Sample records for controlled water-table depth

  1. Ammonia Volatilization Losses from Paddy Fields under Controlled Irrigation with Different Drainage Treatments

    PubMed Central

    He, Yupu; Yang, Shihong; Wang, Yijiang

    2014-01-01

    The effect of controlled drainage (CD) on ammonia volatilization (AV) losses from paddy fields under controlled irrigation (CI) was investigated by managing water table control levels using a lysimeter. Three drainage treatments were implemented, namely, controlled water table depth 1 (CWT1), controlled water table depth 2 (CWT2), and controlled water table depth 3 (CWT3). As the water table control levels increased, irrigation water volumes in the CI paddy fields decreased. AV losses from paddy fields reduced due to the increases in water table control levels. Seasonal AV losses from CWT1, CWT2, and CWT3 were 59.8, 56.7, and 53.0 kg N ha−1, respectively. AV losses from CWT3 were 13.1% and 8.4% lower than those from CWT1 and CWT2, respectively. A significant difference in the seasonal AV losses was confirmed between CWT1 and CWT3. Less weekly AV losses followed by TF and PF were also observed as the water table control levels increased. The application of CD by increasing water table control levels to a suitable level could effectively reduce irrigation water volumes and AV losses from CI paddy fields. The combination of CI and CD may be a feasible water management method of reducing AV losses from paddy fields. PMID:24741349

  2. Ammonia volatilization losses from paddy fields under controlled irrigation with different drainage treatments.

    PubMed

    He, Yupu; Yang, Shihong; Xu, Junzeng; Wang, Yijiang; Peng, Shizhang

    2014-01-01

    The effect of controlled drainage (CD) on ammonia volatilization (AV) losses from paddy fields under controlled irrigation (CI) was investigated by managing water table control levels using a lysimeter. Three drainage treatments were implemented, namely, controlled water table depth 1 (CWT1), controlled water table depth 2 (CWT2), and controlled water table depth 3 (CWT3). As the water table control levels increased, irrigation water volumes in the CI paddy fields decreased. AV losses from paddy fields reduced due to the increases in water table control levels. Seasonal AV losses from CWT1, CWT2, and CWT3 were 59.8, 56.7, and 53.0 kg N ha(-1), respectively. AV losses from CWT3 were 13.1% and 8.4% lower than those from CWT1 and CWT2, respectively. A significant difference in the seasonal AV losses was confirmed between CWT1 and CWT3. Less weekly AV losses followed by TF and PF were also observed as the water table control levels increased. The application of CD by increasing water table control levels to a suitable level could effectively reduce irrigation water volumes and AV losses from CI paddy fields. The combination of CI and CD may be a feasible water management method of reducing AV losses from paddy fields.

  3. Water-Table Levels and Gradients, Nevada, 1947-2004

    USGS Publications Warehouse

    Lopes, Thomas J.; Buto, Susan G.; Smith, J. LaRue; Welborn, Toby L.

    2006-01-01

    In 1999, the U.S. Environmental Protection Agency began a program to protect the quality of ground water in areas other than ground-water protection areas. These other sensitive ground water areas (OSGWA) are areas that are not currently, but could eventually be, used as a source of drinking water. The OSGWA program specifically addresses existing wells that are used for underground injection of motor-vehicle waste. To help determine whether a well is in an OSGWA, the Nevada Division of Environmental Protection needs statewide information on depth to water and the water table, which partly control the susceptibility of ground water to contamination and contaminant transport. This report describes a study that used available maps and data to create statewide maps of water-table and depth-to-water contours and surfaces, assessed temporal changes in water-table levels, and characterized water-table gradients in selected areas of Nevada. A literature search of published water-table and depth-to-water contours produced maps of varying detail and scope in 104 reports published from 1948 to 2004. Where multiple maps covered the same area, criteria were used to select the most recent, detailed maps that covered the largest area and had plotted control points. These selection criteria resulted in water-table and depth-to-water contours that are based on data collected from 1947 to 2004 being selected from 39 reports. If not already available digitally, contours and control points were digitized from selected maps, entered into a geographic information system, and combined to make a statewide map of water-table contours. Water-table surfaces were made by using inverse distance weighting to estimate the water table between contours and then gridding the estimates. Depth-to-water surfaces were made by subtracting the water-table altitude from the land-surface altitude. Water-table and depth-to-water surfaces were made for only 21 percent of Nevada because of a lack of information for 49 of 232 basins and for most consolidated-rock hydrogeologic units. Depth to water is commonly less than 50 feet beneath valley floors, 50 to 500 feet beneath alluvial fans, and more than 500 feet in some areas such as north-central and southern Nevada. In areas without water-table information, greasewood and mapped ground-water discharge areas are good indicators of depth to water less than 100 feet. The average difference between measured depth to water and depth to water estimated from surfaces was 90 feet. More recent and detailed information may be needed than that presented in this report to evaluate a specific site. Temporal changes in water-table levels were evaluated for 1,981 wells with 10 or more years between the first depth-to-water measurement and last measurement made since 1990. The greatest increases in depth to water occurred where the first measurement was less than 200 feet, where the time between first and last measurements was 40 years or less, and for wells between 100 and 600 feet deep. These characteristics describe production wells where ground water is fairly shallow in recently developing areas such as the Las Vegas and Reno metropolitan areas. In basins with little pumping, 90 percent of the changes during the past 100 years are within ?20 feet, which is about the natural variation in the water table due to changes in the climate and recharge. Gradients in unconsolidated sediments of the Great Basin are generally steep near mountain fronts, shallow beneath valley floors, and depend on variables such as the horizontal hydraulic conductivity of adjacent consolidated rocks and recharge. Gradients beneath alluvial fans and valley floors at 58 sites were correlated with selected variables to identify those variables that are statistically related. Water-table measurements at three sites were used to characterize the water table between the valley floor and consolidated rock. Water-table gradients beneath alluvial fan

  4. Transport of E. coli in a sandy soil as impacted by depth to water table.

    PubMed

    Stall, Christopher; Amoozegar, Aziz; Lindbo, David; Graves, Alexandria; Rashash, Diana

    2014-01-01

    Septic systems are considered a source of groundwater contamination. In the study described in this article, the fate of microbes applied to a sandy loam soil from North Carolina coastal plain as impacted by water table depth was studied. Soil materials were packed to a depth of 65 cm in 17 columns (15-cm diameter), and a water table was established at 30, 45, and 60 cm depths using five replications. Each day, 200 mL of an artificial septic tank effluent inoculated with E. coli were applied to the top of each column, a 100-mL sample was collected at the water table level and analyzed for E. coli, and 100 mL was drained from the bottom to maintain the water table. Two columns were used as control and received 200 mL/day of sterilized effluent. Neither 30 nor 45 cm of unsaturated soil was adequate to attenuate bacterial contamination, while 60 cm of separation appeared to be sufficient. Little bacterial contamination moved with the water table when it was lowered from 30 to 60 cm.

  5. A 5 Year Study of Carbon Fluxes from a Restored English Blanket Bog

    NASA Astrophysics Data System (ADS)

    Worrall, F.; Dixon, S.; Evans, M.

    2014-12-01

    This study aimed to measure the effects of ecological restoration on blanket peat water table depths, DOC concentrations and CO2 fluxes. In April 2003 the Bleaklow Plateau, an extensive area of deep blanket peat in the Peak District National Park, northern England, was devegetated by a wildfire. As a result the area was selected for large scale restoration. In this study we considered a 5-year study of four restored sites in comparison to both an unrestored, bare peat control and to vegetated control that did not require restoration. Results suggested that sites with revegetation alongside slope stabilisation had the highest rates of photosynthesis and were the largest net (daylight hours) sinks of CO2. Bare sites were the largest net sources of CO2 and had the deepest water table depths. Sites with gully wall stabilisation were between 5-8 times more likely to be net CO2 sinks than the bare sites. Revegetation without gully flow blocking using plastic dams did not have a large effect on water table depths in and around the gullies investigated whereas a blocked gully had water table depths comparable to a naturally revegetating gully. A ten centimetre lowering in water table depth decreased the probability of observing a net CO2 sink, on a given site, by up to 30%. With respect to DOC the study showed that the average soil porewater DOC concentration on the restored sites rose significantly over the 5 year study representing a 34% increase relative to the vegetated control and an 11% increase relative to the unrestored, bare control. Soil pore water concentrations were not significantly different from surface runoff DOC concentrations and therefore restoration as conducted by this study would have contributed to water quality deterioration in the catchment. The most important conclusion of this research was that restoration interventions were apparently effective at increasing the likelihood of net CO2 sink behaviour and raising water tables on degraded, climatically marginal blanket bog. However, had water table restoration been conducted alongside revegetation then a significant decline in DOC concentrations could have also been realised.

  6. Water table dynamics in undisturbed, drained and restored blanket peat

    NASA Astrophysics Data System (ADS)

    Holden, J.; Wallage, Z. E.; Lane, S. N.; McDonald, A. T.

    2011-05-01

    SummaryPeatland water table depth is an important control on runoff production, plant growth and carbon cycling. Many peatlands have been drained but are now subject to activities that might lead to their restoration including the damming of artificial drains. This paper investigates water table dynamics on intact, drained and restored peatland slopes in a blanket peat in northern England using transects of automated water table recorders. Long-term (18 month), seasonal and short-term (storm event) records are explored. The restored site had drains blocked 6 years prior to monitoring commencing. The spatially-weighted mean water table depths over an 18 month period were -5.8 cm, -8.9 cm and -11.5 cm at the intact, restored and drained sites respectively. Most components of water table behaviour at the restored site, including depth exceedance probability curves, seasonality of water table variability, and water table responses to individual rainfall events were intermediate between that of the drained and intact sites. Responses also depended on location with respect to the drains. The results show that restoration of drained blanket peat is difficult and the water table dynamics may not function in the same way as those in undisturbed blanket peat even many years after management intervention. Further measurement of hydrological processes and water table responses to peatland restoration are required to inform land managers of the hydrological success of those projects.

  7. Design and Verification of an Inexpensive Ultrasonic Water Depth Sensor Using Arduino

    NASA Astrophysics Data System (ADS)

    Mihevc, T. M.; Rajagopal, S.

    2012-12-01

    A system that combines the arduino micro-controller, a Parallax PING Ultrasonic distance sensor and a secure digital card to log the data is developed to help monitor water table depths in multiple settings. Traditional methods of monitoring water table depths involve the use of a pressure transducer and expensive data loggers that cost upward of 1000. The present system is built for less than 100, with the caveat that the accuracy of the measurements is 1cm. In this laboratory study, we first build the arduino based system to monitor water table depths in a piezometer and compare these measurements to those made by a pressure transducer. Initial results show that the depth measurements are accurate in comparison to actual tape measurements. Results from this benchmarking experiment will be presented at the meeting.

  8. Study on hydraulic property models for water retention and unsaturated hydraulic conductivity in MATSIRO with representation of water table dynamics

    NASA Astrophysics Data System (ADS)

    Yoshida, N.; Oki, T.

    2016-12-01

    Appropriate initial condition of soil moisture and water table depth are important factors to reduce uncertainty in hydrological simulations. Approaches to determine the initial water table depth have been developed because of difficulty to get information on global water table depth and soil moisture distributions. However, how is equilibrium soil moisture determined by climate conditions? We try to discuss this issue by using land surface model with representation of water table dynamics (MAT-GW). First, the global pattern of water table depth at equilibrium soil moisture in MAT-GW was verified. The water table depth in MAT-GW was deeper than the previous one at fundamentally arid region because the negative recharge and continuous baseflow made water table depth deeper. It indicated that the hydraulic conductivity used for estimating recharge and baseflow need to be reassessed in MAT-GW. In soil physics field, it is revealed that proper hydraulic property models for water retention and unsaturated hydraulic conductivity should be selected for each soil type. So, the effect of selecting hydraulic property models on terrestrial soil moisture and water table depth were examined.Clapp and Hornburger equation(CH eq.) and Van Genuchten equation(VG eq.) were used as representative hydraulic property models. Those models were integrated on MAT-GW and equilibrium soil moisture and water table depth with using each model were compared. The water table depth and soil moisture at grids which reached equilibrium in both simulations were analyzed. The equilibrium water table depth were deeper in VG eq. than CH eq. in most grids due to shape of hydraulic property models. Then, total soil moisture were smaller in VG eq. than CH eq. at almost all grids which water table depth reached equilibrium. It is interesting that spatial patterns which water table depth reached equilibrium or not were basically similar in both simulations but reverse patterns were shown in east and west part of America. Selection of each hydraulic property model based on soil types may compensate characteristic of models in initialization.

  9. Estimated Depth to Ground Water and Configuration of the Water Table in the Portland, Oregon Area

    USGS Publications Warehouse

    Snyder, Daniel T.

    2008-01-01

    Reliable information on the configuration of the water table in the Portland metropolitan area is needed to address concerns about various water-resource issues, especially with regard to potential effects from stormwater injection systems such as UIC (underground injection control) systems that are either existing or planned. To help address these concerns, this report presents the estimated depth-to-water and water-table elevation maps for the Portland area, along with estimates of the relative uncertainty of the maps and seasonal water-table fluctuations. The method of analysis used to determine the water-table configuration in the Portland area relied on water-level data from shallow wells and surface-water features that are representative of the water table. However, the largest source of available well data is water-level measurements in reports filed by well constructors at the time of new well installation, but these data frequently were not representative of static water-level conditions. Depth-to-water measurements reported in well-construction records generally were shallower than measurements by the U.S. Geological Survey (USGS) in the same or nearby wells, although many depth-to-water measurements were substantially deeper than USGS measurements. Magnitudes of differences in depth-to-water measurements reported in well records and those measured by the USGS in the same or nearby wells ranged from -119 to 156 feet with a mean of the absolute value of the differences of 36 feet. One possible cause for the differences is that water levels in many wells reported in well records were not at equilibrium at the time of measurement. As a result, the analysis of the water-table configuration relied on water levels measured during the current study or used in previous USGS investigations in the Portland area. Because of the scarcity of well data in some areas, the locations of select surface-water features including major rivers, streams, lakes, wetlands, and springs representative of where the water table is at land surface were used to augment the analysis. Ground-water and surface-water data were combined for use in interpolation of the water-table configuration. Interpolation of the two representations typically used to define water-table position - depth to the water table below land surface and elevation of the water table above a datum - can produce substantially different results and may represent the end members of a spectrum of possible interpolations largely determined by the quantity of recharge and the hydraulic properties of the aquifer. Datasets of depth-to-water and water-table elevation for the current study were interpolated independently based on kriging as the method of interpolation with parameters determined through the use of semivariograms developed individually for each dataset. Resulting interpolations were then combined to create a single, averaged representation of the water-table configuration. Kriging analysis also was used to develop a map of relative uncertainty associated with the values of the water-table position. Accuracy of the depth-to-water and water-table elevation maps is dependent on various factors and assumptions pertaining to the data, the method of interpolation, and the hydrogeologic conditions of the surficial aquifers in the study area. Although the water-table configuration maps generally are representative of the conditions in the study area, the actual position of the water-table may differ from the estimated position at site-specific locations, and short-term, seasonal, and long-term variations in the differences also can be expected. The relative uncertainty map addresses some but not all possible errors associated with the analysis of the water-table configuration and does not depict all sources of uncertainty. Depth to water greater than 300 feet in the Portland area is limited to parts of the Tualatin Mountains, the foothills of the Cascade Range, and muc

  10. TOPMODEL simulations of streamflow and depth to water table in Fishing Brook Watershed, New York, 2007-09

    USGS Publications Warehouse

    Nystrom, Elizabeth A.; Burns, Douglas A.

    2011-01-01

    TOPMODEL uses a topographic wetness index computed from surface-elevation data to simulate streamflow and subsurface-saturation state, represented by the saturation deficit. Depth to water table was computed from simulated saturation-deficit values using computed soil properties. In the Fishing Brook Watershed, TOPMODEL was calibrated to the natural logarithm of streamflow at the study area outlet and depth to water table at Sixmile Wetland using a combined multiple-objective function. Runoff and depth to water table responded differently to some of the model parameters, and the combined multiple-objective function balanced the goodness-of-fit of the model realizations with respect to these parameters. Results show that TOPMODEL reasonably simulated runoff and depth to water table during the study period. The simulated runoff had a Nash-Sutcliffe efficiency of 0.738, but the model underpredicted total runoff by 14 percent. Depth to water table computed from simulated saturation-deficit values matched observed water-table depth moderately well; the root mean squared error of absolute depth to water table was 91 millimeters (mm), compared to the mean observed depth to water table of 205 mm. The correlation coefficient for temporal depth-to-water-table fluctuations was 0.624. The variability of the TOPMODEL simulations was assessed using prediction intervals grouped using the combined multiple-objective function. The calibrated TOPMODEL results for the entire study area were applied to several subwatersheds within the study area using computed hydrogeomorphic properties of the subwatersheds.

  11. Estimating drain flow from measured water table depth in layered soils under free and controlled drainage

    NASA Astrophysics Data System (ADS)

    Saadat, Samaneh; Bowling, Laura; Frankenberger, Jane; Kladivko, Eileen

    2018-01-01

    Long records of continuous drain flow are important for quantifying annual and seasonal changes in the subsurface drainage flow from drained agricultural land. Missing data due to equipment malfunction and other challenges have limited conclusions that can be made about annual flow and thus nutrient loads from field studies, including assessments of the effect of controlled drainage. Water table depth data may be available during gaps in flow data, providing a basis for filling missing drain flow data; therefore, the overall goal of this study was to examine the potential to estimate drain flow using water table observations. The objectives were to evaluate how the shape of the relationship between drain flow and water table height above drain varies depending on the soil hydraulic conductivity profile, to quantify how well the Hooghoudt equation represented the water table-drain flow relationship in five years of measured data at the Davis Purdue Agricultural Center (DPAC), and to determine the impact of controlled drainage on drain flow using the filled dataset. The shape of the drain flow-water table height relationship was found to depend on the selected hydraulic conductivity profile. Estimated drain flow using the Hooghoudt equation with measured water table height for both free draining and controlled periods compared well to observed flow with Nash-Sutcliffe Efficiency values above 0.7 and 0.8 for calibration and validation periods, respectively. Using this method, together with linear regression for the remaining gaps, a long-term drain flow record for a controlled drainage experiment at the DPAC was used to evaluate the impacts of controlled drainage on drain flow. In the controlled drainage sites, annual flow was 14-49% lower than free drainage.

  12. Non-invasive water-table imaging with joint DC-resistivity/microgravity/hydrologic-model inversion

    NASA Astrophysics Data System (ADS)

    Kennedy, J.; Macy, J. P.

    2017-12-01

    The depth of the water table, and fluctuations thereof, is a primary concern in hydrology. In riparian areas, the water table controls when and where vegetation grows. Fluctuations in the water table depth indicate changes in aquifer storage and variation in ET, and may also be responsible for the transport and degradation of contaminants. In the latter case, installation of monitoring wells is problematic because of the potential to create preferential flow pathways. We present a novel method for non-invasive water table monitoring using combined DC resistivity and repeat microgravity data. Resistivity profiles provide spatial resolution, but a quantifiable relation between resistivity changes and aquifer-storage changes depends on a petrophysical relation (typically, Archie's Law), with additional parameters and therefore uncertainty. Conversely, repeat microgravity data provide a direct, quantifiable measurement of aquifer-storage change but lack depth resolution. We show how these two geophysical measurements, together with an unsaturated-zone flow model (Hydrogeosphere), effectively constrain the water table position and help identify groundwater-flow model parameters. A demonstration of the method is made using field data collected during the historic 2014 pulse flow in the Colorado River Delta, which shows that geophysical data can effectively constrain a coupled surface-water/groundwater model used to simulate the potential for riparian vegetation germination and recruitment.

  13. Soil Water and Shallow Groundwater Relations in an Agricultural Hillslope

    NASA Astrophysics Data System (ADS)

    Logsdon, S. D.; Schilling, K. E.

    2007-12-01

    Shallow water tables contribute to soil water variations under rolling topography, and soil properties contribute to shallow water table fluctutations. Preferential flow through large soil pores can cause a rise in the water table with little increase in soil water except near the soil surface. Lateral groundwater flow can cause a large rise in water table at toeslope and depressional landscape positions. As plants transpire, water can move up into the root zone from the water table and wet soil below the root zone. Roots can utilize water in the capillary fringe. The purpose of this study was to interface automated measurements of soil water content and water table depth for determining the importance of drainage and upward movement. In 2006 soil water and water table depth were monitored at three positions: shoulder, backslope, and toeslope. Neutron access tubes were manually monitored to 2.3 m depth, and automated soil moisture was measured using CS616 probes installed at 0.3, 0.5, 0.7, and 0.9 m depth. Water table depths were monitored manually and automated, but the automated measurements failed during the season at two sites. In 2007, similar measurements were made at one toeslope position, but the CS616 probes were installed at nine depths and better quality automated well depth equipment was used. The 2006 data revealed little landscape position effect on daytime soil water loss on a wetter date; however, on a dry day just before a rain, daytime water loss was greatest for the toeslope positon and least for the shoulder position. After a period of intense rain, a rapid and significant water table rise occurred at the toeslope position but little water table rise occurred at the other landscape positions. The rapid toeslope water table rise was likely caused by lateral groundwater flow whereas minor water table rise at the other positions was likely due to preferential flow since the soil had not wet up below 0.6 m. Use of automated equipment has improved our understanding of the relations of soil water to water table fluctuations in an agricultural field.

  14. Discoloration of polyvinyl chloride (PVC) tape as a proxy for water-table depth in peatlands: validation and assessment of seasonal variability

    USGS Publications Warehouse

    Booth, Robert K.; Hotchkiss, Sara C.; Wilcox, Douglas A.

    2005-01-01

    Summary: 1. Discoloration of polyvinyl chloride (PVC) tape has been used in peatland ecological and hydrological studies as an inexpensive way to monitor changes in water-table depth and reducing conditions. 2. We investigated the relationship between depth of PVC tape discoloration and measured water-table depth at monthly time steps during the growing season within nine kettle peatlands of northern Wisconsin. Our specific objectives were to: (1) determine if PVC discoloration is an accurate method of inferring water-table depth in Sphagnum-dominated kettle peatlands of the region; (2) assess seasonal variability in the accuracy of the method; and (3) determine if systematic differences in accuracy occurred among microhabitats, PVC tape colour and peatlands. 3. Our results indicated that PVC tape discoloration can be used to describe gradients of water-table depth in kettle peatlands. However, accuracy differed among the peatlands studied, and was systematically biased in early spring and late summer/autumn. Regardless of the month when the tape was installed, the highest elevations of PVC tape discoloration showed the strongest correlation with midsummer (around July) water-table depth and average water-table depth during the growing season. 4. The PVC tape discoloration method should be used cautiously when precise estimates are needed of seasonal changes in the water-table.

  15. How well do testate amoebae transfer functions relate to high-resolution water-table records?

    NASA Astrophysics Data System (ADS)

    Holden, Joseph; Swindles, Graeme; Raby, Cassandra; Blundell, Antony

    2014-05-01

    Testate amoebae (TA) community composition records from peat cores are often used to infer past water-table conditions on peatland sites. However, one of the problems is that validation of water-table depths used in such work typically comes from a one-off water-table measurement or a few measurements of water-table depth from the testate amoebae sample extraction point. Furthermore, one value of water-table depth is produced by the transfer function reconstruction, with sample-specific errors generated through a statistical resampling approach. However, we know that water tables fluctuate in peatlands and are dynamic. Traditional TA water-table data may not adequately capture a mean value from a site, and may not account for water-table dynamics (e.g. seasonal or annual variability) that could influence the TA community composition. We analysed automatically logged (at least hourly, mainly 15-min) peatland water-table data from 72 different dipwells located across northern Sweden, Wales and the Pennine region of England. Each location had not been subject to recent management intervention. A suite of characteristics of water-table dynamics for each point were determined. At each point surface samples were extracted and the TA community composition was determined. Our results show that estimated water-table depth based on the TA community transfer functions poorly represents the real mean or median water tables for the study sites. The TA approach does, however, generally identify sites that have water tables that are closer to the surface for a greater proportion of the year compared to sites with deeper water tables for large proportions of the year. However, the traditional TA approach does not differentiate between sites with similar mean (or median) water-table depths yet which have quite different water table variability (e.g. interquartile range). We suggest some ways of improving water-table metrics for use in Holocene peatland hydrology reconstructions.

  16. Global patterns of groundwater table depth.

    PubMed

    Fan, Y; Li, H; Miguez-Macho, G

    2013-02-22

    Shallow groundwater affects terrestrial ecosystems by sustaining river base-flow and root-zone soil water in the absence of rain, but little is known about the global patterns of water table depth and where it provides vital support for land ecosystems. We present global observations of water table depth compiled from government archives and literature, and fill in data gaps and infer patterns and processes using a groundwater model forced by modern climate, terrain, and sea level. Patterns in water table depth explain patterns in wetlands at the global scale and vegetation gradients at regional and local scales. Overall, shallow groundwater influences 22 to 32% of global land area, including ~15% as groundwater-fed surface water features and 7 to 17% with the water table or its capillary fringe within plant rooting depths.

  17. Soil-water content characterisation in a modified Jarvis-Stewart model: A case study of a conifer forest on a shallow unconfined aquifer

    NASA Astrophysics Data System (ADS)

    Guyot, Adrien; Fan, Junliang; Oestergaard, Kasper T.; Whitley, Rhys; Gibbes, Badin; Arsac, Margaux; Lockington, David A.

    2017-01-01

    Groundwater-vegetation-atmosphere fluxes were monitored for a subtropical coastal conifer forest in South-East Queensland, Australia. Observations were used to quantify seasonal changes in transpiration rates with respect to temporal fluctuations of the local water table depth. The applicability of a Modified Jarvis-Stewart transpiration model (MJS), which requires soil-water content data, was assessed for this system. The influence of single depth values compared to use of vertically averaged soil-water content data on MJS-modelled transpiration was assessed over both a wet and a dry season, where the water table depth varied from the surface to a depth of 1.4 m below the surface. Data for tree transpiration rates relative to water table depth showed that trees transpire when the water table was above a threshold depth of 0.8 m below the ground surface (water availability is non-limiting). When the water table reached the ground surface (i.e., surface flooding) transpiration was found to be limited. When the water table is below this threshold depth, a linear relationship between water table depth and the transpiration rate was observed. MJS modelling results show that the influence of different choices for soil-water content on transpiration predictions was insignificant in the wet season. However, during the dry season, inclusion of deeper soil-water content data improved the model performance (except for days after isolated rainfall events, here a shallower soil-water representation was better). This study demonstrated that, to improve MJS simulation results, appropriate selection of soil water measurement depths based on the dynamic behaviour of soil water profiles through the root zone was required in a shallow unconfined aquifer system.

  18. Representing Northern Peatland Hydrology and Biogeochemistry with ALM Land Surface Model

    NASA Astrophysics Data System (ADS)

    Shi, X.; Ricciuto, D. M.; Thornton, P. E.; Hanson, P. J.; Xu, X.; Mao, J.; Warren, J.; Yuan, F.; Norby, R. J.; Sebestyen, S.; Griffiths, N.; Weston, D. J.; Walker, A.

    2017-12-01

    Northern peatlands are likely to be important in future carbon cycle-climate feedbacks due to their large carbon pool and vulnerability to hydrological change. Predictive understanding of northern peatland hydrology is a necessary precursor to understanding the fate of massive carbon stores in these systems under the influence of present and future climate change. Current models have begun to address microtopographic controls on peatland hydrology, but none have included a prognostic calculation of peatland water table depth for a vegetated wetland, independent of prescribed regional water tables. Firstly, we introduce a new configuration of the land model (ALM) of Accelerated Climate model for Energy (ACME), which includes a fully prognostic water table calculation for a vegetated peatland. Secondly, we couple our new hydrology treatment with vertically structured soil organic matter pool, and the addition of components from methane biogeochemistry. Thirdly, we introduce a new PFT for mosses and implement the water content dynamics and physiology of mosses. We inform and test our model based on SPRUCE experiment to get the reasonable results for the seasonal dynamics water table depths, water content dynamics and physiology of mosses, and correct soil carbon profiles. Then, we use our new model structure to test the how the water table depth and CH4 emission will respond to elevated CO2 and different warming scenarios.

  19. Denitrification and gas emissions from organic soils under different water-table and flooding management

    USDA-ARS?s Scientific Manuscript database

    Draining the Florida Everglades for agricultural use has led to land subsidence and increase phosphorus loads to the southern Everglades, environmental concerns which can be limited by controlling water table depth. The resulting anaerobic conditions in saturated soils may lead to increased denitrif...

  20. Full equations utilities (FEQUTL) model for the approximation of hydraulic characteristics of open channels and control structures during unsteady flow

    USGS Publications Warehouse

    Franz, Delbert D.; Melching, Charles S.

    1997-01-01

    The Full EQuations UTiLities (FEQUTL) model is a computer program for computation of tables that list the hydraulic characteristics of open channels and control structures as a function of upstream and downstream depths; these tables facilitate the simulation of unsteady flow in a stream system with the Full Equations (FEQ) model. Simulation of unsteady flow requires many iterations for each time period computed. Thus, computation of hydraulic characteristics during the simulations is impractical, and preparation of function tables and application of table look-up procedures facilitates simulation of unsteady flow. Three general types of function tables are computed: one-dimensional tables that relate hydraulic characteristics to upstream flow depth, two-dimensional tables that relate flow through control structures to upstream and downstream flow depth, and three-dimensional tables that relate flow through gated structures to upstream and downstream flow depth and gate setting. For open-channel reaches, six types of one-dimensional function tables contain different combinations of the top width of flow, area, first moment of area with respect to the water surface, conveyance, flux coefficients, and correction coefficients for channel curvilinearity. For hydraulic control structures, one type of one-dimensional function table contains relations between flow and upstream depth, and two types of two-dimensional function tables contain relations among flow and upstream and downstream flow depths. For hydraulic control structures with gates, a three-dimensional function table lists the system of two-dimensional tables that contain the relations among flow and upstream and downstream flow depths that correspond to different gate openings. Hydraulic control structures for which function tables containing flow relations are prepared in FEQUTL include expansions, contractions, bridges, culverts, embankments, weirs, closed conduits (circular, rectangular, and pipe-arch shapes), dam failures, floodways, and underflow gates (sluice and tainter gates). The theory for computation of the hydraulic characteristics is presented for open channels and for each hydraulic control structure. For the hydraulic control structures, the theory is developed from the results of experimental tests of flow through the structure for different upstream and downstream flow depths. These tests were done to describe flow hydraulics for a single, steady-flow design condition and, thus, do not provide complete information on flow transitions (for example, between free- and submerged-weir flow) that may result in simulation of unsteady flow. Therefore, new procedures are developed to approximate the hydraulics of flow transitions for culverts, embankments, weirs, and underflow gates.

  1. Evaluating the relationship between topography and groundwater using outputs from a continental-scale integrated hydrology model

    NASA Astrophysics Data System (ADS)

    Condon, Laura E.; Maxwell, Reed M.

    2015-08-01

    We study the influence of topography on groundwater fluxes and water table depths across the contiguous United States (CONUS). Groundwater tables are often conceptualized as subdued replicas of topography. While it is well known that groundwater configuration is also controlled by geology and climate, nonlinear interactions between these drivers within large real-world systems are not well understood and are difficult to characterize given sparse groundwater observations. We address this limitation using the fully integrated physical hydrology model ParFlow to directly simulate groundwater fluxes and water table depths within a complex heterogeneous domain that incorporates all three primary groundwater drivers. Analysis is based on a first of its kind, continental-scale, high-resolution (1 km), groundwater-surface water simulation spanning more than 6.3 million km2. Results show that groundwater fluxes are most strongly driven by topographic gradients (as opposed to gradients in pressure head) in humid regions with small topographic gradients or low conductivity. These regions are generally consistent with the topographically controlled groundwater regions identified in previous studies. However, we also show that areas where topographic slopes drive groundwater flux do not generally have strong correlations between water table depth and elevation. Nonlinear relationships between topography and water table depth are consistent with groundwater flow systems that are dominated by local convergence and could also be influenced by local variability in geology and climate. One of the strengths of the numerical modeling approach is its ability to evaluate continental-scale groundwater behavior at a high resolution not possible with other techniques. This article was corrected on 11 SEP 2015. See the end of the full text for details.

  2. Incorporating water table dynamics in climate modeling: 1. Water table observations and equilibrium water table simulations

    NASA Astrophysics Data System (ADS)

    Fan, Ying; Miguez-Macho, Gonzalo; Weaver, Christopher P.; Walko, Robert; Robock, Alan

    2007-05-01

    Soil moisture is a key participant in land-atmosphere interactions and an important determinant of terrestrial climate. In regions where the water table is shallow, soil moisture is coupled to the water table. This paper is the first of a two-part study to quantify this coupling and explore its implications in the context of climate modeling. We examine the observed water table depth in the lower 48 states of the United States in search of salient spatial and temporal features that are relevant to climate dynamics. As a means to interpolate and synthesize the scattered observations, we use a simple two-dimensional groundwater flow model to construct an equilibrium water table as a result of long-term climatic and geologic forcing. Model simulations suggest that the water table depth exhibits spatial organization at watershed, regional, and continental scales, which may have implications for the spatial organization of soil moisture at similar scales. The observations suggest that water table depth varies at diurnal, event, seasonal, and interannual scales, which may have implications for soil moisture memory at these scales.

  3. Evaluating the value of ENVISAT ASAR Data for the mapping and monitoring of peatland water table depths

    NASA Astrophysics Data System (ADS)

    Bechtold, Michel; Schlaffer, Stefan

    2015-04-01

    The Advanced Synthetic Aperture Radar (ASAR) onboard ENVISAT collected C-Band microwave backscatter data from 2005 to 2012. Backscatter in the C-Band depends to a large degree on the roughness and the moisture status of vegetation and soil surface with a penetration depth of ca. 3 cm. In wetlands with stable high water levels, the annual soil surface moisture dynamics are very distinct compared to the surrounding areas, which allows the monitoring of such environments with ASAR data (Reschke et al. 2012). Also in drained peatlands, moisture status of vegetation and soil surface strongly depends on water table depth due to high hydraulic conductivities of many peat soils in the low suction range (Dettmann et al. 2014). We hypothesize that this allows the characterization of water table depths with ASAR data. Here we analyze whether ASAR data can be used for the spatial and temporal estimation of water table depths in different peatlands (natural, near-natural, agriculturally-used and rewetted). Mapping and monitoring of water table depths is of crucial importance, e.g. for upscaling greenhouse gas emissions and evaluating the success of peatland rewetting projects. Here, ASAR data is analyzed with a new map of water table depths for the organic soils in Germany (Bechtold et al. 2014) as well as with a comprehensive data set of monitored peatland water levels from 1100 dip wells and 54 peatlands. ASAR time series from the years 2005-2012 with irregular temporal sampling intervals of 3-14 days were processed. Areas covered by snow were masked. Primary results about the accuracy of spatial estimates show significant correlations between long-term backscatter statistics and spatially-averaged water table depths extracted from the map at the resolution of the ASAR data. Backscatter also correlates with long-term averages of point-scale water table depth data of the monitoring wells. For the latter, correlation is highest between the dry reference backscatter values and summer mean water table depth. Using the boosted regression tree model of Bechtold et al., we evaluate whether the ASAR data can improve prediction accuracy and/or replace parts of ancillary data that is often not available in other countries. In the temporal domain primary results often show a better dependency between backscatter and water table depths compared to the spatial domain. For a variety of vegetation covers the temporal monitoring potential of ASAR data is evaluated at the level of annual water table depth statistics. Bechtold, M., Tiemeyer, B., Laggner, A., Leppelt, T., Frahm, E., and Belting, S., 2014. Large-scale regionalization of water table depth in peatlands optimized for greenhouse gas emission upscaling, Hydrol. Earth Syst. Sci., 18, 3319-3339. Dettmann, U., Bechtold, M., Frahm, E., Tiemeyer, B., 2014. On the applicability of unimodal and bimodal van Genuchten-Mualem based models to peat and other organic soils under evaporation conditions. Journal of Hydrology, 515, 103-115. Reschke, J., Bartsch, A., Schlaffer, S., Schepaschenko, D., 2012. Capability of C-Band SAR for Operational Wetland Monitoring at High Latitudes. Remote Sens. 4, 2923-2943.

  4. Water-table contours and depth to water in the southeastern part of the Sweetwater River basin, central Wyoming, 1982

    USGS Publications Warehouse

    Borchert, William B.

    1987-01-01

    This map describes the southeastern part of the Sweetwater River basin; the major aquifer consists of the upper part of the White River formations, all of Tertiary age, and to a small extent, the alluvium of the Quaternary age along the Sweetwater River. The saturated thickness of the aquifer in most of the area, but not including the alluvium ranges from 500 to 3000 ft. The maximum saturated thickness of the alluvium penetrated by test holes was 63 ft. The water-table contours and depths to water are based primarily on groundwater-level measurements made during 1982 in 104 wells, most of which are located south of the Sweetwater River. Land-surface altitudes of springs and water-surface altitudes along the Sweetwater River and perennial reaches of creeks flowing northward from the Green and Ferris Mountains also were used as control for mapping the water table. The perennial reaches shown on the map are assumed hydraulically connected with the water table. They were identified from streamflow gain-and-loss measurements made during April and May 1982. (Author 's abstract)

  5. Temporal Hyporheic Zone Response to Water Table Fluctuations.

    PubMed

    Malzone, Jonathan M; Anseeuw, Sierra K; Lowry, Christopher S; Allen-King, Richelle

    2016-03-01

    Expansion and contraction of the hyporheic zone due to temporal hydrologic changes between stream and riparian aquifer influence the biogeochemical cycling capacity of streams. Theoretical studies have quantified the control of groundwater discharge on the depth of the hyporheic zone; however, observations of temporal groundwater controls are limited. In this study, we develop the concept of groundwater-dominated differential hyporheic zone expansion to explain the temporal control of groundwater discharge on the hyporheic zone in a third-order stream reach flowing through glacially derived terrain typical of the Great Lakes region. We define groundwater-dominated differential expansion of the hyporheic zone as: differing rates and magnitudes of hyporheic zone expansion in response to seasonal vs. storm-related water table fluctuation. Specific conductance and vertical hydraulic gradient measurements were used to map changes in the hyporheic zone during seasonal water table decline and storm events. Planar and riffle beds were monitored in order to distinguish the cause of increasing hyporheic zone depth. Planar bed seasonal expansion of the hyporheic zone was of a greater magnitude and longer in duration (weeks to months) than storm event expansion (hours to days). In contrast, the hyporheic zone beneath the riffle bed exhibited minimal expansion in response to seasonal groundwater decline compared to storm related expansion. Results indicated that fluctuation in the riparian water table controlled seasonal expansion of the hyporheic zone along the planar bed. This groundwater induced hyporheic zone expansion could increase the potential for biogeochemical cycling and natural attenuation. © 2015, National Ground Water Association.

  6. Evaporation from bare ground with different water-table depths based on an in-situ experiment in Ordos Plateau, China

    NASA Astrophysics Data System (ADS)

    Zhang, Zaiyong; Wang, Wenke; Wang, Zhoufeng; Chen, Li; Gong, Chengcheng

    2018-03-01

    The dynamic processes of ground evaporation are complex and are related to a multitude of factors such as meteorological influences, water-table depth, and materials in the unsaturated zone. To investigate ground evaporation from a homogeneous unsaturated zone, an in-situ experiment was conducted in Ordos Plateau of China. Two water-table depths were chosen to explore the water movement in the unsaturated zone and ground evaporation. Based on the experimental and calculated results, it was revealed that (1) bare ground evaporation is an atmospheric-limited stage for the case of water-table depth being close to the capillary height; (2) the bare ground evaporation is a water-storage-limited stage for the case of water-table depth being beyond the capillary height; (3) groundwater has little effect on ground-surface evaporation when the water depth is larger than the capillary height; and (4) ground evaporation is greater at nighttime than that during the daytime; and (5) a liquid-vapor interaction zone at nearly 20 cm depth is found, in which there exists a downward vapor flux on sunny days, leading to an increasing trend of soil moisture between 09:00 to 17:00; the maximum value is reached at midday. The results of this investigation are useful to further understand the dynamic processes of ground evaporation in arid areas.

  7. Quantifying the contribution of groundwater on water consumption in arid crop land with shallow groundwater

    NASA Astrophysics Data System (ADS)

    Huo, Z.; Liu, Z.; Wang, X.; Qu, Z.

    2016-12-01

    Groundwater from the shallow aquifers can supply substantial water for evapotranspiration of crops. However, it is difficult to quantify to the contribution of groundwater on crop's water consumption. In present study, regional scale evapotranspiration and the groundwater contribution to evapotranspiration were estimated by the soil water balance equation in Hetao irrigation distric with shallow aquifers, China. Estimates used an 8-year (2006-2013) hydrological dataset including soil moisture, the depth to water table, irrigation amounts, rainfall data, and drainage water flow. The 8-year mean evapotranspiration was estimated to be 664 mm. The mean groundwater supported evapotranspiration (ETg) was estimated to be 228 mm, with variation from 145 mm to 412 mm during the crop growth period. Analysis of the positive correlation between evapotranspiration and the sum of irrigation and rainfall, and the analysis of the negative correlation between ETg/ET and the sum of irrigation and rainfall, reflect the need of groundwater to meet the evapotranspiration demand. Approximately 20% to 40% of the evapotranspiration is from the shallow aquifers in the study area. Furthermore, a new method estimating daily ETg during the crop growing season was developed. The effects of crop growth stage, climate condition, groundwater depth and soil moisture are considered in the model. The method was tested with controlled lysimeter experiments of winter wheat including five controlled water table depths and four soil profiles of different textures. The simulated ETg is a good agreement with the measured data for four soil profiles and different depths to groundwater table. These results could be useful for the government to understand the significant role of the groundwater and make reasonable water use policy in the semiarid agricultural regions.

  8. Minimalistic models of the vertical distribution of roots under stochastic hydrological forcing

    NASA Astrophysics Data System (ADS)

    Laio, Francesco

    2014-05-01

    The assessment of the vertical root profile can be useful for multiple purposes: the partition of water fluxes between evaporation and transpiration, the evaluation of root soil reinforcement for bioengineering applications, the influence of roots on biogeochemical and microbial processes in the soil, etc. In water-controlled ecosystems the shape of the root profile is mainly determined by the soil moisture availability at different depths. The long term soil water balance in the root zone can be assessed by modeling the stochastic incoming and outgoing water fluxes, influenced by the stochastic rainfall pulses and/or by the water table fluctuations. Through an ecohydrological analysis one obtains that in water-controlled ecosystems the vertical root distribution is a decreasing function with depth, whose parameters depend on pedologic and climatic factors. The model can be extended to suitably account for the influence of the water table fluctuations, when the water table is shallow enough to exert an influence on root development, in which case the vertical root distribution tends to assume a non-monotonic form. In order to evaluate the validity of the ecohydrological estimation of the root profile we have tested it on a case study in the north of Tuscany (Italy). We have analyzed data from 17 landslide-prone sites: in each of these sites we have assessed the pedologic and climatic descriptors necessary to apply the model, and we have measured the mean rooting depth. The results show a quite good matching between observed and modeled mean root depths. The merit of this minimalistic approach to the modeling of the vertical root distribution relies on the fact that it allows a quantitative estimation of the main features of the vertical root distribution without resorting to time- and money-demanding measuring surveys.

  9. Water Table Depth and Growth of Young Cottonwood

    Treesearch

    W. M. Broadfoot

    1973-01-01

    Planted cottonwood grew best when the water table was about 2 feet deep, whether the tree was planted on soil with a high water table or the water table was raised 1 year after planting. Growth over a 1- foot-deep water table was about the same as over no water table, but a surface water table restricted growth of cuttings planted in the water, and killed trees planted...

  10. Water movement through a thick unsaturated zone underlying an intermittent stream in the western Mojave Desert, southern California, USA

    USGS Publications Warehouse

    Izbicki, J.A.; Radyk, J.; Michel, R.L.

    2000-01-01

    Previous studies indicated that small amounts of recharge occur as infiltration of intermittent streamflow in washes in the upper Mojave River basin, in the western Mojave Desert, near Victorville, California. These washes flow only a few days each year after large storms. To reach the water table, water must pass through an unsaturated zone that is more than 130 m thick. Results of this study, done in 1994-1998, showy that infiltration to depths below the root zone did not occur at control sites away from the wash. At these sites, volumetric water contents were as low as 0.01 and water potentials (measured as the combination of solute and matric potentials using a water activity meter) were as negative as -14,000 kPa. Water-vapor movement was controlled by highly negative solute potentials associated with the accumulation of soluble salts in the unsaturated zone. Highly negative matric potentials above and below the zone of maximum solute accumulation result from movement of water vapor toward the highly negative solute potentials at that depth. The ??18O and ??D (delta oxygen-18 and delta deuterium) isotopic composition of water in coarse-grained deposits plots along a Rayleigh distillation line consistent with removal of water in coarse-grained layers by vapor transport. Beneath Oro Grande Wash, water moved to depths below the root zone and, presumably, to the water table about 130 m below land surface. Underneath Oro Grande Wash, volumetric water contents were as high as 0.27 and water potentials (measured as matric potential using tensiometers) were between -1.8 and -50 kPa. On the basis of tritium data, water requires at least 180-260 years to infiltrate to the water table. Clay layers impede the downward movement of water. Seasonal changes in water vapor composition underneath the wash are consistent with the rapid infiltration of a small quantity of water to great depths and subsequent equilibration of vapor with water in the surrounding material. It may be possible to supplement natural recharge from the wash with imported water. Recharge to the wash may be advantageous because the unsaturated zone is not as dry as most areas in the desert and concentrations of soluble salts are generally lower underneath the wash.Previous studies indicated that small amounts of recharge occur as infiltration of intermittent streamflow in washes in the upper Mojave River basin, in the western Mojave Desert, near Victorville, California. These washes flow only a few days each year after large storms. To reach the water table, water must pass through an unsaturated zone that is more than 130 m thick. Results of this study, done in 1994-1998, show that infiltration to depths below the root zone did not occur at control sites away from the wash. At these sites, volumetric water contents were as low as 0.01 and water potentials (measured as the combination of solute and matric potentials using a water activity meter) were as negative as -14,000 kPa. Water-vapor movement was controlled by highly negative solute potentials associated with the accumulation of soluble salts in the unsaturated zone. Highly negative matric potentials above and below the zone of maximum solute accumulation result from movement of water vapor toward the highly negative solute potentials at that depth. The ??18O and ??D (delta oxygen-18 and delta deuterium) isotopic composition of water in coarse-grained deposits plots along a Rayleigh distillation line consistent with removal of water in coarse-grained layers by vapor transport. Beneath Oro Grande Wash, water moved to depths below the root zone and, presumably, to the water table about 130 m below land surface. Underneath Oro Grande Wash, volumetric water contents were as high as 0.27 and water potentials (measured as matric potential using tensiometers) were between -1.8 and -50 kPa. On the basis of tritium data, water requires at least 180-260 years to infiltrate to the water table. Clay layers impede the downwa

  11. Simulation of wetlands forest vegetation dynamics

    USGS Publications Warehouse

    Phipps, R.L.

    1979-01-01

    A computer program, SWAMP, was designed to simulate the effects of flood frequency and depth to water table on southern wetlands forest vegetation dynamics. By incorporating these hydrologic characteristics into the model, forest vegetation and vegetation dynamics can be simulated. The model, based on data from the White River National Wildlife Refuge near De Witt, Arkansas, "grows" individual trees on a 20 x 20-m plot taking into account effects on the tree growth of flooding, depth to water table, shade tolerance, overtopping and crowding, and probability of death and reproduction. A potential application of the model is illustrated with simulations of tree fruit production following flood-control implementation and lumbering. ?? 1979.

  12. Predicting water table response to rainfall events, central Florida.

    PubMed

    van Gaalen, J F; Kruse, S; Lafrenz, W B; Burroughs, S M

    2013-01-01

    A rise in water table in response to a rainfall event is a complex function of permeability, specific yield, antecedent soil-water conditions, water table level, evapotranspiration, vegetation, lateral groundwater flow, and rainfall volume and intensity. Predictions of water table response, however, commonly assume a linear relationship between response and rainfall based on cumulative analysis of water level and rainfall logs. By identifying individual rainfall events and responses, we examine how the response/rainfall ratio varies as a function of antecedent water table level (stage) and rainfall event size. For wells in wetlands and uplands in central Florida, incorporating stage and event size improves forecasting of water table rise by more than 30%, based on 10 years of data. At the 11 sites studied, the water table is generally least responsive to rainfall at smallest and largest rainfall event sizes and at lower stages. At most sites the minimum amount of rainfall required to induce a rise in water table is fairly uniform when the water table is within 50 to 100 cm of land surface. Below this depth, the minimum typically gradually increases with depth. These observations can be qualitatively explained by unsaturated zone flow processes. Overall, response/rainfall ratios are higher in wetlands and lower in uplands, presumably reflecting lower specific yields and greater lateral influx in wetland sites. Pronounced depth variations in rainfall/response ratios appear to correlate with soil layer boundaries, where corroborating data are available. © 2012, The Author(s). Groundwater © 2012, National Ground Water Association.

  13. Sensitivity of stream flow and water table depth to potential climatic variability in a coastal forested watershed

    Treesearch

    Zhaohua Dai; Carl Trettin; Changsheng Li; Devendra M. Amatya; Ge Sun; Harbin Li

    2010-01-01

    A physically based distributed hydrological model, MIKE SHE, was used to evaluate the effects of altered temperature and precipitation regimes on the streamflow and water table in a forested watershed on the southeastern Atlantic coastal plain. The model calibration and validation against both streamflow and water table depth showed that the MIKE SHE was applicable for...

  14. Mapping water table depth using geophysical and environmental variables.

    PubMed

    Buchanan, S; Triantafilis, J

    2009-01-01

    Despite its importance, accurate representation of the spatial distribution of water table depth remains one of the greatest deficiencies in many hydrological investigations. Historically, both inverse distance weighting (IDW) and ordinary kriging (OK) have been used to interpolate depths. These methods, however, have major limitations: namely they require large numbers of measurements to represent the spatial variability of water table depth and they do not represent the variation between measurement points. We address this issue by assessing the benefits of using stepwise multiple linear regression (MLR) with three different ancillary data sets to predict the water table depth at 100-m intervals. The ancillary data sets used are Electromagnetic (EM34 and EM38), gamma radiometric: potassium (K), uranium (eU), thorium (eTh), total count (TC), and morphometric data. Results show that MLR offers significant precision and accuracy benefits over OK and IDW. Inclusion of the morphometric data set yielded the greatest (16%) improvement in prediction accuracy compared with IDW, followed by the electromagnetic data set (5%). Use of the gamma radiometric data set showed no improvement. The greatest improvement, however, resulted when all data sets were combined (37% increase in prediction accuracy over IDW). Significantly, however, the use of MLR also allows for prediction in variations in water table depth between measurement points, which is crucial for land management.

  15. Depth distribution of microbial production and oxidation of methane in northern boreal peatlands.

    PubMed

    Sundh, I; Nilsson, M; Granberg, G; Svensson, B H

    1994-05-01

    The depth distributions of anaerobic microbial methane production and potential aerobic microbial methane oxidation were assessed at several sites in both Sphagnum- and sedge-dominated boreal peatlands in Sweden, and compared with net methane emissions from the same sites. Production and oxidation of methane were measured in peat slurries, and emissions were measured with the closed-chamber technique. Over all eleven sites sampled, production was, on average, highest 12 cm below the depth of the average water table. On the other hand, highest potential oxidation of methane coincided with the depth of the average water table. The integrated production rate in the 0-60 cm interval ranged between 0.05 and 1.7 g CH4 m (-2) day(-) and was negatively correlated with the depth of the average water table (linear regression: r (2) = 0.50, P = 0.015). The depth-integrated potential CH4-oxidation rate ranged between 3.0 and 22.1 g CH4 m(-2) day(-1) and was unrelated to the depth of the average water table. A larger fraction of the methane was oxidized at sites with low average water tables; hence, our results show that low net emission rates in these environments are caused not only by lower methane production rates, but also by conditions more favorable for the development of CH4-oxidizing bacteria in these environments.

  16. Enhancing Groundwater Cost Estimation with the Interpolation of Water Tables across the United States

    NASA Astrophysics Data System (ADS)

    Rosli, A. U. M.; Lall, U.; Josset, L.; Rising, J. A.; Russo, T. A.; Eisenhart, T.

    2017-12-01

    Analyzing the trends in water use and supply across the United States is fundamental to efforts in ensuring water sustainability. As part of this, estimating the costs of producing or obtaining water (water extraction) and the correlation with water use is an important aspect in understanding the underlying trends. This study estimates groundwater costs by interpolating the depth to water level across the US in each county. We use Ordinary and Universal Kriging, accounting for the differences between aquifers. Kriging generates a best linear unbiased estimate at each location and has been widely used to map ground-water surfaces (Alley, 1993).The spatial covariates included in the universal Kriging were land-surface elevation as well as aquifer information. The average water table is computed for each county using block kriging to obtain a national map of groundwater cost, which we compare with survey estimates of depth to the water table performed by the USDA. Groundwater extraction costs were then assumed to be proportional to water table depth. Beyond estimating the water cost, the approach can provide an indication of groundwater-stress by exploring the historical evolution of depth to the water table using time series information between 1960 and 2015. Despite data limitations, we hope to enable a more compelling and meaningful national-level analysis through the quantification of cost and stress for more economically efficient water management.

  17. Water Relations and Foliar Isotopic Composition of Prosopis tamarugo Phil., an Endemic Tree of the Atacama Desert Growing at Three Levels of Water Table Depth.

    PubMed

    Garrido, Marco; Silva, Paola; Acevedo, Edmundo

    2016-01-01

    Prosopis tamarugo Phil. is a strict phreatophyte tree species endemic to the "Pampa del Tamarugal", Atacama Desert. The extraction of water for various uses has increased the depth of the water table in the Pampa aquifers threatening its conservation. This study aimed to determine the effect of the groundwater table depth on the water relations of P. tamarugo and to present thresholds of groundwater depth (GWD) that can be used in the groundwater management of the P. tamarugo ecosystem. Three levels of GWD, 11.2 ± 0.3 m, 10.3 ± 0.3 m, and 7.1 ± 0.1 m, (the last GWD being our reference) were selected and groups of four individuals per GWD were studied in the months of January and July of the years 2011 through 2014. When the water table depth exceeded 10 m, P. tamarugo had lower pre-dawn and mid-day water potential but no differences were observed in minimum leaf stomatal resistance when compared to the condition of 7.1 m GWD; the leaf tissue increased its δ(13)C and δ(18)O composition. Furthermore, a smaller green canopy fraction of the trees and increased foliage loss in winter with increasing water table depth was observed. The differences observed in the physiological behavior of P. tamarugo trees, attributable to the ground water depth; show that increasing the depth of the water table from 7 to 11 m significantly affects the water status of P. tamarugo. The results indicate that P. tamarugo has an anisohydric stomatal behavior and that given a reduction in water supply it regulates the water demand via foliage loss. The growth and leaf physiological activities are highly sensitive to GWD. The foliage loss appears to prevent the trees from reaching water potentials leading to complete loss of hydraulic functionality by cavitation. The balance achieved between water supply and demand was reflected in the low variation of the water potential and of the variables related to gas exchange over time for a given GWD. This acclimation capacity of P. tamarugo after experiencing increases in GWD has great value for the implementation of conservation strategies. The thresholds presented in this paper should prove useful for conservation purposes of this unique species.

  18. Water Relations and Foliar Isotopic Composition of Prosopis tamarugo Phil., an Endemic Tree of the Atacama Desert Growing at Three Levels of Water Table Depth

    PubMed Central

    Garrido, Marco; Silva, Paola; Acevedo, Edmundo

    2016-01-01

    Prosopis tamarugo Phil. is a strict phreatophyte tree species endemic to the “Pampa del Tamarugal”, Atacama Desert. The extraction of water for various uses has increased the depth of the water table in the Pampa aquifers threatening its conservation. This study aimed to determine the effect of the groundwater table depth on the water relations of P. tamarugo and to present thresholds of groundwater depth (GWD) that can be used in the groundwater management of the P. tamarugo ecosystem. Three levels of GWD, 11.2 ± 0.3 m, 10.3 ± 0.3 m, and 7.1 ± 0.1 m, (the last GWD being our reference) were selected and groups of four individuals per GWD were studied in the months of January and July of the years 2011 through 2014. When the water table depth exceeded 10 m, P. tamarugo had lower pre-dawn and mid-day water potential but no differences were observed in minimum leaf stomatal resistance when compared to the condition of 7.1 m GWD; the leaf tissue increased its δ13C and δ18O composition. Furthermore, a smaller green canopy fraction of the trees and increased foliage loss in winter with increasing water table depth was observed. The differences observed in the physiological behavior of P. tamarugo trees, attributable to the ground water depth; show that increasing the depth of the water table from 7 to 11 m significantly affects the water status of P. tamarugo. The results indicate that P. tamarugo has an anisohydric stomatal behavior and that given a reduction in water supply it regulates the water demand via foliage loss. The growth and leaf physiological activities are highly sensitive to GWD. The foliage loss appears to prevent the trees from reaching water potentials leading to complete loss of hydraulic functionality by cavitation. The balance achieved between water supply and demand was reflected in the low variation of the water potential and of the variables related to gas exchange over time for a given GWD. This acclimation capacity of P. tamarugo after experiencing increases in GWD has great value for the implementation of conservation strategies. The thresholds presented in this paper should prove useful for conservation purposes of this unique species. PMID:27064665

  19. Influence of water table on carbon dioxide, carbon monoxide, and methane fluxes from taiga bog microcosms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Funk, D.W.; Pullmann, E.R.; Peterson, K.M.

    1994-09-01

    Hydrological changes, particularly alterations in water table level, may largely overshadow the more direct effects of global temperature increase upon carbon cycling in arctic and subarctic wetlands. Frozen cores (n=40) of intact soils and vegetation were collected from a bog near Fairbanks, Alaska, and fluxes of CO{sub 2}, CH{sub 4}, and Co in response to water table variation were studied under controlled conditions in the Duke University phytotron. Core microcosms thawed to a 20-cm depth over 30 days under a 20 hour photoperiod with a day/night temperature regime of 20/10{degrees}C. After 30 days the water table in 20 microcosms wasmore » decreased from the soil surface to -15 cm and maintained at the soil surface in 20 control cores. Outward fluxes of CO{sub 2} (9-16 g m{sup -2}d{sup -1}) and CO (3-4 mg m{sup -2}d{sup -1}) were greatest during early thaw and decreased to near zero for both gases before the water table treatment started. Lower water table tripled CO{sub 2} flux to the atmosphere when compared with control cores. Carbon monoxide was emitted at low rates from high water table cores and consumed by low water table cores. Methane fluxes were low (<1 mg m{sup -2}d{sup -1}) in all cores during thaw. High water table cores increased CH{sub 4} flux to 8-9 mg m{sup -2}d{sup -1} over 70 days and remained high relative to the low water table cores (<0.74 mg m{sup -2}d{sup -1}). Although drying of wetland taiga soils may decrease CH{sub 4} emissions to the atmosphere, the associated increase in CO{sub 2} due to aerobic respiration will likely increase the global warming potential of gas emissions from these soils. 43 refs., 4 figs.« less

  20. Multiple-methods investigation of recharge at a humid-region fractured rock site, Pennsylvania, USA

    USGS Publications Warehouse

    Heppner, C.S.; Nimmo, J.R.; Folmar, G.J.; Gburek, W.J.; Risser, D.W.

    2007-01-01

    Lysimeter-percolate and well-hydrograph analyses were combined to evaluate recharge for the Masser Recharge Site (central Pennsylvania, USA). In humid regions, aquifer recharge through an unconfined low-porosity fractured-rock aquifer can cause large magnitude water-table fluctuations over short time scales. The unsaturated hydraulic characteristics of the subsurface porous media control the magnitude and timing of these fluctuations. Data from multiple sets of lysimeters at the site show a highly seasonal pattern of percolate and exhibit variability due to both installation factors and hydraulic property heterogeneity. Individual event analysis of well hydrograph data reveals the primary influences on water-table response, namely rainfall depth, rainfall intensity, and initial water-table depth. Spatial and seasonal variability in well response is also evident. A new approach for calculating recharge from continuous water-table elevation records using a master recession curve (MRC) is demonstrated. The recharge estimated by the MRC approach when assuming a constant specific yield is seasonal to a lesser degree than the recharge estimate resulting from the lysimeter analysis. Partial reconciliation of the two recharge estimates is achieved by considering a conceptual model of flow processes in the highly-heterogeneous underlying fractured porous medium. ?? Springer-Verlag 2007.

  1. Water Table Depth Reconstruction in Ombrotrophic Peatlands Using Biomarker Abundance Ratios and Compound-Specific Hydrogen Isotope Composition

    NASA Astrophysics Data System (ADS)

    Nichols, J. E.; Jackson, S. T.; Booth, R. K.; Pendall, E. G.; Huang, Y.

    2005-12-01

    Sediment cores from ombrotrophic peat bogs provide sensitive records of changes in precipitation/evaporation (P/E) balance. Various proxies have been developed to reconstruct surface moisture conditions in peat bogs, including testate amoebae, plant macrofossils, and peat humification. Studying species composition of testate amoeba assemblages is time consuming and requires specialized training. Humification index can be influenced by environmental factors other than moisture balance. The plant macrofossil proxy is less quantitative and cannot be performed on highly decomposed samples. We demonstrate that the ratio of C23 alkane to C29 alkane abundance may provide a simple alternative or complementary means of tracking peatland water-table depth. Data for this proxy can be collected quickly using a small sample (100 mg dry). Water-table depth decreases during drought, and abundance of Sphagnum, the dominant peat-forming genus, decreases as vascular plants increase. Sphagnum moss produces mainly medium chain-length alkanes (C21-C25) while vascular plants (grasses and shrubs) produce primarily longer chain-length alkanes (C27-C31). Therefore, C23:C29 n-alkane ratios quantitatively track the water table depth fluctuations in peat bogs. We compared C23:C29 n-alkane ratios in a core from Minden Bog (southeastern Michigan) with water table depth reconstructions based on testate-amoeba assemblages and humification. The 184-cm core spans the past ~3kyr of continuous peat deposition in the bog. Our results indicate that the alkane ratios closely track the water table depth variations, with C29 most abundant during droughts. We also explored the use of D/H ratios in Sphagnum biomarkers as a water-table depth proxy. Compound-specific hydrogen isotope ratio analyses were performed on Sphagnum biomarkers: C23 and C25 alkane and C24 acid. Dry periods are represented in these records by an enrichment of deuterium in these Sphagnum-specific compounds. These events also correlate with drought events in the testate amoeba record and the alkane abundance ratio record. These biogeochemical proxies can be used in paleohydrological studies of ombrotrophic bogs and provide a new and complimentary source of data from these underutilized paleoclimate archives.

  2. Health of native riparian vegetation and its relation to hydrologic conditions along the Mojave River, southern California

    USGS Publications Warehouse

    Lines, Gregory C.

    1999-01-01

    The health of native riparian vegetation and its relation to hydrologic conditions were studied along the Mojave River mainly during the growing seasons of 1997 and 1998. The study concentrated on cottonwood?willow woodlands (predominantly Populus fremontii and Salix gooddingii) and mesquite bosques (predominantly Prosopis glandulosa). Tree-growth characteristics were measured at 16 cottonwood?willow woodland sites and at 3 mesquite bosque sites. Density of live and dead trees, tree diameter and height, canopy density, live-crown volume, leaf-water potential, leaf-area index, mortality, and reproduction were measured or noted at each site. The sites included healthy and reproducing woodlands and bosques, stressed woodlands and bosques with no reproduction, and woodlands and bosques with high mortality. Tree roots were studied at seven sites to determine the vertical distribution of the root system and their relation to the water table at healthy, stressed, and high-mortality cottonwood?willow woodlands. In the six trenches that were dug for this study in May 1997, no cottonwood roots were observed that reached the water table. The root systems of healthy trees typically ended 1 to 2 feet above the water table. At sites with high mortality, the main root mass was commonly 7 to 8 feet above the water table. Water-table depth was monitored at each of the study sites. In addition, volumetric soil moisture and soil-water potential were monitored at varying depths at three cottonwood?willow woodland study sites and at two mesquite bosque sites. Ground, soil, river, lake, and plant (xylem sap) water were analyzed for concentrations of stable hydrogen and oxygen isotopes to determine the source of water used by the trees. On the basis of the root-distribution, soil- and leaf-water potential, and isotope data, it was concluded that cottonwood, willow, and mesquite trees mainly rely on ground water for their perennial sustained supply of water. The trees mainly utilize ground water that has moved upward from the water table into the capillary fringe and into unsaturated soil nearer to land surface. Most precipitation (average is 4 to 6 inches per year) is lost by evaporation and by transpiration of shallow-rooted xeric plants, and very little reaches the root zone of trees along the Mojave River. Water-table depth had no strong correlation to many individual tree-growth characteristics, such as density, diameter, height, and live-crown volume. However, leaf-area index (corrected for stem area) of both healthy and stressed cottonwood?willow woodlands had a highly significant statistical relation to water-table depth, and a curvilinear regression model was defined. As in cottonwood?willow woodlands, leaf-area index of mesquite bosques also decreased with increased water-table depth. However, because of the small number of sites, no significant statistical relation could be defined for mesquite bosques. Because it can be accurately measured repeatedly at the same locations, leaf-area index (corrected for stem area) is recommended as the primary growth characteristic that should be monitored. Future vegetation changes along the Mojave River can be quantified using the sites established for this study. Mortality was as high as 39 percent in healthy cottonwood?willow woodlands, but mortality of 50 to 100 percent was common where water-table depth was greater than about 7 feet or in areas where permanent water-table declines greater than about 5 feet had occurred. At a healthy mesquite bosque where the water-table depth ranged from about 8 to 11 feet, mortality was about 20 percent. Where the water table had been lowered an additional 10 to 25 feet by pumping, mortality of the mesquite was extremely high (80 to 99 percent). On the basis of observations of plant reproduction, it was concluded that established cottonwood?willow woodlands probably will reproduce, mainly by root sprouting of mature trees, if the water-t

  3. Potential effects of sea-level rise on the depth to saturated sediments of the Sagamore and Monomoy flow lenses on Cape Cod, Massachusetts

    USGS Publications Warehouse

    Walter, Donald A.; McCobb, Timothy D.; Masterson, John P.; Fienen, Michael N.

    2016-05-25

    In 2014, the U.S. Geological Survey, in cooperation with the Association to Preserve Cape Cod, the Cape Cod Commission, and the Massachusetts Environmental Trust, began an evaluation of the potential effects of sea-level rise on water table altitudes and depths to water on central and western Cape Cod, Massachusetts. Increases in atmospheric and oceanic temperatures arising, in part, from the release of greenhouse gases likely will result in higher sea levels globally. Increasing water table altitudes in shallow, unconfined coastal aquifer systems could adversely affect infrastructure—roads, utilities, basements, and septic systems—particularly in low-lying urbanized areas. The Sagamore and Monomoy flow lenses on Cape Cod are the largest and most populous of the six flow lenses that comprise the region’s aquifer system, the Cape Cod glacial aquifer. The potential effects of sea-level rise on water table altitude and depths to water were evaluated by use of numerical models of the region. The Sagamore and Monomoy flow lenses have a number of large surface water drainages that receive a substantial amount of groundwater discharge, 47 and 29 percent of the total, respectively. The median increase in the simulated water table altitude following a 6-foot sea-level rise across both flow lenses was 2.11 feet, or 35 percent when expressed as a percentage of the total sea-level rise. The response is nearly the same as the sea-level rise (6 feet) in some coastal areas and less than 0.1 foot near some large inland streams. Median water table responses differ substantially between the Sagamore and Monomoy flow lenses—at 29 and 49 percent, respectively—because larger surface water discharge on the Sagamore flow lens results in increased dampening of the water table response than in the Monomoy flow lens. Surface waters dampen water table altitude increases because streams are fixed-altitude boundaries that cause hydraulic gradients and streamflow to increase as sea-level rises, partially fixing the local water table altitude.The region has a generally thick vadose zone with a mean of about 38 feet; areas with depths to water of 5 feet or less, as estimated from light detection and ranging (lidar) data from 2011 and simulated water table altitudes, currently [2011] occur over about 24.9 square miles, or about 8.4 percent of the total land area of the Sagamore and Monomoy flow lenses, generally in low-lying coastal areas and inland near ponds and streams. Excluding potentially submerged areas, an additional 4.5, 9.8, and 15.9 square miles would have shallow depths to water (5 feet or less) for projected sea-level rises of 2, 4, and 6 feet above levels in 2011. The additional areas with shallow depths to water generally occur in the same areas as the areas with current [2011] depths to water of 5 feet or less: low-lying coastal areas and near inland surface water features. Additional areas with shallow depths to water for the largest sea-level rise prediction (6 feet) account for about 5.7 percent of the total land area, excluding areas likely to be inundated by seawater. The numerous surface water drainages will dampen the response of the water table to sea-level rise. This dampening, combined with the region’s thick vadose zone, likely will mitigate the potential for groundwater inundation in most areas. The potential does exist for groundwater inundation in some areas, but the effects of sea-level rise on depths to water and infrastructure likely will not be substantial on a regional level.

  4. Estimating steady-state evaporation rates from bare soils under conditions of high water table

    USGS Publications Warehouse

    Ripple, C.D.; Rubin, J.; Van Hylckama, T. E. A.

    1970-01-01

    A procedure that combines meteorological and soil equations of water transfer makes it possible to estimate approximately the steady-state evaporation from bare soils under conditions of high water table. Field data required include soil-water retention curves, water table depth and a record of air temperature, air humidity and wind velocity at one elevation. The procedure takes into account the relevant atmospheric factors and the soil's capability to conduct 'water in liquid and vapor forms. It neglects the effects of thermal transfer (except in the vapor case) and of salt accumulation. Homogeneous as well as layered soils can be treated. Results obtained with the method demonstrate how the soil evaporation rates·depend on potential evaporation, water table depth, vapor transfer and certain soil parameters.

  5. Improvements to a global-scale groundwater model to estimate the water table across New Zealand

    NASA Astrophysics Data System (ADS)

    Westerhoff, Rogier; Miguez-Macho, Gonzalo; White, Paul

    2017-04-01

    Groundwater models at the global scale have become increasingly important in recent years to assess the effects of climate change and groundwater depletion. However, these global-scale models are typically not used for studies at the catchment scale, because they are simplified and too spatially coarse. In this study, we improved the global-scale Equilibrium Water Table (EWT) model, so it could better assess water table depth and water table elevation at the national scale for New Zealand. The resulting National Water Table (NWT) model used improved input data (i.e., national input data of terrain, geology, and recharge) and model equations (e.g., a hydraulic conductivity - depth relation). The NWT model produced maps of the water table that identified the main alluvial aquifers with fine spatial detail. Two regional case studies at the catchment scale demonstrated excellent correlation between the water table elevation and observations of hydraulic head. The NWT water tables are an improved water table estimation over the EWT model. In two case studies the NWT model provided a better approximation to observed water table for deep aquifers and the improved resolution of the model provided the capability to fill the gaps in data-sparse areas. This national model calculated water table depth and elevation across regional jurisdictions. Therefore, the model is relevant where trans-boundary issues, such as source protection and catchment boundary definition, occur. The NWT model also has the potential to constrain the uncertainty of catchment-scale models, particularly where data are sparse. Shortcomings of the NWT model are caused by the inaccuracy of input data and the simplified model properties. Future research should focus on improved estimation of input data (e.g., hydraulic conductivity and terrain). However, more advanced catchment-scale groundwater models should be used where groundwater flow is dominated by confining layers and fractures.

  6. Manipulative lowering of the water table during summer does not affect CO2 emissions and uptake in a fen in Germany.

    PubMed

    Muhr, Jan; Höhle, Juliane; Otieno, Dennis O; Borken, Werner

    2011-03-01

    We simulated the effect of prolonged dry summer periods by lowering the water table on three manipulation plots (D(1-3)) in a minerotrophic fen in southeastern Germany in three years (2006-2008). The water table at this site was lowered by drainage and by excluding precipitation; three nonmanipulated control plots (C(1-3)) served as a reference. We found no significant differences in soil respiration (R(Soil)), gross primary production (GPP), or aboveground respiration (R(AG)) between the C(1-3) and D(1-3) plots in any of the measurement years. The water table on the control plots was naturally low, with a median water table (2006-2008) of 8 cm below the surface, and even lower during summer when respiratory activity was highest, with median values (C(1-3)) between 11 and 19 cm below the surface. If it is assumed that oxygen availability in the uppermost 10 cm was not limited by the location of the water table, manipulative lowering of the water table most likely increased oxygen availability only in deeper peat layers where we expect R(Soil) to be limited by poor substrate quality rather than anoxia. This could explain the lack of a manipulation effect. In a second approach, we estimated the influence of the water table on R(Soil) irrespective of treatment. The results showed a significant correlation between R(Soil) and water table, but with R(Soil) decreasing at lower water tables rather than increasing. We thus conclude that decomposition in the litter layer is not limited by waterlogging in summer, and deeper peat layers bear no significant decomposition potential due to poor substrate quality. Consequently, we do not expect enhanced C losses from this site due to increasing frequency of dry summers. Assimilation and respiration of aboveground vegetation were not affected by water table fluctuations between 10 and >60 cm depth, indicating the lack of stress resulting from either anoxia (high water table) or drought (low water table).

  7. Estimated depth to the water table and estimated rate of recharge in outcrops of the Chicot and Evangeline aquifers near Houston, Texas

    USGS Publications Warehouse

    Noble, J.E.; Bush, P.W.; Kasmarek, M.C.; Barbie, D.L.

    1996-01-01

    In 1989, the U.S. Geological Survey, in cooperation with the Harris-Galveston Coastal Subsidence District, began a field study to determine the depth to the water table and to estimate the rate of recharge in outcrops of the Chicot and Evangeline aquifers near Houston, Texas. The study area comprises about 2,000 square miles of outcrops of the Chicot and Evangeline aquifers in northwest Harris County, Montgomery County, and southern Walker County. Because of the scarcity of measurable water-table wells, depth to the water table below land surface was estimated using a surface geophysical technique, seismic refraction. The water table in the study area generally ranges from about 10 to 30 foot below land surface and typically is deeper in areas of relatively high land-surface altitude than in areas of relatively low land- surface altitude. The water table has demonstrated no long-term trends since ground-water development began, with the probable exception of the water table in the Katy area: There the water table is more than 75 feet deep, probably due to ground-water pumpage from deeper zones. An estimated rate of recharge in the aquifer outcrops was computed using the interface method in which environmental tritium is a ground-water tracer. The estimated average total recharge rate in the study area is 6 inches per year. This rate is an upper bound on the average recharge rate during the 37 years 1953-90 because it is based on the deepest penetration (about 80 feet) of postnuclear-testing tritium concentrations. The rate, which represents one of several components of a complex regional hydrologic budget, is considered reasonable but is not definitive because of uncertainty regarding the assumptions and parameters used in its computation.

  8. NifH-Harboring Bacterial Community Composition across an Alaskan Permafrost Thaw Gradient

    PubMed Central

    Penton, C. Ryan; Yang, Caiyun; Wu, Liyou; Wang, Qiong; Zhang, Jin; Liu, Feifei; Qin, Yujia; Deng, Ye; Hemme, Christopher L.; Zheng, Tianling; Schuur, Edward A. G.; Tiedje, James; Zhou, Jizhong

    2016-01-01

    Since nitrogen (N) is often limiting in permafrost soils, we investigated the N2-fixing genetic potential and the inferred taxa harboring those genes by sequencing nifH gene fragments in samples taken along a permafrost thaw gradient in an Alaskan boreal soil. Samples from minimally, moderately and extensively thawed sites were taken to a depth of 79 cm to encompass zones above and below the depth of the water table. NifH reads were translated with frameshift correction and 112,476 sequences were clustered at 5% amino acid dissimilarity resulting in 1,631 OTUs. Sample depth in relation to water table depth was correlated to differences in the NifH sequence classes with those most closely related to group I nifH-harboring Alpha- and Beta-Proteobacteria in higher abundance above water table depth while those related to group III nifH-harboring Delta Proteobacteria more abundant below. The most dominant below water table depth NifH sequences, comprising 1/3 of the total, were distantly related to Verrucomicrobia-Opitutaceae. Overall, these results suggest that permafrost thaw alters the class-level composition of N2-fixing communities in the thawed soil layers and that this distinction corresponds to the depth of the water table. These nifH data were also compared to nifH sequences obtained from a study at an Alaskan taiga site, and to those of other geographically distant, non-permafrost sites. The two Alaska sites were differentiated largely by changes in relative abundances of the same OTUs, whereas the non-Alaska sites were differentiated by the lack of many Alaskan OTUs, and the presence of unique halophilic, sulfate- and iron-reducing taxa in the Alaska sites. PMID:27933054

  9. NifH-Harboring Bacterial Community Composition across an Alaskan Permafrost Thaw Gradient

    DOE PAGES

    Penton, C. Ryan; Yang, Caiyun; Wu, Liyou; ...

    2016-11-24

    Since nitrogen (N) is often limiting in permafrost soils, we investigated the N 2-fixing genetic potential and the inferred taxa harboring those genes by sequencing nifH gene fragments in samples taken along a permafrost thaw gradient in an Alaskan boreal soil. Samples from minimally, moderately and extensively thawed sites were taken to a depth of 79 cm to encompass zones above and below the depth of the water table. NifH reads were translated with frameshift correction and 112,476 sequences were clustered at 5% amino acid dissimilarity resulting in 1,631 OTUs. Sample depth in relation to water table depth was correlatedmore » to differences in the NifH sequence classes with those most closely related to group I nifH-harboring Alpha- and Beta-Proteobacteria in higher abundance above water table depth while those related to group III nifH-harboring Delta Proteobacteria more abundant below. The most dominant below water table depth NifH sequences, comprising 1/3 of the total, were distantly related to Verrucomicrobia-Opitutaceae. Overall, these results suggest that permafrost thaw alters the class-level composition of N 2-fixing communities in the thawed soil layers and that this distinction corresponds to the depth of the water table. These nifH data were also compared to nifH sequences obtained from a study at an Alaskan taiga site, and to those of other geographically distant, non-permafrost sites. The two Alaska sites were differentiated largely by changes in relative abundances of the same OTUs, whereas the non-Alaska sites were differentiated by the lack of many Alaskan OTUs, and the presence of unique halophilic, sulfate- and iron-reducing taxa in the Alaska sites.« less

  10. NifH-Harboring Bacterial Community Composition across an Alaskan Permafrost Thaw Gradient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penton, C. Ryan; Yang, Caiyun; Wu, Liyou

    Since nitrogen (N) is often limiting in permafrost soils, we investigated the N 2-fixing genetic potential and the inferred taxa harboring those genes by sequencing nifH gene fragments in samples taken along a permafrost thaw gradient in an Alaskan boreal soil. Samples from minimally, moderately and extensively thawed sites were taken to a depth of 79 cm to encompass zones above and below the depth of the water table. NifH reads were translated with frameshift correction and 112,476 sequences were clustered at 5% amino acid dissimilarity resulting in 1,631 OTUs. Sample depth in relation to water table depth was correlatedmore » to differences in the NifH sequence classes with those most closely related to group I nifH-harboring Alpha- and Beta-Proteobacteria in higher abundance above water table depth while those related to group III nifH-harboring Delta Proteobacteria more abundant below. The most dominant below water table depth NifH sequences, comprising 1/3 of the total, were distantly related to Verrucomicrobia-Opitutaceae. Overall, these results suggest that permafrost thaw alters the class-level composition of N 2-fixing communities in the thawed soil layers and that this distinction corresponds to the depth of the water table. These nifH data were also compared to nifH sequences obtained from a study at an Alaskan taiga site, and to those of other geographically distant, non-permafrost sites. The two Alaska sites were differentiated largely by changes in relative abundances of the same OTUs, whereas the non-Alaska sites were differentiated by the lack of many Alaskan OTUs, and the presence of unique halophilic, sulfate- and iron-reducing taxa in the Alaska sites.« less

  11. Effect of Thaw Depth on Fluxes of CO2 and CH4 in Manipulated Arctic Coastal Tundra of Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Kim, Y.

    2014-12-01

    Changes in CO2 and CH4 emissions represent one of the most significant consequences of drastic climate change in the Arctic, by way of thawing permafrost, a deepened active layer, and decline of thermokarst lakes in the Arctic. This study conducted flux-measurements of CO2 and CH4, as well as environmental factors such as temperature, moisture, and thaw depth, as part of a water table manipulation experiment in the Arctic coastal plain tundra of Barrow, Alaska during autumn. The manipulation treatment consisted of draining, controlling, and flooding treated sections by adjusting standing water. Inundation increased CH4 emission by a factor of 4.3 compared to non-flooded sections. This may be due to the decomposition of organic matter under a limited oxygen environment by saturated standing water. On the other hand, CO2 emission in the dry section was 3.9-fold higher than in others. CH4 emission tends to increase with deeper thaw depth, which strongly depends on the water table; however, CO2 emission is not related to thaw depth. Quotients of global warming potential (GWPCO2) (dry/control) and GWPCH4 (wet/control) increased by 464 and 148 %, respectively, and GWPCH4 (dry/control) declined by 66 %. This suggests that CO2 emission in a drained section is enhanced by soil and ecosystem respiration, and CH4 emission in a flooded area is likely stimulated under an anoxic environment by inundated standing water. The findings of this manipulation experiment during the autumn period demonstrate the different production processes of CO2 and CH4, as well as different global warming potentials, coupled with change in thaw depth. Thus the outcomes imply that the expansion of tundra lakes leads the enhancement of CH4 release, and the disappearance of the lakes causes the stimulated CO2 production in response to the Arctic climate change.

  12. Groundwater flow, heat transport, and water table position within volcanic edifices: Implications for volcanic processes in the Cascade Range

    USGS Publications Warehouse

    Hurwitz, S.; Kipp, K.L.; Ingebritsen, S.E.; Reid, M.E.

    2003-01-01

    The position of the water table within a volcanic edifice has significant implications for volcano hazards, geothermal energy, and epithermal mineralization. We have modified the HYDROTHERM numerical simulator to allow for a free-surface (water table) upper boundary condition and a wide range of recharge rates, heat input rates, and thermodynamic conditions representative of continental volcano-hydrothermal systems. An extensive set of simulations was performed on a hypothetical stratovolcano system with unconfined groundwater flow. Simulation results suggest that the permeability structure of the volcanic edifice and underlying material is the dominant control on water table elevation and the distribution of pressures, temperatures, and fluid phases at depth. When permeabilities are isotropic, water table elevation decreases with increasing heat flux and increases with increasing recharge, but when permeabilities are anisotropic, these effects can be much less pronounced. Several conditions facilitate the ascent of a hydrothermal plume into a volcanic edifice: a sufficient source of heat and magmatic volatiles at depth, strong buoyancy forces, and a relatively weak topography-driven flow system. Further, the plume must be connected to a deep heat source through a pathway with a time-averaged effective permeability ???1 ?? 10-16 m2, which may be maintained by frequent seismicity. Topography-driven flow may be retarded by low permeability in the edifice and/or the lack of precipitation recharge; in the latter case, the water table may be relatively deep. Simulation results were compared with observations from the Quaternary stratovolcanoes along the Cascade Range of the western United States to infer hydrothermal processes within the edifices. Extensive ice caps on many Cascade Range stratovolcanoes may restrict recharge on the summits and uppermost flanks. Both the simulation results and limited observational data allow for the possibility that the water table beneath the stratovolcanoes is relatively deep.

  13. Hydrogeology of the surficial aquifer in the vicinity of a former landfill, Naval Submarine Base Kings Bay, Camden County, Georgia

    USGS Publications Warehouse

    Leeth, David C.

    1999-01-01

    Neogene and Quaternary sediments constitute the surficial aquifer beneath the study area; in descending order from youngest to oldest these include-the Quaternary undifferentiated surficial sand and Satilla Formation; the Pliocene(?) Cypresshead Formation; and the middle Miocene Coosawhatchie Formation. Beneath the surficial aquifer, the upper Brunswick aquifer consists of part of the lower Miocene Marks Head Formation. The surficial aquifer is divided into three water-bearing zones on the basis of lithologic and geophysical properties of sediments, hydraulic-head differences between zones, and differences in ground-water chemistry. The shallowest zone-the water-table zone-consists of medium to fine sand and clayey sand and is present from land surface to a depth of about 77 feet. Below the water-table zone, the confined upper water-bearing zone consists of medium to very coarse sand and is present from a depth of about 110 to 132 feet. Beneath the upper water-bearing zone, the confined lower water-bearing zone consists of coarse sand and very fine gravel and is present from a depth of about 195 to 237 feet. Hydraulic separation is suggested by differences in water chemistry between the water-table zone and upper water-bearing zone. The sodium chloride type water in the water-table zone differs from the calcium bicarbonate type water in the upper water-bearing zone. Hydraulic separation also is indicated by hydraulic head differences of more than 6.5 feet between the water-table zone and the upper water-bearing zone. Continuous and synoptic water-level measurements in the water-table zone, from October 1995 to April 1997, indicate the presence of a water-table high beneath and adjacent to the former landfill-the surface of which varies about 5 feet with time because of recharge and discharge. Water-level data from clustered wells also suggest that restriction of vertical ground-water flow begins to occur at an altitude of about 5 to 10 feet below sea level (35 to 40 feet below land surface) in the water-table zone because of the increasing clay content of the Cypresshead Formation.

  14. Effects of shallow water table, salinity and frequency of irrigation water on the date palm water use

    NASA Astrophysics Data System (ADS)

    Askri, Brahim; Ahmed, Abdelkader T.; Abichou, Tarek; Bouhlila, Rachida

    2014-05-01

    In southern Tunisia oases, waterlogging, salinity, and water shortage represent serious threats to the sustainability of irrigated agriculture. Understanding the interaction between these problems and their effects on root water uptake is fundamental for suggesting possible options of improving land and water productivity. In this study, HYDRUS-1D model was used in a plot of farmland located in the Fatnassa oasis to investigate the effects of waterlogging, salinity, and water shortage on the date palm water use. The model was calibrated and validated using experimental data of sap flow density of a date palm, soil hydraulic properties, water table depth, and amount of irrigation water. The comparison between predicted and observed data for date palm transpiration rates was acceptable indicating that the model could well estimate water consumption of this tree crop. Scenario simulations were performed with different water table depths, and salinities and frequencies of irrigation water. The results show that the impacts of water table depth and irrigation frequency vary according to the season. In summer, high irrigation frequency and shallow groundwater are needed to maintain high water content and low salinity of the root-zone and therefore to increase the date palm transpiration rates. However, these factors have no significant effect in winter. The results also reveal that irrigation water salinity has no significant effect under shallow saline groundwater.

  15. Long-term Effects of Hydrologic Manipulations on Pore Water Dissolved Organic Carbon in an Alaskan Rich Fen

    NASA Astrophysics Data System (ADS)

    Rupp, D.; Kane, E. S.; Keller, J.; Turetsky, M. R.; Meingast, K. M.

    2016-12-01

    Boreal peatlands are experiencing rapid changes due to temperature and precipitation regime shifts in northern latitudes. In areas near Fairbanks, Alaska, thawing permafrost due to climatic changes alters peatland hydrology and thus the biogeochemical cycles within. Pore water chemistry reflects the biological and chemical processes occurring in boreal wetlands. The characterization of dissolved organic carbon (DOC) within pore water offers clues into the nature of microbially-driven biogeochemical shifts due to changing hydrology. There is mounting evidence that organic substances play an important role in oxidation-reduction (redox) reactivity of peat at northern latitudes, which is closely linked to carbon cycling. However, the redox dynamics of DOC are complex and have not been examined in depth in boreal peatlands. Here, we examine changes in organic substances and their influences on redox activity at the Alaska Peatland Experiment (APEX) site near Fairbanks, Alaska, where water table manipulation treatments have been in place since 2005 (control, raised water table, and lowered water table). With time, the altered hydrology has led to a shift in the plant community to favor sedge species in the raised water table treatment and more shrubs and non-aerenchymous plants in the lowered water table treatment. The litter from different plant functional types alters the character of the dissolved organic carbon, with more recalcitrant material containing lignin in the lowered water table plot due to the greater abundance of shrubs. A greater fraction of labile DOC in the raised treatment plot likely results from more easily decomposed sedge litter, root exudates at depth, and more frequently waterlogged conditions, which are antagonistic to aerobic microbial decomposition. We hypothesize that a greater fraction of phenolic carbon compounds supports higher redox activity. However, we note that not all "phenolic" compounds, as assayed by spectrophotometry, have the same redox activity. We report these results in the context of previous observations of higher methane fluxes from the raised water table plot. Taken together, these findings provide the mechanistic details needed to understand residual error in modeling efforts of anaerobic carbon evasion (methane and carbon dioxide) in boreal wetlands.

  16. Vadose zone controls on damping of climate-induced transient recharge fluxes in U.S. agroecosystems

    NASA Astrophysics Data System (ADS)

    Gurdak, Jason

    2017-04-01

    Understanding the physical processes in the vadose zone that link climate variability with transient recharge fluxes has particular relevance for the sustainability of groundwater-supported irrigated agriculture and other groundwater-dependent ecosystems. Natural climate variability on interannual to multidecadal timescales has well-documented influence on precipitation, evapotranspiration, soil moisture, infiltration flux, and can augment or diminish human stresses on water resources. Here the behavior and damping depth of climate-induced transient water flux in the vadose zone is explored. The damping depth is the depth in the vadose zone that the flux variation damps to 5% of the land surface variation. Steady-state recharge occurs when the damping depth is above the water table, and transient recharge occurs when the damping depth is below the water table. Findings are presented from major agroecosystems of the United States (U.S.), including the High Plains, Central Valley, California Coastal Basin, and Mississippi Embayment aquifer systems. Singular spectrum analysis (SSA) is used to identify quasi-periodic signals in precipitation and groundwater time series that are coincident with the Arctic Oscillation (AO) (6-12 mo cycle), Pacific/North American oscillation (PNA) (<1-4 yr cycle), El Niño/Southern Oscillation (ENSO) (2-7 yr cycle), North Atlantic Oscillation (NAO) (3-6 yr cycle), Pacific Decadal Oscillation (PDO) (15-30 yr cycle), and Atlantic Multidecadal Oscillation (AMO) (50-70 yr cycle). SSA results indicate that nearly all of the quasi-periodic signals in the precipitation and groundwater levels have a statistically significant lag correlation (95% confidence interval) with the AO, PNA, ENSO, NAO, PDO, and AMO indices. Results from HYDRUS-1D simulations indicate that transient water flux through the vadose zone are controlled by highly nonlinear interactions between mean infiltration flux and infiltration period related to the modes of climate variability and the local soil textures, layering, and depth to the water table. Simulation results for homogeneous profiles generally show that shorter-period climate oscillations, smaller mean fluxes, and finer-grained soil textures generally produce damping depths closer to land surface. Simulation results for layered soil textures indicate more complex responses in the damping depth, including the finding that finer-textured layers in a coarser soil profile generally result in damping depths closer to land surface, while coarser-textured layers in coarser soil profile result in damping depths deeper in the vadose zone. Findings from this study improve understanding of how vadose zone properties influences transient recharge flux and damp climate variability signals in groundwater systems, and have important implications for sustainable management of groundwater resources and coupled agroecosystems under future climate variability and change.

  17. Environmental and physical controls on northern terrestrial methane emissions across permafrost zones

    USGS Publications Warehouse

    Olefeldt, David; Turetsky, Merritt R.; Crill, Patrick M.; McGuire, A. David

    2013-01-01

    Methane (CH4) emissions from the northern high-latitude region represent potentially significant biogeochemical feedbacks to the climate system. We compiled a database of growing-season CH4 emissions from terrestrial ecosystems located across permafrost zones, including 303 sites described in 65 studies. Data on environmental and physical variables, including permafrost conditions, were used to assess controls on CH4 emissions. Water table position, soil temperature, and vegetation composition strongly influenced emissions and had interacting effects. Sites with a dense sedge cover had higher emissions than other sites at comparable water table positions, and this was an effect that was more pronounced at low soil temperatures. Sensitivity analysis suggested that CH4 emissions from ecosystems where the water table on average is at or above the soil surface (wet tundra, fen underlain by permafrost, and littoral ecosystems) are more sensitive to variability in soil temperature than drier ecosystems (palsa dry tundra, bog, and fen), whereas the latter ecosystems conversely are relatively more sensitive to changes of the water table position. Sites with near-surface permafrost had lower CH4 fluxes than sites without permafrost at comparable water table positions, a difference that was explained by lower soil temperatures. Neither the active layer depth nor the organic soil layer depth was related to CH4 emissions. Permafrost thaw in lowland regions is often associated with increased soil moisture, higher soil temperatures, and increased sedge cover. In our database, lowland thermokarst sites generally had higher emissions than adjacent sites with intact permafrost, but emissions from thermokarst sites were not statistically higher than emissions from permafrost-free sites with comparable environmental conditions. Overall, these results suggest that future changes to terrestrial high-latitude CH4 emissions will be more proximately related to changes in moisture, soil temperature, and vegetation composition than to increased availability of organic matter following permafrost thaw.

  18. Long-Term Hydrologic Impacts of Controlled Drainage Using DRAINMOD

    NASA Astrophysics Data System (ADS)

    Saadat, S.; Bowling, L. C.; Frankenberger, J.

    2017-12-01

    Controlled drainage is a management strategy designed to mitigate water quality issues caused by subsurface drainage but it may increase surface ponding and runoff. To improve controlled drainage system management, a long-term and broader study is needed that goes beyond the experimental studies. Therefore, the goal of this study was to parametrize the DRAINMOD field-scale, hydrologic model for the Davis Purdue Agricultural Center located in Eastern Indiana and to predict the subsurface drain flow and surface runoff and ponding at this research site. The Green-Ampt equation was used to characterize the infiltration, and digital elevation models (DEMs) were used to estimate the maximum depressional storage as the surface ponding parameter inputs to DRAINMOD. Hydraulic conductivity was estimated using the Hooghoudt equation and the measured drain flow and water table depths. Other model inputs were either estimated or taken from the measurements. The DRAINMOD model was calibrated and validated by comparing model predictions of subsurface drainage and water table depths with field observations from 2012 to 2016. Simulations based on the DRAINMOD model can increase understanding of the environmental and hydrological effects over a broader temporal and spatial scale than is possible using field-scale data and this is useful for developing management recommendations for water resources at field and watershed scales.

  19. High-Resolution Assimilation of GRACE Terrestrial Water Storage Observations to Represent Local-Scale Water Table Depths

    NASA Astrophysics Data System (ADS)

    Stampoulis, D.; Reager, J. T., II; David, C. H.; Famiglietti, J. S.; Andreadis, K.

    2017-12-01

    Despite the numerous advances in hydrologic modeling and improvements in Land Surface Models, an accurate representation of the water table depth (WTD) still does not exist. Data assimilation of observations of the joint NASA and DLR mission, Gravity Recovery and Climate Experiment (GRACE) leads to statistically significant improvements in the accuracy of hydrologic models, ultimately resulting in more reliable estimates of water storage. However, the usually shallow groundwater compartment of the models presents a problem with GRACE assimilation techniques, as these satellite observations account for much deeper aquifers. To improve the accuracy of groundwater estimates and allow the representation of the WTD at fine spatial scales we implemented a novel approach that enables a large-scale data integration system to assimilate GRACE data. This was achieved by augmenting the Variable Infiltration Capacity (VIC) hydrologic model, which is the core component of the Regional Hydrologic Extremes Assessment System (RHEAS), a high-resolution modeling framework developed at the Jet Propulsion Laboratory (JPL) for hydrologic modeling and data assimilation. The model has insufficient subsurface characterization and therefore, to reproduce groundwater variability not only in shallow depths but also in deep aquifers, as well as to allow GRACE assimilation, a fourth soil layer of varying depth ( 1000 meters) was added in VIC as the bottom layer. To initialize a water table in the model we used gridded global WTD data at 1 km resolution which were spatially aggregated to match the model's resolution. Simulations were then performed to test the augmented model's ability to capture seasonal and inter-annual trends of groundwater. The 4-layer version of VIC was run with and without assimilating GRACE Total Water Storage anomalies (TWSA) over the Central Valley in California. This is the first-ever assimilation of GRACE TWSA for the determination of realistic water table depths, at fine scales that are required for local water management. In addition, Open Loop and GRACE-assimilation simulations of water table depth were compared to in-situ data over the state of California, derived from observation wells operated/maintained by the U.S. Geological Service.

  20. Links between climate change, water-table depth, and water chemistry in a mineralized mountain watershed

    USGS Publications Warehouse

    Manning, Andrew H.; Verplanck, Philip L.; Caine, Jonathan S.; Todd, Andrew S.

    2013-01-01

    Recent studies suggest that climate change is causing rising solute concentrations in mountain lakes and streams. These changes may be more pronounced in mineralized watersheds due to the sensitivity of sulfide weathering to changes in subsurface oxygen transport. Specific causal mechanisms linking climate change and accelerated weathering rates have been proposed, but in general remain entirely hypothetical. For mineralized watersheds, a favored hypothesis is that falling water tables caused by declining recharge rates allow an increasing volume of sulfide-bearing rock to become exposed to air, thus oxygen. Here, we test the hypothesis that falling water tables are the primary cause of an increase in metals and SO4 (100-400%) observed since 1980 in the Upper Snake River (USR), Colorado. The USR drains an alpine watershed geologically and climatologically representative of many others in mineralized areas of the western U.S. Hydrologic and chemical data collected from 2005 to 2011 in a deep monitoring well (WP1) at the top of the USR watershed are utilized. During this period, both water table depths and groundwater SO4 concentrations have generally increased in the well. A numerical model was constructed using TOUGHREACT that simulates pyrite oxidation near WP1, including groundwater flow and oxygen transport in both saturated and unsaturated zones. The modeling suggests that a falling water table could produce an increase in metals and SO4 of a magnitude similar to that observed in the USR (up to 300%). Future water table declines may produce limited increases in sulfide weathering high in the watershed because of the water table dropping below the depth of oxygen penetration, but may continue to enhance sulfide weathering lower in the watershed where water tables are shallower. Advective air (oxygen) transport in the unsaturated zone caused by seasonally variable recharge and associated water table fluctuations was found to have little influence on pyrite oxidation rates near WP1. However, this mechanism could be important in the case of a shallow dynamic water table and more abundant/reactive sulfides in the shallow subsurface. Data from WP1 and numerical modeling results are thus consistent with the falling water table hypothesis, and illustrate fundamental processes linking climate and sulfide weathering in mineralized watersheds.

  1. Raised Water Tables Affect Southern Hardwood Growth

    Treesearch

    W. M. Broadfoot

    1973-01-01

    In natural stands near Demopolis Lock and Dam Reservoir in Alabama, the average growth in tree radius increased about 50 percent in the 5 years after the water table was raised from an indefinite depth to within reach of the tree roots. In natural stands near the Jim Woodruff Reservoir in Florida, radial growth of trees also increased markedly after the water table was...

  2. Use of ground penetrating radar for determination of water table depth and subsurface soil characteristics at Kennedy Space Center

    NASA Astrophysics Data System (ADS)

    Hengari, Gideon M.; Hall, Carlton R.; Kozusko, Tim J.; Bostater, Charles R.

    2013-10-01

    Sustainable use and management of natural resources require strategic responses using non-destructive tools to provide spatial and temporal data for decision making. Experiments conducted at John F. Kennedy Space Center (KSC) demonstrate ground penetrating radar (GPR) can provide high-resolution images showing depth to water tables. GPR data at KSC were acquired using a MALÅ Rough Terrain 100 MHz Antenna. Data indicate strong correlation (R2=0.80) between measured water table depth (shallow monitoring wells and soil auger) and GPR estimated depth. The study demonstrated the use of GPR to detect Holocene and Pleistocene depositional environments such as Anastasia Formation that consists of admixtures of sand, shell and coquinoid limestone at a depth of 20-25 ft. This corresponds well with the relatively strong reflections from 7.5 to 13 m (125-215 ns) in GPR images. Interpretations derived from radar data coupled with other non-GPR data (wells data and soil auger data) will aid in the understanding of climate change impacts due to sea level rise on the scrub vegetation composition at KSC. Climate change is believed to have a potentially significant impact potential on near coastal ground water levels and associated water table depth. Understanding the impacts of ground water levels changes will, in turn, lead to improved conceptual conservation efforts and identifications of climate change adaptation concepts related to the recovery of the Florida scrub jay (Aphelocoma coerulescens) and other endangered or threatened species which are directly dependent on a healthy near coastal scrub habitat. Transfer of this inexpensive and non-destructive technology to other areas at KSC, Florida, and to other countries, may prove useful in the development of future conservation programs.

  3. Structural controls on ground-water conditions and estimated aquifer properties near Bill Williams Mountain, Williams, Arizona

    USGS Publications Warehouse

    Pierce, Herbert A.

