-resolution transmission electron microscopy, and selected-area electron diffraction characterizations were used to determine the structure and morphology of BHb-conjugated PbS nanocubes. The prepared PbS nanocrystals with cubic rock salt structure were uniform and monodispersed with homogeneous size around 12 nm. The results of Fourier transform infrared and circular dichroism assay proved that Pb2+/PbS had coordination interaction with functional groups of BHb besides physical-binding effect, and the secondary structure of protein significantly changed with this interaction. Thermogravimetric analysis results confirmed the existence of BHb in PbS nanocrystals and indicated that the conjugate bonds existed between PbS and BHb. A clear perspective was shown here that special nanostructure could be created by using proteins as a mediating template at the inorganic-organic interface.

  20. Synthesis and Characterization of Quenched and Crystalline Phases: Q-Carbon, Q-BN, Diamond and Phase-Pure c-BN

    NASA Astrophysics Data System (ADS)

    Bhaumik, Anagh; Narayan, Jagdish

    2018-04-01

    We report the synthesis and characterization of quenched (Q-carbon and Q-BN) and crystalline (diamond and c-BN) phases using a non-equilibrium technique. These phases are formed as a result of the melting and subsequent quenching of amorphous carbon and nanocrystalline h-BN in a super undercooled state by using high-power nanosecond laser pulses. Pulsed laser annealing also leads to the formation of nanoneedles, microneedles and single-crystal thin films of diamond and c-BN. This formation is dependent on the nucleation and growth times, which are controlled by laser energy density and thermal conductivities of substrate and as-deposited thin film. The diamond nuclei present in the Q-carbon structure ( 80% sp 3) can also be grown to larger sizes using the equilibrium hot filament chemical vapor deposition process. The texture of diamond and c-BN crystals is <111> under epitaxial growth and <110> under rapid unseeded crystallization. Our nanosecond laser processing opens up a roadmap to the fabrication of novel phases on heat-sensitive substrates.

  1. 25th anniversary article: semiconductor nanowires--synthesis, characterization, and applications.

    PubMed

    Dasgupta, Neil P; Sun, Jianwei; Liu, Chong; Brittman, Sarah; Andrews, Sean C; Lim, Jongwoo; Gao, Hanwei; Yan, Ruoxue; Yang, Peidong

    2014-04-09

    Semiconductor nanowires (NWs) have been studied extensively for over two decades for their novel electronic, photonic, thermal, electrochemical and mechanical properties. This comprehensive review article summarizes major advances in the synthesis, characterization, and application of these materials in the past decade. Developments in the understanding of the fundamental principles of "bottom-up" growth mechanisms are presented, with an emphasis on rational control of the morphology, stoichiometry, and crystal structure of the materials. This is followed by a discussion of the application of nanowires in i) electronic, ii) sensor, iii) photonic, iv) thermoelectric, v) photovoltaic, vi) photoelectrochemical, vii) battery, viii) mechanical, and ix) biological applications. Throughout the discussion, a detailed explanation of the unique properties associated with the one-dimensional nanowire geometry will be presented, and the benefits of these properties for the various applications will be highlighted. The review concludes with a brief perspective on future research directions, and remaining barriers which must be overcome for the successful commercial application of these technologies. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A novel bio electro active alginate-aniline tetramer/ agarose scaffold for tissue engineering: synthesis, characterization, drug release and cell culture study.

    PubMed

    Atoufi, Zhale; Zarrintaj, Payam; Motlagh, Ghodratollah Hashemi; Amiri, Anahita; Bagher, Zohreh; Kamrava, Seyed Kamran

    2017-10-01

    In this study, synthesis of a novel biocompatible stimuli-responsive conducting hydrogel based on agarose/alginate-aniline tetramer with the capability of a tailored electrically controlled drug-release for neuroregeneration is investigated. First, aniline tetramer is synthesized and grafted onto sodium alginate. Then, this material is added to agarose as an electrical conductivity modifier to obtain Agarose/alginate-aniline tetramer hydrogel. The synthesized materials are characterized by H NMR and FTIR. The hydrogels are prepared with varying content of aniline tetramer and their swelling-deswelling and shape memory behavior is evaluated. The electroactivity and ionic conductivity of hydrogels against temperature is measured. The sample with 10% aniline tetramer (AT10) reveals the highest ionic conductivity. In MTT and SEM assays, AT10 shows the best cell viability and cell proliferation due to its highest ionic conductivity highlighting the fact that electrical stimuli cell signaling. Hydrogels also represent great potentials for passive and electro-stimulated dexamethasone release. These results demonstrate that the newly developed conducting hydrogels are promising materials for neuroregenerative medicine.

  3. Design, synthesis, and in vitro evaluation of new amphiphilic cyclodextrin-based nanoparticles for the incorporation and controlled release of acyclovir.

    PubMed

    Perret, Florent; Duffour, Marine; Chevalier, Yves; Parrot-Lopez, Hélène

    2013-01-01

    Acyclovir possesses low solubility in water and in lipid bilayers, so that its dosage forms do not allow suitable drug levels at target sites following oral, local, or parenteral administration. In order to improve this lack of solubility, new cyclodextrin-based amphiphilic derivatives have been designed to form nanoparticles, allowing the efficient encapsulation of this hydrophobic antiviral agent. The present work first describes the synthesis and characterization of five new O-2,O-3 permethylated O-6 alkylthio- and perfluoroalkyl-propanethio-amphiphilic β-cyclodextrins. These derivatives have been obtained with good overall yields. The capacity of these molecules to form nanoparticles in water and to encapsulate acyclovir has then been studied. The nanoparticles prepared from the new β-cyclodextrin derivatives have been characterized by dynamic light scattering and have an average size of 120nm for the fluorinated derivatives and 220nm for the hydrogenated analogs. They all allowed high loading and sustained release of acyclovir. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Host-guest interaction of ZnBDC-MOF + doxorubicin: A theoretical and experimental study

    NASA Astrophysics Data System (ADS)

    Vasconcelos, Iane B.; Wanderley, Kaline A.; Rodrigues, Nailton M.; da Costa, Nivan B.; Freire, Ricardo O.; Junior, Severino A.

    2017-03-01

    The incorporation of drugs in biodegradable polymeric particles is one of many processes that controllably and significantly increase their release and action. In this paper, we describe the synthesis and physicochemical characterization of ZnBDC-MOF + doxorubicin (DOXO@ZnBDC) and the system's effectiveness in the sustained release of the drug doxorubicin. An experimental and theoretical study is presented of the interaction between the [Zn(BDC)(H2O)2]n MOF and the drug doxorubicin (DOXO). The synthesis was characterized by elemental analysis and X-ray powder diffraction (XRPD). The experimental incorporation was accomplished and analyzed by Fourier transform infrared spectroscopy (FTIR), XRPD and UV-Vis (ultraviolet-visible) spectrophotometry. Based on an analysis of the doxorubicin release profile, our results suggest that the drug delivery system showed slower release than other systems under development. Studies of cytotoxicity by the MTT method showed good results for the system developed with antineoplastic doxorubicin, and together with the other results of this study, suggest the successful development of a MOF-based drug delivery system.

  5. Synthesis and characterization of polypyrrole grafted chitin

    NASA Astrophysics Data System (ADS)

    Ramaprasad, A. T.; Latha, D.; Rao, Vijayalakshmi

    2017-05-01

    Synthesis and characterization of chitin grafted with polypyrrole (PPy) is reported in this paper. Chitin is soaked in pyrrole solution of various concentrations for different time intervals and polymerized using ammonium peroxy disulphate (APS) as an initiator. Grafting percentage of polypyrrole onto chitin is calculated from weight of chitin before and after grafting. Grafting of polymer is further verified by dissolution studies. The grafted polymer samples are characterized by FTIR, UV-Vis absorption spectrum, XRD, DSC, TGA, AFM, SEM and conductivity studies.

  6. Pseudomonas syringae Phytotoxins: Mode of Action, Regulation, and Biosynthesis by Peptide and Polyketide Synthetases

    PubMed Central

    Bender, Carol L.; Alarcón-Chaidez, Francisco; Gross, Dennis C.

    1999-01-01

    Coronatine, syringomycin, syringopeptin, tabtoxin, and phaseolotoxin are the most intensively studied phytotoxins of Pseudomonas syringae, and each contributes significantly to bacterial virulence in plants. Coronatine functions partly as a mimic of methyl jasmonate, a hormone synthesized by plants undergoing biological stress. Syringomycin and syringopeptin form pores in plasma membranes, a process that leads to electrolyte leakage. Tabtoxin and phaseolotoxin are strongly antimicrobial and function by inhibiting glutamine synthetase and ornithine carbamoyltransferase, respectively. Genetic analysis has revealed the mechanisms responsible for toxin biosynthesis. Coronatine biosynthesis requires the cooperation of polyketide and peptide synthetases for the assembly of the coronafacic and coronamic acid moieties, respectively. Tabtoxin is derived from the lysine biosynthetic pathway, whereas syringomycin, syringopeptin, and phaseolotoxin biosynthesis requires peptide synthetases. Activation of phytotoxin synthesis is controlled by diverse environmental factors including plant signal molecules and temperature. Genes involved in the regulation of phytotoxin synthesis have been located within the coronatine and syringomycin gene clusters; however, additional regulatory genes are required for the synthesis of these and other phytotoxins. Global regulatory genes such as gacS modulate phytotoxin production in certain pathovars, indicating the complexity of the regulatory circuits controlling phytotoxin synthesis. The coronatine and syringomycin gene clusters have been intensively characterized and show potential for constructing modified polyketides and peptides. Genetic reprogramming of peptide and polyketide synthetases has been successful, and portions of the coronatine and syringomycin gene clusters could be valuable resources in developing new antimicrobial agents. PMID:10357851

  7. Platelet 12-lipoxygenase activation via glycoprotein VI: involvement of multiple signaling pathways in agonist control of H(P)ETE synthesis.

    PubMed

    Coffey, Marcus J; Jarvis, Gavin E; Gibbins, Jonathan M; Coles, Barbara; Barrett, Natasha E; Wylie, Oliver R E; O'Donnell, Valerie B

    2004-06-25

    Lipoxygenases (LOX) contribute to vascular disease and inflammation through generation of bioactive lipids, including 12-hydro(pero)xyeicosatetraenoic acid (12-H(P)ETE). The physiological mechanisms that acutely control LOX product generation in mammalian cells are uncharacterized. Human platelets that contain a 12-LOX isoform (p12-LOX) were used to define pathways that activate H(P)ETE synthesis in the vasculature. Collagen and collagen-related peptide (CRP) (1 to 10 microg/mL) acutely induced platelet 12-H(P)ETE synthesis. This implicated the collagen receptor glycoprotein VI (GPVI), which signals via the immunoreceptor-based activatory motif (ITAM)-containing FcRgamma chain. Conversely, thrombin only activated at high concentrations (> 0.2 U/mL), whereas U46619 and ADP alone were ineffective. Collagen or CRP-stimulated 12-H(P)ETE generation was inhibited by staurosporine, PP2, wortmannin, BAPTA/AM, EGTA, and L-655238, implicating src-tyrosine kinases, PI3-kinase, Ca2+ mobilization, and p12-LOX translocation. In contrast, protein kinase C (PKC) inhibition potentiated 12-H(P)ETE generation. Finally, activation of the immunoreceptor tyrosine-based inhibitory motif (ITIM)-containing platelet endothelial cell adhesion molecule (PECAM-1) inhibited p12-LOX product generation. This study characterizes a receptor-dependent pathway for 12-H(P)ETE synthesis via the collagen receptor GPVI, which is negatively regulated by PECAM-1 and PKC, and demonstrates a novel link between immune receptor signaling and lipid mediator generation in the vasculature.

  8. Synthesis, Characterization, and Application of Gold Nanoparticles in Green Nanochemistry Dye-Sensitized Solar Cells

    DTIC Science & Technology

    2012-06-01

    resolution tunneling electron microscopy (HR-TEM). 2.4 DSSC Assembly Annealed TiO2 nanoparticle photoanodes were placed into 10 mL each of the blackberry ...resolution tunneling electron microscopy, and ultraviolet-visible spectroscopy. After characterization, the NPs were found to vary in shape but had... Blackberry Anthocyanin Extraction Procedure ...............................................................3 2.3 Au Nanoparticle Synthesis

  9. The Chemistry of Formazan Dyes: Synthesis and Characterization of a Stable Verdazyl Radical and a Related Boron-Containing Heterocycle

    ERIC Educational Resources Information Center

    Berry, David E.; Hicks, Robin G.; Gilroy, Joe B.

    2009-01-01

    This experiment describes the synthesis and characterization of a formazan dye, and its subsequent conversion to a stable verdazyl radical and a boron-nitrogen heterocycle (boratatetrazine). Each of these compounds is intensely colored and is prepared and handled under aerobic conditions, which often surprises students as free radicals are…

  10. Synthesis and Characterization of a Layered Manganese Oxide: Materials Chemistry for the Inorganic or Instrumental Methods Lab

    ERIC Educational Resources Information Center

    Ching, Stanton; Neupane, Ram P.; Gray, Timothy P.

    2006-01-01

    A three-week laboratory project involving synthesis and characterization of a layered manganese oxide provides an excellent vehicle for teaching important concepts of inorganic chemistry and instrumental methods related to non-molecular systems. Na-birnessite is an easily prepared manganese oxide with a 7 A interlayer spacing and Na[superscript +]…

  11. Scaffolding Students' Skill Development by First Introducing Advanced Techniques through the Synthesis and [superscript 15]N NMR Analysis of Cinnamamides

    ERIC Educational Resources Information Center

    Shuldburg, Sara; Carroll, Jennifer

    2017-01-01

    An advanced undergraduate experiment involving the synthesis and characterization of a series of six unique cinnamamides is described. This experiment allows for a progressive mastery of skills students need to tackle more complex NMR structure elucidation problems. Characterization of the products involves IR spectroscopy, GCMS, and proton,…

  12. Synthesis, Characterization, and Secondary Structure Determination of a Silk-Inspired, Self-Assembling Peptide: A Laboratory Exercise for Organic and Biochemistry Courses

    ERIC Educational Resources Information Center

    Albin, Tyler J.; Fry, Melany M.; Murphy, Amanda R.

    2014-01-01

    This laboratory experiment gives upper-division organic or biochemistry undergraduate students a comprehensive look at the synthesis, chemical characterization, self-assembly, and secondary structure determination of small, N-acylated peptides inspired by the protein structure of silkworm silk. All experiments can be completed in one 4 h lab…

  13. Synthesis and characterization of 3-ketohexadecanoic acid-1-14-C, DL-3-hydroxyhexadecanoic acid-1-14-C, and trans-2-hexadecenoic acid-1-14-C.

    PubMed

    Jones, J A; Blecher, M

    1966-05-01

    The chemical synthesis and characterization of three intermediates in the Beta oxidation of palmitic acid-1-(14)C by rat liver mitochondria, namely, 3-ketohexadecanoic acid-1-(14)C, DL-3-hydroxyhexadecanoic acid-1-(14)C, and trans-2-hexadecenoic acid-1-(14)C, are described.

  14. The Synthesis and Origin of the Pectic Polysaccharide Rhamnogalacturonan II – Insights from Nucleotide Sugar Formation and Diversity

    PubMed Central

    Bar-Peled, Maor; Urbanowicz, Breeanna R.; O’Neill, Malcolm A.

    2012-01-01

    There is compelling evidence showing that the structurally complex pectic polysaccharide rhamnogalacturonan II (RG-II) exists in the primary cell wall as a borate cross-linked dimer and that this dimer is required for the assembly of a functional wall and for normal plant growth and development. The results of several studies have also established that RG-II structure and cross-linking is conserved in vascular plants and that RG-II likely appeared early in the evolution of land plants. Two features that distinguish RG-II from other plant polysaccharides are that RG-II is composed of 13 different glycoses linked to each other by up to 22 different glycosidic linkages and that RG-II is the only polysaccharide known to contain both apiose and aceric acid. Thus, one key event in land plant evolution was the emergence of genes encoding nucleotide sugar biosynthetic enzymes that generate the activated forms of apiose and aceric acid required for RG-II synthesis. Many of the genes involved in the generation of the nucleotide sugars used for RG-II synthesis have been functionally characterized. By contrast, only one glycosyltransferase involved in the assembly of RG-II has been identified. Here we provide an overview of the formation of the activated sugars required for RG-II synthesis and point to the possible cellular and metabolic processes that could be involved in assembling and controlling the formation of a borate cross-linked RG-II molecule. We discuss how nucleotide sugar synthesis is compartmentalized and how this may control the flux of precursors to facilitate and regulate the formation of RG-II. PMID:22639675

  15. Synthesis of carbon nanotubes by arc discharge in open air.

    PubMed

    Paladugu, Mohan Chand; Maneesh, K; Nair, P Kesavan; Haridoss, Prathap

    2005-05-01

    In this work Carbon nanotubes have been synthesized by arc discharge in open air. A TIG welding ac/dc inverter was used as the power source for arc discharge. During each run of the arc discharge based synthesis, the anode was a low purity (approximately 85% C by weight) graphite rod. The effect of varying the atmosphere on the yield of soot of the carbon nanotube containing carbon soot has been studied. Various soots were produced, purified by oxidation and characterized to confirm formation of carbon nanotubes and their relative quality, using transmission electron microscopy, Raman spectroscopy, and XRD. It was found that the yield of soot formed on the cathode is higher when synthesis is carried out in open air than when carried out in a flowing argon atmosphere. When synthesized in open air, using a 7.2-mm-diameter graphite rod as anode, the yield of soot was around 50% by weight of the graphite consumed. Current and voltage for arcing were at identical starting values in all the experiments. This modified method does not require a controlled atmosphere as in the case of a conventional arc discharge method of synthesis and hence the cost of production may be reduced.

  16. Rapid crystallization and morphological adjustment of zeolite ZSM-5 in nonionic emulsions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Ying, E-mail: yingzh1977@163.co; Jin Chao; Research Institute of Petroleum Processing, Beijing 100083

    2011-01-15

    Zeolite ZSM-5 was synthesized for the first time in a nonionic emulsion composed of polyoxyethylated alkylphenol, butanol, cyclohexane and tetraethylammonium hydroxide (TEAOH)-containing zeolite synthesis mixture. The crystallization kinetics in the emulsion was investigated and the ZSM-5 product was characterized in detail by XRD, SEM, FT-IR, TG, N{sub 2} adsorption and CHN analysis techniques. Compared with the conventionally hydrothermal synthesis with the same structure directing agent TEAOH, the emulsion system allows rapid crystallization of ZSM-5. The ZSM-5 product exhibits unusual agglomerated structure and possesses larger specific surface area. The FT-IR, TG results plus CHN analysis show the encapsulation of a tracemore » of emulsion components in the emulsion ZSM-5. Control experiments show the emulsion system exerts the crystallization induction and morphological adjustment effects mainly during the aging period. The effects are tentatively attributed to the confined space domains, surfactant-water interaction as well as surfactant-growing crystals interaction existing in the emulsion. -- Graphical abstract: The nonionic emulsion synthesis allows rapid crystallization and morphological adjustment of zeolite ZSM-5 compared with the conventional hydrothermal synthesis. Display Omitted« less

  17. Biosynthesis of silver nanoparticles by Pseudomonas spp. isolated from effluent of an electroplating industry.

    PubMed

    Punjabi, Kapil; Yedurkar, Snehal; Doshi, Sejal; Deshapnde, Sunita; Vaidya, Shashikant

    2017-08-01

    The aim of this study was to isolate and screen bacteria from soil and effluent of electroplating industries for the synthesis of silver nanoparticles and characterize the potential isolate. Soil and effluent of electroplating industries from Mumbai were screened for bacteria capable of synthesizing silver nanoparticles. From two soils and eight effluent samples 20 bacterial isolates were obtained, of these, one was found to synthesize silver nanoparticles. Synthesis of silver nanoparticle by bacteria was confirmed by undertaking characterization studies of nanoparticles that involved spectroscopy and electron microscopic techniques. The potential bacteria was found to be Gram-negative short rods with its biochemical test indicating Pseudomonas spp . Molecular characterization of the isolate by 16S r DNA sequencing was carried out which confirmed its relation to Pseudomonas hibiscicola ATCC 19867. Stable nanoparticles synthesized were 50 nm in size and variable shapes as seen in SEM micrographs. The XRD and FTIR confirmed the crystalline structure of nanoparticles and presence of biomolecules mainly proteins as agents for reduction and capping of nanoparticles. The study demonstrates synthesis of nanoparticles by bacteria from effluent of electroplating industry. This can be used for large scale synthesis of nanoparticles by cost effective and environmentally benign mode of synthesis.

  18. Shape-controlled solvothermal synthesis of bismuth subcarbonate nanomaterials

    NASA Astrophysics Data System (ADS)

    Cheng, Gang; Yang, Hanmin; Rong, Kaifeng; Lu, Zhong; Yu, Xianglin; Chen, Rong

    2010-08-01

    Much effort has been devoted to the synthesis of novel nanostructured materials because of their unique properties and potential applications. Bismuth subcarbonate ((BiO) 2CO 3) is one of commonly used antibacterial agents against Helicobacter pylori ( H. pylori). Different (BiO) 2CO 3 nanostructures such as cube-like nanoparticles, nanobars and nanoplates, were fabricated from bismuth nitrate via a simple solvothermal method. The nanostructures were characterized by powder X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). It was found that the solvents and precursors have an influence on the morphologies of (BiO) 2CO 3 nanostructures. The possible formation mechanism of different (BiO) 2CO 3 nanostructures fabricated under different conditions was also discussed.

  19. Morphological and physical - chemical issues of metal nanostructures used in medical field

    NASA Astrophysics Data System (ADS)

    Duceac, L. D.; Velenciuc, N.; Dobre, E. C.

    2016-06-01

    In recent years applications of nanotechnology integrated into nanomedicine and bio-nanotechnology have attracted the attention of many researchers from different fields. Processes from chemical engineering especially nanostructured materials play an important role in medical and pharmaceutical development. Fundamental researches focused on finding simple, easily accomplished synthesis methods, morphological aspects and physico-chemical advanced characterization of nanomaterials. More over, by controlling synthesis conditions textural characteristics and physicochemical properties such as particle size, shape, surface, porosity, aggregation degree and composition can be tailored. Low cytotoxicity and antimicrobial effects of these nanostructured materials makes them be applied in medicine field. The major advantage of metal based nanoparticles is the use either for their antimicrobial properties or as drug-carriers having the potential to be active at low concentrations against infectious agents.

  20. TIF-IA, the factor mediating growth-dependent control of ribosomal RNA synthesis, is the mammalian homolog of yeast Rrn3p.

    PubMed

    Bodem, J; Dobreva, G; Hoffmann-Rohrer, U; Iben, S; Zentgraf, H; Delius, H; Vingron, M; Grummt, I

    2000-08-01

    Cells carefully modulate the rate of rRNA transcription in order to prevent an overinvestment in ribosome synthesis under less favorable nutritional conditions. In mammals, growth-dependent regulation of RNA polymerase I (Pol I) transcription is mediated by TIF-IA, an essential initiation factor that is active in extracts from growing but not starved or cycloheximide-treated mammalian cells. Here we report the molecular cloning and functional characterization of recombinant TIF-IA, which turns out to be the mammalian homolog of the yeast factor Rrn3p. We demonstrate that TIF-IA interacts with Pol I in the absence of template DNA, augments Pol I transcription in vivo and rescues transcription in extracts from growth-arrested cells in vitro.

  1. TIF-IA, the factor mediating growth-dependent control of ribosomal RNA synthesis, is the mammalian homolog of yeast Rrn3p

    PubMed Central

    Bodem, Jochen; Dobreva, Gergana; Hoffmann-Rohrer, Urs; Iben, Sebastian; Zentgraf, Hanswalter; Delius, Hajo; Vingron, Martin; Grummt, Ingrid

    2000-01-01

    Cells carefully modulate the rate of rRNA transcription in order to prevent an overinvestment in ribosome synthesis under less favorable nutritional conditions. In mammals, growth-dependent regulation of RNA polymerase I (Pol I) transcription is mediated by TIF-IA, an essential initiation factor that is active in extracts from growing but not starved or cycloheximide-treated mammalian cells. Here we report the molecular cloning and functional characterization of recombinant TIF-IA, which turns out to be the mammalian homolog of the yeast factor Rrn3p. We demonstrate that TIF-IA interacts with Pol I in the absence of template DNA, augments Pol I transcription in vivo and rescues transcription in extracts from growth-arrested cells in vitro. PMID:11265758

  2. Effects of various polyoxyethylene sorbitan monooils (Tweens) and sodium dodecyl sulfate on reflux synthesis of copper nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Xifeng; Yin Hengbo; Cheng Xiaonong

    2006-11-09

    Size-controlled synthesis of phase pure Cu nanoparticles was carried out by using copper sulfate pentahydrate as a precursor, ascorbic acid as a reductant, Tweens and sodium dodecyl sulfate (SDS) as modifiers in an aqueous solution at 80 deg. C. The as-prepared Cu nanoparticles were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and Fourier transform infrared (FT-IR). The stabilizing effects of SDS and Tweens on the Cu nanoparticles should be through the coordination between Cu nanoparticles and the respective sulfate group and oxygen-containing bond. The synergic effect of the composite SDS and Tweensmore » on Cu nanoparticles was different from those arising from the individuals.« less

  3. Functional Iron Oxide-Silver Hetero-Nanocomposites: Controlled Synthesis and Antibacterial Activity

    NASA Astrophysics Data System (ADS)

    Trang, Vu Thi; Tam, Le Thi; Van Quy, Nguyen; Huy, Tran Quang; Thuy, Nguyen Thanh; Tri, Doan Quang; Cuong, Nguyen Duy; Tuan, Pham Anh; Van Tuan, Hoang; Le, Anh-Tuan; Phan, Vu Ngoc

    2017-06-01

    Iron oxide-silver nanocomposites are of great interest for their antibacterial and antifungal activities. We report a two-step synthesis of functional magnetic hetero-nanocomposites of iron oxide nanoparticles and silver nanoparticles (Fe3O4-Ag). Iron oxide nanoparticles were prepared first by a co-precipitation method followed by the deposition of silver nanoparticles via a hydrothermal route. The prepared Fe3O4-Ag hetero-nanocomposites were characterized by x-ray diffraction, transmission electron microscopy, high resolution transmission electron microscopy and vibrating sample magnetometry. Their antibacterial activities were investigated by using paper-disc diffusion and direct-drop diffusion methods. The results indicate that the Fe3O4-Ag hetero-nanocomposites exhibit excellent antibacterial activities against two Gram-negative bacterial strains ( Salmonella enteritidis and Klebsiella pneumoniae).

  4. Synthesis of Optimal Constant-Gain Positive-Real Controllers for Passive Systems

    NASA Technical Reports Server (NTRS)

    Mao, Y.; Kelkar, A. G.; Joshi, S. M.

    1999-01-01

    This paper presents synthesis methods for the design of constant-gain positive real controllers for passive systems. The results presented in this paper, in conjunction with the previous work by the authors on passification of non-passive systems, offer a useful synthesis tool for the design of passivity-based robust controllers for non-passive systems as well. Two synthesis approaches are given for minimizing an LQ-type performance index, resulting in optimal controller gains. Two separate algorithms, one for each of these approaches, are given. The synthesis techniques are demonstrated using two numerical examples: control of a flexible structure and longitudinal control of a fighter aircraft.

  5. Physicochemical characterization of silver nanoparticles synthesize using Aloe Vera (Aloe barbadensis)

    NASA Astrophysics Data System (ADS)

    Kuponiyi, Abiola; Kassama, Lamin; Kukhtareva, Tatiana

    2014-08-01

    Production of silver nanoparticles (AgNPs) using different biological methods is gaining recognition due to their multiple applications. Although, several physical and chemical methods have been used for the synthesis and stabilizing of AgNPs, yet, a green chemistry method is preferable because it is cost effective and environmentally friendly. The synthesis was done using Aloe Vera (AV) extract because it has chemical compounds such as "Antrokinon" that are known for its antibacterial, antivirus and anticancer properties. We hypothesize that AV extract can produce a stable nanoparticles within the 100 nm range and be biologically active. The biological compounds were extracted from AV skin with water and ethanol which was used as the reduction agent for the synthesis of nanoparticles. The biological extract and AgNO3 were blended and heated to synthesize AgNPs. The reaction process was monitored using UV-Visible spectroscopy. Fourier Transfer Infrared spectroscopy (FTIR) was used for the characterization of biological compounds and their substituent groups before and after the reaction process. Dynamic Light scattering (DLS) method was used to characterize particle size of AgNPs and their biomolecular stability. Results showed that biological compounds such as aliphatic amines, alkenes (=C-H), alkanes (C-H), alcohol (O-H) and unsaturated esters(C-O), which has an average particle size of 109 and 215.8 nm and polydispersity index of 0.451 and 0.375 for ethanol and water extract, respectively. According to TEM measurements the size of AgNPs are in the range 5-20 nm The results suggested that ethanol derived AgNPs contained higher yield of organic compounds, thus has better solubility power than water. Ag NPs can be used to control salmonella in poultry industry.

  6. Institute for Atom-Efficient Chemical Transformations Energy Frontier

    Science.gov Websites

    Synthesis Search Argonne ... Search Argonne Home > Institute for Atom-Efficient Chemical Transformations Synthesis Characterization Computational Studies Evaluation and Mechanisms/Catalytic Experimentation Using

  7. Green synthesis, characterization and evaluation of biocompatibility of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Ahamed, Maqusood; Majeed Khan, M. A.; Siddiqui, M. K. J.; AlSalhi, Mohamad S.; Alrokayan, Salman A.

    2011-04-01

    Although green synthesis of silver nanoparticles (Ag NPs) by various plants and microorganisms has been reported, the potential of plants as biological materials for the synthesis of nanoparticles and their compatibility to biological systems is yet to be fully explored. In this study, we report a simple green method for the synthesis of Ag NPs using garlic clove extract as a reducing and stabilizing agent. In addition to green synthesis, biological response of Ag NPs in human lung epithelial A549 cells was also assessed. Ag NPs were rapidly synthesized using garlic clove extract and the formation of nanoparticles was observed within 30 min. The green synthesized Ag NPs were characterized using UV-vis spectrum, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), field emission transmission electron microscopy (FETEM), X-ray energy-dispersive spectroscopy (EDX) and dynamic light scattering (DLS). Characterization data demonstrated that the particles were crystalline in nature and spherical shaped with an average diameter of 12 nm. Measurements of cell viability, cell membrane integrity and intracellular production of reactive oxygen species have shown that the green synthesized Ag NPs were nontoxic to human lung epithelial A549 cells. This study demonstrated a simple, cost-effective and environmentally benign synthesis of Ag NPs with excellent biocompatibility to human lung epithelial A549 cells. This preliminary in vitro investigation needs to be followed up by future studies with various biological systems.

  8. Nanocomposites based on self-assembly poly(hydroxypropyl methacrylate)-block-poly(N-phenylmaleimide) and Fe3O4-NPs. Thermal stability, morphological characterization and optical properties

    NASA Astrophysics Data System (ADS)

    Pizarro, Guadalupe del C.; Marambio, Oscar G.; Jeria-Orell, Manuel; Sánchez, Julio; Oyarzún, Diego P.

    2018-02-01

    The current work presents the synthesis, characterization and preparation of organic-inorganic hybrid polymer films that contain inorganic magnetic nanoparticles (NPs). The block copolymer, prepared by Atom-Transfer Radical Polymerization (ATRP), was used as a nanoreactor for iron oxide NPs. The NPs were embedded in poly(hydroxypropyl methacrylate)-block-poly(N-phenylmaleimide) matrix. The following topographical modifications of the surface of the film were specially analyzed: control of pore features and changes in surface roughness. Finally, the NPs functionality inside the polymer matrix and how it may affect the thermal and optical properties of the films were assessed.

  9. Green synthesis and characterization of size tunable silica-capped gold core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Wangoo, Nishima; Shekhawat, Gajendra; Wu, Jin-Song; Bhasin, Aman K. K.; Suri, C. R.; Bhasin, K. K.; Dravid, Vinayak

    2012-08-01

    Silica-coated gold nanoparticles (Au@SiO2) with controlled silica-shell thickness were prepared by a modified Stober's method using 10-nm gold nanoparticles (AuNPs) as seeds. The AuNPs were silica-coated with a sol-gel reaction using tetraethylorthosilicate (TEOS) as a silica source and ammonia as a catalyst. An increase in TEOS concentration resulted in an increase in shell thickness. The NPs were characterized by transmission electron microscopy, selected area electron diffraction, energy-dispersive X-ray spectroscopy, scanning near-field ultrasound holography and scanning transmission electron microscopy. The method required no surface modification and the synthesized core shell nanoparticles can be used for various types of biological applications.

  10. Bridges between multiple-point geostatistics and texture synthesis: Review and guidelines for future research

    NASA Astrophysics Data System (ADS)

    Mariethoz, Gregoire; Lefebvre, Sylvain

    2014-05-01

    Multiple-Point Simulations (MPS) is a family of geostatistical tools that has received a lot of attention in recent years for the characterization of spatial phenomena in geosciences. It relies on the definition of training images to represent a given type of spatial variability, or texture. We show that the algorithmic tools used are similar in many ways to techniques developed in computer graphics, where there is a need to generate large amounts of realistic textures for applications such as video games and animated movies. Similarly to MPS, these texture synthesis methods use training images, or exemplars, to generate realistic-looking graphical textures. Both domains of multiple-point geostatistics and example-based texture synthesis present similarities in their historic development and share similar concepts. These disciplines have however remained separated, and as a result significant algorithmic innovations in each discipline have not been universally adopted. Texture synthesis algorithms present drastically increased computational efficiency, patterns reproduction and user control. At the same time, MPS developed ways to condition models to spatial data and to produce 3D stochastic realizations, which have not been thoroughly investigated in the field of texture synthesis. In this paper we review the possible links between these disciplines and show the potential and limitations of using concepts and approaches from texture synthesis in MPS. We also provide guidelines on how recent developments could benefit both fields of research, and what challenges remain open.

  11. Synthesis and Characterization of Block Copolymers with Unique Chemical Functionalities and Entropically-Hindering Moieties

    DTIC Science & Technology

    2017-08-14

    Synthesis and Characterization of Sulfonated Amine Block Copolymers for Energy Efficient Applications". Chemical Engineering Symposium, University of...Specialty Separations” Oral Presentation during the 2014 Chemical Engineering Department Symposium (Key Note Speaker), University of Puerto Rico, Mayaguez...Leadership Award in the College of Engineering of the University of Puerto Rico, May, 2015. 3. Distinguished Professor of Chemical Engineering

  12. Facilitating Students' Review of the Chemistry of Nitrogen-Containing Heterocyclic Compounds and Their Characterization through Multistep Synthesis of Thieno[2,3-"b"]Pyridine Derivatives

    ERIC Educational Resources Information Center

    Liu, Hanlin; Zaplishnyy, Vladimir; Mikhaylichenko, Lana

    2016-01-01

    A multistep synthesis of thieno[2,3-"b"]pyridine derivatives is described that is suitable for the upper-level undergraduate organic laboratory. This experiment exposes students to various hands-on experimental techniques as well as methods of product characterization such as IR and [superscript 1]H NMR spectroscopy, and…

  13. Synthesis and Characterization of Thin Film Lithium-Ion Batteries Using Polymer Electrolytes

    NASA Technical Reports Server (NTRS)

    Maranchi, Jeffrey P.; Kumta, Prashant N.; Hepp, Aloysius F.; Raffaelle, Ryne P.

    2002-01-01

    The present paper describes the integration of thin film electrodes with polymer electrolytes to form a complete thin film lithium-ion battery. Thin film batteries of the type, LiCoO2 [PAN, EC, PC, LiN(CF3SO2)2] SnO2 have been fabricated. The results of the synthesis and characterization studies will be presented and discussed.

  14. Organic Materials as Electrodes for Li-ion Batteries

    DTIC Science & Technology

    2015-09-04

    given for each class of materials. Various macrocycles, their synthesis, characterization and subsequent use in lithium - ion batteries were attempted...macrocycles, their synthesis, characterization and subsequent use in lithium - ion batteries have been attempted to. Lithium -based batteries are at the...organic dye can be used for storing reversibly, both lithium and sodium ions for rechargeable battery applications. In the present study, we have

  15. Synthesis, Characterization, and Multimillion-Atom Simulation of Halogen-Based Energetic Materials for Agent Defeat

    DTIC Science & Technology

    2013-04-01

    DTRA-TR-13-23 Synthesis, Characterization, and Multimillion -Atom Simulation of Halogen-Based Energetic Materials for Agent Defeat Approved for...reagents for the destruction of biologically active materials and a simulation of their reactions on a multimillion atom scale with quantum...explosives for destruction of chemical & biological agents. Multimillion -atom molecular dynamics simulations with quantum mechanical accuracy were

  16. Polymer-Based Protein Engineering: Synthesis and Characterization of Armored, High Graft Density Polymer-Protein Conjugates.

    PubMed

    Carmali, Sheiliza; Murata, Hironobu; Cummings, Chad; Matyjaszewski, Krzysztof; Russell, Alan J

    2017-01-01

    Atom transfer radical polymerization (ATRP) from the surface of a protein can generate remarkably dense polymer shells that serve as armor and rationally tune protein function. Using straightforward chemistry, it is possible to covalently couple or display multiple small molecule initiators onto a protein surface. The chemistry is fine-tuned to be sequence specific (if one desires a single targeted site) at controlled density. Once the initiator is anchored on the protein surface, ATRP is used to grow polymers on protein surface, in situ. The technique is so powerful that a single-protein polymer conjugate molecule can contain more than 90% polymer coating by weight. If desired, stimuli-responsive polymers can be "grown" from the initiated sites to prepare enzyme conjugates that respond to external triggers such as temperature or pH, while still maintaining enzyme activity and stability. Herein, we focus mainly on the synthesis of chymotrypsin-polymer conjugates. Control of the number of covalently coupled initiator sites by changing the stoichiometric ratio between enzyme and the initiator during the synthesis of protein-initiator complexes allowed fine-tuning of the grafting density. For example, very high grafting density chymotrypsin conjugates were prepared from protein-initiator complexes to grow the temperature-responsive polymers, poly(N-isopropylacrylamide), and poly[N,N'-dimethyl(methacryloyloxyethyl) ammonium propane sulfonate]. Controlled growth of polymers from protein surfaces enables one to predictably manipulate enzyme kinetics and stability without the need for molecular biology-dependent mutagenesis. © 2017 Elsevier Inc. All rights reserved.

