Enzymatic control of biological deposits in papermaking.
Hatcher, H J
1984-01-01
Deposit control in the pulp and paper industry has traditionally been accomplished by the use of toxic biocides. A method has been found whereby biological deposits can be controlled by the use of an enzyme-based product. Numerous field studies have been conducted successfully and photographs prepared illustrating the process. The dynamics of deposit formation and problems associated with such formations have been the subject of considerable study. Development and control of deposit problems under different paper mill conditions using the chemical-biochemical approach will be discussed.
What controls deposition rate in electron-beam chemical vapor deposition?
White, William B; Rykaczewski, Konrad; Fedorov, Andrei G
2006-08-25
The key physical processes governing electron-beam-assisted chemical vapor deposition are analyzed via a combination of theoretical modeling and supporting experiments. The scaling laws that define growth of the nanoscale deposits are developed and verified using carefully designed experiments of carbon deposition from methane onto a silicon substrate. The results suggest that the chamber-scale continuous transport of the precursor gas is the rate controlling process in electron-beam chemical vapor deposition.
Open Air Silicon Deposition by Atmospheric Pressure Plasma under Local Ambient Gas Control
NASA Astrophysics Data System (ADS)
Naito, Teruki; Konno, Nobuaki; Yoshida, Yukihisa
2015-09-01
In this paper, we report open air silicon (Si) deposition by combining a silane free Si deposition technology and a newly developed local ambient gas control technology. Recently, material processing in open air has been investigated intensively. While a variety of materials have been deposited, there were only few reports on Si deposition due to the susceptibility to contamination and the hazardous nature of source materials. Since Si deposition is one of the most important processes in device fabrication, we have developed open air silicon deposition technologies in BEANS project. For a clean and safe process, a local ambient gas control head was designed. Process gas leakage was prevented by local evacuation, and air contamination was shut out by inert curtain gas. By numerical and experimental investigations, a safe and clean process condition with air contamination less than 10 ppm was achieved. Si film was deposited in open air by atmospheric pressure plasma enhanced chemical transport under the local ambient gas control. The film was microcrystalline Si with the crystallite size of 17 nm, and the Hall mobility was 2.3 cm2/V .s. These properties were comparable to those of Si films deposited in a vacuum chamber. This research has been conducted as one of the research items of New Energy and Industrial Technology Development Organization ``BEANS'' project.
Control of thermal therapies with moving power deposition field.
Arora, Dhiraj; Minor, Mark A; Skliar, Mikhail; Roemer, Robert B
2006-03-07
A thermal therapy feedback control approach to control thermal dose using a moving power deposition field is developed and evaluated using simulations. A normal tissue safety objective is incorporated in the controller design by imposing constraints on temperature elevations at selected normal tissue locations. The proposed control technique consists of two stages. The first stage uses a model-based sliding mode controller that dynamically generates an 'ideal' power deposition profile which is generally unrealizable with available heating modalities. Subsequently, in order to approximately realize this spatially distributed idealized power deposition, a constrained quadratic optimizer is implemented to compute intensities and dwell times for a set of pre-selected power deposition fields created by a scanned focused transducer. The dwell times for various power deposition profiles are dynamically generated online as opposed to the commonly employed a priori-decided heating strategies. Dynamic intensity and trajectory generation safeguards the treatment outcome against modelling uncertainties and unknown disturbances. The controller is designed to enforce simultaneous activation of multiple normal tissue temperature constraints by rapidly switching between various power deposition profiles. The hypothesis behind the controller design is that the simultaneous activation of multiple constraints substantially reduces treatment time without compromising normal tissue safety. The controller performance and robustness with respect to parameter uncertainties is evaluated using simulations. The results demonstrate that the proposed controller can successfully deliver the desired thermal dose to the target while maintaining the temperatures at the user-specified normal tissue locations at or below the maximum allowable values. Although demonstrated for the case of a scanned focused ultrasound transducer, the developed approach can be extended to other heating modalities with moving deposition fields, such as external and interstitial ultrasound phased arrays, multiple radiofrequency needle applicators and microwave antennae.
Optimal control of build height utilizing optical profilometry in cold spray deposits
NASA Astrophysics Data System (ADS)
Chakraborty, Abhijit; Shishkin, Sergey; Birnkrant, Michael J.
2017-04-01
Part-to-part variability and poor part quality due to failure to maintain geometric specifications pose a challenge for adopting Additive Manufacturing (AM) as a viable manufacturing process. In recent years, In-process Monitoring and Control (InPMC) has received a lot of attention as an approach to overcome these obstacles. The ability to sense geometry of the deposited layers accurately enables effective process monitoring and control of AM application. This paper demonstrates an application of geometry sensing technique for the coating deposition Cold Spray process, where solid powders are accelerated through a nozzle, collides with the substrate and adheres to it. Often the deposited surface has shape irregularities. This paper proposes an approach to suppress the iregularities by controlling the deposition height. An analytical control-oriented model is developed that expresses the resulting height of deposit as an integral function of nozzle velocity and angle. In order to obtain height information at each layer, a Micro-Epsilon laser line scanner was used for surface profiling after each deposition. This surface profile information, specifically the layer height, was then fed back to an optimal control algorithm which manipulated the nozzle speed to control the layer height to a pre specified height. While the problem is heavily nonlinear, we were able to transform it into equivalent Optimal Control problem linear w.r.t. input. That enabled development of two solution methods: one is fast and approximate, while another is more accurate but still efficient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, L.; Britt, J.; Birkmire, R.
ITN Energy Systems, Inc., and Global Solar Energy, Inc., assisted by NREL's PV Manufacturing R&D program, have continued to advance CIGS production technology by developing trajectory-oriented predictive/control models, fault-tolerance control, control platform development, in-situ sensors, and process improvements. Modeling activities included developing physics-based and empirical models for CIGS and sputter-deposition processing, implementing model-based control, and applying predictive models to the construction of new evaporation sources and for control. Model-based control is enabled by implementing reduced or empirical models into a control platform. Reliability improvement activities include implementing preventive maintenance schedules; detecting failed sensors/equipment and reconfiguring to tinue processing; and systematicmore » development of fault prevention and reconfiguration strategies for the full range of CIGS PV production deposition processes. In-situ sensor development activities have resulted in improved control and indicated the potential for enhanced process status monitoring and control of the deposition processes. Substantial process improvements have been made, including significant improvement in CIGS uniformity, thickness control, efficiency, yield, and throughput. In large measure, these gains have been driven by process optimization, which in turn have been enabled by control and reliability improvements due to this PV Manufacturing R&D program.« less
Development of atmospheric acid deposition in China from the 1990s to the 2010s.
Yu, Haili; He, Nianpeng; Wang, Qiufeng; Zhu, Jianxing; Gao, Yang; Zhang, Yunhai; Jia, Yanlong; Yu, Guirui
2017-12-01
Atmospheric acid deposition is a global environmental issue. China has been experiencing serious acid deposition, which is anticipated to become more severe with the country's economic development and increasing consumption of fossil fuels in recent decades. We explored the spatiotemporal variations of acid deposition (wet acid deposition) and its influencing factors by collecting nationwide data on pH and concentrations of sulfate (SO 4 2- ) and nitrate (NO 3 - ) in precipitation between 1980 and 2014 in China. Our results showed that average precipitation pH values were 4.59 and 4.70 in the 1990s and 2010s, respectively, suggesting that precipitation acid deposition in China has not seriously worsened. Average SO 4 2- deposition declined from 40.54 to 34.87 kg S ha -1 yr -1 but average NO 3 - deposition increased from 4.44 to 7.73 kg N ha -1 yr -1 . Specifically, the area of severe precipitation acid deposition in southern China has shrunk to some extent as a result of controlling the pollutant emissions; but the area of moderate precipitation acid deposition has expanded in northern China, associated with rapid industrial and transportation development. Furthermore, we found significant positive correlations between precipitation acid deposition, energy consumption, and rainfall. Our findings provide a relatively comprehensive evaluation of the spatiotemporal dynamics of precipitation acid deposition in China over past three decades, and confirm the idea that strategies implemented to save energy and control pollutant emissions in China have been effective in alleviating precipitation acid deposition. These findings might be used to demonstrate how developing countries could achieve economic development and environmental protection through the implementation of advanced technologies to reduce pollutant emissions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lowndes, Douglas H.; McCamy, James W.
1996-01-01
A method for growing a deposit upon a substrate of semiconductor material involves the utilization of pulsed laser deposition techniques within a low-pressure gas environment. The substrate and a target of a first material are positioned within a deposition chamber and a low-pressure gas atmosphere is developed within the chamber. The substrate is then heated, and the target is irradiated, so that atoms of the target material are ablated from the remainder of the target, while atoms of the gas simultaneously are adsorbed on the substrate/film surface. The ablated atoms build up upon the substrate, together with the adsorbed gas atoms to form the thin-film deposit on the substrate. By controlling the pressure of the gas of the chamber atmosphere, the composition of the formed deposit can be controlled, and films of continuously variable composition or doping can be grown from a single target of fixed composition.
Gevelber, Michael; Xu, Bing; Smith, Douglas
2006-03-01
A new deposition-rate-control and electron-beam-gun (e-gun) strategy was developed that significantly reduces the growth-rate variations for e-beam-deposited SiO2 coatings. The resulting improvements in optical performance are evaluated for multilayer bandpass filters. The adverse effect of uneven silica-source depletion on coating spectral performances during long deposition runs is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, L.
ITN Energy Systems, Inc., and Global Solar Energy, Inc., with the assistance of NREL's PV Manufacturing R&D program, have continued the advancement of CIGS production technology through the development of trajectory-oriented predictive/control models, fault-tolerance control, control-platform development, in-situ sensors, and process improvements. Modeling activities to date include the development of physics-based and empirical models for CIGS and sputter-deposition processing, implementation of model-based control, and application of predictive models to the construction of new evaporation sources and for control. Model-based control is enabled through implementation of reduced or empirical models into a control platform. Reliability improvement activities include implementation of preventivemore » maintenance schedules; detection of failed sensors/equipment and reconfiguration to continue processing; and systematic development of fault prevention and reconfiguration strategies for the full range of CIGS PV production deposition processes. In-situ sensor development activities have resulted in improved control and indicated the potential for enhanced process status monitoring and control of the deposition processes. Substantial process improvements have been made, including significant improvement in CIGS uniformity, thickness control, efficiency, yield, and throughput. In large measure, these gains have been driven by process optimization, which, in turn, have been enabled by control and reliability improvements due to this PV Manufacturing R&D program. This has resulted in substantial improvements of flexible CIGS PV module performance and efficiency.« less
Kim, Young Baek; Choi, Bum Ho; Lim, Yong Hwan; Yoo, Ha Na; Lee, Jong Ho; Kim, Jin Hyeok
2011-02-01
In this study, pentacene organic thin film was prepared using newly developed organic material auto-feeding system integrated with linear cell and characterized. The newly developed organic material auto-feeding system consists of 4 major parts: reservoir, micro auto-feeder, vaporizer, and linear cell. The deposition of organic thin film could be precisely controlled by adjusting feeding rate, main tube size, position and size of nozzle. 10 nm thick pentacene thin film prepared on glass substrate exhibited high uniformity of 3.46% which is higher than that of conventional evaporation method using point cell. The continuous deposition without replenishment of organic material can be performed over 144 hours with regulated deposition control. The grain size of pentacene film which affect to mobility of OTFT, was controlled as a function of the temperature.
Method for continuous control of composition and doping of pulsed laser deposited films
Lowndes, Douglas H.; McCamy, James W.
1995-01-01
A method for growing a deposit upon a substrate of semiconductor material involves the utilization of pulsed laser deposition techniques within a low-pressure gas environment. The substrate and a target of a first material are positioned within a deposition chamber and a low-pressure gas atmosphere is developed within the chamber. The substrate is then heated, and the target is irradiated, so that atoms of the target material are ablated from the remainder of the target, while atoms of the gas simultaneously are adsorbed on the substrate/film surface. The ablated atoms build up upon the substrate, together with the adsorbed gas atoms to form the thin-film deposit on the substrate. By controlling the pressure of the gas of the chamber atmosphere, the composition of the formed deposit can be controlled, and films of continuously variable composition or doping can be grown from a single target of fixed composition.
NASA Astrophysics Data System (ADS)
Zhang, Chengcheng; Muirhead, James D.; Wang, Hua; Chen, Si; Liao, Yuantao; Lu, Zongsheng; Wei, Jun
2018-01-01
Development of fan deltas alongside intrabasinal structural highs has been overlooked compared to those forming on basin margins. However, these fan deltas may provide important clues regarding the tectonic and climatic controls on deposition during rift development. This paper documents fan delta deposition alongside an intrabasinal structural high within the Early Cretaceous Xiagou Formation of the Jiuquan Basin, China, using subsurface geological and geophysical data. Deposits observed in drill core support fan delta deposition occurring almost exclusively through subaerial and subaqueous gravity flows. Subsurface mapping reveals a consistent decrease in the areal extent of fan deltas from lowstand to highstand system tracts, suggesting that deposition alongside the structural high is sensitive to lake-level changes. The temporal and spatial distribution of the fan deltas display retrogradational stacking patterns, where fan deltas exhibit a decreasing lateral extent up-sequence until fan delta deposition terminated and was replaced by deposition of fine-grained lacustrine deposits. The retrogradational stacking patterns observed alongside the intrabasinal structural high are not observed in fan deltas along the basin margin in the lower parts of the Xiagou Formation. Subsidence profiles also show differential subsidence across the basin during the earliest stages of this formation, likely resulting from border fault movements. These data suggest that non-uniform stacking patterns in the lower parts of the Xiagou Formation reflect basin-scale tectonic movements as the dominant control on synrift deposition patterns. However, later stages of Xiagou Formation deposition were characterized by uniform subsidence across the basin, and uniform retrogradational stacking patterns for fan deltas alongside the intrabasinal structural high and border fault. These observations suggest that basin-scale tectonic movements played a relatively limited role in controlling sediment deposition, and imply a potential change to regional-scale processes affecting fan delta deposition during later synrift stages. Climate change is favored here as the region-scale control on the uniform retrogradational fan delta stacking patterns. This assertion is supported by pollen assemblages, isotope signatures, and organic geochemical analyses, which collectively suggest a change from a humid to semi-arid environment during later synrift stages. We suggest that variations in stacking patterns between different fan delta systems can provide insights into the basin- and regional-scale processes that control rift basin deposition.
Thin Film Deposition Using Energetic Ions
Manova, Darina; Gerlach, Jürgen W.; Mändl, Stephan
2010-01-01
One important recent trend in deposition technology is the continuous expansion of available processes towards higher ion assistance with the subsequent beneficial effects to film properties. Nowadays, a multitude of processes, including laser ablation and deposition, vacuum arc deposition, ion assisted deposition, high power impulse magnetron sputtering and plasma immersion ion implantation, are available. However, there are obstacles to overcome in all technologies, including line-of-sight processes, particle contaminations and low growth rates, which lead to ongoing process refinements and development of new methods. Concerning the deposited thin films, control of energetic ion bombardment leads to improved adhesion, reduced substrate temperatures, control of intrinsic stress within the films as well as adjustment of surface texture, phase formation and nanotopography. This review illustrates recent trends for both areas; plasma process and solid state surface processes. PMID:28883323
Atmospheric nitrogen deposition in the Yangtze River basin: Spatial pattern and source attribution.
Xu, Wen; Zhao, Yuanhong; Liu, Xuejun; Dore, Anthony J; Zhang, Lin; Liu, Lei; Cheng, Miaomiao
2018-01-01
The Yangtze River basin is one of the world's hotspots for nitrogen (N) deposition and likely plays an important role in China's riverine N output. Here we constructed a basin-scale total dissolved inorganic N (DIN) deposition (bulk plus dry) pattern based on published data at 100 observational sites between 2000 and 2014, and assessed the relative contributions of different reactive N (N r ) emission sectors to total DIN deposition using the GEOS-Chem model. Our results show a significant spatial variation in total DIN deposition across the Yangtze River basin (33.2 kg N ha -1 yr -1 on average), with the highest fluxes occurring mainly in the central basin (e.g., Sichuan, Hubei and Hunan provinces, and Chongqing municipality). This indicates that controlling N deposition should build on mitigation strategies according to local conditions, namely, implementation of stricter control of N r emissions in N deposition hotspots but moderate control in the areas with low N deposition levels. Total DIN deposition in approximately 82% of the basin area exceeded the critical load of N deposition for semi-natural ecosystems along the basin. On the basin scale, the dominant source of DIN deposition is fertilizer use (40%) relative to livestock (11%), industry (13%), power plant (9%), transportation (9%), and others (18%, which is the sum of contributions from human waste, residential activities, soil, lighting and biomass burning), suggesting that reducing NH 3 emissions from improper fertilizer (including chemical and organic fertilizer) application should be a priority in curbing N deposition. This, together with distinct spatial variations in emission sector contributions to total DIN deposition also suggest that, in addition to fertilizer, major emission sectors in different regions of the basin should be considered when developing synergistic control measures. Copyright © 2017. Published by Elsevier Ltd.
Inverse grading and hydraulic equivalence in grain-flow deposits
Sallenger, A. H.
1979-01-01
Inversely graded grain-flow deposits are characterized by a hydraulic equivalence that differs from that based on settling velocities or entrainment. Dispersive equivalence, derived from the dispersive pressure hypothesis on how inverse grading develops, was found to agree reasonably well with observed relationships between grain sizes and densities in grain-flow deposits. Furthermore, observed relationships in deposits formed in subaerial and subaqueous environments were found to be independent of fluid density as is required by dispersive equivalence. The results suggest that dispersive pressure controls the development of the inverse grading common to beach foreshore laminations, slip-face foreset strata, the basal parts of some coarse-grained turbidites, and other diverse deposits.
NASA Astrophysics Data System (ADS)
Piedade, Aldina; Alves, Tiago; Luís Zêzere, José
2017-04-01
Mass-transport deposits form a significant part of the stratigraphic record of ancient and modern deep-water basins worldwide. Three-dimensional (3D) seismic data is used to analyse two different types of buried mass-transport deposits offshore Espírito Santo Basin (SE Brazil. Both types are developed within Early Miocene to Holocene stratigraphic units composed of sandstones, calcarenites, turbidite sands and marls. The high resolution images provided by the interpreted 3D seismic data allowed a detailed analysis of the seismic stratigraphy and internal structure of mass-transport deposits. In addition, improvements in visualisation techniques were used to compute simple morphometric attributes of buried mass-transport deposits in continental slopes. This study classifies the interpreted mass-transport deposits in two different types according to the relationship between the morphology of mass-transport deposits and the surrounding topography. Locally confined mass-transport deposits are laterally constrained by non-deformed strata that surrounds the mass-transport deposit and by the local topography of the depositional surface. Their dimensions are relatively small (area of 5.251 km2). Unconfined mass-transport deposits show a much larger volume compared to the previously type ( 87.180 km2), and local topography does not have control on their geometry. The analysis proves that local topography and geometry of the depositional surface are key controlling factors on the spatial distribution and dimensions of the two types of mass-transport deposits. However, the two types differ in size, geomorphological expression, local structural controls and run-out distance. This work importance is relate variations in the character of the depositional surface with the morphology mass-transport deposits and run-out distance. As a result of the methodology used, two different styles of mass-transport run-out are identified and local factors controlling their morphology are addressed, such as roughness and local morphology of the depositional surface. Separating these two styles, or types, of mass-transport deposits it is of critical importance to understand their mechanisms of gliding, downslope spreading and emplacement.
NASA Astrophysics Data System (ADS)
Wang, Linlin; Wang, Zhenqi; Yu, Shui; Ngia, Ngong Roger
2016-08-01
The Miocene deepwater gravity-flow sedimentary system in Block A of the southwestern part of the Lower Congo Basin was identified and interpreted using high-resolution 3-D seismic, drilling and logging data to reveal development characteristics and main controlling factors. Five types of deepwater gravity-flow sedimentary units have been identified in the Miocene section of Block A, including mass transport, deepwater channel, levee, abandoned channel and sedimentary lobe deposits. Each type of sedimentary unit has distinct external features, internal structures and lateral characteristics in seismic profiles. Mass transport deposits (MTDs) in particular correspond to chaotic low-amplitude reflections in contact with mutants on both sides. The cross section of deepwater channel deposits in the seismic profile is in U- or V-shape. The channel deposits change in ascending order from low-amplitude, poor-continuity, chaotic filling reflections at the bottom, to high-amplitude, moderate to poor continuity, chaotic or sub-parallel reflections in the middle section and to moderate-weak amplitude, good continuity, parallel or sub-parallel reflections in the upper section. The sedimentary lobes are laterally lobate, which corresponds to high-amplitude, good-continuity, moundy reflection signatures in the seismic profile. Due to sediment flux, faults, and inherited terrain, few mass transport deposits occur in the northeastern part of the study area. The front of MTDs is mainly composed of channel-levee complex deposits, while abandoned-channel and lobe-deposits are usually developed in high-curvature channel sections and the channel terminals, respectively. The distribution of deepwater channel, levee, abandoned channel and sedimentary lobe deposits is predominantly controlled by relative sea level fluctuations and to a lesser extent by tectonism and inherited terrain.
Heteroblastic Development of Transfer Cells Is Controlled by the microRNA miR156/SPL Module1[OPEN
Greaves, Teighan
2017-01-01
We report that wall ingrowth deposition in phloem parenchyma (PP) transfer cells (TCs) in leaf veins of Arabidopsis (Arabidopsis thaliana) represents a novel trait of heteroblasty. Development of PP TCs involves extensive deposition of wall ingrowths adjacent to cells of the sieve element/companion cell complex. These PP TCs potentially facilitate phloem loading by enhancing efflux of symplasmic Suc for subsequent active uptake into cells of the sieve element/companion cell complex. PP TCs with extensive wall ingrowths are ubiquitous in mature cotyledons and juvenile leaves, but dramatically less so in mature adult leaves, an observation consistent with PP TC development reflecting vegetative phase change (VPC) in Arabidopsis. Consistent with this conclusion, the abundance of PP TCs with extensive wall ingrowths varied across rosette development in three ecotypes displaying differing durations of juvenile phase, and extensive deposition of wall ingrowths was observed in rejuvenated leaves following prolonged defoliation. PP TC development across juvenile, transition, and adult leaves correlated positively with levels of miR156, a major regulator of VPC in plants, and corresponding changes in wall ingrowth deposition were observed when miR156 was overexpressed or its activity suppressed by target mimicry. Analysis of plants carrying miR156-resistant forms of SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL) genes showed that wall ingrowth deposition was increased in SPL9-group but not SPL3-group genes, indicating that SPL9-group genes may function as negative regulators of wall ingrowth deposition in PP TCs. Collectively, our results point to wall ingrowth deposition in PP TCs being under control of the genetic program regulating VPC. PMID:28082719
A nonlinear controlling function of geological features on magmatic–hydrothermal mineralization
Zuo, Renguang
2016-01-01
This paper reports a nonlinear controlling function of geological features on magmatic–hydrothermal mineralization, and proposes an alternative method to measure the spatial relationships between geological features and mineral deposits using multifractal singularity theory. It was observed that the greater the proximity to geological controlling features, the greater the number of mineral deposits developed, indicating a nonlinear spatial relationship between these features and mineral deposits. This phenomenon can be quantified using the relationship between the numbers of mineral deposits N(ε) of a D-dimensional set and the scale of ε. The density of mineral deposits can be expressed as ρ(ε) = Cε−(De−a), where ε is the buffer width of geological controlling features, De is Euclidean dimension of space (=2 in this case), a is singularity index, and C is a constant. The expression can be rewritten as ρ = Cεa−2. When a < 2, there is a significant spatial correlation between specific geological features and mineral deposits; lower a values indicate a more significant spatial correlation. This nonlinear relationship and the advantages of this method were illustrated using a case study from Fujian Province in China and a case study from Baguio district in Philippines. PMID:27255794
A nonlinear controlling function of geological features on magmatic-hydrothermal mineralization.
Zuo, Renguang
2016-06-03
This paper reports a nonlinear controlling function of geological features on magmatic-hydrothermal mineralization, and proposes an alternative method to measure the spatial relationships between geological features and mineral deposits using multifractal singularity theory. It was observed that the greater the proximity to geological controlling features, the greater the number of mineral deposits developed, indicating a nonlinear spatial relationship between these features and mineral deposits. This phenomenon can be quantified using the relationship between the numbers of mineral deposits N(ε) of a D-dimensional set and the scale of ε. The density of mineral deposits can be expressed as ρ(ε) = Cε(-(De-a)), where ε is the buffer width of geological controlling features, De is Euclidean dimension of space (=2 in this case), a is singularity index, and C is a constant. The expression can be rewritten as ρ = Cε(a-2). When a < 2, there is a significant spatial correlation between specific geological features and mineral deposits; lower a values indicate a more significant spatial correlation. This nonlinear relationship and the advantages of this method were illustrated using a case study from Fujian Province in China and a case study from Baguio district in Philippines.
Sokolov, S; Paul, B; Ortel, E; Fischer, A; Kraehnert, R
2011-03-01
A novel film coating technique, template-assisted electrostatic spray deposition (TAESD), was developed for the synthesis of porous metal oxide films and tested on TiO(2). Organic templates are codeposited with the titania precursor by electrostatic spray deposition and then removed during calcination. Resultant films are highly porous with pores casted by uniformly sized templates, which introduced a new level of control over the pore morphology for the ESD method. Employing the amphiphilic block copolymer Pluronic P123, PMMA latex spheres, or a combination of the two, mesoporous, macroporous, and hierarchically porous TiO(2) films are obtained. Decoupled from other coating parameters, film thickness can be controlled by deposition time or depositing multiple layers while maintaining the coating's structure and integrity.
Two dimensional radial gas flows in atmospheric pressure plasma-enhanced chemical vapor deposition
NASA Astrophysics Data System (ADS)
Kim, Gwihyun; Park, Seran; Shin, Hyunsu; Song, Seungho; Oh, Hoon-Jung; Ko, Dae Hong; Choi, Jung-Il; Baik, Seung Jae
2017-12-01
Atmospheric pressure (AP) operation of plasma-enhanced chemical vapor deposition (PECVD) is one of promising concepts for high quality and low cost processing. Atmospheric plasma discharge requires narrow gap configuration, which causes an inherent feature of AP PECVD. Two dimensional radial gas flows in AP PECVD induces radial variation of mass-transport and that of substrate temperature. The opposite trend of these variations would be the key consideration in the development of uniform deposition process. Another inherent feature of AP PECVD is confined plasma discharge, from which volume power density concept is derived as a key parameter for the control of deposition rate. We investigated deposition rate as a function of volume power density, gas flux, source gas partial pressure, hydrogen partial pressure, plasma source frequency, and substrate temperature; and derived a design guideline of deposition tool and process development in terms of deposition rate and uniformity.
Electrophoretic assembly of organic molecules and composites for electrochemical supercapacitors.
Su, Y; Zhitomirsky, I
2013-02-15
Electrophoretic deposition (EPD) method has been developed for the fabrication of 1-pyrenebutyric acid (PBH) films from aqueous solutions. The films can be deposited at constant voltage or potentiodynamic conditions. The method allowed the formation of 0.1-2 μm thick films, containing needle-shape PBH particles. The deposition mechanism involved the electrophoresis, pH decrease at the anode surface, charge neutralization and formation of insoluble PBH films. The film morphology and shape of the PBH particles are controlled by the π-π stacking mechanism of the polyaromatic PBH molecules. The important finding was the possibility of controlled EPD of multiwalled carbon nanotubes (MWCNTs) using PBH as a charging, dispersing and film forming agent. It was found that at low voltages or low PBH concentrations the deposits contained mainly MWCNT. The increase in the deposition voltage or/and PBH concentration resulted in co-deposition of MWCNT and needle-shape PBH particles. The new approach to the deposition of MWCNT was used for the fabrication of composite MnO(2)-MWCNT films for electrodes of electrochemical supercapacitors, which showed a specific capacitance of 250 F g(-1). The EPD method developed in this investigation paves the way for the deposition of other small organic molecules and composites and their applications in new materials and devices, utilizing functional properties of the organic molecules, CNT, and other advanced materials. Copyright © 2012 Elsevier Inc. All rights reserved.
Mapping fault-controlled volatile migration in equatorial layered deposits on Mars
NASA Astrophysics Data System (ADS)
Okubo, C. H.
2006-12-01
Research in terrestrial settings shows that clastic sedimentary deposits are productive host rocks for underground volatile reservoirs because of their high porosity and permeability. Within such reservoirs, faults play an important role in controlling pathways for volatile migration, because faults act as either barriers or conduits. Therefore faults are important volatile concentrators, which means that evidence of geochemical, hydrologic and biologic processes are commonly concentrated at these locations. Accordingly, faulted sedimentary deposits on Mars are plausible areas to search for evidence of past volatile activity and associated processes. Indeed, evidence for volatile migration through layered sedimentary deposits on Mars has been documented in detail by the Opportunity rover in Meridiani Planum. Thus evidence for past volatile- driven processes that could have occurred within the protective depths of these deposits may now exposed at the surface and more likely found around faults. Owing to the extensive distribution of layered deposits on Mars, a major challenge in looking for and investigating evidence of past volatile processes in these deposits is identifying and prioritizing study areas. Toward this end, this presentation details initial results of a multiyear project to develop quantitative maps of latent pathways for fault-controlled volatile migration through the layered sedimentary deposits on Mars. Available MOC and THEMIS imagery are used to map fault traces within equatorial layered deposits, with an emphasis on proposed regions for MSL landing sites. These fault maps define regions of interest for stereo imaging by HiRISE and identify areas to search for existing MOC stereo coverage. Stereo coverage of identified areas of interest allows for the construction of digital elevation models and ultimately extraction of fault plane and displacement vector orientations. These fault and displacement data will be fed through numerical modeling techniques that are developed for exploring terrestrial geologic reservoirs. This will yield maps of latent pathways for volatile migration through the faulted layered deposits and provide insight into the geologic history of volatiles on Mars.
Compositional control of continuously graded anode functional layer
NASA Astrophysics Data System (ADS)
McCoppin, J.; Barney, I.; Mukhopadhyay, S.; Miller, R.; Reitz, T.; Young, D.
2012-10-01
In this work, solid oxide fuel cells (SOFC's) are fabricated with linear-compositionally graded anode functional layers (CGAFL) using a computer-controlled compound aerosol deposition (CCAD) system. Cells with different CGAFL thicknesses (30 um and 50 um) are prepared with a continuous compositionally graded interface deposited between the electrolyte and anode support current collecting regions. The compositional profile was characterized using energy dispersive X-ray spectroscopic mapping. An analytical model of the compound aerosol deposition was developed. The model predicted compositional profiles for both samples that closely matched the measured profiles, suggesting that aerosol-based deposition methods are capable of creating functional gradation on length scales suitable for solid oxide fuel cell structures. The electrochemical performances of the two cells are analyzed using electrochemical impedance spectroscopy (EIS).
Maldonado, A.; Nelson, C.H.
1999-01-01
This study provides an integrated view of the growth patterns and factors that controlled the evolution of the Gulf of Cadiz continental margin based on studies of the tectonic, sedimentologic and oceanographic history of the area. Seven sedimentary regimes are identified, but there are more extensive descriptions of the late Cenozoic regimes because of the larger data base. The regimes of the Mesozoic passive margin include carbonate platforms, which become mixed calcareous-terrigenous deposits during the Late Cretaceous-early Tertiary. The Oligocene and Early Miocene terrigenous regimes developed, in contrast, over the active and transcurrent margins near the African-Iberian plate boundary. The top of the Gulf of Cadiz olistostrome, emplaced in the Late Miocene, is used as a key horizon to define the 'post-orogenic' depositional regimes. The Late Miocene progradational margin regime is characterized by a large terrigenous sediment supply to the margin and coincides with the closing of the Miocene Atlantic-Mediterranean gateways. The terrigenous drift depositional regime of the Early Pliocene resulted from the occurrence of high eustatic sea level and the characteristics of the Mediterranean outflow currents that developed after the opening of the Strait of Gibraltar. The Late Pliocene and Quaternary regimes are dominated by sequences of deposits related to cycles of high and low sea levels. Deposition of shelf-margin deltas and slope wedges correlate with regressive and low sea level regimes caused by eustasy and subsidence. During the highstand regimes of the Holocene, inner shelf prograding deltas and deep-water sediment drifts were developed under the influence of the Atlantic inflow and Mediterranean outflow currents, respectively. A modern human cultural regime began 2000 years ago with the Roman occupation of Iberia; human cultural effects on sedimentary regimes may have equalled natural factors such as climate change. Interplay of tectonic and oceanographic controls dominated the evolution of the Cadiz margin during the Cenozoic. Depositional sequences formed where the tectonic setting provided the accommodation space and the shape of the deposits has been greatly influenced by the strong unidirectional Atlantic inflow currents on the shelf and Mediterranean outflow currents on the slope. The entire cycle of the inflow and outflow deposition along the margin has been controlled first by the tectonic evolution of the Betic and Rif gateways, which become closed during the Late Miocene, and after the Messinian by the opening of the Strait of Gibraltar. Strong current development during eustatic sea level highstands of the Pliocene and Quaternary has controlled deposition because of maximum sill depths at Gibraltar for water circulation. Lowstand sea levels slowed circulation and resulted in mud drapes over the slope and regressive stratigraphic sequences over the shelf. More recently, the human industrial revolution has caused heavy metal contamination of sediment and water over the Cadiz margin. Human activity also has affected sedimentation rates because of deforestation that caused increased depositional rates near undammed rivers and decreased rates where rivers have been dammed. Future research efforts will need to focus on: (1) the effect of increased Mediterranean outflow caused by river damming plus global warming and the increased outflow as a potential trigger for new ice ages; (2) assessments of geologic hazards for planning man-made shoreline structures, developing offshore petroleum resources and maintaining undersea communications cables; and (3) confirmation of the general geologic history of the Cadiz margin.
Powder Flux Regulation in the Laser Material Deposition Process
NASA Astrophysics Data System (ADS)
Arrizubieta, Jon Iñaki; Wegener, Maximiliam; Arntz, Kristian; Lamikiz, Aitzol; Ruiz, Jose Exequiel
In the present research work a powder flux regulation system has been designed, developed and validated with the aim of improving the Laser Material Deposition (LMD) process. In this process, the amount of deposited material per substrate surface unit area depends on the real feed rate of the nozzle. Therefore, a regulation system based on a solenoid valve has been installed at the nozzle entrance in order to control the powder flux. The powder flux control has been performed based on the machine real feed rate, which is compared with the programmed feed rate. An instantaneous velocity error is calculated and the powder flow is controlled as a function of this variation using Pulse Width Modulation (PWM) signals. Thereby, in zones where the Laser Material Deposition machine reduces the feed rate due to a trajectory change, powder accumulation can be avoided and the generated clads would present a homogeneous shape.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lü, B.; Münger, E. P.; Sarakinos, K.
The morphology and physical properties of thin films deposited by vapor condensation on solid surfaces are predominantly set by the processes of island nucleation, growth, and coalescence. When deposition is performed using pulsed vapor fluxes, three distinct nucleation regimes are known to exist depending on the temporal profile of the flux. These regimes can be accessed by tuning deposition conditions; however, their effect on film microstructure becomes marginal when coalescence sets in and erases morphological features obtained during nucleation. By preventing coalescence from being completed, these nucleation regimes can be used to control microstructure evolution and thus access a largermore » palette of film morphological features. Recently, we derived the quantitative criterion to stop coalescence during continuous metal vapor flux deposition on insulating surfaces—which typically yields 3-dimensional growth—by describing analytically the competition between island growth by atomic incorporation and the coalescence rate of islands [Lü et al., Appl. Phys. Lett. 105, 163107 (2014)]. Here, we develop the analytical framework for entering a coalescence-free growth regime for metal vapor deposition on insulating substrates using pulsed vapor fluxes, showing that there exist three distinct criteria for suppressing coalescence that correspond to the three nucleation regimes of pulsed vapor flux deposition. The theoretical framework developed herein is substantiated by kinetic Monte Carlo growth simulations. Our findings highlight the possibility of using atomistic nucleation theory for pulsed vapor deposition to control morphology of thin films beyond the point of island density saturation.« less
Spray deposition inside multiple-row nursery trees with a laser-guided sprayer
USDA-ARS?s Scientific Manuscript database
Multiple-row container-grown trees require specially designed sprayers to achieve efficient spray delivery quality. A five-port air-assisted sprayer with both automatic and manual control modes was developed to discharge adequate spray deposition inside multiple-row tree plants. The sprayer resulted...
Effects of acid deposition on terrestrial ecosystems and their rehabilitation strategies in China.
Feng, Zong-wei; Miao, Hong; Zhang, Fu-zhu; Huang, Yi-zong
2002-04-01
South China has become the third largest region associated with acid deposition following Europe and North America, the area subject to damage by acid deposition increased from 1.75 million km2 in 1985 to 2.8 million km2 in 1993. Acid deposition has caused serious damage to ecosystem. Combined pollution of acid rain and SO2 showed the obvious multiple effects on crops. Vegetable was more sensitive to acid deposition than foodstuff crops. Annual economic loss of crops due to acid deposition damage in eleven provinces of south China was 4.26 billion RMB Yuan. Acid deposition caused serious damage to forest. Annual economic loss of wood volume was about 1.8 billion RMB Yuan and forest ecological benefit loss 16.2 billion in eleven provinces of south China. Acid deposition in south China was typical "sulfuric acid type". According to the thoughts of sustainable development, some strategies were brought forward as follows: (1) enhancing environmental management, specifying acid-controlling region, controlling and abating the total emission amount of SO2; (2) selecting practical energy technologies of clean coal, for example, cleansing and selecting coal, sulfur-fixed-type industrial briqutting, abating sulfur from waste gas and so on; (3) developing other energy sources to replace coal, including water electricity, atomic energy and the new energy such as solar energy, wind energy and so on; (4) in acid deposition region of south China, selecting acid-resistant type of crop and tree to decrease agricultural losses, planting more green fertilizer crops, using organic fertilizers and liming, in order to improve buffer capacities of soil.
Morphological processes in permeable sediment traps with check dams
NASA Astrophysics Data System (ADS)
Schwindt, S.; Franca, M. J.; Schleiss, A. J.
2017-12-01
Sediment traps serve for the retention of sediment in the case of major floods, but the retention of sediment is not wanted up to smaller frequent floods which are important to the morphodynamics of rivers. A new concept for the sediment traps that enables sediment transfer for frequent floods and safely retains sediment in the case of important floods was recently developed and experimentally tested. The tests were performed using a standardized hydrograph and different barrier types for the mechanically or hydraulically controlled retention of sediments. The deposition pattern was measured at the end of every experimental run using a motion sensing camera. These measurements show that the shape of the deposits varies as a function of the retention control type (mechanical or hydraulic) and particularly as a function of the barrier height. Deposits were large when a high barrier was applied that was not overflown, and when both control types were combined. The deposition slope was shallow in the case of the high barrier, steeper for combined controls and steepest when mechanical control only was tested. The study enables a better understanding for the optimization of the shape of artificial deposition areas upstream of partially permeable check dams to enhance the tradeoff between eco-morphological and economical aspects of flood protection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stiff-Roberts, Adrienne D.; Pate, Ryan; McCormick, Ryan
2012-07-30
Resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) is a variation of pulsed laser deposition that is useful for organic-based thin films because it reduces material degradation by selective absorption of infrared radiation in the host matrix. A unique emulsion-based RIR-MAPLE approach has been developed that reduces substrate exposure to solvents and provides controlled and repeatable organic thin film deposition. In order to establish emulsion-based RIR-MAPLE as a preferred deposition technique for conjugated polymer or hybrid nanocomposite optoelectronic devices, studies have been conducted to demonstrate the value added by the approach in comparison to traditional solution-based deposition techniques, and this workmore » will be reviewed. The control of hybrid nanocomposite thin film deposition, and the photoconductivity in such materials deposited using emulsion-based RIR-MAPLE, will also be reviewed. The overall result of these studies is the demonstration of emulsion-based RIR-MAPLE as a viable option for the fabrication of conjugated polymer and hybrid nanocomposite optoelectronic devices that could yield improved device performance.« less
NASA Astrophysics Data System (ADS)
Shang, G. R.; Li, Y.
2017-12-01
It is one of the ways for changing surface property by fabricating superhydrophibic coating with the help of template that is made of depositing nano-carbon particles of fuel flame on substrate such as pure copper or aluminium alloy. In the process of making template, it is difficult to keep the deposition layer uniformed. In this work, the problem was solved by manufacturing a set of numerical control equipment. It has been proved by application test that the deposition layer was uniformed by means of this facility. The contact angle is more than 150°. A new way has been developed for making superhydrohibic template.
Trade-Induced Atmospheric Mercury Deposition over China and Implications for Demand-Side Controls.
Chen, Long; Meng, Jing; Liang, Sai; Zhang, Haoran; Zhang, Wei; Liu, Maodian; Tong, Yindong; Wang, Huanhuan; Wang, Wei; Wang, Xuejun; Shu, Jiong
2018-02-20
Mercury (Hg) is of global concern because of its adverse effects on humans and the environment. In addition to long-range atmospheric transport, Hg emissions can be geographically relocated through economic trade. Here, we investigate the effect of China's interregional trade on atmospheric Hg deposition over China, using an atmospheric transport model and multiregional input-output analysis. In general, total atmospheric Hg deposition over China is 408.8 Mg yr -1 , and 32% of this is embodied in China's interregional trade, with the hotspots occurring over Gansu, Henan, Hebei, and Yunnan provinces. Interprovincial trade considerably redistributes atmospheric Hg deposition over China, with a range in deposition flux from -104% to +28%. Developed regions, such as the Yangtze River Delta (Shanghai, Jiangsu, and Zhejiang) and Guangdong, avoid Hg deposition over their geographical boundaries, instead causing additional Hg deposition over developing provinces. Bilateral interaction among provinces is strong over some regions, suggesting a need for joint mitigation, such as the Jing-Jin-Ji region (Beijing, Tianjin, and Hebei) and the Yangtze River Delta. Transferring advanced technology from developed regions to their developing trade partners would be an effective measure to mitigate China's Hg pollution. Our findings are relevant to interprovincial efforts to reduce trans-boundary Hg pollution in China.
Modeling and control of diffusion and low-pressure chemical vapor deposition furnaces
NASA Astrophysics Data System (ADS)
De Waard, H.; De Koning, W. L.
1990-03-01
In this paper a study is made of the heat transfer inside cylindrical resistance diffusion and low-pressure chemical vapor deposition furnaces, aimed at developing an improved temperature controller. A model of the thermal behavior is derived which also covers the important class of furnaces equipped with semitransparent quartz process tubes. The model takes into account the thermal behavior of the thermocouples. It is shown that currently used temperature controllers are highly inefficient for very large scale integration applications. Based on the model an alternative temperature controller of the linear-quadratic-Gaussian type is proposed which features direct wafer temperature control. Some simulation results are given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Havarinasab, S.; Hultman, P.
Inorganic mercury may aggravate murine systemic autoimmune diseases which are either spontaneous (genetically determined) or induced by non-genetic mechanisms. Organic mercury species, the dominating form of mercury exposure in the human population, have not been examined in this respect. Therefore, ethyl mercury in the form of thimerosal, a preservative recently debated as a possible health hazard when present in vaccines, was administered in a dose of 0.156-5 mg/L drinking water to female (NZB x NZW)F1 (ZBWF1) mice. These mice develop an age-dependent spontaneous systemic autoimmune disease with high mortality primarily due to immune-complex (IC) glomerulonephritis. Five mg thimerosal/L drinking watermore » (295 {mu}g Hg/kg body weight (bw)/day) for 7 weeks induced glomerular, mesangial and systemic vessel wall IC deposits and antinuclear antibodies (ANA) which were not present in the untreated controls. After 22-25 weeks, the higher doses of thimerosal had shifted the localization of the spontaneously developing renal glomerular IC deposits from the capillary wall position seen in controls to the mesangium. The altered localization was associated with less severe histological kidney damage, less proteinuria, and reduced mortality. The effect was dose-dependent, lower doses having no effect compared with the untreated controls. A different effect of thimerosal treatment was induction of renal and splenic vessel walls IC deposits. Renal vessel wall deposits occurred at a dose of 0.313-5 mg thimerosal/L (18-295 {mu}g Hg/kg bw/day), while splenic vessel wall deposits developed also in mice given the lowest dose of thimerosal, 0.156 mg/L (9 {mu}g Hg/kg bw/day). The latter dose is 3- and 15-fold lower than the dose of Hg required to induce vessel wall IC deposits in genetically susceptible H-2 {sup s} mice by HgCl{sub 2} and thimerosal, respectively. Further studies on the exact conditions needed for induction of systemic IC deposits by low-dose organic mercurials in autoimmune-prone individuals, as well as the potential effect of these deposits on the vessel walls, are warranted.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aamodt, P.L.; Freiwald, J.G.
1983-03-01
As a part of the DOE's program to stimulate petroleum production from unconventional sources, the Los Alamos National Laboratory has developed a methodology to compare and rank tar sand deposits, based on their suitability for commercial development. Major categories influencing favorability were identified and evaluated to determine their individual and collective impacts. To facilitate their evaluation, deposit characteristics, extraction technologies, environmental controls, and institutional constraints were broken down into their elements. The elements were assessed singly and in interactive groups to determine their influence on favorability for commercial development. A numerical value was assigned each element to signify its estimatedmore » importance relative to the other elements. Eight tar sand deposits were evaluated using only one major category, deposit characteristics. This initial, and only partial favorability assessment, was solely a test of the methodology, and it was considered successful. Because only one of the four major categories was used for this initial favorability ranking, and also because the available deposit characteristic data were barely adequate for the test, these first results should be used only as an example of how the methodology is to be applied when more complete data are available. The eight deposits and their relative favorability rankings for commercial development, based only on the deposit characteristics, are Sunnyside, Utah; Asphalt Ridge, Utah; Edna, California; Santa Rosa, New Mexico; Tar Sand Triangle, Utah; PR Spring, Utah; Uvalde, Texas; and circle cliffs, Utah.« less
In situ x-ray diffraction observation of multiple texture turnovers in sputtered Cr films
NASA Astrophysics Data System (ADS)
Zhao, Z. B.; Rek, Z. U.; Yalisove, S. M.; Bilello, J. C.
2004-11-01
A series of Cr films were deposited onto native oxides of (100) Si substrates via a confocal deposition geometry in a magnetron sputter chamber. The film growth chamber was incorporated with an in situ x-ray diffraction system, which allowed the collection of x-ray diffraction data on the growing film in a quasi real time fashion without interruption of film deposition. The in situ x-ray diffraction, coupled with other ex situ characterization techniques, was used to study structural evolutions of the Cr films deposited at various Ar pressures. It was observed that the evolution of the crystallographic structures of Cr films was very sensitive to both deposition conditions and film thickness. With the confocal deposition geometry, the Cr films developed various types of out-of-plane textures. In addition to the (110) and (100) types of textures commonly reported for vapor deposited Cr films, the (111) and (112) types of textures were also observed. The film deposited at low Ar pressure (2 mTorr) developed strong (111) type texture. With the increase in either Ar pressure or film thickness, the Cr films tended to develop (112) and (100) types of texture. At high Ar pressures (>10 mTorr), several changes in texture type with increasing film thickness were observed. The sequence can be described as (110)-->(112)-->(100). The strong tendency for these films to ultimately assume the (100) type of texture could be related to significant rises in substrate temperatures during the late stages of film growth with high Ar pressures. The observation of the multiple texture type changes suggests that the evolution of Cr films is controlled by complex growth kinetics. The competitive growth of grains with different orientations can be altered not only by controllable deposition parameters such as Ar pressure, but also by the variations of in situ film attributes (e.g., residual stress and substrate temperature) occurring concurrently with film growth.
NASA Technical Reports Server (NTRS)
Li, Hao; Lee, Jinil; Libera, Matthew R.; Lee, Woo Y.; Kebbede, Anteneh; Lance, Michael J.; Wang, Hongyu; Morscher, Gregory N.; Gray, Hugh R. (Technical Monitor)
2002-01-01
The phase contents and morphology of a ZrO2 fiber coating deposited at 1050 C on Hi-Nicalon(Tm) by chemical vapor deposition were examined as a function of deposition time from 5 to 120 min. The morphological evolution in the ZrO2 coating was correlated to the development of delamination within the ZrO2 coating. The delamination appears to occur as a result of: (1) continuous formation of tetragonal ZrO2 nuclei on the deposition surface; (2) martensitic transformation of the tetragonal phase to a monoclinic phase upon reaching a critical grain size; and (3) development of significant compressive hoop stresses due to the volume dilation associated with the transformation. Our observations suggest that it will be of critical importance to further understand and eventually control the nucleation and grain growth behavior of CVD ZrO2 and its phase transformation behavior for its potential applications for composites.
Building of nested components by a double-nozzle droplet deposition process
NASA Astrophysics Data System (ADS)
Li, SuLi; Wei, ZhengYing; Du, Jun; Zhao, Guangxi; Wang, Xin; Lu, BingHeng
2016-07-01
According to the nested components jointed with multiple parts,a double-nozzle droplet deposition process was put forward in this paper, and the experimental system was developed. Through the research on the properties of support materials and the process of double-nozzle droplet deposition, the linkage control of the metal droplet deposition and the support material extrusion was realized, and a nested component with complex construction was fabricated directly. Compared with the traditional forming processes, this double-nozzle deposition process has the advantages of short cycle, low cost and so on. It can provide an approach way to build the nested parts.
Optical control of multi-stage thin film solar cell production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jian; Levi, Dean H.; Contreras, Miguel A.
2016-05-17
Embodiments include methods of depositing and controlling the deposition of a film in multiple stages. The disclosed deposition and deposition control methods include the optical monitoring of a deposition matrix to determine a time when at least one transition point occurs. In certain embodiments, the transition point or transition points are a stoichiometry point. Methods may also include controlling the length of time in which material is deposited during a deposition stage or controlling the amount of the first, second or subsequent materials deposited during any deposition stage in response to a determination of the time when a selected transitionmore » point occurs.« less
NASA Astrophysics Data System (ADS)
Maulik, Subhodip; Sarkar, Anirban; Basu, Srismrita; Daniels-Race, Theda
2018-05-01
A facile, cost-effective, voltage-controlled, "single-step" method for spray deposition of surfactant-assisted dispersed carbon nanotube (CNT) thin films on semiconducting and insulating substrates has been developed. The fabrication strategy enables direct deposition and adhesion of CNT films on target samples, eliminating the need for substrate surface functionalization with organosilane binder agents or metal layer coatings. Spray coating experiments on four types of sample [bare silicon (Si), microscopy-grade glass samples, silicon dioxide (SiO2), and polymethyl methacrylate (PMMA)] under optimized control parameters produced films with thickness ranging from 40 nm to 6 μm with substantial surface coverage and packing density. These unique deposition results on both semiconducting and insulator target samples suggest potential applications of this technique in CNT thin-film transistors with different gate dielectrics, bendable electronics, and novel CNT-based sensing devices, and bodes well for further investigation into thin-film coatings of various inorganic, organic, and hybrid nanomaterials on different types of substrate.
NASA Technical Reports Server (NTRS)
Lin, Shih-Yung; Hoffman, Eric K.; Domack, Marcia S.
2007-01-01
2-D thermo-mechanical model developed to characterize distortion and residual stresses in integral structure produced by DMD. Demonstrated as a tool to guide experimental development of DMD fabrication process for aero structures. Distortion and residual stresses are local to deposit. Most distortion develops during deposition of the first few layers; Little change in distortion or residual stresses after fifth deposit layer Most of distortion is localized just beneath the build. Thicker build plates and the use of build lands results in greatest decrease in levels of distortion. Pre-straining shown to reduce distortion. Difficult to implement, particularly for complex stiffener arrays. Clamp position has complex effect on distortion and stresses. Overall distortion reduced with decreasing clamp clearance. Larger clamp clearances induce bending. Use of pre-heat and active cooling show minor influence on panel distortion. Generate changes in thermal gradients in the build plate.
Improved measurement methods are needed to characterize dry deposition of sulfur and nitrogen compounds to assess ecosystem exposure to nutrients and acidifying compounds and to develop atmospheric deposition budgets in support of critical loads assessments. The purpose of this ...
Rytuba, J.J.
1994-01-01
Many calderas are located along regionally important fault zones that are intermittently active before and after the caldera cycle. In mineralized calderas, the ore deposits are controlled by structures developed during caldera formation and by regional faults which intersect and reactivate the caldera-related structures. The paper discusses the importance of the different stages of caldera formation in connection with the localization of ore deposits. -from Author
NASA Astrophysics Data System (ADS)
Li, Jing; Tian, Xiubo; Gong, Chunzhi; Yang, Shiqin; Fu, Ricky K. Y.; Chu, Paul K.
2009-12-01
A hybrid radio-frequency (rf)/direct-current (dc) system has been developed to control the biasing effects during deposition of diamondlike carbon (DLC) films onto the inner wall of polyethylene terephthalate (PET) bottles. An additional dc bias is coupled to the rf electrode to produce the effect of equivalent rf self-biasing. This allows more flexible control of the deposition of the DLC films which are intended to improve the gas barrier characteristics. The experimental results demonstrate that the additional dc bias improves the adhesion strength between the DLC film and PET, although the enhancement in the gas barrier properties is not significantly larger compared to the one without dc bias. The apparatus and methodology have practical importance in the food and beverage industry.
Chemical Vapor Deposition Of Silicon Carbide
NASA Technical Reports Server (NTRS)
Powell, J. Anthony; Larkin, David J.; Matus, Lawrence G.; Petit, Jeremy B.
1993-01-01
Large single-crystal SiC boules from which wafers of large area cut now being produced commerically. Availability of wafers opens door for development of SiC semiconductor devices. Recently developed chemical vapor deposition (CVD) process produces thin single-crystal SiC films on SiC wafers. Essential step in sequence of steps used to fabricate semiconductor devices. Further development required for specific devices. Some potential high-temperature applications include sensors and control electronics for advanced turbine engines and automobile engines, power electronics for electromechanical actuators for advanced aircraft and for space power systems, and equipment used in drilling of deep wells. High-frequency applications include communication systems, high-speed computers, and microwave power transistors. High-radiation applications include sensors and controls for nuclear reactors.
Bn and Si-Doped Bn Coatings on Woven Fabrics
NASA Technical Reports Server (NTRS)
Hurwitz, Frances I.; Scott, John M.; Wheeler, Donald R.; Chayka, Paul V.; Gray, Hugh R. (Technical Monitor)
2002-01-01
A computer controlled, pulsed chemical vapor infiltration (CVI) system has been developed to deposit BN from a liquid borazine (B3N3H6) source, as well as silicon doped BN coatings using borazine and a silicon source, into 2-D woven ceramic fabric preforms. The coating process was evaluated as a function of deposition temperature, pressure, and precursor flow rate. Coatings were characterized by field emission scanning electron microscopy, electron dispersive spectroscopy and Auger spectroscopy. By controlling the reactant feed ratios, Si incorporation could be controlled over the range of 6-24 atomic percent.
NASA Astrophysics Data System (ADS)
Dalstra, Hilke J.
2014-10-01
The discovery of two relatively small but high-grade iron ore deposits near Mt Wall, an intensely faulted part of the southwestern Hamersley province provides unique insights into the structural control on ore formation in this region. The deposits have many geological features typical of the high grade microplaty hematite group which also contains the much larger Mt Tom Price, Paraburdoo and Mt Whaleback deposits. The deposits are structurally controlled along early normal faults and contain abundant microplaty hematite and martite, and are largely confined to the Dales Gorge member of the Brockman Iron Formation. In addition to the microplaty hematite-martite ore, there are martite-goethite ores and rare magnetite-goethite or magnetite-hematite ores. Below the modern weathering surface, hydrothermally altered zones in wallrock BIF from the Lower Dales Gorge member contain magnetite, hematite and carbonate/talc bearing mineral assemblages. A staged ore genesis model involving early extension and fluid circulation along normal faults, hypogene silica leaching and carbonate alteration, followed by deep meteoric oxidation with microplaty hematite formation and finally weathering can explain most features of the Mt Wall deposits. The role of deformation was to provide pathways for mineralising fluids and initiate the seed points for the mineralised systems. High grade iron in the Wellthandalthaluna deposit is situated between the NW to NNW trending Boolgeeda Creek fault and a synthetic joining splay, the Northern fault. Both are high angle normal faults and formed during early extension in this part of the province. Faults are characterised by localised small scale deformation and brecciation, deep carbonate alteration and oxidation. Recent weathering has penetrated deeply into the fault zones, converting the carbonate-rich assemblages into goethite. Mineralisation in the Arochar deposit is situated in the overlap or relay zone between two segments of the Mt Wall fault zone, a moderately to steeply southerly dipping normal fault system which at Arochar is intruded by dolerite dykes. At both locations, the ore controlling faults are offset by later NW trending dextral and normal faults. Fault relay zones or fault splay zones were likely zones of increased permeability and fluid flow during fault development or reactivation and may also have been important in initiating mineralisation in larger deposits such as Mt Tom Price and Mt Whaleback. However structural controls on the largest iron ore deposits are often obscured due to the intensity and scale of ore development, whereas they are better preserved in the smaller deposits. Recognition that carbonate bearing protores at Mt Wall survived for nearly two billion years until intense recent weathering converted them to martite-goethite or magnetite-goethite ores may imply that more of the giant hematite-goethite deposits of the Hamersley province had hydrothermal precursors and were not formed by supergene processes alone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gunjakar, Jayavant L.; Jo, Yun Kyung; Kim, In Young
A facile, economic, and reproducible chemical bath deposition (CBD) method is developed for the fabrication of facet-controlled Ag{sub 3}PO{sub 4} thin films with enhanced visible light photocatalytic activity. The fine-control of bath temperature, precursor, complexing agent, substrate, and solution pH is fairly crucial in preparing the facet-selective thin film of Ag{sub 3}PO{sub 4} nanocrystal. The change of precursor from silver nitrate to silver acetate makes possible the tailoring of the crystal shape of Ag{sub 3}PO{sub 4} from cube to rhombic dodecahedron and also the bandgap tuning of the deposited films. The control of [Ag{sup +}]/[phosphate] ratio enables to maximize themore » loading amount of Ag{sub 3}PO{sub 4} crystals per the unit area of the deposited film. All the fabricated Ag{sub 3}PO{sub 4} thin films show high photocatalytic activity for visible light-induced degradation of organic molecules, which can be optimized by tailoring the crystal shape of the deposited crystals. This CBD method is also useful in preparing the facet-controlled hybrid film of Ag{sub 3}PO{sub 4}–ZnO photocatalyst. The present study clearly demonstrates the usefulness of the present CBD method for fabricating facet-controlled thin films of metal oxosalt and its nanohybrid. - Highlights: • The crystal facet of Ag{sub 3}PO{sub 4} films can be tuned by chemical bath deposition. • The crystal shape of Ag{sub 3}PO{sub 4} is tailorable from cube to rhombic dodecahedron. • Facet-tuned Ag{sub 3}PO{sub 4} film shows enhanced visible light photocatalyst activity.« less
Remote sensing strategic exploration of large or superlarge gold ore deposits
NASA Astrophysics Data System (ADS)
Yan, Shouxun; Liu, Qingsheng; Wang, Hongmei; Wang, Zhigang; Liu, Suhong
1998-08-01
To prospect large or superlarge gold ore deposits, blending of remote sensing techniques and modern metallogenitic theories is one of the effective measures. The theory of metallogeny plays a director role before and during remote sensing technique applications. The remote sensing data with different platforms and different resolutions can be respectively applied to detect direct or indirect metallogenic information, and to identify the ore-controlling structure, especially, the ore-controlling structural assemblage, which, conversely, usually are the new conditions to study and to modify the metallogenic model, and to further develop the exploration model of large or superlarge ore deposits. Guidance by an academic idea of 'adjustment structure' which is the conceptual model of transverse structure, an obscured ore- controlling transverse structure has been identified on the refined TM imagery in the Hadamengou gold ore deposit, Setai Hyperspectral Geological Remote Sensing Testing Site (SHGRSTS), Wulashan mountains, Inner Mongolia, China. Meanwhile, The MAIS data has been applied to quickly identify the auriferous alteration rocks with Correspondence Analysis method and Spectral Angle Mapping (SAM) technique. The theoretical system and technical method of remote sensing strategic exploration of large or superlarge gold ore deposits have been demonstrated by the practices in the SHGRSTS.
Study of Polymer Crystallization by Physical Vapor Deposition
NASA Astrophysics Data System (ADS)
Jeong, Hyuncheol
When a polymer is confined under the submicron length scale, confinement size and interfaces can significantly impact the crystallization kinetics and resulting morphology. The ability to tune the morphology of confined polymer systems is of critical importance for the development of high-performance polymer microelectronics. The wisdom from the research on confined crystallization suggests that it would be beneficial to have a processing route in which the crystallization of polymers is driven by interface and temperature effects at a nanometer-scale confinement. In practice, for atomic and small-molecular systems, physical vapor deposition (PVD) has been recognized as the most successful processing route for the precise control of the film structure at surface utilizing confinement effects. While standard PVD technologies are not generally applicable to the deposition of the chemically fragile macromolecules, the development of matrix-assisted pulsed laser evaporation (MAPLE) now enables the non-destructive PVD of high-molecular weight polymers. In this thesis work, we investigated the use of MAPLE for the precise control of the crystallization of polymer films at a molecular level. We also sought to decipher the rules governing the crystallization of confined polymers, by using MAPLE as a tool to form confined polymer systems onto substrates with a controlled temperature. We first explored the early stages of film growth and crystallization of poly(ethylene oxide) (PEO) at the substrate surface formed by MAPLE. The unique mechanism of film formation in MAPLE, the deposition of submicron-sized polymer droplets, allowed for the manifestation of confinement and substrate effects in the crystallization of MAPLE-deposited PEO. Furthermore, we also focused on the property of the amorphous PEO film formed by MAPLE, showing the dependence of polymer crystallization kinetics on the thermal history of the amorphous phase. Lastly, we probed how MAPLE processing affected the semi-crystalline structure in MAPLE-deposited polyethylene (PE) films. Depositing PE at various temperatures remarkably allowed for the tunability of the melting temperature and crystallinity of the PE films, thus manipulating the semi-crystalline structure. By comparing the structure of PE formed by different processing routes, i.e., MAPLE and melt-crystallization, we discussed how processing routes affect the development of semi-crystalline phase in polymer films.
NASA Astrophysics Data System (ADS)
Krumdieck, Susan Pran
Several years ago, a method for depositing ceramic coatings called the Pulsed-MOCVD system was developed by the Raj group at Cornell University in association with Dr. Harvey Berger and Sono-Tek Corporation. The process was used to produce epitaxial thin films of TiO2 on sapphire substrates under conditions of low pressure, relatively high temperature, and very low growth rate. The system came to CU-Boulder when Professor Raj moved here in 1997. It is quite a simple technique and has several advantages over typical CVD systems. The purpose of this dissertation is two-fold; (1) understand the chemical processes, thermodynamics, and kinetics of the Pulsed-MOCVD technique, and (2) determine the possible applications by studying the film structure and morphology over the entire range of deposition conditions. Polycrystalline coatings of ceramic materials were deposited on nickel in the low-pressure, cold-wall reactor from metalorganic precursors, titanium isopropoxide, and a mixture of zirconium isopropoxide and yttria isopropoxide. The process utilized pulsed liquid injection of a dilute precursor solution with atomization by ultrasonic nozzle. Thin films (less than 1mum) with fine-grained microstructure and thick coatings (up to 1mum) with columnar-microstructure were deposited on heated metal substrates by thermal decomposition of a single liquid precursor. The influence of each of the primary deposition parameters, substrate temperature, total flow rate, and precursor concentration on growth rate, conversion efficiency and morphology were investigated. The operating conditions were determined for kinetic, mass transfer, and evaporation process control regimes. Kinetic controlled deposition was found to produce equiaxed morphology while mass transfer controlled deposition produced columnar morphology. A kinetic model of the deposition process was developed and compared to data for deposition of TiO2 from Ti(OC3H7) 4 precursor. The results demonstrate that growth rate and morphology over the range of process operating conditions would make the Pulsed-MOCVD system suitable for application of thermal barrier coatings, electrical insulating layers, corrosion protection coatings, and the electrolyte layers in solid oxide fuel cells.
Geochemical and modal data for igneous rocks associated with epithermal mineral deposits
du Bray, Edward A.
2014-01-01
The purposes of this report are to (1) present available geochemical and modal data for igneous rocks associated with epithermal mineral deposits and (2) to make those data widely and readily available for subsequent, more in-depth consideration and interpretation. Epithermal precious and base-metal deposits are commonly associated with subduction-related calc-alkaline to alkaline arc magmatism as well as back-arc continental rift magmatism. These deposits form in association with compositionally diverse extrusive and intrusive igneous rocks. Temperature and depth regimes prevailing during deposit formation are highly variable. The deposits form from hydrothermal fluids that range from acidic to near-neutral pH, and they occur in a variety of structural settings. The disparate temperature, pressure, fluid chemistry, and structural controls have resulted in deposits with wide ranging characteristics. Economic geologists have employed these characteristics to develop classification schemes for epithermal deposits and to constrain the important genetic processes responsible for their formation.
V6O13 films by control of the oxidation state from aqueous precursor to crystalline phase.
Peys, Nick; Ling, Yun; Dewulf, Daan; Gielis, Sven; De Dobbelaere, Christopher; Cuypers, Daniel; Adriaensens, Peter; Van Doorslaer, Sabine; De Gendt, Stefan; Hardy, An; Van Bael, Marlies K
2013-01-28
An aqueous deposition process for V(6)O(13) films is developed whereby the vanadium oxidation state is continuously controlled throughout the entire process. In the precursor stage, a controlled wet chemical reduction of the vanadium(V) source with oxalic acid is achieved and monitored by (51)Vanadium Nuclear Magnetic Resonance ((51)V-NMR) and Ultraviolet-Visible (UV-Vis) spectroscopy. The resulting vanadium(IV) species in the aqueous solution are identified as mononuclear citrato-oxovanadate(IV) complexes by Electron Paramagnetic Resonance (EPR) and Fourier Transform Infra-Red (FTIR) spectroscopy. This precursor is successfully employed for the deposition of uniform, thin films. The optimal deposition and annealing conditions for the formation of crystalline V(6)O(13), including the control of the vanadium oxidation state, are determined through an elaborate study of processing temperature and O(2) partial pressure. To ensure a sub 100 nm adjustable film thickness, a non-oxidative intermediate thermal treatment is carried out at the end of each deposition cycle, allowing maximal precursor decomposition while still avoiding V(IV) oxidation. The resulting surface hydrophilicity, indispensable for the homogeneous deposition of the next layer, is explained by an increased surface roughness and the increased availability of surface vanadyl groups. Crystalline V(6)O(13) with a preferential (002) orientation is obtained after a post deposition annealing in a 0.1% O(2) ambient for thin films with a thickness of 20 nm.
Rapid engine test to measure injector fouling in diesel engines using vegetable oil fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korus, R.A.; Jaiduk, J.; Peterson, C.L.
1985-11-01
Short engine tests were used to determine the rate of carbon deposition on direct injection diesel nozzles. Winter rape, high-oleic and high-linoleic safflower blends with 50% diesel were tested for carbon deposit and compared to that with D-2 Diesel Control Fuel. Deposits were greatest with the most unsaturated fuel, high-linoleic safflower, and least with winter rape. All vegetable oil blends developed power similar to diesel fueled engines with a 6 to 8% greater fuel consumption. 8 references.
USDA-ARS?s Scientific Manuscript database
Determining the deposition and field persistence of mycoinsecticides is essential in the development of effective and economical application strategies, including specifically the timing and frequency of spray applications. In this study we used three methods to evaluate the persistence of Beauveri...
Guan, Cao; Wang, John
2016-10-01
Electrode materials play a decisive role in almost all electrochemical energy storage devices, determining their overall performance. Proper selection, design and fabrication of electrode materials have thus been regarded as one of the most critical steps in achieving high electrochemical energy storage performance. As an advanced nanotechnology for thin films and surfaces with conformal interfacial features and well controllable deposition thickness, atomic layer deposition (ALD) has been successfully developed for deposition and surface modification of electrode materials, where there are considerable issues of interfacial and surface chemistry at atomic and nanometer scale. In addition, ALD has shown great potential in construction of novel nanostructured active materials that otherwise can be hardly obtained by other processing techniques, such as those solution-based processing and chemical vapor deposition (CVD) techniques. This review focuses on the recent development of ALD for the design and delivery of advanced electrode materials in electrochemical energy storage devices, where typical examples will be highlighted and analyzed, and the merits and challenges of ALD for applications in energy storage will also be discussed.
2016-01-01
Electrode materials play a decisive role in almost all electrochemical energy storage devices, determining their overall performance. Proper selection, design and fabrication of electrode materials have thus been regarded as one of the most critical steps in achieving high electrochemical energy storage performance. As an advanced nanotechnology for thin films and surfaces with conformal interfacial features and well controllable deposition thickness, atomic layer deposition (ALD) has been successfully developed for deposition and surface modification of electrode materials, where there are considerable issues of interfacial and surface chemistry at atomic and nanometer scale. In addition, ALD has shown great potential in construction of novel nanostructured active materials that otherwise can be hardly obtained by other processing techniques, such as those solution‐based processing and chemical vapor deposition (CVD) techniques. This review focuses on the recent development of ALD for the design and delivery of advanced electrode materials in electrochemical energy storage devices, where typical examples will be highlighted and analyzed, and the merits and challenges of ALD for applications in energy storage will also be discussed. PMID:27840793
Liu, Wei; Wang, Daming; Huang, Jianghong; Wei, You; Xiong, Jianyi; Zhu, Weimin; Duan, Li; Chen, Jielin; Sun, Rong; Wang, Daping
2017-01-01
Developed in recent years, low-temperature deposition manufacturing (LDM) represents one of the most promising rapid prototyping technologies. It is not only based on rapid deposition manufacturing process but also combined with phase separation process. Besides the controlled macropore size, tissue-engineered scaffold fabricated by LDM has inter-connected micropores in the deposited lines. More importantly, it is a green manufacturing process that involves non-heating liquefying of materials. It has been employed to fabricate tissue-engineered scaffolds for bone, cartilage, blood vessel and nerve tissue regenerations. It is a promising technology in the fabrication of tissue-engineered scaffold similar to ideal scaffold and the design of complex organs. In the current paper, this novel LDM technology is introduced, and its control parameters, biomedical applications and challenges are included and discussed as well. Copyright © 2016 Elsevier B.V. All rights reserved.
Online measurement of bead geometry in GMAW-based additive manufacturing using passive vision
NASA Astrophysics Data System (ADS)
Xiong, Jun; Zhang, Guangjun
2013-11-01
Additive manufacturing based on gas metal arc welding is an advanced technique for depositing fully dense components with low cost. Despite this fact, techniques to achieve accurate control and automation of the process have not yet been perfectly developed. The online measurement of the deposited bead geometry is a key problem for reliable control. In this work a passive vision-sensing system, comprising two cameras and composite filtering techniques, was proposed for real-time detection of the bead height and width through deposition of thin walls. The nozzle to the top surface distance was monitored for eliminating accumulated height errors during the multi-layer deposition process. Various image processing algorithms were applied and discussed for extracting feature parameters. A calibration procedure was presented for the monitoring system. Validation experiments confirmed the effectiveness of the online measurement system for bead geometry in layered additive manufacturing.
Climatic controls on arid continental basin margin systems
NASA Astrophysics Data System (ADS)
Gough, Amy; Clarke, Stuart; Richards, Philip; Milodowski, Antoni
2016-04-01
Alluvial fans are both dominant and long-lived within continental basin margin systems. As a result, they commonly interact with a variety of depositional systems that exist at different times in the distal extent of the basin as the basin evolves. The deposits of the distal basin often cycle between those with the potential to act as good aquifers and those with the potential to act as good aquitards. The interactions between the distal deposits and the basin margin fans can have a significant impact upon basin-scale fluid flow. The fans themselves are commonly considered as relatively homogeneous, but their sedimentology is controlled by a variety of factors, including: 1) differing depositional mechanisms; 2) localised autocyclic controls; 3) geometrical and temporal interactions with deposits of the basin centre; and, 4) long-term allocyclic climatic variations. This work examines the basin margin systems of the Cutler Group sediments of the Paradox Basin, western U.S.A and presents generalised facies models for the Cutler Group alluvial fans as well as for the zone of interaction between these fans and the contemporaneous environments in the basin centre, at a variety of scales. Small-scale controls on deposition include climate, tectonics, base level and sediment supply. It has been ascertained that long-term climatic alterations were the main control on these depositional systems. Models have been constructed to highlight how both long-term and short-term alterations in the climatic regime can affect the sedimentation in the basin. These models can be applied to better understand similar, but poorly exposed, alluvial fan deposits. The alluvial fans of the Brockram Facies, northern England form part of a once-proposed site for low-level nuclear waste decommissioning. As such, it is important to understand the sedimentology, three-dimensional geometry, and the proposed connectivity of the deposits from the perspective of basin-scale fluid flow. The developed models suggest that the deposits of the Brockram alluvial fans have the potential to contain numerous preferential flow zones. Where these flow zones are adjacent to the unique deposits of the zone of interaction it affects basin-scale fluid flow by: 1) interconnecting decent reservoirs in the distal extent of the basin; 2) creating flow pathways away from these reservoirs; 3) introducing secondary baffles into the system; and, 4) creating a bypass to charge these distal reservoirs.
Iron accumulation in multiple sclerosis: an early pathogenic event.