    2001-01-01

    As of 1999, surface water collected and stored in reservoirs is the sole source of municipal water for the city of Williams. During 1996 and 1999, reservoirs reached historically low levels. Understanding the ground-water flow system is critical to managing the ground-water resources in this part of the Coconino Plateau. The nearly 1,000-meter-deep regional aquifer in the Redwall and Muav Limestones, however, makes studying or utilizing the resource difficult. Near-vertical faults and complex geologic structures control the ground-water flow system on the southwest side of the Kaibab Uplift near Williams, Arizona. To address the hydrogeologic complexities in the study area, a suite of techniques, which included aeromagnetic, gravity, square-array resistivity, and audiomagnetotelluric surveys, were applied as part of a regional study near Bill Williams Mountain. Existing well data and interpreted geophysical data were compiled and used to estimate depths to the water table and to prepare a potentiometric map. Geologic characteristics, such as secondary porosity, coefficient of anisotropy, and fracture-strike direction, were calculated at several sites to examine how these characteristics change with depth. The 14-kilometer-wide, seismically active northwestward-trending Cataract Creek and the northeastward-trending Mesa Butte Fault systems intersect near Bill Williams Mountain. Several north-south-trending faults may provide additional block faulting north and west of Bill Williams Mountain. Because of the extensive block faulting and regional folding, the volcanic and sedimentary rocks are tilted toward one or more of these faults. These faults provide near-vertical flow paths to the regional water table. The nearly radial fractures allow water that reaches the regional aquifer to move away from the Bill Williams Mountain area. Depth to the regional aquifer is highly variable and depends on location and local structures. On the basis of interpreted audiomagnetotelluric and square-array resistivity sounding curves and limited well data, depths to water may range from 450 to 1,300 meters.

  4. Carbon cycling responses to a water table drawdown and decadal vegetation changes in a bog

    NASA Astrophysics Data System (ADS)

    Talbot, J.; Roulet, N. T.

    2009-12-01

    The quantity of carbon stored in peat depends on the imbalance between production and decomposition of organic matter. This imbalance is mainly controlled by the wetness of the peatland, usually described by the water table depth. However, long-term processes resulting from hydrological changes, such as vegetation succession, also play a major role in the biogeochemistry of peatlands. Previous studies have looked at the impact of a water table lowering on carbon fluxes in different types of peatlands. However, most of these studies were conducted within a time frame that did not allow the examination of vegetation changes due to the water table lowering. We conducted a study along a drainage gradient resulting from the digging of a drainage ditch 85 years ago in a portion of the Mer Bleue bog, located near Ottawa, Canada. According to water table reconstructions based on testate amoeba, the drainage dropped the water table by approximately 18 cm. On the upslope side of the ditch, the water table partly recovered and the vegetation changed only marginally. However, on the downslope side of the ditch, the water table stayed persistently lower and trees established (Larix and Betula). The importance of Sphagnum decreased with a lower water table, and evergreen shrubs were replaced by deciduous shrubs. The water table drop and subsequent vegetation changes had combined and individual effects on the carbon functioning of the peatland. Methane fluxes decreased because of the water table lowering, but were not affected by vegetation changes, whereas respiration and net ecosystem productivity were affected by both. The carbon storage of the system increased because of an increase in plant biomass, but the long-term carbon storage as peat decreased. The inclusion of the feedback effect that vegetation has on the carbon functioning of a peatland when a disturbance occurs is crucial to simulate the long-term carbon balance of this ecosystem.

  5. Evaluation of wet-line depth-correction methods for cable-suspended current meters

    USGS Publications Warehouse

    Coon, W.F.; Futrell, James C.

    1986-01-01

    Wet-line depth corrections for cable-suspended current meter and weight not perpendicular to the water surface have been evaluated using cable-suspended weights towed by a boat in still water. A fathometer was used to track a Columbus sounding weight and to record its actual depth for several apparent depths, weight sizes, and towed velocities. Cable strumming, tension, and weight veer are noted. Results of this study suggest possible differences between observed depth corrections and corrections obtained from the wet-line correction table currently in use. These differences may have resulted from test conditions which deviated from the inherent assumptions of the wet-line table: (1) drag on the weight in the sounding position at the bottom of a stream can be neglected; and (2) the distribution of horizontal drag on the sounding line is in accordance with the variation of velocity with depth. Observed depth corrections were compared to wet-line table values used for determining the 0.8-depth position of the sounding weight under these conditions; the results indicate that questionable differences exist. (Lantz-PTT)

  6. Thermal and hydrological observations near Twelvemile Lake in discontinuous permafrost, Yukon Flats, interior Alaska, September 2010-August 2011

    USGS Publications Warehouse

    Jepsen, Steven M.; Koch, Joshua C.; Rose, Joshua R.; Voss, Clifford I.; Walvoord, Michelle Ann

    2012-01-01

    A series of ground-based observations were made between September 2010 and August 2011 near Twelvemile Lake, 19 kilometers southwest of Fort Yukon, Alaska, for use in ongoing hydrological analyses of watersheds in this region of discontinuous permafrost. Measurements include depth to ground ice, depth to water table, soil texture, soil moisture, soil temperature, and water pressure above the permafrost table. In the drained basin of subsiding Twelvemile Lake, we generally find an absence of newly formed permafrost and an undetectable slope of the water table; however, a sloping water table was observed in the low-lying channels extending into and away from the lake watershed. Datasets for these observations are summarized in this report and can be accessed by clicking on the links in each section or from the Downloads folder of the report Web page.

  7. Obliquity (41kyr) Paced SE Asian Monsoon Variability Following the Miocene Climate Transition

    NASA Astrophysics Data System (ADS)

    Heitmann, E. O.; Breecker, D.; Ji, S.; Nie, J.

    2016-12-01

    We investigated Asian monsoon variability during the Miocene, which may provide a good analog for the future given the lack of northern hemisphere ice sheets. In the Miocene Yanwan Section (Tianshui Basin, China) 25cm thick CaCO3-cemented horizons overprint siltstones every 1m. We suggest this rhythmic layering records variations in water availability influenced by the Asian monsoon. We interpret the siltstones as stacked soils that formed in a seasonal climate with a fluctuating water table, evidenced by roots, clay films, mottling, presence of CaCO3 nodules, and stacked carbonate nodule δ13C and δ18O profiles that mimic modern soils. We interpret the CaCO3-cemented horizons as capillary-fringe carbonates that formed in an arid climate with a steady water table and high potential evapotranspiration (PET), evidenced by sharp upper and basal contacts, micrite, sparite, and root-pore cements. The magnetostratigraphy-based age model indicates obliquity-pacing of the CaCO3-cemented horizons suggesting an orbital control on water availability, for which we propose two mechanisms: 1) summer monsoon strength, moderated by the control of obliquity on the cross-equatorial pressure gradient, and 2) PET, moderated by the control of precession on 35oN summer insolation. We use orbital configurations to predict lithology. Coincidence of obliquity minima and insolation maxima drives strong summer monsoons, seasonal variations in water table depth and soil formation. Coincidence of obliquity maxima and insolation minima drives weak summer monsoons, high PET, and carbonate accumulation above a deepened, stable water table. Coincidence of obliquity and insolation minima drives strong monsoons, low PET, and a high water table, explaining the evidence for aquatic plants previously observed in this section. Southern hemisphere control of summer monsoon variability in the Miocene may thus have resulted in large water availability variations in central China.

  8. Terrestrial Responses to Variability in the Southern Westerlies Inferred from Deep Holocene Peat Archives

    NASA Astrophysics Data System (ADS)

    Hughes, P. D. M.; Mauquoy, D.; van Bellen, S.; Roland, T. P.; Loader, N.; Street-Perrott, F. A.; Daley, T.

    2017-12-01

    The deep ombrotrophic peat bogs of Chile are located throughout the latitudes dominated by the southern westerly wind belt. The domed surfaces of these peatlands make them sensitive to variability in summer atmospheric moisture balance and the near-continuous accumulation of deep peat strata throughout the Holocene to the present day means that these sites provide undisturbed archives of palaeoclimatic change. We have reconstructed late-Holocene bog water table depths - which can be related to changes in the regional balance of precipitation to evaporation (P-E) - from a suite of peat bogs located in three areas of Tierra del Feugo, Chile, under the main path of the SWWB. Water-table depths were reconstructed from sub-fossil testate amoebae assemblages using a conventional transfer function to infer past water-table depths, based on taxonomic classification of tests but also an innovative trait-based transfer function to infer the same parameter. Water table reconstructions derived from the two methods were consistent within sites. They show that mire water tables have been relatively stable in the last 2000 years across Tierra del Feugo. Higher water table levels, most probably indicating increased effective precipitation, were found between c. 1400 and 900 cal. BP., whereas a consistent drying trend was reconstructed across the region in the most recent peat strata. This shift may represent a pronounced regional decrease in precipitation and/or a change to warmer conditions linked to strengthening of the SWWB. However, other factors such as recent thinning of the ozone layer over Tierra del Fuego could have contributed to recent shifts in some testate amoebae species.

  9. Linking Water Table Dynamics to Carbon Cycling in Artificial Soil Column Incubations

    NASA Astrophysics Data System (ADS)

    Geertje, Pronk; Adrian, Mellage; Tatjana, Milojevic; Fereidoun, Rezanezhad; Cappellen Philippe, Van

    2016-04-01

    The biogeochemistry of wetlands soils is closely tied to their hydrology. Water table fluctuations that cause flooding and drying of these systems may lead to enhanced degradation of organic matter and release of greenhouse gasses (e.g. CO2, CH4) to the atmosphere. However, predicting the influence of water table fluctuations on the biogeochemical functioning of soils requires an understanding of the interactions of soil hydrology with biogeochemical and microbial processes. To determine the effects of water table dynamics on carbon cycling, we are carrying out state-of-the-art automated soil column experiments with fully integrated monitoring of hydro-bio-geophysical process variables under both constant and oscillating water table conditions. An artificial, homogeneous mixture consisting of minerals and organic matter is used to provide a well-defined starting material. The artificial soils are composed of quartz sand, montmorillonite, goethite and humus from a forested riparian zone, from which we also extracted the microbial inoculum added to the soil mixture. The artificial soils are packed into 60 cm high, 7.5 cm wide columns. In the currently ongoing experiment, three replicate columns are incubated while keeping the water table constant water at mid-depth, while another three columns alternate between drained and saturated conditions. Micro-sensors installed at different depths below the soil surface record time-series redox potentials (Eh) varying between oxidizing (~+700 mV) and reducing (~-200 mV) conditions. Continuous O2 levels throughout the soil columns are monitored using high-resolution, luminescence-based, Multi Fiber Optode (MuFO) microsensors. Pore waters are collected periodically with MicroRhizon samplers from different depths, and analyzed for pH, EC, dissolved inorganic and organic carbon and ion/cation compositions. These measurements allow us to track the changes in pore water geochemistry and relate them to differences in carbon cycling between the contrasting water table regimes. Particular attention is given to the mobilization and redistribution of iron from the initially homogeneously distributed goethite. In addition, small solid-phase samples are collected monthly from the saturated and unsaturated zones of the soil columns to characterize the microbial communities and changes in soil microstructure and organo-mineral associations. Headspace gas measurements are used to derive the effluxes of CO2 and CH4 during the experiment. Together, the experimental data will provide a comprehensive picture of the early development of the soil and the accompanying establishment of biogeochemical gradients under dynamic hydrological conditions. They will allow us to relate the degradation of soil organic matter and greenhouse gas emissions to the saturation conditions and redox chemistry under controlled conditions. The experiment is in progress with an expected total duration of 6 months.

  10. Ground-water data, Sevier Desert, Utah

    USGS Publications Warehouse

    Mower, Reed W.; Feltis, Richard D.

    1964-01-01

    This report is intended to serve two purposes: (1) to make available to the public basic ground-water data useful in planning and studying development of water resources, and (2) to supplement an interpretive report that will be published later.Records were collected during the period 1935-64 by the U.S. Geological survey in cooperation with the Utah State Engineer as part of the investigation of ground-water conditions in the Sevier Desert, in Juab and Millard Counties, Utah. The interpretive material will be published in a companion report by R. W. Mower and R. D. Feltis.This report is most useful in predicting conditions likely to be found in areas that are being considered as well sites. The person considering the new well can spot the proposed site on plate 1 and examine the records of nearby wells as shown in the tables and figures. From table 1 he can note such things as depth, diameter, water level, yield, use of water, temperature of water, and depth of perforations. By comparing the depth of perforations with the drillers' logs in table 3 he can note the type of material that yields water to the wells. Table 2 and figure 2 show the historic fluctuations and trends of water levels in the vicinity. From table 4 he can note the chemical quality of the water from wells in the vicinity. Table 5 shows the amount of water discharged during 1951-63 from the pumped irrigation, public supply, and industrial wells. If the reader decides from his examination that conditions are favorable, he can place an application to drill a well with the state Engineer. If the State Engineer believes unappropriated water is available, the application may be approved after minimum statutory requirements have been satisfied.The report is also useful when planning large-scale developments of water supply. This and other uses of the report will be helped by use of the interpretive report upon its release.

  11. HCMM energy budget data as a model input for assessing regions of high potential ground-water pollution

    NASA Technical Reports Server (NTRS)

    Moore, D. G. (Principal Investigator); Heilman, J.; Tunheim, J.

    1978-01-01

    The author has identified the following significant results. Analysis of soil temperature and water table data indicated that shallow aquifers appear to produce a heat sink effect when the depth to water table is approximately four meters or less.

  12. 30 CFR 260.114 - How does MMS assign and monitor royalty suspension volumes for eligible leases?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... have specified the water depth category for each eligible lease in the final Notice of OCS Lease Sale... OCS Lease Sale Package is available on the MMS Web site. Our determination of water depth for each... royalty suspension volume applicable to each water depth. The following table shows the royalty suspension...

  13. In situ burning of oil in coastal marshes. 1. Vegetation recovery and soil temperature as a function of water depth, oil type, and marsh type.

    PubMed

    Lin, Qianxin; Mendelssohn, Irving A; Bryner, Nelson P; Walton, William D

    2005-03-15

    In-situ burning of oiled wetlands potentially provides a cleanup technique that is generally consistent with present wetland management procedures. The effects of water depth (+10, +2, and -2 cm), oil type (crude and diesel), and oil penetration of sediment before the burn on the relationship between vegetation recovery and soil temperature for three coastal marsh types were investigated. The water depth over the soil surface during in-situ burning was a key factor controlling marsh plant recovery. Both the 10- and 2-cm water depths were sufficient to protect marsh vegetation from burning impacts, with surface soil temperatures of <35 and 48 degrees C, respectively. Plant survival rate and growth responses at these water depth burns were not significantly different from the unburned control. In contrast, a water table 2 cm below the soil surface during the burn resulted in high soil temperatures, with 90-200 degrees C at 0-0.5 cm soil depth and 55-75 degrees C at 1-2 cm soil depth. The 2-cm soil exposure to fire significantly impeded the post-burn recovery of Spartina alterniflora and Sagittaria lancifolia but did not detrimentally affect the recovery of Spartina patens and Distichlis spicata. Oil type (crude vs diesel) and oil applied to the marsh soil surface (0.5 L x m(-2)) before the burn did not significantly affect plant recovery. Thus, recovery is species-specific when no surface water exists. Even water at the soil surface will most likely protect wetland plants from burning impact.

  14. Growth and nutrient status of black spruce seedlings as affected by water table depth

    Treesearch

    Miroslaw M. Czapowskyj; Robert V. Rourke; Walter J. Grant; Walter J. Grant

    1986-01-01

    The objective of this study was to determine the effect of different soil water table levels on growth, biomass production, and nutrient accumulation in black spruce seedlings growing under greenhouse conditions over three growing seasons after transplanting.

  15. Soil property changes during loblolly pine production

    Treesearch

    R. Wayne Skaggs; Devendra M. Amatya; G.M. Chescheir; Christine D. Blanton

    2006-01-01

    Three watersheds, each approximately 25 ha, were instrumented to measure and record drainage rate, water table depth, rainfall and meteorological data. Data continuously collected on the site since 1988 include response of hydrologic and water quality variables for nearly all growth stages of a Loblolly pine plantation. Data for drainage outflow rates and water table...

  16. Spatio-temporal patterns of groundwater depths and soil nutrients in a small watershed in the Ethiopian highlands: Topographic and land-use controls

    NASA Astrophysics Data System (ADS)

    Guzman, Christian D.; Tilahun, Seifu A.; Dagnew, Dessalegn C.; Zimale, Fasikaw A.; Zegeye, Assefa D.; Boll, Jan; Parlange, Jean-Yves; Steenhuis, Tammo S.

    2017-12-01

    Soil and water conservation structures, promoted by local and international development organizations throughout rural landscapes, aim to increase recharge and prevent degradation of soil surface characteristics. This study investigates this unexamined relationship between recharge, water table depths, and soil surface characteristics (nutrients) in a small sub-watershed in the northwestern Ethiopian highlands. These highland watersheds have high infiltration rates (mean 70 mm hr-1, median 33 mm hr-1), recharging the shallow unconfined hillslope aquifer with water transport occurring via subsurface pathways down the slope. The perched water tables reflect the subsurface flux and are deep where this flux is rapid in the upland areas (138 cm below surface). Soil saturation and overland flow occur when the subsurface flux exceeds the transport capacity of the soil in the lower downslope areas near the ephemeral stream (19 cm below surface). Land use is directly related to the water table depth, corresponding to grazing and fallowed (saturated) land in the downslope areas and cultivated (unsaturated) land in the middle and upper parts where the water table is deeper. Kjeldahl Total Nitrogen (TN), Bray II available phosphorus (AP), and exchangeable potassium (K+) averages exhibit different behaviors across slope, land use transects, or saturation conditions. TN was moderate to low (0.07% ± 0.04) in various land uses and slope regions. Bray II AP had very low concentrations (0.25 mg kg-1 ± 0.26) among the different slope regions with no significant differences throughout (p > .05). The exchangeable cation (K+, Ca2+, Mg2+) concentrations and pH, however, were greater in non-cultivated (seasonally saturated) lands and in a downslope direction (p < .001, p < .005, p < .05, and p < .005, respectively). These results show that the perched groundwater plays an important role in influencing land use, the amount of water seasonally available for crop growth, and exchangeable cations, but have no clear effect on the concentration of the two primarily applied nutrients in fertilizers (N, P).

  17. Precipitation patterns and moisture fluxes in a sandy, tropical environment with a shallow water table

    NASA Astrophysics Data System (ADS)

    Minihane, M. R.; Freyberg, D. L.

    2011-08-01

    Identifying the dominant mechanisms controlling recharge in shallow sandy soils in tropical climates has received relatively little attention. Given the expansion of coastal fill using marine sands and the growth of coastal populations throughout the tropics, there is a need to better understand the nature of water balances in these settings. We use time series of field observations at a coastal landfill in Singapore coupled with numerical modeling using the Richards' equation to examine the impact of precipitation patterns on soil moisture dynamics, including percolation past the root zone and recharge, in such an environment. A threshold in total precipitation event depth, much more so than peak precipitation intensity, is the strongest event control on recharge. However, shallow antecedent moisture, and therefore the timing between events along with the seasonal depth to water table, also play significant roles in determining recharge amounts. For example, at our field site, precipitation events of less than 3 mm per event yield little to no direct recharge, but for larger events, moisture content changes below the root zone are linearly correlated to the product of the average antecedent moisture content and the total event precipitation. Therefore, water resources planners need to consider identifying threshold precipitation volumes, along with the multiple time scales that capture variability in event antecedent conditions and storm frequency in assessing the role of recharge in coastal water balances in tropical settings.

  18. An empirical approach to modeling methylmercury concentrations in an Adirondack stream watershed

    USGS Publications Warehouse

    Burns, Douglas A.; Nystrom, Elizabeth A.; Wolock, David M.; Bradley, Paul M.; Riva-Murray, Karen

    2014-01-01

    Inverse empirical models can inform and improve more complex process-based models by quantifying the principal factors that control water quality variation. Here we developed a multiple regression model that explains 81% of the variation in filtered methylmercury (FMeHg) concentrations in Fishing Brook, a fourth-order stream in the Adirondack Mountains, New York, a known “hot spot” of Hg bioaccumulation. This model builds on previous observations that wetland-dominated riparian areas are the principal source of MeHg to this stream and were based on 43 samples collected during a 33 month period in 2007–2009. Explanatory variables include those that represent the effects of water temperature, streamflow, and modeled riparian water table depth on seasonal and annual patterns of FMeHg concentrations. An additional variable represents the effects of an upstream pond on decreasing FMeHg concentrations. Model results suggest that temperature-driven effects on net Hg methylation rates are the principal control on annual FMeHg concentration patterns. Additionally, streamflow dilutes FMeHg concentrations during the cold dormant season. The model further indicates that depth and persistence of the riparian water table as simulated by TOPMODEL are dominant controls on FMeHg concentration patterns during the warm growing season, especially evident when concentrations during the dry summer of 2007 were less than half of those in the wetter summers of 2008 and 2009. This modeling approach may help identify the principal factors that control variation in surface water FMeHg concentrations in other settings, which can guide the appropriate application of process-based models.

  19. Ant distribution in relation to ground water in north Florida pine flatwoods.

    PubMed

    Tschinkel, Walter R; Murdock, Tyler; King, Joshua R; Kwapich, Christina

    2012-01-01

    Longleaf pine savannas are one of the most threatened ecosystems in the world, yet are understudied. Ants are a functionally important and diverse group of insects in these ecosystems. It is largely unknown how local patterns of species diversity and composition are determined through the interaction of this dominant animal group with abiotic features of longleaf pine ecosystems. Here we describe how an important abiotic variable, depth to water table, relates to ant species distributions at local scales. Pitfall trapping studies across habitat gradients in the Florida coastal plains longleaf pine flatwoods showed that the ant community changed with mild differences in habitat. In this undulating landscape, elevation differences were less than 2 m, and the depth to the water table ranged from < 20 cm to 1.2 m. The plant species composing the ground cover were zoned in response to depth to water, and shading by canopy trees increased over deeper water tables. Of the 27 ant species that were analyzed, depending on the statistical test, seven or eight were significantly more abundant over a deep water table, eight to ten over a shallow one, and nine to eleven were not significantly patterned with respect to depth to water. Ant species preferring sites with shallow groundwater also preferred the shadier parts of the sites, while those preferring sites with deeper groundwater preferred the sunnier parts of the sites. This suggests that one group of species prefers hot-dry conditions, and the other cooler-moist. Factor analysis and abundance-weighted mean site characteristics generally confirmed these results. These results show that ant communities in this region respond to subtle differences in habitat, but whether these differences arise from founding preferences, survival, competition, or some combination of these is not known.

  20. The influence of water table depth and the free atmospheric state on convective rainfall predisposition

    DOE PAGES

    Bonetti, Sara; Manoli, Gabriele; Domec, Jean-Christophe; ...

    2015-03-16

    Here, we report a mechanistic model for the soil-plant system is coupled to a conventional slab representation of the atmospheric boundary layer (ABL) to explore the role of groundwater table (WT) variations and free atmospheric (FA) states on convective rainfall predisposition (CRP) at a Loblolly pine plantation site situated in the lower coastal plain of North Carolina. Predisposition is quantified using the crossing between modeled lifting condensation level (LCL) and convectively grown ABL depth. The LCL-ABL depth crossing is necessary for air saturation but not sufficient for cloud formation and subsequent convective rainfall occurrence. However, such crossing forms the mainmore » template for which all subsequent dynamical processes regulating the formation (or suppression) of convective rainfall operate on. If the feedback between surface fluxes and FA conditions is neglected, a reduction in latent heat flux associated with reduced WT levels is shown to enhance the ABL-LCL crossing probability. When the soil-plant system is fully coupled with ABL dynamics thereby allowing feedback with ABL temperature and humidity, FA states remain the leading control on CRP. However, vegetation water stress plays a role in controlling ABL-LCL crossing when the humidity supply by the FA is within an intermediate range of values. When FA humidity supply is low, cloud formation is suppressed independent of surface latent heat flux. Similarly, when FA moisture supply is high, cloud formation can occur independent of surface latent heat flux. In an intermediate regime of FA moisture supply, the surface latent heat flux controlled by soil water availability can supplement (or suppress) the necessary water vapor leading to reduced LCL and subsequent ABL-LCL crossing. Lastly, it is shown that this intermediate state corresponds to FA values around the mode in observed humidity lapse rates γ w (between -2.5 × 10 -6 and -1.5 × 10 -6 kg kg -1m -1), suggesting that vegetation water uptake may be controlling CRP at the study site.« less

  1. Physiological and morphological response patterns of Populus deltoides to alluvial groundwater

    USGS Publications Warehouse

    Cooper, D.J.; D'Amico, D.R.; Scott, M.L.

    2003-01-01

    We examined the physiological and morphological response patterns of plains cottonwood [Populus deltoides subsp. monilifera (Aiton) Eck.] to acute water stress imposed by groundwater pumping. Between 3 and 27 July 1996, four large pumps were used to withdraw alluvial groundwater from a cottonwood forest along the South Platte River, near Denver, Colorado, USA. The study was designed as a stand-level, split-plot experiment with factorial treatments including two soil types (a gravel soil and a loam topsoil over gravel), two water table drawdown depths (∼0.5 m and >1.0 m), and one water table control (no drawdown) per soil type. Measurements of water table depth, soil water potential (Ψs), predawn and midday shoot water potential (Ψpd and Ψmd), and D/H (deuterium/hydrogen) ratios of different water sources were made in each of six 600-m2 plots prior to, during, and immediately following pumping. Two additional plots were established and measured to examine the extent to which surface irrigation could be used to mitigate the effects of deep drawdown on P. deltoides for each soil type. Recovery of tree water status following pumping was evaluated by measuring stomatal conductance (gs) and xylem water potential (Ψxp) on approximately hourly time steps from before dawn to mid-afternoon on 11 August 1996 in watered and unwatered, deep-drawdown plots on gravel soils. P. deltoides responded to abrupt alluvial water table decline with decreased shoot water potential followed by leaf mortality. Ψpd and percent leaf loss were significantly related to the magnitude of water table declines. The onset and course of these responses were influenced by short-term variability in surface and ground water levels, acting in concert with physiological and morphological adjustments. Decreases in Ψpd corresponded with increases in Ψmd, suggesting shoot water status improved in response to stomatal closure and crown dieback. Crown dieback caused by xylem cavitation likely occurred when Ψpd reached −0.4 to −0.8 MPa. The application of surface irrigation allowed trees to maintain favorable water status with little or no apparent cavitation, even in deep-drawdown plots. Two weeks after the partial canopy dieback and cessation of pumping, gs and Ψxp measurements indicated that water stress persisted in unwatered P. deltoides in deep-drawdown plots.

  2. Representing northern peatland microtopography and hydrology within the Community Land Model

    Treesearch

    X. Shi; P.E. Thornton; D.M. Ricciuto; P J. Hanson; J. Mao; Stephen Sebestyen; N.A. Griffiths; G. Bisht

    2015-01-01

    Predictive understanding of northern peatland hydrology is a necessary precursor to understanding the fate of massive carbon stores in these systems under the influence of present and future climate change. Current models have begun to address microtopographic controls on peatland hydrology, but none have included a prognostic calculation of peatland water table depth...

  3. A high-resolution land model coupled with groundwater lateral flow, human water regulation and the changes in soil freeze-thaw fronts

    NASA Astrophysics Data System (ADS)

    Xie, Z.; Zeng, Y.; Liu, S.; Gao, J.; Jia, B.; Qin, P.

    2017-12-01

    Both anthropogenic water regulation and groundwater lateral flow essentially affect groundwater table patterns. Their relationship is close because lateral flow recharges the groundwater depletion cone, which is induced by over-exploitation. And the movement of frost and thaw fronts (FTFs) affects soil water and thermal characteristics, as well as energy and water exchanges between land surface and the atmosphere. In this study, schemes describing groundwater lateral flow, human water regulation and the changes in soil freeze-thaw fronts were developed and incorporated into the Community Land Model 4.5. Then the model was applied in Heihe River Basin(HRB), an arid and semiarid region, northwest China. High resolution ( 1 km) numerical simulations showed that groundwater lateral flow driven by changes in water heads can essentially change the groundwater table pattern with the deeper water table appearing in the hillslope regions and shallower water table appearing in valley bottom regions and plains. Over the last decade, anthropogenic groundwater exploitation deepened the water table by approximately 2 m in the middle reaches of the HRB and rapidly reduced the terrestrial water storage, while irrigation increased soil moisture by approximately 0.1 m3 m-3. The water stored in the mainstream of the Heihe River was also reduced by human surface water withdrawal. The latent heat flux was increased by 30 W m-2 over the irrigated region, with an identical decrease in sensible heat flux. The simulated groundwater lateral flow was shown to effectively recharge the groundwater depletion cone caused by over-exploitation. The offset rate is higher in plains than mountainous regions. In addition, the simulated FTFs depth compared well with the observed data both in D66 station (permafrost) and Hulugou station (seasonally frozen ground). Over the HRB, the upstream area is permafrost region with maximum thawed depth at 2.5 m and lower region is seasonal frozen ground region with maximum frozen depth at 3 m.

  4. Geophysical techniques for reconnaissance investigations of soils and surficial deposits in mountainous terrain

    USGS Publications Warehouse

    Olson, C.G.; Doolittle, J.A.

    1985-01-01

    Two techniques were assessed for their capabilities in reconnaissance studies of soil characteristics: depth to the water table and depth to bedrock beneath surficial deposits in mountainous terrain. Ground-penetrating radar had the best near-surface resolution in the upper 2 m of the profile and provided continuous interpretable imagery of soil profiles and bedrock surfaces. Where thick colluvium blankets side slopes, the GPR could not consistently define the bedrock interface. In areas with clayey or shaley sediments, the GPR is also more limited in defining depth and is less reliable. Seismic refraction proved useful in determining the elevation of the water table and depth to bedrock, regardless of thickness of overlying material, but could not distinguish soil-profile characteristics.-from Authors

  5. Developing a Long Short-Term Memory (LSTM) based model for predicting water table depth in agricultural areas

    NASA Astrophysics Data System (ADS)

    Zhang, Jianfeng; Zhu, Yan; Zhang, Xiaoping; Ye, Ming; Yang, Jinzhong

    2018-06-01

    Predicting water table depth over the long-term in agricultural areas presents great challenges because these areas have complex and heterogeneous hydrogeological characteristics, boundary conditions, and human activities; also, nonlinear interactions occur among these factors. Therefore, a new time series model based on Long Short-Term Memory (LSTM), was developed in this study as an alternative to computationally expensive physical models. The proposed model is composed of an LSTM layer with another fully connected layer on top of it, with a dropout method applied in the first LSTM layer. In this study, the proposed model was applied and evaluated in five sub-areas of Hetao Irrigation District in arid northwestern China using data of 14 years (2000-2013). The proposed model uses monthly water diversion, evaporation, precipitation, temperature, and time as input data to predict water table depth. A simple but effective standardization method was employed to pre-process data to ensure data on the same scale. 14 years of data are separated into two sets: training set (2000-2011) and validation set (2012-2013) in the experiment. As expected, the proposed model achieves higher R2 scores (0.789-0.952) in water table depth prediction, when compared with the results of traditional feed-forward neural network (FFNN), which only reaches relatively low R2 scores (0.004-0.495), proving that the proposed model can preserve and learn previous information well. Furthermore, the validity of the dropout method and the proposed model's architecture are discussed. Through experimentation, the results show that the dropout method can prevent overfitting significantly. In addition, comparisons between the R2 scores of the proposed model and Double-LSTM model (R2 scores range from 0.170 to 0.864), further prove that the proposed model's architecture is reasonable and can contribute to a strong learning ability on time series data. Thus, one can conclude that the proposed model can serve as an alternative approach predicting water table depth, especially in areas where hydrogeological data are difficult to obtain.

  6. Restoration of a mined peat bog in Delafield Township, Waukesha County, Wisconsin: Field and computer model studies of the hydrogeology and the growth of fen buckthorn (Rhamnus frangula)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zolidis, N.R.

    1988-01-01

    In order to plan for the restoration of native wetland plant communities at a 105 ha mined peatbog in southeastern Wisconsin, studies of the hydrogeology and of the ecology of an invading exotic shrub species, fen buckthorn (Rhamnus frangula) were undertaken. A network of shallow wells, piezometers, and surface water gages were monitored monthly between September 1985 and September 1987 to delineate lateral and vertical directions of groundwater flow, fluctuations and depths of water table, and groundwater flow rates. Results indicate that groundwater recharge occurred in the active mining area and groundwater discharge occurred in most of the other areasmore » of the site. Summer depth to water table was more than 50cm in some areas suggesting that water levels should be raised to crease favorable sedge meadow habitat. In order to test the proposal of installing water control berms in the drainage ditches to raise water levels at the site, a groundwater flow model was constructed for low flow conditions which typically occur in late summer. The results of the steady state simulations indicated that water levels will be raised an average of approximately 12 cm. This values is at least 40 cm less than the proposed increases in the mined areas. Although the increase in water table elevation would enhance soil moisture conditions, other alternatives such as landscaping and natural modifications may also raise water levels and therefore need to be investigated. The rates of aboveground growth of fen buckthorn stems were estimated for the 1986 and 1987 growing season using regression equations based on measurements of biomass and stem diameter.« less

  7. Ground-water resources of the Middle Loup division of the lower Platte River basin, Nebraska, with a section on Chemical quality of the ground water

    USGS Publications Warehouse

    Brown, Delbert Wayne; Rainwater, Frank Hays

    1955-01-01

    The Middle Loup division of the lower Platte River basin is an area of 650 square miles which includes the Middle Loup River valley from the confluence of the Middle and North Loup Rivers in Howard County, Nebr., to the site of the diversion dam that the U. S. Bureau of Reclamation proposes to construct in Blaine County near Milburn, Nebr. It also includes land in Howard and Sherman Counties designated by the Bureau of Reclamation as the Farwell unit. Irrigable land in this division is present on both sides of the Middle Loup River and along its tributaries. Most of the Middle Loup River valley is already irrigated by the Middle Loup Public Power and Irrigation District, which is strictly an irrigation enterprise. The uplands are not irrigated. Loess, dune sand, gravel, silt, and clay of Pleistocene or Recent age are exposed in the report area. These unconsolidated sediments rest on bedrock consisting of alternating layers of shale, mudstone, sandstone, and limestone, which are essentially fiat lying or slightly warped. The Ogallala formation, of Tertiary (Pliocene) age, immediately underlies the Pleistocene sediments and rests on the Pierre shale of Cretaceous age. Belts of alluvium occupy the Middle Loup River valley and the valleys of the principal streams in the area. The soils, dune sand, and terrace deposits are the most recent deposits. The Ogallala formation is water bearing and is the source of supply for some domestic and livestock wells. The saturated part of the sand and gravel formations of Pleistocene age, which yields water freely to wells, is the most important aquifer in the Middle Loup division. The water generally is under water-table conditions. The yields of properly constructed wells range from a few gallons per minute (gpm) to as much as 1,800 gpm. Some wells tap water in both the sand and gravel of Pleistocene age and in the underlying Ogallala formation. No wells are known to penetrate into formations older than the Ogallala. Fluctuations of the water table indicate changes in the amount of ground water stored in the water-bearing formations. The principal factors controlling the rise of the water table are the amount of precipitation within the area, the quantity of water coming into the area as underflow from the west and northwest, seepage from the Middle Loup River at times when the water surface in the river is higher than the adjoining water table, and the infiltration of irrigation water not utilized by vegetation or lost by runoff or evaporation. The principal factors controlling the decline of the water table are the discharge as effluent seepage into the Middle Loup River and its tributaries, the amount of water pumped from wells, evapotranspiration losses, and the amount of water leaving the area as underflow. Periodic water-level measurements were made in a total of 241 observation wells during the period 1948-50. Hydrographs of three observation wells having a longer period of record (1934-50) indicate that the water table rose slightly from 1934 until 1950 and that it remained nearly constant during the 1950 water year. The configuration of the water table in the Middle Loup division shows that, except north and northwest of Sargent, the Middle Loup River is an effluent, or gaining, stream throughout its entire length in this area. Thus any rise or fall in the ground-water level will increase or decrease the discharge of the river. The river recharges the ground- water reservoir only during periods when it is at flood stage. The depth to the water table from the land surface is governed largely by irregularities in topography. The depth to water is less than 10 feet near the river and increases to as much as 60 feet near the valley margins and the bordering intermediate slopes. In the Far- well unit the depth to water is more than 100 feet and in some parts more than 150 feet. Ground water pumped from wells is the source of supply for the principal municipalities in th

  8. Mechanisms of surface runoff genesis on a subsurface drained soil affected by surface crusting: A field investigation

    NASA Astrophysics Data System (ADS)

    Augeard, Bénédicte; Kao, Cyril; Chaumont, Cédric; Vauclin, Michel

    Artificial drainage has been subject to widespread criticism because of its impact on water quality and because there is suspicion that it may have detrimental effects on flood genesis. The present work aims at a better understanding of the mechanisms controlling infiltration and surface runoff genesis, particularly in soils with artificial drainage and affected by surface crusting. A field experiment was conducted during one drainage season (November 2003-March 2004) in the Brie region (80 km east of Paris, France) on a subsurface drained silty soil. Water table elevation and surface runoff were monitored above the drain and at midpoint between drains. Soil water pressure head was measured at various depths and locations between the midpoint and the drain. Soil surface characteristics (microtopography and degree of structural and sedimentary crust development) were recorded regularly on the experimental site and on other plots of various drainage intensities. The results show that the first surface runoff events were induced by high water table. However, runoff was higher at midpoint between the drains because water table reached the soil surface at that point, thus considerably reducing infiltration capacity compared to that above the drain. Comparing different plots, the area with older drainage installation (1948) yielded the most surface runoff. Wider drain spacing, smaller drain depth and possible plugging may have led to a greater area of saturated soil between drains. During the winter period, the impact of raindrops induced the formation of a structural crust on the soil surface. Furthermore, the development of the sedimentary crust, which was favored by water actually flowing on the soil surface during the high water table periods could be correlated with surface runoff volume. The formation of this crust had a significant impact on runoff occurrence at the end of the winter. Therefore, poorly drained fields presented more favorable conditions for both Horton type runoff and saturation excess runoff. Drainage effectively reduces surface runoff occurrences not only by lowering the water table in winter but also by limiting soil surface sealing.

  9. Biomass and vegetative characteristics of sawgrass grown in a tilting flume as part of a study of vegetative resistance to flow

    USGS Publications Warehouse

    Rybicki, N.B.; Reel, J.T.; Ruhl, H.; Gammon, P.T.; Carter, Virginia; Lee, J.K.

    1999-01-01

    The U.S. Geological Survey is studying vegetative resistance to flow in the south Florida Everglades as part of a multidisciplinary effort to restore the South Florida Ecosystem. In order to test the flow resistance of sawgrass, one of the dominant species in the Everglades, uniform, dense stands of sawgrass were grown in a tilting flume at Stennis Space Center, Mississippi. Depth of water in the flume was controlled by adding or removing metal plates at the downstream end of the flume. A series of experiments were conducted at various flow depths, and the velocity, flow depth, and water-surface slope were measured. During each set of experiments, the sawgrass was sampled in layers from the sediment water interface for vegetative characteristics, biomass, and leaf area index. The results of the vegetation sampling are summarized in a series of tables.

  10. Investigation of remote sensing to detect near-surface groundwater on irrigated lands

    NASA Technical Reports Server (NTRS)

    Ryland, D. W.; Schmer, F. A.; Moore, D. G.

    1975-01-01

    The application of remote sensing techniques was studied for detecting areas with high water tables in irrigated agricultural lands. Aerial data were collected by the LANDSAT-1 satellite and aircraft over the Kansas/Bostwick Irrigation District in Republic and Jewell Counties, Kansas. LANDSAT-1 data for May 12 and August 10, 1973, and aircraft flights (midday and predawn) on August 10 and 11, 1973, and June 25 and 26, 1974, were obtained. Surface and water table contour maps and active observation well hydrographs were obtained from the Bureau of Reclamation for use in the analysis. Results of the study reveal that LANDSAT-1 data (May MSS band 6 and August MSS band 7) correlate significantly (0.01 level) with water table depth for 144 active observation wells located throughout the Kansas/Bostwick Irrigation District. However, a map of water table depths of less than 1.83 meters prepared from the LANDSAT-1 data did not compare favorably with a map of seeped lands of less than 1.22 m (4 feet) to the water table. Field evaluation of the map is necessary for a complete analysis. Analysis of three fields on a within or single-field basis for the 1973 LANDSAT-1 data also showed significant correlation results.

  11. Potential groundwater contribution to Amazon evapotranspiration

    NASA Astrophysics Data System (ADS)

    Fan, Y.; Miguez-Macho, G.

    2010-07-01

    Climate and land ecosystem models simulate a dry-season vegetation stress in the Amazon forest, but observations show enhanced growth in response to higher radiation under less cloudy skies, indicating an adequate water supply. Proposed mechanisms include larger soil water store and deeper roots in nature and the ability of roots to move water up and down (hydraulic redistribution). Here we assess the importance of the upward soil water flux from the groundwater driven by capillarity. We present a map of water table depth from observations and groundwater modeling, and a map of potential capillary flux these water table depths can sustain. The maps show that the water table beneath the Amazon can be quite shallow in lowlands and river valleys (<5 m in 36% and <10 m in 60% of Amazonia). The water table can potentially sustain a capillary flux of >2.1 mm day-1 to the land surface averaged over Amazonia, but varies from 0.6 to 3.7 mm day-1 across nine study sites. Current models simulate a large-scale reduction in dry-season photosynthesis under today's climate and a possible dieback under projected future climate with a longer dry season, converting the Amazon from a net carbon sink to a source and accelerating warming. The inclusion of groundwater and capillary flux may modify the model results.

  12. Groundwater controls on vegetation composition and patterning in mountain meadows

    NASA Astrophysics Data System (ADS)

    Lowry, Christopher S.; Loheide, Steven P., II; Moore, Courtney E.; Lundquist, Jessica D.

    2011-10-01

    Mountain meadows are groundwater-dependent ecosystems that are hot spots of biodiversity and productivity. In the Sierra Nevada mountains of California, these ecosystems rely on shallow groundwater to support their vegetation communities during the dry summer growing season in the region's Mediterranean montane climate. Vegetation composition in this environment is influenced by both (1) oxygen stress that occurs when portions of the root zone are saturated and anaerobic conditions limit root respiration and (2) water stress that occurs when the water table drops and the root zone becomes water limited. A spatially distributed watershed model that explicitly accounts for snowmelt processes was linked to a fine-resolution groundwater flow model of Tuolumne Meadows in Yosemite National Park, California, to simulate water table dynamics. This linked hydrologic model was calibrated to observations from a well observation network for 2006-2009. A vegetation survey was also conducted at the site in which the three dominant species were identified at more than 200 plots distributed across the meadow. Nonparametric multiplicative regression was performed to create and select the best models for predicting vegetation dominance on the basis of the simulated hydrologic regime. The hydrologic niches of three vegetation types representing wet, moist, and dry meadow vegetation communities were found to be best described using both (1) a sum exceedance value calculated as the integral of water table position above a depth threshold of oxygen stress and (2) a sum exceedance value calculated as the integral of water table position below a depth threshold of water stress. This linked hydrologic and vegetative modeling framework advances our ability to predict the propagation of human-induced climatic and land use or land cover changes through the hydrologic system to the ecosystem. The hydroecologic functioning of meadows provides an example of the extent to which cascading hydrologic processes at watershed, hillslope, and riparian zones and within channels are reflected in the composition and distribution of riparian vegetation.

  13. Sugarcane Responses to Water-Table Depth and Periodic Flood

    USDA-ARS?s Scientific Manuscript database

    Sugarcane (Saccharum spp.) is routinely exposed to periodic floods and shallow water tables in Florida’s Everglades Agricultural Area (EAA). The purpose of this study was to examine the yields and juice quality of four sugarcane cultivars (CP 88-1762, CP 89-2143, CP 89-2376, and CP 96-1252) maintain...

  14. Comparison of specific-yield estimates for calculating evapotranspiration from diurnal groundwater-level fluctuations

    NASA Astrophysics Data System (ADS)

    Gribovszki, Zoltán

    2018-05-01

    Methods that use diurnal groundwater-level fluctuations are commonly used for shallow water-table environments to estimate evapotranspiration (ET) and recharge. The key element needed to obtain reliable estimates is the specific yield (Sy), a soil-water storage parameter that depends on unsaturated soil-moisture and water-table fluxes, among others. Soil-moisture profile measurement down to the water table, along with water-table-depth measurements, can provide a good opportunity to calculate Sy values even on a sub-daily scale. These values were compared with Sy estimates derived by traditional techniques, and it was found that slug-test-based Sy values gave the most similar results in a sandy soil environment. Therefore, slug-test methods, which are relatively cheap and require little time, were most suited to estimate Sy using diurnal fluctuations. The reason for this is that the timeframe of the slug-test measurement is very similar to the dynamic of the diurnal signal. The dynamic characteristic of Sy was also analyzed on a sub-daily scale (depending mostly on the speed of drainage from the soil profile) and a remarkable difference was found in Sy with respect to the rate of change of the water table. When comparing constant and sub-daily (dynamic) Sy values for ET estimation, the sub-daily Sy application yielded higher correlation, but only a slightly smaller deviation from the control ET method, compared with the usage of constant Sy.

  15. Frost Tables, Barrow, Alaska, NGEE Areas B, C and D for 2012, 2013, 2014, Final Version, 20150312

    DOE Data Explorer

    Liljedahl, Anna

    2014-03-24

    This dataset represent spatially intensive thaw depth surveys with individual point measurements spaced approximately 0.5 m apart. The three approximate10x10m grids cover an ice wedge and a portion of its two neighboring polygons. The file contains thaw depth, frost table elevation, ground surface elevation, active layer depth and surface water inundation across three seasons (2012, 2013 and 2014) at Barrow NGEE Areas B, C and D.

  16. Modelling high Arctic deep permafrost temperature sensitivity in Northeast Greenland based on experimental and field observations

    NASA Astrophysics Data System (ADS)

    Rasmussen, Laura Helene; Zhang, Wenxin; Hollesen, Jørgen; Cable, Stefanie; Hvidtfeldt Christiansen, Hanne; Jansson, Per-Erik; Elberling, Bo

    2017-04-01

    Permafrost affected areas in Greenland are expected to experience a marked temperature increase within decades. Most studies have considered near-surface permafrost sensitivity, whereas permafrost temperatures below the depths of zero annual amplitude is less studied despite being closely related to changes in near-surface conditions, such as changes in active layer thermal properties, soil moisture and snow depth. In this study, we measured the sensitivity of thermal conductivity (TC) to gravimetric water content (GWC) in frozen and thawed permafrost sediments from fine-sandy and gravelly deltaic and fine-sandy alluvial deposits in the Zackenberg valley, NE Greenland. We further calibrated a coupled heat and water transfer model, the "CoupModel", for one central delta sediment site with average snow depth and further forced it with meteorology from a nearby delta sediment site with a topographic snow accumulation. With the calibrated model, we simulated deep permafrost thermal dynamics in four 20-year scenarios with changes in surface temperature and active layer (AL) soil moisture: a) 3 °C warming and AL water table at 0.5 m depth; b) 3 °C warming and AL water table at 0.1 m depth; c) 6 °C warming and AL water table at 0.5 m depth and d) 6 °C warming and AL water table at 0.1 m depth. Our results indicate that frozen sediments have higher TC than thawed sediments. All sediments show a positive linear relation between TC and soil moisture when frozen, and a logarithmic one when thawed. Gravelly delta sediments were highly sensitive, but never reached above 12 % GWC, indicating a field effect of water retention capacity. Alluvial sediments are less sensitive to soil moisture than deltaic (fine and coarse) sediments, indicating the importance of unfrozen water in frozen sediment. The deltaic site with snow accumulation had 1 °C higher mean annual ground temperature than the average snow depth site. Permafrost temperature at the depth of 18 m increased with 1.5 °C and 3.5 °C in the scenarios with 3 °C and 6 °C warming, respectively. Increasing the soil moisture had no important additional effect to warming, although an increase in thermal offset was indicated. We conclude that below-ground sediment properties affect the sensitivity of TC to GWC, that surface temperature changes can influence the deep permafrost within a short time scale, and that differences in snow depth affect surface temperatures. Sediment type and the type of precipitation should thus be considered when estimating future High Arctic deep permafrost sensitivity.

  17. Toward a new parameterization of hydraulic conductivity in climate models: Simulation of rapid groundwater fluctuations in Northern California

    DOE PAGES

    Vrettas, Michail D.; Fung, Inez Y.

    2015-12-31

    Preferential flow through weathered bedrock leads to rapid rise of the water table after the first rainstorms and significant water storage (also known as ‘‘rock moisture’’) in the fractures. We present a new parameterization of hydraulic conductivity that captures the preferential flow and is easy to implement in global climate models. To mimic the naturally varying heterogeneity with depth in the subsurface, the model represents the hydraulic conductivity as a product of the effective saturation and a background hydraulic conductivity K bkg, drawn from a lognormal distribution. The mean of the background Kbkg decreases monotonically with depth, while its variancemore » reduces with the effective saturation. Model parameters are derived by assimilating into Richards’ equation 6 years of 30 min observations of precipitation (mm) and water table depths (m), from seven wells along a steep hillslope in the Eel River watershed in Northern California. The results show that the observed rapid penetration of precipitation and the fast rise of the water table from the well locations, after the first winter rains, are well captured with the new stochastic approach in contrast to the standard van Genuchten model of hydraulic conductivity, which requires significantly higher levels of saturated soils to produce the same results. ‘‘Rock moisture,’’ the moisture between the soil mantle and the water table, comprises 30% of the moisture because of the great depth of the weathered bedrock layer and could be a potential source of moisture to sustain trees through extended dry periods. Moreover, storage of moisture in the soil mantle is smaller, implying less surface runoff and less evaporation, with the proposed new model.« less

  18. Hydrologic Regulation of Plant Rooting Depth and Vice Versa

    NASA Astrophysics Data System (ADS)

    Fan, Y.; Miguez-Macho, G.

    2017-12-01

    How deep plant roots go and why may hold the answer to several questions regarding the co-evolution of terrestrial life and its environment. In this talk we explore how plant rooting depth responds to the hydrologic plumbing system in the soil/regolith/bedrocks, and vice versa. Through analyzing 2200 root observations of >1000 species along biotic (life form, genus) and abiotic (precipitation, soil, drainage) gradients, we found strong sensitivities of rooting depth to local soil water profiles determined by precipitation infiltration depth from the top (reflecting climate and soil), and groundwater table depth from below (reflecting topography-driven land drainage). In well-drained uplands, rooting depth follows infiltration depth; in waterlogged lowlands, roots stay shallow avoiding oxygen stress below the water table; in between, high productivity and drought can send roots many meters down to groundwater capillary fringe. We explore the global significance of this framework using an inverse model, and the implications to the coevolution of deep roots and the CZ in the Early-Mid Devonian when plants colonized the upland environments.

  19. Biomass production, forage quality, and cation uptake of Quail bush, four-wing saltbush, and seaside barley irrigated with moderately saline-sodic water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauder, J.W.; Browning, L.S.; Phelps, S.D.

    2008-07-01

    The study reported here investigated capacity of Atriplex lentiformis (Torr.) S. Wats. (Quail bush), Atriplex X aptera A. Nels. (pro sp.) (Wytana four-wing saltbush), and Hordeum marinum Huds. (seaside barley) to produce biomass and crude protein and take up cations when irrigated with moderately saline-sodic water, in the presence of a shallow water table. Water tables were established at 0.38, 0.76, and 1.14m below the surface in sand-filled columns. The columns were then planted to the study species. Study plants were irrigated for 224 days; irrigation water was supplied every 7 days equal to water lost to evapotranspiration (ET) plusmore » 100mL (the volume of water removed in the most previous soil solution sampling). Water representing one of two irrigation sources was used: Powder River (PR) or coalbed natural gas (CBNG) wastewater. Biomass production did not differ significantly between water quality treatments but did differ significantly among species and water table depth within species. Averaged across water quality treatments, Hordeum marinum produced 79% more biomass than A. lentiformis and 122% more biomass than Atriplex X aptera, but contained only 11% crude protein compared to 16% crude protein in A. lentiformis and 14% crude protein in Atriplex X aptera. Atriplex spp. grown in columns with the water table at 0.38m depth produced more biomass, took up less calcium on a percentage basis, and took up more sodium on a percentage basis than when grown with the water table at a deeper depth. Uptake of cations by Atriplex lentiformis was approximately twice the uptake of cations by Atriplex X aptera and three times that of H. marinum. After 224 days of irrigation, crop growth, and cation uptake, followed by biomass harvest, EC and SAR of shallow groundwater in columns planted to A. lentiformis were less than EC and SAR of shallow ground water in columns planted to either of the other species.« less

  20. Significant impacts of irrigation water sources and methods on modeling irrigation effects in the ACME Land Model

    DOE PAGES

    Leng, Guoyong; Leung, L. Ruby; Huang, Maoyi

    2017-06-20

    An irrigation module that considers both irrigation water sources and irrigation methods has been incorporated into the ACME Land Model (ALM). Global numerical experiments were conducted to evaluate the impacts of irrigation water sources and irrigation methods on the simulated irrigation effects. All simulations shared the same irrigation soil moisture target constrained by a global census dataset of irrigation amounts. Irrigation has large impacts on terrestrial water balances especially in regions with extensive irrigation. Such effects depend on the irrigation water sources: surface-water-fed irrigation leads to decreases in runoff and water table depth, while groundwater-fed irrigation increases water table depth,more » with positive or negative effects on runoff depending on the pumping intensity. Irrigation effects also depend significantly on the irrigation methods. Flood irrigation applies water in large volumes within short durations, resulting in much larger impacts on runoff and water table depth than drip and sprinkler irrigations. Differentiating the irrigation water sources and methods is important not only for representing the distinct pathways of how irrigation influences the terrestrial water balances, but also for estimating irrigation water use efficiency. Specifically, groundwater pumping has lower irrigation water use efficiency due to enhanced recharge rates. Different irrigation methods also affect water use efficiency, with drip irrigation the most efficient followed by sprinkler and flood irrigation. Furthermore, our results highlight the importance of explicitly accounting for irrigation sources and irrigation methods, which are the least understood and constrained aspects in modeling irrigation water demand, water scarcity and irrigation effects in Earth System Models.« less

  1. Significant impacts of irrigation water sources and methods on modeling irrigation effects in the ACME Land Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leng, Guoyong; Leung, L. Ruby; Huang, Maoyi

    An irrigation module that considers both irrigation water sources and irrigation methods has been incorporated into the ACME Land Model (ALM). Global numerical experiments were conducted to evaluate the impacts of irrigation water sources and irrigation methods on the simulated irrigation effects. All simulations shared the same irrigation soil moisture target constrained by a global census dataset of irrigation amounts. Irrigation has large impacts on terrestrial water balances especially in regions with extensive irrigation. Such effects depend on the irrigation water sources: surface-water-fed irrigation leads to decreases in runoff and water table depth, while groundwater-fed irrigation increases water table depth,more » with positive or negative effects on runoff depending on the pumping intensity. Irrigation effects also depend significantly on the irrigation methods. Flood irrigation applies water in large volumes within short durations, resulting in much larger impacts on runoff and water table depth than drip and sprinkler irrigations. Differentiating the irrigation water sources and methods is important not only for representing the distinct pathways of how irrigation influences the terrestrial water balances, but also for estimating irrigation water use efficiency. Specifically, groundwater pumping has lower irrigation water use efficiency due to enhanced recharge rates. Different irrigation methods also affect water use efficiency, with drip irrigation the most efficient followed by sprinkler and flood irrigation. Furthermore, our results highlight the importance of explicitly accounting for irrigation sources and irrigation methods, which are the least understood and constrained aspects in modeling irrigation water demand, water scarcity and irrigation effects in Earth System Models.« less

  2. Hydrostratigraphy of a Sand Aquifer from Combined ERT and GPR

    NASA Astrophysics Data System (ADS)

    Papadimitrios, K. S.; Ferris, G.; Bank, C.

    2015-12-01

    Overlapping resistivity and ground-penetrating radar transects were collected on a shallow sand aquifer. The study area covers about 150 by 150 m, and the water table depth in that area ranges from as shallow as 30 cm to over 2m. Electric resistivity tomography shows layers of resistances which we relate to the vadose zone (above 1200 Ohm.m), the saturated zone (approx. 300 Ohm.m), and underlying aquitard (above 1200 Ohm.m, made of glacial till). The resistivity sections fail to capture the topography of the sand-till boundary seen in collected radargrams (e.g., from 80 to 120 ns over a 30 m horizontal distance). Converting radar travel times to thickness of the aquifer requires knowledge of water table depth as well as radar velocity in both the saturated and unsaturated sands. Water table depth can be taken from resistivity pseudosections as well as local piezometers. Radar velocities can be estimated based on the properties of the local sand and assuming 100% saturation. In merging the results from the two datasets we are able to map local hydrostratigraphy and aquifer geometry.

  3. Soil Management Effects on Gas Fluxes from an Organic Soil Agricultural System

    NASA Astrophysics Data System (ADS)

    Jennewein, S. P.; Bhadha, J. H.; Lang, T. A.; Singh, M.; Daroub, S. H.; McCray, M.

    2015-12-01

    The role of soil management on gas flux isn't well understood for Histosols of the Everglades Agricultural Area (EAA) of southern Florida. The region is responsible for roughly half of sugarcane (Saccharum spp. hybrids) production in the USA along with supplying winter vegetable crops to the eastern USA. Future productivity in the EAA is jeopardized by soil subsidence resulting from oxidation of organic matter. Establishing the role of tillage, water-table depth, nitrogen fertilizer, and soil depth on gas flux will help determine how effective various managements are on conserving soil. Ongoing lysimeter and field studies examined effects of management practices (water-table, tillage, and nitrogen fertilizer), and soil depth on, gas emission and microbial biomass. The trials were set in Belle Glade, FL, on Lauderhill muck (Lithic Haplosaprists). Results to be presented include soil microbial biomass and soil gas (CO2, CH4, and N2O) flux. This study provides insight into management effectiveness and agriculture sustainability on shallow muck soils of the EAA and will help farmers mitigate problems associated with soil subsidence and seasonally high water-tables.

  4. Interpretation of Stratified Fill, Frost Depths, Water Tables, and Massive Ice within Multi-Frequency Ground-Penetrating Radar Profiles Recorded Beneath Highways in Interior Alaska

    NASA Astrophysics Data System (ADS)

    Arcone, S. A.

    2014-12-01

    Road Radar generally refers to ground-penetrating radar (GPR) surveys intended to investigate pavement construction using pulses centered above 1 GHz. In interior Alaska thick sand and gravel grading and its frozen state by late winter generally afford up to 10 m of signal penetration at lower frequencies. Consequently, this penetration potentially allows identification of pavement issues involving frost heave and thaw settlement, while the smooth surface allows assessment of GPR performance in permafrost areas under ideal survey conditions. Here I discuss profiles using pulse center frequencies from 50 to 360 MHz, recorded over sections of the Steese and Elliott Highways within and just north of Fairbanks, respectively, and of the Tok Highway near Glennallen. Construction fill is easily recognized by its stratification; where marginally present along the Elliott it is replaced by steeply dipping horizons from the underlying schist. The frost depth and water table horizons are recognized by phase attributes of the reflected pulse, as dictated by the contrasts present in dielectric permittivity, their relative depths, and their continuity. Undulating stratification in the sand and gravel fill indicates thaw settlement, as caused by the melting of buried massive ice. The Tok section reveals the top and likely the bottom of massive ice. Generally, signal penetration is greatly reduced beneath the water table and so the highest resolution, at 360 MHz, covers all horizons. There is rare evidence of a permafrost table because it is most likely masked or nearly coincident with the water table. Permafrost penetration in frozen silts is a long-standing problem for GPR, for which I discuss a possible cause related to Maxwell-Wagner dielectric relaxation losses associated with unfrozen water.

  5. Nonlinear ecosystem services response to groundwater availability under climate extremes

    NASA Astrophysics Data System (ADS)

    Qiu, J.; Zipper, S. C.; Motew, M.; Booth, E.; Kucharik, C. J.; Steven, L. I.

    2017-12-01

    Depletion of groundwater has been accelerating at regional to global scales. Besides serving domestic, industrial and agricultural needs, in situ groundwater is also a key control on biological, physical and chemical processes across the critical zone, all of which underpin supply of ecosystem services essential for humanity. While there is a rich history of research on groundwater effects on subsurface and surface processes, understanding interactions, nonlinearity and feedbacks between groundwater and ecosystem services remain limited, and almost absent in the ecosystem service literature. Moreover, how climate extremes may alter groundwater effects on services is underexplored. In this research, we used a process-based ecosystem model (Agro-IBIS) to quantify groundwater effects on eight ecosystem services related to food, water and biogeochemical processes in an urbanizing agricultural watershed in the Midwest, USA. We asked: (1) Which ecosystem services are more susceptible to shallow groundwater influences? (2) Do effects of groundwater on ecosystem services vary under contrasting climate conditions (i.e., dry, wet and average)? (3) Where on the landscape are groundwater effects on ecosystem services most pronounced? (4) How do groundwater effects depend on water table depth? Overall, groundwater significantly impacted all services studied, with the largest effects on food production, water quality and quantity, and flood regulation services. Climate also mediated groundwater effects with the strongest effects occurring under dry climatic conditions. There was substantial spatial heterogeneity in groundwater effects across the landscape that is driven in part by spatial variations in water table depth. Most ecosystem services responded nonlinearly to groundwater availability, with most apparent groundwater effects occurring when the water table is shallower than a critical depth of 2.5-m. Our findings provide compelling evidence that groundwater plays a vital role in sustaining ecosystem services. Our research highlights the pressing need to consider groundwater during the assessment and management of ecosystem services, and suggests that protecting groundwater resources may enhance ecosystem service resilience to future climate extremes and increased climate variability.

  6. Modeling the effects of martian surface frost on ice table depth

    NASA Astrophysics Data System (ADS)

    Williams, K. E.; McKay, Christopher P.; Heldmann, J. L.

    2015-11-01

    Ground ice has been observed in small fresh craters in the vicinity of the Viking 2 lander site (48°N, 134°E). To explain these observations, current models for ground ice invoke levels of atmospheric water of 20 precipitable micrometers - higher than observations. However, surface frost has been observed at the Viking 2 site and surface water frost and snow have been shown to have a stabilizing effect on Antarctic subsurface ice. A snow or frost cover provides a source of humidity that should reduce the water vapor gradient and hence retard the sublimation loss from subsurface ice. We have modeled this effect for the Viking 2 landing site with combined ground ice and surface frost models. Our model is driven by atmospheric output fields from the NASA Ames Mars General Circulation Model (MGCM). Our modeling results show that the inclusion of a thin seasonal frost layer, present for a duration similar to that observed by the Viking Lander 2, produces ice table depths that are significantly shallower than a model that omits surface frost. When a maximum frost albedo of 0.35 was permitted, seasonal frost is present in our model from Ls = 182° to Ls = 16°, resulting in an ice table depth of 64 cm - which is 24 cm shallower than the frost-free scenario. The computed ice table depth is only slightly sensitive to the assumed maximum frost albedo or thickness in the model.

  7. Water movement through thick unsaturated zones overlying the central High Plains aquifer, southwestern Kansas, 2000-2001

    USGS Publications Warehouse

    McMahon, Peter B.; Dennehy, K.F.; Michel, R.L.; Sophocleous, M.A.; Ellett, K.M.; Hurlbut, D.B.

    2003-01-01

    The role of irrigation as a driving force for water and chemical movement to the central High Plains aquifer is uncertain because of the thick unsaturated zone overlying the aquifer. Water potentials and profiles of tritium, chloride, nitrate, and pesticide concentrations were used to evaluate water movement through thick unsaturated zones overlying the central High Plains aquifer at three sites in southwestern Kansas. One site was located in rangeland and two sites were located in areas dominated by irrigated agriculture. In 2000?2001, the depth to water at the rangeland site was 50 meters and the depth to water at the irrigated sites was about 45.4 meters. Irrigation at the study sites began in 1955?56. Measurements of matric potential and volumetric water content indicate wetter conditions existed in the deep unsaturated zone at the irrigated sites than at the rangeland site. Total water potentials in the unsaturated zone at the irrigated sites systematically decreased with depth to the water table, indicating a potential existed for downward water movement from the unsaturated zone to the water table at those sites. At the rangeland site, total water potentials in the deep unsaturated zone indicate small or no potential existed for downward water movement to the water table. Postbomb tritium was not detected below a depth of 1.9 meters in the unsaturated zone or in ground water at the rangeland site. In contrast, postbomb tritium was detected throughout most of the unsaturated zone and in ground water at both irrigated sites. These results indicate post-1953 water moved deeper in the unsaturated zone at the irrigated sites than at the rangeland site. The depth of the interface between prebomb and postbomb tritium and a tritium mass-balance method were used to estimate water fluxes in the unsaturated zone at each site. The average water fluxes at the rangeland site were 5.4 and 4.4 millimeters per year for the two methods, which are similar to the average water flux (5.1 millimeters per year) estimated using a chloride mass-balance method. Tritium profiles in the unsaturated zone at the irrigated sites were complicated by the presence of tritium-depleted intervals separating upper and lower zones containing postbomb tritium. If the interface between prebomb and postbomb tritium was at the top of the tritium-depleted interval and postbomb tritium detected beneath that interval was from the declining water table in the area, then the average water flux at the irrigated sites was estimated to be 21 to 54 millimeters per year. If postbomb tritium detected beneath the tritium-depleted interval was from bypass or preferential water movement through the local unsaturated zone instead of the declining water table, then the minimum water flux at the irrigated sites was estimated to be 106 to 116 millimeters per year. In either case, water fluxes at the irrigated sites were at least 4 to 12 times larger than the flux at the rangeland site, indicating irrigation was an important driving force for water movement through the unsaturated zone. The presence of postbomb tritium and large nitrate and total pesticide concentrations (24 milligrams per liter as nitrogen and 0.923 microgram per liter, respectively) in ground water at the irrigated sites indicates irrigation water also was an important driving force for chemical movement to the water table. The persistence of a downward hydraulic gradient from the deep unsaturated zone to the water table at the irrigated sites, in addition to large nitrate and atrazine concentrations in deep soil water (34 milligrams per liter as nitrogen and 0.79 microgram per liter, respectively), indicate that the deep unsaturated zone will be a source of nitrate and atrazine to the aquifer in the future.

  8. Analytical estimation show low depth-independent water loss due to vapor flux from deep aquifers

    NASA Astrophysics Data System (ADS)

    Selker, John S.

    2017-06-01

    Recent articles have provided estimates of evaporative flux from water tables in deserts that span 5 orders of magnitude. In this paper, we present an analytical calculation that indicates aquifer vapor flux to be limited to 0.01 mm/yr for sites where there is negligible recharge and the water table is well over 20 m below the surface. This value arises from the geothermal gradient, and therefore, is nearly independent of the actual depth of the aquifer. The value is in agreement with several numerical studies, but is 500 times lower than recently reported experimental values, and 100 times larger than an earlier analytical estimate.

  9. Area- and depth- weighted averages of selected SSURGO variables for the conterminous United States and District of Columbia

    USGS Publications Warehouse

    Wieczorek, Michael

    2014-01-01

    This digital data release consists of seven data files of soil attributes for the United States and the District of Columbia. The files are derived from National Resources Conservations Service’s (NRCS) Soil Survey Geographic database (SSURGO). The data files can be linked to the raster datasets of soil mapping unit identifiers (MUKEY) available through the NRCS’s Gridded Soil Survey Geographic (gSSURGO) database (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/geo/?cid=nrcs142p2_053628). The associated files, named DRAINAGECLASS, HYDRATING, HYDGRP, HYDRICCONDITION, LAYER, TEXT, and WTDEP are area- and depth-weighted average values for selected soil characteristics from the SSURGO database for the conterminous United States and the District of Columbia. The SSURGO tables were acquired from the NRCS on March 5, 2014. The soil characteristics in the DRAINAGE table are drainage class (DRNCLASS), which identifies the natural drainage conditions of the soil and refers to the frequency and duration of wet periods. The soil characteristics in the HYDRATING table are hydric rating (HYDRATE), a yes/no field that indicates whether or not a map unit component is classified as a "hydric soil". The soil characteristics in the HYDGRP table are the percentages for each hydrologic group per MUKEY. The soil characteristics in the HYDRICCONDITION table are hydric condition (HYDCON), which describes the natural condition of the soil component. The soil characteristics in the LAYER table are available water capacity (AVG_AWC), bulk density (AVG_BD), saturated hydraulic conductivity (AVG_KSAT), vertical saturated hydraulic conductivity (AVG_KV), soil erodibility factor (AVG_KFACT), porosity (AVG_POR), field capacity (AVG_FC), the soil fraction passing a number 4 sieve (AVG_NO4), the soil fraction passing a number 10 sieve (AVG_NO10), the soil fraction passing a number 200 sieve (AVG_NO200), and organic matter (AVG_OM). The soil characteristics in the TEXT table are percent sand, silt, and clay (AVG_SAND, AVG_SILT, and AVG_CLAY). The soil characteristics in the WTDEP table are the annual minimum water table depth (WTDEP_MIN), available water storage in the 0-25 cm soil horizon (AWS025), the minimum water table depth for the months April, May and June (WTDEPAMJ), the available water storage in the first 25 centimeters of the soil horizon (AWS25), the dominant drainage class (DRCLSD), the wettest drainage class (DRCLSWET), and the hydric classification (HYDCLASS), which is an indication of the proportion of the map unit, expressed as a class, that is "hydric", based on the hydric classification of a given MUKEY. (See Entity_Description for more detail). The tables were created with a set of arc macro language (aml) and awk (awk was created at Bell Labsin the 1970s and its name is derived from the first letters of the last names of its authors – Alfred Aho, Peter Weinberger, and Brian Kernighan) scripts. Send an email to mewieczo@usgs.gov to obtain copies of the computer code (See Process_Description.) The methods used are outlined in NRCS's "SSURGO Data Packaging and Use" (NRCS, 2011). The tables can be related or joined to the gSSURGO rasters of MUKEYs by the item 'MUKEY.' Joining or relating the tables to a MUKEY grid allows the creation of grids of area- and depth-weighted soil characteristics. A 90-meter raster of MUKEYs is provided which can be used to produce rasters of soil attributes. More detailed resolution rasters are available through NRCS via the link above.

  10. The Shoreline Management Tool - an ArcMap tool for analyzing water depth, inundated area, volume, and selected habitats, with an example for the lower Wood River Valley, Oregon

    USGS Publications Warehouse

    Snyder, Daniel T.; Haluska, Tana L.; Respini-Irwin, Darius

    2013-01-01

    The Shoreline Management Tool is a geographic information system (GIS) based program developed to assist water- and land-resource managers in assessing the benefits and effects of changes in surface-water stage on water depth, inundated area, and water volume. Additionally, the Shoreline Management Tool can be used to identify aquatic or terrestrial habitat areas where conditions may be suitable for specific plants or animals as defined by user-specified criteria including water depth, land-surface slope, and land-surface aspect. The tool can also be used to delineate areas for use in determining a variety of hydrologic budget components such as surface-water storage, precipitation, runoff, or evapotranspiration. The Shoreline Management Tool consists of two parts, a graphical user interface for use with Esri™ ArcMap™ GIS software to interact with the user to define scenarios and map results, and a spreadsheet in Microsoft® Excel® developed to display tables and graphs of the results. The graphical user interface allows the user to define a scenario consisting of an inundation level (stage), land areas (parcels), and habitats (areas meeting user-specified conditions) based on water depth, slope, and aspect criteria. The tool uses data consisting of land-surface elevation, tables of stage/volume and stage/area, and delineated parcel boundaries to produce maps (data layers) of inundated areas and areas that meet the habitat criteria. The tool can be run in a Single-Time Scenario mode or in a Time-Series Scenario mode, which uses an input file of dates and associated stages. The spreadsheet part of the tool uses a macro to process the results from the graphical user interface to create tables and graphs of inundated water volume, inundated area, dry area, and mean water depth for each land parcel based on the user-specified stage. The macro also creates tables and graphs of the area, perimeter, and number of polygons comprising the user-specified habitat areas within each parcel. The Shoreline Management Tool is highly transferable, using easily generated or readily available data. The capabilities of the tool are demonstrated using data from the lower Wood River Valley adjacent to Upper Klamath and Agency Lakes in southern Oregon.

  11. Patterns and drivers of fungal community depth stratification in Sphagnum peat.

    PubMed

    Lamit, Louis J; Romanowicz, Karl J; Potvin, Lynette R; Rivers, Adam R; Singh, Kanwar; Lennon, Jay T; Tringe, Susannah G; Kane, Evan S; Lilleskov, Erik A

    2017-07-01

    Peatlands store an immense pool of soil carbon vulnerable to microbial oxidation due to drought and intentional draining. We used amplicon sequencing and quantitative PCR to (i) examine how fungi are influenced by depth in the peat profile, water table and plant functional group at the onset of a multiyear mesocosm experiment, and (ii) test if fungi are correlated with abiotic variables of peat and pore water. We hypothesized that each factor influenced fungi, but that depth would have the strongest effect early in the experiment. We found that (i) communities were strongly depth stratified; fungi were four times more abundant in the upper (10-20 cm) than the lower (30-40 cm) depth, and dominance shifted from ericoid mycorrhizal fungi to saprotrophs and endophytes with increasing depth; (ii) the influence of plant functional group was depth dependent, with Ericaceae structuring the community in the upper peat only; (iii) water table had minor influences; and (iv) communities strongly covaried with abiotic variables, including indices of peat and pore water carbon quality. Our results highlight the importance of vertical stratification to peatland fungi, and the depth dependency of plant functional group effects, which must be considered when elucidating the role of fungi in peatland carbon dynamics. Published by Oxford University Press on behalf of FEMS 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  12. Impact of mesh tracks and low-ground-pressure vehicle use on blanket peat hydrology

    NASA Astrophysics Data System (ADS)

    McKendrick-Smith, Kathryn; Holden, Joseph; Parry, Lauren

    2016-04-01

    Peatlands are subject to multiple uses including drainage, farming and recreation. Low-ground-pressure vehicle access is desirable by land owners and tracks facilitate access. However, there is concern that such activity may impact peat hydrology and so granting permission for track installation has been problematic, particularly without evidence for decision-making. We present the first comprehensive study of mesh track and low-ground-pressure vehicle impacts on peatland hydrology. In the sub-arctic oceanic climate of the Moor House World Biosphere Reserve in the North Pennines, UK, a 1.5 km long experimental track was installed to investigate hydrological impacts. Surface vegetation was cut and the plastic mesh track pinned into the peat surface. The experimental track was split into 7 treatments, designed to reflect typical track usage (0 - 5 vehicle passes per week) and varying vehicle weight. The greatest hydrological impacts were expected for sections of track subject to more frequent vehicle use and in close proximity to the track. In total 554 dipwells (including 15 automated recording at 15-min intervals) were monitored for water-table depth, positioned to capture potential spatial variability in response. Before track installation, samples for vertical and lateral hydraulic conductivity (Ks) analysis (using the modified cube method) were taken at 0-10 cm depth from a frequently driven treatment (n = 15), an infrequently driven treatment (0.5 passes per week) (n = 15) and a control site with no track/driving (n = 15). The test was repeated after 16 months of track use. We present a spatially and temporally rich water-table dataset from the study site showing how the impacts of the track on water table are spatially highly variable. Water-table depths across the site were shallow, typically within the upper 10 cm of the peat profile for > 75% of the time. We show that mesh track and low-ground-pressure vehicle impacts on water-table depth were small except for directly under and close to the track. Where the track runs parallel to the contours, water-tables were found to be deeper downslope of the track and shallower upslope. However in the no track/driving treatment; water table was significantly shallower downslope than upslope. Strong anisotropy was found in both 'before-track' and 'after-track' Ks, with horizontal Ks significantly greater than vertical Ks. No significant difference was found in vertical Ks before and after driving (medians 8.6 x 10-5 and 6.6 x 10-5 cm s-1 respectively). Horizontal Ks was significantly greater after driving (median 2.2 x 10-3 cm s-1) than before (median 3.7 x 10-4 cm s-1). Post-hoc testing highlights variability in response to treatment and topographic position. We suggest that this surprising result is related to rapid regrowth of new vegetation (particularly Sphagnum) through the mesh of the track, which was more dominant on horizontal Ks than the compression from low-ground-pressure vehicle use. Our results indicate that mesh tracks have a significant impact upon hydrology; however response is variable dependent upon topographic and seasonal factors. These findings can be used to inform land-management decision-making for the use of mesh tracks in peatlands.

  13. Evaluation of a mechanistic algorithm to calculate the influence of a shallow water table on hydrology sediment and pesticide transport through vegetative filter strips

    NASA Astrophysics Data System (ADS)

    Lauvernet, C.; Munoz-Carpena, R.; Carluer, N.

    2012-04-01

    Natural or introduced areas of vegetation, also known as vegetative filter strips (VFS), are a common environmental control practice to protect surface water bodies from human influence. In Europe, VFS are placed along the water network to protect from agrochemical drift during applications, in addition to runoff control. Their bottomland placement next to the streams often implies the presence of a seasonal shallow water table which can have a profound impact on the efficiency of the buffer zone (Lacas et al. 2005). A physically-based algorithm describing ponded infiltration into soils bounded by a water table, proposed by Salvucci and Enthekabi (1995), was further developed to simulate VFS dynamics by making it explicit in time, account for unsteady rainfall conditions, and by coupling to a numerical overland flow and transport model (VFSMOD) (Munoz-Carpena et al., submitted). In this study, we evaluate the importance of the presence of a shallow water table on filter efficiency (reductions in runoff, sediment and pesticide mass), in the context of all other input factors used to describe the system. Global sensitivity analysis (GSA) was used to rank the important input factors and the presence of interactions, as well as the contribution of the important factors to the output variance. GSA of VSFMOD modified for shallow water table was implemented on 2 sites selected in France because they represent different agro-pedo-climatic conditions for which we can compare the role of the factors influencing the performance of grassed buffer strips for surface runoff, sediment and pesticide removal. The first site at Morcille watershed in the Beaujolais wineyard (Rhône-Alpes) contains a very permeable sandy-clay with water table depth varying with the season (very deep in summer and shallow in winter), with a high slope (20 to 30%), and subject to strong seasonal storms (semi-continental, Mediterranean climate). The second site at La Jailliere (Loire-Atlantique, ARVALIS-Institut du Végétal, mainly wheat and maize) is a poorly permeable medium loamy over clay soil, with possible local shallow water tables, slopes around 3% and mild and rainy winter while summer is cool and wet (temperate, oceanic climate). GSA allowed us to interpret the results from the multivariate Monte-Carlo uncertainty analysis and gain insights on the management and placement of the buffer systems.

  14. Installation restoration research program: Assessment of geophysical methods for subsurface geologic mapping, cluster 13, Edgewood Area, Aberdeen Proving Ground, Maryland. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, D.K.; Sharp, M.K.; Sjostrom, K.J.

    1996-10-01

    Seismic refraction, electrical resistivity, and transient electromagnetic surveys were conducted at a portion of Cluster 13, Edgewood Area of Aberdeen Proving Ground, Maryland. Seismic refraction cross sections map the topsoil layer and the water table (saturated zone). The water table elevations from the seismic surveys correlate closely with water table elevations in nearby monitoring wells. Electrical resistivity cross sections reveal a very complicated distribution of sandy and clayey facies in the upper 10 - 15 m of the subsurface. A continuous surficial (topsoil) layer correlates with the surficial layer of the seismic section and nearby boring logs. The complexity andmore » details of the electrical resistivity cross section correlate well with boring and geophysical logs from nearby wells. The transient electromagnetic surveys map the Pleistocene-Cretaceous boundary, the saprolite, and the top of the Precambrian crystalline rocks. Conducting the transient electromagnetic surveys on a grid pattern allows the construction of a three-dimensional representation of subsurface geology (as represented by variations of electrical resistivity). Thickness and depth of the saprolitic layer and depth to top of the Precambrian rocks are consistent with generalized geologic cross sections for the Edgewood Area and depths projected from reported depths at the Aberdeen Proving Ground NW boundary using regional dips.« less

  15. Hydrologic regulation of plant rooting depth

    PubMed Central

    Miguez-Macho, Gonzalo; Jobbágy, Esteban G.; Jackson, Robert B.; Otero-Casal, Carlos

    2017-01-01

    Plant rooting depth affects ecosystem resilience to environmental stress such as drought. Deep roots connect deep soil/groundwater to the atmosphere, thus influencing the hydrologic cycle and climate. Deep roots enhance bedrock weathering, thus regulating the long-term carbon cycle. However, we know little about how deep roots go and why. Here, we present a global synthesis of 2,200 root observations of >1,000 species along biotic (life form, genus) and abiotic (precipitation, soil, drainage) gradients. Results reveal strong sensitivities of rooting depth to local soil water profiles determined by precipitation infiltration depth from the top (reflecting climate and soil), and groundwater table depth from below (reflecting topography-driven land drainage). In well-drained uplands, rooting depth follows infiltration depth; in waterlogged lowlands, roots stay shallow, avoiding oxygen stress below the water table; in between, high productivity and drought can send roots many meters down to the groundwater capillary fringe. This framework explains the contrasting rooting depths observed under the same climate for the same species but at distinct topographic positions. We assess the global significance of these hydrologic mechanisms by estimating root water-uptake depths using an inverse model, based on observed productivity and atmosphere, at 30″ (∼1-km) global grids to capture the topography critical to soil hydrology. The resulting patterns of plant rooting depth bear a strong topographic and hydrologic signature at landscape to global scales. They underscore a fundamental plant–water feedback pathway that may be critical to understanding plant-mediated global change. PMID:28923923

  16. Hydrologic regulation of plant rooting depth.

    PubMed

    Fan, Ying; Miguez-Macho, Gonzalo; Jobbágy, Esteban G; Jackson, Robert B; Otero-Casal, Carlos

    2017-10-03

    Plant rooting depth affects ecosystem resilience to environmental stress such as drought. Deep roots connect deep soil/groundwater to the atmosphere, thus influencing the hydrologic cycle and climate. Deep roots enhance bedrock weathering, thus regulating the long-term carbon cycle. However, we know little about how deep roots go and why. Here, we present a global synthesis of 2,200 root observations of >1,000 species along biotic (life form, genus) and abiotic (precipitation, soil, drainage) gradients. Results reveal strong sensitivities of rooting depth to local soil water profiles determined by precipitation infiltration depth from the top (reflecting climate and soil), and groundwater table depth from below (reflecting topography-driven land drainage). In well-drained uplands, rooting depth follows infiltration depth; in waterlogged lowlands, roots stay shallow, avoiding oxygen stress below the water table; in between, high productivity and drought can send roots many meters down to the groundwater capillary fringe. This framework explains the contrasting rooting depths observed under the same climate for the same species but at distinct topographic positions. We assess the global significance of these hydrologic mechanisms by estimating root water-uptake depths using an inverse model, based on observed productivity and atmosphere, at 30″ (∼1-km) global grids to capture the topography critical to soil hydrology. The resulting patterns of plant rooting depth bear a strong topographic and hydrologic signature at landscape to global scales. They underscore a fundamental plant-water feedback pathway that may be critical to understanding plant-mediated global change.

  17. Hydrologic regulation of plant rooting depth

    NASA Astrophysics Data System (ADS)

    Fan, Ying; Miguez-Macho, Gonzalo; Jobbágy, Esteban G.; Jackson, Robert B.; Otero-Casal, Carlos

    2017-10-01

    Plant rooting depth affects ecosystem resilience to environmental stress such as drought. Deep roots connect deep soil/groundwater to the atmosphere, thus influencing the hydrologic cycle and climate. Deep roots enhance bedrock weathering, thus regulating the long-term carbon cycle. However, we know little about how deep roots go and why. Here, we present a global synthesis of 2,200 root observations of >1,000 species along biotic (life form, genus) and abiotic (precipitation, soil, drainage) gradients. Results reveal strong sensitivities of rooting depth to local soil water profiles determined by precipitation infiltration depth from the top (reflecting climate and soil), and groundwater table depth from below (reflecting topography-driven land drainage). In well-drained uplands, rooting depth follows infiltration depth; in waterlogged lowlands, roots stay shallow, avoiding oxygen stress below the water table; in between, high productivity and drought can send roots many meters down to the groundwater capillary fringe. This framework explains the contrasting rooting depths observed under the same climate for the same species but at distinct topographic positions. We assess the global significance of these hydrologic mechanisms by estimating root water-uptake depths using an inverse model, based on observed productivity and atmosphere, at 30″ (˜1-km) global grids to capture the topography critical to soil hydrology. The resulting patterns of plant rooting depth bear a strong topographic and hydrologic signature at landscape to global scales. They underscore a fundamental plant-water feedback pathway that may be critical to understanding plant-mediated global change.

  18. Variation of Pressure with Depth of Water: Working with High-Tech and Low-Cost Materials

    ERIC Educational Resources Information Center

    Ornek, Funda; Zziwa, Byansi Jude; Taganahan, Teresita D.

    2013-01-01

    When you dive underwater, you feel the pressure on your ears and, as you dive deeper, more pressure is felt. This article presents an activity that teachers might find useful for demonstrating the relationship between water depth and pressure. (Contains 5 figures and 1 table.)

  19. Spatial patterns of soil nutrients and groundwater levels within the Debre Mawi watershed of the Ethiopian highlands

    NASA Astrophysics Data System (ADS)

    Guzman, Christian; Tilahun, Seifu; Dagnew, Dessalegn; Zegeye, Assefe; Tebebu, Tigist; Yitaferu, Birru; Steenhuis, Tammo

    2015-04-01

    Persistent patterns of erosion have emerged in the Ethiopian highlands leading to soil and water conservation practices being implemented throughout the countryside. A common concern is the loss of soil fertility and loss of soil water. This study investigates the spatial patterns of soil nutrients and water table depths in a small sub-watershed in the northwestern Ethiopian highlands. NPK, a particularly important group of nutrients for inorganic fertilizer considerations, did not follow a consistent trend as a group along and across slope and land use transects. Whereas nitrogen content was greatest in the upslope regions (~0.1% TN), available phosphorus had comparably similar content in the different slope regions throughout the watershed (~2.7 mg/kg). The exchangeable cations (K, Ca, Mg) did increase in content in a downslope direction (in most cases though, they were highest in the middle region) but not consistently later in the season. On average, calcium (40 cmol/kg), magnesium (5 cmol/kg), and potassium (0.5 cmol/kg) were orders of magnitudes different in content. The perched water table in different areas of the watershed showed a very distinct trend. The lower part of the sub-watershed had shallower levels of water table depths (less than 10 cm from the surface) than did the upper parts of the sub-watershed (usually greater than 120 cm from the surface). The middle part of the sub-watershed had water table depths located at 40 to 70 cm below the surface. These results show how the landscape slope position and land use may be important for planning where and when soil nutrients and water would be expected to be appropriately "conserved" or stored.

  20. Effects of sea-level rise on barrier island groundwater system dynamics: ecohydrological implications

    USGS Publications Warehouse

    Masterson, John P.; Fienen, Michael N.; Thieler, E. Robert; Gesch, Dean B.; Gutierrez, Benjamin T.; Plant, Nathaniel G.

    2014-01-01

    We used a numerical model to investigate how a barrier island groundwater system responds to increases of up to 60 cm in sea level. We found that a sea-level rise of 20 cm leads to substantial changes in the depth of the water table and the extent and depth of saltwater intrusion, which are key determinants in the establishment, distribution and succession of vegetation assemblages and habitat suitability in barrier islands ecosystems. In our simulations, increases in water-table height in areas with a shallow depth to water (or thin vadose zone) resulted in extensive groundwater inundation of land surface and a thinning of the underlying freshwater lens. We demonstrated the interdependence of the groundwater response to island morphology by evaluating changes at three sites. This interdependence can have a profound effect on ecosystem composition in these fragile coastal landscapes under long-term changing climatic conditions.

  1. Validating a topographically driven model of peatland water table: Implications for understanding land cover controls on water table.

    NASA Astrophysics Data System (ADS)

    Evans, Martin; Allott, Tim; Worrall, Fred; Rowson, James; Maskill, Rachael

    2014-05-01

    Water table is arguably the dominant control on biogeochemical cycling in peatland systems. Local water tables are controlled by peat surface water balance and lateral transfer of water driven by slope can be a significant component of this balance. In particular, blanket peatlands typically have relatively high surface slope compared to other peatland types so that there is the potential for water table to be significantly contolled by topographic context. UK blanket peatlands are also significantly eroded so that there is the potential for additional topographic drainage of the peatland surface. This paper presents a topographically driven model of blanket peat water table. An initial model presented in Allott et al. (2009) has been refined and tested against further water table data collected across the Bleaklow and Kinderscout plateaux of the English Peak District. The water table model quantifies the impact of peat erosion on water table throughout this dramatically dissected landscape demonstrating that almost 50% of the landscape has suffered significant water table drawdown. The model calibrates the impact of slope and degree of dissection on local water tables but does not incorporate any effects of surface cover on water table conditions. Consequently significant outliers in the test data are potentially indicative of important impacts of surface cover on water table conditions. In the test data presented here sites associated with regular moorland burning are significant outliers. The data currently available do not allow us to draw conclusions around the impact of land cover but they indicate an important potential application of the validated model in controlling for topographic position in further testing of the impact of land cover on peatland water tables. Allott, T.E.H. & Evans, M.G., Lindsay, J.B., Agnew, C.T., Freer, J.E., Jones, A. & Parnell, M. Water tables in Peak District blanket peatlands. Moors for the Future Report No. 17. Moors for the Future Partnership, Edale, 47pp.

  2. Geohydrology, water quality, and nitrogen geochemistry in the saturated and unsaturated zones beneath various land uses, Riverside and San Bernardino counties, California, 1991-93

    USGS Publications Warehouse

    Rees, Terry F.; Bright, Daniel J.; Fay, Ronald G.; Christensen, Allen H.; Anders, Robert; Baharie, Brian S.; Land, Michael T.

    1995-01-01

    The U.S. Geological Survey, in cooperation with the Eastern Municipal Water District, the Metropolitan Water District of Southern California, and the Orange County Water District, has completed a detailed study of the Hemet groundwater basin. The quantity of ground water stored in the basin in August 1992 is estimated to be 327,000 acre-feet. Dissolved-solids concentration ranged from 380 to 700 mg/L (milligrams per liter), except in small areas where the concentration exceeded 1,000 mg/L. Nitrate concentrations exceeded the U.S. Environmental Protection Agency Maximum Contaminant Level (MCL) of 10 mg/L nitrate (as nitrogen) in the southeastern part of the basin, in the Domenigoni Valley area, and beneath a dairy in the Diamond Valley area. Seven sites representing selected land uses-- residential, turf grass irrigated with reclaimed water, citrus grove, irrigated farm, poultry farm, and dairy (two sites)--were selected for detailed study of nitrogen geochemistry in the unsaturated zone. For all land uses, nitrate was the dominant nitrogen species in the unsaturated zone.Although nitrate was seasonally present in the shallow unsaturated zone beneath the residential site, it was absent at moderate depths, suggesting negligible migration of nitrate from the surface at this time. Microbial denitrification probably is occurring in the shallow unsaturated zone. High nitrate concentrations in the deep unsaturated zone (greater than 100 ft) suggest either significantly higher nitrate loading at some time in the past, or lateral movement of nitrate at depth. Nitrate also is seasonally present in the shallow unsaturated zone beneath the reclaimed-water site, and (in contrast with the residential site), nitrate is perennially present in the deeper unsaturated zone. Microbial denitrification in the unsaturated zone and in the capillary fringe above the water table decreases the concentrations of nitrate in pore water to below the MCL before reaching the water table.Pore water in the unsaturated zone beneath the citrus grove site contains very high concentrations of nitrate. Even though there are zones of microbial denitrification, nitrate seems to be migrating downward to the water table. The presence of a shallow perched-water zone beneath the irrigated-farm site prevents the vertical movement of nitrate from the surface to the regional water table. Above the perched zone, nitrate concentrations in the unsaturated zone are variable, ranging from below the MCL to four times the MCL. Periodically, nitrate is flushed from the shallow unsaturated zone to the perched-water zone. The unsaturated zone pore-moisture quality could not be adequately addressed because of the very dry conditions in the unsaturated zone beneath the poultry-farm site. Surficial clay deposits prevent water from percolating downward.At the two dairy sites, nitrate loading in pore water at the surface was very high, as great as 7,000 mg/L. Microbial denitrification in the unsaturated zone causes such concentrations to decrease rapidly with depth. At a depth of 20 ft, nitrate concentration was less than 100 mg/L. In areas where the depth to water is less than 20 ft, nitrate loading to ground water can be very high, whereas in areas where depth to water is greater than 100 ft, most of the nitrate is microbially removed before reaching the water table.

  3. Controlled laboratory experiments and modeling of vegetative filter strips with shallow water tables

    NASA Astrophysics Data System (ADS)

    Fox, Garey A.; Muñoz-Carpena, Rafael; Purvis, Rebecca A.

    2018-01-01

    Natural or planted vegetation at the edge of fields or adjacent to streams, also known as vegetative filter strips (VFS), are commonly used as an environmental mitigation practice for runoff pollution and agrochemical spray drift. The VFS position in lowlands near water bodies often implies the presence of a seasonal shallow water table (WT). In spite of its potential importance, there is limited experimental work that systematically studies the effect of shallow WTs on VFS efficacy. Previous research recently coupled a new physically based algorithm describing infiltration into soils bounded by a water table into the VFS numerical overland flow and transport model, VFSMOD, to simulate VFS dynamics under shallow WT conditions. In this study, we tested the performance of the model against laboratory mesoscale data under controlled conditions. A laboratory soil box (1.0 m wide, 2.0 m long, and 0.7 m deep) was used to simulate a VFS and quantify the influence of shallow WTs on runoff. Experiments included planted Bermuda grass on repacked silt loam and sandy loam soils. A series of experiments were performed including a free drainage case (no WT) and a static shallow water table (0.3-0.4 m below ground surface). For each soil type, this research first calibrated VFSMOD to the observed outflow hydrograph for the free drainage experiments to parameterize the soil hydraulic and vegetation parameters, and then evaluated the model based on outflow hydrographs for the shallow WT experiments. This research used several statistical metrics and a new approach based on hypothesis testing of the Nash-Sutcliffe model efficiency coefficient (NSE) to evaluate model performance. The new VFSMOD routines successfully simulated the outflow hydrographs under both free drainage and shallow WT conditions. Statistical metrics considered the model performance valid with greater than 99.5% probability across all scenarios. This research also simulated the shallow water table experiments with both free drainage and various water table depths to quantify the effect of assuming the former boundary condition. For these two soil types, shallow WTs within 1.0-1.2 m below the soil surface influenced infiltration. Existing models will suggest a more protective vegetative filter strip than what actually exists if shallow water table conditions are not considered.

  4. Depth dependent microbial carbon use efficiency in the capillary fringe as affected by water table fluctuations in a column incubation experiment

    NASA Astrophysics Data System (ADS)

    Pronk, G. J.; Mellage, A.; Milojevic, T.; Smeaton, C. M.; Rezanezhad, F.; Van Cappellen, P.

    2017-12-01

    Microbial growth and turnover of soil organic carbon (SOC) depend on the availability of electron donors and acceptors. The steep geochemical gradients in the capillary fringe between the saturated and unsaturated zones provide hotspots of soil microbial activity. Water table fluctuations and the associated drying and wetting cycles within these zones have been observed to lead to enhanced turnover of SOC and adaptation of the local microbial communities. To improve our understanding of SOC degradation under changing moisture conditions, we carried out an automated soil column experiment with integrated of hydro-bio-geophysical monitoring under both constant and oscillating water table conditions. An artificial soil mixture composed of quartz sand, montmorillonite, goethite and humus was used to provide a well-defined system. This material was inoculated with a microbial community extracted from a forested riparian zone. The soils were packed into 6 columns (60 cm length and 7.5 cm inner diameter) to a height of 45 cm; and three replicate columns were incubated under constant water table while another three were saturated and drained monthly. The initial soil development, carbon cycling and microbial community development were then characterized during 10 months of incubation. This system provides an ideal artificial gradient from the saturated to the unsaturated zone to study soil development from initially homogeneous materials and the same microbial community composition under controlled conditions. Depth profiles of SOC and microbial biomass after 329 days of incubation showed a depletion of carbon in the transition drying and wetting zone that was not associated with higher accumulation of microbial biomass, indicating a lower carbon use efficiency of the microbial community established within the water table fluctuation zone. This was supported by a higher ATP to microbial biomass carbon ratio within the same zone. The findings from this study highlight the importance of considering the effects of transient soil moisture and oxygen availability on microbial mediated SOC transformations. The effects of these changes in carbon use efficiency need to be included in soil models in order to accurately predict SOC turnover.

  5. Understanding the Impact of Ground Water Treatment and Evapotranspiration Parameterizations in the NCEP Climate Forecast System (CFS) on Warm Season Predictions

    NASA Astrophysics Data System (ADS)

    Ek, M. B.; Yang, R.

    2016-12-01

    Skillful short-term weather forecasts, which rely heavily on quality atmospheric initial conditions, have a fundamental limit of about two weeks owing to the chaotic nature of the atmosphere. Useful forecasts at sub-seasonal to seasonal time scales, on the other hand, require well-simulated large-scale atmospheric response to slowly varying lower boundary forcings from both the ocean and land surface. The critical importance of ocean has been recognized, where the ocean indices have been used in a variety of climate applications. In contrast, the impact of land surface anomalies, especially soil moisture and associated evaporation, has been proven notably difficult to demonstrate. The Noah Land Surface Model (LSM) is the land component of NCEP CFS version 2 (CFSv2) used for seasonal predictions. The Noah LSM originates from the Oregon State University (OSU) LSM. The evaporation control in the Noah LSM is based on the Penman-Monteith equation, which takes into account the solar radiation, relative humidity, air temperature, and soil moisture effects. The Noah LSM is configured with four soil layers with a fixed depth of 2 meters and free drainage at the bottom soil layer. This treatment assumes that the soil water table depth is well within the specified range, and also potentially misrepresents the soil moisture memory effects at seasonal time scales. To overcome the limitation, an unconfined aquifer is attached to the bottom of the soil to allow the water table to move freely up and down. In addition, in conjunction with the water table, an alternative Ball-Berry photosynthesis-based evaporation parameterization is examined to evaluate the impact from using a different evaporation control methodology. Focusing on the 2011 and 2012 intense summer droughts in the central US, seasonal ensemble forecast experiments with early May initial conditions are carried out for the two years using an enhanced version of CFSv2, where the atmospheric component of the CFSv2 is coupled to the Noah Multiple-Parameterization (Noah-MP) land model. The Noah-MP has different options for ground water and evaporation control parameterizations. The differences will be presented and results will be discussed.

  6. Evaluating the Effect of Ground Temperature on Phreatic Evaporation in Bare Soil Area

    NASA Astrophysics Data System (ADS)

    Manting, S.; Wang, B.; Liu, P.

    2017-12-01

    Phreatic water evaporation is an important link in water conversion, and it is also the main discharge of shallow groundwater. The influencing factors of phreatic evaporation intensity include meteorological elements, soil lithology, ground temperature, water table depth and plant growth status, etc. However, the effect of ground temperature on phreatic evaporation is neglected in the traditional phreatic evaporation study, while from the principle of water vapor conversion, the ground temperature is the main energy controlling the process. Taking the homogeneous sand in bare soil area for example, the effect of different temperature difference between ground temperature and air temperature on phreatic evaporation was studied by constructing soil column experiment and Hydrus numerical simulation model. Based on analysis of the process and trend of soil water content in different depths, the influence mechanism of ground temperature on phreatic evaporation was discussed quantitatively. The experimental results show that the change trend of daily evaporation is basically the same. But considering the effect of ground temperature the evaporation amount is significantly larger than that of without considering the temperature. When the temperature (-2.3 ° 13.6 °) is lower than the ground temperature (20 °), the average value of evaporation increased by about 33.7%; When the temperature (22 ° -33.2 °) is higher than the ground temperature (20 °), the average increase of evaporation is about 10.08%. The effect of ground temperature on the evaporation is very significant in winter and summer. Soil water content increased with the increase of water table depth, while the soil water content at the same depth was different due to the temperature difference, and the soil water content was also different. The larger the temperature difference, the greater the difference of soil water content. The slope of the trend line of the phreatic evaporation is also increased accordingly. That is, under the influence of ground temperature, water vapor conversion rate increased, resulting in increased soil moisture and increased phreatic evaporation. Therefore, considering the ground temperature, it has important theoretical and practical value for scientific understanding and revealing the phreatic evaporation process.

  7. Response of anaerobic carbon cycling to water table manipulation in an Alaskan rich fen

    USGS Publications Warehouse

    Kane, E.S.; Chivers, M.R.; Turetsky, M.R.; Treat, C.C.; Petersen, D.G.; Waldrop, M.; Harden, J.W.; McGuire, A.D.