  17. Localized synthesis, assembly and integration of silicon nanowires

    NASA Astrophysics Data System (ADS)

    Englander, Ongi

    Localized synthesis, assembly and integration of one-dimensional silicon nanowires with MEMS structures is demonstrated and characterized in terms of local synthesis processes, electric-field assisted self-assembly, and a proof-of-concept nanoelectromechanical system (HEMS) demonstration. Emphasis is placed on the ease of integration, process control strategies, characterization techniques and the pursuit of integrated devices. A top-down followed by a bottom-up integration approach is utilized. Simple MEMS heater structures are utilized as the microscale platforms for the localized, bottom-up synthesis of one-dimensional nanostructures. Localized heating confines the high temperature region permitting only localized nanostructure synthesis and allowing the surroundings to remain at room temperature thus enabling CMOS compatible post-processing. The vapor-liquid-solid (VLS) process in the presence of a catalytic nanoparticle, a vapor phase reactant, and a specific temperature environment is successfully employed locally. Experimentally, a 5nm thick gold-palladium layer is used as the catalyst while silane is the vapor phase reactant. The current-voltage behavior of the MEMS structures can be correlated to the approximate temperature range required for the VLS reaction to take place. Silicon nanowires averaging 45nm in diameter and up to 29mum in length synthesized at growth rates of up to 1.5mum/min result. By placing two MEMS structures in close proximity, 4--10mum apart, localized silicon nanowire growth can be used to link together MEMS structures to yield a two-terminal, self-assembled micro-to-nano system. Here, one MEMS structure is designated as the hot growth structure while a nearby structure is designated as the cold secondary structure, whose role is to provide a natural stopping point for the VLS reaction. The application of a localized electric-field, 5 to 13V/mum in strength, during the synthesis process, has been shown to improve nanowire organization, alignment, and assembly. The integrated nanoelectrormechanical system was found to be mechanically resilient as it proved to successfully withstand a wide variety of post-processing steps, including manipulations and examinations under scanning and transmission electron microscopes and aqueous processing, although a super critical drying step is necessary to preserve the integrated system during the drying process. Electrical characterization of the system proved challenging due to low carrier concentration and possible transport issues at the nano-micro interface. Nonetheless, in a proof-of-concept demonstration, the system was functionalized and tested for a hydrogen sensing application.

  18. Amino Acid Control over Deoxyribonucleic Acid Synthesis in Escherichia coli Infected With T-Even Bacteriophage

    PubMed Central

    Donini, Pierluigi

    1970-01-01

    Starvation for a required amino acid of normal or RCstrEscherichia coli infected with T-even phages arrests further synthesis of phage deoxyribonucleic acid (DNA). This amino acid control over phage DNA synthesis does not occur in RCrelE. coli mutants. Heat inactivation of a temperature-sensitive aminoacyl-transfer ribonucleic acid (RNA) synthetase similarly causes an arrest of phage DNA synthesis in infected cells of RCstr phenotype but not in cells of RCrel phenotype. Inhibition of phage DNA synthesis in amino acid-starved RCstr host cells can be reversed by addition of chloramphenicol to the culture. Thus, the general features of amino acid control over T-even phage DNA synthesis are entirely analogous to those known for amino acid control over net RNA synthesis of uninfected bacteria. This analogy shows that the bacterial rel locus controls a wider range of macromolecular syntheses than had been previously thought. PMID:4914067

  19. Analysis and synthesis of abstract data types through generalization from examples

    NASA Technical Reports Server (NTRS)

    Wild, Christian

    1987-01-01

    The discovery of general patterns of behavior from a set of input/output examples can be a useful technique in the automated analysis and synthesis of software systems. These generalized descriptions of the behavior form a set of assertions which can be used for validation, program synthesis, program testing and run-time monitoring. Describing the behavior is characterized as a learning process in which general patterns can be easily characterized. The learning algorithm must choose a transform function and define a subset of the transform space which is related to equivalence classes of behavior in the original domain. An algorithm for analyzing the behavior of abstract data types is presented and several examples are given. The use of the analysis for purposes of program synthesis is also discussed.

  20. Low Temperature Synthesis, Chemical and Electrochemical Characterization of LiNi(x)Co(1-x)O2 (0 less than x less than 1)

    NASA Technical Reports Server (NTRS)

    Nanjundaswamy, K. S.; Standlee, D.; Kelly, C. O.; Whiteley, R. V., Jr.

    1997-01-01

    A new method of synthesis for the solid solution cathode materials LiNi(x)Co(1-x)O2 (0 less than x less than 1) involving enhanced reactions at temperatures less than or equal to 700 deg. C, between metal oxy-hydroxide precursors MOOH (M = Ni, Co) and Li-salts (Li2CO3, LiOH, and LiNO3) has been investigated. The effects of synthesis conditions and sources of Li, on phase purity, microstructure, and theoretical electrochemical capacity (total M(3+) content) are characterized by powder X-ray diffraction analysis, scanning electron microscopy, chemical analysis and room temperature magnetic susceptibility. An attempt has been made to correlate the electrochemical properties with the synthesis conditions and microstructure.

  1. Organizing Principles of Mammalian Nonsense-Mediated mRNA Decay

    PubMed Central

    Popp, Maximilian Wei-Lin; Maquat, Lynne E.

    2014-01-01

    Cells use messenger RNAs (mRNAs) to ensure the accurate dissemination of genetic information encoded by DNA. Given that mRNAs largely direct the synthesis of a critical effector of cellular phenotype, i.e., proteins, tight regulation of both the quality and quantity of mRNA is a prerequisite for effective cellular homeostasis. Here, we review nonsense-mediated mRNA decay (NMD), which is the best-characterized posttranscriptional quality control mechanism that cells have evolved in their cytoplasm to ensure transcriptome fidelity. We use protein quality control as a conceptual framework to organize what is known about NMD, highlighting overarching similarities between these two polymer quality control pathways, where the protein quality control and NMD pathways intersect, and how protein quality control can suggest new avenues for research into mRNA quality control. PMID:24274751

  2. A Comparison of Wavetable and FM Data Reduction Methods for Resynthesis of Musical Sounds

    NASA Astrophysics Data System (ADS)

    Horner, Andrew

    An ideal music-synthesis technique provides both high-level spectral control and efficient computation. Simple playback of recorded samples lacks spectral control, while additive sine-wave synthesis is inefficient. Wavetable and frequencymodulation synthesis, however, are two popular synthesis techniques that are very efficient and use only a few control parameters.

  3. Synthesis and characterization of dihexyldithiocarbamate as a chelating agent in extraction of gold(III)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fatimah, Soja Siti, E-mail: soja-sf@upi.edu; Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang, Km. 21, Jatinangor; Bahti, Husein H.

    2016-02-08

    The use of dialkyldithiocarbamates as chelating agents of transition metals have been developing for decades. Many chelating agents have been synthesized and used in the extraction of the metals. Studies on particular aspects of extraction of the metals, such as the effect of increasing hydrophobicity of chelating agents on the effectiveness of the extraction, have been done. However, despite the many studies on the synthesis and applications of this type of chelating agents, interests in the aspect of molecular structure of the synthesized ligands and of their complexes, have been limited. This study aimed at synthesizing and characterizing dihexylthiocarbamate, andmore » using the ligand for the extraction of gold III). Characterization of the ligand and of its metal complex were done by using elemental analysis, DTG, and spectroscopic methods to include NMR, ({sup 1}H, and {sup 13}C), FTIR, and MS-ESI. Data on the synthesis, characterization, and the application of the ligand as a chelating agent are presented.« less

  4. Synthesis and characterization of dihexyldithiocarbamate as a chelating agent in extraction of gold(III)

    NASA Astrophysics Data System (ADS)

    Fatimah, Soja Siti; Bahti, Husein H.; Hastiawan, Iwan; Permanasari, Anna

    2016-02-01

    The use of dialkyldithiocarbamates as chelating agents of transition metals have been developing for decades. Many chelating agents have been synthesized and used in the extraction of the metals. Studies on particular aspects of extraction of the metals, such as the effect of increasing hydrophobicity of chelating agents on the effectiveness of the extraction, have been done. However, despite the many studies on the synthesis and applications of this type of chelating agents, interests in the aspect of molecular structure of the synthesized ligands and of their complexes, have been limited. This study aimed at synthesizing and characterizing dihexylthiocarbamate, and using the ligand for the extraction of gold III). Characterization of the ligand and of its metal complex were done by using elemental analysis, DTG, and spectroscopic methods to include NMR, (1H, and 13C), FTIR, and MS-ESI. Data on the synthesis, characterization, and the application of the ligand as a chelating agent are presented.

  5. Synthesis, stabilization, and characterization of metal nanoparticles

    NASA Astrophysics Data System (ADS)

    White, Gregory Von, II

    Wet chemical synthesis techniques offer the ability to control various nanoparticle characteristics including size, shape, dispersibility in both aqueous and organic solvents, and tailored surface chemistries appropriate for different applications. Large quantities of stabilizing ligands or surfactants are often required during synthesis to achieve these nanoparticle characteristics. Unfortunately, excess reaction byproducts, surfactants, and ligands remaining in solution after nanoparticle synthesis can impede application, and therefore post-synthesis purification must be employed. A liquid-liquid solvent/antisolvent pair (typically ethanol/toluene or ethanol/hexane for gold nanoparticles, GNPs) can be used to both purify and size-selectively fractionate hydrophobically modified nanoparticles. Alternatively, carbon dioxide may be used in place of a liquid antisolvent, a "green" approach, enabling both nanoparticle purification and size-selective fractionation while simultaneously eliminating mixed solvent waste and allowing solvent recycle. We have used small-angle neutron scattering (SANS) to investigate the ligand structure and composition response of alkanethiol modified gold and silver nanoparticles at varying anti-solvent conditions (CO2 or ethanol). The ligand lengths and ligand solvation for alkanethiol gold and silver NPs were found to decrease with increased antisolvent concentrations directly impacting their dispersibility in solution. Calculated Flory-Huggins interaction parameters support our SANS study for dodecanethiol dispersibility in the mixed organic solvents. This research has led to a greater understanding of the liquid-liquid precipitation process for metal nanoparticles, and provides critical results for future interaction energy modeling.

  6. Flower-like NiO structures: Controlled hydrothermal synthesis and electrochemical characteristic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chai, Hui; Chen, Xuan; Key Laboratory of Advanced Functional Materials, Institute of Applied Chemistry, Xinjiang University, Urumqi 830046, Xinjiang

    Graphical abstract: Flower-like porous NiO was obtained via thermal decomposition of the precursor prepared by a hydrothermal process using hexamethylenetetramine and polyethylene glycol as hydrolysis-controlling agent and surfactant, respectively. The morphology and microstructure of as-synthesized NiO were characterized by X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results of electrochemical measurements demonstrated that the flower-like porous NiO has high capacity (340 F g{sup −1}) with excellent cycling performance as electrode materials of electrochemical capacitors (ECs), which may be attributed to the unique microstrcture of NiO. Data analyses indicated that NiO with novel porousmore » structure attractive for practical and large-scale applications in electrochemical capacitors. Display Omitted Highlights: ► Synthesis and characterization of NiO with novel porous structure is presented in this work. ► The electrochemical performance of product was examined. ► NiO with excellent performance as electrode materials may be due to the unique microstrcture. ► NiO with novel porous structure attractive for practical with high capacity (340 F g{sup −1}). -- Abstract: Flower-like porous NiO was obtained by thermal decomposition of the precursor prepared by a hydrothermal process with hexamethylenetetramine and polyethylene glycol as hydrolysis-controlling agent and surfactant, respectively. The morphology and microstructure of as-synthesized NiO were characterized by X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The resulting structures of NiO exhibited porous like petal building blocks. The electrochemical measurements’ results demonstrated that flower-like porous NiO has high capacity (340 F g{sup −1}) with excellent cycling performance as electrode materials for electrochemical capacitors, which may be attributed to the unique structure of NiO. The results indicated that NiO with novel porous structure has been attractive for practical and large-scale applications in electrochemical capacitors.« less

  7. Characterization and bacterial anti-adherent effect on modified PMMA denture acrylic resin containing platinum nanoparticles

    PubMed Central

    2014-01-01

    PURPOSE This study characterized the synthesis of a modified PMMA (Polymethyl methacrylate) denture acrylic loading platinum nanoparticles (PtN) and assessed its bacterial inhibitory efficacy to produce novel antimicrobial denture base material. MATERIALS AND METHODS Polymerized PMMA denture acrylic disc (20 mm × 2 mm) specimens containing 0 (control), 10, 50, 100 and 200 mg/L of PtN were fabricated respectively. The obtained platinum-PMMA nanocomposite (PtNC) was characterized by TEM (transmission electron microscopy), SEM/EDX (scanning electron microscope/energy dispersive X-ray spectroscopy), thermogravimetric and atomic absorption spectrophotometer analysis. In antimicrobial assay, specimens were placed on the cell culture plate, and 100 µL of microbial suspensions of S. mutans (Streptococcus mutans) and S. sobrinus (Streptococcus sobrinus) were inoculated then incubated at 37℃ for 24 hours. The bacterial attachment was tested by FACS (fluorescence-activated cell sorting) analysis after staining with fluorescent probe. RESULTS PtN were successfully loaded and uniformly immobilized into PMMA denture acrylic with a proper thermal stability and similar surface morphology as compared to control. PtNC expressed significant bacterial anti-adherent effect rather than bactericidal effect above 50 mg/L PtN loaded when compared to pristine PMMA (P=.01) with no or extremely small amounts of Pt ion eluted. CONCLUSION This is the first report on the synthesis and its antibacterial activity of Pt-PMMA nanocomposite. PMMA denture acrylic loading PtN could be a possible intrinsic antimicrobial denture material with proper mechanical characteristics, meeting those specified for denture bases. For clinical application, future studies including biocompatibility, color stability and warranting the long-term effect were still required. PMID:25006385

  8. A cell-based fluorescent assay to detect the activity of AB toxins that inhibit protein synthesis

    USDA-ARS?s Scientific Manuscript database

    AB-type protein toxins, produced by numerous bacterial pathogens and some plants, elicit a cytotoxic effect involving the inhibition of protein synthesis. To develop an improved method to detect the inhibition of protein synthesis by AB-type toxins, the present study characterized a Vero cell line t...

  9. Social Recognition Memory Requires Two Stages of Protein Synthesis in Mice

    ERIC Educational Resources Information Center

    Wolf, Gerald; Engelmann, Mario; Richter, Karin

    2005-01-01

    Olfactory recognition memory was tested in adult male mice using a social discrimination task. The testing was conducted to begin to characterize the role of protein synthesis and the specific brain regions associated with activity in this task. Long-term olfactory recognition memory was blocked when the protein synthesis inhibitor anisomycin was…

  10. Fabrication of polystyrene/gold nanotubes and nanostructure-controlled growth of aluminate.

    PubMed

    Zhu, Haifeng; Ai, Sufen; He, Qiang; Cui, Yue; Li, Junbai

    2007-07-01

    Direct adsorption of gold nanoparticles in the inner of alumina template and following immersion of polystyrene (PS) dichloromethane solution in the template resulted in the fabrication of composite nanotubes of PS and gold nanoparticles. Several methods have been used to characterize the tubular structure. Nanostructured sodium aluminates were formed when the anodic alumina oxide membrane was dissolved by the sodium hydroxide. A "flower" shape was found after etching the template while the synthesis process was recorded as function of a time. The results demonstrate that the shape and size of the aluminates nanostructure can be controlled by etching time and the pore diameter of the alumina membrane.

  11. Discovery of BMS-955176, a Second Generation HIV-1 Maturation Inhibitor with Broad Spectrum Antiviral Activity.

    PubMed

    Regueiro-Ren, Alicia; Liu, Zheng; Chen, Yan; Sin, Ny; Sit, Sing-Yuen; Swidorski, Jacob J; Chen, Jie; Venables, Brian L; Zhu, Juliang; Nowicka-Sans, Beata; Protack, Tricia; Lin, Zeyu; Terry, Brian; Samanta, Himadri; Zhang, Sharon; Li, Zhufang; Beno, Brett R; Huang, Xiaohua S; Rahematpura, Sandhya; Parker, Dawn D; Haskell, Roy; Jenkins, Susan; Santone, Kenneth S; Cockett, Mark I; Krystal, Mark; Meanwell, Nicholas A; Hanumegowda, Umesh; Dicker, Ira B

    2016-06-09

    HIV-1 maturation inhibition (MI) has been clinically validated as an approach to the control of HIV-1 infection. However, identifying an MI with both broad polymorphic spectrum coverage and good oral exposure has been challenging. Herein, we describe the design, synthesis, and preclinical characterization of a potent, orally active, second generation HIV-1 MI, BMS-955176 (2), which is currently in Phase IIb clinical trials as part of a combination antiretroviral regimen.

  12. Characterization and Consolidation of Tungsten Nanopowders Produced by Salt-Assisted Combustion Synthesis

    DTIC Science & Technology

    2010-09-01

    all other elements were measured by direct current plasma emission spectroscopy. Powder nos. 1, 2, and 3 were initially sent out for measurement of...shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number...penetrators. DU is currently used due to its high density, as well as its tendency to form adiabatic shear bands as the penetrator enters a target

  13. Synthesis and Characterization of Perfluoro Quaternary Ammonium Ion Exchange Membranes for Fuel Cell Applications

    DTIC Science & Technology

    2012-01-01

    complex fuels (2, 4-6). Current research on alkali fuel cells is primarily focused on the development of a solid polymer anion exchange membrane ( AEM ...a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. a...research focus the last few decades due to their high power density and low emissions when operating with hydrogen fuel (1-3). Recently however

  14. Molecular diodes based on conjugated diblock co-oligomers.

    PubMed

    Ng, Man-Kit; Lee, Dong-Chan; Yu, Luping

    2002-10-09

    This report describes synthesis and characterization of a molecular diode based upon a diblock conjugated oligomer system. This system consists of two conjugated blocks with opposite electronic demand. The molecular structure exhibits a built-in electronic asymmetry, much like a semiconductor p-n junction. Electrical measurements by scanning tunneling spectroscopy (STS) clearly revealed a pronounced rectifying effect. Definitive proof for the molecular nature of the rectifying effect in this conjugated diblock molecule is provided by control experiments with a structurally similar reference compound.

  15. Chelators influenced synthesis of chitosan-carboxymethyl cellulose microparticles for controlled drug delivery

    NASA Astrophysics Data System (ADS)

    Samrot, Antony V.; Akanksha; Jahnavi, Tatipamula; Padmanaban, S.; Philip, Sheryl-Ann; Burman, Ujjala; Rabel, Arul Maximus

    2016-11-01

    In this study, polyphenolic curcumin is entrapped within microcomposites made of biopolymers chitosan (CS) and carboxymethyl cellulose (CMC) formulated by ionic gelation method. Here, different concentrations of two chelating agents, barium chloride and sodium tripolyphosphate, are used to make microcomposites. Thus, the synthesized microparticles were characterized by FTIR, and their surface morphology was studied by SEM. Drug encapsulation efficiency and the drug release kinetics of CS-CMC composites are also studied. The produced microcomposites were used to study antibacterial activity in vitro.

  16. Shape-controlled synthesis of NiCo2S4 and their charge storage characteristics in supercapacitors.

    PubMed

    Zhang, Yufei; Ma, Mingze; Yang, Jun; Sun, Chencheng; Su, Haiquan; Huang, Wei; Dong, Xiaochen

    2014-08-21

    In this work, a facile hydrothermal approach for the shape-controlled synthesis of NiCo2S4 architectures is reported. Four different morphologies, urchin-, tube-, flower-, and cubic-like NiCo2S4 microstructures, have been successfully synthesized by employing various solvents. The obtained precursors and products have been characterized by X-ray diffraction, field-emission scanning electron microscopy and transmission electron microscopy. It is revealed that the supersaturation of nucleation and crystal growth is determined by the solvent polarity and solubility, which can precisely control the morphology of NiCo2S4 microstructures. The detailed electrochemical performances of the various NiCo2S4 microstructures are investigated by cyclic voltammetry and galvanostatic charge-discharge measurements. The results indicate that the tube-like NiCo2S4 exhibits promising capacitive properties with high capacitance and excellent retention. Its specific capacitance can reach 1048 F g(-1) at the current density of 3.0 A g(-1) and 75.9% of its initial capacitance is maintained at the current density of 10.0 A g(-1) after 5000 charge-discharge cycles.

  17. Shape-controlled synthesis of NiCo2S4 and their charge storage characteristics in supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhang, Yufei; Ma, Mingze; Yang, Jun; Sun, Chencheng; Su, Haiquan; Huang, Wei; Dong, Xiaochen

    2014-07-01

    In this work, a facile hydrothermal approach for the shape-controlled synthesis of NiCo2S4 architectures is reported. Four different morphologies, urchin-, tube-, flower-, and cubic-like NiCo2S4 microstructures, have been successfully synthesized by employing various solvents. The obtained precursors and products have been characterized by X-ray diffraction, field-emission scanning electron microscopy and transmission electron microscopy. It is revealed that the supersaturation of nucleation and crystal growth is determined by the solvent polarity and solubility, which can precisely control the morphology of NiCo2S4 microstructures. The detailed electrochemical performances of the various NiCo2S4 microstructures are investigated by cyclic voltammetry and galvanostatic charge-discharge measurements. The results indicate that the tube-like NiCo2S4 exhibits promising capacitive properties with high capacitance and excellent retention. Its specific capacitance can reach 1048 F g-1 at the current density of 3.0 A g-1 and 75.9% of its initial capacitance is maintained at the current density of 10.0 A g-1 after 5000 charge-discharge cycles.

  18. Synthesis and characterization of ZnS with controlled amount of S vacancies for photocatalytic H2 production under visible light

    PubMed Central

    Wang, Gang; Huang, Baibiao; Li, Zhujie; Lou, Zaizhu; Wang, Zeyan; Dai, Ying; Whangbo, Myung-Hwan

    2015-01-01

    Controlling amount of intrinsic S vacancies was achieved in ZnS spheres which were synthesized by a hydrothermal method using Zn and S powders in concentrated NaOH solution with NaBH4 added as reducing agent. These S vacancies efficiently extend absorption spectra of ZnS to visible region. Their photocatalytic activities for H2 production under visible light were evaluated by gas chromatograph, and the midgap states of ZnS introduced by S vacancies were examined by density functional calculations. Our study reveals that the concentration of S vacancies in the ZnS samples can be controlled by varying the amount of the reducing agent NaBH4 in the synthesis, and the prepared ZnS samples exhibit photocatalytic activity for H2 production under visible-light irradiation without loading noble metal. This photocatalytic activity of ZnS increases steadily with increasing the concentration of S vacancies until the latter reaches an optimum value. Our density functional calculations show that S vacancies generate midgap defect states in ZnS, which lead to visible-light absorption and responded. PMID:25712901

  19. Quality of life of people with mental health problems: a synthesis of qualitative research

    PubMed Central

    2012-01-01

    Purpose To identify the domains of quality of life important to people with mental health problems. Method A systematic review of qualitative research undertaken with people with mental health problems using a framework synthesis. Results We identified six domains: well-being and ill-being; control, autonomy and choice; self-perception; belonging; activity; and hope and hopelessness. Firstly, symptoms or ‘ill-being’ were an intrinsic aspect of quality of life for people with severe mental health problems. Additionally, a good quality of life was characterised by the feeling of being in control (particularly of distressing symptoms), autonomy and choice; a positive self-image; a sense of belonging; engagement in meaningful and enjoyable activities; and feelings of hope and optimism. Conversely, a poor quality life, often experienced by those with severe mental health difficulties, was characterized by feelings of distress; lack of control, choice and autonomy; low self-esteem and confidence; a sense of not being part of society; diminished activity; and a sense of hopelessness and demoralization. Conclusions Generic measures fail to address the complexity of quality of life measurement and the broad range of domains important to people with mental health problems. PMID:23173689

  20. Preparation, characterization and catalytic properties of MCM-48 supported tungstophosphoric acid mesoporous materials for green synthesis of benzoic acid

    NASA Astrophysics Data System (ADS)

    Wu, Hai-Yan; Zhang, Xiao-Li; Chen, Xi; Chen, Ya; Zheng, Xiu-Cheng

    2014-03-01

    MCM-48 and tungstophosphoric acid (HPW) were prepared and applied for the synthesis of HPW/MCM-48 mesoporous materials. The characterization results showed that HPW/MCM-48 obtained retained the typical mesopore structure of MCM-48, and the textural parameters decreased with the increase loading of HPW. The catalytic oxidation results of benzyl alcohol and benzaldehyde with 30% H2O2 indicated that HPW/MCM-48 was an efficient catalyst for the green synthesis of benzoic acid. Furthermore, 35 wt% HPW/MCM-48 sample showed the highest activity under the reaction conditions.

  1. Preparation, Fabrication, and Evaluation of Advanced Polymeric and Composite Materials

    NASA Technical Reports Server (NTRS)

    Orwoll, Robert A.

    1997-01-01

    The thesis titles are given below: physical and mechanical behavior of amorphous poly(arylene ether-co-imidasole)s and poly(arylene ether-co-imidasole) modification epoxies; the requirements of patentability as applied to the chemical arts; fabrication of thermoplastic polymer composite ribbon; blend of reactive diluents with phenylethynyl-terminated arylene ether oligomers; the synthesis, characterization, and application of ether-containing polyimides; the synthesis of reflective and electrically conductive polyimide films via an in-situ self-metalization procedure using silver (I) complexes; the thermal cure of phenylethynyl terminated polyimides and selected model compounds; and the synthesis, characterization, and molecular modeling of cyclic arylene ether oligomers.

  2. Synthesis, characterizations and catalytic activities of CoFe2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Verma, Divya; Sharma, Vikash; Parmar, Sarita; Okram, Gunadhor Singh; Jain, Shubha

    2018-05-01

    We report the synthesis of CoFe2O4 nanoparticles (NPs) through a novel one-step coprecipitation method. These NPs were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), Fourier transform infrared (FTIR), and Raman spectroscopy. These nano ferrites were successfully used for the synthesis of 3, 4-dihydropyrimidin-2(1H)-ones and thiones. They can be easily recovered by simple filtration and their catalytic activity remains nearly unaltered even after 4 consecutive cycles, making them ecofriendly and widely applicable due to their efficiency, ease of handling, and cost effectiveness.

  3. Synthesis and characterization of Au incorporated Alq3 nanowires

    NASA Astrophysics Data System (ADS)

    Khan, Mohammad Bilal; Ahmad, Sultan; Parwaz, M.; Rahul, Khan, Zishan H.

    2018-05-01

    We report the synthesis and characterization of pure and Au incorporated Alq3 nanowires. These nanowires are synthesized using thermal vapor transport method. The luminescence intensity of Au incorporated Alq3 nanowires are recorded to be higher than that of pure Alq3 nanowires, which is found to increase with the increase in Au concentration. Fluorescence quenching is also observed when Au concentration is increased beyond the certain limit.

  4. Effects of the synthesis temperature on the crystalline structure and the magnetic properties of cobalt ferrite nanoparticles prepared via coprecipitation

    NASA Astrophysics Data System (ADS)

    Hutamaningtyas, Evangelin; Utari; Suharyana; Purnama, Budi; Wijayanta, Agung Tri

    2016-08-01

    The effects of the synthesis temperature on the crystalline structure and the magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared via coprecipitation are discussed. The synthesis was conducted at temperatures of 75 °C, 85 °C and 95 °C. Fourier transform infrared spectroscopy characterization related to a stretching vibration at a wavenumber of 590 cm-1 indicated the formation of a CoFe2O4 metal oxide. In addition, powder X ray diffraction (XRD) characterization proved that the metal oxide was CoFe2O4. Crystallite sizes calculated using the Scherer formula at the strongest peak of the XRD spectra of the samples synthesized at 75 °C, 85 °C and 95 °C were 32 nm, 43 nm and 50.4 nm, respectively. Finally, the results of the vibrating sample magnetometer characterization showed that the saturation magnetization decreased with increasing synthesis temperature, which is related to the dominant preference of Co2+ over Fe3+ cations at the octahedral sites.

  5. Guanosine 3'-diphosphate 5'-diphosphate is not required for growth rate-dependent control of rRNA synthesis in Escherichia coli.

    PubMed Central

    Gaal, T; Gourse, R L

    1990-01-01

    rRNA synthesis in Escherichia coli is subject to at least two regulation systems, growth rate-dependent control and stringent control. The inverse correlation between rRNA synthesis rates and guanosine 3'-diphosphate 5'-diphosphate (ppGpp) levels under various physiological conditions has led to the supposition that ppGpp is the mediator of both control mechanisms by inhibiting transcription from rrn P1 promoters. Recently, relA- spoT- strains have been constructed in which both ppGpp synthesis pathways most likely have been removed (M. Cashel, personal communication). We have confirmed that such strains produce no detectable ppGpp and therefore offer a direct means for testing the involvement of ppGpp in the regulation of rRNA synthesis in vivo. Stringent control was determined by measurement of rRNA synthesis after amino acid starvation, while growth rate control was determined by measurement of rRNA synthesis under different nutritional conditions. As expected, the relA- spoT- strain is relaxed for stringent control. However, growth rate-dependent regulation is unimpaired. These results indicate that growth rate regulation can occur in the absence of ppGpp and imply that ppGpp is not the mediator, or at least is not the sole mediator, of growth rate-dependent control. Therefore, growth rate-dependent control and stringent control may utilize different mechanisms for regulating stable RNA synthesis. PMID:2196571

  6. Dispersed metal cluster catalysts by design. Synthesis, characterization, structure, and performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arslan, Ilke; Dixon, David A.; Gates, Bruce C.

    2015-09-30

    To understand the class of metal cluster catalysts better and to lay a foundation for the prediction of properties leading to improved catalysts, we have synthesized metal catalysts with well-defined structures and varied the cluster structures and compositions systematically—including the ligands bonded to the metals. These ligands include supports and bulky organics that are being tuned to control both the electron transfer to or from the metal and the accessibility of reactants to influence catalytic properties. We have developed novel syntheses to prepare these well-defined catalysts with atomic-scale control the environment by choice and placement of ligands and applied state-of-themore » art spectroscopic, microscopic, and computational methods to determine their structures, reactivities, and catalytic properties. The ligands range from nearly flat MgO surfaces to enveloping zeolites to bulky calixarenes to provide controlled coverages of the metal clusters, while also enforcing unprecedented degrees of coordinative unsaturation at the metal site—thereby facilitating bonding and catalysis events at exposed metal atoms. With this wide range of ligand properties and our arsenal of characterization tools, we worked to achieve a deep, fundamental understanding of how to synthesize robust supported and ligand-modified metal clusters with controlled catalytic properties, thereby bridging the gap between active site structure and function in unsupported and supported metal catalysts. We used methods of organometallic and inorganic chemistry combined with surface chemistry for the precise synthesis of metal clusters and nanoparticles, characterizing them at various stages of preparation and under various conditions (including catalytic reaction conditions) and determining their structures and reactivities and how their catalytic properties depend on their compositions and structures. Key characterization methods included IR, NMR, and EXAFS spectroscopies to identify ligands on the metals and their reactions; EXAFS spectroscopy and high-resolution STEM to determine cluster framework structures and changes resulting from reactant treatment and locations of metal atoms on support surfaces; X-ray diffraction crystallography to determine full structures of cluster-ligand combinations in the absence of a support, and TEM with tomographic methods to observe individual metal atoms and determine three-dimensional structures of catalysts. Electronic structure calculations were used to verify and interpret spectra and extend the understanding of reactivity beyond what is measurable experimentally.« less

  7. Laser based synthesis of nanofunctionalized particulates for pulmonary based controlled drug delivery applications

    NASA Astrophysics Data System (ADS)

    Singh, R. K.; Kim, W.-S.; Ollinger, M.; Craciun, V.; Coowantwong, I.; Hochhaus, G.; Koshizaki, N.

    2002-09-01

    There is an urgent need to develop controlled drug release systems for the delivery of drugs via the pulmonary route. A key issue in pulmonary dry delivery systems is to reduce the amount of biodegradable polymers that are added to control the drug release. We have synthesized nanofunctionalized drug particles using the pulsed laser deposition on particles (PLDP) (e.g. budesonide) in an effort to control the architecture and thickness of a nanoscale polymer coating on the drug particles. In vitro studies indicated that the dry half-life release for budesonide can be enhanced from 1.2 to over 60 min by a nanoscale coating on the drug particle. Extensive studies have been conducted to characterize the bonding and composition of the polymer film deposited on drug particles.

  8. Green approach for the synthesis and characterization of ZrSnO4 nanopowder

    NASA Astrophysics Data System (ADS)

    Athar, Taimur; Vishwakarma, Sandeep Kumar; Bardia, Avinash; Alabass, Razzaq; Alqarlosy, Ahmed; Khan, Aleem Ahmed

    2016-06-01

    Well-defined structural framework of ZrSnO4 nanopowder has been synthesized for the fabrications of cost-effective and sensitive devices which give final reproducible result with reliability under ideal conditions. The synthesis was carried out at moderate temperature and then finally dried in the laboratory oven and then followed with calcination at 1000 °C for 4 h to get phase selective product. It was observed that gelation time depends on the concentration of reactants and temperature. The characterization of ZrSnO4 was carried out with XRD, SEM, TEM, UV, thermal analysis, DLS and FT-IR techniques. With adjustment of reaction parameters, the systematic tuning of the particle size, shape and functional properties can be controlled. It was concluded that self-assembly is an integral part for the synthesis and opens a new exciting opportunity for better understanding the formation of nanostructure framework from micro- to nanoscale along with mechanistic via wet chemical approach. ZrSnO4 has vital role in identifying its potential cytotoxicity in the biological systems. The cytotoxicity effects of ZrSnO4 nanopowder in vitro were evaluated in three different human cell types (hepatocytes, mesenchymal stem cells and neuronal cells). Acute exposure of nanoparticles was found to have greater cytotoxic effect at higher concentration (30 µg/ml). However, partial detoxification was observed during nanoparticles exposure at day 6. The study concluded that an initial stress from nanoparticles incorporates sealing or detoxification of nanoparticles which may help to recover cell viability.

  9. Large-scale preparation of shape controlled SnO and improved capacitance for supercapacitors: from nanoclusters to square microplates.

    PubMed

    Wang, Lu; Ji, Hongmei; Zhu, Feng; Chen, Zhi; Yang, Yang; Jiang, Xuefan; Pinto, João; Yang, Gang

    2013-08-21

    Here, we first provide a facile ultrasonic-assisted synthesis of SnO using SnCl2 and the organic solvent of ethanolamine (ETA). The moderate alkalinity of ETA and ultrasound play very important roles in the synthesis of SnO. After the hydrolysis of the intermediate of ETA-Sn(II), the as-synthesized SnO nanoclusters undergo assembly, amalgamation, and preferential growth to microplates in hydrothermal treatment. The as-synthesized SnO was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), ultraviolet-visible absorption spectroscopy (UV-vis) and X-ray diffraction (XRD). To explore its potential applications in energy storage, SnO was fabricated into a supercapacitor electrode and characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge-discharge measurements. The as-synthesized SnO exhibits remarkable pseudocapacitive activity including high specific capacitance (208.9 F g(-1) at 0.1 A g(-1)), good rate capability (65.8 F g(-1) at 40 A g(-1)), and excellent cycling stability (retention 119.3% after 10,000 cycles) for application in supercapacitors. The capacitive behavior of SnO with various crystal morphologies was observed by fitted EIS using an equivalent circuit. The novel synthetic route for SnO is a convenient and potential way to large-scale production of microplates which is expected to be applicable in the synthesis of other metal oxide nanoparticles.

  10. Advantage of low-temperature hydrothermal synthesis to grow stoichiometric crednerite crystals

    NASA Astrophysics Data System (ADS)

    Poienar, Maria; Martin, Christine; Lebedev, Oleg I.; Maignan, Antoine

    2018-06-01

    This work reports a new approach for the growth of stoichiometric crednerite CuMnO2 crystals. The hydrothermal reaction, starting from soluble metal sulphates as precursors, is assisted by ethylene glycol and the formation of crednerite is found to depend strongly on pH and temperature. This method allows obtaining small hexagonal platelets with the larger dimension about 1.0-1.5 μm and with a composition characterized by a Cu/Mn ratio of 1. Thus, these crystals differ from the needle-like millimetric ones obtained by the flux technique for which the composition departs from the expected one and is close to Cu1.04Mn0.96. This monitoring of the cationic composition in crednerite, using hydrothermal synthesis, is important as the Cu/Mn ratio controls the low temperature antiferromagnetic ground-state.

  11. Synthesis, characterization, and application of novel biodegradable self-assembled 2-(N-phthalimido) ethyl-palmitate nanoparticles for cancer therapy

    NASA Astrophysics Data System (ADS)

    Kasoju, Naresh; Bora, Debajeet K.; Bhonde, Ramesh R.; Bora, Utpal

    2010-03-01

    We report the synthesis of novel biodegradable nanoparticles (NPs) which can kill the cancer cells without any additional drug loading. The NP was a self-assembled form of a phthalimide based conjugate, in which the phthalimide moiety was responsible for the anticancer activity. We describe the synthesis of a novel 2-(N-phthalimido) ethyl palmitate (PHEP-Pal) conjugate and subsequent preparation of NPs by a simple self assembly process. The successful synthesis of conjugate was confirmed by various characterization studies including nuclear magnetic resonance spectroscope, Fourier transform infrared spectroscope, TOF-liquid chromatography mass spectroscope, differential scanning calorimetry, and X-ray diffraction unit. The synthesis, shape, size, and size distribution of PHEP-Pal NPs were determined by transmission electron microscope, atomic force microscope, and dynamic light scattering technique. Finally, cell culture studies using A549 and HeLa cells were done to evaluate the anticancer effect of PHEP-Pal NPs, which demonstrated the potency of these NPs for use in cancer chemotherapy.