LeVine, Steven M; Bilgen, Mehmet; Lynch, Sharon G
2013-03-01
Iron has been shown to accumulate in deep gray matter structures in many forms of multiple sclerosis (MS), but detecting its presence early in the disease course (e.g., clinically isolated syndrome [CIS]) has been less clear. Here, we review a recent study where MRI scanning at 7 T together with susceptibility mapping was performed to assess iron deposition in CIS and control subjects. Susceptibility indicative of iron deposition was found to be increased in the globus pallidus, caudate, putamen and pulvinar of CIS patients compared with controls. The findings suggest that iron deposition is a pathological change that occurs early in the development of MS. Identifying the mechanisms of iron accumulation and determining whether iron promotes pathogenesis in MS are important areas of future research.
NASA Astrophysics Data System (ADS)
Gallois, Arnaud; Bosence, Dan; Burgess, Peter
2015-04-01
Non-marine carbonates are relatively poorly understood compared with their more abundant marine counterparts. Sedimentary facies and basin architecture are controlled by a range of environmental parameters such as climate, hydrology and tectonic setting but facies models are few and limited in their predictive value. Following the discovery of extensive Early Cretaceous, non-marine carbonate hydrocarbon reservoirs in the South Atlantic, the interest of understanding such complex deposits has increased during recent years. This study is developing a new depositional model for non-marine carbonates in a semi-arid climate setting in an extensional basin; the Purbeck Formation (Upper Jurassic - Lower Cretaceous) in Dorset (Southern England). Outcrop study coupled with subsurface data analysis and petrographic study (sedimentology and early diagenesis) aims to constrain and improve published models of depositional settings. Facies models for brackish water and hypersaline water conditions of these lacustrine to palustrine carbonates deposited in the syn-rift phase of the Wessex Basin will be presented. Particular attention focusses on the factors that control the accumulation of in-situ microbialite mounds that occur within bedded inter-mound packstones-grainstones in the lower Purbeck. The microbialite mounds are located in three units (locally known as the Skull Cap, the Hard Cap and the Soft Cap) separated by three fossil soils (locally known as the Basal, the Lower and the Great Dirt Beds) respectively within three shallowing upward lacustrine sequences. These complex microbialite mounds (up to 4m high), are composed of tabular small-scale mounds (flat and long, up to 50cm high) divided into four subfacies. Many of these small-scale mounds developed around trees and branches which are preserved as moulds (or silicified wood) which are surrounded by a burrowed mudstone-wackestone collar. Subsequently a thrombolite framework developed on the upper part only within bedded inter-mound packestones-grainstones. Finally a discontinuous basal laminated subfacies can be found overlaying the fossil soils. The overall control on facies and their distribution is the tectonic control as highlighted by the activity of the two main extensional faults during Purbeck times. The tectonic control on development of microbialite mounds is indicated by their relationship with the relay ramp. Their occurrence is controlled by palaeotopography generated on sub-aerial exposure surfaces, palaesols and early conifer trees and developed mainly on the shallowest area of the lake as indicated by their relationship with the inter-mound packstone-grainstone facies and the palaeosols. The new depositional models developed in this study integrate sedimentological facies models with the syn-rift setting of the Wessex Basin to explain the distribution of the microbialite mounds.
SEWER-SEDIMENT CONTROL: OVERVIEW OF AN EPA WET-WEATHER FLOW RESEARCH PROGRAM
This paper presents a historical overview of the sewer sediment control projects conducted by the Wet-Weather Flow Research Program of the USEPA. Research presented includes studies of the causes of sewer solids deposition and development/evaluation of control methods that can pr...
NASA Astrophysics Data System (ADS)
Kashi, N. N.; Wieder, R.; Vile, M. A.
2013-12-01
Emissions of NOx associated with Alberta oil sands (AOS) development are leading to locally elevated atmospheric N deposition, in a region where background N deposition has been historically quite low (< 1 kg/ha/yr). This elevated N deposition has the potential to alter the ecosystem structure and function of nutrient-poor boreal peatlands. Nitrogen enrichment may alter soil microbial activity, which could be manifested in changes in extracellular enzyme activities. Since 2011, we have been experimentally adding N as NH4NO3 in simulated precipitation at 0, 5, 10, 15, 20, and 25 kg N ha/yr/ plus no-water controls to a boreal bog and a poor fen (3 replicate plots per treatment). In 2013, acid phosphatase activities in living plant capitulum of Sphagnum angustifolium, Sphagnum fuscum, and Sphagnum magellanicum were quantified in June and July using 4-methyumbelliferylphosphate and fluorescence detection of the enzymatically released methylumbelliferone (MUF). Phosphatase activities did not differ with N treatment for S. angustifolium in the bog (p=0.3409) or the poor fen (p=0.0629), or for S. fuscum in the bog (p=0.1950), averaging 35.0 × 0.7, 61.6 × 1.2, and 41.6 × 0.9 μmol MUF/g DWT/hr, respectively. For S. fuscum in the poor fen, phosphatase activities differed between N treatments (p=0.0275), ranging 40.6 × 1.1 μmol MUF/g DWT/hr in the control plots to 73.7 × 2.0 μmol MUF/g DWT/hr in the 5 kg/ha/yr N treatment plots; increasing N deposition did not result in a gradual change in enzyme activity. On the other hand, S. magellanicum phosphatase activities differed between N treatments (p=0.0189) and showed a pattern of generally increasing activity with increasing N deposition (37.4 × 0.5 μmol MUF/g DWT/hr in control plots; 97.9 × 4.5 μmol MUF/g DWT/hr in the 25 kg/ha/yr N treatment plots). The differing phosphatase responses between these dominant Sphagnum species suggest unique differences in nutrient balance and/or microbial activity. Combining the three moss species and weighting by their abundances within each plot (percent cover), phosphatase activities differed between N treatments in the bog (p=0.0388) and the poor fen (p=0.0005), with the latter exhibiting a clear increase in enzyme activity with increasing N deposition, and a doubling of phosphatase activity between the control plots and the 25 kg/kg/yr N deposition treatment. Although the three moss species responded differently, at the plot scale, increasing N deposition stimulated phosphatase activity, suggesting that microbial enzyme activity in peat is sensitive to increasing N deposition from oil sands development, with potential consequences for peatland nutrient cycling.
NASA Astrophysics Data System (ADS)
Park, J.; Gall, H. E.; Niyogi, D.; Rao, S.
2012-12-01
The global trend of increased urbanization, and associated increased intensity of energy and material consumption and waste emissions, has contributed to shifts in the trajectories of aquatic, terrestrial, and atmospheric environments. Here, we focus on continental-scale spatiotemporal patterns in two atmospheric constituents (nitrate and sulfate), whose global biogeochemical cycles have been dramatically altered by emissions from mobile and fixed sources in urbanized and industrialized regions. The observed patterns in wet deposition fluxes of nitrate and sulfate are controlled by (1) natural hydro-climatic forcing, and (2) anthropogenic forcing (emissions and regulatory control), both of which are characterized by stochasticity and non-stationarity. We examine long-term wet deposition records in the U.S., Europe, and East Asia to evaluate how anthropogenic and natural forcing factors jointly contributed to the shifting temporal patterns of wet deposition fluxes at continental scales. These data offer clear evidence for successful implementation of regulatory controls and widespread adoption of technologies contributed to improving water quality and mitigation of adverse ecological impacts. We developed a stochastic model to project the future trajectories of wet deposition fluxes in emerging countries with fast growing urban areas. The model generates ellipses within which projected wet deposition flux trajectories are inscribed, similar to the trends in observational data. The shape of the ellipses provides information regarding the relative dominance of anthropogenic (e.g., industrial and urban emissions) versus hydro-climatic drivers (e.g., rainfall patterns, aridity index). Our analysis facilitates projections of the trajectory shift as a result of urbanization and other land-use changes, climate change, and regulatory enforcement. We use these observed data and the model to project likely trajectories for rapidly developing countries (BRIC), with a particular emphasis on various approaches to sustainable economic development. Brazil represents the case of shifts to alternate energy sources (bioethanol and hydroelectric power), while India and China are on the fossil fuel dependent trajectories, the same that North America and Europe had followed. Rapid increases in population, urbanization, and economic development of African cities presents an interesting case study for choices available for sustainable development, similar to that of Brazil rather than that followed by India and China. Coordinated air quality monitoring at urban and reference sites needs to be established to follow the fast-changing conditions.
Arendse, C J; Malgas, G F; Scriba, M R; Cummings, F R; Knoesen, D
2007-10-01
Hot-filament chemical vapor deposition has developed into an attractive method for the synthesis of various carbon nanostructures, including carbon nanotubes. This is primarily due to its versatility, low cost, repeatability, up-scalability, and ease of production. The resulting nano-material synthesized by this technique is dependent on the deposition conditions which can be easily controlled. In this paper we report on the effect of the deposition pressure on the structural properties and morphology of carbon nanotubes synthesized by hot-filament chemical vapor deposition, using Raman spectroscopy and high-resolution scanning electron microscopy, respectively. A 10 nm-thick Ni layer, deposited on a SiO2/Si substrate, was used as catalyst for carbon nanotube growth. Multi-walled carbon nanotubes with diameters ranging from 20-100 nm were synthesized at 500 degrees C with high structural perfection at deposition pressures between 150 and 200 Torr. Raman spectroscopy measurements confirm that the carbon nanotube deposit is homogeneous across the entire substrate area.
Iron deposition is independent of cellular inflammation in a cerebral model of multiple sclerosis
2011-01-01
Background Perivenular inflammation is a common early pathological feature in multiple sclerosis (MS). A recent hypothesis stated that CNS inflammation is induced by perivenular iron deposits that occur in response to altered blood flow in MS subjects. In order to evaluate this hypothesis, an animal model was developed, called cerebral experimental autoimmune encephalomyelitis (cEAE), which presents with CNS perivascular iron deposits. This model was used to investigate the relationship of iron deposition to inflammation. Methods In order to generate cEAE, mice were given an encephalitogen injection followed by a stereotactic intracerebral injection of TNF-α and IFN-γ. Control animals received encephalitogen followed by an intracerebral injection of saline, or no encephalitogen plus an intracerebral injection of saline or cytokines. Laser Doppler was used to measure cerebral blood flow. MRI and iron histochemistry were used to localize iron deposits. Additional histological procedures were used to localize inflammatory cell infiltrates, microgliosis and astrogliosis. Results Doppler analysis revealed that cEAE mice had a reduction in cerebral blood flow compared to controls. MRI revealed T2 hypointense areas in cEAE animals that spatially correlated with iron deposition around vessels and at some sites of inflammation as detected by iron histochemistry. Vessels with associated iron deposits were distributed across both hemispheres. Mice with cEAE had more iron-labeled vessels compared to controls, but these vessels were not commonly associated with inflammatory cell infiltrates. Some iron-laden vessels had associated microgliosis that was above the background microglial response, and iron deposits were observed within reactive microglia. Vessels with associated astrogliosis were more commonly observed without colocalization of iron deposits. Conclusion The findings indicate that iron deposition around vessels can occur independently of inflammation providing evidence against the hypothesis that iron deposits account for inflammatory cell infiltrates observed in MS. PMID:21699685
Masks For Deposition Of Aspherical Optical Surfaces
NASA Technical Reports Server (NTRS)
Rogers, John R.; Martin, John D.
1992-01-01
Masks of improved design developed for use in fabrication of aspherical, rotationally symmetrical surfaces of mirrors, lenses, and lens molds by evaporative deposition onto rotating substrates. In deposition chamber, source and mask aligned with axis of rotation of substrate. Mask shadows source of rotating substrate. Azimuthal opening (as function of radius) in mask proportional to desired thickness (as function of radius) to which material deposited on substrate. Combination of improved masks and modern coating chambers provides optical surfaces comparable or superior to those produced by conventional polishing, computer-controlled polishing, replication from polished molds, and diamond turning, at less cost in material, labor, and capital expense.
Programmable solid state atom sources for nanofabrication.
Han, Han; Imboden, Matthias; Stark, Thomas; del Corro, Pablo G; Pardo, Flavio; Bolle, Cristian A; Lally, Richard W; Bishop, David J
2015-06-28
In this paper we discuss the development of a MEMS-based solid state atom source that can provide controllable atom deposition ranging over eight orders of magnitude, from ten atoms per square micron up to hundreds of atomic layers, on a target ∼1 mm away. Using a micron-scale silicon plate as a thermal evaporation source we demonstrate the deposition of indium, silver, gold, copper, iron, aluminum, lead and tin. Because of their small sizes and rapid thermal response times, pulse width modulation techniques are a powerful way to control the atomic flux. Pulsing the source with precise voltages and timing provides control in terms of when and how many atoms get deposited. By arranging many of these devices into an array, one has a multi-material, programmable solid state evaporation source. These micro atom sources are a complementary technology that can enhance the capability of a variety of nano-fabrication techniques.
Syn-deformational features of Carlin-type Au deposits
Peters, S.G.
2004-01-01
Syn-deformational ore deposition played an important role in some Carlin-type Au deposits according to field and laboratory evidence, which indicates that flow of Au-bearing fluids was synchronous with regional-scale deformation events. Gold-related deformation events linked to ore genesis were distinct from high-level, brittle deformation that is typical of many epithermal deposits. Carlin-type Au deposits, with brittle-ductile features, most likely formed during tectonic events that were accompanied by significant fluid flow. Interactive deformation-fluid processes involved brittle-ductile folding, faulting, shearing, and gouge development that were focused along illite-clay and dissolution zones caused by hydrothermal alteration. Alteration along these deformation zones resulted in increased porosity and enhancement of fluid flow, which resulted in decarbonated, significant dissolution, collapse, and volume and mass reduction. Carlin-type Au deposits commonly are hosted in Paleozoic and Mesozoic sedimentary rocks (limestone, siltstone, argillite, shale, and quartzite) on the margins of cratons. The sedimentary basins containing the host rocks underwent tectonic events that influenced the development of stratabound, structurally controlled orebodies. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Podestà, Alessandro; Borghi, Francesca; Indrieri, Marco; Bovio, Simone; Piazzoni, Claudio; Milani, Paolo
2015-12-01
Great emphasis is placed on the development of integrated approaches for the synthesis and the characterization of ad hoc nanostructured platforms, to be used as templates with controlled morphology and chemical properties for the investigation of specific phenomena of great relevance in interdisciplinary fields such as biotechnology, medicine, and advanced materials. Here, we discuss the crucial role and the advantages of thin film deposition strategies based on cluster-assembling from supersonic cluster beams. We select cluster-assembled nanostructured titania (ns-TiO2) as a case study to demonstrate that accurate control over morphological parameters can be routinely achieved, and consequently, over several relevant interfacial properties and phenomena, like surface charging in a liquid electrolyte, and proteins and nanoparticles adsorption. In particular, we show that the very good control of nanoscale morphology is obtained by taking advantage of simple scaling laws governing the ballistic deposition regime of low-energy, mass-dispersed clusters with reduced surface mobility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Podestà, Alessandro, E-mail: alessandro.podesta@mi.infn.it, E-mail: pmilani@mi.infn.it; Borghi, Francesca; Indrieri, Marco
Great emphasis is placed on the development of integrated approaches for the synthesis and the characterization of ad hoc nanostructured platforms, to be used as templates with controlled morphology and chemical properties for the investigation of specific phenomena of great relevance in interdisciplinary fields such as biotechnology, medicine, and advanced materials. Here, we discuss the crucial role and the advantages of thin film deposition strategies based on cluster-assembling from supersonic cluster beams. We select cluster-assembled nanostructured titania (ns-TiO{sub 2}) as a case study to demonstrate that accurate control over morphological parameters can be routinely achieved, and consequently, over several relevantmore » interfacial properties and phenomena, like surface charging in a liquid electrolyte, and proteins and nanoparticles adsorption. In particular, we show that the very good control of nanoscale morphology is obtained by taking advantage of simple scaling laws governing the ballistic deposition regime of low-energy, mass-dispersed clusters with reduced surface mobility.« less
NASA Technical Reports Server (NTRS)
Kuang, A.; Popova, A.; McClure, G.; Musgrave, M. E.
2005-01-01
Pollen and seeds share a developmental sequence characterized by intense metabolic activity during reserve deposition before drying to a cryptobiotic form. Neither pollen nor seed development has been well studied in the absence of gravity, despite the importance of these structures in supporting future long-duration manned habitation away from Earth. Using immature seeds (3-15 d postpollination) of Brassica rapa L. cv. Astroplants produced on the STS-87 flight of the space shuttle Columbia, we compared the progress of storage reserve deposition in cotyledon cells during early stages of seed development. Brassica pollen development was studied in flowers produced on plants grown entirely in microgravity on the Mir space station and fixed while on orbit. Cytochemical localization of storage reserves showed differences in starch accumulation between spaceflight and ground control plants in interior layers of the developing seed coat as early as 9 d after pollination. At this age, the embryo is in the cotyledon elongation stage, and there are numerous starch grains in the cotyledon cells in both flight and ground control seeds. In the spaceflight seeds, starch was retained after this stage, while starch grains decreased in size in the ground control seeds. Large and well-developed protein bodies were observed in cotyledon cells of ground control seeds at 15 d postpollination, but their development was delayed in the seeds produced during spaceflight. Like the developing cotyledonary tissues, cells of the anther wall and filaments from the spaceflight plants contained numerous large starch grains, while these were rarely seen in the ground controls. The tapetum remained swollen and persisted to a later developmental stage in the spaceflight plants than in the ground controls, even though most pollen grains appeared normal. These developmental markers indicate that Brassica seeds and pollen produced in microgravity were physiologically younger than those produced in 1 g. We hypothesize that microgravity limits mixing of the gaseous microenvironments inside the closed tissues and that the resulting gas composition surrounding the seeds and pollen retards their development.
COLLECTION SYSTEM SOLIDS CONTROL: OVERVIEW OF AN EPA WET-WEATHER FLOW RESEARCH PROGRAM
This paper presents an historical overview of the sewer-solids control projects conducted by the Wet-Weather Flow Research Program of the US EPA. Research includes studies of the causes of sewer-solids deposition and development/evaluation of control methods that can prevent sewe...
Al-based anti-corrosion and T-permeation barrier development for future DEMO blankets
NASA Astrophysics Data System (ADS)
Krauss, W.; Konys, J.; Holstein, N.; Zimmermann, H.
2011-10-01
In the Helium-Cooled-Liquid-Lead (HCLL) design of Test-Blanket-Modules (TBM's) for a future fusion power plant Pb-15.7Li is used as liquid breeder which is in direct contact with the structure material, e.g. EUROFER steel. Compatibility testing showed that high corrosion attack appears and that the dissolved steel components form precipitates with a high risk of system blockages. A reliable operation needs coatings as corrosion barriers. The earlier developed Hot-Dip Aluminisation (HDA) process has shown that Al-based scales can act as anti-corrosion as well as T-permeation barriers. Meanwhile two advanced electro-chemically based processes for deposition of Al-scales were successfully developed. The first (ECA = Electro-Chemical Al-deposition) is working with an organic electrolyte and the second one (ECX = Electro-Chemical-X-metal-deposition) is based on ionic liquids. Coatings in the μm-range were deposited homogeneously with exact controllable thicknesses. Metallurgical investigations showed the successful generation of protective scales and compatibility testing demonstrated the barrier function.
Self-limiting atomic layer deposition of conformal nanostructured silver films
NASA Astrophysics Data System (ADS)
Golrokhi, Zahra; Chalker, Sophia; Sutcliffe, Christopher J.; Potter, Richard J.
2016-02-01
The controlled deposition of ultra-thin conformal silver nanoparticle films is of interest for applications including anti-microbial surfaces, plasmonics, catalysts and sensors. While numerous techniques can produce silver nanoparticles, few are able to produce highly conformal coatings on high aspect ratio surfaces, together with sub-nanometre control and scalability. Here we develop a self-limiting atomic layer deposition (ALD) process for the deposition of conformal metallic silver nanoparticle films. The films have been deposited using direct liquid injection ALD with ((hexafluoroacetylacetonato)silver(I)(1,5-cyclooctadiene)) and propan-1-ol. An ALD temperature window between 123 and 128 °C is identified and within this range self-limiting growth is confirmed with a mass deposition rate of ∼17.5 ng/cm2/cycle. The effects of temperature, precursor dose, co-reactant dose and cycle number on the deposition rate and on the properties of the films have been systematically investigated. Under self-limiting conditions, films are metallic silver with a nano-textured surface topography and nanoparticle size is dependent on the number of ALD cycles. The ALD reaction mechanisms have been elucidated using in-situ quartz crystal microbalance (QCM) measurements, showing chemisorption of the silver precursor, followed by heterogeneous catalytic dehydrogenation of the alcohol to form metallic silver and an aldehyde.
NASA Astrophysics Data System (ADS)
Yang, Lin; Zhao, Rui; Wang, Qingfei; Liu, Xuefei; Carranza, Emmanuel John M.
2018-06-01
The structures and fluid-rock reaction in the Xinli gold deposit, Jiaodong Peninsula, were investigated to further understand their combined controls on the development of permeability associated with ore-forming fluid migration. Orebodies in this deposit are hosted by the moderately SE-to S-dipping Sanshandao-Cangshang fault (SCF). Variations in both dip direction and dip angle along the SCF plane produced fault bends, which controlled the fluid accumulation and ore-shoot formation. Gold mineralizations occurred in early gold-quartz-pyrite and late gold-quartz-polymetallic sulphide stages following pervasive sericitization and silicification alterations. Theoretical calculation indicates that sericitization caused 8-57% volume decrease resulting in the development/enlargement of voids, further increase of grain-scale permeability, and resultant precipitation of the early gold-quartz-pyrite pods, which destroyed permeability. The rock softening produced by alterations promoted activities of SCF secondary faults and formation of new fractures, which rebuilt the permeability and controlled the late gold-quartz-polymetallic sulfide veins. Quantitative studies on permeability distributions show that the southwestern and northeastern bend areas with similar alteration and mineralization have persistent and anti-persistent permeability networks, respectively. These were likely caused by different processes of rebuilding permeability due to different stress states resulting from changes in fault geometry.
Modeling of Karachaganak field development
NASA Astrophysics Data System (ADS)
Sadvakasov, A. A.; Shamsutdinova, G. F.; Almukhametova, E. M.; Gabdrakhmanov, N. Kh
2018-05-01
Management of a geological deposit includes the study and analysis of oil recovery, identification of factors influencing production performance and oil-bearing rock flooding, reserve recovery and other indicators characterizing field development in general. Regulation of oil deposits exploitation is a mere control over the fluid flow within a reservoir, which is ensured through the designed system of development via continuous improvement of production and injection wells placement, optimum performance modes, service conditions of downhole and surface oil-field equipment taking into account various changes and physical-geological properties of a field when using modern equipment to obtain the best performance indicators.
BOOT-HANDFORD, R. P.; MICHAELIDIS, T. M.; HILLARBY, M. C.; ZAMBELLI, A.; DENTON, J.; HOYLAND, J. A.; FREEMONT, A. J.; GRANT, M. E.; WALLIS, G. A.
1998-01-01
Histological examination of long bones from 1-day-old bcl-2 knockout and age-matched control mice revealed no obvious differences in length of bone, growth plate architecture or stage of endochondral ossification. In 35-day-old bcl-2 knockout mice that are growth retarded or ‘dwarfed’, the proliferative zone of the growth plate appeared slightly thinner and the secondary centres of ossification less well developed than their age-matched wild-type controls. The most marked histological effects of bcl-2 ablation were on osteoblasts and bone. 35-day-old knockout mouse bones exhibited far greater numbers of osteoblasts than controls and the osteoblasts had a cuboidal phenotype in comparison with the normal flattened cell appearance. In addition, the collagen deposited by the osteoblasts in the bcl-2 knockout mouse bone was disorganized in comparison with control tissue and had a pseudo-woven appearance. The results suggest an important role for Bcl-2 in controlling osteoblast phenotype and bone deposition in vivo. PMID:10193316
NASA Astrophysics Data System (ADS)
Jang, Gyoung Gug
The scientific and industrial demand for controllable thin gold (Au) film and Au nanostructures is increasing in many fields including opto-electronics, photovoltaics, MEMS devices, diagnostics, bio-molecular sensors, spectro-/microscopic surfaces and probes. In this study, a novel continuous flow electroless (CF-EL) Au plating method is developed to fabricate uniform Au thin films in ambient condition. The enhanced local mass transfer rate and continuous deposition resulting from CF-EL plating improved physical uniformity of deposited Au films and thermally transformed nanoparticles (NPs). Au films and NPs exhibited improved optical photoluminescence (PL) and surface plasmon resonance (SPR), respectively, relative to batch immersion EL (BI-EL) plating. Suggested mass transfer models of Au mole deposition are consistent with optical feature of CF-EL and BI-EL films. The prototype CF-EL plating system is upgraded an automated scalable CF-EL plating system with real-time transmission UV-vis (T-UV) spectroscopy which provides the advantage of CF-EL plating, such as more uniform surface morphology, and overcomes the disadvantages of conventional EL plating, such as no continuous process and low deposition rate, using continuous process and controllable deposition rate. Throughout this work, dynamic morphological and chemical transitions during redox-driven self-assembly of Ag and Au film on silica surfaces under kinetic and equilibrium conditions are distinguished by correlating real-time T-UV spectroscopy with X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) measurements. The characterization suggests that four previously unrecognized time-dependent physicochemical regimes occur during consecutive EL deposition of silver (Ag) and Au onto tin-sensitized silica surfaces: self-limiting Ag activation; transitory Ag NP formation; transitional Au-Ag alloy formation during galvanic replacement of Ag by Au; and uniform morphology formation under controlled hydraulic conditions. A method to achieve the time-resolved optical profile of EL Au plating was devised and provided a new transitional EL Au film growth model which validated mass transfer model prediction of the deposited thickness of ≤100 nm thin films. As a part of the project, validation of mass transfer model, a spectrophotometric method for quantitative analysis of metal ion is developed that improves the limit of detection comparable to conventional instrumental analysis. The present work suggests that modeling, fabrication and characterization of this novel CF-EL plating method is performed to achieve an ultimate purpose: developing a reliable, inexpensive wet chemical process for controlled metal thin film and nanostructure fabrication.
Amorphous silicon photovoltaic manufacturing technology, phase 2A
NASA Astrophysics Data System (ADS)
Duran, G.; Mackamul, K.; Metcalf, D.
1995-01-01
Utility Power Group (UPG), and its lower-tier subcontractor, Advanced Photovoltaic Systems, Inc. (APS) have conducted efforts in developing their manufacturing lines. UPG has focused on the automation of encapsulation and termination processes developed in Phase 1. APS has focused on completion of the encapsulation and module design tasks, while continuing the process and quality control and automation projects. The goal is to produce 55 watt (stabilized) EP50 modules in a new facility. In the APS Trenton EUREKA manufacturing facility, APS has: (1) Developed high throughput lamination procedures; (2) Optimized existing module designs; (3) Developed new module designs for architectural applications; (4) Developed enhanced deposition parameter control; (5) Designed equipment required to manufacture new EUREKA modules developed during Phase II; (6) Improved uniformity of thin-film materials deposition; and (7) Improved the stabilized power output of the APS EP50 EUREKA module to 55 watts. In the APS Fairfield EUREKA manufacturing facility, APS has: (1) Introduced the new products developed under Phase 1 into the APS Fairfield EUREKA module production line; (2) Increased the extent of automation in the production line; (3) Introduced Statistical Process Control to the module production line; and (4) Transferred-progress made in the APS Trenton facility into the APS Fairfield facility.
NASA Astrophysics Data System (ADS)
Abrahami, R.; Huyghe, P.; Van Der Beek, P.; Lowick, S.; Garzanti, E.; Revillon, S.; Carcaillet, J.; Chakraborty, T.
2015-12-01
The Tista River, a major tributary of the Brahmaputra drainage system (Eastern Himalaya) has built a fluvial deposit which extents over 16500 km2. The Tista megafan stands out because of (1) its disproportionate size compared to that of the upstream Tista River catchment (8000 km2), and (2) it has been incised about 50m by the river at the topographic front of the mountain range. Neither the timing of deposition/incision of the megafan sediments, and their potential tectonic or climatic controls have yet been investigated. We use both IRSL and 10Be cosmogenic data to respectively constrain the date of deposition and abandonment of the different lobes of the megafan. We suggest that two distal lobes developed successively downstream from a common proximal lobe. Deposition took place since ~50 ka and incision began at 4.0 +0.6/-0.4 ka at an average rate of 10.5 +0.6/-1.8 mm yr-1. In addition, petrology, isotope geochemistry (ɛNd, 87Sr/86Sr) and chemical composition performed on modern river sands and late-Quaternary megafan sediments allows characterizing (1) provenance variations through time of megafan deposits and their implication for drainage development (2) the weathering history of Sikkim recorded by the megafan deposits. Results show that the Tista fan deposits are mainly sourced from the High Himalayan Crystalline domain and the Tethyan Sedimentary Series, (consistent with high erosion rates identified in north Sikkim at millennial timescale). Variations in provenance and weathering through time recorded by the Tista megafan deposits can be linked to climatic variations with strong monsoonal precipitations penetrating further northward into the southern Tibetan plateau. Tectonic processes seem to play a minor role. Otherwise, we propose as a first hypothesis that the Kosi River has recently (at ~4 ka) captured the upper part of the Tista catchment. That could explain the particular isotopic signature of the Tista megafan deposits, its recent incision, its disproportionate size, as well as the sediment fluxes recorded by the megafan deposits, which are higher than those inferred from modern erosion rates in Sikkim. These data provide a new comprehensive view on erosional processes and associated sedimentary fluxes of Sikkim to the alluvial plain as well as their potential climatic or tectonic controls.
Controllable growth of shaped graphene domains by atmospheric pressure chemical vapour deposition
NASA Astrophysics Data System (ADS)
Fan, Lili; Li, Zhen; Li, Xiao; Wang, Kunlin; Zhong, Minlin; Wei, Jinquan; Wu, Dehai; Zhu, Hongwei
2011-12-01
Graphene domains in different shapes have been grown on copper substrates via atmospheric pressure chemical vapour deposition by controlling the growth process parameters. Under stabilized conditions, graphene domains tend to be six-fold symmetric hexagons under low flow rate methane with some domains in an irregular hexagonal shape. After further varying the growth duration, methane flow rate, and temperature, graphene domains have developed shapes from hexagon to shovel and dendrite. Two connecting modes, through overlap and merging of adjacent graphene domains, are proposed.Graphene domains in different shapes have been grown on copper substrates via atmospheric pressure chemical vapour deposition by controlling the growth process parameters. Under stabilized conditions, graphene domains tend to be six-fold symmetric hexagons under low flow rate methane with some domains in an irregular hexagonal shape. After further varying the growth duration, methane flow rate, and temperature, graphene domains have developed shapes from hexagon to shovel and dendrite. Two connecting modes, through overlap and merging of adjacent graphene domains, are proposed. Electronic supplementary information (ESI) available: Schematics of CVD setups for graphene growth, Raman spectra and SEM images. See DOI: 10.1039/c1nr11480h
NASA Astrophysics Data System (ADS)
Eppes, M. C.; McFadden, L. D.; Matti, J.; Powell, R.
2002-03-01
Soil development can significantly influence the topographic evolution of a tectonically deforming mountain piedmont. Faults and folds associated with the North Frontal thrust system deform piedmont sediments of variable compositions along the north flank of the San Bernardino Mountains. The topographic expressions of folds with similar structural characteristics diverge appreciably, primarily as a function of differences in sediment composition and associated soil development. Soils with petrocalcic horizons in limestone- rich deposits are resistant to erosion, and anticlinal folds form prominent ridges. Folds forming in granite-derived deposits with argillic soil horizons are eroded and/or buried and are therefore topographically less pronounced. We propose that these landform contrasts can be explained by differences in soil-controlled hydrologic and erosion characteristics of deposits without calling upon changes in tectonic style along the mountain front.
Fabrication of ultrathin film capacitors by chemical solution deposition
Brennecka, Geoff L.; Tuttle, Bruce A.
2007-10-01
We present that a facile solution-based processing route using standard spin-coating deposition techniques has been developed for the production of reliable capacitors based on lead lanthanum zirconate titanate (PLZT) with active areas of ≥1 mm 2 and dielectric layer thicknesses down to 50 nm. With careful control of the dielectric phase development through improved processing, ultrathin capacitors exhibited slim ferroelectric hysteresis loops and dielectric constants of >1000, similar to those of much thicker films. Furthermore, it has been demonstrated that chemical solution deposition is a viable route to the production of capacitor films which are as thin as 50 nmmore » but are still macroscopically addressable with specific capacitance values >160 nF/mm 2.« less
NASA Astrophysics Data System (ADS)
Reade, R. P.; Mao, X. L.; Russo, R. E.
1991-08-01
The use of an intermediate layer is necessary for the growth of YBaCuO thin films on polycrystalline metallic alloys for tape conductor applications. A pulsed laser deposition process to grow controlled-orientation yttria-stabilized zirconia (YSZ) films as intermediate layers on Haynes Alloy No. 230 was developed and characterized. YBaCuO films deposited on these YSZ-coated substrates are primarily c-axis oriented and superconducting as deposited. The best YBaCuO films grow on (001)-oriented YSZ intermediate layers and have Tc (R = 0) = 86.0 K and Jc about 3000 A/sq cm at 77 K.
Xylem development and cell wall changes of soybean seedlings grown in space.
de Micco, Veronica; Aronne, Giovanna; Joseleau, Jean-Paul; Ruel, Katia
2008-04-01
Plants growing in altered gravity conditions encounter changes in vascular development and cell wall deposition. The aim of this study was to investigate xylem anatomy and arrangement of cellulose microfibrils in vessel walls of different organs of soybean seedlings grown in Space. Seeds germinated and seedlings grew for 5 d in Space during the Foton-M2 mission. The environmental conditions, other than gravity, of the ground control repeated those experienced in orbit. The seedlings developed in space were compared with those of the control test on the basis of numerous anatomical and ultrastructural parameters such as number of veins, size and shape of vessel lumens, thickness of cell walls and deposition of cellulose microfibrils. Observations made with light, fluorescence and transmission electron microscopy, together with the quantification of the structural features through digital image analysis, showed that the alterations due to microgravity do not occur at the same level in the various organs of soybean seedlings. The modifications induced by microgravity or by the indirect effect of space-flight conditions, became conspicuous only in developing vessels at the ultrastructural level. The results suggested that the orientation of microfibrils and their assembly in developing vessels are perturbed by microgravity at the beginning of wall deposition, while they are still able to orient and arrange in thicker and ordered structures at later stages of secondary wall deposition. The process of proper cell-wall building, although not prevented, is perturbed in Space at the early stage of development. This would explain the almost unaltered anatomy of mature structures, accompanied by a slower growth observed in seedlings grown in Space than on Earth.
Xylem Development and Cell Wall Changes of Soybean Seedlings Grown in Space
de Micco, Veronica; Aronne, Giovanna; Joseleau, Jean-Paul; Ruel, Katia
2008-01-01
Background and Aims Plants growing in altered gravity conditions encounter changes in vascular development and cell wall deposition. The aim of this study was to investigate xylem anatomy and arrangement of cellulose microfibrils in vessel walls of different organs of soybean seedlings grown in Space. Methods Seeds germinated and seedlings grew for 5 d in Space during the Foton-M2 mission. The environmental conditions, other than gravity, of the ground control repeated those experienced in orbit. The seedlings developed in space were compared with those of the control test on the basis of numerous anatomical and ultrastructural parameters such as number of veins, size and shape of vessel lumens, thickness of cell walls and deposition of cellulose microfibrils. Key Results Observations made with light, fluorescence and transmission electron microscopy, together with the quantification of the structural features through digital image analysis, showed that the alterations due to microgravity do not occur at the same level in the various organs of soybean seedlings. The modifications induced by microgravity or by the indirect effect of space-flight conditions, became conspicuous only in developing vessels at the ultrastructural level. The results suggested that the orientation of microfibrils and their assembly in developing vessels are perturbed by microgravity at the beginning of wall deposition, while they are still able to orient and arrange in thicker and ordered structures at later stages of secondary wall deposition. Conclusions The process of proper cell-wall building, although not prevented, is perturbed in Space at the early stage of development. This would explain the almost unaltered anatomy of mature structures, accompanied by a slower growth observed in seedlings grown in Space than on Earth. PMID:18252765
Delaine-Smith, Robin M; Green, Nicola H; Matcher, Stephen J; MacNeil, Sheila; Reilly, Gwendolen C
2014-01-01
The biological and mechanical function of connective tissues is largely determined by controlled cellular alignment and therefore it seems appropriate that tissue-engineered constructs should be architecturally similar to the in vivo tissue targeted for repair or replacement. Collagen organisation dictates the tensile properties of most tissues and so monitoring the deposition of cell-secreted collagen as the construct develops is essential for understanding tissue formation. In this study, electrospun fibres with a random or high degree of orientation, mimicking two types of tissue architecture found in the body, were used to culture human fibroblasts for controlling cell alignment. The minimally-invasive technique of second harmonic generation was used with the aim of monitoring and profiling the deposition and organisation of collagen at different construct depths over time while construct mechanical properties were also determined over the culture period. It was seen that scaffold fibre organisation affected cell migration and orientation up to 21 days which in turn had an effect on collagen organisation. Collagen in random fibrous constructs was deposited in alternating configurations at different depths however a high degree of organisation was observed throughout aligned fibrous constructs orientated in the scaffold fibre direction. Three-dimensional second harmonic generation images showed that deposited collagen was more uniformly distributed in random constructs but aligned constructs were more organised and had higher intensities. The tensile properties of all constructs increased with increasing collagen deposition and were ultimately dictated by collagen organisation. This study highlights the importance of scaffold architecture for controlling the development of well-organised tissue engineered constructs and the usefulness of second harmonic generation imaging for monitoring collagen maturation in a minimally invasive manner.
Deposition of Na2SO4 from salt-seeded combustion gases of a high velocity burner rig
NASA Astrophysics Data System (ADS)
Santoro, G. J.; Gokoglu, S. A.; Kohl, F. J.; Stearns, C. A.; Rosner, D. E.
The mechanism of deposition of Na2SO4 was studied under controlled laboratory conditions and the results have been compared to a recently developed comprehensive theory of vapor deposition. Thus Na2SO4, NaCl, NaNO3 and simulated sea salt solutions were injected into the combustor of a nominal Mach 0.3 burner rig burning jet fuel at constant fuel/air ratios. The deposits formed on inert collectors, rotation in the cross flow of the combustion gases, were weighed and analyzed. Collector temperature was uniform and could be varied over a large range by internal air cooling. Deposition rates and dew point temperatures were determined. Supplemental testing included droplet size measurements of the atomized salt solutions. These tests along with thermodynamic and transport calculations were utilized in the interpretation of the deposition results.
Deposition of Na2SO4 from salt-seeded combustion gases of a high velocity burner rig
NASA Technical Reports Server (NTRS)
Santoro, G. J.; Gokoglu, S. A.; Kohl, F. J.; Stearns, C. A.; Rosner, D. E.
1984-01-01
The mechanism of deposition of Na2SO4 was studied under controlled laboratory conditions and the results have been compared to a recently developed comprehensive theory of vapor deposition. Thus Na2SO4, NaCl, NaNO3 and simulated sea salt solutions were injected into the combustor of a nominal Mach 0.3 burner rig burning jet fuel at constant fuel/air ratios. The deposits formed on inert collectors, rotation in the cross flow of the combustion gases, were weighed and analyzed. Collector temperature was uniform and could be varied over a large range by internal air cooling. Deposition rates and dew point temperatures were determined. Supplemental testing included droplet size measurements of the atomized salt solutions. These tests along with thermodynamic and transport calculations were utilized in the interpretation of the deposition results.
Xie, Qingguang; Harting, Jens
2018-05-08
The deposition of particles on a substrate by drying a colloidal suspension droplet is at the core of applications ranging from traditional printing on paper to printable electronics or photovoltaic devices. The self-pinning induced by the accumulation of particles at the contact line plays an important role in the formation of a deposit. In this article, we investigate, both numerically and theoretically, the effect of friction between the particles and the substrate on the deposition pattern. Without friction, the contact line shows a stick-slip behavior and a dotlike deposit is left after the droplet is evaporated. By increasing the friction force, we observe a transition from a dotlike to a ringlike deposit. We propose a theoretical model to predict the effective radius of the particle deposit as a function of the friction force. Our theoretical model predicts a critical friction force when self-pinning happens and the effective radius of deposit increases with increasing friction force, confirmed by our simulation results. Our results can find implications for developing active control strategies for the deposition of drying droplets.
Engineering of pulsed laser deposited calcium phosphate biomaterials in controlled atmospheres
NASA Astrophysics Data System (ADS)
Drukteinis, Saulius E.
Synthetic calcium phosphates (CAP) such as hydroxyapatite (HA) have been used as regenerative bone graft materials and also as thin films to improve the integration of biomedical implant devices within skeletal tissue. Pulsed laser deposition (PLD) can deposit crystalline HA with significant adhesion on titanium biomaterials. However, there are PLD processing constraints due to the complex physical and chemical interactions occurring simultaneously during PLD, which influence ablation plume formation and development. In this investigation PLD CAP films were engineered with a focus on novel decoupling of partial pressure of H2O (g) ( PH2O ) from total background pressure, in combination with substrate heat treatment and laser energy density control. Characterization of these films was performed with X-ray Diffraction, Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, Fourier Transform Infrared Spectroscopy, and Optical Profilometry. In vitro cellular adhesion testing was also performed using osteoblast (MC3T3) cell lines to evaluate adhesion of bone-forming cells on processed PLD CAP samples. Preferred a-axis orientation films were deposited in H2O (g) saturated atmospheres with reduced laser fluence (< 4 J/cm2). Crystalline HA/tetracalcium phosphate (TTCP) films were deposited in H2O ( g)-deficient atmospheres with higher laser fluence (> 3 J/cm 2). Varied PH2O resulted in control of biphasic HA/TTCP composition with increasing TTCP at lower PH2O . These were dense continuous films composed of micron-scale particles. Cellular adhesion assays did not demonstrate a significant difference between osteoblast adhesion density on HA films compared with biphasic HA/TTCP films. Room temperature PLD at varied PH2O combined with furnace heat treatment resulted in controlled variation in surface amplitude parameters including surface roughness (S a), root mean square (Sq), peak to valley height (St), and ten-point height ( Sz). These discontinuous films were composed of nano-scale particles and resulted in significant osteoblast adhesion compared to control samples or to PLD CAP films deposited on heated substrates. Surface amplitude parameters (Sa, Sq, St, and Sz) correlated with osteoblast adhesion. This new approach of control over H2O ( g) operating atmospheres enabled the deposition of unique PLD CAP films with potential use as thin films for biomedical implants or as regenerative bone graft materials. Keywords: hydroxyapatite, pulsed laser deposition, biomaterials.
Doping control by ALD surface functionalization
Elam, Jeffrey W.; Yanguas-Gil, Angel
2015-02-10
Systems and methods for producing a material of desired thickness. Deposition techniques such as atomic layer deposition are alter to control the thickness of deposited material. A funtionalization species inhibits the deposition reaction.
Control of NORM at Eugene Island 341-A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shuler, P.J.; Baudoin, D.A.; Weintritt, D.J.
1995-12-31
A field study at Eugene island 341-A, an offshore production platform in the Gulf of Mexico, was conducted to develop strategies for the cost-effective prevention of NORM (Naturally Occurring Radioactive Materials) deposits. The specific objectives of this study were to: (1) Determine the root cause for the NORM deposits at this facility, utilizing different diagnostic techniques. (2) Consider all engineering options that are designed to prevent NORM from forming. (3) Determine the most cost-effective engineering solution. An overall objective was to generalize the diagnostics and control methods developed for Eugene Island 341-A to other oil and gas production facilities, especiallymore » to platforms located in the Gulf of Mexico. This study determined that the NORM deposits found at Eugene Island 341-A stem from commingling incompatible produced waters at the surface. Wells completed in Sand Block A have a water containing a relatively high concentration of barium, while those formation brines in Sand Blocks B and C are high in sulfate. When these waters mix at the start of the fluid treatment facilities on the platform, barium sulfate forms. Radium that is present in the produced brines co-precipitates with the barium, thereby creating a radioactive barium sulfate scale deposit (NORM).« less
NASA Technical Reports Server (NTRS)
Domack, Marcia S.; Tainger, Karen M.
2006-01-01
The electron beam freeform fabrication (EBF3) layer-additive manufacturing process has been developed to directly fabricate complex geometry components. EBF3 introduces metal wire into a molten pool created on the surface of a substrate by a focused electron beam. Part geometry is achieved by translating the substrate with respect to the beam to build the part one layer at a time. Tensile properties demonstrated for electron beam deposited aluminum and titanium alloys are comparable to wrought products, although the microstructures of the deposits exhibit cast features. Understanding the metallurgical mechanisms controlling mechanical properties is essential to maximizing application of the EBF3 process. Tensile mechanical properties and microstructures were examined for aluminum alloy 2219 fabricated over a range of EBF3 process variables. Unique microstructures were observed within the deposited layers and at interlayer boundaries, which varied within the deposit height due to microstructural evolution associated with the complex thermal history experienced during subsequent layer deposition. Microstructures exhibited irregularly shaped grains with interior dendritic structures, described based on overall grain size, morphology, distribution, and dendrite spacing, and were correlated with deposition parameters. Fracture features were compared with microstructural elements to define fracture paths and aid in definition of basic processing-microstructure-property correlations.
Subsurface control on seafloor erosional processes offshore of the Chandeleur Islands, Louisiana
NASA Astrophysics Data System (ADS)
Twichell, David; Pendleton, Elizabeth; Baldwin, Wayne; Flocks, James
2009-12-01
The Chandeleur Islands lie on the eastern side of the modern Mississippi River delta plain, near the edge of the St. Bernard Delta complex. Since abandonment approximately 2,000 years b.p., this delta complex has undergone subsidence and ravinement as the shoreline has transgressed across it. High-resolution seismic-reflection, sidescan-sonar, and bathymetry data show that seafloor erosion is influenced by locally variable shallow stratigraphy. The data reveal two general populations of shallow erosional depressions, either linear or subcircular in shape. Linear depressions occur primarily where sandy distributary-channel deposits are exposed on the seafloor. The subcircular pits are concentrated in areas where delta-front deposits crop out, and occasional seismic blanking indicates that gas is present. The difference in erosional patterns suggests that delta-front and distributary-channel deposits respond uniquely to wave and current energy expended on the inner shelf, particularly during stormy periods. Linear depressions may be the result of the sandy distributary-channel deposits eroding more readily by waves and coastal currents than the surrounding delta-front deposits. Pits may develop as gas discharge or liquefaction occurs within fine-grained delta-front deposits, causing seafloor collapse. These detailed observations suggest that ravinement of this inner shelf surface may be ongoing, is controlled by the underlying stratigraphy, and has varied morphologic expression.
Subsurface control on seafloor erosional processes offshore of the Chandeleur Islands, Louisiana
Twichell, David; Pendleton, Elizabeth A.; Baldwin, Wayne E.; Flocks, James G.
2009-01-01
The Chandeleur Islands lie on the eastern side of the modern Mississippi River delta plain, near the edge of the St. Bernard Delta complex. Since abandonment approximately 2,000 years b.p., this delta complex has undergone subsidence and ravinement as the shoreline has transgressed across it. High-resolution seismic-reflection, sidescan-sonar, and bathymetry data show that seafloor erosion is influenced by locally variable shallow stratigraphy. The data reveal two general populations of shallow erosional depressions, either linear or subcircular in shape. Linear depressions occur primarily where sandy distributary-channel deposits are exposed on the seafloor. The subcircular pits are concentrated in areas where delta-front deposits crop out, and occasional seismic blanking indicates that gas is present. The difference in erosional patterns suggests that delta-front and distributary-channel deposits respond uniquely to wave and current energy expended on the inner shelf, particularly during stormy periods. Linear depressions may be the result of the sandy distributary-channel deposits eroding more readily by waves and coastal currents than the surrounding delta-front deposits. Pits may develop as gas discharge or liquefaction occurs within fine-grained delta-front deposits, causing seafloor collapse. These detailed observations suggest that ravinement of this inner shelf surface may be ongoing, is controlled by the underlying stratigraphy, and has varied morphologic expression.
Chemical vapor deposition modeling: An assessment of current status
NASA Technical Reports Server (NTRS)
Gokoglu, Suleyman A.
1991-01-01
The shortcomings of earlier approaches that assumed thermochemical equilibrium and used chemical vapor deposition (CVD) phase diagrams are pointed out. Significant advancements in predictive capabilities due to recent computational developments, especially those for deposition rates controlled by gas phase mass transport, are demonstrated. The importance of using the proper boundary conditions is stressed, and the availability and reliability of gas phase and surface chemical kinetic information are emphasized as the most limiting factors. Future directions for CVD are proposed on the basis of current needs for efficient and effective progress in CVD process design and optimization.
YBCO film deposition on very large areas up to 20 × 20 cm2
NASA Astrophysics Data System (ADS)
Kinder, H.; Berberich, P.; Prusseit, W.; Rieder-Zecha, S.; Semerad, R.; Utz, B.
1997-08-01
In the last decade we have developed thermal reactive co-evaporation as a technique to produce high quality YBCO and other oxide films of very large size up to 9 inches in diameter. This was achieved by intermittent deposition and reaction with oxygen using a heater which rotates the substrate in and out of an oxygen pocket. Even larger substrates, e. g. coated conductors, cannot be rotated. Therefore we have recently developed a new setup where the substrate is held fixed, and the oxygen pocket is set in linear reciprocation. This technique allows simultaneous deposition on a square of 20×20 cm 2. Moreover, we have developed an instant refill mechanism for the thermal boats, and stable rate control by atomic absorption spectroscopy (AAS), in order to obtain a continuous process suitable for small scale mass production.
NASA Astrophysics Data System (ADS)
Singh, R. K.; Kim, W.-S.; Ollinger, M.; Craciun, V.; Coowantwong, I.; Hochhaus, G.; Koshizaki, N.
2002-09-01
There is an urgent need to develop controlled drug release systems for the delivery of drugs via the pulmonary route. A key issue in pulmonary dry delivery systems is to reduce the amount of biodegradable polymers that are added to control the drug release. We have synthesized nanofunctionalized drug particles using the pulsed laser deposition on particles (PLDP) (e.g. budesonide) in an effort to control the architecture and thickness of a nanoscale polymer coating on the drug particles. In vitro studies indicated that the dry half-life release for budesonide can be enhanced from 1.2 to over 60 min by a nanoscale coating on the drug particle. Extensive studies have been conducted to characterize the bonding and composition of the polymer film deposited on drug particles.
Hu, Jinghang; Zhang, Jianchi; Fu, Zongyuan; Weng, Junhui; Chen, Weibo; Ding, Shijin; Jiang, Yulong; Zhu, Guodong
2015-03-25
Organic semiconducting/ferroelectric blend films attracted much attention due to their electrical bistability and rectification properties and thereof the potential in resistive memory devices. During film deposition from the blend solution, spinodal decomposition induced phase separation, resulting in discrete semiconducting phase whose electrical property could be modulated by the continuous ferroelectric phase. However, blend films processed by common spin coating method showed extremely rough surfaces, even comparable to the film thickness, which caused large electrical leakage and thus compromised the resistive switching performance. To improve film roughness and thus increase the productivity of these resistive devices, we developed temperature controlled spin coating technique to carefully adjust the phase separation process. Here we reported our experimental results from the blend films of ferroelectric poly(vinylidene fluoride-trifluoroethylene (P(VDF-TrFE)) and semiconducting poly(3-hexylthiophene) (P3HT). We conducted a series of experiments at various deposition temperatures ranging from 20 to 90 °C. The resulting films were characterized by AFM, SEM, and VPFM to determine their structure and roughness. Film roughness first decreased and then increased with the increase of deposition temperature. Electrical performance was also characterized and obviously improved insulating property was obtained from the films deposited between 50 and 70 °C. By temperature control during film deposition, it is convenient to efficiently fabricate ferroelectric/semiconducting blend films with good electrical bistability.
A parylene coating process for hybrid circuits
NASA Technical Reports Server (NTRS)
1976-01-01
The parylene coating process developed during this program consists of (1) obtaining a hybrid cover with a hole in it, (2) sealing of the circuit with a hole in the cover, (3) parylene coating through the hole with the external leads protected from parylene by appropriate fixturing, and (4) sealing of the hole by soldering a pretinned kovar tab. Development of the above process required optimization of the parylene coater parameters to obtain a uniform consistent coating which could offer adequate protection to the circuits, fixture design for packages of various types, determination of the size of the deposition hole, and the amount of dimer charge per run, a process to hermetically seal the deposition holes and establishment of quality control techniques or acceptance criteria for the deposited film.
Sputtering. [as deposition technique in mechanical engineering
NASA Technical Reports Server (NTRS)
Spalvins, T.
1976-01-01
This paper primarily reviews the potential of using the sputtering process as a deposition technique; however, the manufacturing and sputter etching aspects are also discussed. Since sputtering is not regulated by classical thermodynamics, new multicomponent materials can be developed in any possible chemical composition. The basic mechanism for dc and rf sputtering is described. Sputter-deposition is described in terms of the unique advantageous features it offers such as versatility, momentum transfer, stoichiometry, sputter-etching, target geometry (coating complex surfaces), precise controls, flexibility, ecology, and sputtering rates. Sputtered film characteristics, such as strong adherence and coherence and film morphology, are briefly evaluated in terms of varying the sputtering parameters. Also described are some of the specific industrial areas which are turning to sputter-deposition techniques.
NASA Astrophysics Data System (ADS)
Ventra, Dario; Rodríguez-López, Juan Pedro; de Boer, Poppe L.
2017-05-01
The origin of topographically controlled aeolian landforms in high-relief settings is difficult to synthesize under general models, given the dependence of such accumulations on local morphology. Quaternary sand ramps have been linked to palaeoclimate, regional geomorphology and wind patterns; however, controls on the early development and preservation of such landforms are poorly known. This study describes the morphology and sedimentology of complex sedimentary aprons along steep coastal slopes in the Atacama Desert (Chile). Direct slope accessibility and continuous stratigraphic exposures enable comparisons between active processes and stratigraphic signatures. Stratigraphic facies distribution and its links with patterns of aeolian deposition show that the preservation of wind-laid sediments depends on the morphology and processes of specific slope sectors. The spatial organization of runoff depends on bedrock configuration and directly controls the permanence or erosion of aeolian sediment. The occurrence of either water or mass flows depends on the role of aeolian fines in the rheology of flash floods. In turn, the establishment of a rugged surface topography controlled by patterns of mass-flow deposition creates local accommodation for aeolian fines, sustaining the initial aggradation of a colluvial-aeolian system. By contrast, slopes subject to runoff develop a thin, extensive aeolian mantle whose featureless surface is subject mostly to sediment bypass down- and across-slope; the corresponding stratigraphic record comprises almost exclusively thin debris-flow and sheetflood deposits. Slope morphology and processes are fundamental in promoting or inhibiting aeolian aggradation in mountain settings. Long-term sand-ramp construction depends on climate and regional topography, but the initial development is probably controlled by local geomorphic factors. The observed interactions between wind and topography in the study area may also represent a process analogue for the interpretation of similar geomorphic features on Mars.
NASA Astrophysics Data System (ADS)
Koujalagi, V.; Ramesh, S. L.; Gunarathne, G. P. P.; Semple, S.; Ayres, J. G.
2009-02-01
This study presents the work carried out in developing a precision bolus injection system in order to understand the regional deposition of nanoparticles (NP) in human lung. A real-time control system has been developed that is capable of storing graphite NP, assessing human breathing pattern and delivering a bolus of the stored NP at a pre-determined instance of the inhalation phase of breathing. This will form the basis for further development of a system to deliver radioactive nanoparticles to enable 3-dimensional lung imaging using techniques such as positron emission tomography (PET). The system may then be used to better understand the actual regional deposition in human lung, which could validate or challenge the current computational lung models such as that published by the International Commission for Radiation Protection (ICRP-1994). A dose related response to inhaled PM can possibly be shown, which can be used to review the current workplace exposure limits (WELs).
NASA Astrophysics Data System (ADS)
Zohdi, T. I.
2017-07-01
A key part of emerging advanced additive manufacturing methods is the deposition of specialized particulate mixtures of materials on substrates. For example, in many cases these materials are polydisperse powder mixtures whereby one set of particles is chosen with the objective to electrically, thermally or mechanically functionalize the overall mixture material and another set of finer-scale particles serves as an interstitial filler/binder. Often, achieving controllable, precise, deposition is difficult or impossible using mechanical means alone. It is for this reason that electromagnetically-driven methods are being pursued in industry, whereby the particles are ionized and an electromagnetic field is used to guide them into place. The goal of this work is to develop a model and simulation framework to investigate the behavior of a deposition as a function of an applied electric field. The approach develops a modular discrete-element type method for the simulation of the particle dynamics, which provides researchers with a framework to construct computational tools for this growing industry.
Modeling of weld bead geometry for rapid manufacturing by robotic GMAW
NASA Astrophysics Data System (ADS)
Yang, Tao; Xiong, Jun; Chen, Hui; Chen, Yong
2015-03-01
Weld-based rapid prototyping (RP) has shown great promises for fabricating 3D complex parts. During the layered deposition of forming metallic parts with robotic gas metal arc welding, the geometry of a single weld bead has an important influence on surface finish quality, layer thickness and dimensional accuracy of the deposited layer. In order to obtain accurate, predictable and controllable bead geometry, it is essential to understand the relationships between the process variables with the bead geometry (bead width, bead height and ratio of bead width to bead height). This paper highlights an experimental study carried out to develop mathematical models to predict deposited bead geometry through the quadratic general rotary unitized design. The adequacy and significance of the models were verified via the analysis of variance. Complicated cause-effect relationships between the process parameters and the bead geometry were revealed. Results show that the developed models can be applied to predict the desired bead geometry with great accuracy in layered deposition with accordance to the slicing process of RP.
Optimization of Uranium Molecular Deposition for Alpha-Counting Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monzo, Ellen; Parsons-Moss, Tashi; Genetti, Victoria
2016-12-12
Method development for molecular deposition of uranium onto aluminum 1100 plates was conducted with custom plating cells at Lawrence Livermore National Laboratory. The method development focused primarily on variation of electrode type, which was expected to directly influence plated sample homogeneity. Solid disc platinum and mesh platinum anodes were compared and data revealed that solid disc platinum anodes produced more homogenous uranium oxide films. However, the activity distribution also depended on the orientation of the platinum electrode relative to the aluminum cathode, starting current, and material composition of the plating cell. Experiments demonstrated these variables were difficult to control undermore » the conditions available. Variation of plating parameters among a series of ten deposited plates yielded variations up to 30% in deposition efficiency. Teflon particles were observed on samples plated in Teflon cells, which poses a problem for alpha activity measurements of the plates. Preliminary electropolishing and chemical polishing studies were also conducted on the aluminum 1100 cathode plates.« less
Robust Functionalization of Large Microelectrode Arrays by Using Pulsed Potentiostatic Deposition
Rothe, Joerg; Frey, Olivier; Madangopal, Rajtarun; Rickus, Jenna; Hierlemann, Andreas
2016-01-01
Surface modification of microelectrodes is a central step in the development of microsensors and microsensor arrays. Here, we present an electrodeposition scheme based on voltage pulses. Key features of this method are uniformity in the deposited electrode coatings, flexibility in the overall deposition area, i.e., the sizes and number of the electrodes to be coated, and precise control of the surface texture. Deposition and characterization of four different materials are demonstrated, including layers of high-surface-area platinum, gold, conducting polymer poly(ethylenedioxythiophene), also known as PEDOT, and the non-conducting polymer poly(phenylenediamine), also known as PPD. The depositions were conducted using a fully integrated complementary metal-oxide-semiconductor (CMOS) chip with an array of 1024 microelectrodes. The pulsed potentiostatic deposition scheme is particularly suitable for functionalization of individual electrodes or electrode subsets of large integrated microelectrode arrays: the required deposition waveforms are readily available in an integrated system, the same deposition parameters can be used to functionalize the surface of either single electrodes or large arrays of thousands of electrodes, and the deposition method proved to be robust and reproducible for all materials tested. PMID:28025569
Catalysis applications of size-selected cluster deposition
Vajda, Stefan; White, Michael G.
2015-10-23
In this Perspective, we review recent studies of size-selected cluster deposition for catalysis applications performed at the U.S. DOE National Laboratories, with emphasis on work at Argonne National Laboratory (ANL) and Brookhaven National Laboratory (BNL). The focus is on the preparation of model supported catalysts in which the number of atoms in the deposited clusters is precisely controlled using a combination of gas-phase cluster ion sources, mass spectrometry, and soft-landing techniques. This approach is particularly effective for investigations of small nanoclusters, 0.5-2 nm (<200 atoms), where the rapid evolution of the atomic and electronic structure makes it essential to havemore » precise control over cluster size. Cluster deposition allows for independent control of cluster size, coverage, and stoichiometry (e.g., the metal-to-oxygen ratio in an oxide cluster) and can be used to deposit on any substrate without constraints of nucleation and growth. Examples are presented for metal, metal oxide, and metal sulfide cluster deposition on a variety of supports (metals, oxides, carbon/diamond) where the reactivity, cluster-support electronic interactions, and cluster stability and morphology are investigated. Both UHV and in situ/operando studies are presented that also make use of surface-sensitive X-ray characterization tools from synchrotron radiation facilities. Novel applications of cluster deposition to electrochemistry and batteries are also presented. This review also highlights the application of modern ab initio electronic structure calculations (density functional theory), which can essentially model the exact experimental system used in the laboratory (i.e., cluster and support) to provide insight on atomic and electronic structure, reaction energetics, and mechanisms. As amply demonstrated in this review, the powerful combination of atomically precise cluster deposition and theory is able to address fundamental aspects of size-effects, cluster-support interactions, and reaction mechanisms of cluster materials that are central to how catalysts function. Lastly, the insight gained from such studies can be used to further the development of novel nanostructured catalysts with high activity and selectivity.« less
NASA Astrophysics Data System (ADS)
Brogi, Andrea; Alçiçek, M. Cihat; Yalçıner, Cahit Çağlar; Capezzuoli, Enrico; Liotta, Domenico; Meccheri, Marco; Rimondi, Valentina; Ruggieri, Giovanni; Gandin, Anna; Boschi, Chiara; Büyüksaraç, Aydin; Alçiçek, Hülya; Bülbül, Ali; Baykara, Mehmet Oruç; Shen, Chuan-Chou
2016-06-01
Coexistence of thermal springs, travertine deposits and tectonic activity is a recurring feature for most geothermal areas. Although such a certainty, their relationships are debated mainly addressing on the role of the tectonic activity in triggering and controlling fluids flow and travertine deposition. In this paper, we present the results of an integrated study carried out in a geothermal area located in western Anatolia (Turkey), nearby the well-known Pamukkale area (Denizli Basin). Our study focused on the relationships among hydrothermal fluids circulation, travertine deposition and tectonic activity, with particular emphasis on the role of faults in controlling fluids upwelling, thermal springs location and deposition of travertine masses. New field mapping and structural/kinematics analyses allowed us to recognize two main faults systems (NW- and NE-trending), framed in the Neogene-Quaternary extensional tectonic evolution of western Anatolia. A geo-radar (GPR) prospection was also provided in a key-area, permitting us to reconstruct a buried fault zone and its relationships with the development of a fissure-ridge travertine deposit (Kamara fissure-ridge). The integration among structural and geophysical studies, fluids inclusion, geochemical, isotopic data and 230 Th/238 U radiometric age determination on travertine deposits, depict the characteristics of the geothermal fluids and their pathway, up to the surface. Hydrological and seismological data have been also taken in account to investigate the relation between local seismicity and fluid upwelling. As a main conclusion we found strict relationships among tectonic activity, earthquakes occurrence, and variation of the physical/chemical features of the hydrothermal fluids, presently exploited at depth, or flowing out in thermal springs. In the same way, we underline the tectonic role in controlling the travertine deposition, making travertine (mainly banded travertine) a useful proxy to reconstruct the seismological history of an area, as well as the characteristics of the parent geothermal fluids, adding an effective tool for geothermal exploration tasks.
Mathew, Dennis; Bhardwaj, Garima; Wang, Qi; Sun, Linlin; Ercan, Batur; Geetha, Manisavagam; Webster, Thomas J
2014-01-01
Plasma-spray deposition of hydroxyapatite on titanium (Ti) has proven to be a suboptimal solution to improve orthopedic-implant success rates, as demonstrated by the increasing number of orthopedic revision surgeries due to infection, implant loosening, and a myriad of other reasons. This could be in part due to the high heat involved during plasma-spray deposition, which significantly increases hydroxyapatite crystal growth into the nonbiologically inspired micron regime. There has been a push to create nanotopographies on implant surfaces to mimic the physiological nanostructure of native bone and, thus, improve osteoblast (bone-forming cell) functions and inhibit bacteria functions. Among the several techniques that have been adopted to develop nanocoatings, electrophoretic deposition (EPD) is an attractive, versatile, and effective material-processing technique. The in vitro study reported here aimed to determine for the first time bacteria responses to hydroxyapatite coated on Ti via EPD. There were six and three times more osteoblasts on the electrophoretic-deposited hydroxyapatite on Ti compared with Ti (control) and plasma-spray-deposited hydroxyapatite on Ti after 5 days of culture, respectively. Impressively, there were 2.9 and 31.7 times less Staphylococcus aureus on electrophoretic-deposited hydroxyapatite on Ti compared with Ti (control) and plasma-spray-deposited hydroxyapatite on Ti after 18 hours of culture, respectively. Compared with uncoated Ti and plasma-sprayed hydroxyapatite coated on Ti, the results provided significant promise for the use of EPD to improve bone-cell density and be used as an antibacterial coating without resorting to the use of antibiotics.
Estuarine abandoned channel sedimentation rates record peak fluvial discharge magnitudes
NASA Astrophysics Data System (ADS)
Gray, A. B.; Pasternack, G. B.; Watson, E. B.
2018-04-01
Fluvial sediment deposits can provide useful records of integrated watershed expressions including flood event magnitudes. However, floodplain and estuarine sediment deposits evolve through the interaction of watershed/marine sediment supply and transport characteristics with the local depositional environment. Thus extraction of watershed scale signals depends upon accounting for local scale effects on sediment deposition rates and character. This study presents an examination of the balance of fluvial sediment dynamics and local scale hydro-geomorphic controls on alluviation of an abandoned channel in the Salinas River Lagoon, CA. A set of three sediment cores contained discrete flood deposits that corresponded to the largest flood events over the period of accretion from 1969 to 2007. Sedimentation rates scaled with peak flood discharge and event scale sediment flux, but were not influenced by longer scale hydro-meteorological activities such as annual precipitation and water yield. Furthermore, the particle size distributions of flood deposits showed no relationship to event magnitudes. Both the responsiveness of sedimentation and unresponsiveness of particle size distributions to hydro-sedimentological event magnitudes appear to be controlled by aspects of local geomorphology that influence the connectivity of the abandoned channel to the Salinas River mainstem. Well-developed upstream plug bar formation precluded the entrainment of coarser bedload into the abandoned channel, while Salinas River mouth conditions (open/closed) in conjunction with tidal and storm surge conditions may play a role in influencing the delivery of coarser suspended load fractions. Channel adjacent sediment deposition can be valuable records of hydro-meteorological and sedimentological regimes, but local depositional settings may dominate the character of short term (interdecadal) signatures.
The effect of engine operating conditions on exhaust gas recirculation cooler fouling
Lance, Michael J.; Mills, Zachary G.; Seylar, Joshua C.; ...
2018-05-17
Exhaust gas recirculation (EGR) cooler fouling occurs when particulate matter (PM) and hydrocarbons (HC) in diesel exhaust form a deposit on the walls of the EGR cooler through thermophoresis and condensation. To better understand the mechanisms controlling deposit formation and removal and how operating conditions can affect cooler performance, 20 identical tube-in-shell EGR coolers with sinusoidal fins were fouled using a 5-factor, 3-level experimental design. The deposit thickness was measured using two methods: (1) epoxy-mounting and polishing cooler cross-sections and comparing deposit thicknesses on the primary (outer tube) to the secondary (fins) heat transfer surfaces, and (2) milling tube sectionsmore » such that the surface of a fin could be observed and measuring the deposit thickness across the fin using a 3D profilometer. Near the cooler inlet, high inlet gas temperatures reduced deposit thickness by promoting mud-cracking and spallation. Near the middle of the cooler, the flow rate had the largest impact on the deposit thickness through the effect on residence time of the PM. The HC concentration along with flow rate had the largest effects near the cooler outlet where the lower temperatures allows for more HC condensation. Furthermore, these insights into how engine operating conditions influence the development of fouling layers in EGR coolers learned through this study will aid in the development of more fouling resistant coolers in the future.« less
The effect of engine operating conditions on exhaust gas recirculation cooler fouling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lance, Michael J.; Mills, Zachary G.; Seylar, Joshua C.
Exhaust gas recirculation (EGR) cooler fouling occurs when particulate matter (PM) and hydrocarbons (HC) in diesel exhaust form a deposit on the walls of the EGR cooler through thermophoresis and condensation. To better understand the mechanisms controlling deposit formation and removal and how operating conditions can affect cooler performance, 20 identical tube-in-shell EGR coolers with sinusoidal fins were fouled using a 5-factor, 3-level experimental design. The deposit thickness was measured using two methods: (1) epoxy-mounting and polishing cooler cross-sections and comparing deposit thicknesses on the primary (outer tube) to the secondary (fins) heat transfer surfaces, and (2) milling tube sectionsmore » such that the surface of a fin could be observed and measuring the deposit thickness across the fin using a 3D profilometer. Near the cooler inlet, high inlet gas temperatures reduced deposit thickness by promoting mud-cracking and spallation. Near the middle of the cooler, the flow rate had the largest impact on the deposit thickness through the effect on residence time of the PM. The HC concentration along with flow rate had the largest effects near the cooler outlet where the lower temperatures allows for more HC condensation. Furthermore, these insights into how engine operating conditions influence the development of fouling layers in EGR coolers learned through this study will aid in the development of more fouling resistant coolers in the future.« less
NASA Astrophysics Data System (ADS)
Chen, Qiang; Yang, Yuyun; Pérez de Larraya, Uxua; Garmendia, Nere; Virtanen, Sannakaisa; Boccaccini, Aldo R.
2016-01-01
An organic-inorganic nanocomposite coating consisting of fibrous cellulose nanocrystals and 45S5 bioactive glass, intended as a bioactive surface for bone implants, was developed by a one-step electrophoretic deposition. The composition, surface roughness and wettability of the deposited coatings, influenced by the concentration of each component in the suspension, were controllable as a result of the simplicity of the coating technique. Bioactive glass particles were individually wrapped with porous cellulose layers, forming a porous coating with uniform thickness. Bioactivity test in simulated body fluid revealed a rapid hydroxyapatite formation on the deposited nanocomposite coating. Furthermore, electrochemical test was carried out to understand the corrosion behavior of the deposited coatings during incubation in simulated body fluid. According to the results of this study, the obtained cellulose-bioactive glass coatings with tunable properties represent a promising approach for biofunctionalization of metallic orthopedic implants.
Using Ultrathin Parylene Films as an Organic Gate Insulator in Nanowire Field-Effect Transistors.
Gluschke, J G; Seidl, J; Lyttleton, R W; Carrad, D J; Cochrane, J W; Lehmann, S; Samuelson, L; Micolich, A P
2018-06-27
We report the development of nanowire field-effect transistors featuring an ultrathin parylene film as a polymer gate insulator. The room temperature, gas-phase deposition of parylene is an attractive alternative to oxide insulators prepared at high temperatures using atomic layer deposition. We discuss our custom-built parylene deposition system, which is designed for reliable and controlled deposition of <100 nm thick parylene films on III-V nanowires standing vertically on a growth substrate or horizontally on a device substrate. The former case gives conformally coated nanowires, which we used to produce functional Ω-gate and gate-all-around structures. These give subthreshold swings as low as 140 mV/dec and on/off ratios exceeding 10 3 at room temperature. For the gate-all-around structure, we developed a novel fabrication strategy that overcomes some of the limitations with previous lateral wrap-gate nanowire transistors. Finally, we show that parylene can be deposited over chemically treated nanowire surfaces, a feature generally not possible with oxides produced by atomic layer deposition due to the surface "self-cleaning" effect. Our results highlight the potential for parylene as an alternative ultrathin insulator in nanoscale electronic devices more broadly, with potential applications extending into nanobioelectronics due to parylene's well-established biocompatible properties.
Self-Ordering and Complexity in Epizonal Mineral Deposits
NASA Astrophysics Data System (ADS)
Henley, Richard W.; Berger, Byron R.
Epizonal base and precious metal deposits makeup a range of familiar deposit styles including porphyry copper-gold, epithermal veins and stockworks, carbonate-replacement deposits, and polymetallic volcanic rock-hosted (VHMS) deposits. They occur along convergent plate margins and are invariably associated directly with active faults and volcanism. They are complex in form, variable in their characteristics at all scales, and highly localized in the earth's crust. More than a century of detailed research has provided an extensive base of observational data characterizing these deposits, from their regional setting to the fluid and isotope chemistry of mineral deposition. This has led to a broad understanding of the large-scale hydrothermal systems within which they form. Low salinity vapor, released by magma crystallization and dispersed into vigorously convecting groundwater systems, is recognized as a principal source of metals and the gases that control redox conditions within systems. The temperature and pressure of the ambient fluid anywhere within these systems is close to its vapor-liquid phase boundary, and mineral deposition is a consequence of short timescale perturbations generated by localized release of crustal stress. However, a review of occurrence data raises questions about ore formation that are not addressed by traditional genetic models. For example, what are the origins of banding in epithermal veins, and what controls the frequency of oscillatory lamination? What controls where the phenomenon of mineralization occurs, and why are some porphyry deposits, for example, so much larger than others? The distinctive, self-organized characteristics of epizonal deposits are shown to be the result of repetitive coupling of fracture dilation consequent on brittle failure, phase separation ("boiling"), and heat transfer between fluid and host rock. Process coupling substantially increases solute concentrations and triggers fast, far-from-equilibrium depositional processes. Since these coupled processes lead to localized transient changes in fluid characteristics, paragenetic, isotope, and fluid inclusion data relate to conditions at the site of deposition and only indirectly to the characteristics of the larger-scale hydrothermal system and its longer-term behavior. The metal concentrations (i.e. grade) of deposits and their internal variation is directly related to the geometry of the fracture array at the deposit scale, whereas finer-scale oscillatory fabrics in ores may be a result of molecular scale processes. Giant deposits are relatively rare and develop where efficient metal deposition is spatially focused by repetitive brittle failure in active fault arrays. Some brief case histories are provided for epithermal, replacement, and porphyry mineralization. These highlight how rock competency contrasts and feedback between processes, rather than any single component of a hydrothermal system, govern the size of individual deposits. In turn, the recognition of the probabilistic nature of mineralization provides a firmer foundation through which exploration investment and risk management decisions can be made.