    2013-01-01

    To test the effects of altered hydrology on organic soil decomposition, we investigated CO2 and CH4 production potential of rich-fen peat (mean surface pH = 6.3) collected from a field water table manipulation experiment including control, raised and lowered water table treatments. Mean anaerobic CO2 production potential at 10 cm depth (14.1 ± 0.9 μmol C g−1 d−1) was as high as aerobic CO2 production potential (10.6 ± 1.5 μmol C g−1 d−1), while CH4 production was low (mean of 7.8 ± 1.5 nmol C g−1 d−1). Denitrification enzyme activity indicated a very high denitrification potential (197 ± 23 μg N g−1 d−1), but net NO-3 reduction suggested this was a relatively minor pathway for anaerobic CO2 production. Abundances of denitrifier genes (nirK and nosZ) did not change across water table treatments. SO2-4 reduction also did not appear to be an important pathway for anaerobic CO2 production. The net accumulation of acetate and formate as decomposition end products in the raised water table treatment suggested that fermentation was a significant pathway for carbon mineralization, even in the presence of NO-3. Dissolved organic carbon (DOC) concentrations were the strongest predictors of potential anaerobic and aerobic CO2 production. Across all water table treatments, the CO2:CH4 ratio increased with initial DOC leachate concentrations. While the field water table treatment did not have a significant effect on mean CO2 or CH4 production potential, the CO2:CH4 ratio was highest in shallow peat incubations from the drained treatment. These data suggest that with continued drying or with a more variable water table, anaerobic CO2 production may be favored over CH4 production in this rich fen. Future research examining the potential for dissolved organic substances to facilitate anaerobic respiration, or alternative redox processes that limit the effectiveness of organic acids as substrates in anaerobic metabolism, would help explain additional uncertainty concerning carbon mineralization in this system.

  8. Representing northern peatland microtopography and hydrology within the Community Land Model

    DOE PAGES

    Shi, Xiaoying; Thornton, Peter E.; Ricciuto, Daniel M.; ...

    2015-11-12

    Predictive understanding of northern peatland hydrology is a necessary precursor to understanding the fate of massive carbon stores in these systems under the influence of present and future climate change. Current models have begun to address microtopographic controls on peatland hydrology, but none have included a prognostic calculation of peatland water table depth for a vegetated wetland, independent of prescribed regional water tables. We introduce here a new configuration of the Community Land Model (CLM) which includes a fully prognostic water table calculation for a vegetated peatland. Our structural and process changes to CLM focus on modifications needed to representmore » the hydrologic cycle of bogs environment with perched water tables, as well as distinct hydrologic dynamics and vegetation communities of the raised hummock and sunken hollow microtopography characteristic of peatland bogs. The modified model was parameterized and independently evaluated against observations from an ombrotrophic raised-dome bog in northern Minnesota (S1-Bog), the site for the Spruce and Peatland Responses Under Climatic and Environmental Change experiment (SPRUCE). Simulated water table levels compared well with site-level observations. The new model predicts hydrologic changes in response to planned warming at the SPRUCE site. At present, standing water is commonly observed in bog hollows after large rainfall events during the growing season, but simulations suggest a sharp decrease in water table levels due to increased evapotranspiration under the most extreme warming level, nearly eliminating the occurrence of standing water in the growing season. Simulated soil energy balance was strongly influenced by reduced winter snowpack under warming simulations, with the warming influence on soil temperature partly offset by the loss of insulating snowpack in early and late winter. Furthermore, the new model provides improved predictive capacity for seasonal hydrological dynamics in northern peatlands, and provides a useful foundation for investigation of northern peatland carbon exchange.« less

  9. Representing northern peatland microtopography and hydrology within the Community Land Model

    DOE PAGES

    Shi, X.; Thornton, P. E.; Ricciuto, D. M.; ...

    2015-02-20

    Predictive understanding of northern peatland hydrology is a necessary precursor to understanding the fate of massive carbon stores in these systems under the influence of present and future climate change. Current models have begun to address microtopographic controls on peatland hydrology, but none have included a prognostic calculation of peatland water table depth for a vegetated wetland, independent of prescribed regional water tables. We introduce here a new configuration of the Community Land Model (CLM) which includes a fully prognostic water table calculation for a vegetated peatland. Our structural and process changes to CLM focus on modifications needed to representmore » the hydrologic cycle of bogs environment with perched water tables, as well as distinct hydrologic dynamics and vegetation communities of the raised hummock and sunken hollow microtopography characteristic of peatland bogs. The modified model was parameterized and independently evaluated against observations from an ombrotrophic raised-dome bog in northern Minnesota (S1-Bog), the site for the Spruce and Peatland Responses Under Climatic and Environmental Change experiment (SPRUCE). Simulated water table levels compared well with site-level observations. The new model predicts significant hydrologic changes in response to planned warming at the SPRUCE site. At present, standing water is commonly observed in bog hollows after large rainfall events during the growing season, but simulations suggest a sharp decrease in water table levels due to increased evapotranspiration under the most extreme warming level, nearly eliminating the occurrence of standing water in the growing season. Simulated soil energy balance was strongly influenced by reduced winter snowpack under warming simulations, with the warming influence on soil temperature partly offset by the loss of insulating snowpack in early and late winter. The new model provides improved predictive capacity for seasonal hydrological dynamics in northern peatlands, and provides a useful foundation for investigation of northern peatland carbon exchange.« less

  10. Effect of irrigation water salinity and sodicity and water table position on water table chemistry beneath Atriplex lentiformis and Hordeum marinum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Browning, L.S.; Bauder, J.W.; Phelps, S.D.

    2006-04-15

    Coal bed methane (CBM) extraction in Montana and Wyoming's Powder River Basin (PRB) produces large quantities of modestly saline-sodic water. This study assessed effects of irrigation water quality and water table position on water chemistry of closed columns, simulating a perched or a shallow water table. The experiment assessed the potential salt loading in areas where shallow or perched water tables prevent leaching or where artificial drainage is not possible. Water tables were established in sand filled PVC columns at 0.38, 0.76, and1.14 m below the surface, after which columns were planted to one of three species, two halophytic Atriplexmore » spp. and Hordeum marinum Huds. (maritime barley), a glycophyte. As results for the two Atriplex ssp. did not differ much, only results from Atriplex lentiformis (Torn) S. Wats. (big saltbush) and H. marinum are presented. Irrigation water representing one of two irrigation sources was used: Powder River (PR) (electrolytic conductivity (EC) = 0.19 Sm{sup -1}, sodium adsorption ratio (SAR) = 3.5) or CBM water (EC = 0.35 Sm-1, SAR = 10.5). Continuous irrigation with CBM and PR water led to salt loading over time, the extent being proportional to the salinity and sodicity of applied water. Water in columns planted to A. lentiformis with water tables maintained at 0.38 m depth had greater EC and SAR values than those with 0.76 and 1.14 m water table positions. Elevated EC and SAR values most likely reflect the shallow rooted nature of A. lentiformis, which resulted in enhanced ET with the water table close to the soil surface.« less

  11. Decompression management by 43 models of dive computer: single square-wave exposures to between 15 and 50 metres' depth.

    PubMed

    Sayer, Martin D J; Azzopardi, Elaine; Sieber, Arne

    2014-12-01

    Dive computers are used in some occupational diving sectors to manage decompression but there is little independent assessment of their performance. A significant proportion of occupational diving operations employ single square-wave pressure exposures in support of their work. Single examples of 43 models of dive computer were compressed to five simulated depths between 15 and 50 metres' sea water (msw) and maintained at those depths until they had registered over 30 minutes of decompression. At each depth, and for each model, downloaded data were used to collate the times at which the unit was still registering "no decompression" and the times at which various levels of decompression were indicated or exceeded. Each depth profile was replicated three times for most models. Decompression isopleths for no-stop dives indicated that computers tended to be more conservative than standard decompression tables at depths shallower than 30 msw but less conservative between 30-50 msw. For dives requiring decompression, computers were predominantly more conservative than tables across the whole depth range tested. There was considerable variation between models in the times permitted at all of the depth/decompression combinations. The present study would support the use of some dive computers for controlling single, square-wave diving by some occupational sectors. The choice of which makes and models to use would have to consider their specific dive management characteristics which may additionally be affected by the intended operational depth and whether staged decompression was permitted.

  12. Exploring the ground ice recharge near permafrost table on the central Qinghai-Tibet Plateau using chemical and isotopic data

    NASA Astrophysics Data System (ADS)

    Wang, Weihua; Wu, Tonghua; Zhao, Lin; Li, Ren; Zhu, Xiaofan; Wang, Wanrui; Yang, Shuhua; Qin, Yanhui; Hao, Junmin

    2018-05-01

    Thawing permafrost on the Qinghai-Tibet Plateau (QTP) has great impacts on the local hydrological process by way of causing ground ice to thaw. Until now there is little knowledge on ground ice hydrology near permafrost table under a warming climate. This study applied stable tracers (isotopes and chloride) and hydrograph separation model to quantify the sources of ground ice near permafrost table in continuous permafrost regions of the central QTP. The results indicated that the ground ice near permafrost table was mainly supplied by active layer water and permafrost water, accounting for 58.9 to 87.0% and 13.0 to 41.1%, respectively, which implying that the active layer was the dominant source. The contribution rates from the active layer to the ground ice in alpine meadow (59 to 69%) was less than that in alpine steppe (70 to 87%). It showed well-developed hydrogeochemical depth gradients, presenting depleted isotopes and positive chemical gradients with depth within the soil layer. The effects of evaporation and freeze-out fractionation on the soil water and ground ice were evident. The results provide additional insights into ground ice sources and cycling near permafrost table in permafrost terrain, and would be helpful for improving process-based detailed hydrologic models under the occurring global warming.

  13. Evaluation of HCMM data for assessing soil moisture and water table depth. [South Dakota

    NASA Technical Reports Server (NTRS)

    Moore, D. G.; Heilman, J. L.; Tunheim, J. A.; Westin, F. C.; Heilman, W. E.; Beutler, G. A.; Ness, S. D. (Principal Investigator)

    1981-01-01

    Soil moisture in the 0-cm to 4-cm layer could be estimated with 1-mm soil temperatures throughout the growing season of a rainfed barley crop in eastern South Dakota. Empirical equations were developed to reduce the effect of canopy cover when radiometrically estimating the soil temperature. Corrective equations were applied to an aircraft simulation of HCMM data for a diversity of crop types and land cover conditions to estimate the soil moisture. The average difference between observed and measured soil moisture was 1.6% of field capacity. Shallow alluvial aquifers were located with HCMM predawn data. After correcting the data for vegetation differences, equations were developed for predicting water table depths within the aquifer. A finite difference code simulating soil moisture and soil temperature shows that soils with different moisture profiles differed in soil temperatures in a well defined functional manner. A significant surface thermal anomaly was found to be associated with shallow water tables.

  14. Water Table Uncertainties due to Uncertainties in Structure and Properties of an Unconfined Aquifer.

    PubMed

    Hauser, Juerg; Wellmann, Florian; Trefry, Mike

    2018-03-01

    We consider two sources of geology-related uncertainty in making predictions of the steady-state water table elevation for an unconfined aquifer. That is the uncertainty in the depth to base of the aquifer and in the hydraulic conductivity distribution within the aquifer. Stochastic approaches to hydrological modeling commonly use geostatistical techniques to account for hydraulic conductivity uncertainty within the aquifer. In the absence of well data allowing derivation of a relationship between geophysical and hydrological parameters, the use of geophysical data is often limited to constraining the structural boundaries. If we recover the base of an unconfined aquifer from an analysis of geophysical data, then the associated uncertainties are a consequence of the geophysical inversion process. In this study, we illustrate this by quantifying water table uncertainties for the unconfined aquifer formed by the paleochannel network around the Kintyre Uranium deposit in Western Australia. The focus of the Bayesian parametric bootstrap approach employed for the inversion of the available airborne electromagnetic data is the recovery of the base of the paleochannel network and the associated uncertainties. This allows us to then quantify the associated influences on the water table in a conceptualized groundwater usage scenario and compare the resulting uncertainties with uncertainties due to an uncertain hydraulic conductivity distribution within the aquifer. Our modeling shows that neither uncertainties in the depth to the base of the aquifer nor hydraulic conductivity uncertainties alone can capture the patterns of uncertainty in the water table that emerge when the two are combined. © 2017, National Ground Water Association.

  15. High-resolution seismic reflection survey at Dover AFB: A comparison of three seismic sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardimona, S.; Kadinsky-Cade, K.; Miller, R.

    1996-11-01

    In June of 1995, the Earth Sciences Division of the Air Force Phillips Lab, with survey equipment from the University of Delaware and assisted by the Kansas Geological Survey and Elohi Geophysics, conducted a geophysical site characterization of the SERDP-funded Groundwater Remediation Field Lab (GRFL) located at Dover AFB, Delaware and administered by Applied Research Associates for USAF Armstrong Lab. Seismic data were collected in order to (1) compare the results using three different compressional sources and (2) cover the field site well enough to characterize the seismic response of the shallow subsurface. This paper will focus primarily on themore » first of these two goals. Seismic data were collected along three north-south profiles set 10 meters apart, each profile with a different compressional source: a 5.5kg sledgehammer, a 12-gauge firing rod from Betsy Seisgun Inc. shooting 150 grain blanks, and a portable piezoelectrically driven vibrator, developed by Elohi Geophysics, operating with a 90Hz-450Hz sweep. An east-west cross line was collected using the sledgehammer source in order to tie the three profiles together. A laser theodolite provided station location and elevation control. The primary targets were the water table (that had been marked on maps at a depth of about 3 meters) and a sand-clay interface at about 15 meters depth. We collected 24-channel CMP data using a half meter spacing of both source and 100Hz geophones. Field C after initial walkaway noise testing with each source did not show any one source to be outstanding A practical early result of the seismic survey showed the water table to be at just over 10 meters. We have associated the strongest reflection event with the water-table interface. Seismic data comparison in this study is based on spectral content, total energy and signal-to-noise ratios, as well as a discussion of coherency of the primary reflection event at the water table.« less

  16. Groundwater: A Vital Resource. Student Activities.

    ERIC Educational Resources Information Center

    Taylor, Carla, Ed.

    Twenty-three activities dealing with various aspects of groundwater are provided in this manual. The activities are arranged under four headings: (1) the water cycle; (2) water distribution in soils (considering such topics as calculating water table depth and purifying water by filtering); (3) water quality (considering such topics as acid rain,…

  17. Use of geospatial technology for delineating groundwater potential zones with an emphasis on water-table analysis in Dwarka River basin, Birbhum, India

    NASA Astrophysics Data System (ADS)

    Thapa, Raju; Gupta, Srimanta; Gupta, Arindam; Reddy, D. V.; Kaur, Harjeet

    2018-05-01

    Dwarka River basin in Birbhum, West Bengal (India), is an agriculture-dominated area where groundwater plays a crucial role. The basin experiences seasonal water stress conditions with a scarcity of surface water. In the presented study, delineation of groundwater potential zones (GWPZs) is carried out using a geospatial multi-influencing factor technique. Geology, geomorphology, soil type, land use/land cover, rainfall, lineament and fault density, drainage density, slope, and elevation of the study area were considered for the delineation of GWPZs in the study area. About 9.3, 71.9 and 18.8% of the study area falls within good, moderate and poor groundwater potential zones, respectively. The potential groundwater yield data corroborate the outcome of the model, with maximum yield in the older floodplain and minimum yield in the hard-rock terrains in the western and south-western regions. Validation of the GWPZs using the yield of 148 wells shows very high accuracy of the model prediction, i.e., 89.1% on superimposition and 85.1 and 81.3% on success and prediction rates, respectively. Measurement of the seasonal water-table fluctuation with a multiplicative model of time series for predicting the short-term trend of the water table, followed by chi-square analysis between the predicted and observed water-table depth, indicates a trend of falling groundwater levels, with a 5% level of significance and a p-value of 0.233. The rainfall pattern for the last 3 years of the study shows a moderately positive correlation ( R 2 = 0.308) with the average water-table depth in the study area.

  18. Report on computation of repetitive hyperbaric-hypobaric decompression tables

    NASA Technical Reports Server (NTRS)

    Edel, P. O.

    1975-01-01

    The tables were constructed specifically for NASA's simulated weightlessness training program; they provide for 8 depth ranges covering depths from 7 to 47 FSW, with exposure times of 15 to 360 minutes. These tables were based up on an 8 compartment model using tissue half-time values of 5 to 360 minutes and Workmanline M-values for control of the decompression obligation resulting from hyperbaric exposures. Supersaturation ratios of 1.55:1 to 2:1 were used for control of ascents to altitude following such repetitive dives. Adequacy of the method and the resultant tables were determined in light of past experience with decompression involving hyperbaric-hypobaric interfaces in human exposures. Using these criteria, the method showed conformity with empirically determined values. In areas where a discrepancy existed, the tables would err in the direction of safety.

  19. Topographical controls on soil moisture distribution and runoff response in a first order alpine catchment

    NASA Astrophysics Data System (ADS)

    Penna, Daniele; Gobbi, Alberto; Mantese, Nicola; Borga, Marco

    2010-05-01

    Hydrological processes driving runoff generation in mountain basins depend on a wide number of factors which are often strictly interconnected. Among them, topography is widely recognized as one of the dominant controls influencing soil moisture distribution in the root zone, depth to water table and location and extent of saturated areas possibly prone to runoff production. Morphological properties of catchments are responsible for the alternation between steep slopes and relatively flat areas which have the potentials to control the storage/release of water and hence the hydrological response of the whole watershed. This work aims to: i) identify the role of topography as the main factor controlling the spatial distribution of near-surface soil moisture; ii) evaluate the possible switch in soil moisture spatial organization between wet and relatively dry periods and the stability of patterns during triggering of surface/subsurface runoff; iii) assess the possible connection between the develop of an ephemeral river network and the groundwater variations, examining the influence of the catchment topographical properties on the hydrological response. Hydro-meteorological data were collected in a small subcatchment (Larch Creek Catchment, 0.033 km²) of Rio Vauz basin (1.9 km²), in the eastern Italian Alps. Precipitation, discharge, water table level over a net of 14 piezometric wells and volumetric soil moisture at 0-30 cm depth were monitored continuously during the late spring-early autumn months in 2007 and 2008. Soil water content at 0-6 and 0-20 cm depth was measured manually during 22 field surveys in summer 2007 over a 44-sampling point experimental plot (approximately 3000 m²). In summer 2008 the sampling grid was extended to 64 points (approximately 4500 m²) and 28 field surveys were carried out. The length of the ephemeral stream network developed during rainfall events was assessed by a net of 24 Overland Flow Detectors (OFDs), which are able to detect the presence/absence of surface runoff. Results show a significant correlation between plot-averaged soil moisture at 0-20 cm depth, local slope and local curvature, while poor correlations were found with aspect and solar radiation: this suggests a sharp control of the catchment topological architecture (likely coupled with soil properties) on soil moisture distribution. This was also confirmed by the visual inspection of interpolated maps which reveal the persistence of high values of soil moisture in hollow areas and, conversely, of low values over the hillslopes. Moreover, a strong correlation between plot-averaged soil moisture patterns over time, with no decline after rainfall events, indicates a good temporal stability of water content distribution and its independence from the triggering of surface flow and transient lateral subsurface flow during wet conditions. The analysis of the time lag between storm centroid and piezometric peak shows an increasing delay of water table reaction with increasing distance from the stream, revealing different groundwater dynamics between the near-stream and the hillslope zone. Furthermore, the significant correlation between groundwater time lag monitored for the net of piezometers and the local slope suggests a topographical influence on the temporal and spatial variability of subsurface runoff. Finally, the extent of the ephemeral stream network was clearly dependent on the amount of precipitation but a different percentage of active OFDs and piezometers for the same rainfall event suggests a decoupling between patterns of surface and subsurface flows in the study area. Key words: topographical controls, soil moisture patterns, groundwater level, overland flow.

  20. Nitrogen Inputs and Transformations in a Boreal Wetland: Hypotheses and Preliminary Results From the Alaska Peatland Experiment (APEX)

    NASA Astrophysics Data System (ADS)

    Millar, N.; O'Donnell, J. A.; Turetsky, M. R.

    2005-12-01

    High latitudes are expected to experience some of the most dramatic effects of climate change in the near future. This is already evident from existing permafrost and air temperature records in Alaska. Peatlands are a major component of boreal landscapes and store massive reservoirs of soil organic carbon (C) and nitrogen (N), yet the vulnerability of these organic matter stocks to climate change is poorly understood. While some field studies have focused on N cycling in bogs, little is known about N inputs and transformations within boreal fens. We recently initiated a large scale manipulation of soil temperature and water table in a moderately rich fen situated near the Bonanza Creek LTER site, outside Fairbanks, Alaska (the Alaska Peatland Experiment or APEX; www.apex.msu.edu). As part of this experiment, we hypothesized that water table height regulates microbial reduction - oxidation (redox) reactions in organic soils. This may alter the potential for nitrification and denitrification, and therefore, concentrations of ammonium (NH4+), and nitrate (NO3-), and fluxes of nitrous oxide (N2O) in fen ecosystems. Denitrification however, may be limited by low NO3- concentrations in this fen, which is dominated by a mix of herbaceous species, brown mosses, and Sphagnum. We also hypothesized that warming would increase N transformation rates by stimulating heterotrophic microbial activity, leading to variation in N mineralization rates and N availability. We established three water table plots (control, raised, lowered), each about 120 m2 in area. Water table levels at the lowered and raised plots were manipulated using drainage ditches and solar powered pumping techniques, respectively, and were kept at between 5-10 cm below and at 5 cm above the control plot. At 3 of the 6 sub plots within each water table plot, we constructed replicate open top chambers (OTCs) to passively increase surface temperatures by about 1 ° C. In the first season of measurements at the APEX, our initial results suggest that higher water table levels increase atmospheric N2O concentrations above the soil surface (400 ± 3 and 380 ± 7 ppbv, at raised and lowered water table level, respectively). We also measured lower dissolved N2O concentrations in soil water (37 and 4 ppbv at raised and lowered water table level, respectively at 100 cm depth). Here, we will present interactions between thermal and moisture regimes in the experimental fen in relation to N balance, by quantifying concentrations of various N species (e.g., NH4+, NO3-, N2O, TDN, DON, DIN) in the soil, water and atmosphere. This work will help define the role of N availability and N transformations in boreal peatland ecosystems in feedbacks to global climate change.

  1. Selected hydrologic data from a wastewater spray disposal site on Hilton Head Island, South Carolina

    USGS Publications Warehouse

    Speiran, G.K.; Belval, D.L.

    1985-01-01

    This study presents data collected during a study of the effects on the water table aquifer from wastewater application at rates of up to 5 inches per week on a wastewater spray disposal site on Hilton Head Island, South Carolina. The study was conducted from April 1982 through December 1983. The disposal site covers approximately 14 acres. Water level and water quality data from organic, inorganic, and nutrient analyses from the water table aquifer to a depth of 30 ft and similar water quality data from the wastewater treatment plant are included. (USGS)

  2. Sounding of Groundwater Through Conductive Media in Mars Analog Environments Using Transient Electromagnetics and Low Frequency GPR.

    NASA Astrophysics Data System (ADS)

    Jernsletten, J. A.; Heggy, E.

    2004-05-01

    INTRODUCTION: This study compares the use of (diffusive) Transient Electromagnetics (TEM) for sounding of subsurface water in conductive Mars analog environments to the use of (propagative) Ground-Penetrating Radar (GPR) for the same purpose. We show data from three field studies: 1) Radar sounding data (GPR) from the Nubian aquifer, Bahria Oasis, Egypt; 2) Diffusive sounding data (TEM) from Pima County, Arizona; and 3) Shallower sounding data using the Fast-Turnoff TEM method from Peña de Hierro in the Rio Tinto area, Spain. The latter is data from work conducted under the auspices of the Mars Analog Research and Technology Experiment (MARTE). POTENTIAL OF TEM: A TEM survey was carried out in Pima County, Arizona, in January 2003. Data was collected using 100 m Tx loops, a ferrite-cored magnetic coil Rx antenna, and a sounding frequency of 16 Hz. The dataset has ~500 m depth of investigation, shows a ~120 m depth to the water table (confirmed by several USGS test wells in the area), and a conductive (~20-40 Ω m) clay-rich soil above the water table. The Rio Tinto Fast-Turnoff TEM data was collected using 40 m Tx loops, 10 m Rx loops, and a 32 Hz sounding frequency. Note ~200 m depth of investigation and a conductive high at ~80 m depth (interpreted as water table). Data was also collected using 20 m Tx loops (10 m Rx loops) in other parts of the area. Note ~50 m depth of investigation and a conductive high at ~15 m depth (interpreted as subsurface water flow under mine tailings matching surface flows seen coming out from under the tailings, and shown on maps). Both of these interpretations were roughly confirmed by preliminary results from the MARTE ground truth drilling campaign carried out in September and October 2003. POTENTIAL OF GPR: A GPR experiment was carried out in February 2003 in the Bahria Oasis in the western Egyptian desert, using a 2 MHz monostatic GPR, mapping the Nubian Aquifer at depths of 100-900 m, beneath a thick layer of homogenous marine sedimentary quaternary and tertiary structures constituted mainly of highly resistive dry porous dolomite, illinite, limestone and sandstone, given a reasonable knowledge of the local geoelectrical properties of the crust. The GPR was able to map the first interface between the dolomitic limestone and the gravel, while the detection of the deep subsurface water table remains uncertain due to the uncertainties arising from some instrumentational and geoelectrical problems. In locations were the water table was at shallower depths (less then 200 m), but with the presence of very thin layers (less than 0.5 m) of reddish dry clays, the technique failed to probe the moist interface and to map any significant stratigraphy. CONCLUSIONS: GPR excels in resolution, productivity (logistical efficiency) and is well suited for the shallower applications, but is more sensitive to highly conductive layers (result of wave propagation and higher frequencies), and achieves considerably smaller depths of investigation than TEM. The (diffusive) TEM method uses roughly two orders of magnitude lower sounding frequencies than GPR, is less sensitive to highly conductive layers, achieves considerably deeper depths of investigation, and is more suitable for sounding very deep subsurface water. Compared with GPR, TEM suffers for very shallow applications in terms of resolution and logistical efficiency. Fast-Turnoff TEM, with its very early measured time windows, achieves higher resolution than conventional TEM in shallow applications, and somewhat bridges the gap between GPR and TEM in terms of depths of investigation and suitable applications.

  3. Growth response of speckled alder and willow to depth of flooding

    Treesearch

    M. Dean Knighton

    1981-01-01

    Growth and survival of speckled alder and willow were determined for two growing seasons with continuous flooding at different depths. Growth was at least four times greater when the water table was below the root crown than when it was 15 cm above. Mortality increased with flooding depth and as greatest for alder.

  4. Hydrologic assessment of three drainage basins in the Pinelands of southern New Jersey, 2004-06

    USGS Publications Warehouse

    Walker, Richard L.; Nicholson, Robert S.; Storck, Donald A.

    2011-01-01

    The New Jersey Pinelands is an ecologically diverse area in the southern New Jersey Coastal Plain, most of which overlies the Kirkwood-Cohansey aquifer system. The demand for groundwater from this aquifer system is increasing as local development increases. Because any increase in groundwater withdrawals has the potential to affect streamflows and wetland water levels, and ultimately threaten the ecological health and diversity of the Pinelands ecosystem, the U.S. Geological Survey, in cooperation with the New Jersey Pinelands Commission, began a multi-phase hydrologic investigation in 2004 to characterize the hydrologic system supporting the aquatic and wetland communities of the New Jersey Pinelands area (Pinelands). The current investigation of the hydrology of three representative drainage basins in the Pinelands (Albertson Brook, McDonalds Branch, and Morses Mill Stream basins) included a compilation of existing data; collection of water-level and streamflow data; mapping of the water-table altitude and depth to the water table; and analyses of water-level and streamflow variability, subsurface gradients and flow patterns, and water budgets. During 2004-06, a hydrologic database of existing and new data from wells and stream sites was compiled. Methods of data collection and analysis were defined, and data networks consisting of 471 wells and 106 surface-water sites were established. Hydrographs from 26 water-level-monitoring wells and four streamflow-gaging stations were analyzed to show the response of water levels and streamflow to precipitation and recharge with respect to the locations of these wells and streams within each basin. Water-level hydrographs show varying hydraulic gradients and flow potentials, and indicate that responses to recharge events vary with well depth and proximity to recharge and discharge areas. Results of the investigation provide a detailed characterization of hydrologic conditions, processes, and relations among the components of the hydrologic cycle in the Pinelands. In the Pinelands, recharge replenishes the aquifer system and contributes to groundwater flow, most of which moves to wetlands and surface water where natural discharge occurs. Some groundwater flow is intercepted by supply wells. Recharge rates generally are highest during the non-growing season and are inversely related to evapotranspiration. Analysis of subsurface hydraulic gradients, water-table fluctuations, and streamflow variability indicates a strong linkage between groundwater and wetlands, lakes and streams. Gradient analysis indicates that most wetlands are in groundwater discharge areas, but some wetlands are in groundwater recharge areas. The depth to the water table ranges from zero at surface-water features up to about 10 meters in topographically high areas. Depth to water fluctuates seasonally, and the magnitude of these fluctuations generally increases with distance from surface water. Variations in the permeability of the soils and sediments of the aquifer system strongly affect patterns of water movement through the subsurface and the interaction of groundwater with wetlands, lakes and streams. Mean annual streamflow during 2004-06 ranged from 83 to 106 percent of the long-term mean annual discharge, indicating that the data-collection period can be considered representative of average conditions. Measurements of groundwater levels, stream stage, and stream discharge and locations of start-of-flow are illustrated in basin-wide maps of water-table altitude, depth to the water table, and stream base flow during the period. Water-level data collected along 15 hydrologic transects that span the range of environments from uplands through wetlands to surface water were used to determine hydraulic gradients, potential flow directions, and areas of recharge and discharge. These data provide information about the localized interactions of groundwater with wetlands and surface water. Wetlands were categorized with r

  5. Red-Edge Spectral Reflectance as an Indicator of Surface Moisture Content in an Alaskan Peatland Ecosystem

    NASA Astrophysics Data System (ADS)

    McPartland, M.; Kane, E. S.; Turetsky, M. R.; Douglass, T.; Falkowski, M. J.; Montgomery, R.; Edwards, J.

    2015-12-01

    Arctic and boreal peatlands serve as major reservoirs of terrestrial organic carbon (C) because Net Primary Productivity (NPP) outstrips C loss from decomposition over long periods of time. Peatland productivity varies as a function of water table position and surface moisture content, making C storage in these systems particularly vulnerable to the climate warming and drying predicted for high latitudes. Detailed spatial knowledge of how aboveground vegetation communities respond to changes in hydrology would allow for ecosystem response to environmental change to be measured at the landscape scale. This study leverages remotely sensed data along with field measurements taken at the Alaska Peatland Experiment (APEX) at the Bonanza Creek Long Term Ecological Research site to examine relationships between plant solar reflectance and surface moisture. APEX is a decade-long experiment investigating the effects of hydrologic change on peatland ecosystems using water table manipulation treatments (raised, lowered, and control). Water table levels were manipulated throughout the 2015 growing season, resulting in a maximum separation of 35 cm between raised and lowered treatment plots. Water table position, soil moisture content, depth to seasonal ice, soil temperature, photosynthetically active radiation (PAR), CO2 and CH4 fluxes were measured as predictors of C loss through decomposition and NPP. Vegetation was surveyed for percent cover of plant functional types. Remote sensing data was collected during peak growing season, when the separation between treatment plots was at maximum difference. Imagery was acquired via a SenseFly eBee airborne platform equipped with a Canon S110 red-edge camera capable of detecting spectral reflectance from plant tissue at 715 nm band center to within centimeters of spatial resolution. Here, we investigate empirical relationships between spectral reflectance, water table position, and surface moisture in relation to peat carbon balance.

  6. Landscape heterogeneity, soil climate, and carbon exchange in a boreal black spruce forest.

    PubMed

    Dunn, Allison L; Wofsy, Steven C; v H Bright, Alfram

    2009-03-01

    We measured soil climate and the turbulent fluxes of CO2, H2O, heat, and momentum on short towers (2 m) in a 160-yr-old boreal black spruce forest in Manitoba, Canada. Two distinct land cover types were studied: a Sphagnum-dominated wetland, and a feathermoss (Pleurozium and Hylocomium)-dominated upland, both lying within the footprint of a 30-m tower, which has measured whole-forest carbon exchange since 1994. Peak summertime uptake of CO2, was higher in the wetland than for the forest as a whole due to the influence of deciduous shrubs. Soil respiration rates in the wetland were approximately three times larger than in upland soils, and 30% greater than the mean of the whole forest, reflecting decomposition of soil organic matter. Soil respiration rates in the wetland were regulated by soil temperature, which was in turn influenced by water table depth through effects on soil heat capacity and conductivity. Warmer soil temperatures and deeper water tables favored increased heterotrophic respiration. Wetland drainage was limited by frost during the first half of the growing season, leading to high, perched water tables, cool soil temperatures, and much lower respiration rates than observed later in the growing season. Whole-forest evapotranspiration increased as water tables dropped, suggesting that photosynthesis in this forest was rarely subject to water stress. Our data indicate positive feedback between soil temperature, seasonal thawing, heterotrophic respiration, and evapotranspiration. As a result, climate warming could cause covariant changes in soil temperature and water table depths that may stimulate photosynthesis and strongly promote efflux of CO2 from peat soils in boreal wetlands.

  7. Assessment of denitrification gaseous end-products in the soil profile under two water table management practices using repeated measures analysis.

    PubMed

    Elmi, Abdirashid A; Astatkie, Tess; Madramootoo, Chandra; Gordon, Robert; Burton, David

    2005-01-01

    The denitrification process and nitrous oxide (N2O) production in the soil profile are poorly documented because most research into denitrification has concentrated on the upper soil layer (0-0.15 m). This study, undertaken during the 1999 and 2000 growing seasons, was designed to examine the effects of water table management (WTM), nitrogen (N) application rate, and depth (0.15, 0.30, and 0.45 m) on soil denitrification end-products (N2O and N2) from a corn (Zea mays L.) field. Water table management treatments were free drainage (FD) with open drains and subirrigation (SI) with a target water table depth of 0.6 m. Fertility treatments (ammonium nitrate) were 120 kg N ha(-1) (N120) and 200 kg N ha(-1) (N200). During both growing seasons greater denitrification rates were measured in SI than in FD, particularly in the surface soil (0-0.15 m) and at the intermediate (0.15-0.30 m) soil depths under N200 treatment. Greater denitrification rates under the SI treatment, however, were not accompanied with greater N2O production. The decrease in N2O production under SI was probably caused by a more complete reduction of N2O to N2, which resulted in lower N2O to (N2O + N2) ratios. Denitrification rate, N2O production and N2O to (N2O + N2) ratios were only minimally affected by N treatments, irrespective of sampling date and soil depth. Overall, half of the denitrification occurred at the 0.15- to 0.30- and 0.30- to 0.45-m soil layers, and under SI, regardless of fertility treatment level. Consequently, sampling of the 0- to 0.15-m soil layer alone may not give an accurate estimation of denitrification losses under SI practice.

  8. Water wells on St. Thomas, U.S. Virgin Islands

    USGS Publications Warehouse

    Steiger, J.I.; Kessler, Richard

    1993-01-01

    This report is a compilation of well-inventory data collected from December 1989 to December 1990 on St. Thomas, U.S. Virgin Islands from 367 wells. The report includes well locations on 1982, 7.5 minute series, USGS topographic maps, which are published to scale, and tables of selected well data. The report includes the following well information; well name, U.S. Geological Survey Ground Water Site Identification number, use of water, year well constructed, reported depth of well, measured depth of well, casing diameter, type of well finish and finish interval, land surface altitude of well, depth to water below land surface, date water level measured, and well yield. (USGS)

  9. The UK Nitrate Time Bomb (Invited)

    NASA Astrophysics Data System (ADS)

    Ward, R.; Wang, L.; Stuart, M.; Bloomfield, J.; Gooddy, D.; Lewis, M.; McKenzie, A.

    2013-12-01

    The developed world has benefitted enormously from the intensification of agriculture and the increased availability and use of synthetic fertilizers during the last century. However there has also been unintended adverse impact on the natural environment (water and ecosystems) with nitrate the most significant cause of water pollution and ecosystem damage . Many countries have introduced controls on nitrate, e.g. the European Union's Water Framework and Nitrate Directives, but despite this are continuing to see a serious decline in water quality. The purpose of our research is to investigate and quantify the importance of the unsaturated (vadose) zone pathway and groundwater in contributing to the decline. Understanding nutrient behaviour in the sub-surface environment and, in particular, the time lag between action and improvement is critical to effective management and remediation of nutrient pollution. A readily-transferable process-based model has been used to predict temporal loading of nitrate at the water table across the UK. A time-varying nitrate input function has been developed based on nitrate usage since 1925. Depth to the water table has been calculated from groundwater levels based on regional-scale observations in-filled by interpolated river base levels and vertical unsaturated zone velocities estimated from hydrogeological properties and mapping. The model has been validated using the results of more than 300 unsaturated zone nitrate profiles. Results show that for about 60% of the Chalk - the principal aquifer in the UK - peak nitrate input has yet to reach the water table and concentrations will continue to rise over the next 60 years. The implications are hugely significant especially where environmental objectives must be achieved in much shorter timescales. Current environmental and regulatory management strategies rarely take lag times into account and as a result will be poorly informed, leading to inappropriate controls and conflicts between policy makers, environmentalists and industry.

  10. Status of Research in Underwater Physiology

    DTIC Science & Technology

    1956-03-01

    Qc ýLEVELSý A 0 ~STAT US O F RESEARCH IN ~ UNDERWATER PHYSIOLOGY MARCH 1958I 0 79 0 .15 U This doc-iment was prapartd Ly the Physiology Grouo of the...under- water breathing patterns, are vitally necessary to determine whether or not rad- ical deviations from the present design of self-contained...certain SCUBA operations. In single mul- tilevel dives no known tables could apply without a rigid control of the depth-time factors, and even under

  11. Vertical Gradients in Water Chemistry and Age in the Southern High Plains Aquifer, Texas, 2002

    USGS Publications Warehouse

    McMahon, P.B.; Böhlke, J.K.; Lehman, T.M.

    2004-01-01

    The southern High Plains aquifer is the primary source of water used for domestic, industrial, and irrigation purposes in parts of New Mexico and Texas. Despite the aquifer's importance to the overall economy of the southern High Plains, fundamental ground-water characteristics, such as vertical gradients in water chemistry and age, remain poorly defined. As part of the U.S. Geological Survey's National Water-Quality Assessment Program, water samples from nested, short-screen monitoring wells installed in the southern High Plains aquifer at two locations (Castro and Hale Counties, Texas) were analyzed for field parameters, major ions, nutrients, trace elements, dissolved organic carbon, pesticides, stable and radioactive isotopes, and dissolved gases to evaluate vertical gradients in water chemistry and age in the aquifer. Tritium measurements indicate that recent (post-1953) recharge was present near the water table and that deeper water was recharged before 1953. Concentrations of dissolved oxygen were largest (2.6 to 5.6 milligrams per liter) at the water table and decreased with depth below the water table. The smallest concentrations were less than 0.5 milligram per liter. The largest major-ion concentrations generally were detected at the water table because of the effects of overlying agricultural activities, as indicated by postbomb tritium concentrations and elevated nitrate and pesticide concentrations at the water table. Below the zone of agricultural influence, major-ion concentrations exhibited small increases with depth and distance along flow paths because of rock/water interactions and mixing with water from the underlying aquifer in rocks of Cretaceous age. The concentration increases primarily were accounted for by dissolved sodium, bicarbonate, chloride, and sulfate. Nitrite plus nitrate concentrations at the water table were 2.0 to 6.1 milligrams per liter as nitrogen, and concentrations substantially decreased with depth in the aquifer to a maximum concentration of 0.55 milligram per liter as nitrogen. Dissolved-gas and nitrogen-isotope data from the deep wells in Castro County indicate that denitrification occurred in the aquifer, removing 74 to more than 97 percent of the nitrate originally present in recharge. There was no evidence of denitrification in the deep part of the aquifer in Hale County. After correcting for denitrification effects, the background concentration of nitrate in water recharged before 1953 ranged from 0.4 to 3.2 milligrams per liter as nitrogen, with an average of 1.6 milligrams per liter as nitrogen. The d15N composition of background nitrate at the time of recharge was estimated to range from 9.6 to 12.3 per mil. Mass-balance models indicate that the decreases in dissolved oxygen and nitrate concentrations and small increases in major-ion concentrations along flow paths can be accounted for by small amounts of silicate-mineral and calcite dissolution; SiO2, goethite, and clay-mineral precipitation; organic-carbon and pyrite oxidation; denitrification; and cation exchange. Mass-balance models for some wells also required mixing with water from the underlying aquifer in rocks of Cretaceous age to achieve mole and isotope balances. Carbon mass transfers identified in the models were used to adjust radiocarbon ages of water samples recharged before 1953. Adjusted radiocarbon ages ranged from less than 1,000 to 9,000 carbon-14 years before present. Radiocarbon ages were more sensitive to uncertainties in the carbon-14 content of recharge than uncertainties in carbon mass transfers, leading to 1-sigma uncertainties of about ?2,000 years in the adjusted ages. Despite these relatively large uncertainties in adjusted radiocarbon ages, it appears that deep water in the aquifer was considerably older (at least 1,000 years) than water near the water table. There was essentially no change in ground-water age with depth in deeper parts of the aquifer, indicating that water in that

  12. Mapping a Pristine Glaciofluvial Aquifer on the Canadian Shield Using Ground-Penetrating Radar and Electrical Resistivity Tomography

    NASA Astrophysics Data System (ADS)

    Graves, L. W.; Shirokova, V.; Bank, C.

    2013-12-01

    Our study aims to construct a 3D structural model of an unconfined pristine aquifer in Laurentian Hills, Ontario, Canada. The stratigraphy of the study site, which covers about 5400 square meters, features reworked glaciofluvial sands and glacial till on top of Canadian Shield bedrock. A network of 25 existing piezometers provides ground-truth. We used two types of geophysical surveys to map the water table and the aquifer basin. Ground-penetrating radar (GPR) collected 40 profiles over distances up to 140 meters using 200MHz and 400MHz antennas with a survey wheel. The collected radargrams show a distinct reflective layer, which can be mapped to outcrops of glacial till within the area. This impermeable interface forms the aquitard. Depths of the subsurface features were calculated using hyperbolic fits on the radargrams in Matlab by determining wave velocity then converting measured two-way-time to depth. Electrical resistivity was used to determine the water table elevations because the unconfined water table did not reflect the radar waves. 20 resistivity profiles were collected in the same area using Wenner-Alpha and dipole-dipole arrays with both 24 and 48 electrodes and for 0.5, 0.75, 1.0 and 2.0 meter spacing. The inverted resistivity models show low resistivity values (<1000 Ohm.m) below 2 to 5 meter depths and higher resistivity values (2000-6000 Ohm.m) above 1 to 2 meter depths. These contrasting resistivity values correspond to saturated and wet sand (lower resistivity) to dry sand (higher resistivity); a correlation we could verify with several bore-hole logs. The water table is marked on the resistivity profiles as a steep resistivity gradient, and the depth can be added to the comprehensive 3D model. This model also incorporates hydrogeological characteristics and geochemical anomalies found within the aquifer. Ongoing seasonal and annual monitoring of the aquifer using geophysical methods will bring a fourth dimension to our understanding of this dynamic system. GPR Profile with Glacial Till Interface.

  13. Hydrological and biogeochemical investigation of an agricultural watershed, southeast New Hampshire, USA

    NASA Astrophysics Data System (ADS)

    Davis, J. M.; McDowell, W. H.; Campbell, J. E.; Hristov, A. N.

    2010-12-01

    Developing sustainable agricultural practices and policies requires an understanding of the hydrological and biological processes that control nutrient fluxes and how those processes are manifested in nutrient loading of surface water bodies. Groundwater and surface water from the UNH Organic Research Dairy, located in southeast New Hampshire, flow into the Lamprey River and then into the Great Bay, New Hampshire; both are experiencing increasing nutrient loads. The farm hosts approximately 80 Jersey cows (40 milking) and is located on relatively thin (<10m) glacial deposits that include sandy glacial till moraines, an ice-contact delta, and marine silt and clay overlying fractured calcareous quartzite. Recharge of precipitation is the dominant mode through which nutrients are introduced into the hydrologic system. Intensive meteorological, hydrological, and biogeochemical monitoring of a 35 hectare watershed that includes the main farm operation buildings and several pastures has been underway since June 2009. A three-dimensional transient unsaturated-saturated groundwater flow model was developed using LIDAR topography and detailed field mapping. The transient model was calibrated to observed water level and streamflow observations. Model results suggest that summer recharge rates vary considerably across the site and depth to the water table is the dominant control on the recharge flux. Areas having depth to water of 1-2 m experience the greatest recharge (up to 60% of precipitation). Areas with deeper water tables experience greater evapotranspiration from the vadose zone, and shallower water tables experience greater runoff. Water budget calculations suggest that the hydrologic fluxes occur predominately in the shallow groundwater, wetlands, and small surface streams draining the watershed. High dissolved nitrogen (N) concentrations (up to an average concentration of 35 mg N/L) are observed in groundwater immediately downgradient from the main farm operation and decrease more than an order of magnitude along the flowpaths. However, Nitrogen-15 concentrations do not change appreciably along flowpaths, suggesting that reductions in N concentrations are primarily due to dilution rather than denitrification. Our overall objective is to understand how farm hydrology and biogeochemistry are linked to farm management. Our understanding of biophysical feedbacks and functional links can be used to guide sustainable management actions, informing decisions about the timing and location of manure applications and other farm operations.

  14. Feedbacks between managed irrigation and water availability: Diagnosing temporal and spatial patterns using an integrated hydrologic model

    NASA Astrophysics Data System (ADS)

    Condon, Laura E.; Maxwell, Reed M.

    2014-03-01

    Groundwater-fed irrigation has been shown to deplete groundwater storage, decrease surface water runoff, and increase evapotranspiration. Here we simulate soil moisture-dependent groundwater-fed irrigation with an integrated hydrologic model. This allows for direct consideration of feedbacks between irrigation demand and groundwater depth. Special attention is paid to system dynamics in order to characterized spatial variability in irrigation demand and response to increased irrigation stress. A total of 80 years of simulation are completed for the Little Washita Basin in Southwestern Oklahoma, USA spanning a range of agricultural development scenarios and management practices. Results show regionally aggregated irrigation impacts consistent with other studies. However, here a spectral analysis reveals that groundwater-fed irrigation also amplifies the annual streamflow cycle while dampening longer-term cyclical behavior with increased irrigation during climatological dry periods. Feedbacks between the managed and natural system are clearly observed with respect to both irrigation demand and utilization when water table depths are within a critical range. Although the model domain is heterogeneous with respect to both surface and subsurface parameters, relationships between irrigation demand, water table depth, and irrigation utilization are consistent across space and between scenarios. Still, significant local heterogeneities are observed both with respect to transient behavior and response to stress. Spatial analysis of transient behavior shows that farms with groundwater depths within a critical depth range are most sensitive to management changes. Differences in behavior highlight the importance of groundwater's role in system dynamics in addition to water availability.

  15. Analytical solutions of travel time to a pumping well with variable evapotranspiration.

    PubMed

    Chen, Tian-Fei; Wang, Xu-Sheng; Wan, Li; Li, Hailong

    2014-01-01

    Analytical solutions of groundwater travel time to a pumping well in an unconfined aquifer have been developed in previous studies, however, the change in evapotranspiration was not considered. Here, we develop a mathematical model of unconfined flow toward a discharge well with redistribution of groundwater evapotranspiration for travel time analysis. Dependency of groundwater evapotranspiration on the depth to water table is described using a linear formula with an extinction depth. Analytical solutions of groundwater level and travel time are obtained. For a typical hypothetical example, these solutions perfectly agree with the numerical simulation results based on MODFLOW and MODPATH. As indicated in a dimensionless framework, a lumped parameter which is proportional to the pumping rate controls the distributions of groundwater evapotranspiration rate and the travel time along the radial direction. © 2013, National Ground Water Association.

  16. Dynamic factor analysis of groundwater quality trends in an agricultural area adjacent to Everglades National Park.

    PubMed

    Muñoz-Carpena, R; Ritter, A; Li, Y C

    2005-11-01

    The extensive eastern boundary of Everglades National Park (ENP) in south Florida (USA) is subject to one of the most expensive and ambitious environmental restoration projects in history. Understanding and predicting the water quality interactions between the shallow aquifer and surface water is a key component in meeting current environmental regulations and fine-tuning ENP wetland restoration while still maintaining flood protection for the adjacent developed areas. Dynamic factor analysis (DFA), a recent technique for the study of multivariate non-stationary time-series, was applied to study fluctuations in groundwater quality in the area. More than two years of hydrological and water quality time series (rainfall; water table depth; and soil, ground and surface water concentrations of N-NO3-, N-NH4+, P-PO4(3-), Total P, F-and Cl-) from a small agricultural watershed adjacent to the ENP were selected for the study. The unexplained variability required for determining the concentration of each chemical in the 16 wells was greatly reduced by including in the analysis some of the observed time series as explanatory variables (rainfall, water table depth, and soil and canal water chemical concentration). DFA results showed that groundwater concentration of three of the agrochemical species studied (N-NO3-, P-PO4(3-)and Total P) were affected by the same explanatory variables (water table depth, enriched topsoil, and occurrence of a leaching rainfall event, in order of decreasing relative importance). This indicates that leaching by rainfall is the main mechanism explaining concentration peaks in groundwater. In the case of N-NH4+, in addition to leaching, groundwater concentration is governed by lateral exchange with canals. F-and Cl- are mainly affected by periods of dilution by rainfall recharge, and by exchange with the canals. The unstructured nature of the common trends found suggests that these are related to the complex spatially and temporally varying land use patterns in the watershed. The results indicate that peak concentrations of agrochemicals in groundwater could be reduced by improving fertilization practices (by splitting and modifying timing of applications) and by operating the regional canal system to maintain the water table low, especially during the rainy periods.

  17. Dynamic factor analysis of groundwater quality trends in an agricultural area adjacent to Everglades National Park

    NASA Astrophysics Data System (ADS)

    Muñoz-Carpena, R.; Ritter, A.; Li, Y. C.

    2005-11-01

    The extensive eastern boundary of Everglades National Park (ENP) in south Florida (USA) is subject to one of the most expensive and ambitious environmental restoration projects in history. Understanding and predicting the water quality interactions between the shallow aquifer and surface water is a key component in meeting current environmental regulations and fine-tuning ENP wetland restoration while still maintaining flood protection for the adjacent developed areas. Dynamic factor analysis (DFA), a recent technique for the study of multivariate non-stationary time-series, was applied to study fluctuations in groundwater quality in the area. More than two years of hydrological and water quality time series (rainfall; water table depth; and soil, ground and surface water concentrations of N-NO 3-, N-NH 4+, P-PO 43-, Total P, F -and Cl -) from a small agricultural watershed adjacent to the ENP were selected for the study. The unexplained variability required for determining the concentration of each chemical in the 16 wells was greatly reduced by including in the analysis some of the observed time series as explanatory variables (rainfall, water table depth, and soil and canal water chemical concentration). DFA results showed that groundwater concentration of three of the agrochemical species studied (N-NO 3-, P-PO 43-and Total P) were affected by the same explanatory variables (water table depth, enriched topsoil, and occurrence of a leaching rainfall event, in order of decreasing relative importance). This indicates that leaching by rainfall is the main mechanism explaining concentration peaks in groundwater. In the case of N-NH 4+, in addition to leaching, groundwater concentration is governed by lateral exchange with canals. F -and Cl - are mainly affected by periods of dilution by rainfall recharge, and by exchange with the canals. The unstructured nature of the common trends found suggests that these are related to the complex spatially and temporally varying land use patterns in the watershed. The results indicate that peak concentrations of agrochemicals in groundwater could be reduced by improving fertilization practices (by splitting and modifying timing of applications) and by operating the regional canal system to maintain the water table low, especially during the rainy periods.

  18. Optimal designs of bioretention cells in shallow groundwater

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Chui, T. F. M.

    2017-12-01

    Bioretention cells, as one representative low impact development practices, have been proved to be effective in controlling surface runoff, removing pollutants and recharging groundwater. However, they are often not recommended in shallow groundwater areas due to potential groundwater pollution, reduction in runoff control performance and groundwater drainage through the underdrain. Most design guidelines only require a minimum distance between bioretention cell bottom and seasonal high groundwater table without guiding the design of bioretention cells to mitigate the problem of shallow groundwater. This study therefore proposed some design recommendations of bioretention cells for different rainfall runoff loads, native soil types and initial water table depths. A variably saturated flow model was employed to conduct event-based simulations on one single hypothetical bioretention cell in shallow groundwater, which was calibrated using experimental and simulation data of an on-site bioretention cell. A wide range of climatic and geophysical factors (i.e. initial groundwater depths, native soils, rainfall runoff loads) and bioretention designs (i.e. media soil types and underdrain sizes) were considered. Surface runoff reduction, time before groundwater mound formation, as well as maximum height of groundwater mound were evaluated. Less-permeable media types (i.e. sandy loam) are recommended in areas with many extreme rainfall events (i.e. 40 - 70 mm/h or larger) and of shallower groundwater, which can better protect groundwater from mounding and possibly contamination although may slightly compromise the runoff control performance. For areas having seasonal high groundwater table of 0 - 1 m below bioretention bottom, underdrain is recommended to maintain good infiltration capacity without draining groundwater. However, underdrain is not recommended for areas of groundwater table always near or above the bioretention bottom, only if an impermeable sheet is added. Generally, groundwater interference is a concern only when groundwater table is above 1 - 2.5 m below bioretention bottom and runoff loads are very high. The results of this study overall could benefit the implementation of bioretention cells in shallow groundwater areas, and the establishment of relevant design guidelines.

  19. The role of groundwater in hydrological processes and memory

    NASA Astrophysics Data System (ADS)

    Lo, Min-Hui

    The interactions between soil moisture and groundwater play important roles in controlling Earth's climate, by changing the terrestrial water cycle. However, most contemporary land surface models (LSMs) used for climate modeling lack any representation of groundwater aquifers. In this dissertation, the effects of water table dynamics on the National Center for Atmospheric Research (NCAR) Community Land Model (CLM) and Community Atmosphere Model (CAM) hydrology and land-atmosphere simulations are investigated. First, a simple, lumped unconfined aquifer model is incorporated into the CLM, in which the water table is interactively coupled to the soil moisture through groundwater recharge fluxes. The recent availability of GRACE water storage data provides a unique opportunity to constrain LSMs simulations of terrestrial hydrology. A multi-objective calibration framework using GRACE and streamflow data is developed. This approach improves parameter estimation and reduces the uncertainty of water table simulations in the CLM. Next, experiments are conducted with the off-line CLM to explore the effects of groundwater on land surface memory. Results show that feedbacks of groundwater on land surface memory can be positive, negative, or neutral depending on water table dynamics. The CAM-CLM is further utilized to investigate the effects of water table dynamics on spatial-temporal variations of precipitation. Results indicate that groundwater can increase short-term (seasonal) and long-term (interannual) memory of precipitation for some regions with suitable groundwater table depth. Finally, lower tropospheric water vapor is increased due to the presence of groundwater in the model. However, the impact of groundwater on the spatial distribution of precipitation is not globally homogeneous. In the boreal summer, tropical land regions show a positive (negative) anomaly over the Northern (Southern) Hemisphere. The increased tropical precipitation follows the climatology of the convective zone rather than that of evapotranspiration. In contrast, evapotranspiration is the major contribution to the increased precipitation in the transition climatic zone (e.g., Central North America), where the land and atmosphere are strongly coupled. This dissertation reveals the highly nonlinear responses of precipitation and soil moisture to the groundwater representation in the model, and also underscores the importance of subsurface hydrological memory processes in the climate system.

  20. Modeling hydrological controls on variations in peat water content, water table depth, and surface energy exchange of a boreal western Canadian fen peatland

    NASA Astrophysics Data System (ADS)

    Mezbahuddin, M.; Grant, R. F.; Flanagan, L. B.

    2016-08-01

    Improved predictive capacity of hydrology and surface energy exchange is critical for conserving boreal peatland carbon sequestration under drier and warmer climates. We represented basic processes for water and O2 transport and their effects on ecosystem water, energy, carbon, and nutrient cycling in a process-based model ecosys to simulate effects of seasonal and interannual variations in hydrology on peat water content, water table depth (WTD), and surface energy exchange of a Western Canadian fen peatland. Substituting a van Genuchten model (VGM) for a modified Campbell model (MCM) in ecosys enabled a significantly better simulation of peat moisture retention as indicated by higher modeled versus measured R2 and Willmot's index (d) with VGM (R2 0.7, d 0.8) than with MCM (R2 0.25, d 0.35) for daily peat water contents from a wetter year 2004 to a drier year 2009. With the improved peat moisture simulation, ecosys modeled hourly WTD and energy fluxes reasonably well (modeled versus measured R2: WTD 0.6, net radiation 0.99, sensible heat >0.8, and latent heat >0.85). Gradually declining ratios of precipitation to evapotranspiration and of lateral recharge to discharge enabled simulation of a gradual drawdown of growing season WTD and a consequent peat drying from 2004 to 2009. When WTD fell below a threshold of 0.35 m below the hollow surface, intense drying of mosses in ecosys caused a simulated reduction in evapotranspiration and an increase in Bowen ratio during late growing season that were consistent with measurements. Hence, using appropriate water desorption curve coupled with vertical-lateral hydraulic schemes is vital to accurately simulate peatland hydrology and energy balance.

  1. Evaluation of a Model-Based Groundwater Drought Indicator in the Conterminous U.S.

    NASA Technical Reports Server (NTRS)

    Li, Bailing; Rodell, Matthew

    2015-01-01

    Monitoring groundwater drought using land surface models is a valuable alternative given the current lack of systematic in situ measurements at continental and global scales and the low resolution of current remote sensing based groundwater data. However, uncertainties inherent to land surface models may impede drought detection, and thus should be assessed using independent data sources. In this study, we evaluated a groundwater drought index (GWI) derived from monthly groundwater storage output from the Catchment Land Surface Model (CLSM) using a GWI similarly derived from in situ groundwater observations. Groundwater observations were obtained from unconfined or semi-confined aquifers in eight regions of the central and northeastern U.S. Regional average GWI derived from CLSM exhibited strong correlation with that from observation wells, with correlation coefficients between 0.43 and 0.92. GWI from both in situ data and CLSM was generally better correlated with the Standard Precipitation Index (SPI) at 12 and 24 month timescales than at shorter timescales, but it varied depending on climate conditions. The correlation between CLSM derived GWI and SPI generally decreases with increasing depth to the water table, which in turn depends on both bedrock depth (a CLSM parameter) and mean annual precipitation. The persistence of CLSM derived GWI is spatially varied and again shows a strong influence of depth to groundwater. CLSM derived GWI generally persists longer than GWI derived from in situ data, due at least in part to the inability of coarse model inputs to capture high frequency meteorological variability at local scales. The study also showed that groundwater can have a significant impact on soil moisture persistence where the water table is shallow. Soil moisture persistence was estimated to be longer in the eastern U.S. than in the west, in contrast to previous findings that were based on models that did not represent groundwater. Assimilation of terrestrial water storage data from the Gravity Recovery and Climate Experiment (GRACE) satellite mission improved the correlation between CLSM based regional average GWI and that based on in situ data in six of the eight regions. Practical issues regarding the application of GRACE assimilated groundwater storage for drought detection are discussed. An important conclusion of this study is that model parameters that control the depth to the water table, including bedrock depth, strongly influence the evolution and persistence of simulated groundwater and require careful configuration for drought monitoring.

  2. Effects of unsaturated zone on ground-water mounding

    USGS Publications Warehouse

    Sumner, D.M.; Rolston, D.E.; Marino, M.A.

    1999-01-01

    The design of infiltration basins used to dispose of treated wastewater or for aquifer recharge often requires estimation of ground-water mounding beneath the basin. However, the effect that the unsaturated zone has on water-table response to basin infiltration often has been overlooked in this estimation. A comparison was made between two methods used to estimate ground-water mounding-an analytical approach that is limited to the saturated zone and a numerical approach that incorporates both the saturated and the unsaturated zones. Results indicate that the error that is introduced by a method that ignores the effects of the unsaturated zone on ground-water mounding increases as the basin-loading period is shortened; as the depth to the water table increases, with increasing subsurface anisotropy; and with the inclusion of fine-textured strata. Additionally, such a method cannot accommodate the dynamic nature of basin infiltration, the finite transmission time of the infiltration front to the water table, or the interception of the basin floor by the capillary fringe.The design of infiltration basins used to dispose of treated wastewater or for aquifer recharge often requires estimation of ground-water mounding beneath the basin. However, the effect that the unsaturated zone has on water-table response to basin infiltration often has been overlooked in this estimation. A comparison was made between two methods used to estimate ground-water mounding - an analytical approach that is limited to the saturated zone and a numerical approach that incorporates both the saturated and the unsaturated zones. Results indicate that the error that is introduced by a method that ignores the effects of the unsaturated zone on ground-water mounding increases as the basin-loading period is shortened; as the depth to the water table increases, with increasing subsurface anisotropy; and with the inclusion of fine-textured strata. Additionally, such a method cannot accommodate the dynamic nature of basin infiltration, the finite transmission time of the infiltration front to the water, or the interception of the basin floor by the capillary fringe.

  3. Shallow peatland ecohydrology - the control of peat depth on moss productivity

    NASA Astrophysics Data System (ADS)

    Dixon, Simon; Kettridge, Nicholas; Moore, Paul; Devito, Kevin; Tilak, Amey; Petrone, Rich; Mendoza, Carl; Waddington, Mike

    2017-04-01

    Northern peatlands represent an important sink in the global carbon cycle. Shallow peatlands and marginal connective wetlands can be essential components of many northern peatland landscape mosaics, playing a vital role in landscape connectivity and wider landscape hydrology. However the ecohydrological function of these shallow, marginal systems has been largely overlooked, with peatland hydrology research focused on relatively deep bog systems. In order to predict landscape scale wetland function and its vulnerability to climate change we need to understand how these shallow connective systems function. The balance between moss productivity and water loss provide a key component of these systems, as water use efficiency controls the rate of moss growth and thus controls the amount of atmospheric carbon sequestered in peat. Understanding how productivity of shallow peatland systems responds to changes in evaporative stress will aid predictions of peatland landscape hydrological function in a changing climate. To determine the factors influencing peat productivity, water balance simulations using Hydrus 1-D were conducted over annual growing seasons for different soil profile depths, compositions and antecedent moisture conditions. Our results demonstrate a bimodal distribution of peatland responses; either primarily conserving water by limiting evapotranspiration or, maximizing productivity. For sustained periods of evaporative stress, shallow marginal systems are least able to buffer periods of evaporative stress due to limited labile water storage, and will limit evaporation, conserve water and be less productive. Conversely, where present, both deep water storage and a shallow initial water table prolong the onset of high vegetative stress, thus maximizing moss productivity. However, a total depth of 0.8 m is identified as the threshold above which increasing peat depth has no further effect on changing vegetative stress response and thus landscape function. These results are important as moss productivity, along with rate of organic matter decay are the two principle factors controlling the build-up of peat, and therefore sequestration of carbon. With a predicted increase in the frequency and size of rain events in northern latitudes our results indicate the productivity of shallow wetland systems may increase, but greater moisture availability will increase the likelihood they remain as wetlands in a changing climate.

  4. Nutrient availability at Mer Bleue bog measured by PRSTM probes

    NASA Astrophysics Data System (ADS)

    Wang, M.; Moore, T. R.; Talbot, J.

    2015-12-01

    Bogs, covering ~0.7 million km2 in Canada, store a large amount of C and N. As nutrient deficient ecosystems, it's critical to examine the nutrient availabilities and seasonal dynamics. We used Plant Root Simulators (PRSTM) at Mer Bleue bog to provide some baseline data on nutrient availability and its variability. In particular, we focused on ammonium, nitrate, phosphate, calcium, magnesium and potassium, iron, sulphate and aluminum. We placed PRS probes at a depth of 5 - 15 cm in pristine plots and plots with long term N, P and K fertilization for 4 weeks and determined the availability of these nutrients, from spring through to fall. Probes were also placed beneath the water table in hummock and hollow microtopography and along a transect including part of the bog which had been drained through the creation of a ditch 80 years ago. The result showed that there was limited available ammonium, nitrate and phosphate in the bog, the seasonal variation of nutrient availabilities probably due to mineralization, an increase in the availability of some nutrients between different water table depths or as a result of drainage, and the relative availability of nutrients compared to the input from fertilization. We suggest that PRS probes could be a useful tool to examine nutrient availability and dynamics in wetlands, with careful consideration of installing condition, for example, proper exposure period, depth relative to water table etc.

  5. Using Remotely Sensed Soil Moisture to Estimate Fire Risk in Tropical Peatlands

    NASA Astrophysics Data System (ADS)

    Dadap, N.; Cobb, A.; Hoyt, A.; Harvey, C. F.; Konings, A. G.

    2017-12-01

    Tropical peatlands in Equatorial Asia have become more vulnerable to fire due to deforestation and peatland drainage over the last 30 years. In these regions, water table depth has been shown to play an important role in mediating fire risk as it serves as a proxy for peat moisture content. However, water table depth observations are sparse and expensive. Soil moisture could provide a more direct indicator of fire risk than water table depth. In this study, we use new soil moisture retrievals from the Soil Moisture Active Passive (SMAP) satellite to demonstrate that - contrary to popular wisdom - remotely sensed soil moisture observations are possible over most Southeast Asian peatlands. Soil moisture estimation in this region was previously thought to be impossible over tropical peatlands because of dense vegetation cover. We show that vegetation density is sufficiently low across most Equatorial Asian peatlands to allow soil moisture estimation, and hypothesize that deforestation and other anthropogenic changes in land cover have combined to reduce overall vegetation density sufficient to allow soil moisture estimation. We further combine burned area estimates from the Global Fire Emissions Database and SMAP soil moisture retrievals to show that soil moisture provides a strong signal for fire risk in peatlands, with fires occurring at a much greater rate over drier soils. We will also develop an explicit fire risk model incorporating soil moisture with additional climatic, land cover, and anthropogenic predictor variables.

  6. Denitrification potential in relation to lithology in five headwater riparian zones.

    PubMed

    Hill, Alan R; Vidon, Philippe G F; Langat, Jackson

    2004-01-01

    The influence of riparian zone lithology on nitrate dynamics is poorly understood. We investigated vertical variations in potential denitrification activity in relation to the lithology and stratigraphy of five headwater riparian zones on glacial till and outwash landscapes in southern Ontario, Canada. Conductive coarse sand and gravel layers occurred in four of the five riparian areas. These layers were thin and did not extend to the field-riparian perimeter in some riparian zones, which limited their role as conduits for ground water flow. We found widespread organic-rich layers at depths ranging from 40 to 300 cm that resulted from natural floodplain processes and the burial of surface soils by rapid valley-bottom sedimentation after European settlement. The organic matter content of these layers varied considerably from 2 to 5% (relic channel deposit) to 5 to 21% (buried soils) and 30 to 62% (buried peat). Denitrification potential (DNP) was measured by the acetylene block method in sediment slurries amended with nitrate. The highest DNP rates were usually found in the top 0- to 15-cm surface soil layer in all riparian zones. However, a steep decline in DNP with depth was often absent and high DNP activity occurred in the deep organic-rich layers. Water table variations in 2000-2002 indicated that ground water only interacted frequently with riparian surface soils between late March and May, whereas subsurface organic layers that sustain considerable DNP were below the water table for most of the year. These results suggest that riparian zones with organic deposits at depth may effectively remove nitrate from ground water even when the water table does not interact with organic-rich surface soil horizons.

  7. Impact of groundwater capillary rises as lower boundary conditions for soil moisture in a land surface model

    NASA Astrophysics Data System (ADS)

    Vergnes, Jean-Pierre; Decharme, Bertrand; Habets, Florence

    2014-05-01

    Groundwater is a key component of the global hydrological cycle. It sustains base flow in humid climate while it receives seepage in arid region. Moreover, groundwater influences soil moisture through water capillary rise into the soil and potentially affects the energy and water budget between the land surface and the atmosphere. Despite its importance, most global climate models do not account for groundwater and their possible interaction with both the surface hydrology and the overlying atmosphere. This study assesses the impact of capillary rise from shallow groundwater on the simulated water budget over France. The groundwater scheme implemented in the Total Runoff Integrated Pathways (TRIP) river routing model in a previous study is coupled with the Interaction between Soil Biosphere Atmosphere (ISBA) land surface model. In this coupling, the simulated water table depth acts as the lower boundary condition for the soil moisture diffusivity equation. An original parameterization accounting for the subgrid elevation inside each grid cell is proposed in order to compute this fully-coupled soil lower boundary condition. Simulations are performed at high (1/12°) and low (0.5°) resolutions and evaluated over the 1989-2009 period. Compared to a free-drain experiment, upward capillary fluxes at the bottom of soil increase the mean annual evapotranspiration simulated over the aquifer domain by 3.12 % and 1.54 % at fine and low resolutions respectively. This process logically induces a decrease of the simulated recharge from ISBA to the aquifers and contributes to enhance the soil moisture memory. The simulated water table depths are then lowered, which induces a slight decrease of the simulated mean annual river discharges. However, the fully-coupled simulations compare well with river discharge and water table depth observations which confirms the relevance of the coupling formalism.

  8. Responses of riparian cottonwoods to alluvial water table declines

    USGS Publications Warehouse

    Scott, M.L.; Shafroth, P.B.; Auble, G.T.

    1999-01-01

    Human demands for surface and shallow alluvial groundwater have contributed to the loss, fragmentation, and simplification of riparian ecosystems. Populus species typically dominate riparian ecosystems throughout arid and semiarid regions of North American and efforts to minimize loss of riparian Populus requires an integrated understanding of the role of surface and groundwater dynamics in the establishment of new, and maintenance of existing, stands. In a controlled, whole-stand field experiment, we quantified responses of Populus morphology, growth, and mortality to water stress resulting from sustained water table decline following in-channel sand mining along an ephemeral sandbed stream in eastern Colorado, USA. We measured live crown volume, radial stem growth, annual branch increment, and mortality of 689 live Populus deltoides subsp. monilifera stems over four years in conjunction with localized water table declines. Measurements began one year prior to mining and included trees in both affected and unaffected areas. Populus demonstrated a threshold response to water table declines in medium alluvial sands; sustained declines ???1 m produced leaf desiccation and branch dieback within three weeks and significant declines in live crown volume, stem growth, and 88% mortality over a three-year period. Declines in live Crown volume proved to be a significant leading indicator of mortality in the following year. A logistic regression of tree survival probability against the prior year's live crown volume was significant (-2 log likelihood = 270, ??2 with 1 df = 232, P < 0.0001) and trees with absolute declines in live crown volume of ???30 during one year had survival probabilities <0.5 in the following year. In contrast, more gradual water table declines of ~0.5 m had no measurable effect on mortality, stem growth, or live crown volume and produced significant declines only in annual branch growth increments. Developing quantitative information on the timing and extent of morphological responses and mortality of Populus to the rate, depth, and duration of water table declines can assist in the design of management prescriptions to minimize impacts of alluvial groundwater depletion on existing riparian Populus forests.

  9. Groundwater noble gas, age, and temperature signatures in an Alpine watershed: Valuable tools in conceptual model development

    USGS Publications Warehouse

    Manning, Andrew H.; Caine, Jonathan S.

    2007-01-01

    Bedrock groundwater in alpine watersheds is poorly understood, mainly because of a scarcity of wells in alpine settings. Groundwater noble gas, age, and temperature data were collected from springs and wells with depths of 3–342 m in Handcart Gulch, an alpine watershed in Colorado. Temperature profiles indicate active groundwater circulation to a maximum depth (aquifer thickness) of about 200 m, or about 150 m below the water table. Dissolved noble gas data show unusually high excess air concentrations (>0.02 cm3 STP/g, ΔNe > 170%) in the bedrock, consistent with unusually large seasonal water table fluctuations (up to 50 m) observed in the upper part of the watershed. Apparent 3H/3He ages are positively correlated with sample depth and excess air concentrations. Integrated samples were collected from artesian bedrock wells near the trunk stream and are assumed to approximate flow‐weighted samples reflecting bedrock aquifer mean residence times. Exponential mean ages for these integrated samples are remarkably consistent along the stream, four of five being from 8 to 11 years. The tracer data in combination with other hydrologic and geologic data support a relatively simple conceptual model of groundwater flow in the watershed in which (1) permeability is primarily a function of depth; (2) water table fluctuations increase with distance from the stream; and (3) recharge, aquifer thickness, and porosity are relatively uniform throughout the watershed in spite of the geological complexity of the Proterozoic crystalline rocks that underlie it.

  10. Hydrological patterns in warming permafrost: comparing results from a control and drained site on a floodplain tundra near Chersky, Northeast Siberia

    NASA Astrophysics Data System (ADS)

    Boelck, Sandra; Goeckede, Mathias; Hildebrandt, Anke; Vonk, Jorien; Heimann, Martin

    2017-04-01

    Permafrost areas represent a major reservoir for organic carbon. At the same time, permafrost ecosystems are very susceptible to changing climate conditions. The stability of this reservoir, i.e. changes in lateral and vertical carbon fluxes in permafrost ecosystems, largely depends on groundwater level, temperature and vegetation community. Particularly during summer when the soil thaws and a so-called active layer develops, fluctuations in carbon flux rates are often dominantly driven by water availability. Such dry soil conditions are expected to become more frequent in the future due to deepening active layers as a consequence of climate change. This could result in degradation of polygonal tundra landscape properties with channelled water transport pathways. Therefore, water table depth and the associated groundwater fluxes are crucial to understand transport patterns and to quantify the lateral export of carbon through an aquatic system. Consequently, a fundamental understanding of hydrological patterns on ecosystem structure and function is required to close the carbon balance of permafrost ecosystems. This study focuses on small-scale hydrological patterns and its influencing factors, such as topography and precipitation events. Near Chersky, Northeast Siberia, we monitored (i) a control site of floodplain tundra, and (ii) a drained site, characterised by a drainage ring which was constructed in 2004, to study the effects of water availability on the carbon cycle. This experimental disturbance simulates drainage effects following the degradation of ice-rich permafrost ecosystems under future climate change. Continuous monitoring of water table depth in drained and control areas revealed small-scale water table variations. At several key locations, we collected water samples to determine the isotopic composition (δ18O, δD) of surface water, suprapermafrost groundwater and precipitation. Furthermore, a weir at the drainage ditch was constructed to directly measure the discharge of the drained system. This hydrological sampling programme was complemented by continuous monitoring of atmospheric vertical turbulent carbon fluxes and meteorological conditions by two eddy-covariance towers on each site. Our results from the hydrological sampling campaign of summer 2016 indicate that total discharge through the drained system was mainly driven by precipitation events as well as modified evaporative loss due to temperature changes. The distributed network of groundwater gauges allows deriving lateral, local scale groundwater flow direction and its spatial variability, as well as the response to precipitation events within different parts of this ecosystem. Isotopic analysis of water samples showed the contribution of specific end member water sources, and how these vary across the season while the active layer deepens. Future research will focus on carbon fluxes, distribution and sources in relation to hydrological patterns.

  11. 77 FR 29683 - Outer Continental Shelf (OCS) Consolidated Central Gulf of Mexico Planning Area Sale; 216/222

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-18

    ... than 400 meters of water depth completed to a drilling depth of 20,000 feet TVD SS or deeper may... are specified as (1) less than 400 meters and (2) 400 meters or more. Successful Bidders: BOEM... summarized in the following table: [[Page 29686

  12. Patterns and drivers of fungal community depth stratification in Sphagnum peat

    USDA-ARS?s Scientific Manuscript database

    Peatlands store an immense pool of soil carbon vulnerable to microbial oxidation due to drought and intentional draining. We used amplicon sequencing and quantitative PCR to 1) examine how fungi are influenced by depth in the peat profile, water table (WT) and plant functional group (PFG) at the ons...

  13. Water table dynamics and biogeochemical cycling in a shallow, variably-saturated floodplain

    DOE PAGES

    Yabusaki, Steven B.; Wilkins, Michael J.; Fang, Yilin; ...

    2017-02-20

    Three-dimensional variably saturated flow and multicomponent biogeochemical reactive transport modeling, based on published and newly generated data, is used to better understand the interplay of hydrology, geochemistry, and biology controlling the cycling of carbon, nitrogen, oxygen, iron, sulfur, and uranium in a shallow floodplain. In this system, aerobic respiration generally maintains anoxic groundwater below an oxic vadose zone until seasonal snowmelt-driven water table peaking transports dissolved oxygen (DO) and nitrate from the vadose zone into the alluvial aquifer. The response to this perturbation is localized due to distinct physico-biogeochemical environments and relatively long time scales for transport through the floodplainmore » aquifer and vadose zone. Naturally reduced zones (NRZs) containing sediments higher in organic matter, iron sulfides, and non-crystalline U(IV) rapidly consume DO and nitrate to maintain anoxic conditions, yielding Fe(II) from FeS oxidative dissolution, nitrite from denitrification, and U(VI) from nitrite-promoted U(IV) oxidation. Redox cycling is a key factor for sustaining the observed aquifer behaviors despite continuous oxygen influx and the annual hydrologically induced oxidation event. Furthermore, depth-dependent activity of fermenters, aerobes, nitrate reducers, sulfate reducers, and chemolithoautotrophs (e.g., oxidizing Fe(II), S compounds, and ammonium) is linked to the presence of DO, which has higher concentrations near the water table.« less

  14. Channel Incision Driven by Suburbanization: Impacts to Riparian Groundwater Flow and Overbank Flow Frequency

    NASA Astrophysics Data System (ADS)

    Bowles, C. J.; Lawrence, R. L.; Noll, C.; Hancock, G. S.

    2005-12-01

    Channel incision is a widely observed response to increased flow in urbanized watersheds, but the effects of channel lowering on riparian water tables is not well documented. In a rapidly incising suburban stream in the Virginia Coastal Plain, we hypothesize that stream incision has lowered floodplain water tables and decreased the overbank flow frequency. The monitored stream is a tributary to the James River draining 1.3 km2 of which 15% is impervious cover. Incision has occurred largely through upstream migration of a one meter high knickpoint at a rate of ~1.5 m/yr, primarily during high flow events. We installed 63 wells in six stream-perpendicular transects as well as a cluster of wells around the knickpoint to assess water table elevations beneath the floodplain adjacent to the incising stream. Two transects are located 30 and 50 m upstream of the knickpoint in the unincised floodplain, and the remainder are 5, 30, 70, and 100 m downstream in the incised floodplain. In one transect above and two below, pressure transducers attached to dataloggers provide a high-resolution record of water table changes. Erosion pins were installed and channel cross-sections surveyed to determine streambed stability. Significant differences are observed in bank morphology and groundwater flow above vs. below the knickpoint. Above the knickpoint, the banks are stable, ~3 m wide, and ~0.3 m deep, and widen and deepen slightly toward the knickpoint. The water table is relatively flat and is 0.2-0.4 m below the floodplain surface, and groundwater contours suggest flow is parallel to the stream direction. The water table responds immediately to precipitation events, and rises to the floodplain surface in significant rainfall events. Immediately downstream of the knickpoint, channel width increases by about a meter, and stream depth increases to ~1.5 meters. The water table immediately below the knickpoint possesses a steep gradient, and is up to one meter below the floodplain surface. Groundwater flow is redirected toward the stream. Moving downstream banks continue to widen, and the channel is up to 8 m wide and ~1.3 m deep ~100 m below the current knickpoint position. In the most downstream transects, the water table slopes gently toward the stream and remains ~1 m below the floodplain surface, equivalent to the depth of incision generated by knickpoint passage. Upstream of the knickpoint, overbank flooding occurs frequently, while below the knickpoint the majority of storm flow is contained within the incised channel and occupation of the floodplain is rare. The impact of incision to the riparian water table is dramatic, with a lowered water table and redirection of groundwater flow toward the stream. The incision is driven by suburbanization upstream of this riparian corridor, and has likely reduced the ability of this protected riparian system to improve the water quality of the suburban runoff that passes through it.

  15. Evaluation of hybrid slurry resulting from the introduction of additives to mineral slurry : summary.

    DOT National Transportation Integrated Search

    2011-01-01

    High water tables in Florida make it difficult to excavate to a sufficient depth for many construction projects without water intrusion causing a collapse of earthen walls. In the case of drilled shafts, stabilization is achieved mechanically by usin...

  16. High soil solution carbon und nitrogen concentrations in a drained Atlantic bog are reduced to natural levels by 10 yr of rewetting

    NASA Astrophysics Data System (ADS)

    Frank, S.; Tiemeyer, B.; Gelbrecht, J.; Freibauer, A.

    2013-10-01

    Artificial drainage of peatlands causes dramatic changes in the release of greenhouse gases and in the export of dissolved carbon (C) and nutrients to downstream ecosystems. Rewetting anthropogenically altered peatlands offers a possibility to reduce nitrogen (N) and C losses. In this study, we investigate the impact of drainage and rewetting on the cycling of dissolved C and N as well as on dissolved gases over a period of 1 yr and 4 month, respectively. The peeper technique was used to receive a high vertical sampling resolution. Within one Atlantic bog complex a near natural site, two drained grasslands sites with different mean water table positions, and a former peat cutting area rewetted 10 yr ago were chosen. Our results clearly indicate that drainage increased the concentration of dissolved organic carbon (DOC), ammonia, nitrate and dissolved organic nitrogen (DON) compared to the near natural site. Drainage depth further determined the release and therefore the concentration level of DOC and N species, but the biochemical cycling and therefore dissolved organic matter (DOM) quality and N species composition were unaffected. Thus, especially deep drainage can cause high DOC losses. In general, DOM at drained sites was enriched in aromatic moieties as indicated by SUVA280 and showed a higher degradation status (lower DOC to DON ratio) compared to the near natural site. At the drained sites, equal C to N ratios of uppermost peat layer and DOC to DON ratio of DOM in soil solution suggest that the uppermost degraded peat layer is the main source of DOM. Nearly constant DOC to DON ratios and SUVA280 values with depth furthermore indicated that DOM moving downwards through the drained sites remained largely unchanged. DON and ammonia contributed most to the total dissolved nitrogen (TN). The subsoil concentrations of nitrate were negligible due to strong decline in nitrate around mean water table depth. Methane production during the winter months at the drained sites moved downwards to areas which were mostly water saturated over the whole year (>40 cm). Above these depths, the recovery of the water table in winter months led to the production of nitrous oxide around mean water table depth at drained sites. 10 yr after rewetting, the DOM quality (DOC to DON ratio and SUVA280) and quantity were comparable to the near natural site, indicating the re-establishment of mostly pristine biochemical processes under continuously water logged conditions. The only differences occur in elevated dissolved methane and ammonia concentrations reflecting the former disturbance by drainage and peat extraction. Rewetting via polder technique seems to be an appropriate way to revitalize peatlands on longer timescales and to improve the water quality of downstream water bodies.

  17. Nutrient transport and transformation beneath an infiltration basin

    USGS Publications Warehouse

    Sumner, D.M.; Rolston, D.E.; Bradner, L.A.

    1998-01-01

    Field experiments were conducted to examine nutrient transport and transformation beneath an infiltration basin used for the disposal of treated wastewater. Removal of nitrogen from infiltrating water by denitrification was negligible beneath the basin, probably because of subsurface aeration as a result of daily interruptions in basin loading. Retention of organic nitrogen in the upper 4.6 m of the unsaturated zone (water table depth of approximately 11 m) during basin loading resulted in concentrations of nitrate as much as 10 times that of the applied treated wastewater, following basin 'rest' periods of several weeks, which allowed time for mineralization and nitrification. Approximately 90% of the phosphorus in treated wastewater was removed within the upper 4.6 m of the subsurface, primarily by adsorption reactions, with abundant iron and aluminum oxyhydroxides occurring as soil coatings. A reduction in the flow rate of infiltrating water arriving at the water table may explain the accumulation of relatively coarse (>0.45 ??m), organic forms of nitrogen and phosphorus slightly below the water table. Mineralization and nitrification reactions at this second location of organic nitrogen accumulation contributed to concentrations of nitrate as much as three times that of the applied treated wastewater. Phosphorus, which accumulated below the water table, was immobilized by adsorption or precipitation reactions during basin rest periods.Field experiments were conducted to examine nutrient transport and transformation beneath an infiltration basin used for the disposal of treated wastewater. Removal of nitrogen from infiltrating water by denitrification was negligible beneath the basin, probably because of subsurface aeration as a result of daily interruptions in basin loading. Retention of organic nitrogen in the upper 4.6 m of the unsaturated zone (water table depth of approximately 11 m) during basin loading resulted in concentrations of nitrate as much as 10 times that of the applied treated wastewater, following basin 'rest' periods of several weeks, which allowed time for mineralization and nitrification. Approximately 90% of the phosphorus in treated wastewater was removed within the upper 4.6 m of the subsurface, primarily by adsorption reactions, with abundant iron and aluminum oxyhydroxides occurring as soil coatings. A reduction in the flow rate of infiltrating water arriving at the water table may explain the accumulation of relatively coarse (>0.45 ??m), organic forms of nitrogen and phosphorus slightly below the water table. Mineralization and nitrification reactions at this second location of organic nitrogen accumulation contributed to concentrations of nitrate as much as three times that of the applied treated wastewater. Phosphorus, which accumulated below the water table, was immobilized by adsorption or precipitation reactions during basin rest periods.

  18. An overview of impact of subsurface drainage project studies on salinity management in developing countries

    NASA Astrophysics Data System (ADS)

    Tiwari, Priyanka; Goel, Arun

    2017-05-01

    Subsurface drainage has been used for more than a century to keep water table at a desired level of salinity and waterlogging control. This paper has been focused on the impact assessment of pilot studies in India and some other countries from 1969 to 2014 . This review article may prove quite useful in deciding the installation of subsurface drainage project depending on main design parameters, such as drain depth and drain spacing, installation area and type of used outlet. A number of pilot studies have been taken up in past to solve the problems of soil salinity and waterlogging in India. The general guidelines that arise on the behalf of this review paper are to adapt drain depth >1.2 m and spacing depending on soil texture classification, i.e., 100-150 m for light-textured soils, 50-100 m for medium-textured soils and 30-50 m heavy-textured soils, for better result obtained from the problem areas in Indian soil and climatic conditions. An attempt has been made in the manner of literature survey to highlight the salient features of these studies, and it is hopeful to go a long way in selecting design parameters for subsurface drainage problems in the future with similar soil, water table and climatic conditions.

  19. The influence of water table depth and the free atmospheric state on convective rainfall predisposition

    Treesearch

    Sara Bonetti; Gabriele Manoli; Jean-Christopher Domec; Mario Putti; Marco Marani; Gabriel G. Katul

    2015-01-01

    A mechanistic model for the soil-plant system is coupled to a conventional slab representation of the atmospheric boundary layer (ABL) to explore the role of groundwater table (WT) variations and free atmospheric (FA) states on convective rainfall predisposition (CRP) at a Loblolly pine plantation site situated in the lower coastal plain of North Carolina....

  20. Environmental gradients and identification of wetlands in north-central Florida

    USGS Publications Warehouse

    Davis, M.M.; Sprecher, S.W.; Wakeley, J.S.; Best, G.R.

    1996-01-01

    Vegetation composition, soil morphology, and hydrology were characterized along wetland-to-upland gradients at six forested sites in north-central Florida to compare results of Federal wetland delineation methods with 3–5 yr of hydrologic data. Wetland and non-wetland identifications were supported by hydrology data in eight of nine plant communities. Lack of hydric soil indicators and hydrophytic vegetation in two upland communities (scrub and mixed mesic hardwoods) agreed with a deep water table. Six wetland communities (cypress dome, cypress strand, bayhead, cypress/bayhead, red maple/oak swamp, and cedar swamp) with field indicators of wetland hydrology, hydrophytic vegetation, and hydric soils were inundated or had water tables at or near the ground surface at least 5% of the growing season in most years., Flatwoods communities, however, occurred at intermediate positions on the moisture gradient and could not be consistently identified as wetland or upland communities. Identification of flatwoods as wetlands depended on wetland delineation method and was not usually supported by hydrologic measurements. In the flatwoods community, soil properties and vegetation composition were correlated with the mean and standard deviation of water-table depths, as well as the depth continuously exceeded by the water table at least 5% of the growing season in most years. Various hydrologic parameters need to be considered in addition to the 5% exceedence level currently used in Federal wetland delineation guidance when characterizing wetland conditions in low-gradient areas such as flatwoods.

  1. Interpolations of groundwater table elevation in dissected uplands.

    PubMed

    Chung, Jae-won; Rogers, J David

    2012-01-01

    The variable elevation of the groundwater table in the St. Louis area was estimated using multiple linear regression (MLR), ordinary kriging, and cokriging as part of a regional program seeking to assess liquefaction potential. Surface water features were used to determine the minimum water table for MLR and supplement the principal variables for ordinary kriging and cokriging. By evaluating the known depth to the water and the minimum water table elevation, the MLR analysis approximates the groundwater elevation for a contiguous hydrologic system. Ordinary kriging and cokriging estimate values in unsampled areas by calculating the spatial relationships between the unsampled and sampled locations. In this study, ordinary kriging did not incorporate topographic variations as an independent variable, while cokriging included topography as a supporting covariable. Cross validation suggests that cokriging provides a more reliable estimate at known data points with less uncertainty than the other methods. Profiles extending through the dissected uplands terrain suggest that: (1) the groundwater table generated by MLR mimics the ground surface and elicits a exaggerated interpolation of groundwater elevation; (2) the groundwater table estimated by ordinary kriging tends to ignore local topography and exhibits oversmoothing of the actual undulations in the water table; and (3) cokriging appears to give the realistic water surface, which rises and falls in proportion to the overlying topography. The authors concluded that cokriging provided the most realistic estimate of the groundwater surface, which is the key variable in assessing soil liquefaction potential in unconsolidated sediments. © 2011, The Author(s). Ground Water © 2011, National Ground Water Association.

  2. The Impact of Water Table Drawdown and Drying on Subterranean Aquatic Fauna in In-Vitro Experiments

    PubMed Central

    Stumpp, Christine; Hose, Grant C.

    2013-01-01

    The abstraction of groundwater is a global phenomenon that directly threatens groundwater ecosystems. Despite the global significance of this issue, the impact of groundwater abstraction and the lowering of groundwater tables on biota is poorly known. The aim of this study is to determine the impacts of groundwater drawdown in unconfined aquifers on the distribution of fauna close to the water table, and the tolerance of groundwater fauna to sediment drying once water levels have declined. A series of column experiments were conducted to investigate the depth distribution of different stygofauna (Syncarida and Copepoda) under saturated conditions and after fast and slow water table declines. Further, the survival of stygofauna under conditions of reduced sediment water content was tested. The distribution and response of stygofauna to water drawdown was taxon specific, but with the common response of some fauna being stranded by water level decline. So too, the survival of stygofauna under different levels of sediment saturation was variable. Syncarida were better able to tolerate drying conditions than the Copepoda, but mortality of all groups increased with decreasing sediment water content. The results of this work provide new understanding of the response of fauna to water table drawdown. Such improved understanding is necessary for sustainable use of groundwater, and allows for targeted strategies to better manage groundwater abstraction and maintain groundwater biodiversity. PMID:24278111

  3. Using Groundwater Modeling to Evaluate Impacts of Sea Level Rise on A Coastal Riverine Ecosystem: A Case Study of Saint Jones River Water Shed

    NASA Astrophysics Data System (ADS)

    He, C.; McKenna, T. E.

    2016-12-01

    A 3-D, transient, variable-density groundwater flow model (SEAWAT) is used to simulate the groundwater response to predicted sea level rise in the Saint Jones River watershed adjacent to the Delaware Estuary. Sea level rise directly leads to substantial changes in the depth of water table, and these changes can extend far inland due to the long tidal rivers in this area. This research studied the impacts of three different sea level rise scenarios (0.5m, 1.0m and 1.5m) on two concerned aspects in the area: failure of septic tank system and loss of agriculture land. The model results indicate that 1) 10% 13% of current existing septic tank will fail as the water table rise to less than 1.5meters from land surface, and 2) approximate 271 to 927 acres of agriculture land, which covers about 4% 13% of total current agriculture land in the study area, will be lost due to water table rise above the effective rooting depth. To count in the uncertainty of climate change in the future, Monte Carlo simulation was applied and a linear transformation model was created and verified to facilitate the tremendous computation.

  4. Water prospection in volcanic islands by Time Domain Electromagnetic (TDEM) surveying: The case study of the islands of Fogo and Santo Antão in Cape Verde

    NASA Astrophysics Data System (ADS)

    Martínez-Moreno, F. J.; Monteiro-Santos, F. A.; Madeira, J.; Bernardo, I.; Soares, A.; Esteves, M.; Adão, F.

    2016-11-01

    Water demand in islands, focused in agriculture, domestic use and tourism, is usually supplied by groundwater. Thus the information about groundwater distribution is an important issue in islands water resources management. Time Domain Electromagnetic (TDEM) provides underground resistivity distribution at greater depths and is of easier application than other methods. In this study TDEM technique was used for groundwater prospection in two volcanic islands with water supply problems, the islands of Fogo and Santo Antão in the Republic of Cape Verde. The 10 islands of Cape Verde Archipelago, located off the coast of Senegal (W Africa), present a semi-arid climate and thus suffer from irregular and scarce precipitation. In the Island of Fogo 26 TDEM soundings, presenting an area distribution, were performed on the SW flank of the volcanic edifice. These allowed obtaining a 3D model composed of 5 layers parallel to the topographic surface separated by 50 m depth down to - 250 m. The results indicate the presence of the water-table at a depth of 150 m in the lower ranges of the W flank of the island, and at > 200 m depth in the area above 250 m above sea level (a.s.l.). In the Island of Santo Antão 32 TDEM soundings, distributed along 5 linear profiles, were obtained on the north-eastern half of the island. The profiles are located in two regions exposed to different humidity conditions to the N and S of the main water divide. The northern flank receives the dominant trade winds first and most of the precipitation and, therefore, the water-table is shallower ( 50 m depth) than in the S ( 100 m depth). Our study demonstrates the applicability and usefulness of the TDEM method for groundwater prospection in high resistivity contexts such as in volcanic islands.

  5. Infinite slope stability under steady unsaturated seepage conditions

    USGS Publications Warehouse

    Lu, Ning; Godt, Jonathan W.

    2008-01-01

    We present a generalized framework for the stability of infinite slopes under steady unsaturated seepage conditions. The analytical framework allows the water table to be located at any depth below the ground surface and variation of soil suction and moisture content above the water table under steady infiltration conditions. The framework also explicitly considers the effect of weathering and porosity increase near the ground surface on changes in the friction angle of the soil. The factor of safety is conceptualized as a function of the depth within the vadose zone and can be reduced to the classical analytical solution for subaerial infinite slopes in the saturated zone. Slope stability analyses with hypothetical sandy and silty soils are conducted to illustrate the effectiveness of the framework. These analyses indicate that for hillslopes of both sandy and silty soils, failure can occur above the water table under steady infiltration conditions, which is consistent with some field observations that cannot be predicted by the classical infinite slope theory. A case study of shallow slope failures of sandy colluvium on steep coastal hillslopes near Seattle, Washington, is presented to examine the predictive utility of the proposed framework.

  6. Using TEM for sounding conductive and deep groundwater in Mars analog environments: Comparing two field studies

    NASA Astrophysics Data System (ADS)

    Jernsletten, J. A.

    2005-11-01

    A TEM survey was carried out in Pima County, Arizona, in January 2003. Data was collected using 100 m Tx loops and a ferrite-cored magnetic coil Rx antenna, using a 16 Hz sounding frequency, which is sensitive to slightly salty groundwater. Prominent features in the data are the ~500 m depth of investigation and the ~120 m depth to the water table, confirmed by data from four USGS test wells sur-rounding the field area. Note also the conductive (~20-40 Ωm) clay-rich soil above the water table. During May and June of 2003, a Fast-Turnoff (early time) TEM survey was carried out at the Peña de Hierro field area of the MARTE project, near the town of Nerva, Spain. Data was collected using 20 m and 40 m Tx loop antennae and 10 m loop Rx antennae, with a 32 Hz sounding frequency. Data from Line 4 (of 16) from this survey, collected using 40 m Tx loops, show ~200 m depth of investigation and a conduc-tive high at ~90 m depth below Station 20 (second station of 10 along this line). This is the water table, matching the 431 m MSL elevation of the nearby pit lake. Data from Line 15 and Line 14 of the Rio Tinto survey, collected using 20 m Tx loops, achieve ~50 m depth of investigation and show con-ductive highs at ~15 m depth below Station 50 (Line 15) and Station 30 (Line 14), interpreted as subsurface water flow under mine tailings matching surface flows seen coming out from under the tailings, and shown on maps. Both of the interpretations from Rio Tinto data (Line 4, and Lines 15 & 14) were confirmed by preliminary results from the MARTE ground truth drilling campaign carried out in September and October 2003. Drill Site 1 was moved ~50 m based on recommendations built on data from Line 15 and Line 14 of the Fast-Turnoff TEM survey.

  7. Forecast model for a water table control system in cranberry production

    NASA Astrophysics Data System (ADS)

    Racine, Cintia; José Gumiere, Silvio; Paniconi, Claudio; Dupuis, Christian; Lafond, Jonathan; Scudeler, Carlotta; Camporese, Matteo

    2017-04-01

    Water table control is gaining popularity in cranberry production. Cranberry plants require specific soil moisture conditions to enhance crop yields. In fact, water table control systems installed in the fields allow the plants to respond efficiently to the daily demand for evapotranspiration by capillarity rise and also regulate the soil water excess in drainage conditions. The scope of this study is to develop a forecast hydrological model at the field scale, able to simulate water level for water table control operations. In this work, the finite element CATHY (CATchment Hydrology) model associated with sequential data assimilation with an ensemble Kalman filter (EnKF) method will be used to simulated the soil water dynamics and perform model calibration in real-time. The study is conducted in cranberry fields located in Québec, Canada. During the last five years, these fields were extensive characterized regarding hydrological, pedological, and geological processes. Data collected from LIDAR and Ground Penetrating Radar (GPR) surveys and in-situ soil sampling have been used to define the domain geometry and initial soil properties. First results are promising and in agreement the in-situ water table measurements.

  8. Large-scale regionalization of water table depth in peatlands optimized for greenhouse gas emission upscaling

    NASA Astrophysics Data System (ADS)

    Bechtold, M.; Tiemeyer, B.; Laggner, A.; Leppelt, T.; Frahm, E.; Belting, S.

    2014-04-01

    Fluxes of the three main greenhouse gases (GHG) CO2, CH4 and N2O from peat and other organic soils are strongly controlled by water table depth. Information about the spatial distribution of water level is thus a crucial input parameter when upscaling GHG emissions to large scales. Here, we investigate the potential of statistical modeling for the regionalization of water levels in organic soils when data covers only a small fraction of the peatlands of the final map. Our study area is Germany. Phreatic water level data from 53 peatlands in Germany were compiled in a new dataset comprising 1094 dip wells and 7155 years of data. For each dip well, numerous possible predictor variables were determined using nationally available data sources, which included information about land cover, ditch network, protected areas, topography, peatland characteristics and climatic boundary conditions. We applied boosted regression trees to identify dependencies between predictor variables and dip well specific long-term annual mean water level (WL) as well as a transformed form of it (WLt). The latter was obtained by assuming a hypothetical GHG transfer function and is linearly related to GHG emissions. Our results demonstrate that model calibration on WLt is superior. It increases the explained variance of the water level in the sensitive range for GHG emissions and avoids model bias in subsequent GHG upscaling. The final model explained 45% of WLt variance and was built on nine predictor variables that are based on information about land cover, peatland characteristics, drainage network, topography and climatic boundary conditions. Their individual effects on WLt and the observed parameter interactions provide insights into natural and anthropogenic boundary conditions that control water levels in organic soils. Our study also demonstrates that a large fraction of the observed WLt variance cannot be explained by nationally available predictor variables and that predictors with stronger WLt indication, relying e.g. on detailed water management maps and remote sensing products, are needed to substantially improve model predictive performance.

  9. Large-scale regionalization of water table depth in peatlands optimized for greenhouse gas emission upscaling

    NASA Astrophysics Data System (ADS)

    Bechtold, M.; Tiemeyer, B.; Laggner, A.; Leppelt, T.; Frahm, E.; Belting, S.