  12. Large-scale preparation of shape controlled SnO and improved capacitance for supercapacitors: from nanoclusters to square microplates

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Ji, Hongmei; Zhu, Feng; Chen, Zhi; Yang, Yang; Jiang, Xuefan; Pinto, João; Yang, Gang

    2013-07-01

    Here, we first provide a facile ultrasonic-assisted synthesis of SnO using SnCl2 and the organic solvent of ethanolamine (ETA). The moderate alkalinity of ETA and ultrasound play very important roles in the synthesis of SnO. After the hydrolysis of the intermediate of ETA-Sn(ii), the as-synthesized SnO nanoclusters undergo assembly, amalgamation, and preferential growth to microplates in hydrothermal treatment. The as-synthesized SnO was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), ultraviolet-visible absorption spectroscopy (UV-vis) and X-ray diffraction (XRD). To explore its potential applications in energy storage, SnO was fabricated into a supercapacitor electrode and characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge-discharge measurements. The as-synthesized SnO exhibits remarkable pseudocapacitive activity including high specific capacitance (208.9 F g-1 at 0.1 A g-1), good rate capability (65.8 F g-1 at 40 A g-1), and excellent cycling stability (retention 119.3% after 10 000 cycles) for application in supercapacitors. The capacitive behavior of SnO with various crystal morphologies was observed by fitted EIS using an equivalent circuit. The novel synthetic route for SnO is a convenient and potential way to large-scale production of microplates which is expected to be applicable in the synthesis of other metal oxide nanoparticles.Here, we first provide a facile ultrasonic-assisted synthesis of SnO using SnCl2 and the organic solvent of ethanolamine (ETA). The moderate alkalinity of ETA and ultrasound play very important roles in the synthesis of SnO. After the hydrolysis of the intermediate of ETA-Sn(ii), the as-synthesized SnO nanoclusters undergo assembly, amalgamation, and preferential growth to microplates in hydrothermal treatment. The as-synthesized SnO was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), ultraviolet-visible absorption spectroscopy (UV-vis) and X-ray diffraction (XRD). To explore its potential applications in energy storage, SnO was fabricated into a supercapacitor electrode and characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge-discharge measurements. The as-synthesized SnO exhibits remarkable pseudocapacitive activity including high specific capacitance (208.9 F g-1 at 0.1 A g-1), good rate capability (65.8 F g-1 at 40 A g-1), and excellent cycling stability (retention 119.3% after 10 000 cycles) for application in supercapacitors. The capacitive behavior of SnO with various crystal morphologies was observed by fitted EIS using an equivalent circuit. The novel synthetic route for SnO is a convenient and potential way to large-scale production of microplates which is expected to be applicable in the synthesis of other metal oxide nanoparticles. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00951c

  13. Anthrax carbohydrates, synthesis and uses thereof

    DOEpatents

    Carlson, Russell W.; Boons, Geert-Jan; Quinn, Conrad; Vasan, Mahalakshmi; Wolfert, Margreet A.; Choudhury, Biswa; Kannenberg, Elmar; Leoff, Christine; Mehta, Alok; Saile, Elke; Rauvolfova, Jana; Wilkins, Patricia; Harvey, Alex J.

    2013-04-16

    The present invention presents the isolation, characterization and synthesis of oligosaccharides of Bacillus anthracis. Also presented are antibodies that bind to such saccharide moieties and various methods of use for such saccharide moieties and antibodies.

  14. Sol-Gel Synthesis, Electrochemical Characterization, and Stability Testing of Ti0.7W0.3O2 Nanoparticles for Catalyst Support Applications in Proton-Exchange Membrane Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subban, Chinmayee V.; Zhou, Qin; Hu, Anthony

    2010-11-19

    The materials currently used in proton-exchange membrane fuel cells (PEMFCs) require complex control of operating conditions to make them sufficiently durable to permit commercial deployment. One of the major materials challenges to allow simplification of fuel cell operating strategies is the discovery of catalyst supports that are much more stable to oxidative decomposition than currently used carbon blacks. Here we report the synthesis and characterization of Ti 0.7W 0.3O 2 nanoparticles (approximately 50 nm diameter), a promising doped metal oxide that is a candidate for such a durable catalyst support. The synthesized nanoparticles were platinized, characterized by electrochemical testing, andmore » evaluated for stability under PEMFC and other oxidizing acidic conditions. Ti 0.7W 0.3O 2 nanoparticles show no evidence of decomposition when heated in a Nafion solution for 3 weeks at 80 °C. In contrast, when heated in sulfuric, nitric, perchloric, or hydrochloric acid, the oxide reacts to form salts such as titanylsulfatehydrate from sulfuric acid. Electrochemical tests show that rates of hydrogen oxidation and oxygen reduction by platinum nanoparticles supported on Ti 0.7W 0.3O 2 are comparable to those of commercial Pt on carbon black.« less

  15. Immunologic and Genetic Selection of Adenovirus Vaccine Strains: Synthesis and Characterization of Adenovirus Antigens.

    DTIC Science & Technology

    1984-08-01

    exhibited strikingly different chromatographic characteristics. 2. Effect of proflavine on the synthesis of adenovirus, type 5, and associated soluble...antigens. The synthesis of type 5 adenovirus in HeLa cells was suppressed to a considerable extent by low concentrations of proflavine , an acridine dye...chemical. Addition of proflavine to infected cells at different times during the virus growth cycle revealed that the processes leading to the synthesis

  16. New multirate sampled-data control law structure and synthesis algorithm

    NASA Technical Reports Server (NTRS)

    Berg, Martin C.; Mason, Gregory S.; Yang, Gen-Sheng

    1992-01-01

    A new multirate sampled-data control law structure is defined and a new parameter-optimization-based synthesis algorithm for that structure is introduced. The synthesis algorithm can be applied to multirate, multiple-input/multiple-output, sampled-data control laws having a prescribed dynamic order and structure, and a priori specified sampling/update rates for all sensors, processor states, and control inputs. The synthesis algorithm is applied to design two-input, two-output tip position controllers of various dynamic orders for a sixth-order, two-link robot arm model.

  17. Recent Advancements towards Full-System Microfluidics

    PubMed Central

    Miled, Amine

    2017-01-01

    Microfluidics is quickly becoming a key technology in an expanding range of fields, such as medical sciences, biosensing, bioactuation, chemical synthesis, and more. This is helping its transformation from a promising R&D tool to commercially viable technology. Fuelling this expansion is the intensified focus on automation and enhanced functionality through integration of complex electrical control, mechanical properties, in situ sensing and flow control. Here we highlight recent contributions to the Sensors Special Issue series called “Microfluidics-Based Microsystem Integration Research” under the following categories: (i) Device fabrication to support complex functionality; (ii) New methods for flow control and mixing; (iii) Towards routine analysis and point of care applications; (iv) In situ characterization; and (v) Plug and play microfluidics. PMID:28757587

  18. Synthesis of single-walled carbon nanotubes and graphene composite in arc for ultracapacitors

    NASA Astrophysics Data System (ADS)

    Li, Jian; Cheng, Xiaoqian; Shashurin, Alexey; Keidar, Michael

    2012-10-01

    Arc discharge supported by the erosion of graphite anode is considered as one of the most practical and efficient methods to synthesize various carbon nanostructures such as single-walled carbon nanotubes (SWCNT) and graphene with minimal defects and large yield due to the relatively high synthesis temperature and eco-friendly growth mechanism. By introducing a non-uniform magnetic field during synthesis process, large-scale graphene and high-purity SWCNT can be obtained in one step. In addition, the yield of graphene can be controlled by external parameters, such as the type and pressure of buffer gas, the temperature of substrate, and so on. Possessing the properties of highly accessible surface area and good electrical conductivity, the composite of graphene and SWCNT are promising nanomaterials for the electrodes of ultracapacitor, which can store electric energy with high level of capacitance. In this work, we fabricated electrodes of ultracapacitor based on nanostructures composite by wire-wound rod coating method, characterized them by SEM, EDX and Raman spectroscopy, and tested the performance by a potentiostat/galvanostat.

  19. Exploration and characterization of new synthesis methods for C60 colloidal suspensions in water

    NASA Astrophysics Data System (ADS)

    Hilburn, Martha E.

    Buckminsterfullerene, C60, has been used in the production of several commercial products from badminton racquets and lubricants for their mechanical properties to cosmetics and even dietary supplements for their "antioxidant" properties. Multi-ton production of C60 began in 2003 encouraging serious consideration of its fate in the environment in the case of an accidental release or improper disposal. Although C60 is practically insoluble in water, it readily forms stable aqueous colloidal suspensions (termed nC60) through solvent exchange methods or long-term vigorous stirring in water. Two new solvent exchange methods for synthesizing nC60 are presented. These methods combine key advantages of multiple existing synthesis methods including high yield, narrow particle size distribution, short synthesis time, and an absence of solvents such as tetrahydrofuran that have historically caused problems in laboratory synthesized aggregates. The resulting samples are attractive candidates for use in controlled environmental impact, biological, and toxicity studies. An improved method for quantifying residual solvents in nC60 samples utilizing solid phase micro extraction gas chromatography mass spectrometry (SPME-GC-MS) is also discussed.

  20. InSe monolayer: synthesis, structure and ultra-high second-harmonic generation

    NASA Astrophysics Data System (ADS)

    Zhou, Jiadong; Shi, Jia; Zeng, Qingsheng; Chen, Yu; Niu, Lin; Liu, Fucai; Yu, Ting; Suenaga, Kazu; Liu, Xinfeng; Lin, Junhao; Liu, Zheng

    2018-04-01

    III–IV layered materials such as indium selenide have excellent photoelectronic properties. However, synthesis of materials in such group, especially with a controlled thickness down to monolayer, still remains challenging. Herein, we demonstrate the successful synthesis of monolayer InSe by physical vapor deposition (PVD) method. The high quality of the sample was confirmed by complementary characterization techniques such as Raman spectroscopy, atomic force microscopy (AFM) and high resolution annular dark field scanning transmission electron microscopy (ADF-STEM). We found the co-existence of different stacking sequence (β- and γ-InSe) in the same flake with a sharp grain boundary in few-layered InSe. Edge reconstruction is also observed in monolayer InSe, which has a distinct atomic structure from the bulk lattice. Moreover, we discovered that the second-harmonic generation (SHG) signal from monolayer InSe shows large optical second-order susceptibility that is 1–2 orders of magnitude higher than MoS2, and even 3 times of the largest value reported in monolayer GaSe. These results make atom-thin InSe a promising candidate for optoelectronic and photosensitive device applications.

  1. Synthesis of polycarbonate-r-polyethylene glycol copolymer for templated synthesis of mesoporous TiO2 films.

    PubMed

    Patel, Rajkumar; Kim, Jinkyu; Lee, Chang Soo; Kim, Jong Hak

    2014-12-01

    We synthesized a novel polycarbonate Z-r-polyethylene glycol (PCZ-r-PEG) copolymer by solution polycondensation. Successful synthesis of PCZ-r-PEG copolymer was confirmed by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (1H-NMR), gel permeation chromatography (GPC), and transmission electron microscopy (TEM). PCZ-r-PEG copolymer was used as a structure-directing agent for fabrication of mesoporous thin film containing a titanium dioxide (TiO2) layer. To control the porosity of the resultant inorganic layer, the ratio of titanium(IV) isopropoxide (TTIP) to PCZ-r-PEG copolymer was varied. The structure and porosity of the resulting mesoporous films were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses. Mesoporous TiO2 films fabricated on an F-doped tin oxide (FTO) surface were used as photoanodes for quasi-solid-state dye-sensitized solar cells (qssDSSCs). The highest efficiency achieved was 3.3% at 100 mW/cm2 for a film thickness of 750 nm, which is high considering the thickness of TiO2 film, indicating the importance of the structure-directing agent.

  2. Synthesis of Zeolites Using the ADOR (Assembly-Disassembly-Organization-Reassembly) Route

    PubMed Central

    Wheatley, Paul S.; Čejka, Jiří; Morris, Russell E.

    2016-01-01

    Zeolites are an important class of materials that have wide ranging applications such as heterogeneous catalysts and adsorbents which are dependent on their framework topology. For new applications or improvements to existing ones, new zeolites with novel pore systems are desirable. We demonstrate a method for the synthesis of novel zeolites using the ADOR route. ADOR is an acronym for Assembly, Disassembly, Organization and Reassembly. This synthetic route takes advantage of the assembly of a relatively poorly stable that which can be selectively disassembled into a layered material. The resulting layered intermediate can then be organized in different manners by careful chemical manipulation and then reassembled into zeolites with new topologies. By carefully controlling the organization step of the synthetic pathway, new zeolites with never before seen topologies are capable of being synthesized. The structures of these new zeolites are confirmed using powder X-ray diffraction and further characterized by nitrogen adsorption and scanning electron microscopy. This new synthetic pathway for zeolites demonstrates its capability to produce novel frameworks that have never been prepared by traditional zeolite synthesis techniques. PMID:27078165

  3. Synthesis of Zeolites Using the ADOR (Assembly-Disassembly-Organization-Reassembly) Route.

    PubMed

    Wheatley, Paul S; Čejka, Jiří; Morris, Russell E

    2016-04-03

    Zeolites are an important class of materials that have wide ranging applications such as heterogeneous catalysts and adsorbents which are dependent on their framework topology. For new applications or improvements to existing ones, new zeolites with novel pore systems are desirable. We demonstrate a method for the synthesis of novel zeolites using the ADOR route. ADOR is an acronym for Assembly, Disassembly, Organization and Reassembly. This synthetic route takes advantage of the assembly of a relatively poorly stable that which can be selectively disassembled into a layered material. The resulting layered intermediate can then be organized in different manners by careful chemical manipulation and then reassembled into zeolites with new topologies. By carefully controlling the organization step of the synthetic pathway, new zeolites with never before seen topologies are capable of being synthesized. The structures of these new zeolites are confirmed using powder X-ray diffraction and further characterized by nitrogen adsorption and scanning electron microscopy. This new synthetic pathway for zeolites demonstrates its capability to produce novel frameworks that have never been prepared by traditional zeolite synthesis techniques.

  4. Ru-assisted synthesis of Pd/Ru nanodendrites with high activity for ethanol electrooxidation.

    PubMed

    Zhang, Ke; Bin, Duan; Yang, Beibei; Wang, Caiqin; Ren, Fangfang; Du, Yukou

    2015-08-07

    Due to the specific physical and chemical properties of a highly branched noble metal, the controllable synthesis has attracted much attention. This article reports the synthesis of Pd/Ru nanodendrites by a facile method using an oil bath in the presence of polyvinyl pyrrolidone, potassium bromide and ascorbic acid. The morphology, structure, and composition of the as-prepared catalysts were characterized by means of X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy. In the electrochemical measurement, the as-prepared Pd7/Ru1 bimetallic nanodendrites provide a large electrochemically active surface area and exhibit high peak current density in the forward scan toward ethanol electrooxidation, which is nearly four times higher than those of a pure Pd catalyst. The as-prepared Pd7/Ru1 catalysts also exhibit significantly enhanced cycling stability toward ethanol oxidation in alkaline medium, which are mainly ascribed to the synergetic effect between Pd and Ru. This indicates that the Pd7/Ru1 catalysts should have great potential applications in direct ethanol fuel cells.

  5. Microwave assisted synthesis and characterization of magnesium substituted calcium phosphate bioceramics.

    PubMed

    Khan, Nida Iqbal; Ijaz, Kashif; Zahid, Muniza; Khan, Abdul S; Abdul Kadir, Mohammed Rafiq; Hussain, Rafaqat; Anis-Ur-Rehman; Darr, Jawwad A; Ihtesham-Ur-Rehman; Chaudhry, Aqif A

    2015-11-01

    Hydroxyapatite is used extensively in hard tissue repair due to its biocompatibility and similarity to biological apatite, the mineral component of bone. It differs subtly in composition from biological apatite which contains other ions such as magnesium, zinc, carbonate and silicon (believed to play biological roles). Traditional methods of hydroxyapatite synthesis are time consuming and require strict reaction parameter control. This paper outlines synthesis of magnesium substituted hydroxyapatite using simple microwave irradiation of precipitated suspensions. Microwave irradiation resulted in a drastic decrease in ageing times of amorphous apatitic phases. Time taken to synthesize hydroxyapatite (which remained stable upon heat treatment at 900°C for 1h) reduced twelve folds (to 2h) as compared to traditionally required times. The effects of increasing magnesium concentration in the precursors on particle size, surface area, phase-purity, agglomeration and thermal stability, were observed using scanning electron microscopy, BET surface area analysis, X-ray diffraction and photo acoustic Fourier transform infra-red spectroscopy. Porous agglomerates were obtained after a brief heat-treatment (1h) at 900°C. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Influence of hydrothermal synthesis parameters on the properties of hydroxyapatite nanoparticles.

    PubMed

    Kuśnieruk, Sylwia; Wojnarowicz, Jacek; Chodara, Agnieszka; Chudoba, Tadeusz; Gierlotka, Stanislaw; Lojkowski, Witold

    2016-01-01

    Hydroxyapatite (HAp) nanoparticles of tunable diameter were obtained by the precipitation method at room temperature and by microwave hydrothermal synthesis (MHS). The following parameters of the obtained nanostructured HAp were determined: pycnometric density, specific surface area, phase purity, lattice parameters, particle size, particle size distribution, water content, and structure. HAp nanoparticle morphology and structure were determined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). X-ray diffraction measurements confirmed crystalline HAp was synthesized, which was pure in terms of phase. It was shown that by changing the synthesis parameters, the diameter of HAp nanoparticles could be controlled. The average diameter of the HAp nanoparticles was determined by Scherrer's equation via the Nanopowder XRD Processor Demo web application, which interprets the results of specific surface area and TEM measurements using the dark-field technique. The obtained nanoparticles with average particle diameter ranging from 8-39 nm were characterized by having homogeneous morphology with a needle shape and a narrow particle size distribution. Strong similarities were found when comparing the properties of some types of nanostructured hydroxyapatite with natural occurring apatite found in animal bones and teeth.

  7. Synthesis and characterization of bis-thiourea having amino acid derivatives

    NASA Astrophysics Data System (ADS)

    Fakhar, Imran; Yamin, Bohari M.; Hasbullah, Siti Aishah

    2016-11-01

    In this article four new symmetric bis-thiourea derivatives having amino acid linkers were reported with good yield. Isophthaloyl dichloride was used as spacer and L-alanine, L-aspartic acid, L-phenylalanine and L-glutamic acid were used as linkers. Bis-thiourea derivatives were prepared from relatively stable isophthaloyl isothiocyanate intermediate. Newly synthesized bis-thiourea derivatives were characterized by FTIR, H-NMR, 13C-NMR and CHNS-O elemental analysis techniques. Characterization data was in good agreement with the expected derivatives, hence confirmed the synthesis of four new derivatives of bis-thiourea having amino acids.

  8. Witting Reaction Using a Stabilized Phosphorus Ylid: An Efficient and Stereoselective Synthesis of Ethyl Trans-Cinnamate

    ERIC Educational Resources Information Center

    Speed, Traci J.; Mclntyre, Jean P.; Thamattoor, Dasan M.

    2004-01-01

    An instructive experiment for the synthesis of ethyl trans-cinnamate, a pleasant smelling ester used in perfumery and flavoring by the reaction of benzaldehyde with the stable ylid triphenylphosphorane is described. The synthesis, workup and characterization of trans-cinnamate may be accomplished in a single laboratory session with commonly…

  9. Replacing critical rare earth materials in high energy density magnets

    NASA Astrophysics Data System (ADS)

    McCallum, R. William

    2012-02-01

    High energy density permanent magnets are crucial to the design of internal permanent magnet motors (IPM) for hybride and electric vehicles and direct drive wind generators. Current motor designs use rare earth permanent magnets which easily meet the performance goals, however, the rising concerns over cost and foreign control of the current supply of rare earth resources has motivated a search for non-rare earth based permanent magnets alloys with performance metrics which allow the design of permanent magnet motors and generators without rare earth magnets. This talk will discuss the state of non-rare-earth permanent magnets and efforts to both improve the current materials and find new materials. These efforts combine first principles calculations and meso-scale magnetic modeling with advance characterization and synthesis techniques in order to advance the state of the art in non rare earth permanent magnets. The use of genetic algorithms in first principle structural calculations, combinatorial synthesis in the experimental search for materials, atom probe microscopy to characterize grain boundaries on the atomic level, and other state of the art techniques will be discussed. In addition the possibility of replacing critical rare earth elements with the most abundant rare earth Ce will be discussed.

  10. Smart Material Demonstrators Based on Shape Memory Alloys and Electroceramics

    NASA Technical Reports Server (NTRS)

    Cooke, Arther V.

    1996-01-01

    This paper describes the development and characterization of two technology demonstrators that were produced under the auspices of an ARPA sponsored smart materials synthesis and processing effort. The ARPA Smart Materials and Synthesis (SMS) Program was a 2 year, $10M partnership led by Martin Marietta Laboratories - Baltimore and included Lockheed Missiles & Space Co., NRL, AVX Corp., Martin Marietta Astronautics Groups, BDM Federal, Inc., Virginia Tech, Clemson, University of Maryland, Denver University, and The Johns Hopkins University. In order to demonstrate the usefulness of magnetron sputtered shape memory foil and the manufacturability of reliable, reproducible electrostrictive actuators, the team designed a broadband active vibration cancellation device for suppressing the vibration load on delicate instruments and precision pointing devices mounted on orbiting satellites and spacecraft. The results of extensive device characterization and bench testing are discussed. Initial simulation results show excellent control authority and amplitude attenuation over the range of anticipated disturbance frequencies. The SMS Team has also developed an active 1-3 composite comprising micro-electrostrictive actuators embedded in a polymeric matrix suitable for underwater applications such as sonar quieting and listening arrays, and for medical imaging. Follow-on programs employing these technologies are also described.

  11. Mutual Amide Prodrug of Etodolac-glucosamine: Synthesis, Characterization and Pharmacological Screening

    PubMed Central

    Pandey, Preeti; Pandey, S.; Dubey, Shaifali

    2013-01-01

    Etodolac, a nonsteroidal antiinflammatory drug, widely used in arthritis is associated with gastric ulceration and irritation due to presence of free carboxylic group. The current investigation reports synthesis of mutual amide prodrug of etodolac by masking free carboxylic group with glucosamine, a nutritional supplement for treatment of arthritis. Confirmation and characterization of the structure of the synthesized prodrug done by elemental and spectroscopy analysis, melting point, determination of migration parameters (Rf, RM, and Rt) by using thin layer chromatography and high performance liquid chromatography, respectively. Partition coefficient and solubility study confirms its lipophilic character so can be suitable candidate for controlled release delivery. In vitro hydrolytic studies of prodrug confirms good rate of hydrolysis in blood plasma, fecal matter, and simulated intestinal fluid while stable in gastric simulated fluid. In vivo pharmacological screening performed on animals. Prodrug with respect to etodolac shows good analgesic, antiinflammatory, and antiarthritic activity. The prodrug was assessed for their probable damaging effects by ulcerogeniticity and histopathological analysis. The histopathological studies showed less ulceration in the gastric region when treated with prodrug, thereby proving the prodrug to be better in action as compared to etodolac and are advantageous in having less gastrointestinal side effects. PMID:24302794

  12. Flavonoids inhibit both rice and sheep serotonin N-acetyltransferases and reduce melatonin levels in plants.

    PubMed

    Lee, Kyungjin; Hwang, Ok Jin; Reiter, Russel J; Back, Kyoungwhan

    2018-05-31

    The plant melatonin biosynthetic pathway has been well characterized, but inhibitors of melatonin synthesis have not been well studied. Here, we found that flavonoids potently inhibited plant melatonin synthesis. For example, flavonoids including morin and myricetin significantly inhibited purified, recombinant sheep serotonin N-acetyltransferase (SNAT). Flavonoids also dose-dependently and potently inhibited purified rice SNAT1 and SNAT2. Thus, myricetin (100 μmol/L) reduced rice SNAT1 and SNAT2 activity 7- and 10-fold, respectively, and also strongly inhibited the N-acetylserotonin methyltransferase activity of purified, recombinant rice caffeic acid O-methyltransferase. To explore the in vivo effects, rice leaves were treated with flavonoids and then cadmium. Flavonoid-treated leaves had lower melatonin levels than the untreated control. To explore the direct roles of flavonoids in melatonin biosynthesis, we first functionally characterized a putative rice flavonol synthase (FLS) in vitro and generated flavonoid-rich transgenic rice plants that overexpressed FLS. Such plants produced more flavonoids but less melatonin than the wild-type, which suggests that flavonoids indeed inhibit plant melatonin biosynthesis. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Two-Dimensional Holey Nanoarchitectures Created by Confined Self-Assembly of Nanoparticles via Block Copolymers: From Synthesis to Energy Storage Property

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Lele; Fang, Zhiwei; Li, Jing

    Advances in liquid-phase exfoliation and surfactant-directed anisotropic growth of two-dimensional (2D) nanosheets have enabled their rapid development. However, it remains challenging to develop assembly strategies that lead to the construction of 2D nanomaterials with well-defined geometry and functional nanoarchitectures that are tailored to specific applications. Here we report a facile self-assembly method leading to the controlled synthesis of 2D transition metal oxide (TMO) nanosheets containing a high density of holes. We utilize graphene oxide sheets as a sacrificial template and Pluronic copolymers as surfactant. By using ZnFe 2O 4 (ZFO) nanoparticles as a model material, we demonstrate that by tuningmore » the molecular weight of the Pluronic copolymers that we can incorporate the ZFO particles and tune the size of the holes in the sheets. The resulting 2D ZFO nanosheets offer synergistic characteristics including increased electrochemically active surface areas, shortened ion diffusion paths, and strong inherent mechanical properties, leading to enhanced lithium-ion storage properties. Post-cycling characterization confirms that the samples maintain structural integrity after electrochemical cycling. In conclusion, our findings demonstrate that this template-assisted self-assembly method is a useful bottom-up route for controlled synthesis of 2D nanoarchitectures, and these holey 2D nanoarchitectures are promising for improving the electrochemical performance of nextgeneration lithium-ion batteries.« less

  14. Properties, synthesis, and growth mechanisms of carbon nanotubes with special focus on thermal chemical vapor deposition.

    PubMed

    Nessim, Gilbert D

    2010-08-01

    Carbon nanotubes (CNTs) have been extensively investigated in the last decade because their superior properties could benefit many applications. However, CNTs have not yet made a major leap into industry, especially for electronic devices, because of fabrication challenges. This review provides an overview of state-of-the-art of CNT synthesis techniques and illustrates their major technical difficulties. It also charts possible in situ analyses and new reactor designs that might enable commercialization. After a brief description of the CNT properties and of the various techniques used to synthesize substrate-free CNTs, the bulk of this review analyzes chemical vapor deposition (CVD). This technique receives special attention since it allows CNTs to be grown in predefined locations, provides a certain degree of control of the types of CNTs grown, and may have the highest chance to succeed commercially. Understanding the primary growth mechanisms at play during CVD is critical for controlling the properties of the CNTs grown and remains the major hurdle to overcome. Various factors that influence CNT growth receive a special focus: choice of catalyst and substrate materials, source gases, and process parameters. This review illustrates important considerations for in situ characterization and new reactor designs that may enable researchers to better understand the physical growth mechanisms and to optimize the synthesis of CNTs, thus contributing to make carbon nanotubes a manufacturing reality.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Shuguang, E-mail: hustcsg@sohu.com; Zeng Kai; Li Haibin

    Dispersed rhombohedral NiS rods with high aspect ratios and rhombic dodecahedron-like cubic NiS{sub 2} crystals were prepared by solvothermal routes using NiCl{sub 2}.6H{sub 2}O and Na{sub 2}S{sub 2}O{sub 3}.5H{sub 2}O as reagents and ethylenediamine as a solvent, and 3D blossoming flower-like rhombohedral NiS microstructures were synthesized using different sulfur sources of thiourea. The products were characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, energy dispersion spectrometry and selected area electronic diffraction. All the products were pure and had good single crystalline nature. The synthesis parameters were of great importance on the purity and morphology of themore » products. The possible growth mechanisms have been discussed based on the analyses of the effects of sulfur sources and solvent on the crystal structures and detailed configurations of the products. The present work is likely to help the phase-controlled synthesis of other metal chalcogenides. - Graphical abstract: Rhombohedral NiS dispersed rods and 3D flower-like microstructures are evolved from dispersed nucleus and aggregate of nucleus, respectively, and the cross-sections of such rods are in equilateral triangle-like shape. Highlights: > 3D blossoming flower-like r-NiS microstructures are obtained. > Equilateral triangle-like cross-sections of r-NiS rods are observed. > Approach based on XRD analysis to phase-controlled synthesis is presented.« less

  16. Two-Dimensional Holey Nanoarchitectures Created by Confined Self-Assembly of Nanoparticles via Block Copolymers: From Synthesis to Energy Storage Property

    DOE PAGES

    Peng, Lele; Fang, Zhiwei; Li, Jing; ...

    2017-12-20

    Advances in liquid-phase exfoliation and surfactant-directed anisotropic growth of two-dimensional (2D) nanosheets have enabled their rapid development. However, it remains challenging to develop assembly strategies that lead to the construction of 2D nanomaterials with well-defined geometry and functional nanoarchitectures that are tailored to specific applications. Here we report a facile self-assembly method leading to the controlled synthesis of 2D transition metal oxide (TMO) nanosheets containing a high density of holes. We utilize graphene oxide sheets as a sacrificial template and Pluronic copolymers as surfactant. By using ZnFe 2O 4 (ZFO) nanoparticles as a model material, we demonstrate that by tuningmore » the molecular weight of the Pluronic copolymers that we can incorporate the ZFO particles and tune the size of the holes in the sheets. The resulting 2D ZFO nanosheets offer synergistic characteristics including increased electrochemically active surface areas, shortened ion diffusion paths, and strong inherent mechanical properties, leading to enhanced lithium-ion storage properties. Post-cycling characterization confirms that the samples maintain structural integrity after electrochemical cycling. In conclusion, our findings demonstrate that this template-assisted self-assembly method is a useful bottom-up route for controlled synthesis of 2D nanoarchitectures, and these holey 2D nanoarchitectures are promising for improving the electrochemical performance of nextgeneration lithium-ion batteries.« less

  17. Bacteriophytochrome controls carotenoid-independent response to photodynamic stress in a non-photosynthetic rhizobacterium, Azospirillum brasilense Sp7

    PubMed Central

    Kumar, Santosh; Kateriya, Suneel; Singh, Vijay Shankar; Tanwar, Meenakshi; Agarwal, Shweta; Singh, Hina; Khurana, Jitendra Paul; Amla, Devinder Vijay; Tripathi, Anil Kumar

    2012-01-01

    Ever since the discovery of the role of bacteriophytochrome (BphP) in inducing carotenoid synthesis in Deinococcus radiodurans in response to light the role of BphPs in other non-photosynthetic bacteria is not clear yet. Azospirillum brasilense, a non-photosynthetic rhizobacterium, harbours a pair of BphPs out of which AbBphP1 is a homolog of AtBphP1 of Agrobacterium tumefaciens. By overexpression, purification, biochemical and spectral characterization we have shown that AbBphP1 is a photochromic bacteriophytochrome. Phenotypic study of the ΔAbBphP1 mutant showed that it is required for the survival of A. brasilense on minimal medium under red light. The mutant also showed reduced chemotaxis towards dicarboxylates and increased sensitivity to the photooxidative stress. Unlike D. radiodurans, AbBphP1 was not involved in controlling carotenoid synthesis. Proteome analysis of the ΔAbBphP1 indicated that AbBphP1 is involved in inducing a cellular response that enables A. brasilense in regenerating proteins that might be damaged due to photodynamic stress. PMID:23173079

  18. Bacteriophytochrome controls carotenoid-independent response to photodynamic stress in a non-photosynthetic rhizobacterium, Azospirillum brasilense Sp7.

    PubMed

    Kumar, Santosh; Kateriya, Suneel; Singh, Vijay Shankar; Tanwar, Meenakshi; Agarwal, Shweta; Singh, Hina; Khurana, Jitendra Paul; Amla, Devinder Vijay; Tripathi, Anil Kumar

    2012-01-01

    Ever since the discovery of the role of bacteriophytochrome (BphP) in inducing carotenoid synthesis in Deinococcus radiodurans in response to light the role of BphPs in other non-photosynthetic bacteria is not clear yet. Azospirillum brasilense, a non-photosynthetic rhizobacterium, harbours a pair of BphPs out of which AbBphP1 is a homolog of AtBphP1 of Agrobacterium tumefaciens. By overexpression, purification, biochemical and spectral characterization we have shown that AbBphP1 is a photochromic bacteriophytochrome. Phenotypic study of the ΔAbBphP1 mutant showed that it is required for the survival of A. brasilense on minimal medium under red light. The mutant also showed reduced chemotaxis towards dicarboxylates and increased sensitivity to the photooxidative stress. Unlike D. radiodurans, AbBphP1 was not involved in controlling carotenoid synthesis. Proteome analysis of the ΔAbBphP1 indicated that AbBphP1 is involved in inducing a cellular response that enables A. brasilense in regenerating proteins that might be damaged due to photodynamic stress.

  19. Copper-catalysed enantioselective stereodivergent synthesis of amino alcohols.

    PubMed

    Shi, Shi-Liang; Wong, Zackary L; Buchwald, Stephen L

    2016-04-21

    The chirality, or 'handedness', of a biologically active molecule can alter its physiological properties. Thus it is routine procedure in the drug discovery and development process to prepare and fully characterize all possible stereoisomers of a drug candidate for biological evaluation. Despite many advances in asymmetric synthesis, developing general and practical strategies for obtaining all possible stereoisomers of an organic compound that has multiple contiguous stereocentres remains a challenge. Here, we report a stereodivergent copper-based approach for the expeditious construction of amino alcohols with high levels of chemo-, regio-, diastereo- and enantioselectivity. Specifically, we synthesized these amino-alcohol products using sequential, copper-hydride-catalysed hydrosilylation and hydroamination of readily available enals and enones. This strategy provides a route to all possible stereoisomers of the amino-alcohol products, which contain up to three contiguous stereocentres. We leveraged catalyst control and stereospecificity simultaneously to attain exceptional control of the product stereochemistry. Beyond the immediate utility of this protocol, our strategy could inspire the development of methods that provide complete sets of stereoisomers for other valuable synthetic targets.

  20. Star Polymers.

    PubMed

    Ren, Jing M; McKenzie, Thomas G; Fu, Qiang; Wong, Edgar H H; Xu, Jiangtao; An, Zesheng; Shanmugam, Sivaprakash; Davis, Thomas P; Boyer, Cyrille; Qiao, Greg G

    2016-06-22

    Recent advances in controlled/living polymerization techniques and highly efficient coupling chemistries have enabled the facile synthesis of complex polymer architectures with controlled dimensions and functionality. As an example, star polymers consist of many linear polymers fused at a central point with a large number of chain end functionalities. Owing to this exclusive structure, star polymers exhibit some remarkable characteristics and properties unattainable by simple linear polymers. Hence, they constitute a unique class of technologically important nanomaterials that have been utilized or are currently under audition for many applications in life sciences and nanotechnologies. This article first provides a comprehensive summary of synthetic strategies towards star polymers, then reviews the latest developments in the synthesis and characterization methods of star macromolecules, and lastly outlines emerging applications and current commercial use of star-shaped polymers. The aim of this work is to promote star polymer research, generate new avenues of scientific investigation, and provide contemporary perspectives on chemical innovation that may expedite the commercialization of new star nanomaterials. We envision in the not-too-distant future star polymers will play an increasingly important role in materials science and nanotechnology in both academic and industrial settings.

  1. ''The control of lignin synthesis''

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, John E.

    2005-04-07

    In this project we tested the hypothesis that regulation of the synthesis of lignin in secondary xylem cells in conifer trees involves the transport of glucosylated lignin monomers to the wall of xylem cells, followed by de-glucosylation in the cell wall by monolignol-specific glucosidase enzymes, which activates the monomers for lignin polymerization. The information we gathered is relevant to the fundamental understanding of how trees make wood, and to the applied goal of more environmentally friendly pulp and paper production. We characterized the complete genomic structure of the Coniferin-specific Beta-glucosidase (CBG) gene family in the conifers loblolly pine (Pinus taeda)more » and lodgepole pine (Pinus contorta), and partial genomic sequences were obtained in several other tree species. Both pine species contain multiple CBG genes which raises the possibility of differential regulation, perhaps related to the multiple roles of lignin in development and defense. Subsequent projects will need to include detailed gene expression studies of each gene family member during tree growth and development, and testing the role of each monolignol-specific glucosidase gene in controlling lignin content.« less

  2. Synthesis of Cobalt Powder by Reduction of Cobalt Oxide with Ethanol

    NASA Astrophysics Data System (ADS)

    Cetinkaya, S.; Eroglu, S.

    2018-03-01

    In this study, ethanol (C2H5OH) was used as a reducing agent for Co powder synthesis from Co3O4. It aimed to investigate the effects of temperature (700-900 K), reaction time (0-60 min), and gas flow rate on the reaction behavior of Co3O4 in ethanol flow. Mass measurement, x-ray diffraction, and scanning electron microscopy techniques were used to characterize the products. Single-phase Co powders with mean particle sizes of 0.51 μm and 0.70 μm were obtained within 10 min at 800 K and 900 K, respectively. Above 800 K, external mass transfer controlled the reduction process (Q a = 0.52 kJ/mole). Below 800 K, the process (Q a = 20.17 kJ/mole) was partly controlled by external mass transfer and partly by intrinsic chemical reaction kinetics. Significant C uptake was observed at 700 K and 750 K within 60 min. The reactions were discussed in the light of thermodynamic results, which predicted Co formation from Co3O4 and C2H5OH.

  3. Morphology-Controlled Synthesis of Au/Cu₂FeSnS₄ Core-Shell Nanostructures for Plasmon-Enhanced Photocatalytic Hydrogen Generation.