NASA Astrophysics Data System (ADS)
Crivoi, A.; Zhong, X.; Duan, Fei
2015-09-01
The coffee-ring effect for particle deposition near the three-phase line after drying a pinned sessile colloidal droplet has been suppressed or attenuated in many recent studies. However, there have been few attempts to simulate the mitigation of the effect in the presence of strong particle-particle attraction forces. We develop a three-dimensional stochastic model to investigate the drying process of a pinned colloidal sessile droplet by considering the sticking between particles, which was observed in the experiments. The Monte Carlo simulation results show that by solely promoting the particle-particle attraction in the model, the final deposit shape is transformed from the coffee ring to the uniform film deposition. This phenomenon is modeled using the colloidal aggregation technique and explained by the "Tetris principle," meaning that unevenly shaped or branched particle clusters rapidly build up a sparse structure spanning throughout the entire domain in the drying process. The influence of the controlled parameters is analyzed as well. The simulation is reflected by the drying patterns of the nanofluid droplets through the surfactant control in the experiments.
NASA Astrophysics Data System (ADS)
Potemkin, Fedor; Mareev, Evgeniy; Bezsudnova, Yulia; Platonenko, Victor; Bravy, Boris; Gordienko, Vyacheslav
2017-04-01
We report a bulk void-like micromodification of fused silica using two-color μJ-energy level tightly focused (NA = 0.5) co-propagating seeding (visible, 0.62 μm) and heating (near-IR, 1.24 μm) femtosecond laser pulses with online third harmonic diagnostics of created microplasmas as well as subsequent laser-induced void-like defects. It has been shown experimentally and theoretically that production of seeding electrons through multiphoton ionization by visible laser pulses paves the way for controllability of the energy deposition and laser-induced micromodification via carrier heating by delayed infrared laser pulses inside the material. Experimental results demonstrate wide possibilities to increase the density of energy deposited up to 6 kJ cm-3 inside the dielectric by tight focusing of two color fs-laser pulses and elliptical polarization for infrared heating fs-laser pulses. The developed theoretical approach predicts the enhancement of deposited energy density up to 9 kJ cm-3 using longer (mid-IR) wavelengths for heating laser pulses.
Robotic complex for the development of thick steeply-inclined coal seams and ore deposits
NASA Astrophysics Data System (ADS)
Nikitenko, M. S.; Malakhov, Yu V.; Neogi, Biswarup; Chakraborty, Pritam; Banerjee, Dipesu
2017-09-01
Proposal for the formulation of robotic complexes for steeply inclined coal seams as a basis of the supportive-enclosing walking module and power support with a controlled outlet for mining industry has been represented in this literature. In mining industry, the available resource base reserves and mineral deposits are concentrated deep down the earth crust leading towards a complicated geological condition i.e. abrupt ore bedding and steeply inclined strata with the high gas content and fire hazard of thick coal stratum, heading against an unfavorable and sometimes human labor life risk during subversive mining. Prevailing towards the development of effective robotic complexes based on the means of “unmanned technologies” for extraction of minerals from hard-to-reach deposits and make sure the safety of underground staff during sublevel mining technology.
Amyloid substance within stenotic aortic valves promotes mineralization.
Audet, Audrey; Côté, Nancy; Couture, Christian; Bossé, Yohan; Després, Jean-Pierre; Pibarot, Philippe; Mathieu, Patrick
2012-10-01
Accumulation of apolipoproteins may play an important role in the pathobiology of calcific aortic valve disease (CAVD). We aimed to explore the hypothesis that apolipoprotein-derived amyloid could play a role in the development of CAVD. In 70 explanted CAVD valves and 15 control non-calcified aortic valves, we assessed the presence of amyloid by using Congo red staining. Immunohistochemistry was performed to document the presence of apolipoprotein AI (Apo-AI). Apoptosis was documented by terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) studies performed in control and CAVD valves. Control valves were free of amyloid. Deposition of amyloid was detected in all CAVD valves, and the amount was positively correlated with plasma high-density lipoprotein and Apo-AI levels. Apo-AI within CAVD valves co-localized with intense staining of fibrillar amyloid. In turn, deposition of amyloid co-localized with apoptosis near mineralized areas. Isolation of amyloid fibrils confirmed that Apo-AI is a major component of amyloid deposits in CAVD. In vitro, CAVD-derived amyloid extracts increased apoptosis and mineralization of isolated aortic valvular interstitial cells. Apo-AI is a major component of amyloid substance present within CAVD valves. Furthermore, amyloid deposits participate in mineralization in CAVD by promoting apoptosis of valvular interstitial cells. © 2012 Blackwell Publishing Ltd.
Maki, Hideshi; Takigawa, Masashi; Mizuhata, Minoru
2015-08-12
The direct synthesis of the adhered Ni-Al LDH thin film onto the surface of electrically conductive substrates by the liquid phase deposition (LPD) reaction is carried out for the development of the positive electrode. The complexation and solution equilibria of the dissolved species in the LPD reaction have been clarified by a theoretical approach, and the LPD reaction conditions for the Ni-Al LDH depositions are shown to be optimized by controlling the fluoride ion concentration and the pH of the LPD reaction solutions. The yields of metal oxides and hydroxides by the LPD method are very sensitive to the supersaturation state of the hydroxide in the reaction solution. The surfaces of conductive substrates are completely covered by the minute mesh-like Ni-Al LDH thin film; furthermore, there is no gap between the surfaces of conductive substrates and the deposited Ni-Al LDH thin film. The active material layer thickness was able to be controlled within the range from 100 nm to 1 μm by the LPD reaction time. The high-crystallinity and the arbitrary-thickness thin films on the conductive substrate surface will be beneficial for the interface control of charge transfer reaction fields and the internal resistance reduction of various secondary batteries.
Use of structural geology in exploration for and mining of sedimentary rock-hosted Au deposits
Peters, Stephen G.
2001-01-01
Structural geology is an important component in regional-, district- and orebody-scale exploration and development of sedimentary rock-hosted Au deposits.Identification of timing of important structural events in an ore district allows analysis and classification of fluid conduits and construction of genetic models for ore formation.The most practical uses of structural geology deal with measurement and definition of various elements that comprise orebodies, which can then be directly applied to ore-reserve estimation,ground control,grade control, safety issues,and mine planning.District- and regional-scale structural studies are directly applicable to long-term strategic planning,economic analysis,and land ownership. Orebodies in sedimentary rock-hosted Au deposits are discrete, hypogene, epigenetic masses usually hosted in a fault zone,breccia mass, or lithologic bed or unit. These attributes allow structural geology to be directly applied to the mining and exploration of sedimentary rock-hosted Au deposits. Internal constituents in orebodies reflect unique episodes relating to ore formation.The main internal constituents in orebodies are ore minerals, gangue, and alteration minerals that usually are mixed with one another in complex patterns, the relations among which may be used to interpret the processes of orebody formation and control.Controls of orebody location and shape usually are due to structural dilatant zones caused by changes in attitude, splays, lithologic contacts,and intersections of the host conduit or unit.In addition,conceptual parameters such as district fabric,predictable distances, and stacking also are used to understand the geometry of orebodies.Controls in ore districts and location and geometry of orebodies in ore districts can be predicted to various degrees by using a number of qualitative concepts such as internal and external orebody plunges,district plunge, district stacking, conduit classification, geochemical, geobarometric and geothermal gradients, and tectonic warps. These concepts have practical and empirical application in most mining districts where they are of use in the exploration for ore, but are of such broad and general application that they may not represent known or inferred ore formation processes. Close spatial relation among some sedimentary rock- hosted Au deposits and their host structures suggests that the structures and the orebodies are genetically linked because they may have shared the same developmental history. Examples of probable syn-deformational genesis and structural control of sedimentary rock-hosted Au deposits are in the large Betze deposit in the Carlin trend, Nevada and in the Lannigou, Jinlongshan, and Maanqiao Au deposits, China.
Method to control artifacts of microstructural fabrication
Shul, Randy J.; Willison, Christi G.; Schubert, W. Kent; Manginell, Ronald P.; Mitchell, Mary-Anne; Galambos, Paul C.
2006-09-12
New methods for fabrication of silicon microstructures have been developed. In these methods, an etching delay layer is deposited and patterned so as to provide differential control on the depth of features being etched into a substrate material. Compensation for etching-related structural artifacts can be accomplished by proper use of such an etching delay layer.
Two-Component Additive Manufacturing of Nanothermite by Reactive Inkjet Printing
NASA Astrophysics Data System (ADS)
Murray, Allison; Novotny, Whitney; Fleck, Trevor; Gunduz, Emre; Son, Steven; Chiu, George; Rhoads, Jeffrey
2017-06-01
To broaden the type of energetic materials that can be selectively deposited and improve the safety of their deposition, this work demonstrates the use of combinatorial inkjet printing for the selective deposition of energetic material. Two inert colloidal suspensions of nano-aluminum and nano-copper (II) oxide in dimethylformamide (DMF) with polyvinylpyrrolidone (PVP) were sequentially deposited on a substrate using piezoelectric inkjet printing. By depositing the materials at the same location, in situ mixing produced a reactive nanothermite. This process was continued to produce layers of nanothermite until the desired quantity of material was deposited. Samples with precise geometric control and high fidelity energetic performance were achieved. This work proves the feasibility of reactive inkjet printing as a means for depositing energetic materials from two largely-inert suspensions. In doing so, it opens the doors for safe material handling and the development of a wide array of energetic materials that were previously deemed incompatible with inkjet printing. This research is supported by the U.S. Department of Defense, Defense Threat Reduction Agency through Grant No. HDTRA1-15-1-0010.
A radon progeny deposition model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rielage, Keith; Elliott, Steven R; Hime, Andrew
2010-12-01
The next generation low-background detectors operating underground aim for unprecedented low levels of radioactive backgrounds. Although the radioactive decays of airborne radon (particularly {sup 222}Rn) and its subsequent progeny present in an experiment are potential backgrounds, also problematic is the deposition of radon progeny on detector materials. Exposure to radon at any stage of assembly of an experiment can result in surface contamination by progeny supported by the long half life (22 y) of {sup 210}Pb on sensitive locations of a detector. An understanding of the potential surface contamination from deposition will enable requirements of radon-reduced air and clean roommore » environments for the assembly of low background experiments. It is known that there are a number of environmental factors that govern the deposition of progeny onto surfaces. However, existing models have not explored the impact of some environmental factors important for low background experiments. A test stand has been constructed to deposit radon progeny on various surfaces under a controlled environment in order to develop a deposition model. Results from this test stand and the resulting deposition model are presented.« less
Lipase biofilm deposited by Matrix Assisted Pulsed Laser Evaporation technique
NASA Astrophysics Data System (ADS)
Aronne, Antonio; Bloisi, Francesco; Calabria, Raffaela; Califano, Valeria; Depero, Laura E.; Fanelli, Esther; Federici, Stefania; Massoli, Patrizio; Vicari, Luciano R. M.
2015-05-01
Lipase is an enzyme that finds application in biodiesel production and for detection of esters and triglycerides in biosensors. Matrix Assisted Pulsed Laser Evaporation (MAPLE), a technique derived from Pulsed Laser Deposition (PLD) for deposition of undamaged biomolecules or polymers, is characterized by the use of a frozen target obtained from a solution/suspension of the guest material (to be deposited) in a volatile matrix (solvent). The presence of the solvent avoids or at least reduces the potential damage of guest molecules by laser radiation but only the guest material reaches the substrate in an essentially solvent-free deposition. MAPLE can be used for enzymes immobilization, essential for industrial application, allowing the development of continuous processes, an easier separation of products, the reuse of the catalyst and, in some cases, enhancing enzyme properties (pH, temperature stability, etc.) and catalytic activity in non-aqueous media. Here we show that MAPLE technique can be used to deposit undamaged lipase and that the complex structure (due to droplets generated during extraction from target) of the deposited material can be controlled by changing the laser beam fluence.
Quality and petrographic characteristics of Paleocene coals from the Hanna basin, Wyoming
Pierce, B.S.
1996-01-01
Coal beds from the Ferris and Hanna Formations, in the Hanna basin, south-central Wyoming, exhibit distinct differences in ash yield, sulfur content, and petrographic and palynologic constituents. These differences are interpreted to be controlled by tectonic changes of the Hanna basin and adjoining uplifts during evolutionary development, which, in turn, controlled mire chemistry and sedimentation. These conditions created two very different settings under which the peats developed during deposition of the Ferris and the Hanna Formations. In addition, there appears to be a geographic (latitudinal) and/or climatic control on the coal characteristics manifested by major differences of Paleocene coals in the Hanna basin compared to those in the Raton basin in Colorado and New Mexico and the Powder River basin in Wyoming.Coal beds from the Ferris and Hanna Formations, in the Hanna basin, south-central Wyoming, exhibit distinct differences in ash yield, sulfur content, and petrographic and palynologic constituents. These differences are interpreted to be controlled by tectonic changes of the Hanna basin and adjoining uplifts during evolutionary development, which, in turn, controlled mire chemistry and sedimentation. These conditions created two very different settings under which the peats developed during deposition of the Ferris and the Hanna Formations. In addition, there appears to be a geographic (latitudinal) and/or climatic control on the coal characteristics manifested by major differences of Paleocene coals in the Hanna basin compared to those in the Raton basin in Colorado and New Mexico and the Powder River basin in Wyoming.
NASA Astrophysics Data System (ADS)
Tang, Yali; Cheng, Dongmei; Guan, Baohua; Zhang, Xiufeng; Liu, Zhengwen; Liu, Zejun
2017-05-01
Bacteria capable of degrading cyanobacteria Microcystis are crucial for determining the ecological consequences of Microcystis blooms in freshwater lakes. Scum derived from Microcystis blooms tends to accumulate in bays of large lakes and then sink to the sediments where it is finally consumed by benthic bacteria. Understanding the response of benthic bacterial communities to massive Microcystis deposition events may help identify the bacteria best suited to Microcystis hydrolyzation and even bloom control. For that purpose, an experimental system was set up in which intact sediment cores were incubated in the laboratory with normal and heavy deposits of Microcystis detritus. Pyrosequencing was performed in order to describe a phylogenetic inventory of bacterial communities in samples taken at 0-1, 1-2 and 2-3 cm depths in incubated sediments and in original untreated sediment. A hierarchical cluster tree was constructed expose differences between sediments. Similarity percentage calculations were also performed to identify the bacterial species contributing to variation. The results of this study suggest that: (1) deposition of Microcystis scums exerts a strong effect on the bacterial community composition in the surface (0-1 cm) and sub-surface (1-2 cm) sediment layers; (2) bacterial community responses to Microcystis detritus deposition vary across vertical gradients. A list of bacteria with potential roles in Microcystis degradation was compiled. These findings may inform the development of future measures for Microcystis bloom control in lakes.
Constantinou, Marios; Nikolaou, Petros; Koutsokeras, Loukas; Avgeropoulos, Apostolos; Moschovas, Dimitrios; Varotsis, Constantinos; Patsalas, Panos; Kelires, Pantelis; Constantinides, Georgios
2018-03-30
This study aimed to develop hydrogenated amorphous carbon thin films with embedded metallic nanoparticles (a-C:H:Me) of controlled size and concentration. Towards this end, a novel hybrid deposition system is presented that uses a combination of Plasma Enhanced Chemical Vapor Deposition (PECVD) and Physical Vapor Deposition (PVD) technologies. The a-C:H matrix was deposited through the acceleration of carbon ions generated through a radio-frequency (RF) plasma source by cracking methane, whereas metallic nanoparticles were generated and deposited using terminated gas condensation (TGC) technology. The resulting material was a hydrogenated amorphous carbon film with controlled physical properties and evenly dispersed metallic nanoparticles (here Ag or Ti). The physical, chemical, morphological and mechanical characteristics of the films were investigated through X-ray reflectivity (XRR), Raman spectroscopy, Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM) and nanoscratch testing. The resulting amorphous carbon metal nanocomposite films (a-C:H:Ag and a-C:H:Ti) exhibited enhanced nanoscratch resistance (up to +50%) and low values of friction coefficient (<0.05), properties desirable for protective coatings and/or solid lubricant applications. The ability to form nanocomposite structures with tunable coating performance by potentially controlling the carbon bonding, hydrogen content, and the type/size/percent of metallic nanoparticles opens new avenues for a broad range of applications in which mechanical, physical, biological and/or combinatorial properties are required.
Next generation mothers: Maternal control of germline development in zebrafish.
Dosch, Roland
2015-01-01
In many animals, factors deposited by the mother into the egg control the earliest events in development of the zygote. These maternal RNAs and proteins play critical roles in oocyte development and the earliest steps of embryogenesis such as fertilization, cell division and embryonic patterning. Here, this article summarizes recent discoveries made on the maternal control of germline specification in zebrafish. Moreover, this review will discuss the major gaps remaining in our understanding of this process and highlight recent technical innovations in zebrafish, which allow tackling some of these questions in the near future.
Development of high temperature liquid lubricants for low-heat rejection: Heavy duty diesel engines
NASA Technical Reports Server (NTRS)
Wiczynski, P. D.; Marolewski, T. A.
1993-01-01
The objective of this DOE program was to develop a liquid lubricant that will allow advanced diesel engines to operate at top ring reversal temperatures approaching 500 C and sump temperatures approaching 250 C. The lubricants developed demonstrated at marginal increase in sump temperature capability, approximately 15 C, and an increase in top ring reversal temperature. A 15W-40 synthetic lubricant designated HTL-4 was the best lubricant developed in terms of stability, wear control, deposit control dispersancy, and particulate emissions.
NASA Astrophysics Data System (ADS)
Oulachgar, El Hassane
As the semiconductors industry is moving toward nanodevices, there is growing need to develop new materials and thin films deposition processes which could enable strict control of the atomic composition and structure of thin film materials in order to achieve precise control on their electrical and optical properties. The accurate control of thin film characteristics will become increasingly important as the miniaturization of semiconductor devices continue. There is no doubt that chemical synthesis of new materials and their self assembly will play a major role in the design and fabrication of next generation semiconductor devices. The objective of this work is to investigate the chemical vapor deposition (CVD) process of thin film using a polymeric precursor as a source material. This process offers many advantages including low deposition cost, hazard free working environment, and most importantly the ability to customize the polymer source material through polymer synthesis and polymer functionalization. The combination between polymer synthesis and CVD process will enable the design of new generation of complex thin film materials with a wide range of improved chemical, mechanical, electrical and optical properties which cannot be easily achieved through conventional CVD processes based on gases and small molecule precursors. In this thesis we mainly focused on polysilanes polymers and more specifically poly(dimethylsilanes). The interest in these polymers is motivated by their distinctive electronic and photonic properties which are attributed to the delocalization of the sigma-electron along the Si-Si backbone chain. These characteristics make polysilane polymers very promising in a broad range of applications as a dielectric, a semiconductor and a conductor. The polymer-based CVD process could be eventually extended to other polymer source materials such as polygermanes, as well as and a variety of other inorganic and hybrid organic-inorganic polymers. This work has demonstrated that a polysilane polymeric source can be used to deposit a wide range of thin film materials exhibiting similar properties with conventional ceramic materials such as silicon carbide (SiC), silicon oxynitride (SiON), silicon oxycarbide (SiOC) silicon dioxide (SiO2) and silicon nitride (Si3N4). The strict control of the deposition process allows precise control of the electrical, optical and chemical properties of polymer-based thin films within a broad range. This work has also demonstrated for the first time that poly(dimethylsilmaes) polymers deposited by CVD can be used to effectively passivate both silicon and gallium arsenide MOS devices. This finding makes polymer-based thin films obtained by CVD very promising for the development of high-kappa dielectric materials for next generation high-mobility CMOS technology. Keywords. Thin films, Polymers, Vapor Phase Deposition, CVD, Nanodielectrics, Organosilanes, Polysilanes, GaAs Passivation, MOSFET, Silicon Oxynitride, Integrated Waveguide, Silicon Carbide, Compound Semiconductors.
Dreesen, Roland; Bossiroy, Dominique; Dusar, Michiel; Flores, R.M.; Verkaeren, Paul; Whateley, M. K. G.; Spears, D.A.
1995-01-01
The Westphalian C strata found in the northeastern part of the former Belgian coal district (Campine Basin), which is part of an extensive northwest European paralic coal basin, are considered. The thickness and lateral continuity of the Westphalian C coal seams vary considerably stratigraphically and areally. Sedimentological facies analysis of borehole cores indicates that the deposition of Westphalian C coal-bearing strata was controlled by fluvial depositional systems whose architectures were ruled by local subsidence rates. The local subsidence rates may be related to major faults, which were intermittently reactivated during deposition. Lateral changes in coal seam groups are also reflected by marked variations of their seismic signatures. Westphalian C fluvial depositional systems include moderate to low sinuosity braided and anastomosed river systems. Stable tectonic conditions on upthrown, fault-bounded platforms favoured deposition by braided rivers and the associated development of relatively thick, laterally continuous coal seams in raised mires. In contrast, rapidly subsiding downthrown fault blocks favoured aggradation, probably by anastomosed rivers and the development of relatively thin, highly discontinuous coal seams in topogenous mires.
NASA Technical Reports Server (NTRS)
Kuang, A.; Xiao, Y.; Musgrave, M. E.
1996-01-01
Successful development of seeds under spaceflight conditions has been an elusive goal of numerous long-duration experiments with plants on orbital spacecraft. Because carbohydrate metabolism undergoes changes when plants are grown in microgravity, developing seed storage reserves might be detrimentally affected during spaceflight. Seed development in Arabidopsis thaliana plants that flowered during 11 d in space on shuttle mission STS-68 has been investigated in this study. Plants were grown to the rosette stage (13 d) on a nutrient agar medium on the ground and loaded into the Plant Growth Unit flight hardware 18 h prior to lift-off. Plants were retrieved 3 h after landing and siliques were immediately removed from plants. Young seeds were fixed and processed for microscopic observation. Seeds in both the ground control and flight plants are similar in their morphology and size. The oldest seeds from these plants contain completely developed embryos and seed coats. These embryos developed radicle, hypocotyl, meristematic apical tissue, and differentiated cotyledons. Protoderm, procambium, and primary ground tissue had differentiated. Reserves such as starch and protein were deposited in the embryos during tissue differentiation. The aleurone layer contains a large quantity of storage protein and starch grains. A seed coat developed from integuments of the ovule with gradual change in cell composition and cell material deposition. Carbohydrates were deposited in outer integument cells especially in the outside cell walls. Starch grains decreased in number per cell in the integument during seed coat development. All these characteristics during seed development represent normal features in the ground control plants and show that the spaceflight environment does not prevent normal development of seeds in Arabidopsis.
Gut, Ian M; Bartlett, Ryan A; Yeager, John J; Leroux, Brian; Ratnesar-Shumate, Shanna; Dabisch, Paul; Karaolis, David K R
2016-05-01
Public health and decontamination decisions following an event that causes indoor contamination with a biological agent require knowledge of the environmental persistence of the agent. The goals of this study were to develop methods for experimentally depositing bacteria onto indoor surfaces via aerosol, evaluate methods for sampling and enumerating the agent on surfaces, and use these methods to determine bacterial surface decay. A specialized aerosol deposition chamber was constructed, and methods were established for reproducible and uniform aerosol deposition of bacteria onto four coupon types. The deposition chamber facilitated the control of relative humidity (RH; 10 to 70%) following particle deposition to mimic the conditions of indoor environments, as RH is not controlled by standard heating, ventilation, and air conditioning (HVAC) systems. Extraction and culture-based enumeration methods to quantify the viable bacteria on coupons were shown to be highly sensitive and reproducible. To demonstrate the usefulness of the system for decay studies,Yersinia pestis persistence as a function of surface type at 21 °C and 40% RH was determined to be >40%/min for all surfaces. Based upon these results, at typical indoor temperature and RH, a 6-log reduction in titer would expected to be achieved within 1 h as the result of environmental decay on surfaces without active decontamination. The developed approach will facilitate future persistence and decontamination studies with a broad range of biological agents and surfaces, providing agent decay data to inform both assessments of risk to personnel entering a contaminated site and decontamination decisions following biological contamination of an indoor environment. Public health and decontamination decisions following contamination of an indoor environment with a biological agent require knowledge of the environmental persistence of the agent. Previous studies on Y. pestis persistence have utilized large liquid droplet deposition to provide persistence data. As a result, methods were developed to deposit aerosols containing bacteria onto indoor surfaces, reproducibly enumerate bacteria harvested from coupons, and determine surface decay utilizing Y. pestis The results of this study provide foundational methods required to evaluate surface decay of bacteria and potentially other biological agents, such as viruses, in aerosol particles as a function of surface type and environment. Integrating the data from both aerosol and liquid deposition surface decay studies will provide medical and public health personnel with a more complete understanding of agent persistence on surfaces in contaminated areas for assessment of health risks and to inform decontamination decisions. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Bartlett, Ryan A.; Yeager, John J.; Leroux, Brian; Ratnesar-Shumate, Shanna; Dabisch, Paul
2016-01-01
ABSTRACT Public health and decontamination decisions following an event that causes indoor contamination with a biological agent require knowledge of the environmental persistence of the agent. The goals of this study were to develop methods for experimentally depositing bacteria onto indoor surfaces via aerosol, evaluate methods for sampling and enumerating the agent on surfaces, and use these methods to determine bacterial surface decay. A specialized aerosol deposition chamber was constructed, and methods were established for reproducible and uniform aerosol deposition of bacteria onto four coupon types. The deposition chamber facilitated the control of relative humidity (RH; 10 to 70%) following particle deposition to mimic the conditions of indoor environments, as RH is not controlled by standard heating, ventilation, and air conditioning (HVAC) systems. Extraction and culture-based enumeration methods to quantify the viable bacteria on coupons were shown to be highly sensitive and reproducible. To demonstrate the usefulness of the system for decay studies, Yersinia pestis persistence as a function of surface type at 21°C and 40% RH was determined to be >40%/min for all surfaces. Based upon these results, at typical indoor temperature and RH, a 6-log reduction in titer would expected to be achieved within 1 h as the result of environmental decay on surfaces without active decontamination. The developed approach will facilitate future persistence and decontamination studies with a broad range of biological agents and surfaces, providing agent decay data to inform both assessments of risk to personnel entering a contaminated site and decontamination decisions following biological contamination of an indoor environment. IMPORTANCE Public health and decontamination decisions following contamination of an indoor environment with a biological agent require knowledge of the environmental persistence of the agent. Previous studies on Y. pestis persistence have utilized large liquid droplet deposition to provide persistence data. As a result, methods were developed to deposit aerosols containing bacteria onto indoor surfaces, reproducibly enumerate bacteria harvested from coupons, and determine surface decay utilizing Y. pestis. The results of this study provide foundational methods required to evaluate surface decay of bacteria and potentially other biological agents, such as viruses, in aerosol particles as a function of surface type and environment. Integrating the data from both aerosol and liquid deposition surface decay studies will provide medical and public health personnel with a more complete understanding of agent persistence on surfaces in contaminated areas for assessment of health risks and to inform decontamination decisions. PMID:26944839
"Total Deposition (TDEP) Maps" | Science Inventory | US EPA
The presentation provides an update on the use of a hybrid methodology that relies on measured values from national monitoring networks and modeled values from CMAQ to produce of maps of total deposition for use in critical loads and other ecological assessments. Additionally, comparisons of the deposition values from the hybrid approach are compared with deposition estimates from other methodologies. The National Exposure Research Laboratory (NERL) Atmospheric Modeling and Analysis Division (AMAD) conducts research in support of EPA mission to protect human health and the environment. AMAD research program is engaged in developing and evaluating predictive atmospheric models on all spatial and temporal scales for forecasting the air quality and for assessing changes in air quality and air pollutant exposures, as affected by changes in ecosystem management and regulatory decisions. AMAD is responsible for providing a sound scientific and technical basis for regulatory policies based on air quality models to improve ambient air quality. The models developed by AMAD are being used by EPA, NOAA, and the air pollution community in understanding and forecasting not only the magnitude of the air pollution problem, but also in developing emission control policies and regulations for air quality improvements.
Laser Direct Metal Deposition of 2024 Al Alloy: Trace Geometry Prediction via Machine Learning.
Caiazzo, Fabrizia; Caggiano, Alessandra
2018-03-19
Laser direct metal deposition is an advanced additive manufacturing technology suitably applicable in maintenance, repair, and overhaul of high-cost products, allowing for minimal distortion of the workpiece, reduced heat affected zones, and superior surface quality. Special interest is growing for the repair and coating of 2024 aluminum alloy parts, extensively utilized for a wide range of applications in the automotive, military, and aerospace sectors due to its excellent plasticity, corrosion resistance, electric conductivity, and strength-to-weight ratio. A critical issue in the laser direct metal deposition process is related to the geometrical parameters of the cross-section of the deposited metal trace that should be controlled to meet the part specifications. In this research, a machine learning approach based on artificial neural networks is developed to find the correlation between the laser metal deposition process parameters and the output geometrical parameters of the deposited metal trace produced by laser direct metal deposition on 5-mm-thick 2024 aluminum alloy plates. The results show that the neural network-based machine learning paradigm is able to accurately estimate the appropriate process parameters required to obtain a specified geometry for the deposited metal trace.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNamara, Bruce K.; O’Hara, Matthew J.; Casella, Andrew M.
2016-07-01
Abstract: We report a convenient method for the generation of volatile uranium hexafluoride (UF6) from solid uranium oxides and other uranium compounds, followed by uniform deposition of low levels of UF6 onto sampling coupons. Under laminar flow conditions, UF6 is shown to interact with surfaces within the chamber to a highly predictable degree. We demonstrate the preparation of uranium deposits that range between ~0.01 and 470±34 ng∙cm-2. The data suggest the method can be extended to creating depositions at the sub-picogram∙cm-2 level. Additionally, the isotopic composition of the deposits can be customized by selection of the uranium source materials. Wemore » demonstrate a layering technique whereby two uranium solids, each with a different isotopic composition, are employed to form successive layers of UF6 on a surface. The result is an ultra-thin deposit of UF6 that bears an isotopic signature that is a composite of the two uranium sources. The reported deposition method has direct application to the development of unique analytical standards for nuclear safeguards and forensics.« less
Laser Direct Metal Deposition of 2024 Al Alloy: Trace Geometry Prediction via Machine Learning
2018-01-01
Laser direct metal deposition is an advanced additive manufacturing technology suitably applicable in maintenance, repair, and overhaul of high-cost products, allowing for minimal distortion of the workpiece, reduced heat affected zones, and superior surface quality. Special interest is growing for the repair and coating of 2024 aluminum alloy parts, extensively utilized for a wide range of applications in the automotive, military, and aerospace sectors due to its excellent plasticity, corrosion resistance, electric conductivity, and strength-to-weight ratio. A critical issue in the laser direct metal deposition process is related to the geometrical parameters of the cross-section of the deposited metal trace that should be controlled to meet the part specifications. In this research, a machine learning approach based on artificial neural networks is developed to find the correlation between the laser metal deposition process parameters and the output geometrical parameters of the deposited metal trace produced by laser direct metal deposition on 5-mm-thick 2024 aluminum alloy plates. The results show that the neural network-based machine learning paradigm is able to accurately estimate the appropriate process parameters required to obtain a specified geometry for the deposited metal trace. PMID:29562682
CsPbBr 3 Solar Cells: Controlled Film Growth through Layer-by-Layer Quantum Dot Deposition
Hoffman, Jacob B.; Zaiats, Gary; Wappes, Isaac; ...
2017-10-25
All inorganic cesium lead bromide (CsPbBr 3) perovskite is a more stable alternative to methylammonium lead bromide (MAPbBr 3) for designing high open-circuit voltage solar cells and display devices. Poor solubility of CsBr in organic solvents makes typical solution deposition methods difficult to adapt for constructing CsPbBr 3 devices. Our layer-by-layer methodology, which makes use of CsPbBr 3 quantum dot (QD) deposition followed by annealing, provides a convenient way to cast stable films of desired thickness. The transformation from QDs into bulk during thermal annealing arises from the resumption of nanoparticle growth and not from sintering as generally assumed. Additionally,more » a large loss of organic material during the annealing process is mainly from 1-octadecene left during the QD synthesis. Utilizing this deposition approach for perovskite photovoltaics is examined using typical planar architecture devices. Devices optimized to both QD spin-casting concentration and overall CsPbBr 3 thickness produce champion devices that reach power conversion efficiencies of 5.5% with a V oc value of 1.4 V. Finally, the layered QD deposition demonstrates a controlled perovskite film architecture for developing efficient, high open-circuit photovoltaic devices.« less
CsPbBr 3 Solar Cells: Controlled Film Growth through Layer-by-Layer Quantum Dot Deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, Jacob B.; Zaiats, Gary; Wappes, Isaac
All inorganic cesium lead bromide (CsPbBr 3) perovskite is a more stable alternative to methylammonium lead bromide (MAPbBr 3) for designing high open-circuit voltage solar cells and display devices. Poor solubility of CsBr in organic solvents makes typical solution deposition methods difficult to adapt for constructing CsPbBr 3 devices. Our layer-by-layer methodology, which makes use of CsPbBr 3 quantum dot (QD) deposition followed by annealing, provides a convenient way to cast stable films of desired thickness. The transformation from QDs into bulk during thermal annealing arises from the resumption of nanoparticle growth and not from sintering as generally assumed. Additionally,more » a large loss of organic material during the annealing process is mainly from 1-octadecene left during the QD synthesis. Utilizing this deposition approach for perovskite photovoltaics is examined using typical planar architecture devices. Devices optimized to both QD spin-casting concentration and overall CsPbBr 3 thickness produce champion devices that reach power conversion efficiencies of 5.5% with a V oc value of 1.4 V. Finally, the layered QD deposition demonstrates a controlled perovskite film architecture for developing efficient, high open-circuit photovoltaic devices.« less
Dynamics of Braided Channels, Bars, and Associated Deposits Under Experimental Density Currents
NASA Astrophysics Data System (ADS)
Limaye, A. B. S.; Jean-Louis, G.; Paola, C.
2015-12-01
Turbidity currents are the principal agents that transfer clastic sediment from continental margins to the deep ocean. The extensive sedimentary deposits that result can record influences from fluvial transport, ocean currents, and seafloor bathymetry; decoding these controls is key to understanding long-term continental denudation and the formation of hydrocarbon reservoirs. Experimental turbidity currents often use pre-formed, single-thread channels, but more recent experiments and seafloor observations suggest that braided channels also develop in submarine environments. Yet controls on the formation of submarine braided channels and relationships between these channels and stratigraphic evolution remain largely untested. We have conducted a series of experiments to determine the conditions conducive to forming braided submarine channels, and to relate channel geometry and kinematics to deposit architecture. Dissolved salt supplies the excess density of the experimental turbidity currents, which transport plastic, sand-sized sediment as bedload across a test section two meters long and one meter wide. Our experiments indicate that braided channels can form as constructional features without prior erosion for a range of input water and sediment fluxes. Channel migration, avulsion, and aggradation construct sedimentary deposits with bars at a variety of scales. Bar geometry and channel kinematics are qualitatively similar under subaerial and subaqueous experiments with other parameters fixed. We will present quantitative analyses of the relationships between channel geometry and mobility and deposit architecture, at scales from individual bars to the entire deposit, and compare these results to control experiments with subaerial braiding. These experimental results suggest parallels between subaerial and subaqueous braiding, and help to constrain forward models for stratigraphic evolution and inverse methods for estimating flow conditions from turbidites.
Sputter deposition for multi-component thin films
Krauss, A.R.; Auciello, O.
1990-05-08
Ion beam sputter-induced deposition using a single ion beam and a multicomponent target is capable of reproducibly producing thin films of arbitrary composition, including those which are close to stoichiometry. Using a quartz crystal deposition monitor and a computer controlled, well-focused ion beam, this sputter-deposition approach is capable of producing metal oxide superconductors and semiconductors of the superlattice type such as GaAs-AlGaAs as well as layered metal/oxide/semiconductor/superconductor structures. By programming the dwell time for each target according to the known sputtering yield and desired layer thickness for each material, it is possible to deposit composite films from a well-controlled sub-monolayer up to thicknesses determined only by the available deposition time. In one embodiment, an ion beam is sequentially directed via a set of X-Y electrostatic deflection plates onto three or more different element or compound targets which are constituents of the desired film. In another embodiment, the ion beam is directed through an aperture in the deposition plate and is displaced under computer control to provide a high degree of control over the deposited layer. In yet another embodiment, a single fixed ion beam is directed onto a plurality of sputter targets in a sequential manner where the targets are each moved in alignment with the beam under computer control in forming a multilayer thin film. This controlled sputter-deposition approach may also be used with laser and electron beams. 10 figs.
Sputter deposition for multi-component thin films
Krauss, Alan R.; Auciello, Orlando
1990-01-01
Ion beam sputter-induced deposition using a single ion beam and a multicomponent target is capable of reproducibly producing thin films of arbitrary composition, including those which are close to stoichiometry. Using a quartz crystal deposition monitor and a computer controlled, well-focused ion beam, this sputter-deposition approach is capable of producing metal oxide superconductors and semiconductors of the superlattice type such as GaAs-AlGaAs as well as layered metal/oxide/semiconductor/superconductor structures. By programming the dwell time for each target according to the known sputtering yield and desired layer thickness for each material, it is possible to deposit composite films from a well-controlled sub-monolayer up to thicknesses determined only by the available deposition time. In one embodiment, an ion beam is sequentially directed via a set of X-Y electrostatic deflection plates onto three or more different element or compound targets which are constituents of the desired film. In another embodiment, the ion beam is directed through an aperture in the deposition plate and is displaced under computer control to provide a high degree of control over the deposited layer. In yet another embodiment, a single fixed ion beam is directed onto a plurality of sputter targets in a sequential manner where the targets are each moved in alignment with the beam under computer control in forming a multilayer thin film. This controlled sputter-deposition approach may also be used with laser and electron beams.
White OLED devices and processes for lighting applications
NASA Astrophysics Data System (ADS)
Ide, Nobuhiro; Tsuji, Hiroya; Ito, Norihiro; Matsuhisa, Yuko; Houzumi, Shingo; Nishimori, Taisuke
2010-05-01
In these days, the basic performances of white OLEDs are dramatically improved and application of OLEDs to "Lighting" is expected to be true in the near future. We have developed various technologies for OLED lighting with the aid of the Japanese governmental project, "High-efficiency lighting based on the organic light-emitting mechanism." In this project, a white OLED with high efficiency (37 lm/W) and high quality emission characteristics (CRI of 95 with a small variation of chromaticity in different directions and chromaticity just on the black-body radiation curve) applicable to "Lighting" was realized by a two-unit structure with a fluorescent deep blue emissive unit and a phosphorescent green and red emissive unit. Half-decay lifetime of this white OLED at 1,000 cd/m2 was over 40,000 h. A heat radiative, thin encapsulation structure (less than 1 mm) realized a very stable emission at high luminance of over 3,000 cd/m2. A new deposition source with a hot-wall and a rate controllable valve was developed. Thickness uniformity within +/- 3% at high deposition rate of over 8 nm/s, high material utilization of over 70 %, and repeatable deposition rate controllability were confirmed.
Low-Cost Detection of Thin Film Stress during Fabrication
NASA Technical Reports Server (NTRS)
Nabors, Sammy A.
2015-01-01
NASA's Marshall Space Flight Center has developed a simple, cost-effective optical method for thin film stress measurements during growth and/or subsequent annealing processes. Stress arising in thin film fabrication presents production challenges for electronic devices, sensors, and optical coatings; it can lead to substrate distortion and deformation, impacting the performance of thin film products. NASA's technique measures in-situ stress using a simple, noncontact fiber optic probe in the thin film vacuum deposition chamber. This enables real-time monitoring of stress during the fabrication process and allows for efficient control of deposition process parameters. By modifying process parameters in real time during fabrication, thin film stress can be optimized or controlled, improving thin film product performance.
A Novel Catalyst Deposition Technique for the Growth of Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Delzeit, Lance; Cassell, A.; Stevens, R.; Nguyen, C.; Meyyappan, M.; DeVincenzi, Donald L. (Technical Monitor)
2001-01-01
This viewgraph presentation provides information on the development of a technique at NASA's Ames Research Center by which carbon nanotubes (NT) can be grown. The project had several goals which included: 1) scaleability, 2) ability to control single wall nanotube (SWNT) and multiwall nanotube (MWNT) formation, 3) ability to control the density of nanotubes as they grow, 4) ability to apply standard masking techniques for NT patterning. Information regarding the growth technique includes its use of a catalyst deposition process. SWNTs of varying thicknesses can be grown by changing the catalyst composition. Demonstrations are given of various methods of masking including the use of transmission electron microscopic (TEM) grids.
Millet, Larry J; Stewart, Matthew E; Nuzzo, Ralph G; Gillette, Martha U
2010-06-21
Wiring the nervous system relies on the interplay of intrinsic and extrinsic signaling molecules that control neurite extension, neuronal polarity, process maturation and experience-dependent refinement. Extrinsic signals establish and enrich neuron-neuron interactions during development. Understanding how such extrinsic cues direct neurons to establish neural connections in vitro will facilitate the development of organized neural networks for investigating the development and function of nervous system networks. Producing ordered networks of neurons with defined connectivity in vitro presents special technical challenges because the results must be compliant with the biological requirements of rewiring neural networks. Here we demonstrate the ability to form stable, instructive surface-bound gradients of laminin that guide postnatal hippocampal neuron development in vitro. Our work uses a three-channel, interconnected microfluidic device that permits the production of adlayers of planar substrates through the combination of laminar flow, diffusion and physisorption. Through simple flow modifications, a variety of patterns and gradients of laminin (LN) and fluorescein isothiocyanate-conjugated poly-l-lysine (FITC-PLL) were deposited to present neurons with an instructive substratum to guide neuronal development. We present three variations in substrate design that produce distinct growth regimens for postnatal neurons in dispersed cell cultures. In the first approach, diffusion-mediated gradients of LN were formed on cover slips to guide neurons toward increasing LN concentrations. In the second approach, a combined gradient of LN and FITC-PLL was produced using aspiration-driven laminar flow to restrict neuronal growth to a 15 microm wide growth zone at the center of the two superimposed gradients. The last approach demonstrates the capacity to combine binary lines of FITC-PLL in conjunction with surface gradients of LN and bovine serum albumin (BSA) to produce substrate adlayers that provide additional levels of control over growth. This work demonstrates the advantages of spatio-temporal fluid control for patterning surface-bound gradients using a simple microfluidics-based substrate deposition procedure. We anticipate that this microfluidics-based patterning approach will provide instructive patterns and surface-bound gradients to enable a new level of control in guiding neuron development and network formation.
Synthesis and Stabilization of Supported Metal Catalysts by Atomic Layer Deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Junling; Elam, Jeffrey W.; Stair, Peter C.
2013-03-12
Supported metal nanoparticles are among the most important cata-lysts for many practical reactions, including petroleum refining, automobile exhaust treatment, and Fischer–Tropsch synthesis. The catalytic performance strongly depends on the size, composition, and structure of the metal nanoparticles, as well as the underlying support. Scientists have used conventional synthesis methods including impregnation, ion exchange, and deposition–precipitation to control and tune these factors, to establish structure–performance relationships, and to develop better catalysts. Meanwhile, chemists have improved the stability of metal nanoparticles against sintering by the application of protective layers, such as polymers and oxides that encapsulate the metal particle. This often leadsmore » to decreased catalytic activity due to a lack of precise control over the thickness of the protective layer. A promising method of catalyst synthesis is atomic layer deposition (ALD). ALD is a variation on chemical vapor deposition in which metals, oxides, and other materials are deposited on surfaces by a sequence of self-limiting reactions. The self-limiting character of these reactions makes it possible to achieve uniform deposits on high-surface-area porous solids. Therefore, design and synthesis of advanced catalysts on the nanoscale becomes possible through precise control over the structure and composition of the underlying support, the catalytic active sites, and the protective layer. In this Account, we describe our advances in the synthesis and stabilization of supported metal catalysts by ALD. After a short introduction to the technique of ALD, we show several strategies for metal catalyst synthesis by ALD that take advantage of its self-limiting feature. Monometallic and bimetallic catalysts with precise control over the metal particle size, composition, and structure were achieved by combining ALD sequences, surface treatments, and deposition temperature control. Next, we describe ALD oxide overcoats applied with atomically precise thickness control that stabilize metal catalysts while preserving their catalytic function. We also discuss strategies for generation and control over the porosity of the overcoats that allow the embedded metal particles to remain accessible by reactants, and the details for ALD alumina overcoats on metal catalysts. Moreover, using methanol decomposition and oxidative dehydrogenation of ethane as probe reactions, we demonstrate that selectively blocking low coordination metal sites by oxide overcoats can provide another strategy to enhance both the durability and selectivity of metal catalysts.« less
Etching radical controlled gas chopped deep reactive ion etching
Olynick, Deidre; Rangelow, Ivo; Chao, Weilun
2013-10-01
A method for silicon micromachining techniques based on high aspect ratio reactive ion etching with gas chopping has been developed capable of producing essentially scallop-free, smooth, sidewall surfaces. The method uses precisely controlled, alternated (or chopped) gas flow of the etching and deposition gas precursors to produce a controllable sidewall passivation capable of high anisotropy. The dynamic control of sidewall passivation is achieved by carefully controlling fluorine radical presence with moderator gasses, such as CH.sub.4 and controlling the passivation rate and stoichiometry using a CF.sub.2 source. In this manner, sidewall polymer deposition thicknesses are very well controlled, reducing sidewall ripples to very small levels. By combining inductively coupled plasmas with controlled fluorocarbon chemistry, good control of vertical structures with very low sidewall roughness may be produced. Results show silicon features with an aspect ratio of 20:1 for 10 nm features with applicability to nano-applications in the sub-50 nm regime. By comparison, previous traditional gas chopping techniques have produced rippled or scalloped sidewalls in a range of 50 to 100 nm roughness.
Global inorganic nitrogen dry deposition inferred from ground- and space-based measurements.
Jia, Yanlong; Yu, Guirui; Gao, Yanni; He, Nianpeng; Wang, Qiufeng; Jiao, Cuicui; Zuo, Yao
2016-01-27
Atmospheric nitrogen (N) dry deposition is an important component in total N deposition. However, uncertainty exists in the assessment of global dry deposition. Here, we develop empirical models for estimating ground N concentrations using NO2 satellite measurements from the Ozone Monitoring Instrument (OMI) and ground measurements from 555 monitoring sites. Global patterns and trends in the fluxes of NO2, HNO3, NH4(+), and NO3(-) were assessed for 2005-2014. Moreover, we estimated global NH3 dry deposition directly using data from 267 monitoring sites. Our results showed that East Asia, the United States, and Europe were important regions of N deposition, and the total annual amount of global inorganic N deposition was 34.26 Tg N. The dry deposition fluxes were low in Africa and South America, but because of their large area, the total amounts in these regions were comparable to those in Europe and North America. In the past decade, the western United States and Eurasia, particularly eastern China, experienced the largest increases in dry deposition, whereas the eastern United States, Western Europe, and Japan experienced clear decreases through control of NOx and NH3 emissions. These findings provide a scientific background for policy-makers and future research into global changes.
Global inorganic nitrogen dry deposition inferred from ground- and space-based measurements
Jia, Yanlong; Yu, Guirui; Gao, Yanni; He, Nianpeng; Wang, Qiufeng; Jiao, Cuicui; Zuo, Yao
2016-01-01
Atmospheric nitrogen (N) dry deposition is an important component in total N deposition. However, uncertainty exists in the assessment of global dry deposition. Here, we develop empirical models for estimating ground N concentrations using NO2 satellite measurements from the Ozone Monitoring Instrument (OMI) and ground measurements from 555 monitoring sites. Global patterns and trends in the fluxes of NO2, HNO3, NH4+, and NO3− were assessed for 2005–2014. Moreover, we estimated global NH3 dry deposition directly using data from 267 monitoring sites. Our results showed that East Asia, the United States, and Europe were important regions of N deposition, and the total annual amount of global inorganic N deposition was 34.26 Tg N. The dry deposition fluxes were low in Africa and South America, but because of their large area, the total amounts in these regions were comparable to those in Europe and North America. In the past decade, the western United States and Eurasia, particularly eastern China, experienced the largest increases in dry deposition, whereas the eastern United States, Western Europe, and Japan experienced clear decreases through control of NOx and NH3 emissions. These findings provide a scientific background for policy-makers and future research into global changes. PMID:26813440
NASA Astrophysics Data System (ADS)
Koirala, Dibya Raj; Ettensohn, Frank R.; Clepper, Marta L.
2016-11-01
The Lexington or Trenton Limestone is an Upper Ordovician (Chatfieldian-Edenian; upper Sandbian-lower Katian), temperate-water unit, averaging about 60-m thick, that was deposited in relatively shallow waters across the Lexington Platform in east-central United States during the Taconian Orogeny. Lexington/Trenton shallow-water deposition ended across most of the platform in late Chatfieldian time and from that point deepened upward into the more shale-rich Clays Ferry, Point Pleasant and Kope formations due to apparent sea-level rise. In central Kentucky, however, deposition of the Lexington Limestone continued into early Edenian time and includes up to 50 m of additional coarse calcarenites and calcirudites at the top, which form the Tanglewood buildup and reflect locally regressive conditions, apparently related to local structural uplift. Consequently, in central Kentucky, the Lexington is more than 100-m thick, and Lexington deposition on the buildup continued into early Edenian time as an intra-platform shoal complex that tongues out into deeper-water units in all directions. In an attempt to understand how this shoal complex developed, we examined the last major body of coarse skeletal sands in the central Kentucky Lexington Limestone, the upper tongue of the Tanglewood Member, a 12-m-thick succession of fossiliferous calcarenite and calcirudite that occurs across an area of 5200 km2 near the center of the Lexington Platform. Although relatively homogeneous, the upper Tanglewood is divisible into five, small-scale, fining-upward, sequence-like cycles, which contain prominent, widespread deformed horizons. Facies analysis indicates that four lithofacies, which reflect distinct depositional environments, comprise the sequences across the shoal complex. Lithofacies were correlated across the shoal complex by integrating cyclicity and widespread deformed horizons in order to delineate the locations of major depositional environments. Facies analysis shows that the thickest and coarsest parts of each sequence, and the shallowest depositional environments, coincide with basement fault blocks, which are known to have experienced uplift during earlier Lexington Limestone deposition. The occurrence of thick, coarse facies on the same blocks suggests that the blocks continued to experience uplift into shallow water, where tides and waves redistributed sediments during upper Tanglewood deposition. Although eustasy apparently controlled cyclicity, Taconian far-field forces generated by orogeny in the east seem to have influenced facies distribution in each cycle through reactivation of basement fault zones as synsedimentary growth faults. The example of the upper Tanglewood Member shows that tectonic far-field forces can exert important influences on the development of carbonate depositional environments, even in distal intracratonic settings like the Lexington Platform.
Impacts of urbanization on nitrogen deposition in the Pearl River Delta region, China
NASA Astrophysics Data System (ADS)
Wang, X.; Fan, Q.
2015-12-01
The Pearl River Delta (PRD) region is one of the most advanced economic districts in China, which has experienced remarkable economic development and urbanization in the past two decades. Accompanied with the rapid economy development and urbanization, the PRD region encountered both severe nitrogen pollution and deposition. In this study, the characteristics of nitrogen deposition and impacts of urbanization on nitrogen deposition in the PRD region were investigated by combining the methods of field study and numerical model. According to the field measurements, the total dry and wet atmospheric deposition of reactive N at a urban site (SYSU) was up to 55.0 kg ha-1 yr-1 in 2010, slightly lower than the results at a rural forest site (DHS) (57.6 kg ha-1 yr-1). Wet deposition was the main form of the total deposition (64-76%). Organic nitrogen (ON) was found to be dominant in the total N deposition, with a contribution of 53% at DHS and 42% at SYSU. NH4+-N and NO3--N accounted for a similar portion of the total N deposition (23-29%). Atmospheric nitrogen deposition was further simulated by using the improved WRF-Chem model. The simulated N deposition flux was high in the north of PRD (i.e., Guangzhou, Foshan, Zhaoqing) and relative low in the east (Huizhou) and south (Zhuhai), with an average N deposition flux of about 24 kg ha-1 yr-1 for the whole PRD. The distribution of N dry deposition was mainly controlled by the concentration of reactive N compounds and precipitation governed the wet deposition distribution. The modeling results also indicate that the PRD area is the source region in which the emissions exceed the deposition while the outside area of the PRD is the receptor region in which the deposition exceeds emissions. The impact of emission change and land use change due to urbanization was also investigated using the WRF-Chem model. The results showed that atmospheric N deposition exhibits a direct response to emission change while the land use change impacts the atmospheric N deposition indirectly mainly through the modification of precipitation. As a result of great challenges in reduction of the reactive N emission, a scenario of rising N deposition in the PRD cannot be discarded in the future.
Attribution of nitrogen deposition driven by urbanization over Pearl River Delta region China
NASA Astrophysics Data System (ADS)
Wang, X.; Wu, Z.
2016-12-01
The Pearl River Delta (PRD) region is one of the most advanced economic districts in China, which has experienced remarkable economic development and urbanization in the past two decades. Accompanied with the rapid economy development and urbanization, the PRD region encountered both severe nitrogen pollution and deposition. In this study, the characteristics of nitrogen deposition and impacts of urbanization on nitrogen deposition in the PRD region were investigated by combining the methods of field study and numerical model. According to the field measurements, the total dry and wet atmospheric deposition of reactive N at a urban site (SYSU) was up to 55.0 kg ha-1 yr-1 in 2010, slightly lower than the results at a rural forest site (DHS) (57.6 kg ha-1 yr-1). Wet deposition was the main form of the total deposition (64-76%). Organic nitrogen (ON) was found to be dominant in the total N deposition, with a contribution of 53% at DHS and 42% at SYSU. NH4+-N and NO3-N accounted for a similar portion of the total N deposition (23-29%). Atmospheric nitrogen deposition was further simulated by using the improved WRF-Chem model. The simulated N deposition flux was high in the north of PRD (i.e.,Guangzhou, Foshan, Zhaoqing) and relative low in the east (Huizhou) and south (Zhuhai), with an average N deposition flux of about 24 kg ha-1 yr-1 for the whole PRD. The distribution of N dry deposition was mainly controlled by the concentration of reactive N compounds and precipitation governed the wet deposition distribution. The modeling results also indicate that the PRD area is the source region in which the emissions exceed the deposition while the outside area of the PRD is the receptor region in which the deposition exceeds emissions. The impact of emission change and land use change due to urbanization was also investigated using the WRF-Chem model. The results showed that atmospheric N deposition exhibits a direct response to emission change while the land use change impacts the atmospheric N deposition indirectly mainly through the modification of precipitation. As a result of great challenges in reduction of the reactive N emission, a scenario of rising N deposition in the PRD cannot be discarded in the future.
NASA Technical Reports Server (NTRS)
Jordan, F. L., Jr.
1980-01-01
As part of basic research to improve aerial applications technology, methods were developed at the Langley Vortex Research Facility to simulate and measure deposition patterns of aerially-applied sprays and granular materials by means of tests with small-scale models of agricultural aircraft and dynamically-scaled test particles. Interactions between the aircraft wake and the dispersed particles are being studied with the objective of modifying wake characteristics and dispersal techniques to increase swath width, improve deposition pattern uniformity, and minimize drift. The particle scaling analysis, test methods for particle dispersal from the model aircraft, visualization of particle trajectories, and measurement and computer analysis of test deposition patterns are described. An experimental validation of the scaling analysis and test results that indicate improved control of chemical drift by use of winglets are presented to demonstrate test methods.
Advanced Strain-Isolation-Pad Material with Bonded Fibrous Construction
NASA Technical Reports Server (NTRS)
Seibold, R. W.; Saito, C. A.; Buller, B. W.
1982-01-01
The feasibility of utilizing air lay and liquid lay felt deposition techniques to fabricate strain isolation pad (SIP) materials for the Space Shuttle Orbiter was demonstrated. These materials were developed as candidate replacements for the present needled felt SIP used between the ceramic tiles and the aluminum skin on the undersurface of the Orbiter. The SIP materials that were developed consisted of high temperature aramid fibers deposited by controlled fluid (air or liquid) carriers to form low density unbonded felts. The deposited felts were then bonded at the fiber intersections with a small amount of high temperature polyimide resin. This type of bonded felt construction can potentially eliminate two of the problems associated with the present SIP, viz., transmittal of localized stresses into the tiles and load history dependent mechanical response. However, further work is needed to achieve adequate through thickness tensile strength in the bonded felts.
Fast and accurate determination of the detergent efficiency by optical fiber sensors
NASA Astrophysics Data System (ADS)
Patitsa, Maria; Pfeiffer, Helge; Wevers, Martine
2011-06-01
An optical fiber sensor was developed to control the cleaning efficiency of surfactants. Prior to the measurements, the sensing part of the probe is covered with a uniform standardized soil layer (lipid multilayer), and a gold mirror is deposited at the end of the optical fiber. For the lipid multilayer deposition on the fiber, Langmuir-Blodgett technique was used and the progress of deposition was followed online by ultraviolet spectroscopy. The invention provides a miniaturized Surface Plasmon Resonance dip-sensor for automated on-line testing that can replace the cost and time consuming existing methods and develop a breakthrough in detergent testing in combining optical sensing, surface chemistry and automated data acquisition. The sensor is to be used to evaluate detergency of different cleaning products and also indicate how formulation, concentration, lipid nature and temperature affect the cleaning behavior of a surfactant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watney, W.L.
1992-08-01
Interdisciplinary studies of the Upper Pennsylvanian Lansing and Kansas City groups have been undertaken in order to improve the geologic characterization of petroleum reservoirs and to develop a quantitative understanding of the processes responsible for formation of associated depositional sequences. To this end, concepts and methods of sequence stratigraphy are being used to define and interpret the three-dimensional depositional framework of the Kansas City Group. The investigation includes characterization of reservoir rocks in oil fields in western Kansas, description of analog equivalents in near-surface and surface sites in southeastern Kansas, and construction of regional structural and stratigraphic framework to linkmore » the site specific studies. Geologic inverse and simulation models are being developed to integrate quantitative estimates of controls on sedimentation to produce reconstructions of reservoir-bearing strata in an attempt to enhance our ability to predict reservoir characteristics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watney, W.L.
1992-01-01
Interdisciplinary studies of the Upper Pennsylvanian Lansing and Kansas City groups have been undertaken in order to improve the geologic characterization of petroleum reservoirs and to develop a quantitative understanding of the processes responsible for formation of associated depositional sequences. To this end, concepts and methods of sequence stratigraphy are being used to define and interpret the three-dimensional depositional framework of the Kansas City Group. The investigation includes characterization of reservoir rocks in oil fields in western Kansas, description of analog equivalents in near-surface and surface sites in southeastern Kansas, and construction of regional structural and stratigraphic framework to linkmore » the site specific studies. Geologic inverse and simulation models are being developed to integrate quantitative estimates of controls on sedimentation to produce reconstructions of reservoir-bearing strata in an attempt to enhance our ability to predict reservoir characteristics.« less
Worth Longest, P; Hindle, Michael; Das Choudhuri, Suparna
2009-06-01
For most newly developed spray aerosol inhalers, the generation time is a potentially important variable that can be fully controlled. The objective of this study was to determine the effects of spray aerosol generation time on transport and deposition in a standard induction port (IP) and more realistic mouth-throat (MT) geometry. Capillary aerosol generation (CAG) was selected as a representative system in which spray momentum was expected to significantly impact deposition. Sectional and total depositions in the IP and MT geometries were assessed at a constant CAG flow rate of 25 mg/sec for aerosol generation times of 1, 2, and 4 sec using both in vitro experiments and a previously developed computational fluid dynamics (CFD) model. Both the in vitro and numerical results indicated that extending the generation time of the spray aerosol, delivered at a constant mass flow rate, significantly reduced deposition in the IP and more realistic MT geometry. Specifically, increasing the generation time of the CAG system from 1 to 4 sec reduced the deposition fraction in the IP and MT geometries by approximately 60 and 33%, respectively. Furthermore, the CFD predictions of deposition fraction were found to be in good agreement with the in vitro results for all times considered in both the IP and MT geometries. The numerical results indicated that the reduction in deposition fraction over time was associated with temporal dissipation of what was termed the spray aerosol "burst effect." Based on these results, increasing the spray aerosol generation time, at a constant mass flow rate, may be an effective strategy for reducing deposition in the standard IP and in more realistic MT geometries.
Some recent studies on laser cladding and dissimilar welding
NASA Astrophysics Data System (ADS)
Kaul, Rakesh; Ganesh, P.; Paul, C. P.; Albert, S. K.; Mudali, U. Kamachi; Nath, A. K.
2006-01-01
Indigenous development of high power CO II laser technology and industrial application of lasers represent two important mandates of the laser program, being pursued at Centre for Advanced Technology (CAT), India. The present paper describes some of the important laser material processing studies, involving cladding and dissimilar welding, performed in authors' laboratory. The first case study describes how low heat input characteristics of laser cladding process has been successfully exploited for suppressing dilution in "Colmonoy6" (a nickel-base hardfacing alloy) deposits on austenitic stainless steel components. Crack free hardfaced deposits were obtained by controlling heating and cooling rates associated with laser treatment. The results show significant advantage over Colmonoy 6 deposits made by GTAW, where a 2.5 mm thick region of dilution (with reduced hardness) develops next to substrateiclad interface. The next work involves laser-assisted deposition of graded "Stellite6" (a Co-base hardfacing alloy) with smooth transition in chemical composition and hardness for enhanced resistance against cracking, esp. under thermal cycling conditions. The following two case studies demonstrate significant improvement in corrosion properties of type 304L stainless steel by laser surface alloying, achieved through cladding route. The following case study demonstrates engineering of fusion zone microstructure of end plug dissimilar weld (between alloy D9 and type 3 16M stainless steel) by controlled preferential displacement of focused laser beam, which, in-turn, enhanced its resistance against solidification cracking. Crater appearing at the termination point of laser weld is also eliminated by ramping of laser power towards the end of laser welding. The last case study involves engineering of fusion zone microstructure of dissimilar laser weld between type 304 austenitic stainless steel and stabilized 17%Cr ferritic stainless steel by controlling welding parameters.
Organic Light Emitting Devices with Linearly-Graded Mixed Host Architecture
NASA Astrophysics Data System (ADS)
Lee, Sang Min
Organic Light Emitting Devices (OLEDs) with a linearly-graded mixed (LGM) host architecture in the emissive layer (EML) were studied by the application of a newly-developed thermal deposition boat. A new thermal deposition boat, featuring indirect deposition control and fast rate response, was developed in order to make an evaporation coater of high space utilization and to achieve a real time linearly-graded rate control during the device fabrication process. A new design of dual-hole boat, based on the reduced wall resistance of the side hole toward the vapor flow, enabled the indirect deposition rate control with sufficient control accuracy by using the feature of the stable ratio of rates from top and side holes. Minimizing the thermal mass of the body and designing a direct heat transfer with a coil placed inside the boat resulted in the realization of the linearly-graded deposition rate within acceptable deviation range. Thanks to the feature of fast rate response, it was possible to control the linearly-graded rate of each host material during the process and to apply the architecture to some of the fluorescent and phosphorescent OLED devices. The reported efficiency improvement of a fluorescent OLED, based on step-graded junction in the literature, was well reproduced in an OLED with a LGM architecture, demonstrating that charge balance in the emissive layer can be further improved using the LGM architecture. By minimizing the internal energy barrier in the LGM device, a higher EL efficiency was well demonstrated over the uniformly-mixed (UM) host device, where residual internal interfaces were present as additional quenching sites in the EML. Similar effects were observed in blue phosphorescent OLED devices, where the mobility of the hole transport material (HTM) was usually much higher than that of the electron transport material (ETM) such that the recombination zone was more localized at the EML/ETL interface. It was found that the main effect of the LGM host was to shift the recombination zone inside of the EML and away from and ETL interface such that luminance quenching near the interface was much lower compared to the UM host, where the main recombination zone was localized near the interface and so more sensitive to the interface quenching.
NASA Astrophysics Data System (ADS)
Chen, Yu-Ze; Medina, Henry; Lin, Hung-Chiao; Tsai, Hung-Wei; Su, Teng-Yu; Chueh, Yu-Lun
2015-01-01
Chemical vapour deposition of graphene was the preferred way to synthesize graphene for multiple applications. However, several problems related to transfer processes, such as wrinkles, cleanness and scratches, have limited its application at the industrial scale. Intense research was triggered into developing alternative synthesis methods to directly deposit graphene on insulators at low cost with high uniformity and large area. In this work, we demonstrate a new concept to directly achieve growth of graphene on non-metal substrates. By exposing an amorphous carbon (a-C) film in Cu gaseous molecules after annealing at 850 °C, the carbon (a-C) film surprisingly undergoes a noticeable transformation to crystalline graphene. Furthermore, the thickness of graphene could be controlled, depending on the thickness of the pre-deposited a-C film. The transformation mechanism was investigated and explained in detail. This approach enables development of a one-step process to fabricate electrical devices made of all carbon material, highlighting the uniqueness of the novel approach for developing graphene electronic devices. Interestingly, the carbon electrodes made directly on the graphene layer by our approach offer a good ohmic contact compared with the Schottky barriers usually observed on graphene devices using metals as electrodes.Chemical vapour deposition of graphene was the preferred way to synthesize graphene for multiple applications. However, several problems related to transfer processes, such as wrinkles, cleanness and scratches, have limited its application at the industrial scale. Intense research was triggered into developing alternative synthesis methods to directly deposit graphene on insulators at low cost with high uniformity and large area. In this work, we demonstrate a new concept to directly achieve growth of graphene on non-metal substrates. By exposing an amorphous carbon (a-C) film in Cu gaseous molecules after annealing at 850 °C, the carbon (a-C) film surprisingly undergoes a noticeable transformation to crystalline graphene. Furthermore, the thickness of graphene could be controlled, depending on the thickness of the pre-deposited a-C film. The transformation mechanism was investigated and explained in detail. This approach enables development of a one-step process to fabricate electrical devices made of all carbon material, highlighting the uniqueness of the novel approach for developing graphene electronic devices. Interestingly, the carbon electrodes made directly on the graphene layer by our approach offer a good ohmic contact compared with the Schottky barriers usually observed on graphene devices using metals as electrodes. Electronic supplementary information (ESI) available: Experimental methods; pictures of a new quartz tube and an aged quartz tube before and after annealing Cu foil at 1025 °C for 2 h; Raman spectrum of as-deposited a-C layer; XPS depth profiles of 25 nm-thick pre-deposited a-C film after annealing in the presence of Cu gaseous molecules and the corresponding transformation ratios; ICP-MS results of Cu gaseous molecules captured by the formation of the Ni-Cu alloy; SEM-EDS results of samples with different thicknesses of pre-deposited a-C films; UV-Vis spectrum of the graphene directly transformed from the 5 nm-thick pre-deposited a-C film on quartz substrate. See DOI: 10.1039/c4nr04627g
Geologic and geomorphic controls of coal development in some Tertiary Rocky Mountain basins, USA
Flores, R.M.
1993-01-01
Previous investigations have not well defined the controls on the development of minable coals in fluvial environments. This study was undertaken to provide a clearer understanding of these controls, particularly in of the lower Tertiary coal-bearing deposits of the Raton and Powder River basins in the Rocky Mountain region of the United States. In this region, large amounts of coals accumulated in swamps formed in the flow-through fluvial systems that infilled these intermontane basins. Extrabasinal and intrabasinal tectonism partly controlled the stratigraphic and facies distributions of minable coal deposits. The regional accumulation of coals was favored by the rapid basin subsidence coupled with minimal uplift of the source area. During these events, coals developed in swamps associated with anastomosed and meandering fluvial systems and alluvial fans. The extensive and high rate of sediment input from these fluvial systems promoted the formation of ombrotrophic, raised swamps, which produced low ash and anomalously thick coals. The petrology and palynology of these coals, and the paleobotany of the associated sediments, suggest that ombrotrophic, raised swamps were common in the Powder River Basin, where the climate during the early Tertiary was paratropical. The paleoecology of these swamps is identical to that of the modern ombrotrophic, raised swamps of the Baram and Mahakam Rivers of Borneo. ?? 1993.
NASA Astrophysics Data System (ADS)
Mousa, MoatazBellah Mahmoud
Atomic Layer Deposition (ALD) is a vapor phase nano-coating process that deposits very uniform and conformal thin film materials with sub-angstrom level thickness control on various substrates. These unique properties made ALD a platform technology for numerous products and applications. However, most of these applications are limited to the lab scale due to the low process throughput relative to the other deposition techniques, which hinders its industrial adoption. In addition to the low throughput, the process development for certain applications usually faces other obstacles, such as: a required new processing mode (e.g., batch vs continuous) or process conditions (e.g., low temperature), absence of an appropriate reactor design for a specific substrate and sometimes the lack of a suitable chemistry. This dissertation studies different aspects of ALD process development for prospect applications in the semiconductor, textiles, and battery industries, as well as novel organic-inorganic hybrid materials. The investigation of a high pressure, low temperature ALD process for metal oxides deposition using multiple process chemistry revealed the vital importance of the gas velocity over the substrate to achieve fast depositions at these challenging processing conditions. Also in this work, two unique high throughput ALD reactor designs are reported. The first is a continuous roll-to-roll ALD reactor for ultra-fast coatings on porous, flexible substrates with very high surface area. While the second reactor is an ALD delivery head that allows for in loco ALD coatings that can be executed under ambient conditions (even outdoors) on large surfaces while still maintaining very high deposition rates. As a proof of concept, part of a parked automobile window was coated using the ALD delivery head. Another process development shown herein is the improvement achieved in the selective synthesis of organic-inorganic materials using an ALD based process called sequential vapor infiltration. Finally, the development of a new ALD chemistry for novel metal deposition is discussed and was used to deposit thin films of tin metal for the first time in literature using an ALD process. The various challenges addressed in this work for the development of different ALD processes help move ALD closer to widespread use and industrial integration.
A simple semi-empirical approach to model thickness of ash-deposits for different eruption scenarios
NASA Astrophysics Data System (ADS)
González-Mellado, A. O.; de La Cruz-Reyna, S.
2010-11-01
The impact of ash-fall on people, buildings, crops, water resources, and infrastructure depends on several factors such as the thickness of the deposits, grain size distribution and others. Preparedness against tephra falls over large regions around an active volcano requires an understanding of all processes controlling those factors, and a working model capable of predicting at least some of them. However, the complexity of tephra dispersion and sedimentation makes the search of an integral solution an almost unapproachable problem in the absence of highly efficient computing facilities due to the large number of equations and unknown parameters that control the process. An alternative attempt is made here to address the problem of modeling the thickness of ash deposits as a primary impact factor that can be easily communicated to the public and decision-makers. We develop a semi-empirical inversion model to estimate the thickness of non-compacted deposits produced by an explosive eruption around a volcano in the distance range 4-150 km from the eruptive source. The model was elaborated from the analysis of the geometric distribution of deposit thickness of 14 world-wide well-documented eruptions. The model was initially developed to depict deposits of potential eruptions of Popocatépetl and Colima volcanoes in México, but it can be applied to any volcano. It has been designed to provide planners and Civil Protection authorities of an accurate perception of the ash-fall deposit thickness that may be expected for different eruption scenarios. The model needs to be fed with a few easy-to-obtain parameters, namely, height of the eruptive column, duration of the explosive phase, and wind speed and direction, and its simplicity allows it to run in any platform, including a personal computers and even a notebook. The results may be represented as tables, two dimensional thickness-distance plots, or isopach maps using any available graphic interface. The model has been tested, with available data from some recent eruptions in México, and permits to generate ash-fall deposit scenarios from new situations, or to recreate past situations, or to superimpose scenarios from eruptions of other volcanoes. The results may be displayed as thickness vs. distance plots, or as deposit-thickness scenarios superimposed on a regional map by means of a visual computer simulator based on a user-friendly built-in computer graphic interface.
Cernohorsky, Ondrej; Grym, Jan; Yatskiv, Roman; ...
2016-08-13
We report on the formation of Pt nanoparticle monolayers by electrophoretic deposition from nonpolar solvents. First, the growth kinetics of Pt nanoparticles prepared by the reverse micelle technique are described in detail. Second, a model of nanoparticle charging in nonpolar media is discussed and methods to control the nanoparticle charging are proposed. Lastly, essential parameters of the electrophoretic deposition process to control the deposition of nanoparticle monolayers are discussed and mechanisms of their formation are analyzed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cernohorsky, Ondrej; Grym, Jan; Yatskiv, Roman
We report on the formation of Pt nanoparticle monolayers by electrophoretic deposition from nonpolar solvents. First, the growth kinetics of Pt nanoparticles prepared by the reverse micelle technique are described in detail. Second, a model of nanoparticle charging in nonpolar media is discussed and methods to control the nanoparticle charging are proposed. Lastly, essential parameters of the electrophoretic deposition process to control the deposition of nanoparticle monolayers are discussed and mechanisms of their formation are analyzed.