    2014-09-01

    Fluxes of the three main greenhouse gases (GHG) CO2, CH4 and N2O from peat and other soils with high organic carbon contents are strongly controlled by water table depth. Information about the spatial distribution of water level is thus a crucial input parameter when upscaling GHG emissions to large scales. Here, we investigate the potential of statistical modeling for the regionalization of water levels in organic soils when data covers only a small fraction of the peatlands of the final map. Our study area is Germany. Phreatic water level data from 53 peatlands in Germany were compiled in a new data set comprising 1094 dip wells and 7155 years of data. For each dip well, numerous possible predictor variables were determined using nationally available data sources, which included information about land cover, ditch network, protected areas, topography, peatland characteristics and climatic boundary conditions. We applied boosted regression trees to identify dependencies between predictor variables and dip-well-specific long-term annual mean water level (WL) as well as a transformed form (WLt). The latter was obtained by assuming a hypothetical GHG transfer function and is linearly related to GHG emissions. Our results demonstrate that model calibration on WLt is superior. It increases the explained variance of the water level in the sensitive range for GHG emissions and avoids model bias in subsequent GHG upscaling. The final model explained 45% of WLt variance and was built on nine predictor variables that are based on information about land cover, peatland characteristics, drainage network, topography and climatic boundary conditions. Their individual effects on WLt and the observed parameter interactions provide insight into natural and anthropogenic boundary conditions that control water levels in organic soils. Our study also demonstrates that a large fraction of the observed WLt variance cannot be explained by nationally available predictor variables and that predictors with stronger WLt indication, relying, for example, on detailed water management maps and remote sensing products, are needed to substantially improve model predictive performance.

  10. Geohydrology of the shallow aquifers in the Denver metropolitan area, Colorado

    USGS Publications Warehouse

    Robson, Stanley G.

    1996-01-01

    The Denver metropolitan area is underlain by shallow layers of water-bearing sediments (aquifers) consisting of unconsolidated gravel, sand, silt, and clay. The depth to water in these aquifers is less than 20 feet in much of the area, and the aquifers provide a ready source of water to numerous shallow, small-capacity wells. The shallow depth to water also makes the aquifers susceptible to contamination from the land surface. Water percolating downward from residential, commercial, and industrial property, spills of hazardous materials, and leaks from underground storage tanks and pipelines can cause contaminants to enter the shallow aquifers. Wet basements, unstable foundation materials, and waterlogged soils also are common in areas of very shallow ground water.Knowledge of the extent, thickness, and water-table altitude of the shallow aquifers is incomplete. This, coupled with the complexity of development in this large metropolitan area, makes effective use, management, and protection of these aquifers extremely difficult. Mapping of the geologic and hydrologic characteristics of these aquifers would provide the general public and technical users with information needed to better use, manage, and protect this water resource. A study to map the geohydrology of shallow aquifers in the Denver metropolitan area was begun in 1994. The work was undertaken by the U.S. Geological Survey in cooperation with the U.S. Army-Rocky Mountain Arsenal, U.S. Department of Energy-Rocky Flats Field Office, Colorado Department of Public Health and Environment, Colorado Department of Natural Resources-State Engineers Office, Denver Water Department, Littleton-Englewood Wastewater Treatment Plant, East Cherry Creek Valley Water and Sanitation District, Metro Wastewater Reclamation District, Willows Water District, and the cities of Aurora, Lakewood, and Thornton.This report presents the results of a systematic mapping of the extent, thickness, and water-table altitude of the shallow aquifers in a 700-square-mile part of the greater Denver metropolitan area (fig. 1). The five sheets in this report (figs. 2-7) show (1) the thickness and extent of the unconsolidated sediments that overlie bedrock formations in the area, (2) the altitude and configuration of the buried bedrock surface, (3) the altitude of the water table and direction of ground-water movement, (4) the saturated thickness of the shallow aquifers, and (5) the depth to the water table in the shallow aquifers. The maps primarily are intended to indicate the general trends in altitude and thickness of the aquifers and are not intended to define conditions at specific sites.

  11. Developing Automatic Water Table Control System for Reducing Greenhouse Gas Emissions from Paddy Fields

    NASA Astrophysics Data System (ADS)

    Arif, C.; Fauzan, M. I.; Satyanto, K. S.; Budi, I. S.; Masaru, M.

    2018-05-01

    Water table in rice fields play important role to mitigate greenhouse gas (GHG) emissions from paddy fields. Continuous flooding by maintenance water table 2-5 cm above soil surface is not effective and release more GHG emissions. System of Rice Intensification (SRI) as alternative rice farming apply intermittent irrigation by maintaining lower water table is proven can reduce GHG emissions reducing productivity significantly. The objectives of this study were to develop automatic water table control system for SRI application and then evaluate the performances. The control system was developed based on fuzzy logic algorithms using the mini PC of Raspberry Pi. Based on laboratory and field tests, the developed system was working well as indicated by lower MAPE (mean absolute percentage error) values. MAPE values for simulation and field tests were 16.88% and 15.80%, respectively. This system can save irrigation water up to 42.54% without reducing productivity significantly when compared to manual irrigation systems.

  12. Magnitude of faecal contamination of rural community well waters in Nigeria and its relationship to well and water properties.

    PubMed

    Ogan, M T

    1989-12-01

    The possible relationship between high numbers of fecal coliforms (FCs), fecal streptococci (FS), standard plate count (SPCs) and well characteristics viz: well depth, water column, temperature, pH and non-filterable residue in 25 rural community wells in the Port Harcourt region, Nigeria, was studied. Zonal differences in residue level, well depth and fecal indicator bacteria were observed; these parameters were lowest in an area of high population density (slum) reclaimed from and adjacent to mangrove forests. Although some wells were covered and/or walled to protect them from surface runoff contamination, FCs and FS were recovered from all, except three, in numbers (log10 per 100 mL) ranging respectively from 0.40-3.79 and 0.70-3.44. The FC:FS ratio was less than 1.0 in 8 and greater than 1.0 in 14 samples. Well depth correlated with FCs (p = 0.01; r = 0.5684), FS (p = 0.001; r = 0.6423), pH (p = 0.0001; r = 0.5981); FCs and FS correlated significantly (p = 0.01; r = 0.4948). SPCs did not correlate significantly with FCs, FS and the well and water characteristics. Simultaneous analysis of samples by the Membrane-filtration (MF) and Most Probable Number (MPN) methods recovered mean FC counts in the decreasing sequence: Standard-MPN----Anaerobic----Aerobic MF----Direct-MPN. The underground water table is most probably contaminated via large numbers of soakaway pits and similar conveniences. Downward movement of contaminant from the shallow conveniences into deeper water tables may explain the well depth: indicator bacteria correlation.

  13. Saline-water intrusion related to well construction in Lee County, Florida

    USGS Publications Warehouse

    Boggess, Durward Hoye; Missimer, T.M.; O'Donnell, T. H.

    1977-01-01

    Ground water is the principle source of water supply in Lee County, Florida where an estimated 30,000 wells have been drilled since 1990. These wells ranges in depth from about 10 to 1,240 feet and tap the water table aquifer or one or more of the artesian water-bearing units or zones in the Tamiami Formation, the upper part of the Hawthorn Formation, the lower part of the Hawthorn Formation and the Tampa Limestone and the Suwannee Limestone. Before 1968, nearly all wells were constructed with galvanized or black iron pipe. Many of these wells are sources of saline-water intrusion into freshwater-bearing zones. The water-bearing zones in the lower part of the Hawthorn Formation, Tampa Limestone, and Suwannee Limestone are artesian-they have higher water levels and usually contain water with a higher concentration of dissolved solids than do the aquifers occurring at shallower depths. The water from these deeper aquifers generally range in dissolved solids concentration from about 1,500 to 2,400 mg/L, and in chloride from about 500 to 1,00 mg/L. A maximum chloride concentration of 15,200 mg/L has been determined. Few of the 3,00 wells estimated to have been drilled to these zones contain sufficient casing to prevent upward flow into overlaying water-bearing zones. Because of water-level differentials, upward movement and lateral intrusion of saline water occurs principally into the upper part of the Hawthorn Formation where the chloride concentrations in water unaffected by saline-water intrusion ranges from about 80 to 150 mg/L. Where intrusion from deep artesian zones has occurred, the chloride concentration in water from the upper part of the Hawthorn Formation ranges from about 300 to more than 2,100 mg/L Surface discharges of the saline water from wells tapping the lower part of the Hawthorn Formation and the Suwannee Limestone also had affected the water-table aquifer which normally contains water with 10 to 50 mg/L of chloride. In one area, the chloride concentration in water from the water table aquifer ranged from 200 to 590 mg/L as a result of intrusion. In areas adjacent to tidal-water bodies, the water table aquifer contains water that is very saline, Where the wells in such areas have been constructed with metal casings, the metal corrodes when exposed to the saline water, and many ultimately develop holes. This permits saline water to leak into the well where the water level in the well is lower than the water table. The intrusion of saline water from the water-table aquifer into the upper part of the Hawthorn Formation is a major problem in parts of Cape Coral. Withdrawal of water from the upper part of the Hawthorn Formation has caused water levels to decline below the lowest annual position of the water table, so that downward leakage is perennial. In some coastal areas, wells that tap the upper part of the Hawthorn Formation contain water whose chloride concentration is as much as 9,500 mg/L. Upward leakage of saline water from the deep artesian aquifers and downward leakage of saline water from the water-table aquifer can be prevented by proper well construction.

  14. Improved Hydrology over Peatlands in a Global Land Modeling System

    NASA Technical Reports Server (NTRS)

    Bechtold, M.; Delannoy, G.; Reichle, R.; Koster, R.; Mahanama, S.; Roose, Dirk

    2018-01-01

    Peatlands of the Northern Hemisphere represent an important carbon pool that mainly accumulated since the last ice age under permanently wet conditions in specific geological and climatic settings. The carbon balance of peatlands is closely coupled to water table dynamics. Consequently, the future carbon balance over peatlands is strongly dependent on how hydrology in peatlands will react to changing boundary conditions, e.g. due to climate change or regional water level drawdown of connected aquifers or streams. Global land surface modeling over organic-rich regions can provide valuable global-scale insights on where and how peatlands are in transition due to changing boundary conditions. However, the current global land surface models are not able to reproduce typical hydrological dynamics in peatlands well. We implemented specific structural and parametric changes to account for key hydrological characteristics of peatlands into NASA's GEOS-5 Catchment Land Surface Model (CLSM, Koster et al. 2000). The main modifications pertain to the modeling of partial inundation, and the definition of peatland-specific runoff and evapotranspiration schemes. We ran a set of simulations on a high performance cluster using different CLSM configurations and validated the results with a newly compiled global in-situ dataset of water table depths in peatlands. The results demonstrate that an update of soil hydraulic properties for peat soils alone does not improve the performance of CLSM over peatlands. However, structural model changes for peatlands are able to improve the skill metrics for water table depth. The validation results for the water table depth indicate a reduction of the bias from 2.5 to 0.2 m, and an improvement of the temporal correlation coefficient from 0.5 to 0.65, and from 0.4 to 0.55 for the anomalies. Our validation data set includes both bogs (rain-fed) and fens (ground and/or surface water influence) and reveals that the metrics improved less for fens. In addition, a comparison of evapotranspiration and soil moisture estimates over peatlands will be presented, albeit only with limited ground-based validation data. We will discuss strengths and weaknesses of the new model by focusing on time series of specific validation sites.

  15. The effects of groundwater depth on water uptake of Populus euphratica and Tamarix ramosissima in the hyperarid region of Northwestern China.

    PubMed

    Chen, Yapeng; Chen, Yaning; Xu, Changchun; Li, Weihong

    2016-09-01

    Knowledge of the water sources used by desert trees and shrubs is critical for understanding how they function and respond to groundwater decline and predicting the influence of water table changes on riparian plants. In this paper, we test whether increased depth to groundwater changed the water uptake pattern of desert riparian species and whether competition for water resources between trees and shrubs became more intense with a groundwater depth gradient. The water sources used by plants were calculated using the IsoSource model, and the results suggested differences in water uptake patterns with varying groundwater depths. At the river bank (groundwater depth = 1.8 m), Populus euphratica and Tamarix ramosissima both used a mixture of river water, groundwater, and deeper soil water (>75 cm). When groundwater depth was 3.8 m, trees and shrubs both depended predominantly on soil water stored at 150-375 cm depth. When the groundwater depth was 7.2 m, plant species switched to predominantly use both groundwater and deeper soil water (>375 cm). However, differences in water acquisition patterns between species were not found. The proportional similarity index (PSI) of proportional contribution to water uptake of different water resources between P. euphratica and T. ramosissima was calculated, and results showed that there was intense water resource competition between P. euphratica and T. ramosissima when grown at shallow groundwater depth (not more than 3.8 m), and the competition weakened when the groundwater depth increased to 7.2 m.

  16. Comparing Time Domain Electromagnetics (TEM) and Early-Time TEM for Mapping Highly Conductive Groundwater in Mars Analog Environments

    NASA Astrophysics Data System (ADS)

    Jernsletten, J. A.

    2005-05-01

    Introduction: The purpose of this study is to evaluate the use of (diffusive) Time Domain Electromagnetics (TEM) for sounding of subsurface water in conductive Mars analog environments. To provide a baseline for such studies, I show data from two field studies: 1) Diffusive sounding data (TEM) from Pima County, Arizona; and 2) Shallower sounding data using the Fast-Turnoff TEM method from Peña de Hierro in the Rio Tinto region of Spain. The latter is data from work conducted under the auspices of the Mars Analog Research and Technology Experiment (MARTE). Pima County TEM Survey: A TEM survey was carried out in Pima County, Arizona, in January 2003. Data was collected using 100 m Tx loops and a ferrite-cored magnetic coil Rx antenna, and processed using commercial software. The survey used a 16 Hz sounding frequency, which is sensitive to slightly salty groundwater. Prominent features in the data from Arizona are the ~500 m depth of investigation and the ~120 m depth to the water table, confirmed by data from four USGS test wells surrounding the field area. Note also the conductive (~20-40 ω m) clay-rich soil above the water table. Rio Tinto Fast-Turnoff TEM Survey: During May and June of 2003, a Fast-Turnoff (early time) TEM survey was carried out at the Peña de Hierro field area of the MARTE project, near the town of Nerva, Spain. Data was collected using 20 m and 40 m Tx loop antennae and 10 m loop Rx antennae, with a 32 Hz sounding frequency. Data from Line 4 (of 16) from this survey, collected using 40 m Tx loops, show ~200 m depth of investigation and a conductive high at ~90 m depth below Station 20 (second station of 10 along this line). This is the water table, matching the 431 m MSL elevation of the nearby pit lake. The center of the "pileup" below Station 60 is spatially coincident with the vertical fault plane located here. Data from Line 15 and Line 14 of the Rio Tinto survey, collected using 20 m Tx loops, achieve ~50 m depth of investigation and show conductive highs at ~15 m depth below Station 50 (Line 15) and Station 30 (Line 14), interpreted as subsurface water flow under mine tailings matching surface flows seen coming out from under the tailings, and shown on maps. Conclusions: Results from the Pima County TEM survey were in good agreement with control data from the four USGS test wells located around the field area. This survey also achieved very acceptable 500+ m depths of investigation. Both of the interpretations from Rio Tinto data (Line 4, and Lines 15 & 14) were confirmed by preliminary results from the MARTE ground truth drilling campaign carried out in September and October 2003. Drill Site 1 was moved ~50 m based on recommendations built on data from Line 15 and Line 14 of the Fast-Turnoff TEM survey.

  17. Water flow in Sphagnum hummocks: Mesocosm measurements and modelling

    NASA Astrophysics Data System (ADS)

    Price, Jonathan S.; Whittington, Peter N.

    2010-02-01

    SummaryThe internal water fluxes within Sphagnum mosses critically affect the rate of evaporation and the wetness of the living upper few centimetres of moss (capitula) and the physiological processes (e.g. photosynthesis) that support them. To quantify water fluxes and stores in Sphagnum rubellum hummocks we used a 30 cm high column (mesocosm) of undisturbed hummock moss including the capitula, and applied a number of experiments to investigate (1) staged lowering (and raising) of the water table ( wt) with a manometer tube; (2) pumped seepage of about 0.7 cm d -1 to produce a wt drop of 1.5 cm day -1; and (3) evaporation averaging 3.2 mm d -1. Water content ( θ) at saturation ( θ s) was ˜0.9 cm 3 cm -3 for all depths. Residual water content ( θ r) was 0.2 cm 3 cm -3 at 5 cm depth, increasing to 0.47 cm 3 cm -3 at 25 cm depth. Hydraulic conductivity ( K) of the same top 5 cm layer ranged from 1.8 × 10 -3 m s -1 at θ s to 4 × 10 -8 m s -1 at θ r. By comparison K at 25 cm depth had a much more limited range from 2.3 × 10 -4 m s -1 at θ s to 1.1 × 10 -5 m s -1 at θ r. Staged wt lowering from -10 cm to -30 cm (no evaporation allowed) resulted in an abrupt change in θ that reached a stable value generally within an hour, indicating the responsiveness of moss to drainage. Staged increases also resulted in an abrupt rise in θ, but in some cases several days were required for θ to equilibrate. Pumped seepage resulted in a sequential decline of θ, requiring about 10 days for each layer to reach θ r after the water table dropped below the sensor at the respective depths. Evaporation resulted in a similar pattern of decline but took almost three times as long. The computer simulation Hydrus 1D was used to model the fluxes and provided a good fit for the staged lowering and pumped seepage experiments, but overestimated the water loss by evaporation. We believe the reason for this is that over the longer evaporation experiment, the monolith underwent consolidation and shrinkage which reduced saturated hydraulic conductivity, thus reducing the rate of upward water flux - not accounted for in the simulation. Declining θ s in lower layers (i.e., before pore drainage) was evidence of consolidation. The study confirms that the hydraulic structure results in a rapid transition to a low but stable water content in upper mosses when the water table falls, a low unsaturated hydraulic conductivity in such circumstances that constrains upward water flux caused by evaporation when θ r is reached, but sustains it for a wide range of water tables. Moreover, the hydraulic parameters can be represented with the Mualem-van Genuchten approach, enabling the fluxes to be modelled in one dimension with reasonable accuracy.

  18. Compilation of regional ground water monitoring data to investigate 60 years of ground water dynamics in New England

    NASA Astrophysics Data System (ADS)

    Boutt, D. F.; Weider, K. M.

    2010-12-01

    Theory suggests that ground water systems at shallow depths are sensitive to climate system dynamics but respond at differing rates due to primarily hydrogeologic characteristics of the aquifer. These rates are presumably to a first order controlled by the transmissivity and hydrogeologic settings of aquifer systems. Regional scale modeling and understanding of the impact of this behavior is complicated by the fact that aquifer systems in glaciated regions of the North American continent often possess high degrees of heterogeneity as well as disparate hydraulic connections between aquifer systems. In order to investigate these relationships we present the results of a regional compilation of groundwater hydraulic head data across the New England states together with corresponding atmospheric (precipitation and temperature) and streamflow data for a 60 year period (1950-2010). Ground water trends are calculated as normalized anomalies, and analyzed with respect to regional compiled precipitation, temperature, and streamflow. Anomalies in ground water levels are analyzed together with hydrogeologic variables such as aquifer thickness, topographic setting, and distance from coast. The time-series display decadal patterns with ground water levels being highly variable and lagging that of precipitation and streamflow pointing to site specific and non-linear response to changes in climate. Sites with deeper water tables respond slower and with larger anomalies compared to shallow water table sites. Tills consistently respond quicker and have larger anomalies compared to outwash and stratified glacial deposits. The data set suggests that while regional patterns in ground water table response are internally consistent, the magnitude and timing of the response to wet or dry periods is extremely sensitive to hydrogeologic characteristics of the host aquifer.

  19. Methane Emissions From Western Siberian Wetlands: Heterogeneity and Sensitivity to Climate Change

    NASA Astrophysics Data System (ADS)

    Bohn, T. J.; Lettenmaier, D. P.; Podest, E.; McDonald, K. C.; Sathulur, K.; Bowling, L. C.; Friborg, T.

    2007-12-01

    Prediction of methane emissions from high-latitude wetlands is important given concerns about their sensitivity to a warming climate. As a basis for prediction of wetland methane emissions at regional scales, we have coupled the Variable Infiltration Capacity macroscale hydrological model (VIC) with the Biosphere-Energy-Transfer- Hydrology terrestrial ecosystem model (BETHY) and a wetland methane emissions model to make large-scale estimates of methane emissions as a function of soil temperature, water table depth, and net primary productivity (NPP), with a parameterization of the sub-grid heterogeneity of the water table depth based on topographic wetness index. Using landcover classifications derived from L-band satellite synthetic aperture radar imagery, we simulated methane emissions for the Chaya River basin in western Siberia, an area that includes the Bakchar Bog, for a retrospective baseline period of 1980-1999, and evaluated their sensitivity to increases in temperature of 0-5 °C and increases in precipitation of 0-15%. The interactions of temperature and precipitation, through their effects on the water table depth, play an important role in determining methane emissions from these wetlands. The balance between these effects varies spatially, and their net effect depends in part on sub- grid topographic heterogeneity. Higher temperatures alone increase methane production in saturated areas, but cause those saturated areas to shrink in extent, resulting in a net reduction in methane emissions. Higher precipitation alone raises water tables and expands the saturated area, resulting in a net increase in methane emissions. Combining a temperature increase of 3 °C and an increase of 10% in precipitation, to represent the climate conditions likely in western Siberia at the end of this century, results in roughly a doubling of annual methane emissions. This work was carried out at the University of Washington, at Purdue University, and at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  20. Longleaf Pine Ground-Layer Vegetation in Francis Marion National Forest: Reintroduction, Restoration, and Vegetation Assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glitzenstein, J.; Streng, D.; Wade, D.

    2001-01-01

    Study represents significant progress in understanding of compositional gradients in longleaf pine plant communities of Central South Carolina. Study shows the importance of water table depths as a controlling variable with vegetation patterns in the field and similar effects in a garden experiment. Grass planting study suggests that observed field distributions of dormant pine savannah grasses derive from complex interactive effects of fire history, hydrology and light environments. Use of regional longleaf data set to identify candidate species for introduction also appears to be a pioneering effort.

  1. Hydrogeologic controls on groundwater discharge and nitrogen loads in a coastal watershed

    USGS Publications Warehouse

    Russoniello, Chrtopher J.; Konikow, Leonard F.; Kroeger, Kevin D.; Fernandez, Cristina; Andres, A. Scott; Michael, Holly A.

    2016-01-01

    Submarine groundwater discharge (SGD) is a small portion of the global water budget, but a potentially large contributor to coastal nutrient budgets due to high concentrations relative to stream discharge. A numerical groundwater flow model of the Inland Bays Watershed, Delaware, USA, was developed to identify the primary hydrogeologic factors that affect groundwater discharge rates and transit times to streams and bays. The distribution of groundwater discharge between streams and bays is sensitive to the depth of the water table below land surface. Higher recharge and reduced hydraulic conductivity raised the water table and increased discharge to streams relative to bays compared to the Reference case (in which 66% of recharge is discharged to streams). Increases to either factor decreased transit times for discharge to both streams and bays compared to the Reference case (in which mean transit times are 56.5 and 94.3 years, respectively), though sensitivity to recharge is greater. Groundwater-borne nitrogen loads were calculated from nitrogen concentrations measured in discharging fresh groundwater and modeled SGD rates. These loads combined with long SGD transit times suggest groundwater-borne nitrogen reductions and estuarine water quality improvements will lag decades behind implementation of efforts to manage nutrient sources. This work enhances understanding of the hydrogeologic controls on and uncertainties in absolute and relative rates and transit times of groundwater discharge to streams and bays in coastal watersheds.

  2. Hydrologic data; North Canadian River from Lake Overholser to Lake Eufaula, central Oklahoma

    USGS Publications Warehouse

    Havens, J.S.

    1984-01-01

    The data contained in this report were gathered during the period 1982 to 1984 for use in constructing a digital model of the North Canadian River from Lake Overholser, in the western part of Oklahoma City, to Lake Eufaula, in eastern Oklahoma. Locations of test holes and sampling sites are show in figure 1. Information on well depths and water levels in table 1 was gathered in the summer of 1982. Some information in the table was reported by well owners. Field water-quality data for water temperatures, specific conductance, and pH were measured at the time the wells were inventoried in 1982 and appear in table 2. Forty-nine test holes were augered to provide more comprehensive lithologic and water-level data along the North Canadian River. Lithologic logs of these test holes appear in table 3. Thirty-eight of the test holes were completed as observations wells by placing perforated plastic casing in the holes. Water levels were measured in these observations wells from the time of completion in mid-1982 through mid-1984. Hydrographs of the observation wells are shown in figures 2 through 15. The data are presented graphically for clarity. Hydrographs of water-level fluctuations in two wells equipped with continuous water-level recorders and hydrographs of stage fluctuations on the North Canadian River at nearby gaging stations are shown in figures 16 and 17. Two sets of low-flow measurements for the North Canadian River showing gains and losses in flow between measuring sites in the reach from Lake Overholser to Lake Eufaula are given in table 4. Measurements of flow on tributary streams are also given in this table. Analyses of water-quality samples collected at the time of the low-flow measurements are given in table 5.

  3. Measuring and computing natural ground-water recharge at sites in south-central Kansas

    USGS Publications Warehouse

    Sophocleous, M.A.; Perry, C.A.

    1987-01-01

    To measure the natural groundwater recharge process, two sites in south-central Kansas were instrumented with sensors and data microloggers. The atmospheric-boundary layer and the unsaturated and saturated soil zones were monitored as a single regime. Direct observations also were used to evaluate the measurements. Atmospheric sensors included an anemometer, a tipping-bucket rain gage, an air-temperature thermistor, a relative-humidity probe, a net radiometer, and a barometric-pressure transducer. Sensors in the unsaturated zone consisted of soil-temperature thermocouples, tensiometers coupled with pressure transducers and dial gages, gypsum blocks, and a neutron-moisture probe. The saturated-zone sensors consisted of a water-level pressure transducer, a conventional float gage connected to a variable potentiometer, soil thermocouples, and a number of multiple-depth piezometers. Evaluation of the operation of these sensors and recorders indicates that certain types of equipment, such as pressure transducers, are very sensitive to environmental conditions. A number of suggestions aimed at improving instrumentation of recharge investigations are outlined. Precipitation and evapotranspiration data, taken together with soil moisture profiles and storage changes, water fluxes in the unsaturated zone and hydraulic gradients in the saturated zone at various depths, soil temperature, water table hydrographs, and water level changes in nearby wells, describe the recharge process. Although the two instrumented sites are located in sand-dune environments in area characterized by a shallow water table and a sub-humid continental climate, a significant difference was observed in the estimated total recharge. The estimates ranged from less than 2.5 mm at the Zenith site to approximately 154 mm at the Burrton site from February to June 1983. The principal reasons that the Burrton site had more recharge than the Zenith site were more precipitation, less evapotranspiration, and a shallower depth to the water table. Effective recharge took place only during late winter and spring. No summer or fall recharge was observed at either site during the observation period of this study. (Author 's abstract)

  4. Resolving terrestrial ecosystem processes along a subgrid topographic gradient for an earth-system model

    USGS Publications Warehouse

    Subin, Z M; Milly, Paul C.D.; Sulman, B N; Malyshev, Sergey; Shevliakova, E

    2014-01-01

    Soil moisture is a crucial control on surface water and energy fluxes, vegetation, and soil carbon cycling. Earth-system models (ESMs) generally represent an areal-average soil-moisture state in gridcells at scales of 50–200 km and as a result are not able to capture the nonlinear effects of topographically-controlled subgrid heterogeneity in soil moisture, in particular where wetlands are present. We addressed this deficiency by building a subgrid representation of hillslope-scale topographic gradients, TiHy (Tiled-hillslope Hydrology), into the Geophysical Fluid Dynamics Laboratory (GFDL) land model (LM3). LM3-TiHy models one or more representative hillslope geometries for each gridcell by discretizing them into land model tiles hydrologically coupled along an upland-to-lowland gradient. Each tile has its own surface fluxes, vegetation, and vertically-resolved state variables for soil physics and biogeochemistry. LM3-TiHy simulates a gradient in soil moisture and water-table depth between uplands and lowlands in each gridcell. Three hillslope hydrological regimes appear in non-permafrost regions in the model: wet and poorly-drained, wet and well-drained, and dry; with large, small, and zero wetland area predicted, respectively. Compared to the untiled LM3 in stand-alone experiments, LM3-TiHy simulates similar surface energy and water fluxes in the gridcell-mean. However, in marginally wet regions around the globe, LM3-TiHy simulates shallow groundwater in lowlands, leading to higher evapotranspiration, lower surface temperature, and higher leaf area compared to uplands in the same gridcells. Moreover, more than four-fold larger soil carbon concentrations are simulated globally in lowlands as compared with uplands. We compared water-table depths to those simulated by a recent global model-observational synthesis, and we compared wetland and inundated areas diagnosed from the model to observational datasets. The comparisons demonstrate that LM3-TiHy has the capability to represent some of the controls of these hydrological variables, but also that improvement in parameterization and input datasets are needed for more realistic simulations. We found large sensitivity in model-diagnosed wetland and inundated area to the depth of conductive soil and the parameterization of macroporosity. With improved parameterization and inclusion of peatland biogeochemical processes, the model could provide a new approach to investigating the vulnerability of Boreal peatland carbon to climate change in ESMs.

  5. Influence of the lower boundary in lysimeter observations

    NASA Astrophysics Data System (ADS)

    Weller, Ulrich; Richter, Katja; Gubis, Jozef; Vogel, Hans-Jörg

    2014-05-01

    Lysimeters are a valuable tool to study the water household in soils under close to natural conditions. One major drawback is that they are cut off at the lower boundary. This influences strongly the percolation of water. As long as water is leaching down in the soil, it is stagnating at the lower boundary until saturated conditions are reached and the water can percolate through the gravel filter, and under unsaturated conditions there is no flow at all at the lower boundary. In natural soils the water potential at the same depth differs considerably from the regime in a lysimeter. If the depth of the soil or the soil forming substrate is deep enough, the lower boundary is at the potential that allows the percolation of the long term mean of percolation. In other situations, a water table may influence the matric potential in the natural soil, or a less permeable layer may impede free drainage. In all these situations the matric potential at the depth of the lower boundary of the lysimeter will differ substantially in the natural soil. The latest generation of lysimeter therefore has a controlled lower boundary. The matric potential can be actively adjusted to a desired value over a broad range. Most applications connect the suction in the lysimeter to a reference value obtained in the field at the same depth in order to mimic the correct distribution of the soil water. In this presentation we demonstrate the long term influence of the different lower boundary regimes on percolation and evaporation of water based on soil physical models, and we show first field data on the practical implementations with several months of observations.

  6. Ground-water data: Beaver, Escalante, Cedar City, and Parowan Valleys; parts of Washington, Iron, Beaver, and Millard Counties, Utah

    USGS Publications Warehouse

    Sandberg, George W.

    1963-01-01

    This report is intended to serve two purposes: (1) to make available to the public basic ground-water data useful in planning and studying development of water resources, and (2) to supplement an interpretive report that will be published later.Records were collected during the period 1935-62 by the U.S. Geological Survey in cooperation with the Utah State Engineer as part of the investigation of ground-water conditions in the Beaver, Escalante, Cedar City, and Parowan Walleys. This report will include records collected subsequent to data published in earlier reports listed in the bibliography. The interpretive material will be published in a companion report by George W. Sandberg.This report is most useful in predicting conditions likely to be found in areas that are being considered as well sites. The person considering the new well can spot the proposed site on plate 1 and examine the records of nearby wells as shown in the tables and figure 2. From table 1 he can note such things as diameter, depth, water level, yield, use of water, and depth to aquifers in wells in the vicinity, and from the well logs in table 3 he can note the type of material that yields water to the wells. Table 2 gives several years record of yields and pumping levels of irrigation wells, and in table 4 are the chemical analyses of water from wells and springs. Figure 2 shows the historic fluctuations and trends of water levels in the four valleys. If the reader decides from his examination that conditions are favorable, he can place an application to drill a well with the State Engineer. During the past several years, however, the State Engineer has rejected new applications to appropriate water in major portions of Beaver Valley, Milford and Beryl-Enterprise districts in Escalante Valley, and Cedar City Valley. Anyone seeking to initiate a new ground-water right in any of these areas should obtain information from the State Engineer's Office in either Salt Lake City or Cedar City to determine the likelihood of approval of the required application.The report is also useful when planning large-scale developments of water supply. This and other uses of the report will be helped by use of the interpretive report upon its release.

  7. Modeling water table dynamics in managed and restored peatlands

    NASA Astrophysics Data System (ADS)

    Cresto Aleina, Fabio; Rasche, Livia; Hermans, Renée; Subke, Jens-Arne; Schneider, Uwe; Brovkin, Victor

    2016-04-01

    European peatlands have been extensively managed over past centuries. Typical management activities consisted of drainage and afforestation, which lead to considerable damage to the peat and potentially significant carbon loss. Recent efforts to restore previously managed peatlands have been carried out throughout Europe. These restoration efforts have direct implications for water table depth and greenhouse gas emissions, thus impacting on the ecosystem services provided by peatland areas. In order to quantify the impact of peatland restoration on water table depth and greenhouse gas budget, We coupled the Environmental Policy Integrated Climate (EPIC) model to a process-based model for methane emissions (Walter and Heimann, 2000). The new model (EPIC-M) can potentially be applied at the European and even at the global scale, but it is yet to be tested and evaluated. We present results of this new tool from different peatlands in the Flow Country, Scotland. Large parts of the peatlands of the region have been drained and afforested during the 1980s, but since the late 1990s, programs to restore peatlands in the Flow Country have been enforced. This region offers therefore a range of peatlands, from near pristine, to afforested and drained, with different resoration ages in between, where we can apply the EPIC-M model and validate it against experimental data from all land stages of restoration Goals of this study are to evaluate the EPIC-M model and its performances against in situ measurements of methane emissions and water table changes in drained peatlands and in restored ones. Secondly, our purpose is to study the environmental impact of peatland restoration, including methane emissions, due to the rewetting of drained surfaces. To do so, we forced the EPIC-M model with local meteorological and soil data, and simulated soil temperatures, water table dynamics, and greenhouse gas emissions. This is the first step towards a European-wide application of the EPIC-M model for the assessment of the environmental impact of peatland restoration.

  8. Modeling Subsurface Hydrology in Floodplains

    NASA Astrophysics Data System (ADS)

    Evans, Cristina M.; Dritschel, David G.; Singer, Michael B.

    2018-03-01

    Soil-moisture patterns in floodplains are highly dynamic, owing to the complex relationships between soil properties, climatic conditions at the surface, and the position of the water table. Given this complexity, along with climate change scenarios in many regions, there is a need for a model to investigate the implications of different conditions on water availability to riparian vegetation. We present a model, HaughFlow, which is able to predict coupled water movement in the vadose and phreatic zones of hydraulically connected floodplains. Model output was calibrated and evaluated at six sites in Australia to identify key patterns in subsurface hydrology. This study identifies the importance of the capillary fringe in vadose zone hydrology due to its water storage capacity and creation of conductive pathways. Following peaks in water table elevation, water can be stored in the capillary fringe for up to months (depending on the soil properties). This water can provide a critical resource for vegetation that is unable to access the water table. When water table peaks coincide with heavy rainfall events, the capillary fringe can support saturation of the entire soil profile. HaughFlow is used to investigate the water availability to riparian vegetation, producing daily output of water content in the soil over decadal time periods within different depth ranges. These outputs can be summarized to support scientific investigations of plant-water relations, as well as in management applications.

  9. Patterns and drivers of fungal community depth stratification in Sphagnum peat

    Treesearch

    Louis J. Lamit; Karl J. Romanowicz; Lynette R. Potvin; Adam R. Rivers; Kanwar Singh; Jay T. Lennon; Susannah G. Tringe; Evan S. Kane; Erik A. Lilleskov

    2017-01-01

    Peatlands store an immense pool of soil carbon vulnerable to microbial oxidation due to drought and intentional draining. We used amplicon sequencing and quantitative PCR to (i) examine how fungi are influenced by depth in the peat profile, water table and plant functional group at the onset of a multiyear mesocosm experiment, and (ii) test if fungi are correlated with...

  10. Effect of Drainage and Management Practices on Hydrology of Pine Plantation

    Treesearch

    R. Wayne Skaggs; Devendra M. Amatya; G. M. Chescheir; C. D. Blanton; J. W. Gilliam

    2006-01-01

    This paper reviews results of long-term studies, initiated in the late 1980s, to determine the hydrologic and water quality impacts of drainage and related water and forest management practices on a poorly drained site in Carteret County, North Carolina. Three watersheds, each approximately 25 ha, were instrumented to measure and record drainage rate, water table depth...

  11. Untangling the effects of shallow groundwater and deficit irrigation on irrigation water productivity in arid region: New conceptual model.

    PubMed

    Xue, Jingyuan; Huo, Zailin; Wang, Fengxin; Kang, Shaozhong; Huang, Guanhua

    2018-04-01

    Water scarcity and salt stress are two main limitations for agricultural production. Groundwater evapotranspiration (ET g ) with upward salt movement plays an important role in crop water use and water productivity in arid regions, and it can compensate the impact of deficit irrigation on crop production. Thus, comprehensive impacts of shallow groundwater and deficit irrigation on crop water use results in an improvement of irrigation water productivity (IWP). However, it is difficult to quantify the effects of groundwater and deficit irrigation on IWP. In this study, we built an IWP evaluation model coupled with a water and salt balance model and a crop yield estimation model. As a valuable tool of IWP simulation, the calibrated model was used to investigate the coupling response of sunflower IWP to irrigation water depths (IWDs), groundwater table depth (GTDs) and groundwater salinities (GSs). A total of 210 scenarios were run in which five irrigation water depths (IWDs) and seven groundwater table depths (GTDs) and six groundwater salinities (GSs) were used. Results indicate that increasing GS clearly increases the negative effect on a crop's actual evapotranspiration (ET a ) as salt accumulation in root zone. When GS is low (0.5-1g/L), increasing GTD produces more positive effect than negative effect. In regard to relatively high GS (2-5g/L), the negative effect of shallow-saline groundwater reaches a maximum at 2m GTD. Additionally, the salt concentration in the root zone maximizes its value at 2.0m GTD. In most cases, increasing GTD and GS reduces the benefits of irrigation water and IWP. The IWP increases with decreasing irrigation water. Overall, in arid regions, capillary rise of shallow groundwater can compensate for the lack of irrigation water and improve IWP. By improving irrigation schedules and taking advantages of shallow saline groundwater, we can obtain higher IWP. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. A method for simulating transient ground-water recharge in deep water-table settings in central Florida by using a simple water-balance/transfer-function model

    USGS Publications Warehouse

    O'Reilly, Andrew M.

    2004-01-01

    A relatively simple method is needed that provides estimates of transient ground-water recharge in deep water-table settings that can be incorporated into other hydrologic models. Deep water-table settings are areas where the water table is below the reach of plant roots and virtually all water that is not lost to surface runoff, evaporation at land surface, or evapotranspiration in the root zone eventually becomes ground-water recharge. Areas in central Florida with a deep water table generally are high recharge areas; consequently, simulation of recharge in these areas is of particular interest to water-resource managers. Yet the complexities of meteorological variations and unsaturated flow processes make it difficult to estimate short-term recharge rates, thereby confounding calibration and predictive use of transient hydrologic models. A simple water-balance/transfer-function (WBTF) model was developed for simulating transient ground-water recharge in deep water-table settings. The WBTF model represents a one-dimensional column from the top of the vegetative canopy to the water table and consists of two components: (1) a water-balance module that simulates the water storage capacity of the vegetative canopy and root zone; and (2) a transfer-function module that simulates the traveltime of water as it percolates from the bottom of the root zone to the water table. Data requirements include two time series for the period of interest?precipitation (or precipitation minus surface runoff, if surface runoff is not negligible) and evapotranspiration?and values for five parameters that represent water storage capacity or soil-drainage characteristics. A limiting assumption of the WBTF model is that the percolation of water below the root zone is a linear process. That is, percolating water is assumed to have the same traveltime characteristics, experiencing the same delay and attenuation, as it moves through the unsaturated zone. This assumption is more accurate if the moisture content, and consequently the unsaturated hydraulic conductivity, below the root zone does not vary substantially with time. Results of the WBTF model were compared to those of the U.S. Geological Survey variably saturated flow model, VS2DT, and to field-based estimates of recharge to demonstrate the applicability of the WBTF model for a range of conditions relevant to deep water-table settings in central Florida. The WBTF model reproduced independently obtained estimates of recharge reasonably well for different soil types and water-table depths.

  13. Ground-water contamination by crude oil at the Bemidji, Minnesota, research site; US Geological Survey Toxic Waste--ground-water contamination study

    USGS Publications Warehouse

    Hult, M.F.

    1984-01-01

    The project site is near Bemidji in northern Minnesota where an accidental spill of 10,500 barrels of crude oil occurred when a pipeline broke on August 20, 1979. Regulatory and remedial actions have been completed. The site is in a remote area with neither man-made hydraulic stresses nor other anthropogenic sources of the compounds of interest. The spill is in the recharge area of a local flow system that discharges to a small closed lake approximately 1,000 feet down the hydraulic gradient. The aquifer is pitted outwash dissected by younger glacial channels and is underlain by poorly permeable till at a depth of about 80 feet. Ground water dissolves oil floating on the water table under the spill site and moves toward the lake. At the water table, ground water enters the lake through lacustrine sediments; at depth, flow may be underneath the lake through the outwash. Contaminant transport has been as rapid as 4 feet per day based on the rate of movement of contaminants monitored through wells installed within a few days of the spill, but average rates are undoubtedly much less.

  14. Balancing lake ecological condition and agriculture irrigation needs in the Mississippi Alluvial Valley

    USGS Publications Warehouse

    Miranda, Leandro E.; Omer, A.R.; Killgore, K.J.

    2017-01-01

    The Mississippi Alluvial Valley includes hundreds of floodplain lakes that support unique fish assemblages and high biodiversity. Irrigation practices in the valley have lowered the water table, increasing the cost of pumping water, and necessitating the use of floodplain lakes as a source of water for irrigation. This development has prompted the need to regulate water withdrawals to protect aquatic resources, but it is unknown how much water can be withdrawn from lakes before ecological integrity is compromised. To estimate withdrawal limits, we examined descriptors of lake water quality (i.e., total nitrogen, total phosphorus, turbidity, Secchi visibility, chlorophyll-a) and fish assemblages (species richness, diversity, composition) relative to maximum depth in 59 floodplain lakes. Change-point regression analysis was applied to identify critical depths at which the relationships between depth and lake descriptors exhibited a rapid shift in slope, suggesting possible thresholds. All our water quality and fish assemblage descriptors showed rapid changes relative to depth near 1.2–2.0 m maximum depth. This threshold span may help inform regulatory decisions about water withdrawal limits. Alternatives to explain the triggers of the observed threshold span are considered.

  15. Shallow groundwater and soil chemistry response to 3 years of subsurface drip irrigation using coalbed-methane-produced water

    USGS Publications Warehouse

    Bern, Carleton R.; Boehlke, Adam R.; Engle, Mark A.; Geboy, Nicholas J.; Schroeder, K.T.; Zupancic, J.W.

    2013-01-01

    Disposal of produced waters, pumped to the surface as part of coalbed methane (CBM) development, is a significant environmental issue in the Wyoming portion of the Powder River Basin, USA. High sodium adsorption ratios (SAR) of the waters could degrade agricultural land, especially if directly applied to the soil surface. One method of disposing of CBM water, while deriving beneficial use, is subsurface drip irrigation (SDI), where acidified CBM waters are applied to alfalfa fields year-round via tubing buried 0.92 m deep. Effects of the method were studied on an alluvial terrace with a relatively shallow depth to water table (∼3 m). Excess irrigation water caused the water table to rise, even temporarily reaching the depth of drip tubing. The rise corresponded to increased salinity in some monitoring wells. Three factors appeared to drive increased groundwater salinity: (1) CBM solutes, concentrated by evapotranspiration; (2) gypsum dissolution, apparently enhanced by cation exchange; and (3) dissolution of native Na–Mg–SO4 salts more soluble than gypsum. Irrigation with high SAR (∼24) water has increased soil saturated paste SAR up to 15 near the drip tubing. Importantly though, little change in SAR has occurred at the surface.

  16. Shallow groundwater and soil chemistry response to 3 years of subsurface drip irrigation using coalbed-methane-produced water

    NASA Astrophysics Data System (ADS)

    Bern, C. R.; Boehlke, A. R.; Engle, M. A.; Geboy, N. J.; Schroeder, K. T.; Zupancic, J. W.

    2013-12-01

    Disposal of produced waters, pumped to the surface as part of coalbed methane (CBM) development, is a significant environmental issue in the Wyoming portion of the Powder River Basin, USA. High sodium adsorption ratios (SAR) of the waters could degrade agricultural land, especially if directly applied to the soil surface. One method of disposing of CBM water, while deriving beneficial use, is subsurface drip irrigation (SDI), where acidified CBM waters are applied to alfalfa fields year-round via tubing buried 0.92 m deep. Effects of the method were studied on an alluvial terrace with a relatively shallow depth to water table (˜3 m). Excess irrigation water caused the water table to rise, even temporarily reaching the depth of drip tubing. The rise corresponded to increased salinity in some monitoring wells. Three factors appeared to drive increased groundwater salinity: (1) CBM solutes, concentrated by evapotranspiration; (2) gypsum dissolution, apparently enhanced by cation exchange; and (3) dissolution of native Na-Mg-SO4 salts more soluble than gypsum. Irrigation with high SAR (˜24) water has increased soil saturated paste SAR up to 15 near the drip tubing. Importantly though, little change in SAR has occurred at the surface.

  17. Understanding the hydrologic and geochemical control of regolith formation on shale in a hilly landscape

    NASA Astrophysics Data System (ADS)

    Xiao, D.; Brantley, S.; Li, L.

    2017-12-01

    Chemical weathering transforms rock to soil and determine soil texture, bedrock depth, and soil hydrological properties. At the Shale Hills watershed in central Pennsylvania, field evidence indicated that the regolith depth, hydrologic processes, and chemical depletion are different at the two aspects. Current regolith formation models considering reactive transport processes have a limitation in coupling complex and evolving hydrodynamic conditions. We hypothesize that deeper regolith forms when more water flushes dissolved mass out of the system. The hypothesis is tested by developing a two-dimensional regolith formation model at the hillslope scale using measured mineral composition and hydrologic properties at Shale Hills using CrunchFlow. A 2-D hillslope domain was setup to simulate hydrogeochemical processes at north and south aspects and to understand the evolution of hydrodynamics, rock properties, and extent of chemical reactions. The bedrock has the primary minerals of quartz, illite, chlorite, calcite, and pyrite; goethite and kaolinite precipitated as secondary minerals. The permeability, mass transfer, and groundwater table depth were constrained by field measurement. We implemented different recharge rates on north and south aspects based on the annually averaged fluxes from a current reanalysis using a hydrologic model. The simulation started from a homogeneous bedrock composition at 10,000 years ago. After 10,000 years' weathering, the south facing aspect with small recharge rate has a shallower soil and regolith. The simulation output indicates the formation of a shallow and a deep groundwater, based on the formation of lateral flow that connects to the stream. One is at the interface between high permeability soil zone and low permeability regolith zone, forming a relatively high-velocity perched groundwater layer. The remnant water infiltrates into the deeper low permeability zone and forms the regional groundwater layer. Because of high permeability in perched layer on north facing aspect, the remnant water in regional groundwater layer leads to shallower water table depth on north facing aspect. The model will be used to understand the role fractures, climate, and mineral compositions in affecting regolith formation.

  18. The Effects of Peatland Plant Functional Types and Altered Hydrology on Porewater Chemistry in a Northern Bog

    NASA Astrophysics Data System (ADS)

    Daniels, A.; Kane, E. S.; Lilleskov, E. A.; Kolka, R. K.; Chimner, R. A.; Potvin, L. R.; Romanowicz, K. J.

    2012-12-01

    Northern wetlands, peatlands in particular, have been shown to store around 30% of the world's soil carbon and thus play a significant role in the carbon cycle of our planet. Carbon accumulation in peatlands is the result of retarded decomposition due to low oxygen availability in these water-logged environments. Changes in our planet's climate cycles are altering peatland hydrology and vegetation communities, resulting in changes in their ability to sequester carbon through increases in peat carbon oxidation and mineralization. To date, the consequences of altered hydrology and changes in vegetation communities, and their interactive effects on carbon storage, are not well understood. We have initiated a research plan that assesses the varying roles that water table variation and vegetation communities have on extracellular enzyme activity and labile carbon availability in porewater from an ombrotrophic bog. We assessed the effects of plant functional group (ericaceous shrubs, sedges, and bryophytes) and water table position on biogeochemical processes. Specifically, we measured dissolved organic carbon (DOC), total dissolved nitrogen (TDN), enzyme activity, organic acids, anions and cations, spectral indexes of aromaticity, and phenolic content in addressing our hypotheses of responses to climate change drivers. Research on these components will evaluate the relative importance of biology, water table, and their interactive affects on the porewater quality of peatlands. We hypothesized that oxygen availability will strongly influence decomposition in these systems but that this response will largely be mediated by changes in plant community and the enzymes associated with root exudates and mycorrhizae. To date, our data confirm vegetation and water table related patterns. Acetate and propionate concentrations in the sedge-dominated communities dropped significantly with depth and drainage, relative to the control and ericaceous treatments, which likely reflects changes in redox potential owing to physiological differences in sedges which contain aerenchyma cell, and a reduction in the products of anaerobic metabolism. DOC increased in the lowered water table treatments in all vegetation community types. Enzymatic activities have changed in response to water table level and vegetation community. While we have not detected significant levels of peroxidase enzymes in porewater, initial results indicate that hydrolase enzyme activities were higher in the sedge-dominated communities with a lowered water table. Through this research, we are hoping to advance our knowledge of the drivers behind peatland biogeochemistry and how ombrotrophic peat systems may respond to climate change influences.

  19. Plasticity in the Huber value contributes to homeostasis in leaf water relations of a mallee Eucalypt with variation to groundwater depth.

    PubMed

    Carter, Jennifer L; White, Donald A

    2009-11-01

    Information on how vegetation adapts to differences in water supply is critical for predicting vegetation survival, growth and water use, which, in turn, has important impacts on site hydrology. Many field studies assess adaptation to water stress by comparing between disparate sites, which makes it difficult to distinguish between physiological or morphological changes and long-term genetic adaptation. When planting trees into new environments, the phenotypic adaptations of a species to water stress will be of primary interest. This study examined the response to water availability of Eucalyptus kochii ssp. borealis (C. Gardner) D. Nicolle, commonly integrated with agriculture in south-western Australia for environmental and economic benefits. By choosing a site where the groundwater depth varied but where climate and soil type were the same, we were able to isolate tree response to water supply. Tree growth, leaf area and stand water use were much larger for trees over shallow groundwater than for trees over a deep water table below a silcrete hardpan. However, water use on a leaf area basis was similar in trees over deep and shallow groundwater, as were the minimum leaf water potential observed over different seasons and the turgor loss point. We conclude that homeostasis in leaf water use and water relations was maintained through a combination of stomatal control and adjustment of sapwood-to-leaf area ratios (Huber value). Differences in the Huber value with groundwater depth were associated with different sapwood-specific conductivity and water use on a sapwood area basis. Knowledge of the coordination between water supply, leaf area, sapwood area and leaf transpiration rate for different species will be important when predicting stand water use.

  20. Contrasting species-environment relationships in communities of testate amoebae, bryophytes and vascular plants along the fen-bog gradient.

    PubMed

    Lamentowicz, Mariusz; Lamentowicz, Lukasz; van der Knaap, Willem O; Gabka, Maciej; Mitchell, Edward A D

    2010-04-01

    We studied the vegetation, testate amoebae and abiotic variables (depth of the water table, pH, electrical conductivity, Ca and Mg concentrations of water extracted from mosses) along the bog to extremely rich fen gradient in sub-alpine peatlands of the Upper Engadine (Swiss Alps). Testate amoeba diversity was correlated to that of mosses but not of vascular plants. Diversity peaked in rich fen for testate amoebae and in extremely rich fen for mosses, while for testate amoebae and mosses it was lowest in bog but for vascular plants in extremely rich fen. Multiple factor and redundancy analyses (RDA) revealed a stronger correlation of testate amoebae than of vegetation to water table and hydrochemical variables and relatively strong correlation between testate amoeba and moss community data. In RDA, hydrochemical variables explained a higher proportion of the testate amoeba and moss data than water table depth. Abiotic variables explained a higher percentage of the species data for testate amoebae (30.3% or 19.5% for binary data) than for mosses (13.4%) and vascular plants (10%). These results show that (1) vascular plant, moss and testate amoeba communities respond differently to ecological gradients in peatlands and (2) testate amoebae are more strongly related than vascular plants to the abiotic factors at the mire surface. These differences are related to vertical trophic gradients and associated niche differentiation.

  1. The Estimation of the Water Table and the Specific Yield with time-lapse 2D Electrical Resistivity Imaging in the Minzu Basin of Central Taiwan

    NASA Astrophysics Data System (ADS)

    Yao, H. J.; Chang, P. Y.

    2017-12-01

    The Minzu Basin is located at the central part of Taiwan, which is bounded by the Changhua fault in the west and the Chelungpu thrust fault in its east. The Chuoshui river flows through the basin and brings in thick unconsolidated gravel layers deposited over the Pleistocene rocks and gravels. Thus, the area has a great potential for groundwater developments. However, there are not enough observation wells in the study area for a further investigation of groundwater characteristics. Therefore, we tried to use the electrical resistivity imaging(ERI) method for estimating the depth of the groundwater table and the specific yield of the unconfined aquifer in dry and wet seasons. We have deployed 13 survey lines with the Wenner-Schlumberger array in the study area in March and June of 2017. Based on the data from the ERI measurements and the nearby Xinming observation well, we turned the resistivity into the relative saturation with respect to the saturated background based on the Archie's Law. With the depth distribution curve of the relative saturation, we found that the curve exhibits a similar shape to the Soil-Water Characteristic Curve. Hence we attempted to use the Van-Genuchten model for characterizing the depth of the water table. And we also tried to calculated the specific yield by taking the difference between the saturated and residual water contents. According to our preliminary results, we found that the depth of groundwater is ranging from 8-m to 10.7-m and the specific yield is about 0.095 0.146 in March. In addition, the depth of groundwater in June is ranging from about 7.6m to 9.8m and the estimated specific yield is about 0.1 0.157. The average level of groundwater in the wet season of June is raised about 0.6m than that in March. We are now working on collecting more time-lapse data, as well as making the direct comparisons with the data from new observation wells completed recently, in order to verify our estimations from the resistivity surveys.

  2. Regulation of Microbial Herbicide Transformation by Coupled Moisture and Oxygen Dynamics in Soil

    NASA Astrophysics Data System (ADS)

    Marschmann, G.; Pagel, H.; Uksa, M.; Streck, T.; Milojevic, T.; Rezanezhad, F.; Van Cappellen, P.

    2017-12-01

    The key processes of herbicide fate in agricultural soils are well-characterized. However, most of these studies are from batch experiments that were conducted under optimal aerobic conditions. In order to delineate the processes controlling herbicide (i.e., phenoxy herbicide 2-methyl-4-chlorophenoxyacetic acid, MCPA) turnover in soil under variable moisture conditions, we conducted a state-of-the-art soil column experiment, with a highly instrumented automated soil column system, under constant and oscillating water table regimes. In this system, the position of the water table was imposed using a computer-controlled, multi-channel pump connected to a hydrostatic equilibrium reservoir and a water storage reservoir. The soil samples were collected from a fertilized, arable and carbon-limited agricultural field site in Germany. The efflux of CO2 was determined from headspace gas measurements as an integrated signal of microbial respiration activity. Moisture and oxygen profiles along the soil column were monitored continuously using high-resolution moisture content probes and luminescence-based Multi Fiber Optode (MuFO) microsensors, respectively. Pore water and solid-phase samples were collected periodically at 8 depths and analyzed for MCPA, dissolved inorganic and organic carbon concentrations as well as the abundance of specific MCPA-degrading bacteria. The results indicated a clear effect of the water table fluctuations on CO2 fluxes, with lower fluxes during imbibition periods and enhanced CO2 fluxes after drainage. In this presentation, we focus on the results of temporal changes in the vertical distribution of herbicide, specific herbicide degraders, organic carbon concentration, moisture content and oxygen. We expect that the high spatial and temporal resolution of measurements from this experiment will allow robust calibration of a reactive transport model for the soil columns, with subsequent identification and quantification of rate limiting processes of MCPA turnover. This will ultimately improve our overall understanding of herbicide fate processes as a function of soil water regime.

  3. Variably-saturated groundwater modeling for optimizing managed aquifer recharge using trench infiltration

    USGS Publications Warehouse

    Heilweil, Victor M.; Benoit, Jerome; Healy, Richard W.

    2015-01-01

    Spreading-basin methods have resulted in more than 130 million cubic meters of recharge to the unconfined Navajo Sandstone of southern Utah in the past decade, but infiltration rates have slowed in recent years because of reduced hydraulic gradients and clogging. Trench infiltration is a promising alternative technique for increasing recharge and minimizing evaporation. This paper uses a variably saturated flow model to further investigate the relative importance of the following variables on rates of trench infiltration to unconfined aquifers: saturated hydraulic conductivity, trench spacing and dimensions, initial water-table depth, alternate wet/dry periods, and number of parallel trenches. Modeling results showed (1) increased infiltration with higher hydraulic conductivity, deeper initial water tables, and larger spacing between parallel trenches, (2) deeper or wider trenches do not substantially increase infiltration, (3) alternating wet/dry periods result in less overall infiltration than keeping the trenches continuously full, and (4) larger numbers of parallel trenches within a fixed area increases infiltration but with a diminishing effect as trench spacing becomes tighter. An empirical equation for estimating expected trench infiltration rates as a function of hydraulic conductivity and initial water-table depth was derived and can be used for evaluating feasibility of trench infiltration in other hydrogeologic settings

  4. Assessing the magnitude and timing of anthropogenic warming of a shallow aquifer: example from Virginia Beach, USA

    USGS Publications Warehouse

    Eggleston, John R.; McCoy, Kurt J.

    2015-01-01

    Groundwater temperature measurements in a shallow coastal aquifer in Virginia Beach, Virginia, USA, suggest groundwater warming of +4.1 °C relative to deeper geothermal gradients. Observed warming is related to timing and depth of influence of two potential thermal drivers—atmospheric temperature increases and urbanization. Results indicate that up to 30 % of groundwater warming at the water table can be attributed to atmospheric warming while up to 70 % of warming can be attributed to urbanization. Groundwater temperature readings to 30-m depth correlate positively with percentage of impervious cover and negatively with percentage of tree canopy cover; thus, these two land-use metrics explain up to 70 % of warming at the water table. Analytical and numerical modeling results indicate that an average vertical groundwater temperature profile for the study area, constructed from repeat measurement at 11 locations over 15 months, is consistent with the timing of land-use change over the past century in Virginia Beach. The magnitude of human-induced warming at the water table (+4.1 °C) is twice the current seasonal temperature variation, indicating the potential for ecological impacts on wetlands and estuaries receiving groundwater discharge from shallow aquifers.

  5. Overland flow generation in two lithologically distinct rainforest catchments

    USGS Publications Warehouse

    Godsey, S.; Elsenbeer, H.; Stallard, R.

    2004-01-01

    Streams on uniformly rainforest-covered, but lithologically very diverse Barro Colorado Island in central Panama?? show remarkable differences in their runoff response to rainfall. This lithological diversity is reflected in equally diverse soilscapes, and our objective was to test the hypothesis that contrasting runoff responses derive from soilscape features that control the generation of overland flow. We determined the soil saturated hydraulic conductivity (Ks) of two neighboring, but hydrologically contrasting catchments (Lutz Creek with a flashy and Conrad Trail with a delayed response to rainfall), and quantified the spatial and temporal frequency of overland flow occurrence. The median Ks values at a depth of 12.5 cm are large enough to rule out Hortonian overland flow, but a marked decrease in K s in Lutz Creek catchment at 30 cm suggests the formation of a perched water table and the generation saturation overland flow; the decrease in Ks in the Conrad Trail catchment is more gradual, and a perched water table is expected to form only at depths below 50 cm. In Lutz Creek, overland flow was generated frequently in time and space and regardless of topographic position, including near the interfluve, with very low thresholds of storm magnitude, duration, intensity and antecedent wetness, whereas in Conrad Trail, overland flow was generated much less frequently and then only locally. We conclude that soilscape features and microtopography are important controls of overland flow generation in these catchments. Our results contribute to the growing evidence that overland flow and forests are not a priori a contradiction in terms. ?? 2004 Elsevier B.V. All rights reserved.

  6. Ground air: A first approximation of the Earth's second largest reservoir of carbon dioxide gas.

    PubMed

    Baldini, James U L; Bertram, Rachel A; Ridley, Harriet E

    2018-03-01

    It is becoming increasingly clear that a substantial reservoir of carbon exists in the unsaturated zone of aquifers, though the total size of this reservoir on a global scale remains unquantified. Here we provide the first broad estimate of the amount of carbon dioxide gas found in this terrestrial reservoir. We calculate that between 2 and 53 PgC exists as gaseous CO 2 in aquifers worldwide, generated by the slow microbial oxidation of organic particles transported into aquifers by percolating groundwater. Importantly, this carbon reservoir is in the form of CO 2 gas, and is therefore transferable to the Earth's atmosphere without any phase change. On a coarse scale, water table depths are partially controlled by local sea level; sea level lowering therefore allows slow carbon sequestration into the reservoir and sea level increases force rapid CO 2 outgassing from this reservoir. High-resolution cave air pCO 2 data demonstrate that sea level variability does affect CO 2 outgassing rates from the unsaturated zone, and that the CO 2 outgassing due to sea level rise currently occurs on daily (tidal) timescales. We suggest that global mean water table depth must modulate the global unsaturated zone volume and the size of this carbon reservoir, potentially affecting atmospheric CO 2 on geological timescales. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Runoff generation processes and fraction of young water for streamflow and groundwater in a pre-alpine forested catchment

    NASA Astrophysics Data System (ADS)

    Zuecco, Giulia; Penna, Daniele; van Meerveld, Ilja; Borga, Marco

    2017-04-01

    Understanding of runoff generation mechanisms and storage dynamics is needed for sustainable management of water resources, particularly in catchments characterized by marked seasonality in rainfall. However, temporal and spatial variability of hydrological processes can hinder a detailed comprehension of catchment functioning. In this study, we use hydrometric data and stable isotope data from a 2-ha forested catchment in the Italian pre-Alps to i) identify seasonal changes in runoff generation, ii) determine the factors that affect the hysteretic relations between streamflow and soil moisture and between streamflow and shallow groundwater, and iii) estimate the fraction of young water in stream water and shallow groundwater. Streamflow, soil moisture and groundwater levels were measured continuously between August 2012 and December 2015. Soil moisture was measured at 0-30 cm depth by four time domain reflectometers installed at different locations along a riparian-hillslope transect. Depth to water table was measured in two piezometers installed at a depth of 2.0 and 1.8 m in the riparian zone. Water samples for isotopic analysis were taken monthly from bulk precipitation and approximately biweekly from stream water and groundwater. The relations between streamflow (independent variable), soil moisture and depth to water table (dependent variables) were analyzed by computing a hysteresis index that provides information on the direction, the extent and the shape of the loops for 103 rainfall-runoff events. The temporal variability of the hysteresis index was related to event characteristics (mean and maximum rainfall intensity, rainfall amount and total stormflow) and antecedent soil moisture conditions. We observed threshold-like relations between stormflow and the sum of rainfall and the antecedent soil moisture index and an exponential relation between the change in groundwater level and stormflow. Clockwise hysteretic relations were common between streamflow and riparian soil moisture, suggesting quick contributions from shallow soil layers in the riparian zone to streamflow. The relations between streamflow and hillslope soil moisture and between streamflow and depth to water table in the riparian zone varied seasonally, with clockwise loops being typical for large rainfall events in autumn and anti-clockwise hysteresis being more common in spring and summer. This indicates that hillslope soil water and riparian groundwater dynamics and their contribution to stormflow varied seasonally and depended on event size and antecedent moisture conditions. There was a marked seasonal variability in the isotopic composition of precipitation but a much more damped variability in the isotopic signature of stream water and groundwater. A sine curve was fitted to the seasonal variation in isotopic composition of weighted precipitation, stream water and groundwater to estimate the fraction of young water in stream water and groundwater. The fraction of young water in streamflow was about 14% when considering baseflow conditions only (23% using the entire isotopic dataset). This was similar to the fraction of young water in riparian groundwater. Keywords: runoff generation; hysteresis; isotopes; young water fraction; forested catchment.

  8. Hydrogeologic data for the Big River-Mishnock River stream-aquifer system, central Rhode Island

    USGS Publications Warehouse

    Craft, P.A.

    2001-01-01

    Hydrogeology, ground-water development alternatives, and water quality in the BigMishnock stream-aquifer system in central Rhode Island are being investigated as part of a long-term cooperative program between the Rhode Island Water Resources Board and the U.S. Geological Survey to evaluate the ground-water resources throughout Rhode Island. The study area includes the Big River drainage basin and that portion of the Mishnock River drainage basin upstream from the Mishnock River at State Route 3. This report presents geologic data and hydrologic and water-quality data for ground and surface water. Ground-water data were collected from July 1996 through September 1998 from a network of observation wells consisting of existing wells and wells installed for this study, which provided a broad distribution of data-collection sites throughout the study area. Streambed piezometers were used to obtain differences in head data between surface-water levels and ground-water levels to help evaluate stream-aquifer interactions throughout the study area. The types of data presented include monthly ground-water levels, average daily ground-water withdrawals, drawdown data from aquifer tests, and water-quality data. Historical water-level data from other wells within the study area also are presented in this report. Surface-water data were obtained from a network consisting of surface-water impoundments, such as ponds and reservoirs, existing and newly established partial-record stream-discharge sites, and synoptic surface-water-quality sites. Water levels were collected monthly from the surface-water impoundments. Stream-discharge measurements were made at partial-record sites to provide measurements of inflow, outflow, and internal flow throughout the study area. Specific conductance was measured monthly at partial-record sites during the study, and also during the fall and spring of 1997 and 1998 at 41 synoptic sites throughout the study area. General geologic data, such as estimates of depth to bedrock and depth to water table, as well as indications of underlying geologic structure, were obtained from geophysical surveys. Site-specific geologic data were collected during the drilling of observation wells and test holes. These data include depth to bedrock or refusal, depth to water table, and lithologic information.

  9. Dependency of Ecosystem Respiration in a Cool Temperate Bog on Peat Temperature and Water Table

    NASA Astrophysics Data System (ADS)

    Moore, T.; Lafleur, P.; Roulet, N.; Frolking, S.

    2003-12-01

    We measured ecosystem respiration (ER) from nighttime net ecosystem exchange of carbon dioxide determined from an eddy covariance tower located in a large ombrotrophic bog near Ottawa, Canada. Measurements were made from May to October over 5 years, 1998 to 2002. Ecosystem respiration ranged from <0.05 mg CO2/m2/s in spring (May) and late fall (late October) to 0.10-0.15 mg CO2/m2/s during the summer (July-August). As anticipated, there was a strong relationship between ER and peat temperatures, such as at a depth of 5 cm (r2 = 0.63). Q10 over 5° to 15° C varied from 2.2 to 4.2 depending upon the choice of temperature level and location within a hummock or hollow. Unexpected for a wetland ecosystem, there was only a weak relationship between ER and water table position (r2 = 0.11). Comparison of ER in early and late summer, 2002 with similar surface temperature revealed no significant difference in ER. A laboratory incubation of peat cores at different moisture contents showed that CO2 production was reduced by drying in the surface samples, but there was little decrease in samples from below a depth of 30 cm. We believe that the lack of correlation between ER and water table position in this ecosystem results from an increase in CO2 production at depth compensating a decrease in production of CO2 by heterotrophic respiration in the near surface layers and autotrophic respiration in the moss community.

  10. Investigating the mechanisms of shale porosity development to understand hydrologic controls on hillslope scale weathering in a comparison across CZOs

    NASA Astrophysics Data System (ADS)

    Gu, X.; Rempe, D.; Brantley, S. L.

    2016-12-01

    The spatial distribution of weathered rock across actively eroding landscapes strongly influences how water and solutes are routed throughout the landscape. To understand the controls on the evolution of weathering profiles that underlie hilly and mountainous regions, we investigated the porosity formation and chemical weathering of shale (Coastal Belt of the Franciscan Formation) samples from four boreholes at Eel River Critical Zone Observatory (ERCZO) in Northern California. We further compared the characteristics of the shale at ERCZO to the well studied Rose Hill shale at Susquehanna Shale Hills Critical Zone Observatory (SSHCZO) in central Pennsylvania. These two sites have similar mineralogical composition, but are located in vastly different climate and tectonic settings. In particular, the erosion rate at ERCZO (0.2-0.4 mm/yr) is much faster than at SSHCZO (0.015 mm/yr), and the average annual precipitation at ERCZO is higher (1.7 m/yr vs. 1 m/yr at SSHCZO). However, neutron scattering experiments show nearly identical bedrock porosities (3.1-4.6%) of parent rock. Analysis of the chemical and mineralogical compositions of samples throughout the weathering profile reveal that, at both sites, chemical weathering reactions occur at similar depths despite large differences in erosion rate: 1) carbonate and pyrite deplete sharply near the water table. 2) Chlorite oxidation also initiates near water table but shows a wider reaction front. 3) Illite dissolution occurs near the land surface. In both settings, the interface between weathered and unweathered rock roughly coincides with the water table and the porosity and water-accessibility increase toward the land surface. However, at ERCZO, the porosity and the density of micro-fractures are higher in the weathered zone than observed at SSHCZO. It is possible that both sites are moving toward a balance between rates of erosion and weathering advance, and that higher density of microfractures at the rapidly eroding ERCZO promotes faster water infiltration and faster weathering advance relative to the more slowly eroding SSHCZO. Further investigation of the origin and role of these microfractures is needed to understand the interplay between climate, erosion, and weathering that controls hillslope weathering profiles.

  11. A multi-method study of regional groundwater circulation in the Ordos Plateau, NW China

    NASA Astrophysics Data System (ADS)

    Jiang, Xiao-Wei; Wan, Li; Wang, Xu-Sheng; Wang, Dan; Wang, Heng; Wang, Jun-Zhi; Zhang, Hong; Zhang, Zhi-Yuan; Zhao, Ke-Yu

    2018-01-01

    The Ordos Basin is one of the most intensively studied groundwater basins in China. The Ordos Plateau, located in the north part of the Ordos Basin, is ideal to study the pattern of regional groundwater circulation induced by water-table undulations due to the wavy topography and the relatively simple aquifer systems with macroscopically homogeneous sandstone. In catchments located near the first-order divide, the water table is found to be a subdued replica of the topography, and the nonclosed water-table contours in topographic highs of a catchment are indicative of regional groundwater outflow to other catchments. In topographic lows, groundwater-fed lakes/rivers, topography-driven flowing wells, water-loving and/or salt-tolerant vegetation, and soap holes are all indicative of discharge areas. In discharge areas, although groundwater inflow from recharge areas is relatively stable, seasonal variations in groundwater recharge and evapotranspiration lead to significant seasonal fluctuations in the water table, which can be used to estimate groundwater inflow and evapotranspiration rates based on water balance at different stages of water-table change. In the lowest reaches of a complex basin, superposition of local flow systems on regional flow systems has been identified based on groundwater samples collected from wells with different depths and geophysical measurements of apparent resistivity, both of which can be used for characterizing groundwater flow systems. This study enhances understanding of the pattern of regional groundwater circulation in the Ordos Plateau, and also tests the effectiveness of methods for groundwater flow-system characterization.

  12. Groundwater influence on soil moisture memory and land-atmosphere interactions over the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Martinez-de la Torre, Alberto; Miguez-Macho, Gonzalo

    2017-04-01

    We investigate the memory introduced in soil moisture fields by groundwater long timescales of variation in the semi-arid regions of the Iberian Peninsula with the LEAFHYDRO soil-vegetation-hydrology model, which includes a dynamic water table fully coupled to soil moisture and river flow via 2-way fluxes. We select a 10-year period (1989-1998) with transitions from wet to dry to again wet long lasting conditions and we carry out simulations at 2.5 km spatial resolution forced by ERA-Interim and a high-resolution precipitation analysis over Spain and Portugal. The model produces a realistic water table that we validate with hundreds of water table depth observation time series (ranging from 4 to 10 years) over the Iberian Peninsula. Modeled river flow is also compared to observations. Over shallow water table regions, results highlight the groundwater buffering effect on soil moisture fields over dry spells and long-term droughts, as well as the slow recovery of pre-drought soil wetness once climatic conditions turn wetter. Groundwater sustains river flow during dry summer periods. The longer lasting wet conditions in the soil when groundwater is considered increase summer evapotranspiration, that is mostly water-limited. Our results suggest that groundwater interaction with soil moisture should be considered for climate seasonal forecasting and climate studies in general over water-limited regions where shallow water tables are significantly present and connected to land surface hydrology.

  13. Chemical, isotopic, and microbiological evidence for denitrification during transport of domestic wastewater through a thick unsaturated zone in the Mojave Desert, San Bernardino County, California

    USGS Publications Warehouse

    Schroeder, R.A.; Martin, P.M.; Böhlke, J.K.

    1993-01-01

    Nitrogen in downward-infiltrating wastewater discharged from seepage pits (dry wells) at residences in the upper Mojave River Basin, California represents a significant potential source of nitrate contamination to the underlying ground water. However, increases in nitrate concentration in the ground water have not yet been observed. The low nitrate concentration in the ground water may be the result of lateral dispersion in the unsaturated zone, dilution below the water table, or denitrification of wastewater nitrate in the unsaturated zone. Measured vertical rates indicate that some wastewater has reached the water table beneath communities that are older than 5 to 10 years. As wastewater percolates from seepage pits into the unsaturated zone, reduced nitrogen is converted rapidly to nitrate at shallow depths and the nitrate concentrations commonly decrease with depth. The largest nitrate decreases seem to coincide with increased content of fine-grained sediments or with proximity to the water table. Between lysimeters at 160 and 199 feet at one residence, the decrease in nitrate concentration coincided with a large increase in sulfate, decrease in alkalinity, and increase in 815N in nitrate. Those data are consistent with denitrification by oxidation of iron sulfide to produce ferric oxides; but if such a reaction occurs, it must be in domains that are small in comparison with the sampled volumes because the waters also contain substantial quantities of dissolved oxygen. The predominantly low nitrate concentrations in the area's ground water are consistent with the operation of a nitrogen-removal mechanism, possibly denitrification; however, the reducing capacity of the sediments to maintain denitrification is not known.

  14. A decade of boreal rich fen greenhouse gas fluxes in response to natural and experimental water table variability

    USGS Publications Warehouse

    Olefeldt, David; Euskirchen, Eugénie S.; Harden, Jennifer W.; Kane, Evan S.; McGuire, A. David; Waldrop, Mark P.; Turetsky, Merritt R.

    2017-01-01

    Rich fens are common boreal ecosystems with distinct hydrology, biogeochemistry and ecology that influence their carbon (C) balance. We present growing season soil chamber methane emission (FCH4), ecosystem respiration (ER), net ecosystem exchange (NEE) and gross primary production (GPP) fluxes from a 9-years water table manipulation experiment in an Alaskan rich fen. The study included major flood and drought years, where wetting and drying treatments further modified the severity of droughts. Results support previous findings from peatlands that drought causes reduced magnitude of growing season FCH4, GPP and NEE, thus reducing or reversing their C sink function. Experimentally exacerbated droughts further reduced the capacity for the fen to act as a C sink by causing shifts in vegetation and thus reducing magnitude of maximum growing season GPP in subsequent flood years by ~15% compared to control plots. Conversely, water table position had only a weak influence on ER, but dominant contribution to ER switched from autotrophic respiration in wet years to heterotrophic in dry years. Droughts did not cause inter-annual lag effects on ER in this rich fen, as has been observed in several nutrient-poor peatlands. While ER was dependent on soil temperatures at 2 cm depth, FCH4 was linked to soil temperatures at 25 cm. Inter-annual variability of deep soil temperatures was in turn dependent on wetness rather than air temperature, and higher FCH4 in flooded years was thus equally due to increased methane production at depth and decreased methane oxidation near the surface. Short-term fluctuations in wetness caused significant lag effects on FCH4, but droughts caused no inter-annual lag effects on FCH4. Our results show that frequency and severity of droughts and floods can have characteristic effects on the exchange of greenhouse gases, and emphasize the need to project future hydrological regimes in rich fens.

  15. Combining the Neuman and Boulton models for flow to a well in an unconfined aquifer

    USGS Publications Warehouse

    Moench, Allen F.

    1995-01-01

    A Laplace transform solution is presented for flow to a well in a homogeneous, water-table aquifer with noninstanta-neous drainage of water from the zone above the water table. The Boulton convolution integral is combined with Darcy's law and used as an upper boundary condition to replace the condition used by Neuman. Boulton's integral derives from the assumption that water drained from the unsaturated zone is released gradually in a manner that varies exponentially with time in response to a unit decline in hydraulic head, whereas the condition used by Newman assumes that the water is released instantaneously. The result is a solution that reduces to the solution obtained by Neuman as the rate of release of water from the zone above the water table increases. A dimensionless fitting parameter, γ, is introduced that incorporates vertical hydraulic conductivity, saturated thickness, specific yield, and an empirical constant α1, similar to Boulton's α. Results show that theoretical drawdown in water-table piezometers is amplified by noninstantaneous drainage from the unsaturated zone to a greater extent than drawdown in piezometers located at depth in the saturated zone. This difference provides a basis for evaluating γ by type-curve matching in addition to the other dimensionless parameters. Analysis of drawdown in selected piezometers from the published results of two aquifer tests conducted in relatively homogeneous glacial outwash deposits but with significantly different hydraulic conductivities reveals improved comparison between the theoretical type curves and the hydraulic head measured in water-table piezometers.

  16. Ammonium, Nitrate, and Total Nitrogen in the Soil Water of Feedlot and Field Soil Profiles1

    PubMed Central

    Elliott, L. F.; McCalla, T. M.; Mielke, L. N.; Travis, T. A.

    1972-01-01

    A level feedlot, located in an area consisting of Wann silt loam changing with depth to sand, appears to contribute no more NO3- nitrogen, NH4+ nitrogen, and total nitrogen to the shallow water table beneath it than an adjacent cropped field. Soil water samples collected at 46, 76, and 107 cm beneath the feedlot surface generally showed NO3- nitrogen concentrations of less than 1 μg/ml. During the summer months, soil water NO3- nitrogen increased at the 15-cm depth, indicating that nitrification took place at the feedlot surface. However, the low soil water NO3- nitrogen values below 15 cm indicate that denitrification takes place beneath the surface. PMID:16349922

  17. Spatial variability in plant species composition and peatland carbon exchange

    NASA Astrophysics Data System (ADS)

    Goud, E.; Moore, T. R.; Roulet, N. T.

    2015-12-01

    Plant species shifts in response to global change will have significant impacts on ecosystem carbon (C) exchange and storage arising from changes in hydrology. Spatial variation in peatland C fluxes have largely been attributed to the spatial distribution of microhabitats that arise from variation in surface topography and water table depth, but little is known about how plant species composition impacts peatland C cycling or how these impacts will be influenced by changing environmental conditions. We quantified the effect of species composition and environmental variables on carbon dioxide (CO2) and methane (CH4) fluxes over 2 years in a temperate peatland for four plant communities situated along a water table gradient from ombrotrophic bog to beaver pond. We hypothesized that (i) spatial heterogeneity in species composition would drive predictable spatial heterogeneity in C fluxes due to variation in plant traits and ecological tolerances, and (ii) increases in peat temperature would increase C fluxes. Species had different effects on C fluxes primarily due to differences in leaf traits. Differences in ecological tolerances among communities resulted in different rates of CO2 exchange in response to changes in water table depth. There was an overall reduction in ecosystem respiration (ER), gross primary productivity (GPP) and CH4 flux in response to colder peat temperatures in the second year, and the additive effects of a deeper water table in the bog margin and pond sites further reduced flux rates in these areas. These results demonstrate that different plant species can increase or decrease the flux of C into and out of peatlands based on differences in leaf traits and ecological tolerances, and that CO2 and CH4 fluxes are sensitive to changes in soil temperature, especially when coupled with changes in moisture availability.

  18. Water table depth regulates evapotranspiration and methane flux of a near-pristine temperate lowland fen measured by eddy covariance and static chambers

    NASA Astrophysics Data System (ADS)

    Kaduk, Jörg; Pan, Gong; Cumming, Alex; Evans, Jon; Kelvin, Jon; Peacock, Mike; Gauci, Vincent; Hughes, John; Page, Susan; Balzter, Heiko

    2015-04-01

    Methane is the second most important greenhouse gas after carbon dioxide, although the current atmospheric concentration is only about two parts per million. This results from a radiative forcing of 0.48 +/-0.05 Wm-2, about 26 times that of carbon dioxide. Atmospheric concentrations as well as emissions to the atmosphere have been increasing strongly over the last decades. Emissions are to a large extent biogenic where the largest biogenic source, wetlands, has the largest uncertainty. This precludes the construction of a reliable global methane budget, as well as meaningful predictions, as results from wetland models are uncertain and there are insufficient data for model improvement. We measured evapotranspiration and methane flux of a near-pristine temperate lowland fen in East Anglia in the United Kingdom from July 2013 to June 2014 by eddy covariance, which represents the first annual cycle of eddy covariance measurements of methane flux in this category of wetland. Methane fluxes from vegetation and ditches were additionally measured separately with static chambers. Annual evapotranspiration was 720.4 to 732.6 mm yr-1. Annual methane release was 3.77 to 4.03 g CH4 m-2 yr-1. Water table and methane fluxes were very different in the two half years: an average of -0.63 nmol CH4 m-2s-1 (a net uptake) for July-December 2013 and 16.2 nmol CH4 m-2s-1 (a net release) for January-June 2014 with a data range of -99 to 410 nmol CH4 m-2s-1 over the full year. Water table has the dominant role in determining methane flux and, under a very low water table, methane uptake was observed. Temperature has a clear impact on fluxes at high water tables. Eddy covariance and chamber measurements show the same annual pattern flux magnitude throughout the year. The fen can switch from being a source to a sink if the water table changes over a small critical depth range. Our measurements have implications for large scale wetland restoration plans in the eastern UK and potential options for the management of methane emissions from wetlands.

  19. Osmotic potential and projected drought tolerance of four phreatophytic shrub species in Owens Valley, California

    USGS Publications Warehouse

    Dileanis, Peter D.; Groeneveld, David P.

    1989-01-01

    A substantial quantity of the water used by plant communities growing on the floor of Owens Valley, California, is derived from a shallow unconfined aquifer. Fluctuations in the water table caused by ground-water withdrawal may result in periods when this water supply is not accessible to plants. The capacity of the plants to adapt to these periods of water loss depends on the availability of water stored in the soil and on physiological characteristics related to the ability of the plants to resist dehydration and wilting. Osmotic adjustment occurred in four phreatophytic shrub species at sites near Bishop, California, where the water table had been lowered by a system of pump-equipped wells installed in the vicinity of vegetation transects. The pressure-volume technique was used to determine osmotic potential and cell-wall elasticity between March 1985 and September 1986 for Atriplex torreyi, Chrysothamnus nauseosus , Sarcobatus verm iculatus , and Artemisia tridentata. Although not usually classified as a phreatophyte, Artemisia tridentata, where it grows on the valley floor, is apparently dependent on the depth to the water table. During late summer, osmotic potentials were 0.37 to 0.41 MPa (megapascal) lower in plants growing on the site where the water table had been lowered compared to an adjacent site where the water table remained at its natural levels. Measurements of soil matric potential at the two sites indicated that osmotic adjustment occurred in response to stress caused by lowering the water table. A theoretical lower limit of osmotic adjustment was determined by comparing initial cell osmotic potentials with initial xylem water potentials. These experimentally derived limits indicated that Atriplex torreyi and S. vermiculatus may maintain leaf cell turgor at significantly lower cell water potentials (about -4.5 MPa) than C. nauseosus or Artemisia tridentata (about -2.5 MPa), which allows them to function in drier soil environments.

  20. Response of anaerobic carbon cycling to water table manipulation in an Alaskan rich fen

    Treesearch

    E.S. Kane; M.R. Chivers; M.S. Turetsky; C.C. Treat; D.G. Petersen; M. Waldrop; J.W. Harden; A.D. McGuire

    2013-01-01

    To test the effects of altered hydrology on organic soil decomposition, we investigated CO2 and CH4 production potential of rich-fen peat (mean surface pH = 6.3) collected from a field water table manipulation experiment including control, raised and lowered water table treatments. Mean anaerobic CO2...

  1. Effects of Climate on Co-evolution of Weathering Profiles and Hillscapes

    NASA Astrophysics Data System (ADS)

    Anderson, R. S.; Rajaram, H.; Anderson, S. P.

    2017-12-01

    Considerable debate revolves around the relative importance of rock type, tectonics, and climate in creating the architecture of the critical zone. It has recently been proposed that differences in the depths and patterns of weathering between landscapes in Colorado's Front Range and South Carolina's piedmont can be attributed to the state of stress in the rock imposed by the magnitude and orientation the regional stresses with respect to the ridgelines (St. Claire et al., 2016). We argue for the importance of the climate, and in particular, in temperate regions, the amount of recharge. We employ numerical models of hillslope evolution between bounding erosional channels, in which the degree of rock weathering governs the rate of transformation of rock to soil. As the water table drapes between the stream channels, fresh rock is brought into the weathering zone at a rate governed by the rate of incision of the channels. We track the chemical weathering of rock, represented by alteration of feldspar to clays, which in turn requires calculation of the concentration of reactive species in the water along hydrologic flow paths. We present results from analytic solutions to the flow field in which travel times can be efficiently assessed. Below the water table, flow paths are hyperbolic, taking on considerable lateral components as they veer toward the bounding channels that serve as drains to the hillslope. We find that if water is far from equilibrium with respect to weatherable minerals at the water table, as occurs in wet, slowly-eroding landscapes, deep weathering can occur well below the water table to levels approximating the base of the bounding channels. In dry climates, on the other hand, the weathering zone is limited to a shallow surface - parallel layer. These models capture the essence of the observed differences in depth to fresh rock in both wet and dry climates without appeal to the state of stress in the rock.

  2. Shallow soil moisture - ground thaw interactions and controls - Part 2: Influences of water and energy fluxes

    NASA Astrophysics Data System (ADS)

    Guan, X. J.; Spence, C.; Westbrook, C. J.

    2010-01-01

    The companion paper (Guan et al., 2010) demonstrated variable interactions and correlations between shallow soil moisture and ground thaw in soil filled areas along a wetness spectrum in a subarctic Canadian Precambrian Shield landscape. From wetter to drier, these included a wetland, peatland and soil filled valley. Herein, water and energy fluxes were examined for these same subarctic study sites to discern the key controlling processes on the found patterns. Results showed the key control in variable soil moisture and frost table interactions among the sites was the presence of surface water. At the peatland and wetland sites, accumulated water in depressions and flow paths maintained soil moisture for a longer duration than at the hummock tops. These wet areas were often locations of deepest thaw depth due to the transfer of latent heat accompanying lateral surface runoff. Although the peatland and wetland sites had large inundation extent, modified Péclet numbers indicated the relative influence of external and internal hydrological processes at each site were different. Continuous inflow from an upstream lake into the wetland site caused advective and conductive thermal energies to be of equal importance to conductive ground thaw. The absence of continuous surface flow at the peatland and valley sites led to dominance of conductive thermal energy over advective energy for ground thaw. The results suggest that the modified Péclet number could be a very useful parameter to differentiate landscape components in modeling frost table heterogeneity. The calculated water and energy fluxes, and the modified Péclet number provide quantitative explanations for the shallow soil moisture-ground thaw patterns by linking them with hydrological processes and hillslope storage capacity.

  3. Shallow soil moisture - ground thaw interactions and controls - Part 2: Influences of water and energy fluxes

    NASA Astrophysics Data System (ADS)

    Guan, X. J.; Spence, C.; Westbrook, C. J.

    2010-07-01

    The companion paper (Guan et al., 2010) demonstrated variable interactions and correlations between shallow soil moisture and ground thaw in soil filled areas along a wetness spectrum in a subarctic Canadian Precambrian Shield landscape. From wetter to drier, these included a wetland, peatland and soil filled valley. Herein, water and energy fluxes were examined for these same subarctic study sites to discern the key controlling processes on the found patterns. Results showed the presence of surface water was the key control in variable soil moisture and frost table interactions among sites. At the peatland and wetland sites, accumulated water in depressions and flow paths maintained soil moisture for a longer duration than at the hummock tops. These wet areas were often locations of deepest thaw depth due to the transfer of latent heat accompanying lateral surface runoff. Although the peatland and wetland sites had large inundation extent, modified Péclet numbers indicated the relative influence of external and internal hydrological and energy processes at each site were different. Continuous inflow from an upstream lake into the wetland site caused advective and conductive thermal energies to be of equal importance to ground thaw. The absence of continuous surface flow at the peatland and valley sites led to dominance of conductive thermal energy over advective energy for ground thaw. The results suggest that the modified Péclet number could be a very useful parameter to differentiate landscape components in modeling frost table heterogeneity. The calculated water and energy fluxes, and the modified Péclet number provide quantitative explanations for the shallow soil moisture-ground thaw patterns by linking them with hydrological processes and hillslope storage capacity.

  4. Impact of groundwater levels on evaporation and water-vapor fluxes in highly saline soils

    NASA Astrophysics Data System (ADS)

    Munoz, J. F.; Hernández, M. F.; Braud, I.; Gironas, J. A.; Suarez, F. I.

    2012-12-01

    In aquifers of arid and hyper-arid zones, such as those occurring in the Chilean Andes high plateau, it is important to determine both the quantity and location of water discharges at the temporal scales of interest to close the basin's water budget and thus, to manage the water resource properly. In zones where shallow aquifers are the main source of water, overexploitation of the water resource changes the dynamics of water, heat and solute transport in the vadose zone. As aquifers are exploited, fluctuations in depth to groundwater are exacerbated. These fluctuations modify both soil structure and evaporation from the ground, which is typically the most important discharge from the water budget and is very difficult to estimate. Therefore, a correct quantification of evaporation from these soils is essential to improve the accuracy of the water balance estimation. The objective of this study was to investigate the evaporation processes and water-vapor fluxes in a soil column filled with a saline soil from the Salar del Huasco basin, Chile. Water content, electrical conductivity and temperature at different depths in the soil profile were monitored to determine the liquid and vapor fluxes within the soil column. The results showed that evaporation is negligible when the groundwater table is deeper than 1 m. For shallower groundwater levels, evaporation increases in an exponential fashion reaching a value of 3 mm/day when the groundwater table is near the surface of the ground. These evaporation rates are on the same order of magnitude than the field measurements, but slightly lower due to the controlled conditions maintained in the laboratory. Isothermal fluid fluxes were predominant over the non-isothermal fluid and water vapor fluxes. The net flux for all the phreatic levels tested in the laboratory showed different behaviors, with ascending or descending flows as a consequence of changes in water content and temperature distribution within the soil. It was found that evaporation from bare soils occurs as a consequence of vapor transport due to the thermal gradients. This vapor transport was also influences by the salinity of the soil.

  5. Pesticides in shallow groundwater in the Delmarva Peninsula

    USGS Publications Warehouse

    Koterba, M.T.; Banks, W.S.L.; Shedlock, R.J.

    1993-01-01

    A regional study of the areal and depth distribution of pesticides in shallow groundwater in the Delmarva Peninsula of Delaware, Maryland, and Virginia was done to (i) relate the pesticides detected to landscape and shallow subsurface features, and (ii) evaluate aquifer vulnerability and the potential contamination of drinking-water supplies. Water samples collected at 100 wells from 1988 to 1990 were analyzed for concentrations of 36 pesticides, four metabolites, and other constituents. The most commonly detected residues were atrazine, cyanazine, simazine, alachlor, metolachlor, and dicamba. Concentrations were low; few exceeded 3 ??g L-1. Most detections correlate with the intensive use of these herbicides in three widely distributed and commonly rotated crops-corn (Zea mays L.), soybean [Glycine max (L.) Merr.], and small grain-particularly if grown in well- drained soils. Most detections occurred in samples collected from shallow wells screened within 10 m of the overlying water table. The shallow depth distribution of most residues is consistent with their suspected history of use (ca. 20 yr), and patterns in shallow groundwater flow in the surficial aquifer in the study area. The areal and depth distributions of detectable residues in groundwater did not correlate with a vulnerability index, nor any of the component scores developed to estimate that index using the DRASTIC method. The shallow depth of most detections also indicates why few samples from water-supply wells in this study had measurable concentrations of pesticides; most supply wells are deeper than 10 m below the water table. The low number of contaminated samples from supply wells implies that deep groundwater currently (1992) used for drinking generally does not contain detectable pesticide residues.

  6. Hydrogeological controls of groundwater - land surface interactions

    NASA Astrophysics Data System (ADS)

    Bresciani, Etienne; Batelaan, Okke; Goderniaux, Pascal

    2017-04-01

    Interaction of groundwater with the land surface impacts a wide range of climatic, hydrologic, ecologic and geomorphologic processes. Many site-specific studies have successfully focused on measuring and modelling groundwater-surface water interaction, but upscaling or estimation at catchment or regional scale appears to be challenging. The factors controlling the interaction at regional scale are still poorly understood. In this contribution, a new 2-D (cross-sectional) analytical groundwater flow solution is used to derive a dimensionless criterion that expresses the conditions under which the groundwater outcrops at the land surface (Bresciani et al., 2016). The criterion gives insights into the functional relationships between geology, topography, climate and the locations of groundwater discharge along river systems. This sheds light on the debate about the topographic control of groundwater flow and groundwater-surface water interaction, as effectively the topography only influences the interaction when the groundwater table reaches the land surface. The criterion provides a practical tool to predict locations of groundwater discharge if a limited number of geomorphological and hydrogeological parameters (recharge, hydraulic conductivity and depth to impervious base) are known, and conversely it can provide regional estimates of the ratio of recharge over hydraulic conductivity if locations of groundwater discharge are known. A case study with known groundwater discharge locations located in South-West Brittany, France shows the feasibility of regional estimates of the ratio of recharge over hydraulic conductivity. Bresciani, E., Goderniaux, P. and Batelaan, O., 2016, Hydrogeological controls of water table-land surface interactions. Geophysical Research Letters 43(18): 9653-9661. http://dx.doi.org/10.1002/2016GL070618

  7. Osmotic potential and projected drought tolerance of four phreatophytic shrub species in Owens Valley, California

    USGS Publications Warehouse

    Dileanis, Peter D.; Groeneveld, D.P.

    1988-01-01

    A large part of the water used by plant communities growing on the floor of Owens Valley, California, is derived from a shallow unconfined aquifer. Fluctuations in the water table caused by groundwater withdrawal may result in periods when this water supply is not accessible to plants. The capacity of the plants to adapt to these periods of water loss depend on the availability of water stored in the soil and on physiological characteristics related to the ability of the plants to resist dehydration and wilting. Osmotic adjustment occurred in four phreatophytic shrub species at sites near bishop, California, where the water table had been lowered by a system of pump-equipped wells installed in the vicinity of vegetation transects. The pressure-volume techniques was used to determine osmotic potential and cell-wall elasticity between March 1985 and September 1986 for Atriplex torreyi, Chrysothamnus nauseosus , Sarcobatus vermiculatus, and Artemisia tridentata. Although not usually classified as a phreatophyte, Artemisia tridentata, where it grows on the valley floor, is apparently dependent on the depth to the water table. During late summer, osmotic potentials were 0.37 to 0.41 megapascal lower in plants growing on the site where the water table had been lowered compared to an adjacent site where the water table remained at its natural levels. Measurements of soil matric potential at the two sites indicated that osmotic adjustment occurred in response to stress caused by lowering the water table. A theoretical lower limit of osmotic adjustment was determined by comparing initial cell osmotic potentials with initial xylem water potentials. These experimentally derived limits indicated that A. torreyi and S. vermiculatus may maintain leaf cell turgor at significantly lower cell water potentials (about -4.5 megapascals) than C. nauseosus or A. tridentata (about -2.5 megapascals) and allows them to function in dryer soil environments. (Author 's abstract)

  8. Seasonal changes in Sphagnum peatland testate amoeba communities along a hydrological gradient.

    PubMed

    Marcisz, Katarzyna; Lamentowicz, Lukasz; Słowińska, Sandra; Słowiński, Michał; Muszak, Witold; Lamentowicz, Mariusz

    2014-10-01

    Testate amoebae are an abundant and functionally important group of protists in peatlands, but little is known about the seasonal patterns of their communities. We investigated the relationships between testate amoeba diversity and community structure and water table depth and light conditions (shading vs. insolation) in a Sphagnum peatland in Northern Poland (Linje mire) in spring and summer 2010. We monitored the water table at five sites across the peatland and collected Sphagnum samples in lawn and hummock micro-sites around each piezometer, in spring (3 May) and mid-summer (6 August) 2010. Water table differed significantly between micro-sites and seasons (Kruskal-Wallis test, p=0.001). The community structure of testate amoebae differed significantly between spring and summer in both hummock and lawn micro-sites. We recorded a small, but significant drop in Shannon diversity, between spring and summer (1.76 vs. 1.72). Strongest correlations were found between testate amoeba communities and water table lowering and light conditions. The relative abundance of mixotrophic species Hyalosphenia papilio, Archerella flavum and of Euglypha ciliata was higher in the summer. Copyright © 2014 Elsevier GmbH. All rights reserved.

  9. Shallow water table effects on water, sediment, and pesticide transport in vegetative filter strips - Part 2: model coupling, application, factor importance, and uncertainty

    NASA Astrophysics Data System (ADS)

    Lauvernet, Claire; Muñoz-Carpena, Rafael

    2018-01-01

    Vegetative filter strips are often used for protecting surface waters from pollution transferred by surface runoff in agricultural watersheds. In Europe, they are often prescribed along the stream banks, where a seasonal shallow water table (WT) could decrease the buffer zone efficiency. In spite of this potentially important effect, there are no systematic experimental or theoretical studies on the effect of this soil boundary condition on the VFS efficiency. In the companion paper (Muñoz-Carpena et al., 2018), we developed a physically based numerical algorithm (SWINGO) that allows the representation of soil infiltration with a shallow water table. Here we present the dynamic coupling of SWINGO with VFSMOD, an overland flow and transport mathematical model to study the WT influence on VFS efficiency in terms of reductions of overland flow, sediment, and pesticide transport. This new version of VFSMOD was applied to two contrasted benchmark field studies in France (sandy-loam soil in a Mediterranean semicontinental climate, and silty clay in a temperate oceanic climate), where limited testing of the model with field data on one of the sites showed promising results. The application showed that for the conditions of the studies, VFS efficiency decreases markedly when the water table is 0 to 1.5 m from the surface. In order to evaluate the relative importance of WT among other input factors controlling VFS efficiency, global sensitivity and uncertainty analysis (GSA) was applied on the benchmark studies. The most important factors found for VFS overland flow reduction were saturated hydraulic conductivity and WT depth, added to sediment characteristics and VFS dimensions for sediment and pesticide reductions. The relative importance of WT varied as a function of soil type (most important at the silty-clay soil) and hydraulic loading (rainfall + incoming runoff) at each site. The presence of WT introduced more complex responses dominated by strong interactions in the modeled system response, reducing the typical predominance of saturated hydraulic conductivity on infiltration under deep water table conditions. This study demonstrates that when present, the WT should be considered as a key hydrologic factor in buffer design and evaluation as a water quality mitigation practice.

  10. Artificial recharge through a thick, heterogeneous unsaturated zone

    USGS Publications Warehouse

    Izbicki, J.A.; Flint, A.L.; Stamos, C.L.

    2008-01-01

    Thick, heterogeneous unsaturated zones away from large streams in desert areas have not previously been considered suitable for artificial recharge from ponds. To test the potential for recharge in these settings, 1.3 ?? 10 6 m3 of water was infiltrated through a 0.36-ha pond along Oro Grande Wash near Victorville, California, between October 2002 and January 2006. The pond overlies a regional pumping depression 117 m below land surface and is located where thickness and permeability of unsaturated deposits allowed infiltration and saturated alluvial deposits were sufficiently permeable to allow recovery of water. Because large changes in water levels caused by nearby pumping would obscure arrival of water at the water table, downward movement of water was measured using sensors in the unsaturated zone. The downward rate of water movement was initially as high as 6 m/d and decreased with depth to 0.07 m/d; the initial time to reach the water table was 3 years. After the unsaturated zone was wetted, water reached the water table in 1 year. Soluble salts and nitrate moved readily with the infiltrated water, whereas arsenic and chromium were less mobile. Numerical simulations done using the computer program TOUGH2 duplicated the downward rate of water movement, accumulation of water on perched zones, and its arrival at the water table. Assuming 10 ?? 10 6 m3 of recharge annually for 20 years, a regional ground water flow model predicted water level rises of 30 m beneath the ponds, and rises exceeding 3 m in most wells serving the nearby urban area.