    PubMed

    Ha, Enna; Lee, Lawrence Yoon Suk; Man, Ho-Wing; Tsang, Shik Chi Edman; Wong, Kwok-Yin

    2015-05-06

    Copper-based chalcogenides of earth-abundant elements have recently arisen as an alternate material for solar energy conversion. Cu2FeSnS4 (CITS), a quaternary chalcogenide that has received relatively little attention, has the potential to be developed into a low-cost and environmentlly friendly material for photovoltaics and photocatalysis. Herein, we report, for the first time, the synthesis, characterization, and growth mechanism of novel Au/CITS core-shell nanostructures with controllable morphology. Precise manipulations in the core-shell dimensions are demonstrated to yield two distinct heterostructures with spherical and multipod gold nanoparticle (NP) cores (Au(sp)/CITS and Au(mp)/CITS). In photocatalytic hydrogen generation with as-synthesized Au/CITS NPs, the presence of Au cores inside the CITS shell resulted in higher hydrogen generation rates, which can be attributed to the surface plasmon resonance (SPR) effect. The Au(sp)/CITS and Au(mp)/CITS core-shell NPs enhanced the photocatalytic hydrogen generation by about 125% and 240%, respectively, compared to bare CITS NPs.

  4. Construction, characterization and application of molecular tools for metabolic engineering of Synechocystis sp.

    PubMed

    Qi, Fengxia; Yao, Lun; Tan, Xiaoming; Lu, Xuefeng

    2013-10-01

    An integrative gene expression system has been constructed for the directional assembly of biological components in Synechocystis PCC6803. We have characterized 11 promoter parts with various expression efficiencies for genetic engineering of Synechocystis for the production of fatty alcohols. This was achieved by integrating several genetic modifications including the expression of multiple-copies of fatty acyl-CoA reductase (FAR) under the control of strong promoters, disruption of the competing pathways for poly-β-hydroxybutyrate and glycogen synthesis, and for peptide truncation of the FAR. In shake-flask cultures, the production of fatty alcohols was significantly improved with a yield of 761 ± 216 μg/g cell dry weight in Synechocystis, which is the highest reported to date.

  5. L-arginine modified magnetic nanoparticles: green synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Bagherpour, A. R.; Kashanian, F.; Seyyed Ebrahimi, S. A.; Habibi-Rezaei, M.

    2018-02-01

    In recent years, there has been considerable interest in Arg which is a unique, nontoxic, and biocompatible biomolecule since it can be utilized as an agent for the functionalization and subsequent stabilization of MNPs against oxidation and aggregation, during or after a synthesis procedure. Our studies demonstrate that Arg has great impacts on MNPs with the decreasing size of the particle. Also, saturation magnetization and electrostatic interactions of RMNPs have a direct impact on biological molecules such as proteins and nucleic acids. By controlling the concentration of Arg, it is possible to accurately control the above-mentioned characteristics, which are useful tools for applications such as connecting to antibodies, catalysis, drug loading, and modification of MNP stability. In the current study, three RMNPs with different Arg densities, i.e. 0.42, 1.62, and 2.29 μg per mg were successfully synthesized through a simple co-precipitation method (named p 0.5, p 1, and p 1.5, respectively) and verified by colorimetric determination. Also, the as-synthesized RMNP powders were characterized by XRD, SEM/EDAX, FTIR, VSM, and zeta potential analysis. The presence of a magnetic core was proved by XRD, FTIR, and EDAX. Colorimetric analysis showed the existence of Arg in the synthesized samples. According to the zeta potential and VSM results, increasing the cap of Arg on the MNP surface leads to an increase in the surface charge and decrease in the magnetization of the RMNPs, respectively.

  6. Large scale synthesis of α-Si3N4 nanowires through a kinetically favored chemical vapour deposition process

    NASA Astrophysics Data System (ADS)

    Liu, Haitao; Huang, Zhaohui; Zhang, Xiaoguang; Fang, Minghao; Liu, Yan-gai; Wu, Xiaowen; Min, Xin

    2018-01-01

    Understanding the kinetic barrier and driving force for crystal nucleation and growth is decisive for the synthesis of nanowires with controllable yield and morphology. In this research, we developed an effective reaction system to synthesize very large scale α-Si3N4 nanowires (hundreds of milligrams) and carried out a comparative study to characterize the kinetic influence of gas precursor supersaturation and liquid metal catalyst. The phase composition, morphology, microstructure and photoluminescence properties of the as-synthesized products were characterized by X-ray diffraction, fourier-transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy and room temperature photoluminescence measurement. The yield of the products not only relates to the reaction temperature (thermodynamic condition) but also to the distribution of gas precursors (kinetic condition). As revealed in this research, by controlling the gas diffusion process, the yield of the nanowire products could be greatly improved. The experimental results indicate that the supersaturation is the dominant factor in the as-designed system rather than the catalyst. With excellent non-flammability and high thermal stability, the large scale α-Si3N4 products would have potential applications to the improvement of strength of high temperature ceramic composites. The photoluminescence spectrum of the α-Si3N4 shows a blue shift which could be valued for future applications in blue-green emitting devices. There is no doubt that the large scale products are the base of these applications.

  7. Exon Microarray Analysis of Human Dorsolateral Prefrontal Cortex in Alcoholism

    PubMed Central

    Manzardo, Ann M.; Gunewardena, Sumedha; Wang, Kun; Butler, Merlin G.

    2014-01-01

    Background Alcohol abuse is associated with cellular and biochemical disturbances that impact upon protein and nucleic acid synthesis, brain development, function and behavioral responses. To further characterize the genetic influences in alcoholism and the effects of alcohol consumption on gene expression, we used a highly sensitive exon microarray to examine mRNA expression in human frontal cortex of alcoholics and control males. Methods Messenger RNA was isolated from the dorsolateral prefrontal cortex (dlPFC, Brodmann area 9) of 7 adult Alcoholic (6 males, 1 female, mean age 48 years) and 7 matched controls. Affymetrix Human Exon 1.0 ST Array was performed according to standard procedures and the results analyzed at the gene level. Microarray findings were validated using qRT-PCR, and the ontology of disturbed genes characterized using Ingenuity Pathway Analysis (IPA). Results Decreased mRNA expression was observed for genes involved in cellular adhesion (e.g., CTNNA3, ITGA2), transport (e.g., TF, ABCA8), nervous system development (e.g., LRP2, UGT8, GLDN) and signaling (e.g., RASGRP, LGR5) with influence over lipid and myelin synthesis (e.g., ASPA, ENPP2, KLK6). IPA identified disturbances in network functions associated with neurological disease, and development including cellular assembly and organization impacting on psychological disorders. Conclusions Our data in alcoholism support a reduction in expression of dlPFC mRNA for genes involved with neuronal growth, differentiation and signaling that targets white matter of the brain. PMID:24890784

  8. Exon microarray analysis of human dorsolateral prefrontal cortex in alcoholism.

    PubMed

    Manzardo, Ann M; Gunewardena, Sumedha; Wang, Kun; Butler, Merlin G

    2014-06-01

    Alcohol abuse is associated with cellular and biochemical disturbances that impact upon protein and nucleic acid synthesis, brain development, function, and behavioral responses. To further characterize the genetic influences in alcoholism and the effects of alcohol consumption on gene expression, we used a highly sensitive exon microarray to examine mRNA expression in human frontal cortex of alcoholics and control males. Messenger RNA was isolated from the dorsolateral prefrontal cortex (dlPFC; Brodmann area 9) of 7 adult alcoholic (6 males, 1 female, mean age 49 years) and 7 matched controls. Affymetrix Human Exon 1.0 ST array was performed according to standard procedures and the results analyzed at the gene level. Microarray findings were validated using quantitative reverse transcription polymerase chain reaction, and the ontology of disturbed genes characterized using Ingenuity Pathway Analysis (IPA). Decreased mRNA expression was observed for genes involved in cellular adhesion (e.g., CTNNA3, ITGA2), transport (e.g., TF, ABCA8), nervous system development (e.g., LRP2, UGT8, GLDN), and signaling (e.g., RASGRP3, LGR5) with influence over lipid and myelin synthesis (e.g., ASPA, ENPP2, KLK6). IPA identified disturbances in network functions associated with neurological disease and development including cellular assembly and organization impacting on psychological disorders. Our data in alcoholism support a reduction in expression of dlPFC mRNA for genes involved with neuronal growth, differentiation, and signaling that targets white matter of the brain. Copyright © 2014 by the Research Society on Alcoholism.

  9. Nyctanthes arbortristis mediated synthesis of silver nanoparticles: Cytotoxicity assay against THP-1 human leukemia cell lines

    NASA Astrophysics Data System (ADS)

    Kumari, Priti; Kumari, Niraj; Jha, Anal K.; Singh, K. P.; Prasad, K.

    2018-05-01

    Green synthesis, characterizations and applications of nanoparticles have become an important branch of nanotechnology now a day. In this paper, green synthesis of silver nanoparticles (AgNPs) using the aqueous extract of Nyctanthes arbortristis as a reducing and stabilizing agent, has been discussed. Present synthetic method is very handy, cost-effective and reproducible. Formation of AgNPs was characterized by X-ray diffraction, dynamic light scattering, scanning electron microscopy and UV-visible spectroscopy techniques. The phytochemicals responsible for nano-transformation were principally flavonoids, phenols and glycosides present in the leaves. Further, the dose dependent cytotoxicity assay of biosynthesized AgNPs against THP-1 human leukemia cell lines showed the encouraging results.

  10. Synthesis and Primary Characterization of Self-Assembled Peptide-Based Hydrogels

    PubMed Central

    Nagarkar, Radhika P.; Schneider, Joel P.

    2009-01-01

    Summary Hydrogels based on peptide self-assembly form an important class of biomaterials that find application in tissue engineering and drug delivery. It is essential to prepare peptides with high purity to achieve batch-to-batch consistency affording hydrogels with reproducible properties. Automated solid-phase peptide synthesis coupled with optimized Fmoc (9-fluorenylmethoxycarbonyl) chemistry to obtain peptides in high yield and purity is discussed. Details of isolating a desired peptide from crude synthetic mixtures and assessment of the peptide’s final purity by high-performance liquid chromatography and mass spectrometry are provided. Beyond the practical importance of synthesis and primary characterization, techniques used to investigate the properties of hydrogels are briefly discussed. PMID:19031061

  11. Automated synthesis of arabinoxylan-oligosaccharides enables characterization of antibodies that recognize plant cell wall glycans.

    PubMed

    Schmidt, Deborah; Schuhmacher, Frank; Geissner, Andreas; Seeberger, Peter H; Pfrengle, Fabian

    2015-04-07

    Monoclonal antibodies that recognize plant cell wall glycans are used for high-resolution imaging, providing important information about the structure and function of cell wall polysaccharides. To characterize the binding epitopes of these powerful molecular probes a library of eleven plant arabinoxylan oligosaccharides was produced by automated solid-phase synthesis. Modular assembly of oligoarabinoxylans from few building blocks was enabled by adding (2-naphthyl)methyl (Nap) to the toolbox of orthogonal protecting groups for solid-phase synthesis. Conjugation-ready oligosaccharides were obtained and the binding specificities of xylan-directed antibodies were determined on microarrays. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. SbCl3-catalyzed one-pot synthesis of 4,4′-diaminotriarylmethanes under solvent-free conditions: Synthesis, characterization, and DFT studies

    PubMed Central

    2011-01-01

    Summary A simple, efficient, and mild procedure for a solvent-free one-step synthesis of various 4,4′-diaminotriarylmethane derivatives in the presence of antimony trichloride as catalyst is described. Triarylmethane derivatives were prepared in good to excellent yields and characterized by elemental analysis, FTIR, 1H and 13C NMR spectroscopic techniques. The structural and vibrational analysis were investigated by performing theoretical calculations at the HF and DFT levels of theory by standard 6-31G*, 6-31G*/B3LYP, and B3LYP/cc-pVDZ methods and good agreement was obtained between experimental and theoretical results. PMID:21445373

  13. Synthesis, characterization and histopathological study of a lead-based Indian traditional drug: naga bhasma.

    PubMed

    Singh, S K; Gautam, D N S; Kumar, M; Rai, S B

    2010-01-01

    The aim of the present study is to prepare and characterize Naga bhasma on structural and elemental basis to address the role of the raw materials used during the preparation, compound form of the lead bhasma, nature (crystalline/amorphous) and crystallite/particle size of the drug. The study also covers the toxicological effect of the drug on albino rats. It was found that drug contains lead in nano-crystalline (~60 nm) lead sulfide form (Pb(2+)) associated with the organic contents and different nutrient elements coming from the herbs used during the preparation. Naga bhasma prepared was found to be totally safe in histopathology study on rats at a dose of 6 mg/100 g/day. The different characterization techniques used present a role model for the quality control and standardization of such kinds of herbo-metallic medicines.

  14. A little adjustment of synthetic strategy led to a new highly repeated heteropolyblue: Structure, characterizations and photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Chen, Wu-Hua; Zhang, Zhu-Sen; Zhao, Jin-Hua; Qiu, Ze-Hai; Yuan, Qiu-Lan; Huang, Tian-Fu; Lin, Xue-Yu; Hu, Zhi-Biao

    2017-06-01

    Hydrothermal synthesis is known as the most efficient method to prepare novel structural polyoxometalate (POM)-based materials, but controlled synthesis of a structure-directing POM is always challenging task. The experimental repeatability is usually one of the key topics. To explore a reliable hydrothermal synthesis approach for new POMs will be a meaningful work. Our previous work, which we have hydrothermally synthesized the first Cr-complexes-capped Keggin-type POM, [Hdma]3[H2phen]{[Cr(phen)]2[MoV8MoVI4O36(PO4)]}·nH2O (n ≈ 2) (Chen et al., polyhedron, 2015, 85, 117), afford us some commendable synthetic experiences, arouse us some introspections as well for its tricky preparation conditions and low experimental repeatability. Based on the aforementioned work, a new high-repetition-rate and more steady heteropolyblue, [H3O]0.5(Hdma)2.5(dma)0.25{[Cr(phen)]2[MoV6MoVI6O8(PO4)]}·2H2O (1) (dma = dimethylamine (C2H7N), phen = 1,10-phenanthroline (C12H8N2)), has been successfully obtained by virtue of reasonably adjusting synthetic strategy. The adjustment of synthetic strategy includes controlling ratio of reactants and aging time, reasonably using redoxes and stepwise self-assembly plans. Compound 1 is the second POM with Keggin-type polyanion capped by Cr-complexes. Experiments demonstrate that compound 1 has good catalytic activity in the both degradation reactions of rhodamine B (RHB) and methyl orange (MO) under ultraviolet (UV)-light and oxidant H2O2 conditions. Detailed structural characterizations include single-crystal X-ray diffraction (XRD) analyses, energy-dispersive X-ray spectrometry (EDS) analyses, elemental analyses, cerate oxidimetry, powder XRD, fourier transform infrared (FT-IR) spectroscopy, ultraviolet-visible-near-infrared (UV-Vis-NIR) solid diffuse reflection spectrum and X-ray photoelectron spectroscopy (XPS) analyses. The electrochemical property (cyclic voltammetry (CV)) of compound 1 has also been studied.

  15. Ultrafast and scalable laser liquid synthesis of tin oxide nanotubes and its application in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Liu, Zhikun; Cao, Zeyuan; Deng, Biwei; Wang, Yuefeng; Shao, Jiayi; Kumar, Prashant; Liu, C. Richard; Wei, Bingqing; Cheng, Gary J.

    2014-05-01

    Laser-induced photo-chemical synthesis of SnO2 nanotubes has been demonstrated by employing a nanoporous polycarbonate membrane as a template. The SnO2 nanotube diameter can be controlled by the nanoporous template while the nanotube length can be tuned by laser parameters and reaction duration. The microstructure characterization of the nanotubes indicates that they consist of mesoporous structures with sub 5 nm size nanocrystals connected by the twinning structure. The application of SnO2 nanotubes as an anode material in lithium ion batteries has also been explored, and they exhibited high capacity and excellent cyclic stability. The laser based emerging technique for scalable production of crystalline metal oxide nanotubes in a matter of seconds is remarkable. The compliance of the laser based technique with the existing technologies would lead to mass production of novel nanomaterials that would be suitable for several emerging applications.Laser-induced photo-chemical synthesis of SnO2 nanotubes has been demonstrated by employing a nanoporous polycarbonate membrane as a template. The SnO2 nanotube diameter can be controlled by the nanoporous template while the nanotube length can be tuned by laser parameters and reaction duration. The microstructure characterization of the nanotubes indicates that they consist of mesoporous structures with sub 5 nm size nanocrystals connected by the twinning structure. The application of SnO2 nanotubes as an anode material in lithium ion batteries has also been explored, and they exhibited high capacity and excellent cyclic stability. The laser based emerging technique for scalable production of crystalline metal oxide nanotubes in a matter of seconds is remarkable. The compliance of the laser based technique with the existing technologies would lead to mass production of novel nanomaterials that would be suitable for several emerging applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr06444a

  16. Modulacion de la mesoestructura y composicion en silices nanoparticuladas con porosidad jerarquica

    NASA Astrophysics Data System (ADS)

    Morales Tatay, Jose Manuel

    The objectives of this thesis were: 1) Ensure the development of a reproducible method of synthesis of nanoparticulate bimodal silicas (NBS), UVM-7 type, to enable fine and independent control of both pore systems, intra- and interparticle. Is intended to confirm that by controlling the physicochemical procedural variables as the concentration of surfactant and the dielectric constant of the reaction medium, along with a strategy of well defined and easy synthesis, can lead to the obtainment of a NBS material showing characteristics topological significantly different. 2) The synthesis of new bimodal mesoporous nanocrystalline materials, UVM-7 type, using a cheap source of silicon and simplifying the maximum synthesis. Starting from a cheap inorganic precursor such as sodium silicate, seeks a path of simple, reproducible, fast and with the least possible number of synthesis reaction steps with a view to future production at industrial level of the mesoporous silica nanoparticulate. 3) A detailed characterization of the new material called UVM-10. Check the similarities and differences of this nanoparticulate mesoporous silica obtained from a cheap source of silicon with respect to the reference materials (UVM-7 and MCM-41). The study of UVM-10 was carried out by all mesoporous solids characterization techniques available in the ICMUV. 4) Within a characterization and adequacy of the UVM-10 for future application as catalyst support, have studied possible routes of synthesis and subsequent optimization that will produce the UVM-10 silica doped with various hetero (Al and Ti). 5) Chemical knowledge transfer has acquired the ability to obtain a nanoparticulate hierarchical bimodal porosity from a silicon source but condensed by a synthesis route elapses in homogeneous phase material. This material renamed UVM-12 type silica. 6) Finally, it has been suggested a comparative thermal stability between the various silicas (UVM-7, UVM-UVM-10 and 12). In general, the main mood of the work has been divided into two parts; in the case of the UVM-7, the maximum understanding of the processes involved in the synthesis (especially hydrolysis, condensation and reconstitution of silica) and study how efficient procedural regulation of two basic physicochemical variables: the concentration of surfactant and dielectric constant of the reaction medium. In a second part, the development of new materials following the premises of reducing the synthesis, simplify the process and eliminate environmentally harmful reagents. We can conclude that: The one-UVM-7 UVM-10 silicas and combine all the advantages associated with mesopores short in length, interconnected with a hierarchical porosity and larger scale. 2-for the first time has been modulated size pore two systems independently with a single surfactant by one-pot synthesis type. 3-were first prepared NBS type silicas from sodium silicate with appreciable yield and textural properties similar to those presented by the UVM-7 silica to which we have called UVM-10 type. Also has been modulated intra- and interparticle porosity also using a single template agent. It has combined this new low-cost via preparative with the inclusion of substantial amounts of aluminum and titanium as hetero without altering the NBS organization. 4-Modifying the order of addition of reagents with respect to the employee in the synthesis of the UVM-10 silicas, we managed synthesized by a one-pot strategy a new family, silicas UVM-12, which combines advantages of its two predecessors (UVM UVM-10 -7). Was also optimized the incorporation of heteroatoms (Al and Ti) which modify the nature of the mesopore wall, keeping the NBS type organization. 5-Ne has prepared a new family of NBS silicas, UVM-13, using a template to generate single agent hierarchical pore two systems, used a source of solid fumed silica as silica. We modulated six-wall size NBS type silicas from about 1.9 nm (UVM-7) to 2.9 (UVM-13) through 2.5 (UVM-10). The importance of this parameter is that a greater thickness have higher thermal stability and this point could alleviate to some extent the deficiency of mesoporous silicas on zeolites. Understanding the reactions involved in the various processes of synthesis is allowing direct our preparative chemistry for materials with specific characteristics, chemical and structurally homogeneous and reproducibly. These features become necessary and indispensable requirements if we consider the possibility of using these silicas NBS as a platform or support more complex structures (theranostics materials, catalysts, composites, etc.), or if we want to scale their synthesis thinking about possible transfers system productive sectors. The new UVM-10 and UVM-12 supports could improve performance, especially in those cases where required (for the conditions) thermal or hydrothermal stability superior. (Abstract shortened by UMI.).

  17. Analysis and synthesis of abstract data types through generalization from examples

    NASA Technical Reports Server (NTRS)

    Wild, Christian

    1987-01-01

    The discovery of general patterns of behavior from a set of input/output examples can be a useful technique in the automated analysis and synthesis of software systems. These generalized descriptions of the behavior form a set of assertions which can be used for validation, program synthesis, program testing, and run-time monitoring. Describing the behavior is characterized as a learning process in which the set of inputs is mapped into an appropriate transform space such that general patterns can be easily characterized. The learning algorithm must chose a transform function and define a subset of the transform space which is related to equivalence classes of behavior in the original domain. An algorithm for analyzing the behavior of abstract data types is presented and several examples are given. The use of the analysis for purposes of program synthesis is also discussed.

  18. Synthesis and characterization of novel polymers from non-petroleum sources for use in enhanced oil recovery. Progress report, July 1,1981-June 30, 1982. [Starch-g-polyacrylamide; polysaccharides and acrylamides; Schardinger-. beta. -dextrin and acrylamide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, G.B.; Hogen-Esch, T.E.

    1982-01-01

    Annual progress reports are presented for the following tasks: (1) synthesis and structural characterization of polysaccharide-based graft copolymers for use in tertiary oil recovery; (2) determination of physical properties of the polymers and their solutions, and screening of the polymers to determine their utility in oil recovery. Over the past year synthesis and characterization studies have continued in the following five areas: (1) starch-g-polyacrylamide (ST-g-PAM) copolymers; (2) graft copolymers of other polysaccharides (gum arabic, yellow dextrin, pectin, okra polysaccharide, and guar gum) and acrylamides; (3) a naturally occurring polysaccharide extracted from okra (Akro); (4) graft copolymers of Schardinger-..beta..-dextrin and acrylamidemore » (SD-g-PAM); (5) chemical degradation of ST-g-PAM and SD-g-PAM copolymers. For physical properties studies, the following areas were investigated: (1) characterization of copolymers by ultracentrifugation, size exclusion chromatography and nucleophore membrane filtration; (2) rheological studies on copolymers; and (3) statistical analysis of variables in graft copolymerization. (ATT)« less

  19. Synthesis and Characterization of C-Cinnamal Calix [4] Resorsinarena from Cinnamon Oil Waste West Sumatra

    NASA Astrophysics Data System (ADS)

    Etika, S. B.; Nasra, E.; Rilaztika, I.

    2018-04-01

    Synthesis and characterization of compound C-Cinnamal Calix [4] Resorsinarena (CCCR) of cinnamon oil waste have been done. This study was aimed to synthesis and characterize C-Cinnamal Calix [4] Resorsinarena from cinnamaldehyde violated cinnamon oil waste. C-Cinnamal Calix [4] Resorsinarena was synthesized by electrophilic substitution reaction of cinnamaldehyde isolated by the acid and resorcinol at 77oC temperature for 2 hour. The data analysis spectrum UV-VIS and FT-IR showed that the compound isolated cinnamaldehyde same as pure cinnamaldehyde compound. The characterization of C-Cinnamal Calix [4] Resorsinarena in the form of reddish-colored solids with melting point 3580C by using UV-VIS showed the presence of double bond, FT-IR showed the absorption at the wave number 3323,94 cm-1 indicating the ‑OH group, the wave number 1610,94 cm-1 showed the vibration C=C, the strong region absorption of 1500,86 cm-1 indicating the presence of an aromatic ring, the at 1442,88 cm-1 wave number indicating the presence of CH3.

  20. Interfacial Effects and Organization of Inorganic-Organic Composite Solids.

    DTIC Science & Technology

    1998-05-20

    SITU NMR STUDY OF THE HYDROTHERMAL SYNTHESIS OF TEMPLATE-MEDIATED MICROPOROUS ALUMINOPHOSPHATE MATERIALS, Conne M Gersrdin, Pnnccton Univ, Dept...quantitatively characterize the hydrothermal medium while the synthesis proceeds can yield to a better description of the different steps of the...Inorganic-Organic Composite Solids," focused on recent applications in materials synthesis that use structure-directing agents and self-assembly

  1. The Synthesis and Characterization of Rouaite, a Copper Hydroxy Nitrate: An Integrated First-Year Laboratory Project

    ERIC Educational Resources Information Center

    Bushong, Elizabeth J.; Yoder, Claude H.

    2009-01-01

    The synthesis and analysis of a copper hydroxy nitrate provides an exposure to a simple ionic synthesis, qualitative analysis of copper and nitrate, two gravimetric analyses (copper and nitrate), one volumetric analysis (hydroxide), and a colorimetric analysis (copper). The results allow the student to determine the identity of the double salt and…

  2. The Synthesis of "N"-Benzyl-2-Azanorbornene via Aqueous Hetero Diels-Alder Reaction: An Undergraduate Project in Organic Synthesis and Structural Analysis

    ERIC Educational Resources Information Center

    Sauvage, Xavier; Delaude, Lionel

    2008-01-01

    The synthesis of "N"-benzyl-2-azanorbornene via aqueous hetero Diels-Alder reaction of cyclopentadiene and benzyliminium chloride formed in situ from benzylamine hydrochloride and formaldehyde is described. Characterization of the product was achieved by IR and NMR spectroscopies. The spectral data acquired are thoroughly discussed. Numerous…

  3. The design of multirate digital control systems

    NASA Technical Reports Server (NTRS)

    Berg, M. C.

    1986-01-01

    The successive loop closures synthesis method is the only method for multirate (MR) synthesis in common use. A new method for MR synthesis is introduced which requires a gradient-search solution to a constrained optimization problem. Some advantages of this method are that the control laws for all control loops are synthesized simultaneously, taking full advantage of all cross-coupling effects, and that simple, low-order compensator structures are easily accomodated. The algorithm and associated computer program for solving the constrained optimization problem are described. The successive loop closures , optimal control, and constrained optimization synthesis methods are applied to two example design problems. A series of compensator pairs are synthesized for each example problem. The succesive loop closure, optimal control, and constrained optimization synthesis methods are compared, in the context of the two design problems.

  4. Microwave plasma enabled synthesis of free standing carbon nanostructures at atmospheric pressure conditions.

    PubMed

    Bundaleska, N; Tsyganov, D; Dias, A; Felizardo, E; Henriques, J; Dias, F M; Abrashev, M; Kissovski, J; Tatarova, E

    2018-05-23

    An experimental and theoretical study on microwave (2.45 GHz) plasma enabled assembly of carbon nanostructures, such as multilayer graphene sheets and nanoparticles, was performed. The carbon nanostructures were fabricated at different Ar-CH4 gas mixture composition and flows at atmospheric pressure conditions. The synthesis method is based on decomposition of the carbon-containing precursor (CH4) in the "hot" microwave plasma environment into carbon atoms and molecules, which are further converted into solid carbon nuclei in the "colder" plasma zones. By tailoring of the plasma environment, a controlled synthesis of graphene sheets and diamond-like nanoparticles was achieved. Selective synthesis of graphene flakes was achieved at a microwave power of 1 kW, Ar and methane flow rates of 600 sccm and 2 sccm respectively, while the predominant synthesis of diamond-like nanoparticles was obtained at the same power, but with higher flow rates, i.e. 1000 and 7.5 sccm, respectively. Optical emission spectroscopy was applied to detect the plasma emission related to carbon species from the 'hot' plasma zone and to determine the main plasma parameters. Raman spectroscopy and scanning electron microscopy have been applied to characterize the synthesized nanostructures. A previously developed theoretical model was further updated and employed to understand the mechanism of CH4 decomposition and formation of the main building units, i.e. C and C2, of the carbon nanostructures. An insight into the physical chemistry of carbon nanostructure formation in a high energy density microwave plasma environment is presented.

  5. Green synthesis of gold nanoparticles using Trigonella foenum-graecum and its size-dependent catalytic activity

    NASA Astrophysics Data System (ADS)

    Aswathy Aromal, S.; Philip, Daizy

    2012-11-01

    The development of new synthesis methods for monodispersed nanocrystals using cheap and nontoxic chemicals, environmentally benign solvents and renewable materials remains a challenge to the scientific community. Most of the current methods involve known protocols which may be potentially harmful to either environment or human health. Recent research has been focused on green synthesis methods to produce new nanomaterials, ecofriendly and safer with sustainable commercial viability. The present work reports the green synthesis of gold nanoparticles using the aqueous extract of fenugreek (Trigonella foenum-graecum) as reducing and protecting agent. The pathway is based on the reduction of AuCl4- by the extract of fenugreek. This method is simple, efficient, economic and nontoxic. Gold nanoparticles having different sizes in the range from 15 to 25 nm could be obtained by controlling the synthesis parameters. The nanoparticles have been characterized by UV-Visible spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD) and FTIR analysis. The high crystallinity of nanoparticles is evident from clear lattice fringes in the HRTEM images, bright circular spots in the SAED pattern and peaks in the XRD pattern. FTIR spectrum indicates the presence of different functional groups present in the biomolecule capping the nanoparticles. The synthesized gold nanoparticles show good catalytic activity for the reduction of 4-nitrophenol to 4-aminophenol by excess NaBH4. The catalytic activity is found to be size-dependent, the smaller nanoparticles showing faster activity.

  6. Electrodeposition of gold thin films with controlled morphologies and their applications in electrocatalysis and SERS.

    PubMed

    Elias, Jamil; Gizowska, Magdalena; Brodard, Pierre; Widmer, Roland; Dehazan, Yoram; Graule, Thomas; Michler, Johann; Philippe, Laetitia

    2012-06-29

    Here, an easy and effective electrochemical route towards the synthesis of gold thin films with well-controlled roughness, morphology and crystallographic orientation is reported. To control these different factors, the applied potential during deposition played a major role. A tentative nucleation and growth mechanism is demonstrated by means of electrochemical characterizations and a formation mechanism is proposed. Interestingly, the differences in geometry and orientation of the different gold deposits have shown a clear correlation with the electrocatalytical activity in the case of oxygen sensing. In addition, not only the electrocatalytical activity but also the surface-enhanced Raman scattering of the gold deposits have been found to depend both on the roughness and on the size of the surface nanostructures, allowing a fine tuning by controlling these two parameters during deposition.

  7. Electrodeposition of gold thin films with controlled morphologies and their applications in electrocatalysis and SERS

    NASA Astrophysics Data System (ADS)

    Elias, Jamil; Gizowska, Magdalena; Brodard, Pierre; Widmer, Roland; deHazan, Yoram; Graule, Thomas; Michler, Johann; Philippe, Laetitia

    2012-06-01

    Here, an easy and effective electrochemical route towards the synthesis of gold thin films with well-controlled roughness, morphology and crystallographic orientation is reported. To control these different factors, the applied potential during deposition played a major role. A tentative nucleation and growth mechanism is demonstrated by means of electrochemical characterizations and a formation mechanism is proposed. Interestingly, the differences in geometry and orientation of the different gold deposits have shown a clear correlation with the electrocatalytical activity in the case of oxygen sensing. In addition, not only the electrocatalytical activity but also the surface-enhanced Raman scattering of the gold deposits have been found to depend both on the roughness and on the size of the surface nanostructures, allowing a fine tuning by controlling these two parameters during deposition.

  8. Parameters Identification for Motorcycle Simulator's Platform Characterization

    NASA Astrophysics Data System (ADS)

    Nehaoua, L.; Arioui, H.

    2008-06-01

    This paper presents the dynamics modeling and parameters identification of a motorcycle simulator's platform. This model begins with some suppositions which consider that the leg dynamics can be neglected with respect to the mobile platform one. The objectif is to synthesis a simplified control scheme, adapted to driving simulation application, minimising dealys and without loss of tracking performance. Electronic system of platform actuation is described. It's based on a CAN BUS communication which offers a large transmission robustness and error handling. Despite some disadvanteges, we adapted a control solution which overcome these inconvenients and preserve the quality of tracking trajectory. A bref description of the simulator's platform is given and results are shown and justified according to our specifications.

  9. Graphene Synthesis and Characterization

    DTIC Science & Technology

    2015-04-08

    for synthesis electrochemical. - A Scanning Electron Microscope (SEM) (EVO MA from Carl Zeiss). 6 6. RESULTS AND...5, 2332-2339, 2011, High-Quality Thin graphene films from fast electrochemical exfoliation. [13] Da Hee Jung , Cheong Kang, Ji Eun Nam, Jin-Seok Kim

  10. Facile and template-free method toward chemical synthesis of polyaniline film/nanotube structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Pei; Zhu, Yisi; Torres, Jorge

    A facile and template-free method is reported to synthesize a new thin film structure: polyaniline (PANI) film/nanotubes (F/N) structure. The PANI F/N is a 100-nm thick PANI film embedded with PANI nanotubes. This well-controlled method requires no surfactant or organic acid as well as relatively low concentration of reagents. Synthesis condition studies reveal that aniline oligomers with certain structures are responsible for guiding the growth of the nanotubes. Electrical characterization also indicates that the PANI F/N possesses similar field-effect transistor characteristics to bare PANI film. With its 20% increased surface-area-to-volume (S/V) ratio contributed by surface embedded nanotubes and the excellentmore » p-type semiconducting characteristic, PANI F/N shows clear superiority compared with bare PANI film. Such advantages guarantee the PANI F/N a promising future toward the development of ultra-high sensitivity and low-cost biosensors.« less

  11. Mg-catalyzed autoclave synthesis of aligned silicon carbide nanostructures.

    PubMed

    Xi, Guangcheng; Liu, Yankuan; Liu, Xiaoyan; Wang, Xiaoqing; Qian, Yitai

    2006-07-27

    In this article, a novel magnesium-catalyzed co-reduction route was developed for the large-scale synthesis of aligned beta-SiC one-dimensional (1D) nanostructures at relative lower temperature (600 degrees C). By carefully controlling the reagent concentrations, we could synthesize beta-SiC rodlike and needlelike nanostructures. The possible growth mechanism of the as-synthesized beta-SiC 1D nanostructures has been investigated. The structure and morphology of the as-synthesized beta-SiC nanostructures are characterized using X-ray diffraction, Fourier transform infrared absorption, and scanning and transmission electron microscopes. Raman and photoluminescence properties are also investigated at room temperature. The as-synthesized beta-SiC nanostructures exhibit strong shape-dependent field emission properties. Corresponding to their shapes, the as-synthesized nanorods and nanoneedles display the turn-on fields of 12, 8.4, and 1.8 V/microm, respectively.

  12. In situ characterization of nanoparticles using Rayleigh scattering

    DOE PAGES

    Santra, Biswajit; Shneider, Mikhail N.; Car, Roberto

    2017-01-10

    Here, we report a theoretical analysis showing that Rayleigh scattering could be used to monitor the growth of nanoparticles under arc discharge conditions. We compute the Rayleigh scattering cross sections of the nanoparticles by combining light scattering theory for gas-particle mixtures with calculations of the dynamic electronic polarizability of the nanoparticles. We find that the resolution of the Rayleigh scattering probe is adequate to detect nanoparticles as small as C 60 at the expected concentrations of synthesis conditions in the arc periphery. Larger asymmetric nanoparticles would yield brighter signals, making possible to follow the evolution of the growing nanoparticle populationmore » from the evolution of the scattered intensity. Observable spectral features include characteristic resonant behaviour, shape-dependent depolarization ratio, and mass-dependent line shape. Direct observation of nanoparticles in the early stages of growth with unobtrusive laser probes should give insight on the particle formation mechanisms and may lead to better-controlled synthesis protocols.« less

  13. Synthesis of vaterite and aragonite crystals using biomolecules of tomato and capsicum

    NASA Astrophysics Data System (ADS)

    Chen, Long; Xu, Wang-Hua; Zhao, Ying-Guo; Kang, Yan; Liu, Shao-Hua; Zhang, Zai-Yong

    2012-12-01

    In this paper, biomimetic synthesis of calcium carbonate (CaCO3) in the presence of biomolecules of two vegetables-tomato and capsicum is investigated. Scanning electron microscopy and X-ray powder diffractometry were used to characterize the CaCO3 obtained. The biomolecules in the extracts of two vegetables are determined by UV-vis or FTIR. The results indicate that a mixture of calcite and vaterite spheres constructed from small particles is produced with the extract of tomato, while aragonite rods or ellipsoids are formed in the presence of extract of capsicum. The possible formation mechanism of the CaCO3 crystals with tomato biomolecules can be interpreted by particle-aggregation based non-classical crystallization laws. The proteins and/or other biomolecules in tomato and capsicum may control the formation of vaterite and aragonite crystals by adsorbing onto facets of them.