NASA Technical Reports Server (NTRS)
Domack, Marcia S.; Taminger, Karen M. B.; Begley, Matthew
2006-01-01
The electron beam freeform fabrication (EBF3) layer-additive manufacturing process has been developed to directly fabricate complex geometry components. EBF3 introduces metal wire into a molten pool created on the surface of a substrate by a focused electron beam. Part geometry is achieved by translating the substrate with respect to the beam to build the part one layer at a time. Tensile properties have been demonstrated for electron beam deposited aluminum and titanium alloys that are comparable to wrought products, although the microstructures of the deposits exhibit features more typical of cast material. Understanding the metallurgical mechanisms controlling mechanical properties is essential to maximizing application of the EBF3 process. In the current study, mechanical properties and resulting microstructures were examined for aluminum alloy 2219 fabricated over a range of EBF3 process variables. Material performance was evaluated based on tensile properties and results were compared with properties of Al 2219 wrought products. Unique microstructures were observed within the deposited layers and at interlayer boundaries, which varied within the deposit height due to microstructural evolution associated with the complex thermal history experienced during subsequent layer deposition. Microstructures exhibited irregularly shaped grains, typically with interior dendritic structures, which were described based on overall grain size, morphology, distribution, and dendrite spacing, and were correlated with deposition parameters. Fracture features were compared with microstructural elements to define fracture paths and aid in definition of basic processing-microstructure-property correlations.
Automated acoustic matrix deposition for MALDI sample preparation.
Aerni, Hans-Rudolf; Cornett, Dale S; Caprioli, Richard M
2006-02-01
Novel high-throughput sample preparation strategies for MALDI imaging mass spectrometry (IMS) and profiling are presented. An acoustic reagent multispotter was developed to provide improved reproducibility for depositing matrix onto a sample surface, for example, such as a tissue section. The unique design of the acoustic droplet ejector and its optimization for depositing matrix solution are discussed. Since it does not contain a capillary or nozzle for fluid ejection, issues with clogging of these orifices are avoided. Automated matrix deposition provides better control of conditions affecting protein extraction and matrix crystallization with the ability to deposit matrix accurately onto small surface features. For tissue sections, matrix spots of 180-200 microm in diameter were obtained and a procedure is described for generating coordinate files readable by a mass spectrometer to permit automated profile acquisition. Mass spectral quality and reproducibility was found to be better than that obtained with manual pipet spotting. The instrument can also deposit matrix spots in a dense array pattern so that, after analysis in a mass spectrometer, two-dimensional ion images may be constructed. Example ion images from a mouse brain are presented.
Llorens, Eugenio; Agustí-Brisach, Carlos; González-Hernández, Ana I; Troncho, Pilar; Vicedo, Begonya; Yuste, Teresa; Orero, Mayte; Ledó, Carlos; García-Agustín, Pilar; Lapeña, Leonor
2017-05-01
Developments of alternatives to the use of chemical pesticides to control pests are focused on the induction of natural plant defences. The study of new compounds based on liquid bioassimilable sulphur and its effect as an inductor of the immune system of plants would provide an alternative option to farmers to enhance plant resistance against pathogen attacks such as powdery mildew. In order to elucidate the efficacy of this compound in tomato against powdery mildew, we tested several treatments: curative foliar, preventive foliar, preventive in soil drench and combining preventive in soil drench and curative foliar. In all cases, treated plants showed lower infection development, better physiological parameters and a higher level of chlorophyll. We also observed better performance in parameters involved in plant resistance such as antioxidant response, callose deposition and hormonal levels. The results indicate that preventive and curative treatments can be highly effective for the prevention and control of powdery mildew in tomato plants. Foliar treatments are able to stop the pathogen development when they are applied as curative. Soil drench treatments induce immune response mechanisms of plants, increasing significantly callose deposition and promoting plant development. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Method for measuring and controlling beam current in ion beam processing
Kearney, Patrick A.; Burkhart, Scott C.
2003-04-29
A method for producing film thickness control of ion beam sputter deposition films. Great improvements in film thickness control is accomplished by keeping the total current supplied to both the beam and suppressor grids of a radio frequency (RF) in beam source constant, rather than just the current supplied to the beam grid. By controlling both currents, using this method, deposition rates are more stable, and this allows the deposition of layers with extremely well controlled thicknesses to about 0.1%. The method is carried out by calculating deposition rates based on the total of the suppressor and beam currents and maintaining the total current constant by adjusting RF power which gives more consistent values.
Impacts of the 2004 Indian ocean tsunami on the southwest coasts of Sri Lanka
Morton, Robert A.; Goff, John A.; Nichol, Scott L.
2007-01-01
The 2004 Indian Ocean tsunami caused major landscape changes along the southwest coasts of Sri Lanka that were controlled by the flow, natural topography and bathymetry, and anthropogenic modifications of the terrain. Landscape changes included substantial beach erosion and scouring of return-flow channels near the beach, and deposition of sand sheets across the narrow coastal plain. In many areas tsunami deposits also included abundant building rubble due to the extensive destruction of homes and businesses in areas of dense development. Trim lines and flow directions confirmed that shoreline orientation and wave refraction from embayments and rock-anchored headlands locally focused the flow and amplified the inundation. Tsunami deposits were 1 to 36 cm thick but most were less than 25 cm thick. Deposit thickness depended partly on antecedent topography. The deposits were composed of coarse to medium sand organized into a few sets of plane parallel laminae that exhibited overall upward fining and landward thinning trends.
NASA Astrophysics Data System (ADS)
Dutta, Aniruddha; Yuan, Biao; Clukay, Christopher J.; Grabill, Christopher N.; Heinrich, Helge; Bhattacharya, Aniket; Kuebler, Stephen M.
2012-02-01
We report on the quantitative analysis of electrolessly deposited Au and Ag nanoparticles (NPs) on SU8 polymer with the help of High-Angle Annular Dark-Field Scanning Transmission Electron Microscopy (HAADF-STEM) in tilt series. Au NPs act as nucleating agents for the electroless deposition of silver. Au NPs were prepared by attachingAu^3+cations to amine functionalized SU8 polymeric surfaces and then reducing it with aqueous NaBH4. The nanoscale morphology of the deposited NPs on the surface of polymer has been studied from the dark field TEM cross sectional images. Ag NPs were deposited on the cross-linked polymeric surface from a silver citrate solution reduced by hydroquinone. HAADF-STEM enables us to determine the distances between the NPs and their exact locations at and near the surface. The particle distribution, sizes and densities provide us with the data necessary to control the parameters for the development of the electroless deposition technique for emerging nanoscale technologies.
Lee, Wi Hyoung; Min, Honggi; Park, Namwoo; Lee, Junghwi; Seo, Eunsuk; Kang, Boseok; Cho, Kilwon; Lee, Hwa Sung
2013-08-28
Research into printing techniques has received special attention for the commercialization of cost-efficient organic electronics. Here, we have developed a capillary pen printing technique to realize a large-area pattern array of organic transistors and systematically investigated self-organization behavior of printed soluble organic semiconductor ink. The capillary pen-printed deposits of organic semiconductor, 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS_PEN), was well-optimized in terms of morphological and microstructural properties by using ink with mixed solvents of chlorobenzene (CB) and 1,2-dichlorobenzene (DCB). Especially, a 1:1 solvent ratio results in the best transistor performances. This result is attributed to the unique evaporation characteristics of the TIPS_PEN deposits where fast evaporation of CB induces a morphological evolution at the initial printed position, and the remaining DCB with slow evaporation rate offers a favorable crystal evolution at the pinned position. Finally, a large-area transistor array was facilely fabricated by drawing organic electrodes and active layers with a versatile capillary pen. Our approach provides an efficient printing technique for fabricating large-area arrays of organic electronics and further suggests a methodology to enhance their performances by microstructural control of the printed organic semiconducting deposits.
Facile electrochemical synthesis of antimicrobial TiO2 nanotube arrays
Zhao, Yu; Xing, Qi; Janjanam, Jagadeesh; He, Kun; Long, Fei; Low, Ke-Bin; Tiwari, Ashutosh; Zhao, Feng; Shahbazian-Yassar, Reza; Friedrich, Craig; Shokuhfar, Tolou
2014-01-01
Infection-related complications have been a critical issue for the application of titanium orthopedic implants. The use of Ag nanoparticles offers a potential approach to incorporate antimicrobial properties into the titanium implants. In this work, a novel and simple method was developed for synthesis of Ag (II) oxide deposited TiO2 nanotubes (TiNTs) using electrochemical anodization followed by Ag electroplating processes in the same electrolyte. The quantities of AgO nanoparticles deposited in TiNT were controlled by selecting different electroplating times and voltages. It was shown that AgO nanoparticles were crystalline and distributed throughout the length of the nanotubes. Inductively coupled plasma mass spectrometry tests showed that the quantities of released Ag were less than 7 mg/L after 30 days at 37°C. Antimicrobial assay results show that the AgO-deposited TiNTs can effectively kill the Escherichia coli bacteria. Although the AgO-deposited TiNTs showed some cytotoxicity, it should be controllable by optimization of the electroplating parameters and incorporation of cell growth factor. The results of this study indicated that antimicrobial properties could be added to nanotextured medical implants through a simple and cost effective method. PMID:25429214
High Performance Piezoelectric Thin Films for Shape Control in Large Inflatable Structures
NASA Technical Reports Server (NTRS)
Neurgaonkar, R. R.; Nelson, J. G.
1999-01-01
The objective of this research and development program was to develop PbZr(1-x)Ti(x)O3 (PZT) and Pb(1-x)Ba(x)Nb2O6 (PBN) materials with large piezoelectric response which are suitable for shape control in large inflatable structures. Two approaches were to be considered: (1) direct deposition of PZT and PBN films on flexible plastic or thin metal foil substrates, and (2) deposition on Si followed by fabrication of hybrid structures on mylar or kapton. Testing in shape control concepts was carried out at JPL and based on their results, the required modifications were made in the final film compositions and deposition techniques. The program objective was to identify and then optimize piezoelectric materials for NASA shape control applications. This involved the bulk piezoelectric and photovoltaic responses and the compatibility of the thin films with appropriate substrate structures. Within the PZT system, Rockwell has achieved the highest reported piezoelectric coefficient (d(sub 33) greater than 100 pC/N) of any ceramic composition. We used this experience in piezoelectric technology to establish compositions that can effectively address the issues of this program. The performance of piezoelectric thin films depends directly on d(sub ij) and Epsilon. The challenge was to find PZT compositions that maintained high d(sub ij) and Epsilon, while also exhibiting a large photovoltaic effect and integrate thin films of this composition into the system structure necessary to meet shape control applications. During the course of this program, several PZT and PLZT compositions were identified that meet these requirements. Two such compositions were successfully used in electrical and optical actuation studies of thin film structures.
High Performance Piezoelectric Thin Films for Shape Control in Large Inflatable Structures
NASA Technical Reports Server (NTRS)
Neurgaonkar, R. R.; Nelson, J. G.
1999-01-01
The objective of this research and development program was to develop PbZr(1-x)Ti(x)O3 (PZT) and Pb(1-x)Ba(x)Nb2O6 (PBN) materials with large piezoelectric response which are suitable for shape control in large inflatable structures. Two approaches were to be considered: (1) direct deposition of PZT and PBN films on flexible plastic or thin metal foil substrates, and (2) deposition on Si followed by fabrication of hybrid structures on mylar or kapton. Testing in shape control concepts was carried out at JPL and based on their results, the required modifications were made in the final film compositions and deposition techniques. The program objective was to identify and then optimize piezoelectric materials for NASA shape control applications. This involved the bulk piezoelectric and photovoltaic responses and the compatibility of the thin films with appropriate substrate structures. Within the PZT system, Rockwell has achieved the highest reported piezoelectric coefficient (d(sub 33) greater than 100 pC/N) of any ceramic composition. We used this experience in piezoelectric technology to establish compositions that can effectively address the issues of this program. The performance of piezoelectric thin films depends directly on d(sub ij) and epsilin. The challenge was to find PZT compositions that maintained high d(sub ij) and epsilon, while also exhibiting a large photovoltaic effect and integrate thin films of this composition into the system structure necessary to meet shape control applications. During the course of this program, several PZT and PLZT compositions were identified that meet these requirements. Two such compositions were successfully used in electrical and optical actuation studies of thin film structures.
Optical Metrology for CIGS Solar Cell Manufacturing and its Cost Implications
NASA Astrophysics Data System (ADS)
Sunkoju, Sravan Kumar
Solar energy is a promising source of renewable energy which can meet the demand for clean energy in near future with advances in research in the field of photovoltaics and cost reduction by commercialization. Availability of a non-contact, in-line, real time robust process control strategies can greatly aid in reducing the gap between cell and module efficiencies, thereby leading to cost-effective large-scale manufacturing of high efficiency CIGS solar cells. In order to achieve proper process monitoring and control for the deposition of the functional layers of CuIn1-xGaxSe 2 (CIGS) based thin film solar cell, optical techniques such as spectroscopic reflectometry and polarimetry are advantageous because they can be set up in an unobtrusive manner in the manufacturing line, and collect data in-line and in-situ. The use of these techniques requires accurate optical models that correctly represent the properties of the layers being deposited. In this study, Spectroscopic ellipsometry (SE) has been applied for the characterization of each individual stage of CIGS layers deposited using the 3-stage co-evaporation process along with the other functional layers. Dielectric functions have been determined for the energy range from 0.7 eV to 5.1 eV. Critical-point line-shape analysis was used in this study to determine the critical point energies of the CIGS based layers. To control the compositional and thickness uniformity of all the functional layers during the fabrication of CIGS solar cells over large areas, multilayer photovoltaics (PV) stack optical models were developed with the help of extracted dielectric functions. In this study, mapping capability of RC2 spectroscopic ellipsometer was used to map all the functional layer thicknesses of a CIGS solar cell in order to probe the spatial non-uniformities that can affect the performance of a cell. The optical functions for each of the stages of CIGS 3-stage deposition process along with buffer layer and transparent conducting oxide (TCO) bi-layer, thus derived were used in a fiber optic-based spectroscopic reflectometry optical monitoring system installed in the pilot line at the PVMC's Halfmoon facility. Results obtained from this study show that the use of regular fiber optics, instead of polarization-maintaining fiber optics, is sufficient for the purpose of process monitoring. Also, the technique does not need to be used "in-situ", but the measurements can be taken in-line, and are applicable to a variety of deposition techniques used for different functional layers deposited on rigid or flexible substrates. In addition, effect of Cu concentration on the CIGS optical properties has been studied. Mixed CIGS/Cu2-xSe phase was observed at the surface at the end of the second stage of 3-stage deposition process, under Cu-rich conditions. A significant change in optical behavior of CIGS due to Cu2-xSe at the surface was observed under Cu-rich conditions, which can be used as end-point detection method to move from 2nd stage to 3rd stage in the deposition process. Developed optical functions were applied to in-line reflectance measurements not only to identify the Cu2-xSe phase at the surface but also to measure the thickness of the mixed CIGS/Cu2-xSe layer. This spectroscopic reflectometry based in-line process control technique can be used for end-point detection as well as to control thickness during the preparation of large area CIGS films. These results can assist in the development of optical process-control tools for the manufacturing of high quality CIGS based photovoltaic cells, increasing the uptime and yield of the production line. Finally, to understand the cost implications, low cost potential of two different deposition technologies has been studied on both rigid and flexible substrates with the help of cost analysis. Cost advantages of employing a contactless optics based process control technique have been investigated in order to achieve a low cost of < 0.5 $/W for CIGS module production. Based on cost analysis, one of the best strategies for achieving the low cost targets would be increasing manufacturing throughput, using roll-to-roll thin-film module manufacturing, with co-evaporation and chemical bath deposition processes for absorber and buffer layer respectively, while applying a low-cost process control technique such as spectroscopic reflectometry to improve module efficiencies and maintain high yield.
NASA Astrophysics Data System (ADS)
Dennis, R. L.; Napelenok, S. L.; Linker, L. C.; Dudek, M.
2012-12-01
Estuaries are adversely impacted by excess reactive nitrogen, Nr, from many point and nonpoint sources, including atmospheric deposition to the watershed and the estuary itself as a nonpoint source. For effective mitigation, trading among sources of Nr is being considered. The Chesapeake Bay Program is working to bring air into its trading scheme, which requires some special air computations. Airsheds are much larger than watersheds; thus, wide-spread or national emissions controls are put in place to achieve major reductions in atmospheric Nr deposition. The tributary nitrogen load reductions allocated to the states to meet the TMDL target for Chesapeake Bay are large and not easy to attain via controls on water point and nonpoint sources. It would help the TMDL process to take advantage of air emissions reductions that would occur with State Implementation Plans that go beyond the national air rules put in place to help meet national ambient air quality standards. There are still incremental benefits from these local or state-level controls on atmospheric emissions. The additional air deposition reductions could then be used to offset water quality controls (air-water trading). What is needed is a source to receptor transfer function that connects air emissions from a state to deposition to a tributary. There is a special source attribution version of the Community Multiscale Air Quality model, CMAQ, (termed DDM-3D) that can estimate the fraction of deposition contributed by labeled emissions (labeled by source or region) to the total deposition across space. We use the CMAQ DDM-3D to estimate simplified state-level delta-emissions to delta-atmospheric-deposition transfer coefficients for each major emission source sector within a state, since local air regulations are promulgated at the state level. The CMAQ 4.7.1 calculations are performed at a 12 km grid size over the airshed domain covering Chesapeake Bay for 2020 CAIR emissions. For results, we first present the fractional contributions of Bay state NOx emissions to the oxidized nitrogen deposition to the Chesapeake Bay watershed and the Bay. We then present example tables of the fractional contributions of Bay state NOx emissions from mobile, off road, power plant and industrial emissions to key tributaries: the Potomac, Susquehanna and James Rivers. Finally, we go through an example for a mobile source NOx reductions in Pennsylvania to show how the tributary load offset would be calculated using the factors generated by CMAQ DDM-3D.
Controls on the quality of Miocene reservoirs, southern Gulf of Mexico
NASA Astrophysics Data System (ADS)
Gutiérrez Paredes, Hilda Clarisa; Catuneanu, Octavian; Hernández Romano, Ulises
2018-01-01
An investigation was conducted to determine the main controls on the reservoir quality of the middle and upper Miocene sandstones in the southern Gulf of Mexico based on core descriptions, thin section petrography and petrophysical data; as well as to explore the possible link between the sequence stratigraphic framework, depositional facies and diagenetic alterations. The Miocene deep marine sandstones are attributed to the falling-stage, lowstand, and transgressive systems tracts. The middle Miocene falling-stage systems tract includes medium-to very fine-grained, and structureless sandstones deposited in channels and frontal splays, and muddy sandstones, deposited in lobes of debrites. The lowstand and transgressive systems tracts consist of medium-to very fine-grained massive and normally graded sandstones deposited in channel systems within frontal splay complexes. The upper Miocene falling-stage systems tract includes medium-to coarse-grained, structureless sandstones deposited in channel systems and frontal splay, as well as lobes of debrites formed by grain flows and hybrid-flow deposits. The lowstand and transgressive systems tracts include fine-grained sandstones deposited in overbank deposits. The results reveal that the depositional elements with the best reservoir quality are the frontal splays deposited during the falling-stage system tracts. The reservoir quality of the Miocene sandstones was controlled by a combination of depositional facies, sand composition and diagenetic factors (mainly compaction and calcite cementation). Sandstone texture, controlled primarily by depositional facies appears more important than sandstone composition in determining reservoir quality; and compaction was more important than cementation in porosity destruction. Compaction was stopped, when complete calcite cementation occurred.
Scalable Low-Cost Fabrication of Disposable Paper Sensors for DNA Detection
2015-01-01
Controlled integration of features that enhance the analytical performance of a sensor chip is a challenging task in the development of paper sensors. A critical issue in the fabrication of low-cost biosensor chips is the activation of the device surface in a reliable and controllable manner compatible with large-scale production. Here, we report stable, well-adherent, and repeatable site-selective deposition of bioreactive amine functionalities and biorepellant polyethylene glycol-like (PEG) functionalities on paper sensors by aerosol-assisted, atmospheric-pressure, plasma-enhanced chemical vapor deposition. This approach requires only 20 s of deposition time, compared to previous reports on cellulose functionalization, which takes hours. A detailed analysis of the near-edge X-ray absorption fine structure (NEXAFS) and its sensitivity to the local electronic structure of the carbon and nitrogen functionalities. σ*, π*, and Rydberg transitions in C and N K-edges are presented. Application of the plasma-processed paper sensors in DNA detection is also demonstrated. PMID:25423585
NASA Technical Reports Server (NTRS)
Rice, Melissa S.; Gupta, Sanjeev; Bell, James F., III; Warner, Nicholas H.
2011-01-01
Eberswalde crater was selected as a candidate landing site for the Mars Science Laboratory (MSL) mission based on the presence of a fan-shaped sedimentary deposit interpreted as a delta. We have identified and mapped five other candidate fluvio -deltaic systems in the crater, using images and digital terrain models (DTMs) derived from the Mars Reconnaissance Orbiter (MRO) High Resolution Imaging Science Experiment (HiRISE) and Context Camera (CTX). All of these systems consist of the same three stratigraphic units: (1) an upper layered unit, conformable with (2) a subpolygonally fractured unit, unconformably overlying (3) a pitted unit. We have also mapped a system of NNE-trending scarps interpreted as dip-slip faults that pre-date the fluvial -lacustrine deposits. The post-impact regional faulting may have generated the large-scale topography within the crater, which consists of a Western Basin, an Eastern Basin, and a central high. This topography subsequently provided depositional sinks for sediment entering the crater and controlled the geomorphic pattern of delta development.
Scalable Low-Cost Fabrication of Disposable Paper Sensors for DNA Detection
Gandhiraman, Ram P.; Nordlund, Dennis; Jayan, Vivek; ...
2014-11-25
Controlled integration of features that enhance the analytical performance of a sensor chip is a challenging task in the development of paper sensors. A critical issue in the fabrication of low-cost biosensor chips is the activation of the device surface in a reliable and controllable manner compatible with large-scale production. Here, we report stable, well-adherent, and repeatable site-selective deposition of bioreactive amine functionalities and biorepellant polyethylene glycol-like (PEG) functionalities on paper sensors by aerosol-assisted, atmospheric-pressure, plasma-enhanced chemical vapor deposition. This approach requires only 20 s of deposition time, compared to previous reports on cellulose functionalization, which takes hours. We presentmore » a detailed analysis of the near-edge X-ray absorption fine structure (NEXAFS) and its sensitivity to the local electronic structure of the carbon and nitrogen functionalities. σ*, π*, and Rydberg transitions in C and N K-edges. Lastly, application of the plasma-processed paper sensors in DNA detection is also demonstrated.« less
Atmospheric deposition having been one of the major source of Pb in Jiaozhou Bay
NASA Astrophysics Data System (ADS)
Yang, Dongfang; Miao, Zhenqing; Zhang, Xiaolong; Wang, Qi; Li, Haixia
2018-03-01
Many marine bays have been polluted by Pb due to the rapid development of industry, and identifying the major source of Pb is essential to pollution control. This paper analyzed the distribution and pollution source of Pb in Jiaozhou Bay in 1988. Results showed that Pb contents in surface waters in Jiaozhou Bay in April, July and October 1988 were 5.52-24.61 μg L‑1, 7.66-38.62 μg L‑1 and 6.89-19.30 μg L‑1, respectively. The major Pb sources in this bay were atmospheric deposition, and marine current, whose source strengths were 19.30-24.61μg L‑1 and 38.62 μg L‑1, respectively. Atmospheric deposition had been one of the major Pb sources in Jiaozhou Bay, and the source strengths were stable and strong. The pollution level of Pb in this bay in 1988 was moderate to heavy, and the source control measurements were necessary.
NASA Astrophysics Data System (ADS)
Santospirito, S. P.; Słyk, Kamil; Luo, Bin; Łopatka, Rafał; Gilmour, Oliver; Rudlin, John
2013-05-01
Detection of defects in Laser Powder Deposition (LPD) produced components has been achieved by laser thermography. An automatic in-process NDT defect detection software system has been developed for the analysis of laser thermography to automatically detect, reliably measure and then sentence defects in individual beads of LPD components. A deposition path profile definition has been introduced so all laser powder deposition beads can be modeled, and the inspection system has been developed to automatically generate an optimized inspection plan in which sampling images follow the deposition track, and automatically control and communicate with robot-arms, the source laser and cameras to implement image acquisition. Algorithms were developed so that the defect sizes can be correctly evaluated and these have been confirmed using test samples. Individual inspection images can also be stitched together for a single bead, a layer of beads or multiple layers of beads so that defects can be mapped through the additive process. A mathematical model was built up to analyze and evaluate the movement of heat throughout the inspection bead. Inspection processes were developed and positional and temporal gradient algorithms have been used to measure the flaw sizes. Defect analysis is then performed to determine if the defect(s) can be further classified (crack, lack of fusion, porosity) and the sentencing engine then compares the most significant defect or group of defects against the acceptance criteria - independent of human decisions. Testing on manufactured defects from the EC funded INTRAPID project has successful detected and correctly sentenced all samples.
NASA Astrophysics Data System (ADS)
Grosjean, Anne-Sabine; Vennin, Emmanuelle; Olivier, Nicolas; Caravaca, Gwénaël; Thomazo, Christophe; Fara, Emmanuel; Escarguel, Gilles; Bylund, Kevin G.; Jenks, James F.; Stephen, Daniel A.; Brayard, Arnaud
2018-01-01
The Early Triassic biotic recovery following the end-Permian mass extinction is well documented in the Smithian-Spathian Thaynes Group of the western USA basin. This sedimentary succession is commonly interpreted as recording harsh conditions of various shallow marine environments where microbial structures flourished. However, recent studies questioned the relevance of the classical view of long-lasting deleterious post-crisis conditions and suggested a rapid diversification of some marine ecosystems during the Early Triassic. Using field and microfacies analyses, we investigate a well-preserved Early Triassic marine sedimentary succession in Lower Weber Canyon (Utah, USA). The identification of microbial structures and their depositional settings provide insights on factors controlling their morphologies and distribution. The Lower Weber Canyon sediments record the vertical evolution of depositional environments from a middle Smithian microbial and dolosiliciclastic peritidal system to a late Smithian-early Spathian bioclastic, muddy mid ramp. The microbial deposits are interpreted as Microbially Induced Sedimentary Structures (MISS) that developed either (1) in a subtidal mid ramp where microbial wrinkles and chips are associated with megaripples characterizing hydrodynamic conditions of lower flow regime, or (2) in protected areas of inter- to subtidal inner ramp where they formed laminae and domal structures. Integrated with other published data, our investigations highlight that the distribution of these microbial structures was influenced by the combined effects of bathymetry, hydrodynamic conditions, lithology of the substrat physico-chemical characteristics of the depositional environment and by the regional relative sea-level fluctuations. Thus, we suggest that local environmental factors and basin dynamics primarily controlled the modalities of microbial development and preservation during the Early Triassic in the western USA basin.
Mineral deposit densities for estimating mineral resources
Singer, Donald A.
2008-01-01
Estimates of numbers of mineral deposits are fundamental to assessing undiscovered mineral resources. Just as frequencies of grades and tonnages of well-explored deposits can be used to represent the grades and tonnages of undiscovered deposits, the density of deposits (deposits/area) in well-explored control areas can serve to represent the number of deposits. Empirical evidence presented here indicates that the processes affecting the number and quantity of resources in geological settings are very general across many types of mineral deposits. For podiform chromite, porphyry copper, and volcanogenic massive sulfide deposit types, the size of tract that geologically could contain the deposits is an excellent predictor of the total number of deposits. The number of mineral deposits is also proportional to the type’s size. The total amount of mineralized rock is also proportional to size of the permissive area and the median deposit type’s size. Regressions using these variables provide a means to estimate the density of deposits and the total amount of mineralization. These powerful estimators are based on analysis of ten different types of mineral deposits (Climax Mo, Cuban Mn, Cyprus massive sulfide, Franciscan Mn, kuroko massive sulfide, low-sulfide quartz-Au vein, placer Au, podiform Cr, porphyry Cu, and W vein) from 108 permissive control tracts around the world therefore generalizing across deposit types. Despite the diverse and complex geological settings of deposit types studied here, the relationships observed indicate universal controls on the accumulation and preservation of mineral resources that operate across all scales. The strength of the relationships (R 2=0.91 for density and 0.95 for mineralized rock) argues for their broad use. Deposit densities can now be used to provide a guideline for expert judgment or used directly for estimating the number of most kinds of mineral deposits.
Influence of processing factors on the physical metallurgy of LENS deposited 316L stainless steel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Nancy Y. C.; Yee, Joshua Keng; Zheng, Baolong
2015-12-01
Directed energy deposition (DED) is a type of additive manufacturing (AM) process; Laser Engineered Net Shaping (LENS) is a commercial DED process. We are developing LENS technology for printing 316L stainless steel components for structural applications. It is widely known that material properties of AM components are process dependent, attributed to different molten metal incorporation and thermal transport mechanisms. This investigation focuses on process-structure-property relationships for LENS deposits for enabling the process development and optimization to control material property. We observed interactions among powder melting, directional molten metal flow, and the molten metal solidification. The resultant LENS induced microstructure foundmore » to be dictated by the process-related characteristics, i.e., interpass boundaries from multi-layer deposition, molten metal flow lines, and solidification dendrite cells. Each characteristic bears the signature of the unique localized thermal history during deposition. Correlation observed between localized thermal transport, resultant microstructure, and its subsequent impact on the mechanical behavior of the current 316L is discussed. We also discuss how the structures of interpass boundaries are susceptible to localized recrystallization, grain growth and/or defect formation, and therefore, heterogeneous mechanical properties due to the adverse presence of unmelted powder inclusions.« less
Laser controlled deposition of metal microstructures via nondiffracting Bessel beam illumination
NASA Astrophysics Data System (ADS)
Drampyan, Rafael; Leonov, Nikita; Vartanyan, Tigran
2016-04-01
The technique of the laser controlled deposition of sodium and rubidium deposits on the sapphire substrate is presented. The metals were deposited on the clean sapphire substrate from the vapor phase contained in the evacuated and sealed cell. We use an axicon to produce a non-diffracting Bessel beam out of the beam got from the cw diode laser with 200 mW power at the wavelength of 532 nm. After 30 minutes of the laser-controlled deposition the substrates were examined in the optical microscope. The obtained metal deposits form the sharp-cut circles with the pitch of 10 μm, coincident with the tens of dark rings of the Bessel beam. Reduction of the laser power leads to the build up of the continuous metal film over the whole substrate.
NASA Astrophysics Data System (ADS)
Ten, Jyi Sheuan; Sparkes, Martin; O'Neill, William
2017-02-01
A rapid, mask-less deposition technique for the deposition of conductive tracks to nano- and micro-devices has been developed. The process uses a 405 nm wavelength laser diode for the direct deposition of tungsten tracks on silicon substrates via laser assisted chemical vapour deposition. Unlike lithographic processes this technique is single step and does not require chemical masks that may contaminate the substrate. To demonstrate the process, tungsten was deposited from tungsten hexacarbonyl precursors to produce conductive tracks with widths of 1.7-28 μm and heights of 0.05-35 μm at laser scan speeds up to 40 μm/s. The highest volumetric deposition rate achieved is 1×104 μm3/s, three orders of magnitude higher than that of focused ion beam deposition and on par with a 515 nm wavelength argon ion laser previously reported as the laser source. The microstructure and elemental composition of the deposits are comparable to that of largearea chemical vapour deposition methods using the same chemical precursor. The contact resistance and track resistance of the deposits has been measured using the transfer length method to be 205 μΩ cm. The deposition temperature has been estimated at 334 °C from a laser heat transfer model accounting for temperature dependent optical and physical properties of the substrate. The peak temperatures achieved on silicon and other substrates are higher than the thermal dissociation temperature of numerous precursors, indicating that this technique can also be used to deposit other materials such as gold and platinum on various substrates.
McNamara, Bruce K; O'Hara, Matthew J; Casella, Andrew M; Carter, Jennifer C; Addleman, R Shane; MacFarlan, Paul J
2016-07-01
We report a convenient method for the generation of volatile uranium hexafluoride (UF6) from solid uranium oxides and other U compounds, followed by uniform deposition of low levels of UF6 onto sampling coupons. Under laminar flow conditions, UF6 is shown to interact with surfaces within a fixed reactor geometry to a highly predictable degree. We demonstrate the preparation of U deposits that range between approximately 0.01 and 500ngcm(-2). The data suggest the method can be extended to creating depositions at the sub-picogramcm(-2) level. The isotopic composition of the deposits can be customized by selection of the U source materials and we demonstrate a layering technique whereby two U solids, each with a different isotopic composition, are employed to form successive layers of UF6 on a surface. The result is an ultra-thin deposit that bears an isotopic signature that is a composite of the two U sources. The reported deposition method has direct application to the development of unique analytical standards for nuclear safeguards and forensics. Further, the method allows access to very low atomic or molecular coverages of surfaces. Copyright © 2016 Elsevier B.V. All rights reserved.
Infrared control coating of thin film devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berland, Brian Spencer; Stowell, Jr., Michael Wayne; Hollingsworth, Russell
Systems and methods for creating an infrared-control coated thin film device with certain visible light transmittance and infrared reflectance properties are disclosed. The device may be made using various techniques including physical vapor deposition, chemical vapor deposition, thermal evaporation, pulsed laser deposition, sputter deposition, and sol-gel processes. In particular, a pulsed energy microwave plasma enhanced chemical vapor deposition process may be used. Production of the device may occur at speeds greater than 50 Angstroms/second and temperatures lower than 200.degree. C.
Li, K; Qiao, J; Zhao, L; Dong, S; Ou, D; Wang, J; Wang, H; Xu, T
2006-11-01
Right ventricular hypertrophy and failure is an important step in the development of ascites syndrome (AS) in broiler chickens. Cytoplasmic calcium concentration is a major regulator of cardiac contractile function and various physiological processes in cardiac muscle cells. The purpose of this study was to measure the right ventricular pressure and investigate the precise ultrastructural location of Ca(2+) and Ca(2+)-ATPase in the right ventricular myocardium of chickens with AS induced by low ambient temperature. The results showed that the right ventricular diastolic pressure of ascitic broilers was significantly higher than that of control broilers (P < 0.01), and the maximum change ratio of right intraventricular pressure (RV +/- dp/dt(max)) of ascitic broilers was significantly lower than that of the controls (P < 0.01). Extensively increased calcium deposits were observed in the right ventricular myocardium of ascitic broilers, whereas in the age-matched control broilers, calcium deposits were much less. The Ca(2+)-ATPase reactive products were obviously found on the sarcoplasmic reticulum and mitochondrial membrane of the control right ventricular myocardium, but rarely observed in the ascitic broilers. The data suggest that in ascitic broilers there is the right ventricular diastolic dysfunction, in which the overload of intracellular calcium and the decreased Ca(2+)-ATPase activity might be the important factors.
Development and qualification of additively manufactured parts for space
NASA Astrophysics Data System (ADS)
O'Brien, Michael J.
2018-02-01
Additive manufacturing (commonly called "3D printing") fabricates the desired final part directly from the input CAD (Computer Aided Design) file by depositing and fusing layer upon layer of the source material. New engineering designs are possible in which a single optimized part with novel topology can replace several traditional parts. The complex physics of metal deposition leads to variations in quality and to new flaws and residual stresses not seen in traditional manufacturing. Additive manufacturing currently has gaps in knowledge. Mission assurance will require: qualification and certification standards; sharing of data in handbooks; predictive models relating processing, microstructure and properties; and development of closed loop process control and non-destructive evaluation to reduce variability.
Fundamentals of Mold Free Casting: Experimental and Computational Studies
NASA Technical Reports Server (NTRS)
Tryggvason, Gretar; Ceccio, Steven
1997-01-01
Researchers are developing the technology of 'Ballistic Particle Manufacturing' (BPM) in which individual drops are precisely layered onto a substrate, and the drops are deposited so as to prevent splatting. These individual drops will ultimately be combined to form a net-shape, three-dimensional object. Our understanding of controlled drop deposition as applied to BPM is far from complete. Process parameters include the size and temperature of the liquid metal drop, its impact velocity and trajectory, and the condition and temperature of the substrate. Quantitative knowledge of the fluid mechanics and heat transfer of drop deposition and solidification are necessary to fully optimize the manufacturing process and to control the material microstructure of the final part. The object of this study is to examine the dynamics of liquid metal drops as they impinge upon a solid surface and solidify under conditions consistent with BPM (i.e. conditions which produce non-splatting drops). A program of both numerical simulations and experiments will be conducted. Questions this study will address include the following: How do the deformation and solidification of the drop depend on the properties of the fluid drop and the solid substrate? How does the presence of previously deposited drops affect the impingement and solidification process? How does the impingement of the new drop affect already deposited material? How does the cooling rate and solidification of the drops influence the material microstructure?
Vangelista, Silvia; Cinquanta, Eugenio; Martella, Christian; Alia, Mario; Longo, Massimo; Lamperti, Alessio; Mantovan, Roberto; Basset, Francesco Basso; Pezzoli, Fabio; Molle, Alessandro
2016-04-29
Large-scale integration of MoS2 in electronic devices requires the development of reliable and cost-effective deposition processes, leading to uniform MoS2 layers on a wafer scale. Here we report on the detailed study of the heterogeneous vapor-solid reaction between a pre-deposited molybdenum solid film and sulfur vapor, thus resulting in a controlled growth of MoS2 films onto SiO2/Si substrates with a tunable thickness and cm(2)-scale uniformity. Based on Raman spectroscopy and photoluminescence, we show that the degree of crystallinity in the MoS2 layers is dictated by the deposition temperature and thickness. In particular, the MoS2 structural disorder observed at low temperature (<750 °C) and low thickness (two layers) evolves to a more ordered crystalline structure at high temperature (1000 °C) and high thickness (four layers). From an atomic force microscopy investigation prior to and after sulfurization, this parametrical dependence is associated with the inherent granularity of the MoS2 nanosheet that is inherited by the pristine morphology of the pre-deposited Mo film. This work paves the way to a closer control of the synthesis of wafer-scale and atomically thin MoS2, potentially extendable to other transition metal dichalcogenides and hence targeting massive and high-volume production for electronic device manufacturing.
Control of surface defects on plasma-MIG hybrid welds in cryogenic aluminum alloys
NASA Astrophysics Data System (ADS)
Lee, Hee-Keun; Chun, Kwang-San; Park, Sang-Hyeon; Kang, Chung-Yun
2015-07-01
Lately, high production rate welding processes for Al alloys, which are used as LNG FPSO cargo containment system material, have been developed to overcome the limit of installation and high rework rates. In particular, plasma-metal inert gas (MIG) hybrid (PMH) welding can be used to obtain a higher deposition rate and lower porosity, while facilitating a cleaning effect by preheating and post heating the wire and the base metal. However, an asymmetric undercut and a black-colored deposit are created on the surface of PMH weld in Al alloys. For controlling the surface defect formation, the wire feeding speed and nozzle diameter in the PMH weld was investigated through arc phenomena with high-speed imaging and metallurgical analysis.
Porphyry copper deposit density
Singer, Donald A.; Berger, Vladimir; Menzie, W. David; Berger, Byron R.
2005-01-01
Estimating numbers of undiscovered mineral deposits has been a source of unease among economic geologists yet is a fundamental task in considering future supplies of resources. Estimates can be based on frequencies of deposits per unit of permissive area in control areas around the world in the same way that grade and tonnage frequencies are models of sizes and qualities of undiscovered deposits. To prevent biased estimates it is critical that, for a particular deposit type, these deposit density models be internally consistent with descriptive and grade and tonnage models of the same type. In this analysis only deposits and prospects that are likely to be included in future grade and tonnage models are employed, and deposits that have mineralization or alteration separated by less than an arbitrary but consistent distance—2 km for porphyry copper deposits—are combined into one deposit. Only 286 deposits and prospects that have more than half of the deposit not covered by postmineral rocks, sediments, or ice were counted.Nineteen control areas were selected and outlined along borders of hosting magmatic arc terranes based on three main features: (1) extensive exploration for porphyry copper deposits, (2) definable geologic settings of the porphyry copper deposits in island and continental volcanic-arc subduction-boundary zones, and (3) diversity of epochs of porphyry copper deposit formation.Porphyry copper deposit densities vary from 2 to 128 deposits per 100,000 km2 of exposed permissive rock, and the density histogram is skewed to high values. Ninety percent of the control areas have densities of four or more deposits, 50 percent have densities of 15 or more deposits, and 10 percent have densities of 35 or more deposits per 100,000 km2. Deposit density is not related to age or depth of emplacement. Porphyry copper deposit density is inversely related to the exposed area of permissive rock. The linear regression line and confidence limits constructed with the 19 control areas can be used to estimate the number of undiscovered deposits, given the size of a permissive area. In an example of the use of the equations, we estimate a 90 percent chance of at least four, a 50 percent chance of at least 11, and a 10 percent chance of at least 34 undiscovered porphyry copper deposits in the exposed parts of the Andean belt of Antarctica, which has no known deposits in a permissive area of about 76,000 km2. Measures of densities of deposits presented here allow rather simple yet robust estimation of the number of undiscovered porphyry copper deposits in exposed or covered permissive terranes.
NASA Astrophysics Data System (ADS)
Miller, James Henry
This report describes the research effort that was undertaken to develop and understand processing techniques for the deposition of both low and high density SiC coatings from a non-halide precursor, in support of the Generation IV Gas-Cooled Fast Reactor (GFR) fuel development program. The research was conducted in two phases. In the first phase, the feasibility of producing both porous SiC coatings and dense SiC coatings on surrogate fuel particles by fluidized bed chemical vapor deposition (FBCVD) using gas mixtures of methylsilane and argon was demonstrated. In the second phase, a combined experimental and modeling effort was carried out in order to gain an understanding of the deposition mechanisms that result in either porous or dense SiC coatings, depending on the coating conditions. For this second phase effort, a simplified (compared to the fluid bed) single-substrate chemical vapor deposition (CVD) system was employed. Based on the experimental and modeling results, the deposition of SiC from methylsilane is controlled by the extent of gas-phase reaction, and is therefore highly sensitive to temperature. The results show that all SiC coatings are due to the surface adsorption of species that result from gas-phase reactions. The model terms these gas-borne species embryos, and while the model does not include a prediction of coating morphology, a comparison of the model and experimental results indicates that the morphology of the coatings is controlled by the nucleation and growth of the embryos. The coating that results from small embryos (embryos with only two Si-C pairs) appears relatively dense and continuous, while the coating that results from larger embryos becomes less continuous and more nodular as embryo size increases. At some point in the growth of embryos they cease to behave as molecular species and instead behave as particles that grow by either agglomeration or by incorporation of molecular species on their surface. As these particles adhere to the substrate surface and become fixed in place by surface deposition in the interstices between adjacent particles, a low density coating consisting of these particles results.
Local electrophoretic deposition using a nanopipette for micropillar fabrication
NASA Astrophysics Data System (ADS)
Iwata, Futoshi; Metoki, Junya
2017-12-01
A novel and simple technique was developed for the fabrication of micropillars using a nanopipette that is a tapered glass capillary with a micrometer-sized aperture at the tip. The nanopipette was filled with a colloidal solution that included metal nanoparticles. Its tip was put in contact with a substrate, and the substrate was moved downward for continuous deposition of the metal colloidal solution to form micropillars. To improve fabrication reproducibility, the amount of Au colloidal solution deposited was controlled by a feedback loop that maintained a predefined constant current during electrophoretic deposition. The stiffness of the fabricated micropillars was evaluated by applying a loading force using a microcantilever under scanning electron microscopy. The Young’s modulus of the fabricated pillars was measured to be in the range of 7.7-14.8 GPa, depending on the fabrication parameters of the predefined current and fabrication speed.
Radice, S; Kern, P; Dietsch, H; Mischler, S; Michler, J
2008-02-15
Functionalization of colloidal particles based on the use of polyelectrolytes and heterocoagulation was combined with electrophoretic deposition (EPD), with the aim of depositing titania-polystyrene (TiO(2)-PS) composite particles on Ti6Al4V substrates. The composite particles were obtained by heterocoagulation of TiO(2) nanoparticles on the surface of monosized polystyrene beads of 4.6 microm in diameter. Two alternative methods were developed for the preparation of the TiO(2)-PS suspensions in organic fluids for cathodic electrodeposition. The first method was carried out in alkaline aqueous medium with the use of polyelectrolytes and intermediate control measurements of zeta potential, conductivity, and pH; the second one was carried out directly in the organic solvent used for EPD, typically isopropanol. Examples of deposits obtained by EPD in both suspensions and a comparative analysis between the two methods are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delahoy, A. E.; Chen, L.
2004-05-01
The objective of this subcontract is to develop and integrate the various pieces of new technology that EPV considers enabling for cost-effective production of CIGS modules. EPV has conducted research to help generate a technology base for production of CIGS PV modules using vacuum deposition of CIGS onto glass. This strategy is consistent with the observation that, despite there being several approaches to forming device-quality CIGS, vacuum deposition has maintained the world record for the highest-efficiency CIGS device. A record thin-film solar cell efficiency of 19.2% (with Ni-Al grid and MgF2 ARC) for a 0.41-cm2 device was achieved by NRELmore » in 2003 using vacuum-deposited CIGS. The deposition employed four point sources and detection of the Cu-poor to Cu-rich transition for process control. To extend this type of processing to the realm of large-area substrates, EPV developed vacuum equipment designed for heating and coating 0.43-m2 moving substrates, with a projected further scale up to 0.79 m2. The substrates are typically low-cost, soda-lime glass, and the materials are supplied to the moving substrates using novel linear-source technology developed by EPV. The use of elemental selenium rather than toxic H2Se gas helps make for a safe manufacturing environment. These choices concerning film deposition, substrates, and source materials help to minimize the processing costs of CIGS.« less
NASA Astrophysics Data System (ADS)
Leppard, Christopher W.; Gawthorpe, Rob L.
2006-09-01
In most marine rift basins, subsidence outpaces sedimentation during rift climax times. Typically this results in sediment-starved hangingwall depocentres dominated by deep-marine mudstones, with subordinate local development of coarser clastics in the immediate hangingwall derived from restricted catchments on the immediate footwall scarp. To highlight the spatial variability of rift climax facies and the controls upon them, we have investigated the detailed three-dimensional geometry and facies relationships of the extremely well exposed Miocene, rift climax Lower Rudeis Formation in the immediate hangingwall to the Thal Fault Zone, Suez Rift, Egypt. Detailed sedimentological analyses allows the Lower Rudeis Formation to be divided into two contemporaneous depositional systems, (1) a laterally continuous slope system comprising, hangingwall restricted (< 250 m wide) slope apron, slope slumps, fault scarp degradation complex and laterally extensive lower slope-to-basinal siltstones, and (2) a localized submarine fan complex up to 1 km wide and extending at least 2 km basinward of the fault zone. Interpretation of individual facies, facies relationships and their spatial variability indicate that deposition in the immediate hangingwall to the Thal Fault occurred via a range of submarine concentrated density flows, surge-like turbidity flows, mass wasting and hemipelagic processes. Major controls on the spatial variability and stratigraphic architecture of the depositional systems identified reflect the influence of the steep footwall physiography, accommodation and drainage evolution associated with the growth of the Thal Fault. The under-filled nature of the hangingwall depocentre combined with the steep footwall gradient result in a steep fault-controlled basin margin characterised by either slope bypass or erosion, with limited coastal plain or shelf area. Sediment supply to the slope apron deposits is controlled in part by the evolution and size of small footwall drainage catchments. In contrast, the localized submarine fan is interpreted to have been fed by a larger, antecedent drainage network. The structural style of the immediate footwall is also believed to exert a control on facies development and stratigraphic evolution. In particular, fault scarp degradation is enhanced by fault propagation folding which creates basinward-dipping bedding planes in the pre-rift footwall strata that large pre-rift blocks slide on.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, A.D.; Raymond, R. Jr.; Thayer, G.
1987-08-01
A peat deposit occupying over 80 square kilometers, and averaging 8 meters in thickness, was discovered on the Caribbean coast of northwestern Panama near the town of Changuinola. This deposit occurs inland (behind) the present beach-barrier shoreline. It is thickest in the center and thins toward all edges (as if domed). The surface vegetation in the central regions consists primarily of ombrotrophic plants (especially sedges, grasses, Sphagnum, Sagittaria, and various scattered shrubs). Toward the edges, the deposit has a surface cover of more minerotrophic plants (such as swamp-forest trees, ferns, and palms). Petrographic/botanical analysis of the deposit with depth revealsmore » the presence of five peat types (swamp-forest, sedge-grass-fern, Sagittaria et al., Nymphaea et al., and Rhizophora). Typically peats of the thick, central portions of the deposit are very low in ash and sulfur (less than 2% ash and 0.3% sulfur). Ash contents tend to increase abruptly at the base and more gradually toward the edges of the deposit and sulfur contents increasing gradually toward the ocean and bay. Vertical and lateral variations in botanical, chemical, and physical properties of this deposit can be related to factors that have controlled: (1) the surrounding rocks and water chemistry; (2) the source vegetation; and (3) the environments in which these source ingredients were deposited. 3 refs., 10 figs.« less
Radionuclide deposition control
Brehm, William F.; McGuire, Joseph C.
1980-01-01
The deposition of radionuclides manganese-54, cobalt-58 and cobalt-60 from liquid sodium coolant is controlled by providing surfaces of nickel or high nickel alloys to extract the radionuclides from the liquid sodium, and by providing surfaces of tungsten, molybdenum or tantalum to prevent or retard radionuclide deposition.
Controlling the Nanoscale Patterning of AuNPs on Silicon Surfaces
Williams, Sophie E.; Davies, Philip R.; Bowen, Jenna L.; Allender, Chris J.
2013-01-01
This study evaluates the effectiveness of vapour-phase deposition for creating sub-monolayer coverage of aminopropyl triethoxysilane (APTES) on silicon in order to exert control over subsequent gold nanoparticle deposition. Surface coverage was evaluated indirectly by observing the extent to which gold nanoparticles (AuNPs) deposited onto the modified silicon surface. By varying the distance of the silicon wafer from the APTES source and concentration of APTES in the evaporating media, control over subsequent gold nanoparticle deposition was achievable to an extent. Fine control over AuNP deposition (AuNPs/μm2) however, was best achieved by adjusting the ionic concentration of the AuNP-depositing solution. Furthermore it was demonstrated that although APTES was fully removed from the silicon surface following four hours incubation in water, the gold nanoparticle-amino surface complex was stable under the same conditions. Atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) were used to study these affects. PMID:28348330
Underpotential deposition-mediated layer-by-layer growth of thin films
Wang, Jia Xu; Adzic, Radoslav R.
2015-05-19
A method of depositing contiguous, conformal submonolayer-to-multilayer thin films with atomic-level control is described. The process involves the use of underpotential deposition of a first element to mediate the growth of a second material by overpotential deposition. Deposition occurs between a potential positive to the bulk deposition potential for the mediating element where a full monolayer of mediating element forms, and a potential which is less than, or only slightly greater than, the bulk deposition potential of the material to be deposited. By cycling the applied voltage between the bulk deposition potential for the mediating element and the material to be deposited, repeated desorption/adsorption of the mediating element during each potential cycle can be used to precisely control film growth on a layer-by-layer basis. This process is especially suitable for the formation of a catalytically active layer on core-shell particles for use in energy conversion devices such as fuel cells.
Brine evolution and mineral deposition in hydrologically open evaporite basins
Sanford, W.E.; Wood, W.W.
1991-01-01
A lumped-parameter, solute mass-balance model is developed to define the role of water outflow from a well-mixed basin. A mass-balance model is analyzed with a geochemical model designed for waters with high ionic strengths. Two typical waters, seawater and a Na-HCO3 ground water, are analyzed to illustrate the control that the leakage ratio (or hydrologic openness of the basin) has on brine evolution and the suite and thicknesses of evaporite minerals deposited. The analysis suggests that brines evolve differently under different leakage conditions. -from Authors
Aerial applications dispersal systems control requirements study. [agriculture
NASA Technical Reports Server (NTRS)
Bauchspies, J. S.; Cleary, W. L.; Rogers, W. F.; Simpson, W.; Sanders, G. S.
1980-01-01
Performance deficiencies in aerial liquid and dry dispersal systems are identified. Five control system concepts are explored: (1) end of field on/off control; (2) manual control of particle size and application rate from the aircraft; (3) manual control of deposit rate on the field; (4) automatic alarm and shut-off control; and (5) fully automatic control. Operational aspects of the concepts and specifications for improved control configurations are discussed in detail. A research plan to provide the technology needed to develop the proposed improvements is presented along with a flight program to verify the benefits achieved.
NASA Astrophysics Data System (ADS)
Essa, Mohammed Sh.; Chiad, Bahaa T.; Shafeeq, Omer Sh.
2017-09-01
Thin Films of Copper Oxide (CuO) absorption layer have been deposited using home-made Fully Computerized Spray Pyrolysis Deposition system FCSPD on glass substrates, at the nozzle to substrate distance equal to 20,35 cm, and computerized spray mode (continues spray, macro-control spray). The substrate temperature has been kept at 450 °c with the optional user can enter temperature tolerance values ± 5 °C. Also that fixed molar concentration of 0.1 M, and 2D platform speed or deposition platform speed of 4mm/s. more than 1000 instruction program code, and specific design of graphical user interface GUI to fully control the deposition process and real-time monitoring and controlling the deposition temperature at every 200 ms. The changing in the temperature has been recorded during deposition processes, in addition to all deposition parameters. The films have been characterized to evaluate the thermal distribution over the X, Y movable hot plate, the structure and optical energy gap, thermal and temperature distribution exhibited a good and uniform distribution over 20 cm2 hot plate area, X-ray diffraction (XRD) measurement revealed that the films are polycrystalline in nature and can be assigned to monoclinic CuO structure. Optical band gap varies from 1.5-1.66 eV depending on deposition parameter.
Woodruff, Laurel G.; Nicholson, Suzanne W.; Fey, David L.
2013-01-01
This descriptive model for magmatic iron-titanium-oxide (Fe-Ti-oxide) deposits hosted by Proterozoic age massif-type anorthosite and related rock types presents their geological, mineralogical, geochemical, and geoenvironmental attributes. Although these Proterozoic rocks are found worldwide, the majority of known deposits are found within exposed rocks of the Grenville Province, stretching from southwestern United States through eastern Canada; its extension into Norway is termed the Rogaland Anorthosite Province. This type of Fe-Ti-oxide deposit dominated by ilmenite rarely contains more than 300 million tons of ore, with between 10- to 45-percent titanium dioxide (TiO2), 32- to 45-percent iron oxide (FeO), and less than 0.2-percent vanadium (V). The origin of these typically discordant ore deposits remains as enigmatic as the magmatic evolution of their host rocks. The deposits clearly have a magmatic origin, hosted by an age-constrained unique suite of rocks that likely are the consequence of a particular combination of tectonic circumstances, rather than any a priori temporal control. Principal ore minerals are ilmenite and hemo-ilmenite (ilmenite with extensive hematite exsolution lamellae); occurrences of titanomagnetite, magnetite, and apatite that are related to this deposit type are currently of less economic importance. Ore-mineral paragenesis is somewhat obscured by complicated solid solution and oxidation behavior within the Fe-Ti-oxide system. Anorthosite suites hosting these deposits require an extensive history of voluminous plagioclase crystallization to develop plagioclase-melt diapirs with entrained Fe-Ti-rich melt rising from the base of the lithosphere to mid- and upper-crustal levels. Timing and style of oxide mineralization are related to magmatic and dynamic evolution of these diapiric systems and to development and movement of oxide cumulates and related melts. Active mines have developed large open pits with extensive waste-rock piles, but because of the nature of the ore and waste rock, the major environmental impacts documented at the mine sites are reported to be waste disposal issues and somewhat degraded water quality.
NASA Astrophysics Data System (ADS)
Hayward, Stephen L.; Francis, David M.; Sis, Matthew J.; Kidambi, Srivatsan
2015-10-01
The ability to control the spatial distribution and temporal release of a therapeutic remains a central challenge for biomedical research. Here, we report the development and optimization of a novel substrate mediated therapeutic delivery system comprising of hyaluronic acid covalently functionalized liposomes (HALNPs) embedded into polyelectrolyte multilayer (PEM) platform via ionic stabilization. The PEM platform was constructed from sequential deposition of Poly-L-Lysine (PLL) and Poly(Sodium styrene sulfonate) (SPS) “(PLL/SPS)4.5” followed by adsorption of anionic HALNPs. An adsorption affinity assay and saturation curve illustrated the preferential HALNP deposition density for precise therapeutic loading. (PLL/SPS)2.5 capping layer on top of the deposited HALNP monolayer further facilitated complete nanoparticle immobilization, cell adhesion, and provided nanoparticle confinement for controlled linear release profiles of the nanocarrier and encapsulated cargo. To our knowledge, this is the first study to demonstrate the successful embedment of a translatable lipid based nanocarrier into a substrate that allows for temporal and spatial release of both hydrophobic and hydrophilic drugs. Specifically, we have utilized our platform to deliver chemotherapeutic drug Doxorubicin from PEM confined HALNPs. Overall, we believe the development of our HALNP embedded PEM system is significant and will catalyze the usage of substrate mediated delivery platforms in biomedical applications.
Composite-Metal-Matrix Arc-Spray Process
NASA Technical Reports Server (NTRS)
Westfall, Leonard J.
1987-01-01
Arc-spray "monotape" process automated, low in cost, and produces at high rate. Ideal for development of new metal-matrix composites. "Monotape" reproducible and of high quality. Process carried out in controlled gas environment with programmable matrix-deposition rates, resulting in significant cost saving
Feedback control of the lower hybrid power deposition profile on Tore Supra
NASA Astrophysics Data System (ADS)
Barana, O.; Mazon, D.; Laborde, L.; Turco, F.
2007-07-01
The Tore Supra facility is well suited to study ITER relevant topics such as the real-time control of plasma current and the sustaining of steady-state discharges. This work describes a tool that was recently developed and implemented on Tore Supra to control in real time, by means of the direct knowledge of the suprathermal electron local emission profile, the width of the lower hybrid power deposition profile. This quantity can be considered to some extent equivalent to the width of the plasma current density profile in case of fully non-inductive discharges. This system takes advantage of an accurate hard x-ray diagnostics, of an efficient lower hybrid additional heating and of a reliable real-time communication network. The successful experiments carried out to test the system employed, as actuators, the parallel refractive index n// and the total power PLH. The control of the suprathermal electron local emission profile through n// was also integrated with the feedback control of the total plasma current IP with PLH and of the loop voltage Vloop with the central solenoid flux. These results demonstrate that the system is robust, reliable and able to counterbalance destabilizing events. This tool can be effectively used in the future in fully non-inductive discharges to improve the MHD stability and to maintain internal transport barriers or lower hybrid enhanced performance modes. The real-time control of the lower hybrid power deposition profile could also be used in conjunction with the electron-cyclotron radiofrequency heating for synergy studies.
Laser-Assisted Cold-Sprayed Corrosion- and Wear-Resistant Coatings: A Review
NASA Astrophysics Data System (ADS)
Olakanmi, E. O.; Doyoyo, M.
2014-06-01
Laser-assisted cold spray (LACS) process will be increasingly employed for depositing coatings because of its unique advantages: solid-state deposition of dense, homogeneous, and pore-free coatings onto a range of substrates; and high build rate at reduced operating costs without the use of expensive heating and process inert gases. Depositing coatings with excellent performance indicators via LACS demands an accurate knowledge and control of processing and materials' variables. By varying the LACS process parameters and their interactions, the functional properties of coatings can be manipulated. Moreover, thermal effect due to laser irradiation and microstructural evolution complicate the interpretation of LACS mechanical deformation mechanism which is essential for elucidating its physical phenomena. In order to provide a basis for follow-on-research that leads to the development of high-productivity LACS processing of coatings, this review focuses on the latest developments in depositing corrosion- and wear-resistant coatings with the emphasis on the composition, structure, and mechanical and functional properties. Historical developments and fundamentals of LACS are addressed in an attempt to describe the physics behind the process. Typical technological applications of LACS coatings are also identified. The investigations of all process sequences, from laser irradiation of the powder-laden gas stream and the substrate, to the impingement of thermally softened particles on the deposition site, and subsequent further processes, are described. Existing gaps in the literature relating to LACS-dependent microstructural evolution, mechanical deformation mechanisms, correlation between functional properties and process parameters, processing challenges, and industrial applications have been identified in order to provide insights for further investigations and innovation in LACS deposition of wear- and corrosion-resistant coatings.
Coke Deposition and Smoke Formation in Turbojet Engines
NASA Technical Reports Server (NTRS)
Hibbard, R. R.; Wear, J. D.
1956-01-01
In the early development of jet engines, it was occasionally found that excessive amounts of coke or other carbonaceous deposits were formed in the combustion chamber. Sometimes a considerable amount of smoke was noted in the-exhaust gases. Excessive coke deposits may adversely affect jet-engine performance in several ways. The formation of excessive amounts of coke on or just downstream of a fuel nozzle (figs. 116(a) and (b)) changes the fuel-spray pattern and possibly affects combustor life and performance. Similar effects on performance can result from the deposition of coke on primary-air entry ports (fig. 116(c)). Sea-level or altitude starting may be impaired by the deposition of coke on spark-plug electrodes (fig. 116(b)), deposits either grounding the electrodes completely or causing the spark to occur at positions other than the intended gap. For some time it was thought that large deposits of coke in turbojet combustion chambers (fig. 116(a)) might break away and damage turbine blades; however, experience has indicated that for metal blades this problem is insignificant. (Cermet turbine blades may be damaged by loose coke deposits.) Finally, the deposition of coke may cause high-temperature areas, which promote liner warping and cracking (fig. 116(d)) from excessive temperature gradients and variations in thermal-expansion rates. Smoke in the exhaust gases does not generally impair engine performance but may be undesirable from a tactical or a nuisance standpoint. Appendix B of reference 1 and references 2 to 4 present data obtained from full-scale engines operated on test stands and from flight tests that indicate some effects on performance caused by coke deposits and smoke. Some information about the mechanism of coke formation is given in reference 5 and chapter IX. The data indicate that (1) high-boiling fuel residuals and partly polymerized products may be mixed with a large amount of smoke formed in the gas phase to account for the consistency, structure, and chemical composition of the soft coke in the dome and (2) the hard deposits on the liner are similar to petroleum coke and may result from the liquid-phase thermal cracking of the fuel. During the early development period of jet engines, it was noted that the excessive coke deposits and exhaust smoke were generally obtained when fuel-oil-type fuels were used. Engines using gasoline-type fuels were relatively free from the deposits and smoke. These results indicated that some type of quality control would be needed in fuel specifications. Also noted was the effect of engine operating conditions on coke deposition. It is possible that, even with a clean-burning fuel, an excessive amount of coke could be formed at some operating conditions. In this case, combustor redesign could possibly reduce the coke to a tolerable level. This chapter is a summary of the various coke-deposition and exhaust-smoke problems connected- with the turbojet combustor. Included are (1) the effect of coke deposition on combustor life or durability and performance; (2) the effect of combustor design, operating conditions, inlet variables, and fuel characteristics on coke deposition; (3) elimination of coke deposits; (4) the effect of operating conditions and fuel characteristics on formation of exhaust smoke; and (5) various bench test methods proposed for determining and controlling fuel quality.
Surface acoustic waves voltage controlled directional coupler
NASA Astrophysics Data System (ADS)
Golan, G.; Griffel, G.; Yanilov, E.; Ruschin, S.; Seidman, A.; Croitoru, N.
1988-10-01
An important condition for the development of surface wave integrated-acoustic devices is the ability to guide and control the propagation of the acoustic energy. This can be implemented by deposition of metallic "loading" channels on an anisotropic piezoelectric substrate. Deposition of such two parallel channels causes an effective coupling of acoustic energy from one channel to the other. A basic requirement for this coupling effect is the existence of the two basic modes: a symmetrical and a nonsymmetrical one. A mode map that shows the number of sustained modes as a function of the device parameters (i.e., channel width; distance between channels; material velocity; and acoustical exciting frequency) is presented. This kind of map can help significantly in the design process of such a device. In this paper we devise an advanced acoustical "Y" coupler with the ability to control its effective coupling by an externally applied voltage, thereby causing modulation of the output intensities of the signals.
Electrically controlled wire-channel GaN/AlGaN transistor for terahertz plasma applications
NASA Astrophysics Data System (ADS)
Cywiński, G.; Yahniuk, I.; Kruszewski, P.; Grabowski, M.; Nowakowski-Szkudlarek, K.; Prystawko, P.; Sai, P.; Knap, W.; Simin, G. S.; Rumyantsev, S. L.
2018-03-01
We report on a design of fin-shaped channel GaN/AlGaN field-effect transistors developed for studying resonant terahertz plasma oscillations. Unlike common two dimensional FinFET transistor design, the gates were deposited only to the sides of the two dimensional electron gas channel, i.e., metal layers were not deposited on the top of the AlGaN. This side gate configuration allowed us to electrically control the conductivity of the channel by changing its width while keeping the carrier density and mobility virtually unchanged. Computer simulations and analytical model describe well the general shape of the characteristics. The side gate control of the channel width of these transistors allowed us to eliminate the so-called oblique plasma wave modes and paves the way towards future terahertz detectors and emitters using high quality factor plasma wave resonances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lauren P. Birgenheier; Michael D. Vanden Berg,
An integrated detailed sedimentologic, stratigraphic, and geochemical study of Utah's Green River Formation has found that Lake Uinta evolved in three phases (1) a freshwater rising lake phase below the Mahogany zone, (2) an anoxic deep lake phase above the base of the Mahogany zone and (3) a hypersaline lake phase within the middle and upper R-8. This long term lake evolution was driven by tectonic basin development and the balance of sediment and water fill with the neighboring basins, as postulated by models developed from the Greater Green River Basin by Carroll and Bohacs (1999). Early Eocene abrupt global-warmingmore » events may have had significant control on deposition through the amount of sediment production and deposition rates, such that lean zones below the Mahogany zone record hyperthermal events and rich zones record periods between hyperthermals. This type of climatic control on short-term and long-term lake evolution and deposition has been previously overlooked. This geologic history contains key points relevant to oil shale development and engineering design including: (1) Stratigraphic changes in oil shale quality and composition are systematic and can be related to spatial and temporal changes in the depositional environment and basin dynamics. (2) The inorganic mineral matrix of oil shale units changes significantly from clay mineral/dolomite dominated to calcite above the base of the Mahogany zone. This variation may result in significant differences in pyrolysis products and geomechanical properties relevant to development and should be incorporated into engineering experiments. (3) This study includes a region in the Uinta Basin that would be highly prospective for application of in-situ production techniques. Stratigraphic targets for in-situ recovery techniques should extend above and below the Mahogany zone and include the upper R-6 and lower R-8.« less
NASA Astrophysics Data System (ADS)
Kucharenko, Evgeniy; Asavin, Alex
2015-04-01
Resource depletion has forced us to search for new ore deposit and reanalyze old mineral deposits. This is the main aim of metallogenic studies. Synthesis information about features resources work out deposit and emerging fields will play a key role in future. Development of metallogeny databases is one of the most difficult tasks for Earth sciences. Database needs to enter a large number of parameters describing the object of study - mine or ore occurrence. Majority of these parameters belong to different areas of geological knowledge. It can be ore mineralogy, geochemistry, lithology of host rocks, tectonic characteristics ore-controlling structures, geochemical parameters of ore processes, geochronological data on age of geological formations and processes of ore formation and some others. However, the cartographic materials of various scales apart from diverse documentation and numerical information are of a great importance. The adopted framework for the analysis of large-scale metallogeny has several levels: 1. The ore body (usually 1: 50000, 1: 100000) 2. The ore field, the field (1: 200000) 3. The ore cluster (1: 500000) Researchers can vary scheme and scale values, but fundamentally three levels of scale describing the location and geological structures controlling the placement of ore are included at least. Attention should be pay to the system of description the ore deposit. It is necessary to create the universal scheme for development of metallogeny information systems and set up the universal algorithm of ore deposit description. There is its own order of importance of used features and a form of description for each type of deposits and ore and genetic group and ore element. Lack of definition in the classification of a particular metallogenic object makes the choice of algorithm description justified quite weakly. It is quite notable that available features which used for description of different deposit (even of the same genetic group) are not of the same type or detailed enough. Waste deposit usually takes as a reference object with the most complete description in opposite to the recently discovered deposit not enough studied and with quite limited list of information indicators. There are following most actual tasks for information metallogeny system: 1. Search summarizing the characteristics of different objects 2. Select the most informative group of features 3. Show the links of groups of signs and analyze it as far as genesis of deposits. The actual task's list could be continued but it is enough to start. Essentially mentioned problems put us in a situation when deposit's metallogenic database is not available. There is only limited number of typical databases (for certain types of minerals) characterized nothing more than name of the fields and basic indicators of its economic importance (stocks, component content, ore types). The additional information: the age of host rock or ores or geochemistry features of some geological objects uses quite rarely. There is no systematic data for all objects in the database. Database of carbonatite deposits is the most well-developed. It should be also mentioned some works [Woolley & Kjarsgaard 2009; Bagdasarov et al.,2001; Burmistrov et al., 2008]. Unfortunately, such important characteristics as geological maps are not included there as
40 CFR 80.166 - Carburetor deposit control performance test and test fuel guidelines.
Code of Federal Regulations, 2014 CFR
2014-07-01
... demonstration of an additive's ability to control carburetor deposits. Examples of acceptable test procedures... Fuel Injector (PFI) Deposits in Vehicle Engines”, March 1, 1991, Section 2257, Title 13, California... Coordinating Research Council Program”, Robert Tupa et al., SAE Technical paper No. 890213, 1989. (3) “The...
40 CFR 80.166 - Carburetor deposit control performance test and test fuel guidelines.
Code of Federal Regulations, 2010 CFR
2010-07-01
... demonstration of an additive's ability to control carburetor deposits. Examples of acceptable test procedures... Fuel Injector (PFI) Deposits in Vehicle Engines”, March 1, 1991, Section 2257, Title 13, California... Coordinating Research Council Program”, Robert Tupa et al., SAE Technical paper No. 890213, 1989. (3) “The...
40 CFR 80.166 - Carburetor deposit control performance test and test fuel guidelines.
Code of Federal Regulations, 2013 CFR
2013-07-01
... demonstration of an additive's ability to control carburetor deposits. Examples of acceptable test procedures... Fuel Injector (PFI) Deposits in Vehicle Engines”, March 1, 1991, Section 2257, Title 13, California... Coordinating Research Council Program”, Robert Tupa et al., SAE Technical paper No. 890213, 1989. (3) “The...
40 CFR 80.166 - Carburetor deposit control performance test and test fuel guidelines.
Code of Federal Regulations, 2011 CFR
2011-07-01
... demonstration of an additive's ability to control carburetor deposits. Examples of acceptable test procedures... Fuel Injector (PFI) Deposits in Vehicle Engines”, March 1, 1991, Section 2257, Title 13, California... Coordinating Research Council Program”, Robert Tupa et al., SAE Technical paper No. 890213, 1989. (3) “The...
40 CFR 80.166 - Carburetor deposit control performance test and test fuel guidelines.
Code of Federal Regulations, 2012 CFR
2012-07-01
... demonstration of an additive's ability to control carburetor deposits. Examples of acceptable test procedures... Fuel Injector (PFI) Deposits in Vehicle Engines”, March 1, 1991, Section 2257, Title 13, California... Coordinating Research Council Program”, Robert Tupa et al., SAE Technical paper No. 890213, 1989. (3) “The...
Analysis of WC/Ni-Based Coatings Deposited by Controlled Short-Circuit MIG Welding
NASA Astrophysics Data System (ADS)
Vespa, P.; Pinard, P. T.; Gauvin, R.; Brochu, M.
2012-06-01
This study investigates the recently developed controlled short-circuit metal inert gas (CSC-MIG) welding system for depositing WC/Ni-based claddings on carbon steel substrates. WC/Ni-based coatings deposited by CSC-MIG were analyzed by optical light microscopy and scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS) and electron backscatter diffraction (EBSD) capabilities. X-ray diffraction (XRD) and hardness measurements of depositions are also reported. The CSC-MIG welding system provides a significant amount of user control over the current waveform during welding and has lower heat input when compared with traditional MIG welding. Heat input for the analyzed coatings ranged from 10.1 to 108.7 J/mm. Metallurgically bonded coatings free from spatter and with 0.75% average porosity were produced. It was found that the detrimental decarburization of the WC particles seen in thermal spray systems does not occur when welding with the CSC-MIG. Precipitation of a reaction layer around the reinforcing phase was identified as WC; the average thickness of which increases from 3.8 to 7.2 μm for the low and high heat input condition, respectively. Precipitation of newly formed WC particles was observed; their size distribution increased from D 50 of 2.4 μm in the low heat input weldment to 6.75 μm in the high heat input weldment. The level of dilution of the reinforcing phase increases significantly with heat input. The hardness of the deposited coatings decreases from 587 HV10 to 410 HV10 when the energy input was increased from 10.1 to 108.7 J/mm.