  11. Emulation of recharge and evapotranspiration processes in shallow groundwater systems

    NASA Astrophysics Data System (ADS)

    Doble, Rebecca C.; Pickett, Trevor; Crosbie, Russell S.; Morgan, Leanne K.; Turnadge, Chris; Davies, Phil J.

    2017-12-01

    In shallow groundwater systems, recharge and evapotranspiration are highly sensitive to changes in the depth to water table. To effectively model these fluxes, complex functions that include soil and vegetation properties are often required. Model emulation (surrogate modelling or meta-modelling) can provide a means of incorporating detailed conceptualisation of recharge and evapotranspiration processes, while maintaining the numerical tractability and computational performance required for regional scale groundwater models and uncertainty analysis. A method for emulating recharge and evapotranspiration processes in groundwater flow models was developed, and applied to the South East region of South Australia and western Victoria, which is characterised by shallow groundwater, wetlands and coastal lakes. The soil-vegetation-atmosphere transfer (SVAT) model WAVES was used to generate relationships between net recharge (diffuse recharge minus evapotranspiration from groundwater) and depth to water table for different combinations of climate, soil and land cover types. These relationships, which mimicked previously described soil, vegetation and groundwater behaviour, were combined into a net recharge lookup table. The segmented evapotranspiration package in MODFLOW was adapted to select values of net recharge from the lookup table depending on groundwater depth, and the climate, soil and land use characteristics of each cell. The model was found to be numerically robust in steady state testing, had no major increase in run time, and would be more efficient than tightly-coupled modelling approaches. It made reasonable predictions of net recharge and groundwater head compared with remotely sensed estimates of net recharge and a standard MODFLOW comparison model. In particular, the method was better able to predict net recharge and groundwater head in areas with steep hydraulic gradients.

  12. Sea level and ground water table depth (WTD): A biogeochemical pacemaker for glacial-interglacial cycling

    NASA Astrophysics Data System (ADS)

    Cowling, S. A.

    2016-11-01

    The role that changes in sea level have on potential carbon-climate feedbacks are discussed as a potential contributing mechanism for terminating glacial periods. Focus will be on coastal wetlands because these systems can be substantially altered by changing sea level and ground water table depth (WTD); in addition to being important moderators of the exchange of nutrients and energy between terrestrial and marine ecosystems. A hypothesis is outlined that describes how the release of carbon from formerly anaerobic wetland soils and sediments can influence climate when sea levels begin to decline. As ground WTD deepens and eventually recedes from the surface, coastal wetland basins may become isolated from their belowground source of water. With their primary source of base flow removed, coastal wetlands likely dried up, promoting decomposition of the carbon compounds buried in their sediments. Depending on the timing of basin isolation and the timing of decomposition, glacial sea level lows could have triggered a relatively large positive carbon feedback on climate warming, just at the time when a new interglacial period is about to begin.

  13. Simplification of the Gardner model: effects on maximum upward flux in the presence of a shallow water table

    NASA Astrophysics Data System (ADS)

    Xing, Xuguang; Ma, Xiaoyi

    2018-06-01

    The maximum upward flux ( E max) is a control condition for the development of groundwater evaporation models, which can be predicted through the Gardner model. A high-precision E max prediction helps to improve irrigation practice. When using the Gardner model, it has widely been accepted to ignore parameter b (a soil-water constant) for model simplification. However, this may affect the prediction accuracy; therefore, how parameter b affects E max requires detailed investigation. An indoor one-dimensional soil-column evaporation experiment was conducted to observe E max in the presence of a water table of depth 50 cm. The study consisted of 13 treatments based on four solutes and three concentrations in groundwater: KCl, NaCl, CaCl2, and MgCl2, with concentrations of 5, 30, and 100 g/L (salty groundwater); distilled water was used as a control treatment. Results indicated that for the experimental homogeneous loam, the average E max for the treatments supplied by salty groundwater was larger than that supplied by distilled water. Furthermore, during the prediction of the Gardner-model-based E max, ignoring b and including b always led to an overestimate and underestimate, respectively, compared to the observed E max. However, the maximum upward flux calculated including b (i.e. E bmax) had higher accuracy than that ignoring b for E max prediction. Moreover, the impact of ignoring b on E max gradually weakened with increasing b value. This research helps to reveal the groundwater evaporation mechanism.

  14. Dynamic perennial firn aquifer on an Arctic glacier

    NASA Astrophysics Data System (ADS)

    Christianson, Knut; Kohler, Jack; Alley, Richard B.; Nuth, Christopher; Pelt, Ward J. J.

    2015-03-01

    Ice-penetrating radar and GPS observations reveal a perennial firn aquifer (PFA) on a Svalbard ice field, similar to those recently discovered in southeastern Greenland. A bright, widespread radar reflector separates relatively dry and water-saturated firn. This surface, the phreatic firn water table, is deeper beneath local surface elevation maxima, shallower in surface lows, and steeper where the surface is steep. The reflector crosscuts snow stratigraphy; we use the apparent deflection of accumulation layers due to the higher dielectric permittivity below the water table to infer that the firn pore space becomes progressively more saturated as depth increases. Our observations indicate that PFAs respond rapidly (subannually) to surface forcing, and are capable of providing significant input to the englacial hydrology system.

  15. Full Equations (FEQ) model for the solution of the full, dynamic equations of motion for one-dimensional unsteady flow in open channels and through control structures

    USGS Publications Warehouse

    Franz, Delbert D.; Melching, Charles S.

    1997-01-01

    The Full EQuations (FEQ) model is a computer program for solution of the full, dynamic equations of motion for one-dimensional unsteady flow in open channels and through control structures. A stream system that is simulated by application of FEQ is subdivided into stream reaches (branches), parts of the stream system for which complete information on flow and depth are not required (dummy branches), and level-pool reservoirs. These components are connected by special features; that is, hydraulic control structures, including junctions, bridges, culverts, dams, waterfalls, spillways, weirs, side weirs, and pumps. The principles of conservation of mass and conservation of momentum are used to calculate the flow and depth throughout the stream system resulting from known initial and boundary conditions by means of an implicit finite-difference approximation at fixed points (computational nodes). The hydraulic characteristics of (1) branches including top width, area, first moment of area with respect to the water surface, conveyance, and flux coefficients and (2) special features (relations between flow and headwater and (or) tail-water elevations, including the operation of variable-geometry structures) are stored in function tables calculated in the companion program, Full EQuations UTiLities (FEQUTL). Function tables containing other information used in unsteady-flow simulation (boundary conditions, tributary inflows or outflows, gate settings, correction factors, characteristics of dummy branches and level-pool reservoirs, and wind speed and direction) are prepared by the user as detailed in this report. In the iterative solution scheme for flow and depth throughout the stream system, an interpolation of the function tables corresponding to the computational nodes throughout the stream system is done in the model. FEQ can be applied in the simulation of a wide range of stream configurations (including loops), lateral-inflow conditions, and special features. The accuracy and convergence of the numerical routines in the model are demonstrated for the case of laboratory measurements of unsteady flow in a sewer pipe. Verification of the routines in the model for field data on the Fox River in northeastern Illinois also is briefly discussed. The basic principles of unsteady-flow modeling and the relation between steady flow and unsteady flow are presented. Assumptions and the limitations of the model also are presented. The schematization of the stream system and the conversion of the physical characteristics of the stream reaches and a wide range of special features into function tables for model applications are described. The modified dynamic-wave equation used in FEQ for unsteady flow in curvilinear channels with drag on minor hydraulic structures and channel constrictions determined from an equivalent energy slope is developed. The matrix equation relating flows and depths at computational nodes throughout the stream system by the continuity (conservation of mass) and modified dynamic-wave equations is illustrated for four sequential examples. The solution of the matrix equation by Newton's method is discussed. Finally, the input for FEQ and the error messages and warnings issued are presented.

  16. A quantitative analysis of hydraulic interaction processes in stream-aquifer systems

    PubMed Central

    Wang, Wenke; Dai, Zhenxue; Zhao, Yaqian; Li, Junting; Duan, Lei; Wang, Zhoufeng; Zhu, Lin

    2016-01-01

    The hydraulic relationship between the stream and aquifer can be altered from hydraulic connection to disconnection when the pumping rate exceeds the maximum seepage flux of the streambed. This study proposes to quantitatively analyze the physical processes of stream-aquifer systems from connection to disconnection. A free water table equation is adopted to clarify under what conditions a stream starts to separate hydraulically from an aquifer. Both the theoretical analysis and laboratory tests have demonstrated that the hydraulic connectedness of the stream-aquifer system can reach a critical disconnection state when the horizontal hydraulic gradient at the free water surface is equal to zero and the vertical is equal to 1. A boundary-value problem for movement of the critical point of disconnection is established for an analytical solution of the inverted water table movement beneath the stream. The result indicates that the maximum distance or thickness of the inverted water table is equal to the water depth in the stream, and at a steady state of disconnection, the maximum hydraulic gradient at the streambed center is 2. This study helps us to understand the hydraulic phenomena of water flow near streams and accurately assess surface water and groundwater resources. PMID:26818442

  17. Gaseous mercury fluxes in peatlands and the potential influence of climate change

    NASA Astrophysics Data System (ADS)

    Haynes, Kristine M.; Kane, Evan S.; Potvin, Lynette; Lilleskov, Erik A.; Kolka, Randall K.; Mitchell, Carl P. J.

    2017-04-01

    Climate change has the potential to significantly impact the stability of large stocks of mercury (Hg) stored in peatland systems due to increasing temperatures, altered water table regimes and subsequent shifts in vascular plant communities. However, the Hg exchange dynamics between the atmosphere and peatlands are not well understood. At the PEATcosm Mesocosm Facility in Houghton, Michigan, total gaseous Hg (TGM) fluxes were monitored in a subset of 1-m3 peat monoliths with altered water table positions (high and low) and vascular plant functional groups (sedge only, Ericaceae only or unmanipulated control) above the Sphagnum moss layer. At the SPRUCE bog in north-central Minnesota, TGM fluxes were measured from plots subjected to deep peat soil warming (up to +9 °C above ambient at a depth of 2 m). At PEATcosm, the strongest depositional trend was observed with the Low WT - sedge only treatment mesocosms with a mean TGM flux of -73.7 ± 6.3 ng m-2 d-1, likely due to shuttling of Hg to the peat at depth by aerenchymous tissues. The highest total leaf surface and tissue Hg concentrations were observed with the Ericaceae shrubs. A negative correlation between TGM flux and Ericaceae total leaf surface area suggests an influence of shrubs in controlling Hg exchange through stomatal uptake, surface sorption and potentially, peat shading. Surface peat total Hg concentrations are highest in treatments with greatest deposition suggesting deposition controls Hg accumulation in surface peat. Fluxes in the SPRUCE plots ranged from -45.9 ± 93.8 ng m-2 d-1 prior to the implementation of the deep warming treatments to -1.41 ± 27.1 ng m-2 d-1 once warming targets were achieved at depth and +10.2 ± 44.6 ng m-2 d-1 following prolonged deep soil warming. While these intervals did not differ significantly, a significant positive increase in the slope of the regression between flux and surface temperature was observed across the pre-treatment and warming periods. Shifts in vascular vegetation cover and peat warming as a result of climate change may significantly affect the dynamics of TGM fluxes between peatlands and the atmosphere.

  18. Hydrogeomorphic and ecological control on carbonate dissolution in a patterned landscape in South Florida

    NASA Astrophysics Data System (ADS)

    Dong, X.; Heffernan, J. B.; Murray, A. B.; Cohen, M. J.; Martin, J. B.

    2016-12-01

    The evolution of the critical zone both shapes and reflects hydrologic, geochemical, and ecological processes. These interactions are poorly understood in karst landscapes with highly soluble bedrock. In this study, we used the regular-dispersed wetland basins of Big Cypress National Preserve in Florida as a focal case to model the hydrologic, geochemical, and biological mechanisms that affect soil development in karst landscapes. We addressed two questions: (1) What is the minimum timescale for wetland basin development, and (2) do changes in soil depth feed back on dissolution processes and if so by what mechanism? We developed an atmosphere-water-soil model with coupled water-solute transport, incorporating major ion equilibria and kinetic non-equilibrium chemistry, and biogenic acid production via roots distributed through the soil horizon. Under current Florida climate, weathering to a depth of 2 m (a typical depth of wetland basins) would take 4000 6000 yrs, suggesting that landscape pattern could have origins as recent as the most recent stabilization of sea level. Our model further illustrates that interactions between ecological and hydrologic processes influence the rate and depth-dependence of weathering. Absent inundation, dissolution rate decreased exponentially with distance from the bedrock to groundwater table. Inundation generally increased bedrock dissolution, but surface water chemistry and residence time produced complex and non-linear effects on dissolution rate. Biogenic acidity accelerated the dissolution rate by 50 and 1,000 times in inundated and exposed soils. Phase portrait analysis indicated that exponential decreases in bedrock dissolution rate with soil depth could produce stable basin depths. Negative feedback between hydro-period and total basin volume could stabilize the basin radius, but the lesser strength of this mechanism may explain the coalescence of wetland basins observed in some parts of the Big Cypress Landscape.

  19. UNCERTAINTY IN LEACHING POTENTIAL OF NONPOINT SOURCE POLLUTANTS WITH APPLICATION TO GIS

    EPA Science Inventory

    This paper presents a stochastic framework for the assessment of groundwater pollution potential of nonpoint source pesticides. A conceptual relationship is presented that relates seasonally averaged groundwater recharge to soil properties and depths to the water table. The analy...

  20. Water table and overbank flow frequency changes due to suburbanization-induced channel incision, Virginia Coastal Plain, USA

    NASA Astrophysics Data System (ADS)

    Hancock, G.; Mattell, N.; Christianson, E.; Wacksman, J.

    2004-12-01

    Channel incision is a widely observed response to increased flow in urbanized watersheds, but the effects of channel lowering on riparian water tables is not well documented. In a rapidly incising suburban stream in the Virginia Coastal Plain, we hypothesize that incision has lowered floodplain water tables and decreased the overbank flow frequency, and suggest these changes impact vegetation distribution in a diverse, protected riparian habitat. The monitored stream is a tributary to the James River draining 1.3 km2, of which 15% is impervious cover. Incision has occurred largely through upstream migration of a one m high knickpoint at a rate of 1-2 m/yr, primarily during high flow events. We installed 33 wells in six floodplain transects to assess water table elevations beneath the floodplain adjacent to the incising stream. To document the impacts of incision, two transects are located 30 and 50 m upstream of the knickpoint in unincised floodplain, and the remainder are 5, 30, 70, and 100 m downstream of the knickpoint in incised floodplain. In one transect above and two below, pressure transducers attached to dataloggers provide a high-resolution record of water table response to storm events. Significant differences have been observed in the water table above and below the knickpoint. Above the knickpoint, the water table is relatively flat and is 0.2-0.4 m below the floodplain surface. Water table response to precipitation events is nearly immediate, with the water table rising to the floodplain surface in significant rainfall events. In the transect immediately downstream of the knickpoint, the water table possesses a steep gradient, rising from ~1 m below the floodplain at the stream to 0.3 m below the surface within 20 m. In the most downstream transects, the water table is relatively flat, but is one m below the floodplain surface, equivalent to the depth of incision generated by knickpoint passage. Upstream of the knickpoint, overbank flooding occurs frequently, while below the knickpoint the majority of storm flow is contained within the incised channel and occupation of the floodplain is rare. Plant diversity surveys reveal differences in the total density of herbaceous growth and species distribution between the floodplain above and below the knickpoint. Results from >100 plots show that there is more leaf litter, less exposed ground, and a decrease in floodplain species cover in the incised portion of the floodplain. The changes in flood frequency and water table elevation appear to have allowed one invasive species, Japanese stilt grass (Microstegium vimineum), to become dominant in the floodplain understory, displacing native wetland species.

  1. What Controls Submarine Groundwater Discharge?

    NASA Astrophysics Data System (ADS)

    Martin, J. B.; Cable, J. E.; Cherrier, J.; Roy, M.; Smith, C. G.; Dorsett, A.

    2008-05-01

    Numerous processes have been implicated in controlling submarine groundwater discharge (SGD) to coastal zones since Ghyben, Herzberg and Dupuit developed models of fresh water discharge from coastal aquifers at the turn of the 19th century. Multiple empirical and modeling techniques have also been applied to these environments to measure the flow. By the mid-1950's, Cooper had demonstrated that dispersion across the fresh water-salt water boundary required salt water entrained into fresh water flow be balanced by recharge of salt water across the sediment-water interface seaward of the outflow face. Percolation of water into the beach face from wind and tidal wave run up and changes in pressure at the sediment-water interface with fluctuating tides have now been recognized, and observed, as processes driving seawater into the sediments. Within the past few years, variations in water table levels and the 1:40 amplification from density difference in fresh water and seawater have been implicated to pump salt water seasonally across the sediment- water interface. Salt water driven by waves, tides and seasonal water table fluctuations is now recognized as a component of SGD when it flows back to overlying surface waters. None of these processes are sufficiently large to provide measured volumes of SGD in Indian River Lagoon, Florida, however, because minimal tides and waves exist, flat topography and transmissive aquifers minimize fluctuations of the water table, and little water is entrained across the salt water-fresh water boundary. Nonetheless, the saline fraction of SGD represents more than 99% of the volume of total SGD in the Indian River Lagoon. This volume of saline SGD can be driven by the abundance of burrowing organisms in the lagoon, which pump sufficient amounts of water through the sediment- water interface. These bioirrigating organisms are ubiquitous at all water depths in sandy sediment and thus may provide one of the major sources of SGD world wide. Because bioirrigated water is well oxygenated and passes through sedimentary pore spaces, its influence may be quite large on fluxes of diagenetic reactive components, including organic matter, nutrients, and redox sensitive metals. While fresh meteoric groundwater may be confined to the shoreline in most cases and delivers new material from continents to the ocean, seawater circulating through sediments as part of SGD is apparently a much greater fraction of the total water flux and hence has the potential to significantly impact sediment diagenetic processes and subsequent export of nutrients and other solutes from the sediment to the water column.

  2. Hydro-ecological controls on dissolved carbon dynamics in groundwater and export to streams in a temperate pine forest

    NASA Astrophysics Data System (ADS)

    Deirmendjian, Loris; Loustau, Denis; Augusto, Laurent; Lafont, Sébastien; Chipeaux, Christophe; Poirier, Dominique; Abril, Gwenaël

    2018-02-01

    We studied the export of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) from forested shallow groundwater to first-order streams, based on groundwater and surface water sampling and hydrological data. The selected watershed was particularly convenient for such study, with a very low slope, with pine forest growing on sandy permeable podzol and with hydrology occurring exclusively through drainage of shallow groundwater (no surface runoff). A forest plot was instrumented for continuous eddy covariance measurements of precipitation, evapotranspiration, and net ecosystem exchanges of sensible and latent heat fluxes as well as CO2 fluxes. Shallow groundwater was sampled with three piezometers located in different plots, and surface waters were sampled in six first-order streams; river discharge and drainage were modeled based on four gauging stations. On a monthly basis and on the plot scale, we found a good consistency between precipitation on the one hand and the sum of evapotranspiration, shallow groundwater storage and drainage on the other hand. DOC and DIC stocks in groundwater and exports to first-order streams varied drastically during the hydrological cycle, in relation with water table depth and amplitude. In the groundwater, DOC concentrations were maximal in winter when the water table reached the superficial organic-rich layer of the soil. In contrast, DIC (in majority excess CO2) in groundwater showed maximum concentrations at low water table during late summer, concomitant with heterotrophic conditions of the forest plot. Our data also suggest that a large part of the DOC mobilized at high water table was mineralized to DIC during the following months within the groundwater itself. In first-order streams, DOC and DIC followed an opposed seasonal trend similar to groundwater but with lower concentrations. On an annual basis, leaching of carbon to streams occurred as DIC and DOC in similar proportion, but DOC export occurred in majority during short periods of the highest water table, whereas DIC export was more constant throughout the year. Leaching of forest carbon to first-order streams represented a small portion (approximately 2 %) of the net land CO2 sink at the plot. In addition, approximately 75 % of the DIC exported from groundwater was not found in streams, as it returned very fast to the atmosphere through CO2 degassing.

  3. Assessment of the subsurface hydrology of the UIC-NARL main camp, near Barrow, Alaska, 1993-94

    USGS Publications Warehouse

    McCarthy, K.A.; Solin, G.L.

    1995-01-01

    Imikpuk Lake serves as the drinking-water source for the Ukpeagvik Inupiat Corporation-National Arctic Research Laboratory (UIC-NARL, formerly known as the Naval Arctic Research Laboratory) near Barrow, Alaska. Previously acceptable hazardous-waste disposal practices and accidental releases of various fuels and solvents during the past several decades have resulted in contamination of soil and ground water in the vicinity of the lake. As part of an assessment of the risk that subsurface contamination poses to the quality of water in the lake, the subsurface hydrology of the UIC-NARL main camp was examined. The study area is located approximately 530 kilometers north of the Arctic Circle, on the northern coast of Alaska, and the short annual thaw season and the presence of shallow, areally continuous permafrost restrict hydrologic processes. A transient ground-water system is present within the active layer-the shallow subsurface layer that thaws each summer and refreezes each winter. Water-level and thaw-depth data collected during the summers of 1993 and 1994 show that the configurations of both the water table and the subsurface frost govern the ground- water flow system in the UIC-NARL main camp and indicate that recharge to and discharge from the system are small. Spatial irregularities in the vertical extent of the active layer result from variations in land-surface elevation, variations in soil type, and the presence of buildings and other structures that either act as a heat source or block heat transfer to and from the subsurface. Distinct features in the active-layer hydrologic system in the UIC-NARL main camp include a permafrost ridge, which generally acts as a flow-system divide between the Arctic Ocean and inland water bodies; a mound in the water table, which indicates increased impedance to ground- water flow toward Imikpuk Lake and acts as a flow-system divide between the lake and Middle Salt Lagoon; and a depression in the water table, which suggests a local breach in the permafrost ridge that allows some ground water to flow directly from the main camp to the Arctic Ocean. Similar thaw depths and water-table elevations were measured during the summers of 1993 and 1994, and little change occurred in the thickness of the ground-water zone between mid- and late-thaw- season measurements. These data suggest that the system is in a state of quasi-equilibrium and that ground-water discharge is small. The observed drop in the water table as the active layer develops over the summer is probably largely the result of evapotranspiration losses rather than system outflow.

  4. Hydrological responses to channelization and the formation of valley plugs and shoals

    USGS Publications Warehouse

    Pierce, Aaron R.; King, Sammy L.

    2017-01-01

    Rehabilitation of floodplain systems focuses on restoring interactions between the fluvial system and floodplain, however, there is a paucity of information on the effects of valley plugs and shoals on floodplain hydrological processes. We investigated hydrologic regimes in floodplains at three valley plug sites, two shoal sites, and three unchannelized sites. Valley plug sites had altered surface and sub-surface hydrology relative to unchannelized sites, while only sub-surface hydrology was affected at shoal sites. Some of the changes were unexpected, such as reduced flood duration and flood depth in floodplains associated with valley plugs. Our results emphasize the variability associated with hydrologic processes around valley plugs and our rudimentary understanding of the effects associated with these geomorphic features. Water table levels were lower at valley plug sites compared to unchannelized sites, however, valley plug sites had a greater proportion of days when water table inundation was above mean root collar depth than both shoal and unchannelized sites as a result of lower root collar depths and higher deposition rates. This study has provided evidence that valley plugs can affect both surface and sub-surface hydrology in different ways than previously thought and illustrates the variability in hydrological responses to valley plug formation.

  5. Hydrologic sections through Lee County and adjacent areas of Hendry and Collier counties, Florida

    USGS Publications Warehouse

    Boggess, Durward H.; Missimer, T.M.; O'Donnell, T. H.

    1981-01-01

    The freshwater underlying Lee, western Hendry, and northern Collier Counties occurs within the marine terrace sands, the Fort Thompson, Caloosahatchee, Tamiami, and Hawthorn Formations. These are, respectively, the water-table aquifer, an aquifer in the Tamiami Formation, and an aquifer in the upper part of the Hawthorn Formation. These aquifers are separated by clay, marl, and marly limestone. Wells tapping the water-table aquifer are commonly less than 50 feet deep, with yields ranging from 5 to 500 gallons per minute. The water quality in the aquifer is usually good, except for iron, which generally exceeds 1 milligram per liter, and color, which ranges from 30 to 600 Platinum-Cobalt units. Wells tapping the Tamiami aquifer range in depth from about 60 to 300 feet; most are less than 100 feet deep. Yields range from 20 to 500 gallons per minute. The water quality in the Tamiami aquifer is good, except where affected by leakage from deep artesian wells. Wells tapping the upper Hawthorn aquifer range in depth from about 100 to 300 feet. Yields range from 10 to 500 gallons per minute. The water quality from the upper Hawthorn aquifer is good, except in areas where upward leakage from the deep artesian aquifer has occurred. (USGS)

  6. UNCERTAINTY IN LEACHING POTENTIAL OF NONPOINT SOURCE POLLUTANTS WITH APPLICATION TO A GIS

    EPA Science Inventory

    This paper presents a stochastic framework for the assessment of groundwater pollution potential of nonpoint source pesticides. A conceptual relationship is presented that relates seasonally averaged groundwater recharge to soil properties and depths to the water table. The analy...

  7. Groundwater in the Boreal Plains: How Climate and Geology Interact to Control Water Table Configurations in a Sub-Humid, Low-Relief Region

    NASA Astrophysics Data System (ADS)

    Hokanson, K. J.; Devito, K.; Mendoza, C. A.

    2017-12-01

    The Boreal Plain (BP) region of Canada, a landscape characterized by low-relief, a sub-humid climate and heterogeneous glacial landforms, is experiencing unprecedented anthropogenic and natural disturbance, including climate change and oil & gas operations. Understanding the controls on and the natural variability of water table position, and subsequently predicting changes in water table position under varying physical and climatic scenarios will become important as water security becomes increasingly threatened. The BP is composed of a mosaic of forestland, wetland, and aquatic land covers that contrast in dominant vegetation cover, evapotranspiration, and soil storage that, in turn, influence water table configurations. Additionally, these land-covers overlie heterogeneous glacial landforms with large contrasts in storage and hydraulic properties which, when coupled with wet-dry climate cycles, result in complex water table distributions in time and space. Several forestland-wetland-pond complexes were selected at the Utikuma Research Study Area (URSA) over three distinct surficial geologic materials (glacial fluvial outwash, stagnant ice moraine, lacustrine clay plain) to explore the roles of climate (cumulative departure from the long term yearly mean precipitation), geology, topographic position, and land cover on water table configurations over 15 years (2002 - 2016). In the absence of large groundwater flow systems, local relief and shallow low conductivity substrates promote the formation of near-surface water tables that are less susceptible to climate variation, regardless of topography. Furthermore, in areas of increased storage, wet and dry climate conditions can result in appreciably different water table configurations over time, ranging from mounds to hydraulic depressions, depending on the arrangement of land-covers, dominant surficial geology, and substrate layering.

  8. High soil solution carbon and nitrogen concentrations in a drained Atlantic bog are reduced to natural levels by 10 years of rewetting

    NASA Astrophysics Data System (ADS)

    Frank, S.; Tiemeyer, B.; Gelbrecht, J.; Freibauer, A.

    2014-04-01

    Anthropogenic drainage of peatlands releases additional greenhouse gases to the atmosphere, and dissolved carbon (C) and nutrients to downstream ecosystems. Rewetting drained peatlands offers a possibility to reduce nitrogen (N) and C losses. In this study, we investigate the impact of drainage and rewetting on the cycling of dissolved C and N as well as on dissolved gases, over a period of 1 year and a period of 4 months. We chose four sites within one Atlantic bog complex: a near-natural site, two drained grasslands with different mean groundwater levels and a former peat cutting area rewetted 10 years ago. Our results clearly indicate that long-term drainage has increased the concentrations of dissolved organic carbon (DOC), ammonium, nitrate and dissolved organic nitrogen (DON) compared to the near-natural site. DON and ammonium contributed the most to the total dissolved nitrogen. Nitrate concentrations below the mean groundwater table were negligible. The concentrations of DOC and N species increased with drainage depth. In the deeply-drained grassland, with a mean annual water table of 45 cm below surface, DOC concentrations were twice as high as in the partially rewetted grassland with a mean annual water table of 28 cm below surface. The deeply drained grassland had some of the highest-ever observed DOC concentrations of 195.8 ± 77.3 mg L-1 with maximum values of >400 mg L-1. In general, dissolved organic matter (DOM) at the drained sites was enriched in aromatic moieties and showed a higher degradation status (lower DOC to DON ratio) compared to the near-natural site. At the drained sites, the C to N ratios of the uppermost peat layer were the same as of DOM in the peat profile. This suggests that the uppermost degraded peat layer is the main source of DOM. Nearly constant DOM quality through the profile furthermore indicated that DOM moving downwards through the drained sites remained largely biogeochemically unchanged. Unlike DOM concentration, DOM quality and dissolved N species distribution were similar in the two grasslands and thus unaffected by the drainage depth. Methane production during the winter months at the drained sites was limited to the subsoil, which was quasi-permanently water saturated. The recovery of the water table in the winter months led to the production of nitrous oxide around mean water table depth at the drained sites. The rewetted and the near-natural site had comparable DOM quantity and quality (DOC to DON ratio and aromaticity). 10 years after rewetting quasi-pristine biogeochemical conditions have been re-established under continuously water logged conditions in the former peat cut area. Only the elevated dissolved methane and ammonium concentrations reflected the former disturbance by drainage and peat extraction. Rewetting via polder technique seems to be an appropriate way to revitalize peatlands on longer timescales and to improve the water quality of downstream water bodies.

  9. The quality of our Nation's waters: groundwater quality in the Columbia Plateau and Snake River Plain basin-fill and basaltic-rock aquifers and the Hawaiian volcanic-rock aquifers, Washington, Idaho, and Hawaii, 1993-2005

    USGS Publications Warehouse

    Rupert, Michael G.; Hunt, Charles D.; Skinner, Kenneth D.; Frans, Lonna M.; Mahler, Barbara J.

    2015-01-01

    The Columbia Plateau, Snake River Plain, and Hawaii are large volcanic areas in the western United States and mid-Pacific ocean that contain extensive regional aquifers of a hard, gray, volcanic rock called basalt. Residents of the Columbia Plateau, the Snake River Plain, and the island of Oahu depend on groundwater as their primary source of drinking water. Although the depth to the water table can be several hundred feet, the groundwater is highly vulnerable to contamination because the permeable sediments and rocks allow contaminants to move readily down to the water table. Intense agricultural and urban activities occur above the drinking-water supply and are increasing in some areas. Contaminants, such as nitrate, pesticides, and volatile organic compounds, associated with agricultural and urban activities, have adversely affected groundwater quality.

  10. Shallow water table effects on water, sediment, and pesticide transport in vegetative filter strips - Part 1: nonuniform infiltration and soil water redistribution

    NASA Astrophysics Data System (ADS)

    Muñoz-Carpena, Rafael; Lauvernet, Claire; Carluer, Nadia

    2018-01-01

    Vegetation buffers like vegetative filter strips (VFSs) are often used to protect water bodies from surface runoff pollution from disturbed areas. Their typical placement in floodplains often results in the presence of a seasonal shallow water table (WT) that can decrease soil infiltration and increase surface pollutant transport during a rainfall-runoff event. Simple and robust components of hydrological models are needed to analyze the impacts of WT in the landscape. To simulate VFS infiltration under realistic rainfall conditions with WT, we propose a generic infiltration solution (Shallow Water table INfiltration algorithm: SWINGO) based on a combination of approaches by Salvucci and Entekhabi (1995) and Chu (1997) with new integral formulae to calculate singular times (time of ponding, shift time, and time to soil profile saturation). The algorithm was tested successfully on five distinct soils, both against Richards's numerical solution and experimental data in terms of infiltration and soil moisture redistribution predictions, and applied to study the combined effects of varying WT depth, soil type, and rainfall intensity and duration. The results show the robustness of the algorithm and its ability to handle various soil hydraulic functions and initial nonponding conditions under unsteady rainfall. The effect of a WT on infiltration under ponded conditions was found to be effectively decoupled from surface infiltration and excess runoff processes for depths larger than 1.2 to 2 m, being shallower for fine soils and shorter events. For nonponded initial conditions, the influence of WT depth also varies with rainfall intensity. Also, we observed that soils with a marked air entry (bubbling pressure) exhibit a distinct behavior with WT near the surface. The good performance, robustness, and flexibility of SWINGO supports its broader use to study WT effects on surface runoff, infiltration, flooding, transport, ecological, and land use processes. SWINGO is coupled with an existing VFS model in the companion paper (Lauvernet and Muñoz-Carpena, 2018), where the potential effects of seasonal or permanent WTs on VFS sediment and pesticide trapping are studied.

  11. Questa Baseline and Pre-Mining Ground-Water Quality Investigation. 24. Seismic Refraction Tomography for Volume Analysis of Saturated Alluvium in the Straight Creek Drainage and Its Confluence With Red River, Taos County, New Mexico

    USGS Publications Warehouse

    Powers, Michael H.; Burton, Bethany L.

    2007-01-01

    As part of a research effort directed by the New Mexico Environment Department to determine pre-mining water quality of the Red River at a molybdenum mining site in northern New Mexico, we used seismic refraction tomography to create subsurface compressional-wave velocity images along six lines that crossed the Straight Creek drainage and three that crossed the valley of Red River. Field work was performed in June 2002 (lines 1-4) and September 2003 (lines 5-9). We interpreted the images to determine depths to the water table and to the top of bedrock. Depths to water and bedrock in boreholes near the lines correlate well with our interpretations based on seismic data. In general, the images suggest that the alluvium in this area has a trapezoidal cross section. Using a U.S. Geological Survey digital elevation model grid of surface elevations of this region and the interpreted elevations to water table and bedrock obtained from the seismic data, we generated new models of the shape of the buried bedrock surface and the water table through surface interpolation and extrapolation. Then, using elevation differences between the two grids, we calculated volumes of dry and wet alluvium in the two drainages. The Red River alluvium is about 51 percent saturated, whereas the much smaller volume of alluvium in the tributary Straight Creek is only about 18 percent saturated. When combined with average ground-water velocity values, the information we present can be used to determine discharge of Straight Creek into Red River relative to the total discharge of Red River moving past Straight Creek. This information will contribute to more accurate models of ground-water flow, which are needed to determine the pre-mining water quality in the Red River.

  12. A progress report on results of test drilling and ground-water investigations of the Snake Plain aquifer, southeastern Idaho: Part 1: Mud Lake Region, 1969-70 and Part 2: Observation Wells South of Arco and West of Aberdeen

    USGS Publications Warehouse

    Crosthwaite, E.G.

    1973-01-01

    The results of drilling test holes to depths of approximately 1,000 feet in the Mud Lake region show that a large part of the region is underlain by both sedimentary deposits and basalt flows. At some locations, predominantly sedimentary deposits were penetrated; at others, basalt flows predominated. The so-called Mud Lake-Market Lake barrier denotes a change in geology. From the vicinity of the barrier area, as described by Stearns, Crandall, and Steward (1938, p. 111), up the water-table gradient for at least a few tens of miles, the saturated geologic section consists predominantly of beds of sediments that are intercalated with numerous basalt flows. Downgradient from the barrier, sedimentary deposits are not common and practically all the water-bearing formations are basalt, at least to the depths explored so far. Thus, the barrier is a transition zone from a sedimentary-basaltic sequence to a basaltic sequence. The sedimentary-basaltic sequence forms a complex hydrologic system in which water occurs under water-table conditions in the upper few tens of feet of saturated material and under artesian conditions in the deeper material in the southwest part of the region. The well data indicate that southwest of the barrier, artesian pressures are not significant. Southwest of the barrier, few sedimentary deposits occur in the basalt section and, as described by Mundorff, Crosthwaite, and Kilburn (1964). ground water occurs in a manner typical of the Snake Plain aquifer. In several wells, artesian pressures are higher in the deeper formations than in the shallower ones, but the reverse was found in a few wells. The available data are not adequate to describe the water-bearing characteristics of the artesian aquifer nor the effects that pumping in one zone would have on adjacent zones. The water-table aquifer yields large quantities of water to irrigation wells.

  13. Predcition of Long term Water table Trends in Response to Groundwater Irrigation and Climate Change in an Indian Context

    NASA Astrophysics Data System (ADS)

    Thekkemeppilly Sivakumar, I.; Steenhuis, T. S.; Walter, M. F.; Ghosh, S.; Salvi, K. A.

    2015-12-01

    Intensified groundwater irrigation is a major factor that contributes to water table decline. This phenomenon has been documented in many parts of the world. This study investigates trends in water table in response to agriculture intensification to meet increasing food demand, water management practices and climate change. A shallow-aquifer model based on the extended Thornthwaite-Mather procedure is used to predict groundwater levels in response to precipitation, evapotranspiration, and groundwater pumping for irrigation. Krishna district in the state of Andhra Pradesh in southern India which has a sub-humid, monsoon climate and Calicut district of Kerala state with a wet tropical monsoon climate have been chosen as sites for this study. The effect of increasing food demand by a growing population is investigated by increasing the number of crops per year from one to three. We consider three climate scenarios and two water management practices in this study. The three climate scenarios are the ones those envisaged by the Intergovernmental Panel for Climate Change (IPCC). The two water management practices considered are the traditional flooded agriculture and the system of rice intensification method which does not use total flooding. The results show that single crop agriculture in Krishna district is sustainable for all climate scenarios and water management practices with a maximum depth to water table around 6 - 7 m at the end of dry season and the water table recovers to the surface most of the time. Increasing crop production with two or three crops per year with groundwater irrigation is unsustainable with the water table levels dropping potentially to 200 - 1000 m at the end of 21st century. We found that climate change and better irrigation water management practices affected ground water levels only minimally compared to the growing more than one crop per year. Our study leads to the conclusion that ground water irrigated rice can only be sustainable when crop evaporation is less then precipitation and in order to meet increasing food demands the rice yield per unit water should be improved.

  14. Vertical Stratification of Peat Pore Water Dissolved Organic Matter Composition in a Peat Bog in Northern Minnesota

    NASA Astrophysics Data System (ADS)

    Tfaily, Malak M.; Wilson, Rachel M.; Cooper, William T.; Kostka, Joel E.; Hanson, Paul; Chanton, Jeffrey P.

    2018-02-01

    We characterized dissolved organic matter (DOM) composition throughout the peat column at the Marcell S1 forested bog in northern Minnesota and tested the hypothesis that redox oscillations associated with cycles of wetting and drying at the surface of the fluctuating water table correlate with increased carbon, sulfur, and nitrogen turn over. We found significant vertical stratification of DOM molecular composition and excitation-emission matrix parallel factor analysis components within the peat column. In particular, the intermediate depth zone ( 50 cm) was identified as a zone where maximum decomposition and turnover is taking place. Surface DOM was dominated by inputs from surface vegetation. The intermediate depth zone was an area of high organic matter reactivity and increased microbial activity with diagenetic formation of many unique compounds, among them polycyclic aromatic compounds that contain both nitrogen and sulfur heteroatoms. These compounds have been previously observed in coal-derived compounds and were assumed to be responsible for coal's biological activity. Biological processes triggered by redox oscillations taking place at the intermediate depth zone of the peat profile at the S1 bog are assumed to be responsible for the formation of these heteroatomic PACs in this system. Alternatively, these compounds could stem from black carbon and nitrogen derived from fires that have occurred at the site in the past. Surface and deep DOM exhibited more similar characteristics, compared to the intermediate depth zone, with the deep layer exhibiting greater input of microbially degraded organic matter than the surface suggesting that the entire peat profile consists of similar parent material at different degrees of decomposition and that lateral and vertical advection of pore water from the surface to the deeper horizons is responsible for such similarities. Our findings suggest that molecular composition of DOM in peatland pore water is dynamic and is a function of ecosystem activity, water table, redox oscillation, and pore water advection.

  15. New Mexico Geothermal Play Fairway Analysis from LANL

    DOE Data Explorer

    Rick Kelley

    2015-10-27

    This submission contains geospatial (GIS) data on water table gradient and depth, subcrop gravity and magnetic, propsectivity, heat flow, physiographic, boron and BHT for the Southwest New Mexico Geothermal Play Fairway Analysis by LANL Earth & Environmental Sciences. GIS data is in ArcGIS map package format.

  16. Seasonal changes in ground-water quality and ground-water levels and directions of ground-water movement in southern Elmore County, southwestern Idaho, including Mountain Home Air Force Base, 1990-1991

    USGS Publications Warehouse

    Young, H.W.; Parliman, D.J.; Jones, Michael L.

    1992-01-01

    The study area is located in southern Elmore County, southwestern Idaho, and includes the Mountain Home Air Force Base located approximately 10 mi southwest of the city of Mountain Home. Chemical analyzes have been made periodically since the late 1940's on water samples from supply wells on the Air Force Base. These analyses indicate increases in specific conductance and in concentrations of nitrogen compounds, chloride, and sulfate. The purposes of this report, which was prepared in cooperation with the Department of the Air Force, are to describe the seasonal changes in water quality and water levels and to depict the directions of ground-water movement in the regional aquifer system and perched-water zones. Although data presented in this report are from both the regional ground-water system and perched-water zones, the focus is on the regional system. A previous study by the U.S. Geological Survey (Parliman and Young, 1990) describes the areal changes in water quality and water levels during the fall of 1989. During March, July, and October 1990, 141 wells were inventoried and depth to water was measured. Continuous water-level recorders were installed on 5 of the wells and monthly measurements of depth to water were made in 17 of the wells during March 1990 through February 1991. Water samples from 33 wells and 1 spring were collected during the spring and fall of 1990 for chemical analyses. Samples also were collected monthly from 11 of those wells during April to September 1990 (table 1). Selected well-construction and water-use data and measurements of depth to water for 141 wells are given in table 2 (separated sheets in envelope). Directions of ground-water movement and selected hydrographs showing seasonal fluctuations of water levels in the regional ground-water system and perched-water zones are shown on sheet 2. Changes in water levels in the regional ground-water system during March to October 1990 are shown on sheet 2.

  17. Altitude of the water table in the alluvial and Wilcox aquifers in the vicinity of Richland and Tehuacana creeks and the Trinity River, Texas, December 1979

    USGS Publications Warehouse

    Garza, Sergio

    1980-01-01

    This map shows the altitude of the water table in the alluvial and Wilcox aquifers in the vicinity of Richland and Tehuacana Creeks and the Trinity River, Tex., in December 1979. The water-table contours were constructed on the basis of water-level control derived from an inventory of shallow wells in the area, topographic maps, and field locations of numerous small springs and seeps. (USGS)

  18. Upland-wetland connectivity provides a significant nexus between isolated wetlands and downstream water bodies

    NASA Astrophysics Data System (ADS)

    Mclaughlin, D. L.; Kaplan, D. A.; Cohen, M. J.

    2013-12-01

    Recent rulings by the U.S. Supreme Court have limited federal protection over isolated wetlands, requiring documentation of a 'significant nexus' to a navigable water body to ensure federal jurisdiction. Despite geographic isolation, isolated wetlands influence the surficial aquifer dynamics that regulate baseflow to surface water systems. Due to differences in specific yield (Sy) between upland soils and inundated wetlands, responses of the upland water table to atmospheric fluxes (precipitation, P, and evapotranspiration, ET) are amplified relative to wetland water levels, leading to reversals in the hydraulic gradient between the two systems. As such, wetlands act as a water sink during wet cycles (via wetland exfiltration) and a source (via infiltration) during drier times, regulating both the surficial aquifer and its baseflow to downstream systems. To explore the importance of this wetland function at the landscape scale, we integrated models of soil moisture, upland water table, and wetland stage to simulate the hydrology of a low-relief, depressional landscape. We quantified the hydrologic buffering effect of wetlands by calculating the relative change in the standard deviation (SD) of water table elevation between model runs with and without wetlands. Using this model we explored the effects wetland area and spatial distribution over a range of climatic drivers (P and ET) and soil types. Increasing wetland cumulative area and/or density reduced water table variability relative to landscapes without wetlands, supporting the idea that wetlands stabilize regional hydrologic variation, but also increased mean water table depth because of sustained high ET rates in wetlands during dry periods. Maintaining high cumulative wetland area, but with fewer wetlands, markedly reduced the effect of wetland area, highlighting the importance of small, distributed wetlands on water table regulation. Simulating a range of climate scenarios suggested that the capacity of wetlands to buffer water table variation is most pronounced along a 'sweet spot' where P and ET are relatively balanced. High P and low ET yielded consistently high water tables with wetlands acting predominantly as sinks (i.e., little switching behavior), while low P and high ET scenarios limited wetland inundation. On the other hand, when both P and ET were moderate, the SD of the regional water table was reduced by nearly 50% for landscapes with 30% wetland area distributed over ~1 ha watersheds. Additionally, we found these buffering effects to be stronger in coarser soils compared with finer soils. Considering the strong influence of regional water table on downstream surface water systems, loss of isolated wetland area or mitigation of this loss at the expense of wetland density (i.e., large mitigation banks to replace small distributed systems) has the potential to significantly impact downstream water bodies. Isolated wetlands buffer surficial aquifer dynamics by providing water storage capacitance at the landscape scale and ultimately exert hydraulic regulation of regional surface waters through an indirect, but significant nexus.

  19. Dust emission from wet and dry playas in the Mojave Desert, USA

    USGS Publications Warehouse

    Reynolds, R.L.; Yount, J.C.; Reheis, M.; Goldstein, H.; Chavez, P.; Fulton, R.; Whitney, J.; Fuller, C.; Forester, R.M.

    2007-01-01

    The interactions between playa hydrology and playa-surface sediments are important factors that control the type and amount of dust emitted from playas as a result of wind erosion. The production of evaporite minerals during evaporative loss of near-surface ground water results in both the creation and maintenance of several centimeters or more of loose sediment on and near the surfaces of wet playas. Observations that characterize the texture, mineralogic composition and hardness of playa surfaces at Franklin Lake, Soda Lake and West Cronese Lake playas in the Mojave Desert (California), along with imaging of dust emission using automated digital photography, indicate that these kinds of surface sediment are highly susceptible to dust emission. The surfaces of wet playas are dynamic - surface texture and sediment availability to wind erosion change rapidly, primarily in response to fluctuations in water-table depth, rainfall and rates of evaporation. In contrast, dry playas are characterized by ground water at depth. Consequently, dry playas commonly have hard surfaces that produce little or no dust if undisturbed except for transient silt and clay deposited on surfaces by wind and water. Although not the dominant type of global dust, salt-rich dusts from wet playas may be important with respect to radiative properties of dust plumes, atmospheric chemistry, windborne nutrients and human health.

  20. A Blind Hydrothermal System in an Ocean Island Environment: Humu'ula Saddle, Hawaii Island

    NASA Astrophysics Data System (ADS)

    Thomas, D. M.; Wallin, E.; Lautze, N. C.; Lienert, B. R.; Pierce, H. A.

    2014-12-01

    A recently drilled groundwater investigation borehole, drilled to a depth of 1760 m in the Humu'ula Saddle of Hawaii Island, encountered an unexpectedly high temperature gradient of more than 160 ̊C/km. Although prior MT surveys across the region identified conductive formations of modest extent in the region, there were few surface manifestations of geologic structures likely to host a geothermal system and no evidence of an active, extensive hydrothermal system. Cores recovered from the borehole showed the presence of intrusive formations and moderate hydrothermal alteration at depth with progressive infilling of fractures and vesicles with depth and temperature. Independent modeling of gravity data (Flinders et al., 2013) suggests the presence of a broad intrusive complex within the region that is consistent with the borehole's confirmation of a high-elevation (~1400 m amsl) regional water table. A subsequent MT survey covering much of the western Saddle region has confirmed the presence of highly conductive conditions, consistent with thermal activity, to depths of 4 km and greater. Light stable isotope data for the borehole fluids indicate that the regional water table is derived from recharge from the upper elevations of Mauna Kea; major element chemistry indicates that formation temperatures exceed 200 ̊C. A conceptual model of the hydrothermal system, along with isotopic and fluid chemistry of the thermal fluids will be presented.

  1. Pliocene planktic foraminifer census data from the North Atlantic region

    USGS Publications Warehouse

    ,

    1996-01-01

    INTRODUCTION: The U.S. Geological Survey is conducting a long-term study of the climatic and oceanographic conditions of the Pliocene known as PRISM (Pliocene Research, Interpretation, and Synoptic Mapping). One of the major elements of the study involves the use of quantitative composition of planktic foraminifer assemblages to estimate seasurface temperatures and identify major oceanographic boundaries and water masses (Dowsett, 1991; Dowsett and Poore, 1991; Dowsett et al., 1992; Dowsett et al., 1994). We have analyzed more than 900 samples from 19 core sites in the North Atlantic Basin (Fig. 1) resulting in a large volume of raw census data. These data are presented here together to facilitate comparison of North Atlantic faunal assemblages. Latitude, longitude, water depth, source of faunal data and source of data used to construct age model (or publication from which age model was taken) are provided for each locality in Table 1. All ages refer to the geomagnetic polarity time scale of Berggren et al. (1985). Counts of species tabulated in each sample are given in Tables 2-20. DSDP and ODP sample designations are abbreviated in Tables 2-20 as core-section, depth within section in centimeters (eg. 10-5, 34 = core 10, section 5, 34 cm below top of section 5).

  2. Controls on Ecosystem and Root Respiration in an Alaskan Peatland

    NASA Astrophysics Data System (ADS)

    McConnell, N. A.; McGuire, A. D.; Harden, J. W.; Kane, E. S.; Turetsky, M. R.

    2010-12-01

    Boreal ecosystems cover 14% of the vegetated surface on earth and account for 25-30% of the world’s soil carbon (C), mainly due to large carbon stocks in deep peat and frozen soil layers. While peatlands have served as historical sinks of carbon, global climate change may trigger re-release of C to the atmosphere and may turn these ecosystems into net C sources. Rates of C release from a peatland are determined by regional climate and local biotic and abiotic factors such as vegetation cover, thaw depth, and peat thickness. Soil CO2 fluxes are driven by both autotrophic (plant) respiration and heterotrophic (microbial) respiration. Thus, changes in plant and microbial activity in the soil will impact CO2 emissions from peatlands. In this study, we explored environmental and vegetation controls on ecosystem respiration and root respiration in a variety of wetland sites. The study was conducted at the Alaskan Peatland Experiment (APEX; www.uoguelph.ca/APEX) sites in the Bonanza Creek Experimental Forest located 35 km southwest of Fairbanks Alaska. We measured ecosystem respiration, root respiration, and monitored a suite of environmental variables along a vegetation and soil moisture gradient including a black spruce stand with permafrost, a shrubby site with permafrost, a tussock grass site, and a herbaceous open rich fen. Within the rich fen, we have been conducting water table manipulations including a control, lowered, and raised water table treatment. In each of our sites, we measured total ecosystem respiration using static chambers and root respiration by harvesting roots from the uppermost 20 cm and placing them in a root cuvette to obtain a root flux. Ecosystem respiration (ER) on a μmol/m2/sec basis varied across sites. Water table was a significant predictor of ER at the lowered manipulation site and temperature was a strong predictor at the control site in the rich fen. Water table and temperature were both significant predictors of ER at the raised manipulation site. Root respiration fluxes on a ppm CO2/sec/g dry mass basis were highest for herbaceous species, which dominated the open rich fen sites. Root respiration flux was significantly lower in tree-dominated black spruce sites. It appears that the variation in root respiration explains the variation in ER between herbaceous and tree-dominated systems. Therefore an important next step is to partition ER into heterotrophic and autotrophic components across these ecosystems. This in turn will provide a better assessment of peatland C responses to global climate change.

  3. GIS Well Temperature Data from the Roosevelt Hot Springs, Utah FORGE Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gwynn, Mark; Hill, Jay; Allis, Rick

    This is a GIS point feature shapefile representing wells, and their temperatures, that are located in the general Utah FORGE area near Milford, Utah. There are also fields that represent interpolated temperature values at depths of 200 m, 1000 m, 2000 m, 3000 m, and 4000 m. in degrees Fahrenheit. The temperature values at specific depths as mentioned above were derived as follows. In cases where the well reached a given depth (200 m and 1, 2, 3, or 4 km), the temperature is the measured temperature. For the shallower wells (and at deeper depths in the wells reaching onemore » or more of the target depths), temperatures were extrapolated from the temperature-depth profiles that appeared to have stable (re-equilibrated after drilling) and linear profiles within the conductive regime (i.e. below the water table or other convective influences such as shallow hydrothermal outflow from the Roosevelt Hydrothermal System). Measured temperatures/gradients from deeper wells (when available and reasonably close to a given well) were used to help constrain the extrapolation to greater depths. Most of the field names in the attribute table are intuitive, however HF = heat flow, intercept = the temperature at the surface (x-axis of the temperature-depth plots) based on the linear segment of the plot that was used to extrapolate the temperature profiles to greater depths, and depth_m is the total well depth. This information is also present in the shapefile metadata.« less

  4. An efficient and guaranteed stable numerical method for continuous modeling of infiltration and redistribution with a shallow dynamic water table

    NASA Astrophysics Data System (ADS)

    Lai, Wencong; Ogden, Fred L.; Steinke, Robert C.; Talbot, Cary A.

    2015-03-01

    We have developed a one-dimensional numerical method to simulate infiltration and redistribution in the presence of a shallow dynamic water table. This method builds upon the Green-Ampt infiltration with Redistribution (GAR) model and incorporates features from the Talbot-Ogden (T-O) infiltration and redistribution method in a discretized moisture content domain. The redistribution scheme is more physically meaningful than the capillary weighted redistribution scheme in the T-O method. Groundwater dynamics are considered in this new method instead of hydrostatic groundwater front. It is also computationally more efficient than the T-O method. Motion of water in the vadose zone due to infiltration, redistribution, and interactions with capillary groundwater are described by ordinary differential equations. Numerical solutions to these equations are computationally less expensive than solutions of the highly nonlinear Richards' (1931) partial differential equation. We present results from numerical tests on 11 soil types using multiple rain pulses with different boundary conditions, with and without a shallow water table and compare against the numerical solution of Richards' equation (RE). Results from the new method are in satisfactory agreement with RE solutions in term of ponding time, deponding time, infiltration rate, and cumulative infiltrated depth. The new method, which we call "GARTO" can be used as an alternative to the RE for 1-D coupled surface and groundwater models in general situations with homogeneous soils with dynamic water table. The GARTO method represents a significant advance in simulating groundwater surface water interactions because it very closely matches the RE solution while being computationally efficient, with guaranteed mass conservation, and no stability limitations that can affect RE solvers in the case of a near-surface water table.

  5. Groundwater Monitoring Plan. Volume 2. Final Quality Assurance Project Plan

    DTIC Science & Technology

    1993-10-01

    5 Table 4-2. US EPA Drinking Water MCLs ........................................ 4-6 Table 5-1. Sample Bottle Requirements, Preservation, and Holding... drinking water . " The types of quality control samples that will be collected during the Canal Creek groundwater monitoring program. ]- Jacobs...Revision No.: 0 Date: 10/27/93 Page: 6 of 9 Canal Creek Area, APG-EA, Maryland Groundwater Monitoring Plan, VOLUME I1 Table 4-2. US EPA Drinking Water

  6. Ecology of testate amoebae in an Amazonian peatland and development of a transfer function for palaeohydrological reconstruction.

    PubMed

    Swindles, Graeme T; Reczuga, Monika; Lamentowicz, Mariusz; Raby, Cassandra L; Turner, T Edward; Charman, Dan J; Gallego-Sala, Angela; Valderrama, Elvis; Williams, Christopher; Draper, Frederick; Honorio Coronado, Euridice N; Roucoux, Katherine H; Baker, Tim; Mullan, Donal J

    2014-08-01

    Tropical peatlands represent globally important carbon sinks with a unique biodiversity and are currently threatened by climate change and human activities. It is now imperative that proxy methods are developed to understand the ecohydrological dynamics of these systems and for testing peatland development models. Testate amoebae have been used as environmental indicators in ecological and palaeoecological studies of peatlands, primarily in ombrotrophic Sphagnum-dominated peatlands in the mid- and high-latitudes. We present the first ecological analysis of testate amoebae in a tropical peatland, a nutrient-poor domed bog in western (Peruvian) Amazonia. Litter samples were collected from different hydrological microforms (hummock to pool) along a transect from the edge to the interior of the peatland. We recorded 47 taxa from 21 genera. The most common taxa are Cryptodifflugia oviformis, Euglypha rotunda type, Phryganella acropodia, Pseudodifflugia fulva type and Trinema lineare. One species found only in the southern hemisphere, Argynnia spicata, is present. Arcella spp., Centropyxis aculeata and Lesqueresia spiralis are indicators of pools containing standing water. Canonical correspondence analysis and non-metric multidimensional scaling illustrate that water table depth is a significant control on the distribution of testate amoebae, similar to the results from mid- and high-latitude peatlands. A transfer function model for water table based on weighted averaging partial least-squares (WAPLS) regression is presented and performs well under cross-validation (r(2)(apparent)= 0.76, RMSE = 4.29; r(2)(jack)= 0.68, RMSEP =5.18). The transfer function was applied to a 1-m peat core, and sample-specific reconstruction errors were generated using bootstrapping. The reconstruction generally suggests near-surface water tables over the last 3,000 years, with a shift to drier conditions at c. cal. 1218-1273 AD.

  7. Dynamic surface water-groundwater exchange and nitrogen transport in the riparian aquifer of a tidal river

    NASA Astrophysics Data System (ADS)

    Sawyer, A. H.; Barnes, R.; Wallace, C.; Knights, D.; Tight, D.; Bayer, M.

    2017-12-01

    Tides in coastal rivers can propagate tens to hundreds of kilometers inland and drive large daily changes in water and nitrogen exchange across the sediment-water interface. We use field observations and numerical models to illuminate hydrodynamic controls on nitrogen export from the riparian aquifer to a fresh, tidal reach of White Clay Creek (Delaware, USA). In the banks, an aerobic zone with high groundwater nitrate concentrations occurs near the fluctuating water table. Continuous depth-resolved measurements of redox potential suggest that this zone is relatively stable over tidal timescales but moves up or down in response to storms. The main source of dissolved oxygen is soil air that is imbibed in the zone of water table fluctuations, and the source of nitrate is likely nitrification of ammonium produced locally from the mineralization of organic matter in floodplain soils. Much of the nitrate is removed by denitrification along oscillating flow paths towards the channel. Within centimeters of the sediment-water interface, denitrification is limited by the mixing of groundwater with oxygen-rich river water. Our models predict that the benthic zones of tidal rivers play an important role in removing new nitrate inputs from discharging groundwater but may be less effective at removing nitrate from river water. Nitrate removal and production rates are expected to vary significantly along tidal rivers as permeability, organic matter content, tidal range vary. It is imperative that we understand nitrogen dynamics along tidal rivers and their role in nitrogen export to the coast.

  8. ENDOMYCORRHIZAL COLONIZATION OF DASIPHORA FLORIBUNDA, A NATIVE PLANT OF CALCAREOUS WETLANDS IN EASTERN NEW YORK STATE, USA

    EPA Science Inventory

    The extent of endomycorrhizal colonization of Dasiphora floribunda was measured in 8 calcareous wetlands in eastern New York State, USA. Environmental parameters (pH, conductivity, water-table depth, soil moisture, soil organic matter, soil NH4 , soil available P, and porewater ...

  9. Characteristics of Deepwater Seaports within the Continental United States.

    DTIC Science & Technology

    1984-09-01

    Distribution/ Availabilit ? Co09 Avail and/or Dist speolal -V’. UNCLASSIFIED SECURITY CLASSIFICATION OP THIS PAGItUM Dae Eeffes~d) TABLE OF CONTENTS...depth (at mean low water ) alongside the terminal Vessel type served** The type of vessel accommodated by the terminal Cargo types*** The types of

  10. A quantitative analysis of hydraulic interaction processes in stream-aquifer systems

    DOE PAGES

    Wang, Wenke; Dai, Zhenxue; Zhao, Yaqian; ...

    2016-01-28

    The hydraulic relationship between the stream and aquifer can be altered from hydraulic connection to disconnection when the pumping rate exceeds the maximum seepage flux of the streambed. This study proposes to quantitatively analyze the physical processes of stream-aquifer systems from connection to disconnection. A free water table equation is adopted to clarify under what conditions a stream starts to separate hydraulically from an aquifer. Both the theoretical analysis and laboratory tests have demonstrated that the hydraulic connectedness of the stream-aquifer system can reach a critical disconnection state when the horizontal hydraulic gradient at the free water surface is equalmore » to zero and the vertical is equal to 1. A boundary-value problem for movement of the critical point of disconnection is established for an analytical solution of the inverted water table movement beneath the stream. The result indicates that the maximum distance or thickness of the inverted water table is equal to the water depth in the stream, and at a steady state of disconnection, the maximum hydraulic gradient at the streambed center is 2. In conclusion, this study helps us to understand the hydraulic phenomena of water flow near streams and accurately assess surface water and groundwater resources.« less

  11. Ecohydrological controls over water budgets in floodplain meadows

    NASA Astrophysics Data System (ADS)

    Morris, Paul J.; Verhoef, Anne; Macdonald, David M. J.; Gardner, Cate M.; Punalekar, Suvarna M.; Tatarenko, Irina; Gowing, David

    2013-04-01

    Floodplain meadows are important ecosystems, characterised by high plant species richness including rare species. Fine-scale partitioning along soil hydrological gradients allows many species to co-exist. Concerns exist that even modest changes to soil hydrological regime as a result of changes in management or climate may endanger floodplain meadows communities. As such, understanding the interaction between biological and physical controls over floodplain meadow water budgets is important to understanding their likely vulnerability or resilience. Floodplain meadow plant communities are highly heterogeneous, leading to patchy landscapes with distinct vegetation. However, it is unclear whether this patchiness in plant distribution is likely to translate into heterogeneous soil-vegetation-atmosphere transfer (SVAT) rates of water and heat, or whether floodplain meadows can reasonably be treated as internally homogeneous in physical terms despite this patchy vegetation. We used a SVAT model, the Soil-Water-Atmosphere-Plants (SWAP) model by J.C. van Dam and co-workers, to explore the controls over the partitioning of water budgets in floodplain meadows. We conducted our research at Yarnton Mead on the River Thames in Oxfordshire, one of the UK's best remaining examples of a floodplain meadow, and which is still managed and farmed in a low-intensity mixed-use manner. We used soil and plant data from our site to parameterise SWAP; we drove the model using in-situ half-hourly meteorological data. We analysed the model's sensitivity to a range of soil and plant parameters - informed by our measurements - in order to assess the effects of different plant communities on SVAT fluxes. We used a novel method to simulate water-table dynamics at the site; the simulated water tables provide a lower boundary condition for SWAP's hydrological submodel. We adjusted the water-table model's parameters so as to represent areas of the mead with contrasting topography, and so different heights above the river level and different moisture and drainage regimes. The model was most sensitive to changes in the parameters that define the water-table model. Plant above-ground parameters, such as leaf area index and canopy height also had strong influences on simulated fluxes. The model exhibited low sensitivity to plant root parameters; this was particularly true during wet periods when the simulated plant communities were oxygen stressed. Changes in soil texture profile exhibited an intermediate level of control over SVAT fluxes. Our findings indicate that unlike in environments with deep water tables, such as drylands and headwater basins, high-quality water-table data with decimetre or even centimetre accuracy are important to accurate simulation of SVAT fluxes. Future studies that seek to simulate SVAT fluxes in shallow groundwater systems should either use high frequency, high-quality water-table observations as part of the driving data set, or should ensure that water-table dynamics and their interactions with surface processes can be simulated in a robust and physically meaningful manner. The low sensitivity of our model to plant root parameters reflects the proximity of the water table to the ground surface and the fact that the simulated plant community is rarely water-stressed, and again contrasts with findings from existing SVAT model research in environments with deep water tables.

  12. Data file: the 1976 Atlantic Margin Coring (AMCOR) Project of the U.S. Geological Survey

    USGS Publications Warehouse

    Poppe, Lawrence J.; Poppe, Lawrence J.

    1981-01-01

    In 1976, the U.S. Geological Survey conducted the Atlantic Margin Coring Project (AMCOR) to obtain information on stratigraphy, hydrology and water chemistry, mineral resources other than petroleum hydrocarbons, and geotechnical engineering properties at sites widely distributed along the Continental Shelf and Slope of the Eastern United States (Hathaway and others, 1976, 1979). This program's primary purpose was to investigate a broad variety of sediment properties, many of which had not been previously studied in this region. Previous studies of sediments recovered by core drilling in this region were usually limited to one or two aspects of the sediment properties (Hathaway and others, 1979, table 2). The AMCOR program was limited by two factors: water depth and penetration depth. Because the ship selected for the program, the Glomar Conception, lacked dynamic positioning capability, its anchoring capacity determined the maximum water depth in which drilling could take place. Although it was equipped to anchor in water 450 m deep and did so successfully at one site, we attmepted no drilling in water depths greater than 300 m. Strong Gulf Stream currents at the one attempted deep (443 m) site frustrated attempts to "spud in" to begin the hole.

  13. Comment on “Reconciliation of the Devils Hole climate record with orbital forcing”

    USGS Publications Warehouse

    Winograd, Isaac J.

    2016-01-01

    Moseley et al. (Reports, 8 January 2016, p. 165) postulate an increase in dissolved thorium isotope 230Th with depth below the water table as the explanation for the differing ages of Termination II. Flow of geothermal water through the Devils Hole caverns precludes this explanation. Deposition of younger secondary calcite into the initial porosity of the calcite comprising their cores is a plausible alternate explanation.

  14. Comment on “Reconciliation of the Devils Hole climate record with orbital forcing”

    NASA Astrophysics Data System (ADS)

    Winograd, Isaac J.

    2016-10-01

    Moseley et al. (Reports, 8 January 2016, p. 165) postulate an increase in dissolved thorium isotope 230Th with depth below the water table as the explanation for the differing ages of Termination II. Flow of geothermal water through the Devils Hole caverns precludes this explanation. Deposition of younger secondary calcite into the initial porosity of the calcite comprising their cores is a plausible alternate explanation.

  15. Groundwater control of mangrove surface elevation: shrink and swell varies with soil depth

    USGS Publications Warehouse

    Whelan, K.R.T.; Smith, T. J.; Cahoon, D.R.; Lynch, J.C.; Anderson, G.H.

    2005-01-01

    We measured monthly soil surface elevation change and determined its relationship to groundwater changes at a mangrove forest site along Shark River, Everglades National Park, Florida. We combined the use of an original design, surface elevation table with new rod-surface elevation tables to separately track changes in the mid zone (0?4 m), the shallow root zone (0?0.35 m), and the full sediment profile (0?6 m) in response to site hydrology (daily river stage and groundwater piezometric pressure). We calculated expansion and contraction for each of the four constituent soil zones (surface [accretion and erosion; above 0 m], shallow zone [0?0.35 m], middle zone [0.35?4 m], and bottom zone [4?6 m]) that comprise the entire soil column. Changes in groundwater pressure correlated strongly with changes in soil elevation for the entire profile (Adjusted R2 5 0.90); this relationship was not proportional to the depth of the soil profile sampled. The change in thickness of the bottom soil zone accounted for the majority (R2 5 0.63) of the entire soil profile expansion and contraction. The influence of hydrology on specific soil zones and absolute elevation change must be considered when evaluating the effect of disturbances, sea level rise, and water management decisions on coastal wetland systems.

  16. Ice Cloud Properties in Ice-Over-Water Cloud Systems Using TRMM VIRS and TMI Data

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Huang, Jianping; Lin, Bing; Yi, Yuhong; Arduini, Robert F.; Fan, Tai-Fang; Ayers, J. Kirk; Mace, Gerald G.

    2007-01-01

    A multi-layered cloud retrieval system (MCRS) is updated and used to estimate ice water path in maritime ice-over-water clouds using Visible and Infrared Scanner (VIRS) and TRMM Microwave Imager (TMI) measurements from the Tropical Rainfall Measuring Mission spacecraft between January and August 1998. Lookup tables of top-of-atmosphere 0.65- m reflectance are developed for ice-over-water cloud systems using radiative transfer calculations with various combinations of ice-over-water cloud layers. The liquid and ice water paths, LWP and IWP, respectively, are determined with the MCRS using these lookup tables with a combination of microwave (MW), visible (VIS), and infrared (IR) data. LWP, determined directly from the TMI MW data, is used to define the lower-level cloud properties to select the proper lookup table. The properties of the upper-level ice clouds, such as optical depth and effective size, are then derived using the Visible Infrared Solar-infrared Split-window Technique (VISST), which matches the VIRS IR, 3.9- m, and VIS data to the multilayer-cloud lookup table reflectances and a set of emittance parameterizations. Initial comparisons with surface-based radar retrievals suggest that this enhanced MCRS can significantly improve the accuracy and decrease the IWP in overlapped clouds by 42% and 13% compared to using the single-layer VISST and an earlier simplified MW-VIS-IR (MVI) differencing method, respectively, for ice-over-water cloud systems. The tropical distribution of ice-over-water clouds is the same as derived earlier from combined TMI and VIRS data, but the new values of IWP and optical depth are slightly larger than the older MVI values, and exceed those of single-layered layered clouds by 7% and 11%, respectively. The mean IWP from the MCRS is 8-14% greater than that retrieved from radar retrievals of overlapped clouds over two surface sites and the standard deviations of the differences are similar to those for single-layered clouds. Examples of a method for applying the MCRS over land without microwave data yield similar differences with the surface retrievals. By combining the MCRS with other techniques that focus primarily on optically thin cirrus over low water clouds, it will be possible to more fully assess the IWP in all conditions over ocean except for precipitating systems.

  17. Fluvial valleys in the heavily cratered terrains of Mars: Evidence for paleoclimatic change?

    NASA Technical Reports Server (NTRS)

    Gulick, V. C.; Baker, V. R.

    1993-01-01

    Whether the formation of the Martian valley networks provides unequivocal evidence for drastically different climatic conditions remains debatable. Recent theoretical climate modeling precludes the existence of a temperate climate early in Mars' geological history. An alternative hypothesis suggests that Mars had a globally higher heat flow early in its geological history, bringing water tables to within 350 m of the surface. While a globally higher heat flow would initiate ground water circulation at depth, the valley networks probably required water tables to be even closer to the surface. Additionally, it was previously reported that the clustered distribution of the valley networks within terrain types, particularly in the heavily cratered highlands, suggests regional hydrological processes were important. The case for localized hydrothermal systems is summarized and estimates of both erosion volumes and of the implied water volumes for several Martian valley systems are presented.

  18. The response of male and female black poplar (Populus nigra L. subspecies betulifolia (Pursh) W. Wettst.) cuttings to different water table depths and sediment types: implications for flow management and river corridor biodiversity

    NASA Astrophysics Data System (ADS)

    Hughes, Francine M. R.; Barsoum, Nadia; Richards, Keith S.; Winfield, Mark; Hayes, Adrian

    2000-10-01

    Management of river flows has altered the pattern of flood arrival times and reduced their frequency and duration on many European floodplains. Floodplain tree species depend on floods both to provide new sites for their regeneration and to recharge water tables at various depths in the rooting zone. A reduction in floods is one factor that has led to loss of river corridor biodiversity, with early successional tree species from the Salicaceae being particularly adversely affected. Members of the Salicaceae are dioecious and it is possible that the males and females of these species have measurably different water table requirements, which might lead to spatial segregation of the sexes on a floodplain. This paper describes an investigation that was carried out into the response of male and female black poplar (Populus nigra L. subspecies betulifolia (Pursh) W. Wettst.) to different soil moisture conditions. An experiment was set up on an alluvial island in the River Great Ouse (UK) in which cuttings of male and female black poplar were grown in different sediment types with different water table levels. The experiment was carried out over two field seasons in 1997 and 1998. Results showed that females tended to prefer wetter and more nutrient-rich sites than males but that there was considerable overlap in their requirements. A complementary genetic study showed very little genetic variation in the experimental population, which may also partially explain the relatively low level of variation between the two sexes found in the study. It is suggested that some limited spatial segregation of the sexes does occur in response to soil moisture availability and that river flow management which aims to maintain or increase river corridor biodiversity may need to take this into account.

  19. Estimation of hectare-scale soil-moisture characteristics from aquifer-test data

    USGS Publications Warehouse

    Moench, A.F.

    2003-01-01

    Analysis of a 72-h, constant-rate aquifer test conducted in a coarse-grained and highly permeable, glacial outwash deposit on Cape Cod, Massachusetts revealed that drawdowns measured in 20 piezometers located at various depths below the water table and distances from the pumped well were significantly influenced by effects of drainage from the vadose zone. The influence was greatest in piezometers located close to the water table and diminished with increasing depth. The influence of the vadose zone was evident from a gap, in the intermediate-time zone, between measured drawdowns and drawdowns computed under the assumption that drainage from the vadose zone occurred instantaneously in response to a decline in the elevation of the water table. By means of an analytical model that was designed to account for time-varying drainage, simulated drawdowns could be closely fitted to measured drawdowns regardless of the piezometer locations. Because of the exceptional quality and quantity of the data and the relatively small aquifer heterogeneity, it was possible by inverse modeling to estimate all relevant aquifer parameters and a set of three empirical constants used in the upper-boundary condition to account for the dynamic drainage process. The empirical constants were used to define a one-dimensional (ID) drainage versus time curve that is assumed to be representative of the bulk material overlying the water table. The curve was inverted with a parameter estimation algorithm and a ID numerical model for variably saturated flow to obtain soil-moisture retention curves and unsaturated hydraulic conductivity relationships defined by the Brooks and Corey equations. Direct analysis of the aquifer-test data using a parameter estimation algorithm and a two-dimensional, axisymmetric numerical model for variably saturated flow yielded similar soil-moisture characteristics. Results suggest that hectare-scale soil-moisture characteristics are different from core-scale predictions and even relatively small amounts of fine-grained material and heterogeneity can dominate the large-scale soil-moisture characteristics and aquifer response. ?? 2003 Elsevier B.V. All rights reserved.

  20. Modelling methane fluxes from managed and restored peatlands

    NASA Astrophysics Data System (ADS)

    Cresto Aleina, F.; Rasche, L.; Hermans, R.; Subke, J. A.; Schneider, U. A.; Brovkin, V.

    2015-12-01

    European peatlands have been extensively managed over past centuries. Typical management activities consisted of drainage and afforestation, which lead to considerable damage to the peat and potentially significant carbon loss. Recent efforts to restore previously managed peatlands have been carried out throughout Europe. These restoration efforts have direct implications for water table depth and greenhouse gas emissions, thus impacting on the ecosystem services provided by peatland areas. In order to quantify the impact of peatland restoration on water table depth and greenhouse gas budget, We coupled the Environmental Policy Integrated Climate (EPIC) model to a process-based model for methane emissions (Walter and Heimann, 2000). The new model (EPIC-M) can potentially be applied at the European and even at the global scale, but it is yet to be tested and evaluated. We present results of this new tool from different peatlands in the Flow Country, Scotland. Large parts of the peatlands of the region have been drained and afforested during the 1980s, but since the late 1990s, programs to restore peatlands in the Flow Country have been enforced. This region offers therefore a range of peatlands, from near pristine, to afforested and drained, with different resoration ages in between, where we can apply the EPIC-M model and validate it against experimental data from all land stages of restoration. Goals of this study are to evaluate the EPIC-M model and its performances against in situ measurements of methane emissions and water table changes in drained peatlands and in restored ones. Secondly, our purpose is to study the environmental impact of peatland restoration, including methane emissions, due to the rewetting of drained surfaces. To do so, we forced the EPIC-M model with local meteorological and soil data, and simulated soil temperatures, water table dynamics, and greenhouse gas emissions. This is the first step towards a European-wide application of the EPIC-M model for the assessment of the environmental impact of peatland restoration.

  1. Infiltration of pesticides in surface water into nearby drinking water supply wells

    NASA Astrophysics Data System (ADS)

    Malaguerra, F.; Albrechtsen, H.; Binning, P. J.

    2010-12-01

    Drinking water wells are often placed near streams because streams often overly permeable sediments and the water table is near the surface in valleys, and so pumping costs are reduced. The lowering of the water table by pumping wells can reverse the natural flow from the groundwater to the stream, inducing infiltration of surface water to groundwater and consequently to the drinking water well. Many attenuation processes can take place in the riparian zone, mainly due to mixing, biodegradation and sorption. However, if the water travel time from the surface water to the pumping well is too short, or if the compounds are poorly degradable, contaminants can reach the drinking water well at high concentrations, jeopardizing drinking water quality. Here we developed a reactive transport model to evaluate the risk of contamination of drinking water wells by surface water pollution. The model was validated using data of a tracer experiment in a riparian zone. Three compounds were considered: an older pesticide MCPP (Mecoprop) which is mobile and persistent, glyphosate (Roundup), a new biodegradable and strongly sorbed pesticide, and its degradation product AMPA. Global sensitivity analysis using the method of Morris was employed to identify the dominant model parameters. Results showed that the presence of an aquitard and its characteristics (degree of fracturing and thickness), pollutant properties and well depth are the crucial factors affecting the risk of drinking water well contamination from surface water. Global sensitivity analysis results were compared with rank correlation statistics between pesticide concentrations and geological parameters derived from a comprehensive database of Danish drinking water wells. Aquitard thickness and well depth are the most critical parameters in both the model and observed data.

  2. Woody riparian vegetation response to different alluvial water table regimes

    USGS Publications Warehouse

    Shafroth, P.B.; Stromberg, J.C.; Patten, D.T.

    2000-01-01

    Woody riparian vegetation in western North American riparian ecosystems is commonly dependent on alluvial groundwater. Various natural and anthropogenic mechanisms can cause groundwater declines that stress riparian vegetation, but little quantitative information exists on the nature of plant response to different magnitudes, rates, and durations of groundwater decline. We observed groundwater dynamics and the response of Populus fremontii, Salix gooddingii, and Tamarix ramosissima saplings at 3 sites between 1995 and 1997 along the Bill Williams River, Arizona. At a site where the lowest observed groundwater level in 1996 (-1.97 m) was 1.11 m lower than that in 1995 (-0.86 m), 92-100% of Populus and Salix saplings died, whereas 0-13% of Tamarix stems died. A site with greater absolute water table depths in 1996 (-2.55 m), but less change from the 1995 condition (0.55 m), showed less Populus and Salix mortality and increased basal area. Excavations of sapling roots suggest that root distribution is related to groundwater history. Therefore, a decline in water table relative to the condition under which roots developed may strand plant roots where they cannot obtain sufficient moisture. Plant response is likely mediated by other factors such as soil texture and stratigraphy, availability of precipitation-derived soil moisture, physiological and morphological adaptations to water stress, and tree age. An understanding of the relationships between water table declines and plant response may enable land and water managers to avoid activities that are likely to stress desirable riparian vegetation.

  3. Soil Gas Dynamics and Microbial Activity in the Unsaturated Zone of a Regulated River

    NASA Astrophysics Data System (ADS)

    Christensen, H.; Ferencz, S. B.; Cardenas, M. B.; Neilson, B. T.; Bennett, P. C.

    2017-12-01

    Over 60% of the world's rivers are dammed, and are therefore regulated. In some river systems, river regulation is the dominant factor governing fluid exchange and soil gas dynamics in the hyporheic region and overlying unsaturated zone of the river banks. Where this is the case, it is important to understand the effects that an artificially-induced change in river stage can have on the chemical, plant, and microbial components of the unsaturated zone. Daily releases from an upstream dam cause rapid stage fluctuations in the Lower Colorado River east of Austin, Texas. For this study, we utilized an array of water and gas wells along a transect perpendicular to the river to investigate the biogeochemical process occurring in this mixing zone. The gas wells were installed at several depths up to 1.5 meters, and facilitated the continuous monitoring of soil gases as the pulse percolated through the river bank. Water samples collected from the screened wells penetrated to depths below the water table and were analyzed for nutrients, carbon, and major ions. Additionally, two soil cores were taken at different distances from the river and analyzed for soil moisture and grain size. These cores were also analyzed for microbial activity using the total heterotroph count method and the acetylene inhibition technique, a sensitive method of measuring denitrifying activity. The results provide a detailed picture of soil gas flux and biogeochemical processes in the bank environment in a regulated river. Findings indicate that a river pulse that causes a meter-scale change in river stage causes small, centimeter-scale pulses in the water table. We propose that these conditions create an area of elevated microbial respiration at the base of the unsaturated zone that appears to be decoupled from normal diurnal fluctuations. Along the transect, CO2 concentrations increased with increasing depth down to the water table. CO2 concentrations were highest in the time following a pulse, and the lowest concentrations were recorded following the trough in river stage.

  4. Rapid Recharge of Parts of the High Plains Aquifer Indicated by a Reconnaissance Study in Oklahoma, 1999

    USGS Publications Warehouse

    Andrews, William J.; Osborn, Noel I.; Luckey, Richard R.

    2000-01-01

    The High Plains aquifer underlies about 174,000 square miles in parts of eight states, including about 7,100 square miles in northwestern Oklahoma (fig. 1). This aquifer consists of the saturated part of the Ogallala Formation and saturated materials of Quaternary Age that are hydraulically connected to the Ogallala. The High Plains aquifer in northwestern Oklahoma is the primary source of water to an important agricultural region. Most water is withdrawn from the aquifer for irrigating wheat and other grain crops, with the remainder used for livestock (primarily cattle and swine), municipal, and domestic needs. Historically, water from precipitation was thought to take hundreds or thousands of years to reach the water table because the depth of the water table is greater than 100 feet over most of the aquifer and the low-permeability beds in the Ogallala would impede downward flow. It also was thought that land uses would take a similar period of time to affect water quality in the aquifer.

  5. Water table variability and runoff generation in an eroded peatland, South Pennines, UK

    NASA Astrophysics Data System (ADS)

    Daniels, S. M.; Agnew, C. T.; Allott, T. E. H.; Evans, M. G.

    2008-10-01

    SummaryHydrological monitoring in an eroded South Pennine peatland shows that persistent and frequent water table drawdowns occur at gully edge locations, defining a deeper and thicker acrotelm than is observed in intact peatlands (an erosional acrotelm). Antecedent water table elevation is a key control on the hydrological response to precipitation events, in particular runoff percent, the timing of peak discharges and maximum water table elevations. Significant discharge is generated whilst water table elevations are relatively low at gully edge locations, and this has a strong influence on flow pathways. Four characteristics of runoff response are recognised: (i) the rapid development of macropore/pipe flow at the start of the storm; (ii) peat rewetting, water table elevation increase and continued macropore/pipe flow; (iii) maximum water table elevations and peak stream discharge with throughflow occurring within the erosional acrotelm and rapid flow through the subsurface macropore/pipe network; (iv) rapidly declining water table elevations and stream flow following the cessation of rainfall. Gully edge peats provide a key linkage between the hillslope hydrological system and channel flow so that their influence on the hydrological functioning of the peatlands is disproportionate to their aerial extent within the catchment. Future climate change may lead to further degradation of the bogs and a reinforcement of the importance of erosion gullies to runoff generation and water quality.

  6. Stream-aquifer interactions in the Straight River area, Becker and Hubbard counties, Minnesota

    USGS Publications Warehouse

    Stark, J.R.; Armstrong, David S.; Zwilling, Daniel R.

    1994-01-01

    Daily fluctuations of stream temperature are as great as 15 degrees Celsius during the summer, primarily in response to changes in air temperature. Ground-water discharge to the Straight River decreases stream temperature during the summer. Results of simulations from a stream-temperature model indicate that daily changes in stream temperature are strongly influenced by solar radiation, wind speed, stream depth, and ground-water inflow. Results of simulations from ground-water-flow and stream-temperature models developed for the investigation indicate a significant decrease in ground-water flow could result from ground-water withdrawal at rates similar to those measured during 1988. This reduction in discharge to the stream could result in an increase in stream temperature of 0.5 to 1.5 degrees Celsius. Nitrate concentrations in shallow wells screened at the water table, in some areas, are locally greater than the limit set by the Minnesota Pollution Control Agency. Nitrate concentrations in water from deeper wells and in the stream are low, generally less than 1.0 milligram per liter.

  7. Wildfire effects on vadose zone hydrology in forested boreal peatland microforms

    NASA Astrophysics Data System (ADS)

    Thompson, Dan K.; Waddington, James M.

    2013-04-01

    SummaryPeatland vulnerability to wildfire disturbance has been shown to vary as a function of hummock and hollow microforms and vadose zone hydrology, with low-lying hollow microforms most susceptible to deep combustion of peat. To better understand how this microform induced pattern of burning alters vadose water storage, pore-water pressure, and water table relationships, we examined a paired burned and unburned peatland in the boreal plain region of north central Alberta. Water table response to rain events increased significantly after wildfire, resulting in a more variable unsaturated zone thickness that was more responsive to smaller rain events. Water storage losses in the vadose zone occurred primarily at depths greater than 15 cm. Large peat surface water loss occurred in hummock microforms in the early spring due to the presence of unsaturated frozen peat at depth, likely a result of a vapour gradient from the unfrozen peat into the frozen peat underneath. During this period, the loss of water storage in the vadose zone satisfied up to 25% of daily evaporative demand, compared to only 3-5% during ice-free periods. A similar but less severe drying was observed late in summer, with burned hummocks the most vulnerable with high pore-water pressures. The enhanced surface drying observed is a precursor to high pore-water pressure conditions that inhibit Sphagnum regeneration. Our observations point to a paradox where the hummocks, being most resistant to combustion, are themselves most prone to high pore-water pressures following wildfire. The harsher hummock environment may contribute to the observed delay in post-fire Sphagnum regeneration in hummocks compared to hollows.

  8. Effects of experimental water table and temperature manipulations on ecosystem CO2 fluxes in an Alaskan rich fen

    USGS Publications Warehouse

    Chivers, M.R.; Turetsky, M.R.; Waddington, J.M.; Harden, J.W.; McGuire, A.D.

    2009-01-01

    Peatlands store 30% of the world's terrestrial soil carbon (C) and those located at northern latitudes are expected to experience rapid climate warming. We monitored growing season carbon dioxide (CO2) fluxes across a factorial design of in situ water table (control, drought, and flooded plots) and soil warming (control vs. warming via open top chambers) treatments for 2 years in a rich fen located just outside the Bonanza Creek Experimental Forest in interior Alaska. The drought (lowered water table position) treatment was a weak sink or small source of atmospheric CO2 compared to the moderate atmospheric CO2 sink at our control. This change in net ecosystem exchange was due to lower gross primary production and light-saturated photosynthesis rather than increased ecosystem respiration. The flooded (raised water table position) treatment was a greater CO2 sink in 2006 due largely to increased early season gross primary production and higher light-saturated photosynthesis. Although flooding did not have substantial effects on rates of ecosystem respiration, this water table treatment had lower maximum respiration rates and a higher temperature sensitivity of ecosystem respiration than the control plot. Surface soil warming increased both ecosystem respiration and gross primary production by approximately 16% compared to control (ambient temperature) plots, with no net effect on net ecosystem exchange. Results from this rich fen manipulation suggest that fast responses to drought will include reduced ecosystem C storage driven by plant stress, whereas inundation will increase ecosystem C storage by stimulating plant growth. ?? 2009 Springer Science+Business Media, LLC.

  9. Stemflow-induced processes of soil water storage

    NASA Astrophysics Data System (ADS)

    Germer, Sonja

    2013-04-01

    Compared to stemflow production studies only few studies deal with the fate of stemflow at the near-stem soil. To investigate stemflow contribution to the root zone soil moisture by young and adult babassu palms (Attalea speciosa Mart.), I studied stemflow generation, subsequent soil water percolation and root distributions. Rainfall, stemflow and perched water tables were monitored on an event basis. Perched water tables were monitored next to adult palms at two depths and three stem distances. Dye tracer experiments monitored stemflow-induced preferential flow paths. Root distributions of fine and coarse roots were related to soil water redistribution. Average rainfall-collecting area per adult palm was 6.4 m², but variability between them was high. Funneling ratios ranged between 16-71 and 4-55 for adult and young palms, respectively. Nonetheless, even very small rainfall events of 1 mm can generate stemflow. On average, 9 liters of adult palm stemflow were intercepted and stemflow tended to decrease for-high intensity rainfall events. Young babassu palms funneled rainfall via their fronds, directly to their subterranean stems. The funneling of rainfall towards adult palm stems, in contrast, led to great stemflow fluxes down to the soil and induced initial horizontal water flows through the soil, leading to perched water tables next to palms, even after small rainfall events. The perched water tables extended, however, only a few decimeters from palm stems. After perched water tables became established, vertical percolation through the soil dominated. To my knowledge, this process has not been described before, and it can be seen as an addition to the two previously described stemflow-induced processes of Horton overland flow and fast, deep percolation along roots. This study has demonstrated that Babassu palms funnel water to their stems and subsequently store it in the soil next to their stems in areas where coarse root length density is very high. This might partly explain the competitive position of babassu palms on pastures or secondary forests.

  10. Identifying suitable land for alternative crops in a drying climate: soil salinity, texture and topographic conditions for the growth of old man saltbush (Atriplex nummularia)

    NASA Astrophysics Data System (ADS)

    Holmes, K. W.; Barrett-Lennard, E. G.; Altman, M.

    2011-12-01

    Experiments conducted under controlled conditions clearly show that the growth and survival of plants on saltland is affected by both the levels of salinity and waterlogging (or depth to water-table) in the soil. Different plant species thrive under varying combinations of these growth constraints. However in natural settings, short distance spatial variability in soil properties and subtle topographic features often complicate the definition of saline and soil hydrological conditions; additional factors may also overprint the trends identified under controlled conditions, making it difficult to define the physical settings where planting is economically viable. We investigated the establishment and growth of old man saltbush (Atriplex nummularia) in relation to variable soil-landscape conditions across an experimental site in southwestern Australia where the combination of high salinity and occasional seasonal waterlogging ruled out the growth of traditional crops and pastures. Saltbush can be critical supplemental feed in the dry season, providing essential nutrients for sheep in combination with sufficient water and dry feed (hay). We applied a range of modeling approaches including classification and regression trees and generalized linear models to statistically characterize these plant-environment relationships, and extend them spatially using full cover raster covariate datasets. Plant deaths could be consistently predicted (97% correct classification of independent dataset) using a combination of topographic variables, salinity, soil mineralogical information, and depth to the water table. Plant growth patterns were more difficult to predict, particularly after several years of grazing, however variation in plant volume was well-explained with a linear model (r2 = 0.6, P < 0.0001). All types of environmental data were required, supporting the starting hypothesis that saltland pasture success is driven by water movement in the landscape. The final selected covariates for modeling were a digital elevation model and derivatives, soil mineralogy, competitors for water (adjacent trees) and soil salinity (measured with an EM38). Our exploration of strengths and weaknesses of extrapolating simple relationships determined under controlled conditions to the field vindicates the importance of both approaches. Landholders often view the idea of the productive use of saltland with skepticism. The challenge is to use the combined datasets from glasshouse and field experiments to develop information guidelines for landholders that maximize the chances of revegetation success. Water availability, waterlogging, quality of the shallow groundwater, and secondary salinity are dominant processes that impact on agriculture in southwestern Australia. Improving our understanding of their interactions and effect on productivity will help adapt agricultural management to changing environmental conditions in the future.

  11. Water table in rocks of Cenozoic and Paleozoic age, 1980, Yucca Flat, Nevada Test Site, Nevada

    USGS Publications Warehouse

    Doty, G.C.; Thordarson, William

    1983-01-01

    The water table at Yucca Flat, Nevada Test Site, Nevada, occurs in rocks of Paleozoic age and in tuffs and alluvium of Cenozoic age and ranges in altitude from about 2,425 feet to about 3,500 feet. The configuration of the water table is depicted by contours with intervals of 25 to 500 feet. Control for the map consists of water-level information from 61 drill holes, whose locations and age of geologic units penetrated are shown by symbols on the map. (USGS)

  12. Modelling of seasonal dynamics of Wetland-Groundwater flow interaction in the Canadian Prairies

    NASA Astrophysics Data System (ADS)

    Ali, Melkamu; Nussbaumer, Raphaël; Ireson, Andrew; Keim, Dawn

    2015-04-01

    Wetland-shallow groundwater interaction is studied at the St. Denis National Wildlife Area in Saskatchewan, Canada, located within the northern glaciated prairies of North America. Ponds in the Canadian Prairies are intermittently connected by fill-spill processes in the spring and growing season of some wetter years. The contribution of the ponds and wetlands to groundwater is still a significant research challenge. The objective of this study is to evaluate model's ability to reproduce observed effects of groundwater-wetland interactions including seasonal pattern of shallow groundwater table, intended flow direction and to quantify the depression induced infiltration from the wetland to the surrounding uplands. The integrated surface-wetland-shallow groundwater processes and the changes in land-energy and water balances caused by the flow interaction are simulated using ParFlow-CLM at a small watershed of 1km2 containing both permanent and seasonal wetland complexes. We compare simulated water table depth with piezometers reading monitored by level loggers at the watershed. We also present the strengths and limitations of the model in reproducing observed behaviour of the groundwater table response to the spring snowmelt and summer rainfall. Simulations indicate that the shallow water table at the uphill recovers quickly after major rainfall events in early summer that generates lateral flow to the pond. In late summer, the wetland supplies water to the surrounding upland when the evapotranspiration is higher than the precipitation in which more water from the root zone is up taken by plants. Results also show that Parflow-CLM is able to reasonably simulate the water table patterns response to summer rainfall, while it is insufficient to reproduce the spring snowmelt infiltration which is the most dominant hydrological process in the Prairies.

  13. Rapid Response of Hydrological Loss of DOC to Water Table Drawdown and Warming in Zoige Peatland: Results from a Mesocosm Experiment

    PubMed Central

    Lou, Xue-Dong; Zhai, Sheng-Qiang; Kang, Bing; Hu, Ya-Lin; Hu, Li-Le

    2014-01-01

    A large portion of the global carbon pool is stored in peatlands, which are sensitive to a changing environment conditions. The hydrological loss of dissolved organic carbon (DOC) is believed to play a key role in determining the carbon balance in peatlands. Zoige peatland, the largest peat store in China, is experiencing climatic warming and drying as well as experiencing severe artificial drainage. Using a fully crossed factorial design, we experimentally manipulated temperature and controlled the water tables in large mesocosms containing intact peat monoliths. Specifically, we determined the impact of warming and water table position on the hydrological loss of DOC, the exported amounts, concentrations and qualities of DOC, and the discharge volume in Zoige peatland. Our results revealed that of the water table position had a greater impact on DOC export than the warming treatment, which showed no interactive effects with the water table treatment. Both DOC concentration and discharge volume were significantly increased when water table drawdown, while only the DOC concentration was significantly promoted by warming treatment. Annual DOC export was increased by 69% and 102% when the water table, controlled at 0 cm, was experimentally lowered by −10 cm and −20 cm. Increases in colored and aromatic constituents of DOC (measured by Abs254 nm, SUVA254 nm, Abs400 nm, and SUVA400 nm) were observed under the lower water tables and at the higher peat temperature. Our results provide an indication of the potential impacts of climatic change and anthropogenic drainage on the carbon cycle and/or water storage in a peatland and simultaneously imply the likelihood of potential damage to downstream ecosystems. Furthermore, our results highlight the need for local protection and sustainable development, as well as suggest that more research is required to better understand the impacts of climatic change and artificial disturbances on peatland degradation. PMID:25369065

  14. Rapid response of hydrological loss of DOC to water table drawdown and warming in Zoige peatland: results from a mesocosm experiment.

    PubMed

    Lou, Xue-Dong; Zhai, Sheng-Qiang; Kang, Bing; Hu, Ya-Lin; Hu, Li-Le

    2014-01-01

    A large portion of the global carbon pool is stored in peatlands, which are sensitive to a changing environment conditions. The hydrological loss of dissolved organic carbon (DOC) is believed to play a key role in determining the carbon balance in peatlands. Zoige peatland, the largest peat store in China, is experiencing climatic warming and drying as well as experiencing severe artificial drainage. Using a fully crossed factorial design, we experimentally manipulated temperature and controlled the water tables in large mesocosms containing intact peat monoliths. Specifically, we determined the impact of warming and water table position on the hydrological loss of DOC, the exported amounts, concentrations and qualities of DOC, and the discharge volume in Zoige peatland. Our results revealed that of the water table position had a greater impact on DOC export than the warming treatment, which showed no interactive effects with the water table treatment. Both DOC concentration and discharge volume were significantly increased when water table drawdown, while only the DOC concentration was significantly promoted by warming treatment. Annual DOC export was increased by 69% and 102% when the water table, controlled at 0 cm, was experimentally lowered by -10 cm and -20 cm. Increases in colored and aromatic constituents of DOC (measured by Abs(254 nm), SUVA(254 nm), Abs(400 nm), and SUVA(400 nm)) were observed under the lower water tables and at the higher peat temperature. Our results provide an indication of the potential impacts of climatic change and anthropogenic drainage on the carbon cycle and/or water storage in a peatland and simultaneously imply the likelihood of potential damage to downstream ecosystems. Furthermore, our results highlight the need for local protection and sustainable development, as well as suggest that more research is required to better understand the impacts of climatic change and artificial disturbances on peatland degradation.

  15. Enceladus: Starting Hydrothermal Activity

    NASA Technical Reports Server (NTRS)

    Matson, D. L.; Castillo-Rogez, J. C.; Johnson, T. V.; Lunine, J. I.; Davies, A. G.

    2011-01-01

    We describe a process for starting the hydrothermal activity in Enceladus' South Polar Region. The process takes advantage of fissures that reach the water table, about 1 kilometer below the surface. Filling these fissures with fresh ocean water initiates a flow of water up from an ocean that can be self-sustaining. In this hypothesis the heat to sustain the thermal anomalies and the plumes comes from a slightly warm ocean at depth. The heat is brought to the surface by water that circulates up, through the crust and then returns to the ocean.

  16. Testate amoeba transfer function performance along localised hydrological gradients.

    PubMed

    Tsyganov, Andrey N; Mityaeva, Olga A; Mazei, Yuri A; Payne, Richard J

    2016-09-01

    Testate amoeba transfer functions are widely used for reconstruction of palaeo-hydrological regime in peatlands. However, the limitations of this approach have become apparent with increasing attention to validation and assessing sources of uncertainty. This paper investigates effects of peatland type and sampling depth on the performance of a transfer function using an independent test-set from four Sphagnum-dominated sites in European Russia (Penza Region). We focus on transfer function performance along localised hydrological gradients, which is a useful analogue for predictive ability through time. The performance of the transfer function with the independent test-set was generally weaker than for the leave-one-out or bootstrap cross-validations. However, the transfer function was robust for the reconstruction of relative changes in water-table depth, provided the presence of good modern analogues and overlap in water-table depth ranges. When applied to subsurface samples, the performance of the transfer function was reduced due to selective decomposition, the presence of deep-dwelling taxa or vertical transfer of shells. Our results stress the importance of thorough testing of transfer functions, and highlight the role of taphonomic processes in determining results. Further studies of stratification, taxonomy and taphonomy of testate amoebae will be needed to improve the robustness of transfer function output. Copyright © 2015 Elsevier GmbH. All rights reserved.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartantyo, Eddy, E-mail: hartantyo@ugm.ac.id; Brotopuspito, Kirbani S.; Sismanto

    The liquefactions phenomena have been reported after a shocking 6.5Mw earthquake hit Yogyakarta province in the morning at 27 May 2006. Several researchers have reported the damage, casualties, and soil failure due to the quake, including the mapping and analyzing the liquefaction phenomena. Most of them based on SPT test. The study try to draw the liquefaction susceptibility by means the shear velocity profiling using modified Multichannel Analysis of Surface Waves (MASW). This paper is a preliminary report by using only several measured MASW points. The study built 8-channel seismic data logger with 4.5 Hz geophones for this purpose. Several differentmore » offsets used to record the high and low frequencies of surface waves. The phase-velocity diagrams were stacked in the frequency domain rather than in time domain, for a clearer and easier dispersion curve picking. All codes are implementing in Matlab. From these procedures, shear velocity profiling was collected beneath each geophone’s spread. By mapping the minimum depth of shallow water table, calculating PGA with soil classification, using empirical formula for saturated soil weight from shear velocity profile, and calculating CRR and CSR at every depth, the liquefaction characteristic can be identify in every layer. From several acquired data, a liquefiable potential at some depth below water table was obtained.« less

  18. Spatially Detailed Porosity Prediction From Airborne Electromagnetics and Sparse Borehole Fluid Sampling

    NASA Astrophysics Data System (ADS)

    Macnae, J.; Ley-Cooper, Y.