  14. In situ Characterization of Nanoparticles Using Rayleigh Scattering

    PubMed Central

    Santra, Biswajit; Shneider, Mikhail N.; Car, Roberto

    2017-01-01

    We report a theoretical analysis showing that Rayleigh scattering could be used to monitor the growth of nanoparticles under arc discharge conditions. We compute the Rayleigh scattering cross sections of the nanoparticles by combining light scattering theory for gas-particle mixtures with calculations of the dynamic electronic polarizability of the nanoparticles. We find that the resolution of the Rayleigh scattering probe is adequate to detect nanoparticles as small as C60 at the expected concentrations of synthesis conditions in the arc periphery. Larger asymmetric nanoparticles would yield brighter signals, making possible to follow the evolution of the growing nanoparticle population from the evolution of the scattered intensity. Observable spectral features include characteristic resonant behaviour, shape-dependent depolarization ratio, and mass-dependent line shape. Direct observation of nanoparticles in the early stages of growth with unobtrusive laser probes should give insight on the particle formation mechanisms and may lead to better-controlled synthesis protocols. PMID:28071715

  15. Ammonia Vapor-Assisted Synthesis of Cu(OH)2 and CuO Nanostructures: Anionic (Cl-, NO3 -, SO4 2-) Influence on the Product Morphology

    NASA Astrophysics Data System (ADS)

    Mansournia, Mohammadreza; Arbabi, Akram

    2017-01-01

    Shape control of inorganic nanostructures generally requires using surfactants or ligands to passivate certain crystallographic planes. This paper describes a novel additive-free synthesis of cupric oxide nanostructures with different morphologies from the aqueous solutions of copper(II) with Cl-, NO3 -, and SO4 2- as counter ions. Through a one-step approach, CuO nanoleaves, nanoparticles and flower-like microspheres were directly synthesized at 80°C upon exposure to ammonia vapor using a cupric solution as a single precursor. Furthermore, during a two-step process, Cu(OH)2 nanofibers and nanorods were prepared under an ammonia atmosphere, then converted to CuO nanostructures with morphology preservation by heat treatment in air. The as-prepared Cu(OH)2 and CuO nanostructures are characterized using x-ray diffraction, scanning electron microscopy and Fourier transformation infrared spectroscopy techniques.

  16. Formation of organoclays by a one step synthesis

    NASA Astrophysics Data System (ADS)

    Jaber, Maguy; Miéhé-Brendlé, Jocelyne; Delmotte, Luc; Le Dred, Ronan

    2005-05-01

    Different lamellar hybrid inorganic-organic materials having as inorganic parent 2:1 (T.O.T.) phyllosilicates such as talc, saponite, pyrophyllite, beidellite and montmorillonite were prepared by a one step synthesis. The solids were characterized by X-ray diffraction, solid state 29Si, 27Al, and 19F nuclear magnetic resonance and transmission electron microscopy. XRD patterns show that solids with inorganic parents having octahedral sheet based on aluminium exhibit a lamellar structure similar to MCM-50, whereas those with magnesium have an organophyllosilicate structure. In the first case, the absence of hexacoordinated aluminium was confirmed by 27Al NMR and an ordered stacking of the layers is observed on TEM micrographs. In opposite, a disorder is observed on the TEM images of organophyllosilicates. The formation of the 2:1 structure was found to be controlled mainly by the insertion of silicic species in the interlamellar space of brucite like layers.

  17. In situ characterization of nanoparticles using Rayleigh scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santra, Biswajit; Shneider, Mikhail N.; Car, Roberto

    Here, we report a theoretical analysis showing that Rayleigh scattering could be used to monitor the growth of nanoparticles under arc discharge conditions. We compute the Rayleigh scattering cross sections of the nanoparticles by combining light scattering theory for gas-particle mixtures with calculations of the dynamic electronic polarizability of the nanoparticles. We find that the resolution of the Rayleigh scattering probe is adequate to detect nanoparticles as small as C 60 at the expected concentrations of synthesis conditions in the arc periphery. Larger asymmetric nanoparticles would yield brighter signals, making possible to follow the evolution of the growing nanoparticle populationmore » from the evolution of the scattered intensity. Observable spectral features include characteristic resonant behaviour, shape-dependent depolarization ratio, and mass-dependent line shape. Direct observation of nanoparticles in the early stages of growth with unobtrusive laser probes should give insight on the particle formation mechanisms and may lead to better-controlled synthesis protocols.« less

  18. Low gravity synthesis of polymers with controlled molecular configuration

    NASA Technical Reports Server (NTRS)

    Heimbuch, A. H.; Parker, J. A.; Schindler, A.; Olf, H. G.

    1975-01-01

    Heterogeneous chemical systems have been studied for the synthesis of isotactic polypropylene in order to establish baseline parameters for the reaction process and to develop sensitive and accurate methods of analysis. These parameters and analytical methods may be used to make a comparison between the polypropylene obtained at one g with that of zero g (gravity). Baseline reaction parameters have been established for the slurry (liquid monomer in heptane/solid catalyst) polymerization of propylene to yield high purity, 98% isotactic polypropylene. Kinetic data for the slurry reaction showed that a sufficient quantity of polymer for complete characterization can be produced in a reaction time of 5 min; this time is compatible with that available on a sounding rocket for a zero-g simulation experiment. The preformed (activated) catalyst was found to be more reproducible in its activity than the in situ formed catalyst.

  19. Synthesis Methods, Microscopy Characterization and Device Integration of Nanoscale Metal Oxide Semiconductors for Gas Sensing

    PubMed Central

    Vander Wal, Randy L.; Berger, Gordon M.; Kulis, Michael J.; Hunter, Gary W.; Xu, Jennifer C.; Evans, Laura

    2009-01-01

    A comparison is made between SnO2, ZnO, and TiO2 single-crystal nanowires and SnO2 polycrystalline nanofibers for gas sensing. Both nanostructures possess a one-dimensional morphology. Different synthesis methods are used to produce these materials: thermal evaporation-condensation (TEC), controlled oxidation, and electrospinning. Advantages and limitations of each technique are listed. Practical issues associated with harvesting, purification, and integration of these materials into sensing devices are detailed. For comparison to the nascent form, these sensing materials are surface coated with Pd and Pt nanoparticles. Gas sensing tests, with respect to H2, are conducted at ambient and elevated temperatures. Comparative normalized responses and time constants for the catalyst and noncatalyst systems provide a basis for identification of the superior metal-oxide nanostructure and catalyst combination. With temperature-dependent data, Arrhenius analyses are made to determine activation energies for the catalyst-assisted systems. PMID:22408484

  20. Copolymers of polyaniline and poly-o-toluidine: Electrochemical synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Yadav, Pooja C.; Deshmukh, Megha A.; Patil, Harshada K.; Bodkhe, Gajanan A.; Sayyad, Pasha W.; Ingle, Nikesh N.; Shirsat, Mahendra D.

    2018-05-01

    In the present study we have reported Electrochemical polymerization of poly(Aniline) (PANI), Poly(O-Toluidine) (POT) and poly(Aniline-co-O-Toluidine) (PAOT) copolymers. Electrochemical Synthesis of PANI, POT and Poly(Aniline-co-O-Toluidine) was done by using Cyclic Voltammetry technique. The morphological study done by Atomic Force Microscopy (AFM) which shows that formation of uniform granular structure and topographic changes in each respective thin film. Spectroscopic characterization was done by FTIR spectroscopy. The FT-IR study revealed the formation of PANI/POT/Poly(Aniline co O-Toluidine) with a absorption band are reported. For structural information done by X-ray diffraction(XRD) Characterization.

  1. Novel synthesis and characterization of five isomers of (C(70))(2) fullerene dimers.

    PubMed

    Forman, Grant S; Tagmatarchis, Nikos; Shinohara, Hisanori

    2002-01-16

    The synthesis and characterization of dimers and polymers, wherein two or more cages are linked, represent an important frontier in the chemistry of fullerene derivatives. A simple and novel method that requires no special apparatus has been developed for the dimerization of [70]fullerene to (C70)2. Upon grinding [70]fullerene in a mortar and pestle in the presence of K2CO3, five structural isomers of (C70)2 have been produced. These isomers are separated from one another via high performance liquid chromatography and are characterized by 13C NMR, UV-vis-NIR absorption and mass spectroscopy.

  2. Transition metal complexes of quinolino[3,2-b]benzodiazepine and quinolino[3,2-b]benzoxazepine: synthesis, characterization, and antimicrobial studies.

    PubMed

    Basavaraju, B; Naik, Halehatty S Bhojya; Prabhakara, Mustur C

    2007-01-01

    The synthesis and characterization of title complexes of the ligand Quinolino[3,2-b]benzodiazepine (QBD) and Quinolino[3,2-b]benzoxazepine (QBO) are reported. The complexes have been characterized by elemental analysis, molar conductance, magnetic studies, IR, H1 NMR, and UV-visible studies. They have the stoichiometry [ML2C12], where M=Co(II)/Ni(II), L=QBD/QBO, and [MLC12], where M=Zn(II)/Cd(II), L=QBD/QBO. The antibacterial and antifungal activity of the metal complexes has been investigated. The complexes were found to have higher antimicrobial activity than the parent ligand.

  3. Synthesis, characterization and optical properties of novel star azo-oligomers containing well-defined oligo(ethylene glycol) segments

    NASA Astrophysics Data System (ADS)

    González-Gómez, Roberto; Vonlanthen, Mireille; Ortíz-Palacios, Jesús; Ruiu, Andrea; Valderrama-García, Bianca X.; Rivera, Ernesto

    2018-05-01

    In this work, the synthesis and characterization of a series of star azo-oligomers bearing amino, amino-methoxy, amino-nitro and amino-cyano substituted azobenzene units and oligo(ethylene glycol) segments is reported. The full characterization of the obtained compounds was achieved by FTIR, 1H and 13C NMR spectroscopies, and their molecular weights were determined by MALDI-TOF mass spectrometry. The optical properties of these compounds were studied by absorption spectroscopy in solution. Finally, light polarized microscopy experiments as a function of the temperature were performed in order to study the liquid-crystalline behavior of these star azo-oligomers.

  4. Content and structure of knowledge base used for virtual control of android arm motion in specified environment

    NASA Astrophysics Data System (ADS)

    Pritykin, F. N.; Nebritov, V. I.

    2018-01-01

    The paper presents the configuration of knowledge base necessary for intelligent control of android arm mechanism motion with different positions of certain forbidden regions taken into account. The present structure of the knowledge base characterizes the past experience of arm motion synthesis in the vector of velocities with due regard for the known obstacles. This structure also specifies its intrinsic properties. Knowledge base generation is based on the study of the arm mechanism instantaneous states implementations. Computational experiments connected with the virtual control of android arm motion with known forbidden regions using the developed knowledge base are introduced. Using the developed knowledge base to control virtually the arm motion reduces the time of test assignments calculation. The results of the research can be used in developing control systems of autonomous android robots in the known in advance environment.

  5. Design and synthesis of diverse functional kinked nanowire structures for nanoelectronic bioprobes.

    PubMed

    Xu, Lin; Jiang, Zhe; Qing, Quan; Mai, Liqiang; Zhang, Qingjie; Lieber, Charles M

    2013-02-13

    Functional kinked nanowires (KNWs) represent a new class of nanowire building blocks, in which functional devices, for example, nanoscale field-effect transistors (nanoFETs), are encoded in geometrically controlled nanowire superstructures during synthesis. The bottom-up control of both structure and function of KNWs enables construction of spatially isolated point-like nanoelectronic probes that are especially useful for monitoring biological systems where finely tuned feature size and structure are highly desired. Here we present three new types of functional KNWs including (1) the zero-degree KNW structures with two parallel heavily doped arms of U-shaped structures with a nanoFET at the tip of the "U", (2) series multiplexed functional KNW integrating multi-nanoFETs along the arm and at the tips of V-shaped structures, and (3) parallel multiplexed KNWs integrating nanoFETs at the two tips of W-shaped structures. First, U-shaped KNWs were synthesized with separations as small as 650 nm between the parallel arms and used to fabricate three-dimensional nanoFET probes at least 3 times smaller than previous V-shaped designs. In addition, multiple nanoFETs were encoded during synthesis in one of the arms/tip of V-shaped and distinct arms/tips of W-shaped KNWs. These new multiplexed KNW structures were structurally verified by optical and electron microscopy of dopant-selective etched samples and electrically characterized using scanning gate microscopy and transport measurements. The facile design and bottom-up synthesis of these diverse functional KNWs provides a growing toolbox of building blocks for fabricating highly compact and multiplexed three-dimensional nanoprobes for applications in life sciences, including intracellular and deep tissue/cell recordings.

  6. Eco-friendly approach for nanoparticles synthesis and mechanism behind antibacterial activity of silver and anticancer activity of gold nanoparticles.

    PubMed

    Patil, Maheshkumar Prakash; Kim, Gun-Do

    2017-01-01

    This review covers general information about the eco-friendly process for the synthesis of silver nanoparticles (AgNP) and gold nanoparticles (AuNP) and focuses on mechanism of the antibacterial activity of AgNPs and the anticancer activity of AuNPs. Biomolecules in the plant extract are involved in reduction of metal ions to nanoparticle in a one-step and eco-friendly synthesis process. Natural plant extracts contain wide range of metabolites including carbohydrates, alkaloids, terpenoids, phenolic compounds, and enzymes. A variety of plant species and plant parts have been successfully extracted and utilized for AgNP and AuNP syntheses. Green-synthesized nanoparticles eliminate the need for a stabilizing and capping agent and show shape and size-dependent biological activities. Here, we describe some of the plant extracts involved in nanoparticle synthesis, characterization methods, and biological applications. Nanoparticles are important in the field of pharmaceuticals for their strong antibacterial and anticancer activity. Considering the importance and uniqueness of this concept, the synthesis, characterization, and application of AgNPs and AuNPs are discussed in this review.

  7. Linear and Nonlinear Optical Response in Silver Nanoclusters: Insight from a Computational Investigation (Postprint)

    DTIC Science & Technology

    2016-01-05

    applying DFT and TDDFT. Synthesis and optical characterization of the silver glutathione nanoclusters Ag32(SG)19 and Ag15(SG)11 were recently reported by...Ag15. Synthesis and optical characterization of the Ag32(SG)19, Ag31(SG)19, and Ag15(SG)11 silver glutathione nanoclusters have been reported.19,20 A...Barnett, R. N.; Monahan, B. M.; Kirschbaum, K.; Griffith, W. P.; Whetten, R. L.; Landman, U.; Bigioni, T. P. Ultrastable Silver Nanoparticles . Nature

  8. Synthesis and characterization of nickel oxide/graphene sheet/graphene ribbon composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavanya, J.; Gomathi, N., E-mail: sivakumar.gomathi@gmail.com

    2016-04-13

    A novel and simple hydrothermal synthesis of nickel oxide (NiO)/graphene sheets (GNS)/graphene ribbon (GR) hybrid material is reported for the first time. The crystalline property and surface morphology of NiO/GNS/GR (NiO/HG) hybrid material is characterized by X-ray diffraction, Raman spectroscopy and Transmission electron spectroscopy. The fast electron transfer of GNS/GR along with NiO contributes an excellent electrochemical performance in the field of non-enzymatic glucose sensor.

  9. Synthesis and characterization of Cu3(BTC)2 membranes by thermal spray seeding and secondary growth.

    PubMed

    Noh, Seung-Jun; Kwon, Hyuk Taek; Kim, Jinsoo

    2013-08-01

    Crack-free Cu3(BTC)2 membranes were successfully prepared by thermal spray seeding and secondary growth method. Thermal spray seeding method, combining thermal seeding and pressurized spraying, uniformly distributed seed solution on the support, anchoring seed crystals tightly on the support. After secondary growth of the seeded support in the autoclave, continuous crack-free membrane was obtained by controlling cooling and drying steps. The gas permeation test was conducted at various temperatures using H2, CO2, CH4 and N2 gases.

  10. Direct measurement of light waves.

    PubMed

    Goulielmakis, E; Uiberacker, M; Kienberger, R; Baltuska, A; Yakovlev, V; Scrinzi, A; Westerwalbesloh, Th; Kleineberg, U; Heinzmann, U; Drescher, M; Krausz, F

    2004-08-27

    The electromagnetic field of visible light performs approximately 10(15) oscillations per second. Although many instruments are sensitive to the amplitude and frequency (or wavelength) of these oscillations, they cannot access the light field itself. We directly observed how the field built up and disappeared in a short, few-cycle pulse of visible laser light by probing the variation of the field strength with a 250-attosecond electron burst. Our apparatus allows complete characterization of few-cycle waves of visible, ultraviolet, and/or infrared light, thereby providing the possibility for controlled and reproducible synthesis of ultrabroadband light waveforms.

  11. Solvothermal synthesis of fusiform hexagonal prism SrCO{sub 3} microrods via ethylene glycol solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi Liange; Du Fanglin

    2007-08-07

    Fusiform hexagonal prism SrCO{sub 3} microrods were prepared by a simple solvothermal route at 120 deg. C, and characterized by X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and Fourier transform infrared (FT-IR) spectroscopy. By controlling the content of ethylene glycol (EG), it was found that ethylene glycol (EG) played an important role in the formation of such SrCO{sub 3} microrods. Finally, effects of other solvents on the products, including 1,2-propanediol and glycerin, were also investigated.

  12. Bibliography on Ceramic Matrix Composites and Reinforcing Whiskers, Platelets, and Fibers, 1970-1990

    DTIC Science & Technology

    1993-08-01

    Ballistic A Study of the Critical Factors Controlling the Impact on Three Composite Ceramics Synthesis of Ceramic Matrix Composites from Snedeker, R. S...1.2.1.55 1.22.2 Mechanical and Structural Characterize’ion of Oxidation Kinetics of Silicon Carbide Whiskers the Nicalon Silicon Carbide Fibre Studied by X...Powders and Whiskers: An XPS Study 9 (10), 1218-20, Oct 1990 Taylor, T. N. (AD D250 694) J. Mater. Res. 4 (1), 189-203, Jan-Feb 1989 1.2.2.11 (AD D250 571

  13. Rapid Multistep Synthesis of 1,2,4-Oxadiazoles in a Single Continuous Microreactor Sequence

    PubMed Central

    Grant, Daniel; Dahl, Russell; Cosford, Nicholas D. P.

    2009-01-01

    A general method for the synthesis of bis-substituted 1,2,4-oxadiazoles from readily available arylnitriles and activated carbonyls in a single continuous microreactor sequence is described. The synthesis incorporates three sequential microreactors to produce 1,2,4-oxadiazoles in ~30 min in quantities (40–80 mg) sufficient for full characterization and rapid library supply. PMID:18687005

  14. Green synthesis of BiVO4 nanorods via aqueous extracts of Callistemon viminalis

    NASA Astrophysics Data System (ADS)

    Mohamed, H. E. A.; Sone, B. T.; Fuku, X. G.; Dhlamini, M. S.; Maaza, M.

    2018-05-01

    Nowadays, the development of efficient green chemistry methods for synthesis of metal oxides nanoparticles has become a major focus of researchers. These methods are being investigated in order to find an eco-friendly technique for production of well-characterized nanoparticles. In this contribution we report for the first time, the synthesis and structural characterization of n-type Bismuth vanadate (BiVO4) nanoparticles using aqueous extracts of Callistemon viminalis as a chelating agent. To ascertain the formation of BiVO4, X-Ray diffraction analysis (XRD), Scanning Electron Microscopy (SEM), High Resolution Transmission Electron Microscopy (TEM), Selected Area Electron Diffraction (SAED), Electron Dispersion X-ray Spectroscopy (EDS), Fourier Transform Infra-red Spectroscopy (FTIR), and Photoluminescence spectroscopy (PL) were carried out.

  15. Synthesis, characterization, and photocatalytic properties of core/shell mesoporous silica nanospheres supporting nanocrystalline titania

    NASA Astrophysics Data System (ADS)

    Cendrowski, K.; Chen, X.; Zielinska, B.; Kalenczuk, R. J.; Rümmeli, M. H.; Büchner, B.; Klingeler, R.; Borowiak-Palen, E.

    2011-11-01

    The facile bulk synthesis of silica nanospheres makes them an attractive support for the transport of chemical compounds such as nanocrystalline titanium dioxide. In this contribution we present a promising route for the synthesis of mesoporous silica nanospheres (m-SiO2) with diameter in range 200 nm, which are ideal supports for nanocrystalline titanium dioxide (TiO2). The detailed microscopic and spectroscopic characterizations of core/shell structure (m-SiO2/TiO2) were conducted. Moreover, the photocatalytic potential of the nanostructures was investigated via phenol decomposition and hydrogen generation. A clear enhancement of photoactivity in both reactions as compared to commercial TiO2-Degussa P25 catalyst is detected.

  16. Effects of ultrasonic treatment on zeolite NaA synthesized from by-product silica.

    PubMed

    Vaičiukynienė, Danutė; Kantautas, Aras; Vaitkevičius, Vitoldas; Jakevičius, Leonas; Rudžionis, Žymantas; Paškevičius, Mantas

    2015-11-01

    The synthesis of zeolite NaA from silica by-product was carried out in the presence of 20 kHz ultrasound at room temperature. Zeolites obtained in this type of synthesis were compared to zeolites obtained by performing conventional static syntheses under similar conditions. The sonication effects on zeolite NaA synthesis were characterized by phase identification, crystallinity etc. The effects of different parameters such as crystallization time and initial materials preparation methods on the crystallinity and morphology of the synthesized zeolites were investigated. The final products were characterized by XRD and FT-IR. It was possible to obtain crystalline zeolite NaA from by-product silica in the presence of ultrasound. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Matrix Synthesis and Characterization

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The role of NASA in the area of composite material synthesis; evaluation techniques; prediction analysis techniques; solvent-resistant tough composite matrix; resistance to paint strippers; acceptable processing temperature and pressure for thermoplastics; and the role of computer modeling and fiber interface improvement were discussed.

  18. Characterization of pulsed laser deposition grown V2O3 converted VO2

    NASA Astrophysics Data System (ADS)

    Majid, Suhail; Shukla, D. K.; Rahman, F.; Gautam, Kamini; Sathe, V. G.; Choudhary, R. J.; Phase, D. M.

    2016-10-01

    Controllable tuning of Metal-insulator transition in VxOy thin film has been a field of extensive research. However controlled synthesis of desired Vanadium oxide phase is a challenging task. We have successfully achieved VO2 phase on Silicon substrate after post deposition annealing treatment to the PLD grown as deposited V2O3 thin films. The annealed thin film was characterized by x-ray diffraction (XRD), resistivity, Raman spectroscopy, X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) measurements. XRD confirms the crystalline nature and growth of VO2 phase in thin film. The characteristic MIT was observed from resistivity measurements and transition temperature appeared at lower value around 336 K, compared to bulk VO2. The structural transition accompanied with MIT from lower temperature monoclinic phase to higher temperature Rutile phase became evident from temperature dependent Raman measurements. Chemical state of vanadium was examined using XAS and XPS measurements which confirm the presence of +4 oxidation state of vanadium in thin film.

  19. Functional Role of PPARs in Ruminants: Potential Targets for Fine-Tuning Metabolism during Growth and Lactation

    PubMed Central

    Chen, Shuowen; Khan, Muhammad J.; Loor, Juan J.

    2013-01-01

    Characterization and biological roles of the peroxisome proliferator-activated receptor (PPAR) isotypes are well known in monogastrics, but not in ruminants. However, a wealth of information has accumulated in little more than a decade on ruminant PPARs including isotype tissue distribution, response to synthetic and natural agonists, gene targets, and factors affecting their expression. Functional characterization demonstrated that, as in monogastrics, the PPAR isotypes control expression of genes involved in lipid metabolism, anti-inflammatory response, development, and growth. Contrary to mouse, however, the PPARγ gene network appears to controls milk fat synthesis in lactating ruminants. As in monogastrics, PPAR isotypes in ruminants are activated by long-chain fatty acids, therefore, making them ideal candidates for fine-tuning metabolism in this species via nutrients. In this regard, using information accumulated in ruminants and monogastrics, we propose a model of PPAR isotype-driven biological functions encompassing key tissues during the peripartal period in dairy cattle. PMID:23737762

  20. Characterization and cytotoxicity of ions released from stainless steel and nickel-titanium orthodontic alloys.

    PubMed

    Eliades, Theodore; Pratsinis, Harris; Kletsas, Dimitris; Eliades, George; Makou, Margarita

    2004-01-01

    The purpose of this study was to qualitatively and quantitatively characterize the substances released from orthodontic brackets and nickel-titanium wires and to comparatively assess the cytotoxicity of the ions released from these orthodontic alloys. Two full sets of stainless steel brackets of 20 brackets each (weight 2.1 g) and 2 groups of 0.018 x 0.025 Ni-Ti archwires of 10 wires each (weight 2.0 g) were immersed in 0.9% saline solution for a month. The immersion media were analyzed with inductively coupled plasma-atomic emission spectroscopy (ICP-AES), and the ionic content was statistically analyzed with 1-way analysis of variance (ANOVA). Human periodontal ligament fibroblasts and gingival fibroblasts were exposed to various concentrations of the 2 immersion media; nickel chloride was used as a positive control for comparison purposes. The cytotoxic or cytostatic activity of the media was investigated with the MTT and the DNA synthesis assays. The results of the cytotoxicity assay were analyzed with 2-way ANOVA and the Tukey test with solution and concentration variants as discriminating variables (alpha=0.05). The results indicated no ionic release for the nickel-titanium alloy aging solution, whereas measurable nickel and traces of chromium were found in the stainless steel bracket-aging medium. Concentrations of the nickel chloride solution greater then 2 mM were found to reduce by more than 50% the viability and DNA synthesis of fibroblasts; however, neither orthodontic materials-derived media had any effect on the survival and DNA synthesis of either cells.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodwin, Andrew; Wang, Weiyu; Kang, Nam -Goo

    We present in this paper the synthesis of poly(n-butyl acrylate)-g-poly(methyl methacrylate) (PnBA-g-PMMA) multigraft copolymers via a grafting-through (macromonomer) approach. The synthesis was performed using two controlled polymerization techniques. The PMMA macromonomer was obtained by high-vacuum anionic polymerization followed by the copolymerization of n-butyl acrylate and PMMA macromonomer using reversible addition–fragmentation chain transfer (RAFT) polymerization to yield the desired all-acrylic multigraft structures. The PnBA-g-PMMA multigraft structures exhibit randomly spaced branch points with various PMMA contents, ranging from 15 to 40 vol %, allowing an investigation into how physical properties vary with differences in the number of branch points and molecular weightmore » of grafted side chains. The determination of molecular weight and polydispersity indices of both the PMMA macromonomer and the graft copolymers was carried out using size exclusion chromatography with triple detection, and the structural characteristics of both the macromonomer and PnBA-g-PMMA graft materials were characterized by 1H and 13C NMR. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was employed for monitoring the macromonomer synthesis. Thermal characteristics of the materials were analyzed using differential scanning calorimetry and thermogravimetric analysis. The mechanical performance of the graft materials was characterized by rheology and dynamic mechanical analysis, revealing that samples with PMMA content of 25–40 vol % exhibit superior elastomeric properties as compared to materials containing short PMMA side chains or <25 vol % PMMA. In conclusion, atomic force microscopy showed a varying degree of microphase separation between the glassy and rubbery components that is strongly dependent on PMMA side chain molecular weight.« less

  2. Creating new superconducting & semiconducting nanomaterials and investigating the effect of reduced dimensionality on their properties

    NASA Astrophysics Data System (ADS)

    Mishra, Sukhada

    The field of nanomaterials has continued to attract researchers to understand the fundamentals and to investigate potential applications in the fields of semiconductor physics, microfabrication, nanomedicine, surface sciences etc. One of the most critical aspects of the nanomaterials research is to establish synthetic protocols, which can address the underlying product requirements of reproducibility, homogenous morphology and controlled elemental composition. We have focused our research in exploring synthetic routes for the synthesis of superconducting and semiconducting nanomaterials and analyze their structure---property relationship through detailed characterizations. The first part of dissertation is focused on the synthesis of superconducting FeSe nanostructures using catalyst assisted chemical vapor deposition (CVD) technique. The effect of catalyst---FeSe interphase on the d spacing of the FeSe nanostructures has been analyzed, and the internal pressure effect on the Tc has been investigated further through in depth characterizations. The emphasis of second part is on the development of a simple yet versatile protocol for the synthesis of vertically aligned nanorod arrays on conducting substrate by combining electron beam lithography technique with electrochemical deposition. The technique has been utilized to fabricate photovoltaic CdTe nanorod arrays on conducting substrate and further extended to devise CdS---CdTe nanorod arrays to create radial and lateral p---n junction assembly. Using photo---electrochemical analysis, it was observed that, the nanorod arrays yielded higher photo---electrochemical current compared to the thin film counterpart. The third part of dissertation describes the CVD protocol to synthesize multifunctional, dumbbell shaped Au---CoSe nanoparticles, which possess potential applications in ' theronostic' biological examinations.

  3. Synthesis and Performance Characterization of a Nanocomposite Ternary Thermite: Al/Fe2O3/SiO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prentice, D; Pantoya, M L; Clapsaddle, B J

    2005-02-04

    Making solid energetic materials requires the physical mixing of solid fuels and oxidizers or the incorporation of fuel and oxidizing moieties into a single molecule. The former are referred to as composite energetic materials (i.e., thermites, propellants, pyrotechnics) and the latter are deemed monomolecular energetic materials (i.e., explosives). Mass diffusion between the fuel and oxidizer is the rate controlling step for composite reactions while bond breaking and chemical kinetics control monomolecular reactions. Although composites have higher energy densities than monomolecular species, they release that energy over a longer period of time because diffusion controlled reactions are considerably slower than chemistrymore » controlled reactions. Conversely, monomolecular species exhibit greater power due to more rapid kinetics than physically mixed energetics. Reducing the diffusion distance between fuel and oxidizer species within an energetic composite would enhance the reaction rate. Recent advances in nanotechnology have spurred the development of nano-scale fuel and oxidizer particles that can be combined into a composite and effectively reduce diffusion distances to nano-scale dimensions or less. These nanocomposites have the potential to deliver the best of both worlds: high energy density of the physically mixed composite with the high power of the monomolecular species. Toward this end, researchers at Lawrence Livermore National Laboratory (LLNL) developed nano-particle synthesis techniques, based on sol-gel chemistry, for the production of thermite nanocomposites.« less

  4. Imaging of conformational changes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michl, Josef

    2016-03-13

    Control of intramolecular conformational change in a small number of molecules or even a single one by an application of an outside electric field defined by potentials on nearby metal or dielectric surfaces has potential applications in both 3-D and 2-D nanotechnology. Specifically, the synthesis, characterization, and understanding of designed solids with controlled built-in internal rotational motion of a dipole promises a new class of materials with intrinsic dielectric, ferroelectric, optical and optoelectronic properties not found in nature. Controlled rotational motion is of great interest due to its expected utility in phenomena as diverse as transport, current flow in molecularmore » junctions, diffusion in microfluidic channels, and rotary motion in molecular machines. A direct time-resolved observation of the dynamics of motion on ps or ns time scale in a single molecule would be highly interesting but is also very difficult and has yet to be accomplished. Much can be learned from an easier but still challenging comparison of directly observed initial and final orientational states of a single molecule, which is the basis of this project. The project also impacts the understanding of surface-enhanced Raman spectroscopy (SERS) and single-molecule spectroscopic detection, as well as the synthesis of solid-state materials with tailored properties from designed precursors.« less

  5. Obtaining and characterization of La0.8Sr0.2CrO3 perovskite by the combustion method

    NASA Astrophysics Data System (ADS)

    Morales Rivera, A. M.; Gómez Cuaspud, J. A.; López, E. Vera

    2017-01-01

    This research is focused on the synthesis and characterization of a perovskite oxide based on La0.8Sr0.2CrO3 system by the combustion method. The material was obtained in order to contribute to analyse the effect of synthesis route in the obtaining of advanced anodic materials for solid oxide fuel cells (SOFC). The obtaining of solid was achieved starting from corresponding nitrate dissolutions, which were polymerized by temperature effect in presence of citric acid. The solid precursor as a foam citrate was characterized by infrared (FTIR) and ultraviolet (UV) spectroscopy, confirming the effectiveness in synthesis process. The solid was calcined in oxygen atmosphere at 800°C and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive of X-ray spectroscopy (EDX) and solid state impedance spectroscopy (IS). Results confirm the obtaining of an orthorhombic solid with space group Pnma (62) and cell parameters a=5.4590Å, b=7.7310Å and c=5.5050Å. At morphological level the solid showed a heterogeneous distribution with an optimal correspondence with proposed and obtained stoichiometry. The electrical characterization, confirm a semiconductor behaviour with a value of 2.14eV Band-gap according with previous works.

  6. Characterization of Chlamydia MurC-Ddl, a fusion protein exhibiting D-alanyl-D-alanine ligase activity involved in peptidoglycan synthesis and D-cycloserine sensitivity.

    PubMed

    McCoy, Andrea J; Maurelli, Anthony T

    2005-07-01

    Recent characterization of chlamydial genes encoding functional peptidoglycan (PG)-synthesis proteins suggests that the Chlamydiaceae possess the ability to synthesize PG yet biochemical evidence for the synthesis of PG has yet to be demonstrated. The presence of D-amino acids in PG is a hallmark of bacteria. Chlamydiaceae do not appear to encode amino acid racemases however, a D-alanyl-D-alanine (D-Ala-D-Ala) ligase homologue (Ddl) is encoded in the genome. Thus, we undertook a genetics-based approach to demonstrate and characterize the D-Ala-D-Ala ligase activity of chlamydial Ddl, a protein encoded as a fusion with MurC. The full-length murC-ddl fusion gene from Chlamydia trachomatis serovar L2 was cloned and placed under the control of the arabinose-inducible ara promoter and transformed into a D-Ala-D-Ala ligase auxotroph of Escherichia coli possessing deletions of both the ddlA and ddlB genes. Viability of the E. coliDeltaddlADeltaddlB mutant in the absence of exogenous D-Ala-D-Ala dipeptide became dependent on the expression of the chlamydial murC-ddl thus demonstrating functional ligase activity. Domain mapping of the full-length fusion protein and site-directed mutagenesis of the MurC domain revealed that the structure of the full fusion protein but not MurC enzymatic activity was required for ligase activity in vivo. Recombinant MurC-Ddl exhibited substrate specificity for D-Ala. Chlamydia growth is inhibited by D-cycloserine (DCS) and in vitro analysis provided evidence for the chlamydial MurC-Ddl as the target for DCS sensitivity. In vivo sensitivity to DCS could be reversed by addition of exogenous D-Ala and D-Ala-D-Ala. Together, these findings further support our hypothesis that PG is synthesized by members of the Chlamydiaceae family and suggest that D-amino acids, specifically D-Ala, are present in chlamydial PG.

  7. Tough Composite Materials

    NASA Technical Reports Server (NTRS)

    Vosteen, L. F. (Compiler); Johnson, N. J. (Compiler); Teichman, L. A. (Compiler)

    1984-01-01

    Papers and working group summaries are presented which address composite material behavior and performance improvement. Topic areas include composite fracture toughness and impact characterization, constituent properties and interrelationships, and matrix synthesis and characterization.

  8. Enhanced metal loading in SBA-15-type catalysts facilitated by salt addition. Synthesis, characterization and catalytic epoxide alcoholysis activity of molybdenum incorporated porous silica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budhi, Sridhar; Peeraphatdit, Chorthip; Pylypenko, Svitlana

    2014-02-07

    We report a novel method to increase the metal loading in SBA-15 silica matrix via direct synthesis. It was demonstrated through the synthesis and characterization of a series of molybdenum containing SBA-15 mesoporous silica catalysts prepared with and without diammonium hydrogen phosphate (DHP) as an additive. Catalysts prepared with DHP show a 2–3 times increase in incorporation of molybdenum in the silica matrix and pore size enlargement. The synthesized catalysts were characterized using nitrogen sorption, X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma–optical emission spectroscopy (ICP–OES). Themore » catalytic activity of catalysts prepared with DHP for alcoholysis of epoxides was superior than the catalyst prepared without DHP. Alcoholysis of epoxides was demonstrated for a range of alcohols and epoxides under ambient conditions in as little as 30 min with high selectivity.« less

  9. Arc-discharge in solution: A novel synthesis method for carbon nanotubes and in situ decoration of carbon nanotubes with nanoparticles

    NASA Astrophysics Data System (ADS)

    Bera, Debasis

    2005-11-01

    During the last decade, carbon nanotubes (CNTs) have been envisioned for a host of different new applications. One of the objectives of the present research is to develop a simplified synthesis method for the production of large-scale, low-cost carbon nanotubes with functionality. Herein, a unique, simple, inexpensive and one-step synthesis route of CNTs and CNTs decorated with nanoparticles is reported. The method is simple arc-discharge in solution (ADS). For this new method, a full-fledged optoelectronically controlled instrument is reported here to achieve high efficiency and continuous bulk production of CNTs. In this system, a constant gap between the two electrodes is maintained using a photosensor which allows a continuous synthesis of the carbon nanostructures. The system operates in a feedback loop consisting of an electrode-gap detector and an analogue electronic unit, as controller. This computerized feed system was also used in single process step to produce in situ-decorated CNTs with a variety of industrially important nanoparticles. To name a few, we have successfully synthesized CNTs decorated with 3--4 nm ceria, silica and palladium nanoparticles for many industrially relevant applications. This process can be extended to synthesize decorated CNTs with other oxide and metallic nanoparticles. Sixty experimental runs were carried out for parametric analysis varying process parameters including voltage, current and precursors. The amount of yield with time, rate of erosion of the anode, and rate of deposition of carbonaceous materials on the cathode electrode were investigated. Normalized kinetic parameters were evaluated for different amperes from the sets of runs. The production rate of pristine CNT at 75 A is as high as 5.89 +/- 0.28 g.min-1. In this study, major emphasis was given on the characterizations of CNTs with and without nanoparticles using various techniques for surface and bulk analysis of the nanostructures. The nanostructures were characterized using transmission electron microscopy, high resolution transmission electron microscopy, scanning transmission electron microscopy, energy dispersive spectroscopy and scanning electron microscopy, x-ray photo electron spectroscopy, x-ray diffraction studies, and surface area analysis. Electron microscopy investigations show that the CNTs, collected from the water and solutions, are highly pure except for the presence of some amorphous carbon. (Abstract shortened by UMI.)

  10. Characterization of the Sol-Gel Transition for Zirconia-Toughened Alumina Precursors

    NASA Technical Reports Server (NTRS)

    Moeti, I.; Karikari, E.; Chen, J.