MSFC Skylab contamination control systems mission evaluation
NASA Technical Reports Server (NTRS)
1974-01-01
Cluster external contamination control evaluation was made throughout the Skylab Mission. This evaluation indicated that contamination control measures instigated during the design, development, and operational phases of this program were adequate to reduce the general contamination environment external to the Cluster below the threshold senstivity levels for experiments and affected subsystems. Launch and orbit contamination control features included eliminating certain vents, rerouting vents for minimum contamination impact, establishing filters, incorporating materials with minimum outgassing characteristics and developing operational constraints and mission rules to minimize contamination effects. Prior to the launch of Skylab, contamination control math models were developed which were used to predict Cluster surface deposition and background brightness levels throughout the mission. The report summarizes the Skylab system and experiment contamination control evaluation. The Cluster systems and experiments evaluated include Induced Atmosphere, Corollary and ATM Experiments, Thermal Control Surfaces, Solar Array Systems, Windows and Star Tracker.
NASA Astrophysics Data System (ADS)
Yeager, C. J.; Courts, S. S.; Chapin, L.
2004-06-01
The electrical properties of a novel cryogenic heater are presented. A new ceramic-metal composition (cermet) has been developed that can be sputter deposited. This material has a very low temperature coefficient of resistivity. Resistivity measurements as a function of temperature are presented. The cermet has a constant resistance to within 0.1% between 77 K and 50 mK. At 4.2 K the d(logR)/d(logT) value is approximately -0.0005. The resistance change between room temperature and 4.2 K is 2.5%. The cermet heater will be compared to other low temperature coefficient of resistivity alloys (Evanohm, phosphor-bronze, nichrome and platinum-tungsten wire) that are used for cryogenic heaters and fixed resistors. Unlike the wire alloys, this material can be sputter deposited. This allows various die designs (meander patterns) to control the final resistance. The die can be mounted into standard commercial cryogenic sensor packages. Compared to other wire alloys, this allows for a simpler implementation for a cryogenic heater and fixed resistance standards. The material can also be deposited onto existing structures such as MEMS based heat capacity chip under development.
NASA Astrophysics Data System (ADS)
Ogston, A. S.; Walsh, J. P.; Hale, R. P.
2011-12-01
The relationships between sediment-transport processes, short-term sedimentary deposition, subsequent burial, and long-term accumulation are critical to understanding the morphological development of the continental margin. This study focuses on processes involved in formation and evolution of the clinoform in the Gulf of Papua, Papua New Guinea in which much of the riverine sediment accumulates, and comparison to those processes active off the Waipaoa River, New Zealand that form mid-shelf deposits and export sediment to the slope. In tidally dominated deltas, sediment discharged from the river sources must transit through an estuarine region located within the distributary channels, where particle pathways can undergo significant transformations. Within the distributaries of the Fly River tidally dominated delta, near-bed fluid-mud concentrations were observed at the estuarine turbidity maximum and sediment delivery to the nearshore was controlled by the morphology and gradient of the distributary. El Niño results in anonymously low flow and sediment discharge conditions, which limits transport of sediment from the distributaries to the nearshore zone of temporary storage. Because the sediment stored nearshore feeds the prograding clinoform, this perturbation propagates throughout the dispersal system. In wave-dominated regions, transport mechanisms actively move sediment away from the river source, separating the site of deposition and accumulation from the river mouth. River-flood and storm-wave events each create discrete deposits on the Waipaoa River shelf and data has been collected to determine their form, distribution, and relationship to factors such as flood magnitude or wave energy. In this case, transport pathways appear to be influenced by structurally controlled shelf bathymetry. In both cases, the combined fluvial and marine processes can initiate and maintain gravity-driven density flows, and although their triggers and controls differ vastly, these flows play a significant role in the morpholigcal development of the continental margin. These sites, synthesized with examples from multiple other environments, provide a basis for understanding the interactions between physical processes responsible for the transport of sediment from river mouths to the sites of ultimate deposition.
Ionized cluster beam deposition
NASA Technical Reports Server (NTRS)
Kirkpatrick, A. R.
1983-01-01
Ionized Cluster Beam (ICB) deposition, a new technique originated by Takagi of Kyoto University in Japan, offers a number of unique capabilities for thin film metallization as well as for deposition of active semiconductor materials. ICB allows average energy per deposited atom to be controlled and involves impact kinetics which result in high diffusion energies of atoms on the growth surface. To a greater degree than in other techniques, ICB involves quantitative process parameters which can be utilized to strongly control the characteristics of films being deposited. In the ICB deposition process, material to be deposited is vaporized into a vacuum chamber from a confinement crucible at high temperature. Crucible nozzle configuration and operating temperature are such that emerging vapor undergoes supercondensation following adiabatic expansion through the nozzle.
Reduction of particle deposition on substrates using temperature gradient control
Rader, Daniel J.; Dykhuizen, Ronald C.; Geller, Anthony S.
2000-01-01
A method of reducing particle deposition during the fabrication of microelectronic circuitry is presented. Reduction of particle deposition is accomplished by controlling the relative temperatures of various parts of the deposition system so that a large temperature gradient near the surface on which fabrication is taking place exists. This temperature gradient acts to repel particles from that surface, thereby producing cleaner surfaces, and thus obtaining higher yields from a given microelectronic fabrication process.
Vijayaraghavan, Krish; Seigneur, Christian; Bronson, Rochelle; Chen, Shu-Yun; Karamchandani, Prakash; Walters, Justin T; Jansen, John J; Brandmeyer, Jo Ellen; Knipping, Eladio M
2010-03-01
The contrasting effects of point source nitrogen oxides (NOx) and sulfur dioxide (SO2) air emission reductions on regional atmospheric nitrogen deposition are analyzed for the case study of a coal-fired power plant in the southeastern United States. The effect of potential emission reductions at the plant on nitrogen deposition to Escambia Bay and its watershed on the Florida-Alabama border is simulated using the three-dimensional Eulerian Community Multiscale Air Quality (CMAQ) model. A method to quantify the relative and individual effects of NOx versus SO2 controls on nitrogen deposition using air quality modeling results obtained from the simultaneous application of NOx and SO2 emission controls is presented and discussed using the results from CMAQ simulations conducted with NOx-only and SO2-only emission reductions; the method applies only to cases in which ambient inorganic nitrate is present mostly in the gas phase; that is, in the form of gaseous nitric acid (HNO3). In such instances, the individual effects of NOx and SO2 controls on nitrogen deposition can be approximated by the effects of combined NOx + SO2 controls on the deposition of NOy, (the sum of oxidized nitrogen species) and reduced nitrogen species (NHx), respectively. The benefit of controls at the plant in terms of the decrease in nitrogen deposition to Escambia Bay and watershed is less than 6% of the overall benefit due to regional Clean Air Interstate Rule (CAIR) controls.
Development of latent fingerprints on thermal paper by the controlled application of heat.
Bond, John W
2013-05-01
Apparatus to produce a spatially and temporally uniform heat source is described and this is used to visualize latent fingerprints deposited onto thermal paper by raising the temperature of the paper. Results show an improvement over previous research when fingerprint deposits are aged or the developed fingerprints faint; visualization being enhanced by the use of a blue LED light source of 465 nm peak wavelength. An investigation of the components in fingerprint sweat likely to affect the solubility and hence color change of the dye present in the thermal paper has shown that polar protic solvents able to donate a proton are favored and a polar amino acid found commonly in eccrine fingerprint sweat (lysine) has been shown able to produce the desired color change. Aged fingerprint deposits on thermal paper from a variety of sources up to 4 years old have been visualized with this technique. © 2013 American Academy of Forensic Sciences.
NASA Astrophysics Data System (ADS)
Yu, Haili; He, Nianpeng; Wang, Qiufeng; Zhu, Jianxing; Xu, Li; Zhu, Zhilin; Yu, Guirui
2016-09-01
Acid deposition in precipitation has received widespread attention. However, it is necessary to monitor the acid deposition in Chinese agricultural and natural ecosystems because data derived from traditional urban/suburban observations might overestimate it to some extent. In this study, we continuously measured the acid deposition through precipitation (pH, sulfate (SO42-), and nitrate (NO3-)) in 43 field stations from 2009 to 2014 to explore the spatial patterns and the main influencing factors of acid deposition in Chinese agricultural and natural ecosystems. The results showed that the average precipitation pH at the 43 stations varied between 4.10 and 8.25 (average: 6.2) with nearly 20% of the observation sites being subjected to acid precipitation (pH < 5.6). The average deposition of SO42- and NO3- was 115.99 and 32.93 kg ha-1 yr-1, respectively. An apparent regional difference of acid deposition in Chinese agricultural and natural ecosystems was observed, which was most serious in south and central China and less serious in northwest China, Inner Mongolia, and Qinghai-Tibet. The level of economic development and amount of precipitation could explain most of the spatial variations of pH, SO42-, and NO3- depositions. It is anticipated that acid deposition might increase further, although the current level of acid deposition in these Chinese agricultural and natural ecosystems was found to be less serious than projected from urban/suburban data. The control of energy consumption should be strengthened in future to prevent an increase of acid deposition in China.
NASA Astrophysics Data System (ADS)
Yu, H.; He, N.; Wang, Q.; Zhu, J.; Xu, L.; Zhu, Z.; Yu, G.
2016-12-01
Acid deposition in precipitation has received widespread attention. However, it is necessary to monitor the acid deposition in Chinese agricultural and natural ecosystems because data derived from traditional urban/suburban observations might overestimate it to some extent. In this study, we continuously measured the acid deposition through precipitation [pH, sulfate (SO42-), and nitrate (NO3-)] in 43 field stations from 2009 to 2014 to explore the spatial patterns of acid deposition in Chinese agricultural and natural ecosystems and to explore the main influencing factors. The results showed that the average precipitation pH at the 43 stations varied between 4.10 and 8.25 (average: 6.2) with nearly 20% of the observation sites being subjected to acid precipitation (pH < 5.6). The average deposition of SO42- and NO3- was 115.99 and 32.93 kg ha-1 yr-1, respectively. An apparent regional difference in acid deposition in Chinese agricultural and natural ecosystems was observed, which was most serious in South and Central China and less serious in North-west China, Inner Mongolia, and Qinghai-Tibet. The level of economic development and amount of precipitation could explain most of the spatial variations of pH and of SO42-, and NO3- depositions. It is anticipated that acid deposition might increase further, although the current level of acid deposition in these Chinese agricultural and natural ecosystems was found to be less serious than projected from urban/suburban data. The control of energy consumption should be strengthened in future to prevent an increase of acid deposition in China.
A quantitative comparison of Soil Development in four climatic regimes
Harden, J.W.; Taylor, E.M.
1983-01-01
A new quantitative Soil Development Index based on field data has been applied to chronosequences formed under different climatic regimes. The four soil chronosequences, developed primarily on sandy deposits, have some numeric age control and are located in xeric-inland (Merced, Calif.), xeric-coastal (Ventura, Calif.), aridic (Las Cruces, N. Mex.), and udic (Susquehanna Valley, Pa.) soil-moisture regimes. To quantify field properties, points are assigned for developmental increases in soil properties in comparison to the parent material. Currently ten soil-field properties are quantified and normalized for each horizon in a given chronosequence, including two new properties for carbonate-rich soils in addition to the eight properties previously defined. When individual properties or the combined indexes are plotted as a function of numeric age, rates of soil development can be compared in different climates. The results demonstrate that (1) the Soil Development Index can be applied to very different soil types, (2) many field properties develop systematically in different climatic regimes, (3) certain properties appear to have similar rates of development in different climates, and (4) the Profile Index that combines different field properties increases significantly with age and appears to develop at similar rates in different climates. The Soil Development Index can serve as a preliminary guide to soil age where other age control is lacking and can be used to correlate deposits of different geographical and climatic regions. ?? 1983.
The advent of nanotechnology has opened up several potential avenues starting from the development of advanced manufacturing processes, revolutionary medical treatments, new consumer products, environmental applications, pollution control, etc. The backbone of this new leading-ed...
Lithospheric controls on the formation of provinces hosting giant orogenic gold deposits
Bierlein, F.P.; Groves, D.I.; Goldfarb, R.J.; Dube, B.
2006-01-01
Ages of giant gold systems (>500 t gold) cluster within well-defined periods of lithospheric growth at continental margins, and it is the orogen-scale processes during these mainly Late Archaean, Palaeoproterozoic and Phanerozoic times that ultimately determine gold endowment of a province in an orogen. A critical factor for giant orogenic gold provinces appears to be thickness of the subcontinental lithospheric mantle (SCLM) beneath a province at the time of gold mineralisation, as giant gold deposits are much more likely to develop in orogens with subducted oceanic or thin continental lithosphere. A proxy for the latter is a short pre-mineralisation crustal history such that thick SCLM was not developed before gold deposition. In constrast, orogens with protracted pre-mineralisation crustal histories are more likely to be characterised by a thick SCLM that is difficult to delaminate, and hence, such provinces will normally be poorly endowed. The nature of the lithosphere also influences the intrinsic gold concentrations of potential source rocks, with back-arc basalts, transitional basalts and basanites enriched in gold relative to other rock sequences. Thus, segments of orogens with thin lithosphere may enjoy the conjunction of giant-scale fluid flux through gold-enriched sequences. Although the nature of the lithosphere plays the crucial role in dictating which orogenic gold provinces will contain one or more giant deposits, the precise siting of those giants depends on the critical conjunction of a number of province-scale factors. Such features control plumbing systems, traps and seals in tectonically and lithospherically suitable terranes within orogens. ?? Springer-Verlag 2006.
Singlet oxygen generation in gas discharge for oxygen-iodine laser pumping
NASA Astrophysics Data System (ADS)
Lopaev, D. V.; Braginsky, O. V.; Klopovsky, K. S.; Kovalev, A. S.; Mankelevich, Yu. A.; Popov, N. A.; Rakhimov, A. T.; Rakhimova, T. V.; Vasilieva, A. N.
2004-09-01
The possibility of development of effective discharged singlet oxygen (SO) generator (DSOG) for oxygen-iodine laser (OIL) is studied in detail. Researches of kinetics of oxygen atoms and oxygen molecules in the lowest metastable singlet states have been carried out in the different discharges and its afterglow (DC discharges, E-beam controlled discharge and RF discharges) in both CW and pulsed mode in a wide range of conditions (pressures, gas mixtures, energy deposits etc.). The models developed for all the discharges have allowed us to analyze SO generation and loss mechanisms and to find out the key-parameters controlling the highest SO yield. It is shown that in addition to spatial plasma uniformity at low E/N and high specific energy deposit per oxygen molecule, DSOG must be oxygen atom free to avoid fast three-body quenching of SO by atomic oxygen with increasing pressure and thereby to provide pressure scaling (in tens Torrs) for applying to real OIL systems.
Cerebral amyloid angiopathy, blood-brain barrier disruption and amyloid accumulation in SAMP8 mice.
del Valle, Jaume; Duran-Vilaregut, Joaquim; Manich, Gemma; Pallàs, Mercè; Camins, Antoni; Vilaplana, Jordi; Pelegrí, Carme
2011-01-01
Cerebrovascular dysfunction and β-amyloid peptide deposition on the walls of cerebral blood vessels might be an early event in the development of Alzheimer's disease. Here we studied the time course of amyloid deposition in blood vessels and blood-brain barrier (BBB) disruption in the CA1 subzone of the hippocampus of SAMP8 mice and the association between these two variables. We also studied the association between the amyloid deposition in blood vessels and the recently described amyloid clusters in the parenchyma, as well as the association of these clusters with vessels in which the BBB is disrupted. SAMP8 mice showed greater amyloid deposition in blood vessels than age-matched ICR-CD1 control mice. Moreover, at 12 months of age the number of vessels with a disrupted BBB had increased in both strains, especially SAMP8 animals. At this age, all the vessels with amyloid deposition showed BBB disruption, but several capillaries with an altered BBB showed no amyloid on their walls. Moreover, amyloid clusters showed no spatial association with vessels with amyloid deposition, nor with vessels in which the BBB had been disrupted. Finally, we can conclude that vascular amyloid deposition seems to induce BBB alterations, but BBB disruption may also be due to other factors. Copyright © 2011 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Sancho, Carlos; Arenas, Concha; Vázquez-Urbez, Marta; Pardo, Gonzalo; Lozano, María Victoria; Peña-Monné, José Luis; Hellstrom, John; Ortiz, José Eugenio; Osácar, María Cinta; Auqué, Luis; Torres, Trinidad
2015-11-01
The drainage area of the Iberian Ranges (NE Spain) houses one of the most extensive Quaternary fluvial tufaceous records in Europe. In this study, tufa deposits in the Añamaza, Mesa, Piedra and Ebrón river valleys were mapped, stratigraphically described and chronologically referenced from U/Th disequilibrium series, amino acid racemization and radiocarbon methods. Tufa deposits accumulated in cascades, barrage-cascades and related damming areas developed in stepped fluvial systems. The maximum frequency of tufa deposition was identified at 120 ka (Marine Oxygen Isotope Stage [MIS] 5e), 102 ka (MIS 5c), 85 ka ( MIS 5a) and 7 ka (MIS 1), probably under warmer and wetter conditions than today. Additional phases of tufa deposition appear at 353 ka ( end of MIS 11), 258-180 ka (MIS 7) and 171-154 ka (MIS 6). Although most tufa deposition episodes are clearly correlated with interstadial periods, the occurrence of tufa deposits during the penultimate glaciation (MIS 6) is remarkable, indicating that the onset of this stage was climatically favourable in the Iberian Peninsula. Biostatic conditions and the dynamics of karstic systems regulating tufa deposition seem to be sensitive to the precipitation regime, controlled by shifts in the position of North Atlantic atmospheric belts, and summer insolation, regulated by orbital forcing.
One-step large-scale deposition of salt-free DNA origami nanostructures
Linko, Veikko; Shen, Boxuan; Tapio, Kosti; Toppari, J. Jussi; Kostiainen, Mauri A.; Tuukkanen, Sampo
2015-01-01
DNA origami nanostructures have tremendous potential to serve as versatile platforms in self-assembly -based nanofabrication and in highly parallel nanoscale patterning. However, uniform deposition and reliable anchoring of DNA nanostructures often requires specific conditions, such as pre-treatment of the chosen substrate or a fine-tuned salt concentration for the deposition buffer. In addition, currently available deposition techniques are suitable merely for small scales. In this article, we exploit a spray-coating technique in order to resolve the aforementioned issues in the deposition of different 2D and 3D DNA origami nanostructures. We show that purified DNA origamis can be controllably deposited on silicon and glass substrates by the proposed method. The results are verified using either atomic force microscopy or fluorescence microscopy depending on the shape of the DNA origami. DNA origamis are successfully deposited onto untreated substrates with surface coverage of about 4 objects/mm2. Further, the DNA nanostructures maintain their shape even if the salt residues are removed from the DNA origami fabrication buffer after the folding procedure. We believe that the presented one-step spray-coating method will find use in various fields of material sciences, especially in the development of DNA biochips and in the fabrication of metamaterials and plasmonic devices through DNA metallisation. PMID:26492833
A radon daughter deposition model for low background experiments
NASA Astrophysics Data System (ADS)
Rielage, K.; Guiseppe, V. E.; Mastbaum, A.; Elliott, S. R.; Hime, A.
2009-05-01
The next generation low-background detectors operating underground, such as dark matter searches and neutrinoless double-beta decay, aim for unprecedented low levels of radioactive backgrounds. Although the radioactive decays of airborne radon (particularly ^222Rn) and its subsequent daughters present in an experiment are potential backgrounds, more troublesome is the deposition of radon daughters on detector materials. Exposure to radon at any stage of assembly of an experiment can result in surface contamination by daughters supported by the long half life (22 y) of ^210Pb on sensitive locations of a detector. An understanding of the potential surface contamination will enable requirements of radon-reduced air and clean room environments for the assembly of low background experiments. It is known that there are a number of environmental factors that govern the deposition of daughters onto surfaces. However, existing models have not explored the impact of some environmental factors important for low background experiments. A test stand has been constructed to deposit radon daughters on various surfaces under a controlled environment in order to develop a deposition model. Results from this test stand and the resulting deposition model will be presented.
Sedimentary evolution of the Pliocene and Pleistocene Ebro margin, northeastern Spain
Alonso, B.; Field, M.E.; Gardner, J.V.; Maldonado, A.
1990-01-01
The Pliocene and Pleistocene deposits of the Spanish Ebro margin overlie a regional unconformity and contain a major disconformity. These unconformities, named Reflector M and Reflector G, mark the bases of two seismic sequences. Except for close to the upper boundary where a few small channel deposits are recognized, the lower sequence lacks channels. The upper sequence contains nine channel-levee complexes as well as base-of-slope aprons that represent the proximal part of the Valencia turbidite system. Diverse geometries and variations in seismic units distinguish shelf, slope, base-of-slope and basin-floor facies. Four events characterize the late Miocene to Pleistocene evolution of the Ebro margin: (a) formation of a paleodrainage system and an extensive erosion-to-depositional surface during the latest Miocene (Messinian), (b) deposition of hemipelagic units during the early Pliocene, (c) development of canyons during the late Pliocene to early Pleistocene, and (d) deposition of slope wedges, channel-levee complexes, and base-of-slope aprons alternating with hemipelagic deposition during the Pleistocene. Sea-level fluctuations influenced the evolution of the sedimentary sequences of the Ebro margin, but the major control was the sediment supply from the Ebro River. ?? 1990.
The total flow concept for geothermal energy conversion
NASA Technical Reports Server (NTRS)
Austin, A. L.
1974-01-01
A geothermal development project has been initiated at the Lawrence Livermore Laboratory (LLL) to emphasize development of methods for recovery and conversion of the energy in geothermal deposits of hot brines. Temperatures of these waters vary from 150 C to more than 300 C with dissolved solids content ranging from less than 0.1% to over 25% by weight. Of particular interest are the deposits of high-temperature/high-salinity brines, as well as less saline brines, known to occur in the Salton Trough of California. Development of this resource will depend on resolution of the technical problems of brine handling, scale and precipitation control, and corrosion/erosion resistant systems for efficient conversion of thermal to electrical energy. Research experience to date has shown these problems to be severe. Hence, the LLL program emphasizes development of an entirely different approach called the Total Flow concept.
DOE Office of Scientific and Technical Information (OSTI.GOV)
B.C. Winkleman; T.V. Giel; Jason Cunningham
1999-07-30
The recent achievements of critical currents in excess of 1 x 10{sup 6} amp/cm{sup 2} at 77 K in YBCO deposited over suitably textured buffer/substrate composites have stimulated interest in the potential fabrication of these coated conductors as wire. Numerous approaches and manufacturing schemes for producing coated conductor wire are currently being developed. Recently, under the US DOE's sponsorship, the University of Tennessee Space Institute performed an extensive evaluation of leading coated conductor processing options. In general, it is their feeling that the science and chemistry that are being developed in the coated conductor wire program now need proper engineeringmore » evaluation to define the most viable options for a commercial fabrication process. All fabrication processes will need process control measurements. This report provides a specific review of the needs and available technologies for process control for many of the coated conductor processing options. This report also addresses generic process monitoring areas in which additional research and development is needed. The concentration is on the two different approaches for obtaining the textured substrates that have been identified as viable candidates. These are the Los Alamos National Laboratory's ion-beam assisted deposition, called IBAD, to obtain a highly textured yttria-stabilized zirconia (YSZ) buffer on nickel alloy strips, and Oak Ridge National Laboratory's rolling assisted, bi-axially textured substrate option called RABiTS{trademark}.« less
Effects of age and amyloid deposition on Aβ dynamics in the human central nervous system.
Huang, Yafei; Potter, Rachel; Sigurdson, Wendy; Santacruz, Anna; Shih, Shirley; Ju, Yo-El; Kasten, Tom; Morris, John C; Mintun, Mark; Duntley, Stephen; Bateman, Randall J
2012-01-01
The amyloid hypothesis predicts that increased production or decreased clearance of β-amyloid (Aβ) leads to amyloidosis, which ultimately culminates in Alzheimer disease (AD). To investigate whether dynamic changes in Aβ levels in the human central nervous system may be altered by aging or by the pathology of AD and thus contribute to the risk of AD. Repeated-measures case-control study. Washington University School of Medicine in St Louis, Missouri. Participants with amyloid deposition, participants without amyloid deposition, and younger normal control participants. In this study, hourly cerebrospinal fluid (CSF) Aβ concentrations were compared with age, status of amyloid deposition, electroencephalography, and video recording data. Linear increases were observed over time in the Aβ levels in CSF samples obtained from the younger normal control participants and the older participants without amyloid deposition, but not from the older participants with amyloid deposition. Significant circadian patterns were observed in the Aβ levels in CSF samples obtained from the younger control participants; however, circadian amplitudes decreased in both older participants without amyloid deposition and older participants with amyloid deposition. Aβ diurnal concentrations were correlated with the amount of sleep but not with the various activities that the participants participated in while awake. A reduction in the linear increase in the Aβ levels in CSF samples that is associated with amyloid deposition and a decreased CSF Aβ diurnal pattern associated with increasing age disrupt the normal physiology of Aβ dynamics and may contribute to AD.
NASA Astrophysics Data System (ADS)
Bates, B.; Lowell, T. V.; Diefendorf, A. F.; Freimuth, E. J.; Stewart, A. K.
2017-12-01
Plant wax compounds preserved in lake sediments are used as proxies for paleohydrologic reconstructions. Despite their presence in lake sediments, little is known about their transport from plants to their deposition in lake sediments. By drawing on the leaf and pollen taphonomy literature combined with sediment focusing models, it is possible to develop several working hypotheses for the transport and deposition of plant waxes in lake sediments. An improved understanding of plant wax transport and deposition into lake sediments is necessary to increase the accuracy of paleohydrologic reconstructions. To better understand the controls on plant wax transport and deposition in lake sediment, we analyzed the sedimentary plant waxes from 3 lakes in the Adirondack Mountains of New York. These lakes were chosen to capture a range of basin-specific properties to evaluate their influences on the transport and deposition of plant wax compounds in surface sediments. We spatially characterized sediment properties with surface sediment samples and high-resolution underwater imaging, acoustically profiled the sub-bottom, and measured temperature profiles. From each site, we measured n-alkanes, bulk organic content (loss-on-ignition), bulk carbon and nitrogen concentrations, C:N ratios, and bulk carbon isotopes. Preliminary n-alkane concentrations and chain length distributions, as well as bulk carbon isotopes, are variable within each lake basin suggesting a mix of aquatic and terrestrial sources. The bulk carbon isotope values for two of the three lakes show a similar range of -2‰ compared to a range of -6.3‰ at the third lake. Likewise, the range of total n-alkane concentrations is much higher in the third lake suggesting that the controls on the distribution of n-alkanes and organic carbon are different between lakes. For terrestrial plant waxes, we find low n-alkane concentrations in sandy nearshore sediments relative to higher n-alkane concentrations in deeper fine-grained sediments. Combined, this information suggests that littoral processes focus organic compounds and fine sediments towards the main depo-center of the lake. These and other observations highlight important relationships between basin-specific properties and processes controlling the transport and deposition of plant wax compounds.
Sanchez-Valencia, Juan Ramon; Longtin, Remi; Rossell, Marta D; Gröning, Pierangelo
2016-04-06
We report a new methodology based on glancing angle deposition (GLAD) of an organic molecule in combination with perpendicular growth of a second inorganic material. The resulting thin films retain a very well-defined tilted columnar microstructure characteristic of GLAD with the inorganic material embedded inside the columns. We refer to this new methodology as growth assisted by glancing angle deposition or GAGLAD, since the material of interest (here, the inorganic) grows in the form of tilted columns, though it is deposited under a nonglancing configuration. As a "proof of concept", we have used silver and zinc oxide as the perpendicularly deposited material since they usually form ill-defined columnar microstructures at room temperature by GLAD. By means of our GAGLAD methodology, the typical tilted columnar microstructure can be developed for materials that otherwise do not form ordered structures under conventional GLAD. This simple methodology broadens significantly the range of materials where control of the microstructure can be achieved by tuning the geometrical deposition parameters. The two examples presented here, Ag/Alq3 and ZnO/Alq3, have been deposited by physical vapor deposition (PVD) and plasma enhanced chemical vapor deposition (PECVD), respectively: two different vacuum techniques that illustrate the generality of the proposed technique. The two type of hybrid samples present very interesting properties that demonstrate the potentiality of GAGLAD. On one hand, the Ag/Alq3 samples present highly optical anisotropic properties when they are analyzed with linearly polarized light. To our knowledge, these Ag/Alq3 samples present the highest angular selectivity reported in the visible range. On the other hand, ZnO/Alq3 samples are used to develop highly porous ZnO thin films by using Alq3 as sacrificial material. In this way, antireflective ZnO samples with very low refractive index and extinction coefficient have been obtained.
A new method for measuring lung deposition efficiency of airborne nanoparticles in a single breath
NASA Astrophysics Data System (ADS)
Jakobsson, Jonas K. F.; Hedlund, Johan; Kumlin, John; Wollmer, Per; Löndahl, Jakob
2016-11-01
Assessment of respiratory tract deposition of nanoparticles is a key link to understanding their health impacts. An instrument was developed to measure respiratory tract deposition of nanoparticles in a single breath. Monodisperse nanoparticles are generated, inhaled and sampled from a determined volumetric lung depth after a controlled residence time in the lung. The instrument was characterized for sensitivity to inter-subject variability, particle size (22, 50, 75 and 100 nm) and breath-holding time (3-20 s) in a group of seven healthy subjects. The measured particle recovery had an inter-subject variability 26-50 times larger than the measurement uncertainty and the results for various particle sizes and breath-holding times were in accordance with the theory for Brownian diffusion and values calculated from the Multiple-Path Particle Dosimetry model. The recovery was found to be determined by residence time and particle size, while respiratory flow-rate had minor importance in the studied range 1-10 L/s. The instrument will be used to investigate deposition of nanoparticles in patients with respiratory disease. The fast and precise measurement allows for both diagnostic applications, where the disease may be identified based on particle recovery, and for studies with controlled delivery of aerosol-based nanomedicine to specific regions of the lungs.
Ruíz-Gómez, M A; Figueroa-Torres, M Z; Alonso-Lemus, I L; Vega-Becerra, O E; González-López, J R; Zaldívar-Cadena, A A
2018-04-05
An electroless deposition process was used to synthesize with a controlled morphology, polycrystalline ZnO on glass substrates as antimicrobial coatings. The influence of deposition temperature (T dep ) on the physicochemical and antimicrobial properties of the ZnO films was analyzed. The results indicated that a change in deposition temperature greatly affected the morphology and the degree of crystallinity of the films. Scanning electron microscope images show that the film surface is porous at a deposition temperature of 40 and 50 °C, whereas hexagonal-plate shaped morphology predominated at 60 °C and finally at 70 and 80 °C the films consisted of rod-like particles. The films showed good transparency in the visible region. All ZnO films presented notable antimicrobial activity against the gram-negative bacteria Escherichia coli (E. coli) and the gram-positive Staphylococcus aureus (S. aureus). It was found that the antimicrobial efficiency is strongly dependent on morphology and structural properties. The best antimicrobial performance was recorded for the films consisting of rod-like morphology with a high degree of crystallinity. The procedure used in this investigation is strongly recommended for the development of functional surfaces. Copyright © 2017 Elsevier B.V. All rights reserved.
Templated fabrication of hollow nanospheres with 'windows' of accurate size and tunable number.
Xie, Duan; Hou, Yidong; Su, Yarong; Gao, Fuhua; Du, Jinglei
2015-01-01
The 'windows' or 'doors' on the surface of a closed hollow structure can enable the exchange of material and information between the interior and exterior of one hollow sphere or between two hollow spheres, and this information or material exchange can also be controlled through altering the window' size. Thus, it is very interesting and important to achieve the fabrication and adjustment of the 'windows' or 'doors' on the surface of a closed hollow structure. In this paper, we propose a new method based on the temple-assisted deposition method to achieve the fabrication of hollow spheres with windows of accurate size and number. Through precisely controlling of deposition parameters (i.e., deposition angle and number), hollow spheres with windows of total size from 0% to 50% and number from 1 to 6 have been successfully achieved. A geometrical model has been developed for the morphology simulation and size calculation of the windows, and the simulation results meet well with the experiment. This model will greatly improve the convenience and efficiency of this temple-assisted deposition method. In addition, these hollow spheres with desired windows also can be dispersed into liquid or arranged regularly on any desired substrate. These advantages will maximize their applications in many fields, such as drug transport and nano-research container.
Modeling precursor diffusion and reaction of atomic layer deposition in porous structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keuter, Thomas, E-mail: t.keuter@fz-juelich.de; Menzler, Norbert Heribert; Mauer, Georg
2015-01-01
Atomic layer deposition (ALD) is a technique for depositing thin films of materials with a precise thickness control and uniformity using the self-limitation of the underlying reactions. Usually, it is difficult to predict the result of the ALD process for given external parameters, e.g., the precursor exposure time or the size of the precursor molecules. Therefore, a deeper insight into ALD by modeling the process is needed to improve process control and to achieve more economical coatings. In this paper, a detailed, microscopic approach based on the model developed by Yanguas-Gil and Elam is presented and additionally compared with themore » experiment. Precursor diffusion and second-order reaction kinetics are combined to identify the influence of the porous substrate's microstructural parameters and the influence of precursor properties on the coating. The thickness of the deposited film is calculated for different depths inside the porous structure in relation to the precursor exposure time, the precursor vapor pressure, and other parameters. Good agreement with experimental results was obtained for ALD zirconiumdioxide (ZrO{sub 2}) films using the precursors tetrakis(ethylmethylamido)zirconium and O{sub 2}. The derivation can be adjusted to describe other features of ALD processes, e.g., precursor and reactive site losses, different growth modes, pore size reduction, and surface diffusion.« less
Fuel Flexibility: Landfill Gas Contaminant Mitigation for Power Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Storey, John Morse; Theiss, Timothy J; Kass, Michael D
This research project focused on the mitigation of silica damage to engine-based renewable landfill gas energy systems. Characterization of the landfill gas siloxane contamination, combined with characterization of the silica deposits in engines, led to development of two new mitigation strategies. The first involved a novel method for removing the siloxanes and other heavy contaminants from the landfill gas prior to use by the engines. The second strategy sought to interrupt the formation of hard silica deposits in the engine itself, based on inspection of failed landfill gas engine parts. In addition to mitigation, the project had a third taskmore » to develop a robust sensor for siloxanes that could be used to control existing and/or future removal processes.« less
Paleoflood Hydrology and Flood Geomorphology in the Dolores Watershed, CO and UT
NASA Astrophysics Data System (ADS)
Cline, M. L.; Baker, V.
2008-12-01
Field evidence from six slackwater deposits suggests that 4-7 extreme floods have occurred on the Dolores River since the middle-late Holocene; each of which significantly exceeds the peak historical flood. Preliminary OSL ages for the oldest deposits are corroborated by AMS 14C, dendrochronological, and archeological evidence. In addition to being the first paleoflood study of the Dolores Watershed, this study addresses a critical missing hydroclimatic region in the southwestern U.S.: those areas whose surface hydrology correlates weakly with ENSO variability. Prior paleoflood studies in the Southwest have focused on hydroclimatic regions that correlate strongly with ENSO variability, linking periods of increased flood magnitude and frequency with periods of increased El Niño activity (e.g. Ely, 1997). In this study, we are addressing this critical gap by developing a robust paleoflood chronology based on multiple geochronology techniques. We have made correlations between individual slackwater deposits based on age-control, sediment color, texture, pedogenic development, and stratigraphic position. The correlated slackwater deposits lay within both stable bedrock reaches, as well as mixed bedrock-alluvial reaches. Correlative slackwater deposits between morphologically different reaches are critical because they allow us to make discharge estimates, where the differences may inform us of the degree of channel-bed stability-a critical assumption of paleoflood hydrology. From these differences in discharge estimates, we can infer middle-late Holocene alluvial incision rates.
NASA Astrophysics Data System (ADS)
Wrable-Rose, Madeline; Primera-Pedrozo, Oliva M.; Pacheco-Londoño, Leonardo C.; Hernandez-Rivera, Samuel P.
2010-12-01
This research examines the surface contamination properties, trace sample preparation methodologies, detection systems response and generation of explosive contamination standards for trace detection systems. Homogeneous and reproducible sample preparation is relevant for trace detection of chemical threats, such as warfare agents, highly energetic materials (HEM) and toxic industrial chemicals. The objective of this research was to develop a technology capable of producing samples and standards of HEM with controlled size and distribution on a substrate to generate specimens that would reproduce real contamination conditions. The research activities included (1) a study of the properties of particles generated by two deposition techniques: sample smearing deposition and inkjet deposition, on gold-coated silicon, glass and stainless steel substrates; (2) characterization of composition, distribution and adhesion characteristics of deposits; (3) evaluation of accuracy and reproducibility for depositing neat highly energetic materials such as TNT, RDX and ammonium nitrate; (4) a study of HEM-surface interactions using FTIR-RAIRS; and (5) establishment of protocols for validation of surface concentration using destructive methods such as HPLC.
Karkanas, Panagiotis; Goldberg, Paul
2010-01-01
Site PP13B is a cave located on the steep cliffs of Pinnacle Point near Mossel Bay in Western Cape Province, South Africa. The depositional sequence of the cave, predating Marine Isotopic Stage 11 (MIS 11) and continuing to present, is in the form of isolated sediment exposures with different depositional facies and vertical and lateral variations. Micromorphological analysis demonstrated that a suite of natural sedimentation processes operated during the development of the sequence ranging from water action to aeolian activity, and from speleothem formations to plant colonization and root encrustation. At the same time, anthropogenic sediments that are mainly in the form of burnt remains from combustion features (e.g., wood ash, charcoal, and burnt bone) were accumulating. Several erosional episodes have resulted in a complicated stratigraphy, as discerned from different depositional and post-depositional features. The cave is associated with a fluctuating coastal environment, frequent changes in sea level and climate controlled patterns of sedimentation, and the presence or absence of humans. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Johnson, Ryan William
2005-07-01
Laser Chemical Vapor Deposition (LCVD) has been shown to have great potential for the manufacture of small, complex, two or three dimensional metal and ceramic parts. One of the most promising applications of the technology is in the fabrication of an integrated dispenser cathode assembly. This application requires the deposition of a boron nitride-molybdenum composite structure. In order to realize this structure, work was done to improve the control and understanding of the LCVD process and to determine experimental conditions conducive to the growth of the required materials. A series of carbon fiber and line deposition studies were used to characterize process-shape relationships and study the kinetics of carbon LCVD. These studies provided a foundation for the fabrication of the first high aspect ratio multi-layered LCVD wall structures. The kinetics studies enabled the formulation of an advanced computational model in the FLUENT CFD package for studying energy transport, mass and momentum transport, and species transport within a forced flow LCVD environment. The model was applied to two different material systems and used to quantify deposition rates and identify rate-limiting regimes. A computational thermal-structural model was also developed using the ANSYS software package to study the thermal stress state within an LCVD deposit during growth. Georgia Tech's LCVD system was modified and used to characterize both boron nitride and molybdenum deposition independently. The focus was on understanding the relations among process parameters and deposit shape. Boron nitride was deposited using a B3 N3H6-N2 mixture and growth was characterized by sporadic nucleation followed by rapid bulk growth. Molybdenum was deposited from the MoCl5-H2 system and showed slow, but stable growth. Each material was used to grow both fibers and lines. The fabrication of a boron nitride-molybdenum composite was also demonstrated. In sum, this work served to both advance the general science of Laser Chemical Vapor Deposition and to elucidate the practicality of fabricating ceramic-metal composites using the process.
Unusual Nature of Fingerprints and the Implications for Easy-to-Clean Coatings.
Stoehr, Bastian; McClure, Stuart; Höflich, Alexander; Al Kobaisi, Mohammad; Hall, Colin; Murphy, Peter J; Evans, Drew
2016-01-19
Irrespective of the technology, we now rely on touch to interact with devices such as smart phones, tablet computers, and control panels. As a result, touch screen technologies are frequently in contact with body grease. Hence, surface deposition arises from localized inhomogeneous finger-derived contaminants adhering to a surface, impairing the visual/optical experience of the user. In this study, we examined the contamination itself in order to understand its static and dynamic behavior with respect to deposition and cleaning. A process for standardized deposition of fingerprints was developed. Artificial sebum was used in this process to enable reproducibility for quantitative analysis. Fingerprint contamination was shown to be hygroscopic and to possess temperature- and shear-dependent properties. These results have implications for the design of easily cleanable surfaces.
Wettability control of droplet deposition and detachment.
Baret, Jean-Christophe; Brinkmann, Martin
2006-04-14
The conditions for droplet deposition on plane substrates are studied using electrowetting to continuously modulate the surface wettability. Droplets of controlled volume attached to the tip of a pipette are brought into contact with the surface. During retraction of the pipette the droplets are deposited or detach completely depending on volume and contact angle. The experimental limit of deposition in the contact angle or volume plane is in good agreement with analytical and numerical predictions obtained within the capillary model.
Large-scale erosional and depositional features of the Channeled Scabland
NASA Technical Reports Server (NTRS)
Baker, V. R.
1978-01-01
The channeled scabland is a great anastomosing complex of highly overfit stand channels eroded into the basalt bedrock and overlying sediments of the Columbia Plateau. Both the erosional and depositional bed forms in these channels are described according to a simple hierarchical classification. The catastrophic flood flows produced macroforms (scale controlled by channel width) through the erosion of rock and sediment and by deposition (bars). Mesoforms (scale controlled by channel depth) are also erosional and depositional.
Characterization of calcium deposition induced by Synechocystis sp. PCC6803 in BG11 culture medium
NASA Astrophysics Data System (ADS)
Yan, Huaxiao; Han, Zuozhen; Zhao, Hui; Zhou, Shixue; Chi, Naijie; Han, Mei; Kou, Xiaoyan; Zhang, Yan; Xu, Linlin; Tian, Chenchen; Qin, Song
2014-05-01
Calcium carbonate (CaCO3) crystals in their preferred orientation were obtained in BG11 culture media inoculated with Synechocystis sp. PCC6803 (inoculated BG11). In this study, the features of calcium carbonate deposition were investigated. Inoculated BG11 in different calcium ion concentrations was used for the experimental group, while the BG11 culture medium was used for the control group. The surface morphologies of the calcium carbonate deposits in the experimental and control groups were determined by scanning and transmission electron microscopy. The deposits were analyzed by electronic probe micro-analysis, Fourier transform infrared spectrum, X-ray diffraction, thermal gravimetric analysis and differential scanning calorimetry. The results show that the surfaces of the crystals in the experimental group were hexahedral in a scaly pattern. The particle sizes were micrometer-sized and larger than those in the control group. The deposits of the control group contained calcium (Ca), carbon (C), oxygen (O), phosphorus (P), iron (Fe), copper (Cu), zinc (Zn), and other elements. The deposits in the experimental group contained Ca, C, and O only. The deposits of both groups contained calcite. The thermal decomposition temperature of the deposits in the control group was lower than those in the experimental group. It showed that the CaCO3 deposits of the experimental group had higher thermal stability than those of the control group. This may be due to the secondary metabolites produced by the algae cells, which affect the carbonate crystal structure and result in a close-packed structure. The algae cells that remained after thermal weight loss were heavier in higher calcium concentrations in BG11 culture media. There may be more calcium-containing crystals inside and outside of these cells. These results shall be beneficial for understanding the formation mechanism of carbonate minerals.
NASA Astrophysics Data System (ADS)
Friese, Carmen A.; van der Does, Michèlle; Merkel, Ute; Iversen, Morten H.; Fischer, Gerhard; Stuut, Jan-Berend W.
2016-09-01
The particle sizes of Saharan dust in marine sediment core records have been used frequently as a proxy for trade-wind speed. However, there are still large uncertainties with respect to the seasonality of the particle sizes of deposited Saharan dust off northwestern Africa and the factors influencing this seasonality. We investigated a three-year time-series of grain-size data from two sediment-trap moorings off Cape Blanc, Mauritania and compared them to observed wind-speed and precipitation as well as satellite images. Our results indicate a clear seasonality in the grain-size distributions: during summer the modal grain sizes were generally larger and the sorting was generally less pronounced compared to the winter season. Gravitational settling was the major deposition process during winter. We conclude that the following two mechanisms control the modal grain size of the collected dust during summer: (1) wet deposition causes increased deposition fluxes resulting in coarser modal grain sizes and (2) the development of cold fronts favors the emission and transport of coarse particles off Cape Blanc. Individual dust-storm events throughout the year could be recognized in the traps as anomalously coarse-grained samples. During winter and spring, intense cyclonic dust-storm events in the dust-source region explained the enhanced emission and transport of a larger component of coarse particles off Cape Blanc. The outcome of our study provides important implications for climate modellers and paleo-climatologists.
Modeling the long-term deposition trends in US over 1990 ...
Reactive nitrogen (Nr) is very important pollutant which at the same time plays a very important role on air and water quality, human health and biological diversity. The atmospheric nitrogen deposition can cause acidification and excess eutrophication, which brings damages to the ecosystems. Quantifying the total deposition is US is still a challenge due to the lack of the long-term observation data for the dry deposition. For this study, we use a comprehensive coupled meteorology-air quality model (WRF-CMAQ) to simulate deposition changes in US over 1990—2010. The WRF-CMAQ model was run for the continental US using a 36km by 36km horizontal grid spacing, by using a consistent emission inventory recently developed by Jia et al., (2013). We found significant decreasing trend for the total inorganic nitrogen over the East and West coast of California, and increasing trend in the East North Central. The decreased total deposition was controlled by the oxidized nitrogen, as a result of the recent consistent NOx emission reductions due to air regulations such as the Clean Air Act and the NOx State Implementation Plan, consistent with other studies (Li et al., 2016; Schwede and Lear, 2014). The increased inorganic nitrogen deposition was dominated by the reduced nitrogen, which was attributed to the unregulated increasing ammonia (NH3) emissions. The dry and wet inorganic nitrogen deposition trends also have a different spatial patterns: wet deposition was decreasi
NASA Astrophysics Data System (ADS)
Feng, Youliang; Jiang, Shu; Wang, Chunfang
2015-06-01
The Lower Jurassic Junggar Basin is a low-accommodation basin in northwestern China. Because of low subsidence rates and a warm, wet climate, deposits of the Central subbasin of the Junggar Basin formed from fluvial, deltaic, shallow lake facies. Sequence stratigraphy and sedimentary systems of the Lower Jurassic members of the Sangonghe Formation (J1s) were evaluated by observing cores, interpreting wireline logs and examining seismic profiles. Two third-order sequences were recognized in the strata. The distribution of the sedimentary systems in the systems tracts shows that tectonic movement, paleorelief, paleoclimate and changes in lake level controlled the architecture of individual sequences. During the development of the lowstand systems tract (LST), the intense structural movement of the basin resulted in a significant fall in the water level in the lake, accompanied by rapid accommodation decrease. Braided rivers and their deltaic systems were also developed in the Central Junggar Basin. Sediments carried by braided rivers were deposited on upward slopes of the paleorelief, and braid-delta fronts were deposited on downward slopes. During the transgressive systems tract (TST), the tectonic movement of the basin was quiescent and the climate was warm and humid. Lake levels rose and accommodation increased quickly, shoal lines moved landward, and shore- to shallow-lake deposits, sublacustrine fans and deep-lake facies were deposited in shallow- to deep-lake environments. During the highstand systems tract (HST), the accommodation no longer increased but sediment supply continued, far exceeding accommodation. HST deposits slowly formed in shallow-lake to meandering river delta-front environments. Relatively low rates of structural subsidence and low accommodation resulted in coarse-grained successions that were fining upward. Deposits were controlled by structural movement and paleorelief within the LST to TST deposits in the Central subbasin. Fine- to medium-grained coarsening-upward successions developed during the HST. The sand bodies of braid-delta fronts on the downward slopes of the paleorelief in the LST and the sublacustrine fans in the TST became reservoirs for hydrocarbon accumulation. Petroleum plays have only been found in the Sangonghe Formation (J1s) located on structural ridges that consist of sand bodies comprising these sequences. Favorable conditions for petroleum plays in HST1-LST2 occur where the sand bodies have been fractured by faults and sealed by denudation and pinch-out lines, then overlain by deep lake mudstone in TST2. The favorable condition of the sand bodies within TST2 occurs where isolated sand bodies have been fractured by faults.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chason, Eric
Thin films are critical for a wide range of advanced technologies. However, the deposited films often have high levels of residual stress that can limit their performance or lead to failure. The stress is known to depend on many variables, including the processing conditions, type of material, deposition technique and the film’s microstructure. The goal of this DOE program was to develop a fundamental understanding of how the different processes that control thin film growth under different conditions can be related to the development of stress. In the program, systematic experiments were performed or analyzed that related the stress tomore » the processing conditions that were used. Measurements of stress were obtained for films that were grown at different rates, different solutions (for electrodeposition), different particle energies (for sputter deposition) and different microstructures. Based on this data, models were developed to explain the observed dependence on the different parameters. The models were based on considering the balance among different stress-inducing mechanism occurring as the film grows (for both non-energetic and energetic deposition). Comparison of the model predictions with the experiments enabled the kinetic parameters to be determined for different materials. The resulting model equations provide a comprehensive picture of how stress changes with the processing conditions that can be used to optimize the growth of thin films.« less
Dysprosium electrodeposition from a hexaalkylguanidinium-based ionic liquid
NASA Astrophysics Data System (ADS)
Berger, Claudia A.; Arkhipova, Maria; Maas, Gerhard; Jacob, Timo
2016-07-01
The rare-earth element dysprosium (Dy) is an important additive that increases the magnetocrystalline anisotropy of neodymium magnets and additionally prevents from demagnetizing at high temperatures. Therefore, it is one of the most important elements for high-tech industries and is mainly used in permanent magnetic applications, for example in electric vehicles, industrial motors and direct-drive wind turbines. In an effort to develop a more efficient electrochemical technique for depositing Dy on Nd-magnets in contrast to commonly used costly physical vapor deposition, we investigated the electrochemical behavior of dysprosium(iii) trifluoromethanesulfonate in a custom-made guanidinium-based room-temperature ionic liquid (RTIL). We first examined the electrodeposition of Dy on an Au(111) model electrode. The investigation was carried out by means of cyclic voltammetry (CV) and X-ray photoelectron spectroscopy (XPS). The initial stages of metal deposition were followed by in situ scanning tunneling microscopy (STM). CV measurements revealed a large cathodic reduction peak, which corresponds to the growth of monoatomic high islands, based on STM images taken during the initial stages of deposition. XPS identified these deposited islands as dysprosium. A similar reduction peak was also observed on an Nd-Fe-B substrate, and positively identified as deposited Dy using XPS. Finally, we varied the concentration of the Dy precursor, electrolyte flow and temperature during Dy deposition and demonstrated that each of these parameters could be used to increase the thickness of the Dy deposit, suggesting that these parameters could be tuned simultaneously in a temperature-controlled flow cell to enhance the thickness of the Dy layer.The rare-earth element dysprosium (Dy) is an important additive that increases the magnetocrystalline anisotropy of neodymium magnets and additionally prevents from demagnetizing at high temperatures. Therefore, it is one of the most important elements for high-tech industries and is mainly used in permanent magnetic applications, for example in electric vehicles, industrial motors and direct-drive wind turbines. In an effort to develop a more efficient electrochemical technique for depositing Dy on Nd-magnets in contrast to commonly used costly physical vapor deposition, we investigated the electrochemical behavior of dysprosium(iii) trifluoromethanesulfonate in a custom-made guanidinium-based room-temperature ionic liquid (RTIL). We first examined the electrodeposition of Dy on an Au(111) model electrode. The investigation was carried out by means of cyclic voltammetry (CV) and X-ray photoelectron spectroscopy (XPS). The initial stages of metal deposition were followed by in situ scanning tunneling microscopy (STM). CV measurements revealed a large cathodic reduction peak, which corresponds to the growth of monoatomic high islands, based on STM images taken during the initial stages of deposition. XPS identified these deposited islands as dysprosium. A similar reduction peak was also observed on an Nd-Fe-B substrate, and positively identified as deposited Dy using XPS. Finally, we varied the concentration of the Dy precursor, electrolyte flow and temperature during Dy deposition and demonstrated that each of these parameters could be used to increase the thickness of the Dy deposit, suggesting that these parameters could be tuned simultaneously in a temperature-controlled flow cell to enhance the thickness of the Dy layer. Electronic supplementary information (ESI) available. See DOI: 10.1039/C6NR01351A
NASA Astrophysics Data System (ADS)
Dunning, Peter David
A colloidal suspension is a small constituent of insoluble solid particles suspended in a liquid medium. Control over the wetting, evaporation, and deposition patterns left by colloidal suspensions is valuable in many biological, medical, industrial, and agricultural applications. Understanding the governing principles of wetting and evaporative phenomena of these colloidal suspensions may lead to greater control over resultant deposition patterns. Perhaps the most familiar pattern forms when an initially heterogeneous colloidal suspension leaves a dark ring pattern at the edge of a drop. This pattern is referred to as a coffee-stain and it can be seen from dried droplets of spilled coffee. This coffee-stain effect was first investigated by Deegan et. al. who discovered that these patterns occur when outward radial flows driven by evaporation at the triple contact line dominate over other effects. While the presence of coffee-stain patterns is undesirable in many printing and medical diagnostic processes, it can also be advantageous in the production of low cost transparent conductive films, the deposition of metal vapor, and the manipulation of biological structures. Controlling the interactions between the substrate, liquid, vapor, and particles can lead to control over the size and morphology of evaporative deposition patterns left by aqueous colloidal suspensions. Several methods have been developed to control the evaporation of colloidal suspensions to either suppress or enhance the coffee stain effect. Electrowetting on Dielectric (EWOD) is one promising method that has been used to control colloidal depositions by applying either an AC or DC electric field. EWOD actuation has the potential to dynamically control colloidal deposition left by desiccated droplets to either suppress or enhance the coffee stain effect. It may also allow for independent control of the fluidic interface and deposition of particles via electrowetting and electrokinetic forces. Implementation of this technique requires that the colloidal droplet be separated from the active electrode by a dielectric layer to prevent electrolysis. A variety of polymer layers have been used in EWOD devices for a variety of applications. In applications that involve desiccation of colloidal suspensions, the material for this layer should be chosen carefully as it can play an important role in the resulting deposition pattern. An experimental method to monitor the transient evolution of the shape of an evaporating colloidal droplet and optically quantify the resultant deposition pattern is presented. Unactuated colloidal suspensions will be desiccated on a variety of substrates commonly used in EWOD applications. Transient image profiles and particle deposition patterns are examined for droplets containing fluorescent micro-particles. Qualitative and quantitative comparisons of these results will be used to compare multiple different cases in an effort to provide insight into the effects of polymer selection on the drying dynamics and resultant deposition patterns of desiccated colloidal materials. It was found that the equilibrium and receding contact angles between the surface and the droplet play a key role in the evaporation dynamics and the resulting deposition patterns left by a desiccated colloidal suspension. The equilibrium contact angle controls the initial contact diameter for a droplet of a given volume. As a droplet on a surface evaporates, the evolution of the interface shape and the contact diameter can generally be described by three different regimes. The Constant Contact Radius (CCR) regime occurs when the contact line is pinned while the contact angle decreases. The Constant Contact Angle (CCA) regime occurs when the contact line recedes while the contact angle remains constant. The Mixed regime occurs when the contact radius and angle both reduce over time. The presence of the CCA regime allows the contact line to recede creating a more uniform deposition. However, not all droplets move into the CCA regime. Some remain in the CCR regime creating a coffee-stain pattern. In order to transition into the CCA regime, the dynamic contact angle of the droplet must be reduced to an angle close to the receding contact angle. Transient interface shapes and deposition patterns were examined on four surfaces: (i) Glass, (ii) Kapton HN polyimide tape, (iii) SU-8 3005, and (iv) Teflon AF. Glass has a low equilibrium contact angle and a very low receding contact angle resulting in a large uniform coffee-stain deposition. Kapton HN and SU-8 3005 have similar equilibrium contact angles that result in similar initial contact diameters. However, Kapton HN pins at that initial diameter due to a low receding contact angle producing a smaller more intense coffee-stain. SU-8 3005 has a large receding contact angle that allows for the transition into the CCA regime which results in a smaller, more uniform, and more intense spot. Teflon AF has the largest equilibrium and receding contact angle producing the smallest, most uniform, and most intense spot. Results presented here suggest that a lower receding contact angle is beneficial in areas where the coffee-stain effect needs to be enhanced while a larger receding contact angle is beneficial in areas where the coffee-stain needs to be suppressed. Preliminary results are also presented examining droplets actuated via AC electrowetting to examine the effect of electrode geometry and applied voltage on electrowetting behavior and colloidal depositions in these cases. It was found that the Young-Lippmann equation needs to be modified to satisfy the modified capacitance per unit area of a system with different electrode geometries.
Bajt, Sasa; Vernon, Stephen P.
2005-03-15
The chemical composition of thin films is modulated during their growth. A computer code has been developed to design specific processes for producing a desired chemical composition for various deposition geometries. Good agreement between theoretical and experimental results was achieved.
O3 Source Contribution During a Heavy O3 Pollution Episode in Shanghai China
Source culpability assessments are useful for developing effective emission control strategies. The Integrated Source Apportionment Method (ISAM) has been implemented in CMAQ to track contributions from source groups and regions to ambient levels and deposited amounts of O3. CMAQ...
Digital Transfer Growth of Patterned 2D Metal Chalcogenides by Confined Nanoparticle Evaporation
Mahjouri-Samani, Masoud; Tian, Mengkun; Wang, Kai; ...
2014-10-19
Developing methods for the facile synthesis of two-dimensional (2D) metal chalcogenides and other layered materials is crucial for emerging applications in functional devices. Controlling the stoichiometry, number of the layers, crystallite size, growth location, and areal uniformity is challenging in conventional vapor phase synthesis. Here, we demonstrate a new route to control these parameters in the growth of metal chalcogenide (GaSe) and dichalcogenide (MoSe 2) 2D crystals by precisely defining the mass and location of the source materials in a confined transfer growth system. A uniform and precise amount of stoichiometric nanoparticles are first synthesized and deposited onto a substratemore » by pulsed laser deposition (PLD) at room temperature. This source substrate is then covered with a receiver substrate to form a confined vapor transport growth (VTG) system. By simply heating the source substrate in an inert background gas, a natural temperature gradient is formed that evaporates the confined nanoparticles to grow large, crystalline 2D nanosheets on the cooler receiver substrate, the temperature of which is controlled by the background gas pressure. Large monolayer crystalline domains (~ 100 m lateral sizes) of GaSe and MoSe 2 are demonstrated, as well as continuous monolayer films through the deposition of additional precursor materials. This novel PLD-VTG synthesis and processing method offers a unique approach for the controlled growth of large-area, metal chalcogenides with a controlled number of layers in patterned growth locations for optoelectronics and energy related applications.« less
Li, Qingsong; Zhang, Yafeng; Shi, Lei; Qiu, Huihui; Zhang, Suming; Qi, Ning; Hu, Jianchen; Yuan, Wei; Zhang, Xiaohua; Zhang, Ke-Qin
2018-04-24
Artificial structural colors based on short-range-ordered amorphous photonic structures (APSs) have attracted great scientific and industrial interest in recent years. However, the previously reported methods of self-assembling colloidal nanoparticles lack fine control of the APS coating and fixation on substrates and poorly realize three-dimensional (3D) conformal coatings for objects with irregular or highly curved surfaces. In this paper, atomization deposition of silica colloidal nanoparticles with poly(vinyl alcohol) as the additive is proposed to solve the above problems. By finely controlling the thicknesses of APS coatings, additive mixing of noniridescent structural colors is easily realized. Based on the intrinsic omnidirectional feature of atomization, a one-step 3D homogeneous conformal coating is also readily realized on various irregular or highly curved surfaces, including papers, resins, metal plates, ceramics, and flexible silk fabrics. The vivid coatings on silk fabrics by atomization deposition possess robust mechanical properties, which are confirmed by rubbing and laundering tests, showing great potential in developing an environmentally friendly coloring technique in the textile industry.
Mercury Wet Scavenging and Deposition Differences by Precipitation Type.
Kaulfus, Aaron S; Nair, Udaysankar; Holmes, Christopher D; Landing, William M
2017-03-07
We analyze the effect of precipitation type on mercury wet deposition using a new database of individual rain events spanning the contiguous United States. Measurements from the Mercury Deposition Network (MDN) containing single rainfall events were identified and classified into six precipitation types. Mercury concentrations in surface precipitation follow a power law of precipitation depth that is modulated by precipitation system morphology. After controlling for precipitation depth, the highest mercury deposition occurs in supercell thunderstorms, with decreasing deposition in disorganized thunderstorms, quasi-linear convective systems (QLCS), extratropical cyclones, light rain, and land-falling tropical cyclones. Convective morphologies (supercells, disorganized, and QLCS) enhance wet deposition by a factor of at least 1.6 relative to nonconvective morphologies. Mercury wet deposition also varies by geographic region and season. After controlling for other factors, we find that mercury wet deposition is greater over high-elevation sites, seasonally during summer, and in convective precipitation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebert, Jon Llyod
This Small Business Innovative Research (SBIR) Phase I project will demonstrate the feasibility of an innovative temperature control technology for Metal-Organic Chemical Vapor Deposition (MOCVD) process used in the fabrication of Multi-Quantum Well (MQW) LEDs. The proposed control technology has the strong potential to improve both throughput and performance quality of the manufactured LED. The color of the light emitted by an LED is a strong function of the substrate temperature during the deposition process. Hence, accurate temperature control of the MOCVD process is essential for ensuring that the LED performance matches the design specification. The Gallium Nitride (GaN) epitaxymore » process involves depositing multiple layers at different temperatures. Much of the recipe time is spent ramping from one process temperature to another, adding significant overhead to the production time. To increase throughput, the process temperature must transition over a range of several hundred degrees Centigrade many times with as little overshoot and undershoot as possible, in the face of several sources of process disturbance such as changing emissivities. Any throughput increase achieved by faster ramping must also satisfy the constraint of strict temperature uniformity across the carrier so that yield is not affected. SC Solutions is a leading supplier of embedded real-time temperature control technology for MOCVD systems used in LED manufacturing. SC’s Multiple Input Multiple Output (MIMO) temperature controllers use physics-based models to achieve the performance demanded by our customers. However, to meet DOE’s ambitious goals of cost reduction of LED products, a new generation of temperature controllers has to be developed. SC believes that the proposed control technology will be made feasible by the confluence of mathematical formulation as a convex optimization problem, new efficient and scalable algorithms, and the increase in computational power available for real-time control.« less
NASA Astrophysics Data System (ADS)
Croci, Andrea; Della Porta, Giovanna; Capezzuoli, Enrico
2016-03-01
The extensional Neogene Albegna Basin (Southern Tuscany, Italy) includes several thermogene travertine units dating from the Miocene to Holocene time. During the late Miocene (Messinian), a continental fault-controlled basin (of nearly 500-km2 width) was filled by precipitated travertine and detrital terrigenous strata, characterized by a wedge-shaped geometry that thinned northward, with a maximum thickness of nearly 70 m. This mixed travertine-terrigenous succession was investigated in terms of lithofacies types, depositional environment and architecture and the variety of precipitated travertine fabrics. Deposited as beds with thickness ranging from centimetres to a few decimetres, carbonates include nine travertine facies types: F1) clotted peloidal micrite and microsparite boundstone, F2) raft rudstone/floatstone, F3) sub-rounded radial coated grain grainstone, F4) coated gas bubble boundstone, F5) crystalline dendrite cementstone, F6) laminated boundstone, F7) coated reed boundstone and rudstone, F8) peloidal skeletal grainstone and F9) calci-mudstone and microsparstone. Beds of terrigenous deposits with thickness varying from a decimetre to > 10 m include five lithofacies: F10) breccia, F11) conglomerate, F12) massive sandstone, F13) laminated sandstone and F14) claystone. The succession recorded the following three phases of evolution of the depositional setting: 1) At the base, a northward-thinning thermogene travertine terraced slope (Phase I, travertine slope lithofacies association, F1-F6) developed close to the extensional fault system, placed southward with respect to the travertine deposition. 2) In Phase II, the accumulation of travertines was interrupted by the deposition of colluvial fan deposits with a thickness of several metres (colluvial fan lithofacies association, F10 and F12), which consisted of massive breccias, adjacent to the alluvial plain lithofacies association (F11-F14) including massive claystone and sandstone and channelized conglomerates. Travertine lenses, of 2-3-m thickness, appeared intermittently alternating with the colluvial fan breccias. 3) In the third phase, the filled fault-controlled basin evolved into an alluvial plain with ponds rich in coated reed travertines, which record the influence of freshwater (travertine flat lithofacies association, F7-F9). This study shows the stratigraphic architecture and sedimentary evolution of a continental succession, wherein the hydrothermal activity and consequent travertine precipitation were driven by the extensional tectonic regime, with faults acting as fluid paths for the thermal water. Fault activity created the accommodation space for travertine and colluvial fan accumulation. Erosion of the uplifted footwall blocks provided the source of sediments for the colluvial fan breccias, which alternated with the thermogene travertine precipitation. Climatic oscillations might have led to the recharge of the aquifer that fed the hydrothermal vents. The studied continental succession in an extensional basin provides valuable information about the interplay between thermogene travertine and alluvial/colluvial deposition, which in turn might improve the understanding of similar fault-controlled continental depositional systems in outcrops and the subsurface.
Kullgren, Jeffrey T; Troxel, Andrea B; Loewenstein, George; Norton, Laurie A; Gatto, Dana; Tao, Yuanyuan; Zhu, Jingsan; Schofield, Heather; Shea, Judy A; Asch, David A; Pellathy, Thomas; Driggers, Jay; Volpp, Kevin G
2016-07-01
To test whether employer matching of employees' monetary contributions increases employees' (1) participation in deposit contracts to promote weight loss and (2) weight loss. A 36-week randomized trial. Large employer in the northeast United States. One hundred thirty-two obese employees. Over 24 weeks, participants were asked to lose 24 pounds and randomized to monthly weigh-ins or daily weigh-ins with monthly opportunities to deposit $1 to $3 per day that was not matched, matched 1:1, or matched 2:1. Deposits and matched funds were returned to participants for each day they were below their goal weight. Rates of making ≥1 deposit, weight loss at 24 weeks (primary outcome), and 36 weeks. Deposit rates were compared using χ(2) tests. Weight loss was compared using t tests. Among participants eligible to make deposits, 29% made ≥1 deposit and matching did not increase participation. At 24 weeks, control participants gained an average of 1.0 pound, whereas 1:1 match participants lost an average of 5.3 pounds (P = .005). After 36 weeks, control participants gained an average of 2.1 pounds, whereas no match participants lost an average of 5.1 pounds (P = .008). Participation in deposit contracts to promote weight loss was low, and matching deposits did not increase participation. For deposit contracts to impact population health, ongoing participation will need to be higher. © The Author(s) 2016.
1974-09-01
mately l£ hours or until double in bulk. After fermentation, turn out dough onto a floured table. Divide and make up as desired. Cookies 1. When... cookies can be deposited on sheet pans by pastry bag. If a cookie depositer is used, the stiffness of the dough can be controlled by adjusting the...10 pieces, each weighing about 1 lb (1*53-6 g). Form each piece into a roll and cut into 20 slices. 3. Place cookie dough in rows 5 x 7 on greased
Silicon carbide and other films and method of deposition
NASA Technical Reports Server (NTRS)
Mehregany, Mehran (Inventor); Zorman, Christian A. (Inventor); Fu, Xiao-An (Inventor); Dunning, Jeremy L. (Inventor)
2007-01-01
A method of depositing a ceramic film, particularly a silicon carbide film, on a substrate is disclosed in which the residual stress, residual stress gradient, and resistivity are controlled. Also disclosed are substrates having a deposited film with these controlled properties and devices, particularly MEMS and NEMS devices, having substrates with films having these properties.
Silicon carbide and other films and method of deposition
NASA Technical Reports Server (NTRS)
Mehregany, Mehran (Inventor); Zorman, Christian A. (Inventor); Fu, Xiao-An (Inventor); Dunning, Jeremy (Inventor)
2011-01-01
A method of depositing a ceramic film, particularly a silicon carbide film, on a substrate is disclosed in which the residual stress, residual stress gradient, and resistivity are controlled. Also disclosed are substrates having a deposited film with these controlled properties and devices, particularly MEMS and NEMS devices, having substrates with films having these properties.
Decoupling flood and interflood deposits for delta island formation and channel bifurcation
NASA Astrophysics Data System (ADS)
Daniller-Varghese, M. S.; Kim, W.
2016-12-01
Channel islands' size and organization dictate delta networks' morphology. To understand their complex network organization, a single channel island node within that network should be investigated first as the fundamental building block. When a sediment-laden flow enters slack water, it loses momentum and carrying capacity, depositing its sediment. As sediment accumulates, flow moves around it and a mouth bar island develops. We present an experimental investigation of island formation and channel bifurcation using the Sediment Transport and Earth-surface Processes (STEP) basin. We made mouth bar deposits and flow bifurcations in transport-limited turbulent conditions. Time-lapse images, elevation scans on the deltaic surface, and a low-cost particle imaging velocimetry system allow us to characterize the flow and depositional evolution of our experimental islands. Using two flow discharges (0.355 l/s, 6 l/s) and uniform sediment, our experiments have two characteristic advection lengths and corresponding deposit types. One, associated with interflood bedload transport, and the other with flood-suspended transport: proximal low-angle deposits and distal steep deposits, respectively. By varying the frequency of floods (one every 20s-20 mins) while keeping sediment and water mass constant across experiments, we are able to control the time and spatial organization of these two deposit types and examine the effect on bifurcation length and bifurcation incidence time. As the interflood flow deposit and flood deposit accumulate sediment over time, the interflood deposit encroaches onto the flood deposit. Flow is routed from the interflood deposit to the flood deposit but does not have the momentum to uniformly cover it. The flow becomes unsteady, and bifurcates around an island. After the bifurcation, the island's vertical aggradation rate also increases. The experiments suggest that the interaction between deposits stemming from different particle advection lengths is a sufficient condition for island formation and flow bifurcation.
Jiao, Alex; Moerk, Charles T; Penland, Nisa; Perla, Mikael; Kim, Jinsung; Smith, Alec S T; Murry, Charles E; Kim, Deok-Ho
2018-06-01
Skeletal muscle has a well-organized tissue structure comprised of aligned myofibers and an encasing extracellular matrix (ECM) sheath or lamina, within which reside satellite cells. We hypothesize that the organization of skeletal muscle tissues in culture can affect both the structure of the deposited ECM and the differentiation potential of developing myotubes. Furthermore, we posit that cellular and ECM cues can be a strong determinant of myoblast fusion and morphology in 3D tissue culture environments. To test these, we utilized a thermoresponsive nanofabricated substratum to engineer anisotropic sheets of myoblasts which could then be transferred and stacked into multilayered tissues. Within such engineered tissues, we found that myoblasts rapidly sense topography and deposit structurally organized ECM proteins. Furthermore, the initial tissue structure was found to exert significant control over myoblast fusion and eventual myotube organization. These results highlight the importance of ECM structure on myoblast fusion and organization, and provide insights into substrate-mediated control of myotube formation in the development of novel, more effective, engineered skeletal muscle tissues. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1543-1551, 2018. © 2018 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Bendana, Sylvana; Brand, Brittany D.; Self, Stephen
2014-05-01
The flanks of Mt St Helens volcano (MSH) are draped with thin, cross-stratified and stratified pyroclastic density current (PDC) deposits. These are known as the proximal bedded deposits produced during the May 18th, 1980 eruption of MSH. While the concentrated portions of the afternoon PDCs followed deep topographic drainages down the steep flanks of the volcano, the dilute overriding cloud partially decoupled to develop fully dilute, turbulent PDCs on the flanks of the volcano (Beeson, D.L. 1988. Proximal Flank Facies of the May 18, 1980 Ignimbrite: Mt. St. Helens, Washington.). The deposits along the flank thus vary greatly from those found in the pumice plain, which are generally thick, massive, poorly-sorted, block-rich deposits associated with the more concentrated portions of the flow (Brand et al, accepted. Dynamics of pyroclastic density currents: Conditions that promote substrate erosion and self-channelization - Mount St Helens, Washington (USA). JVGR). We explore the influence of topography on the formation of these dilute currents and influence of slope on the currents transport and depositional mechanisms. The deposits on steeper slopes (>15°) are fines depleted relative to the proximal bedded deposits on shallower slopes (<15°). Bedform amplitude and wavelength increase with increasing slope, as does the occurrence of regressive dunes. Increasing slope causes an increase in flow velocity and thus an increase in flow turbulence. The fines depleted deposits suggest that fine ash elutriation is more efficient in flows with stronger turbulence. The longer wavelength and amplitudes suggest that bedform morphology is directly related to flow velocity, an important finding since the controls on bedform wavelength and amplitude in density stratified flows remains poorly constrained. The occurrence of regressive dunes, often interpreted as high flow-regime bedforms, on steeper slopes relative to progressive dunes on shallower slopes further attests to the control of velocity and flow regime on bedform morphology. Samples collected from recently exposed deposits and analyzed by grain size measurements, density analyses, and crystal morphoscopy studies further assess modes of origin and transport of dilute PDCs.
Wang, Dan; Li, Yan-Ying; Luo, Jian-Hua; Li, Yue-Hua
2014-01-01
This study aimed to investigate age-related iron deposition changes in healthy subjects and Alzheimer disease patients using susceptibility weighted imaging. The study recruited 182 people, including 143 healthy volunteers and 39 Alzheimer disease patients. All underwent conventional magnetic resonance imaging and susceptibility weighted imaging sequences. The groups were divided according to age. Phase images were used to investigate iron deposition in the bilateral head of the caudate nucleus, globus pallidus and putamen, and the angle radian value was calculated. We hypothesized that age-related iron deposition changes may be different between Alzheimer disease patients and controls of the same age, and that susceptibility weighted imaging would be a more sensitive method of iron deposition quantification. The results revealed that iron deposition in the globus pallidus increased with age, up to 40 years. In the head of the caudate nucleus, iron deposition peaked at 60 years. There was a general increasing trend with age in the putamen, up to 50-70 years old. There was significant difference between the control and Alzheimer disease groups in the bilateral globus pallidus in both the 60-70 and 70-80 year old group comparisons. In conclusion, iron deposition increased with age in the globus pallidus, the head of the caudate nucleus and putamen, reaching a plateau at different ages. Furthermore, comparisons between the control and Alzheimer disease group revealed that iron deposition changes were more easily detected in the globus pallidus. Crown Copyright © 2014. Published by Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tagliaro, G.; Fulthorpe, C.; Gallagher, S. J.; McHugh, C.; Kominz, M. A.; Lavier, L.