    2009-05-01

    Sub-surface porosity is of importance in estimating fluid contant and salt-load parameters for hydrological modelling. While sparse boreholes may adequately sample the depth to a sub-horizontal water-table and usually also adequately sample ground-water salinity, they do not provide adequate sampling of the spatial variations in porosity or hydraulic permeability caused by spatial variations in sedimentary and other geological processes.. We show in this presentation that spatially detailed porosity can be estimated by applying Archie's law to conductivity estimates from airborne electromagnetic surveys with interpolated ground-water conductivity values. The prediction was tested on data from the Chowilla flood plain in the Murray-Darling Basin of South Australia. A frequency domain, helicopter-borne electromagnetic system collected data at 6 frequencies and 3 to 4 m spacings on lines spaced 100 m apart. This data was transformed into conductivity-depth sections, from which a 3D bulk-conductivity map could be created with about 30 m spatial resolution and 2 to 5 m vertical depth resolution. For that portion of the volume below the interpolated water-table, we predicted porosity in each cell using Archie's law. Generally, predicted porosities were in the 30 to 50 % range, consistent with expectations for the partially consolidated sediments in the floodplain. Porosities were directly measured on core from eight boreholes in the area, and compared quite well with the predictions. The predicted porosity map was spatially consistent, and when combined with measured salinities in the ground water, was able to provide a detailed 3D map of salt-loads in the saturated zone, and as such contribute to a hazard assessment of the saline threat to the river.

  19. Effects of Pronounced Drying and Rewetting on Redox Dynamics and C-Turnover in a Northern Temperate fen

    NASA Astrophysics Data System (ADS)

    Knorr, K.; Oosterwoud, M.; Blodau, C.

    2006-12-01

    Covering about 450 million ha of the earth's surface and storing substantial amounts of carbon, peatlands play an important role in the global carbon cycle. In the context of climate change and greenhouse gases, peatlands have gained increasing attention. According to future climate scenarios for temperate regions, higher temperatures and an increasing frequency of extreme weather events causing more frequent drying/rewetting cycles may be expected. However, the effects on carbon turnover in peatlands are not well known. To evaluate the effect of pronounced drying/rewetting, three intact cores (60 cm diam., 60 cm depth) from a northern temperate fen were incubated in a climate chamber (15°C; 12h/12h day/night cycle) for 9 months. The plants of one core had been removed, while they were kept on the other two cores (grasses and sedges, few mosses). The water table of all cores was adjusted and kept at 10 cm below surface (70 days, artificial precipitation). Subsequently, two cores were dried out (with and without vegetation) by stopping precipitation, while the third core (with vegetation) was kept at high water table as a control. Within 50 days, the water table dropped ~45 cm. Thereafter, we rewetted (>30 mm d-1) till the water table was back up at 10 cm within 2 days. Pronounced drying and rewetting had a substantial effect on internal C-turnover and electron acceptor pools. Profiles in CO2/CO32- followed closely the water table rise and drop (2-5 mmol L-1 below, 1-2 mmol L-1 above the water table), whereas methanogenesis lagged behind. While the electron acceptor pool (NO3-, Fe(III), SO42-) was renewed in the upper profile during drying out, there was still some methane detectable above the water table in the main root zone of the vegetated core, indicating anoxic micro-environments. After the rapid rewetting, thermodynamically preferred electron acceptors were consumed first. In the upper layers sulfate was present (>100 mmol L-1) for about 50-70 days before methane concentrations increased till >20% by volume in the gas samplers (eq. to 390 mmol L-1). The long lasting sulfate pool but high sulfate reduction rates in the upper layers (50 - >>250 nmol cm-3 d-1, radiotracer studies at 20°C) suggest a renewal of the electron acceptor pool by a yet not well identified mechanism. The CO2 release through respiration remained fairly constant during the drying/rewetting cycle (200-300 mmol m-2 d-1), while the type of vegetation had a substantial effect on photosynthesis (250 600 mmol CO2 m-2 d-1) and CH4 release (0 - 40 mmol m-2 d-1). This study demonstrates the impact of a changing climate on carbon turnover in peatland ecosystems. A permanently high water table allowed little renewal of electron acceptors and promoted methanogenesis, a recycling of electron acceptors during drying and rewetting impeded methanogenesis. While losses of CO2 through respiration remained fairly constant, uptake by photosynthesis showed a considerable effect.

  20. Analysis of data on nutrients and organic compounds in ground water in the upper Snake River basin, Idaho and western Wyoming, 1980-91

    USGS Publications Warehouse

    Rupert, Michael G.

    1994-01-01

    Nutrient and organic compound data from the U.S. Geological Survey and the U.S. Environmental Protection Agency STORET data bases provided information for development of a preliminary conceptual model of spatial and temporal ground-water quality in the upper Snake River Basin. Nitrite plus nitrate (as nitrogen; hereafter referred to as nitrate) concentrations exceeded the Federal drinking-water regulation of 10 milligrams per liter in three areas in Idaho" the Idaho National Engineering Laboratory, the area north of Pocatello (Fort Hall area), and the area surrounding Burley. Water from many wells in the Twin Falls area also contained elevated (greater than two milligrams per liter) nitrate concentrations. Water from domestic wells contained the highest median nitrate concentrations; water from industrial and public supply wells contained the lowest. Nitrate concentrations decreased with increasing well depth, increasing depth to water (unsaturated thickness), and increasing depth below water table (saturated thickness). Kjeldahl nitrogen concentrations decreased with increasing well depth and depth below water table. The relation between kjeldahl nitrogen concentrations and depth to water was poor. Nitrate and total phosphorus concentrations in water from wells were correlated among three hydrogeomorphic regions in the upper Snake River Basin, Concentrations of nitrate were statistically higher in the eastern Snake River Plain and local aquifers than in the tributary valleys. There was no statistical difference in total phosphorus concentrations among the three hydrogeomorphic regions. Nitrate and total phosphorus concentrations were correlated with land-use classifications developed using the Geographic Information Retrieval and Analysis System. Concentrations of nitrate were statistically higher in area of agricultural land than in areas of rangeland. There was no statistical difference in concentrations between rangeland and urban land and between urban land and agricultural land. There was no statistical difference in total phosphorus concentrations among any of the land-use classifications. Nitrate and total phosphorus concentrations also were correlated with land-use classifications developed by the Idaho Department of Water Resources for the Idaho part of the upper Snake River Basin. Nitrate concentrations were statistically higher in areas of irrigated agriculture than in areas of dryland agriculture and rangeland. There was no statistical difference in total phosphorus concentrations among any of the Idaho Department of Water Resources land-use classifications. Data were sufficient to assess long-term trends of nitrate concentrations in water from only eight wells: four wells north of Burley and four wells northwest of Pocatello. The trend in nitrate concentrations in water from all wells in upward. The following organic compounds were detected in ground water in the upper Snake River Basin: cyanazine, 2,4-D DDT, dacthal, diazinon, dichloropropane, dieldrin, malathion, and metribuzin. Of 211 wells sampled for organic compounds, water from 17 contained detectable concentrations.

  1. Groundwater movement, recharge, and perchlorate occurrence in a faulted alluvial aquifer in California (USA)

    USGS Publications Warehouse

    Izbicki, John A.; Teague, Nicholas F.; Hatzinger, Paul B.; Böhlke, John Karl; Sturchio, Neil C.

    2015-01-01

    Perchlorate from military, industrial, and legacy agricultural sources is present within an alluvial aquifer in the Rialto-Colton groundwater subbasin, 80 km east of Los Angeles, California (USA). The area is extensively faulted, with water-level differences exceeding 60 m across parts of the Rialto-Colton Fault separating the Rialto-Colton and Chino groundwater subbasins. Coupled well-bore flow and depth-dependent water-quality data show decreases in well yield and changes in water chemistry and isotopic composition, reflecting changing aquifer properties and groundwater recharge sources with depth. Perchlorate movement through some wells under unpumped conditions from shallower to deeper layers underlying mapped plumes was as high as 13 kg/year. Water-level maps suggest potential groundwater movement across the Rialto-Colton Fault through an overlying perched aquifer. Upward flow through a well in the Chino subbasin near the Rialto-Colton Fault suggests potential groundwater movement across the fault through permeable layers within partly consolidated deposits at depth. Although potentially important locally, movement of groundwater from the Rialto-Colton subbasin has not resulted in widespread occurrence of perchlorate within the Chino subbasin. Nitrate and perchlorate concentrations at the water table, associated with legacy agricultural fertilizer use, may be underestimated by data from long-screened wells that mix water from different depths within the aquifer.

  2. Pumping strategies for management of a shallow water table: The value of the simulation-optimization approach

    USGS Publications Warehouse

    Barlow, P.M.; Wagner, B.J.; Belitz, K.

    1996-01-01

    The simulation-optimization approach is used to identify ground-water pumping strategies for control of the shallow water table in the western San Joaquin Valley, California, where shallow ground water threatens continued agricultural productivity. The approach combines the use of ground-water flow simulation with optimization techniques to build on and refine pumping strategies identified in previous research that used flow simulation alone. Use of the combined simulation-optimization model resulted in a 20 percent reduction in the area subject to a shallow water table over that identified by use of the simulation model alone. The simulation-optimization model identifies increasingly more effective pumping strategies for control of the water table as the complexity of the problem increases; that is, as the number of subareas in which pumping is to be managed increases, the simulation-optimization model is better able to discriminate areally among subareas to determine optimal pumping locations. The simulation-optimization approach provides an improved understanding of controls on the ground-water flow system and management alternatives that can be implemented in the valley. In particular, results of the simulation-optimization model indicate that optimal pumping strategies are constrained by the existing distribution of wells between the semiconfined and confined zones of the aquifer, by the distribution of sediment types (and associated hydraulic conductivities) in the western valley, and by the historical distribution of pumping throughout the western valley.

  3. Field data and numerical simulation of btex concentration trends under water table fluctuations: Example of a jet fuel-contaminated site in Brazil

    NASA Astrophysics Data System (ADS)

    Teramoto, Elias Hideo; Chang, Hung Kiang

    2017-03-01

    Mass transfer of light non-aqueous phase liquids (LNAPLs) trapped in porous media is a complex phenomenon. Water table fluctuations have been identified as responsible for generating significant variations in the concentration of dissolved hydrocarbons. Based on field evidence, this work presents a conceptual model and a numerical solution for mass transfer from entrapped LNAPL to groundwater controlled by both LNAPL saturation and seasonal water table fluctuations within the LNAPL smear zone. The numerical approach is capable of reproducing aqueous BTEX concentration trends under three different scenarios - water table fluctuating within smear zone, above the smear zone and partially within smear zone, resulting in in-phase, out-of-phase and alternating in-phase and out-of-phase BTEX concentration trend with respect to water table oscillation, respectively. The results demonstrate the model's applicability under observed field conditions and its ability to predict source zone depletion.

  4. Response of plant community structure and primary productivity to experimental drought and flooding in an Alaskan fen

    USGS Publications Warehouse

    Churchill, A.C.; Turetsky, Merritt R.; McGuire, A. David; Hollingsworth, Teresa N.

    2014-01-01

    Northern peatlands represent a long-term net sink for atmospheric CO2, but these ecosystems can shift from net carbon (C) sinks to sources based on changing climate and environmental conditions. In particular, changes in water availability associated with climate control peatland vegetation and carbon uptake processes. We examined the influence of changing hydrology on plant species abundance and ecosystem primary production in an Alaskan fen by manipulating the water table in field treatments to mimic either sustained flooding (raised water table) or drought (lowered water table) conditions for 6 years. We found that water table treatments altered plant species abundance by increasing sedge and grass cover in the raised water table treatment and reducing moss cover while increasing vascular green area in the lowered water table treatment. Gross primary productivity was lower in the lowered treatment than in the other plots, although there were no differences in total biomass or vascular net primary productivity among the treatments. Overall, our results indicate that vegetation abundance was more sensitive to variation in water table than total biomass and vascular biomass accrual. Finally, in our experimental peatland, drought had stronger consequences for change in vegetation abundance and ecosystem function than sustained flooding.

  5. Intrinsic Remediation Engineering Evaluation/Cost Analysis for UST Site 870. Hill Air Force Base, Ogden, Utah

    DTIC Science & Technology

    1995-06-01

    ground water temperature readings. Temperature affects the types and growth rates of bacteria that can be supported in the ground water environment...vaies for hydrogeologic conditions similar to those found at the site. The results of this study suggest that dissolved-phase BTEX contamination...OC information to help substantiate the overall site conditions . Please 0 address. Response: Sample depth designations have been clarified in Table

  6. Deciphering storm-event runoff behavior in a coastal plain watershed using chemical and physical hydrograph separation techniques

    Treesearch

    Timothy Callahan; Austin E. Morrison

    2016-01-01

    Interpreting storm-event runoff in coastal plain watersheds is challenging because of the space- and time-variable nature of different sources that contribute to stream flow. These flow vectors and the magnitude of water flux is dependent on the pre-storm soil moisture (as estimated from depth to water table) in the lower coastal plain (LCP) region.

  7. Vertical Stratification of Peat Pore Water Dissolved Organic Matter Composition in a Peat Bog in Northern Minnesota: Pore Water DOM composition in a peat bog

    DOE PAGES

    Tfaily, Malak M.; Wilson, Rachel M.; Cooper, William T.; ...

    2018-01-29

    Here, we characterized dissolved organic matter (DOM) composition throughout the peat column at the Marcell S1 forested bog in northern Minnesota and tested the hypothesis that redox oscillations associated with cycles of wetting and drying at the surface of the fluctuating water table correlate with increased carbon, sulfur, and nitrogen turn over. We found significant vertical stratification of DOM molecular composition and excitation-emission matrix parallel factor analysis components within the peat column. In particular, the intermediate depth zone (~ 50 cm) was identified as a zone where maximum decomposition and turnover is taking place. Surface DOM was dominated by inputsmore » from surface vegetation. The intermediate depth zone was an area of high organic matter reactivity and increased microbial activity with diagenetic formation of many unique compounds, among them polycyclic aromatic compounds that contain both nitrogen and sulfur heteroatoms. These compounds have been previously observed in coal-derived compounds and were assumed to be responsible for coal's biological activity. Biological processes triggered by redox oscillations taking place at the intermediate depth zone of the peat profile at the S1 bog are assumed to be responsible for the formation of these heteroatomic PACs in this system. Alternatively, these compounds could stem from black carbon and nitrogen derived from fires that have occurred at the site in the past. Surface and deep DOM exhibited more similar characteristics, compared to the intermediate depth zone, with the deep layer exhibiting greater input of microbially degraded organic matter than the surface suggesting that the entire peat profile consists of similar parent material at different degrees of decomposition and that lateral and vertical advection of pore water from the surface to the deeper horizons is responsible for such similarities. Lastly, our findings suggest that molecular composition of DOM in peatland pore water is dynamic and is a function of ecosystem activity, water table, redox oscillation, and pore water advection.« less

  8. Vertical Stratification of Peat Pore Water Dissolved Organic Matter Composition in a Peat Bog in Northern Minnesota: Pore Water DOM composition in a peat bog

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tfaily, Malak M.; Wilson, Rachel M.; Cooper, William T.

    Here, we characterized dissolved organic matter (DOM) composition throughout the peat column at the Marcell S1 forested bog in northern Minnesota and tested the hypothesis that redox oscillations associated with cycles of wetting and drying at the surface of the fluctuating water table correlate with increased carbon, sulfur, and nitrogen turn over. We found significant vertical stratification of DOM molecular composition and excitation-emission matrix parallel factor analysis components within the peat column. In particular, the intermediate depth zone (~ 50 cm) was identified as a zone where maximum decomposition and turnover is taking place. Surface DOM was dominated by inputsmore » from surface vegetation. The intermediate depth zone was an area of high organic matter reactivity and increased microbial activity with diagenetic formation of many unique compounds, among them polycyclic aromatic compounds that contain both nitrogen and sulfur heteroatoms. These compounds have been previously observed in coal-derived compounds and were assumed to be responsible for coal's biological activity. Biological processes triggered by redox oscillations taking place at the intermediate depth zone of the peat profile at the S1 bog are assumed to be responsible for the formation of these heteroatomic PACs in this system. Alternatively, these compounds could stem from black carbon and nitrogen derived from fires that have occurred at the site in the past. Surface and deep DOM exhibited more similar characteristics, compared to the intermediate depth zone, with the deep layer exhibiting greater input of microbially degraded organic matter than the surface suggesting that the entire peat profile consists of similar parent material at different degrees of decomposition and that lateral and vertical advection of pore water from the surface to the deeper horizons is responsible for such similarities. Lastly, our findings suggest that molecular composition of DOM in peatland pore water is dynamic and is a function of ecosystem activity, water table, redox oscillation, and pore water advection.« less

  9. Insights into the effects of patchy ice layers on water balance heterogeneity in peatlands

    NASA Astrophysics Data System (ADS)

    Dixon, Simon; Kettridge, Nicholas; Devito, Kevin; Petrone, Rich; Mendoza, Carl; Waddington, Mike

    2017-04-01

    Peatlands in boreal and sub-arctic settings are characterised by a high degree of seasonality. During winter soils are frozen and snow covers the surface preventing peat moss growth. Conversely, in summer, soils unfreeze and rain and evapotranspiration drive moss productivity. Although advances have been made in understanding growing season water balance and moss dynamics in northern peatlands, there remains a gap in knowledge of inter-seasonal water balance as layers of ice break up during the spring thaw. Understanding the effects of ice layers on spring water balance is important as this coincides with periods of high wildfire risk, such as the devastating Fort McMurrary wildfire of May, 2016. We hypothesise that shallow layers of ice disconnect the growing surface of moss from a falling water table, and prevent water from being supplied from depth. A disconnect between the evaporating surface and deeper water storage will lead to the drying out of the surface layer of moss and a greater risk of severe spring wildfires. We utilise the unsaturated flow model Hydrus 2D to explore water balance in peat layers with an impermeable layer representing ice. Additionally we create models to represent the heterogeneous break up of ice layers observed in Canadian boreal peatlands; these models explore the ability of breaks in an ice layer to connect the evaporating surface to a deeper water table. Results show that peatlands with slower rates of moss growth respond to dry periods by limiting evapotranspiration and thus maintain moist conditions in the sub-surface and a water table above the ice layer. Peatlands which are more productive continue to grow moss and evaporate during dry periods; this results in the near surface mosses drying out and the water table dropping below the level of the ice. Where there are breaks in the ice layer the evaporating surface is able to maintain contact with a falling water table, but connectivity is limited to above the breaks, with limited lateral transfer of water above the ice. Conceptually this means that peatlands which tend to have lower rates of growth are largely unaffected by the presence of a shallow ice layer in the early growing season, and are able to maintain moist sub-surface conditions in the absence of precipitation. They will thus be more resistant to severe wildfire. Conversely, peatlands which tend towards higher levels of moss productivity are able to maintain moss growth during dry periods. In the presence of an ice layer this greater productivity leads to a disconnection from deep water sources, extensive drying out of moss above the ice, and a greater susceptibility to severe wildfires. Our study gives important insights into the mechanisms behind heterogeneity in burning and depth of burn in northern peatland wildfires, as well as into burn heterogeneity within peatland microtopography.

  10. Water table depth fluctuations during ENSO phenomenon on different tropical peat swamp forest land covers in Katingan, Indonesia

    NASA Astrophysics Data System (ADS)

    Rossita, A.; Witono, A.; Darusman, T.; Lestari, D. P.; Risdiyanto, I.

    2018-03-01

    As it is the main role to maintain hydrological function, peatland has been a limelight since drainage construction for agriculture evolved. Drainage construction will decrease water table depth (WTD) and result in CO2 emission release to the atmosphere. Regardless of human intervention, WTD fluctuations can be affected by seasonal climate and climate variability, foremost El Niño Southern Oscillation (ENSO). This study aims to determine the correlation between rainfall in Katingan and ENSO index, analyze the pattern of WTD fluctuation of open area and forest area in 2015 (during very strong El Niño) and 2016 (during weak La Niña), calculate the WTD trendline slope during the dry season, and rainfall and WTD correlation. The result showed that open area has a sharper slope of decreasing or increasing WTD when entering the dry, compared to the forest area. Also, it is found that very strong El Niño in 2015 generated a pattern of more extreme decreasing WTD during the dry season than weak La Niña in 2016.

  11. Evaluation of HCMM data for assessing soil moisture and water table depth

    NASA Technical Reports Server (NTRS)

    Moore, D. G.; Heilman, J. L.; Tunheim, J. A.; Westin, F. C.; Heilman, W. E.; Beutler, G. A.; Ness, S. D. (Principal Investigator)

    1981-01-01

    Data were analyzed for variations in eastern South Dakota. Soil moisture in the 0-4 cm layer could be estimated with 1-mm soil temperatures throughout the growing season of a rainfed barley crop (% cover ranging from 30% to 90%) with an r squared = 0.81. Empirical equations were developed to reduce the effect of canopy cover when radiometrically estimating the 1-mm soil temperature, r squared = 0.88. The corrective equations were applied to an aircraft simulation of HCMM data for a diversity of crop types and land cover conditions to estimate the 0-4 cm soil moisture. The average difference between observed and measured soil moisture was 1.6% of field capacity. HCMM data were used to estimate the soil moisture for four dates with an r squared = 0.55 after correction for crop conditions. Location of shallow alluvial aquifers could be accomplished with HCMM predawn data. After correction of HCMM day data for vegetation differences, equations were developed for predicting water table depths within the aquifer (r=0.8).

  12. Contributions of algae to GPP and DOC production in an Alaskan fen: effects of historical water table manipulations on ecosystem responses to a natural flood.

    PubMed

    Wyatt, Kevin H; Turetsky, Merritt R; Rober, Allison R; Giroldo, Danilo; Kane, Evan S; Stevenson, R Jan

    2012-07-01

    The role of algae in the metabolism of northern peatlands is largely unknown, as is how algae will respond to the rapid climate change being experienced in this region. In this study, we examined patterns in algal productivity, nutrients, and dissolved organic carbon (DOC) during an uncharacteristically wet summer in an Alaskan rich fen. Our sampling was conducted in three large-scale experimental plots where water table position had been manipulated (including both drying and wetting plots and a control) for the previous 4 years. This study allowed us to explore how much ecosystem memory of the antecedent water table manipulations governed algal responses to natural flooding. Despite no differences in water table position between the manipulated plots at the time of sampling, algal primary productivity was consistently higher in the lowered water table plot compared to the control or raised water table plots. In all plots, algal productivity peaked immediately following seasonal maxima in nutrient concentrations. We found a positive relationship between algal productivity and water-column DOC concentrations (r (2) = 0.85, P < 0.001). Using these data, we estimate that algae released approximately 19% of fixed carbon into the water column. Algal exudates were extremely labile in biodegradability assays, decreasing by more than 55% within the first 24 h of incubation. We suggest that algae can be an important component of the photosynthetic community in boreal peatlands and may become increasingly important for energy flow in a more variable climate with more intense droughts and flooding.

  13. A prelanding assessment of the ice table depth and ground ice characteristics in Martian permafrost at the Phoenix landing site

    USGS Publications Warehouse

    Mellon, M.T.; Boynton, W.V.; Feldman, W.C.; Arvidson, R. E.; Titus, Joshua T.N.; Bandfield, L.; Putzig, N.E.; Sizemore, H.G.

    2009-01-01

    We review multiple estimates of the ice table depth at potential Phoenix landing sites and consider the possible state and distribution of subsurface ice. A two-layer model of ice-rich material overlain by ice-free material is consistent with both the observational and theoretical lines of evidence. Results indicate ground ice to be shallow and ubiquitous, 2-6 cm below the surface. Undulations in the ice table depth are expected because of the thermodynamic effects of rocks, slopes, and soil variations on the scale of the Phoenix Lander and within the digging area, which can be advantageous for analysis of both dry surficial soils and buried ice-rich materials. The ground ice at the ice table to be sampled by the Phoenix Lander is expected to be geologically young because of recent climate oscillations. However, estimates of the ratio of soil to ice in the ice-rich subsurface layer suggest that that the ice content exceeds the available pore space, which is difficult to reconcile with existing ground ice stability and dynamics models. These high concentrations of ice may be the result of either the burial of surface snow during times of higher obliquity, initially high-porosity soils, or the migration of water along thin films. Measurement of the D/H ratio within the ice at the ice table and of the soil-to-ice ratio, as well as imaging ice-soil textures, will help determine if the ice is indeed young and if the models of the effects of climate change on the ground ice are reasonable. Copyright 2008 by the American Geophysical Union.

  14. Water-resources appraisal of the Wet Mountain Valley, in parts of Custer and Fremont counties, Colorado

    USGS Publications Warehouse

    Londquist, C.J.; Livingston, R.K.

    1978-01-01

    The Wet Mountain Valley is an intermontane trough filled to a depth of at least 6,700 feet with unconsolidated deposits. Ground water occurs under both artesian and water-table conditions within the basin-fill aquifer and ground-water moverment is toward Grape and Texas Creeks. The depth to the water table is less than 10 feet in an area of about 40 square miles along the central part of the valley and is less than 100 feet in most of the remainder of the valley. Ground water stored in the upper 200 feet of saturated basin-fill sediments is estimated to total 1.5 million acre-feet. Yields greater than 50 gallons per minute generally can be expected from wells in the central part of the basin-fill aquifer, and yields less than 50 gallons per minute are generally reported from wells around the edge of the basin-fill aquifer. Yields of wells in the mountainous areas are generally less than 20 gallons per minute. Most streamflow occurs as a result of snowmelt runoff during June and July. The long-term annual runoff at seven stations ranges from an estimated 0.02 cubic foot per second per square mile to an estimated 1.17 cubic feet per second per square mile, generaly increasing with station altitude. Generalized annyal water budgets for two areas in the Wet Mountain Valley indicate that surface-water outflow is only 7 to 11 percent of the total water supply from precipitation and other sources. The remaining water is lost to the atmosphere by evapotranspiration. The quality of both the surface and ground water is generally within the recommended limits for drinking water set by the U.S. Public Health Service. (Woodard-USGS)

  15. Effects of experimental water table and temperature manipulations on ecosystem CO2 fluxes in an Alaskan rich fen

    Treesearch

    M.R. Chivers; M.R. Turetsky; J.M. Waddington; J.W. Harden; A.D. McGuire

    2009-01-01

    Peatlands store 30% of the world's terrestrial soil carbon (C) and those located at northern latitudes are expected to experience rapid climate warming. We monitored growing season carbon dioxide (CO2) fluxes across a factorial design of in situ water table (control, drought, and flooded plots) and soil warming (control vs. warming via open...

  16. Electromagnetic detection of deep freshwater lenses in a hyper-arid limestone terrain

    NASA Astrophysics Data System (ADS)

    Young, Michael E.; Macumber, Phillip G.; Donald Watts, M.; Al-Toqy, Nasser

    2004-12-01

    In the hyper-arid desert of Central Oman, freshwater lenses are found lying on a regional saline water table. These lenses have developed where recharge from infrequent cyclonic rainfall has collected in shallow depressions on the Tertiary limestones of the Central Plateau and in the catchments of ancient river channels draining the Plateau. Central-loop time-domain electromagnetic (TDEM) sounding was applied as a method of reconnaissance exploration for these lenses at two sites, a shallow depression extending over an area of 60 km 2 and a wadi gorge draining a catchment of 3400 km 2. These results were subsequently tested by drilling. In the case of the shallow depression, drilling intersected a freshwater lens up to 18 m thick at a depth of 92 m. TDEM resistivity-depth inversion showed that the corresponding high resistivity zone included both the lens and overlying unsaturated rocks, and that the depth to the saline interface could be accurately predicted. Where drilling failed to intersect a lens, TDEM inversion resulted in a consistently low resistivity zone in which the water table could not be resolved. By invoking the Archie formula modified for the presence of clays, it is thought that the higher resistivity of the vadose zone observed over the lens may be explained by a reduction in the clay conductivity factor resulting from higher pore-water resistivity. In the case of the wadi gorge, low regional resistivities were also recorded over the limestones on the survey margins, and high resistivity anomalies over the freshwater lens within and extending away from the gorge. Again, TDEM was found to be useful as a reconnaissance method and for mapping the depth to the underlying saline aquifer, but not for predicting the thickness of the overlying freshwater lens.

  17. Heat flow vs. atmospheric greenhouse on early Mars

    NASA Technical Reports Server (NTRS)

    Fanale, F. P.; Postawko, S. E.

    1991-01-01

    Researchers derived a quantitative relationship between the effectiveness of an atmospheric greenhouse and internal heat flow in producing the morphological differences between earlier and later Martian terrains. The derivation is based on relationships previously derived by other researchers. The reasoning may be stated as follows: the CO2 mean residence time in the Martian atmosphere is almost certainly much shorter than the total time span over which early climate differences are thought to have been sustained. Therefore, recycling of previously degassed CO2 quickly becomes more important than the ongoing supply of juvenile CO2. If so, then the atmospheric CO2 pressure, and thereby the surface temperature, may be approximated mathematically as a function of the total degassed CO2 in the atmosphere plus buried material and the ratio of the atmospheric and regolith mean residence times. The latter ratio can also be expressed as a function of heat flow. Hence, it follows that the surface temperature may be expressed as a function of heat flow and the total amount of available CO2. However, the depth to the water table can simultaneously be expressed as a function of heat flow and the surface temperature (the boundary condition). Therefore, for any given values of total available CO2 and regolith conductivity, there exist coupled independent equations which relate heat flow, surface temperature, and the depth to the water table. This means we can now derive simultaneous values of surface temperature and the depth of the water table for any value of the heat flow. The derived relationship is used to evaluate the relative importance of the atmospheric greenhouse effect and the internal regolith thermal gradient in producing morphological changes for any value of the heat flow, and to assess the absolute importance of each of the values of the heat flow which are thought to be reasonable on independent geophysical grounds.

  18. Physiological and morphological effects of high water tables on early growth of giant reed ( Arundo donax), elephant grass ( Pennisetum purpureum), energycane and sugarcane ( Saccharum spp.)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jennewein, Stephen Peter

    Here, an increasing demand for renewable energy sources has spurred interest in high-biomass crops used for energy production. Species potentially well-suited for biofuel production in the seasonally wet organic Everglades Agricultural Area (EAA) of Florida include giant reed ( Arundo donax), elephant grass ( Pennisetum Purpureum), energycane ( Saccharum spp.), and sugarcane ( Saccharum spp.). The objectives in this study were to evaluate the role of fluctuating water tables on the morphology, physiology, and early season growth of these four genotypes. The candidate genotypes were grown in a greenhouse under three water table depths, defined by distance of the watermore » table from the soil surface: two constant water tables (-16 cm and -40 cm) along with a flood cycle (2 weeks of flood to the soil level followed by 2 weeks at -40 cm from the soil level). The genotypes included CP 89-2143 (sugarcane), L 79-1002 (energycane), Merkeron (elephant grass), and wild type (giant reed). The experiment was repeated for plant cane, first ratoon, and successive plant cane crop cycles. Reductions in dry matter yield were observed among genotypes subjected to the -40 cm drained, periodically flooded (40F) water table relative to the -40 cm constant (40C) or -16 cm constant (16C). Plant cane dry weights were reduced by 37% in giant reed, 52% in elephant grass, 42% in energycane, and 34% in sugarcane in the 40F compared to 40C water table treatments. Similarly, in the first ratoon crop dry weights were reduced by 29% in giant reed, 42% in elephant grass, 27% in energycane, and 62% in sugarcane. In plant cane and successive plant cane, average total dry weight was greatest for elephant grass whereas ratoon total dry weight was greatest for energycane. Genotype had more pronounced effects on physiological attributes than water table including the highest stomatal conductance and SPAD values in giant reed, and the highest stalk populations in elephant grass and energycane. Aerenchyma presence and volume increased under higher water tables with elephant grass having the greatest aerenchyma production. Because of the high yields and stalk populations in energycane and elephant grass for all crop stages seen in this study, these two genotypes show potential for bioenergy production in the EAA, but field trials are recommended to confirm this.« less

  19. Influence of aerosol estimation on coastal water products retrieved from HICO images

    NASA Astrophysics Data System (ADS)

    Patterson, Karen W.; Lamela, Gia

    2011-06-01

    The Hyperspectral Imager for the Coastal Ocean (HICO) is a hyperspectral sensor which was launched to the International Space Station in September 2009. The Naval Research Laboratory (NRL) has been developing the Coastal Water Signatures Toolkit (CWST) to estimate water depth, bottom type and water column constituents such as chlorophyll, suspended sediments and chromophoric dissolved organic matter from hyperspectral imagery. The CWST uses a look-up table approach, comparing remote sensing reflectance spectra observed in an image to a database of modeled spectra for pre-determined water column constituents, depth and bottom type. In order to successfully use this approach, the remote sensing reflectances must be accurate which implies accurately correcting for the atmospheric contribution to the HICO top of the atmosphere radiances. One tool the NRL is using to atmospherically correct HICO imagery is Correction of Coastal Ocean Atmospheres (COCOA), which is based on Tafkaa 6S. One of the user input parameters to COCOA is aerosol optical depth or aerosol visibility, which can vary rapidly over short distances in coastal waters. Changes to the aerosol thickness results in changes to the magnitude of the remote sensing reflectances. As such, the CWST retrievals for water constituents, depth and bottom type can be expected to vary in like fashion. This work is an illustration of the variability in CWST retrievals due to inaccurate aerosol thickness estimation during atmospheric correction of HICO images.

  20. An enhanced model of land water and energy for global hydrologic and earth-system studies

    USGS Publications Warehouse

    Milly, Paul C.D.; Malyshev, Sergey L.; Shevliakova, Elena; Dunne, Krista A.; Findell, Kirsten L.; Gleeson, Tom; Liang, Zhi; Phillips, Peter; Stouffer, Ronald J.; Swenson, Sean

    2014-01-01

    LM3 is a new model of terrestrial water, energy, and carbon, intended for use in global hydrologic analyses and as a component of earth-system and physical-climate models. It is designed to improve upon the performance and to extend the scope of the predecessor Land Dynamics (LaD) and LM3V models by better quantifying the physical controls of climate and biogeochemistry and by relating more directly to components of the global water system that touch human concerns. LM3 includes multilayer representations of temperature, liquid water content, and ice content of both snowpack and macroporous soil–bedrock; topography-based description of saturated area and groundwater discharge; and transport of runoff to the ocean via a global river and lake network. Sensible heat transport by water mass is accounted throughout for a complete energy balance. Carbon and vegetation dynamics and biophysics are represented as in LM3V. In numerical experiments, LM3 avoids some of the limitations of the LaD model and provides qualitatively (though not always quantitatively) reasonable estimates, from a global perspective, of observed spatial and/or temporal variations of vegetation density, albedo, streamflow, water-table depth, permafrost, and lake levels. Amplitude and phase of annual cycle of total water storage are simulated well. Realism of modeled lake levels varies widely. The water table tends to be consistently too shallow in humid regions. Biophysical properties have an artificial stepwise spatial structure, and equilibrium vegetation is sensitive to initial conditions. Explicit resolution of thick (>100 m) unsaturated zones and permafrost is possible, but only at the cost of long (≫300 yr) model spinup times.

  1. Effect of water table fluctuations on phreatophytic root distribution.

    PubMed

    Tron, Stefania; Laio, Francesco; Ridolfi, Luca

    2014-11-07

    The vertical root distribution of riparian vegetation plays a relevant role in soil water balance, in the partition of water fluxes into evaporation and transpiration, in the biogeochemistry of hyporheic corridors, in river morphodynamics evolution, and in bioengineering applications. The aim of this work is to assess the effect of the stochastic variability of the river level on the root distribution of phreatophytic plants. A function describing the vertical root profile has been analytically obtained by coupling a white shot noise representation of the river level variability to a description of the dynamics of root growth and decay. The root profile depends on easily determined parameters, linked to stream dynamics, vegetation and soil characteristics. The riparian vegetation of a river characterized by a high variability turns out to have a rooting system spread over larger depths, but with shallower mean root depths. In contrast, a lower river variability determines root profiles with higher mean root depths. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. The Value of GRACE Data in Improving, Assessing and Evaluating Land Surface and Climate Models

    NASA Astrophysics Data System (ADS)

    Yang, Z.

    2011-12-01

    I will review how the Gravity Recovery and Climate Experiment (GRACE) satellite measurements have improved land surface models that are developed for weather, climate, and hydrological studies. GRACE-derived terrestrial water storage (TWS) changes have been successfully used to assess and evaluate the improved representations of land-surface hydrological processes such as groundwater-soil moisture interaction, frozen soil and infiltration, and the topographic control on runoff production, as evident in the simulations from the latest Noah-MP, the Community Land Model, and the Community Climate System Model. GRACE data sets have made it possible to estimate key terrestrial water storage components (snow mass, surface water, groundwater or water table depth), biomass, and surface water fluxes (evapotranspiration, solid precipitation, melt of snow/ice). Many of the examples will draw from my Land, Environment and Atmosphere Dynamics group's work on land surface model developments, snow mass retrieval, and multi-sensor snow data assimilation using the ensemble Karman filter and the ensemble Karman smoother. Finally, I will briefly outline some future directions in using GRACE in land surface modeling.

  3. Data services providing by the Ukrainian NODC (MHI NASU)

    NASA Astrophysics Data System (ADS)

    Eremeev, V.; Godin, E.; Khaliulin, A.; Ingerov, A.; Zhuk, E.

    2009-04-01

    At modern stage of the World Ocean study information support of investigation based on ad-vanced computer technologies becomes of particular importance. These abstracts are devoted to presentation of several data services developed in the Ukrainian NODC on the base of the Ma-rine Environmental and Information Technologies Department of MHI NASU. The Data Quality Control Service Using experience of international collaboration in the field of data collection and quality check we have developed the quality control (QC) software providing both preliminary(automatic) and expert(manual) data quality check procedures. The current version of the QC software works for the Mediterranean and Black seas and includes the climatic arrays for hydrological and few hydrochemical parameters based on such products as MEDAR/MEDATLAS II, Physical Oceanography of the Black Sea and Climatic Atlas of Oxygen and Hydrogen Sulfide in the Black sea. The data quality check procedure includes metadata control and hydrological and hydrochemical data control. Metadata control provides checking of duplicate cruises and pro-files, date and chronology, ship velocity, station location, sea depth and observation depth. Data QC procedure includes climatic (or range for parameters with small number of observations) data QC, density inversion check for hydrological data and searching for spikes. Using of cli-matic fields and profiles prepared by regional oceanography experts leads to more reliable results of data quality check procedure. The Data Access Services The Ukrainian NODC provides two products for data access - on-line software and data access module for the MHI NASU local net. This software allows select-ing data on rectangle area, on date, on months, on cruises. The result of query is metadata which are presented in the table and the visual presentation of stations on the map. It is possible to see both metadata and data. For this purpose it is necessary to select station in the table of metadata or on the map. There is also an opportunity to export data in ODV format. The product is avail-able on http://www.ocean.nodc.org.ua/DataAccess.php The local net version provides access to the oceanological database of the MHI NASU. The cur-rent version allows selecting data by spatial and temporal limits, depth, values of parameters, quality flags and works for the Mediterranean and Black seas. It provides visualization of meta-data and data, statistics of data selection, data export into several data formats. The Operational Data Management Services The collaborators of the MHI Experimental Branch developed a system of obtaining information on water pressure and temperature, as well as on atmospheric pressure. Sea level observations are also conducted. The obtained data are transferred online. The interface for operation data access was developed. It allows to select parameters (sea level, water temperature, atmospheric pressure, wind and wa-ter pressure) and time interval to see parameter graphics. The product is available on http://www.ocean.nodc.org.ua/Katsively.php . The Climatic products The current version of the Climatic Atlas includes maps on such pa-rameters as temperature, salinity, density, heat storage, dynamic heights, upper boundary of hy-drogen sulfide and lower boundary of oxygen for the Black sea basin. Maps for temperature, sa-linity, density were calculated on 19 standard depths and averaged monthly for depths 0 - 300 m and annually for lower depth values. The climatic maps of upper boundary of hydrogen sulfide and lower boundary of oxygen were averaged by decades from 20 till 90 of the XX century and by seasons. Two versions of climatic atlas viewer - on-line and desktop for presentation of the climatic maps were developed. They provide similar functions of selection and viewing maps by parameter, month and depth and saving maps in various formats. On-line version of atlas is available on http://www.ocean.nodc.org.ua/Main_Atlas.php .

  4. Ground-water contamination by crude oil at the Bemidji, Minnesota, research site- An introduction: Chapter A in Ground-water contamination by crude oil at the Bemidji, Minnesota, research site; US Geological Survey Toxic Waste--ground-water contamination study

    USGS Publications Warehouse

    1984-01-01

    The U.S. Geological Survey has begun a research project to improve understanding of the mobilization, transport, and fate of petroleum contaminants in the shallow subsurface and to use this understanding to develop predictive models of contaminant behavior. The project site is near Bemidji in northern Minnesota where an accidental spill of 10,500 barrels of crude oil occurred when a pipeline broke on August 20, 1979. Regulatory and remedial actions have been completed. The site is in a remote area with neither man-made hydraulic stresses nor other anthropogenic sources of the compounds of interest. The spill is in the recharge area of a local flow system that discharges to a small closed lake approximately 1,000 feet down the hydraulic gradient. The aquifer is pitted outwash dissected by younger glacial channels and is underlain by poorly permeable till at a depth of about 80 feet. Ground water dissolves oil floating on the water table under the spill site and moves toward the lake. At the water table, ground water enters the lake through lacustrine sediments; at depth, flow may be underneath the lake through the outwash. Contaminant transport has been as rapid as 4 feet per day based on the rate of movement of contaminants monitored through wells installed within a few days of the spill, but average rates are undoubtedly much less. 

  5. Estimating groundwater evapotranspiration by a subtropical pine plantation using diurnal water table fluctuations: Implications from night-time water use

    NASA Astrophysics Data System (ADS)

    Fan, Junliang; Ostergaard, Kasper T.; Guyot, Adrien; Fujiwara, Stephen; Lockington, David A.

    2016-11-01

    Exotic pine plantations have replaced large areas of the native forests for timber production in the subtropical coastal Australia. To evaluate potential impacts of changes in vegetation on local groundwater discharge, we estimated groundwater evapotranspiration (ETg) by the pine plantation using diurnal water table fluctuations for the dry season of 2012 from August 1st to December 31st. The modified White method was used to estimate the ETg, considering the night-time water use by pine trees (Tn). Depth-dependent specific yields were also determined both experimentally and numerically for estimation of ETg. Night-time water use by pine trees was comprehensively investigated using a combination of groundwater level, sap flow, tree growth, specific yield, soil matric potential and climatic variables measurements. Results reveal a constant average transpiration flux of 0.02 mm h-1 at the plot scale from 23:00 to 05:00 during the study period, which verified the presence of night-time water use. The total ETg for the period investigated was 259.0 mm with an accumulated Tn of 64.5 mm, resulting in an error of 25% on accumulated evapotranspiration from the groundwater if night-time water use was neglected. The results indicate that the development of commercial pine plantations may result in groundwater losses in these areas. It is also recommended that any future application of diurnal water table fluctuation based methods investigate the validity of the zero night-time water use assumption prior to use.

  6. Influence of hydrological, biogeochemical and temperature transients on subsurface carbon fluxes in a flood plain environment

    DOE PAGES

    Arora, Bhavna; Spycher, Nicolas F.; Steefel, Carl I.; ...

    2016-02-12

    Flood plains play a potentially important role in the global carbon cycle. The accumulation of organic matter in flood plains often induces the formation of chemically reduced groundwater and sediments along riverbanks. In this study, our objective is to evaluate the cumulative impact of such reduced zones, water table fluctuations, and temperature gradients on subsurface carbon fluxes in a flood plain at Rifle, Colorado located along the Colorado River. 2-D coupled variably-saturated, non-isothermal flow and biogeochemical reactive transport modeling was applied to improve our understanding of the abiotic and microbially mediated reactions controlling carbon dynamics at the Rifle site. Modelmore » simulations considering only abiotic reactions (thus ignoring microbial reactions) underestimated CO 2 partial pressures observed in the unsaturated zone and severely underestimated inorganic (and overestimated organic) carbon fluxes to the river compared to simulations with biotic pathways. Both model simulations and field observations highlighted the need to include microbial contributions from chemolithoautotrophic processes (e.g., Fe +2 and S -2 oxidation) to match locally-observed high CO 2 concentrations above reduced zones. Observed seasonal variations in CO 2 concentrations in the unsaturated zone could not be reproduced without incorporating temperature gradients in the simulations. Incorporating temperature fluctuations resulted in an increase in the annual groundwater carbon fluxes to the river by 170 % to 3.3 g m -2 d -1, while including water table variations resulted in an overall decrease in the simulated fluxes. We thus conclude that spatial microbial and redox zonation as well as temporal fluctuations of temperature and water table depth contribute significantly to subsurface carbon fluxes in flood plains and need to be represented appropriately in model simulations.« less

  7. Partial nitrification enhances natural attenuation of nitrogen in a septic system plume.

    PubMed

    Caschetto, M; Robertson, W; Petitta, M; Aravena, R

    2018-06-01

    Natural attenuation of nitrogen (N) was investigated in a well characterized septic system plume at a campground in Ontario, Canada. Total inorganic N (TIN) concentrations in deeper portions of the plume were about one third of the septic tank value of 40.7mgL -1 . NH 4 + and NO 3 - isotopic characterization were used to provide insight into potential attenuation processes. Concentrations of NH 4 + and NO 3 - were highly variable in the plume, but approached the septic tank TIN value in some shallow zones and exhibited δ 15 N values like the tank value of +6‰. However, isotopic enrichment (up to +24‰ for NH 4 + and +45‰ for NO 3 - ) and declining TIN concentrations in the deeper zones indicated that anaerobic ammonium oxidation contributed to the TIN attenuation. The degree of isotopic enrichment increased at lower NH 4 + concentrations and was consistent with Rayleigh-type distillation with an enrichment factor (Ɛ) of -5.1‰. Additionally, decreasing DOC values with depth and the concomitant enrichment of δ 15 N NO3 and δ 18 O NO3 , suggested that denitrification was also active. The N attenuation observed in the Killarney plume was partly due to incomplete nitrification that occurred because of the shallow water table, which varied from only 0.2-0.7m below the tile bed infiltration pipes. Moreover, some of the monitoring locations with the shallowest water table distances from the infiltration pipes, had the highest degree of TIN attenuation (70-90%) in the plume. This behavior suggests that controlling water table distance from the infiltration pipes could be a useful mechanism for enhancing N attenuation in septic system plumes. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Influence of hydrological, biogeochemical and temperature transients on subsurface carbon fluxes in a flood plain environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arora, Bhavna; Spycher, Nicolas F.; Steefel, Carl I.

    2016-02-01

    Flood plains play a potentially important role in the global carbon cycle. The accumulation of organic matter in flood plains often induces the formation of chemically reduced groundwater and sediments along riverbanks. In this study, our objective is to evaluate the cumulative impact of such reduced zones, water table fluctuations, and temperature gradients on subsurface carbon fluxes in a flood plain at Rifle, Colorado located along the Colorado River. 2-D coupled variably-saturated, non-isothermal flow and biogeochemical reactive transport modeling was applied to improve our understanding of the abiotic and microbially mediated reactions controlling carbon dynamics at the Rifle site. Modelmore » simulations considering only abiotic reactions (thus ignoring microbial reactions) underestimated CO2 partial pressures observed in the unsaturated zone and severely underestimated inorganic (and overestimated organic) carbon fluxes to the river compared to simulations with biotic pathways. Both model simulations and field observations highlighted the need to include microbial contributions from chemolithoautotrophic processes (e.g., Fe?2 and S-2 oxidation) to match locally-observed high CO2 concentrations above reduced zones. Observed seasonal variations in CO2 concentrations in the unsaturated zone could not be reproduced without incorporating temperature gradients in the simulations. Incorporating temperature fluctuations resulted in an increase in the annual groundwater carbon fluxes to the river by 170 % to 3.3 g m-2 d-1, while including water table variations resulted in an overall decrease in the simulated fluxes. We conclude that spatial microbial and redox zonation as well as temporal fluctuations of temperature and water table depth contribute significantly to subsurface carbon fluxes in flood plains and need to be represented appropriately in model simulations.« less

  9. Hydrostratigraphic Framework of the Raton, Vermejo, and Trinidad Aquifers in the Raton Basin, Las Animas County, Colorado

    USGS Publications Warehouse

    Watts, Kenneth R.

    2006-01-01

    Exploration for and production of coalbed methane has increased substantially in the Rocky Mountain region of the United States since the 1990s. During 1999-2004, annual production of natural gas (coalbed methane) from the Raton Basin in Las Animas County, Colorado, increased from 28,129,515 to 80,224,130 thousand cubic feet, and the annual volume of ground water coproduced by coalbed methane wells increased from about 949 million gallons to about 2,879 million gallons. Better definition of the hydrostratigraphic framework of the Raton, Vermejo, and Trinidad aquifers in the Raton Basin of southern Colorado is needed to evaluate the long-term effects of coalbed methane development on the availability and sustainability of ground-water resources. In 2001, the U.S. Geological Survey, in cooperation with the Colorado Water Conservation Board, began a study to evaluate the hydrogeology of the Raton Basin in Huerfano and Las Animas Counties, Colorado. Geostatistical methods were used to map the altitude of and depths to the bottoms and tops (structure) and the apparent thicknesses of the Trinidad Sandstone, the Vermejo Formation, and the Raton Formation in Las Animas County, based on completion reports and drillers' logs from about 1,400 coalbed methane wells in the Raton Basin. There was not enough subsurface control to map the structural surfaces and apparent thicknesses of the aquifers in Huerfano County. Geostatistical methods also were used to map the regional water table in the northern part of Las Animas County, based on reported depth to water from completion reports of water-supply wells. Although these maps were developed to better define the hydrostratigraphic framework, they also can be used to determine the contributing aquifer(s) of existing water wells and to estimate drilling depths of proposed water wells. These maps of the hydrostratigraphic framework could be improved with the addition of measured sections and mapping of geologic contacts at outcrops along the eastern and western margins of the Raton Basin.

  10. Hydro-climatic control of stream dissolved organic carbon in headwater catchment

    NASA Astrophysics Data System (ADS)

    Humbert, Guillaume; Jaffrezic, Anne; Fovet, Ophélie; Gruau, Gérard; Durand, Patrick

    2014-05-01

    Dissolved organic matter (DOM) is a key form of the organic matter linking together the water and the carbon cycles and interconnecting the biosphere (terrestrial and marine) and the soil. At the landscape scale, land use and hydrology are the main factors controlling the amount of DOM transferred from soils to the stream. In an intensively cultivated catchment, a recent work using isotopic composition of DOM as a marker has identified two different sources of DOM. The uppermost soil horizons of the riparian wetland appear as a quasi-infinite source while the topsoil of the hillslope forms a limited one mobilized by water-table rise and exported to the stream across the upland-riparian wetland-stream continuum. In addition to the exportation of DOM via water fluxes, climatic factors like temperature and precipitation regulate the DOM production by influencing microbial activity and soil organic matter degradation. The small headwater catchment (5 km²) of Kervidy-Naizin located in Brittany is part of the Environment Research Observatory (ORE) AgrHys. Weather and the hydro-chemistry of the stream, and the groundwater levels are daily recorded since 1993, 2000 and 2001 respectively. Over 13 contrasted hydrological years, the annual flow weighted mean concentration of dissolved organic carbon (DOC) is 5.6 mg.L-1 (sd = 0.7) for annual precipitation varying from 488mm to 1327mm and annual mean temperatures of 11°C (sd = 0.6). Based on this considerable dataset and this annual variability, we tried to understand how the hydro-climatic conditions determinate the stream DOC concentrations along the year. From the fluctuations of water table depth, each hydrologic year has been divided into three main period: i) progressive rewetting of the riparian wetland soils, ii) rising and holding high of the water table in the hillslope, iii) drawdown of the water-table, with less and less topsoil connected to the stream. Within each period base flow and storm flow data were first pooled then treated separately and the influence of preceding periods was tested. This hydrological division of time allowed us to identify climate effect on the topsoil DOM stores of the wetland and hillslope separately. Meteorological and hydro-pedological variables, like soil temperatures or duration of the water saturation in the organo-mineral horizons have been used to interpret the DOC concentrations and fluxes at the outlet within each period. The three hydrological periods contribute respectively to less than 17%, more than 63%, and less than 26% of the annual DOM exportation with flow weighted mean concentration of DOC of 9.5, 6.1, and 3.8 mg.L-1. Considering several DOM sources with different properties of depletion under climatic control, the main output of the work is to provide a modified conceptual model of the DOC dynamics.

  11. Influence of thinning operations on the hydrology of a drained coastal plantation watershed

    Treesearch

    Johnny M. Grace; R.W. Skaggs; H.R. Malcom; G.M. Chescheir; D.K. Cassel

    2003-01-01

    Forest management activities such as harvesting, thinning, and site preparation can affect the hydrologic behavior of watersheds on poorly drained soils. The effects of thinning on hydrology are presented for an artificially drained pine plantation paired watershed in eastern North Carolina. Outflow and water table depths were monitored over a 3-year study period...

  12. Field data and numerical simulation of btex concentration trends under water table fluctuations: Example of a jet fuel-contaminated site in Brazil.

    PubMed

    Teramoto, Elias Hideo; Chang, Hung Kiang

    2017-03-01

    Mass transfer of light non-aqueous phase liquids (LNAPLs) trapped in porous media is a complex phenomenon. Water table fluctuations have been identified as responsible for generating significant variations in the concentration of dissolved hydrocarbons. Based on field evidence, this work presents a conceptual model and a numerical solution for mass transfer from entrapped LNAPL to groundwater controlled by both LNAPL saturation and seasonal water table fluctuations within the LNAPL smear zone. The numerical approach is capable of reproducing aqueous BTEX concentration trends under three different scenarios - water table fluctuating within smear zone, above the smear zone and partially within smear zone, resulting in in-phase, out-of-phase and alternating in-phase and out-of-phase BTEX concentration trend with respect to water table oscillation, respectively. The results demonstrate the model's applicability under observed field conditions and its ability to predict source zone depletion. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Environmental factors controlling methane emissions from peatlands in northern Minnesota

    NASA Technical Reports Server (NTRS)

    Dise, Nancy B.; Gorham, Eville; Verry, Elon S.

    1993-01-01

    The environmental factors affecting the emission of methane from peatlands were investigated by correlating CH4 emission data for two years, obtained from five different peatland ecosystems in northern Minnesota, with peat temperature, water table position, and degree of peat humification. The relationship obtained between the CH4 flux and these factors was compared to results from a field manipulation experiment in which the water table was artificially raised in three experimental plots within the driest peatland. It was found that peat temperature, water table position, and degree of peat humification explained 91 percent of the variance in log CH4 flux, successfully predicted annual CH4 emission from individual wetlands, and predicted the change in flux due to the water table manipulation. Raising the water table in the bog corrals by an average of 6 cm in autumn 1989 and 10 cm in summer 1990 increased CH4 emission by 2.5 and 2.2 times, respectively.

  14. Accounting for intracell flow in models with emphasis on water table recharge and stream-aquifer interaction: 1. Problems and concepts

    USGS Publications Warehouse

    Jorgensen, Donald G.; Signor, Donald C.; Imes, Jeffrey L.

    1989-01-01

    Intracell flow is important in modeling cells that contain both sources and sinks. Special attention is needed if recharge through the water table is a source. One method of modeling multiple sources and sinks is to determine the net recharge per cell. For example, for a model cell containing both a sink and recharge through the water table, the amount of recharge should be reduced by the ratio of the area of influence of the sink within the cell to the area of the cell. The reduction is the intercepted portion of the recharge. In a multilayer model this amount is further reduced by a proportion factor, which is a function of the depth of the flow lines from the water table boundary to the internal sink. A gaining section of a stream is a typical sink. The aquifer contribution to a gaining stream can be conceptualized as having two parts; the first part is the intercepted lateral flow from the water table and the second is the flow across the streambed due to differences in head between the water level in the stream and the aquifer below. The amount intercepted is a function of the geometry of the cell, but the amount due to difference in head across the stream bed is largely independent of cell geometry. A discharging well can intercept recharge through the water table within a model cell. The net recharge to the cell would be reduced in proportion to the area of influence of the well within the cell. The area of influence generally changes with time. Thus the amount of intercepted recharge and net recharge may not be constant with time. During periods when the well is not discharging there will be no intercepted recharge even though the area of influence from previous pumping may still exist. The reduction of net recharge per cell due to internal interception of flow will result in a model-calculated mass balance less than the prototype. Additionally the “effective transmissivity” along the intercell flow paths may be altered when flow paths are occupied by intercepted recharge.

  15. Water and nitrogen management effects on water and nitrogen fluxes in Florida Flatwoods.

    PubMed

    Hendricks, Gregory S; Shukla, Sanjay

    2011-01-01

    The effects of water and fertilizer best management practices (BMPs) have not been quantified for groundwater nitrogen (N) beneath seepage irrigated vegetable fields with shallow water table environments. This effect was evaluated by a 3-yr study conducted in the Flatwoods of south Florida for watermelon ( cv. Mardi Gras and Tri-X 313) and tomato ( cv. BHN 586) using three treatments of water and inorganic fertilizer N (N) rates: (i) high fertilizer and water rates with seepage irrigation (HR), (ii) recommended fertilizer and water rates (BMP) with seepage irrigation (RR); and (iii) RR with subsurface drip irrigation (RR-SD). These treatments were implemented on six hydraulically isolated plots. The N rate treatments for high (HR) and recommended (RR and RR-SD) were based on a grower survey and BMP recommendations, respectively. Water applied, water table depth, and soil moisture content were regularly monitored for each treatment. Plant, soil, and groundwater N sampling and analyses were conducted for each season of the 3-yr study. The average water applied in HR (187 cm) was greater than RR (172 cm) and RR-SD (94 cm). Soil N maintained in crop beds for HR was significantly higher than RR and RR-SD. Soil solution analyses showed that N leached beneath HR (112 mg L) was greater ( = 0.053) than RR (76 mg L) and RR-SD (88 mg L). Shallow groundwater concentrations of dissolved inorganic nitrogen (NH-N + NO-N) were higher ( = 0.02) in HR (37 mg L) compared with RR (15 mg L) and RR-SD (19 mg L). Decreased N and water table levels can improve groundwater quality by reducing N leachate in shallow water table environments with seepage irrigated vegetable production systems. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  16. Vertical Stratification of Peat Pore Water Dissolved Organic Matter Composition in a Peat Bog in Northern Minnesota: Pore Water DOM composition in a peat bog

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tfaily, Malak M.; Wilson, Rachel M.; Cooper, William T.

    We characterized dissolved organic matter (DOM) composition throughout the peat column at the Marcell S1 forested bog in northern Minnesota and tested the hypothesis that redox oscillations associated with cycles of wetting and drying at the surface of the fluctuating water table correlate with increased carbon, sulfur and nitrogen turn over. We found significant vertical stratification of DOM molecular composition and EEM-PARAFAC components within the peat column. In particular the intermediate depth zone (~ 50 cm) was identified as a zone where maximum decomposition and turnover is taking place. Surface DOM was dominated by inputs from surface vegetation. The intermediate-depthmore » zone was an area of high organic matter reactivity and increased microbial activity with diagenetic formation of many unique compounds, among them polycyclic aromatic compounds (PAC) that contain both nitrogen and sulfur heteroatoms. These compounds have been previously observed in coal-derived compounds and were assumed to be responsible for coal's biological activity. Biological processes triggered by redox oscillations taking place at the intermediate depth zone of the peat profile at the S1 bog are assumed to be responsible for the formation of these heteroatomic PACs in this system. Alternatively these compounds could stem from black carbon and nitrogen derived from fires that have occurred at the site in the past. Surface and deep DOM exhibited more similar characteristics, compared to the intermediate-depth zone, with the deep layer exhibiting greater input of microbially degraded organic matter than the surface suggesting that the entire peat profile consists of similar parent material at different degrees of decomposition and that lateral and vertical advection of pore water from the surface to the deeper horizons is responsible for such similarities. Our findings suggest that molecular composition of DOM in peatland pore water is dynamic and is a function of ecosystem activity, water table and redox oscillation and porewater advection.« less

  17. Geohydrologic data and test results from Well J-13, Nevada Test Site, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thordarson, W.

    Well J-13 was drilled to a depth of 1063.1 meters by using air-hydraulic-rotary drilling equipment. The well penetrated 135.6 meters of alluvium of Quaternary and Tertiary age and 927.5 meters of tuff of Tertiary age. The Topopah Spring Member of the Paintbrush Tuff, the principal aquifer, was penetrated from depths of 207.3 to 449.6 meters; a pumping test indicated its transmissivity is 120 meters squared per day, and its hydraulic conductivity is 1.0 meters per day. Below the Topopah Spring Member, tuff units are confining beds; transmissivities range from 0.10 to 4.5 meters squared per day, and hydraulic conductivities rangemore » from 0.0026 to 0.15 meter per day. Confining beds penetrated below a depth of 719.3 meters had the smallest transmissivities (0.10 to 0.63 meter squared per day) and hydraulic conductivities (0.0026 to 0.0056 meter per day). A static water level of about 282.2 meters was measured for the various water-bearing tuff units above a depth of 645.6 meters. Below a depth of 772.7 meters, the static water level was slightly deeper, 283.3 to 283.6 meters. Ground water sampled from well J-13 is a sodium bicarbonate water containing small concentrations of calcium, magnesium, silica, and sulfate, which is a typical analysis of water from tuff. Apparent age of the ground water, derived from carbon-14 age dating, is 9900 years. 15 references, 24 figures, 13 tables.« less

  18. The Influence Of Variability Of Water Resources In Lowland Forests On Selected Parameters Describing The Condition Of Trees

    NASA Astrophysics Data System (ADS)

    Tyszka, Jan; Stolarek, Andrzej; Fronczak, Ewa

    2014-01-01

    The influence of water conditions on the condition and growth of tree stands has been analysed in the context of the climatic and hydrological functions forest plays. Long observational series obtained for precipitation, outflow and depths below the surface of the water table have been put together with measured increases in the breast-height diameters of Scots pines and the severity of crown defoliation observable in selected tree species growing on the Polish Lowland, in order to determine the overall scope to the reaction stand condition manifests in the face of ongoing variability of water conditions within forest. An overall improvement in the condition of stands over the last 20 years does not disguise several-year cyclicity to changes capable of shaping the situation, i.a. departures from long-term mean values for precipitation totals and groundwater levels. The condition of stands is seen to worsen in both dry and wet years. Analysis of the degree to which pine, spruce and broadleaved stands experience defoliation points to spruce stands responding most to extreme hydro-climatic conditions. Extreme situations as regards water resources were seen to involve a response over two-year time intervals in the case of coniferous stands. Unsurprisingly, optimal growing-season (June-September) precipitation totals correspond with long-term average figures, while being slightly higher for spruce (at 384 mm), than for Scots pine or broadleaved species (375 mm). The relationships reported gain confirmation in analysis of periodic change in breast-height diameter increments characterising Scots pines, whose growth is seen to depend closely, not only on precipitation, but also above all on the depth of the water table in the summer half-year. Optimal depths of the water table proved to be different, being around 20 cm below ground in the case of marshy coniferous forest, 80 cm in wet habitats, and 135 cm in fresh habitats. Depending on the possibilities for water to soak into the rooting zone of trees there were even twofold differences in measured growth increments in Scots pine (as the dominant species in Poland's lowland habitats). The maintenance of stable water conditions (as the most variable environmental factor in forest) should be an overriding aim of management activity in this habitat. When account is taken of the influence of the state of water resources on biomass production, and then on the intensity of evapotranspiration and the absorption of carbon dioxide from the atmosphere, it is seen how important it is to achieve improvements in water conditions in forests, as such an important factor in combating climate change.

  19. Vadose Zone Hydrology and Eco-hydrology in China

    NASA Astrophysics Data System (ADS)

    Wang, Wenke

    2016-04-01

    Vadose zone hydrology has long been a concern regarding groundwater recharge, evaporation, pollution, and the ecological effects induced by groundwater and water & salt contents in the unsaturated zone. The greater difference between day and night temperatures in arid and semi-arid areas influences water movement and heat transport in the vadose zone, and further influences the water and heat fluxes between the water table and the atmosphere as well as ecological environment. Unfortunately, these studies are lack in a systematic viewpoint in China. One of the main reasons is that the movement of water, vapor and heat from the surface to the water table is very complex in the arid and semi-arid areas. Another reason is lack of long term field observations for water content, vapor, heat, and soil matrix potential in the vadose zone. Three field observation sites, designed by the author, were set up to measure the changes in climate, water content , temperature and soil matrix potential of the unsaturated zone and groundwater level under the different conditions of climate and soil types over the period of 1-5 years. They are located at the Zhunngger Basin of Xinjing Uygur Autonomous Region in northwestern China, the Guanzhong Basin of Shaanxi Province in central China, and the Ordos Basin of the Inner Monggol Autonomous Region in north China, respectively. These three field observation sites have different climate and soil types in the vadose zone and the water table depth are also varied. Based on the observation data of climate, groundwater level, water content, temperature and soil matrix potential in the vadose zone from the three sites in associated with the field survey and numerical simulation method, the water movement and heat transport in the vadose zone, and the evaporation of phreatic water for different groundwater depths and soil types have been well explored. The differences in water movement of unsaturated zone between the bare surface soil and vegetation conditions were also compared. The concept of the ecological value of groundwater and unsaturated zone is presented in arid and semi-arid regions. This ecological value can be reflected in four aspects:(1) the maintenance of base flow in streams and areas of lakes and wetland;(2) the supply of physiological water demented by vegetation;(3) the regulation of soil moisture and salt content; and (4) the stability of the eco-environment. In addition, the threshold system between the ecological environment and multi-dimensional indices as variations in water and salt contents in the vadose zone, groundwater depth and quality as well as groundwater exploitation, are proposed in the arid and semi-arid areas. It is expected that this research could provide a scientific basis and technological support for better understanding on the movement of water, vapor and heat in the vadose zone in arid and semi-arid areas. It will also help to maintain sustainable development of the ecological environment and utilization of water resources.

  20. Carbon, water and energy balances of an Eucalyptus grandis plantation in Brazil: effects of clearcut and stand age

    NASA Astrophysics Data System (ADS)

    Nouvellon, Y.; Stape, J. L.; Le Maire, G.; Bonnefond, J.; Rocha, H.; Campoe, O.; Bouillet, J.; Laclau, J.

    2013-12-01

    Eucalypt grandis plantations in Brazil are among the most productive forests of the world, reaching mean annual increments of about 50 m3/ha/yr over short (6 yr) rotations. These high productions are generally associated with high water-use, but little is known on the effects of management practices on their carbon (C), water and energy budgets. We investigated the effects of stand age and clear cutting on the C and water balances through continuous eddy-covariance measurements of latent (LE), sensible heat (H), and CO2 fluxes over a 5 yrs period encompassing two successive rotations: 2 yrs before and 3 yrs after clear cutting and replanting. The water table depth, soil temperature and soil water content (SWC, till 10 m deep) were also continuously monitored. Leaf area index (LAI) was measured at 3-month intervals, and the soil exploration by fine roots was investigated. For the last 2 yrs before clearcutting the first rotation, LAI was ~3.5 and fine roots were found down to a depth of 16 m. No percolation was observed below 5 m, and the 5-10 m soil layer was water-depleted. Actual evapotranspiration (AET) was approximately equal to annual precipitation (1350 mm). H was very low, except during some dry events characterized by sharp increases in the bowen ratio (H/LE). Clearcut resulted in an increase in soil temperature and H, and a strong decrease in AET, allowing gravitational water to reach 6, 8 and 10 m depths about 1.5, 2.5, and 3.5 months after clearcutting, respectively, in this sandy soil. From the clearcut (Oct 2009) to the end of the first rainy season (May 2010), the water table had raised from -18.5 to -15 m. The third year after clearcutting and replanting, AET was higher than rainfall, leading to soil water-depletion till 10 m deep. This rapid depletion of soil water was consistent with the fast exploration of the soil by fine roots (root front at 6-7 m deep at age 1 yr) and the fast increase in LAI (reaching 5 at age 2.5 yr). Clearcutting turned the forest from a strong C sink (NEP of ~1 tC/ha/month) to a C source (NEP decreased down to ~ -1.6 tC/ha/month during replanting, about 1 month after the clearcut), but the plantation rapidly turned back to a C sink (C neutrality (NEP = 0) reached 7 months after clearcutting, and then NEP was always positive) due the rapid increase in LAI. The water balance of these eucalypt plantations is thus characterized by three successive phases: 1) the first year of the rotation, AETrainfall, resulting in water depletion in soil layers down to a depth of 10 m, and 3) from age 3 yrs to the end of the rotation, AET=rainfall. Our results suggest that process based models should take into account soil water dynamics in very deep soil layers to make reliable predictions of the effects of forest disturbances on C and water fluxes in deep tropical soils.

  1. Mobile sailing robot for automatic estimation of fish density and monitoring water quality

    PubMed Central

    2013-01-01

    Introduction The paper presents the methodology and the algorithm developed to analyze sonar images focused on fish detection in small water bodies and measurement of their parameters: volume, depth and the GPS location. The final results are stored in a table and can be exported to any numerical environment for further analysis. Material and method The measurement method for estimating the number of fish using the automatic robot is based on a sequential calculation of the number of occurrences of fish on the set trajectory. The data analysis from the sonar concerned automatic recognition of fish using the methods of image analysis and processing. Results Image analysis algorithm, a mobile robot together with its control in the 2.4 GHz band and full cryptographic communication with the data archiving station was developed as part of this study. For the three model fish ponds where verification of fish catches was carried out (548, 171 and 226 individuals), the measurement error for the described method was not exceeded 8%. Summary Created robot together with the developed software has features for remote work also in the variety of harsh weather and environmental conditions, is fully automated and can be remotely controlled using Internet. Designed system enables fish spatial location (GPS coordinates and the depth). The purpose of the robot is a non-invasive measurement of the number of fish in water reservoirs and a measurement of the quality of drinking water consumed by humans, especially in situations where local sources of pollution could have a significant impact on the quality of water collected for water treatment for people and when getting to these places is difficult. The systematically used robot equipped with the appropriate sensors, can be part of early warning system against the pollution of water used by humans (drinking water, natural swimming pools) which can be dangerous for their health. PMID:23815984

  2. Mobile sailing robot for automatic estimation of fish density and monitoring water quality.

    PubMed

    Koprowski, Robert; Wróbel, Zygmunt; Kleszcz, Agnieszka; Wilczyński, Sławomir; Woźnica, Andrzej; Łozowski, Bartosz; Pilarczyk, Maciej; Karczewski, Jerzy; Migula, Paweł

    2013-07-01

    The paper presents the methodology and the algorithm developed to analyze sonar images focused on fish detection in small water bodies and measurement of their parameters: volume, depth and the GPS location. The final results are stored in a table and can be exported to any numerical environment for further analysis. The measurement method for estimating the number of fish using the automatic robot is based on a sequential calculation of the number of occurrences of fish on the set trajectory. The data analysis from the sonar concerned automatic recognition of fish using the methods of image analysis and processing. Image analysis algorithm, a mobile robot together with its control in the 2.4 GHz band and full cryptographic communication with the data archiving station was developed as part of this study. For the three model fish ponds where verification of fish catches was carried out (548, 171 and 226 individuals), the measurement error for the described method was not exceeded 8%. Created robot together with the developed software has features for remote work also in the variety of harsh weather and environmental conditions, is fully automated and can be remotely controlled using Internet. Designed system enables fish spatial location (GPS coordinates and the depth). The purpose of the robot is a non-invasive measurement of the number of fish in water reservoirs and a measurement of the quality of drinking water consumed by humans, especially in situations where local sources of pollution could have a significant impact on the quality of water collected for water treatment for people and when getting to these places is difficult. The systematically used robot equipped with the appropriate sensors, can be part of early warning system against the pollution of water used by humans (drinking water, natural swimming pools) which can be dangerous for their health.

  3. Hillslope-Riparian-Streamflow Interactions in a Discontinuous Permafrost Alpine Environment

    NASA Astrophysics Data System (ADS)

    Carey, S. K.

    2004-12-01

    Hillslope-riparian-streamflow interactions are poorly characterized in mountainous discontinuous permafrost environments. Permafrost underlain soils have a distinct soil profile, characterized by thick near-surface organic horizons atop ice-rich mineral substrates, whereas slopes without permafrost have thinner or absent organic soils overlying well drained mineral horizons. Riparian areas occur at the base of both seasonally frozen and permafrost slopes, yet a stronger hydrologic and soil transition occurs at slope bases with only seasonal frost. In a subarctic alpine catchment within the Wolf Creek Research Basin, Yukon, Canada, experiments were conducted between 2001 and 2003 to evaluate linkages along the slope-riparian-stream continuum during melt and post-melt periods. Water table, hydraulic head, stable isotope (d2H, d18O) and simple geochemical (pH, SpC, DOC) data were collected along transects during melt and summer periods. In soils with only seasonal frost, there was a downward piezometric gradient in slopes and upward gradient in riparian areas during melt. In contrast, permafrost soils did not show a recharge/discharge gradient between the slope and riparian zone. DOC declined and SpC increased with depth at all sites during melt. DOC was lower in riparian zones and areas without organic soils. SpC declined in soils as dilute meltwater entered the soil, yet it was difficult to establish spatial relations due to differences in melt timing. The similarity in stable isotope composition among sites indicated that the slopes were well flushed with snowmelt water to depth. DOC in streamflow was greatest on the ascending freshet hydrograph, and declined rapidly following melt. Streamflow SpC declined dramatically in response to dilute meltwater inputs and a decline in stream pH indicates flowpaths through organic horizons. Following melt, DOC concentrations declined rapidly in both slopes and riparian areas. In summer, water tables lowered in seasonally frozen slopes, yet an upward hydraulic gradient and near-surface water table was maintained in the riparian area. In permafrost slopes, water tables fell into mineral soils, increasing SpC and reducing DOC. Riparian water tables remained high and DOC was greater than the seasonally frozen soils, yet riparian zone hydraulic gradient reversed suggesting a small recharge gradient. In permafrost soil, riparian zone DOC was an order of magnitude higher than seasonally frozen riparian zones, which had DOC concentrations similar to streamflow. The similarity in stable isotope ratios among sites throughout the summer indicated that soil waters were dominated by water supplied during melt period. Rainfall waters had little long-term effect on slope and riparian isotopic ratios. Mixing analysis of geochemical and isotopic parameters indicates that during melt, most water was supplied via near surface organic layers, whereas later in the year, subsurface pathways predominated. Permafrost slope-riparian zones have a different hydraulic and geochemical interaction than seasonally frozen ones, yet their respective contribution to streamflow during different times of the year remains unclear at this time.

  4. Geochemical evolution of acidic ground water at a reclaimed surface coal mine in western Pennsylvania

    USGS Publications Warehouse

    Cravotta,, Charles A.

    1991-01-01

    Concentrations of dissolved sulfate and acidity in ground water increase downflow in mine spoil and underlying bedrock at a reclaimed surface coal mine in the bituminous field of western Pennsylvania. Elevated dissolved sulfate and negligible oxygen in ground water from bedrock about 100 feet below the water table suggest that pyritic sulfur is oxidized below the water table, in a system closed to oxygen. Geochemical models for the oxidation of pyrite (FeS2) and production of sulfate (SO42-) and acid (H+) are presented to explain the potential role of oxygen (O2) and ferric iron (Fe3+) as oxidants. Oxidation of pyrite by O2 and Fe3+ can occur under oxic conditions above the water table, whereas oxidation by Fe3+ also can occur under anoxic conditions below the water table. The hydrated ferric-sulfate minerals roemerite [Fe2+Fe43+(SO4)4·14H2O], copiapite [Fe2+Fe43+(SO4)6(OH)2·20H20], and coquimbite [Fe2(SO4)3·9H2O] were identified with FeS2 in coal samples, and form on the oxidizing surface of pyrite in an oxic system above the water table. These soluble ferric-sulfate 11 salts11 can dissolve with recharge waters or a rising water table releasing Fe3+, SO42-. and H+, which can be transported along closed-system ground-water flow paths to pyrite reaction sites where O2 may be absent. The Fe3+ transported to these sites can oxidize pyritic sulfur. The computer programs WATEQ4F and NEWBAL were used to compute chemical speciation and mass transfer, respectively, considering mineral dissolution and precipitation reactions plus mixing of waters from different upflow zones. Alternative mass-balance models indicate that (a) extremely large quantities of O2, over 100 times its aqueous solubility, can generate the observed concentrations of dissolved SO42- from FeS2, or (b) under anoxic conditions, Fe3+ from dissolved ferric-sulfate minerals can oxidize FeS2 along closed-system ground-water flow paths. In a system open to O2, such as in the unsaturated zone, the aqueous solubility of O2 is not limiting, and oxidation of pyrite by O2 and Fe3+ accounts for most SO42- and Fe2+ observed in acidic ground water. However, in a system closed to O2, such as in the saturated zone, O2 solubility is limiting; hence, ferric oxidation of pyrite is a reasonable explanation for the observed elevated SO42- with increasing depth below the water table.

  5. Current uses of ground penetrating radar in groundwater-dependent ecosystems research.

    PubMed

    Paz, Catarina; Alcalá, Francisco J; Carvalho, Jorge M; Ribeiro, Luís

    2017-10-01

    Ground penetrating radar (GPR) is a high-resolution technique widely used in shallow groundwater prospecting. This makes GPR ideal to characterize the hydrogeological functioning of groundwater-dependent ecosystems (GDE). This paper reviews current uses of GPR in GDE research through the construction of a database comprising 91 worldwide GPR case studies selected from the literature and classified according to (1) geological environments favouring GDE; (2) hydrogeological research interests; and (3) field technical and (4) hydrogeological conditions of the survey. The database analysis showed that inland alluvial, colluvial, and glacial formations were the most widely covered geological environments. Water-table depth was the most repeated research interest. By contrast, weathered-marl and crystalline-rock environments as well as the delineation of salinity interfaces in coastal and inland areas were less studied. Despite that shallow groundwater propitiated GDE in almost all the GPR case studies compiled, only one case expressly addressed GDE research. Common ranges of prospecting depth, water-table depth, and volumetric water content deduced by GPR and other techniques were identified. Antenna frequency of 100MHz and the common offset acquisition technique predominated in the database. Most of GPR case studies were in 30-50° N temperate latitudes, mainly in Europe and North America. Eight original radargrams were selected from several GPR profiles performed in 2014 and 2015 to document database classes and identified gaps, as well as to define experimental ranges of operability in GDE environments. The results contribute to the design of proper GPR surveys in GDE research. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Testate amoebae communities sensitive to surface moisture conditions in Patagonian peatlands

    NASA Astrophysics Data System (ADS)

    Loisel, J.; Booth, R.; Charman, D.; van Bellen, S.; Yu, Z.

    2017-12-01

    Here we examine moss surface samples that were collected during three field campaigns (2005, 2010, 2014) across southern Patagonian peatlands to assess the potential use of testate amoebae and 13C isotope data as proxy indicators of soil moisture. These proxies have been widely tested across North America, but their use as paleoecological tools remains sparse in the southern hemisphere. Samples were collected along a hydrological gradient spanning a range of water table depth from 0cm in wet hollows to over 85cm in dry hummocks. Moss moisture content was measured in the field. Over 25 taxa were identified, with many of them not found in North America. Ordinations indicate statistically significant and dominant effects of soil moisture and water table depth on testate assemblages, though interestingly 13C is even more strongly correlated with testates amoebae than direct soil conditions. It is possible that moss 13C signature constitutes a compound indicator that represents seasonal soil moisture better than opportunistic sampling during field campaigns. There is no significant effect of year or site across the dataset. In addition to providing a training set that translates testate amoebae moisture tolerance range into water tabel depth for Patagonian peatlands, we also compare our results with those from the North American training set to show that, despite 'novel' Patagonian taxa, the robustness of international training sets is probably sufficient to quantify most changes in soil moisture from any site around the world. We also identify key indicator species that are shown to be of universal value in peat-based hydrological reconstructions.

  7. Representation of Stormflow and a More Responsive Water Table in a TOPMODEL-Based Hydrology Model

    NASA Technical Reports Server (NTRS)

    Shaman, Jeffrey; Stieglitz, Marc; Engel, Victor; Koster, Randal; Stark, Colin; Houser, Paul R. (Technical Monitor)

    2001-01-01

    This study presents two new modeling strategies. First, a methodology for representing the physical process of stormflow within a TOPMODEL framework is developed. In using this approach, discharge at quickflow time scales is simulated and a fuller depiction of hydrologic activity is brought about. Discharge of water from the vadose zone is permitted in a physically realistic manner without a priori assumption of the level within the soil column at which stormflow saturation can take place. Determination of the stormflow contribution to discharge is made using the equation for groundwater flow. No new parameters are needed. Instead, regions of near saturation that develop during storm events, producing vertical recharge, are allowed to contribute to soil column discharge. These stormflow contributions to river runoff, as for groundwater flow contributions, are a function of catchment topography and local hydraulic conductivity at the depth of these regions of near saturation. The second approach improves groundwater flow response through a reduction of porosity and field capacity with depth in the soil column. Large storm events are better captured and a more dynamic water table develops with application of this modified soil column profile (MSCP). The MSCP predominantly reflects soil depth differences in upland and lowland regions of a watershed. Combined, these two approaches - stormflow and the MSCP - provide a more accurate representation of the time scales at which soil column discharge responds and a more complete depiction of hydrologic activity. Storm events large and small are better simulated, and some of the biases previously evident in TOPMODEL simulations are reduced.

  8. Effect of subsurface drainage on runoff and sediment yield from an agricultural watershed in western Oregon, U.S.A.

    NASA Astrophysics Data System (ADS)

    Istok, J. D.; Kling, G. F.

    1983-09-01

    Rainfall, watershed runoff and suspended-sediment concentrations for three small watersheds (0.46, 1.4 and 6.0 ha in size) were measured continuously for four winter rainfall seasons. The watersheds were fall-planted to winter wheat and were located on the hilly western margins of the Willamette Valley, Oregon. Following two rainfall seasons of data collection, a subsurface drainage system (consisting of a patterned arrangement of 10-cm plastic tubing at a depth of 1.0 m and a spacing of 12 m) was installed on the 1.4-ha watershed (watershed 2). Perched water tables were lowered and seepage was reduced on watershed 2 following the installation of the drainage system. The reductions were quantified with a water-table index (cumulative integrated excess). Watershed runoff and sediment yield from watershed 2 were decreased by ˜65 and ˜55%, respectively. These reductions were estimated from double mass curves and by statistical regression on a set of hydrograph variables. Maximum flow and average flow rates were decreased and the time from the beginning of a storm to the peak flow (lag time) increased. It is concluded that subsurface drainage can be an effective management practice for erosion control in western Oregon.

  9. The potential influence of short-term environmental variability on the composition of testate amoeba communities in Sphagnum peatlands.

    PubMed

    Sullivan, Maura E; Booth, Robert K

    2011-07-01

    Testate amoebae are a group of moisture-sensitive, shell-producing protozoa that have been widely used as indicators of changes in mean water-table depth within oligotrophic peatlands. However, short-term environmental variability (i.e., sub-annual) also probably influences community composition. The objective of this study was to assess the potential influence of short-term environmental variability on the composition of testate amoeba communities in Sphagnum-dominated peatlands. Testate amoebae and environmental conditions, including hourly measurements of relative humidity within the upper centimeter of the peatland surface, were examined throughout the 2008 growing season at 72 microsites within 11 peatlands of Pennsylvania and Wisconsin, USA. Relationships among testate amoeba communities, vegetation, depth to water table, pH, and an index of short-term environmental variability (EVI), were examined using nonmetric multidimensional scaling and correlation analysis. Results suggest that EVI influences testate amoeba communities, with some taxa more abundant under highly variable conditions (e.g., Arcella discoides, Difflugia pulex, and Hyalosphenia subflava) and others more abundant when environmental conditions at the peatland surface were relatively stable (e.g., Archerella flavum and Bullinularia indica). The magnitude of environmental variability experienced at the peatland surface appears to be primarily controlled by vegetation composition and density. In particular, sites with dense Sphagnum cover had lower EVI values than sites with loose-growing Sphagnum or vegetation dominated by vascular plants and/or non-Sphagnum bryophytes. Our results suggest that more environmental information may be inferred from testate amoebae than previously recognized. Knowledge of relationships between testate amoebae and short-term environmental variability should lead to more detailed and refined environmental inferences.

  10. Identifying sources of groundwater nitrate contamination in a large alluvial groundwater basin with highly diversified intensive agricultural production

    NASA Astrophysics Data System (ADS)

    Lockhart, K. M.; King, A. M.; Harter, T.

    2013-08-01

    Groundwater quality is a concern in alluvial aquifers underlying agricultural areas worldwide. Nitrate from land applied fertilizers or from animal waste can leach to groundwater and contaminate drinking water resources. The San Joaquin Valley, California, is an example of an agricultural landscape with a large diversity of field, vegetable, tree, nut, and citrus crops, but also confined animal feeding operations (CAFOs, here mostly dairies) that generate, store, and land apply large amounts of liquid manure. As in other such regions around the world, the rural population in the San Joaquin Valley relies almost exclusively on shallow domestic wells (≤ 150 m deep), of which many have been affected by nitrate. Variability in crops, soil type, and depth to groundwater contribute to large variability in nitrate occurrence across the underlying aquifer system. The role of these factors in controlling groundwater nitrate contamination levels is examined. Two hundred domestic wells were sampled in two sub-regions of the San Joaquin Valley, Stanislaus and Merced (Stan/Mer) and Tulare and Kings (Tul/Kings) Counties. Forty six percent of well water samples in Tul/Kings and 42% of well water samples in Stan/Mer exceeded the MCL for nitrate (10 mg/L NO3-N). For statistical analysis of nitrate contamination, 78 crop and landuse types were considered by grouping them into ten categories (CAFO, citrus, deciduous fruits and nuts, field crops, forage, native, pasture, truck crops, urban, and vineyards). Vadose zone thickness, soil type, well construction information, well proximity to dairies, and dominant landuse near the well were considered. In the Stan/Mer area, elevated nitrate levels in domestic wells most strongly correlate with the combination of very shallow (≤ 21 m) water table and the presence of either CAFO derived animal waste applications or deciduous fruit and nut crops (synthetic fertilizer applications). In Tulare County, statistical data indicate that elevated nitrate levels in domestic well water are most strongly associated with citrus orchards when located in areas with a very shallow (≤ 21 m) water table. Kings County had relatively few nitrate MCL exceedances in domestic wells, probably due to the deeper water table in Kings County.

  11. Influence of landscape heterogeneity on water available to tropical forests in an Amazonian catchment and implications for modeling drought response

    NASA Astrophysics Data System (ADS)

    Fang, Yilin; Leung, L. Ruby; Duan, Zhuoran; Wigmosta, Mark S.; Maxwell, Reed M.; Chambers, Jeffrey Q.; Tomasella, Javier

    2017-08-01

    The Amazon basin has experienced periodic droughts in the past, and intense and frequent droughts are predicted in the future. Landscape heterogeneity could play an important role in how tropical forests respond to drought by influencing water available to plants. Using the one-dimensional ACME Land Model and the three-dimensional ParFlow variably saturated flow model, numerical experiments were performed for a catchment in central Amazon to elucidate processes that influence water available for plant use and provide insights for improving Earth system models. Results from ParFlow show that topography has a dominant influence on groundwater table and runoff through lateral flow. Without any representations of lateral processes, ALM simulates very different seasonal variations in groundwater table and runoff compared to ParFlow even if it is able to reproduce the long-term spatial average groundwater table of ParFlow through simple parameter calibration. In the ParFlow simulations, even in the plateau with much deeper water table depth during the dry season in the drought year of 2005, plant transpiration is not water stressed as the soil saturation is still sufficient for the stomata to be fully open based on the empirical wilting formulation in the models. This finding is insensitive to uncertainty in atmospheric forcing and soil parameters, but the empirical wilting formulation is an important factor that should be addressed using observations and modeling of coupled plant hydraulics-soil hydrology processes in future studies. The results could be applicable to other catchments in the Amazon basin with similar seasonal variability and hydrologic regimes.

  12. Investigation of the groundwater system at Masaya Caldera, Nicaragua, using transient electromagnetics and numerical simulation

    USGS Publications Warehouse

    MacNeil, R.E.; Sanford, W.E.; Connor, C.B.; Sandberg, S.K.; Diez, M.

    2007-01-01

    The distribution of groundwater beneath Masaya Volcano, in Nicaragua, and its surrounding caldera was characterized using the transient electromagnetic method (TEM). Multiple soundings were conducted at 30 sites. Models of the TEM data consistently indicate a resistive layer that is underlain by one or more conductive layers. These two layers represent the unsaturated and saturated zones, respectively, with the boundary between them indicating the water-table elevation. A map of the TEM data shows that the water table in the caldera is a subdued replica of the topography, with higher elevations beneath the edifice in the south-central caldera and lower elevations in the eastern caldera, coinciding with the elevation of Laguna de Masaya. These TEM data, combined with regional hydrologic data, indicate that the caldera in hydrologically isolated from the surrounding region, with as much as 60??m of difference in elevation of the groundwater table across caldera-bounding faults. The water-table information and estimates of fluxes of water through the system were used to constrain a numerical simulation of groundwater flow. The simulation results indicate that basalt flows in the outer parts of the caldera have a relatively high transmissivity, whereas the central edifice has a substantially lower transmissivity. A layer of relatively high transmissivity must be present at depth within the edifice in order to deliver the observed flux of water and steam to the active vent. This hydrologic information about the caldera provides a baseline for assessing the response of this isolated groundwater system to future changes in magmatic activity. ?? 2007.

  13. Chemical Evolution of Groundwater Near a Sinkhole Lake, Northern Florida: 1. Flow Patterns, Age of Groundwater, and Influence of Lake Water Leakage

    NASA Astrophysics Data System (ADS)

    Katz, Brian G.; Lee, Terrie M.; Plummer, L. Niel; Busenberg, Eurybiades

    1995-06-01

    Leakage from sinkhole lakes significantly influences recharge to the Upper Floridan aquifer in poorly confined sediments in northern Florida. Environmental isotopes (oxygen 18, deuterium, and tritium), chlorofluorocarbons (CFCs: CFC-11, CCl3F; CFC-12, CCl2F2; and CFC-113, C2Cl3F3), and solute tracers were used to investigate groundwater flow patterns near Lake Barco, a seepage lake in a mantled karst setting in northern Florida. Stable isotope data indicated that the groundwater downgradient from the lake contained 11-67% lake water leakage, with a limit of detection of lake water in groundwater of 4.3%. The mixing fractions of lake water leakage, which passed through organic-rich sediments in the lake bottom, were directly proportional to the observed methane concentrations and increased with depth in the groundwater flow system. In aerobic groundwater upgradient from Lake Barco, CFC-modeled recharge dates ranged from 1987 near the water table to the mid 1970s for water collected at a depth of 30 m below the water table. CFC-modeled recharge dates (based on CFC-12) for anaerobic groundwater downgradient from the lake ranged from the late 1950s to the mid 1970s and were consistent with tritium data. CFC-modeled recharge dates based on CFC-11 indicated preferential microbial degradation in anoxic waters. Vertical hydraulic conductivities, calculated using CFC-12 modeled recharge dates and Darcy's law, were 0.17, 0.033, and 0.019 m/d for the surficial aquifer, intermediate confining unit, and lake sediments, respectively. These conductivities agreed closely with those used in the calibration of a three-dimensional groundwater flow model for transient and steady state flow conditions.

  14. Seasonal groundwater contribution to crop-water use assessed with lysimeter observations and model simulations

    USGS Publications Warehouse

    Luo, Y.; Sophocleous, M.

    2010-01-01

    Groundwater evaporation can play an important role in crop-water use where the water table is shallow. Lysimeters are often used to quantify the groundwater evaporation contribution influenced by a broad range of environmental factors. However, it is difficult for such field facilities, which are operated under limited conditions within limited time, to capture the whole spectrum of capillary upflow with regard to the inter-seasonal variability of climate, especially rainfall. Therefore, in this work, the method of combining lysimeter and numerical experiments was implemented to investigate seasonal groundwater contribution to crop-water use. Groundwater evaporation experiments were conducted through a weighing lysimeter at an agricultural experiment station located within an irrigation district in the lower Yellow River Basin for two winter wheat growth seasons. A HYDRUS-1D model was first calibrated and validated with weighing lysimeter data, and then was employed to perform scenario simulations of groundwater evaporation under different depths to water table (DTW) and water input (rainfall plus irrigation) driven by long term meteorological data. The scenario simulations revealed that the seasonally averaged groundwater evaporation amount was linearly correlated to water input for different values of DTW. The linear regression could explain more than 70% of the variability. The seasonally averaged ratio of the groundwater contribution to crop-water use varied with the seasonal water input and DTW. The ratio reached as high as 75% in the case of DTW=1.0. m and no irrigation, and as low as 3% in the case of DTW=3.0. m and three irrigation applications. The results also revealed that the ratio of seasonal groundwater evaporation to potential evapotranspiration could be fitted to an exponential function of the DTW that may be applied to estimate seasonal groundwater evaporation. In this case study of multilayered soil profile, the depth at which groundwater may evaporate at potential rate was 0.60-0.65. m, and the extinction depth of groundwater evaporation was approximately 3.8. m. ?? 2010 Elsevier B.V.

  15. Estimation of groundwater consumption by phreatophytes using diurnal water table fluctuations: A saturated‐unsaturated flow assessment

    USGS Publications Warehouse

    Loheide, Steven P.; Butler, James J.; Gorelick, Steven M.

    2005-01-01

    Groundwater consumption by phreatophytes is a difficult‐to‐measure but important component of the water budget in many arid and semiarid environments. Over the past 70 years the consumptive use of groundwater by phreatophytes has been estimated using a method that analyzes diurnal trends in hydrographs from wells that are screened across the water table (White, 1932). The reliability of estimates obtained with this approach has never been rigorously evaluated using saturated‐unsaturated flow simulation. We present such an evaluation for common flow geometries and a range of hydraulic properties. Results indicate that the major source of error in the White method is the uncertainty in the estimate of specific yield. Evapotranspirative consumption of groundwater will often be significantly overpredicted with the White method if the effects of drainage time and the depth to the water table on specific yield are ignored. We utilize the concept of readily available specific yield as the basis for estimation of the specific yield value appropriate for use with the White method. Guidelines are defined for estimating readily available specific yield based on sediment texture. Use of these guidelines with the White method should enable the evapotranspirative consumption of groundwater to be more accurately quantified.

  16. Seasonally frozen layer in natural and drained peatlands at the South of West Siberia, Russia

    NASA Astrophysics Data System (ADS)

    Dyukarev, Egor; Kiselev, Maxim; Voropay, Nadezhda; Preis, Yulia

    2017-04-01

    The temperature regime of soils in natural and drained peatlands at Bakchar bog located in the South Taiga zone of West Siberia is studied. Soil temperature for depths up to 320 cm was registered using autonomous temperature profile recorder during the period from August 2010 to September 2016. Maximal and minimal temperatures were registered at surface in July and February, consequently. Extreme soil temperatures at 320 cm depth shifts to December (maximum) and July (minimum) reducing absolute values. Annual peat soil temperature amplitude decrease with depth from 21,8 °C on surface to 1,1 °C at 320 cm. The analysis of daily, month and annual mean data of temperature in peat soil has shown that seasonally frozen layer was registered up to 20-60 cm depth. The duration of seasonally freeze layer existence varies from 130 to 180 days. Drained peatlands with the lowest water table have highest freeze depth. Soil at water-logged sedge-sphagnum fen in winter is warmer than soil in ryam ecosystem and mineral soil at upland. Maximal freezing depth in peatlands is up to 3 times lower than at drain areas.

  17. How Does Tree Density Affect Water Loss of Peatlands? A Mesocosm Experiment

    PubMed Central

    Limpens, Juul; Holmgren, Milena; Jacobs, Cor M. J.; Van der Zee, Sjoerd E. A. T. M.; Karofeld, Edgar; Berendse, Frank

    2014-01-01

    Raised bogs have accumulated more atmospheric carbon than any other terrestrial ecosystem on Earth. Climate-induced expansion of trees and shrubs may turn these ecosystems from net carbon sinks into sources when associated with reduced water tables. Increasing water loss through tree evapotranspiration could potentially deepen water tables, thus stimulating peat decomposition and carbon release. Bridging the gap between modelling and field studies, we conducted a three-year mesocosm experiment subjecting natural bog vegetation to three birch tree densities, and studied the changes in subsurface temperature, water balance components, leaf area index and vegetation composition. We found the deepest water table in mesocosms with low tree density. Mesocosms with high tree density remained wettest (i.e. highest water tables) whereas the control treatment without trees had intermediate water tables. These differences are attributed mostly to differences in evapotranspiration. Although our mesocosm results cannot be directly scaled up to ecosystem level, the systematic effect of tree density suggests that as bogs become colonized by trees, the effect of trees on ecosystem water loss changes with time, with tree transpiration effects of drying becoming increasingly offset by shading effects during the later phases of tree encroachment. These density-dependent effects of trees on water loss have important implications for the structure and functioning of peatbogs. PMID:24632565

  18. Impact of prescribed and repeated vegetation burning on blanket peat hydrology

    NASA Astrophysics Data System (ADS)

    Holden, Joseph; Brown, Lee; Palmer, Sheila; Johnston, Kerrylyn; Wearing, Catherine; Irvine, Brian

    2013-04-01

    In some peatlands there has been a tradition over the past century of burning vegetation to manage the landscape for a range of purposes. These include producing an environment suitable for game birds used in the gun sports industry and reducing the biomass fuel load to reduce possible wildfire damage to the peat. However, there have been few studies that have interrogated the impacts of this activity on peatland hydrological processes both at the plot scale and at the catchment scale. The EMBER project measured water tables, overland flow, hydraulic conductivity, stream discharge, and a myriad of aquatic invertebrate and peat physical and water chemistry indicators (at plot and stream scale) in ten upland blanket peat catchments in the UK. Five catchments were subject to a history of prescribed rotational patch burning with burning taking place each year over a proportion of the catchment (typically 5-10 %) but where for an individual patch the interval was typically 10-20 years. The other five catchments acted as controls which were not subject to burning, nor confounded by other detrimental activities such as drainage or forestry. Stream flows were flashier in response to rainfall in the catchments with prescribed burning patches and had greater rainfall to runoff efficiencies. Water tables were found to be significantly shallower with a smaller interquartile range for unburnt catchments. In the burnt catchments, more recently burnt plots had significantly greater mean water table depths and water table residence times were much less frequent within the upper 10 cm of the peat profile compared to plots that been burned more than a decade before. The water table residence curves will be explored in the presentation. The occurrence of overland flow was significantly impacted by both burning and time since burn with significantly less overland flow recorded for more recently burnt sites. This ties in well with our water table data since blanket peat systems are dominated by saturation processes rather than infiltration-excess overland flow. In this presentation we focus on the hydrological findings from the EMBER project but where relevant we relate these to other supporting environmental data we collected in order to interrogate process explanations for the differences we observed. For example, surface and near-surface peat temperatures were significantly more variable (both warmer and cooler depending on season and time of day) for burnt sites (and for patches burnt < 5 yrs prior to monitoring within burnt sites) but with warmer peat associated with burning overall. The results provide clear evidence that prescribed vegetation burning on blanket peat significantly impacts peatland hydrology at both the plot and stream scale and therefore raises issues for government bodies who have legal responsibility to protect many peatland landscapes, their integrity, their biogeochemical functions and the ecosystem services that peatlands provide.

  19. A comparison of MIKE SHE and DRAINMOD for modeling forested wetland hydrology in coastal South Carolina, USA

    Treesearch

    Zhaohua Dai; Devendra M. Amatya; Ge Sun; Carl C. Trettin; Changsheng Li; Harbin Li

    2010-01-01

    Models are widely used to assess hydrologic impacts of land-management, land-use change and climate change. Two hydrologic models with different spatial scales, MIKE SHE (spatially distributed, watershed-scale) and DRAINMOD (lumped, fieldscale), were compared in terms of their performance in predicting stream flow and water table depth in a first-order forested...

  20. Effects of Shallow Water Tables on Height Growth and Phosphorus Uptake by Loblolly and Slash Pines

    Treesearch

    A.E. Tiarks; E. Shoulders

    1982-01-01

    In southern Mississippi, the heights of loblolly and slash pines at age 20 were positively correlated with the phosphorus content of the foliage and with depth in the soil to gray (chromas £2) mottles. Slash pine was taller than loblolly at equivalent levels of foliage phosphorus, but the rate of height increase as...

  1. Bi-criteria evaluation of the MIKE SHE model for a forested watershed on the South Carolina coastal plain

    Treesearch

    Z. Dai; C. Li; C. Trettin; G. Sun; D. Amatya; H. Li

    2010-01-01

    Hydrological models are important tools for effective management, conservation and restoration of forested wetlands. The objective of this study was to test a distributed hydrological model, MIKE SHE, by using bi-criteria (i.e., two measurable variables, streamflow and water table depth) to describe the hydrological processes in a forested watershed that is...