    1998-01-01

    High purity ZTA ceramic powders with and without yttria were produced using metal alkoxide precursors. ZTA ceramic powders with varying volume percents of zirconia were prepared (7, 15, and 22%). Aluminum tri-sec butoxide, zirconium propoxide, and yttrium isopropoxide were the reagents used. Synthesis conditions were varied to control the hydrolysis and the aging conditions for the sol to gel transition. FTIR analysis and theological characterization were used to follow the structural evolution during the sol to gel transition. The greater extent of hydrolysis and the build-up of structure measured from viscoelastic properties were consistent. Heat treatment was conducted to produce submicron grain fully crystalline ZTA ceramic powders. In all experimental cases a-alumina and tetragonal zirconia phases were confirmed even in the absence of yttria.

  11. Coupling of NAD+ Biosynthesis and Nicotinamide Ribosyl Transport: Characterization of NadR Ribonucleotide Kinase Mutants of Haemophilus influenzae

    PubMed Central

    Merdanovic, Melisa; Sauer, Elizabeta; Reidl, Joachim

    2005-01-01

    Previously, we characterized a pathway necessary for the processing of NAD+ and for uptake of nicotinamide riboside (NR) in Haemophilus influenzae. Here we report on the role of NadR, which is essential for NAD+ utilization in this organism. Different NadR variants with a deleted ribonucleotide kinase domain or with a single amino acid change were characterized in vitro and in vivo with respect to cell viability, ribonucleotide kinase activity, and NR transport. The ribonucleotide kinase mutants were viable only in a nadV+ (nicotinamide phosphoribosyltransferase) background, indicating that the ribonucleotide kinase domain is essential for cell viability in H. influenzae. Mutations located in the Walker A and B motifs and the LID region resulted in deficiencies in both NR phosphorylation and NR uptake. The ribonucleotide kinase function of NadR was found to be feedback controlled by NAD+ under in vitro conditions and by NAD+ utilization in vivo. Taken together, our data demonstrate that the NR phosphorylation step is essential for both NR uptake across the inner membrane and NAD+ synthesis and is also involved in controlling the NAD+ biosynthesis rate. PMID:15968050

  12. Coupling of NAD+ biosynthesis and nicotinamide ribosyl transport: characterization of NadR ribonucleotide kinase mutants of Haemophilus influenzae.

    PubMed

    Merdanovic, Melisa; Sauer, Elizabeta; Reidl, Joachim

    2005-07-01

    Previously, we characterized a pathway necessary for the processing of NAD+ and for uptake of nicotinamide riboside (NR) in Haemophilus influenzae. Here we report on the role of NadR, which is essential for NAD+ utilization in this organism. Different NadR variants with a deleted ribonucleotide kinase domain or with a single amino acid change were characterized in vitro and in vivo with respect to cell viability, ribonucleotide kinase activity, and NR transport. The ribonucleotide kinase mutants were viable only in a nadV+ (nicotinamide phosphoribosyltransferase) background, indicating that the ribonucleotide kinase domain is essential for cell viability in H. influenzae. Mutations located in the Walker A and B motifs and the LID region resulted in deficiencies in both NR phosphorylation and NR uptake. The ribonucleotide kinase function of NadR was found to be feedback controlled by NAD+ under in vitro conditions and by NAD+ utilization in vivo. Taken together, our data demonstrate that the NR phosphorylation step is essential for both NR uptake across the inner membrane and NAD+ synthesis and is also involved in controlling the NAD+ biosynthesis rate.

  13. Synthesis, characterization and electrochemical investigations of mixed-ligand copper(II)-organic supramolecular frameworks

    NASA Astrophysics Data System (ADS)

    Singh, Sandeep K.; Srivastava, Ashish Kumar; Srivastava, Krishna; Banerjee, Rahul; Prasad, Jagdish

    2017-11-01

    Two mixed-ligand copper(II)-organic coordination compounds with 5,5‧-dimethyl-2,2‧-bipyridine (5,5‧-Me2bpy) as a primary ligand while aliphatic malonate (Hmal) and aromatic 2-hydroxynicotinate (2-OHNA) as secondary ligands, were synthesized. These complexes are formulated as: [Cu(Hmal)(5,5‧-Me2bpy)(H2O)](ClO4) 1 and [Cu2(2-OHNA)2(5,5‧-Me2bpy)2(NO3)](NO3) 2. These two complexes were structurally characterized by single crystal X-ray diffraction analysis. Characterization was further supported by powder X-ray diffraction analysis, elemental analyses, FT-IR, FAB-MASS and TGA, DSC studies. Cyclic voltammetric and UV-visible spectral studies of these two complexes have also been done. The electrochemical studies of complex 1 in DMSO and DMF have shown that this complex undergoes quasi-reversible diffusion-controlled one-electron transfer reaction without any chemical complication while complex 2 in DMSO undergoes quasi-reversible diffusion-controlled one electron transfer reaction, following EC mechanism. The electrochemical behaviour of complex 2 in DMF is complicated probably due to presence of more than one species in solution phase.

  14. Closed-loop regulation of arterial pressure after acute brain death.

    PubMed

    Soltesz, Kristian; Sjöberg, Trygve; Jansson, Tomas; Johansson, Rolf; Robertsson, Anders; Paskevicius, Audrius; Liao, Quiming; Qin, Guangqi; Steen, Stig

    2018-06-01

    The purpose of this concept study was to investigate the possibility of automatic mean arterial pressure (MAP) regulation in a porcine heart-beating brain death (BD) model. Hemodynamic stability of BD donors is necessary for maintaining acceptable quality of donated organs for transplantation. Manual stabilization is challenging, due to the lack of vasomotor function in BD donors. Closed-loop stabilization therefore has the potential of increasing availability of acceptable donor organs, and serves to indicate feasibility within less demanding patient groups. A dynamic model of nitroglycerine pharmacology, suitable for controller synthesis, was identified from an experiment involving an anesthetized pig, using a gradient-based output error method. The model was used to synthesize a robust PID controller for hypertension prevention, evaluated in a second experiment, on a second, brain dead, pig. Hypotension was simultaneously prevented using closed-loop controlled infusion of noradrenaline, by means of a previously published controller. A linear model of low order, with variable (uncertain) gain, was sufficient to describe the dynamics to be controlled. The robustly tuned PID controller utilized in the second experiment kept the MAP within a user-defined range. The system was able to prevent hypertension, exceeding a reference of 100 mmHg by more than 10%, during 98% of a 12 h experiment. This early work demonstrates feasibility of the investigated modelling and control synthesis approach, for the purpose of maintaining normotension in a porcine BD model. There remains a need to characterize individual variability, in order to ensure robust performance over the expected population.

  15. Controlled Synthesis of Nanomaterials at the Undergraduate Laboratory: Cu(OH)[subscript 2] and CuO Nanowires

    ERIC Educational Resources Information Center

    da Silva, Anderson G. M.; Rodrigues, Thenner S.; Parussulo, Andre´ L. A.; Candido, Eduardo G.; Geonmonond, Rafael S.; Brito, Hermi F.; Toma, Henrique E.; Camargo, Pedro H. C.

    2017-01-01

    Undergraduate-level laboratory experiments that involve the synthesis of nanomaterials with well-defined/controlled shapes are very attractive under the umbrella of nanotechnology education. Herein we describe a low-cost and facile experiment for the synthesis of Cu(OH)[subscript 2] and CuO nanowires comprising three main parts: (i) synthesis of…

  16. Oxalate absorption and endogenous oxalate synthesis from ascorbate in calcium oxalate stone formers and non-stone formers.

    PubMed

    Chai, Weiwen; Liebman, Michael; Kynast-Gales, Susan; Massey, Linda

    2004-12-01

    Increased rates of either oxalate absorption or endogenous oxalate synthesis can contribute to hyperoxaluria, a primary risk factor for the formation of calcium oxalate-containing kidney stones. This study involves a comparative assessment of oxalate absorption and endogenous oxalate synthesis in subpopulations of stone formers (SFs) and non-stone formers (NSFs) and an assessment of the effect of ascorbate supplementation on oxalate absorption and endogenous oxalate synthesis. Twenty-nine individuals with a history of calcium oxalate kidney stones (19 men, 10 women) and 19 age-matched NSFs (8 men, 11 women) participated in two 6-day controlled feeding experimental periods: ascorbate-supplement (2 g/d) and no-supplement treatments. An oxalate load consisting of 118 mg of unlabeled oxalate and 18 mg of 13C2 -oxalic acid was administered the morning of day 6 of each experimental period. Mean 13C2 -oxalic acid absorption averaged across the ascorbate and no-supplement treatments was significantly greater in SFs (9.9%) than NSFs (8.0%). SFs also had significantly greater 24-hour post-oxalate load urinary total oxalate and endogenous oxalate levels with both treatments. Twenty-four-hour urinary total oxalate level correlated strongly with both 13C2 -oxalic acid absorption (SFs, r = 0.76; P < 0.01; NSFs, r = 0.62; P < 0.01) and endogenous oxalate synthesis (SFs, r = 0.95; P < 0.01; NSFs, r = 0.92; P < 0.01). SFs are characterized by greater rates of both oxalate absorption and endogenous oxalate synthesis, and both these factors contribute to the hyperoxaluric state. The finding that ascorbate supplementation increased urinary total and endogenous oxalate levels suggested that this practice is a risk factor for individuals predisposed to kidney stones.

  17. Effects of Whey, Caseinate, or Milk Protein Ingestion on Muscle Protein Synthesis after Exercise

    PubMed Central

    Kanda, Atsushi; Nakayama, Kyosuke; Sanbongi, Chiaki; Nagata, Masashi; Ikegami, Shuji; Itoh, Hiroyuki

    2016-01-01

    Whey protein (WP) is characterized as a “fast” protein and caseinate (CA) as a “slow” protein according to their digestion and absorption rates. We hypothesized that co-ingestion of milk proteins (WP and CA) may be effective for prolonging the muscle protein synthesis response compared to either protein alone. We therefore compared the effect of ingesting milk protein (MP) to either WP or CA alone on muscle protein synthesis after exercise in rats. We also compared the effects of these milk-derived proteins to a control, soy protein (SP). Male Sprague-Dawley rats swam for two hours. Immediately after exercise, one of the following four solutions was administered: WP, CA, MP, or SP. Individual rats were euthanized at designated postprandial time points and triceps muscle samples collected for measurement of the protein fractional synthesis rate (FSR). FSR tended to increase in all groups post-ingestion, although the initial peaks of FSR occurred at different times (WP, peak time = 60 min, FSR = 7.76%/day; MP, peak time = 90 min, FSR = 8.34%/day; CA, peak time = 120 min, FSR = 7.85%/day). Milk-derived proteins caused significantly greater increases (p < 0.05) in FSR compared with SP at different times (WP, 60 min; MP, 90 and 120 min; CA, 120 min). Although statistical analysis could not be performed, the calculated the area under the curve (AUC) values for FSR following this trend were: MP, 534.61; CA, 498.22; WP, 473.46; and SP, 406.18. We conclude that ingestion of MP, CA or WP causes the initial peak time in muscle protein synthesis to occur at different times (WP, fast; MP, intermediate; CA, slow) and the dairy proteins have a superior effect on muscle protein synthesis after exercise compared with SP. PMID:27271661

  18. Effects of Whey, Caseinate, or Milk Protein Ingestion on Muscle Protein Synthesis after Exercise.

    PubMed

    Kanda, Atsushi; Nakayama, Kyosuke; Sanbongi, Chiaki; Nagata, Masashi; Ikegami, Shuji; Itoh, Hiroyuki

    2016-06-03

    Whey protein (WP) is characterized as a "fast" protein and caseinate (CA) as a "slow" protein according to their digestion and absorption rates. We hypothesized that co-ingestion of milk proteins (WP and CA) may be effective for prolonging the muscle protein synthesis response compared to either protein alone. We therefore compared the effect of ingesting milk protein (MP) to either WP or CA alone on muscle protein synthesis after exercise in rats. We also compared the effects of these milk-derived proteins to a control, soy protein (SP). Male Sprague-Dawley rats swam for two hours. Immediately after exercise, one of the following four solutions was administered: WP, CA, MP, or SP. Individual rats were euthanized at designated postprandial time points and triceps muscle samples collected for measurement of the protein fractional synthesis rate (FSR). FSR tended to increase in all groups post-ingestion, although the initial peaks of FSR occurred at different times (WP, peak time = 60 min, FSR = 7.76%/day; MP, peak time = 90 min, FSR = 8.34%/day; CA, peak time = 120 min, FSR = 7.85%/day). Milk-derived proteins caused significantly greater increases (p < 0.05) in FSR compared with SP at different times (WP, 60 min; MP, 90 and 120 min; CA, 120 min). Although statistical analysis could not be performed, the calculated the area under the curve (AUC) values for FSR following this trend were: MP, 534.61; CA, 498.22; WP, 473.46; and SP, 406.18. We conclude that ingestion of MP, CA or WP causes the initial peak time in muscle protein synthesis to occur at different times (WP, fast; MP, intermediate; CA, slow) and the dairy proteins have a superior effect on muscle protein synthesis after exercise compared with SP.

  19. Bacillus subtilis sporulation: regulation of gene expression and control of morphogenesis.

    PubMed Central

    Errington, J

    1993-01-01

    Bacillus subtilis sporulation is an adaptive response to nutritional stress and involves the differential development of two cells. In the last 10 years or so, virtually all of the regulatory genes controlling sporulation, and many genes directing the structural and morphological changes that accompany sporulation, have been cloned and characterized. This review describes our current knowledge of the program of gene expression during sporulation and summarizes what is known about the functions of the genes that determine the specialized biochemical and morphological properties of sporulating cells. Most steps in the genetic program are controlled by transcription factors that have been characterized in vitro. Two sporulation-specific sigma factors, sigma E and sigma F, appear to segregate at septation, effectively determining the differential development of the mother cell and prespore. Later, each sigma is replaced by a second cell-specific sigma factor, sigma K in the mother cell and sigma G in the prespore. The synthesis of each sigma factor is tightly regulated at both the transcriptional and posttranslational levels. Usually this regulation involves an intercellular interaction that coordinates the developmental programmes of the two cells. At least two other transcription factors fine tune the timing and levels of expression of genes in the sigma E and sigma K regulons. The controlled synthesis of the sigma factors and other transcription factors leads to a spatially and temporally ordered program of gene expression. The gene products made during each successive stage of sporulation help to bring about a sequence of gross morphological changes and biochemical adaptations. The formation of the asymmetric spore septum, engulfment of the prespore by the mother cell, and formation of the spore core, cortex, and coat are described. The importance of these structures in the development of the resistance, dormancy, and germination properties of the spore is assessed. Images PMID:8464402

  20. Synthesis of Silver and Gold Nanoparticles Using Antioxidants from Blackberry, Blueberry, Pomegranate, and Turmeric Extracts

    EPA Science Inventory

    Greener synthesis of Ag and Au nanoparticles is described using antioxidants from blackberry, blueberry, pomegranate, and turmeric extracts. The synthesized particles were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution TEM (HR...

  1. Kinetic control of intralayer cobalt coordination in layered hydroxides: Co(1-0.5x)(oct) Co(x)(tet) (OH)2 (Cl)x (H2O)n.

    PubMed

    Neilson, James R; Schwenzer, Birgit; Seshadri, Ram; Morse, Daniel E

    2009-12-07

    We report the synthesis and characterization of new structural variants of the isotypic compound with the generic chemical formula, Co(1-0.5x)(oct) Co(x)(tet) (OH)2 (Cl)x (H2O)n, all modifications of an alpha-Co(OH)2 lattice. We show that the occupancy of tetrahedrally coordinated cobalt sites and associated chloride ligands, x, is modulated by the rate of formation of the respective layered hydroxide salts from kinetically controlled aqueous hydrolysis at an air-water interface. This new level of structural control is uniquely enabled by the slow diffusion of a hydrolytic catalyst, a simple technique. Independent structural characterizations of the compounds separately describe various attributes of the materials on different length scales, revealing details hidden by the disordered average structures. The precise control over the population of distinct octahedrally and tetrahedrally coordinated cobalt ions in the lattice provides a gentle, generic method for modulating the coordination geometry of cobalt in the material without disturbing the lattice or using additional reagents. A mechanism is proposed to reconcile the observation of the kinetic control of the structure with competing interactions during the initial stages of hydrolysis and condensation.

  2. Protocol for the Solid-phase Synthesis of Oligomers of RNA Containing a 2'-O-thiophenylmethyl Modification and Characterization via Circular Dichroism.

    PubMed

    Francis, Andrew J; Resendiz, Marino J E

    2017-07-28

    Solid-phase synthesis has been used to obtain canonical and modified polymers of nucleic acids, specifically of DNA or RNA, which has made it a popular methodology for applications in various fields and for different research purposes. The procedure described herein focuses on the synthesis, purification, and characterization of dodecamers of RNA 5'-[CUA CGG AAU CAU]-3' containing zero, one, or two modifications located at the C2'-O-position. The probes are based on 2-thiophenylmethyl groups, incorporated into RNA nucleotides via standard organic synthesis and introduced into the corresponding oligonucleotides via their respective phosphoramidites. This report makes use of phosphoramidite chemistry via the four canonical nucleobases (Uridine (U), Cytosine (C), Guanosine (G), Adenosine (A)), as well as 2-thiophenylmethyl functionalized nucleotides modified at the 2'-O-position; however, the methodology is amenable for a large variety of modifications that have been developed over the years. The oligonucleotides were synthesized on a controlled-pore glass (CPG) support followed by cleavage from the resin and deprotection under standard conditions, i.e., a mixture of ammonia and methylamine (AMA) followed by hydrogen fluoride/triethylamine/N-methylpyrrolidinone. The corresponding oligonucleotides were purified via polyacrylamide electrophoresis (20% denaturing) followed by elution, desalting, and isolation via reversed-phase chromatography (Sep-pak, C18-column). Quantification and structural parameters were assessed via ultraviolet-visible (UV-vis) and circular dichroism (CD) photometric analysis, respectively. This report aims to serve as a resource and guide for beginner and expert researchers interested in embarking in this field. It is expected to serve as a work-in-progress as new technologies and methodologies are developed. The description of the methodologies and techniques within this document correspond to a DNA/RNA synthesizer (refurbished and purchased in 2013) that uses phosphoramidite chemistry.

  3. Materials-by-design: computation, synthesis, and characterization from atoms to structures

    NASA Astrophysics Data System (ADS)

    Yeo, Jingjie; Jung, Gang Seob; Martín-Martínez, Francisco J.; Ling, Shengjie; Gu, Grace X.; Qin, Zhao; Buehler, Markus J.

    2018-05-01

    In the 50 years that succeeded Richard Feynman’s exposition of the idea that there is ‘plenty of room at the bottom’ for manipulating individual atoms for the synthesis and manufacturing processing of materials, the materials-by-design paradigm is being developed gradually through synergistic integration of experimental material synthesis and characterization with predictive computational modeling and optimization. This paper reviews how this paradigm creates the possibility to develop materials according to specific, rational designs from the molecular to the macroscopic scale. We discuss promising techniques in experimental small-scale material synthesis and large-scale fabrication methods to manipulate atomistic or macroscale structures, which can be designed by computational modeling. These include recombinant protein technology to produce peptides and proteins with tailored sequences encoded by recombinant DNA, self-assembly processes induced by conformational transition of proteins, additive manufacturing for designing complex structures, and qualitative and quantitative characterization of materials at different length scales. We describe important material characterization techniques using numerous methods of spectroscopy and microscopy. We detail numerous multi-scale computational modeling techniques that complements these experimental techniques: DFT at the atomistic scale; fully atomistic and coarse-grain molecular dynamics at the molecular to mesoscale; continuum modeling at the macroscale. Additionally, we present case studies that utilize experimental and computational approaches in an integrated manner to broaden our understanding of the properties of two-dimensional materials and materials based on silk and silk-elastin-like proteins.

  4. [Control of RNA biosynthesis in rat liver. Some features of RNA biosynthesis during prolonged protein synthesis inhibition].

    PubMed

    Todorov, I N; Shen, R A; Zheliabovskaia, S M; Galkin, A P

    1976-10-01

    A drastic inhibition of protein biosynthesis in rat liver in vivo by cycloheximide (CHI) (0.3 mg/100 g of body weight) first caused an increase of RNA synthesis (after 1 hour), which was then followed by its decrease. Partial gradual restoration of the protein synthesis level was shown to be accompanied by a repeated increase of RNA synthesis (12 hs) and its normalisation after 24 hs. The first maximum of RNA synthesis increase in the isolated nuclei system was AU-type RNA synthesis (sensitive to alpha-amanitine), the second one was due to GC-type RNA synthesis (resistant to this toxin). Purified chromatine template activity in the system with E. coli RNA polymerase (by 14%) an hour after CHI treatment, but 3 hrs later was decreased and subsequently restored (12 hrs after CHI injection). The changes of RNA biosynthesis induced by prolonged protein synthesis inhibition suggest the existence of continuous RNA synthesis control in nuclei. This control is realized by translation system using the feed back principle.

  5. Synthesis and Oxidation of Silver Nano-particles

    DTIC Science & Technology

    2011-01-01

    solution (20%wt propyl alcohol, 5%wt hydrochloric acid and 5%wt stannous chloride in water). Scheme 1b and c illustrate the sensitization and silver... Synthesis and Oxidation of Silver Nano-particles Hua Qi*, D. A. Alexson, O.J. Glembocki and S. M. Prokes* Electronics Science and Technology...energy dispersive x-ray (EDX) techniques. The results Quantum Dots and Nanostructures: Synthesis , Characterization, and Modeling VIII, edited by Kurt

  6. Mechanistic Insights into Growth of Surface‐Mounted Metal‐Organic Framework Films Resolved by Infrared (Nano‐) Spectroscopy

    PubMed Central

    Delen, Guusje; Ristanović, Zoran; Mandemaker, Laurens D. B.

    2017-01-01

    Abstract Control over assembly, orientation, and defect‐free growth of metal‐organic framework (MOF) films is crucial for their future applications. A layer‐by‐layer approach is considered a suitable method to synthesize highly oriented films of numerous MOF topologies, but the initial stages of the film growth remain poorly understood. Here we use a combination of infrared (IR) reflection absorption spectroscopy and atomic force microscopy (AFM)‐IR imaging to investigate the assembly and growth of a surface mounted MOF (SURMOF) film, specifically HKUST‐1. IR spectra of the films were measured with monolayer sensitivity and <10 nm spatial resolution. In contrast to the common knowledge of LbL SURMOF synthesis, we find evidence for the surface‐hindered growth and large presence of copper acetate precursor species in the produced MOF thin‐films. The growth proceeds via a solution‐mediated mechanism where the presence of weakly adsorbed copper acetate species leads to the formation of crystalline agglomerates with a size that largely exceeds theoretical growth limits. We report the spectroscopic characterization of physisorbed copper acetate surface species and find evidence for the large presence of unexchanged and mixed copper‐paddle‐wheels. Based on these insights, we were able to optimize and automatize synthesis methods and produce (100) oriented HKUST‐1 thin‐films with significantly shorter synthesis times, and additionally use copper nitrate as an effective synthesis precursor. PMID:29164720

  7. CitAP2.10 activation of the terpene synthase CsTPS1 is associated with the synthesis of (+)-valencene in ‘Newhall’ orange

    PubMed Central

    Shen, Shu-ling; Yin, Xue-ren; Zhang, Bo; Xie, Xiu-lan; Jiang, Qian; Grierson, Donald; Chen, Kun-song

    2016-01-01

    Aroma is a vital characteristic that determines the quality and commercial value of citrus fruits, and characteristic volatiles have been analyzed in different citrus species. In sweet orange, Citrus sinensis, the sesquiterpene (+)-valencene is a key volatile compound in the fruit peel. Valencene synthesis is catalyzed by the terpene synthase CsTPS1, but the transcriptional mechanisms controlling its gene expression are unknown. Here, the AP2/ERF (APETALA2/ethylene response factor) transcription factor, CitAP2.10, is characterized as a regulator of (+)-valencene synthesis. The expression pattern of CitAP2.10 was positively correlated with (+)-valencene content and CsTPS1 expression. Dual-luciferase assays indicated that CitAP2.10 could trans-activate the CsTPS1 promoter. Ethylene enhanced expression of CitAP2.10 and this effect was abolished by the ethylene antagonist 1-methylcyclopropene. The role and function of CitAP2.10 in (+)-valencene biosynthesis were confirmed using the Arabidopsis homolog (AtWRI1), which also transiently activated the CsTPS1 promoter. Furthermore, transient over-expression of CitAP2.10 triggered (+)-valencene biosynthesis in sweet orange fruit. These results indicate that CitAP2.10 regulates (+)-valencene synthesis via induction of CsTPS1 mRNA accumulation. PMID:27194737

  8. Cross cultural translation and adaptation to Brazilian Portuguese of the Hearing Implant Sound Quality Index Questionnaire - (HISQUI19).

    PubMed

    Caporali, Priscila Faissola; Caporali, Sueli Aparecida; Bucuvic, Érika Cristina; Vieira, Sheila de Souza; Santos, Zeila Maria; Chiari, Brasília Maria

    2016-01-01

    Translation and cross-cultural adaptation of the instrument Hearing Implant Sound Quality Index (HISQUI19), and characterization of the target population and auditory performance in Cochlear Implant (CI) users through the application of a synthesis version of this tool. Evaluations of conceptual, item, semantic and operational equivalences were performed. The synthesis version was applied as a pre-test to 33 individuals, whose final results characterized the final sample and performance of the questionnaire. The results were analyzed statistically. The final translation (FT) was back-translated and compared with the original version, revealing a minimum difference between items. The changes observed between the FT and the synthesis version were characterized by the application of simplified vocabulary used on a daily basis. For the pre-test, the average score of the interviewees was 90.2, and a high level of reliability was achieved (0.83). The translation and cross-cultural adaptation of the HISQUI19 questionnaire showed suitability for conceptual, item, semantic and operational equivalences. For the sample characterization, the sound quality was classified as good with better performance for the categories of location and distinction of sound/voices.

  9. Colloidal Synthesis of Te-Doped Bi Nanoparticles: Low-Temperature Charge Transport and Thermoelectric Properties.

    PubMed

    Gu, Da Hwi; Jo, Seungki; Jeong, Hyewon; Ban, Hyeong Woo; Park, Sung Hoon; Heo, Seung Hwae; Kim, Fredrick; Jang, Jeong In; Lee, Ji Eun; Son, Jae Sung

    2017-06-07

    Electronically doped nanoparticles formed by incorporation of impurities have been of great interest because of their controllable electrical properties. However, the development of a strategy for n-type or p-type doping on sub-10 nm-sized nanoparticles under the quantum confinement regime is very challenging using conventional processes, owing to the difficulty in synthesis. Herein, we report the colloidal chemical synthesis of sub-10 nm-sized tellurium (Te)-doped Bismuth (Bi) nanoparticles with precisely controlled Te content from 0 to 5% and systematically investigate their low-temperature charge transport and thermoelectric properties. Microstructural characterization of nanoparticles demonstrates that Te ions are successfully incorporated into Bi nanoparticles rather than remaining on the nanoparticle surfaces. Low-temperature Hall measurement results of the hot-pressed Te-doped Bi-nanostructured materials, with grain sizes ranging from 30 to 60 nm, show that the charge transport properties are governed by the doping content and the related impurity and nanoscale grain boundary scatterings. Furthermore, the low-temperature thermoelectric properties reveal that the electrical conductivity and Seebeck coefficient expectedly change with the Te content, whereas the thermal conductivity is significantly reduced by Te doping because of phonon scattering at the sites arising from impurities and nanoscale grain boundaries. Accordingly, the 1% Te-doped Bi sample exhibits a higher figure-of-merit ZT by ∼10% than that of the undoped sample. The synthetic strategy demonstrated in this study offers the possibility of electronic doping of various quantum-confined nanoparticles for diverse applications.

  10. Transition Metal Complexes of Quinolino[3,2-b]benzodiazepine and Quinolino[3,2-b]benzoxazepine: Synthesis, Characterization, and Antimicrobial Studies

    PubMed Central

    Basavaraju, B.; Bhojya Naik, Halehatty S.; Prabhakara, Mustur C.

    2007-01-01

    The synthesis and characterization of title complexes of the ligand Quinolino[3,2-b]benzodiazepine (QBD) and Quinolino[3,2-b]benzoxazepine (QBO) are reported. The complexes have been characterized by elemental analysis, molar conductance, magnetic studies, IR, H1 NMR, and UV-visible studies. They have the stoichiometry [ML2C12], where M=Co(II)/Ni(II), L=QBD/QBO, and [MLC12], where M=Zn(II)/Cd(II), L=QBD/QBO. The antibacterial and antifungal activity of the metal complexes has been investigated. The complexes were found to have higher antimicrobial activity than the parent ligand. PMID:18273383

  11. Synthesis and Electrochemical Properties Characterization of SnO2-coated LiNi1/3Co1/3Mn1/3O2 Cathode Material for Lithium Ion Batteries

    DTIC Science & Technology

    2009-01-01

    Synthesis and electrochemical properties characterization of SnO2-coated LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries Ping Yang...electrochemical properties characterization of SnO2-coated LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries 5a. CONTRACT NUMBER 5b. GRANT NUMBER...electrochemical reaction. References 1. N Yabuuchi, T Ohzuku, “Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium - ion batteries ”, J

  12. Direct synthesis and morphological characterization of gold-dendrimer nanocomposites prepared using PAMAM succinamic acid dendrimers: preliminary study of the calcification potential.

    PubMed

    Vasile, E; Serafim, A; Petre, D; Giol, D; Dubruel, P; Iovu, H; Stancu, I C

    2014-01-01

    Gold-dendrimer nanocomposites were obtained for the first time by a simple colloidal approach based on the use of polyamidoamine dendrimers with succinamic acid terminal groups and dodecanediamine core. Spherical and highly crystalline nanoparticles with dimensions between 3 nm and 60 nm, and size-polydispersity depending on the synthesis conditions, have been generated. The influence of the stoichiometric ratio and the structural and architectural features of the dendrimers on the properties of the nanocomposites has been described. The self-assembling behaviour of these materials produces gold-dendrimer nanostructured porous networks with variable density, porosity, and composition. The investigations of the reaction systems, by TEM, at two postsynthesis moments, allowed to preliminary establish the control over the properties of the nanocomposite products. Furthermore, this study allowed better understanding of the mechanism of nanocomposite generation. Impressively, in the early stages of the synthesis, the organization of gold inside the dendrimer molecules has been evidenced by micrographs. Growth and ripening mechanisms further lead to nanoparticles with typical characteristics. The potential of such nanocomposite particles to induce calcification when coating a polymer substrate was also investigated.

  13. Self-assembly synthesis, tumor cell targeting, and photothermal capabilities of antibody-coated indocyanine green nanocapsules

    PubMed Central

    Yu, Jie; Javier, David; Yaseen, Mohammad A.; Nitin, Nitin; Richards-Kortum, Rebecca; Anvari, Bahman; Wong, Michael S.

    2010-01-01

    New colloidal materials that can generate heat upon irradiation are being explored for photothermal therapy as a minimally invasive approach to cancer treatment. The near-infrared dye indocyanine green (ICG) could serve as a basis for such a material, but its encapsulation and subsequent use is very difficult to carry out. We report the three-step room-temperature synthesis of ~120-nm capsules loaded with ICG within salt-crosslinked polyallylamine aggregates, and coated with anti-epidermal growth factor receptor (anti-EGFR) antibodies for tumor cell targeting capability. We studied the synthesis conditions such as temperature and water dilution to control the capsule size and characterized the size distribution via dynamic light scattering and scanning electron microscopy. We further studied the specificity of tumor cell targeting using three carcinoma cell lines with different levels of EGFR expression, and investigated the photothermal effects of ICG containing nanocapsules on EGFR-rich tumor cells. Significant thermal toxicity was observed for encapsulated ICG as compared to free ICG at 808 nm laser irradiation with radiant exposure of 6 W/cm2. These results illustrate the ability to design a colloidal material with cell targeting and heat generating capabilities using non-covalent chemistry. PMID:20092330

  14. Facile synthesis and photocatalytic activity of ZnO/zinc titanate core-shell nanorod arrays

    NASA Astrophysics Data System (ADS)

    He, Ding-Chao; Fu, Qiu-Ming; Ma, Zhi-Bin; Zhao, Hong-Yang; Tu, Ya-Fang; Tian, Yu; Zhou, Di; Zheng, Guang; Lu, Hong-Bing

    2018-02-01

    ZnO/zinc titanate core-shell nanorod arrays (CSNRs) were successfully prepared via a simple synthesis process by combining hydrothermal synthesis and liquid phase deposition (LPD). The surface morphologies, crystalline characteristics, optical properties and surface electronic states of the ZnO/zinc titanate CSNRs were characterized by scanning electron microscope, transmission electron microscope, x-ray diffractometer, x-ray photoelectron spectroscopy, PL and ultraviolet (UV)-visible absorption spectra. By controlling the reaction time of LPD, the shell thickness could vary with the reaction time. Furthermore, the impacts of the reaction time and post-annealing temperature on the crystalline structure and chemical composition of the CSNRs were also investigated. The studies of photocatalytic activity under UV light irradiation revealed that the ZnO/zinc titanate CSNRs annealed at 700 °C with 30 min deposition exhibited the best photocatalytic activity and good stability for degradation of methylene blue. It had been found that the effective separation of photogenerated electron-hole pairs in the CSNRs led to the enhanced photocatalytic activity. Moreover, the ZnO/zinc titanate CSNRs grown on quartz glass substrate could be easily recycled for reuse with almost unchanged photocatalytic activity.

  15. Polypeptide nanogels with hydrophobic moieties in the cross-linked ionic cores: Synthesis, characterization and implications for anticancer drug delivery

    PubMed Central

    Kim, Jong Oh; Oberoi, Hardeep S.; Desale, Swapnil; Kabanov, Alexander V.; Bronich, Tatiana K.

    2014-01-01

    Polymer nanogels have gained considerable attention as a potential platform for drug delivery applications. Here we describe the design and synthesis of novel polypeptide-based nanogels with hydrophobic moieties in the cross-linked ionic cores. Diblock copolymer, poly(ethylene glycol)-b-poly(L-glutamic acid), hydrophobically modified with L-phenylalanine methyl ester moieties was used for controlled template synthesis of nanogels with small size (ca. 70 nm in diameter) and narrow particle size distribution. Steady-state and time-resolved fluorescence studies using coumarin C153 indicated the existence of hydrophobic domains in the ionic cores of the nanogels. Stable doxorubicin-loaded nanogels were prepared at high drug capacity (30 w/w%). We show that nanogels are enzymatically-degradable leading to accelerated drug release under simulated lysosomal acidic pH. Furthermore, we demonstrate that the nanogel-based formulation of doxorubicin is well tolerated and exhibit an improved antitumor activity compared to a free doxorubicin in an ovarian tumor xenograft mouse model. Our results signify the point to a potential of these biodegradable nanogels as attractive carriers for delivery of chemotherapeutics. PMID:23998716

  16. Direct Synthesis and Morphological Characterization of Gold-Dendrimer Nanocomposites Prepared Using PAMAM Succinamic Acid Dendrimers: Preliminary Study of the Calcification Potential

    PubMed Central

    Vasile, E.; Serafim, A.; Petre, D.; Giol, D.; Dubruel, P.; Iovu, H.; Stancu, I. C.

    2014-01-01

    Gold-dendrimer nanocomposites were obtained for the first time by a simple colloidal approach based on the use of polyamidoamine dendrimers with succinamic acid terminal groups and dodecanediamine core. Spherical and highly crystalline nanoparticles with dimensions between 3 nm and 60 nm, and size-polydispersity depending on the synthesis conditions, have been generated. The influence of the stoichiometric ratio and the structural and architectural features of the dendrimers on the properties of the nanocomposites has been described. The self-assembling behaviour of these materials produces gold-dendrimer nanostructured porous networks with variable density, porosity, and composition. The investigations of the reaction systems, by TEM, at two postsynthesis moments, allowed to preliminary establish the control over the properties of the nanocomposite products. Furthermore, this study allowed better understanding of the mechanism of nanocomposite generation. Impressively, in the early stages of the synthesis, the organization of gold inside the dendrimer molecules has been evidenced by micrographs. Growth and ripening mechanisms further lead to nanoparticles with typical characteristics. The potential of such nanocomposite particles to induce calcification when coating a polymer substrate was also investigated. PMID:24600316

  17. Selective synthesis and characterization of single-crystal silver molybdate/tungstate nanowires by a hydrothermal process.

    PubMed

    Cui, Xianjin; Yu, Shu-Hong; Li, Lingling; Biao, Liu; Li, Huabin; Mo, Maosong; Liu, Xian-Ming

    2004-01-05

    Selective synthesis of uniform single crystalline silver molybdate/tungstate nanorods/nanowires in large scale can be easily realized by a facile hydrothermal recrystallization technique. The synthesis is strongly dependent on the pH conditions, temperature, and reaction time. The phase transformation was examined in details. Pure Ag(2)MoO(4) and Ag(6)Mo(10)O(33) can be easily obtained under neutral condition and pH 2, respectively, whereas other mixed phases of Mo(17)O(47), Ag(2)Mo(2)O(7,) Ag(6)Mo(10)O(33) were observed under different pH conditions. Ag(6)Mo(10)O(33) nanowires with uniform diameter 50-60 nm and length up to several hundred micrometers were synthesized in large scale for the first time at 140 degrees C. The melting point of Ag(6)Mo(10)O(33) nanowires were found to be about 238 degrees C. Similarly, Ag(2)WO(4), and Ag(2)W(2)O(7) nanorods/nanowires can be selectively synthesized by controlling pH value. The results demonstrated that this route could be a potential mild way to selectively synthesize various molybdate nanowires with various phases in large scale.

  18. A decentralized linear quadratic control design method for flexible structures

    NASA Technical Reports Server (NTRS)

    Su, Tzu-Jeng; Craig, Roy R., Jr.