2017-12-01
The Bare Formation represents a unique episode of Neogene siliciclastic deposition on the carbonate-dominated Australian Northwest Shelf (NWS). International Ocean Discovery Program (IODP) Expedition 356 drilling results, coupled with interpretation of 3D seismic data, allow us to constrain the timing of siliciclastic deposition and the associated sedimentary processes. IODP Sites U1462, U1463 and U1464 provide age control that reveals the relationship of the Bare Fm. to the adjacent carbonate sediments. The Bare Fm. is preceded by middle to late Miocene shelf exposure and karstification. Elongate beach barrier deposits with small lobate deltas to the NE developed during the late Miocene. However, fluvial deposition increased markedly in the Zanclean, resulting in development of a large tide-and-wave-influenced delta, with evidence of tidal channels, comprising the thickest component of the Bare Fm. Siliciclastic input decreased in the Piacenzian, leading to margin retreat and final termination near the Plio-Pleistocene boundary. The results correlate with regional climate and sedimentary records derived from Sites U1459, U1463 and U1464, that indicate an arid middle to late Miocene, followed by a humid interval in the Zanclean and a return to arid conditions during the Piacenzian. Therefore, we suggest that fluctuation of surface runoff patterns in the continental hinterlands is the primary control of Bare Fm. evolution. Hence, Neogene siliciclastic distribution is a result of regional climate variability on the NWS. Up to 40 km of shoreline advance is verified in the Late Miocene and Pliocene, an example of climate-driven modification of a continental margin. Additionally, longshore transport intensifies during the Pliocene humid interval, causing NE migration of the deltaic system. Sedimentary and climate transitions are linked to reorganization of Indian Ocean paleoceanography, accompanying northward migration of the Australian continent and progressive restriction of the Indonesian Throughflow.
NASA Astrophysics Data System (ADS)
Bellini, Anna
Customer-driven product customization and continued demand for cost and time savings have generated a renewed interest in agile manufacturing based on improvements on Rapid Prototyping (RP) technologies. The advantages of RP technologies are: (1) ability to shorten the product design and development time, (2) suitability for automation and decrease in the level of human intervention, (3) ability to build many geometrically complex shapes. A shift from "prototyping" to "manufacturing" necessitates the following improvements: (1) Flexibility in choice of materials; (2) Part integrity and built-in characteristics to meet performance requirements; (3) Dimensional stability and tolerances; (4) Improved surface finish. A project funded by ONR has been undertaken to develop an agile manufacturing technology for fabrication of ceramic and multi-component parts to meet various needs of the Navy, such as transducers, etc. The project is based on adaptation of a layered manufacturing concept since the program required that the new technology be developed based on a commercially available RP technology. Among various RP technologies available today, Fused Deposition Modeling (FDM) has been identified as the focus of this research because of its potential versatility in the choice of materials and deposition configuration. This innovative approach allows for designing and implementing highly complex internal architectures into parts through deposition of different materials in a variety of configurations in such a way that the finished product exhibit characteristics to meet the performance requirements. This implies that, in principle, one can tailor-make the assemble of materials and structures as per specifications of an optimum design. The program objectives can be achieved only through accurate process modeling and modeling of material behavior. Oftentimes, process modeling is based on some type of computational approach where as modeling of material behavior is based on extensive experimental investigations. Studies are conducted in the following categories: (1) Flow modeling during extrusion and deposition; (2) Thermal modeling; (3) Flow control during deposition; (4) Product characterization and property determination for dimensional analysis; (5) Development of a novel technology based on a mini-extrusion system. Studies in each of these stages have involved experimental as well as analytical approaches to develop a comprehensive modeling.
Plasma-based actuators for turbulent boundary layer control in transonic flow
NASA Astrophysics Data System (ADS)
Budovsky, A. D.; Polivanov, P. A.; Vishnyakov, O. I.; Sidorenko, A. A.
2017-10-01
The study is devoted to development of methods for active control of flow structure typical for the aircraft wings in transonic flow with turbulent boundary layer. The control strategy accepted in the study was based on using of the effects of plasma discharges interaction with miniature geometrical obstacles of various shapes. The conceptions were studied computationally using 3D RANS, URANS approaches. The results of the computations have shown that energy deposition can significantly change the flow pattern over the obstacles increasing their influence on the flow in boundary layer region. Namely, one of the most interesting and promising data were obtained for actuators basing on combination of vertical wedge with asymmetrical plasma discharge. The wedge considered is aligned with the local streamlines and protruding in the flow by 0.4-0.8 of local boundary layer thickness. The actuator produces negligible distortion of the flow at the absence of energy deposition. Energy deposition along the one side of the wedge results in longitudinal vortex formation in the wake of the actuator providing momentum exchange in the boundary layer. The actuator was manufactured and tested in wind tunnel experiments at Mach number 1.5 using the model of flat plate. The experimental data obtained by PIV proved the availability of the actuator.
NASA Astrophysics Data System (ADS)
Semenov, Z. V.; Labusov, V. A.
2017-11-01
Results of studying the errors of indirect monitoring by means of computer simulations are reported. The monitoring method is based on measuring spectra of reflection from additional monitoring substrates in a wide spectral range. Special software (Deposition Control Simulator) is developed, which allows one to estimate the influence of the monitoring system parameters (noise of the photodetector array, operating spectral range of the spectrometer and errors of its calibration in terms of wavelengths, drift of the radiation source intensity, and errors in the refractive index of deposited materials) on the random and systematic errors of deposited layer thickness measurements. The direct and inverse problems of multilayer coatings are solved using the OptiReOpt library. Curves of the random and systematic errors of measurements of the deposited layer thickness as functions of the layer thickness are presented for various values of the system parameters. Recommendations are given on using the indirect monitoring method for the purpose of reducing the layer thickness measurement error.
Evidence of thermal transport anisotropy in stable glasses of vapor deposited organic molecules
NASA Astrophysics Data System (ADS)
Ràfols-Ribé, Joan; Dettori, Riccardo; Ferrando-Villalba, Pablo; Gonzalez-Silveira, Marta; Abad, Llibertat; Lopeandía, Aitor F.; Colombo, Luciano; Rodríguez-Viejo, Javier
2018-03-01
Vapor deposited organic glasses are currently in use in many optoelectronic devices. Their operation temperature is limited by the glass transition temperature of the organic layers and thermal management strategies become increasingly important to improve the lifetime of the device. Here we report the unusual finding that molecular orientation heavily influences heat flow propagation in glassy films of small molecule organic semiconductors. The thermal conductivity of vapor deposited thin-film semiconductor glasses is anisotropic and controlled by the deposition temperature. We compare our data with extensive molecular dynamics simulations to disentangle the role of density and molecular orientation on heat propagation. Simulations do support the view that thermal transport along the backbone of the organic molecule is strongly preferred with respect to the perpendicular direction. This is due to the anisotropy of the molecular interaction strength that limits the transport of atomic vibrations. This approach could be used in future developments to implement small molecule glassy films in thermoelectric or other organic electronic devices.
NASA Astrophysics Data System (ADS)
Potemkin, F. V.; Mareev, E. I.; Bezsudnova, Yu I.; Platonenko, V. T.; Bravy, B. G.; Gordienko, V. M.
2017-06-01
We report on an enhancement of deposited energy density of up to 10 kJ cm-3 inside transparent solids (fused silica and quartz) from using two-color µJ energy level tightly focused (NA = 0.5) co-propagating linearly polarized seeding (visible, 0.62 µm) and elliptically polarized heating (near-IR, 1.24 µm) femtosecond laser pulses. The rise in temperature under constant volume causes pressure of up to 12 GPa. It has been shown experimentally and theoretically that the production of seeding electrons through multiphoton ionization by visible laser pulse paves the way for controllability of the energy deposition and laser-induced micromodification via carrier heating by delayed infrared laser pulses inside the material. The developed theoretical approach predicts that the deposited energy density will be enhanced by up to 14 kJ cm-3 when using longer (up to 5 µm) wavelengths for heating laser pulses inside transparent solids.
Bone Genes in the Kidney of Stone Formers
NASA Astrophysics Data System (ADS)
Evan, Andrew P.; Bledsoe, Sharon B.
2008-09-01
Intraoperative papillary biopsies from kidneys of idiopathic-calcium oxalate stone formers (ICSF) have revealed a distinct pattern of mineral deposition in the interstitium of the renal papilla. The earliest sites of these deposits, termed Randall's plaque, are found in the basement membrane of thin loops of Henle and appear to spread into the surrounding interstitium down to the papillary epithelium. Recent studies show kidney stones of ICSF patients grow attached to the renal papilla and at sites of Randall's plaque. Together these observations suggest that plaque formation may be the critical step in stone formation. In order to control plaque formation and thereby reduce future kidney stone development, the mechanism of plaque deposition must be understood. Because the renal papilla has unique anatomical features similar to bone and the fact that the interstitial deposits of ICSF patients are formed of biological apatite, this paper tests the hypothesis that sites of interstitial plaque form as a result of cell-mediated osteoblast-like activity.
NASA Astrophysics Data System (ADS)
Chen, Li; Chen, Xinliang; Zhou, Zhongxin; Guo, Sheng; Zhao, Ying; Zhang, Xiaodan
2018-03-01
Al doped ZnO (AZO) films deposited on glass substrates through the atomic layer deposition (ALD) technique are investigated with various temperatures from 100 to 250 °C and different Zn : Al cycle ratios from 20 : 0 to 20 : 3. Surface morphology, structure, optical and electrical properties of obtained AZO films are studied in detail. The Al composition of the AZO films is varied by controlling the ratio of Zn : Al. We achieve an excellent AZO thin film with a resistivity of 2.14 × 10‑3 Ω·cm and high optical transmittance deposited at 150 °C with 20 : 2 Zn : Al cycle ratio. This kind of AZO thin films exhibit great potential for optoelectronics device application. Project supported by the State Key Development Program for Basic Research of China (Nos. 2011CBA00706, 2011CBA00707) and the Tianjin Applied Basic Research Project and Cutting-Edge Technology Research Plan (No. 13JCZDJC26900).
Modelling and control of a diffusion/LPCVD furnace
NASA Astrophysics Data System (ADS)
Dewaard, H.; Dekoning, W. L.
1988-12-01
Heat transfer inside a cylindrical resistance diffusion/Low Pressure Chemical Vapor Deposition (LPCVD) furnace is studied with the aim of developing an improved temperature controller. A model of the thermal behavior is derived, which covers the important class of furnaces equipped with semitransparent quartz process tubes. The model takes into account the thermal behavior of the thermocouples. Currently used temperature controllers are shown to be highly inefficient for very large scale integration applications. Based on the model an alternative temperature controller of the LQG (linear quadratic Gaussian) type is proposed which features direct wafer temperature control. Some simulation results are given.
NASA Astrophysics Data System (ADS)
van Mourik, Jan; Slotboom, Ruud
2014-05-01
Mardel genesis. Mardels are small scale circular to elongated closed depressions (Ø > 50 m). They occur in Luxembourg on the Lias plateau in the Gutland, but also in other regions with landscapes, developed on Keuper and Lias deposits (as Lorraine). We can distinguish geogenetic and anthropogenic mardels. There are two types of genetic mardels, sink holes (controlled by diaclases in the Luxembourger sandstone and 'true mardels' or subsidence basins (controlled by dissolved gypsic lenses in marls of the Keuper deposits). These mardels developed during the Holocene. The age of the mardel sediments is Subatlantic; the sediments have been deposited on a palaeosol. Anthropogenic mardels are the result of historic clay excavation (Roman Time or younger). The age of these mardels is Subatlantic. The age of the sediments is also Subatlantic; the sediments have been deposited on a truncated soil in excavations. In all the genetic types of mardels, the sediments can consist of peat, peaty loam, or colluvic clayloam and the mardel sediments contain always valuable soil archives for the reconstruction of the impact of vegetation development, climatic oscillations and land use on soil erosion and deposition. Comparison of mardel deposits and valley deposits. - Pre-Holocene mardels have been eroded during the Weichselian. Geogenic mardels have been developed during the Holocene, anthropogenic mardels have been excavated since Roman Time. The age of the clastic (colluvic) deposits in mardels is Subatlantic - In the Late Glacial, valley bottoms were rather broad and covered with a gravelly bed load. Till the Subboreal river incision was active in primary valleys and peat accumulation took place on broad valley bottoms of secondary valleys. Since Celtic/Roman Time deforestation and extension of agriculture. During the Subatlantic colluvic/alluvic sedimentation took place on all the valley bottoms. The Subatlantic is a period of accelerated sedimentation of clastic sediments in closed depressions and (open) valleys This was the impact of two factors. 1. Impact of natural forest evolution on soil erosivity. Fagus arrived in the area, jostled Tilia in the Subboreal and extended in the Subatlantic. The understory and humus forms changed, the erosivity of the surface increased and the consequence was accelerating soil erosion. Stable mardels changed in sediment traps, river valleys got constipated with colluvic/alluvic sediments. 2. Anthropogenic deforestation and extension of agriculture since Roman Time. Conclusions. 1. In a lot of studies, deforestation was considered as the responsible factor for soil erosion. 2. Impact of natural forest evolution (the appearance of Fagus) was not recognized 3. The impact of the Little Ice Age on Subatlantic soil erosion was not recognized 4. Three factors controlled Subatlantic soil erosion and mardel and valley deposition - The (natural) jostle of mixed oak forest by beach forest promoted soil erosivity and erosion - The (anthropogenic) deforestation and expansion of agriculture promoted soil erosion - The temporally move from pasture to arable land during the Little Ice Age promoted soil erosivity References. - Barth B (1996) Mardellen im Lotharingischen Gipskeuper. Delattinia 22: 7-60. - Buisman J (1995-2006) Duizend jaar weer, wind en water in de lage landen, Vols. 1-5. KNMI, Netherlands. - Etienne D, Ruffaldi P, Goepp S, Ritz F, Georges-Leroy M, Pollier B and Dambrine E (2011) The origin of closed depressions in Northeastern France: A new assessment. Geomorphology 126: 121-131. - Loehle C (2007) A 2000-year global temperature reconstruction based on non-treeing proxies. Energy and Environment, 18 No. 7+8 - Poeteray FA, Riezebos PA, Slotboom RT (1984) Rates of Subatlantic lowering calculated from mardel-trapped material (Gutland, Luxembourg). Zeitschrift für Geomorphologie 1984: 467-4821. - Schönwiese C (1995) Klimaänderungen: Daten, Analysen, Prognosen. Springer, Heidelberg - Slotboom RT (1963) Comparative geomorphological and palynological investigation of the pingos (Viviers) in the Haute Fagnes (Belgium) and the Mardellen in the Gutland (Luxembourg). Zeitschift für Geomorphologie 7: 193-231. - Riezebos PA and Slotboom RT (1978) Pollen analysis of the Husterbaach peat (Luxembourg). Boreas 7: 75-82 - Thoen, D. and Hérault, B., 2006. Flore, groups socio-écologique et typologie de mardelles forestières de Lorrainne belge et luxembourgeoise. Bull.Soc. luxemb. 107 (2006), 3-25.
Investigation of kinetics of MOCVD systems
NASA Astrophysics Data System (ADS)
Anderson, Timothy J.
1991-12-01
Several issues related to epitaxy of III-V semiconductors by hydride VPE and MOCVD were investigated. A complex chemical equilibrium analysis was performed in order to investigate the controllability of hydride VPE. The critical control parameters for the deposition of InGaAsP Lattice matched to InP are deposition temperature, system pressure, Group III Molar Ratio, Group V Molar Ratio. An experimental characterization of the Ga and In source reactors was accomplished. A MOCVD System was constructed for the deposition of AlGaAs. An investigation was performed to determine the controlling parameters of laser-enhanced deposition of GaAs and AlGaAs using an argon ion laser. Enhancement of deposition was observed when the system was operated in the reaction limited regime. The use of a Ga/In alloy source was studied for the deposition of GaInAs by the Hydride method. The system was used to produce state-of-the-art P-I-N photo-detectors.
Kychakoff, George; Afromowitz, Martin A; Hugle, Richard E
2005-06-21
A system for detection and control of deposition on pendant tubes in recovery and power boilers includes one or more deposit monitoring sensors operating in infrared regions and about 4 or 8.7 microns and directly producing images of the interior of the boiler. An image pre-processing circuit (95) in which a 2-D image formed by the video data input is captured, and includes a low pass filter for performing noise filtering of said video input. An image segmentation module (105) for separating the image of the recovery boiler interior into background, pendant tubes, and deposition. An image-understanding unit (115) matches derived regions to a 3-D model of said boiler. It derives a 3-D structure the deposition on pendant tubes in the boiler and provides the information about deposits to the plant distributed control system (130) for more efficient operation of the plant pendant tube cleaning and operating systems.
24 CFR 891.775 - Security deposits.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 24 Housing and Urban Development 4 2013-04-01 2013-04-01 false Security deposits. 891.775 Section 891.775 Housing and Urban Development REGULATIONS RELATING TO HOUSING AND URBAN DEVELOPMENT (CONTINUED... Individuals-Section 162 Assistance § 891.775 Security deposits. The general requirements for security deposits...
24 CFR 891.775 - Security deposits.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Security deposits. 891.775 Section 891.775 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued... Individuals-Section 162 Assistance § 891.775 Security deposits. The general requirements for security deposits...
Laser production of articles from powders
Lewis, Gary K.; Milewski, John O.; Cremers, David A.; Nemec, Ronald B.; Barbe, Michael R.
1998-01-01
Method and apparatus for forming articles from materials in particulate form in which the materials are melted by a laser beam and deposited at points along a tool path to form an article of the desired shape and dimensions. Preferably the tool path and other parameters of the deposition process are established using computer-aided design and manufacturing techniques. A controller comprised of a digital computer directs movement of a deposition zone along the tool path and provides control signals to adjust apparatus functions, such as the speed at which a deposition head which delivers the laser beam and powder to the deposition zone moves along the tool path.
Laser production of articles from powders
Lewis, G.K.; Milewski, J.O.; Cremers, D.A.; Nemec, R.B.; Barbe, M.R.
1998-11-17
Method and apparatus for forming articles from materials in particulate form in which the materials are melted by a laser beam and deposited at points along a tool path to form an article of the desired shape and dimensions. Preferably the tool path and other parameters of the deposition process are established using computer-aided design and manufacturing techniques. A controller comprised of a digital computer directs movement of a deposition zone along the tool path and provides control signals to adjust apparatus functions, such as the speed at which a deposition head which delivers the laser beam and powder to the deposition zone moves along the tool path. 20 figs.
Dynamic Control of Particle Deposition in Evaporating Droplets by an External Point Source of Vapor.
Malinowski, Robert; Volpe, Giovanni; Parkin, Ivan P; Volpe, Giorgio
2018-02-01
The deposition of particles on a surface by an evaporating sessile droplet is important for phenomena as diverse as printing, thin-film deposition, and self-assembly. The shape of the final deposit depends on the flows within the droplet during evaporation. These flows are typically determined at the onset of the process by the intrinsic physical, chemical, and geometrical properties of the droplet and its environment. Here, we demonstrate deterministic emergence and real-time control of Marangoni flows within the evaporating droplet by an external point source of vapor. By varying the source location, we can modulate these flows in space and time to pattern colloids on surfaces in a controllable manner.
Post-obduction carbonate system development in New Caledonia (Népoui, Lower Miocene)
NASA Astrophysics Data System (ADS)
Maurizot, Pierre; Cabioch, Guy; Fournier, François; Leonide, Philippe; Sebih, Salim; Rouillard, Pierrick; Montaggioni, Lucien; Collot, Julien; Martin-Garin, Bertrand; Chaproniere, George; Braga, Juan C.; Sevin, Brice
2016-01-01
For the first time, depositional models of Lower Miocene carbonate systems from New Caledonia (Southwest Pacific) are proposed, on the basis of a sedimentological and paleoenvironmental study of both cores and outcrops. In the Népoui area, two distinct stages of carbonate ramp development (Aquitanian Lower Népoui and Burdigalian Upper Népoui carbonate systems), separated by a phase of siliciclastic deltaic deposition, are evidenced. The post-obduction marine transgression of the Western New Caledonian margin occurred at approximately 24 Ma and is characterized by the development of an aggrading foraminiferal-coralline algal-scleractinian ramp system ("Chapeau Chinois Limestone") during the early Aquitanian (24-23 Ma). A retrogradational event is evidenced at approximately 23 Ma followed by the development of a shallowing upward carbonate unit (Operculina "Green Sands" and Xuudhen Limestone) during the late Aquitanian. This unit is topped by a major erosional unconformity overlain by conglomeratic deposits ("Pindaï conglomerates"), and interpreted to record a significant uplift at around 21-19 Ma. During the Burdigalian, a marine transgression occurred at around 19 Ma, followed by the development of a low-angle carbonate ramp or open platform ("Népü Limestone") up to the late Burdigalian (19-17 Ma). In both Aquitanian and Burdigalian carbonate ramps, extensive sea-grass meadows are shown to have colonized the proximal ramp environments within the euphotic zone. In the Aquitanian carbonate ramp (Lower Népoui Formation), carbonate production within sea-grass meadows is dominated by large benthic foraminifera, together with red algae and sparse scleractinians. Mesophotic environments are characterized by large and flat lepidocyclinids, rhodoliths and platy corals whereas in deeper oligophotic settings significant carbonate producers consist mainly of large and flat benthic foraminifera. In the Burdigalian carbonate ramp (Upper Népoui Formation), porcellaneous foraminifera thriving in sea-grass meadows together with red algae and scattered coral colonies characterize the carbonate production in the euphotic zone. Antecedent topography is regarded as a major factor controlling the extension of carbonate systems at regional and local scale. The thickness and development pattern of Lower Miocene deposits from Népoui are dominantly controlled by tectonic subsidence. Finally, extensive sea-grass development promoted the dominance of foralgal carbonate production within the euphotic zone.
22 CFR 124.4 - Deposit of signed agreements with the Directorate of Defense Trade Controls.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 22 Foreign Relations 1 2013-04-01 2013-04-01 false Deposit of signed agreements with the Directorate of Defense Trade Controls. 124.4 Section 124.4 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL TRAFFIC IN ARMS REGULATIONS AGREEMENTS, OFF-SHORE PROCUREMENT AND OTHER DEFENSE SERVICES § 124.4 Deposit of signed agreements with the Directorate...
Modeling and reduction with applications to semiconductor processing
NASA Astrophysics Data System (ADS)
Newman, Andrew Joseph
This thesis consists of several somewhat distinct but connected parts, with an underlying motivation in problems pertaining to control and optimization of semiconductor processing. The first part (Chapters 3 and 4) addresses problems in model reduction for nonlinear state-space control systems. In 1993, Scherpen generalized the balanced truncation method to the nonlinear setting. However, the Scherpen procedure is not easily computable and has not yet been applied in practice. We offer a method for computing a working approximation to the controllability energy function, one of the main objects involved in the method. Moreover, we show that for a class of second-order mechanical systems with dissipation, under certain conditions related to the dissipation, an exact formula for the controllability function can be derived. We then present an algorithm for a numerical implementation of the Morse-Palais lemma, which produces a local coordinate transformation under which a real-valued function with a non-degenerate critical point is quadratic on a neighborhood of the critical point. Application of the algorithm to the controllabilty function plays a key role in computing the balanced representation. We then apply our methods and algorithms to derive balanced realizations for nonlinear state-space models of two example mechanical systems: a simple pendulum and a double pendulum. The second part (Chapter 5) deals with modeling of rapid thermal chemical vapor deposition (RTCVD) for growth of silicon thin films, via first-principles and empirical analysis. We develop detailed process-equipment models and study the factors that influence deposition uniformity, such as temperature, pressure, and precursor gas flow rates, through analysis of experimental and simulation results. We demonstrate that temperature uniformity does not guarantee deposition thickness uniformity in a particular commercial RTCVD reactor of interest. In the third part (Chapter 6) we continue the modeling effort, specializing to a control system for RTCVD heat transfer. We then develop and apply ad-hoc versions of prominent model reduction approaches to derive reduced models and perform a comparative study.
Intelligent process control of fiber chemical vapor deposition
NASA Astrophysics Data System (ADS)
Jones, John Gregory
Chemical Vapor Deposition (CVD) is a widely used process for the application of thin films. In this case, CVD is being used to apply a thin film interface coating to single crystal monofilament sapphire (Alsb2Osb3) fibers for use in Ceramic Matrix Composites (CMC's). The hot-wall reactor operates at near atmospheric pressure which is maintained using a venturi pump system. Inert gas seals obviate the need for a sealed system. A liquid precursor delivery system has been implemented to provide precise stoichiometry control. Neural networks have been implemented to create real-time process description models trained using data generated based on a Navier-Stokes finite difference model of the process. Automation of the process to include full computer control and data logging capability is also presented. In situ sensors including a quadrupole mass spectrometer, thermocouples, laser scanner, and Raman spectrometer have been implemented to determine the gas phase reactants and coating quality. A fuzzy logic controller has been developed to regulate either the gas phase or the in situ temperature of the reactor using oxygen flow rate as an actuator. Scanning electron microscope (SEM) images of various samples are shown. A hierarchical control structure upon which the control structure is based is also presented.
Nutritional stress affects corticosterone deposition in feathers of Caspian tern chicks
Patterson, Allison G. L.; Kitaysky, Alexander S.; Lyons, Donald E.; Roby, Daniel D.
2015-01-01
Stressful environmental conditions affect the adrenocortical function of developing animals, which can have consequences for their fitness. Discovery of the avian stress hormone corticosterone (CORT) in feathers has the potential to broaden the application of endocrine research in ecological and evolutionary studies of wild birds by providing a long-term measure of CORT secretion. Mechanisms of CORT deposition in feathers are not well known and few studies have related feather CORT to circulating plasma CORT during feather growth. Our objective was to experimentally test the validity of using feather CORT as a measure of CORT secretion in developing birds experiencing nutritional stress. Caspian tern Hydroprogne caspia chicks were fed ad libitum or restricted (35% less than ad libitum) diets for four weeks. We measured CORT in feathers from these chicks to examine the relationship between feather CORT concentrations and nutritional limitation, circulating plasma CORT, and feather development. We found that feather CORT was higher in controls fed ad libitum than in restricted individuals, despite higher levels of plasma CORT in restricted chicks compared to controls. Feather mass and growth rates were strongly and positively related to feather CORT concentrations in both treatments. This is the first experimental study to show that feather CORT concentrations can be lower in response to nutritional stress, even when plasma CORT concentrations are elevated. Our results indicate that CORT deposition in feathers may be confounded when feather mass and growth rates are compromised by nutritional stress. We conclude that feather CORT can be used for assessing nutritional stress in growing birds, but the direction of response depends on how strongly stress affects feather development.
Platinum adlayered ruthenium nanoparticles, method for preparing, and uses thereof
Tong, YuYe; Du, Bingchen
2015-08-11
A superior, industrially scalable one-pot ethylene glycol-based wet chemistry method to prepare platinum-adlayered ruthenium nanoparticles has been developed that offers an exquisite control of the platinum packing density of the adlayers and effectively prevents sintering of the nanoparticles during the deposition process. The wet chemistry based method for the controlled deposition of submonolayer platinum is advantageous in terms of processing and maximizing the use of platinum and can, in principle, be scaled up straightforwardly to an industrial level. The reactivity of the Pt(31)-Ru sample was about 150% higher than that of the industrial benchmark PtRu (1:1) alloy sample but with 3.5 times less platinum loading. Using the Pt(31)-Ru nanoparticles would lower the electrode material cost compared to using the industrial benchmark alloy nanoparticles for direct methanol fuel cell applications.
Creep of chemically vapor deposited SiC fibers
NASA Technical Reports Server (NTRS)
Dicarlo, J. A.
1984-01-01
The creep, thermal expansion, and elastic modulus properties for chemically vapor deposited SiC fibers were measured between 1000 and 1500 C. Creep strain was observed to increase logarithmically with time, monotonically with temperature, and linearly with tensile stress up to 600 MPa. The controlling activation energy was 480 + or - 20 kJ/mole. Thermal pretreatments near 1200 and 1450 C were found to significantly reduce fiber creep. These results coupled with creep recovery observations indicate that below 1400 C fiber creep is anelastic with neglible plastic component. This allowed a simple predictive method to be developed for describing fiber total deformation as a function of time, temperature, and stress. Mechanistic analysis of the property data suggests that fiber creep is the result of beta-SiC grain boundary sliding controlled by a small percent of free silicon in the grain boundaries.
NASA Astrophysics Data System (ADS)
Nalin, Ronald; Massari, Francesco
2018-03-01
Analysis of patterns of coastal circulation and sediment dispersal is an essential step for the study of controlling factors influencing the long-term dynamics of coastal systems. Modern settings offer the possibility to monitor relevant parameters over relatively short time spans. However, geological examples complement this perspective by providing a time-averaged record where longer trends and stratigraphically significant processes can be evaluated. This study investigates the shallow marine deposits of Le Castella terrace (Upper Pleistocene, southern Italy) to document how patterns of circulation influenced by coastline configuration can affect the preserved millennial-scale depositional record of a progradational shoreline system. The regressive portion of the Le Castella terrace deposits, developed during a relative sea-level highstand and falling stage, consists of a progradational wedge mainly composed of redistributed skeletal particles of a coeval shallow water carbonate factory. Preservation of the morphology of the paleocoastline and abundant current-related sedimentary structures allow reconstruction of the predominant sediment dispersal dynamics responsible for the formation of this sedimentary wedge. Facies and paleocurrent analysis indicate offshore and alongshore sediment transport modes, consistent with coastal circulation driven by storms normally incident to the shoreline and a sharp change in coastline orientation. This coastal inflection influenced circulation patterns causing flow separation and eddy formation in the lee of the curved coastline. Syndepositional tectonic deformation also affected the architecture of the preserved deposits, controlling the nucleation and development of a clinostratified body and determining localized lateral stratigraphic variability. This study illustrates how transient but recurrent circulation patterns associated with changes in coastal orientation and related to high-energy storm events can leave a predominant signature in the stratigraphic record of microtidal shallow-marine successions.
Impacts of the Minamata Convention for Mercury Emissions from Coal-fired Power Generation in Asia
NASA Astrophysics Data System (ADS)
Giang, A.; Stokes, L. C.; Streets, D. G.; Corbitt, E. S.; Selin, N. E.
2014-12-01
We explore the potential implications of the recently signed United Nations Minamata Convention on Mercury for emissions from coal-fired power generation in Asia, and the impacts of these emissions changes on deposition of mercury worldwide by 2050. We use qualitative interviews, document analysis, and engineering analysis to create plausible technology scenarios consistent with the Convention, taking into account both technological and political factors. We translate these scenarios into possible emissions inventories for 2050, based on IPCC development scenarios, and then use the GEOS-Chem global transport model to evaluate the effect of these different technology choices on mercury deposition over geographic regions and oceans. We find that China is most likely to address mercury control through co-benefits from technologies for SO2, NOx, and particulate matter (PM) capture that will be required to attain its existing air quality goals. In contrast, India is likely to focus on improvements to plant efficiency such as upgrading boilers, and coal washing. Compared to current technologies, we project that these changes will result in emissions decreases of approximately 140 and 190 Mg/yr for China and India respectively in 2050, under an A1B development scenario. With these emissions reductions, simulated average gross deposition over India and China are reduced by approximately 10 and 3 μg/m2/yr respectively, and the global average concentration of total gaseous mercury (TGM) is reduced by approximately 10% in the Northern hemisphere. Stricter, but technologically feasible, requirements for mercury control in both countries could lead to an additional 200 Mg/yr of emissions reductions. Modeled differences in concentration and deposition patterns between technology suites are due to differences in both the mercury removal efficiency of technologies and their resulting stack speciation.
Paulot, Fabien; Jacob, Daniel J; Henze, Daven K
2013-04-02
Anthropogenic enrichment of reactive nitrogen (Nr) deposition is an ecological concern. We use the adjoint of a global 3-D chemical transport model (GEOS-Chem) to identify the sources and processes that control Nr deposition to an ensemble of biodiversity hotspots worldwide and two U.S. national parks (Cuyahoga and Rocky Mountain). We find that anthropogenic sources dominate deposition at all continental sites and are mainly regional (less than 1000 km) in origin. In Hawaii, Nr supply is controlled by oceanic emissions of ammonia (50%) and anthropogenic sources (50%), with important contributions from Asia and North America. Nr deposition is also sensitive in complicated ways to emissions of SO2, which affect Nr gas-aerosol partitioning, and of volatile organic compounds (VOCs), which affect oxidant concentrations and produce organic nitrate reservoirs. For example, VOC emissions generally inhibit deposition of locally emitted NOx but significantly increase Nr deposition downwind. However, in polluted boreal regions, anthropogenic VOC emissions can promote Nr deposition in winter. Uncertainties in chemical rate constants for OH + NO2 and NO2 hydrolysis also complicate the determination of source-receptor relationships for polluted sites in winter. Application of our adjoint sensitivities to the representative concentration pathways (RCPs) scenarios for 2010-2050 indicates that future decreases in Nr deposition due to NOx emission controls will be offset by concurrent increases in ammonia emissions from agriculture.
Comparison of submerged and unsubmerged printing of ovarian cancer cells.
Davidoff, Sherry N; Au, David; Smith, Samuel; Brooks, Amanda E; Brooks, Benjamin D
2015-01-01
A high-throughput cell based assay would greatly aid in the development and screening of ovarian cancer drug candidates. Previously, a three-dimensional microfluidic printer that is not only capable of controlling the location of cell deposition, but also of maintaining a liquid, nutrient rich environment to preserve cellular phenotype has been developed (Wasatch Microfluidics). In this study, we investigated the impact (i.e., viability, density, and phenotype) of depositing cells on a surface submerged in cell culture media. It was determined that submersion of the microfluidic print head in cell media did not alter the cell density, viability, or phenotype.. This article describes an in depth study detailing the impact of one of the fundamental components of a 3D microfluidic cell printer designed to mimic the in vivo cell environment. Development of such a tool holds promise as a high-throughput drug-screening platform for new cancer therapeutics.
Spatial Modeling of Geometallurgical Properties: Techniques and a Case Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deutsch, Jared L., E-mail: jdeutsch@ualberta.ca; Palmer, Kevin; Deutsch, Clayton V.
High-resolution spatial numerical models of metallurgical properties constrained by geological controls and more extensively by measured grade and geomechanical properties constitute an important part of geometallurgy. Geostatistical and other numerical techniques are adapted and developed to construct these high-resolution models accounting for all available data. Important issues that must be addressed include unequal sampling of the metallurgical properties versus grade assays, measurements at different scale, and complex nonlinear averaging of many metallurgical parameters. This paper establishes techniques to address each of these issues with the required implementation details and also demonstrates geometallurgical mineral deposit characterization for a copper–molybdenum deposit inmore » South America. High-resolution models of grades and comminution indices are constructed, checked, and are rigorously validated. The workflow demonstrated in this case study is applicable to many other deposit types.« less
Flat-plate collector research area: Silicon material task
NASA Technical Reports Server (NTRS)
Lutwack, R.
1982-01-01
Silane decomposition in a fluidized-bed reactor (FBR) process development unit (PDU) to make semiconductor-grade Si is reviewed. The PDU was modified by installation of a new heating system to provide the required temperature profile and better control, and testing was resumed. A process for making trichlorosilane by the hydrochlorination of metallurgical-grade Si and silicon tetrachloride is reported. Fabrication and installation of the test system employing a new 2-in.-dia reactor was completed. A process that converts trichlorosilane to dichlorosilane (DCS), which is reduced by hydrogen to make Si by a chemical vapor deposition step in a Siemens-type reactor is described. Testing of the DCS PDU integraled with Si deposition reactors continued. Experiments in a 2-in.-dia reactor to define the operating window and to investigate the Si deposition kinetics were completed.
Application of Fused Deposition Modelling (FDM) Method of 3D Printing in Drug Delivery.
Long, Jingjunjiao; Gholizadeh, Hamideh; Lu, Jun; Bunt, Craig; Seyfoddin, Ali
2017-01-01
Three-dimensional (3D) printing is an emerging manufacturing technology for biomedical and pharmaceutical applications. Fused deposition modelling (FDM) is a low cost extrusion-based 3D printing technique that can deposit materials layer-by-layer to create solid geometries. This review article aims to provide an overview of FDM based 3D printing application in developing new drug delivery systems. The principle methodology, suitable polymers and important parameters in FDM technology and its applications in fabrication of personalised tablets and drug delivery devices are discussed in this review. FDM based 3D printing is a novel and versatile manufacturing technique for creating customised drug delivery devices that contain accurate dose of medicine( s) and provide controlled drug released profiles. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
NASA Astrophysics Data System (ADS)
Matsumoto, Shigeaki; Toyooka, Satoru
1995-01-01
A rough-surface-type automatic dew-point hygrometer was developed using a laser diode and an optical fiber cable. A gold plate with 0.8 µ m average surface roughness was used as a surface for deposition of dew to facilitate dew deposition and prevent supersaturation of water vapor at the dew point. It was shown experimentally that the quantity of dew deposited can be controlled to be constant at any predetermined level, and is independent of the dew point to be measured. The dew points were measured in the range from -15° C to 54° C in which the temperature ranged from 0° C to 60° C. The measurement error of the dew point was ±0.5° C which was equal to below ±2% in relative humidity in the above dew-point range.
NASA Astrophysics Data System (ADS)
Kong, Weimin; Li, Guohui; Liang, Qiangbing; Ji, Xingqi; Li, Gang; Ji, Ting; Che, Tao; Hao, Yuying; Cui, Yanxia
2018-03-01
In this work, the synthesis of regular single crystalline lead iodide nanoplatelets are carried out based on the physical vapor phase deposition method. Different lead iodide nanoplatelets are obtained by tuning the location of the mica substrate along with the temperature of the tube furnace. The rules of size, thickness, density of the lead iodide nanoplatelets at varied deposition conditions are analyzed according to the crystal growth principles. It was claimed in literature that the photoluminescence of lead iodide could be obtained only at a low temperature (lower than 200 K). Here, at room temperature, we successfully obtained the photoluminescence spectra of the prepared lead iodide nanoplatelets, which possess two apparent peaks due to the biexcitons and the inelastic scattering of excitons, respectively. Our present study contributes to the development of nanoscaled high performance optoelectronic devices.
Idaszkin, Yanina L; Alvarez, María Del Pilar; Carol, Eleonora
2017-10-15
Heavy metal pollution that affects salt marshes is a major environmental concern due to its toxic nature, persistence, and potential risk to organisms and to human health. Mining waste deposits originated four decades ago, by the metallurgical extraction of heavy metals, are found near to the San Antonio salt marsh in Patagonia. The aim of the work was to determine the geochemical processes that control the distribution and concentration of Cu, Fe, Pb and Zn in the soils of this Patagonian salt marsh. A survey of the mining waste deposits was carried out where three dumps were identified. Samples were collected to determine soil texture, Eh pH, organic matter and metal contents and the soil mineralogical composition. The results shows that the soils developed over the mining waste deposits are predominantly reddish constituted mainly by iron oxide, hydroxide and highly soluble minerals such as Zn and Cu sulphates. The drainage from these deposits tends to move towards the salt marsh. Within the salt marsh, the highest concentrations of Cu, Pb and Zn occur in the sectors closest to the mining wastes deposits. The sulphide oxidation and the dissolution of the Cu, Pb and Zn sulphates could be the mainly source of these metals in the drainage water. The metals in solution that reach the salt marsh, are adsorbed by the organic matter and the fine fraction of the soils. These adsorbed metals are then remobilized by tides in the lower sectors of the marsh by desorption from the cations present in the tidal flow. On the other hand, Fe tends to form non soluble oxides, hydroxides and sulphates which remain as altering material within the mining waste deposit. Finally, the heavy metal pollutants recorded in the San Antonio salt marsh shows that the mining waste deposits that were abandoned four decades ago are still a source metal contamination. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ge, Wangyao
Thin film deposition techniques are indispensable to the development of modern technologies as thin film based optical coatings, optoelectronic devices, sensors, and biological implants are the building blocks of many complicated technologies, and their performance heavily depends on the applied deposition technique. Particularly, the emergence of novel solution-processed materials, such as soft organic molecules, inorganic compounds and colloidal nanoparticles, facilitates the development of flexible and printed electronics that are inexpensive, light weight, green and smart, and these thin film devices represent future trends for new technologies. One appealing feature of solution-processed materials is that they can be deposited into thin films using solution-processed deposition techniques that are straightforward, inexpensive, high throughput and advantageous to industrialize thin film based devices. However, solution-processed techniques rely on wet deposition, which has limitations in certain applications, such as multi-layered film deposition of similar materials and blended film deposition of dissimilar materials. These limitations cannot be addressed by traditional, vacuum-based deposition techniques because these dry approaches are often too energetic and can degrade soft materials, such as polymers, such that the performance of resulting thin film based devices is compromised. The work presented in this dissertation explores a novel thin film deposition technique, namely emulsion-based, resonant infrared, matrix-assisted pulsed laser evaporation (RIR-MAPLE), which combines characteristics of wet and dry deposition techniques for solution-processed materials. Previous studies have demonstrated the feasibility of emulsion-based RIR-MAPLE to deposit uniform and continuous organic, nanoparticle and blended films, as well as hetero-structures that otherwise are difficult to achieve. However, fundamental understanding of the growth mechanisms that govern emulsion-based RIR-MAPLE is still missing, which increases the difficulty of using rational design to improve the performance of initial RIR-MAPLE devices that have been demonstrated. As a result, it is important to study the fundamentals of emulsion-based RIR-MAPLE in order to provide insight into the long-term prospects for this thin film deposition technique. This dissertation explores the fundamental deposition mechanisms of emulsion-based RIR-MAPLE by considering the effects of the emulsion target composition (namely, the primary solvent, secondary solvent, and surfactant) on the properties of deposited polymer films. The study of primary solvent effects on hydrophobic polymer deposition helps identify the unique method of film formation for emulsion-based RIR-MAPLE, which can be described as cluster-by-cluster deposition of emulsified particles that yields two levels of ordering (i.e., within the clusters and among the clusters). The generality of this film formation mechanism is tested by applying the lessons learned to hydrophilic polymer deposition. Based on these studies, the deposition design rules to achieve smooth polymer films, which are important for different device applications, are identified according to the properties of the polymer. After discussion of the fundamental deposition mechanisms, three applications of emulsion-based RIR-MAPLE, namely thin film deposition of organic solar cells, polymer/nanoparticle hybrid solar cells, and antimicrobial/fouling-release multifunctional films, are studied. The work on organic solar cells identifies the ideal deposition mode for blended films with nanoscale domain sizes, as well as demonstrates the relationships among emulsion target composition, film properties, and corresponding device performance. The studies of polymer/nanoparticle hybrid solar cells demonstrate precise control of colloidal nanoparticle deposition, in which the integrity of nanoparticles is maintained and a distinct film morphology is achieved when co-deposited with polymers. Finally, the application of antimicrobial and fouling-release multifunctional films demonstrates the importance of blended film deposition with nanoscale phase separation, a key feature to achieving reusable bio-films that can kill bacteria when illuminated with ultraviolet light. Thus, this dissertation provides great insight to the fundamentals of emulsion-based RIR-MAPLE, serves as a valuable reference for future development, and paves the pathway for wider adoption of this unique thin film deposition technique, especially for organic solar cells.
Electron nanoprobe induced oxidation: A simulation of direct-write purification
Fowlkes, J. D.; Geier, B.; Lewis, B. B.; ...
2015-06-01
Electron beam direct-write has recently taken a large step forward with the advent of methods to purify deposits. This development has opened the door for future direct-write device prototyping and editing. In one such approach, an additional beam scanning procedure removes carbonaceous impurities via oxidation from metal–carbon deposits (e.g., PtC 5) in the presence of H 2O or O 2 after deposition. So far, critical aspects of the oxidation reaction remain unclear; experiments reveal clearly that electron stimulated oxidation drives the process yet it is not understood why H 2O purifies by a bottom-up mechanism while O 2 purifies frommore » the top-down. The simulation results presented here suggest that the chemisorption of dissolved O 2 at buried Pt nanoparticle surfaces controls purification in the top-down case while both the high relative solubility coupled with weak physisorption of H 2O explains the bottom-up process. Crucial too is the role that the carbonaceous contaminant itself has on the dissolution and diffusion of O 2 and H 2O. The results pave the way for simulation driven experiments where (1) the transient densification of the deposit can be accounted for in the initial deposit design stage and (2) the deposition and purification steps can be combined.« less
Electron nanoprobe induced oxidation: A simulation of direct-write purification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fowlkes, J. D.; Geier, B.; Lewis, B. B.
Electron beam direct-write has recently taken a large step forward with the advent of methods to purify deposits. This development has opened the door for future direct-write device prototyping and editing. In one such approach, an additional beam scanning procedure removes carbonaceous impurities via oxidation from metal–carbon deposits (e.g., PtC 5) in the presence of H 2O or O 2 after deposition. So far, critical aspects of the oxidation reaction remain unclear; experiments reveal clearly that electron stimulated oxidation drives the process yet it is not understood why H 2O purifies by a bottom-up mechanism while O 2 purifies frommore » the top-down. The simulation results presented here suggest that the chemisorption of dissolved O 2 at buried Pt nanoparticle surfaces controls purification in the top-down case while both the high relative solubility coupled with weak physisorption of H 2O explains the bottom-up process. Crucial too is the role that the carbonaceous contaminant itself has on the dissolution and diffusion of O 2 and H 2O. The results pave the way for simulation driven experiments where (1) the transient densification of the deposit can be accounted for in the initial deposit design stage and (2) the deposition and purification steps can be combined.« less
Elias, Jamil; Gizowska, Magdalena; Brodard, Pierre; Widmer, Roland; Dehazan, Yoram; Graule, Thomas; Michler, Johann; Philippe, Laetitia
2012-06-29
Here, an easy and effective electrochemical route towards the synthesis of gold thin films with well-controlled roughness, morphology and crystallographic orientation is reported. To control these different factors, the applied potential during deposition played a major role. A tentative nucleation and growth mechanism is demonstrated by means of electrochemical characterizations and a formation mechanism is proposed. Interestingly, the differences in geometry and orientation of the different gold deposits have shown a clear correlation with the electrocatalytical activity in the case of oxygen sensing. In addition, not only the electrocatalytical activity but also the surface-enhanced Raman scattering of the gold deposits have been found to depend both on the roughness and on the size of the surface nanostructures, allowing a fine tuning by controlling these two parameters during deposition.
NASA Astrophysics Data System (ADS)
Elias, Jamil; Gizowska, Magdalena; Brodard, Pierre; Widmer, Roland; deHazan, Yoram; Graule, Thomas; Michler, Johann; Philippe, Laetitia
2012-06-01
Here, an easy and effective electrochemical route towards the synthesis of gold thin films with well-controlled roughness, morphology and crystallographic orientation is reported. To control these different factors, the applied potential during deposition played a major role. A tentative nucleation and growth mechanism is demonstrated by means of electrochemical characterizations and a formation mechanism is proposed. Interestingly, the differences in geometry and orientation of the different gold deposits have shown a clear correlation with the electrocatalytical activity in the case of oxygen sensing. In addition, not only the electrocatalytical activity but also the surface-enhanced Raman scattering of the gold deposits have been found to depend both on the roughness and on the size of the surface nanostructures, allowing a fine tuning by controlling these two parameters during deposition.
NASA Astrophysics Data System (ADS)
Hajek, E. A.; Edmonds, D.; Millard, C.; Toms, L.; Fogaren, C.
2012-12-01
River mobility and avulsion are important controls on how course and fine sediment are distributed across alluvial basins. In some systems, broad distributary channel networks that form during channel avulsions contribute significantly to overbank aggradation within the basin and help transport relatively coarse sediment from the channel out onto the floodplain. In contrast, avulsion-related deposits are virtually absent in other systems, which primarily avulse either through incision or with no significant aggradational phase preceding channel relocation; in these systems, overbank sedimentation primarily comprises relatively fine floodplain deposits. In order to constrain the conditions under which distributary-channel networks develop during avulsions, we evaluate channel, avulsion, and floodplain deposits in several ancient units including the Ferris (Maastrichtian/Paleocene, Wyoming), Fort Union (Paleocene, Wyoming), Wasatch (Paleocene/Eocene, Colorado), and Willwood (Paleocene/Eocene, Wyoming) formations. Ancient deposits afford the opportunity to observe multiple (tens to hundreds) channel-avulsion realizations and evaluate characteristic spatial and temporal variability in channel, avulsion, and floodplain deposits within a basin. In each formation, spatial relationships and grain-size distributions of channel, proximal-overbank, distal-overbank, and, where present, avulsion deposits are compared. The thickness, width, and stratigraphic frequency of crevasse-splay and avulsion deposits are characterized in each formation, and paleosol development is documented in order to provide information about relative differences in floodplain conditions (particularly sedimentation rate and floodplain drainage) throughout each unit. We compare these results to modern systems and numerical models. Several formations contain abundant and distinctive evidence of prograding sediment wedges preceding avulsed channels (Willwood Formation and some members of the Wasatch formation), while others contain virtually no avulsion-associated deposits (Ferris Formation). The Fort Union Formation and one member of the Wasatch Formation show a mix of both. These results largely reflect depositional processes and not preservation bias within ancient deposits. Evidence from ancient deposits also suggests sediment partitioning between channels and floodplains was mediated by crevasse-splay production and avulsion, where some systems were "tuned" to produce large splay deposits and other systems produced only infrequent, small splays. Systems that readily produced splay deposits are associated with more prominent avulsion deposits, and splay production seems to be influenced by the particle-size distribution of sediment carried in the channel and floodplain drainage conditions (where abundant fine-sand and coarse-silt sediment and relatively well-drained floodplain conditions promote crevasse-splay production). Avulsion deposits reflect a transient distributary phase associated with a marked increase in local overbank sedimentation rates, but this phase is not ubiquitous to all avulsive systems. The persistence of conditions that promote or inhibit crevasse-splay and avulsion-deposit production may strongly influence channel-floodplain coupling in aggrading fluvial systems.
Aerosol delivery with two ventilation modes during mechanical ventilation: a randomized study.
Dugernier, Jonathan; Reychler, Gregory; Wittebole, Xavier; Roeseler, Jean; Depoortere, Virginie; Sottiaux, Thierry; Michotte, Jean-Bernard; Vanbever, Rita; Dugernier, Thierry; Goffette, Pierre; Docquier, Marie-Agnes; Raftopoulos, Christian; Hantson, Philippe; Jamar, François; Laterre, Pierre-François
2016-12-01
Volume-controlled ventilation has been suggested to optimize lung deposition during nebulization although promoting spontaneous ventilation is targeted to avoid ventilator-induced diaphragmatic dysfunction. Comparing topographic aerosol lung deposition during volume-controlled ventilation and spontaneous ventilation in pressure support has never been performed. The aim of this study was to compare lung deposition of a radiolabeled aerosol generated with a vibrating-mesh nebulizer during invasive mechanical ventilation, with two modes: pressure support ventilation and volume-controlled ventilation. Seventeen postoperative neurosurgery patients without pulmonary disease were randomly ventilated in pressure support or volume-controlled ventilation. Diethylenetriaminepentaacetic acid labeled with technetium-99m (2 mCi/3 mL) was administrated using a vibrating-mesh nebulizer (Aerogen Solo(®), provided by Aerogen Ltd, Galway, Ireland) connected to the endotracheal tube. Pulmonary and extrapulmonary particles deposition was analyzed using planar scintigraphy. Lung deposition was 10.5 ± 3.0 and 15.1 ± 5.0 % of the nominal dose during pressure support and volume-controlled ventilation, respectively (p < 0.05). Higher endotracheal tube and tracheal deposition was observed during pressure support ventilation (27.4 ± 6.6 vs. 20.7 ± 6.0 %, p < 0.05). A similar penetration index was observed for the right (p = 0.210) and the left lung (p = 0.211) with both ventilation modes. A high intersubject variability of lung deposition was observed with both modes regarding lung doses, aerosol penetration and distribution between the right and the left lung. In the specific conditions of the study, volume-controlled ventilation was associated with higher lung deposition of nebulized particles as compared to pressure support ventilation. The clinical benefit of this effect warrants further studies. Clinical trial registration NCT01879488.
NASA Astrophysics Data System (ADS)
Calvin, W. M.; Cantor, B. A.; James, P. B.
2017-08-01
The Mars Color Imager (MARCI) camera on the Mars Reconnaissance Orbiter provides daily synoptic coverage that allows monitoring of seasonal cap retreat and interannual changes that occur between Mars Years (MY) and over the southern summer. We present the first analysis of this data for the southern seasonal cap evolution observed in MY 28, 29, 30 and 31 (2/2007 to 07/2013). Observation over multiple Mars years allows us to compare changes between years as well as longer-term evolution of the high albedo deposits at the poles. Seasonal cap retreat is similar in all years and to retreats observed in other years by both optical and thermal instruments. The cryptic terrain has a fairly consistent boundary in each year, but numerous small-scale variations occur in each MY observed. Additionally, numerous small dark deposits are identified outside the classically identified cyptic region, including Inca City and other locations not previously noted. The large water ice outlier is observed to retain seasonal frost the longest (outside the polar dome) and is also highly variable in each MY. The development of the cryptic/anti-cryptic hemispheres is inferred to occur due to albedo variations that develop after dust venting starts and may be caused by recondensation of CO2 ice on the brightest and coldest regions controlled by topographic winds. Ground ice may play a role in which regions develop cryptic terrain, as there is no elevation control on either cryptic terrain or the late season brightest deposits.
A composite mouse model of aplastic anemia complicated with iron overload
Wu, Dijiong; Wen, Xiaowen; Liu, Wenbin; Xu, Linlong; Ye, Baodong; Zhou, Yuhong
2018-01-01
Iron overload is commonly encountered during the course of aplastic anemia (AA), but no composite animal model has been developed yet, which hinders drug research. In the present study, the optimal dosage and duration of intraperitoneal iron dextran injection for the development of an iron overload model in mice were explored. A composite model of AA was successfully established on the principle of immune-mediated bone marrow failure. Liver volume, peripheral hemogram, bone marrow pathology, serum iron, serum ferritin, pathological iron deposition in multiple organs (liver, bone marrow, spleen), liver hepcidin, and bone morphogenetic protein 6 (BMP6), SMAD family member 4 (SMAD4) and transferrin receptor 2 (TfR2) mRNA expression levels were compared among the normal control, AA, iron overload and composite model groups to validate the composite model, and explore the pathogenesis and features of iron overload in this model. The results indicated marked increases in iron deposits, with significantly increased liver/body weight ratios as well as serum iron and ferritin in the iron overload and composite model groups as compared with the normal control and AA groups (P<0.05). There were marked abnormalities in iron regulation gene expression between the AA and composite model groups, as seen by the significant decrease of hepcidin expression in the liver (P<0.01) that paralleled the changes in BMP6, SMAD4, and TfR2. In summary, a composite mouse model with iron overload and AA was successfully established, and AA was indicated to possibly have a critical role in abnormal iron metabolism, which promoted the development of iron deposits. PMID:29434729
A composite mouse model of aplastic anemia complicated with iron overload.
Wu, Dijiong; Wen, Xiaowen; Liu, Wenbin; Xu, Linlong; Ye, Baodong; Zhou, Yuhong
2018-02-01
Iron overload is commonly encountered during the course of aplastic anemia (AA), but no composite animal model has been developed yet, which hinders drug research. In the present study, the optimal dosage and duration of intraperitoneal iron dextran injection for the development of an iron overload model in mice were explored. A composite model of AA was successfully established on the principle of immune-mediated bone marrow failure. Liver volume, peripheral hemogram, bone marrow pathology, serum iron, serum ferritin, pathological iron deposition in multiple organs (liver, bone marrow, spleen), liver hepcidin, and bone morphogenetic protein 6 (BMP6), SMAD family member 4 (SMAD4) and transferrin receptor 2 (TfR2) mRNA expression levels were compared among the normal control, AA, iron overload and composite model groups to validate the composite model, and explore the pathogenesis and features of iron overload in this model. The results indicated marked increases in iron deposits, with significantly increased liver/body weight ratios as well as serum iron and ferritin in the iron overload and composite model groups as compared with the normal control and AA groups (P<0.05). There were marked abnormalities in iron regulation gene expression between the AA and composite model groups, as seen by the significant decrease of hepcidin expression in the liver (P<0.01) that paralleled the changes in BMP6, SMAD4, and TfR2. In summary, a composite mouse model with iron overload and AA was successfully established, and AA was indicated to possibly have a critical role in abnormal iron metabolism, which promoted the development of iron deposits.
Laser Synthesis of Supported Catalysts for Carbon Nanotubes
NASA Technical Reports Server (NTRS)
VanderWal, Randall L.; Ticich, Thomas M.; Sherry, Leif J.; Hall, Lee J.; Schubert, Kathy (Technical Monitor)
2003-01-01
Four methods of laser assisted catalyst generation for carbon nanotube (CNT) synthesis have been tested. These include pulsed laser transfer (PLT), photolytic deposition (PLD), photothermal deposition (PTD) and laser ablation deposition (LABD). Results from each method are compared based on CNT yield, morphology and structure. Under the conditions tested, the PLT was the easiest method to implement, required the least time and also yielded the best pattemation. The photolytic and photothermal methods required organometallics, extended processing time and partial vacuums. The latter two requirements also held for the ablation deposition approach. In addition to control of the substrate position, controlled deposition duration was necessary to achieve an active catalyst layer. Although all methods were tested on both metal and quartz substrates, only the quartz substrates proved to be inactive towards the deposited catalyst particles.
Materials and techniques for spacecraft static charge control
NASA Technical Reports Server (NTRS)
Amore, L. J.; Eagles, A. E.
1977-01-01
An overview of the design, development, fabrication, and testing of transparent conductive coatings and conductive lattices deposited or formed on high resistivity spacecraft dielectric materials to obtain control static charge buildup on spacecraft external surfaces is presented. Fabrication techniques for the deposition of indium/tin oxide coatings and copper grid networks on Kapton and FEP Teflon films and special frit coatings for OSR and solar cell cover glasses are discussed. The techniques include sputtering, photoetching, silkscreening, and mechanical processes. A facility designed and built to simulate the electron plasma at geosynchronous altitudes is described along with test procedures. The results of material characterizations as well as electron irradiation aging effects in this facility for spacecraft polymers treated to control static charge are presented. The data presents results for electron beam energies up to 30 kV and electron current densities of 30 nA/cm squared. Parameters measured include secondary emission, surface leakage, and through the sample currents as a function of primary beam energy and voltage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asgharian, Bahman; Price, Owen; McClellan, Gene
2012-11-01
The exposure-dose-response characterization of an inhalation hazard established in an animal species needs to be translated to an equivalent characterization in humans relative to comparable doses or exposure scenarios. Here, the first geometry model of the conducting airways for rhesus monkeys is developed based upon CT images of the conducting airways of a 6-month-old male, rhesus monkey. An algorithm was developed for adding the alveolar region airways using published rhesus morphometric data. The resultant lung geometry model can be used in mechanistic particle or gaseous dosimetry models. Such dosimetry models require estimates of the upper respiratory tract volume of themore » animal and the functional residual capacity, as well as of the tidal volume and breathing frequency of the animal. The relationship of these variables to rhesus monkeys of differing body weights was established by synthesizing and modeling published data as well as modeling pulmonary function measurements on 121 rhesus control animals. Deposition patterns of particles up to 10 µm in size were examined for endotracheal and and up to 5 µm for spontaneous breathing in infant and young adult monkeys and compared to those for humans. Deposition fraction of respirable size particles was found to be higher in the conducting airways of infant and young adult rhesus monkeys compared to humans. Due to the filtering effect of the conducting airways, pulmonary deposition in rhesus monkeys was lower than that in humans. Finally, future research areas are identified that would either allow replacing assumptions or improving the newly developed lung model.« less
Asgharian, Bahman; Price, Owen; McClellan, Gene; Corley, Rick; Einstein, Daniel R.; Jacob, Richard E.; Harkema, Jack; Carey, Stephan A.; Schelegle, Edward; Hyde, Dallas; Kimbell, Julia S.; Miller, Frederick J.
2016-01-01
The exposure-dose-response characterization of an inhalation hazard established in an animal species needs to be translated to an equivalent characterization in humans relative to comparable doses or exposure scenarios. Here, the first geometry model of the conducting airways for rhesus monkeys is developed based upon CT images of the conducting airways of a 6-month-old male, rhesus monkey. An algorithm was developed for adding the alveolar region airways using published rhesus morphometric data. The resultant lung geometry model can be used in mechanistic particle or gaseous dosimetry models. Such dosimetry models require estimates of the upper respiratory tract volume of the animal and the functional residual capacity, as well as of the tidal volume and breathing frequency of the animal. The relationship of these variables to rhesus monkeys of differing body weights was established by synthesizing and modeling published data as well as modeling pulmonary function measurements on 121 rhesus control animals. Deposition patterns of particles up to 10 μm in size were examined for endotracheal and and up to 5 μm for spontaneous breathing in infant and young adult monkeys and compared to those for humans. Deposition fraction of respirable size particles was found to be higher in the conducting airways of infant and young adult rhesus monkeys compared to humans. Due to the filtering effect of the conducting airways, pulmonary deposition in rhesus monkeys was lower than that in humans. Future research areas are identified that would either allow replacing assumptions or improving the newly developed lung model. PMID:23121298
Morgan, C.D.; Bereskin, S.R.
2003-01-01
The oil-productive Eocene Green River Formation in the central Uinta Basin of northeastern Utah is divided into five distinct intervals. In stratigraphically ascending order these are: 1) Uteland Butte, 2) Castle Peak, 3) Travis, 4) Monument Butte, and 5) Beluga. The reservoir in the Uteland Butte interval is mainly lacustrine limestone with rare bar sandstone beds, whereas the reservoirs in the other four intervals are mainly channel and lacustrine sandstone beds. The changing depositional environments of Paleocene-Eocene Lake Uinta controlled the characteristics of each interval and the reservoir rock contained within. The Uteland Butte consists of carbonate and rare, thin, shallow-lacustrine sandstone bars deposited during the initial rise of the lake. The Castle Peak interval was deposited during a time of numerous and rapid lake-level fluctuations, which developed a simple drainage pattern across the exposed shallow and gentle shelf with each fall and rise cycle. The Travis interval records a time of active tectonism that created a steeper slope and a pronounced shelf break where thick cut-and-fill valleys developed during lake-level falls and rises. The Monument Butte interval represents a return to a gentle, shallow shelf where channel deposits are stacked in a lowstand delta plain and amalgamated into the most extensive reservoir in the central Uinta Basin. The Beluga interval represents a time of major lake expansion with fewer, less pronounced lake-level falls, resulting in isolated single-storied channel and shallow-bar sandstone deposits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
B.C. Winkleman; T.V. Giel, Jr.; J. Cunningham
1999-06-30
The recent achievements of critical currents in excess of 1x10{sup 6}amp/cm{sup 2} at 77K in YBCO deposited over suitably textured buffer/substrate composites have stimulated interest in the potential fabrication of these coated conductors as wire. Numerous approaches and manufacturing schemes for producing coated conductor wire are currently being developed. Recently, under the U. S. Department of Energy (DOE's) sponsorship, the University of Tennessee Space Institute (UTSI) performed an extensive evaluation of leading coated conductor processing options. In general, it is our feeling that the science and chemistry that are being developed in the coated conductor wire program now need propermore » engineering evaluation to define the most viable options for a commercial fabrication process. All fabrication processes will need process control measurements. This report provides a specific review of the needs and available technologies for process control for many of the coated conductor processing options. This report also addresses generic process monitoring areas in which additional research and development is needed. The concentration is on the two different approaches for obtaining the textured substrates that have been identified as viable candidates. These are the Los Alamos National Laboratory's (LANL) ion-beam assisted deposition, called IBAD, to obtain a highly textured yttria-stabilized zirconia (YSZ) buffer on nickel alloy strips, and Oak Ridge National Laboratory's (ORNL) rolling assisted, bi-axially textured substrate option called RABiTS{trademark}.« less
Impact of future Arctic shipping on high-latitude black carbon deposition (Invited)
NASA Astrophysics Data System (ADS)
Corbett, J. J.; Browse, J.; Carslaw, K. S.; Schmidt, A.
2013-12-01
The retreat of Arctic sea-ice has led to renewed calls to exploit Arctic shipping routes. The diversion of ship traffic through the Arctic will shorten shipping routes and possibly reduce global shipping emissions. However, deposition of black carbon (BC) aerosol emitted by additional Arctic ships could cause a reduction in the albedo of snow and ice, accelerating snow-melt and sea-ice loss. We use recently compiled Arctic shipping emission inventories for 2004 and 2050 together with a global aerosol microphysics model GLOMAP coupled to the chemical transport model TOMCAT to quantify the contribution of future Arctic shipping to high-latitude BC deposition. Emission rates of SOx (SO2 and SO4) and particulate matter (PM) were estimated for 2050 under both business-as-usual and high-growth scenarios. BC particles are assumed to be water-insoluble at emission but can become active in cloud drop formation through soluble material accumulation. After BC particles become cloud-active they are more efficiently wet scavenged, which accounts for 80% of modeled BC deposition. Current-day Arctic shipping contributes 0.3% to the BC mass deposited north of 60N (250 Gg). About 50% of modelled BC deposition is on open ocean, suggesting that current Arctic ship traffic may not significantly contribute to BC deposition on central Arctic sea ice. However, 6 - 8% of deposited BC on the west coast of Greenland originates from local ship traffic. Moreover, in-Arctic shipping contributes some 32% to high-latitude ship-sourced deposition despite accounting for less than 1.0% of global shipping emissions. This suggests that control of in-Arctic shipping BC emissions could yield greater decrease in high-latitude BC deposition than a similar control strategy applied only to the extra-Arctic shipping industry. Arctic shipping in 2050 will contribute less than 1% to the total BC deposition north of 60N due to the much greater relative contribution of BC transported from non-shipping sources at lower-latitudes (with a maximum of about 5%, considering upper bound estimates for transport). In the BAU and HiG scenarios, the total BC deposition averaged north of 60N from Arctic shipping remains small, increasing to only 0.4% and 0.7%, respectively. Several mitigation strategies confirmed that extra-Arctic sources other than shipping contribute significantly more to BC deposition than Arctic shipping, and that regulation solely aimed at the Arctic shipping industry is an insufficient control on high-latitude BC deposition. An exception is the impact of local shipping near the vulnerable Greenland ice-sheet. Over Greenland the deposited BC mass attributable to high-growth shipping emissions in 2050 is significantly higher (10-15%) than over Arctic sea-ice. The increase in local BC deposition over Greenland can be mitigated by a 10% decrease in North American BC emissions, but additional controls over distant stationary sources should be considered alongside international agreements controlling shipping emissions to achieve desired Arctic BC deposition reductions.
Aref'eva, A S; Dyban, P A; Krasil'shchikova, M S; Dobrucki, J W; Zatsepina, O V
2010-01-01
A characteristic feature of systemic autoimmune diseases along with appearance of autoantibodies targeting self-antigenes is deposition of immunoglobulins and components of the complement system in kidneys. However, mechanisms of the deposit formation and their cytotoxic effects still remain poorly studied. To elucidate these questions, we used SJL/J mice which are known to develop autoimmune process accompanied by the appearance of anti-fibrillarin antibodies following regular administrations of sublethal dozes of HgCl2. Using antibodies to the total murine ummunoglobulins we showed that immunodeposits were present in glomeruli of autoimmune and control (not-autoimmune) animals, but their intensity was directly correlated with the titer of anti-fibrillarin autoantibodies and was minimal in control mice. By confocal microscopy and conventional fluorescence microscopy it was defined that immunodeposits deeply penetrate glomeruli and are the most likely located within mesangial cells. In autoimmune animals, ummunoglobulins completely colocolized with the C3--component of complement, but not with the major autoantigen--the protein fibrillarin. We failed to determine the signs of cell proliferation or death in glomeruli. The most prominent difference between control and autoimmune mice was the presence if immunodeposits in renal blood vessels. These observations argue in favor of the idea that destructive and disfunctional renal lesions accompanying development of autoimmune diseases can be caused, in part, by accumulation of immunodeposits in blood vessels.
NASA Astrophysics Data System (ADS)
Bendana, S.; Self, S.; Dufek, J.
2012-12-01
The infamous, May 18th, 1980 eruption of Mt St Helens in the state of Washington produced several episodes of pyroclastic density currents (PDCs) including the initial lateral blast, which traveled nearly 30 km, and later PDCs, which filled in the area up to 8 km north of the volcano. The focus of this research is on the later PDCs, which differed from the lateral blast in that they have a higher particle concentration and filled in the topography up to 40 m. While the concentrated portions of the afternoon PDCs followed deep topographic drainages down the steep flanks of the volcano, the dilute overriding cloud partially decoupled to develop fully dilute, turbulent PDCs on the flanks of the volcano (Beeson, D.L. 1988. Proximal Flank Facies of the May 18, 1980 Ignimbrite: Mt. St. Helens, Washington.). The dilute PDCs deposited thin, cross-stratified and stratified pyroclastic deposits, known as the proximal bedded deposits, which differ greatly in depositional characteristics from the thick, massive, poorly-sorted, block-rich deposits associated with the more concentrated portions of the flow. We explore the influence of topography on the formation of these dilute currents and influence of slope on the currents transport and depositional mechanisms. The deposits on steeper slopes (>15°) are fines depleted relative to the proximal bedded deposits on shallower slopes (<15°). Bedform amplitude and wavelength increase with increasing slope, as does the occurrence of regressive dunes. Increasing slope causes an increase in flow velocity and thus an increase in flow turbulence. The fines depleted deposits suggest that fine ash elutriation is more efficient in flows with stronger turbulence. The longer wavelength and amplitudes suggest that bedform morphology is directly related to flow velocity, an important finding since the controls on bedform wavelength and amplitude in density stratified flows remains poorly constrained. The occurrence of regressive dunes, often interpreted as high flow-regime bedforms, on steeper slopes relative to progressive dunes on shallower slopes further attests to the control of velocity and flow regime on bedform morphology. Samples collected from recently exposed deposits and analyzed by grain size measurements, density analyses, and crystal morphoscopy studies further assess modes of origin and transport of dilute PDCs. The collected data will be used to validate numerical models that attempt to quantify the hazards of decoupled, dilute PDCs.
Contamination assessment and control in scientific satellites
NASA Technical Reports Server (NTRS)
Naumann, R. J.
1973-01-01
Techniques for assessment and control of the contamination environment for both particulates and condensible vapors in the vicinity of spacecraft are developed. An analysis of the deposition rate on critical surfaces is made considering sources within the line of sight of the surface in question as well as those obscured from the line of sight. The amount of contamination returned by collision with the surrounding atmosphere is estimated. Scattering and absorption from the induced atmosphere of gases and particulates around the spacecraft are estimated. Finally, design techniques developed for Skylab to reduce the contamination environment to an acceptable level are discussed.
Jiang, Shenglin; Huang, Chi; Gu, Honggang; Liu, Shiyuan; Zhu, Shuai; Li, Ming-Yu; Yao, Lingmin; Wu, Yunyi; Zhang, Guangzu
2018-01-01
Ferroelectric thin films have been utilized in a wide range of electronic and optical applications, in which their morphologies and properties can be inherently tuned by a qualitative control during growth. In this work, we demonstrate the evolution of the Pb0.865La0.09(Zr0.65Ti0.35)O3 (PLZT) thin films on MgO (200) with high uniformity and optimized optical property via the controls of the deposition temperatures and oxygen pressures. The perovskite phase can only be obtained at the deposition temperature above 700 °C and oxygen pressure over 50 Pa due to the improved crystallinity. Meanwhile, the surface morphologies gradually become smooth and compact owing to spontaneously increased nucleation sites with the elevated temperatures, and the crystallization of PLZT thin films also sensitively respond to the oxygen vacancies with the variation of oxygen pressures. Correspondingly, the refractive indices gradually develop with variations of the deposition temperatures and oxygen pressures resulted from the various slight loss, and the extinction coefficient for each sample is similarly near to zero due to the relatively smooth morphology. The resulting PLZT thin films exhibit the ferroelectricity, and the dielectric constant sensitively varies as a function of electric filed, which can be potentially applied in the electronic and optical applications. PMID:29596398
Endolithic microniches support habitability
NASA Astrophysics Data System (ADS)
Gómez, F.; Rodríguez, N.; Rodríguez-Manfredi, J. A.; Fernández-Sampedro, M.; Amils, R.
2013-09-01
Particular micro-niches on extreme environments give us some clues about the habitability potential under protected environments with important connotations from an astrobiological point of view [1]. The salts precipitation patters in extreme environments can contribute to biomineralization processes which could be of special interest for organics but also life preservation on environmental harsh conditions. These "oasys" for organics and/or life forms are of special as trobiological interest and should attract our attention in other planets and we should be looking for it during rover exploration missions. Endolithic micro niches in Rio Tinto salts precipitates determine controlled scenarios where phototrops develop under controlled conditions. Rio Tinto, 100 km river located at South West of Spain, is being taken as a well reported Mars analog due to the similarities in the mineralogy of the system which that reported by MER Opportunity Rover missions which landed in Meridiani Planum where sedimentary deposits have been identified in different craters [2]. Interesting multi layered salty deposits were identified in Rio Tinto source area where endolithic micro niches were settled [3]. Green layers appear included in brown stratified salt precipitates. The crust deposit was between 5 mm and 1 cm width. The layered structure is deposited over rocks or over man made structures as dam or mining tunnels walls but always in places with specific environmental characteristics. It appears in not direct Sun light exposed places (shadow side of walls) with thermal and pH stability.