  2. TU-CD-304-01: FEATURED PRESENTATION and BEST IN PHYSICS (THERAPY): Trajectory Modulated Arc Therapy: Development of Novel Arc Delivery Techniques Integrating Dynamic Table Motion for Extended Volume Treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chin, E; Hoppe, R; Million, L

    2015-06-15

    Purpose: Integration of coordinated robotic table motion with inversely-planned arc delivery has the potential to resolve table-top delivery limitations of large-field treatments such as Total Body Irradiation (TBI), Total Lymphoid Irradiation (TLI), and Cranial-Spinal Irradiation (CSI). We formulate the foundation for Trajectory Modulated Arc Therapy (TMAT), and using Varian Developer Mode capabilities, experimentally investigate its practical implementation for such techniques. Methods: A MATLAB algorithm was developed for inverse planning optimization of the table motion, MLC positions, and gantry motion under extended-SSD geometry. To maximize the effective field size, delivery trajectories for TMAT TBI were formed with the table rotated atmore » 270° IEC and dropped vertically to 152.5cm SSD. Preliminary testing of algorithm parameters was done through retrospective planning analysis. Robotic delivery was programmed using custom XML scripting on the TrueBeam Developer Mode platform. Final dose was calculated using the Eclipse AAA algorithm. Initial verification of delivery accuracy was measured using OSLDs on a solid water phantom of varying thickness. Results: A comparison of DVH curves demonstrated that dynamic couch motion irradiation was sufficiently approximated by static control points spaced in intervals of less than 2cm. Optimized MLC motion decreased the average lung dose to 68.5% of the prescription dose. The programmed irradiation integrating coordinated table motion was deliverable on a TrueBeam STx linac in 6.7 min. With the couch translating under an open 10cmx20cm field angled at 10°, OSLD measurements along the midline of a solid water phantom at depths of 3, 5, and 9cm were within 3% of the TPS AAA algorithm with an average deviation of 1.2%. Conclusion: A treatment planning and delivery system for Trajectory Modulated Arc Therapy of extended volumes has been established and experimentally demonstrated for TBI. Extension to other treatment techniques such as TLI and CSI is readily achievable through the developed platform. Grant Funding by Varian Medical Systems.« less

  3. Assessing Forest Carbon Response to Climate Change and Disturbances Using Long-term Hydro-climatic Observations and Simulations

    NASA Astrophysics Data System (ADS)

    Trettin, C.; Dai, Z.; Amatya, D. M.

    2014-12-01

    Long-term climatic and hydrologic observations on the Santee Experimental Forest in the lower coastal plain of South Carolina were used to estimate long-term changes in hydrology and forest carbon dynamics for a pair of first-order watersheds. Over 70 years of climate data indicated that warming in this forest area in the last decades was faster than the global mean; 35+ years of hydrologic records showed that forest ecosystem succession three years following Hurricane Hugo caused a substantial change in the ratio of runoff to precipitation. The change in this relationship between the paired watersheds was attributed to altered evapotranspiration processes caused by greater abundance of pine in the treatment watershed and regeneration of the mixed hardwood-pine forest on the reference watershed. The long-term records and anomalous observations are highly valuable for reliable calibration and validation of hydrological and biogeochemical models capturing the effects of climate variability. We applied the hydrological model MIKESHE that showed that runoff and water table level are sensitive to global warming, and that the sustained warming trends can be expected to decrease stream discharge and lower the mean water table depth. The spatially-explicit biogeochemical model Forest-DNDC, validated using biomass measurements from the watersheds, was used to assess carbon dynamics in response to high resolution hydrologic observation data and simulation results. The simulations showed that the long-term spatiotemporal carbon dynamics, including biomass and fluxes of soil carbon dioxide and methane were highly regulated by disturbance regimes, climatic conditions and water table depth. The utility of linked-modeling framework demonstrated here to assess biogeochemical responses at the watershed scale suggests applications for assessing the consequences of climate change within an urbanizing forested landscape. The approach may also be applicable for validating large-scale models.

  4. Post-fire ecohydrological conditions at peatland margins in different hydrogeological settings of the Boreal Plain

    NASA Astrophysics Data System (ADS)

    Lukenbach, M. C.; Hokanson, K. J.; Devito, K. J.; Kettridge, N.; Petrone, R. M.; Mendoza, C. A.; Granath, G.; Waddington, J. M.

    2017-05-01

    In the Boreal Plain of Canada, the margins of peatland ecosystems that regulate solute and nutrient fluxes between peatlands and adjacent mineral uplands are prone to deep peat burning. Whether post-fire carbon accumulation is able to offset large carbon losses associated with the deep burning at peatland margins is unknown. For this reason, we examined how post-fire hydrological conditions (i.e. water table depth and periodicity, soil tension, and surface moisture content) and depth of burn were associated with moss recolonization at the peatland margins of three sites. We then interpreted these findings using a hydrogeological systems approach, given the importance of groundwater in determining conditions in the soil-plant-atmosphere continuum in peatlands. Peatland margins dominated by local groundwater flow from adjacent peatland middles were characterized by dynamic hydrological conditions that, when coupled with lowered peatland margin surface elevations due to deep burning, produced two common hydrological states: 1) flooding during wet periods and 2) rapid water table declines during dry periods. These dynamic hydrological states were unfavorable to peatland moss recolonization and bryophytes typical of post-fire recovery in mineral uplands became established. In contrast, at a peatland margin where post-fire hydrological conditions were moderated by larger-scale groundwater flow, flooding and rapid water table declines were infrequent and, subsequently, greater peatland-dwelling moss recolonization was observed. We argue that peatland margins poorly connected to larger-scale groundwater flow are not only prone to deep burning but also lags in post-fire moss recovery. Consequently, an associated reduction in post-fire peat accumulation may occur and negatively affect the net carbon sink status and ecohydrological and biogeochemical function of these peatlands.

  5. Distribution of benthic foraminifers (>125 um) in the surface sediments of the Arctic Ocean

    USGS Publications Warehouse

    Osterman, Lisa E.; Poore, Richard Z.; Foley, Kevin M.

    1999-01-01

    Census data on benthic foraminifers (>125 ?m) in surface sediment samples from 49 box cores are used to define four depth-controlled biofacies, which will aid in the paleoceanographic reconstruction of the Arctic Ocean. The shelf biofacies contains a mix of shallow-water calcareous and agglutinated species from the continental shelves of the Beaufort and Chukchi Seas and reflects the variable sedimentologic and oceanic conditions of the Arctic shelves. The intermediate-depth calcareous biofacies, found between 500 and 1,100 meters water depth (mwd), contains abundant Cassidulina teretis , presumably indicating the influence of Atlantic-derived water at this depth. In water depths between 1,100 and 3,500 m, a deepwater calcareous biofacies contains abundant Oridorsalis umbonatus . Below 3,500 mwd, the deepwater mixed calcareous/agglutinated biofacies of the Canada, Makarov, and Eurasian Basins reflects a combination of low productivity, dissolution, and sediment transport. Two other benthic foraminiferal species show specific environmental preferences. Fontbotia wuellerstorfi has a depth distribution between 900 and 3,500 mwd, but maximum abundance occurs in the region of the Mendeleyev Ridge. The elevated abundance of F. wuellerstorfi may be related to increased food supply carried by a branch of Atlantic water that crosses the Lomonosov Ridge near the Russian Continental Shelf. Triloculina frigida is recognized to be a species preferring lower slope sediments commonly disturbed by turbidites and bottom currents. INTRODUCTION At present, our understanding of the Arctic Ocean lags behind our understanding of other oceans, and fundamental questions still exist about its role in and response to global climate change. The Arctic Ocean is particularly sensitive to climatic fluctuations because small changes in the amounts of sea-ice cover can alter global albedo and thermohaline circulation (Aagaard and Carmack, 1994). Numerous questions still exist regarding the nature and timing of paleoclimatic events in the Arctic Ocean. In order to attempt to answer some of these questions, baseline studies are imperative. This report discusses the distribution of benthic foraminifers in surface sediment samples from 49 box cores (figs. 1 and 2, table 1) collected by the U.S. Geological Survey (USGS) with the assistance of the U.S. Coast Guard (USCG). A modern data set of benthic foraminiferal distribution is necessary for interpreting the paleoclimatic and oceanographic history of the Arctic Ocean.

  6. Potential for ground-water contamination from movement of wastewater through the unsaturated zone, upper Mojave River Basin, California

    USGS Publications Warehouse

    Umari, A.M.; Martin, P.M.; Schroeder, R.A.; Duell, L.F.; Fay, R.G.

    1993-01-01

    Septic-tank wastewater disposed in 30-foot-deep seepage pits (dry wells) at 46,000 residences is estimated to equal 18 percent of the natural recharge to the sole-source aquifer in the rapidly developing upper Mojave River Basin (Victor Valley) in the high desert northeast of Los Angeles. Vertical rates of movement of the wastewater wetting front through the unsaturated zone at three newly occupied residences ranged from 0.07 to 1.0 foot per day. These rates translate to traveltimes of several months to several years for the wastewater wetting front to reach the water table and imply that wastewater from many disposal systems already has reached the water table, which averages about 150 feet below land surface in the Victor Valley. As wastewater percolates from seepage pits into the adjacent unsaturated zone, the nitrogen present in reduced form is rapidly converted to nitrate. Analyses on soil-core extracts and soil moisturefrom suction lysimeters installed beneath the seepage pits at eight residences showed that nitrate concentrations and nitrate/ chloride ratios generally become lower with increasing depth. The intervals of greatest decline seemed to coincide with finer soil texture or were near the water table. Nitrate-reducing bacteria were tested for and found to be present in soil cores from two residences. Sparse nitrogen-15 data from suction lysimeters at one of these residences, where thenitrate concentration decreased by about one-half at a depth of 200 feet, indicate that the nitrate decline was accompanied by nitrogen-15 enrichment in the residual nitrate with an isotope-separation factor of about -10 permil. Despite the potential input of abundant nitrogen with the domestic wastewater recharge, nitrate concentrations in the area's ground water are generally low. The absence of high nitrate concentrations in the ground water is consistent with the existence of denitrification, a microbial nitrogen-removal mechanism, as wastewater moves through the thick unsaturated zone and mixes with the ground water. The observed low nitrate concentrations also could be explained by a dilution by vertical mixing in the saturated zone and retention of the wastewater in the unsaturated zone. Results of a single-cell mixing model that allows nitrate from wastewater to be mixedinstantaneously with the underlying ground water suggest that measurable increases in nitrate concentration should be expected within 5 to 10 years after wastewater reaches the water table if the mixing depth is less than 100 feet. Although high fecal-coliform densities were measured in wastewater from septic tanks and seepage pits, removal of these enteric bacteria in the unsaturated zone is very effective, as was indicated by their absence in soil only a few feet from the seepage pits. In testing for organic priority pollutants in wastewater, 17 of 85 compounds were detected. Most compounds detected were present in low concentrations, except at one residence where the concentration of three compounds exceeded 100 micrograms per liter. These high concentrations may be a consequence of disposal practices unique to this residence. Extractable organic priority pollutants were not found in any soil cores taken adjacent to seepage pits and, therefore, are not of concern.

  7. Environmental factors controlling fluxes of dimethyl sulfide in a New Hampshire fen

    NASA Technical Reports Server (NTRS)

    Demello, William Zamboni; Hines, Mark E.

    1992-01-01

    The major environmental factors controlling fluxes of dimethyl sulfide (DMS) in a Sphagnum-dominated peatland were investigated in a poor fen in New Hampshire. DMS emissions from the surface of the peatland varied greatly over 24 hours and seasonally. Maximum DMS emissions occurred in summer with minima in the late fall. Temperature was the major environmental factor controlling these variabilities. There was also some evidence that the changes in water table height might have contributed to the seasonable variability in DMS emission. The influence of the water table was greater during periods of elevated temperature. DMS and MSH were the most abundant dissolved volatile sulfur compound (VSC) in the surface of the water table. Concentrations of dissolved VSC's varied with time and space throughout the fen. Dissolved MDS, MSH, and OCS in the surface of the water table were supersaturated with respect to their concentrations in the atmosphere suggesting that the peat surface was a source of VSC's in the peatland. VCS in peatlands seemed to be produced primarily by microbial processes in the anoxic surface layers of the peat rich in organic matter and inorganic sulfide. Sphagnum mosses were not a direct source of VSC's. However, they increased transport of DMS from the peat surface to the atmosphere.

  8. Sub-arctic Wetland Greenhouse Gases (CO2, CH4 & N2O) Emissions are Driven by Interactions of Environmental Controls and Herbivore Grazers

    NASA Astrophysics Data System (ADS)

    Kelsey, K.; Leffler, A. J.; Beard, K. H.; Choi, R. T.; Welker, J. M.

    2015-12-01

    Climate change is increasing temperatures, altering precipitation regimes and causing earlier growing seasons, particularly at northern latitudes. Such changes in local environmental conditions have the potential to affect biogeochemical cycling including the exchange of greenhouses gases between the atmosphere and the terrestrial biosphere. In addition to the effects of these environmental controls, animals such as migratory geese also influence biogeochemical cycles through grazing, trampling and delivering nutrient-rich fecal matter. In this work we aimed to quantify how local environmental conditions and the presence of grazing interact as drivers of emissions of three key greenhouse gases, CO2, CH4 and N2O, in coastal wetlands of the Yukon Kuskokwim Delta. We explored the magnitude of emissions across gradients of soil temperature and water table depth, and across vegetation types related to the presence of grazing, ranging from no vegetation through grazed and ungrazed vegetation. We also investigated emissions from grazed areas using experimental manipulations of the timing of grazing and advancement of the growing season. We found that local environmental conditions and use by grazers exert interacting controls on emissions of CO2, CH4 and N2O. Emissions of CO2 and CH4 were positively related to soil temperature and CH4 emissions were inversely related to water table depth, but the relationship varied by vegetation type. Net emissions of CO2 were greatest in ungrazed vegetation types (6.62 umols CO2 m-2 sec-1; p=0.0007) whereas CH4 emissions were greatest in the grazed vegetation (122.56 nmols CH4 m-2 sec-1; p=0.037). Flux of N2O was less than 1 nmol N2O m-2 sec-1 across all landscape positions under typical grazing and temperature conditions, but emissions were stimulated to over 10 nmols m-2 sec-1 when grazing occurred early relative to a typical season. Our results indicate that environmental conditions and the presence of migratory herbivores are both important controls on gas fluxes. Future climate change may alter regional gas flux and biosphere-atmosphere feedbacks both via direct environmental drivers and through climate-driven changes to populations or habits of grazers that also exert important controls on biogeochemical cycling in this region.

  9. Recharge contribution to the Guarani Aquifer System estimated from the water balance method in a representative watershed.

    PubMed

    Wendland, Edson; Gomes, Luis H; Troeger, Uwe

    2015-01-01

    The contribution of recharge to regional groundwater flow systems is essential information required to establish sustainable water resources management. The objective of this work was to determine the groundwater outflow in the Ribeirão da Onça Basin using a water balance model of the saturated soil zone. The basin is located in the outcrop region of the Guarani Aquifer System (GAS). The water balance method involved the determination of direct recharge values, groundwater storage variation and base flow. The direct recharge was determined by the water table fluctuation method (WTF). The base flow was calculated by the hydrograph separation method, which was generated by a rain-flow model supported by biweekly streamflow measurements in the control section. Undisturbed soil samples were collected at depths corresponding to the variation zone of the groundwater level to determine the specific yield of the soil (drainable porosity). Water balances were performed in the saturated zone for the hydrological years from February 2004 to January 2007. The direct recharge ranged from 14.0% to 38.0%, and groundwater outflow from 0.4% to 2.4% of the respective rainfall during the same period.

  10. Microtopographic and Hydrological Controls over Respiratory Efflux and Late-Season Arctic Methane Emissions

    NASA Astrophysics Data System (ADS)

    Wilkman, E.; Zona, D.; Oechel, W. C.

    2014-12-01

    In recent years, Arctic peatlands have released approximately 35 Tg (3.5 x 1012g) of CH4 annually, corresponding to around 1/3 of the aggregate wetland CH4 fluxes and 16% of all natural emissions. As climate models increasingly suggest that current warming trends in the Arctic (4-8 °C higher annual surface air temperatures) will continue by century's end, carbon (C) cycling in these northern climes may be further amplified. Although much has been learned in recent decades, uncertainty remains in regard to the spatial and temporal extent of CO2 and CH4 emissions from these systems. Chamber based carbon flux measurements were gathered for three growing seasons from June 2007 to September 2013 in Barrow, Alaska to investigate the diurnal, weekly, and monthly patterns of CO2 and CH4 flux in the North American Arctic. For the 2007 and 2008 growing seasons, high temporal frequency auto-chambers (LI-8100A Automated Soil Flux System, LI-COR Biosciences) were used to gather over 18,000 individual flux measurements. From July to September 2013 an Ultraportable Greenhouse Gas Analyzer (Los Gatos Research Inc.) was deployed in concert with this soil flux system to gather high temporal frequency soil CO2 and CH4 fluxes. Nearby eddy covariance towers provided auxiliary meteorological and environmental data, while weekly transects amassed further surficial hydrological measures (pH, thaw depth, water table). For earlier periods of data, respiratory fluxes were partitioned into five microtopographic classes (polygon rims and troughs, low centered basins, high ridges, and flat mesic terrain). Conversely, for the later periods of data covered chamber fluxes were partitioned into three 'habitat' types (High, Medium, Wet) based on corresponding aboveground average water table extent. Marked dissimilarities were noted across habitat types and microtopographic classes. In general more mesic, waterlogged regions released greater quantities of CO2 across the growing season, while intermediate (Medium) water table regimes dominated CH4 release in the fall. Additionally, temperature generally delimited CO2 release throughout the growing season, while CH4 release was strongly tied to thaw depth expansion. This large dataset thus greatly underscores the importance of microscale heterogeneity on C flux in the Arctic.

  11. Chemical evolution of groundwater near a sinkhole lake, northern Florida: 1. Flow patterns, age of groundwater, and influence of lakewater leakage

    USGS Publications Warehouse

    Katz, Brian G.; Lee, Terrie M.; Plummer, Niel; Busenberg, Eurybiades

    1995-01-01

    Leakage from sinkhole lakes significantly influences recharge to the Upper Floridan aquifer in poorly confined sediments in northern Florida. Environmental isotopes (oxygen 18, deuterium, and tritium), chlorofluorocarbons (CFCs: CFC-11, CCl3F; CFC-12, CCl2F2; and CFC-113, C2Cl3F3), and solute tracers were used to investigate groundwater flow patterns near Lake Barco, a seepage lake in a mantled karst setting in northern Florida. Stable isotope data indicated that the groundwater downgradient from the lake contained 11–67% lake water leakage, with a limit of detection of lake water in groundwater of 4.3%. The mixing fractions of lake water leakage, which passed through organic-rich sediments in the lake bottom, were directly proportional to the observed methane concentrations and increased with depth in the groundwater flow system. In aerobic groundwater upgradient from Lake Barco, CFC-modeled recharge dates ranged from 1987 near the water table to the mid 1970s for water collected at a depth of 30 m below the water table. CFC-modeled recharge dates (based on CFC-12) for anaerobic groundwater downgradient from the lake ranged from the late 1950s to the mid 1970s and were consistent with tritium data. CFC-modeled recharge dates based on CFC-11 indicated preferential microbial degradation in anoxic waters. Vertical hydraulic conductivities, calculated using CFC-12 modeled recharge dates and Darcy's law, were 0.17, 0.033, and 0.019 m/d for the surficial aquifer, intermediate confining unit, and lake sediments, respectively. These conductivities agreed closely with those used in the calibration of a three-dimensional groundwater flow model for transient and steady state flow conditions.

  12. Ground-water levels in Wyoming, 1976 through 1985

    USGS Publications Warehouse

    Kennedy, H.I.; Oberender, C.B.

    1987-01-01

    Groundwater levels are measured periodically in a network of 84 observation wells in Wyoming, mostly in areas where groundwater is used in large quantities for irrigation or municipal purposes. The program is conducted by the U.S. Geological Survey in cooperation with the Wyoming State Engineer and the Wyoming Economic Development and Stabilization Board. This report contains hydrographs for 84 observation wells showing water-level fluctuations from 1976 through 1985. Also included in the report are maps showing locations of observation wells and tables listing well depths, use of water, geologic source, records available, and highest and lowest water levels for the period of record. (USGS)

  13. Ground-water levels in Wyoming, 1978 through September 1987

    USGS Publications Warehouse

    Kennedy, H.I.; Green, S.L.

    1988-01-01

    Groundwater levels are measured periodically in a network of 95 observation wells in Wyoming, mostly in areas where groundwater is used in large quantities for irrigation or municipal purposes. The program is conducted by the U.S. Geological Survey in cooperation with the Wyoming State Engineer and the Wyoming Economic Development and Stabilization Board. This report contains hydrographs for 95 observation wells showing water level fluctuations from 1978 through September 1987. Also included in the report are maps showing locations of observation wells and tables listing well depths, use of water, geologic source, records available, and highest and lowest water levels for the period of record. (USGS)

  14. Global Precipitation Responses to Land Hydrological Processes

    NASA Astrophysics Data System (ADS)

    Lo, M.; Famiglietti, J. S.

    2012-12-01

    Several studies have established that soil moisture increases after adding a groundwater component in land surface models due to the additional supply of subsurface water. However, impacts of groundwater on the spatial-temporal variability of precipitation have received little attention. Through the coupled groundwater-land-atmosphere model (NCAR Community Atmosphere Model + Community Land Model) simulations, this study explores how groundwater representation in the model alters the precipitation spatiotemporal distributions. Results indicate that the effect of groundwater on the amount of precipitation is not globally homogeneous. Lower tropospheric water vapor increases due to the presence of groundwater in the model. The increased water vapor destabilizes the atmosphere and enhances the vertical upward velocity and precipitation in tropical convective regions. Precipitation, therefore, is inhibited in the descending branch of convection. As a result, an asymmetric dipole is produced over tropical land regions along the equator during the summer. This is analogous to the "rich-get-richer" mechanism proposed by previous studies. Moreover, groundwater also increased short-term (seasonal) and long-term (interannual) memory of precipitation for some regions with suitable groundwater table depth and found to be a function of water table depth. Based on the spatial distributions of the one-month-lag autocorrelation coefficients as well as Hurst coefficients, air-land interaction can occur from short (several months) to long (several years) time scales. This study indicates the importance of land hydrological processes in the climate system and the necessity of including the subsurface processes in the global climate models.

  15. Plant Functional Type Shifts in Big Sagebrush Ecosystems: Impacts on Dryland Ecosystem Water Balance

    NASA Astrophysics Data System (ADS)

    Bogenschuetz, N. M.; Bearup, L. A.; Maxwell, R. M.; Santi, P. M.

    2014-12-01

    The mountain pine beetle (MPB), Dendroctonus ponderosae, has caused significant tree mortality within North America. Specifically, the MPB affects ponderosa pine and lodgepole pine forests within the Rocky Mountains with approximately 3.4 million acres of forest impacted over the past 20 years. The full impacts of such unprecedented tree mortality on hydrology and slope stability is not well understood. This work studies the affects of MPB infestation on slope instability. A large-scale statistical analysis of MPB and slope stability is combined with a more in-depth analysis of the factors that contribute to slope stability. These factors include: slope aspect, slope angle, root decay, regrowth and hydrologic properties, such as water table depth and soil moisture. Preliminary results show that MPB may affect a greater number of north- and east-facing slopes. This is in accordance with more water availability and a higher MPB impacted tree density on north-facing slopes which, in turn, could potentially increase the probability of slope failure. Root strength is predicted to decrease as the roots stop transpiring 3-4 years proceeding infestation. However, this effect on the hillslope is likely being counterbalanced by the regrowth of grasses, forbs, shrubs, and trees. In addition, the increase in water table height from the lack of transpiring trees is adding a driving force to the slopes. The combination of all these factors will be used in order to assess the effects of MPB tree mortality on slope stability.

  16. Towards a high resolution, integrated hydrology model of North America: Diagnosis of feedbacks between groundwater and land energy fluxes at continental scales.

    NASA Astrophysics Data System (ADS)

    Maxwell, Reed; Condon, Laura

    2016-04-01

    Recent studies demonstrate feedbacks between groundwater dynamics, overland flow, land surface and vegetation processes, and atmospheric boundary layer development that significantly affect local and regional climate across a range of climatic conditions. Furthermore, the type and distribution of vegetation cover alters land-atmosphere water and energy fluxes, as well as runoff generation and overland flow processes. These interactions can result in significant feedbacks on local and regional climate. In mountainous regions, recent research has shown that spatial and temporal variability in annual evapotranspiration, and thus water budgets, is strongly dependent on lateral groundwater flow; however, the full effects of these feedbacks across varied terrain (e.g. from plains to mountains) are not well understood. Here, we present a high-resolution, integrated hydrology model that covers much of continental North America and encompasses the Mississippi and Colorado watersheds. The model is run in a fully-transient manner at hourly temporal resolution incorporating fully-coupled land energy states and fluxes with integrated surface and subsurface hydrology. Connections are seen between hydrologic variables (such as water table depth) and land energy fluxes (such as latent heat) and spatial and temporal scaling is shown to span many orders of magnitude. Model results suggest that partitioning of plant transpiration to bare soil evaporation is a function of water table depth and later groundwater flow. Using these transient simulations as a proof of concept, we present a vision for future integrated simulation capabilities.

  17. Self-Selection of Frequency Tables with Bilateral Mismatches in an Acoustic Simulation of a Cochlear Implant

    PubMed Central

    Fitzgerald, Matthew B.; Prosolovich, Ksenia; Tan, Chin-Tuan; Glassman, E. Katelyn; Svirsky, Mario A.

    2017-01-01

    Background Many recipients of bilateral cochlear implants (CIs) may have differences in electrode insertion depth. Previous reports indicate that when a bilateral mismatch is imposed, performance on tests of speech understanding or sound localization becomes worse. If recipients of bilateral CIs cannot adjust to a difference in insertion depth, adjustments to the frequency table may be necessary to maximize bilateral performance. Purpose The purpose of this study was to examine the feasibility of using real-time manipulations of the frequency table to offset any decrements in performance resulting from a bilateral mismatch. Research Design A simulation of a CI was used because it allows for explicit control of the size of a bilateral mismatch. Such control is not available with users of CIs. Study Sample A total of 31 normal-hearing young adults participated in this study. Data Collection and Analysis Using a CI simulation, four bilateral mismatch conditions (0, 0.75, 1.5, and 3 mm) were created. In the left ear, the analysis filters and noise bands of the CI simulation were the same. In the right ear, the noise bands were shifted higher in frequency to simulate a bilateral mismatch. Then, listeners selected a frequency table in the right ear that was perceived as maximizing bilateral speech intelligibility. Word-recognition scores were then assessed for each bilateral mismatch condition. Listeners were tested with both a standard frequency table, which preserved a bilateral mismatch, or with their self-selected frequency table. Results Consistent with previous reports, bilateral mismatches of 1.5 and 3 mm yielded decrements in word recognition when the standard table was used in both ears. However, when listeners used the self-selected frequency table, performance was the same regardless of the size of the bilateral mismatch. Conclusions Self-selection of a frequency table appears to be a feasible method for ameliorating the negative effects of a bilateral mismatch. These data may have implications for recipients of bilateral CIs who cannot adapt to a bilateral mismatch, because they suggest that (1) such individuals may benefit from modification of the frequency table in one ear and (2) self-selection of a “most intelligible” frequency table may be a useful tool for determining how the frequency table should be altered to optimize speech recognition. PMID:28534729

  18. An Analysis of Freshwater Mussels (Unionidae) in the Lower Ohio River at Two Beds Near Olmsted, Illinois: 1992 Studies.

    DTIC Science & Technology

    1994-02-01

    Experiment Station NT1IS CRAM 3909 Halls Ferry Road I Vicksburg, MS 39180-6199 U announced J .jstification ....... By DiAt ibution / Availability Codes Avail...D Results of Water Velocity Studies Table D1 (Concluded) Sensor 940 Sensor 946 File Code Dist Depth Code Dist Depth B3 700 18 B4 200 9 LOR2271 B3 700...Sped"e No. of Individuafs Fusconaia ebena 124 Quadrula p. pus frosa 16 Quadnia metanewa 18 Obovarta o/ivara 8 El/ isaia Mineo/ata 12 Ambiema p. picaft

  19. PEATBOG: a biogeochemical model for analyzing coupled carbon and nitrogen dynamics in northern peatlands

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Blodau, C.

    2013-08-01

    Elevated nitrogen deposition and climate change alter the vegetation communities and carbon (C) and nitrogen (N) cycling in peatlands. To address this issue we developed a new process-oriented biogeochemical model (PEATBOG) for analyzing coupled carbon and nitrogen dynamics in northern peatlands. The model consists of four submodels, which simulate: (1) daily water table depth and depth profiles of soil moisture, temperature and oxygen levels; (2) competition among three plants functional types (PFTs), production and litter production of plants; (3) decomposition of peat; and (4) production, consumption, diffusion and export of dissolved C and N species in soil water. The model is novel in the integration of the C and N cycles, the explicit spatial resolution belowground, the consistent conceptualization of movement of water and solutes, the incorporation of stoichiometric controls on elemental fluxes and a consistent conceptualization of C and N reactivity in vegetation and soil organic matter. The model was evaluated for the Mer Bleue Bog, near Ottawa, Ontario, with regards to simulation of soil moisture and temperature and the most important processes in the C and N cycles. Model sensitivity was tested for nitrogen input, precipitation, and temperature, and the choices of the most uncertain parameters were justified. A simulation of nitrogen deposition over 40 yr demonstrates the advantages of the PEATBOG model in tracking biogeochemical effects and vegetation change in the ecosystem.

  20. PEATBOG: a biogeochemical model for analyzing coupled carbon and nitrogen dynamics in northern peatlands

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Blodau, C.

    2013-03-01

    Elevated nitrogen deposition and climate change alter the vegetation communities and carbon (C) and nitrogen (N) cycling in peatlands. To address this issue we developed a new process-oriented biogeochemical model (PEATBOG) for analyzing coupled carbon and nitrogen dynamics in northern peatlands. The model consists of four submodels, which simulate: (1) daily water table depth and depth profiles of soil moisture, temperature and oxygen levels; (2) competition among three plants functional types (PFTs), production and litter production of plants; (3) decomposition of peat; and (4) production, consumption, diffusion and export of dissolved C and N species in soil water. The model is novel in the integration of the C and N cycles, the explicit spatial resolution belowground, the consistent conceptualization of movement of water and solutes, the incorporation of stoichiometric controls on elemental fluxes and a consistent conceptualization of C and N reactivity in vegetation and soil organic matter. The model was evaluated for the Mer Bleue Bog, near Ottawa, Ontario, with regards to simulation of soil moisture and temperature and the most important processes in the C and N cycles. Model sensitivity was tested for nitrogen input, precipitation, and temperature, and the choices of the most uncertain parameters were justified. A simulation of nitrogen deposition over 40 yr demonstrates the advantages of the PEATBOG model in tracking biogeochemical effects and vegetation change in the ecosystem.

  1. Selected test-well data from the MX-missile siting study, Tooele, Juab, Millard, Beaver, and Iron counties, Utah

    USGS Publications Warehouse

    Mason, James L.; Atwood, John W.; Buettner, Priscilla S.

    1985-01-01

    This report contains well data collected from 1979 to 1983 in a part of the Great Basin in western Utah (fig. 1). The area is characterized by a series of generally north-trending mountain ranges separated by alluviumfilled basins that are partially filled with sedimentary deposits eroded from the adjacent mountains and lacustrine sediments deposited by Lake Bonneville. Most of the intermountain basins are elongated in the northward direction, but some are almost equidimensional.This report was prepared as part of the Great Basin Regional AquiferSystem Analysis (RASA) program. The report is intended to make well data from the MX-missile siting study readily available to water-resource managers and the general public. It includes well data obtained in areas for which little or no such data have been published previously. Well-drilling and well-completion data were compiled by Ertec, Inc. (formerly Fugro National, Inc.) under contract with the U. S. Air Force. Those data along with aquifer test data, geophysical logs, and drillers1 or geologists1 logs were obtained from Ertec, Inc. under an agreement with the U.S. Air Force. The authors thank the officials of both Ertec, Inc. and the U.S. Air Force for their helpful cooperation. The U.S. Geological Survey obtained accurate locations of the test wells (pi. 1) and accurate water-level measurements in those wells (table 1). Chemical analyses of water samples collected from several of the test wells drilled in the Sevier Desert have been published in a report by Enright and Holmes (1982, table 5).Test drilling for the MX-missile siting study consisted of two parts, the verification phase and the water-resources phase. The verification jhase was designed to obtain information necessary for the design and construction of the MX-basing system. Numerous small diameter wells were bored with depths ranging from 92 to 205 feet. Two-inch diameter JVC casing with the bottom 20 feet perforated was installed in each borehole. The water-resources phase was designed to determine ground-water availibility and to estimate the effects of ground-water withdrawals required for the construction of the MX-basing system. Six large-diameter production test wells were drilled along with associated small-diameter observation wells. Depths ranged from 310 to 1,399 feet. Lithologic logs for selected production test wells or associated observation wells are listed in table 2. Geophysical logs and aquifer test data are available in the files of the U. S. Geological Survey, as indicated in table 1.

  2. Role of aquitards in hydrogeochemical systems: a synopsis

    USGS Publications Warehouse

    Back, W.

    1986-01-01

    Aquitards exert significant influence on the hydrogeochemistry of aquifer systems. This influence is manifested somewhat differently depending on the relative position of aquitards within a system. In the deeper regimes, they are influential in the origin and distribution of brines and the development of geopressured zones. In intermediate regimes, they form multi-layered aquifer systems and provide a source of reactive minerals and exchangeable ions. In shallow regimes, aquitards can influence the topography and drainage patterns; this influences the relationship between the water table and the potentiometric surface of confined aquifers, controls the rates of infiltration and discharge, and controls whether the geochemical system is open or closed to exchange of carbon dioxide gas. In coastal areas, aquitards can determine the depth of the saltwater-freshwater interface, its distance from the shoreline, and the position of the mixing zone that causes geochemical alteration of minerals and development of porosity. ?? 1986.

  3. Steady state fractionation of heavy noble gas isotopes in a deep unsaturated zone

    USGS Publications Warehouse

    Seltzer, Alan M.; Severinghaus, Jeffrey P.; Andraski, Brian J.; Stonestrom, David A.

    2017-01-01

    To explore steady state fractionation processes in the unsaturated zone (UZ), we measured argon, krypton, and xenon isotope ratios throughout a ∼110 m deep UZ at the United States Geological Survey (USGS) Amargosa Desert Research Site (ADRS) in Nevada, USA. Prior work has suggested that gravitational settling should create a nearly linear increase in heavy-to-light isotope ratios toward the bottom of stagnant air columns in porous media. Our high-precision measurements revealed a binary mixture between (1) expected steady state isotopic compositions and (2) unfractionated atmospheric air. We hypothesize that the presence of an unsealed pipe connecting the surface to the water table allowed for direct inflow of surface air in response to extensive UZ gas sampling prior to our first (2015) measurements. Observed isotopic resettling in deep UZ samples collected a year later, after sealing the pipe, supports this interpretation. Data and modeling each suggest that the strong influence of gravitational settling and weaker influences of thermal diffusion and fluxes of CO2 and water vapor accurately describe steady state isotopic fractionation of argon, krypton, and xenon within the UZ. The data confirm that heavy noble gas isotopes are sensitive indicators of UZ depth. Based on this finding, we outline a potential inverse approach to quantify past water table depths from noble gas isotope measurements in paleogroundwater, after accounting for fractionation during dissolution of UZ air and bubbles.

  4. Estimating soil matric potential in Owens Valley, California

    USGS Publications Warehouse

    Sorenson, Stephen K.; Miller, R.F.; Welch, M.R.; Groeneveld, D.P.; Branson, F.A.

    1988-01-01

    Much of the floor of the Owens Valley, California, is covered with alkaline scrub and alkaline meadow plant communities, whose existence is dependent partly on precipitation and partly on water infiltrated into the rooting zone from the shallow water table. The extent to which these plant communities are capable of adapting to and surviving fluctuations in the water table depends on physiological adaptations of the plants and on the water content, matric potential characteristics of the soils. Two methods were used to estimate soil matric potential in test sites in Owens Valley. The first was the filter-paper method, which uses water content of filter papers equilibrated to water content of soil samples taken with a hand auger. The other method of estimating soil matric potential was a modeling approach based on data from this and previous investigations. These data indicate that the base 10 logarithm of soil matric potential is a linear function of gravimetric soil water content for a particular soil. Estimates of soil water characteristic curves were made at two sites by averaging the gravimetric soil water content and soil matric potential values from multiple samples at 0.1 m depths derived by using the hand auger and filter paper method and entering these values in the soil water model. The characteristic curves then were used to estimate soil matric potential from estimates of volumetric soil water content derived from neutron-probe readings. Evaluation of the modeling technique at two study sites indicated that estimates of soil matric potential within 0.5 pF units of the soil matric potential value derived by using the filter paper method could be obtained 90 to 95% of the time in soils where water content was less than field capacity. The greatest errors occurred at depths where there was a distinct transition between soils of different textures. (Lantz-PTT)

  5. Economic impacts of urban flooding in South Florida: Potential consequences of managing groundwater to prevent salt water intrusion.

    PubMed

    Czajkowski, Jeffrey; Engel, Vic; Martinez, Chris; Mirchi, Ali; Watkins, David; Sukop, Michael C; Hughes, Joseph D

    2018-04-15

    High-value urban zones in coastal South Florida are considered particularly vulnerable to salt water intrusion into the groundwater-based, public water supplies caused by sea level rise (SLR) in combination with the low topography, existing high water table, and permeable karst substrate. Managers in the region closely regulate water depths in the extensive South Florida canal network to control closely coupled groundwater levels and thereby reduce the risk of saltwater intrusion into the karst aquifer. Potential SLR adaptation strategies developed by local managers suggest canal and groundwater levels may have to be increased over time to prevent the increased salt water intrusion risk to groundwater resources. However, higher canal and groundwater levels cause the loss of unsaturated zone storage and lead to an increased risk of inland flooding when the recharge from rainfall exceeds the capacity of the unsaturated zone to absorb it and the water table reaches the surface. Consequently, higher canal and groundwater levels are also associated with increased risk of economic losses, especially during the annual wet seasons. To help water managers and urban planners in this region better understand this trade-off, this study models the relationships between flood insurance claims and groundwater levels in Miami-Dade County. Via regression analyses, we relate the incurred number of monthly flood claims in 16 Miami-Dade County watersheds to monthly groundwater levels over the period from 1996 to 2010. We utilize these estimated statistical relationships to further illustrate various monthly flood loss scenarios that could plausibly result, thereby providing an economic quantification of a "too much water" trade-off. Importantly, this understanding is the first of its kind in South Florida and is exceedingly useful for regional-scale hydro-economic optimization models analyzing trade-offs associated with high water levels. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. A method of estimating ground-water supplies based on discharge by plants and evaporation from soil: Results of investigations in Escalante Valley, Utah

    USGS Publications Warehouse

    White, W.N.

    1932-01-01

    Fluctuations of water levels in wells, if critically studied, may give much information as to the occurrence, movement, and quantity of available ground water. In some localities the ground-water level has been observed to decline during the day and to rise at night, the decline beginning at about the same hour every morning and the rise at about the same hour every night. This daily decline is due to the withdrawal of ground water from the zone of saturation by plants, and the rise at night is due to upward movement of water under slight artesian pressure from permeable beds of sand and gravel at some depth beneath the water table.

  7. Insights from 14C into C loss pathways in degraded peatlands

    NASA Astrophysics Data System (ADS)

    Evans, Martin; Evans, Chris; Allott, Tim; Stimson, Andrew; Goulsbra, Claire

    2016-04-01

    Peatlands are important global stores of terrestrial carbon. Lowered water tables due to changing climate and direct or indirect human intervention produce a deeper aerobic zone and have the potential to enhance loss of stored carbon from the peat profile. The quasi continuous accumulation of organic matter in active peatlands means that the age of fluvial dissolved organic carbon exported from peatland systems is related to the source depth in the peat profile. Consequently 14C analysis of DOC in waters draining peatlands has the potential not only to tell us about the source of fluvial carbon and the stability of the peatland but also about the dominant hydrological pathways in the peatland system. This paper will present new radiocarbon determinations from peatland streams draining the heavily eroded peatlands of the southern Pennine uplands in the UK. These blanket peatland systems are highly degraded, with extensive bare peat and gully erosion resulting from air pollution during the industrial revolution, overgrazing, wildfire and climatic changes. Deep and extensive gullying has significantly modified the hydrology of these systems leading to local and more widespread drawdown of water table. 14C data from DOC in drainage waters are presented from two catchments; one with extensive gully erosion and the other with a combination of gully erosion and sheet erosion of the peat. At the gully eroded site DOC in drainage waters is as old as 160 BP but at the site with extensive sheet erosion dates of up to 1069 BP are amongst the oldest recorded from blanket peatland globally These data indicate significant degradation of stored carbon from the eroding peatlands. Initial comparisons of the 14C data with modelled water table for the catchments and depth-age curves for catchment peats suggests that erosion of the peat surface, allowing decomposition of exposed older organic material is a potential mechanism producing aged carbon from the eroded catchment. This mechanism may be as important as changes in hydrological flow pathways within the peat in mobilising aged carbon from the systems.

  8. Experiments in water spreading at Newark, Delaware

    USGS Publications Warehouse

    Boggess, Durward Haye; Rima, Donald Robert

    1962-01-01

    Two experiments in water spreading were made at Newark, Del., to evaluate the prospects of using excess storm runoff to recharge the shallow water-table aquifer which serves the community. Water was diverted from 1 of the city's 3 production wells and released into an infiltration ditch near the municipal well field. Although slightly more than 65,000 cubic feet of water (nearly 500,000 gallons ) was spread in the infiltration ditch and allowed to seep into the subsurface, there was no indication that any appreciable amount of water reached the producing aquifer. Instead, a perched zone of saturation was created by the presence of an impermeable or slightly permeable bed above the water table. So effective is this barrier to the downward movement of water that within a period of less than 1 day, the apex of the perched zone rose about 10 feet to the level of the bottom of the infiltration ditch. As more water was added, the mound of saturation spread laterally. On the basis of these experiments, it appears that the principal aquifer at Newark, Del., would not be benefited by spreading water in shallow infiltration ditches or basins. However, the absorptive capacity of the unsaturated materials which occur at a shallow depth, is sufficient to permit the disposal of large volumes of storm runoff.

  9. Preliminary assessment of sources, distribution, and mobility of selenium in the San Joaquin Valley, California

    USGS Publications Warehouse

    Gilliom, R.J.

    1989-01-01

    Selenium in tile drain water from parts of the western San Joaquin Valley, California, has adversely affected fish and waterfowl where drain water was impounded. Soils in these drained areas were derived from Coast Range marine sedimentary formations, were naturally saline and probably contained abundant soluble selenium. Decades of irrigation have redistributed the most soluble forms of selenium from the soil into groundwater and have caused the water table to rise 1 to 4 ft/year. Selenium in shallow groundwater has been further concentrated because of evapotranspiration. The rising water table has caused a large area of farmland to require artificial drainage of groundwater that contains high concentrations of selenium. The present areal distribution of selenium in shallow groundwater reflects the natural distribution of saline soils. The depth distribution of selenium in groundwater reflects the history of irrigation. The highest concentrations of selenium in groundwater (50 to more than 1,000 micrograms/L) are in a zone of variable thickness located between 20 and 150 ft below the water table. The toxic water in this zone was recharged during the first few decades of irrigation. The large volume of high selenium groundwater makes it desirable to leave this water where it is, rather than bring it to the land surface or allow it to move into parts of the aquifer that may be used for water supply. Selenium concentrations in the San Joaquin River depend on the magnitude of the selenium load from drain water and dilution by water with low concentrations of selenium from all other sources of streamflow. The San Joaquin Valley is a regional-scale example of how manipulation of the hydrologic system can cause water quality problems if naturally occurring toxic substances are mobilized. (USGS)

  10. Performance of deep-rooted phreatophytic trees at a site containing total petroleum hydrocarbons.

    PubMed

    Ferro, Ari M; Adham, Tareq; Berra, Brett; Tsao, David

    2013-01-01

    Poplar and willow tree stands were installed in 2003 at a site in Raleigh, North Carolina containing total petroleum hydrocarbon - contaminated groundwater. The objective was groundwater uptake and plume control. The water table was 5 to 6 m below ground surface (bgs) and therefore methods were used to encourage deep root development. Growth rates, rooting depth and sap flow were measured for trees in Plot A located in the center of the plume and in Plot B peripheral to the plume. The trees were initially sub-irrigated with vertically installed drip-lines and by 2005 had roots 4 to 5 m bgs. Water balance calculations suggested groundwater uptake. In 2007, the average sap flow was higher for Plot B (approximately 59 L per day per tree) than for Plot A (approximately 23 L per day per tree), probably as a result of TPH-induced stress in Plot A. Nevertheless, the estimated rate of groundwater uptake for Plot A was sufficient, relative to the calculated rate of groundwater flux beneath the stand, that a high level of plume control was achieved based on MODFLOW modeling results. Down-gradient groundwater monitoring wells installed in late 2011 should provide quantitative data for plume control.

  11. Hydrologic Tests at Characterization Wells R-9i, R-13, R-19, R-22, and R-31, Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.G.McLin; W.J. Stone

    2004-06-01

    Hydrologic information is essential for environmental efforts at Los Alamos National Laboratory. Testing at new characterization wells being drilled to the regional aquifer (''R wells'') to improve the conceptual hydrogeologic model of the Pajarito Plateau is providing such information. Field tests were conducted on various zones of saturation penetrated by the R wells to collect data needed for determining hydraulic properties. This document provides details of the design and execution of testing as well as an analysis of data for five new wells: R-9i, R-13, R-19, R-22, and R-31. One well (R-13) was evaluated by a pumping test and themore » rest (R-9i, R-19, R-22, and R-31) were evaluated by injection tests. Characterization well R-9i is located in Los Alamos Canyon approximately 0.3 mi west of the Route 4/Route 502 intersection. It was completed at a depth of 322 ft below ground surface (bgs) in March 2000. This well was constructed with two screens positioned below the regional water table. Both screens were tested. Screen 1 is completed at about 189-200 ft bgs in fractured basalt, and screen 2 is completed at about 270-280 ft bgs in massive basalt. Specific capacity analysis of the screen 1 data suggests that the fractured basalt has a transmissivity (T) of 589 ft{sup 2}/day and corresponds to a hydraulic conductivity (K) of 7.1 ft/day based on a saturated thickness of 83 ft. The injection test data from the massive basalt near screen 2 were analyzed by the Bouwer-Rice slug test methodology and suggest that K is 0.11 ft/day, corresponding to a T of about 2.8 ft{sup 2}/day based on a saturated thickness of 25 ft. Characterization well R-13 is located in Mortandad Canyon just west of the eastern Laboratory boundary. It was completed at a depth of 1029 ft bgs in February 2002. This well was constructed with one 60-ft long screen positioned about 125 ft below the regional water table. This screen is completed at about 958-1019 ft bgs and straddles the geologic contact between the Puye fanglomerate and unassigned pumiceous units. The specific capacity analysis of a 12 minute pumping test indicates that the Puye fanglomerates near the R-13 screen have a T of 5269 ft{sup 2}/day and correspond to a hydraulic conductivity (K) of 17.6 ft/day based on a saturated thickness of 300 ft. Characterization well R-19 is located east of firing site IJ in Technical Area (TA) 36 on the mesa between Three-mile and Potrillo Canyons. It was completed at a depth of 1885 ft bgs in April 2000. This well was constructed with two screens positioned above the regional water table and five screens positioned below the regional water table. Only the bottom two screens were tested. Screen 6 is completed at about 1727-1734 ft bgs in Puye fanglomerate, and screen 7 is completed at about 1832-1849 ft bgs in Puye fanglomerate. Specific capacity analysis of the screen 6 data suggests that T is about 6923 ft{sup 2}/day and corresponds to a K of 18.6 ft/day based on a saturated thickness of 373 ft. Specific capacity analysis of the screen 7 data suggests that T is about 8179 ft{sup 2}/day and corresponds to a K of 22.0 ft/day based on a saturated thickness of 373 ft. Characterization well R-22 is located on Mesita del Buey between Canada del Buey and Pajarito Canyons immediately east of Material Disposal Area (MDA) G in TA-54. It was completed at a depth of 1489 ft bgs in October 2000. This well was constructed with five screens positioned at or below the regional water table; however, only screens 2-5 were tested. Screen 1 is completed at the regional water table at about 872-914 ft bgs in Cerros del Rio basalt. Screen 2 is completed at about 947-989 ft bgs in Cerros del Rio basalt. Screen 3 is completed at about 1272-1279 ft bgs in Puye fanglomerate. Screen 4 is completed at about 1378-1452 ft bgs in older basalt. Screen 5 is completed at about 1447-1452 ft bgs in older fanglomerate. Bouwer-Rice analyses of the injection-test recovery data suggest K values of 0.04, 0.32, 0.54, and 0.27 ft/day for screens 2, 3, 4, and 5, respectively. These values correspond to T values of 2.8, 15.8, 26.5, and 11.6 ft{sup 2}/day, respectively, for screens 2, 3, 4, and 5. These analyses are based on saturated thicknesses of 69.5 ft, 49.4 ft, 49.0 ft, and 43.0 ft, respectively. Characterization well R-31 is located at TA-39 in the north fork of lower Ancho Canyon. It was completed at a depth of 1103 ft bgs in April 2000. This well was constructed with one screen positioned above the regional water table, and four screens position at or below the regional water table.« less

  12. Spatial Analysis of Thaw Depth

    DTIC Science & Technology

    2001-01-01

    considerable amounts of organic matter and the water table is at or above the surface (Everett 1980). Everett classified the soils as Pergelic Cryaquepts...covers most of the area), Pergelic Cryohemists and Cryosapriest, Pergelic Cryopsamments, and Pergelic Cryofluents. The Atquasuk area is considered fairly...materials, and is classi- fied as Euic Pergelic Cryosapriest (Ping et al. 1994). The vegetation includes sedge, shrub, lichens, and mosses. Happy Valley is on

  13. Sensitivity analysis of the DRAINWAT model applied to an agricultural watershed in the lower coastal plain, North Carolina, USA

    Treesearch

    Hyunwoo Kim; Devendra M. Amatya; Stephen W. Broome; Dean L. Hesterberg; Minha Choi

    2011-01-01

    The DRAINWAT, DRAINmod for WATershed model, was selected for hydrological modelling to obtain water table depths and drainage outflows at Open Grounds Farm in Carteret County, North Carolina, USA. Six simulated storm events from the study period were compared with the measured data and analysed. Simulation results from the whole study period and selected rainfall...

  14. Plant species distribution in relation to water-table depth and soil redox potential in montane riparian meadows

    Treesearch

    Kathleen A. Dwire; J. Boone Kauffman; John E. Baham

    2006-01-01

    The distribution of riparian plant species is largely driven by hydrologic and soil variables, and riparian plant communities frequently occur in relatively distinct zones along streamside elevational and soil textural gradients. In two montane meadows in northeast Oregon, USA, we examined plant species distribution in three riparian plant communities¡ªdefined as wet,...

  15. Sources of sulfate supporting anaerobic metabolism in a contaminated aquifer

    USGS Publications Warehouse

    Ulrich, G.A.; Breit, G.N.; Cozzarelli, I.M.; Suflita, J.M.

    2003-01-01

    Field and laboratory techniques were used to identify the biogeochemical factors affecting sulfate reduction in a shallow, unconsolidated alluvial aquifer contaminated with landfill leachate. Depth profiles of 35S-sulfate reduction rates in aquifer sediments were positively correlated with the concentration of dissolved sulfate. Manipulation of the sulfate concentration in samples revealed a Michaelis-Menten-like relationship with an apparent Km and Vmax of approximately 80 and 0.83 ??M SO4-2??day-1, respectively. The concentration of sulfate in the core of the leachate plume was well below 20 ??M and coincided with very low reduction rates. Thus, the concentration and availability of this anion could limit in situ sulfate-reducing activity. Three sulfate sources were identified, including iron sulfide oxidation, barite dissolution, and advective flux of sulfate. The relative importance of these sources varied with depth in the alluvium. The relatively high concentration of dissolved sulfate at the water table is attributed to the microbial oxidation of iron sulfides in response to fluctuations of the water table. At intermediate depths, barite dissolves in undersaturated pore water containing relatively high concentrations of dissolved barium (???100 ??M) and low concentrations of sulfate. Dissolution is consistent with the surface texture of detrital barite grains in contact with leachate. Laboratory incubations of unamended and barite-amended aquifer slurries supported the field observation of increasing concentrations of barium in solution when sulfate reached low levels. At a deeper highly permeable interval just above the confining bottom layer of the aquifer, sulfate reduction rates were markedly higher than rates at intermediate depths. Sulfate is supplied to this deeper zone by advection of uncontaminated groundwater beneath the landfill. The measured rates of sulfate reduction in the aquifer also correlated with the abundance of accumulated iron sulfide in this zone. This suggests that the current and past distributions of sulfate-reducing activity are similar and that the supply of sulfate has been sustained at these sites.

  16. Vertical gradients in water chemistry in the central High Plains aquifer, southwestern Kansas and Oklahoma panhandle, 1999

    USGS Publications Warehouse

    McMahon, Peter B.

    2001-01-01

    The central High Plains aquifer is the primary source of water for domestic, industrial, and irrigation uses in parts of Colorado, Kansas, New Mexico, Oklahoma, and Texas. Water-level declines of more than 100 feet in some areas of the aquifer have increased the demand for water deeper in the aquifer. The maximum saturated thickness of the aquifer ranged from 500 to 600 feet in 1999. As the demand for deeper water increases, it becomes increasingly important for resource managers to understand how the quality of water in the aquifer changes with depth. In 1998?99, 18 monitoring wells at nine sites in southwestern Kansas and the Oklahoma Panhandle were completed at various depths in the central High Plains aquifer, and one monitoring well was completed in sediments of Permian age underlying the aquifer. Water samples were collected once from each well in 1999 to measure vertical gradients in water chemistry in the aquifer. Tritium concentrations measured in ground water indicate that water samples collected in the upper 30 feet of the aquifer were generally recharged within the last 50 years, whereas all of the water samples collected at depths more than 30 feet below the water table were recharged more than 50 years ago. Dissolved oxygen was present throughout the aquifer, with concentrations ranging from 1.7 to 8.4 mg/L. Water in the central High Plains aquifer was predominantly a calcium-bicarbonate type that exhibited little variability in concentrations of dissolved solids with depth (290 to 642 mg/L). Exceptions occurred in some areas where there had been upward movement of mineralized water from underlying sediments of Permian age and areas where there had been downward movement of mineralized Arkansas River water to the aquifer. Calcium-sulfate and sodium-chloride waters dominated and concentrations of dissolved solids were elevated (862 to 4,030 mg/L) near the base of the aquifer in the areas of upward leakage. Dissolution of gypsum or anhydrite and halite in sediments of Permian age by ground water was the likely source of calcium, sulfate, sodium, and chloride in those waters. Calcium-sodium-sulfate waters dominated, and concentrations of dissolved solids were as large as 4,916 mg/L near the water table in the area of downward leakage. Dissolution of minerals in sedimentary deposits of marine origin in upstream areas of the Arkansas River drainage were the likely sources of calcium, sodium, and sulfate in those waters. Nitrate was detected throughout the aquifer and the background concentration was estimated to be 2.45 mg/L as N. The largest nitrate concentrations (8.28, 22, and 54.4 mg/L as N) occurred in recently recharged water collected adjacent to irrigated fields. Three pesticides (atrazine, metolachlor, simazine) and five pesticide degradation products (alachlor ethanesulfonic acid, alachlor oxanilic acid, deethylatrazine, metolachlor ethanesulfonic acid, metolachlor oxanilic acid) were detected in recently recharged water from six water-table wells. Five of the six wells were adjacent to irrigated fields. These data indicate that concentrations of nitrate and pesticides increased over time in some areas of the aquifer as a result of agricultural activities. Results from this study indicate that vertical gradients in water chemistry existed in the central High Plains aquifer. The chemical gradients resulted from chemical inputs to the aquifer from underlying sediments of Permian age, from the Arkansas River, and from agricultural activities. In areas where those chemical inputs occurred, water quality in the aquifer was impaired and may not have been suitable for some intended uses.

  17. HCMM energy budget data as a model input for assessing regions of high potential groundwater pollution

    NASA Technical Reports Server (NTRS)

    Moore, D. G. (Principal Investigator); Heilman, J.; Beutler, G.

    1978-01-01

    The author has identified the following significant results. In early April 1978, heavy spring runoff from snowmelt caused significant flooding along a portion of the Big Sioux River Basin in southeastern South Dakota. The flooded area was visible from surrounding areas on a May 15 HCMM IR test image. On May 15, the flood waters had receded but an area of anomalous residual high soil moisture remained. The high soil moisture area was not visible on a HCMM day visible test image of the same scene, or on LANDSAT imagery. To evaluate the effect of water table depth on surface temperatures, thermal scanner data collected on September 5 and 6, 1978 at approximate HCMM overpass times at an altitude of 3650 m were analyzed. Apparent surface temperatures measured by the scanner included emittance contributions from soil surface and the land cover. Results indicated that the shallow water tables produced a damping of the amplitude of the diurnal surface temperature wave.

  18. Spectral detection of near-surface moisture content and water-table position in northern peatland ecosystems

    Treesearch

    Karl M. Meingast; Michael J. Falkowski; Evan S. Kane; Lynette R. Potvin; Brian W. Benscoter; Alistair M.S. Smith; Laura L. Bourgeau-Chavez; Mary Ellen Miller

    2014-01-01

    Wildland fire occurrence has been increasing in peatland ecosystems during recent decades. As such, there is a need for broadly applicable tools to detect and monitor controls on combustion such as surface peat moisture and water-table position. A field portable spectroradiometer was used to measure surface reflectance of two Sphagnum moss-dominated...

  19. An analytical study on nested flow systems in a Tóthian basin with a periodically changing water table

    NASA Astrophysics Data System (ADS)

    Zhao, Ke-Yu; Jiang, Xiao-Wei; Wang, Xu-Sheng; Wan, Li; Wang, Jun-Zhi; Wang, Heng; Li, Hailong

    2018-01-01

    Classical understanding on basin-scale groundwater flow patterns is based on Tóth's findings of a single flow system in a unit basin (Tóth, 1962) and nested flow systems in a complex basin (Tóth, 1963), both of which were based on steady state models. Vandenberg (1980) extended Tóth (1962) by deriving a transient solution under a periodically changing water table in a unit basin and examined the flow field distortion under different dimensionless response time, τ∗. Following Vandenberg's (1980) approach, we extended Tóth (1963) by deriving the transient solution under a periodically changing water table in a complex basin and examined the transient behavior of nested flow systems. Due to the effect of specific storage, the flow field is asymmetric with respect to the midline, and the trajectory of internal stagnation points constitutes a non-enclosed loop, whose width decreases when τ∗ decreases. The distribution of the relative magnitude of hydraulic head fluctuation, Δh∗ , is dependent on the horizontal distance away from a divide and the depth below the land surface. In the shallow part, Δh∗ decreases from 1 at the divide to 0 at its neighboring valley under all τ∗, while in the deep part, Δh∗ reaches a threshold, whose value decreases when τ∗ increases. The zones with flowing wells are also found to change periodically. As water table falls, there is a general trend of shrinkage in the area of zones with flowing wells, which has a lag to the declining water table under a large τ∗. Although fluxes have not been assigned in our model, the recharge/discharge flux across the top boundary can be obtained. This study is critical to understand a series of periodically changing hydrogeological phenomena in large-scale basins.

  20. Influence of water table fluctuations on subsurface methane dynamics and surface fluxes in seasonally flooded subtropical pastures.

    NASA Astrophysics Data System (ADS)

    Chamberlain, S.; Gomez-Casanovas, N.; Boughton, E.; Keel, E.; Walter, M. T.; Groffman, P. M.; Sparks, J. P.

    2015-12-01

    Seasonally flooded subtropical pastures are major sources of methane (CH4), and periodic flooding drives complex emission dynamics from these ecosystems. Understanding the mechanisms of belowground CH4 dynamics driving soil surface fluxes is needed to better understand emissions from these systems and their response to environmental change. We investigated subsurface CH4 dynamics in relation to net surface fluxes using laboratory water table manipulations and compared these results to eddy covariance-measured fluxes to link within-soil CH4 dynamics to observed ecosystem fluxes. Pronounced hysteresis was observed in ecosystem CH4 fluxes during precipitation driven flooding events. This dynamic was replicated in mesocosm experiments, with maximum CH4 fluxes observed during periods of water table recession. Hysteresis dynamics were best explained by oxygen dynamics during precipitation recharge events and the oxidation of CH4 produced in organic soil horizons during water table recession. We observed distinct CH4 dynamics between surface organic and deeper mineral soil horizons. In surface organic soil horizons, high levels of CH4 production were temporally linked to observed surface emissions. In contrast, high concentrations of CH4 observed in deeper mineral soils did not contribute to surface fluxes. Methane production potentials in surface organic soils were orders of magnitude higher than in mineral soils, suggesting that over longer flooding regimes CH4 produced in mineral horizons is unlikely to be a significant component of net surface emissions. Our results demonstrate that distinct CH4 dynamics may be stratified by depth, and flooding of the near-surface organic soils drives the high magnitude CH4 fluxes observed from subtropical pastures. These results suggest that relatively small changes in pasture water table dynamics can drive large changes in net CH4 emissions if surface organic soils remain saturated over longer time scales.

  1. Geologic controls on the chemical behaviour of nitrate in riverside alluvial aquifers, Korea

    NASA Astrophysics Data System (ADS)

    Min, Joong-Hyuk; Yun, Seong-Taek; Kim, Kangjoo; Kim, Hyoung-Soo; Kim, Dong-Ju

    2003-04-01

    To investigate the origin and behaviour of nitrate in alluvial aquifers adjacent to Nakdong River, Korea, we chose two representative sites (Wolha and Yongdang) having similar land-use characteristics but different geology. A total of 96 shallow groundwater samples were collected from irrigation and domestic wells tapping alluvial aquifers.About 63% of the samples analysed had nitrate concentrations that exceeded the Korean drinking water limit (44·3 mg l-1 NO3-), and about 35% of the samples had nitrate concentrations that exceeded the Korean groundwater quality standard for agricultural use (88·6 mg l-1 NO3-). Based on nitrogen isotope analysis, two major nitrate sources were identified: synthetic fertilizer (about 4 15N) applied to farmland, and animal manure and sewage (15-20 15N) originating from upstream residential areas. Shallow groundwater in the farmland generally had higher nitrate concentrations than those in residential areas, due to the influence of synthetic fertilizer. Nitrate concentrations at both study sites were highest near the water table and then progressively decreased with depth. Nitrate concentrations are also closely related to the geologic characteristics of the aquifer. In Yongdang, denitrification is important in regulating nitrate chemistry because of the availability of organic carbon from a silt layer (about 20 m thick) below a thin, sandy surface aquifer. In Wolha, however, conservative mixing between farmland-recharged water and water coming from a village is suggested as the dominant process. Mixing ratios estimated based on the nitrate concentrations and the 15N values indicate that water originating from the village affects the nitrate chemistry of the shallow groundwater underneath the farmland to a large extent.

  2. Response of the Water Level in a Well to Earth Tides and Atmospheric Loading Under Unconfined Conditions

    NASA Astrophysics Data System (ADS)

    Rojstaczer, Stuart; Riley, Francis S.

    1990-08-01

    The response of the water level in a well to Earth tides and atmospheric loading under unconfined conditions can be explained if the water level is controlled by the aquifer response averaged over the saturated depth of the well. Because vertical averaging tends to diminish the influence of the water table, the response is qualitatively similar to the response of a well under partially confined conditions. When the influence of well bore storage can be ignored, the response to Earth tides is strongly governed by a dimensionless aquifer frequency Q'u. The response to atmospheric loading is strongly governed by two dimensionless vertical fluid flow parameters: a dimensionless unsaturated zone frequency, R, and a dimensionless aquifer frequency Qu. The differences between Q'u and Qu are generally small for aquifers which are highly sensitive to Earth tides. When Q'u and Qu are large, the response of the well to Earth tides and atmospheric loading approaches the static response of the aquifer under confined conditions. At small values of Q'u and Qu, well response to Earth tides and atmospheric loading is strongly influenced by water table drainage. When R is large relative to Qu, the response to atmospheric loading is strongly influenced by attenuation and phase shift of the pneumatic pressure signal in the unsaturated zone. The presence of partial penetration retards phase advance in well response to Earth tides and atmospheric loading. When the theoretical response of a phreatic well to Earth tides and atmospheric loading is fit to the well response inferred from cross-spectral estimation, it is possible to obtain estimates of the pneumatic diffusivity of the unsaturated zone and the vertical hydraulic conductivity of the aquifer.

  3. Hydrologic data at a wetland site, Millington, Shelby County, Tennessee, June 1993 through June 1994

    USGS Publications Warehouse

    Robinson, J.A.; Diehl, T.H.; Stogner, R.W.

    1996-01-01

    Hydrologic data at a wetland site near Millington, Shelby County, Tennessee, were collected from June 1993 through June 1994. The data were collected to support the efforts of the Tennessee Department of Transportation to better understand hydrologic properties at the site prior to wetland restoration. Water levels were monitored in thirteen 8-inch- diameter wells, approximately 2 feet deep. The casing in each well was slotted and screened from land surface to a depth of about 2 feet. Water-level recorders provided continuous records of stage during periods of wetland inundation, and depth to water table during periods of noninundation. A continuous-stage recorder was installed in a pond. Precipitation data were obtained from the Naval Air Station-Memphis, Millington, Tennessee. Land surface at the wells was inundated from 0 to 56 percent of the study period. Additionally, water levels in the wells were not more than 1.5 feet below land surface for 16 to 68 percent of the study period.

  4. Effect of water table dynamics on land surface hydrologic memory

    NASA Astrophysics Data System (ADS)

    Lo, Min-Hui; Famiglietti, James S.

    2010-11-01

    The representation of groundwater dynamics in land surface models has received considerable attention in recent years. Most studies have found that soil moisture increases after adding a groundwater component because of the additional supply of water to the root zone. However, the effect of groundwater on land surface hydrologic memory (persistence) has not been explored thoroughly. In this study we investigate the effect of water table dynamics on National Center for Atmospheric Research Community Land Model hydrologic simulations in terms of land surface hydrologic memory. Unlike soil water or evapotranspiration, results show that land surface hydrologic memory does not always increase after adding a groundwater component. In regions where the water table level is intermediate, land surface hydrologic memory can even decrease, which occurs when soil moisture and capillary rise from groundwater are not in phase with each other. Further, we explore the hypothesis that in addition to atmospheric forcing, groundwater variations may also play an important role in affecting land surface hydrologic memory. Analyses show that feedbacks of groundwater on land surface hydrologic memory can be positive, negative, or neutral, depending on water table dynamics. In regions where the water table is shallow, the damping process of soil moisture variations by groundwater is not significant, and soil moisture variations are mostly controlled by random noise from atmospheric forcing. In contrast, in regions where the water table is very deep, capillary fluxes from groundwater are small, having limited potential to affect soil moisture variations. Therefore, a positive feedback of groundwater to land surface hydrologic memory is observed in a transition zone between deep and shallow water tables, where capillary fluxes act as a buffer by reducing high-frequency soil moisture variations resulting in longer land surface hydrologic memory.

  5. Delineating depth to bedrock beneath shallow unconfined aquifers: a gravity transect across the Palmer River Basin.

    PubMed

    Bohidar, R N; Sullivan, J P; Hermance, J F

    2001-01-01

    In view of the increasing demand on ground water supplies in the northeastern United States, it is imperative to develop appropriate methods to geophysically characterize the most widely used sources of ground water in the region: shallow unconfined aquifers consisting of well-sorted, stratified glacial deposits laid down in bedrock valleys and channels. The gravity method, despite its proven value in delineating buried bedrock valleys elsewhere, is seldom used by geophysical contractors in this region. To demonstrate the method's effectiveness for evaluating such aquifers, a pilot study was undertaken in the Palmer River Basin in southeastern Massachusetts. Because bedrock is so shallow beneath this aquifer (maximum depth is 30 m), the depth-integrated mass deficiency of the overlying unconsolidated material was small, so that the observed gravity anomaly was on the order of 1 milligal (mGal) or less. Thus data uncertainties were significant. Moreover, unlike previous gravity studies elsewhere, we had no a priori information on the density of the sediment. Under such circumstances, it is essential to include model constraints and weighted least-squares in the inversion procedure. Among the model constraints were water table configuration, bedrock outcrops, and depth to bedrock from five water wells. Our procedure allowed us to delineate depth to bedrock along a 3.5 km profile with a confidence interval of 1.8 m at a nominal depth of 17 m. Moreover, we obtained a porosity estimate in the range of 39% to 44%. Thus the gravity method, with appropriate refinements, is an effective tool for the reconnaissance of shallow unconfined aquifers.

  6. Layered ejecta craters and the early water/ice aquifer on Mars

    NASA Astrophysics Data System (ADS)

    Oberbeck, V. R.

    2009-03-01

    A model for emplacement of deposits of impact craters is presented that explains the size range of Martian layered ejecta craters between 5 km and 60 km in diameter in the low and middle latitudes. The impact model provides estimates of the water content of crater deposits relative to volatile content in the aquifer of Mars. These estimates together with the amount of water required to initiate fluid flow in terrestrial debris flows provide an estimate of 21% by volume (7.6 × 107 km3) of water/ice that was stored between 0.27 and 2.5 km depth in the crust of Mars during Hesperian and Amazonian time. This would have been sufficient to supply the water for an ocean in the northern lowlands of Mars. The existence of fluidized craters smaller than 5 km diameter in some places on Mars suggests that volatiles were present locally at depths less than 0.27 km. Deposits of Martian craters may be ideal sites for searches for fossils of early organisms that may have existed in the water table if life originated on Mars.

  7. Regional analysis of groundwater phosphate concentrations under acidic sandy soils: Edaphic factors and water table strongly mediate the soil P-groundwater P relation.

    PubMed

    Mabilde, Lisa; De Neve, Stefaan; Sleutel, Steven

    2017-12-01

    Historic long-term P application to sandy soils in NW-Europe has resulted in abundant sorption, saturation and eventually leaching of P from soil to the groundwater. Although many studies recognize the control of site-specific factors like soil texture and phosphate saturation degree (PSD), the regional-scaled relevance of effects exerted by single factors controlling P leaching is unclear. Very large observational datasets of soil and groundwater P content are furthermore required to reveal indirect controls of soil traits through mediating soil variables. We explored co-variation of phreatic groundwater orthophosphate (o-P) concentration and soil factors in sandy soils in Flanders, Belgium. Correlation analyses were complemented with an exploratory model derived using 'path analysis'. Data of oxalate-extractable Al, Fe, P and pH KCl , phosphate sorption capacity (PSC) and PSD in three depth layers (0-30, 30-60, 60-90 cm), topsoil SOC, % clay and groundwater depth (fluctuation) were interpolated to predict soil properties on exact locations of a very extensive net of groundwater monitoring wells. The mean PSD was only poorly correlated to groundwater o-P concentration, indicating the overriding control of other factors in the transport of P to the groundwater. A significant (P < 0.01) positive non-linear relationship was found between groundwater o-P concentrations and pH KCl for all depth layers. Likewise, lower SOC% (P < 0.01) and shallower groundwater level (MHL or MLL) corresponded (P < 0.01) with higher o-P concentrations. Groundwater o-P unexpectedly correlated positively to clay% and path analysis indicated this to be an indirect effect of the groundwater level. Path analysis furthermore indicated an important indirect control of pH on groundwater o-P concentrations and a considerable direct effect of P ox, 0-90 , Al ox, 0-90 and MHL. The fact that groundwater o-P concentration was stronger controlled by soil pH and groundwater table depth than by PSD indicates the likely oversimplification of the latter index to measure the long-term potential risk of P leaching. Accounting for controls on leaching not included in PSD via an alternative index, however, seems problematic as in Flanders for example groundwater o-P turned out to be higher in finer textured soils or soils with higher pedogenic Fe content, probably because of their lower pedogenic Al content and higher soil pH. Path analysis of extensive soil and groundwater datasets seems a viable way to identify prime local determinants of soil P leaching and could be further on used for 'ground-truthing' more complex P-migration simulation models. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Numerical analysis of groundwater recharge through stony soils using limited data

    NASA Astrophysics Data System (ADS)

    Hendrickx, J. M. H.; Khan, A. S.; Bannink, M. H.; Birch, D.; Kidd, C.

    1991-10-01

    This study evaluates groundwater recharge on an alluvial fan in Quetta Valley (Baluchistan, Pakistan), through deep stony soils with limited data of soil texture, soil profile descriptions, water-table depths and meteorological variables. From the soil profile descriptions, a representative profile was constructed with typical soil layers. Next, the texture of each layer was compared with textures of soils with known soil physical characteristics; it is assumed that soils from the same textural class have similar water retention and hydraulic conductivity curves. Finally, the water retention and hydraulic conductivity curves were transformed to account for the volume of stones in each layer; this varied between 0 and 60 vol. %. These data were used in a transient finite difference model and in a steady-state analytical solution to evaluate the travel time of the recharge water and the maximum annual recharge volume. Travel times proved to be less sensitive to differences in soil physical characteristics than to differences in annual infiltration rates. Therefore, estimation of soil physical characteristics from soil texture data alone appears justified for this study. Estimated travel times on the alluvial fan in the Quetta Valley vary between 1.6 years, through a soil profile of 25 m with an infiltration rate of 120 cm year -1, to 18.3 years through a soil profile of 100 m with an infiltration rate of 40 cm year -1. When the infiltration rate of the soil exceeds 40 cm day -1, the infiltration process proceeds so fast that evaporation losses are small. If the depth of ponding at the start of infiltration is more than 1 m, at least 90% of the applied recharge water will reach the water table, providing that the ponding area is bare of vegetation.

  9. Generation of High-Frequency P and S Wave Radiation from Underground Explosions

    DTIC Science & Technology

    2011-12-30

    3.0 3.5 4.0 2024-T3, 1.63<tɚ.54 mm Homalite-100 Ti - 6Al - 4V , t=1.2 mm Epoxy/Graphite Fiber Composite (a) (b) Figure 3: Normalized Dynamic Stress... porosity . The gas porosity also gives some information about effects associated with the water table since water saturated rock has zero gas porosity ...medium than to the depth. Since velocity and density are strongly correlated with the gas porosity , it was not possible to determine which had the

  10. Suitability of Sites for Hazardous Waste Disposal, Concord Naval Weapons Station, Concord, California.

    DTIC Science & Technology

    1987-09-01

    mainly as a band of low hills situated centrally within Clayton Valley. The old alluvium may be roughly equivalent to beds mapped northeast of Suisun Bay...this site is selected for further investi- gations. Landsliding is unlikely on the relatively gentle valley floor. The low position of the water ...full depth of 110.0 ft is given in Fig- ure 17. Ground- water level is documented in Table 2. The piezometric surface for the tip at 105 ft is at 48 ft. A

  11. High-precision measurements of wetland sediment elevation. II The rod surface elevation table

    USGS Publications Warehouse

    Cahoon, D.R.; Lynch, J.C.; Perez, B.C.; Segura, B.; Holland, R.D.; Stelly, C.; Stephenson, G.; Hensel, P.

    2002-01-01

    A new high-precision device for measuring sediment elevation in emergent and shallow water wetland systems is described. The rod surface-elevation table (RSET) is a balanced, lightweight mechanical leveling device that attaches to both shallow ( 1 m in order to be stable. The pipe is driven to refusal but typically to a depth shallower than the rod bench mark because of greater surface resistance of the pipe. Thus, the RSET makes it possible to partition change in sediment elevation over shallower (e.g., the root zone) and deeper depths of the sediment profile than is possible with the SET. The confidence intervals for the height of an individual pin measured by two different operators with the RSET under laboratory conditions were A? 1.0 and A? 1.5 mm. Under field conditions, confidence intervals for the measured height of an individual pin ranged from A? 1.3 mm in a mangrove forest up to A? 4.3 mm in a salt marsh.

  12. Geohydrology of the central Mesilla Valley, Dona Ana County, New Mexico

    USGS Publications Warehouse

    Wilson, Clyde A.; White, Robert R.

    1984-01-01

    Five large-capacity irrigation wells, with depths ranging from 370 to 686 feet, were drilled by the Elephant Butte Irrigation District between 1973 and 1975, in the Mesilla Valley about 7 miles south of Las Cruces, New Mexico. These were the first deep wells in the area, and their installation provided an opportunity to conduct extensive aquifer tests under relatively undisturbed conditions. The deep irrigation wells are perforated in the Santa Fe Group of Miocene to Pleistocene Age. The Santa Fe Group is composed of interfingering and alternating beds of clay, silt, sand, and small gravel. In the area of these wells, the upper part of the saturated zone contains slightly saline water to a depth of about 100 to 175 feet below the water table, underlain by a freshwater zone extending to depths greater than 1,200 feet. As water is pumped from the freshwater zone, leakage occurs from above and below the perforated interval. At one of the irrigation district wells, slightly saline water moved downward because of a lack of confining layers in the aquifer. At three other wells, the surface casing was not set deep enough and slightly saline water moved into the top of the perforations , downward in the casing, and into the freshwater part of the aquifer. (USGS)

  13. Effect of oil pollution on fresh groundwater in Kuwait

    NASA Astrophysics Data System (ADS)

    Al-Sulaimi, J.; Viswanathan, M. N.; Székely, F.

    1993-11-01

    Massive oil fires in Kuwait were the aftermath of the Gulf War. This resulted in the pollution of air, water, and soil, the magnitude of which is unparalleled in the history of mankind. Oil fires damaged several oil well heads, resulting in the flow of oil, forming large oil lakes. Products of combustion from oil well fires deposited over large areas. Infiltrating rainwater, leaching out contaminants from oil lakes and products of combustion at ground surface, can reach the water table and contaminate the groundwater. Field investigations, supported by laboratory studies and mathematical models, show that infiltration of oil from oil lakes will be limited to a depth of about 2 m from ground surface. Preliminary mathematical models showed that contaminated rainwater can infiltrate and reach the water table within a period of three to four days, particularly at the Raudhatain and Umm Al-Aish regions. These are the only regions in Kuwait where fresh groundwater exists. After reaching the water table, the lateral movement of contaminants is expected to be very slow under prevailing hydraulic gradients. Groundwater monitoring at the above regions during 1992 showed minor levels of vanadium, nickel, and total hydrocarbons at certain wells. Since average annual rainfall in the region is only 120 mm/yr, groundwater contamination due to the infiltration of contaminated rainwater is expected to be a long-term one.

  14. Significance testing testate amoeba water table reconstructions

    NASA Astrophysics Data System (ADS)

    Payne, Richard J.; Babeshko, Kirill V.; van Bellen, Simon; Blackford, Jeffrey J.; Booth, Robert K.; Charman, Dan J.; Ellershaw, Megan R.; Gilbert, Daniel; Hughes, Paul D. M.; Jassey, Vincent E. J.; Lamentowicz, Łukasz; Lamentowicz, Mariusz; Malysheva, Elena A.; Mauquoy, Dmitri; Mazei, Yuri; Mitchell, Edward A. D.; Swindles, Graeme T.; Tsyganov, Andrey N.; Turner, T. Edward; Telford, Richard J.

    2016-04-01

    Transfer functions are valuable tools in palaeoecology, but their output may not always be meaningful. A recently-developed statistical test ('randomTF') offers the potential to distinguish among reconstructions which are more likely to be useful, and those less so. We applied this test to a large number of reconstructions of peatland water table depth based on testate amoebae. Contrary to our expectations, a substantial majority (25 of 30) of these reconstructions gave non-significant results (P > 0.05). The underlying reasons for this outcome are unclear. We found no significant correlation between randomTF P-value and transfer function performance, the properties of the training set and reconstruction, or measures of transfer function fit. These results give cause for concern but we believe it would be extremely premature to discount the results of non-significant reconstructions. We stress the need for more critical assessment of transfer function output, replication of results and ecologically-informed interpretation of palaeoecological data.

  15. Analysis of aquifer tests in the Punjab region of West Pakistan

    USGS Publications Warehouse

    Bennett, Gordon D.; ,; Sheikh, Ijaz Ahmed; Alr, Sabire

    1967-01-01

    The results of 141 pumping tests in the Punjab Plain of West Pakistan are reported. Methods of test analysis are described in detail, and an outline of the theory underlying these methods is given. The lateral permeability of the screened interval is given for all tests; the specific yield of the material at water-table depth is given for 1(6 tests; and the vertical permeability of the material between the water table and the top of the screen is given for 14 tests. The lateral permeabilities are predominantly in the range 0.001 to 0.006 cfs per sq ft; the average value is 0.0032 cfs per sq ft. Specific yields generally range from 0.02 to 0.26; the average value is 0.14. All vertical permeability results fall in the range 10 -5 to 10 -3 cfs per sq ft.

  16. Research on critical groundwater level under the threshold value of land subsidence in the typical region of Beijing

    NASA Astrophysics Data System (ADS)

    Jiang, Y.; Liu, J.-R.; Luo, Y.; Yang, Y.; Tian, F.; Lei, K.-C.

    2015-11-01

    Groundwater in Beijing has been excessively exploited in a long time, causing the groundwater level continued to declining and land subsidence areas expanding, which restrained the economic and social sustainable development. Long years of study show good time-space corresponding relationship between groundwater level and land subsidence. To providing scientific basis for the following land subsidence prevention and treatment, quantitative research between groundwater level and settlement is necessary. Multi-linear regression models are set up by long series factual monitoring data about layered water table and settlement in the Tianzhu monitoring station. The results show that: layered settlement is closely related to water table, water level variation and amplitude, especially the water table. Finally, according to the threshold value in the land subsidence prevention and control plan of China (45, 30, 25 mm), the minimum allowable layered water level in this region while settlement achieving the threshold value is calculated between -18.448 and -10.082 m. The results provide a reasonable and operable control target of groundwater level for rational adjustment of groundwater exploited horizon in the future.

  17. Using a hybrid model to predict solute transfer from initially saturated soil into surface runoff with controlled drainage water.

    PubMed

    Tong, Juxiu; Hu, Bill X; Yang, Jinzhong; Zhu, Yan

    2016-06-01

    The mixing layer theory is not suitable for predicting solute transfer from initially saturated soil to surface runoff water under controlled drainage conditions. By coupling the mixing layer theory model with the numerical model Hydrus-1D, a hybrid solute transfer model has been proposed to predict soil solute transfer from an initially saturated soil into surface water, under controlled drainage water conditions. The model can also consider the increasing ponding water conditions on soil surface before surface runoff. The data of solute concentration in surface runoff and drainage water from a sand experiment is used as the reference experiment. The parameters for the water flow and solute transfer model and mixing layer depth under controlled drainage water condition are identified. Based on these identified parameters, the model is applied to another initially saturated sand experiment with constant and time-increasing mixing layer depth after surface runoff, under the controlled drainage water condition with lower drainage height at the bottom. The simulation results agree well with the observed data. Study results suggest that the hybrid model can accurately simulate the solute transfer from initially saturated soil into surface runoff under controlled drainage water condition. And it has been found that the prediction with increasing mixing layer depth is better than that with the constant one in the experiment with lower drainage condition. Since lower drainage condition and deeper ponded water depth result in later runoff start time, more solute sources in the mixing layer are needed for the surface water, and larger change rate results in the increasing mixing layer depth.

  18. Data from a Thick Unsaturated Zone Underlying Two Artificial Recharge Sites along Oro Grande Wash in the Western Part of the Mojave Desert, near Victorville, San Bernardino County, California, 2001-2006

    USGS Publications Warehouse

    Clark, Dennis A.; Izbicki, John A.; Johnson, Russell D.; Land, Michael

    2009-01-01

    This report presents data on the physical and hydraulic properties of unsaturated alluvial deposits and on the chemical and isotopic composition of water collected at two recharge sites in the western part of the Mojave Desert, near Victorville, California, from 2001 to 2006. Unsaturated-zone monitoring sites were installed adjacent to the two recharge ponds using the ODEX air-hammer and air rotary method to depths of about 460 feet and 269 feet below land surface. Each of the two unsaturated-zone monitoring sites included a water-table well, matric-potential sensors, and suction-cup lysimeters installed in a single bore hole. Drilling procedures, lithologic and geophysical data, and site construction and instrumentation are described. Core material was analyzed for water content, bulk density, water potential, particle size, and water retention. The chemical composition of leachate from almost 400 samples of cores and cuttings was determined. Water from suction-cup lysimeters also was analyzed for chemical and isotopic composition. In addition, data on the chemical and isotopic composition of groundwater from the two water-table wells are reported along with chemical and isotopic composition of the surface water in the recharge ponds.

  19. Temporal and spatial variabilities in the surface moisture content of a fine-grained beach

    NASA Astrophysics Data System (ADS)

    Namikas, S. L.; Edwards, B. L.; Bitton, M. C. A.; Booth, J. L.; Zhu, Y.

    2010-01-01

    This study examined spatial and temporal variations in the surface moisture content of a fine-grained beach at Padre Island, Texas, USA. Surface moisture measurements were collected on a 27 × 24 m grid that extended from the dune toe to the upper foreshore. The grid was surveyed at 2 to 4 h intervals for two tidal cycles, generating 17 maps of the spatial distribution of surface moisture. Simultaneous measurements of air temperature and humidity, wind speed and direction, tidal elevation, and water table elevation were used to interpret observed changes in surface moisture. It was found that the spatial distribution of surface moisture was broadly characterized by a cross-shore gradient of high to low content moving landward from the swash zone. The distribution of surface moisture was conceptualized in terms of three zones: saturated (> 25%), intermediate or transitional (5-25%), and dry (< 5%). The position of the saturated zone corresponded to the uppermost swash zone and therefore shifted in accordance with tidal elevation. Moisture contents in the intermediate and dry zones were primarily related to variation in water table depth (which was in turn controlled by tidal elevation) and to a lesser extent by evaporation. Signals associated with atmospheric processes such as evaporation were muted by the minimal degree of variation in atmospheric parameters experienced during most of the study period, but were apparent for the last few hours. The observed spatial and temporal variations in moisture content correspond reasonably well with observations of key controlling processes, but more work is needed to fully characterize this process suite.

  20. Penetration of herbicides to groundwater in an unconfined chalk aquifer following normal soil applications

    NASA Astrophysics Data System (ADS)

    Johnson, Andrew C.; Besien, Tim J.; Bhardwaj, C. Lal; Dixon, Andy; Gooddy, Daren C.; Haria, Atul H.; White, Craig

    2001-12-01

    The persistence and penetration of the herbicides isoproturon and chlorotoluron in an unconfined chalk aquifer has been monitored over a 4-year period through soil sampling, shallow coring and groundwater monitoring. Chlorotoluron was applied on plots as a marker compound, having never been used previously on that, or surrounding fields. The fieldsite had a 5° slope with soil depths of 0.5 to 1.5 m and a water table between 20 and 5 m from the soil surface. Where the water table was deepest (9-20 m below surface (mbs)) little or no positive herbicide detections were made. However, where the water table was at only 4-5 mbs, a regular pesticide signal of around 0.1 μg/l for isoproturon and chlorotoluron could be distinguished. Over the winter recharge period automatic borehole samplers revealed a series of short-lived peaks of isoproturon and chlorotoluron reaching up to 0.8 μg/l. This is consistent with a preferential flow mechanism operating at this particular part of the field. Such peaks were occurring over 2 years after the last application of these compounds. Shallow coring failed to uncover any significant pesticide pulse moving through the deep unsaturated zone matrix at the fieldsite.

  1. Seasonal ice and hydrologic controls on dissolved organic carbon and nitrogen concentrations in a boreal-rich fen

    Treesearch

    Evan S. Kane; Merritt R. Turetsky; Jennifer W. Harden; A. David McGuire; James M. Waddington

    2010-01-01

    Boreal wetland carbon cycling is vulnerable to climate change in part because hydrology and the extent of frozen ground have strong influences on plant and microbial functions. We examined the response of dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) across an experimental manipulation of water table position (both raised and lowered water table...

  2. Development of unconfined conditions in multi-aquifer flow systems: a case study in the Rajshahi Barind, Bangladesh

    NASA Astrophysics Data System (ADS)

    Rushton, K. R.; Zaman, M. Asaduz

    2017-01-01

    Identifying flow processes in multi-aquifer flow systems is a considerable challenge, especially if substantial abstraction occurs. The Rajshahi Barind groundwater flow system in Bangladesh provides an example of the manner in which flow processes can change with time. At some locations there has been a decrease with time in groundwater heads and also in the magnitude of the seasonal fluctuations. This report describes the important stages in a detailed field and modelling study at a specific location in this groundwater flow system. To understand more about the changing conditions, piezometers were constructed in 2015 at different depths but the same location; water levels in these piezometers indicate the formation of an additional water table. Conceptual models are described which show how conditions have changed between the years 2000 and 2015. Following the formation of the additional water table, the aquifer system is conceptualised as two units. A pumping test is described with data collected during both the pumping and recovery phases. Pumping test data for the Lower Unit are analysed using a computational model with estimates of the aquifer parameters; the model also provided estimates of the quantity of water moving from the ground surface, through the Upper Unit, to provide an input to the Lower Unit. The reasons for the substantial changes in the groundwater heads are identified; monitoring of the recently formed additional water table provides a means of testing whether over-abstraction is occurring.

  3. Atmospheric CH4 oxidation by Arctic permafrost and mineral cryosols as a function of water saturation and temperature.

    PubMed

    Stackhouse, B; Lau, M C Y; Vishnivetskaya, T; Burton, N; Wang, R; Southworth, A; Whyte, L; Onstott, T C

    2017-01-01

    The response of methanotrophic bacteria capable of oxidizing atmospheric CH 4 to climate warming is poorly understood, especially for those present in Arctic mineral cryosols. The atmospheric CH 4 oxidation rates were measured in microcosms incubated at 4 °C and 10 °C along a 1-m depth profile and over a range of water saturation conditions for mineral cryosols containing type I and type II methanotrophs from Axel Heiberg Island (AHI), Nunavut, Canada. The cryosols exhibited net consumption of ~2 ppmv CH 4 under all conditions, including during anaerobic incubations. Methane oxidation rates increased with temperature and decreased with increasing water saturation and depth, exhibiting the highest rates at 10 °C and 33% saturation at 5 cm depth (260 ± 60 pmol CH 4 gdw -1 d -1 ). Extrapolation of the CH 4 oxidation rates to the field yields net CH 4 uptake fluxes ranging from 11 to 73 μmol CH 4  m -2 d -1 , which are comparable to field measurements. Stable isotope mass balance indicates ~50% of the oxidized CH 4 is incorporated into the biomass regardless of temperature or saturation. Future atmospheric CH 4 uptake rates at AHI with increasing temperatures will be determined by the interplay of increasing CH 4 oxidation rates vs. water saturation and the depth to the water table during summer thaw. © 2016 John Wiley & Sons Ltd.

  4. The effects of artificial recharge on groundwater levels and water quality in the west hydrogeologic unit of the Warren subbasin, San Bernardino County, California

    USGS Publications Warehouse

    Stamos, Christina L.; Martin, Peter; Everett, Rhett; Izbicki, John A.

    2013-01-01

    Between the late 1940s and 1994, groundwater levels in the Warren subbasin, California, declined by as much as 300 feet because pumping exceeded sparse natural recharge. In response, the local water district, Hi-Desert Water District, implemented an artificial-recharge program in early 1995 using imported water from the California State Water Project. Subsequently, the water table rose by as much as 250 feet; however, a study done by the U.S. Geological Survey found that the rising water table entrained high-nitrate septic effluent, which caused nitrate (as nitrogen) concentrations in some wells to increase to more than the U.S. Environmental Protection Agency maximum contaminant level of 10 milligrams per liter.. A new artificial-recharge site (site 3) was constructed in 2006 and this study, which started in 2004, was done to address concerns about the possible migration of nitrates in the unsaturated zone. The objectives of this study were to: (1) characterize the hydraulic, chemical, and microbiological properties of the unsaturated zone; (2) monitor changes in water levels and water quality in response to the artificial-recharge program at site 3; (3) determine if nitrates from septic effluent infiltrated through the unsaturated zone to the water table; (4) determine the potential for nitrates within the unsaturated zone to mobilize and contaminate the groundwater as the water table rises in response to artificial recharge; and (5) determine the presence and amount of dissolved organic carbon because of its potential to react with disinfection byproducts during the treatment of water for public use. Two monitoring sites were installed and instrumented with heat-dissipation probes, advanced tensiometers, suction-cup lysimeters, and wells so that the arrival and effects of recharging water from the State Water Project through the 250 to 425 foot-thick unsaturated zone and groundwater system could be closely observed. Monitoring site YVUZ-1 was located between two recharge ponds in the middle of site 3, and YVUZ-2 was located approximately 1,200 feet down-gradient and to the southeast in an area where septic systems have been in use since about 1960. Site YVUZ-3 only went to a depth of 42 feet and was used to sample the upper part of the unsaturated zone near a golf course. Prior to the start of artificial recharge at site 3, nitrate concentrations reported as nitrogen from the soil leachate below YVUZ-1 did not exceed 1.58 milligrams per kilogram. Nitrate-reducing bacteria concentrations of 4,300 most probable number were found at about 220 feet below land surface and at the top of the water table at YVUZ-1. Nitrate concentrations at YVUZ-2 reached a maximum concentration of about 25 milligrams per kilogram between about 100 and 121 feet below land surface; concentrations of nitrate-reducing or denitrifying bacteria were as high as 21,000 most probable number at 36 feet below land surface but did not exceed 40 most probable number below about 150 feet below land surface. Between June 2006 and September 2009, more than 9,800 acre feet of water from the State Water Project was released to site 3 ponds. The infiltration of the recharge water was predominantly vertical with limited lateral spreading to a depth of about 200 feet below land surface at YVUZ-1. Lateral spreading of the recharge water with depth was caused by geologic heterogeneities within the unsaturated zone, and resulted in varied arrival times of the recharge water to the instruments and slower rates of vertical movement with depth. No abrupt changes in soil moisture were observed at YVUZ-2, indicating that the recharge water had not reached that site by September 2009. Water levels from the monitoring wells at both sites and from five production wells nearby showed that the water table rose at a mean rate of about 0.08 feet per day between June 2006 and January 2009. The arrival of the water from the State Water Project caused relatively rapid changes in the stable-isotopic ratios from the lysimeters at YVUZ-1. The estimated average rate of infiltration of the recharge water through the unsaturated zone ranged from 3.7 to 25 feet per day. The recharge water arrived at the monitoring well below the recharge ponds between August 2007 and March 2008; the rate of vertical movement to the monitoring well was between 0.6 and 0.9 feet per day. By September 2008, a production well located 375 feet west of site 3 was producing almost 100 percent infiltrated recharge water. By contrast, the stable-isotope data from the lysimeters at YVUZ-2 showed that the recharge water had not reached this site by September 2009, but that septic effluent in the unsaturated zone likely had mixed with the native pore water to at least 154 feet below land surface. Assuming vertical infiltration, the minimum rate of infiltration of septic effluent since 1960 was about 3 feet per year. The isotopic data from the lysimeters at YVUZ-3 indicated two different sources of water to the upper 43 feet–irrigation-return flow and precipitation. Nitrate concentrations of the water from the State Water Project did not exceed 1 milligram per liter. Prior to artificial recharge, nitrate concentrations of the pore water at YVUZ-1 ranged between 6 to 18.2 milligrams per liter. After the arrival of the recharge water, the nitrate concentrations from the lysimeters and well at YVUZ-1 decreased to less than 1 milligram per liter, with the exception of samples collected at 205.5 feet, which did not exceed 4.12 milligrams per liter. The decrease in nitrate concentrations after artificial recharge indicated that the rising water table did not result in an increase of nitrates below YVUZ-1. At YVUZ-2, nitrate concentrations ranged between 12 to 479 milligrams per liter. The highest nitrate concentrations were at 92 feet below land surface and were almost seven times that of samples collected from a nearby septic tank. Nitrate concentrations from the lysimeter at 273 feet below land surface increased from 6 to almost 58 milligrams per liter after it was saturated by the rising water table in December 2007. These increases could be the result of the mobilization of high-nitrate water from regional sources of septic effluent after saturation, or the result of high-nitrate water present at the top of the water table that may be diluted deeper in the aquifer. Nitrate concentrations in groundwater from five nearby production wells and from both monitoring wells were less than 5 milligrams per liter before artificial recharge started. Nitrate concentrations decreased to less than 3 milligrams per liter in three of the production wells and the monitoring well below the recharge ponds after artificial recharge. Dissolved organic carbon concentrations were measured in the recharge water and groundwater because of the potential for dissolved organic carbon to react with chlorine to form trihalomethanes during the water-treatment process. The dissolved organic carbon concentrations of the recharge water were 3.1 milligrams per liter or less, and dissolved organic carbon concentrations of the groundwater were less than 1 milligram per liter. Even though recharge water was present in some of the wells by September 2008, the concentrations of both dissolved organic carbon and trihalomethane formation potential in the groundwater did not increase. Interpretation of these data suggests that the dissolved organic carbon from the recharge water is altered or metabolized in the unsaturated zone, either by absorption to the grain particles in the soil or by microbiological processes.

  5. Environmental and Physiographic Controls on Inter-Growing Season Variability of Carbon Dioxide and Water Vapour Fluxes in a Minerotrophic Fen

    NASA Astrophysics Data System (ADS)

    van der Kamp, G.; Sonnentag, O.; Chen, J. M.; Barr, A.; Hedstrom, N.; Granger, R.

    2008-12-01

    The interaction of fens with groundwater is spatially and temporally highly variable in response to meteorological conditions, resulting in frequent changes of groundwater fluxes in both vertical and lateral directions (flow reversals) across the mineral soil-peat boundary. However, despite the importance of the topographic and hydrogeological setting of fens, no study has been reported in the literature that explores a fen's atmospheric CO2 and energy flux densities under contrasting meteorological conditions in response to its physiographic setting. In our contribution we report four years of growing season eddy covariance and supporting measurements from the Canada Fluxnet-BERMS fen (formerly BOREAS southern peatland) in Saskatchewan, Canada. We first analyze hydrological data along two piezometer transects across the mineral soil-peat boundary with the objective of assessing changes in water table configuration and thus hydraulic gradients, indicating flow reversals, in response to dry and wet meteorological conditions. Next we quantify and compare growing season totals and diurnal and daily variations in evapotranspiration (ET) and net ecosystem exchange (NEE) and its component fluxes gross ecosystem productivity (GPP) and terrestrial ecosystem respiration (TER) to identify their controls with a major focus on water table depth. While ET growing season totals were similar (~ 310 mm) under dry and wet meteorological conditions, the CO2 sink- source strength of Sandhill fen varied substantially from carbon neutral (NEE = -2 [+-7] g C m-2 per growing season) under dry meteorological condition (2003) to a moderate CO2- sink with NEE ranging between 157 [+- 10] and 190 [+- 11] g C m-2 per growing season under wet meteorological conditions (2004, 2005, and 2006). Using a process-oriented ecosystem model, BEPS-TerrainLab, we investigate how different canopy components at Sandhill contribute to total ET and GPP, and thus water use efficiency, under dry and wet meteorological conditions.

  6. Hydraulic characteristics and nutrient transport and transformation beneath a rapid infiltration basin, Reedy Creek Improvement District, Orange County, Florida

    USGS Publications Warehouse

    Sumner, D.M.; Bradner, L.A.

    1996-01-01

    The Reedy Creek Improvement District disposes of about 7.5 million gallons per day (1992) of reclaimed water through 85 1-acre rapid infiltration basins within a 1,000-acre area of sandy soils in Orange County, Florida. The U.S. Geological Survey conducted field experiments in 1992 at an individual basin to examine and better understand the hydraulic characteristics and nutrient transport and transformation of reclaimed water beneath a rapid infiltration basin. At the time, concentrations of total nitrogen and total phosphorus in reclaimed water were about 3 and 0.25 milligrams per liter, respectively. A two-dimensional, radial, unsaturated/saturated numerical flow model was applied to describe the flow system beneath a rapid infiltration basin under current and hypothetical basin loading scenarios and to estimate the hydraulic properties of the soil and sediment beneath a basin. The thicknesses of the unsaturated and saturated parts of the surficial aquifer system at the basin investigated were about 37 and 52 feet, respectively. The model successfully replicated the field-monitored infiltration rate (about 5.5 feet per day during the daily flooding periods of about 17 hours) and ground-water mounding response during basin operation. Horizontal and vertical hydraulic conductivity of the saturated part of the surficial aquifer system were estimated to be 150 and 45 feet per day, respectively. The field-saturated vertical hydraulic conductivity of the shallow soil, estimated to be about 5.1 feet per day, was considered to have been less than the full- saturation value because of the effects of air entrapment. Specific yield of the surficial aquifer was estimated to be 0.41. The upper 20 feet of the basin subsurface profile probably served as a system control on infiltration because of the relatively low field-saturated, vertical hydraulic conductivity of the sediments within this layer. The flow model indicates that, in the vicinity of the basin, flow in the deeper, saturated zone was relatively slow compared to the more vigorous flow in the shallow saturated zone. The large radial component of flow below the water table in the vicinity of the basin implies that reclaimed water moves preferentially in the shallow part of the saturated zone upon reaching the water table. Therefore, there may be some vertical stratification in the saturated zone, with recently infiltrated water overlying ambient water. The infiltration capacity at the basin would be unaffected by a small (less than 10 feet) increase in background water-table altitude, because the water table would remain below the system control on infiltration. However, water-table rises of 15 and 20 feet were estimated to reduce the infiltration capacity of the basin by 8 and 25 percent, respectively. Model simulations indicate that increasing ponded depth within the basin from 4 to 12 inches and from 4 to 24 inches would increase basin infiltration capacity by less than 6 and 11 percent, respectively. A loading strategy at the basin that relies on long, uninterrupted flooding was shown to offer the possibility of inducing a more anaerobic environment conducive to denitrification while maintaining reclaimed-water disposal capacity. Field measurements indicated that transient, elevated concentrations or "spikes" of nitrate (as high as 33 milligrams per liter as nitrogen) occurred at the leading edge of the infiltrating water and in the shallow saturated zone following a prolonged basin rest period. This phenomenon probably is the result of mineralization and nitrification of organic nitrogen retained with the subsurface during earlier basin loading events. The organic nitrogen was retained in the shallow soil (due to adsorption/straining) and the shallow saturated zone following a prolonged basin rest period. This phenomenon probably is the result of mineralization and nitrification of organic nitrogen retained within the subsurface during earlier basin loading event

  7. Avulsion vs Continuous Shifting: the Dynamics of Delta Distributary Channels Controlled by Basin Water Depth

    NASA Astrophysics Data System (ADS)

    Muto, T.; Naruse, H.