    1990-01-01

    A decentralized suboptimal linear quadratic control design procedure which combines substructural synthesis, model reduction, decentralized control design, subcontroller synthesis, and controller reduction is proposed for the design of reduced-order controllers for flexible structures. The procedure starts with a definition of the continuum structure to be controlled. An evaluation model of finite dimension is obtained by the finite element method. Then, the finite element model is decomposed into several substructures by using a natural decomposition called substructuring decomposition. Each substructure, at this point, still has too large a dimension and must be reduced to a size that is Riccati-solvable. Model reduction of each substructure can be performed by using any existing model reduction method, e.g., modal truncation, balanced reduction, Krylov model reduction, or mixed-mode method. Then, based on the reduced substructure model, a subcontroller is designed by an LQ optimal control method for each substructure independently. After all subcontrollers are designed, a controller synthesis method called substructural controller synthesis is employed to synthesize all subcontrollers into a global controller. The assembling scheme used is the same as that employed for the structure matrices. Finally, a controller reduction scheme, called the equivalent impulse response energy controller (EIREC) reduction algorithm, is used to reduce the global controller to a reasonable size for implementation. The EIREC reduced controller preserves the impulse response energy of the full-order controller and has the property of matching low-frequency moments and low-frequency power moments. An advantage of the substructural controller synthesis method is that it relieves the computational burden associated with dimensionality. Besides that, the SCS design scheme is also a highly adaptable controller synthesis method for structures with varying configuration, or varying mass and stiffness properties.

  19. Redox Switchable Coordination Catalysis: An Advanced Tool for Catalyst Control and Tailored Polyolefin Synthesis

    DTIC Science & Technology

    2017-06-18

    olefins at a much slower rate than its non -reduced analogue which can be harnessed to control polyolefin comonomer incorporation percentages and thus its...opportunities for mechanistic understanding, catalyst control , and polyolefin synthesis that are impossible using heterogeneous 1. REPORT DATE (DD-MM...Advanced Tool for Catalyst Control and Tailored Polyolefin Synthesis The views, opinions and/or findings contained in this report are those of the

  20. High Throughput Spectroscopic Catalyst Screening via Surface Plasmon Spectroscopy

    DTIC Science & Technology

    2015-07-15

    release. Distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT Over the last decade, shape controlled synthesis of nanoparticles (NPs) has...unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Over the last decade, shape controlled synthesis of nanoparticles (NPs) has opened up the possibility...i) Specific Aims - Over the last decade, shape controlled synthesis of nanoparticles (NPs) has opened up the possibility to study heterogeneous

  1. Characterizing the Three-Dimensional Structure of Block Copolymers via Sequential Infiltration Synthesis and Scanning Transmission Electron Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Segal-Peretz, Tamar; Winterstein, Jonathan; Doxastakis, Manolis

    Understanding and controlling the three-dimensional structure of block copolymer (BCP) thin films is critical for utilizing these materials for sub-20 nm nanopatterning in semiconductor devices, as well as in membranes and solar cell applications. Combining an atomic layer deposition (ALD) based technique for enhancing the contrast of BCPs in transmission electron microscopy (TEM) together with scanning TEM (STEM) tomography reveals and characterizes the three-dimensional structures of poly(styrene-block-methyl methacrylate) (PS-b-PMMA) thin films with great clarity. Sequential infiltration synthesis (SIS), a block-selective technique for growing inorganic materials in BCPs films in ALD, and an emerging tool for enhancing the etch contrast ofmore » BCPs, was harnessed to significantly enhance the high-angle scattering from the polar domains of BCP films in the TEM. The power of combining SIS and STEM tomography for three dimensional (3D) characterization of BCPs films was demonstrated with the following cases: self-assembled cylindrical, lamellar, and spherical PS-PMMA thin films. In all cases, STEM tomography has revealed 3D structures that were hidden underneath the surface, including: 1) the 3D structure of defects in cylindrical and lamellar phases, 2) non-perpendicular 3D surface of grain boundaries in the cylindrical phase, and 3) the 3D arrangement of spheres in body centered cubic (BCC) and hexagonal closed pack (HCP) morphologies in the spherical phase. The 3D data of the spherical morphologies was compared to coarse-grained simulations and assisted in validating the simulations’ parameters. STEM tomography of SIS-treated BCP films enables the characterization of the exact structure used for pattern transfer, and can lead to better understating of the physics which is utilized in BCP lithography.« less

  2. Eco-friendly green synthesis of silver nanoparticles using salmalia malabarica: synthesis, characterization, antimicrobial, and catalytic activity studies

    NASA Astrophysics Data System (ADS)

    Murali Krishna, I.; Bhagavanth Reddy, G.; Veerabhadram, G.; Madhusudhan, A.

    2016-06-01

    An economically viable and "green" process has been developed for the synthesis of silver nanoparticles (AgNPs) with an average size of 7 nm using non-toxic and renewable salmalia malabarica gum (SMG) as reducing and capping agent without using any chemical reducing agent. The effect of various parameters such as concentration of SMG and silver nitrate and reaction time for the synthesis of AgNPs was studied. The synthesized AgNPs are systematically characterized by UV/Vis spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction and Transmission electron microscopy. The resultant SMG-capped AgNPs are highly stable and had significant antibacterial action on both Escherichia coli ( E. coli) and Staphylococcus aureus ( S. aureus). The catalytic action of the SMG-capped AgNPs to initiate the reduction of 4-nitrophenol (4-NP) in the presence of NaBH4 has also been reported. The kinetics of the reaction was found to be of pseudo-first-order with respect to the 4-NP.

  3. Genetic control of osmoadaptive glycine betaine synthesis in Bacillus subtilis through the choline-sensing and glycine betaine-responsive GbsR repressor.

    PubMed

    Nau-Wagner, Gabriele; Opper, Daniela; Rolbetzki, Anne; Boch, Jens; Kempf, Bettina; Hoffmann, Tamara; Bremer, Erhard

    2012-05-01

    Synthesis of the compatible solute glycine betaine confers a considerable degree of osmotic stress tolerance to Bacillus subtilis. This osmoprotectant is produced through the uptake of the precursor choline via the osmotically inducible OpuB and OpuC ABC transporters and a subsequent two-step oxidation process by the GbsB and GbsA enzymes. We characterized a regulatory protein, GbsR, controlling the transcription of both the structural genes for the glycine betaine biosynthetic enzymes (gbsAB) and those for the choline-specific OpuB transporter (opuB) but not of that for the promiscuous OpuC transporter. GbsR acts genetically as a repressor and functions as an intracellular choline sensor. Spectroscopic analysis of the purified GbsR protein showed that it binds the inducer choline with an apparent K(D) (equilibrium dissociation constant) of approximately 165 μM. Based on the X-ray structure of a protein (Mj223) from Methanococcus jannaschii, a homology model for GbsR was derived. Inspection of this GbsR in silico model revealed a possible ligand-binding pocket for choline resembling those of known choline-binding sites present in solute receptors of microbial ABC transporters, e.g., that of the OpuBC ligand-binding protein of the OpuB ABC transporter. GbsR was not only needed to control gbsAB and opuB expression in response to choline availability but also required to genetically tune down glycine betaine production once cellular adjustment to high osmolarity has been achieved. The GbsR regulatory protein from B. subtilis thus records and integrates cellular and environmental signals for both the onset and the repression of the synthesis of the osmoprotectant glycine betaine.

  4. Genetic Control of Osmoadaptive Glycine Betaine Synthesis in Bacillus subtilis through the Choline-Sensing and Glycine Betaine-Responsive GbsR Repressor

    PubMed Central

    Nau-Wagner, Gabriele; Opper, Daniela; Rolbetzki, Anne; Boch, Jens; Kempf, Bettina; Hoffmann, Tamara

    2012-01-01

    Synthesis of the compatible solute glycine betaine confers a considerable degree of osmotic stress tolerance to Bacillus subtilis. This osmoprotectant is produced through the uptake of the precursor choline via the osmotically inducible OpuB and OpuC ABC transporters and a subsequent two-step oxidation process by the GbsB and GbsA enzymes. We characterized a regulatory protein, GbsR, controlling the transcription of both the structural genes for the glycine betaine biosynthetic enzymes (gbsAB) and those for the choline-specific OpuB transporter (opuB) but not of that for the promiscuous OpuC transporter. GbsR acts genetically as a repressor and functions as an intracellular choline sensor. Spectroscopic analysis of the purified GbsR protein showed that it binds the inducer choline with an apparent KD (equilibrium dissociation constant) of approximately 165 μM. Based on the X-ray structure of a protein (Mj223) from Methanococcus jannaschii, a homology model for GbsR was derived. Inspection of this GbsR in silico model revealed a possible ligand-binding pocket for choline resembling those of known choline-binding sites present in solute receptors of microbial ABC transporters, e.g., that of the OpuBC ligand-binding protein of the OpuB ABC transporter. GbsR was not only needed to control gbsAB and opuB expression in response to choline availability but also required to genetically tune down glycine betaine production once cellular adjustment to high osmolarity has been achieved. The GbsR regulatory protein from B. subtilis thus records and integrates cellular and environmental signals for both the onset and the repression of the synthesis of the osmoprotectant glycine betaine. PMID:22408163

  5. Lysyl oxidase interacts with AGE signalling to modulate collagen synthesis in polycystic ovarian tissue

    PubMed Central

    Papachroni, Katerina K; Piperi, Christina; Levidou, Georgia; Korkolopoulou, Penelope; Pawelczyk, Leszek; Diamanti-Kandarakis, Evanthia; Papavassiliou, Athanasios G

    2010-01-01

    Abstract Connective tissue components – collagen types I, III and IV – surrounding the ovarian follicles undergo drastic changes during ovulation. Abnormal collagen synthesis and increased volume and density of ovarian stroma characterize the polycystic ovary syndrome (PCOS). During the ovulatory process, collagen synthesis is regulated by prolyl hydroxylase and lysyl oxidase (LOX) activity in ovarian follicles. LOX catalyzes collagen and elastin cross-linking and plays essential role in coordinating the control of ovarian extracellular matrix (ECM) during follicular development. We have recently shown accumulation of advanced glycation end products (AGEs), molecules that stimulate ECM production and abnormal collagen cross-linking, in ovarian tissue. However, the possible link between LOX and AGEs-induced signalling in collagen production and stroma formation in ovarian tissue from PCOS remains elusive. The present study investigates the hypothesis of AGE signalling pathway interaction with LOX gene activity in polycystic ovarian (PCO) tissue. We show an increased distribution and co-localization of LOX, collagen type IV and AGE molecules in the PCO tissue compared to control, as well as augmented expression of AGE signalling mediators/effectors, phospho(p)-ERK, phospho(p)-c-Jun and nuclear factor κB (NF-κB) in pathological tissue. Moreover, we demonstrate binding of AGE-induced transcription factors, NF-κB and activator protein-1 (AP-1) on LOX promoter, indicating a possible involvement of AGEs in LOX gene regulation, which may account for the documented increase in LOX mRNA and protein levels compared to control. These findings suggest that deposition of excess collagen in PCO tissue that induces cystogenesis may, in part, be due to AGE-mediated stimulation of LOX activity. PMID:19583806

  6. Hydrothermal synthesis of a photovoltaic material based on CuIn0.5Ga0.5Se2

    NASA Astrophysics Data System (ADS)

    Castellanos Báez, Y. T.; Fuquen Peña, D. A.; Gómez-Cuaspud, J. A.; Vera-López, E.; Pineda-Triana, Y.

    2017-12-01

    The present work report, the synthesis and characterization of the CuIn0.5Ga0.5Se2 system (abbreviated CIGS), by the implementation of a hydrothermal route, in order to obtain a solid with appropriate properties in terms of surface, morphological and texture properties for potential applications in the design of photovoltaic cells. The synthesis was carried out using the corresponding stoichiometric quantities (Cu:In:Ga:Se 1:0.5:0.5:2), which were mixed in a Teflon vessel under stirring conditions. The homogeneous solution was treated in a steel autoclave at 300°C for 72 hours at the end of which the resulting material was characterized by X-Ray Diffraction (XRD) and Rietveld refinement. The results of the structural characterization allowed to confirm the obtaining of a chalcopyrite type structure, with a I-42 d (122) structure and cell parameters a=0.570, b=0.570, c=1.140nm, α=90, β=90, γ=90° oriented along (1 0 4) facet, detecting the presence of a secondary phases, related with CuInSe and CuIn metallic selenides, derived from synthesis process. The structural refinement allowing to validate the obtaining of a nanometric crystalline material (10-20nm) for potential applications in field of photovoltaic technology.

  7. Reverse micelle synthesis of nanoscale metal containing catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darab, J.G.; Fulton, J.L.; Linehan, J.C.

    1993-03-01

    The need for morphological control during the synthesis of catalyst precursor powders is generally accepted to be important. In the liquefaction of coal, for example, iron-bearing catalyst precursor particles containing individual crystallites with diameters in the 1-100 nanometer range are believed to achieve good dispersion through out the coal-solvent slurry during liquefaction 2 runs and to undergo chemical transformations to catalytically active iron sulfide phases. The production of the nanoscale powders described here employs the confining spherical microdomains comprising the aqueous phase of a modified reverse micelle (MRM) microemulsion system as nanoscale reaction vessels in which polymerization, electrochemical reduction andmore » precipitation of solvated salts can occur. The goal is to take advantage of the confining nature of micelles to kinetically hinder transformation processes which readily occur in bulk aqueous solution in order to control the morphology and phase of the resulting powder. We have prepared a variety of metal, alloy, and metal- and mixed metal-oxide nanoscale powders from appropriate MRM systems. Examples of nanoscale powders produced include Co, Mo-Co, Ni{sub 3}Fe, Ni, and various oxides and oxyhydroxides of iron. Here, we discuss the preparation and characterization of nickel metal (with a nickel oxide surface layer) and iron oxyhydroxide MRM nanoscale powders. We have used extended x-ray absorption fine structure (EXAFS) spectroscopy to study the chemical polymerization process in situ, x-ray diffraction (XRD), scanning and transmission electron microcroscopies (SEM and TEM), elemental analysis and structural modelling to characterize the nanoscale powders produced. The catalytic activity of these powders is currently being studied.« less

  8. Synthesis and characterization of hollow mesoporous BaFe{sub 12}O{sub 19} spheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xia; Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487; Park, Jihoon

    2015-02-15

    A facile method is reported to synthesize hollow mesoporous BaFe{sub 12}O{sub 19} spheres using a template-free chemical etching process. Hollow BaFe{sub 12}O{sub 19} spheres were synthesized by conventional spray pyrolysis. The mesoporous structure is achieved by alkaline ethylene glycol etching at 185 °C, with the porosity controlled by the heating time. The hollow porous structure is confirmed by SEM, TEM, and FIB-FESEM characterization. The crystal structure and magnetic properties are not significantly affected after the chemical etching process. The formation mechanism of the porous structure is explained by grain boundary etching. - Graphical abstract: Hollow spherical BaFe{sub 12}O{sub 19} particlesmore » are polycrystalline with both grains and grain boundaries. Grain boundaries have less ordered structure and lower stability. When the particles are exposed to high temperature alkaline ethylene glycol, the grain boundaries are etched, leaving small grooves between grains. These grooves allow ethylene glycol to diffuse inside to further etch the grains. As the grain size decreases, gaps appear on the particle surfaces, and a porous structure is finally formed. - Highlights: • Two-step synthesis method for hollow mesoporous BaFe{sub 12}O{sub 19} spheres is proposed. • Porosity of the product can be regulated by controlling the second step of chemical etching. • The crystal structure and magnetic properties are examined to be little affected during the chemical etching. • The mesoporous structure formation mechanism is explained by grain boundary etching.« less

  9. Hydrothermal route to VO2 (B) nanorods: controlled synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Song, Shaokun; Huang, Qiwei; Zhu, Wanting

    2017-10-01

    One-dimensional vanadium dioxides have attracted intensive attention owing to their distinctive structure and novel applications in catalysis, high energy lithium-ion batteries, chemical sensors/actuators and electrochemical devices etc. In this paper, large-scale VO2 (B) nanorods have been successfully synthesized via a versatile and environment friendly hydrothermal strategy using V2O5 as vanadium source and carbohydrates/alcohols as reductant. The obtained samples are characterized by XRD, FT-IR, TEM, and XPS techniques to investigate the effects of chemical parameters such as reductants, temperature, and time of synthesis on the structure and morphology of products. Results show that pure B phase VO2 with homogeneous nanorod-like morphology can be prepared easily at 180 °C for 3 days with glycerol as reluctant. Typically, the nanorod-like products are 0.5-1 μm long and 50 nm width. Furthermore, it is also confirmed that the products are consisted of VO2, corresponding to the B phase. More importantly, this novel approach is efficient, free of any harmful solvents and surfactants. Therefore, this efficient, green, and cost-saving route will have great potential in the large-scale fabrication of 1D VO2 (B) nanorods from the economic and environmental point of view.

  10. Characterization of Nanoparticle Batch-To-Batch Variability

    PubMed Central

    Mülhopt, Sonja; Dilger, Marco; Adelhelm, Christel; Anderlohr, Christopher; Gómez de la Torre, Johan; Langevin, Dominique; Mahon, Eugene; Piella, Jordi; Puntes, Victor; Ray, Sikha; Schneider, Reinhard; Wilkins, Terry; Weiss, Carsten

    2018-01-01

    A central challenge for the safe design of nanomaterials (NMs) is the inherent variability of NM properties, both as produced and as they interact with and evolve in, their surroundings. This has led to uncertainty in the literature regarding whether the biological and toxicological effects reported for NMs are related to specific NM properties themselves, or rather to the presence of impurities or physical effects such as agglomeration of particles. Thus, there is a strong need for systematic evaluation of the synthesis and processing parameters that lead to potential variability of different NM batches and the reproducible production of commonly utilized NMs. The work described here represents over three years of effort across 14 European laboratories to assess the reproducibility of nanoparticle properties produced by the same and modified synthesis routes for four of the OECD priority NMs (silica dioxide, zinc oxide, cerium dioxide and titanium dioxide) as well as amine-modified polystyrene NMs, which are frequently employed as positive controls for nanotoxicity studies. For 46 different batches of the selected NMs, all physicochemical descriptors as prioritized by the OECD have been fully characterized. The study represents the most complete assessment of NMs batch-to-batch variability performed to date and provides numerous important insights into the potential sources of variability of NMs and how these might be reduced. PMID:29738461

  11. Biochemistry and Molecular Biology of Carotenoid Biosynthesis in Chili Peppers (Capsicum spp.)

    PubMed Central

    del Rocío Gómez-García, María; Ochoa-Alejo, Neftalí

    2013-01-01

    Capsicum species produce fruits that synthesize and accumulate carotenoid pigments, which are responsible for the fruits’ yellow, orange and red colors. Chili peppers have been used as an experimental model for studying the biochemical and molecular aspects of carotenoid biosynthesis. Most reports refer to the characterization of carotenoids and content determination in chili pepper fruits from different species, cultivars, varieties or genotypes. The types and levels of carotenoids differ between different chili pepper fruits, and they are also influenced by environmental conditions. Yellow-orange colors of chili pepper fruits are mainly due to the accumulation of α- and β-carotene, zeaxanthin, lutein and β-cryptoxanthin. Carotenoids such as capsanthin, capsorubin and capsanthin-5,6-epoxide confer the red colors. Chromoplasts are the sites of carotenoid pigment synthesis and storage. According to the most accepted theory, the synthesis of carotenoids in chili peppers is controlled by three loci: c1, c2 and y. Several enzymes participating in carotenoid biosynthesis in chili pepper fruits have been isolated and characterized, and the corresponding gene sequences have been reported. However, there is currently limited information on the molecular mechanisms that regulate this biosynthetic pathway. Approaches to gain more knowledge of the regulation of carotenoid biosynthesis are discussed. PMID:24065101

  12. Synthesis and Characterization of Methylammonium Lead Iodide Perovskite and its Application in Planar Hetero-junction Devices

    NASA Astrophysics Data System (ADS)

    Upadhyaya, Aditi; Mohan Singh Negi, Chandra; Yadav, Anjali; Gupta, Saral K.; Singh Verma, Ajay

    2018-06-01

    The present paper reports on the synthesis and characterization of methylammonium lead iodide perovskite thin film and its applications in heterojunction devices. Perovskite thin films were deposited by a simple spin-coating method using a precursor solution including methyl ammonium iodide and lead iodide onto a glass substrate. The surface morphology study via field emission scanning electron microscopy of the perovskite thin film shows complete surface coverage on glass substrate with negligible pin-holes. UV–visible spectroscopy study revealed a broad absorption range and the exhibition of a band-gap of 1.6 eV. The dark current-voltage (I–V) characteristics of all the devices under study show rectifying behaviour similar to the Schottky diode. Various device parameters such as ideality factor and barrier height are extracted from the I–V curve. At low voltages the devices exhibit Ohmic behaviour, trap free space charge limited conduction governs the charge transport at an intermediate voltage range, while at much higher voltages the devices show trap controlled space charge limited conduction. Furthermore, impedance spectroscopy measurements enable us to extract the various internal parameters of the devices. Correlations between these parameters and I–V characteristics are discussed. The different capacitive process arising in the devices was discussed using the capacitance versus frequency curve.

  13. Synthesis and structural properties of Ba(1-x)LaxTiO3 perovskite nanoparticles fabricated by solvothermal synthesis route

    NASA Astrophysics Data System (ADS)

    Puli, Venkata Sreenivas; Adireddy, Shiva; Elupula, Ravinder; Molugu, Sudheer; Shipman, Josh; Chrisey, Douglas B.

    2017-05-01

    We report the successful synthesis and structural characterization of barium lanthanum titanate Ba(1-x)LaxTiO3 (x=0.003,0.006,0.010) nanoparticles. The colloidal nanoparticles were prepared with high yield by a solvothermal method at temperatures as low as 150°C for 24h. The as-prepared nanopowders were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), and Raman spectroscopy. The XRD studies revealed pseudo-cubic crystalline structure, with no impurity phases at room temperature. However ferroelectric tetragonal modes were clearly observed using Raman spectroscopy measurements. From TEM measurements, uniformly sized BLT nanoparticles were observed. Selected area diffraction TEM images revealed polycrystalline perovskite ring patterns, identified as corresponding to the tetragonal phase.

  14. Positive Affect Versus Reward: Emotional and Motivational Influences on Cognitive Control

    PubMed Central

    Chiew, Kimberly S.; Braver, Todd S.

    2011-01-01

    It is becoming increasingly appreciated that affective influences can contribute strongly to goal-oriented cognition and behavior. However, much work is still needed to properly characterize these influences and the mechanisms by which they contribute to cognitive processing. An important question concerns the nature of emotional manipulations (i.e., direct induction of affectively valenced subjective experience) versus motivational manipulations (e.g., delivery of performance-contingent rewards and punishments) and their impact on cognitive control. Empirical evidence suggests that both kinds of manipulations can influence cognitive control in a systematic fashion, but investigations of both have largely been conducted independently of one another. Likewise, some theoretical accounts suggest that emotion and motivation may modulate cognitive control via common neural mechanisms, while others suggest the possibility of dissociable influences. Here, we provide an analysis and synthesis of these various accounts, suggesting potentially fruitful new research directions to test competing hypotheses. PMID:22022318

  15. Synthesis, Characterization and Application of Water-soluble Gold and Silver Nanoclusters

    NASA Astrophysics Data System (ADS)

    Kumar, Santosh

    The term `nanotechnology' has emerged as a buzzword since the last few decades. It has found widespread applications across disciplines, from medicine to energy. The synthesis of gold and silver nanoclusters has found much excitement, due to their novel material properties. Seminal work by various groups, including ours, has shown that the size of these clusters can be controlled with atomic precision. This control gives access to tuning the optical and electronic properties. The majority of nanoclusters reported thus far are not water soluble, which limit their applications in biology that requires water-solubility. Going from organic to aqueous phase is by no means a simple task, as it is associated with many challenges. Their stability in the presence of oxygen, difficulty in characterization, and separation of pure nanoclusters are some of the major bottlenecks associated with the synthesis of water-soluble gold nanoclusters. Water-soluble gold nanoclusters hold great potential in biological labeling, bio-catalysis and nano-bioconjugates. To overcome this problem, a new ligand with structural rigidity is needed. After considering various possibilities, we chose Captopril as a candidate ligand. In my thesis research, the synthesis of Au25 nanocluster capped with captopril has been reported. Captopril-protected Au25 nanocluster showed significantly higher thermal stability and enhanced chiroptical properties than the Glutathione-capped cluster, which confirms our initial rationale, that the ligand is critical in protecting the nanocluster. The optical absorption properties of these Au25 nanoclusters are studied and compared to the plasmonic nanoparticles. The high thermal stability and solubility of Au25 cluster capped with Captopril motivated us to explore this ligand for the synthesis of other gold clusters. Captopril is a chiral molecule with two chiral centers. The chiral ligand can induce chirality to the overall cluster, even if the core is achiral. Therefore, to obtain Au38 clusters as an enantiomer, the ligand employed should be chiral. The enantioselective synthesis of Au 38 capped with different chiral ligands has been reported and their chiroptical properties have been compared. The synthesis of a series of water-soluble Au nanoclusters has motivated us to study the effect of capping ligands and the core-size on their steady-state and time-resolved fluorescence properties, since the photoluminescence properties are particularly important for bioimaging and biomedical applications of nanoclusters. To gain fundamental insights into the origin of luminescence in nanoclusters, the effect of temperature on the fluorescence properties of these clusters has also been studied. The different sized nanoclusters ranging from a few dozen atoms to hundreds of atoms form a bridge between discrete atoms and the plasmonic nanocrystals; the latter involves essentially collective electron excitation-a phenomenon well explained by classical physics as opposed to quantum physics. The central question is: at what size does this transition from quantum behavior to classical behavior occur? To unravel this, we have successfully synthesized a series of silver nanoclusters. The precise formula assignment and their structural determination are still ongoing. We have successfully demonstrated the application of these water-soluble Au nanoclusters in photodynamic therapy for the treatment of cancer. We have successfully demonstrated that Au nanocluster system can produce singlet oxygen without the presence of any organic photosensitizers. In a collaborative project with Dr. Peteanu's group, the quenching efficiency of organic dyes by these water soluble nanoclusters is studied in different systems. Overall, this thesis outlines the successful synthesis of a family of water-soluble nanoclusters, their optical, chiroptical and fluorescence properties, as well as some applications of these nanoclusters.

  16. Highly Non-Linear Optical (NLO) organic crystals

    NASA Technical Reports Server (NTRS)

    Harris, J. Milton

    1987-01-01

    This research project involves the synthesis and characterization of organic materials having powerful nonlinear optical (NLO) properties and the growth of highly ordered crystals and monomolecular films of these materials. Research in four areas is discussed: theoretical design of new materials, characterization of NLO materials, synthesis of new materials and development of coupling procedures for forming layered films, and improvement of the techniques for vapor phase and solution phase growth of high quality organic crystals. Knowledge gained from these experiments will form the basis for experiments in the growth of these crystals.

  17. Synthesis and characterization of organic-inorganic polymers from new methacrylate monomers and silane derivatives

    NASA Astrophysics Data System (ADS)

    Nicolescu, F. Adriana; Jerca, Victor V.; Albu, Ana M.; Vasilescu, D. Sorin; Vuluga, D. Mircea

    2009-09-01

    We report the synthesis of five new hybrid polymeric structures obtained by free radical copolymerization of some organic azo-based methacrylate monomers and 3-methacryloxypropyl trimethoxysilane (MEMO). The copolymers are soluble in common solvents like methylene chloride, chloroform, dichlorbenzene, dimethylsulfoxide, dimethylformamide. The copolymeric structures might be interesting from the point of view of nonlinear optical response due to a rich content in chromophoric units determined by H-NMR spectroscopy. The structures were also characterized by FT-IR spectroscopy, TGA and SEC analysis.

  18. Synthesis and characterization of Mn-Bi alloy

    NASA Astrophysics Data System (ADS)

    Mishra, Ashutosh; Patil, Harsha; Jain, G.; Mishra, N.

    2012-06-01

    High purity MnBi low temperature phase has been prepared and analyzed using X-ray diffraction, Lorentz-Polarization Factor and Fourier transforms infrared measurement. After synthesis of samples structural characterization has done on samples by X-ray diffraction, which shows that after making the bulk sample is in no single phase MnBi has been prepared by sintering Mn and Bi powders. By Lorentz-Polarization Factor is affecting the relative intensity of diffraction lines on a powder form. And by FTIR which shows absorption peaks of MnBi alloys.

  19. Solid Electrolyte Materials for use in Lithium-water Primary Batteries And the Synthesis and Characterization of Lanthanide Orthoferrite Magnetic Nanomaterials

    NASA Astrophysics Data System (ADS)

    Cook, Clifford Corlin

    This thesis was developed in two parts with the overall goals of this work being (1) synthesize and develop solid electrolyte materials for use in a lithium-water battery and (2) synthesize and characterize ternary magnetic nanomaterials. Lithium metal in combination with water is a highly attractive power source due to its high specific energy. Because of the vigorous nature of the reaction between lithium and water, many obstacles must be overcome in order to harness the energy that this system is capable of producing. Parasitic reactions must be controlled so as not to passivate the lithium or consume it totally. In addition, production of hydrogen gas that accompanies both the electrochemical and parasitic reactions can present a serious challenge. As a result it is difficult to maintain high voltage and control the current density in these systems. In order to overcome these obstacles we have developed composite membranes of various lithium-ion conducting solid electrolytes and polymers. Lithium-ion conducting solid electrolytes are known to achieve ionic conductance as high as 10-3 S/cm2. Utilizing these materials in conjunction with polymers, we have created hydrophobic membranes that allow us to limit the parasitic reactions and maintain low cell impedance. Lanthanide orthoferrite materials are technologically important classes of magnetic materials. They have found application in magneto-optical devices as well as in magnetic recording devices. We have explored the syntheses and magnetic properties of nanocrystalline materials. The synthesis of the nanomaterials was done by co-reduction of lanthanide, Ln3+, and iron, Fe 3+, cations with alkalide solution producing the Ln-Fe alloy of the desired stoichiometry. Removal of the byproducts and oxidization of the alloy was accomplished by washing the product with aerated water. Presented herein, several nanoscale lanthanide orthoferrite materials (LnFeO3, Ln = Gd, Tb, Er, Tm, Sm, Dy, Ho, and La) have been prepared. The products have been characterized by X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM), and magnetic properties characterized by use of a Superconducting Quantum Interference Device (SQUID).

  20. Alcohol synthesis in a high-temperature slurry reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, G.W.; Marquez, M.A.; McCutchen, M.S.

    1995-12-31

    The overall objective of this contract is to develop improved process and catalyst technology for producing higher alcohols from synthesis gas or its derivatives. Recent research has been focused on developing a slurry reactor that can operate at temperatures up to about 400{degrees}C and on evaluating the so-called {open_quotes}high pressure{close_quotes} methanol synthesis catalyst using this reactor. A laboratory stirred autoclave reactor has been developed that is capable of operating at temperatures up to 400{degrees}C and pressures of at least 170 atm. The overhead system on the reactor is designed so that the temperature of the gas leaving the system canmore » be closely controlled. An external liquid-level detector is installed on the gas/liquid separator and a pump is used to return condensed slurry liquid from the separator to the reactor. In order to ensure that gas/liquid mass transfer does not influence the observed reaction rate, it was necessary to feed the synthesis gas below the level of the agitator. The performance of a commercial {open_quotes}high pressure {close_quotes} methanol synthesis catalyst, the so-called {open_quotes}zinc chromite{close_quotes} catalyst, has been characterized over a range of temperature from 275 to 400{degrees}C, a range of pressure from 70 to 170 atm., a range of H{sub 2}/CO ratios from 0.5 to 2.0 and a range of space velocities from 2500 to 10,000 sL/kg.(catalyst),hr. Towards the lower end of the temperature range, methanol was the only significant product.« less

  1. All three quinone species play distinct roles in ensuring optimal growth under aerobic and fermentative conditions in E. coli K12

    PubMed Central

    Nitzschke, Annika

    2018-01-01

    The electron transport chain of E. coli contains three different quinone species, ubiquinone (UQ), menaquinone (MK) and demethylmenaquinone (DMK). The content and ratio of the different quinone species vary depending on the external conditions. To study the function of the different quinone species in more detail, strains with deletions preventing UQ synthesis, as well as MK and/or DMK synthesis were cultured under aerobic and anaerobic conditions. The strains were characterized with respect to growth and product synthesis. As quinones are also involved in the control of ArcB/A activity, we analyzed the phosphorylation state of the response regulator as well as the expression of selected genes.The data show reduced aerobic growth coupled to lactate production in the mutants defective in ubiquinone synthesis. This confirms the current assumption that ubiquinone is the main quinone under aerobic growth conditions. In the UQ mutant strains the amount of MK and DMK is significantly elevated. The strain synthesizing only DMK is less affected in growth than the strain synthesizing MK as well as DMK. An inhibitory effect of MK on aerobic growth due to increased oxidative stress is postulated.Under fermentative growth conditions the mutant synthesizing only UQ is severely impaired in growth. Obviously, UQ is not able to replace MK and DMK during anaerobic growth. Mutations affecting quinone synthesis have an impact on ArcA phosphorylation only under anaerobic conditions. ArcA phosphorylation is reduced in strains synthesizing only MK or MK plus DMK. PMID:29614086

  2. Temperature-dependent Raman spectroscopy studies of the interface coupling effect of monolayer ReSe2 single crystals on Au foils

    NASA Astrophysics Data System (ADS)

    Jiang, Shaolong; Zhao, Liyun; Shi, Yuping; Xie, Chunyu; Zhang, Na; Zhang, Zhepeng; Huan, Yahuan; Yang, Pengfei; Hong, Min; Zhou, Xiebo; Shi, Jianping; Zhang, Qing; Zhang, Yanfeng

    2018-05-01

    Rhenium diselenide (ReSe2), which bears in-plane anisotropic optical and electrical properties, is of considerable interest for its excellent applications in novel devices, such as polarization-sensitive photodetectors and integrated polarization-controllers. However, great challenges to date in the controllable synthesis of high-quality ReSe2 have hindered its in-depth investigations and practical applications. Herein, we report a feasible synthesis of monolayer single-crystal ReSe2 flakes on the Au foil substrate by using a chemical vapor deposition route. Particularly, we focus on the temperature-dependent Raman spectroscopy investigations of monolayer ReSe2 grown on Au foils, which present concurrent red shifts of Eg-like and Ag-like modes with increasing measurement temperature from 77–290 K. Linear temperature dependences of both modes are revealed and explained from the anharmonic vibration of the ReSe2 lattice. More importantly, the strong interaction of ReSe2 with Au, with respect to that with SiO2/Si, is further confirmed by temperature-dependent Raman characterization. This work is thus proposed to shed light on the optical and thermal properties of such anisotropic two-dimensional three-atom-thick materials.

  3. Influence of simulated microgravity on the sympathetic response to exercise

    NASA Technical Reports Server (NTRS)

    Woodman, C. R.; Kregel, K. C.; Tipton, C. M.

    1997-01-01

    Rats exposed to simulated conditions of microgravity exhibit reductions in aerobic exercise capacity that may be due to an impaired ability of the sympathetic nervous system (SNS) to mediate an increase in cardiac output and to redistribute blood flow. The purpose of this study was to quantify the sympathetic response to exercise in rats after exposure to 14 days of simulated microgravity or control conditions. To achieve this aim, rats were exposed to 14 days of head-down suspension (HDS) or cage control (CC) conditions. On day 14, norepinephrine (NE) synthesis was blocked with alpha-methyl-p-tyrosine, and the rate of NE depletion after synthesis blockade was used to estimate SNS activity in the left ventricle, spleen, and soleus muscle during treadmill exercise at 75% of maximal oxygen uptake. When compared with CC rats, the sympathetic response to exercise in HDS rats was characterized by a lower rate of NE depletion in the left ventricle (-82%) and spleen (-42%). The rate of NE depletion in the soleus muscle was 47% higher. These differences could contribute to the decrement in aerobic capacity of HDS rats by impairing their ability to augment cardiac output and to redirect blood flow to actively contracting skeletal muscle during exercise.

  4. Microwave-Assisted Size Control of Colloidal Nickel Nanocrystals for Colloidal Nanocrystals-Based Non-volatile Memory Devices

    NASA Astrophysics Data System (ADS)

    Yadav, Manoj; Velampati, Ravi Shankar R.; Mandal, D.; Sharma, Rohit

    2018-03-01

    Colloidal synthesis and size control of nickel (Ni) nanocrystals (NCs) below 10 nm are reported using a microwave synthesis method. The synthesised colloidal NCs have been characterized using x-ray diffraction, transmission electron microscopy (TEM) and dynamic light scattering (DLS). XRD analysis highlights the face centred cubic crystal structure of synthesised NCs. The size of NCs observed using TEM and DLS have a distribution between 2.6 nm and 10 nm. Furthermore, atomic force microscopy analysis of spin-coated NCs over a silicon dioxide surface has been carried out to identify an optimum spin condition that can be used for the fabrication of a metal oxide semiconductor (MOS) non-volatile memory (NVM) capacitor. Subsequently, the fabrication of a MOS NVM capacitor is reported to demonstrate the potential application of colloidal synthesized Ni NCs in NVM devices. We also report the capacitance-voltage (C-V) and capacitance-time (C-t) response of the fabricated MOS NVM capacitor. The C-V and C-t characteristics depict a large flat band voltage shift (V FB) and high retention time, respectively, which indicate that colloidal Ni NCs are excellent candidates for applications in next-generation NVM devices.

  5. Conditional control of selectin ligand expression and global fucosylation events in mice with a targeted mutation at the FX locus.

    PubMed

    Smith, Peter L; Myers, Jay T; Rogers, Clare E; Zhou, Lan; Petryniak, Bronia; Becker, Daniel J; Homeister, Jonathon W; Lowe, John B

    2002-08-19

    Glycoprotein fucosylation enables fringe-dependent modulation of signal transduction by Notch transmembrane receptors, contributes to selectin-dependent leukocyte trafficking, and is faulty in leukocyte adhesion deficiency (LAD) type II, also known as congenital disorder of glycosylation (CDG)-IIc, a rare human disorder characterized by psychomotor defects, developmental abnormalities, and leukocyte adhesion defects. We report here that mice with an induced null mutation in the FX locus, which encodes an enzyme in the de novo pathway for GDP-fucose synthesis, exhibit a virtually complete deficiency of cellular fucosylation, and variable frequency of intrauterine demise determined by parental FX genotype. Live-born FX(-/-) mice exhibit postnatal failure to thrive that is suppressed with a fucose-supplemented diet. FX(-/-) adults suffer from an extreme neutrophilia, myeloproliferation, and absence of leukocyte selectin ligand expression reminiscent of LAD-II/CDG-IIc. Contingent restoration of leukocyte and endothelial selectin ligand expression, general cellular fucosylation, and normal postnatal physiology is achieved by modulating dietary fucose to supply a salvage pathway for GDP-fucose synthesis. Conditional control of fucosylation in FX(-/-) mice identifies cellular fucosylation events as essential concomitants to fertility, early growth and development, and leukocyte adhesion.