A new method for measuring lung deposition efficiency of airborne nanoparticles in a single breath
Jakobsson, Jonas K. F.; Hedlund, Johan; Kumlin, John; Wollmer, Per; Löndahl, Jakob
2016-01-01
Assessment of respiratory tract deposition of nanoparticles is a key link to understanding their health impacts. An instrument was developed to measure respiratory tract deposition of nanoparticles in a single breath. Monodisperse nanoparticles are generated, inhaled and sampled from a determined volumetric lung depth after a controlled residence time in the lung. The instrument was characterized for sensitivity to inter-subject variability, particle size (22, 50, 75 and 100 nm) and breath-holding time (3–20 s) in a group of seven healthy subjects. The measured particle recovery had an inter-subject variability 26–50 times larger than the measurement uncertainty and the results for various particle sizes and breath-holding times were in accordance with the theory for Brownian diffusion and values calculated from the Multiple-Path Particle Dosimetry model. The recovery was found to be determined by residence time and particle size, while respiratory flow-rate had minor importance in the studied range 1–10 L/s. The instrument will be used to investigate deposition of nanoparticles in patients with respiratory disease. The fast and precise measurement allows for both diagnostic applications, where the disease may be identified based on particle recovery, and for studies with controlled delivery of aerosol-based nanomedicine to specific regions of the lungs. PMID:27819335
Mass Spectrometry as a Preparative Tool for the Surface Science of Large Molecules
NASA Astrophysics Data System (ADS)
Rauschenbach, Stephan; Ternes, Markus; Harnau, Ludger; Kern, Klaus
2016-06-01
Measuring and understanding the complexity that arises when nanostructures interact with their environment are one of the major current challenges of nanoscale science and technology. High-resolution microscopy methods such as scanning probe microscopy have the capacity to investigate nanoscale systems with ultimate precision, for which, however, atomic scale precise preparation methods of surface science are a necessity. Preparative mass spectrometry (pMS), defined as the controlled deposition of m/z filtered ion beams, with soft ionization sources links the world of large, biological molecules and surface science, enabling atomic scale chemical control of molecular deposition in ultrahigh vacuum (UHV). Here we explore the application of high-resolution scanning probe microscopy and spectroscopy to the characterization of structure and properties of large molecules. We introduce the fundamental principles of the combined experiments electrospray ion beam deposition and scanning tunneling microscopy. Examples for the deposition and investigation of single particles, for layer and film growth, and for the investigation of electronic properties of individual nonvolatile molecules show that state-of-the-art pMS technology provides a platform analog to thermal evaporation in conventional molecular beam epitaxy. Additionally, it offers additional, unique features due to the use of charged polyatomic particles. This new field is an enormous sandbox for novel molecular materials research and demands the development of advanced molecular ion beam technology.
Effect of nanodiamond modification of siloxane surfaces on stem cell behaviour
NASA Astrophysics Data System (ADS)
Keremidarska, M.; Hikov, T.; Radeva, E.; Pramatarova, L.; Krasteva, N.
2014-12-01
Mesenchymal stem cells (MSCs) hold a great promise for use in many cell therapies and tissue engineering due to their remarkable potential to replicate indefinitely and differentiate into various cell types. Many efforts have been put to study the factors controlling stem cell differentiation. However, still little knowledge has been gained to what extent biomaterials properties influence stem cell adhesion, growth and differentiation. Research utilizing bone marrow-derived MSCs has concentrated on development of specific materials which can enhance specific differentiation of stem cells e.g. osteogenic and chondrogenic. In the present work we have modified an organosilane, hexamethyldisiloxane (HMDS) with detonation nanodiamond (DND) particles aiming to improve adhesion, growth and osteodifferentiation of rat mesenchymal stem cells. HMDS/DND films were deposited on cover glass using two approaches: premixing of both compounds, followed by plasma polymerization (PP) and PP of HMDS followed by plasma deposition of DND particles. We did not observe however an increase in rMSCs adhesion and growth on DND-modified PPHMDS surfaces compared to unmodified PPHMDS. When we studied alkaline phosphatase (ALP) activity, which is a major sign for early osteodifferentiation, we found the highest ALP activity on the PPHMDS/DND material, prepared by consequent deposition while on the other composite material ALP activity was the lowest. These results suggested that DND-modified materials were able to control osteodifferention in MSCs depending on the deposition approach. Modification of HMDS with DND particles by consequent plasma deposition seems to be a promising approach to produce biomaterials capable to guide stem cell differentiation toward osteoblasts and thus to be used in bone tissue engineering.
NASA Astrophysics Data System (ADS)
Kirstein, Linda; Carter, Andrew; Chen, Yue-Gau
2010-05-01
Detrital sedimentary records include vast archives of material that have been removed from developing tectonically active regions. These archives have been used to investigate challenging questions on continental deformation, exhumation and palaeodrainage using a variety of different techniques including heavy minerals, fission-track dating and palaeocurrent reconstructions. The Hengchun Peninsula of southern Taiwan and offshore Hengchun Ridge form a present day accretionary prism, with accretionary wedge growth occurring both by frontal accretion, with sediments from the continental margin scraped up into the accretionary wedge and by underplating. Miocene sediments in Hengchun include foreland basin deposits, deep marine turbidites and forearc basin deposits. As a result the detrital sediments record details of accretionary prism growth associated with continued Luzon arc-continent collision. Diametrically opposite palaeocurrents are preserved in the Miocene sandstones of the Hengchun Peninsula, southern Taiwan. Controversial explanations include an exotic source terrane to the south and/or 180 ° rotation of a depositional basin. We document the tecto-thermal evolution of the Miocene sediment source(s) using a double dating approach. U-Pb grain ages range from Miocene to Archaean, while zircon fission-tracks record thermal cooling primarily in the Cretaceous with minor peaks in the Miocene, Triassic, Jurassic and Permian. The primary source of the Miocene sediments at the centre of the controversy was similar. Palaeocurrent data are influenced by local basin geometry and submarine topography and suggest that sediment deposition in the Miocene was strongly controlled by incipient subduction, associated structural trends and submarine topography. A similar control on deposition in the modern Taiwan collision zone is apparent in the offshore region today.
RF plasma MOCVD of Y2O3 thin films: Effect of RF self-bias on the substrates during deposition
NASA Astrophysics Data System (ADS)
Chopade, S. S.; Barve, S. A.; Thulasi Raman, K. H.; Chand, N.; Deo, M. N.; Biswas, A.; Rai, Sanjay; Lodha, G. S.; Rao, G. M.; Patil, D. S.
2013-11-01
Yttrium oxide (Y2O3) thin films have been deposited by radio frequency plasma assisted metal organic chemical vapor deposition (MOCVD) process using (2,2,6,6-tetramethyl-3,5-heptanedionate) yttrium (commonly known as Y(thd)3) precursor in a plasma of argon and oxygen gases at a substrate temperature of 350 °C. The films have been deposited under influence of varying RF self-bias (-50 V to -175 V) on silicon, quartz, stainless steel and tantalum substrates. The deposited coatings are characterized by glancing angle X-ray diffraction (GIXRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), spectroscopic ellipsometry and scanning electron microscopy (SEM). GIXRD and FTIR results indicate deposition of Y2O3 (BCC structure) in all cases. However, XPS results indicate nonstoichiometric cubic phase deposition on the surface of deposited films. The degree of nonstoichiometry varies with bias during deposition. Ellipsometry results indicate that the refractive index for the deposited films is varying from 1.70 to 1.83 that is typical for Y2O3. All films are transparent in the investigated wavelength range 300-1200 nm. SEM results indicate that the microstructure of the films is changing with applied bias. Results indicate that it is possible to deposit single phase cubic Y2O3 thin films at low substrate temperature by RF plasma MOCVD process. RF self-bias that decides about the energy of impinging ions on the substrates plays an important role in controlling the texture of deposited Y2O3 films on the substrates. Results indicate that to control the structure of films and its texture, it is important to control the bias on the substrate during deposition. The films deposited at high bias level show degradation in the crystallinity and reduction of thickness.
NASA Astrophysics Data System (ADS)
Li, Zhiyang; Schieber, Juergen
2018-02-01
Lower-Middle Turonian strata of the Tununk Shale Member of the greater Mancos Shale were deposited along the western margin of the Cretaceous Western Interior Seaway during the Greenhorn second-order sea level cycle. In order to examine depositional controls on facies development in this mudstone-rich succession, this study delineates temporal and spatial relationships in a process-sedimentologic-based approach. The 3-dimensional expression of mudstone facies associations and their stratal architecture is assessed through a fully integrative physical and biologic characterization as exposed in outcrops in south-central Utah. Sedimentologic characteristics from the millimeter- to kilometer-scale are documented in order to fully address the complex nature of sediment transport mechanisms observed in this shelf muddy environment. The resulting facies model developed from this characterization consists of a stack of four lithofacies packages including: 1) carbonate-bearing, silty and sandy mudstone (CSSM), 2) silt-bearing, calcareous mudstone (SCM), 3) carbonate-bearing, silty mudstone to muddy siltstone (CMS), and 4) non-calcareous, silty and sandy mudstone (SSM). Spatial and temporal variations in lithofacies type and sedimentary facies characteristics indicate that the depositional environments of the Tununk Shale shifted in response to the 2nd-order Greenhorn transgressive-regressive sea-level cycle. During this eustatic event, the Tununk shows a characteristic vertical shift from distal middle shelf to outer shelf (CSSM to SCM facies), then from outer shelf to inner shelf environment (SCM to CMS, and to SSM facies). Shifting depositional environments, as well as changes in dominant paleocurrent direction throughout this succession, indicate multiple source areas and transport mechanisms (i.e. longshore currents, offshore-directed underflows, storm reworking). This study provides a rare documentation of the Greenhorn cycle as exposed across the entire shelf setting. High-resolution mapping of genetically-related packages facilitate the development of process-based depositional models that can be utilized for lateral correlations into the equivalent foredeep strata of the Cretaceous Interior.
Li, Man; Ma, Qiang; Zi, Wei; Liu, Xiaojing; Zhu, Xuejie; Liu, Shengzhong (Frank)
2015-01-01
A deposition process has been developed to fabricate a complete-monolayer Pt coating on a large-surface-area three-dimensional (3D) Ni foam substrate using a buffer layer (Ag or Au) strategy. The quartz crystal microbalance, current density analysis, cyclic voltammetry integration, and X-ray photoelectron spectroscopy results show that the monolayer deposition process accomplishes full coverage on the substrate and the deposition can be controlled to a single atomic layer thickness. To our knowledge, this is the first report on a complete-monolayer Pt coating on a 3D bulk substrate with complex fine structures; all prior literature reported on submonolayer or incomplete-monolayer coating. A thin underlayer of Ag or Au is found to be necessary to cover a very reactive Ni substrate to ensure complete-monolayer Pt coverage; otherwise, only an incomplete monolayer is formed. Moreover, the Pt monolayer is found to work as well as a thick Pt film for catalytic reactions. This development may pave a way to fabricating a high-activity Pt catalyst with minimal Pt usage. PMID:26601247
NASA Astrophysics Data System (ADS)
Taschuk, M. T.; Tucker, R. T.; LaForge, J. M.; Beaudry, A. L.; Kupsta, M. R.; Brett, M. J.
2013-12-01
The vapour-liquid-solid glancing angle deposition (VLS-GLAD) process is capable of producing complex nanotree structures with control over azimuthal branch orientation and height. We have developed a thin film growth simulation including ballistic deposition, simplified surface diffusion, and droplet-mediated cubic crystal growth for the VLS-GLAD process using the UnrealTM Development Kit. The use of a commercial game engine has provided an interactive environment while allowing a custom physics implementation. Our simulation's output is verified against experimental data, including a volumetric film reconstruction produced using focused ion beam and scanning-electron microscopy (SEM), crystallographic texture, and morphological characteristics such as branch orientation. We achieve excellent morphological and texture agreement with experimental data, as well as qualitative agreement with SEM imagery. The simplified physics in our model reproduces the experimental films, indicating that the dominant role flux geometry plays in the VLS-GLAD competitive growth process responsible for azimuthally oriented branches and biaxial crystal texture evolution. The simulation's successful reproduction of experimental data indicates that it should have predictive power in designing novel VLS-GLAD structures.
Fossilization processes in siliceous thermal springs: trends in preservation along thermal gradients
NASA Technical Reports Server (NTRS)
Cady, S. L.; Farmer, J. D.
1996-01-01
To enhance our ability to extract palaeobiological and palaeoenvironmental information from ancient thermal spring deposits, we have studied the processes responsible for the development and preservation of stromatolites in modern subaerial thermal spring systems in Yellowstone National Park (USA). We investigated specimens collected from silica-depositing thermal springs along the thermal gradient using petrographic techniques and scanning electron microscopy. Although it is known that thermophilic cyanobacteria control the morphogenesis of thermal spring stromatolites below 73 degrees C, we have found that biofilms which contain filamentous thermophiles contribute to the microstructural development of subaerial geyserites that occur along the inner rims of thermal spring pools and geyser effluents. Biofilms intermittently colonize the surfaces of subaerial geyserites and provide a favoured substrate for opaline silica precipitation. We have also found that the preservation of biotically produced microfabrics of thermal spring sinters reflects dynamic balances between rates of population growth, decomposition of organic matter, silica deposition and early diagenesis. Major trends in preservation of thermophilic organisms along the thermal gradient are defined by differences in the mode of fossilization, including replacement, encrustation and permineralization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Won, Yoo Jai; Ki, Hyungson
A novel picosecond-laser pulsed laser deposition method has been developed for fabricating functionally graded films with pre-designed gradient profiles. Theoretically, the developed method is capable of precisely fabricating films with any thicknesses and any gradient profiles by controlling the laser beam powers for the two different targets based on the film composition profiles. As an implementation example, we have successfully constructed functionally graded diamond-like carbon films with six different gradient profiles: linear, quadratic, cubic, square root, cubic root, and sinusoidal. Energy dispersive X-ray spectroscopy is employed for investigating the chemical composition along the thickness of the film, and the depositionmore » profile and thickness errors are found to be less than 3% and 1.04%, respectively. To the best of the authors' knowledge, this is the first method for fabricating films with designed gradient profiles and has huge potential in many areas of coatings and films, including multifunctional optical films. We believe that this method is not only limited to the example considered in this study, but also can be applied to all material combinations as long as they can be deposited using the pulsed laser deposition technique.« less
Dynamic Control of Particle Deposition in Evaporating Droplets by an External Point Source of Vapor
2018-01-01
The deposition of particles on a surface by an evaporating sessile droplet is important for phenomena as diverse as printing, thin-film deposition, and self-assembly. The shape of the final deposit depends on the flows within the droplet during evaporation. These flows are typically determined at the onset of the process by the intrinsic physical, chemical, and geometrical properties of the droplet and its environment. Here, we demonstrate deterministic emergence and real-time control of Marangoni flows within the evaporating droplet by an external point source of vapor. By varying the source location, we can modulate these flows in space and time to pattern colloids on surfaces in a controllable manner. PMID:29363979
NASA Astrophysics Data System (ADS)
Acharya, Ranadip; Das, Suman
2015-09-01
This article describes additive manufacturing (AM) of IN100, a high gamma-prime nickel-based superalloy, through scanning laser epitaxy (SLE), aimed at the creation of thick deposits onto like-chemistry substrates for enabling repair of turbine engine hot-section components. SLE is a metal powder bed-based laser AM technology developed for nickel-base superalloys with equiaxed, directionally solidified, and single-crystal microstructural morphologies. Here, we combine process modeling, statistical design-of-experiments (DoE), and microstructural characterization to demonstrate fully metallurgically bonded, crack-free and dense deposits exceeding 1000 μm of SLE-processed IN100 powder onto IN100 cast substrates produced in a single pass. A combined thermal-fluid flow-solidification model of the SLE process compliments DoE-based process development. A customized quantitative metallography technique analyzes digital cross-sectional micrographs and extracts various microstructural parameters, enabling process model validation and process parameter optimization. Microindentation measurements show an increase in the hardness by 10 pct in the deposit region compared to the cast substrate due to microstructural refinement. The results illustrate one of the very few successes reported for the crack-free deposition of IN100, a notoriously "non-weldable" hot-section alloy, thus establishing the potential of SLE as an AM method suitable for hot-section component repair and for future new-make components in high gamma-prime containing crack-prone nickel-based superalloys.
NASA Astrophysics Data System (ADS)
Ribeiro, A. I.; Modic, M.; Cvelbar, U.; Dinescu, G.; Mitu, B.; Nikiforov, A.; Leys, C.; Kuchakova, I.; Vanneste, M.; Heyse, P.; De Vrieze, M.; Carneiro, N.; Souto, A. P.; Zille, A.
2017-10-01
The development of new multifunctional textiles containing nanoparticles (NPs) has a special interest in several applications for pharmaceutical and medical products. Cu, Zn and Ag are the most promising antimicrobial NPs, exhibiting strong antibacterial activities. However, most of antimicrobial textiles coated with NPs are not able to perform a controlled release of NPs because of the high degree of aggregation. The aim of this study is to assess the effect of NPs stabilizers such as citrate, alginate and polyvinyl alcohol (PVA) in Cu, Zn and Ag NPs dispersions. The obtained dispersions were used to develop a new class of antibacterial NPs coatings onto polyamide 6,6 (PA66) and polyester fabrics (PES) by Double Dielectric Barrier (DBD) plasma discharge. Dynamic light scattering (DLS) was used to evaluate the best dispersing agent in terms of size, polydispersity index and zeta potential. Coating efficiency was evaluated by SEM, XPS and FTIR. The washing fastness of the coatings developed was also tested. The results show that the best dispersions were obtained using 2.5% of citrate for ZnO, 5% Alginate for Cu and 2.5% alginate for Ag NPs. SEM, XPS and FTIR analysis shows that DBD is an efficient deposition technique only for Ag and Cu NPs and that better perform in PA66 than PES fabric. The DBD deposition in air display similar results in term of NPS deposition of usually more efficient plasma jets using carrier gas such as N2 and Ar.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poli, Francesca M.; Fredrickson, Eric; Henderson, Mark A.
Time-dependent simulations are used to evolve plasma discharges in combination with a Modified Rutherford equation (MRE) for calculation of Neoclassical Tearing Mode (NTM) stability in response to Electron Cyclotron (EC) feedback control in ITER. The main application of this integrated approach is to support the development of control algorithms by analyzing the plasma response with physics-based models and to assess how uncertainties in the detection of the magnetic island and in the EC alignment affect the ability of the ITER EC system to fulfill its purpose. These simulations indicate that it is critical to detect the island as soon asmore » possible, before its size exceeds the EC deposition width, and that maintaining alignment with the rational surface within half of the EC deposition width is needed for stabilization and suppression of the modes, especially in the case of modes with helicity (2,1). A broadening of the deposition profile, for example due to wave scattering by turbulence fluctuations or not well aligned beams, could even be favorable in the case of the (2,1)-NTM, by relaxing an over-focussing of the EC beam and improving the stabilization at the mode onset. Pre-emptive control reduces the power needed for suppression and stabilization in the ITER baseline discharge to a maximum of 5 MW, which should be reserved and available to the Upper Launcher during the entire flattop phase. By assuming continuous triggering of NTMs, with pre-emptive control ITER would be still able to demonstrate a fusion gain of Q=10.« less
NASA Astrophysics Data System (ADS)
Poli, F. M.; Fredrickson, E. D.; Henderson, M. A.; Kim, S.-H.; Bertelli, N.; Poli, E.; Farina, D.; Figini, L.
2018-01-01
Time-dependent simulations are used to evolve plasma discharges in combination with a modified Rutherford equation for calculation of neoclassical tearing mode (NTM) stability in response to electron cyclotron (EC) feedback control in ITER. The main application of this integrated approach is to support the development of control algorithms by analyzing the plasma response with physics-based models and to assess how uncertainties in the detection of the magnetic island and in the EC alignment affect the ability of the ITER EC system to fulfill its purpose. Simulations indicate that it is critical to detect the island as soon as possible, before its size exceeds the EC deposition width, and that maintaining alignment with the rational surface within half of the EC deposition width is needed for stabilization and suppression of the modes, especially in the case of modes with helicity (2, 1) . A broadening of the deposition profile, for example due to wave scattering by turbulence fluctuations or not well aligned beams, could even be favorable in the case of the (2, 1)- NTM, by relaxing an over-focussing of the EC beam and improving the stabilization at the mode onset. Pre-emptive control reduces the power needed for suppression and stabilization in the ITER baseline discharge to a maximum of 5 MW, which should be reserved and available to the upper launcher during the entire flattop phase. Assuming continuous triggering of NTMs, with pre-emptive control ITER would be still able to demonstrate a fusion gain of Q=10 .
Poli, Francesca M.; Fredrickson, Eric; Henderson, Mark A.; ...
2017-09-21
Time-dependent simulations are used to evolve plasma discharges in combination with a Modified Rutherford equation (MRE) for calculation of Neoclassical Tearing Mode (NTM) stability in response to Electron Cyclotron (EC) feedback control in ITER. The main application of this integrated approach is to support the development of control algorithms by analyzing the plasma response with physics-based models and to assess how uncertainties in the detection of the magnetic island and in the EC alignment affect the ability of the ITER EC system to fulfill its purpose. These simulations indicate that it is critical to detect the island as soon asmore » possible, before its size exceeds the EC deposition width, and that maintaining alignment with the rational surface within half of the EC deposition width is needed for stabilization and suppression of the modes, especially in the case of modes with helicity (2,1). A broadening of the deposition profile, for example due to wave scattering by turbulence fluctuations or not well aligned beams, could even be favorable in the case of the (2,1)-NTM, by relaxing an over-focussing of the EC beam and improving the stabilization at the mode onset. Pre-emptive control reduces the power needed for suppression and stabilization in the ITER baseline discharge to a maximum of 5 MW, which should be reserved and available to the Upper Launcher during the entire flattop phase. By assuming continuous triggering of NTMs, with pre-emptive control ITER would be still able to demonstrate a fusion gain of Q=10.« less
Yang, Qiuyue; Yuan, Wei; Liu, Xiangmei; Zheng, Yufeng; Cui, Zhenduo; Yang, Xianjin; Pan, Haobo; Wu, Shuilin
2017-08-01
The biodegradability and good mechanical property of magnesium alloys make them potential biomedical materials. However, their rapid corrosion rate in the human body's environment impairs these advantages and limits their clinical use. In this work, a compact zirconia (ZrO 2 ) nanofilm was fabricated on the surface of a magnesium-strontium (Mg-Sr) alloy by the atomic layer deposition (ALD) method, which can regulate the thickness of the film precisely and thus also control the corrosion rate. Corrosion tests reveal that the ZrO 2 film can effectively reduce the corrosion rate of Mg-Sr alloys that is closely related to the thickness of the film. The cell culture test shows that this kind of ZrO 2 film can also enhance the activity and adhesion of osteoblasts on the surfaces of Mg-Sr alloys. The significance of the current work is to develop a zirconia nanofilm on biomedical MgSr alloy with controllable thickness precisely through atomic layer deposition technique. By adjusting the thickness of nanofilm, the corrosion rate of Mg-Sr alloy can be modulated, thereafter, the degradation rate of Mg-based alloys can be controlled precisely according to actual clinical requirement. In addition, this zirconia nanofilm modified Mg-Sr alloys show excellent biocompatibility than the bare samples. Hence, this work provides a new surface strategy to control the degradation rate while improving the biocompatibility of substrates. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Geomorphology of the Iberian Continental Margin
NASA Astrophysics Data System (ADS)
Maestro, Adolfo; López-Martínez, Jerónimo; Llave, Estefanía; Bohoyo, Fernando; Acosta, Juan; Hernández-Molina, F. Javier; Muñoz, Araceli; Jané, Gloria
2013-08-01
The submarine features and processes around the Iberian Peninsula are the result of a complex and diverse geological and oceanographical setting. This paper presents an overview of the seafloor geomorphology of the Iberian Continental Margin and the adjacent abyssal plains. The study covers an area of approximately 2.3 million km2, including a 50 to 400 km wide band adjacent to the coastline. The main morphological characteristics of the seafloor features on the Iberian continental shelf, continental slope, continental rise and the surrounding abyssal plains are described. Individual seafloor features existing on the Iberian Margin have been classified into three main groups according to their origin: tectonic and/or volcanic, depositional and erosional. Major depositional and erosional features around the Iberian Margin developed in late Pleistocene-Holocene times and have been controlled by tectonic movements and eustatic fluctuations. The distribution of the geomorphological features is discussed in relation to their genetic processes and the evolution of the margin. The prevalence of one or several specific processes in certain areas reflects the dominant morphotectonic and oceanographic controlling factors. Sedimentary processes and the resulting depositional products are dominant on the Valencia-Catalán Margin and in the northern part of the Balearic Promontory. Strong tectonic control is observed in the geomorphology of the Betic and the Gulf of Cádiz margins. The role of bottom currents is especially evident throughout the Iberian Margin. The Galicia, Portuguese and Cantabrian margins show a predominance of erosional features and tectonically-controlled linear features related to faults.
Brooks, G.R.; Holmes, C.W.
1990-01-01
Depositional patterns and sedimentary processes influencing modern southwest Florida carbonate slope development have been identified based upon slope morphology, seismic facies and surface sediment characteristics. Three slope-parallel zones have been identified: (1) an upper slope progradational zone (100-500 m) characterized by seaward-trending progradational clinoforms and sediments rich in shelf-derived carbonate material, (2) a lower gullied slope zone (500-800 m) characterized by numerous gullies formed by the downslope transport of gravity flows, and (3) a base-of-slope zone (> 800 m) characterized by thin, lens-shaped gravity flow deposits and irregular topography interpreted to be the result of bottom currents and slope failure along the basal extensions of gullies. Modern slope development is interpreted to have been controlled by the offshelf transport of shallow-water material from the adjacent west Florida shelf, deposition of this material along a seaward advancing sediment front, and intermittent bypassing of the lower slope by sediments transported in the form of gravity flows via gullies. Sediments are transported offshelf by a combination of tides and the Loop Current, augmented by the passage of storm frontal systems. Winter storm fronts produce cold, dense, sediment-laden water that cascades offshelf beneath the strong, eastward flowing Florida Current. Sediments are eventually deposited in a relatively low energy transition zone between the Florida Current on the surface and a deep westward flowing counter current. The influence of the Florida Current is evident in the easternmost part of the study area as eastward prograding sediments form a sediment drift that is progressively burying the Pourtales Terrace. The modern southwest Florida slope has seismic reflection and sedimentological characteristics in common with slopes bordering both the non-rimmed west Florida margin and the rimmed platform of the northern Bahamas, and shows many similarities to the progradational Miocene section along the west Florida slope. As with rimmed platform slopes, development of non-rimmed platform slopes can be complex and controlled by a combination of processes that result in a variety of configurations. Consequently, the distinction between the two slope types based solely upon seismic and sedimentological characteristics may not be readily discernible. ?? 1990.
Recent NASA aerospace medicine technology developments
NASA Technical Reports Server (NTRS)
Jones, W. L.
1973-01-01
Areas of life science are being studied to obtain baseline data, strategies, and technology to permit life research in the space environment. The reactions of the cardiovascular system to prolonged weightlessness are also being investigated. Particle deposition in the human lung, independent respiratory support system, food technology, and remotely controlled manipulators are mentioned briefly.
USDA-ARS?s Scientific Manuscript database
The nutritional and economic value of soybean [Glycine max (L.) Merrill] is effectively a function of its seed protein and oil content. Insight into the genetic and molecular control mechanisms involved in the deposition of these constituents in the developing seed is needed to guide future soybean ...
NASA Astrophysics Data System (ADS)
Muthusubramanian, Nandini; Maity, Chandan; Galan Garcia, Elena; Eelkema, Rienk; Grozema, Ferdinand; van der Zant, Herre; Kavli Institute of Nanoscience Collaboration; Department of Chemical Engineering Collaboration
We present a method for studying the effects of polar solvents on charge transport through organic/biological single molecules by developing solvent-compatible mechanically controlled break junctions of gold coated with a thin layer of aluminium oxide using plasma enhanced atomic layer deposition (ALD). The optimal oxide thickness was experimentally determined to be 15 nm deposited at ALD operating temperature of 300°C which yielded atomically sharp electrodes and reproducible single-barrier tunnelling behaviour across a wide conductance range between 1 G0 and 10-7 G0. The insulator protected MCBJ devices were found to be effective in various solvents such as deionized water, phosphate buffered saline, methanol, acetonitrile and dichlorobenzene. The yield of molecular junctions using such insulated electrodes was tested by developing a chemical protocol for synthesizing an amphipathic form of oligo-phenylene ethynylene (OPE3-PEO) with thioacetate anchoring groups. This work has further applications in studying effects of solvation, dipole orientation and other thermodynamic interactions on charge transport. Eu Marie Curie Initial Training Network (ITN). MOLECULAR-SCALE ELECTRONICS: ``MOLESCO'' Project Number 606728.
NASA Astrophysics Data System (ADS)
Hajek, E.; Heller, P.; Huzurbazar, S.; Sheets, B.; Paola, C.
2006-12-01
The stratigraphic record of at least some alluvial basins exhibits a spatial structure that may reflect long time- scale (103-105 yr in natural basins) autogenic organization of river avulsions. Current models of avulsion-dominated alluvial sequences emphasize the spatial and temporal distribution of coarse-grained channel-belt deposits amid fine-grained floodplain materials. These models typically assume that individual avulsions move, either randomly or deterministically, to low spots distributed throughout the model space. However, our observations of ancient deposits and experimental stratigraphy indicate a previously unrecognized pattern of channel-belt organization, where clusters of closely-spaced channel-belt deposits are separated from each other by extensive intervals of overbank deposits. We explore potential causes of and controls on avulsion clustering with outcrop and subsurface data from Late Cretaceous/Early Paleogene fluvial deposits in the Rocky Mountains (including the Ferris, Lance, and Fort Union formations of Wyoming) and results of physical stratigraphy experiments from the St. Anthony Falls Lab, University of Minnesota. We use Ripley's K-function to determine the degree and scales of clustering in these basins with results that show moderate statistical clustering in experimental deposits and strong clustering in the Ferris Formation (Hanna Basin, Wyoming). External controls (base level, subsidence rate, and sediment/water supplies) were not varied during the experiment, and therefore not factors in cluster formation. Likewise, the stratigraphic context of the ancient system (including the absence of incised valleys and lack of faulting) suggests that obvious extrinsic controls, such as base level change and local tectonics, were not major influences on the development of clusters. We propose that avulsion clusters, as seen in this study, reflect a scale of self-organization in alluvial basins that is not usually recognized in stratigraphy. However cursory examination of other ancient systems suggests that such structure may be common in the rock record. Understanding mechanisms driving avulsion clustering will shed light on the dominant processes in alluvial basins over long time scales. Furthermore, characterizing autogenic avulsion clusters will be an important factor to consider when interpreting allogenic signals in ancient basin fills.
NASA Astrophysics Data System (ADS)
Thapa, Prasamsa; Martin, Yvonne E.; Johnson, E. A.
2017-12-01
Rockfall is a significant geomorphic process in many mountainous regions that also poses a notable natural hazard risk. Most previous studies of rockfall erosion have investigated the mechanics and rates of local rockwall retreat and talus deposition, with only a few investigations of rockfall and/or associated talus considering larger spatial scales (i.e., drainage basin, mountain range). The purpose of the current research is to investigate the areal extent of rockfall-talus and controlling factors of its distribution over regional spatial scales (of order 102 km2) in Kananaskis, Canadian Rockies to inform our understanding of its significance in mountain development. To achieve this goal, a large talus inventory is collected and analyzed for 11 steep tributaries of the Kananaskis River, Canadian Rockies. Talus accumulations associated with rockfall provide evidence about the nature and rates of rockfall activity that supplies sediment to these deposits and are the focus of the present study. To quantify the controls of rockfall-talus activity in this region, we analyze the association of talus deposits with structural geology, glacial topography, and temperature-related weathering (i.e., frost cracking). A total of 324 talus polygons covering a surface area of 28.51 km2 are delineated within the 11 study basins, with the number of talus polygons in each study basin ranging from 1 to 73. Analysis of the talus inventory shows that cirques and glacially sculpted valleys are locations of notable talus accumulation in Kananaskis, with other locations of significant talus deposition being associated with thrust faults. We also found that the upper elevations at which talus deposits are typically found are the general range of elevations experiencing a notable number of days in the frost cracking window when this window is defined as - 3 to - 15 °C; no such association is found for the frost cracking window of - 3 to - 8 °C. Estimates of average erosion rates for all study basins combined are between 0.15 mm y- 1 (lower estimate) to 3.1 mm y- 1 (upper estimate). Rockfall activity is expected to have been most active for the several millennia following deglaciation (during the paraglacial period) when hillslopes were oversteepened.
NASA Astrophysics Data System (ADS)
Jenkins, Jessica Shawn
Advanced composite materials could be revolutionized by the development of methods to incorporate living cells into functional materials and devices. This could be accomplished by continuously and rapidly depositing thin ordered arrays of adhesive colloidal latex particles and live cells that maintain stability and preserve microbial reactivity. Convective assembly is one method of rapidly assembling colloidal particles into thin (<10 microm thick), ordered films with engineered compositions, thicknesses, and particle packing that offer several advantages over thicker randomly ordered composites, including enhanced cell stability and increased reactivity through minimized diffusion resistance to nutrients and reduced light scattering. This method can be used to precisely deposit live bacteria, cyanobacteria, yeast, and algae into biocomposite coatings, forming reactive biosensors, photoabsorbers, or advanced biocatalysts. This dissertation developed new continuous deposition and coating characterization methods for fabricating and characterizing <10 microm thick colloid coatings---monodispersed latex particle or cell suspensions, bimodal blends of latex particles or live cells and microspheres, and trimodal formulations of biomodal latex and live cells on substrates such as aluminum foil, glass, porous Kraft paper, polyester, and polypropylene. Continuous convective-sedimentation assembly (CSA) is introduced to enable fabrication of larger surface area and long coatings by constantly feeding coating suspension to the meniscus, thus expanding the utility of convective assembly to deposit monolayer or very thin films or multi-layer coatings composed of thin layers on a large scale. Results show thin, tunable coatings can be fabricated from diverse coating suspensions and critical coating parameters that control thickness and structure. Particle size ratio and charge influence deposition, convective mixing or demixing and relative particle locations. Substrate wettability and suspension composition influence coating microstructure by controlling suspension delivery and spreading across the substrate. Microbes behave like colloidal particles during CSA, allowing for deposition of very thin stable biocomposite coatings of latex-live cell blends. CSA of particle-cell blends result in open-packed structures (15-45% mean void space), instead of tightly packed coatings attainable with single component systems, confirming the existence of significant polymer particle-cell interactions and formation of particle aggregates that disrupt coating microstructure during deposition. Tunable process parameters, such as particle concentration, fluid sonication, and fluid density, influence coating homogeneity when the meniscus is continuously supplied. Fluid density modification and fluid sonication affect particle sedimentation and distribution in the coating growth front whereas the suspended particle concentration strongly affects coating thickness, but has almost no effect on void space. Changing the suspension delivery mode (topside versus underside CCSA) yields disparate meniscus volumes and uneven particle delivery to the drying front, which enables control of the coating microstructure by varying the total number of particles available for deposition. The judicious combination of all these parameters will enable deposition of uniform, thin, latex-cell monolayers over areas on the order of tens of square centimeters or larger. To demonstrate the utility of biocomposite coatings, this dissertation investigated photoreactive coatings (artificial leaves) from suspensions of latex particles and nitrogen-limited Rps. palustris CGA009 or sulfur-limited C. reinhardtii CC-124. These coatings demonstrated stable, sustained (>90 hours) photohydrogen production under anoxygenic conditions. Nutrient reduction slows cell division, minimizing coating outgrowth, and promotes photohydrogen generation, improving coating reactivity. Scanning electron microscopy of microstructure revealed how coating reactivity can be controlled by the size and distribution of the nanopores in the biocomposite layers. Variations in colloid microsphere size and suspension composition do not affect coating reactivity, but both parameters alter coating microstructure. Porous paper coated with thin coatings of colloidal particles and cells to enable coatings to be used in a gas-phase without dehydration may offer higher volumetric productivity for hydrogen production. Future work should focus on optimization of cell density, light intensity, media cycling, and acetate concentration.
NASA Technical Reports Server (NTRS)
Kohl, F. J.
1982-01-01
The methodology to predict deposit evolution (deposition rate and subsequent flow of liquid deposits) as a function of fuel and air impurity content and relevant aerodynamic parameters for turbine airfoils is developed in this research. The spectrum of deposition conditions encountered in gas turbine operations includes the mechanisms of vapor deposition, small particle deposition with thermophoresis, and larger particle deposition with inertial effects. The focus is on using a simplified version of the comprehensive multicomponent vapor diffusion formalism to make deposition predictions for: (1) simple geometry collectors; and (2) gas turbine blade shapes, including both developing laminar and turbulent boundary layers. For the gas turbine blade the insights developed in previous programs are being combined with heat and mass transfer coefficient calculations using the STAN 5 boundary layer code to predict vapor deposition rates and corresponding liquid layer thicknesses on turbine blades. A computer program is being written which utilizes the local values of the calculated deposition rate and skin friction to calculate the increment in liquid condensate layer growth along a collector surface.
Greb, S.F.; Chesnut, D.R.
1996-01-01
Interpretations of Pennsylvanian sedimentation and peat accumulation commonly use examples from the Appalachian basin because of the excellent outcrops and large reserve of coal (>100 billion metric tons) in the region. Particularly controversial is the origin of Lower and lower Middle Pennsylvanian quartzose sandstones; beach-barrier, marine-bar, tidalstrait, and fluvial models all have been applied to a series of sand bodies along the western outcrop margin of the basin. Inter-pretations of these sandstones and their inferred lateral relationships are critical for understanding the relative degree of eustatic, tectonic, and climatic controls on Early Pennsylvanian sedimentation. Cross sections utilizing >1000 subsurface records and detailed sedimentological analysis of the Livingston Conglomerate, Rockcastle Sandstone, Corbin Sandstone, and Pine Creek sandstone (an informal member) of the Breathitt Group were used to show that each of the principal quartzose sandstones on the margin of the central Appalachian basin contains both fluvial and marginal marine facies. The four sandstones are fluvially dominated and are inferred to represent successive bed-load trunk systems of the Appalachian foreland. Base-level rise and an associated decrease in extra-basinal sediment at the end of each fluvial episode led to the development of local estuaries and marine reworking of the tops of the sand belts. Each of the sand belts is capped locally by a coal, regardless of whether the upper surfaces of the sand belts are of fluvial or estuarine origin, suggesting allocyclic controls on deposition. Peats were controlled by a tropical ever-wet climate, which also influenced sandstone composition through weathering of stored sands in slowly aggrading braidplains. Recurrent stacking of thick, coarse-grained, fluvial deposits with extra-basinal quartz pebbles; dominance of bed-load fluvial-lowstand deposits over mixed-load, estuarine-transgressive deposits; thinning of sand belts around tectonic highs and along faults; cratonward shift and amalgamation of successive sand belts on the margin of the basin; and truncation of successive sand belts toward the fault-bound margin of the basin are interpreted as regional responses to Alleghenian tectonism, inferred to have been the dominant control on accommodation space and sediment flux in the Early Pennsylvanian basin.
NASA Technical Reports Server (NTRS)
Garrett, J. W.; Glassford, A. P. M.; Steakley, J. M.
1994-01-01
The American Society for Testing and Materials has published a new standard test method for characterizing time and temperature-dependence of material outgassing kinetics and the deposition kinetics of outgassed species on surfaces at various temperatures. This new ASTM standard, E 1559(1), uses the quartz crystal microbalance (QCM) collection measurement approach. The test method was originally developed under a program sponsored by the United States Air Force Materials Laboratory (AFML) to create a standard test method for obtaining outgassing and deposition kinetics data for spacecraft materials. Standardization by ASTM recognizes that the method has applications beyond aerospace. In particular, the method will provide data of use to the electronics, semiconductor, and high vacuum industries. In ASTM E 1559 the material sample is held in vacuum in a temperature-controlled effusion cell, while its outgassing flux impinges on several QCM's which view the orifice of the effusion cell. Sample isothermal total mass loss (TML) is measured as a function of time from the mass collected on one of the QCM's which is cooled by liquid nitrogen, and the view factor from this QCM to the cell. The amount of outgassed volatile condensable material (VCM) on surfaces at higher temperatures is measured as a function of time during the isothermal outgassing test by controlling the temperatures of the remaining QCM's to selected values. The VCM on surfaces at temperatures in between those of the collector QCM's is determined at the end of the isothermal test by heating the QCM's at a controlled rate and measuring the mass loss from the end of the QCM's as a function of time and temperature. This reevaporation of the deposit collected on the QCM's is referred to as QCM thermogravimetric analysis. Isothermal outgassing and deposition rates can be determined by differentiating the isothermal TML and VCM data, respectively, while the evaporation rates of the species can be obtained as a function of temperature by differentiating the QCM thermogravimetric analysis data.
Doucette, William J; Mendenhall, Scout; McNeill, Laurie S; Heavilin, Justin
2014-06-01
Tests of horizontally restrained rocket motors at the ATK facility in Promontory, Utah, USA result in the deposition of an estimated 1.5million kg of entrained soil and combustion products (mainly aluminum oxide, gaseous hydrogen chloride and water) on the surrounding area. The deposition is referred to as test fire soil (TFS). Farmers observing TFS deposited on their crops expressed concerns regarding the impact of this material. To address these concerns, we exposed corn and alfalfa to TFS collected during a September 2009 test. The impact was evaluated by comparing the growth and tissue composition of controls relative to the treatments. Exposure to TFS, containing elevated levels of chloride (1000 times) and aluminum (2 times) relative to native soils, affected the germination, growth and tissue concentrations of various elements, depending on the type and level of exposure. Germination was inhibited by high concentrations of TFS in soil, but the impact was reduced if the TFS was pre-leached with water. Biomass production was reduced in the TFS amended soils and corn grown in TFS amended soils did not develop kernels. Chloride concentrations in corn and alfalfa grown in TFS amended soils were two orders of magnitude greater than controls. TFS exposed plants contained higher concentrations of several cations, although the concentrations were well below livestock feed recommendations. Foliar applications of TFS had no impact on biomass, but some differences in the elemental composition of leaves relative to controls were observed. Washing the TFS off the leaves lessened the impact. Results indicate that the TFS deposition could have an effect, depending on the amount and growth stage of the crops, but the impact could be mitigated with rainfall or the application of additional irrigation water. The high level of chloride associated with the TFS is the main cause of the observed impacts. Copyright © 2014 Elsevier B.V. All rights reserved.
2016-05-01
In order to detect the effects of simulated nitrogen deposition on litter decomposition and degradation of lignin and cellulose, a one-year field experiment of simulated nitrogen deposition has been conducted using litter bag method from November 2013 to November 2014 in an evergreen broad-leaved forest, Rainy Area of West China. Four levels of nitrogen deposition were set, i.e., control (0 g N·m -2 ·a -1 ), low (5 g N·m -2 ·a -1 ), medium (15 g N·m -2 ·a -1 ) and high (30 g N·m -2 ·a -1 ) nitrogen deposition. The results indicated that foliar litter decomposed faster in summer, obviously faster than in the other seasons. N deposition significantly inhibited the decomposition of foliar litter in this evergreen broad-leaved forest. As N deposition increased, the inhibition effect was enhanced. The time of 95% mass loss (T 95% ) of foliar litter due to simulated N deposition was increased by 0.53-1.88 years compared with T 95% of control (4.81 years). N deposition significantly inhibited the degradation of lignin and cellulose. The mass remaining after one year of decomposition of lignin and cellulose in the medium and high nitrogen deposition treatments were significantly higher than that in the control. There was a significant positive linear relationship among mass remaining rate and lignin and cellulose remaining rates. The inhibiting effects of inorga-nic N on degradation of lignin and cellulose explained the inhibitory effect of N on foliar litter decomposition.
Structural tuning of residual conductivity in highly mismatched III-V layers
Han, Jung; Figiel, Jeffrey J.
2002-01-01
A new process to control the electrical conductivity of gallium nitride layers grown on a sapphire substrate has been developed. This process is based on initially coating the sapphire substrate with a thin layer of aluminum nitride, then depositing the gallium nitride thereon. This process allows one to controllably produce gallium nitride layers with resistivity varying over as much as 10 orders of magnitude, without requiring the introduction and activation of suitable dopants.
Ozonation of cooling tower waters
NASA Technical Reports Server (NTRS)
Humphrey, M. F.; French, K. R.; Howe, R. D. (Inventor)
1979-01-01
Continuous ozone injection into water circulating between a cooling tower and heat exchanger with heavy scale deposits inhibits formation of further deposits, promotes flaking of existing deposits, inhibits chemical corrosion and controls algae and bacteria.
A novel hybrid approach for estimating total deposition in the United States
NASA Astrophysics Data System (ADS)
Schwede, Donna B.; Lear, Gary G.
2014-08-01
Atmospheric deposition of nitrogen and sulfur causes many deleterious effects on ecosystems including acidification and excess eutrophication. Assessments to support development of strategies to mitigate these effects require spatially and temporally continuous values of nitrogen and sulfur deposition. In the U.S., national monitoring networks exist that provide values of wet and dry deposition at discrete locations. While wet deposition can be interpolated between the monitoring locations, dry deposition cannot. Additionally, monitoring networks do not measure the complete suite of chemicals that contribute to total sulfur and nitrogen deposition. Regional air quality models provide spatially continuous values of deposition of monitored species as well as important unmeasured species. However, air quality modeling values are not generally available for an extended continuous time period. Air quality modeling results may also be biased for some chemical species. We developed a novel approach for estimating dry deposition using data from monitoring networks such as the Clean Air Status and Trends Network (CASTNET), the National Atmospheric Deposition Program (NADP) Ammonia Monitoring Network (AMoN), and the Southeastern Aerosol Research and Characterization (SEARCH) network and modeled data from the Community Multiscale Air Quality (CMAQ) model. These dry deposition values estimates are then combined with wet deposition values from the NADP National Trends Network (NTN) to develop values of total deposition of sulfur and nitrogen. Data developed using this method are made available via the CASTNET website.
Some suggested future directions of quantitative resource assessments
Singer, D.A.
2001-01-01
Future quantitative assessments will be expected to estimate quantities, values, and locations of undiscovered mineral resources in a form that conveys both economic viability and uncertainty associated with the resources. Historically, declining metal prices point to the need for larger deposits over time. Sensitivity analysis demonstrates that the greatest opportunity for reducing uncertainty in assessments lies in lowering uncertainty associated with tonnage estimates. Of all errors possible in assessments, those affecting tonnage estimates are by far the most important. Selecting the correct deposit model is the most important way of controlling errors because the dominance of tonnage-deposit models are the best known predictor of tonnage. Much of the surface is covered with apparently barren rocks and sediments in many large regions. Because many exposed mineral deposits are believed to have been found, a prime concern is the presence of possible mineralized rock under cover. Assessments of areas with resources under cover must rely on extrapolation from surrounding areas, new geologic maps of rocks under cover, or analogy with other well-explored areas that can be considered training tracts. Cover has a profound effect on uncertainty and on methods and procedures of assessments because geology is seldom known and geophysical methods typically have attenuated responses. Many earlier assessment methods were based on relationships of geochemical and geophysical variables to deposits learned from deposits exposed on the surface-these will need to be relearned based on covered deposits. Mineral-deposit models are important in quantitative resource assessments for two reasons: (1) grades and tonnages of most deposit types are significantly different, and (2) deposit types are present in different geologic settings that can be identified from geologic maps. Mineral-deposit models are the keystone in combining the diverse geoscience information on geology, mineral occurrences, geophysics, and geochemistry used in resource assessments and mineral exploration. Grade and tonnage models and development of quantitative descriptive, economic, and deposit density models will help reduce the uncertainty of these new assessments.
Stabilizing laser energy density on a target during pulsed laser deposition of thin films
Dowden, Paul C.; Jia, Quanxi
2016-05-31
A process for stabilizing laser energy density on a target surface during pulsed laser deposition of thin films controls the focused laser spot on the target. The process involves imaging an image-aperture positioned in the beamline. This eliminates changes in the beam dimensions of the laser. A continuously variable attenuator located in between the output of the laser and the imaged image-aperture adjusts the energy to a desired level by running the laser in a "constant voltage" mode. The process provides reproducibility and controllability for deposition of electronic thin films by pulsed laser deposition.
Underpotential deposition-mediated layer-by-layer growth of thin films
Wang, Jia Xu; Adzic, Radoslav R.
2017-06-27
A method of depositing contiguous, conformal submonolayer-to-multilayer thin films with atomic-level control is described. The process involves electrochemically exchanging a mediating element on a substrate with a noble metal film by alternatingly sweeping potential in forward and reverse directions for a predetermined number of times in an electrochemical cell. By cycling the applied voltage between the bulk deposition potential for the mediating element and the material to be deposited, repeated desorption/adsorption of the mediating element during each potential cycle can be used to precisely control film growth on a layer-by-layer basis.
Photobiomolecular deposition of metallic particles and films
Hu, Zhong-Cheng
2005-02-08
The method of the invention is based on the unique electron-carrying function of a photocatalytic unit such as the photosynthesis system I (PSI) reaction center of the protein-chlorophyll complex isolated from chloroplasts. The method employs a photo-biomolecular metal deposition technique for precisely controlled nucleation and growth of metallic clusters/particles, e.g., platinum, palladium, and their alloys, etc., as well as for thin-film formation above the surface of a solid substrate. The photochemically mediated technique offers numerous advantages over traditional deposition methods including quantitative atom deposition control, high energy efficiency, and mild operating condition requirements.
Sedimentation patterns in floodplains of the Mekong Delta - Vietnam
NASA Astrophysics Data System (ADS)
Van Manh, Nguyen; Merz, Bruno; Viet Dung, Nguyen; Apel, Heiko
2013-04-01
Quantification of floodplain sedimentation during the flood season in the Mekong Delta (MD) plays a very important role in the assessment of flood deposits for a sustainable agro-economic development. Recent studies on floodplain sedimentation in the region are restricted to small pilot sites because of the large extend of the Delta, and the complex channel. This research aims at a quantification of the sediment deposition in floodplains of the whole Mekong Delta, and to access the impacts of the upstream basin development on the sedimentation in the Delta quantitatively. To achieve this, a suspended sediment transport model is developed based on the quasi-2D hydrodynamic model of the whole Mekong Delta developed by Dung et al. (2011). The model is calibrated and validated using observed data derived from several sediment measurement campaigns in channel networks and floodplains. Measured sediment data and hydrodynamic model quantify the spatio-temporal variability of sediment depositions in different spatial units: individual dyke compartments, and the sub-regions Plain of Reeds, Long Xuyen Quadrangle and the area between Tien River and Hau River. It is shown that the distribution of sediment deposition over the delta is highly depended on the flood magnitude, that in turn drives the operation policy of flood control systems in floodplains of the Mekong Delta. Thus, the sedimentation distribution is influenced by the protection level of the dyke systems in place and the distance to the Tien River and Hau River, the main branches of the Mekong in the Delta. This corroborates the main findings derived from data analysis obtained from a small scale test site by Hung et al, (2011, 2012a). Moreover, the results obtained here underlines the importance of the main channels for the sediment transport into the floodplains, and the deposition rate in floodplains is strongly driven by the intake locations and the distance from these to the main channels as well.
Microstructure Evolution and Composition Control During the Processing of Thin-Gage Metallic Foil
NASA Astrophysics Data System (ADS)
Semiatin, S. L.; Gross, M. E.; Matson, D. W.; Bennett, W. D.; Bonham, C. C.; Ustinov, A. I.; Ballard, D. L.
2012-12-01
The manufacture of thin-gage superalloy and gamma-titanium-aluminide foil products via near-conventional thermomechanical processing and two different vapor-deposition methods was investigated. Thermomechanical processing was based on hot-pack rolling of plate and sheet. Foils of the superalloy LSHR and the near-gamma titanium aluminide Ti-45.5Al-2Cr-2Nb made by this approach exhibited excellent gage control and fine two-phase microstructures. The vapor-phase techniques used magnetron sputtering (MS) of a target of the desired product composition or electron-beam physical vapor deposition (EBPVD) of separate targets of the specific alloying elements. Thin deposits of LSHR and Ti-48Al-2Cr-2Nb made by MS showed uniform thickness/composition and an ultrafine microstructure. However, systematic deviations from the specific target composition were found. During subsequent heat treatment, the microstructure of the MS samples showed various degrees of grain growth and coarsening. Foils of Ti-43Al and Ti-51Al-1V fabricated by EBPVD were fully dense. The microstructures developed during EBPVD were interpreted in terms of measured phase equilibria and the dependence of evaporant flux on temperature.
Jaramillo, Thomas F; Baeck, Sung-Hyeon; Kleiman-Shwarsctein, Alan; Choi, Kyoung-Shin; Stucky, Galen D; McFarland, Eric W
2005-01-01
High-throughput electrochemical methods have been developed for the investigation of Zn1-xCo(x)O films for photoelectrochemical hydrogen production from water. A library of 120 samples containing 27 different compositions (0
Groves, David I.; Goldfarb, Richard J.; Santosh, M.
2016-01-01
In contrast to their province scale similarities, the different giant gold deposit styles show contrasting critical controls at the district to deposit scale. For orogenic gold deposits, the giants appear to have formed by conjunction of a greater number of parameters to those that control smaller deposits, with resultant geometrical and lithostratigraphic complexity as a guide to their location. There are few giant IRGS due to their inferior fluid-flux systems relative to orogenic gold deposits, and those few giants are essentially preservational exceptions. Many Carlin-type deposits are giants due to the exceptional conjunction of both structural and lithological parameters that caused reactive and permeable rocks, enriched in syngenetic gold, to be located below an impermeable cap along antiformal “trends”. Hydrocarbons probably played an important role in concentrating metal. The supergiant Post-Betze deposit has additional ore zones in strain heterogeneities surrounding the pre-gold Goldstrike stock. All unequivocal IOCG deposits are giant or near-giant deposits in terms of gold-equivalent resources, partly due to economic factors for this relatively poorly understood, low Cu-Au grade deposit type. The supergiant Olympic Dam deposit, the most shallowly formed deposit among the larger IOCGs, probably owes its origin to eruption of volatile-rich hybrid magma at surface, with formation of a large maar and intense and widespread brecciation, alteration and Cu-Au-U deposition in a huge rock volume.
Sarkar, Sujoy; Sampath, S
2016-05-28
Correction for 'Ambient temperature deposition of gallium nitride/gallium oxynitride from a deep eutectic electrolyte, under potential control' by Sujoy Sarkar et al., Chem. Commun., 2016, 52, 6407-6410.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-08-01
In this project, in situ remediation technologies are being tested and evaluated for both source control and mass removal of dense, non-aqueous phase liquid (DNAPL) compounds in low permeability media (LPM). This effort is focused on chlorinated solvents (e.g., trichloroethylene and perchloroethylene) in the vadose and saturated zones of low permeability, massive deposits, and stratified deposits with inter-bedded clay lenses. The project includes technology evaluation and screening analyses and field-scale testing at both clean and contaminated sites in the US and Canada. Throughout this project, activities have been directed at understanding the processes that influence DNPAL compound migration and treatmentmore » in LPM and to assessing the operation and performance of the remediation technologies developed and tested. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.« less
Rapid Prototyping of Slot Die Devices for Roll to Roll Production of EL Fibers
Bellingham, Alyssa; Bromhead, Nicholas; Fontecchio, Adam
2017-01-01
There is a growing interest in fibers supporting optoelectrical properties for textile and wearable display applications. Solution-processed electroluminescent (EL) material systems can be continuously deposited onto fiber or yarn substrates in a roll-to-roll process, making it easy to scale manufacturing. It is important to have precise control over layer deposition to achieve uniform and reliable light emission from these EL fibers. Slot-die coating offers this control and increases the rate of EL fiber production. Here, we report a highly adaptable, cost-effective 3D printing model for developing slot dies used in automatic coating systems. The resulting slot-die coating system enables rapid, reliable production of alternating current powder-based EL (ACPEL) fibers and can be adapted for many material systems. The benefits of this system over dip-coating for roll-to-roll production of EL fibers are demonstrated in this work. PMID:28772954
Intrinsic stress response of low and high mobility solute additions to Cu thin films
NASA Astrophysics Data System (ADS)
Kaub, Tyler; Anthony, Ryan; Thompson, Gregory B.
2017-12-01
Thin film stress is frequently controlled through adjustments applied to the processing parameters used during film deposition. In this work, we explore how the use of solutes with different intrinsic growth properties influences the residual growth stress development for a common solvent Cu film. The findings demonstrated that the addition of a high atomic mobility solute, Ag, or a low atomic mobility solute, V, results in both alloy films undergoing grain refinement that scaled with increases in the solute content. This grain refinement was associated with solute segregation and was more pronounced in the Cu(Ag) system. The grain size reduction was also associated with an increase in the tensile stresses observed in both alloy sets. These findings indicate that solutes can be used to control the grain size under the same deposition conditions, as well as alter the stress evolution of a growing thin film.
Lee, Hansol; Jo, Sae Byeok; Lee, Hyo Chan; Kim, Min; Sin, Dong Hun; Ko, Hyomin; Cho, Kilwon
2016-03-08
A new and simple strategy for enhancing the stability of organic solar cells (OSCs) was developed by using self-passivating metal top electrodes. Systematic investigations on O2 permeability of Al top electrodes revealed that the main pathways for oxidation-induced degradation could be greatly suppressed by simply controlling the nanoscale morphology of the Al electrode. The population of nanoscale pinholes among Al grains, which critically decided the diffusion of O2 molecules toward the Al-organic interfaces that are vulnerable to oxidation, was successfully regulated by rapidly depositing Al or promoting lateral growth among the Al grains, accompanied by increasing the deposition thickness. Our observations suggested that the stability of OSCs with conventional architectures might be greatly enhanced simply by controlling the fabrication conditions of the Al top electrode, without the aid of additional secondary treatments. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rapid Prototyping of Slot Die Devices for Roll to Roll Production of EL Fibers.
Bellingham, Alyssa; Bromhead, Nicholas; Fontecchio, Adam
2017-05-29
There is a growing interest in fibers supporting optoelectrical properties for textile and wearable display applications. Solution-processed electroluminescent (EL) material systems can be continuously deposited onto fiber or yarn substrates in a roll-to-roll process, making it easy to scale manufacturing. It is important to have precise control over layer deposition to achieve uniform and reliable light emission from these EL fibers. Slot-die coating offers this control and increases the rate of EL fiber production. Here, we report a highly adaptable, cost-effective 3D printing model for developing slot dies used in automatic coating systems. The resulting slot-die coating system enables rapid, reliable production of alternating current powder-based EL (ACPEL) fibers and can be adapted for many material systems. The benefits of this system over dip-coating for roll-to-roll production of EL fibers are demonstrated in this work.
Adaptive Chemical Networks under Non-Equilibrium Conditions: The Evaporating Droplet.
Armao, Joseph J; Lehn, Jean-Marie
2016-10-17
Non-volatile solutes in an evaporating drop experience an out-of-equilibrium state due to non-linear concentration effects and complex flow patterns. Here, we demonstrate a small molecule chemical reaction network that undergoes a rapid adaptation response to the out-of-equilibrium conditions inside the droplet leading to control over the molecular constitution and spatial arrangement of the deposition pattern. Adaptation results in a pronounced coffee stain effect and coupling to chemical concentration gradients within the drop is demonstrated. Amplification and suppression of network species are readily identifiable with confocal fluorescence microscopy. We anticipate that these observations will contribute to the design and exploration of out-of-equilibrium chemical systems, as well as be useful towards the development of point-of-care medical diagnostics and controlled deposition of small molecules through inkjet printing. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cai, Longfei; Zhong, Minghua; Li, Huolin; Xu, Chunxiu; Yuan, Biyu
2015-07-01
We describe a simple and cost-effective strategy for rapid fabrication of microfluidic paper-based analytical devices and valves by inkjet printing. NaOH aqueous solution was printed onto a hydrophobic filter paper, which was previously obtained by soaking in a trimethoxyoctadecylsilane-heptane solution, allowing selective wet etching of hydrophobic cellulose to create hydrophilic-hydrophobic contrast with a relatively good resolution. Hexadecyltrimethylammonium bromide (CTMAB)-ethanol solution was printed onto hydrophobic paper to fabricate temperature-controlled valves. At low temperature, CTMAB deposited on the paper is insoluble in aqueous fluid, thus the paper remains hydrophobic. At high temperature, CTMAB becomes soluble so the CTMAB-deposited channel becomes hydrophilic, allowing the wicking of aqueous solution through the valve. We believe that this strategy will be very attractive for the development of simple micro analytical devices for point-of-care applications, including diagnostic testing, food safety control, and environmental monitoring.
Trends in Solidification Grain Size and Morphology for Additive Manufacturing of Ti-6Al-4V
NASA Astrophysics Data System (ADS)
Gockel, Joy; Sheridan, Luke; Narra, Sneha P.; Klingbeil, Nathan W.; Beuth, Jack
2017-12-01
Metal additive manufacturing (AM) is used for both prototyping and production of final parts. Therefore, there is a need to predict and control the microstructural size and morphology. Process mapping is an approach that represents AM process outcomes in terms of input variables. In this work, analytical, numerical, and experimental approaches are combined to provide a holistic view of trends in the solidification grain structure of Ti-6Al-4V across a wide range of AM process input variables. The thermal gradient is shown to vary significantly through the depth of the melt pool, which precludes development of fully equiaxed microstructure throughout the depth of the deposit within any practical range of AM process variables. A strategy for grain size control is demonstrated based on the relationship between melt pool size and grain size across multiple deposit geometries, and additional factors affecting grain size are discussed.
Inhibitory effect of propolis on the development of AA amyloidosis.
Harata, Daichi; Tsuchiya, Yuya; Miyoshi, Tomoyuki; Yanai, Tokuma; Suzuki, Kazuhiko; Murakami, Tomoaki
2018-04-01
In the several types of amyloidoses, participation of oxidative stresses in the pathogenesis and the effect of antioxidants on amyloidosis have been reported. Meanwhile, the relationship between oxidative stresses and pathogenesis of amyloid A (AA) amyloidosis is still unclear. In this study, we used an antioxidant, Brazilian propolis, to investigate the inhibitory effects on AA amyloidosis. The results showed that AA deposition was inhibited by administration of propolis. Increased expression of antioxidant markers was detected in molecular biological examinations of mice treated with propolis. Although serum amyloid A (SAA) levels were strongly correlated with the immunoreactive area of AA deposits in the control group, the correlation was weaker in the propolis-treated groups. In addition, there were no changes in SAA levels between the control group and the propolis-treated groups. The results indicate that propolis, an antioxidant, may induce inhibitory effects against AA amyloidosis.
Process simulation for advanced composites production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allendorf, M.D.; Ferko, S.M.; Griffiths, S.
1997-04-01
The objective of this project is to improve the efficiency and lower the cost of chemical vapor deposition (CVD) processes used to manufacture advanced ceramics by providing the physical and chemical understanding necessary to optimize and control these processes. Project deliverables include: numerical process models; databases of thermodynamic and kinetic information related to the deposition process; and process sensors and software algorithms that can be used for process control. Target manufacturing techniques include CVD fiber coating technologies (used to deposit interfacial coatings on continuous fiber ceramic preforms), chemical vapor infiltration, thin-film deposition processes used in the glass industry, and coatingmore » techniques used to deposit wear-, abrasion-, and corrosion-resistant coatings for use in the pulp and paper, metals processing, and aluminum industries.« less
NASA Astrophysics Data System (ADS)
Donkov, N.; Zykova, A.; Safonov, V.; Kolesnikov, D.; Goncharov, I.; Yakovin, S.; Georgieva, V.
2014-05-01
Hydroxyapatite Ca10(PO4)6(OH)2 (HAp) is a material considered to be used to form structural matrices in the mineral phase of bone, dentin and enamel. HAp ceramic materials and coatings are widely applied in medicine and dentistry because of their ability to increase the tissue response to the implant surface and promote bone ingrowth and osseoconduction processes. The deposition conditions affect considerably the structure and bio-functionality of the HAp coatings. We focused our research on developing deposition methods allowing a precise control of the structure and stoichiometric composition of HAp thin films. We found that the use of O2 as a reactive gas improves the quality of the sputtered hydroxyapatite coatings by resulting in the formation of films of better stoichiometry with a fine crystalline structure.
A review comparing cathodic arcs and high power impulse magnetron sputtering (HiPIMS)
Anders, André
2014-09-02
In this study, high power impulse magnetron sputtering (HiPIMS) has been in the center of attention over the last years as it is an emerging physical vapor deposition (PVD) technology that combines advantages of magnetron sputtering with various forms of energetic deposition of films such as ion plating and cathodic arc plasma deposition. It should not come at a surprise that many extension and variations of HiPIMS make use, intentionally or unintentionally, of previously discovered approaches to film processing such as substrate surface preparation by metal ion sputtering and phased biasing for film texture and stress control. Therefore, in thismore » review, an overview is given on some historical developments and features of cathodic arc and HiPIMS plasmas, showing commonalities and differences. To limit the scope, emphasis is put on plasma properties, as opposed to surveying the vast literature on specific film materials and their properties.« less
Engineering the architectural diversity of heterogeneous metallic nanocrystals.
Yu, Yue; Zhang, Qingbo; Xie, Jianping; Lee, Jim Yang
2013-01-01
Similar to molecular engineering where structural diversity is used to create more property variations for application explorations, the architectural engineering of heterogeneous metallic nanocrystals (HMNCs) can likewise increase the versatility of metallic nanocrystals (NCs). Here we present a synthesis strategy capable of engineering the architectural diversity of HMNCs through rational and independent programming of every architecture-determining element, that is, the shape and size of the component NCs and their spatial arrangement. The strategy is based on the galvanic replacement reaction of a self-sustaining layer formed by underpotential deposition on a polyhedral NC. The selective deposition of satellite NCs on specific site of the central NC is realized by creating a geometry-dependent heterogeneous electron distribution. This site-selective deposition approach is applicable to central NCs in various polyhedral shapes and sizes. The satellite NCs can further develop their own shape and size through crystal growth kinetics control.
Palladium coated porous anodic alumina membranes for gas reforming processes
NASA Astrophysics Data System (ADS)
Wu, Jeremy P.; Brown, Ian W. M.; Bowden, Mark E.; Kemmitt, Timothy
2010-11-01
Nanostructured ceramic membranes with ultrathin coatings of palladium metal have been demonstrated to separate hydrogen gas from a gas mixture containing nitrogen with 10% carbon dioxide and 10% hydrogen at temperatures up to 550 °C. The mechanically robust and thermally durable membranes were fabricated using a combination of conventional and high-efficiency anodisation processes on high purity aluminium foils. A pH-neutral plating solution has also been developed to enable electroless deposition of palladium metal on templates which were normally prone to chemical corrosion in strong acid or base environment. Activation and thus seeding of palladium nuclei on the surface of the template were essential to ensure uniform and fast deposition, and the thickness of the metal film was controlled by time of deposition. The palladium coated membranes showed improved hydrogen selectivity with increased temperature as well as after prolonged exposure to hydrogen, demonstrating excellent potential for gas separation technologies.
Maji, Debashis; Das, Soumen
2018-03-01
Crack free electrically continuous metal thin films over soft elastomeric substrates play an integral part in realization of modern day flexible bioelectronics and biosensors. Under nonoptimized deposition conditions, delamination, and/or cracking of the top film as well as the underlying soft substrate hinders optimal performance of these devices. Hence it is very important to understand and control not only the various deposition factors like power, time, or deposition pressure but also investigate the various interfacial physics playing a critical role in assuring thin film adhesion and substrate compliancy. In the present study, various nanomechanical information of the underlying substrate, namely, crack profile, average roughness, Young's modulus, and adhesion force were studied for uncracked and cracked polydimethylsiloxane (PDMS) surfaces along with pristine and conventional plasma treated PDMS samples as control. Quantification of the above parameters were done using three-dimensional surface profiler, scanning electron microscopy, nanoindentation, and atomic force microscopy techniques to elucidate the modulus range, average roughness, and adhesion force. Comparative analysis with control revealed remarkable similarity between increased modulus values, increased surface roughness, and reduced adhesion force accounting for reduced substrate compliancy and resulting in film cracking or buckling which are critical for development of various bioflexible devices. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 725-737, 2018. © 2017 Wiley Periodicals, Inc.
Deposition of Size-Selected Cu Nanoparticles by Inert Gas Condensation
2010-01-01
Nanometer size-selected Cu clusters in the size range of 1–5 nm have been produced by a plasma-gas-condensation-type cluster deposition apparatus, which combines a grow-discharge sputtering with an inert gas condensation technique. With this method, by controlling the experimental conditions, it was possible to produce nanoparticles with a strict control in size. The structure and size of Cu nanoparticles were determined by mass spectroscopy and confirmed by atomic force microscopy (AFM) and scanning electron transmission microscopy (STEM) measurements. In order to preserve the structural and morphological properties, the energy of cluster impact was controlled; the energy of acceleration of the nanoparticles was in near values at 0.1 ev/atom for being in soft landing regime. From SEM measurements developed in STEM-HAADF mode, we found that nanoparticles are near sized to those values fixed experimentally also confirmed by AFM observations. The results are relevant, since it demonstrates that proper optimization of operation conditions can lead to desired cluster sizes as well as desired cluster size distributions. It was also demonstrated the efficiency of the method to obtain size-selected Cu clusters films, as a random stacking of nanometer-size crystallites assembly. The deposition of size-selected metal clusters represents a novel method of preparing Cu nanostructures, with high potential in optical and catalytic applications. PMID:20652132
NASA Technical Reports Server (NTRS)
Hepp, Aloysius F.; Harris, Jerry D.; Raffaelle, Ryne P.; Banger, Kulbinder K.; Smith, Mark A.; Cowen, Jonathan E.
2001-01-01
The key to achieving high specific power (watts per kilogram) space photovoltaic arrays is the development of high-efficiency thin-film solar cells that are fabricated on lightweight, space-qualified substrates such as Kapton (DuPont) or another polymer film. Cell efficiencies of 20 percent air mass zero (AM0) are required. One of the major obstacles to developing lightweight, flexible, thin-film solar cells is the unavailability of lightweight substrate or superstrate materials that are compatible with current deposition techniques. There are two solutions for working around this problem: (1) develop new substrate or superstrate materials that are compatible with current deposition techniques, or (2) develop new deposition techniques that are compatible with existing materials. The NASA Glenn Research Center has been focusing on the latter approach and has been developing a deposition technique for depositing thin-film absorbers at temperatures below 400 C.
Process system and method for fabricating submicron field emission cathodes
Jankowski, A.F.; Hayes, J.P.
1998-05-05
A process method and system for making field emission cathodes exists. The deposition source divergence is controlled to produce field emission cathodes with height-to-base aspect ratios that are uniform over large substrate surface areas while using very short source-to-substrate distances. The rate of hole closure is controlled from the cone source. The substrate surface is coated in well defined increments. The deposition source is apertured to coat pixel areas on the substrate. The entire substrate is coated using a manipulator to incrementally move the whole substrate surface past the deposition source. Either collimated sputtering or evaporative deposition sources can be used. The position of the aperture and its size and shape are used to control the field emission cathode size and shape. 3 figs.
Process system and method for fabricating submicron field emission cathodes
Jankowski, Alan F.; Hayes, Jeffrey P.
1998-01-01
A process method and system for making field emission cathodes exists. The deposition source divergence is controlled to produce field emission cathodes with height-to-base aspect ratios that are uniform over large substrate surface areas while using very short source-to-substrate distances. The rate of hole closure is controlled from the cone source. The substrate surface is coated in well defined increments. The deposition source is apertured to coat pixel areas on the substrate. The entire substrate is coated using a manipulator to incrementally move the whole substrate surface past the deposition source. Either collimated sputtering or evaporative deposition sources can be used. The position of the aperture and its size and shape are used to control the field emission cathode size and shape.
Nosoudi, Nasim; Chowdhury, Aniqa; Siclari, Steven; Karamched, Saketh; Parasaram, Vaideesh; Parrish, Joe; Gerard, Patrick; Vyavahare, Narendra
2016-01-01
Degeneration of elastic lamina and vascular calcification are common features of vascular pathology such as aortic aneurysms. We tested whether dual therapy with targeted nanoparticles (NPs) can remove mineral deposits (by delivery of a chelating agent, ethylene diamine tetraacetic acid (EDTA)) and restore elastic lamina (by delivery of a polyphenol, pentagalloyl glucose (PGG)) to reverse moderate aneurysm development. EDTA followed by PGG NP delivery led to reduction in macrophage recruitment, matrix metalloproteinase (MMP) activity, elastin degradation and calcification in the aorta as compared to delivery of control blank NPs. Such dual therapy restored vascular elastic lamina and improved vascular function as observed by improvement in circumferential strain. Therefore, dual targeted therapy may be an attractive option to remove mineral deposits and restore healthy arterial structures in moderately developed aneurysms. PMID:27698934
Control of mineral scale deposition in cooling systems using secondary-treated municipal wastewater.