    2015-12-01

    An open question in the experimental study of surface processes is how basin water depth controls the dynamics of delta distributary channels. A recently suggested idea as to the issue is that, if a set of peculiar conditions is assumed, all of delta progradation, channel migration, alluvial aggradation and attainment of, or how close to, alluvial grade can be given by an identical formula with the same numerical value that is specified with dimensionless basin water depth. As one step ahead from this notion, we here report the finding obtained from a new series of tank experiments that basin water depth can also affect the modes by which active distributary channels change their locations, i.e. which one of avulsion and continuous shifting is predominant over the other. The results of the experiments clearly indicate that continuous shifting tends to become more predominant over avulsion as basin water depth increases. This tendency is related to a progressive decrease/increase in rate of alluvial aggradation which directly controls avulsion frequency. The present experimental notion can be examined with stratigraphic records of river deltas that accumulated with increasing or decreasing basin water depth.

  8. Magnetic properties changes due to hydrocarbon contaminated groundwater table fluctuations

    NASA Astrophysics Data System (ADS)

    Ameen, Nawrass

    2013-04-01

    This study aims to understand the mechanisms and conditions which control the formation and transformation of ferro(i)magnetic minerals caused by hydrocarbon contaminated groundwater, in particular in the zone of fluctuating water levels. The work extends previous studies conducted at the same site. The study area is a former military air base at Hradčany, Czech Republic (50°37'22.71"N, 14°45'2.24"E). The site was heavily contaminated with petroleum hydrocarbons, due to leaks in petroleum storage tanks and jet fuelling stations over years of active use by the Soviet Union, which closed the base in 1991. The site is one of the most important sources of high quality groundwater in the Czech Republic. In a previous study, Rijal et al. (2010) concluded that the contaminants could be flushed into the sediments as the water level rose due to remediation processes leading to new formation of magnetite. In this previous study three different locations were investigated; however, from each location only one core was obtained. In order to recognize significant magnetic signatures versus depth three cores from each of these three locations were drilled in early 2012, penetrating the unsaturated zone, the groundwater fluctuation (GWF) zone and extending to about one meter below the groundwater level (~2.3 m depth at the time of sampling). Magnetic susceptibility (MS) profiles combined with other magnetic properties were analyzed to obtain a significant depth distribution of the ferro(i)magnetic concentration. Sediment properties, hydrocarbon content and bacterial activity were additionally studied. The results show that the highest ferrimagnetic mineral concentrations exist between 1.4-1.9 m depth from the baseline which is interpreted as the top of the GWF zone. Spikes of MS detected in the previous studies turned out to represent small-scale isolated features, but the trend of increasing MS values from the lowermost position of the groundwater table upward was verified. Mineral magnetic parameters indicate that magnetite is responsible for the MS signal which confirms the previous results (Rijal et al., 2010). The so far existing uncertainty of the groundwater level position could be solved. Bacterial activity is studied at particular depth horizons as it is assumed to be responsible for iron mineralogy changes. References: Rijal M.L., Appel E., Petrovský E. and Blaha U., 2010. Change of magnetic properties due to fluctuations of hydrocarbon contaminated groundwater in unconsolidated sediments. Environ.Pollut., 158, 1756-1762.

  9. Selected hydrologic and climatologic data from the Prairie Dog Creek basin, southeastern Montana, water year 1980

    USGS Publications Warehouse

    Cary, L.E.; Johnson, J.D.

    1982-01-01

    Hydrologic and climatologic data are being collected in a 25-square-mile (65-square-kilometer) basin in southeastern Montana to provide a base for development, calibration, and verification of a precipitation-runoff model. The study area and data-collection stations within the area are shown on a map. A summary of data collected at each station during the second year , beginning in October 1979, is provided in tables. The data include precipitation, snow depth and water content, air temperature, relative humidity, wind speed and direction, solar radiation, soil temperature and moisture, stream discharge, chemical analyses of water, and suspended sediment. (USGS)

  10. Selected hydrologic and climatologic data from the Prairie Dog Creek Basin, southeastern Montana, water year 1979

    USGS Publications Warehouse

    Cary, Lawrence E.; Johnson, Joel D.

    1981-01-01

    Hydrologic and climatologic data are being collected in a 19-square-mile (49-square-kilometer) basin in southeastern Montana to provide a base for development, calibration, and verification of a precipitation-runoff model. The study area and data-collection stations within the area are shown on a map. A summary of data collected at each station during the first year, beginning in October 1978, is provided in tables. The data include precipitation, snow depth and water content, air temperature, relative humidity, wind run, solar radiation, soil temperature and moisture, stream discharge, chemical analyses of water, and suspended sediment. (USGS)

  11. Wetland tree transpiration modified by river-floodplain connectivity

    USGS Publications Warehouse

    Allen, Scott T.; Krauss, Ken W.; Cochran, J. Wesley; King, Sammy L.; Keim, Richard F.

    2016-01-01

    Hydrologic connectivity provisions water and nutrient subsidies to floodplain wetlands and may be particularly important in floodplains with seasonal water deficits through its effects on soil moisture. In this study, we measured sapflow in 26 trees of two dominant floodplain forest species (Celtis laevigata and Quercus lyrata) at two hydrologically distinct sites in the lower White River floodplain in Arkansas, USA. Our objective was to investigate how connectivity-driven water table variations affected water use, an indicator of tree function. Meteorological variables (photosynthetically active radiation and vapor pressure deficit) were the dominant controls over water use at both sites; however, water table variations explained some site differences. At the wetter site, highest sapflow rates were during a late-season overbank flooding event, and no flood stress was apparent. At the drier site, sapflow decreased as the water table receded. The late-season flood pulse that resulted in flooding at the wetter site did not affect the water table at the drier site; accordingly, higher water use was not observed at the drier site. The species generally associated with wetter conditions (Q. lyrata) was more positively responsive to the flood pulse. Flood water subsidy lengthened the effective growing season, demonstrating ecological implications of hydrologic connectivity for alleviating water deficits that otherwise reduce function in this humid floodplain wetland.

  12. A New Approach to Simulate Groundwater Table Dynamics and Its Validation in China

    NASA Astrophysics Data System (ADS)

    Lv, M.; Lu, H.; Dan, L.; Yang, K.

    2017-12-01

    The groundwater has very important role in hydrology-climate-human activity interaction. But the groundwater table dynamics currently is not well simulated in global-scale land surface models. Meanwhile, almost all groundwater schemes are adopting a specific yield method to estimate groundwater table, in which how to determine the proper specific yield value remains a big challenge. In this study, we developed a Soil Moisture Correlation (SMC) method to simulate groundwater table dynamics. We coupled SMC with a hydrological model (named as NEW) and compared it with the original model in which a specific yield method is used (named as CTL). Both NEW and CTL were tested in Tangnaihai Subbasin of Yellow River and Jialingjiang Subbasin along Yangtze River, where underground water is less impacted by human activities. The simulated discharges by NEW and CTL are compared against gauge observations. The comparison results reveal that after calibration both models are able to reproduce the discharge well. However, there is no parameter needed to be calibrated for SMC. It indicates that SMC method is more efficient and easy-to-use than the specific yield method. Since there is no direct groundwater table observation in these two basins, simulated groundwater table were compared with a global data set provided by Fan et al. (2013). Both NEW and CTL estimate lower depths than Fan does. Moreover, when comparing the variation of terrestrial water storage (TWS) derived from NEW with that observed by GRACE, good agreements were confirmed. It demonstrated that SMC method is able to reproduce groundwater level dynamics reliably.

  13. Methane emissions from boreal peatlands in a changing climate: Quantifying the sensitivity of methane fluxes to experimental manipulations of water table and soil temperature regimes in an Alaskan boreal fen

    NASA Astrophysics Data System (ADS)

    Treat, C. C.; Turetsky, M.; Harden, J.; McGuire, A.

    2006-12-01

    Peatlands cover only 3-5 % of the world's land surface but store 30 % of the world's soil carbon (C) pool. Peatlands currently are thought to function globally as a net sink for atmospheric CO2, sequestering approximately 76 Tg (1012 g) C yr-1. However, peatlands also function as a net source of atmospheric CH4. Approximately 25% of the 270 Tg CH4 yr-1 emitted from natural sources are emitted from northern wetlands. Methane production (methanogenesis) and consumption (methane oxidation) in peatlands are sensitive to both fluctuations in soil moisture and temperature. Boreal regions already are experiencing rapid changes in climate, including longer and drier growing seasons and the degradation of permafrost. Changes in peat environments in response to these climate changes could have significant implications for CH4 emissions to the atmosphere, and thus the radiative forcing of high latitude regions. In 2005, we initiated a large scale in situ climate experiment in a moderately rich fen near the Bonanza Creek LTER site in central Alaska (APEX: www.apex.msu.edu). The goal of our project is to understand vegetation and C cycling processes under altered water table and soil thermal regimes. We established three water table plots (control, raised, lowered), each about 120 m2 in area, using drainage ditches to lower the water table by 5-10 cm and solar powered pumps to raise the water table by about 5-15 cm. Within each water table plot, we constructed replicate open top chambers (OTCs) to passively increase surface temperatures by about 1 ° C. We used static chambers and gas chromatography to quantify methane fluxes at each water table x soil warming plot through the growing seasons of 2005 and 2006. Additionally, we quantified seasonal CH4 fluxes along an adjacent moisture gradient that included four distinct soil moisture and vegetation zones, including a moderately rich fen (APEX site), an emergent macrophyte marsh, a shrubby permafrost fen, and a black spruce permafrost forest. Our results thus far show that methane fluxes varied by a warming x water table interaction across our experimental treatments (Proc Mixed SAS Repeated Measures ANOVA; F2,8=4.07; p=0.05), with the largest methane fluxes in the warm, wet peatland plots and the lowest methane fluxes in the unwarmed, dry peatland plots. Sites along the moisture gradient transitioned from methane sources in the rich fen site (APEX plots) to small sinks of CH4 in the permafrost forest under drying soil moisture conditions. Our soil climate manipulations allow us to quantify interactions among biogeophysical variables that control CH4 emissions from peatlands. Our coupled experimental and gradient based measurements allow us to explore controls on microbial populations and methane emissions across a wider range of terrestrial boreal environments. This work so far shows that methane cycling in interior Alaskan ecosystems is extremely sensitive to soil climate conditions, and that the fate of methane emissions from high latitudes will be affected primarily by changes in precipitation and soil drainage that control water table position in peatlands and permafrost ecosystems.

  14. Hydrologic assessment of the shallow groundwater flow system beneath the Shinnecock Nation tribal lands, Suffolk County, New York

    USGS Publications Warehouse

    Noll, Michael L.; Rivera, Simonette L.; Busciolano, Ronald J.

    2016-12-02

    Defining the distribution and flow of shallow groundwater beneath the Shinnecock Nation tribal lands in Suffolk County, New York, is a crucial first step in identifying sources of potential contamination to the surficial aquifer and coastal ecosystems. The surficial or water table aquifer beneath the tribal lands is the primary source of potable water supply for at least 6 percent of the households on the tribal lands. Oyster fisheries and other marine ecosystems are critical to the livelihood of many residents living on the tribal lands, but are susceptible to contamination from groundwater entering the embayment from the surficial aquifer. Contamination of the surficial aquifer from flooding during intense coastal storms, nutrient loading from fertilizers, and septic effluent have been identified as potential sources of human and ecological health concerns on tribal lands.The U.S. Geological Survey (USGS) facilitated the installation of 17 water table wells on and adjacent to the tribal lands during March 2014. These wells were combined with other existing wells to create a 32-well water table monitoring network that was used to assess local hydrologic conditions. Survey-grade, global-navigation-satellite systems provided centimeter-level accuracy for positioning wellhead surveys. Water levels were measured by the USGS during May (spring) and November (fall) 2014 to evaluate seasonal effects on the water table. Water level measurements were made at high and low tide during May 2014 to identify potential effects on the water table caused by changes in tidal stage (tidal flux) in Shinnecock Bay. Water level contour maps indicate that the surficial aquifer is recharged by precipitation and upgradient groundwater flow that moves from the recharge zone located generally beneath Sunrise Highway, to the discharge zone beneath the tribal lands, and eventually discharges into the embayment, tidal creeks, and estuaries that bound the tribal lands to the east, south, and west.Water levels in many of the wells in the network fluctuated in response to precipitation, upgradient groundwater flow, and tidal flux in Shinnecock Bay. Water level altitudes ranged from 6.66 to 0.47 feet (ft) above the North American Vertical Datum of 1988 during the spring measurement period, and from 5.25 to -0.24 ft (NAVD 88) during fall 2014. Historically, annual and seasonal precipitation seem to indicate long-term water level trends in an index well located in the town of Southampton, correlates with changes in storage in the upper glacial aquifer, but does not necessarily indicate water level extremes in the shallow groundwater system. To place the study period in perspective, calendar year 2014 was the 32d wettest year on record, with precipitation for the year totaling 48.1 inches, a 2.6-percent increase from the annual average (46.9 inches per year), based on 81 years of complete record at the National Oceanographic and Atmospheric Administration, National Weather Service cooperative meteorological station at Bridgehampton, New York. Estimated recharge to the water table beneath the tribal lands from precipitation for 2014 is 25.4 inches.Tidal flux caused water levels in wells to fluctuate from 0.30 to -0.24 ft during May 2014. Water levels in wells located north of Old Fort Pond and beneath the southernmost extent of the tribal lands were most influenced by tidal flux. During June 2014, hydrographs indicate that tidal flux influenced water levels by 0.48 ft in a well located near the southernmost extent of the tribal lands approximately 0.3 miles north of Shinnecock Bay, and was zero at a well located approximately 0.5 miles south of Montauk Highway, and 0.4 miles west of Heady Creek, near the geographic center of the tribal lands. Tidal-influence delay time (time interval between peak high-tide stage and corresponding peak high-water level) ranged from 1.75 hours at the well located near the southernmost extent of the tribal lands, to more than 4 hours at a well located north of Old Fort Pond, near the northwestern part of the tribal lands.Estimated hydraulic-conductivity values derived from the results of specific-capacity tests that were completed at nine observation wells during March 2015 were used to calculate average linear velocity. Average linear velocity along conceptualized flow-path segments of the upper glacial aquifer located beneath the tribal lands was estimated using an assumed effective porosity value, and hydraulic-conductivity and hydraulic-head values that were interpolated from measured values. Groundwater travel times were estimated by dividing the length of the flow-path segment by the average linear velocity along the flow-path segment. Total estimated groundwater travel time along a conceptualized flow path, beginning near Sunrise Highway and terminating at Shinnecock Bay, is approximately 45 years using a porosity value of 30 percent.A surficial-silty unit was identified from approximately 0 to 10 ft below land surface at multiple locations beneath the tribal lands. The lithology of the surficial unit was verified by interpreted gamma log results obtained from select wells, and auger-rig drill cuttings from an observation well located near the geographic center of the tribal lands. The altitude of the unit varies with topography and was delineated along a cross section line that trends north-south along the approximate centerline (spine) of the tribal lands. The altitude of the hydrogeologic contact between the upper glacial and the Magothy aquifers generally decreases from northwest to southeast, occurs at a depth ranging from about 150 to 200 ft beneath the tribal lands, and was identified at two locations north of the tribal lands, near Sunrise Highway and Sebonac Road. Results of electrical geophysical surveys indicate that the depth to the freshwater/saltwater interface decreases from north to south with decreasing water level altitude, and the Magothy and upper glacial aquifers contain saltwater at varying depths along the north-south trending section. Results of the surveys also indicate that the Magothy aquifer beneath the tribal lands contains brackish and salty water and is not considered a source of potable water supply. In general, depth to the interface increases with increasing geographic distance from the coastline. Low water table altitudes can result in increased saltwater encroachment into the surficial aquifer beneath the tribal lands. This upward movement and shallow depth of the freshwater/saltwater interface can jeopardize water quality in wells that supply water for domestic use.

  15. Hydrologic assessment of the Edwin B. Forsythe National Wildlife Refuge

    USGS Publications Warehouse

    Wieben, Christine M.; Chepiga, Mary M.

    2018-03-19

    The Edwin B. Forsythe National Wildlife Refuge (hereafter Forsythe refuge or the refuge) is situated along the central New Jersey coast and provides a mixture of freshwater and saltwater habitats for numerous bird, wildlife, and plant species. Little data and information were previously available regarding the freshwater dynamics that support the refuge’s ecosystems. In cooperation with the U.S. Fish and Wildlife Service, the U.S. Geological Survey conducted an assessment of the hydrologic resources and processes in the refuge and surrounding areas to provide baseline information for evaluating restoration projects and future changes in the hydrologic system associated with climate change and other anthropogenic stressors.During spring 2015, water levels were measured at groundwater and surface-water sites in and near the Forsythe refuge. These water-level measurements, along with surface-water elevations obtained from digital elevation models, were used to construct water-table-elevation and depth-to-water maps of the refuge and surrounding areas. Water-table elevations in the refuge ranged from sea level to approximately 65 feet above sea level; in most of the refuge, the water-table elevation was within 3 feet of sea level. The water-table-elevation map indicates that the direction of shallow groundwater flow at the regional scale is generally from west to east (much of it from the northwest to the southeast), and groundwater moves downgradient from the uplands toward major groundwater discharge areas consisting of coastal streams and wetlands. The depth to water is estimated to be less than 2 feet for approximately 86 percent of the refuge, which coincides closely with the percentage of wetland area in the refuge. Depth to water in excess of 20 feet below land surface is limited to higher elevation areas of the refuge.Streamflow data collected at continuous-record streamgages and partial-record stations within the Mullica-Toms Basin were summarized. Hydrograph separation of streamflow data for eight streamgages (2004–13) reveals that base flow accounts for 68–94 percent of streamflow in basins upstream from the refuge. The high base-flow inputs underscore the importance of groundwater as a source of freshwater that supports both the streams that flow into the refuge and the hydroecology of the contributing basins. Mean annual flow typically ranged from 1.7 to 2.1 cubic feet per second per square mile at the streamgages (2004–13) and between 1.2 and 2.3 cubic feet per second per square mile at the partial-record stations (1965–2015) but was notably greater or lower than these ranges at several stations.Mean annual water budgets were estimated for multiple regions of the refuge for 2004–13 using data compiled from nearby meteorological stations and groundwater flows derived from previously calibrated groundwater-flow models. Precipitation, groundwater recharge, and evapotranspiration were estimated from available data; direct runoff was calculated as the residual component of the water balance. Groundwater recharge rates were greatest in the upland-dominated areas of the refuge with estimates of 14.4 to 18.9 inches per year, which are equivalent to 30 to 40 percent of precipitation. Groundwater recharge rates were nearly zero in the central coastal areas because these areas are major groundwater discharge zones, the water table is near land surface, the subsurface is close to saturation and cannot accept much recharge, and much of the area is underlain by thick marsh deposits likely with low permeability. Estimates of evapotranspiration varied from about 26 inches per year in the upland-dominated areas to more than 35 inches per year in the coastal wetlands, equivalent to 55–79 percent of mean annual precipitation, indicating that it is a major component of the hydrodynamics of the Forsythe refuge.On the basis of output from previously calibrated groundwater-flow models, nearly all of the groundwater exiting the surficial aquifer system in the central coastal areas of the refuge is discharged to wetlands, which highlights the importance of groundwater discharge in supporting the ecosystems of the Forsythe refuge. In the central coastal areas, horizontal flow contributes more than 90 percent of the groundwater flow to the surficial system, indicating that the upbasin areas are a substantial source of water that ultimately discharges to streams and wetlands in the refuge.

  16. Instrumenting an upland research catchment in Canterbury, New Zealand to study controls on variability of soil moisture, shallow groundwater and streamflow

    NASA Astrophysics Data System (ADS)

    McMillan, Hilary; Srinivasan, Ms

    2015-04-01

    Hydrologists recognise the importance of vertical drainage and deep flow paths in runoff generation, even in headwater catchments. Both soil and groundwater stores are highly variable over multiple scales, and the distribution of water has a strong control on flow rates and timing. In this study, we instrumented an upland headwater catchment in New Zealand to measure the temporal and spatial variation in unsaturated and saturated-zone responses. In NZ, upland catchments are the source of much of the water used in lowland agriculture, but the hydrology of such catchments and their role in water partitioning, storage and transport is poorly understood. The study area is the Langs Gully catchment in the North Branch of the Waipara River, Canterbury: this catchment was chosen to be representative of the foothills environment, with lightly managed dryland pasture and native Matagouri shrub vegetation cover. Over a period of 16 months we measured continuous soil moisture at 32 locations and near-surface water table (< 2 m) at 14 locations, as well as measuring flow at 3 stream gauges. The distributed measurement sites were located to allow comparisons between North and South facing locations, near-stream versus hillslope locations, and convergent versus divergent hillslopes. We found that temporal variability is strongly controlled by the climatic seasonal cycle, for both soil moisture and water table, and for both the mean and extremes of their distributions. Groundwater is a larger water storage component than soil moisture, and the difference increases with catchment wetness. The spatial standard deviation of both soil moisture and groundwater is larger in winter than in summer. It peaks during rainfall events due to partial saturation of the catchment, and also rises in spring as different locations dry out at different rates. The most important controls on spatial variability are aspect and distance from stream. South-facing and near-stream locations have higher water tables and more, larger soil moisture wetting events. Typical hydrological models do not explicitly account for aspect, but our results suggest that it is an important factor in hillslope runoff generation. Co-measurement of soil moisture and water table level allowed us to identify interrelationships between the two. Locations where water tables peaked closest to the surface had consistently wetter soils and higher water tables. These wetter sites were the same across seasons. However, temporary patterns of strong soil moisture response to summer storms did not correspond to the wetter sites. Total catchment spatial variability is composed of multiple variability sources, and the dominant type is sensitive to those stores that are close to a threshold such as field capacity or saturation. Therefore, we classified spatial variability as 'summer mode' or 'winter mode'. In summer mode, variability is controlled by shallow processes e.g. interactions of water with soils and vegetation. In winter mode, variability is controlled by deeper processes e.g. groundwater movement and bypass flow. Double flow peaks observed during some events show the direct impact of groundwater variability on runoff generation. Our results suggest that emergent catchment behaviour depends on the combination of these multiple, time varying components of variability.

  17. Occurrence and distribution of enteric viruses in shallow ground water and factors affecting well vulnerability to microbiological contamination in Worcester and Wicomico counties, Maryland

    USGS Publications Warehouse

    Banks, William S.L.; Klohe, Cheryl A.; Battigelli, David A.

    2001-01-01

    The U.S. Geological Survey, in cooperation with the Maryland Department of the Environment and the Wisconsin State Laboratory of Hygiene, conducted a study to characterize the occurrence and distribution of viral contamination in small (withdrawing less than 10,000 gallons per day) public water-supply wells screened in the water-table aquifer in the Coastal Plain in Worcester and Wicomico Counties, Maryland.Two hundred seventy-eight well sites were evaluated with regard to simulated ground-water flow paths, land use, natural soils groups, and well characteristics, such as well depth and well age. Flow and transport simulations of the water-table aquifer indicated that wells screened less than about 50 feet below land surface (shallow wells) were most vulnerable to surface contamination, which in some cases could originate from as far as 2,000 feet upgradient of the well. Animal-feeding and agricultural-storage operations were considered among the most likely sources for viral contamination; therefore, sites close to these activities were considered most vulnerable. Soil groups were evaluated with regard to depth to water and moisture-holding capacity. Wells with shallow depths to water or in very sandy soils were considered more vulnerable to contamination than deep wells (greater than 50 feet) and those completed in finer-grained soils. Older wells and wells where coliform bacteria had been detected in the past were classified as highly vulnerable. On the basis of this evaluation, 27 sites considered to be susceptible were sampled.Samples were collected by pumping up to 400 gallons of untreated well water through an electropositive filter. Water concentrates were subjected to cell-culture assay for the detection of culturable viruses and reverse-transcription polymerase chain reaction/gene probe assays to detect nonculturable viruses; grab samples were analyzed for somatic and male-specific coliphages, Bacteroides fragilis, Clostridium perfringens, enterococci, Escherichia coli, total coliforms, total oxidized nitrogen, dissolved organic carbon, organic nitrogen, total phosphate, orthophosphate, acid-neutralizing capacity, pH, specific conductance, temperature, and dissolved oxygen.Eleven percent of the samples analyzed (3 of 27) tested positive for either culturable viruses or the presence of viral ribonucleic acid. Approximately 15 percent of the samples (4 of 27) tested positive for one or more bacterial contaminants.

  18. Estimation of bare soil evaporation for different depths of water table in the wind-blown sand area of the Ordos Basin, China

    NASA Astrophysics Data System (ADS)

    Chen, Li; Wang, Wenke; Zhang, Zaiyong; Wang, Zhoufeng; Wang, Qiangmin; Zhao, Ming; Gong, Chengcheng

    2018-04-01

    Soil surface evaporation is a significant component of the hydrological cycle, occurring at the interface between the atmosphere and vadose zone, but it is affected by factors such as groundwater level, soil properties, solar radiation and others. In order to understand the soil evaporation characteristics in arid regions, a field experiment was conducted in the Ordos Basin, central China, and high accuracy sensors of soil moisture, moisture potential and temperature were installed in three field soil profiles with water-table depths (WTDs) of about 0.4, 1.4 and 2.2 m. Soil-surface-evaporation values were estimated by observed data combined with Darcy's law. Results showed that: (1) soil-surface-evaporation rate is linked to moisture content and it is also affected by air temperature. When there is sufficient moisture in the soil profile, soil evaporation increases with rising air temperature. For a WTD larger than the height of capillary rise, the soil evaporation is related to soil moisture content, and when air temperature is above 25 °C, the soil moisture content reduces quickly and the evaporation rate lowers; (2) phreatic water contributes to soil surface evaporation under conditions in which the WTD is within the capillary fringe. This indicates that phreatic water would not participate in soil evaporation for a WTD larger than the height of capillary rise. This finding developed further the understanding of phreatic evaporation, and this study provides valuable information on recognized soil evaporation processes in the arid environment.

  19. An updated geospatial liquefaction model for global application

    USGS Publications Warehouse

    Zhu, Jing; Baise, Laurie G.; Thompson, Eric M.

    2017-01-01

    We present an updated geospatial approach to estimation of earthquake-induced liquefaction from globally available geospatial proxies. Our previous iteration of the geospatial liquefaction model was based on mapped liquefaction surface effects from four earthquakes in Christchurch, New Zealand, and Kobe, Japan, paired with geospatial explanatory variables including slope-derived VS30, compound topographic index, and magnitude-adjusted peak ground acceleration from ShakeMap. The updated geospatial liquefaction model presented herein improves the performance and the generality of the model. The updates include (1) expanding the liquefaction database to 27 earthquake events across 6 countries, (2) addressing the sampling of nonliquefaction for incomplete liquefaction inventories, (3) testing interaction effects between explanatory variables, and (4) overall improving model performance. While we test 14 geospatial proxies for soil density and soil saturation, the most promising geospatial parameters are slope-derived VS30, modeled water table depth, distance to coast, distance to river, distance to closest water body, and precipitation. We found that peak ground velocity (PGV) performs better than peak ground acceleration (PGA) as the shaking intensity parameter. We present two models which offer improved performance over prior models. We evaluate model performance using the area under the curve under the Receiver Operating Characteristic (ROC) curve (AUC) and the Brier score. The best-performing model in a coastal setting uses distance to coast but is problematic for regions away from the coast. The second best model, using PGV, VS30, water table depth, distance to closest water body, and precipitation, performs better in noncoastal regions and thus is the model we recommend for global implementation.

  20. Dynamic chemistry in the perched groundwater flowing through weathered bedrock underling a steep forested hillslope, north California

    NASA Astrophysics Data System (ADS)

    Kim, H.; Rempe, D. M.; Bishop, J. K.; Dietrich, W.; Fung, I.; Wood, T. J.

    2012-12-01

    The spatial and temporal pattern of groundwater chemistry in the seasonally perched groundwater systems that develop in the weathered bedrock zone under hillslopes have rarely been documented, yet chemical evolution of water here dictates the runoff chemistry to streams in many places. Here we exploit an intensively instrumented hillslope to document water well chemistry at three wells and adjacent stream. We have been sampling groundwater at daily frequency since October 2008 on a forested hillslope, "Rivendell", at the Angelo Coast Range Reserve located at the headwaters of the Eel River, California. The site is typical of California's coastal Mediterranean climate. The groundwater samples have been collected from a depth near the boundary between the weathered and fresh bedrock at three locations along the hillslope: Well 1 (bottom of hillslope), Well 3 (mid-slope), and Well 10 (near the ridge). Bulk rainwater and throughfall samples were collected at a meadow across the hillslope and at the middle of the slope, respectively, as well. Near the ridge (Well 10), during the first significant rainstorms of 2009 (133mm/42.5hours) and 2010 (220mm/42hours), when the water table changed only 0.32m and 0.66m, respectively, the concentration of Ca, Mg, and Na started to increase rapidly compared to the dry season (e.g. 2-6 μM vs 0.02-0.2μM [Mg]/day). However, during these same storms, K concentration sharply increased to 50-60 μM and decreased to 20-30μM, synchronizing with the water table responses. Throughfalls of these storms had at least 10 fold lower Ca, Mg, and Na concentrations than the well water while they had 10 fold higher K compared to the pre-event groundwater values. When the total seasonal cumulative rainfall exceeds 600 mm, the Well 10 solute concentration was diluted nearly 3 fold (e.g. [Mg] 0.3 mM vs. 0.1 mM) and the water table was raised significantly (2-6 meters). Throughout the rainy season, Well10 retained its diluted chemistry signature and on average the water table remained elevated as subsequent rainstorms repeatedly recharged the system. Well10 solute concentration slowly increased at the end of the rainy season when the water table fell. In contrast, at the foot of the hill slope, even though the water table was responsive to each rainfall event, its water chemistry developed a strong dilution signatures only during the intense rainstorms (total rainfall > 70mm); the solute concentration decreased (e.g. [Mg] = 0.1mM) during the rising limb of the well hydrograph and recovered back to its pre-event value (e.g. [Mg] = 0.3mM) during the falling limb of the well hydrograph. During small storms, the solute concentration of Well 1 either did not change or slightly increased. Mid-slope showed similar behavior to Well 1. The Well 3 solute concentration was diluted about 3 fold (e.g. [Mg] 0.3mM to 0.1mM) as the water table rose and increased as the water table receded. However unlike Well 1, the water chemistry of Well 3 did not recover to its pre-event composition at any point during the rainy season and the recovery rate was slower than that of Well 1. These water chemistry observations provide insight into the dynamics of water movement within the fractured, weathered bedrock zone, and point to both vertical and lateral mixing processes that influence the chemical evolution of waters.

  1. Fluoride abundance and controls in fresh groundwater in Quaternary deposits and bedrock fractures in an area with fluorine-rich granitoid rocks.

    PubMed

    Berger, Tobias; Mathurin, Frédéric A; Drake, Henrik; Åström, Mats E

    2016-11-01

    This study focuses on fluoride (F(-)) concentrations in groundwater in an area in northern Europe (Laxemar, southeast Sweden) where high F(-) concentrations have previously been found in surface waters such as streams and quarries. Fluoride concentrations were determined over time in groundwater in the Quaternary deposits ("regolith groundwater"), and with different sampling techniques from just beneath the ground surface to nearly -700m in the bedrock (fracture) groundwater. A number of potential controls of dissolved F(-) were studied, including geological variables, mineralogy, mineral chemistry and hydrology. In the regolith groundwater the F(-) concentrations (0.3-4.2mg/L) were relatively stable over time at each sampling site but varied widely among the sampling sites. In these groundwaters, the F(-) concentrations were uncorrelated with sample (filter) depth and the water table in meters above sea level (masl), with the thicknesses of the groundwater column and the regolith, and with the distribution of soil types at the sampling sites. Fluoride concentrations were, however, correlated with the anticipated spatial distribution of erosional material (till) derived from a F-rich circular granite intrusion. Abundant release of F(-) from such material is thus suggested, primarily via dissolution of fluorite and weathering of biotite. In the fresh fracture groundwater, the F(-) concentrations (1.2-7.4mg/L) were generally higher than in the regolith groundwater, and were uncorrelated with depth and with location relative to the granite intrusion. Two mechanisms explaining the overall high F(-) levels in the fracture groundwater were addressed. First, weathering/dissolution of fluorite, bastnäsite and apophyllite, which are secondary minerals formed in the fractures during past hydrothermal events, and biotite which is a primary mineral exposed on fracture walls. Second, long water-residence times, favoring water-rock interaction and build-up of high dissolved F(-) concentrations. The findings are relevant in contexts of extraction of groundwater for drinking-water purposes. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Geology and ground-water resources of the Deer Lodge Valley, Montana

    USGS Publications Warehouse

    Konizeski, Richard L.; McMurtrey, R.G.; Brietkrietz, Alex

    1968-01-01

    The Deer Lodge Valley is a basin trending north-south within Powell, Deer Lodge, and Silver Bow Counties in west-central Montana, near the center of the Northern Rocky Mountains physiographic province. It trends northward between a group of relatively low, rounded mountains to the east and the higher, more rugged Flint Creek Range to the west. The Clark Fork and its tributaries drain the valley in a northerly direction. The climate is semiarid and is characterized by long cold winters and short cool summers. Agriculture and ore refining are the principal industries. Both are dependent on large amounts of water. The principal topographic features are a broad lowland, the Clark Fork flood plain, bordered by low fringing terraces that are in turn bordered by broad, high terraces, which slope gently upward to the mountains. The high terraces have been mostly obscured in the south end of the valley by erosion and by recent deposition of great coalescent fans radiating outward frown the mouths of various tributary canyons. The mountains east of the Deer Lodge Valley are formed mostly of Cretaceous sedimentary and volcanic rocks and a great core of Upper Cretaceous to lower Tertiary granitic rocks; those west of the valley are formed of Precambrian to Cretaceous sedimentary rocks and a core of lower Tertiary granitic rocks. Field relationships, gravimetric data, and seismic data indicate that the valley is a deep graben, which formed in early Tertiary time after emplacement of the Boulder and Philipsburg batholiths. During the Tertiary Period the valley was partly filled to a maximum depth of more than 5,500 feet with erosional detritus that came from the surrounding mountains and was interbedded with minor amounts of volcanic ejecta. This material accumulated in a great variety of local environments. Consequently the resultant deposits are of extremely variable lithology in lateral and vertical sequence. The deposits grade from unconsolidated to well-cemented and from clay to boulder-sized aggregates. Throughout most of the area the strata dip gently towards the valley axis, but along the western margins of the valley they dip steeply into the mountains. In late Pliocene or early Pleistocene the Tertiary strata were eroded to a nearly regular valley divide surface. In the western part of the valley the erosion surface was thinly mantled by glacial debris from the Flint Creek Range. Still later, probably during several interglacial intervals, the Clark Fork and its tributaries entrenched themselves in the Tertiary strata to an average depth of about 150 feet. The resultant erosional features were further modified by Wisconsin to Recent glaciofluvial deposition. Three east-west cross .sections and a corrected gravity map were drawn for the valley. They indicate a maximum depth of fill of more than 5,500 feet in the southern part. Depths decrease to the north to approximately 2,300 feet near the town of Deer Lodge. The principal source of ground water in the Deer Lodge Valley is the upper few hundred feet of unconsolidated valley fill. Most of the wells tapping these deposits range in depth from a few feet to 250 feet. Water levels range from somewhat above land surface (in flowing wells) to about 150 feet below. Yields of the wells range from a few gallons per minute to 1,000 gallons per minute. Generally, wells having the highest yields are on the flood plain of the Clark Fork or the coalescent fans of Warm Springs and Mill Creeks. Discharge of ground water by seepage into streams, by evapotranspiration, and by pumping from wells causes a gradual lowering of the water table. Each spring and early summer, seepage of water from irrigation and streams and infiltration of water from snowmelt and precipitation replenish the ground-water reservoir. Seasonal fluctuation of the water table generally is less than 10 feet. The small yearly water table fluctuation indicates that recharge about balances discharge from th

  3. Hydrologic information for land-use planning; Fairbanks vicinity, Alaska

    USGS Publications Warehouse

    Nelson, Gordon L.

    1978-01-01

    The flood plain on the Chena and Tanana Rivers near Fairbanks, Alaska, has abundant water in rivers and in an unconfined alluvial aquifer. The principal source of ground water is the Tanana River, from which ground water flows northwesterly to the Chena River. Transmissivity of the aquifer commonly exceed 100 ,000 sq ft. The shallow water table (less than 15 ft below land surface), high hydraulic conductivity of the sediments and cold soil give the flood plain a high susceptibility to pollution by onsite sewerage systems. The Environmental Protection Agency recommended maximum concentrations for drinking water may be exceeded in surface water for manganese and bacteria and in ground water for iron, manganese, and bacteria. Residents of the uplands obtain water principally from a widely-distributed fractured schist aquifer. The aquifer is recharged by local infiltration of precipitation and is drained by springs on the lower slopes and by ground-water flow to alluvial aquifers of the valleys. The annual base flow from basins in the uplands ranged from 3,000 to 100,000 gallons per acre; the smallest base flows occur in basins nearest the city of Fairbanks. The thick silt cover and great depth to the water table give much of the uplands a low susceptibility to pollution by onsite sewage disposal. Ground water is locally high in nitrate, arsenic, iron , and manganese. (Woodard-USGS)

  4. Emerald Ash Borer Threat Reveals Ecohydrologic Feedbacks in Northern U.S. Black Ash Wetlands

    NASA Astrophysics Data System (ADS)

    Diamond, J.; Mclaughlin, D. L.; Slesak, R.

    2016-12-01

    Hydrology is a primary driver of wetland structure and process that can be modified by abiotic and biotic feedbacks, leading to self-organization of wetland systems. Large-scale disturbance to these feedbacks, such as loss of vegetation, can thus be expected to impact wetland hydrology. The Emerald Ash Borer is an invasive beetle that is expected to cause widespread-loss of ash trees throughout the northern U.S. and Canada. To predict ecosystem response to this threat of vegetation loss, we ask if and how Black Ash (Fraxinus nigra), a ubiquitous facultative-wetland ash species, actively controls wetland hydrology to determine if Black Ash creates favorable hydrologic regimes for growth (i.e., evidence for ecohydrologic feedbacks). We do this by taking advantage of plot-level tree removal experiments in Black Ash-dominated (75-100% basal area) wetlands in the Chippewa National Forest, Minnesota. The monospecies dominance in these systems minimizes variation associated with species-specific effects, allowing for clearer interpretation of results regarding ecohydrologic feedbacks. Here, we present an analysis of six years of water table and soil moisture time series in experimental plots with the following treatments: 1) clear cut, 2) girdling, 3) group-selection thinning, and 4) control. We also present evapotranspiration (ET) time series estimates for each experimental plot using analysis of diel water level variation. Results show elevated water tables in treatment plots relative to control plots for all treatments for several years after treatments were applied, with differences as great as 50 cm. Some recovery of water table to pre-treatment levels was observed over time, but only the group-selection thinning treatment showed near-complete recovery to pre-treatment levels, and clear-cut treatments indicate sustained elevated water tables over five years. Differences among treatments are directly attributed to variably reduced ET relative to controls. Results also indicate changes to the ET vs. water table relationship among treatments, with implications for ET feedbacks to favorable hydrologic regimes for growth. Finally, we present a conceptual model for these ecosystems and discuss how the model will be used to explore ecohydrologic feedbacks in upcoming years.

  5. Emissions of N2O from organic soils managed by agriculture in North Western Denmark (Possible production and reduction spots)

    NASA Astrophysics Data System (ADS)

    Taghizadeh-Toosi, Arezoo; Elsgaard, Lars; Ernstsen, Vibeke; Clough, Tim J.; Petersen, Søren O.

    2017-04-01

    In North Western Denmark, organic soils are extensively under agricultural management for cereal and high-value cash crop production or as grazing land. The area (overlying raised seabed) has been classified as potentially acid sulfate soil. Drainage and tillage of organic soil is known to promote emissions of nitrous oxide (N2O), but a previous monitoring program found annual N2O emissions from adjacent fields with rotational grass and potato that were, respectively, 3 and 5 times higher than default values proposed by The Intergovernmental Panel on Climate Change (IPCC, 2014). In order to study underlying mechanisms, the same two sites and two new reference sites along an East-West transect were investigated during 2015. The four sites (i.e. two with rotational grass and two sites with a potato crop) were equipped for weekly monitoring of soil surface N2O emissions and sub-soil N2O concentrations to 1 m depth during spring and autumn 2015. Also, various environmental variables (precipitation, air and soil temperature, soil moisture, groundwater level, and soil mineral N) were monitored. In April and August 2015, intact cores to 1 m depth were collected at the paired grassland and potato sites and analysed for pH, EC, nitrite, reactive Fe, acid volatile S (AVS) and chromium-reducible S (CRS). Nitrous oxide concentrations in the soil profile showed strong temporal dynamics reflecting water table changes, as well as precipitation and in some cases fertilization. At the paired site concentrations in the potato field (reaching 2000 μL N2O L-1) were much higher than in the adjacent grassland (up to 20 μL N2O L-1). Soil pH averaged 4.9 at the two paired sites. The difference was confirmed at reference sites. Accumulated emissions of N2O during monitoring periods (in total 151-174 d) corresponded to 18 and 48 kg N ha-1 at potato sites, but only 3 and 4 kg N ha-1 at the grassland sites. Nitrous oxide accumulated at depth in the soil during phases of declining water table in spring, but also when the water table raised to near the surface due to precipitation. On several occasions N2O also accumulated at shallow depth, and with elevated emissions, in connection with rainfall. Total reactive iron and sulfur content, including AVS and CRS, showed great heterogeneity in the profiles of both grassland and potato fields, and no clear relationships have been found between reactive iron or sulfur compounds and N2O concentrations in soil profile. However, controlled incubation experiments are on-going to identify possible mechanisms behind the accumulation and extremely high emissions of N2O from potato fields, especially whether acidifying processes can be linked to soil nitrate or nitrite reduction (e.g., through oxidation of ferrous iron to ferric iron, and sulfide to sulfate). Key words: Acid sulfate soils, organic soils, agricultural management, nitrous oxide emissions, environmental variables

  6. Geohydrology of the Aguirre and Pozo Hondo areas, southern Puerto Rico

    USGS Publications Warehouse

    Graves, R.P.

    1992-01-01

    The subsurface geology of the Aguirre and Pozo Hondo areas in southern Puerto Rico is primarily a fractured igneous volcanic rock (andesite) with three distinct zones: regolith, transition zone, and bedrock. Alluvial deposits are present, locally in each area, as well as weathered low- grade metamorphosed volcanics with a schistose texture and a vertical plane of foliation. A thin, water-table aquifer exists in the study areas. Ground water in this aquifer occurs primarily in the regolith and transition zone. The depth to the water table ranges from less than 1 foot to 75 feet below land surface. Ground- water flow out of the study areas is to the south into the southern coastal plain. The results of 2 multiple-well aquifer tests and 21 single-well slug injection and removal tests indicate that transmissivities range from 175 to 5,700 feet squared per day; hydraulic conductivities, from 0.02 to 160 feet per day; and storage coefficients from 0.02 to 0.2. The ground water in the study areas is of the calcium carbonate type. With the exception of dissolved solids, which were as much as 1,110 milligrams per liter, concentrations of common constituents in ground water did not exceed the U.S. Environmental Protection Agency's drinking water criteria.

  7. Residence Times in Central Valley Aquifers Recharged by Dammed Rivers

    NASA Astrophysics Data System (ADS)

    Loustale, M.; Paukert Vankeuren, A. N.; Visser, A.

    2017-12-01

    Groundwater is a vital resource for California, providing between 30-60% of the state's water supply. Recent emphasis on groundwater sustainability has induced a push to characterize recharge rates and residence times for high priority aquifers, including most aquifers in California's Central Valley. Flows in almost all rivers from the western Sierra to the Central Valley are controlled by dams, altering natural flow patterns and recharge to local aquifers. In eastern Sacramento, unconfined and confined shallow aquifers (depth <300 feet) are recharged by a losing reach of the Lower American River, despite the presence of levees with slurry cut-off walls.1 Flow in the Lower American River is controlled through the operation of the Folsom and Nimbus Dams, with a minimum flow of 500 cfs. Water table elevation in wells in close proximity to the river are compared to river stage to determine the effect of river stage on groundwater recharge rates. Additionally, Tritium-3Helium dates and stable isotopes (∂18O and ∂2H) have been measured in monitoring wells 200- 2400 ft lateral distance from the river, and depths of 25 -225 feet BGS. Variation in groundwater age in the vertical and horizontal directions are used to determine groundwater flow path and velocity. These data are then used to calculate residence time of groundwater in the unconfined and confined aquifer systems for the Central Valley in eastern Sacramento. Applying groundwater age tracers can benefit future compliance metrics of the California Sustainable Groundwater Resources Act (SGMA), by quantifying river seepage rates and impacts of groundwater management on surface water resources. 1Moran et al., UCRL-TR-203258, 2004.

  8. Geohydrology of the Valley-Fill Aquifer in the Norwich-Oxford-Brisben Area, Chenango County, New York

    USGS Publications Warehouse

    Hetcher, Kari K.; Miller, Todd S.; Garry, James D.; Reynolds, Richard J.

    2003-01-01

    This set of maps and geohydrologic sections depicts the geology and hydrology of aquifers in the 21.9-square-mile reach of the Chenango River valley between Brisben and North Norwich, N.Y. This report depicts the principal geographic features of the study area; locations of domestic, commercial, and municipal wells from which data were obtained to construct water-table and saturated-thickness maps and five geohydrologic sections; surficial geology; water-table altitude; generalized saturated thickness of the unconfined (water-table) aquifer; generalized thickness of the discontinuous series of confined aquifers; and five geohydrologic sections, all of which are in the northern part of the study area.The unconsolidated material in the Chenango River valley consists primarily of three types of deposits: (1) glaciofluvial material consisting of stratified coarse-grained sediment (sand and gravel) that was deposited by meltwater streams flowing above, below, or next to a glacier; (2) glaciolacustrine material consisting of stratified fine-grained sediment (very fine sand, silt, and clay) that was deposited in lakes that formed at the front of a glacier; and (3) recent alluvial material consisting of stratified fine-to-medium grained sediment (fine-to-medium sand and silt) that was deposited on flood plains.The water-table map was compiled from water-level data obtained from wells completed in the unconfined aquifer, and from altitudes of stream and river surfaces indicated on 1:24,000-scale topographic maps. Depth to the water table ranged from less than 5 feet below land surface near major streams to more than 75 feet on some of the kame terraces along the valley walls. Saturated thickness of the unconfined aquifer ranged from less than 1 foot near Norwich to more than 200 feet at a kame delta north of Oxford.A discontinuous series of confined aquifers is present throughout much of the Chenango River valley north of Oxford. These aquifers consist of kame deposits, eskers, and subglacial outwash sand and gravel deposits that are overlain and confined by lacustrine fine sand, silt, and clay. The saturated thickness of these aquifers is as much as 150 feet near North Norwich.

  9. Temporal variation of ecosystem scale methane emission from a boreal fen in relation to common model drivers

    NASA Astrophysics Data System (ADS)

    Rinne, J.; Tuittila, E. S.; Peltola, O.; Li, X.; Raivonen, M.; Alekseychik, P.; Haapanala, S.; Pihlatie, M.; Aurela, M.; Mammarella, I.; Vesala, T.

    2017-12-01

    Models for calculating methane emission from wetland ecosystems typically relate the methane emission to carbon dioxide assimilation. Other parameters that control emission in these models are e.g. peat temperature and water table position. Many of these relations are derived from spatial variation between chamber measurements by space-for-time approach. Continuous longer term ecosystem scale methane emission measurements by eddy covariance method provide us independent data to assess the validity of the relations derived by space-for-time approach.We have analyzed eleven-year methane flux data-set, measured at a boreal fen, together with data on environmental parameters and carbon dioxide exchange to assess the relations to typical model drivers. The data was obtained by the eddy covariance method at Siikaneva mire complex, Southern Finland, during 2005-2015. The methane flux showed seasonal cycles in methane emission, with strongest correlation with peat temperature at 35 cm depth. The temperature relation was exponential throughout the whole peat temperature range of 0-16°C. The methane emission normalized to remove temperature dependence showed a non-monotonous relation on water table and positive correlation with gross primary production (GPP). However, inclusion of these as explaining variables improved algorithm-measurement correlation only slightly, with r2=0.74 for exponential temperature dependent algorithm, r2=0.76 for temperature - water table algorithm, and r2=0.79 for temperature - GPP algorithm. The methane emission lagged behind net ecosystem exchange (NEE) and GPP by two to three weeks. Annual methane emission ranged from 8.3 to 14 gC m-2, and was 20 % of NEE and 2.8 % of GPP. The inter-annual variation of methane emission was of similar magnitude as that of GPP and ecosystem respiration (Reco), but much smaller than that of NEE. The interannual variability of June-September average methane emission correlated significantly with that of GPP indicating a close link between these two processes in boreal fen ecosystems.

  10. Topographic Controls on Hillslope-Riparian Water Table Continuity in a set of Nested Catchments, Northern Rocky Mountains, Montana

    NASA Astrophysics Data System (ADS)

    Jencso, K. G.; McGlynn, B. L.; Gooseff, M. N.; Wondzell, S. M.; Bencala, K. E.; Payn, R. A.

    2007-12-01

    Understanding how hillslope and riparian water table dynamics influence catchment scale hydrologic response remains a challenge. In steep headwater catchments with shallow soils, topographic convergence and divergence (upslope accumulated area-UAA) is a hypothesized first-order control on the distribution of soil water and groundwater. To test the relationship between UAA and the longevity of hillslope-riparian-stream shallow groundwater connectivity, we quantified water table continuity based on 80+ recording wells distributed across 24 hillslope-riparian-stream cross-sections. Cross-section upstream catchment areas ranged in size from 0.41 to 17.2 km2, within the Tenderfoot Creek Experimental Forest (U.S. Forest Service), northern Rocky Mountains, Montana, USA. We quantified toe-slope UAA and the topographic index (TI = ln a/tanβ) with a Multiple-D- Infinity (area routing in multiple infinite downslope directions) flow accumulation algorithm analysis of 1, 3, 10, and 30m ALSM derived DEMs. Indices derived from the 10m DEM best characterized subsurface flow accumulation, highlighting the balance between the process of interest, topographic complexity, and optimal grid scale representation. Across the 24 transects, toe-slope UAA ranged from 600-40,000 m2, the TI ranged from 5-16, and riparian widths were between 0-60m. Patterns in shallow groundwater table fluctuations suggest hydrologic dynamics reflective of hillslope-riparian landscape setting. Specifically, correlations were observed between longevity of hillslope-riparian water table continuity and the size of the UAA (r2=0.84) and its topographic index (r2=.86). These observations highlight the temporal component of topographic-hydrologic relationships important for understanding threshold mediated hydrologic variables. We are working to quantify the characteristics and spatial distribution of hillslope-riparian sequences and their water table dynamics to temporally link runoff source areas to whole catchment hydrologic response.

  11. SteamTablesGrid: An ActiveX control for thermodynamic properties of pure water

    NASA Astrophysics Data System (ADS)

    Verma, Mahendra P.

    2011-04-01

    An ActiveX control, steam tables grid ( StmTblGrd) to speed up the calculation of the thermodynamic properties of pure water is developed. First, it creates a grid (matrix) for a specified range of temperature (e.g. 400-600 K with 40 segments) and pressure (e.g. 100,000-20,000,000 Pa with 40 segments). Using the ActiveX component SteamTables, the values of selected properties of water for each element (nodal point) of the 41×41 matrix are calculated. The created grid can be saved in a file for its reuse. A linear interpolation within an individual phase, vapor or liquid is implemented to calculate the properties at a given value of temperature and pressure. A demonstration program to illustrate the functionality of StmTblGrd is written in Visual Basic 6.0. Similarly, a methodology is presented to explain the use of StmTblGrd in MS-Excel 2007. In an Excel worksheet, the enthalpy of 1000 random datasets for temperature and pressure is calculated using StmTblGrd and SteamTables. The uncertainty in the enthalpy calculated with StmTblGrd is within ±0.03%. The calculations were performed on a personal computer that has a "Pentium(R) 4 CPU 3.2 GHz, RAM 1.0 GB" processor and Windows XP. The total execution time for the calculation with StmTblGrd was 0.3 s, while it was 60.0 s for SteamTables. Thus, the ActiveX control approach is reliable, accurate and efficient for the numerical simulation of complex systems that demand the thermodynamic properties of water at several values of temperature and pressure like steam flow in a geothermal pipeline network.

  12. Hydrology and relation of selected water-quality constituents to selected physical factors in Dakota County, Minnesota, 1990-91

    USGS Publications Warehouse

    Almendinger, J.E.; Mitton, G.B.

    1995-01-01

    Selected water-quality constituents were determined in water from 5 surface-water sites and 29 wells in Dakota County, Minnesota, to search for possible relations to selected physical factors, including waste-water discharge, agricultural land, Quaternary deposits, bedrock, soil-leaching potential, and water-table depth. All surface-water samples were from the Vermillion River Basin, whose hydrologic setting was studied to determine its relation to the ground-water flow in the surrounding surficial sand aquifer. Each site was sampled from 1 to 12 times during 1990- 91. A total of 198 samples were collected; selected samples were analyzed for major inorganic ions, nutrients, and triazine content. Physical factors within the area of land assumed to be contributing water to each sampling site were determined from existing mapped or digitized sources. Nitrate concentrations in ground water were related to agricultural land and soil-leaching potential. Nitrate concentrations were large (median 13.2 milligrams per liter as nitrogen) where the percentage of agricultural land in the contributing area was large (equal to or greater than 75 percent) and where the soils had a large soil-leaching potential. Nitrate concentrations were small (median 3.2 milligrams per liter as nitrogen) where the soils had a small soil-leaching potential, despite a large percentage of agricultural land. The statistical relation was not particularly strong, however: the null hypothesis that sites with different soil-leaching potentials had the same nitrate concentrations in ground water was rejected by the Kruskal-Wallis test at only the probability P = 0.15 level. Water-table depth was not an important factor in the relation between nitrate concentrations in ground water and agricultural land. Discharge from a waste-water treatment plant provided most of the downstream loading of nitrate into the Vermillion River mainstem. Triazines were found in small concentrations (less than 2 micrograms per liter) in the Vermillion River and its tributaries. No relation was apparent between selected water-quality constituents and either Quaternary deposits or bedrock.

  13. Slope Stability Analysis of Mountain Pine Beetle Impacted Areas

    NASA Astrophysics Data System (ADS)

    Bogenschuetz, N. M.; Bearup, L. A.; Maxwell, R. M.; Santi, P. M.

    2015-12-01

    The mountain pine beetle (MPB), Dendroctonus ponderosae, has caused significant tree mortality within North America. Specifically, the MPB affects ponderosa pine and lodgepole pine forests within the Rocky Mountains with approximately 3.4 million acres of forest impacted over the past 20 years. The full impacts of such unprecedented tree mortality on hydrology and slope stability is not well understood. This work studies the affects of MPB infestation on slope instability. A large-scale statistical analysis of MPB and slope stability is combined with a more in-depth analysis of the factors that contribute to slope stability. These factors include: slope aspect, slope angle, root decay, regrowth and hydrologic properties, such as water table depth and soil moisture. Preliminary results show that MPB may affect a greater number of north- and east-facing slopes. This is in accordance with more water availability and a higher MPB impacted tree density on north-facing slopes which, in turn, could potentially increase the probability of slope failure. Root strength is predicted to decrease as the roots stop transpiring 3-4 years proceeding infestation. However, this effect on the hillslope is likely being counterbalanced by the regrowth of grasses, forbs, shrubs, and trees. In addition, the increase in water table height from the lack of transpiring trees is adding a driving force to the slopes. The combination of all these factors will be used in order to assess the effects of MPB tree mortality on slope stability.

  14. Water depth modifies back kinematics of horses during water treadmill exercise.

    PubMed

    Nankervis, K J; Finney, P; Launder, L

    2016-11-01

    Water treadmill exercise can be incorporated into the rehabilitation programmes of horses recovering from back pathology, yet little is known about the effect of this type of exercise on thoracolumbar movement ranges. To measure the flexion-extension range of motion (FE ROM) of the thoracolumbar spine and pelvic vertical displacement during water treadmill walking at 3 water depths and compare these with the control condition. Within-subject trial using a crossover design in healthy horses. A total of 14 horses walked at 0.8 m/s on a water treadmill for 3 min at each of the following depths; hoof (control), metatarsophalangeal joint (low), tarsal joint (medium) and femoropatellar joint (high). Skin surface markers on T6, T10, T13, T18, L3, L5 and S3 were used to obtain FE ROM and the minimum and maximum angular motion pattern values (AMPmin and AMPmax) for T10, T13, T18, L3 and L5. Markers placed on left and right tuber coxae were used to obtain pelvic vertical displacement. Friedman's tests and post hoc Wilcoxon's signed ranks tests were used to determine the effects of water depth on measured variables. The FE ROM of T10 (8.4°), T13 (8.1°), T18 (6.9°) and L3 (6.4°) when walking at high depth was significantly greater than control (5.5, 5.7, 5.1 and 5.1°, respectively; P<0.008); T13 AMPmin was significantly lower in high water (-3.0°) than control (0.1°, P = 0.001) and L3 AMPmax significantly greater in high water (-1.9°) than control (-4.8°, P = 0.001). There was no significant association between pelvic vertical displacement and water depth. Walking in high water causes cranial thoracic extension and thoracolumbar flexion when compared with walking in water at hoof depth. This postural change should be considered when designing rehabilitation programmes for horses with back and/or hindlimb pathology. © 2015 EVJ Ltd.

  15. Documentation of a digital spatial data base for hydrologic investigations, Broward County, Florida

    USGS Publications Warehouse

    Sonenshein, R.S.

    1992-01-01

    Geographic information systems have become an important tool in planning for the protection and development of natural resources, including ground water and surface water. A digital spatial data base consisting of 18 data layers that can be accessed by a geographic information system was developed for Broward County, Florida. Five computer programs, including one that can be used to create documentation files for each data layer and four that can be used to create data layers from data files not already in geographic information system format, were also developed. Four types of data layers have been developed. Data layers for manmade features include major roads, municipal boundaries, the public land-survey section grid, land use, and underground storage tank facilities. The data layer for topographic features consists of surveyed point land-surface elevations. Data layers for hydrologic features include surface-water and rainfall data-collection stations, surface-water bodies, water-control district boundaries, and water-management basins. Data layers for hydrogeologic features include soil associations, transmissivity polygons, hydrogeologic unit depths, and a finite-difference model grid for south-central Broward County. Each data layer is documented as to the extent of the features, number of features, scale, data sources, and a description of the attribute tables where applicable.

  16. Numerical simulation of ground-water flow through glacial deposits and crystalline bedrock in the Mirror Lake area, Grafton County, New Hampshire

    USGS Publications Warehouse

    Tiedeman, Claire; Goode, Daniel J.; Hsieh, Paul A.

    1997-01-01

    This report documents the development of a computer model to simulate steady-state (long-term average) flow of ground water in the vicinity of Mirror Lake, which lies at the eastern end of the Hubbard Brook valley in central New Hampshire. The 10-km2 study area includes Mirror Lake, the three streams that flow into Mirror Lake, Leeman's Brook, Paradise Brook, and parts of Hubbard Brook and the Pemigewasset River. The topography of the area is characterized by steep hillsides and relatively flat valleys. Major hydrogeologic units include glacial deposits, composed of till containing pockets of sand and gravel, and fractured crystalline bedrock, composed of schist intruded by granite, pegmatite, and lamprophyre. Ground water occurs in both the glacial deposits and bedrock. Precipitation and snowmelt infiltrate to the water table on the hillsides, flow downslope through the saturated glacial deposits and fractured bedrock, and discharge to streams and to Mirror Lake. The model domain includes the glacial deposits, the uppermost 150m of bedrock, Mirror Lake, the layer of organic sediments on the lake bottom, and streams and rivers within the study area. A streamflow routing package was included in the model to simulate baseflow in streams and interaction between streams and ground water. Recharge from precipitation is assumed to be areally uniform, and riparian evapotranspiration along stream banks is assumed negligible. The spatial distribution of hydraulic conductivity is represented by dividing the model domain into several zones, each having uniform hydraulic properties. Local variations in recharge and hydraulic conductivities are ignored; therefore, the simulation results characterize the general ground-water system, not local details of ground-water movement. The model was calibrated using a nonlinear regression method to match hydraulic heads measured in piezometers and wells, and baseflow in three inlet streams to Mirror Lake. Model calibration indicates that recharge from precipitation to the water table is 26 to 28 cm/year. Hydraulic conductivities are 1.7 x 10-6 to 2.7 x 10-6 m/s for glacial deposits, about 3 x 10-7 m/s for bedrock beneath lower hillsides and valleys, and about 6x10-8 m/s for bedrock beneath upper hillsides and hilltops. Analysis of parameter uncertainty indicates that the above values are well constrained, at least within the context of regression analysis. In the regression, several attributes of the ground-water flow model are assumed perfectly known. The hydraulic conductivity for bedrock beneath upper hillsides and hilltops was determined from few data, and additional data are needed to further confirm this result. Model fit was not improved by introducing a 10-to-1 ration of horizontal-to-vertical anisotropy in the hydraulic conductivity of the glacial deposits, or by varying hydraulic conductivity with depth in the modeled part (uppermost 150m) of the bedrock. The calibrated model was used to delineate the Mirror Lake ground-water basin, defined as the volumes of subsurface through which ground water flows from the water table to Mirror Lake or its inlet streams. Results indicate that Mirror Lake and its inlet streams drain an area of ground-water recharge that is about 1.5 times the area of the surface-water basin. The ground-water basin extends far up the hillside on the northwestern part of the study area. Ground water from this area flows at depth under Norris Brook to discharge into Mirror Lake or its inlet streams. As a result, the Mirror Lake ground-water basin extends beneath the adjacent ground-water basin that drains into Norris Brook. Model simulation indicates that approximately 300,000 m3/year of precipitation recharges the Mirror Lake ground-water basin. About half the recharge enters the basin in areas where the simulated water table lies in glacial deposits; the other half enters the basin in areas where the simulated water table lies in be

  17. A reconnaissance of hydrogeologic conditions in Lehigh Acres and adjacent areas of Lee County, Florida

    USGS Publications Warehouse

    Boggess, Durward Hoye; Missimer, T.M.

    1975-01-01

    Lehigh Acres, a residential community with a population of about 13,500 and comprising an area of about 94 square miles (243 square kilometres) in the eastern part of Lee County, has been under development since 1954. Prior to development the area was poorly drained. By 1974, more than 150 miles (241 kilometres) of drainageways had been constructed to drain the area. The water-bearing formations underlying Lehigh Acres include the water-table, sandstone, lower Hawthorn, and Suwannee aquifers. The water-table aquifer is usually not more than 30 feet (9 metres) thick; it contains water of relatively good quality, except for iron and color. Water levels in this aquifer probably have been affected by construction of drainage canals. The sandstone aquifer, used extensively throughout the area as a source of water supply usually contains water of good quality although the water is hard and in places may contain concentrations of dissolved solids and iron which exceed the recommended limits of the U.S. Public Health Service and the State of Florida for drinking water. The lower Hawthorn and Suwannee aquifers, usually encountered at depths between 440 and 850 feet (135 and 262 metres), contains water with relatively high concentrations of sodium, sulfate, chloride, and dissolved solids. Three streams, the Orange River, Hickey Creek, and Bedman Creek and the canals connected to them, provide drainage of the area. Except for the Orange River, where the water is of good chemical quality, little is known of the water quality. Similarly, little information is available on stream discharge except for the Orange River where the average annual discharge was 41.1 cubic feet per second (11.6 cubic metres per second) between 1935-46. Most lakes and ponds in Lehigh Acres are hydraulically connected to the water-table aquifer such that factors which affect one also affect the other. Theoretical drawdown curves indicate that the drainage canals may affect ground-water levels to a distance of 6,000 feet (1,800 metres) under certain conditions. Leeland Lake, the only known sinkhole lake in Lee County, is about 208 feet (64 metres) deep and contains water more nearly similar to the sandstone aquifer, although the lake may by hydraulically connected to both the water-table and sandstone aquifers.

  18. Estimating regional-scale permeability-depth relations in a fractured-rock terrain using groundwater-flow model calibration

    NASA Astrophysics Data System (ADS)

    Sanford, Ward E.

    2017-03-01

    The trend of decreasing permeability with depth was estimated in the fractured-rock terrain of the upper Potomac River basin in the eastern USA using model calibration on 200 water-level observations in wells and 12 base-flow observations in subwatersheds. Results indicate that permeability at the 1-10 km scale (for groundwater flowpaths) decreases by several orders of magnitude within the top 100 m of land surface. This depth range represents the transition from the weathered, fractured regolith into unweathered bedrock. This rate of decline is substantially greater than has been observed by previous investigators that have plotted in situ wellbore measurements versus depth. The difference is that regional water levels give information on kilometer-scale connectivity of the regolith and adjacent fracture networks, whereas in situ measurements give information on near-hole fractures and fracture networks. The approach taken was to calibrate model layer-to-layer ratios of hydraulic conductivity (LLKs) for each major rock type. Most rock types gave optimal LLK values of 40-60, where each layer was twice a thick as the one overlying it. Previous estimates of permeability with depth from deeper data showed less of a decline at <300 m than the regional modeling results. There was less certainty in the modeling results deeper than 200 m and for certain rock types where fewer water-level observations were available. The results have implications for improved understanding of watershed-scale groundwater flow and transport, such as for the timing of the migration of pollutants from the water table to streams.

  19. Estimating regional-scale permeability–depth relations in a fractured-rock terrain using groundwater-flow model calibration

    USGS Publications Warehouse

    Sanford, Ward E.

    2017-01-01

    The trend of decreasing permeability with depth was estimated in the fractured-rock terrain of the upper Potomac River basin in the eastern USA using model calibration on 200 water-level observations in wells and 12 base-flow observations in subwatersheds. Results indicate that permeability at the 1–10 km scale (for groundwater flowpaths) decreases by several orders of magnitude within the top 100 m of land surface. This depth range represents the transition from the weathered, fractured regolith into unweathered bedrock. This rate of decline is substantially greater than has been observed by previous investigators that have plotted in situ wellbore measurements versus depth. The difference is that regional water levels give information on kilometer-scale connectivity of the regolith and adjacent fracture networks, whereas in situ measurements give information on near-hole fractures and fracture networks. The approach taken was to calibrate model layer-to-layer ratios of hydraulic conductivity (LLKs) for each major rock type. Most rock types gave optimal LLK values of 40–60, where each layer was twice a thick as the one overlying it. Previous estimates of permeability with depth from deeper data showed less of a decline at <300 m than the regional modeling results. There was less certainty in the modeling results deeper than 200 m and for certain rock types where fewer water-level observations were available. The results have implications for improved understanding of watershed-scale groundwater flow and transport, such as for the timing of the migration of pollutants from the water table to streams.

  20. Shifted energy fluxes, increased Bowen ratios, and reduced thaw depths linked with drainage-induced changes in permafrost ecosystem structure

    NASA Astrophysics Data System (ADS)

    Göckede, Mathias; Kittler, Fanny; Kwon, Min Jung; Burjack, Ina; Heimann, Martin; Kolle, Olaf; Zimov, Nikita; Zimov, Sergey

    2017-12-01

    Hydrologic conditions are a key factor in Arctic ecosystems, with strong influences on ecosystem structure and related effects on biogeophysical and biogeochemical processes. With systematic changes in water availability expected for large parts of the northern high-latitude region in the coming centuries, knowledge on shifts in ecosystem functionality triggered by altered water levels is crucial for reducing uncertainties in climate change predictions. Here, we present findings from paired ecosystem observations in northeast Siberia comprising a drained and a control site. At the drainage site, the water table has been artificially lowered by up to 30 cm in summer for more than a decade. This sustained primary disturbance in hydrologic conditions has triggered a suite of secondary shifts in ecosystem properties, including vegetation community structure, snow cover dynamics, and radiation budget, all of which influence the net effects of drainage. Reduced thermal conductivity in dry organic soils was identified as the dominating drainage effect on energy budget and soil thermal regime. Through this effect, reduced heat transfer into deeper soil layers leads to shallower thaw depths, initially leading to a stabilization of organic permafrost soils, while the long-term effects on permafrost temperature trends still need to be assessed. At the same time, more energy is transferred back into the atmosphere as sensible heat in the drained area, which may trigger a warming of the lower atmospheric surface layer.

  1. Water-quality assessment of part of the Upper Mississippi River basin, Minnesota and Wisconsin - Ground-water quality along a flow system in the Twin Cities metropolitan area, Minnesota, 1997-98

    USGS Publications Warehouse

    Andrews, William J.; Stark, James R.; Fong, Alison L.; Fallon, James D.

    2005-01-01

    Although land use had substantial effects on ground-water quality, the distribution of contaminants in the aquifer also is affected by complex combinations of factors and processes that include sources of natural and anthropogenic contaminants, three-dimensional advective flow, physical and hydrologic settings, age and evolution of ground water, and transformation of chemical compounds along the flow system. Compounds such as nitrate and dissolved oxygen were greatest in water samples from the upgradient end of the flow system and near the water table. Specific conductance and dissolved solids increased along the flow system and with depth due to increase in residence time in the flow system and dissolution of aquifer materials.

  2. Anomalous gold, antimony, arsenic, and tungsten in ground water and alluvium around disseminated gold deposits along the Getchell Trend, Humboldt County, Nevada

    USGS Publications Warehouse

    Grimes, D.J.; Ficklin, W.H.; Meier, A.L.; McHugh, J.B.

    1995-01-01

    Ground-water, alluvium, and bedrock samples were collected from drill holes near the Chimney Creek, Preble, Summer Camp, and Rabbit Creek disseminated gold deposits in northern Nevada. Results of chemical analyses of drill-hole water samples show the presence of hydromorphic dispersion anomalies of Au, As, Sb, and W in the local ground-water systems associated with these deposits. In addition, analysis of sequential dissolution and extraction solutions of drill cuttings of alluvium and bedrock indicate geochemical anomalies of gold and ore-related metals in the overburden at depths corresponding to the location of the present-day water table. This relationship suggests that water-rock reactions around these buried deposits are active. -from Authors

  3. Accommodating permafrost in contaminant transport modeling, a preliminary approach to modify the TREECS modeling tools

    NASA Astrophysics Data System (ADS)

    Ryder, J. L.; Dortch, M. S.; Johnson, B. E.

    2017-12-01

    Efforts are underway to adapt TREECS (Training Range Environmental Evaluation and Characterization System) for use in arctic or subarctic conditions where the extent and duration of snowpack and frozen ground may influence the development and concentration of contaminant plumes. TREECS is a multi-media model designed to aid facility managers in the long term stewardship of Army properties. TREECS includes sub-models for mass loading, soil, vadose zone, aquifer, and stream transport. Potential changes to the sub-models to improve the ability to model contaminant transport in areas with permafrost include accurately representing the dissolution of contaminants over a wider range of temperatures, estimating snow depth and ablation for both the hydrology and thermal conditions, determining ground freeze/thaw state and an average active layer depth, a more precise method to estimate a vertical transport time to a water table, and a soil interflow routine that adapts for permafrost condition. In this presentation we will show three sub-model comparisons 1) the use of the National Weather Service SNOW-17 model and the current TREECS snowmelt routines for input hydrology, 2) a Continuous Frozen Ground Index (CFGI) model and the Geophysical Institute Permafrost Lab model (GIPL 1.0) for determining active layer depth and summer season length, and 3) the use of HYDRUS-1D and the current TREECS vadose zone model for transport to the water table. The performance vs input needs, assumptions, and limitations of each approach, as well as the physical system uncertainties will also be discussed.

  4. 50 CFR Table 1b to Part 660... - 2009, Harvest Guidelines for Minor Rockfish by Depth Sub-groups (weights in metric tons)

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false 2009, Harvest Guidelines for Minor Rockfish by Depth Sub-groups (weights in metric tons) 1b Table 1b to Part 660, Subpart G Wildlife and... 660, Subpart G—2009, Harvest Guidelines for Minor Rockfish by Depth Sub-groups (weights in metric tons...

  5. 50 CFR Table 2b to Part 660... - 2010, and Beyond, Harvest Guidelines for Minor Rockfish by Depth Sub-groups (weights in metric tons)

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false 2010, and Beyond, Harvest Guidelines for Minor Rockfish by Depth Sub-groups (weights in metric tons) 2b Table 2b to Part 660, Subpart G Wildlife... Part 660, Subpart G—2010, and Beyond, Harvest Guidelines for Minor Rockfish by Depth Sub-groups...

  6. The impact of a pulsing groundwater table on greenhouse gas emissions in riparian grey alder stands.

    PubMed

    Mander, Ülo; Maddison, Martin; Soosaar, Kaido; Teemusk, Alar; Kanal, Arno; Uri, Veiko; Truu, Jaak

    2015-02-01

    Floods control greenhouse gas (GHG) emissions in floodplains; however, there is a lack of data on the impact of short-term events on emissions. We studied the short-term effect of changing groundwater (GW) depth on the emission of (GHG) carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) in two riparian grey alder (Alnus incana) stands of different age in Kambja, southern Estonia, using the opaque static chamber (five replicates in each site) and gas chromatography methods. The average carbon and total nitrogen content in the soil of the old alder (OA) stand was significantly higher than in the young alder (YA) stand. In both stands, one part was chosen for water table manipulation (Manip) and another remained unchanged with a stable and deeper GW table. Groundwater table manipulation (flooding) significantly increases CH4 emission (average: YA-Dry 468, YA-Manip 8,374, OA-Dry 468, OA-Manip 4,187 μg C m(-2) h(-1)) and decreases both CO2 (average: OA-Dry 138, OA-Manip 80 mg C m(-2) h(-1)) and N2O emissions (average: OA-Dry 23.1, OA-Manip 11.8 μg N m(-2) h(-1)) in OA sites. There was no significant difference in CO2 and CH4 emissions between the OA and YA sites, whereas in OA sites with higher N concentration in the soil, the N2O emission was significantly higher than at the YA sites. The relative CO2 and CH4 emissions (the soil C stock-related share of gaseous losses) were higher in manipulated plots showing the highest values in the YA-Manip plot (0.03 and 0.0030 % C day(-1), respectively). The soil N stock-related N2O emission was very low achieving 0.000019 % N day(-1) in the OA-Dry plot. Methane emission shows a negative correlation with GW, whereas the 20 cm depth is a significant limit below which most of the produced CH4 is oxidized. In terms of CO2 and N2O, the deeper GW table significantly increases emission. In riparian zones of headwater streams, the short-term floods (e.g. those driven by extreme climate events) may significantly enhance methane emission whereas the long-term lowering of the groundwater table is a more important initiator of N2O fluxes from riparian gley soils than flood pulses.

  7. Water-Quality Data for Selected Stream Sites in Bridgeport Valley, Mono County, California, April 2000 to June 2003

    USGS Publications Warehouse

    Rockwell, Gerald L.; Honeywell, Paul D.

    2004-01-01

    The U.S. Geological Survey, in cooperation with the California Regional Water Quality Control Board, Lahonton Region, carried out a water-quality data collection program of selected streams in and near Bridgeport Valley, California, during April 2000 to June 2003. These data were collected to provide information used by the California Regional Water Quality Control Board to develop total maximum daily load standards. Field measurements of streamflow, barometric pressure, dissolved oxygen, pH, specific conductance, and water temperature were made at 15 sites located on 6 streams. Water samples were analyzed for nutrients, major ions, turbidity, fecal coliform, fecal streptococci, and suspended sediment. Field data, turbidity, nutrient, major ion, and sediment concentrations and fecal coliform and fecal streptococci densities are given in tables for each site. Field blank data are also presented in a table.

  8. Rates of evapotranspiration, recharge from precipitation beneath selected areas of native vegetation, and streamflow gain and loss in Carson Valley, Douglas County, Nevada, and Alpine County, California

    USGS Publications Warehouse

    Maurer, Douglas K.; Berger, David L.; Tumbusch, Mary L.; Johnson, Michael J.

    2006-01-01

    Rapid growth and development in Carson Valley is causing concern over the continued availability of water resources to sustain such growth into the future. A study to address concerns over water resources and to update estimates of water-budget components in Carson Valley was begun in 2003 by the U.S. Geological Survey, in cooperation with Douglas County, Nevada. This report summarizes micrometeorologic, soil-chloride, and streambed-temperature data collected in Carson Valley from April 2003 through November 2004. Using these data, estimates of rates of discharge by evapotranspiration (ET), rates of recharge from precipitation in areas of native vegetation on the eastern and northern sides of the valley, and rates of recharge and discharge from streamflow infiltration and seepage on the valley floor were calculated. These rates can be used to develop updated water budgets for Carson Valley and to evaluate potential effects of land- and water-use changes on the valley's water budget. Data from eight ET stations provided estimates of annual ET during water year 2004, the sixth consecutive year of a drought with average or below average precipitation since 1999. Estimated annual ET from flood-irrigated alfalfa where the water table was from 3 to 6 feet below land surface was 3.1 feet. A similar amount of ET, 3.0 feet, was estimated from flood-irrigated alfalfa where the water table was about 40 feet below land surface. Estimated annual ET from flood-irrigated pasture ranged from 2.8 to 3.2 feet where the water table ranged from 2 to 5 feet below land surface, and was 4.4 feet where the water table was within 2 feet from land surface. Annual ET estimated from nonirrigated pasture was 1.7 feet. Annual ET estimated from native vegetation was 1.9 feet from stands of rabbitbrush and greasewood near the northern end of the valley, and 1.5 feet from stands of native bitterbrush and sagebrush covering alluvial fans along the western side of the valley. Uncertainty in most ET estimates is about 12 percent, but ranged from +30 and +50 percent to -20 and -40 percent for nonirrigated pasture and native bitterbrush and sagebrush. Estimated rates for water year 2004 likely are less than those during years of average, or above average precipitation when the water table would be closer to land surface. Test holes drilled in areas of native vegetation on the northern and eastern sides of Carson Valley had high concentrations of soil chloride at depths ranging from 4 to 18 feet below land surface at six locations on the eastern side of the valley. The high chloride concentrations indicate that modern-day precipitation at the six locations does not percolate deeper than the root zone of native vegetation. Estimates of the time required to accumulate the measured amount of chloride to depths of about 30 feet below land surface at the six test holes ranged from about 3,000 to 12,000 years. Low concentrations of soil chloride in two test holes on the northern end of Carson Valley and in a test hole on the eastern side of Fish Spring Flat indicate that a small amount of recharge from modern-day precipitation is taking place. Estimated annual recharge from precipitation at the two locations was 0.03 and 0.04 foot on the northern end of the valley and 0.02 foot on the eastern side of Fish Spring Flat. Uncertainty in the estimated recharge rates was about ?0.01 foot. Estimates of the time required to accumulate the measured amount of chloride to depths of about 30 feet below land surface at the three test holes ranged from about 100 to 700 years. The two test holes near the northern end of the valley are in gravel and eolian sand deposits and recharge from precipitation may be taking place at similar rates in other areas with gravel and eolian sand deposits. Based on results from other test holes, recharge at the rate estimated for the test hole on the eastern side of Fish Spring Flat is not likely applicable to a large area. Data from 37 site

  9. A screening tool for delineating subregions of steady recharge within groundwater models

    USGS Publications Warehouse

    Dickinson, Jesse; Ferré, T.P.A.; Bakker, Mark; Crompton, Becky

    2014-01-01

    We have developed a screening method for simplifying groundwater models by delineating areas within the domain that can be represented using steady-state groundwater recharge. The screening method is based on an analytical solution for the damping of sinusoidal infiltration variations in homogeneous soils in the vadose zone. The damping depth is defined as the depth at which the flux variation damps to 5% of the variation at the land surface. Groundwater recharge may be considered steady where the damping depth is above the depth of the water table. The analytical solution approximates the vadose zone diffusivity as constant, and we evaluated when this approximation is reasonable. We evaluated the analytical solution through comparison of the damping depth computed by the analytic solution with the damping depth simulated by a numerical model that allows variable diffusivity. This comparison showed that the screening method conservatively identifies areas of steady recharge and is more accurate when water content and diffusivity are nearly constant. Nomograms of the damping factor (the ratio of the flux amplitude at any depth to the amplitude at the land surface) and the damping depth were constructed for clay and sand for periodic variations between 1 and 365 d and flux means and amplitudes from nearly 0 to 1 × 10−3 m d−1. We applied the screening tool to Central Valley, California, to identify areas of steady recharge. A MATLAB script was developed to compute the damping factor for any soil and any sinusoidal flux variation.

  10. Applying Hillslope Hydrology to Bridge between Ecosystem and Grid-Scale Processes within an Earth System Model

    NASA Astrophysics Data System (ADS)

    Subin, Z. M.; Sulman, B. N.; Malyshev, S.; Shevliakova, E.

    2013-12-01

    Soil moisture is a crucial control on surface energy fluxes, vegetation properties, and soil carbon cycling. Its interactions with ecosystem processes are highly nonlinear across a large range, as both drought stress and anoxia can impede vegetation and microbial growth. Earth System Models (ESMs) generally only represent an average soil-moisture state in grid cells at scales of 50-200 km, and as a result are not able to adequately represent the effects of subgrid heterogeneity in soil moisture, especially in regions with large wetland areas. We addressed this deficiency by developing the first ESM-coupled subgrid hillslope-hydrological model, TiHy (Tiled-hillslope Hydrology), embedded within the Geophysical Fluid Dynamics Laboratory (GFDL) land model. In each grid cell, one or more representative hillslope geometries are discretized into land model tiles along an upland-to-lowland gradient. These geometries represent ~1 km hillslope-scale hydrological features and allow for flexible representation of hillslope profile and plan shapes, in addition to variation of subsurface properties among or within hillslopes. Each tile (which may represent ~100 m along the hillslope) has its own surface fluxes, vegetation state, and vertically-resolved state variables for soil physics and biogeochemistry. Resolution of water state in deep layers (~200 m) down to bedrock allows for physical integration of groundwater transport with unsaturated overlying dynamics. Multiple tiles can also co-exist at the same vertical position along the hillslope, allowing the simulation of ecosystem heterogeneity due to disturbance. The hydrological model is coupled to the vertically-resolved Carbon, Organisms, Respiration, and Protection in the Soil Environment (CORPSE) model, which captures non-linearity resulting from interactions between vertically-heterogeneous soil carbon and water profiles. We present comparisons of simulated water table depth to observations. We examine sensitivities to alternative parameterizations of hillslope geometry, macroporosity, and surface runoff / inundation, and to the choice of global topographic dataset and groundwater hydraulic conductivity distribution. Simulated groundwater dynamics among hillslopes tend to cluster into three regimes of wet and well-drained, wet but poorly-drained, and dry. In the base model configuration, near-surface gridcell-mean water tables exist in an excessively large area compared to observations, including large areas of the Eastern U.S. and Northern Europe. However, in better-drained areas, the decrease in water table depth along the hillslope gradient allows for realistic increases in ecosystem water availability and soil carbon downslope. The inclusion of subgrid hydrology can increase the equilibrium 0-2 m global soil carbon stock by a large factor, due to the nonlinear effect of anoxia. We conclude that this innovative modeling framework allows for the inclusion of hillslope-scale processes and the potential for wetland dynamics in an ESM without need for a high-resolution 3-dimensional groundwater model. Future work will include investigating the potential for future changes in land carbon fluxes caused by the effects of changing hydrological regime, particularly in peatland-rich areas poorly treated by current ESMs.

  11. Study of water-table behaviour for the Indian Punjab using GIS.

    PubMed

    Kaur, Samanpreet; Aggarwal, Rajan; Soni, Ashwani

    2011-01-01

    The state of Punjab (India) has witnessed a spectacular increase in agricultural production in the last few decades. This has been possible due to high use of fertilizers, good quality seeds and increased use of water resources. This increased demand of water resources has resulted in extensive use of groundwater in the central districts of the state and surface water (canals) in South-West Punjab, where groundwater is of poor quality in general. The state has been facing the twin problem of water table decline/rise in different parts. Efficient management relies on comprehensive database and regular monitoring of the resources. GIS is one of the important tools for integrating and analyzing spatial information from different sources or disciplines. It helps to integrate, analyze and represent spatial information and database of any resource, which could be easily used for planning of resource development, environmental protection and scientific researches and investigations. Geographical Information Systems (GIS) have been used for a variety of groundwater studies. Groundwater level change maps are useful in determining areas of greatest changes in storage in the regional systems. In this study, an attempt has been made to assess the long term groundwater behaviour of the state using GIS to visually and spatially analyze water level data obtained from the state and central agencies. The data was analysed for 0-3 m, 3-10 m, 10-20 m and beyond 20 m. The study revealed that per cent area with water table depth > 10 m was 20% in 1998 and has increased to 58% by 2006 which is critical limit for shifting from centrifugal pump to submersible pump.

  12. Development of a simulation of the surficial groundwater system for the CONUS

    NASA Astrophysics Data System (ADS)

    Zell, W.; Sanford, W. E.

    2016-12-01

    Water resource and environmental managers across the country face a variety of questions involving groundwater availability and/or groundwater transport pathways. Emerging management questions require prediction of groundwater response to changing climate regimes (e.g., how drought-induced water-table recession may degrade near-stream vegetation and result in increased wildfire risks), while existing questions can require identification of current groundwater contributions to surface water (e.g., groundwater linkages between landscape contaminant inputs and receiving streams may help explain in-stream phenomena such as fish intersex). At present, few national-coverage simulation tools exist to help characterize groundwater contributions to receiving streams and predict potential changes in base-flow regimes under changing climate conditions. We will describe the Phase 1 development of a simulation of the water table and shallow groundwater system for the entire CONUS. We use national-scale datasets such as the National Recharge Map and the Map Database for Surficial Materials in the CONUS to develop groundwater flow (MODFLOW) and transport (MODPATH) models that are calibrated against groundwater level and stream elevation data from NWIS and NHD, respectively. Phase 1 includes the development of a national transmissivity map for the surficial groundwater system and examines the impact of model-grid resolution on the simulated steady-state discharge network (and associated recharge areas) and base-flow travel time distributions for different HUC scales. In the course of developing the transmissivity map we show that transmissivity in fractured bedrock systems is dependent on depth to water. Subsequent phases of this work will simulate water table changes at a monthly time step (using MODIS-dependent recharge estimates) and serve as a critical complement to surface-water-focused USGS efforts to provide national coverage hydrologic modeling tools.

  13. Spatial extent and temporal variability of Greenland firn aquifers detected by ground and airborne radars

    NASA Astrophysics Data System (ADS)

    Miège, Clément; Forster, Richard R.; Brucker, Ludovic; Koenig, Lora S.; Solomon, D. Kip; Paden, John D.; Box, Jason E.; Burgess, Evan W.; Miller, Julie Z.; McNerney, Laura; Brautigam, Noah; Fausto, Robert S.; Gogineni, Sivaprasad

    2016-12-01

    We document the existence of widespread firn aquifers in an elevation range of 1200-2000 m, in the high snow-accumulation regions of the Greenland ice sheet. We use NASA Operation IceBridge accumulation radar data from five campaigns (2010-2014) to estimate a firn-aquifer total extent of 21,900 km2. We investigate two locations in Southeast Greenland, where repeated radar profiles allow mapping of aquifer-extent and water table variations. In the upper part of Helheim Glacier the water table rises in spring following above-average summer melt, showing the direct firn-aquifer response to surface meltwater production changes. After spring 2012, a drainage of the firn-aquifer lower margin (5 km) is inferred from both 750 MHz accumulation radar and 195 MHz multicoherent radar depth sounder data. For 2011-2014, we use a ground-penetrating radar profile located at our Ridgeline field site and find a spatially stable aquifer with a water table fluctuating less than 2.5 m vertically. When combining radar data with surface topography, we find that the upper elevation edge of firn aquifers is located directly downstream of locally high surface slopes. Using a steady state 2-D groundwater flow model, water is simulated to flow laterally in an unconfined aquifer, topographically driven by ice sheet surface undulations until the water encounters crevasses. Simulations suggest that local flow cells form within the Helheim aquifer, allowing water to discharge in the firn at the steep-to-flat transitions of surface topography. Supported by visible imagery, we infer that water drains into crevasses, but its volume and rate remain unconstrained.

  14. Data from a thick unsaturated zone underlying Oro Grande and Sheep Creek washes in the western part of the Mojave Desert, near Victorville, San Bernardino County, California

    USGS Publications Warehouse

    Izbicki, John A.; Clark, Dennis A.; Pimental, Maria I.; Land, Michael; Radyk, John C.; Michel, Robert L.

    2000-01-01

    This report presents data on the physical properties of unsaturated alluvial deposits and on the chemical and isotopic composition of soil water and soil gas collected at 12 monitoring sites in the western part of the Mojave Desert, near Victorville, California. Sites were installed using the ODEX air-hammer method. Seven sites were located in the active channels of Oro Grande and Sheep Creek Washes. The remaining five sites were located away from the active washes. Most sites were drilled to a depth of about 100 feet below land surface; two sites were drilled to the water table almost 650 feet below land surface. Drilling procedures, lithologic and geophysical data, and site construction and instrumentation are described. Core material was analyzed for water content, bulk density, water potential, particle size, and water retention. The chemical composition of leachate from almost 1,000 subsamples of cores and cuttings was determined. Water extracted from selected subsamples of cores was analyzed for tritium and the stable isotopes of oxygen and hydrogen. Water from suction-cup lysimeters and soil-gas samples also were analyzed for chemical and isotopic composition. In addition, data on the chemical and isotopic composition of bulk precipitation from five sites and on ground water from two water-table wells are reported.

  15. A hybrid machine learning model to estimate nitrate contamination of production zone groundwater in the Central Valley, California

    NASA Astrophysics Data System (ADS)

    Ransom, K.; Nolan, B. T.; Faunt, C. C.; Bell, A.; Gronberg, J.; Traum, J.; Wheeler, D. C.; Rosecrans, C.; Belitz, K.; Eberts, S.; Harter, T.

    2016-12-01

    A hybrid, non-linear, machine learning statistical model was developed within a statistical learning framework to predict nitrate contamination of groundwater to depths of approximately 500 m below ground surface in the Central Valley, California. A database of 213 predictor variables representing well characteristics, historical and current field and county scale nitrogen mass balance, historical and current landuse, oxidation/reduction conditions, groundwater flow, climate, soil characteristics, depth to groundwater, and groundwater age were assigned to over 6,000 private supply and public supply wells measured previously for nitrate and located throughout the study area. The machine learning method, gradient boosting machine (GBM) was used to screen predictor variables and rank them in order of importance in relation to the groundwater nitrate measurements. The top five most important predictor variables included oxidation/reduction characteristics, historical field scale nitrogen mass balance, climate, and depth to 60 year old water. Twenty-two variables were selected for the final model and final model errors for log-transformed hold-out data were R squared of 0.45 and root mean square error (RMSE) of 1.124. Modeled mean groundwater age was tested separately for error improvement in the model and when included decreased model RMSE by 0.5% compared to the same model without age and by 0.20% compared to the model with all 213 variables. 1D and 2D partial plots were examined to determine how variables behave individually and interact in the model. Some variables behaved as expected: log nitrate decreased with increasing probability of anoxic conditions and depth to 60 year old water, generally decreased with increasing natural landuse surrounding wells and increasing mean groundwater age, generally increased with increased minimum depth to high water table and with increased base flow index value. Other variables exhibited much more erratic or noisy behavior in the model making them more difficult to interpret but highlighting the usefulness of the non-linear machine learning method. 2D interaction plots show probability of anoxic groundwater conditions largely control estimated nitrate concentrations compared to the other predictors.

  16. Estimating soil matric potential in Owens Valley, California

    USGS Publications Warehouse

    Sorenson, Stephen K.; Miller, Reuben F.; Welch, Michael R.; Groeneveld, David P.; Branson, Farrel A.

    1989-01-01

    Much of the floor of Owens Valley, California, is covered with alkaline scrub and alkaline meadow plant communities, whose existence is dependent partly on precipitation and partly on water infiltrated into the rooting zone from the shallow water table. The extent to which these plant communities are capable of adapting to and surviving fluctuations in the water table depends on physiological adaptations of the plants and on the water content, matric potential characteristics of the soils. Two methods were used to estimate soil matric potential in test sites in Owens Valley. The first, the filter-paper method, uses water content of filter papers equilibrated to water content of soil samples taken with a hand auger. The previously published calibration relations used to estimate soil matric potential from the water content of the filter papers were modified on the basis of current laboratory data. The other method of estimating soil matric potential was a modeling approach based on data from this and previous investigations. These data indicate that the base-10 logarithm of soil matric potential is a linear function of gravimetric soil water content for a particular soil. The slope and intercepts of this function vary with the texture and saturation capacity of the soil. Estimates of soil water characteristic curves were made at two sites by averaging the gravimetric soil water content and soil matric potential values from multiple samples at 0.1-m depth intervals derived by using the hand auger and filter-paper method and entering these values in the soil water model. The characteristic curves then were used to estimate soil matric potential from estimates of volumetric soil water content derived from neutron-probe readings. Evaluation of the modeling technique at two study sites indicated that estimates of soil matric potential within 0.5 pF units of the soil matric potential value derived by using the filter-paper method could be obtained 90 to 95 percent of the time in soils where water content was less than field capacity. The greatest errors occurred at depths where there was a distinct transition between soils of different textures.

  17. Water dynamics and nitrogen balance under different agricultural management practices in the low-lying plain of north-east Italy

    NASA Astrophysics Data System (ADS)

    Camarotto, Carlo; Dal Ferro, Nicola; Piccoli, Ilaria; Polese, Riccardo; Furlan, Lorenzo; Chiarini, Francesca; Berti, Antonio; Morari, Francesco

    2017-04-01

    In the last decades the adoption of sustainable land management practices (e.g. conservation agriculture, use of cover crops) has been largely subsidized by the EU policy in an attempt to combine competitive agricultural production with environmental protection, e.g. reduce nitrogen losses and optimize water management. However, the real environmental benefits of these practices is still questioned since strongly dependent on local pedo-climatic variability. This study aimed to evaluate water and nitrogen balances in sustainable land management systems including conservation agriculture (CA) practices or use of cover crops (CC). The experimental fields, established in 2010, are localized in the low-lying plain of the Veneto Region (NE Italy), characterized by a shallow water table and identified as Nitrate Vulnerable Zone. In March 2016, a total of nine soil-water monitoring stations have been installed in CA, CC and conventional fields. The stations (three per each field) were set up with multi-sensors probes (10 cm, 30 cm and 60 cm depth) for the continuous monitoring of soil electrical conductivity (EC, dS m-1), soil temperature (T, °C) and volumetric water content (WC, m3 m-3). A wireless system in ISM band has been designed to connect the soil-water monitoring stations to a unique access point, where the data were sent to a cloud platform via GSM. Water samples at each station were collected every two weeks using a suction cups (installed at 60 cm depth) and a phreatic wells, which were also used to record the water table level. Climatic data, collected from a weather station located in the experimental field, were combined with soil-water data to estimate water and nitrogen fluxes in the root zone. During the first year, relevant differences in water and nitrogen dynamics were observed between the treatments. It can be hypothesized that the combined effect of undisturbed soil conditions and continuous soil cover were major factors to affect water distribution and N fluxes within the soil profile.

  18. Waste Minimization Program. Air Force Plant 4.

    DTIC Science & Technology

    1986-02-01

    incinerator equipped with a secondary combustion chamber and venturi scrubber could serve AFP 4’s needs. As the wastes listed in Table 3-6 contain negligible... scrubber water treatment in the AFP 4eatment. waste treatment system. 2.3 ECONOMICS -Table 2-3 summarizes the projected economics of the recommendations for...control devices. These paint booths are equipped with water curtain air scrubbers which remove solids from the booth exhaust by providing - intimate

  19. Multisite comparison of drivers of methane emissions from wetlands in the European Arctic: influence of vegetation community and water table.

    NASA Astrophysics Data System (ADS)

    Dinsmore, Kerry; Drewer, Julia; Leeson, Sarah; Skiba, Ute; Levy, Pete; George, Charles

    2014-05-01

    Arctic and sub arctic wetlands are a major source of atmospheric CH4 and therefore have the potential to be important in controlling global radiative forcing. Furthermore, the strong links between wetland CH4 emissions and vegetation community, hydrology and temperature suggest potentially large feedbacks between climate change and future emissions. Quantifying current emissions over large spatial scales and predicting future climatic feedbacks requires a fundamental understanding of the ground based drivers of plot scale emissions. The MAMM project (Methane in the Arctic: Measurements and Modelling) aims to understand and quantify current CH4 emissions and future climatic impacts by combining both ground and aircraft measurements across the European Arctic with regional computer modelling. Here we present results from the ground-based MAMM measurement campaigns, analysing chamber-measured CH4 emissions from two sites in the European Arctic/Sub-Arctic region (Sodankylä, Finland; Stordalen Mire, Sweden) from growing seasons in 2012 and 2013. A total of 85 wetland static chambers were deployed across the two field sites; 39 at Sodankylä (67° 22'01' N, 26° 3'06' E) in 2012 and 46 at Stordalen Mire (68° 21'20' N, 19° 02'56' E) in 2013. Chamber design, protocol and deployment were the same across both sites. Chambers were located at sites chosen strategically to cover the local range of water table depths and vegetation communities. A total of 18 and 15 repeated measurements were made at each chamber in Sodankylä and Stordalen Mire, respectively, over the snow-free season. Preliminary results show a large range of CH4 fluxes across both sites ranging from a CH4 uptake of up to 0.07 and 0.06 mg CH4-C m-2 hr-1 to emissions of 17.3 and 44.2 mg CH4-C m-2 hr-1 in Sodankylä and Stordalen Mire, respectively. Empirical models based on vegetation community, water table depth, temperature and soil nutrient availability (Plant Root Simulator Probes, PRSTM) have been constructed with the aim of understanding the drivers of chamber scale fluxes. By combining measurements made at two different sites, >300km apart, using the same experimental setup, we are uniquely able to investigate whether CH4 emissions are driven by common parameters. Furthermore we are able to determine if plot scale empirical models and parameterisations can be used effectively to upscale emissions to landscape and whole Arctic scale.

  20. Impacts of soil conditioners and water table management on phosphorus loss in tile drainage from a clay loam soil.

    PubMed

    Zhang, T Q; Tan, C S; Zheng, Z M; Welacky, T W; Reynolds, W D

    2015-03-01

    Adoption of waste-derived soil conditioners and refined water management can improve soil physical quality and crop productivity of fine-textured soils. However, the impacts of these practices on water quality must be assessed to ensure environmental sustainability. We conducted a study to determine phosphorus (P) loss in tile drainage as affected by two types of soil conditioners (yard waste compost and swine manure compost) and water table management (free drainage and controlled drainage with subirrigation) in a clay loam soil under corn-soybean rotation in a 4-yr period from 1999 to 2003. Tile drainage flows were monitored and sampled on a year-round continuous basis using on-site auto-sampling systems. Water samples were analyzed for dissolved reactive P (DRP), particulate P (PP), and total P (TP). Substantially greater concentrations and losses of DRP, PP, and TP occurred with swine manure compost than with control and yard waste compost regardless of water table management. Compared with free drainage, controlled drainage with subirrigation was an effective way to reduce annual and cumulative losses of DRP, PP, and TP in tile drainage through reductions in flow volume and P concentration with control and yard waste compost but not with swine manure compost. Both DRP and TP concentrations in tile drainage were well above the water quality guideline for P, affirming that subsurface loss of P from fine-textured soils can be one critical source for freshwater eutrophication. Swine manure compost applied as a soil conditioner must be optimized by taking water quality impacts into consideration. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

Top