  6. Synthesis and electronic properties of Ruddlesden-Popper strontium iridate epitaxial thin films stabilized by control of growth kinetics

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoran; Cao, Yanwei; Pal, B.; Middey, S.; Kareev, M.; Choi, Y.; Shafer, P.; Haskel, D.; Arenholz, E.; Chakhalian, J.

    2017-12-01

    We report on the selective fabrication of high-quality Sr2IrO4 and SrIrO3 epitaxial thin films from a single polycrystalline Sr2IrO4 target by pulsed laser deposition. Using a combination of x-ray diffraction and photoemission spectroscopy characterizations, we discover that within a relatively narrow range of substrate temperature, the oxygen partial pressure plays a critical role in the cation stoichiometric ratio of the films, and triggers the stabilization of different Ruddlesden-Popper (RP) phases. Resonant x-ray absorption spectroscopy measurements taken at the Ir L edge and the O K edge demonstrate the presence of strong spin-orbit coupling, and reveal the electronic and orbital structures of both compounds. These results suggest that in addition to the conventional thermodynamics consideration, higher members of the Srn +1IrnO3 n +1 series can possibly be achieved by kinetic control away from the thermodynamic limit. These findings offer an approach to the synthesis of ultrathin films of the RP series of iridates and can be extended to other complex oxides with layered structure.

  7. Synthesis, characterization and photocatalytic activity of neodymium carbonate and neodymium oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Pourmortazavi, Seied Mahdi; Rahimi-Nasrabadi, Mehdi; Aghazadeh, Mustafa; Ganjali, Mohammad Reza; Karimi, Meisam Sadeghpour; Norouzi, Parviz

    2017-12-01

    This work focuses on the application of an orthogonal array design to the optimization of the facile direct carbonization reaction for the synthesis of neodymium carbonate nanoparticles, were the product particles are prepared based on the direct precipitation of their ingredients. To optimize the method the influences of the major operating conditions on the dimensions of the neodymium carbonate particles were quantitatively evaluated through the analysis of variance (ANOVA). It was observed that the crystalls of the carbonate salt can be synthesized by controlling neodymium concentration and flow rate, as well as reactor temperature. Based on the results of ANOVA, 0.03 M, 2.5 mL min-1 and 30 °C are the optimum values for the above-mentioend parameters and controlling the parameters at these values yields nanoparticles with the sizes of about of 31 ± 2 nm. The product of this former stage was next used as the feed for a thermal decomposition procedure which yielding neodymium oxide nanoparticles. The products were studied through X-ray diffraction (XRD), SEM, TEM, FT-IR and thermal analysis techniques. In addition, the photocatalytic activity of dyspersium carbonate and dyspersium oxide nanoparticles were investigated using degradation of methyl orange (MO) under ultraviolet light.

  8. Synthesis and electronic properties of Ruddlesden-Popper strontium iridate epitaxial thin films stabilized by control of growth kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaoran; Cao, Yanwei; Pal, B.

    2017-12-01

    We report on the selective fabrication of high-quality Sr2IrO4 and SrIrO3 epitaxial thin films from a single polycrystalline Sr2IrO4 target by pulsed laser deposition. Using a combination of x-ray diffraction and photoemission spectroscopy characterizations, we discover that within a relatively narrow range of substrate temperature, the oxygen partial pressure plays a critical role in the cation stoichiometric ratio of the films, and triggers the stabilization of different Ruddlesden-Popper (RP) phases. Resonant x-ray absorption spectroscopy measurements taken at the Ir L edge and the O K edge demonstrate the presence of strong spin-orbit coupling, and reveal the electronic and orbital structuresmore » of both compounds. These results suggest that in addition to the conventional thermodynamics consideration, higher members of the Srn+1IrnO3n+1 series can possibly be achieved by kinetic control away from the thermodynamic limit. These findings offer an approach to the synthesis of ultrathin films of the RP series of iridates and can be extended to other complex oxides with layered structure.« less

  9. Design and reactivity of Ni-complexes using pentadentate neutral-polypyridyl ligands: Possible mimics of NiSOD.

    PubMed

    Snider, Victoria G; Farquhar, Erik R; Allen, Mark; Abu-Spetani, Ayah; Mukherjee, Anusree

    2017-10-01

    Superoxide plays a key role in cell signaling, but can be cytotoxic within cells unless well regulated by enzymes known as superoxide dismutases (SOD). Nickel superoxide dismutase (NiSOD) catalyzes the disproportion of the harmful superoxide radical into hydrogen peroxide and dioxygen. NiSOD has a unique active site structure that plays an important role in tuning the potential of the nickel center to function as an effective catalyst for superoxide dismutation with diffusion controlled rates. The synthesis of structural and functional analogues of NiSOD provides a route to better understand the role of the nickel active site in superoxide dismutation. In this work, the synthesis of a series of nickel complexes supported by nitrogen rich pentadentate ligands is reported. The complexes have been characterized through absorption spectroscopy, mass spectrometry, and elemental analysis. X-ray absorption spectroscopy was employed to establish the oxidation state and the coordination geometry around the metal center. The reactivity of these complexes toward KO 2 was evaluated to elucidate the role of the coordination sphere in controlling superoxide dismutation reactivity. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Proton donor acidity controls selectivity in nonaromatic nitrogen heterocycle synthesis.

    PubMed

    Duttwyler, Simon; Chen, Shuming; Takase, Michael K; Wiberg, Kenneth B; Bergman, Robert G; Ellman, Jonathan A

    2013-02-08

    Piperidines are prevalent in natural products and pharmaceutical agents and are important synthetic targets for drug discovery and development. We report on a methodology that provides highly substituted piperidine derivatives with regiochemistry selectively tunable by varying the strength of acid used in the reaction. Readily available starting materials are first converted to dihydropyridines via a cascade reaction initiated by rhodium-catalyzed carbon-hydrogen bond activation. Subsequent divergent regio- and diastereoselective protonation of the dihydropyridines under either kinetic or thermodynamic control provides two distinct iminium ion intermediates that then undergo highly diastereoselective nucleophilic additions. X-ray structural characterization of both the kinetically and thermodynamically favored iminium ions along with density functional theory calculations provide a theoretical underpinning for the high selectivities achieved for the reaction sequences.

  11. Size controlled biogenic silver nanoparticles as antibacterial agent against isolates from HIV infected patients

    NASA Astrophysics Data System (ADS)

    Suganya, K. S. Uma; Govindaraju, K.; Kumar, V. Ganesh; Dhas, T. Stalin; Karthick, V.; Singaravelu, G.; Elanchezhiyan, M.

    2015-06-01

    Silver nanoparticles (AgNPs) are synthesized using biological sources due to its high specificity in biomedical applications. Herein, we report the size and shape controlled synthesis of AgNPs using the aqueous extract of blue green alga, Spirulina platensis. Size, shape and elemental composition of AgNPs were characterized using UV-vis spectroscopy, Fluorescence spectroscopy, FT-IR (Fourier Transform-Infrared Spectroscopy), FT-RS (Fourier Transform-Raman Spectroscopy), SEM-EDAX (Scanning Electron Microscopy-Energy Dispersive X-ray analysis) and HR-TEM (High Resolution Transmission Electron Microscopy). AgNPs were stable, well defined and monodispersed (spherical) with an average size of 6 nm. The synthesized AgNPs were tested for its antibacterial potency against isolates obtained from HIV patients.

  12. Star-shaped PHB-PLA block copolymers: immortal polymerization with dinuclear indium catalysts.

    PubMed

    Yu, I; Ebrahimi, T; Hatzikiriakos, S G; Mehrkhodavandi, P

    2015-08-28

    The first example of a one-component precursor to star-shaped polyesters, and its utilization in the synthesis of previously unknown star-shaped poly(hydroxybutyrate)-poly(lactic acid) block copolymers, is reported. A series of such mono- and bis-benzyl alkoxy-bridged complexes were synthesized, fully characterized, and their solvent dependent solution structures and reactivity were examined. These complexes were highly active catalysts for the controlled polymerization of β-butyrolactone to form poly(hydroxybutyrate) at room temperature. Solution studies indicate that a mononuclear propagating species formed in THF and that the dimer-monomer equilibrium affects the rates of BBL polymerization. In the presence of linear and branched alcohols, these complexes catalyze well-controlled immortal polymerization and copolymerization of β-butyrolactone and lactide.

  13. Synthesis and Characterization of New Phosphazene Polymers.

    DTIC Science & Technology

    1988-01-21

    reaction of a poly( alkyl /arylphosphazene). In this study, one-half of the methyl groups in [Ph(Me)PN]n (chosen for its solubility in THF as opposed to...polymerization reaction ; and (5) the derivative chemistry of the preformed poly( alkyl /arylphosphazenes)., Synthesis of Poly( alkyl /arylphosphazenes) SC A... vessels , these phosphoranimines quantitatively eliminate the silyl ether byproduct, Me3SiOCH2CF 3 , to form the poly( alkyl /arylphosphazenes). The synthesis

  14. Preparing Students for Research: Synthesis of Substituted Chalcones as a Comprehensive Guided-Inquiry Experience

    NASA Astrophysics Data System (ADS)

    Vyvyan, James R.; Pavia, Donald L.; Lampman, Gary M.; Kriz, George S., Jr.

    2002-09-01

    A guided inquiry experiment involving the synthesis and characterization of substituted benzalacetophenones (chalcones) is described. The chalcones are produced in the aldol condensation of substituted benzaldehydes with substituted acetophenones. Each student is assigned a different target chalcone and conducts online and printed literature searches on the target. After completing the synthesis and purification of their product, the students compare their data with those found in the literature.

  15. Synthesis of 6-phosphofructose aspartic acid and some related Amadori compounds.

    PubMed

    Hansen, Alexandar L; Behrman, Edward J

    2016-08-05

    We describe the synthesis and characterization of 6-phosphofructose-aspartic acid, an intermediate in the metabolism of fructose-asparagine by Salmonella. We also report improved syntheses of fructose-asparagine itself and of fructose-aspartic acid. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Synthesis of rhodium-containing heterobimetallic hydride complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casey, C.P.; Whiteker, G.T.

    1990-02-21

    The reduction chemistry of heterobimetallic dihydrides are of much interest. Three heterobimetallic monohydride complexes containing Rh bound to either Re or Ta were isolated during synthetic attempts at preparing heterobimetallic dihydrides. The mode of synthesis, characterization, and reactivity of these three heterobimetallic compounds are discussed herein. 19 refs.

  17. In vivo and in vitro characterization of σ70 constitutive promoters by real-time PCR and fluorescent measurements.

    PubMed

    Chappell, James; Freemont, Paul

    2013-01-01

    The characterization of DNA regulatory elements such as ribosome binding sites and transcriptional promoters is a fundamental aim of synthetic biology. Characterization of such DNA regulatory elements by monitoring the synthesis of fluorescent proteins is a commonly used technique to resolve the relative or absolute strengths. These measurements can be used in combination with mathematical models and computer simulation to rapidly assess performance of DNA regulatory elements both in isolation and in combination, to assist predictable and efficient engineering of complex novel biological devices and systems. Here we describe the construction and relative characterization of Escherichia coli (E. coli) σ(70) transcriptional promoters by monitoring the synthesis of green fluorescent protein (GFP) both in vivo in E. coli and in vitro in a E. coli cell-free transcription and translation reaction.

  18. Sustainable Utilization of Bio waste towards the Green Synthesis of Nanoparticles and its Utility in the Naked Eye Detection of Metals Coupled with its Larvicidal and Antimicrobial Properties

    NASA Astrophysics Data System (ADS)

    Nikhila, P. S.; Satheesh, Namitha; Sreejitha, V. S.; Pillai, Anandu R.; Saritha, A.; Smitha Chandran, S.

    2018-02-01

    Green synthesis of nanoparticles has become a prominent zone of attention in the field of nanotechnology, as it is a nontoxic, economically feasible and green approach. In the present work we have developed an eco-friendly and zero cost method for the synthesis of silver nanoparticles using common a bio waste banana blossom peel. The well-known characteristic phenomenon of surface Plasmon resonance (SPR) has been exploited towards the characterization of the green synthesized nanoparticles. The aforementioned nanoparticles were characterized by UV spectroscopy and the behaviour of these particles towards naked eye detection of metal ions were observed. The sensitivity of the nanoparticles towards the detection of metal ions was carefully monitored by the shift in the SPR band. Moreover the larvicidal potential of these green synthesized silver nanoparticles were evaluated as per WHO standards. The synthesized silver nanoparticles were found to be an effective antibacterial agent against Gram negative bacteria-E.coli. The method we followed for the synthesis of silver nanoparticles is economically feasible as well as environment friendly and also capable of rapid synthesis of nanoparticles at ambient conditions.

  19. Effect of the raw material type and the reaction time on the synthesis of halloysite based Zeolite Na-P1

    NASA Astrophysics Data System (ADS)

    Meftah, Mahdi; Oueslati, Walid; Chorfi, Nejmeddine; Ben Haj Amara, Abdesslem

    Zeolites are currently one of the most important classes of inorganic materials because of their multiple applications not only as ions exchangers and molecular sieves, but also as catalysts. This works focus the synthesis and the characterization of Zeolite Na-P1 using halloysite (collected near Ain Khemouda, western Tunisia) as the starting material. Two parameters, such as the host materials type (natural or treated) and the reaction time, involved in the synthesis process are investigated. The intermediate phases and final products were characterized by X-ray diffraction, Infrared IR spectroscopy, scanning electron microscopy and high-resolution 29Si and 27Al MAS NMR. Obtained results show that the hydrothermal synthesis from natural and heated-halloysite leads to formation of homogenous Zeolite Na-P1. The difference in the crystallization/transformation time process is explained by the effect of the dissolution rate of the starting materials in sodium hydroxide solution. In the case of heated halloysite, the synthesis reaction with alkali solution occurs very readily and achieved without prior thermal activation at high temperature. The optimal conditions of Zeolite Na-P1 crystallization, from heated-halloysite, are reached at 120 °C.

  20. Cell-free synthesis of functional human epidermal growth factor receptor: Investigation of ligand-independent dimerization in Sf21 microsomal membranes using non-canonical amino acids

    PubMed Central

    Quast, Robert B.; Ballion, Biljana; Stech, Marlitt; Sonnabend, Andrei; Varga, Balázs R.; Wüstenhagen, Doreen A.; Kele, Péter; Schiller, Stefan M.; Kubick, Stefan

    2016-01-01

    Cell-free protein synthesis systems represent versatile tools for the synthesis and modification of human membrane proteins. In particular, eukaryotic cell-free systems provide a promising platform for their structural and functional characterization. Here, we present the cell-free synthesis of functional human epidermal growth factor receptor and its vIII deletion mutant in a microsome-containing system derived from cultured Sf21 cells. We provide evidence for embedment of cell-free synthesized receptors into microsomal membranes and asparagine-linked glycosylation. Using the cricket paralysis virus internal ribosome entry site and a repetitive synthesis approach enrichment of receptors inside the microsomal fractions was facilitated thereby providing analytical amounts of functional protein. Receptor tyrosine kinase activation was demonstrated by monitoring receptor phosphorylation. Furthermore, an orthogonal cell-free translation system that provides the site-directed incorporation of p-azido-L-phenylalanine is characterized and applied to investigate receptor dimerization in the absence of a ligand by photo-affinity cross-linking. Finally, incorporated azides are used to generate stable covalently linked receptor dimers by strain-promoted cycloaddition using a novel linker system. PMID:27670253

  1. "Plastic" solar cells: self-assembly of bulk heterojunction nanomaterials by spontaneous phase separation.

    PubMed

    Peet, Jeffrey; Heeger, Alan J; Bazan, Guillermo C

    2009-11-17

    As the global demand for low-cost renewable energy sources intensifies, interest in new routes for converting solar energy to electricity is rapidly increasing. Although photovoltaic cells have been commercially available for more than 50 years, only 0.1% of the total electricity generated in the United States comes directly from sunlight. The earliest commercial solar technology remains the basis for the most prevalent devices in current use, namely, highly-ordered crystalline, inorganic solar cells, commonly referred to as silicon cells. Another class of solar cells that has recently inspired significant academic and industrial excitement is the bulk heterojunction (BHJ) "plastic" solar cell. Research by a rapidly growing community of scientists across the globe is generating a steady stream of new insights into the fundamental physics, the materials design and synthesis, the film processing and morphology, and the device science and architecture of BHJ technology. Future progress in the fabrication of high-performance BHJ cells will depend on our ability to combine aspects of synthetic and physical chemistry, condensed matter physics, and materials science. In this Account, we use a combination of characterization tools to tie together recent advances in BHJ morphology characterization, device photophysics, and thin-film solution processing, illustrating how to identify the limiting factors in solar cell performance. We also highlight how new processing methods, which control both the BHJ phase separation and the internal order of the components, can be implemented to increase the power conversion efficiency (PCE). The failure of many innovative materials to achieve high performance in BHJ solar cell devices has been blamed on "poor morphology" without significant characterization of either the structure of the phase-separated morphology or the nature of the charge carrier recombination. We demonstrate how properly controlling the "nanomorphology", which is critically dependent on minute experimental details at every step, from synthesis to device construction, provides a clear path to >10% PCE BHJ cells, which can be fabricated at a fraction of the cost of conventional solar cells.

  2. The design, synthesis, and characterization of poly(carbonate-ester)s based on dihydroxyacetone for use as potential biomaterials

    NASA Astrophysics Data System (ADS)

    Weiser, Jennifer Rose

    The creation of new devices and materials with desirable biomedical characteristics, such as biocompatibility and easily tunable physico-chemical parameters, has played a key role in the advancement of the biomedical industry. In recent years, the combination of classical engineering principles with polymer chemistry has led to a wide range of materials that influence the manner in which drugs are delivered, tissues are engineered, and surgery is performed. The work presented in this thesis is focused on the design, synthesis, and characterization of a poly(carbonate-ester) biomaterial based on lactic acid (LA) and a carbonate form of dihydroxyacetone (DHAC) as vehicles for controlled release. The goal of this work was to synthesize a variety of pLAx- co-DHACy copolymers and characterize their behavior to better understand their structure/function relationships. The results show that random copolymers based on dihydroxyacetone and lactic acid are easily and reliably producible, with unique characteristics. In vitro degradation studies showed that the poly(carbonate-ester)s had an unexpected degradation pattern, in that the carbonate bond was more labile to hydrolysis than that of the ester bond. The resulting degradation pattern made from these biomaterials did not appear to have an acidic interior environment, due to a lack of visible viscous core commonly seen with bulk degrading lactic acid based polymers. Due to the insolubility of the poly(carbonate-ester)s, exploration of copolymer degradation was determined by the development of a newly discovered technique to quantify dihydroxyacetone release from the matrix using the bicinchoninic acid assay. Finally, the release kinetics and mechanism from these poly(carbonate-ester)s was studied following the incorporation of two different model proteins, bovine serum albumin and lysozyme. Their release behaviors and activities were analyzed to explore the controlled release capabilities of these materials and to identify their potential for the effective release of proteins.

  3. Recent Advances in the Synthesis and Stabilization of Nickel and Nickel Oxide Nanoparticles: A Green Adeptness

    PubMed Central

    Rani, Aneela

    2016-01-01

    Green protocols for the synthesis of nanoparticles have been attracting a lot of attention because they are eco-friendly, rapid, and cost-effective. Nickel and nickel oxide nanoparticles have been synthesized by green routes and characterized for impact of green chemistry on the properties and biological effects of nanoparticles in the last five years. Green synthesis, properties, and applications of nickel and nickel oxide nanoparticles have been reported in the literature. This review summarizes the synthesis of nickel and nickel oxide nanoparticles using different biological systems. This review also provides comparative overview of influence of chemical synthesis and green synthesis on structural properties of nickel and nickel oxide nanoparticles and their biological behavior. It concludes that green methods for synthesis of nickel and nickel oxide nanoparticles are better than chemical synthetic methods. PMID:27413375

  4. “Synthesis-on” and “synthesis-off” modes of carbon arc operation during synthesis of carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yatom, Shurik; Selinsky, Rachel S.; Koel, Bruce E.

    Arc discharge synthesis of single-walled carbon nanotubes (SWCNTs) remains largely uncontrollable, due to incomplete understanding of the synthetic process itself. Here, we show that synthesis of SWCNTs by a carbon arc may not constitute a single continuous process, but may instead consist of two distinct modes. One of these, a “synthesis-on” mode, produces the majority of the nanomaterials. During the synthesis-on mode, proportionally more carbon nanotubes are collected than in another mode, a “synthesis-off” mode. Both synthesis-on and synthesis-off modes for a typical arc configuration, employing a hollow anode filled with a mixture of powdered metal catalyst and graphite, weremore » characterized by using in situ electrical, imaging, and spectroscopic diagnostics, along with ex situ imaging and spectroscopy. The synthesis-on mode duration is rare compared to the total arc run-time, helping to explain the poor selectivity found in the final collected products, a known inadequacy of arc synthesis. Finally, the rarity of the synthesis on mode occurence may be due to the synthesis off mode being more favorable energetically.« less

  5. “Synthesis-on” and “synthesis-off” modes of carbon arc operation during synthesis of carbon nanotubes

    DOE PAGES

    Yatom, Shurik; Selinsky, Rachel S.; Koel, Bruce E.; ...

    2017-09-09

    Arc discharge synthesis of single-walled carbon nanotubes (SWCNTs) remains largely uncontrollable, due to incomplete understanding of the synthetic process itself. Here, we show that synthesis of SWCNTs by a carbon arc may not constitute a single continuous process, but may instead consist of two distinct modes. One of these, a “synthesis-on” mode, produces the majority of the nanomaterials. During the synthesis-on mode, proportionally more carbon nanotubes are collected than in another mode, a “synthesis-off” mode. Both synthesis-on and synthesis-off modes for a typical arc configuration, employing a hollow anode filled with a mixture of powdered metal catalyst and graphite, weremore » characterized by using in situ electrical, imaging, and spectroscopic diagnostics, along with ex situ imaging and spectroscopy. The synthesis-on mode duration is rare compared to the total arc run-time, helping to explain the poor selectivity found in the final collected products, a known inadequacy of arc synthesis. Finally, the rarity of the synthesis on mode occurence may be due to the synthesis off mode being more favorable energetically.« less

  6. Control aspects of quantum computing using pure and mixed states.

    PubMed

    Schulte-Herbrüggen, Thomas; Marx, Raimund; Fahmy, Amr; Kauffman, Louis; Lomonaco, Samuel; Khaneja, Navin; Glaser, Steffen J

    2012-10-13

    Steering quantum dynamics such that the target states solve classically hard problems is paramount to quantum simulation and computation. And beyond, quantum control is also essential to pave the way to quantum technologies. Here, important control techniques are reviewed and presented in a unified frame covering quantum computational gate synthesis and spectroscopic state transfer alike. We emphasize that it does not matter whether the quantum states of interest are pure or not. While pure states underly the design of quantum circuits, ensemble mixtures of quantum states can be exploited in a more recent class of algorithms: it is illustrated by characterizing the Jones polynomial in order to distinguish between different (classes of) knots. Further applications include Josephson elements, cavity grids, ion traps and nitrogen vacancy centres in scenarios of closed as well as open quantum systems.

  7. Control aspects of quantum computing using pure and mixed states

    PubMed Central

    Schulte-Herbrüggen, Thomas; Marx, Raimund; Fahmy, Amr; Kauffman, Louis; Lomonaco, Samuel; Khaneja, Navin; Glaser, Steffen J.

    2012-01-01

    Steering quantum dynamics such that the target states solve classically hard problems is paramount to quantum simulation and computation. And beyond, quantum control is also essential to pave the way to quantum technologies. Here, important control techniques are reviewed and presented in a unified frame covering quantum computational gate synthesis and spectroscopic state transfer alike. We emphasize that it does not matter whether the quantum states of interest are pure or not. While pure states underly the design of quantum circuits, ensemble mixtures of quantum states can be exploited in a more recent class of algorithms: it is illustrated by characterizing the Jones polynomial in order to distinguish between different (classes of) knots. Further applications include Josephson elements, cavity grids, ion traps and nitrogen vacancy centres in scenarios of closed as well as open quantum systems. PMID:22946034

  8. Damage-Mitigating Control of Space Propulsion Systems for High Performance and Extended Life

    NASA Technical Reports Server (NTRS)

    Ray, Asok; Wu, Min-Kuang

    1994-01-01

    A major goal in the control of complex mechanical system such as spacecraft rocket engine's advanced aircraft, and power plants is to achieve high performance with increased reliability, component durability, and maintainability. The current practice of decision and control systems synthesis focuses on improving performance and diagnostic capabilities under constraints that often do not adequately represent the materials degradation. In view of the high performance requirements of the system and availability of improved materials, the lack of appropriate knowledge about the properties of these materials will lead to either less than achievable performance due to overly conservative design, or over-straining of the structure leading to unexpected failures and drastic reduction of the service life. The key idea in this report is that a significant improvement in service life could be achieved by a small reduction in the system dynamic performance. The major task is to characterize the damage generation process, and then utilize this information in a mathematical form to synthesize a control law that would meet the system requirements and simultaneously satisfy the constraints that are imposed by the material and structural properties of the critical components. The concept of damage mitigation is introduced for control of mechanical systems to achieve high performance with a prolonged life span. A model of fatigue damage dynamics is formulated in the continuous-time setting, instead of a cycle-based representation, for direct application to control systems synthesis. An optimal control policy is then formulated via nonlinear programming under specified constraints of the damage rate and accumulated damage. The results of simulation experiments for the transient upthrust of a bipropellant rocket engine are presented to demonstrate efficacy of the damage-mitigating control concept.

  9. Flux control-based design of furfural-resistance strains of Saccharomyces cerevisiae for lignocellulosic biorefinery.

    PubMed

    Unrean, Pornkamol

    2017-04-01

    We have previously developed a dynamic flux balance analysis of Saccharomyces cerevisiae for elucidation of genome-wide flux response to furfural perturbation (Unrean and Franzen, Biotechnol J 10(8):1248-1258, 2015). Herein, the dynamic flux distributions were analyzed by flux control analysis to identify target overexpressed genes for improved yeast robustness against furfural. The flux control coefficient (FCC) identified overexpressing isocitrate dehydrogenase (IDH1), a rate-controlling flux for ethanol fermentation, and dicarboxylate carrier (DIC1), a limiting flux for cell growth, as keys of furfural-resistance phenotype. Consistent with the model prediction, strain characterization showed 1.2- and 2.0-fold improvement in ethanol synthesis and furfural detoxification rates, respectively, by IDH1 overexpressed mutant compared to the control. DIC1 overexpressed mutant grew at 1.3-fold faster and reduced furfural at 1.4-fold faster than the control under the furfural challenge. This study hence demonstrated the FCC-based approach as an effective tool for guiding the design of robust yeast strains.

  10. Robust Temperature Control of a Thermoelectric Cooler via μ -Synthesis

    NASA Astrophysics Data System (ADS)

    Kürkçü, Burak; Kasnakoğlu, Coşku

    2018-02-01

    In this work robust temperature control of a thermoelectric cooler (TEC) via μ -synthesis is studied. An uncertain dynamical model for the TEC that is suitable for robust control methods is derived. The model captures variations in operating point due to current, load and temperature changes. A temperature controller is designed utilizing μ -synthesis, a powerful method guaranteeing robust stability and performance. For comparison two well-known control methods, namely proportional-integral-derivative (PID) and internal model control (IMC), are also realized to benchmark the proposed approach. It is observed that the stability and performance on the nominal model are satisfactory for all cases. On the other hand, under perturbations the responses of PID and IMC deteriorate and even become unstable. In contrast, the μ -synthesis controller succeeds in keeping system stability and achieving good performance under all perturbations within the operating range, while at the same time providing good disturbance rejection.

  11. Continuous performance measurement in flight systems. [sequential control model

    NASA Technical Reports Server (NTRS)

    Connelly, E. M.; Sloan, N. A.; Zeskind, R. M.

    1975-01-01

    The desired response of many man machine control systems can be formulated as a solution to an optimal control synthesis problem where the cost index is given and the resulting optimal trajectories correspond to the desired trajectories of the man machine system. Optimal control synthesis provides the reference criteria and the significance of error information required for performance measurement. The synthesis procedure described provides a continuous performance measure (CPM) which is independent of the mechanism generating the control action. Therefore, the technique provides a meaningful method for online evaluation of man's control capability in terms of total man machine performance.

  12. Robust control synthesis for uncertain dynamical systems

    NASA Technical Reports Server (NTRS)

    Byun, Kuk-Whan; Wie, Bong; Sunkel, John

    1989-01-01

    This paper presents robust control synthesis techniques for uncertain dynamical systems subject to structured parameter perturbation. Both QFT (quantitative feedback theory) and H-infinity control synthesis techniques are investigated. Although most H-infinity-related control techniques are not concerned with the structured parameter perturbation, a new way of incorporating the parameter uncertainty in the robust H-infinity control design is presented. A generic model of uncertain dynamical systems is used to illustrate the design methodologies investigated in this paper. It is shown that, for a certain noncolocated structural control problem, use of both techniques results in nonminimum phase compensation.

  13. Synthesis and characterization of the Cu2ZnSnS4 system for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Sánchez Pinzón, D. L.; Soracá Perez, G. Y.; Gómez Cuaspud, J. A.; López, E. Vera

    2017-01-01

    This paper focuses on the synthesis and characterization of a ceramic material based on the Cu2ZnSnS4 system, through the implementation of a hydrothermal route. For this purpose, we started from nitrate dissolutions in a 1.0mol L-1 concentration, which were mixed and treated in a teflon lined vessel steel at 280°C for 48h. The Physicochemical characterization of the solid was evaluated by means of ultraviolet visible spectroscopy (UV-VIS), X-ray diffraction (XRD), Raman spectroscopy, scanning and transmission electron microscopy (SEM-TEM) and solid state impedance spectroscopy (IS). The initial characterization through UV measurements confirms a Band-gap around 1.46eV obtained by the Kubelka-Munk method, which demonstrates the effectiveness of the synthesis method in the obtaining of a semiconductor material. The XRD results confirm the obtaining of a crystalline material of pure phase with tetragonal geometry and I-42m space group. The preferential crystalline orientation was achieved along (2 2 0) facet, with crystallite sizes of nanometric order (6.0nm). The morphological aspects evaluated by means electron microscopy, confirmed the homogeneity of the material, showing specifically a series of textural and surface properties of relevant importance. Finally, the electrical characterizations allow to validate the semiconductor behaviour of CZTS system for development of photovoltaic technologies.

  14. Shaping carbon nanostructures by controlling the synthesis process

    NASA Astrophysics Data System (ADS)

    Merkulov, Vladimir I.; Guillorn, Michael A.; Lowndes, Douglas H.; Simpson, Michael L.; Voelkl, Edgar

    2001-08-01

    The ability to control the nanoscale shape of nanostructures in a large-scale synthesis process is an essential and elusive goal of nanotechnology research. Here, we report significant progress toward that goal. We have developed a technique that enables controlled synthesis of nanoscale carbon structures with conical and cylinder-on-cone shapes and provides the capability to dynamically change the nanostructure shape during the synthesis process. In addition, we present a phenomenological model that explains the formation of these nanostructures and provides insight into methods for precisely engineering their shape. Since the growth process we report is highly deterministic in allowing large-scale synthesis of precisely engineered nanoscale components at defined locations, our approach provides an important tool for a practical nanotechnology.

  15. Semi-Microscale Williamson Ether Synthesis and Simultaneous Isolation of an Expectorant from Cough Tablets

    NASA Astrophysics Data System (ADS)

    Stabile, Ryan G.; Dicks, Andrew P.

    2003-03-01

    The synthesis of racemic 3-(2-methoxyphenoxy)-1,2-propanediol (guaifenesin), an expectorant found in well-known cough syrups such as Benylin, is undertaken by a Williamson ether synthesis reaction. The same compound is simultaneously isolated and characterized from commercially available Guai-Aid cough tablets. The experiment is well-suited towards the introductory part of an advanced organic laboratory course and complements typical lecture topics in a stimulating manner. Consideration is given towards reaction mechanisms, stereochemistry, optical activity, pharmaceutical synthesis, and spectroscopic analysis. Discussion of the merits or disadvantages of marketing a drug as a racemic mixture, with reference to the notorious thalidomide case study, and the concept of enantioselective synthesis is possible.

  16. Ethylene Control of Anthocyanin Synthesis in Sorghum

    PubMed Central

    Craker, L. E.; Standley, L. A.; Starbuck, M. J.

    1971-01-01

    Light-induced anthocyanin synthesis in Sorghum vulgare L. seedlings was both promoted and inhibited by ethylene treatment. The rate of anthocyanin formation in sorghum tissue was dependent upon the time of ethylene treatment in relation to light exposure and the stage of the anthocyanin synthesis process. Those plants receiving ethylene treatment during the early lag phase of anthocyanin synthesis had higher anthocyanin content at 24 hours than control plants receiving no ethylene treatment. Plants receiving ethylene treatment after the lag phase had lower anthocyanin content at 24 hours than control plants receiving no ethylene treatment. PMID:16657796

  17. Gold and gold-iron oxide magnetic glyconanoparticles: synthesis, characterization and magnetic properties.

    PubMed

    de la Fuente, Jesús M; Alcántara, David; Eaton, Peter; Crespo, Patricia; Rojas, Teresa C; Fernandez, Asunción; Hernando, Antonio; Penadés, Soledad

    2006-07-06

    The preparation, characterization and the magnetic properties of gold and gold-iron oxide glyconanoparticles (GNPs) are described. Glyconanoparticles were prepared in a single step procedure in the presence of aqueous solution of thiol functionalized neoglycoconjugates and either gold salts or both gold and iron salts. Neoglycoconjugates of lactose and maltose disaccharides with different linkers were used. Iron-free gold or gold-iron oxide GNPs with controlled gold-iron ratios were obtained. The average core-size diameters are in the range of 1.5-2.5 nm. The GNPs are fully characterized by (1)H NMR spectrometry, transmission electron microscopy (TEM), and UV-vis and X-ray absorption (XAS) spectroscopies. Inductive plasma-atomic emission spectrometry (ICP) and elemental analysis gave the average number of neoglycoconjugates per cluster. The magnetic properties were measured in a SQUID magnetometer. The most remarkable results was the observation of a permanent magnetism up to room temperature in the iron-free gold GNPs, that was not present in the corresponding gold-iron oxide GNPs.

  18. Graphene growth process modeling: a physical-statistical approach

    NASA Astrophysics Data System (ADS)

    Wu, Jian; Huang, Qiang

    2014-09-01

    As a zero-band semiconductor, graphene is an attractive material for a wide variety of applications such as optoelectronics. Among various techniques developed for graphene synthesis, chemical vapor deposition on copper foils shows high potential for producing few-layer and large-area graphene. Since fabrication of high-quality graphene sheets requires the understanding of growth mechanisms, and methods of characterization and control of grain size of graphene flakes, analytical modeling of graphene growth process is therefore essential for controlled fabrication. The graphene growth process starts with randomly nucleated islands that gradually develop into complex shapes, grow in size, and eventually connect together to cover the copper foil. To model this complex process, we develop a physical-statistical approach under the assumption of self-similarity during graphene growth. The growth kinetics is uncovered by separating island shapes from area growth rate. We propose to characterize the area growth velocity using a confined exponential model, which not only has clear physical explanation, but also fits the real data well. For the shape modeling, we develop a parametric shape model which can be well explained by the angular-dependent growth rate. This work can provide useful information for the control and optimization of graphene growth process on Cu foil.

  19. Synthesis, characterization and in vitro cytotoxicity analysis of a novel cellulose based drug carrier for the controlled delivery of 5-fluorouracil, an anticancer drug

    NASA Astrophysics Data System (ADS)

    Anirudhan, Thayyath S.; Nima, Jayachandran; Divya, Peethambaran L.

    2015-11-01

    The present investigation concerns the development and evaluation of a novel drug delivery system, aminated-glycidylmethacrylate grafted cellulose-grafted polymethacrylic acid-succinyl cyclodextrin (Cell-g-(GMA/en)-PMA-SCD) for the controlled release of 5-Fluorouracil, an anticancer drug. The prepared drug carrier was characterized by FT-IR, XRD and SEM techniques. Binding kinetics and isotherm studies of 5-FU onto Cell-g-(GMA/en)-PMA-SCD were found to follow pseudo-second-order and Langmuir model respectively. Maximum binding capacity of drug carrier was found to be 149.09 mg g-1 at 37 °C. Swelling studies, in vitro release kinetics, drug loading efficiency and encapsulation efficiency of Cell-g-(GMA/en)-PMA-SCD were studied. The release kinetics was analyzed using Ritger-Peppas equation at pH 7.4. Cytotoxicity analysis on MCF-7 (human breast carcinoma) cells indicated that the drug carrier shows sustained and controlled release of drug to the target site. Hence, it is evident from this investigation that Cell-g-(GMA/en)-PMA-SCD could be a promising carrier for 5-FU.

  20. Brain catechol synthesis - Control by brain tyrosine concentration

    NASA Technical Reports Server (NTRS)

    Wurtman, R. J.; Larin, F.; Mostafapour, S.; Fernstrom, J. D.

    1974-01-01

    Brain catechol synthesis was estimated by measuring the rate at which brain dopa levels rose following decarboxylase inhibition. Dopa accumulation was accelerated by tyrosine administration, and decreased by treatments that lowered brain tyrosine concentrations (for example, intraperitoneal tryptophan, leucine, or parachlorophenylalanine). A low dose of phenylalanine elevated brain tyrosine without accelerating dopa synthesis. Our findings raise the possibility that nutritional and endocrine factors might influence brain catecholamine synthesis by controlling the availability of tyrosine.

Top