Li, Heng; Hsieh, Ming-Kai; Chien, Shih-Hsiang; Monnell, Jason D; Dzombak, David A; Vidic, Radisav D
2011-01-01
Secondary-treated municipal wastewater (MWW) is a promising alternative to freshwater as power plant cooling system makeup water, especially in arid regions. A prominent challenge for the successful use of MWW for cooling is potentially severe mineral deposition (scaling) on pipe surfaces. In this study, theoretical, laboratory, and field work was conducted to evaluate the mineral deposition potential of MWW and its deposition control strategies under conditions relevant to power plant cooling systems. Polymaleic acid (PMA) was found to effectively reduce scale formation when the makeup water was concentrated four times in a recirculating cooling system. It was the most effective deposition inhibitor of those studied when applied at 10 mg/L dosing level in a synthetic MWW. However, the deposition inhibition by PMA was compromised by free chlorine added for biogrowth control. Ammonia present in the wastewater suppressed the reaction of the free chlorine with PMA through the formation of chloramines. Monochloramine, an alternative to free chlorine, was found to be less reactive with PMA than free chlorine. In pilot tests, scaling control was more challenging due to the occurrence of biofouling even with effective control of suspended bacteria. Phosphorous-based corrosion inhibitors are not appropriate due to their significant loss through precipitation reactions with calcium. Chemical equilibrium modeling helped with interpretation of mineral precipitation behavior but must be used with caution for recirculating cooling systems, especially with use of MWW, where kinetic limitations and complex water chemistries often prevail. Copyright © 2010 Elsevier Ltd. All rights reserved.
Limestones: the love of my life - sun, sea and cycles (Jean Baptiste Lamarck Medal Lecture)
NASA Astrophysics Data System (ADS)
Tucker, M. E.
2009-04-01
In studies of sedimentary rocks we are striving to understand the short and long-term controls on deposition that lead to the variety of facies we see in the geological record. With the development and application of sequence stratigraphy has come the realisation that in most cases the stratigraphic record is not random, but there are patterns and trends in the nature (composition, facies, diagenesis) and thickness of sedimentary units. In addition, sedimentary cycles are widely, if not ubiquitously, developed through stratigraphic successions, and do themselves vary in thickness and facies through a formation and through time. In many cases, orbital forcing is clearly a major control, in addition to longer term tectonic and tectono-eustatic processes. Understanding the major controls on the stratigraphic record and the processes involved in deposition enables us to develop a degree of prediction for the occurrence of particular facies and rock-types. This is especially significant in terms of hydrocarbon potential in frontier basins, notably in the search for source and reservoir rocks. In the case of carbonate and carbonate-evaporite successions, recent work is showing that even at the higher-frequency scale of individual beds and bed-sets, there are regular patterns and changes in thickness. These show that controls on deposition are not random but well organised. Studies of Carboniferous shelf/mid-ramp bioclastic limestones and Jurassic shallow-marine oolites from England reveal systematic variations in bed thickness, as well as oxygen isotopes, Sr and org C values. Permian lower slope carbonates from NE England show thinning-thickening-upward patterns in turbidite bed thickness on several orders of scale. Turbidity current frequency of 1 per ~200 years can be deduced from thicknesses of interbedded laminated facies, which provide the timescale. Beds in ancient shelf and slope carbonates of many geological periods are on a millennial-scale and their features and patterns clearly indicate that millennial-scale changes in climate, most likely driven by fluctuations in solar output, analogous to the D-O cycles of the Quaternary, were responsible, and that these were then modulated by orbital forcing. Solar forcing rules in carbonates, even at the highest frequency.
NASA Astrophysics Data System (ADS)
Kostarev, S. N.; Sereda, T. G.; Tatarnikova, N. A.; Kochetova, O. V.
2018-03-01
The electric drive for automation pumping out of filtration waters in the Second Solikamsk Potasssium Mine Group is developed. The emergency situation of flooding of the Mine has been considered in the course of development of the Upper Kama deposits of potash-magnesium salts. The functional scheme of automation of a drive of the pump is developed. The scheme is stipulated with manual and automatic control. To decrease the risk of flooding of mine, it is recommended to establish gauges of both bottom and top level control of a brine and other equipment in the collector of a brine: the gauge of measurementof a level, the gauge of the signal system of a level, the gauge of the pump control, the gauge of the signal system of a level with remote data transmission. For regulation of the charge of sewage, the P-regulator with the executive mechanism is stipulated. The ladder diagram of a pump control is developed to improve the work of centrifugal pumps and to prevent the cases of mines flooding.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 25 Indians 2 2014-04-01 2014-04-01 false What are the minimum internal control standards for patron deposit accounts and cashless systems? 543.14 Section 543.14 Indians NATIONAL INDIAN GAMING COMMISSION, DEPARTMENT OF THE INTERIOR HUMAN SERVICES MINIMUM INTERNAL CONTROL STANDARDS FOR CLASS II GAMING § 543.14 What are the minimum internal control...
Code of Federal Regulations, 2013 CFR
2013-04-01
... 25 Indians 2 2013-04-01 2013-04-01 false What are the minimum internal control standards for patron deposit accounts and cashless systems? 543.14 Section 543.14 Indians NATIONAL INDIAN GAMING COMMISSION, DEPARTMENT OF THE INTERIOR HUMAN SERVICES MINIMUM INTERNAL CONTROL STANDARDS FOR CLASS II GAMING § 543.14 What are the minimum internal control...
1991-12-31
AD-A252 218 The Deposition of Multicomponent Films for Electrooptic Applications via a Computer Controlled Dual Ion Beam Sputtering System ONR...6 3 2. Deposition of Electrooptic Thin Films ................................... 11 3. High Resolution Imaging of Twin and Antiphase...Domain Boundaries in Perovskite KNbO3 Thin Films .......... 30 4. Microstructural Characterization of the Epitaxial3 (111) KNbO3 on (0001) Sapphire
Seal, Robert R.; Foley, Nora K.
2002-01-01
Since the beginning of economic geology as a subdiscipline of the geological sciences, economic geologists have tended to classify mineral deposits on the basis of geological, mineralogical, and geochemical criteria, in efforts to systematize our understanding of mineral deposits as an aid to exploration. These efforts have led to classifications based on commodity, geologic setting (Cox and Singer, 1986), inferred temperatures and pressures of ore formation (Lindgren, 1933), and genetic setting (Park and MacDiarmid, 1975; Jensen and Bateman, 1979). None of these classification schemes is mutually exclusive; instead, there is considerable overlap among all of these classifications. A natural outcome of efforts to classify mineral deposits is the development of “mineral deposit models.” A mineral deposit model is a systematically arranged body of information that describes some or all of the essential characteristics of a selected group of mineral deposits; it presents a concept within which essential attributes may be distinguished and from which extraneous, coincidental features may be recognized and excluded (Barton, 1993). Barton (1993) noted that the grouping of deposits on the basis of common characteristics forms the basis for a classification, but the specification of the characteristics required for belonging to the group is the basis for a model. Models range from purely descriptive to genetic. A genetic model is superior to a descriptive model because it provides a basis to distinguish essential from extraneous attributes, and it has flexibility to accommodate variability in sources, processes, and local controls. In general, a descriptive model is a necessary prerequisite to a genetic model.
Corbitt, Elizabeth S.; Jacob, Daniel J.; Holmes, Christopher D.; Streets, David G.; Sunderland, Elsie M.
2011-01-01
Global policies regulating anthropogenic mercury require an understanding of the relationship between emitted and deposited mercury on intercontinental scales. Here we examine source-receptor relationships for present-day conditions and for four 2050 IPCC scenarios encompassing a range of economic development and environmental regulation projections. We use the GEOS-Chem global model to track mercury from its point of emission through rapid cycling in surface ocean and land reservoirs to its accumulation in longer-lived ocean and soil pools. Deposited mercury has a local component (emitted HgII, lifetime of 3.7 days against deposition) and a global component (emitted Hg0, lifetime of 6 months against deposition). Fast recycling of deposited mercury through photoreduction of HgII and re-emission of Hg0 from surface reservoirs (ice, land, surface ocean) increases the effective lifetime of anthropogenic mercury to 9 months against loss to legacy reservoirs (soil pools and the subsurface ocean). This lifetime is still sufficiently short that source-receptor relationships have a strong hemispheric signature. Asian emissions are the largest source of anthropogenic deposition to all ocean basins, though there is also regional source influence from upwind continents. Current anthropogenic emissions account for only about one-third of mercury deposition to the global ocean with the remainder from natural and legacy sources. However, controls on anthropogenic emissions would have the added benefit of reducing the legacy mercury re-emitted to the atmosphere. Better understanding is needed of the timescales for transfer of mercury from active pools to stable geochemical reservoirs. PMID:22050654
Dysprosium electrodeposition from a hexaalkylguanidinium-based ionic liquid.
Berger, Claudia A; Arkhipova, Maria; Maas, Gerhard; Jacob, Timo
2016-08-07
The rare-earth element dysprosium (Dy) is an important additive that increases the magnetocrystalline anisotropy of neodymium magnets and additionally prevents from demagnetizing at high temperatures. Therefore, it is one of the most important elements for high-tech industries and is mainly used in permanent magnetic applications, for example in electric vehicles, industrial motors and direct-drive wind turbines. In an effort to develop a more efficient electrochemical technique for depositing Dy on Nd-magnets in contrast to commonly used costly physical vapor deposition, we investigated the electrochemical behavior of dysprosium(iii) trifluoromethanesulfonate in a custom-made guanidinium-based room-temperature ionic liquid (RTIL). We first examined the electrodeposition of Dy on an Au(111) model electrode. The investigation was carried out by means of cyclic voltammetry (CV) and X-ray photoelectron spectroscopy (XPS). The initial stages of metal deposition were followed by in situ scanning tunneling microscopy (STM). CV measurements revealed a large cathodic reduction peak, which corresponds to the growth of monoatomic high islands, based on STM images taken during the initial stages of deposition. XPS identified these deposited islands as dysprosium. A similar reduction peak was also observed on an Nd-Fe-B substrate, and positively identified as deposited Dy using XPS. Finally, we varied the concentration of the Dy precursor, electrolyte flow and temperature during Dy deposition and demonstrated that each of these parameters could be used to increase the thickness of the Dy deposit, suggesting that these parameters could be tuned simultaneously in a temperature-controlled flow cell to enhance the thickness of the Dy layer.
Huo, Yuqing; Guo, Xin; Li, Honggui; Xu, Hang; Halim, Vera; Zhang, Weiyu; Wang, Huan; Fan, Yang-Yi; Ong, Kuok Teong; Woo, Shih-Lung; Chapkin, Robert S.; Mashek, Douglas G.; Chen, Yanming; Dong, Hui; Lu, Fuer; Wei, Lai; Wu, Chaodong
2012-01-01
Increasing evidence demonstrates the dissociation of fat deposition, the inflammatory response, and insulin resistance in the development of obesity-related metabolic diseases. As a regulatory enzyme of glycolysis, inducible 6-phosphofructo-2-kinase (iPFK2, encoded by PFKFB3) protects against diet-induced adipose tissue inflammatory response and systemic insulin resistance independently of adiposity. Using aP2-PFKFB3 transgenic (Tg) mice, we explored the ability of targeted adipocyte PFKFB3/iPFK2 overexpression to modulate diet-induced inflammatory responses and insulin resistance arising from fat deposition in both adipose and liver tissues. Compared with wild-type littermates (controls) on a high fat diet (HFD), Tg mice exhibited increased adiposity, decreased adipose inflammatory response, and improved insulin sensitivity. In a parallel pattern, HFD-fed Tg mice showed increased hepatic steatosis, decreased liver inflammatory response, and improved liver insulin sensitivity compared with controls. In both adipose and liver tissues, increased fat deposition was associated with lipid profile alterations characterized by an increase in palmitoleate. Additionally, plasma lipid profiles also displayed an increase in palmitoleate in HFD-Tg mice compared with controls. In cultured 3T3-L1 adipocytes, overexpression of PFKFB3/iPFK2 recapitulated metabolic and inflammatory changes observed in adipose tissue of Tg mice. Upon treatment with conditioned medium from iPFK2-overexpressing adipocytes, mouse primary hepatocytes displayed metabolic and inflammatory responses that were similar to those observed in livers of Tg mice. Together, these data demonstrate a unique role for PFKFB3/iPFK2 in adipocytes with regard to diet-induced inflammatory responses in both adipose and liver tissues. PMID:22556414
Johnston, Robert K.; Harper, Jason C.; Tartis, Michaelann S.
2017-07-13
Over the past 20 years, many strategies utilizing sol–gel chemistry to integrate biological cells into silica-based materials have been reported. One such strategy, Sol-Generating Chemical Vapor into Liquid (SG-CViL) deposition, shows promise as an efficient encapsulation technique due to the ability to vary the silica encapsulation morphology obtained by this process through variation of SG-CViL reaction conditions. In this report, we develop SG-CViL as a tunable, multi-purpose silica encapsulation strategy by investigating the mechanisms governing both silica particle generation and subsequent interaction with phospholipid assemblies (liposomes and living cells). Using Dynamic Light Scattering (DLS) measurements, linear and exponential silica particlemore » growth dynamics were observed which were dependent on deposition buffer ion constituents and ion concentration. Silica particle growth followed a cluster–cluster growth mechanism at acidic pH, and a monomer-cluster growth mechanism at neutral to basic pH. Increasing silica sol aging temperature resulted in higher rates of particle growth and larger particles. DLS measurements employing PEG-coated liposomes and cationic liposomes, serving as model phospholipid assemblies, revealed that electrostatic interactions promote more stable liposome–silica interactions than hydrogen bonding and facilitate silica coating on suspension cells. However, continued silica reactivity leads to aggregation of silica-coated suspension cells, revealing the need for cell isolation to tune deposited silica thickness. As a result, utilizing these mechanistic study insights, silica was deposited onto adherent HeLa cells under biocompatible conditions with micrometer-scale control over silica thickness, minimal cell manipulation steps, and retained cell viability over several days.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, Robert K.; Harper, Jason C.; Tartis, Michaelann S.
Over the past 20 years, many strategies utilizing sol–gel chemistry to integrate biological cells into silica-based materials have been reported. One such strategy, Sol-Generating Chemical Vapor into Liquid (SG-CViL) deposition, shows promise as an efficient encapsulation technique due to the ability to vary the silica encapsulation morphology obtained by this process through variation of SG-CViL reaction conditions. In this report, we develop SG-CViL as a tunable, multi-purpose silica encapsulation strategy by investigating the mechanisms governing both silica particle generation and subsequent interaction with phospholipid assemblies (liposomes and living cells). Using Dynamic Light Scattering (DLS) measurements, linear and exponential silica particlemore » growth dynamics were observed which were dependent on deposition buffer ion constituents and ion concentration. Silica particle growth followed a cluster–cluster growth mechanism at acidic pH, and a monomer-cluster growth mechanism at neutral to basic pH. Increasing silica sol aging temperature resulted in higher rates of particle growth and larger particles. DLS measurements employing PEG-coated liposomes and cationic liposomes, serving as model phospholipid assemblies, revealed that electrostatic interactions promote more stable liposome–silica interactions than hydrogen bonding and facilitate silica coating on suspension cells. However, continued silica reactivity leads to aggregation of silica-coated suspension cells, revealing the need for cell isolation to tune deposited silica thickness. As a result, utilizing these mechanistic study insights, silica was deposited onto adherent HeLa cells under biocompatible conditions with micrometer-scale control over silica thickness, minimal cell manipulation steps, and retained cell viability over several days.« less
Berger, Byron R.; Henley, Richard W.
2011-01-01
High-sulfidation copper–gold lode deposits such as Chinkuashih, Taiwan, Lepanto, Philippines, and Goldfield, Nevada, formed within 1500 m of the paleosurface in volcanic terranes. All underwent an early stage of extensive advanced argillic silica–alunite alteration followed by an abrupt change to spatially much more restricted stages of fracture-controlled sulfide–sulfosalt mineral assemblages and gold–silver mineralization. The alteration as well as ore mineralization stages of these deposits were controlled by the dynamics and history of syn-hydrothermal faulting.At the Sulfate Stage, aggressive advanced argillic alteration and silicification were consequent on the in situ formation of acidic condensate from magmatic vapor as it expanded through secondary fracture networks alongside active faults. The reduction of permeability at this stage due to alteration decreased fluid flow to the surface, and progressively developed a barrier between magmatic-vapor expansion constrained by the active faults and peripheral hydrothermal activity dominated by hot-water flow. In conjunction with the increased rock strength resulting from alteration, subsequent fault-slip inversion in response to an increase in compressional stress generated new, highly permeable fractures localized by the embrittled, altered rock. The new fractures focused magmatic-vapor expansion with much lower heat loss so that condensation occurred. Sulfide Stage sulfosalt, sulfide, and gold–silver deposition then resulted from destabilization of vapor phase metal species due to vapor decompression through the new fracture array. The switch from sulfate to sulfide assemblages is, therefore, a logical consequence of changes in structural permeability due to the coupling of alteration and fracture dynamics rather than to changes in the chemistry of the fluid phase at its magmatic source.
Comparison of Methane Control Methods in Polish and Vietnamese Coal Mines
NASA Astrophysics Data System (ADS)
Borowski, Marek; Kuczera, Zbigniew
2018-03-01
Methane hazard often occurs in hard coal mines and causes very serious accidents and can be the reason of methane or methane and coal dust explosions. History of coal mining shows that methane released from the rock mass to the longwall area was responsible for numerous mining disasters. The main source of methane are coal deposits because it is autochthonous gas and is closely related with carbonification and forming of coal deposits. Degree of methane saturation in coal deposits depends on numerous factors; mainly on presence or lack of insulating layers in cover deposit that allow or do not on degasification and easily methane outflow into surroundings. Hence in coal mining there are coal deposits that contain only low degree of methane saturation in places where is lack of insulating layers till high in methane coal deposits occurring in insulating claystones or in shales. Conducting mining works in coal deposits of high methane hazard without using of special measures to combat (ventilation, methane drainage) could be impossible. Control of methane hazard depends also on other co-occuring natural dangers for which used preventive actions eliminate methane hazard. Safety in mines excavating coal deposits saturated with methane depends on the correct estimation of methane hazard, drawn up forecasts, conducted observations, hazard control as well as undertaken prevention measures. Methane risk prevention includes identification and control methods of methane hazards as well as means of combating the explosive accumulation of methane in longwall workings. The main preventive actions in underground coal mines are: effective ventilation that prevents forming of methane fuses or placed methane accumulation in headings ventilated by airflow created by main fans and in headings with auxiliary ventilation, methane drainage using drain holes that are drilled from underground headings or from the surface, methanometry control of methane concentration in the air; location of the sensors is defined by law, additional ventilation equipment used in places of lower intensity of ventilation and places where methane is concentrated.
NASA Astrophysics Data System (ADS)
Sierra-Rojas, M. I.; Molina-Garza, R. S.; Lawton, T. F.
2015-12-01
The Lower Cretaceous depositional systems of southwestern Oaxaquia, in south-central Mexico, were controlled by tectonic processes related to the instauration of a continental arc and the accretion of the Guerrero arc to mainland Mexico. The Atzompa Formation refers to a succession of conglomerate, sandstone, siltstone, and limestone that crop out in southwestern Mexico with Early Cretaceous fauna and detrital zircon maximum depositional ages. The sedimentary record shows a transition from early fluvial/alluvial to shallow marine depositional environments. The first stage corresponds to juvenile fluvial/alluvial setting followed by a deep lacustrine depositional environment, suggesting the early stages of an extensional basin. The second stage is characterized by anabranched deposits of axial fluvial systems flowing to the NE-SE, showing deposition during a period of rapid subsidence. The third and final stage is made of tidal deposits followed, in turn, by abrupt marine flooding of the basin and development of a Barremian-Aptian carbonate ramp. We interpret the Tentzo basin as a response to crustal extension in a back-arc setting, with high rates of sedimentation in the early stages of the basin (3-4 mm/m.y), slower rates during the development of starved fluvial to tidal systems and carbonate ramps, and at the top of the Atzompa Formation an abrupt deepening of the basin due to flexural subsidence related to terrane docking and attendant thrusting to the west. These events were recorded in the back-arc region of a continental convergent margin (Zicapa arc) where syn-sedimentary magmatism is indicated by Early Cretaceous detrital and volcanic clasts from alluvial fan facies west of the basin. Finally, and as a response to the accretion of the Guerrero superterrane to Oaxaquia during the Aptian, a carbonate platform facing toward the Gulf of Mexico was established in central to eastern Oaxaquia.
Electromagnetic imaging of seafloor massive sulfide deposits at the Central Indian Ridge
NASA Astrophysics Data System (ADS)
Müller, Hendrik; Schwalenberg, Katrin
2016-04-01
Electromagnetics is considered to become a key method to evaluate the spatial extent, composition, and inner structure of Seafloor Massive Sulfide (SMS) deposits that contain potentially high grades of polymetallic minerals - essential ingredients for the growing high-tech industry. On land, airborne or ground electromagnetic methods are established as standard geophysical tools for locating and mapping massive sulfide deposits. In contrast to terrestrial systems, marine EM instrumentation to locate the heterogeneous and often sediment covered ore deposits are still in their infancy. To accomplish EM imaging of such complex deep sea environments, the GOLDEN EYE deep sea profiler has been developed at the University of Bremen by contract of the BGR, based on experiences with the MARUM NERIDIS benthic EM Profiler. GOLDEN EYE lands on the seafloor or glides with well constrained ground distance and is entirely controlled from the vessel. The rigid, circular fiberglass platform of 3.5 m in diameter hosts a frequency domain EM inloop sensor with horizontal transmitter of 3.34 m diameter and coaxial receiver and bucking coils. Operation frequencies between 10 and 20,000 Hz can be combined and jointly inverted to resolve the resistivity structure of the topmost 10 to 15 meters below seafloor with high lateral and near-surface resolution. We will present the concept and development state of this deep sea electromagnetic profiler, and first results from a recent cruise to the Edmond hydrothermal vent field in 3 km water depth. Preliminary analysis of the new data reveal electric conductivity values of more than 10 S/m associated with active and inactive SMS deposits. Simultaneously collected DC magnetic data indicate a local positive magnetic anomaly associated with the active Edmond hydrothermal vent field while nearby fossil deposits are characterized by negative magnetic anomalies. First 1D inversion results provide insights into the vertical extend and overburden thickness of the SMS deposits.
NASA Astrophysics Data System (ADS)
Guo, Chuan; Chen, Daizhao; Song, Yafang; Zhou, Xiqiang; Ding, Yi; Zhang, Gongjing
2018-06-01
During the Early Ordovician, the Tarim Basin (NW China) was mainly occupied by an extensive shallow-water carbonate platform, on which a carbonate ramp system was developed in the Bachu-Keping area of the western part of the basin. Three well-exposed typical outcrop sections of the Lower Ordovician Penglaiba Formation were investigated in order to identify the depositional facies and to clarify origins of meter-scale cycles and depositional sequences, thereby the platform evolution. Thirteen lithofacies are identified and further grouped into three depositional facies (associations): peritidal, restricted and open-marine subtidal facies. These lithofacies are vertically stacked into meter-scale, shallowing-upward peritidal and subtidal cycles. The peritidal cycles are mainly distributed in the lower and uppermost parts of the Penglaiba Formation deposited in the inner-middle ramp, and commonly start with shallow subtidal to intertidal facies followed by inter- to supratidal facies. In contrast, the subtidal cycles occur throughout the formation mostly in the middle-outer ramp and are dominated by shallow to relatively deep (i.e., intermediate) subtidal facies. The dominance of asymmetrical and incomplete cycles suggests a dominant control of Earth's orbital forcing on the cyclic deposition on the platform. On the basis of vertical facies and cycle stacking patterns, and accommodation changes illustrated by the Fischer plots from all studied sections, five third-order depositional sequences are recognized in the Penglaiba Formation. Individual sequences comprise a lower transgressive part and an upper regressive one. In shallow-water depositional environments, the transgressive packages are dominated by thicker-than-average subtidal cycles, indicating an increase in accommodation space, whereas regressive parts are mainly represented by thinner-than-average peritidal and subtidal cycles, denoting a decrease in accommodation space. In contrast, in intermediate to deep subtidal environments, transgressive and regressive packages display an opposite trend in accommodation space changes. Sequence boundaries (except the basal and top boundaries of the Penglaiba Formation) are usually represented by laterally traceable, transitional boundary zones without apparent subaerial exposure features. Good correlation of the long-term changes in accommodation space (or sea-level) inferred from vertical stacking patterns of facies and cycles suggests an overriding eustatic control on the formation of meter-scale cycles and third-order depositional sequences as well as platform evolution superimposed with local and/or regional tectonic influence during the Early Ordovician. This study would help understand the controls on the tempo-spatial facies distribution, stratal cyclicity and carbonate platform evolution in the western Tarim Basin during the Early Ordovician, facilitating prediction for favorable subsurface carbonate reservoirs and future hydrocarbon exploration and production in the Penglaiba Formation.
Surface control alloy substrates and methods of manufacture therefor
Fritzemeier, Leslie G.; Li, Qi; Rupich, Martin W.; Thompson, Elliott D.; Siegal, Edward J.; Thieme, Cornelis Leo Hans; Annavarapu, Suresh; Arendt, Paul N.; Foltyn, Stephen R.
2004-05-04
Methods and articles for controlling the surface of an alloy substrate for deposition of an epitaxial layer. The invention includes the use of an intermediate layer to stabilize the substrate surface against oxidation for subsequent deposition of an epitaxial layer.
40 CFR 80.141 - Interim detergent gasoline program.
Code of Federal Regulations, 2010 CFR
2010-07-01
... considered acceptable for demonstration of IVD control performance. Examples of acceptable test procedures... carburetor deposits. Examples of acceptable test procedures for demonstration of carburetor deposit control... ultimate consumer; (ii) All additized post-refinery component (PRC); and (iii) All detergent additives sold...
40 CFR 80.141 - Interim detergent gasoline program.
Code of Federal Regulations, 2011 CFR
2011-07-01
... considered acceptable for demonstration of IVD control performance. Examples of acceptable test procedures... carburetor deposits. Examples of acceptable test procedures for demonstration of carburetor deposit control... ultimate consumer; (ii) All additized post-refinery component (PRC); and (iii) All detergent additives sold...
40 CFR 80.141 - Interim detergent gasoline program.
Code of Federal Regulations, 2012 CFR
2012-07-01
... considered acceptable for demonstration of IVD control performance. Examples of acceptable test procedures... carburetor deposits. Examples of acceptable test procedures for demonstration of carburetor deposit control... ultimate consumer; (ii) All additized post-refinery component (PRC); and (iii) All detergent additives sold...
40 CFR 80.141 - Interim detergent gasoline program.
Code of Federal Regulations, 2013 CFR
2013-07-01
... considered acceptable for demonstration of IVD control performance. Examples of acceptable test procedures... carburetor deposits. Examples of acceptable test procedures for demonstration of carburetor deposit control... ultimate consumer; (ii) All additized post-refinery component (PRC); and (iii) All detergent additives sold...
Environmental negotiation: an organizational framework for solving the acid deposition puzzle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Briassoulis, H.
In spite of the considerable amount of research on acid deposition and its control in the fields of natural, social, and applied sciences, the problem of devising appropriate control solutions remains a highly controversial political issue. In this paper, the thesis advanced is that environmental dispute resolution procedures are needed in order to deal effectively with acid deposition control. In this way, science, economics, and technology are bound to be used more meaningfully and serve the social and political needs of the affected interests. An organizational framework to be used in conducting environmental negotiation is suggested and briefly discussed.
Low temperature formation of electrode having electrically conductive metal oxide surface
Anders, Simone; Anders, Andre; Brown, Ian G.; McLarnon, Frank R.; Kong, Fanping
1998-01-01
A low temperature process is disclosed for forming metal suboxides on substrates by cathodic arc deposition by either controlling the pressure of the oxygen present in the deposition chamber, or by controlling the density of the metal flux, or by a combination of such adjustments, to thereby control the ratio of oxide to metal in the deposited metal suboxide coating. The density of the metal flux may, in turn, be adjusted by controlling the discharge current of the arc, by adjusting the pulse length (duration of on cycle) of the arc, and by adjusting the frequency of the arc, or any combination of these parameters. In a preferred embodiment, a low temperature process is disclosed for forming an electrically conductive metal suboxide, such as, for example, an electrically conductive suboxide of titanium, on an electrode surface, such as the surface of a nickel oxide electrode, by such cathodic arc deposition and control of the deposition parameters. In the preferred embodiment, the process results in a titanium suboxide-coated nickel oxide electrode exhibiting reduced parasitic evolution of oxygen during charging of a cell made using such an electrode as the positive electrode, as well as exhibiting high oxygen overpotential, resulting in suppression of oxygen evolution at the electrode at full charge of the cell.
Liang, Junsheng; Li, Pengfei; Wang, Dazhi; Fang, Xu; Ding, Jiahong; Wu, Junxiong; Tang, Chang
2016-01-19
Dense and crack-free barium titanate (BaTiO₃, BTO) thin films with a thickness of less than 4 μm were prepared by using sub-micrometric scale, layer-by-layer electrohydrodynamic jet (E-jet) deposition of the suspension ink which is composed of BTO nanopowder and BTO sol. Impacts of the jet height and line-to-line pitch of the deposition on the micro-structure of BTO thin films were investigated. Results show that crack-free BTO thin films can be prepared with 4 mm jet height and 300 μm line-to-line pitch in this work. Dielectric constant of the prepared BTO thin film was recorded as high as 2940 at 1 kHz at room temperature. Meanwhile, low dissipation factor of the BTO thin film of about 8.6% at 1 kHz was also obtained. The layer-by-layer E-jet deposition technique developed in this work has been proved to be a cost-effective, flexible and easy to control approach for the preparation of high-quality solid thin film.
An Einzel lens apparatus for deposition of levitated graphene on a substrate in UHV
NASA Astrophysics Data System (ADS)
Coppock, Joyce; Nagornykh, Pavel; McAdams, Ian; Kane, Bruce
The goal of our research is to levitate a charged micron-scale graphene flake in an electrical AC quadrupole trap in ultra-high vacuum (UHV) in order to study its properties and dynamics while decoupled from any substrate. As a complement to the optical measurements that can be performed on the levitated flake, we are developing a method of depositing the same flake on a substrate, which can be removed from the system for further study using such probes as atomic force microscopy (AFM) and scanning tunneling microscopy (STM). As the flake is released from the trap and propelled toward the substrate, its trajectory will be controlled by an Einzel (electrostatic) lens to achieve accurate positioning on the substrate. This talk will discuss the design of the lens as well as particle tracing simulations to determine the proper lens voltage to focus the particle's trajectory. In the future, deposited graphene may be used to passivate H-terminated silicon. The method is expected to be generalizable to achieve deposition of 2D materials on surfaces in a clean UHV environment.
NASA Astrophysics Data System (ADS)
Kim, Jun-Hyun; Bak, Jeong Geun; Lee, Kangtaek; Kim, Chang-Koo
2018-01-01
Control of the electrical resistivity of Ni-Cr wires is demonstrated using low pressure chemical vapor deposition (LPCVD) of tin on the surface of the wire, after which the effects of the deposition temperature on the structural, morphological, and compositional characteristics of the tin-deposited Ni-Cr wires are investigated. As the deposition temperature is increased, the resistivity of the Ni-Cr wires increases in the temperature range 300-400 °C; then remains nearly constant as the temperature increased to 700 °C. The increase in the resistivity of the Ni-Cr wires is attributed to formation of Ni3Sn2 particulates on the surface of the wire. Compositional analysis shows that the pattern of change in the tin content with the deposition temperature is similar to that of resistivity with temperature, implying that the atomic content of tin on Ni-Cr directly affects the electrical resistivity.
NASA Astrophysics Data System (ADS)
Ye, Z.; Meng, Q.; Mohamadian, H. P.; Wang, J. T.; Chen, L.; Zhu, L.
2007-06-01
The formation of SI engine combustion deposits is a complex phenomenon which depends on various factors of fuel, oil, additives, and engine. The goal of this study is to examine the effects of operating conditions, gasoline, lubricating oil, and additives on deposit formation. Both an experimental investigation and theoretical analysis are conducted on a single cylinder engine. As a result, the impact of deposits on engine performance and exhaust emissions (HC, NO x ) has been indicated. Using samples from a cylinder head and exhaust pipe as well as switching gases via the dual-gas method (N2, O2), the deposit formation mechanism is thoroughly investigated via the thermogravity analysis approach, where the roles of organic, inorganic, and volatile components of fuel, additives, and oil on deposit formation are identified from thermogravity curves. Sustainable feedback control design is then proposed for potential emission control and performance optimization
NASA Astrophysics Data System (ADS)
Jian, Muqiang; Xie, Huanhuan; Wang, Qi; Xia, Kailun; Yin, Zhe; Zhang, Mingyu; Deng, Ningqin; Wang, Luning; Ren, Tianling; Zhang, Yingying
2016-07-01
The development of nanomaterials has put forward high requirements for characterization techniques. Optical microscopy (OM), with easy accessibility and open operating spaces as compared to scanning electron microscopy, is a good choice to quickly locate materials and to be integrated with other equipment. However, OM is limited by its low resolution. Herein, we present a facile and non-destructive approach for optical observation of nanomaterials under conventional OMs with the aid of volatile nanoparticles (NPs), which can be deposited and removed in a controlled manner. The NPs deposited on the surface of nanomaterials render strong light scattering to enable the nanomaterials to become optically visible. For example, this approach enables the observation of individual carbon nanotubes (CNTs) with OMs at low magnification or even with the naked eye. Both supported CNTs on various substrates and suspended CNTs can be observed with this approach. Most importantly, the NPs can be completely removed through moderate heat treatment or laser irradiation, avoiding potential influence on the properties or subsequent applications of nanomaterials. Furthermore, we systematically investigate the deposition of various volatile NPs (up to 14 kinds) for the optical observation of nanomaterials. We also demonstrated the application of this approach on other nanomaterials, including nanowires and graphene. We showed that this approach is facile, controllable, non-destructive, and contamination-free, indicating wide potential applications.The development of nanomaterials has put forward high requirements for characterization techniques. Optical microscopy (OM), with easy accessibility and open operating spaces as compared to scanning electron microscopy, is a good choice to quickly locate materials and to be integrated with other equipment. However, OM is limited by its low resolution. Herein, we present a facile and non-destructive approach for optical observation of nanomaterials under conventional OMs with the aid of volatile nanoparticles (NPs), which can be deposited and removed in a controlled manner. The NPs deposited on the surface of nanomaterials render strong light scattering to enable the nanomaterials to become optically visible. For example, this approach enables the observation of individual carbon nanotubes (CNTs) with OMs at low magnification or even with the naked eye. Both supported CNTs on various substrates and suspended CNTs can be observed with this approach. Most importantly, the NPs can be completely removed through moderate heat treatment or laser irradiation, avoiding potential influence on the properties or subsequent applications of nanomaterials. Furthermore, we systematically investigate the deposition of various volatile NPs (up to 14 kinds) for the optical observation of nanomaterials. We also demonstrated the application of this approach on other nanomaterials, including nanowires and graphene. We showed that this approach is facile, controllable, non-destructive, and contamination-free, indicating wide potential applications. Electronic supplementary information (ESI) available: Supporting figures, tables and discussions. See DOI: 10.1039/c6nr01379a
Inkjet Printing of Drug-Loaded Mesoporous Silica Nanoparticles-A Platform for Drug Development.
Wickström, Henrika; Hilgert, Ellen; Nyman, Johan O; Desai, Diti; Şen Karaman, Didem; de Beer, Thomas; Sandler, Niklas; Rosenholm, Jessica M
2017-11-21
Mesoporous silica nanoparticles (MSNs) have shown great potential in improving drug delivery of poorly water soluble (BCS class II, IV) and poorly permeable (BCS class III, IV) drugs, as well as facilitating successful delivery of unstable compounds. The nanoparticle technology would allow improved treatment by reducing adverse reactions of currently approved drugs and possibly reintroducing previously discarded compounds from the drug development pipeline. This study aims to highlight important aspects in mesoporous silica nanoparticle (MSN) ink formulation development for digital inkjet printing technology and to advice on choosing a method (2D/3D) for nanoparticle print deposit characterization. The results show that both unfunctionalized and polyethyeleneimine (PEI) surface functionalized MSNs, as well as drug-free and drug-loaded MSN-PEI suspensions, can be successfully inkjet-printed. Furthermore, the model BCS class IV drug remained incorporated in the MSNs and the suspension remained physically stable during the processing time and steps. This proof-of-concept study suggests that inkjet printing technology would be a flexible deposition method of pharmaceutical MSN suspensions to generate patterns according to predefined designs. The concept could be utilized as a versatile drug screening platform in the future due to the possibility of accurately depositing controlled volumes of MSN suspensions on various materials.
Quality Designed Twin Wire Arc Spraying of Aluminum Bores
NASA Astrophysics Data System (ADS)
König, Johannes; Lahres, Michael; Methner, Oliver
2015-01-01
After 125 years of development in combustion engines, the attractiveness of these powerplants still gains a great deal of attention. The efficiency of engines has been increased continuously through numerous innovations during the last years. Especially in the field of motor engineering, consequent friction optimization leads to cost-effective fuel consumption advantages and a CO2 reduction. This is the motivation and adjusting lever of NANOSLIDE® from Mercedes-Benz. The twin wire arc-spraying process of the aluminum bore creates a thin, iron-carbon-alloyed coating which is surface-finished through honing. Due to the continuous development in engines, the coating strategies must be adapted in parallel to achieve a quality-conformed coating result. The most important factors to this end are the controlled indemnification of a minimal coating thickness and a homogeneous coating deposition of the complete bore. A specific system enables the measuring and adjusting of the part and the central plunging of the coating torch into the bore to achieve a homogeneous coating thickness. Before and after measurement of the bore diameter enables conclusions about the coating thickness. A software tool specifically developed for coating deposition can transfer this information to a model that predicts the coating deposition as a function of the coating strategy.
Recent developments in plasma spray processes for applications in energy technology
NASA Astrophysics Data System (ADS)
Mauer, G.; Jarligo, M. O.; Marcano, D.; Rezanka, S.; Zhou, D.; Vaßen, R.
2017-03-01
This work focuses on recent developments of plasma spray processes with respect to specific demands in energy technology. High Velocity Atmospheric Plasma Spraying (HV-APS) is a novel variant of plasma spraying devoted to materials which are prone to oxidation or decomposition. It is shown how this process can be used for metallic bondcoats in thermal barrier coating systems. Furthermore, Suspension Plasma Spraying (SPS) is a new method to process submicron-sized feedstock powders which are not sufficiently flowable to feed them in dry state. SPS is presently promoted by the development of novel torch concepts with axial feedstock injection. An example for a columnar structured double layer thermal barrier coating is given. Finally, Plasma Spray-Physical Vapor Deposition (PS-PVD) is a novel technology operating in controlled atmosphere at low pressure and high plasma power. At such condition, vaporization even of high-melting oxide ceramics is possible enabling the formation of columnar structured, strain tolerant coatings with low thermal conductivity. Applying different conditions, the deposition is still dominated by liquid splats. Such process is termed Low Pressure Plasma Spraying-Thin Film (LPPS-TF). Two examples of applications are gas-tight and highly ionic and electronic conductive electrolyte and membrane layers which were deposited on porous metallic substrates.
Investigation of ammonia air-surface exchange processes in a ...
Recent assessments of atmospheric deposition in North America note the increasing importance of reduced (NHx = NH3 + NH4+) forms of nitrogen (N) relative to oxidized forms. This shift in in the composition of inorganic nitrogen deposition has both ecological and policy implications. Deposition budgets developed from inferential models applied at the landscape scale, as well as regional and global chemical transport models, indicate that NH3 dry deposition contributes a significant portion of inorganic N deposition in many areas. However, the bidirectional NH3 flux algorithms employed in these models have not been extensively evaluated for North American conditions (e.g, atmospheric chemistry, meteorology, biogeochemistry). Further understanding of the processes controlling NH3 air-surface exchange in natural systems is critically needed. Based on preliminary results from the Southern Appalachian Nitrogen Deposition Study (SANDS), this presentation examines processes of NH3 air-surface exchange in a deciduous montane forest at the Coweeta Hydrologic Laboratory in western North Carolina. A combination of measurements and modeling are used to investigate net fluxes of NH3 above the forest and sources and sinks of NH3 within the canopy and forest floor. Measurements of biogeochemical NH4+ pools are used to characterize emission potential and NH3 compensation points of canopy foliage (i.e., green vegetation), leaf litter, and soil and their relation to NH3 fluxes
Impulse Plasma In Surface Engineering - a review
NASA Astrophysics Data System (ADS)
Zdunek, K.; Nowakowska-Langier, K.; Chodun, R.; Okrasa, S.; Rabinski, M.; Dora, J.; Domanowski, P.; Halarowicz, J.
2014-11-01
The article describes the view of the plasma surface engineering, assuming the role of non-thermal energy effects in the synthesis of materials and coatings deposition. In the following study it was underlined that the vapor excitation through the application of an electric field during coatings deposition gives new possibilities for coatings formation. As an example the IPD method was chosen. During the IPD (Impulse Plasma Deposition) the impulse plasma is generated in the coaxial accelerator by strong periodic electrical pulses. The impulse plasma is distributed in the form of energetic plasma pockets. Due to the almost completely ionization of gas, the nucleation of new phases takes place on ions directly in the plasma itself. As a result the coatings of metastable materials with nano-amorphous structure and excellent adhesion to the non-heated intentionally substrates could be deposited. Recently the novel way of impulse plasma generation during the coatings deposition was proposed and developed by our group. An efficient tool for plasma process control, the plasma forming gas injection to the interelectrode space was used. Periodic changing the gas pressure results in increasing both the degree of dispersion and the dynamics of the plasma pulses. The advantage of the new technique in deposition of coatings with exceptionally good properties has been demonstrated in the industrial scale not only in the case of the IPD method but also in the case of very well known magnetron sputtering method.
Organic and inorganic–organic thin film structures by molecular layer deposition: A review
Sundberg, Pia
2014-01-01
Summary The possibility to deposit purely organic and hybrid inorganic–organic materials in a way parallel to the state-of-the-art gas-phase deposition method of inorganic thin films, i.e., atomic layer deposition (ALD), is currently experiencing a strongly growing interest. Like ALD in case of the inorganics, the emerging molecular layer deposition (MLD) technique for organic constituents can be employed to fabricate high-quality thin films and coatings with thickness and composition control on the molecular scale, even on complex three-dimensional structures. Moreover, by combining the two techniques, ALD and MLD, fundamentally new types of inorganic–organic hybrid materials can be produced. In this review article, we first describe the basic concepts regarding the MLD and ALD/MLD processes, followed by a comprehensive review of the various precursors and precursor pairs so far employed in these processes. Finally, we discuss the first proof-of-concept experiments in which the newly developed MLD and ALD/MLD processes are exploited to fabricate novel multilayer and nanostructure architectures by combining different inorganic, organic and hybrid material layers into on-demand designed mixtures, superlattices and nanolaminates, and employing new innovative nanotemplates or post-deposition treatments to, e.g., selectively decompose parts of the structure. Such layer-engineered and/or nanostructured hybrid materials with exciting combinations of functional properties hold great promise for high-end technological applications. PMID:25161845
NASA Technical Reports Server (NTRS)
Gryc, G. (Principal Investigator); Lathram, E. H.
1972-01-01
The authors have identified the following significant results. As a precursor to the ERTS-1 investigation, the spatial relationship of geostructures seen on Nimbus IDCS photographs to the distribution of mineralized areas in Alaska and western Canada was analyzed to determine the possible metallogenic significance of the geostructures. In Canada, mercury and porphyry molybdenum deposits are closely associated with strong northwest-trending fault systems; the development of mineralized regions seems related to major crustal zones or fractures trending southwestward across the Cordillera from the Precambrian shield. In Alaska, comparison of the northeast- and northwest-trending set of possible crustal structures shown on the Nimbus photo, with the distribution of known mineral deposits suggests a similar relationship. The mineralized region of massive sulfides in Prince William Sound and upper Copper River areas and of porphyry coppers in the Nabesna area forms a broad northeast-trending belt possibly related to the Minto Arch on the Shield. The belt of metalliferous deposits in the western Alaska Range follows a comparable northeast trend. Mercury deposits, suggested by many to be fault-controlled, together with most tin and tungsten deposits, occupy a northeast-trending belt between the Bristol Bay-Mackenzie Bay linear and extensions of a linear along the lower Yukon River. This belt intersects the northwest-trending Canadian belt of similar deposits in the Fairbanks area.
NASA Astrophysics Data System (ADS)
Kelly, Priscilla; Zhang, Wenrui; Liu, Mingzhao; Kuznetsova, Lyuba
2017-08-01
Transparent conductive oxide materials have shown unique optical properties, such as negative refraction, hyperbolic dispersion, and epsilon-near-zero dispersion. In particular, aluminum-doped zinc oxide (Al:ZnO) has shown the most promising results over traditionally used noble metals. Pulsed layer deposition is a popular technique due to its fast and controlled growth rate, as well as the stoichiometric target-to-substrate material transfer. But, since it uses large and inhomogeneous kinetic energy, samples could be prone to macro- and microscopic defects. In this work, we investigate multilayered samples of Al:ZnO/ZnO grown by pulsed laser deposition with the goal of developing a low-loss metamaterial with hyperbolic dispersion. Different fabrication conditions, such as Al:ZnO/ZnO ratio, the thickness of an individual layer, different substrates, and deposition temperatures, were investigated. Results of the ellipsometry analysis, based on fitting spectroscopy data using the Berreman formalism, show that the hyperbolic dispersion transition (Re ɛ∥>0, Re ɛ⊥< 0) is achieved at λc=1868 nm wavelength (Im (ɛ⊥) 0.03) for samples with 1:4 Al:ZnO/ZnO deposition ratio. The fitted dielectric functions for samples with various parameters show that a lower deposition temperature leads to a shorter transition wavelength.
Applications for Gradient Metal Alloys Fabricated Using Additive Manufacturing
NASA Technical Reports Server (NTRS)
Hofmann, Douglas C.; Borgonia, John Paul C.; Dillon, Robert P.; Suh, Eric J.; Mulder, jerry L.; Gardner, Paul B.
2013-01-01
Recently, additive manufacturing (AM) techniques have been developed that may shift the paradigm of traditional metal production by allowing complex net-shaped hardware to be built up layer-by-layer, rather than being machined from a billet. The AM process is ubiquitous with polymers due to their low melting temperatures, fast curing, and controllable viscosity, and 3D printers are widely available as commercial or consumer products. 3D printing with metals is inherently more complicated than with polymers due to their higher melting temperatures and reactivity with air, particularly when heated or molten. The process generally requires a high-power laser or other focused heat source, like an electron beam, for precise melting and deposition. Several promising metal AM techniques have been developed, including laser deposition (also called laser engineered net shaping or LENS® and laser deposition technology (LDT)), direct metal laser sintering (DMLS), and electron beam free-form (EBF). These machines typically use powders or wire feedstock that are melted and deposited using a laser or electron beam. Complex net-shape parts have been widely demonstrated using these (and other) AM techniques and the process appears to be a promising alternative to machining in some cases. Rather than simply competing with traditional machining for cost and time savings, the true advantage of AM involves the fabrication of hardware that cannot be produced using other techniques. This could include parts with "blind" features (like foams or trusses), parts that are difficult to machine conventionally, or parts made from materials that do not exist in bulk forms. In this work, the inventors identify that several AM techniques can be used to develop metal parts that change composition from one location in the part to another, allowing for complete control over the mechanical or physical properties. This changes the paradigm for conventional metal fabrication, which relies on an assortment of "post-processing" methods to locally alter properties (such as coating, heat treating, work hardening, shot peening, etching, anodizing, among others). Building the final part in an additive process allows for the development of an entirely new class of metals, so-called "functionally graded metals" or "gradient alloys." By carefully blending feedstock materials with different properties in an AM process, hardware can be developed with properties that cannot be obtained using other techniques but with the added benefit of the net-shaped fabrication that AM allows.
NASA Astrophysics Data System (ADS)
Kaufman, David Y.
Two vapor deposition techniques, dual magnetron oblique sputtering (DMOS) and metalorganic chemical vapor deposition (MOCVD), have been developed to produce yttria-stabilized zirconia (YSZ) films with unique microstructures. In particular, biaxially textured thin films on amorphous substrates and dense thin films on porous substrates have been fabricated by DMOS and MOCVD, respectively. DMOS YSZ thin films were deposited by reactive sputtering onto Si (native oxide surface) substrates positioned equidistant between two magnetron sources such that the fluxes arrived at oblique angles with respect to the substrate normal. Incident fluxes from two complimentary oblique directions were necessary for the development of biaxial texture. The films displayed a strong [001] out-of-plane orientation with the <110> direction in the film aligned with the incident flux. Biaxial texture improved with increasing oblique angle and film thickness, and was stronger for films deposited with Ne than with Ar. The films displayed a columnar microstructure with grain bundling perpendicular to the projected flux direction, the degree of which increased with oblique angle and thickness. The texture decreased by sputtering at pressures at which the flux of sputtered atoms was thermalized. These results suggested that grain alignment is due to directed impingement of both sputtered atoms and reflected energetic neutrals. The best texture, a {111} phi FWHM of 23°, was obtained in a 4.8 mum thick film deposited at an oblique angle of 56°. MOCVD YSZ thin films were deposited in a vertical cold-wall reactor using Zr(tmhd)4 and Y(tmhd)3 precursors. Fully stabilized YSZ films with 9 mol% could be deposited by controlling the bubbler temperatures. YSZ films on Si substrates displayed a transition at 525°C from surface kinetic limited growth, with an activation energy of 5.5 kJ/mole, to mass transport limited growth. Modifying the reactor by lowering the inlet height and introducing an Ar baffle ring increased the growth rates to 2.5 mum/hr. Dense, gas impermeable 4-6 mum YSZ thin films were deposited on porous (La,Sr)Mno3 cathode substrates. Solid oxide fuel cells, fabricated by sputtering on a Ni-YSZ anode, achieved open circuit voltages ≥94% theoretical, and maximum power densities at 750°C comparable with commercial conventional SOFC's operated at higher temperatures.
1980-11-01
by the Wabash River faults in southeast Illinois and suggests control by basement faults (Hadley and Devine 1974). A smaller cluster of epicenters...E.2). Anthropogenic input to Lake Erie of mercury, lead, zinc, and cadmium exceeds that derived from natural weathering and atmospheric deposition
Development of Deposition and Characterization Systems for Thin Film Solar Cells
NASA Astrophysics Data System (ADS)
Cimaroli, Alexander J.
Photovoltaic (PV) devices are becoming more important due to a number of economic and environmental factors. PV research relies on the ability to quickly fabricate and characterize these devices. While there are a number of deposition methods that are available in a laboratory setting, they are not necessarily able to be scaled to provide high throughput in a commercial setting. A close-space sublimation (CSS) system was developed to provide a means of depositing thin films in a very controlled and scalable manner. Its viability was explored by using it to deposit the absorber layer in Zn3P2 and CdTe solar cell devices. Excellent control over morphology and growth conditions and a high level of repeatability was demonstrated in the study of textured Zn3P2 thin films. However, some limitations imposed by the structure of Zn3P 2-based PV devices showed that CSS may not be the best approach for depositing Zn3P2 thin films. Despite the inability to make Zn3P2 solar cell devices, high efficiency CdTe solar cells were fabricated using CSS. With the introduction of Perovskite-based solar cell devices, the viability of data collected from conventional J-V measurements was questioned due to the J-V hysteresis that Perovskite devices exhibited. New methods of solar cell characterization were developed in order to accurately and quickly assess the performance of hysteretic PV devices. Both J-V measurements and steady-state efficiency measurements are prone to errors due to hysteresis and maximum power point drift. To resolve both of these issues, a maximum power point tracking (MPPT) system was developed with two algorithms: a simple algorithm and a predictive algorithm. The predictive algorithm showed increased resistance to the effects of hysteresis because of its ability to predict the steady-state current after a bias step with a double exponential decay model fit. Some publications have attempted to quantify the degree of J-V hysteresis present in fabricated Perovskite-based devices, but the analysis relied on J-V measurements. The sweep rate, starting bias, illumination time, etc. would affect the value of the calculated degree of hysteresis. A method of using transient photocurrent measurements is presented to accurately quantify the degree of hysteresis for all solar cells: not just Perovskite-based devices. According to this method, almost all solar cell devices exhibit several forms of J-V hysteresis. This method may open new ways of analyzing the defects in fabricated PV devices.
Rahman, Md Mizanur; Alam, Mohammad Nazmul; Ulla, Anayt; Sumi, Farzana Akther; Subhan, Nusrat; Khan, Trisha; Sikder, Bishwajit; Hossain, Hemayet; Reza, Hasan Mahmud; Alam, Md Ashraful
2017-08-14
Cardamom is a well-known spice in Indian subcontinent, used in culinary and traditional medicine practices since ancient times. The current investigation was untaken to evaluate the potential benefit of cardamom powder supplementation in high carbohydrate high fat (HCHF) diet induced obese rats. Male Wistar rats (28 rats) were divided into four different groups such as Control, Control + cardamom, HCHF, HCHF + cardamom. High carbohydrate and high fat (HCHF) diet was prepared in our laboratory. Oral glucose tolerance test, organs wet weight measurements and oxidative stress parameters analysis as well as liver marker enzymes such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) activities were assayed on the tissues collected from the rats. Plasma lipids profiles were also measured in all groups of animals. Moreover, histological staining was also performed to evaluate inflammatory cells infiltration and fibrosis in liver. The current investigation showed that, HCHF diet feeding in rats developed glucose intolerance and increased peritoneal fat deposition compared to control rats. Cardamom powder supplementation improved the glucose intolerance significantly (p > 0.05) and prevented the abdominal fat deposition in HCHF diet fed rats. HCHF diet feeding in rats also developed dyslipidemia, increased fat deposition and inflammation in liver compared to control rats. Cardamom powder supplementation significantly prevented the rise of lipid parameters (p > 0.05) in HCHF diet fed rats. Histological assessments confirmed that HCHF diet increased the fat deposition and inflammatory cells infiltration in liver which was normalized by cardamom powder supplementation in HCHF diet fed rats. Furthermore, HCHF diet increased lipid peroxidation, decreased antioxidant enzymes activities and increased advanced protein oxidation product level significantly (p > 0.05) both in plasma and liver tissue which were modulated by cardamom powder supplementation in HCHF diet fed rats. HCHF diet feeding in rats also increased the ALT, AST and ALP enzyme activities in plasma which were also normalized by cardamom powder supplementation in HCHF diet fed rats. Moreover, cardamom powder supplementation ameliorated the fibrosis in liver of HCHF diet fed rats. This study suggests that, cardamom powder supplementation can prevent dyslipidemia, oxidative stress and hepatic damage in HCHF diet fed rats.
Wright, Heather M.; Cashman, Katharine V.
2014-01-01
Pyroclastic flows produced by large volcanic eruptions commonly densify after emplacement. Processes of gas escape, compaction, and welding in pyroclastic-flow deposits are controlled by the physical and thermal properties of constituent material. Through measurements of matrix porosity, permeability, and electrical conductivity, we provide a framework for understanding the evolution of pore structure during these processes. Using data from the Shevlin Park Tuff in central Oregon, United States, and from the literature, we find that over a porosity range of 0%–70%, matrix permeability varies by almost 10 orders of magnitude (from 10–20 to 10–11 m2), with over three orders of magnitude variation at any given porosity. Part of the variation at a given porosity is due to permeability anisotropy, where oriented core samples indicate higher permeabilities parallel to foliation (horizontally) than perpendicular to foliation (vertically). This suggests that pore space is flattened during compaction, creating anisotropic crack-like networks, a geometry that is supported by electrical conductivity measurements. We find that the power law equation: k1 = 1.3 × 10–21 × ϕ5.2 provides the best approximation of dominant horizontal gas loss, where k1 = permeability, and ϕ = porosity. Application of Kozeny-Carman fluid-flow approximations suggests that permeability in the Shevlin Park Tuff is controlled by crack- or disk-like pore apertures with minimum widths of 0.3 and 7.5 μm. We find that matrix permeability limits compaction over short times, but deformation is then controlled by competition among cooling, compaction, water resorption, and permeable gas escape. These competing processes control the potential for development of overpressure (and secondary explosions) and the degree of welding in the deposit, processes that are applicable to viscous densification of volcanic deposits in general. Further, the general relationships among porosity, permeability, and pore geometry are relevant for flow of any fluid through an ignimbritic host.
Depositional history of Louisiana-Mississippi outer continental shelf
Kindinger, J.L.; Miller, R.J.; Stelting, C.E.
1982-01-01
A geological study was undertaken in 1981 in the Louisiana-Mississippi outer continental shelf for the Bureau of Land Management. The study included a high-resolution seismic reflection survey, surficial sediment sampling and surface current drifter sampling. Approximately 7100 sq km of the Louisiana-Mississippi shelf and upper slope were surveyed. The sea floor of the entire area is relatively smooth except for occasional areas of uplift produced by diapiric intrusion along the upper slope. Characteristics of the topography and subsurface shelf sediments are the result of depositional sequences due to delta outbuilding over transgressive sediments with intervening periods of erosion during low sea level stands. Little evidence of structural deformation such as faults, diapirs, and shallow gas is present on the shelf and only a few minor faults and scarps are found on the slope. Minisparker seismic records in combination with air gun (40 and 5 cu in) and 3.5-kHz subbottom profile records reveal that seven major stages of shelf development have occurred since the middle Pleistocene. The shelf development has been controlled by the rise and fall of sea level. These stages are defined by four major unconformities, several depositions of transgressive sediments, sequences of river channeling and progradational delta deposits. Surficial sediment sample and seismic records indicate tat the last major depositional event was the progradation of the St. Bernard Delta lobe. This delta lobe covered the northwestern and central regions. Surficial sediments in most of the study area are the product of the reworking of the San Bernard Delta lobe and previous progradations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahman, R.A.; Said, Md.J.; Bedingfield, J.R.
1994-07-01
The group J stratigraphic interval is lower Miocene (18.5-21 Ma) in age and was deposited during the early sag phase of the Malay Basin structural development. Reduction in depositional relief and first evidence of widespread marine influence characterize the transition into this interval. Twelve group J sequences have been identified. Reservoirs consist of progradational to aggradational tidally-dominated paralic to shallow marine sands deposited in the lowstand systems tract. Transgressive and highstand deposits are dominantly offshore shales. In PM-9, the original lift-related depocenters, coupled with changes in relative sea level, have strongly influenced group J unit thickness and the distribution ofmore » reservoir and seal facies. Two important reservoir intervals in PM-9 are the J18/20 and J15 sands. The reservoirs in these intervals are contained within the lowstand systems tracts of fourth-order sequences. These fourth-order sequences stack to form sequence sets in response to a third-order change in relative sea level. The sequences of the J18/20 interval stack to form part of a lowstand sequence set, whereas the J15 interval forms part of the transgressive sequence set. Reservoir facies range from tidal bars and subtidal shoals in the J18/20 interval to lower shoreface sands in the J15. Reservoir quality and continuity in group J reservoirs are dependent on depositional facies. An understanding of the controls on the distribution of facies types is crucial to the success of the current phase of field development and exploration programs in PM-9.« less
NASA Astrophysics Data System (ADS)
Moreno, F.; George, S. W. M.; Williams, L. A.; Horton, B. K.; Garzione, C. N.
2015-12-01
The Andes Mountains exert critical controls on the climate, hydrology, and biodiversity of South America. The Bagua Basin, a low elevation (400-600 m) intermontane basin in northern Peru, offers a unique opportunity to study the ecological, climatic, and structural evolution of the western topographic boundary of the Amazonian foreland. Situated between the Marañon fold-thrust belt of the Western Cordillera and basement block uplifts of the Eastern Cordillera, the Bagua region contains a protracted, semi-continuous record of Triassic through Pleistocene sedimentation. Whereas Triassic-Cretaceous marine deposits were potentially related to extension and regional thermal subsidence, a Paleocene-Eocene shift to shallow marine and fluvial systems marks the onset of foreland basin conditions. Oligocene-Miocene sedimentation corresponds to a braided-meandering fluvial system with exceptional development of paleosols. In this study, we use new detrital zircon U-Pb geochronologic and oxygen stable isotopic datasets to establish a chronology of pre-Andean and Andean processes within the Bagua Basin. Detrital zircon geochronology provides constraints on when the Western and Eastern cordilleras shed sediments into the basin. Syndepositional zircons within Eocene, Oligocene and Miocene strata provide key age control for a previously poorly constrained depositional chronology. Preliminary results suggest a dramatic provenance shift in which Paleocene deposits contain almost exclusively cratonic populations (500-1600 Ma) whereas Eocene deposits show a mix of syndepositional zircons from the magmatic arc, recycled Mesozoic zircons, and cratonic zircon populations. Oxygen stable isotopes (δ18O) of carbonate nodules from Neogene paleosols will help elucidate when the Eastern Cordillera became an orographic barrier intercepting moisture from the Amazon basin to the east. Together, these records will help uncover the history of tectonics and climate interaction in tropical South America.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nori, Rajashree, E-mail: rajsre@ee.iitb.ac.in; Ganguly, U.; Ravi Chandra Raju, N.
2014-01-21
Of all the colossal magnetoresistant manganites, La{sub 0.7}Sr{sub 0.3}MnO{sub 3} (LSMO) exhibits magnetic and electronic state transitions above room temperature, and therefore holds immense technological potential in spintronic devices and hybrid heterojunctions. As the first step towards this goal, it needs to be integrated with silicon via a well-defined process that provides morphology and phase control, along with reproducibility. This work demonstrates the development of pulsed laser deposition (PLD) process parameter regimes for dense and columnar morphology LSMO films directly on Si. These regimes are postulated on the foundations of a pressure-distance scaling law and their limits are defined postmore » experimental validation. The laser spot size is seen to play an important role in tandem with the pressure-distance scaling law to provide morphology control during LSMO deposition on lattice-mismatched Si substrate. Additionally, phase stability of the deposited films in these regimes is evaluated through magnetometry measurements and the Curie temperatures obtained are 349 K (for dense morphology) and 355 K (for columnar morphology)—the highest reported for LSMO films on Si so far. X-ray diffraction studies on phase evolution with variation in laser energy density and substrate temperature reveals the emergence of texture. Quantitative limits for all the key PLD process parameters are demonstrated in order enable morphological and structural engineering of LSMO films deposited directly on Si. These results are expected to boost the realization of top-down and bottom-up LSMO device architectures on the Si platform for a variety of applications.« less
Code of Federal Regulations, 2011 CFR
2011-01-01
... Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) FEDERAL EMPLOYEES... made for a distinct period of service; however, such a deposit shall be ineffective if deposits are not...
Code of Federal Regulations, 2010 CFR
2010-01-01
... Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) FEDERAL EMPLOYEES... made for a distinct period of service; however, such a deposit shall be ineffective if deposits are not...
Development of a Guinea Pig Lung Deposition Model
2016-01-01
Development of a Guinea Pig Lung Deposition Model Distribution Statement A. Approved for public release; distribution is unlimited. January...4 Figure 2. Particle deposition in the lung of the guinea pig via endotracheal breathing...Particle deposition in the lungs of guinea pigs via nasal breathing. ......................................... 12 v PREFACE The research work
Preparation and Characterization of C60/Graphene Hybrid Nanostructures.
Chen, Chuanhui; Mills, Adam; Zheng, Husong; Li, Yanlong; Tao, Chenggang
2018-05-15
Physical thermal deposition in a high vacuum environment is a clean and controllable method for fabricating novel molecular nanostructures on graphene. We present methods for depositing and passively manipulating C60 molecules on rippled graphene that advance the pursuit of realizing applications involving 1D C60/graphene hybrid structures. The techniques applied in this exposition are geared towards high vacuum systems with preparation areas capable of supporting molecular deposition as well as thermal annealing of the samples. We focus on C60 deposition at low pressure using a homemade Knudsen cell connected to a scanning tunneling microscopy (STM) system. The number of molecules deposited is regulated by controlling the temperature of the Knudsen cell and the deposition time. One-dimensional (1D) C60 chain structures with widths of two to three molecules can be prepared via tuning of the experimental conditions. The surface mobility of the C60 molecules increases with annealing temperature allowing them to move within the periodic potential of the rippled graphene. Using this mechanism, it is possible to control the transition of 1D C60 chain structures to a hexagonal close packed quasi-1D stripe structure.
Nucleation, Growth, and Alignment of Poly(3-hexylthiophene) Nanofibers for High-Performance OFETs.
Persson, Nils E; Chu, Ping-Hsun; McBride, Michael; Grover, Martha; Reichmanis, Elsa
2017-04-18
Conjugated semiconducting polymers have been the subject of intense study for over two decades with promising advances toward a printable electronics manufacturing ecosystem. These materials will deliver functional electronic devices that are lightweight, flexible, large-area, and cost-effective, with applications ranging from biomedical sensors to solar cells. Synthesis of novel molecules has led to significant improvements in charge carrier mobility, a defining electrical performance metric for many applications. However, the solution processing and thin film deposition of conjugated polymers must also be properly controlled to obtain reproducible device performance. This has led to an abundance of research on the process-structure-property relationships governing the microstructural evolution of the model semicrystalline poly(3-hexylthiophene) (P3HT) as applied to organic field effect transistor (OFET) fabrication. What followed was the production of an expansive body of work on the crystallization, self-assembly, and charge transport behavior of this semiflexible polymer whose strong π-π stacking interactions allow for highly creative methods of structural control, including the modulation of solvent and solution properties, flow-induced crystallization and alignment techniques, structural templating, and solid-state thermal and mechanical processing. This Account relates recent progress in the microstructural control of P3HT thin films through the nucleation, growth, and alignment of P3HT nanofibers. Solution-based nanofiber formation allows one to develop structural order prior to thin film deposition, mitigating the need for intricate deposition processes and enabling the use of batch and continuous chemical processing steps. Fiber growth is framed as a traditional crystallization problem, with the balance between nucleation and growth rates determining the fiber size and ultimately the distribution of grain boundaries in the solid state. Control of nucleation can be accomplished through a sonication-based seeding procedure, while growth can be modulated through supersaturation control via the tuning of solvent quality, the use of UV irradiation or through aging. These principles carry over to the flow-induced growth of P3HT nanofibers in a continuous microfluidic processing system, leading to thin films with significantly enhanced mobility. Further gains can be made by promoting long-range polymer chain alignment, achieved by depositing nanofibers through shear-based coating methods that promote high fiber packing density and alignment. All of these developments in processing were carried out on a standard OFET platform, enabling us to generalize quantitative structure-property relationships from structural data sources such as UV-vis, AFM, and GIWAXS. It is shown that a linear correlation exists between mobility and the in-plane orientational order of nanofibers, as extracted from AFM images using advanced computer vision software developed by our group. Herein, we discuss data-driven approaches to the determination of process-structure-property relationships, as well as the transferability of structural control strategies for P3HT to other conjugated polymer systems and applications.
An Introduction to Atomic Layer Deposition
NASA Technical Reports Server (NTRS)
Dwivedi, Vivek H.
2017-01-01
Atomic Layer Deposition has been instrumental in providing a deposition method for multiple space flight applications. It is well known that ALD is a cost effective nanoadditive-manufacturing technique that allows for the conformal coating of substrates with atomic control in a benign temperature and pressure environment. Through the introduction of paired precursor gases, thin films can be deposited on a myriad of substrates from flat surfaces to those with significant topography. By providing atomic layer control, where single layers of atoms can be deposited, the fabrication of metal transparent films, precise nano-laminates, and coatings of nano-channels, pores and particles is achievable. The feasibility of this technology for NASA line of business applications range from thermal systems, optics, sensors, to environmental protection. An overview of this technology will be presented.
Turbidite systems: State of the art and future directions
Normark, W.R.; Posamentier, H.; Mutti, E.
1993-01-01
The study of turbidite systems covering a wide range of physical scales has led to confus ion regarding the use of certain key terms and hence a breakdown in communication between workers involved in turbidite research. There are three fundamentally different scales and types of observations derived from the study of outcrop data (ancient systems), high-resolution seismic reflection and side scan sonar data (modern systems), and multichannel seismic reflection data (modern and older buried systems). Despite the variability of scale the same terms are used to describe features that may have little in common. Consequently, turbidite system terminology has become imprecise and even misleading in some cases, thus providing impediments to developing useful predictive models for processes, depositional environments, and lateral and vertical distribution of sand bodies within turbidite systems. To address this concern, we review the principal elements critical to deepwater systems: slump scars, submarine canyons, channels, channel fill deposits, overbank deposits, and lobes and discuss some of their recognition criteria with each different type of data base. Local and regional tectonic setting, relative sea level variations, and bottom current activity are probably the main factors that control size, external geometry, internal stratal configuration, and facies characteristics of both modern and ancient turbidite systems. These factors ultimately control the timing and bounding characteristics between stages of growth of deepwater systems. If comparison of elements from different turbidite deposits using various data types is carried out at similar physical and temporal scales, predictive models eventually may be improved.
Photo-sensitive Ge nanocrystal based films controlled by substrate deposition temperature
NASA Astrophysics Data System (ADS)
Stavarache, Ionel; Maraloiu, Valentin Adrian; Negrila, Catalin; Prepelita, Petronela; Gruia, Ion; Iordache, Gheorghe
2017-10-01
Lowering the temperature of crystallization by deposition of thin films on a heated substrate represents the easiest way to find new means to develop and improve new working devices based on nanocrystals embedded in thin films. The improvements are strongly related with the increasing of operation speed, substantially decreasing the energy consumption and reducing unit fabrication costs of the respective semiconductor devices. This approach avoids major problems, such as those related to diffusion or difficulties in controlling nanocrystallites size, which appear during thermal treatments at high temperatures after deposition. This article reports on a significant progress given by structuring Ge nanocrystals (Ge-NCs) embedded in silicon dioxide (SiO2) thin films by heating the substrate at 400 °C during co-deposition of Ge and SiO2 by magnetron sputtering. As a proof-of-concept, a Si/Ge-NCs:SiO2 photo-sensitive structure was fabricated thereof and characterized. The structure shows superior performance on broad operation bandwidth from visible to near-infrared, as strong rectification properties in dark, significant current rise in the inversion mode when illuminated, high responsivity, high photo-detectivity of 1014 Jones, quick response and significant conversion efficiency with peak value reaching 850% at -1 V and about 1000 nm. This simple preparation approach brings an important contribution to the effort of structuring Ge nanocrystallites in SiO2 thin films at a lower temperature for the purpose of using these materials for devices in optoelectronics, solar cells and electronics on flexible substrates.
NASA Technical Reports Server (NTRS)
Arvidson, Raymond; Becker, Richard; Shanabrook, Amy; Luo, Wei; Sturchio, Neil; Sultan, Mohamed; Lofty, Zakaria; Mahmood, Abdel Moneim; El Alfy, Zeinhom
1994-01-01
The degree to which local climatic variations, eustatic sea level fluctuations, and tectonic uplift have influenced the development of Quaternary marine and fluvial landforms and deposits along the Red Sea coast, Eastern Desert, was investigated using a combination of remote sensing and field data, age determinations of corals, and numerical simulations. False color composites generated from Landsat Thematic Mapper and SPOT image data, digital elevation models derived from sterophotogrammetric analysis of SPOT data, and field observations document that a approximately 10-km wide swath inland from the coast is covered in many places with coalescing alluvial fans of Quaternary age. Wadis cutting through the fans exhibit several pairs of fluvial terraces, and wadi walls expose alluvium interbedded with corraline limestone deposits Further, three distinct coral terraces are evident along the coatline. Climatic, eustatic, and tectonic uplift controls on the overall system were simulated using a cellular automata algorithm with the following characteristics: (1) uplift as a function of position and time, as defined by the elevations and ages of corals; (2) climatic variations driven by insolation changes associated with Milankovitch cycles; (3) sea level fluctuations based on U/Th ages of coral terraces and eustatic data; and (4) parametrized fluvial erosion and deposition. Results imply that the fans and coralline limestones were generated in a setting in which the tectonic uplift rate decreased over the Quarternary to negligible values at present. Coralline limestones formed furing eustatic highstands when alluvium was trapped uspstream and wadis filled with debris. During lowstands, wadis cut into sedimentary deposits; coupled with continuing uplift, fans were dissected, leaving remnant surfaces, and wadi-related terraces were generated by down cutting. Only landforms from the past three to four eustatic sea level cycles (i.e., approximately 300 to 400 kyr) are likely to have survived erosion and deposition associated with fluvial processes.
Liu, G; Lut, M C; Verberk, J Q J C; Van Dijk, J C
2013-05-15
Water quality changes, particle accumulation and microbial growth occurring in pilot-scale water distribution systems fed with normally treated and additional treated groundwater were monitored over a period of almost one year. The treatment processes were ranked in the following order: nanofiltration (NF) > (better than) ultrafiltration (UF) > ion exchange (IEX) for limiting particle accumulation. A different order was found for limiting overall microbial growth: NF > IEX > UF. There were strong correlations between particle load and particle accumulation, and between nutrient load and microbial growth. It was concluded that particle accumulation can be controlled by reducing the particle load in water treatment plants; and the microbial growth can be better controlled by limiting organic nutrients rather than removing biomass in water treatment plants. The major focus of this study was on microbial growth. The results demonstrated that growth occurred in all types of treated water, including the phases of bulk water, biofilm and loose deposits. Considering the growth in different phases, similar growth in bulk water was observed for all treatments; NF strongly reduced growth both in loose deposits and in biofilm; UF promoted growth in biofilm, while strongly limiting growth in loose deposits. IEX had good efficiency in between UF and NF, limiting both growths in loose deposits and in biofilm. Significant growth was found in loose deposits, suggesting that loose deposit biomass should be taken into account for growth evaluation and/or prediction. Strong correlations were found between microbial growth and pressure drop in a membrane fouling simulator which proved that a membrane fouling simulator can be a fast growth predictor (within a week). Different results obtained by adenosine triphosphate and flow cytometry cell counts revealed that ATP can accurately describe both suspended and particle-associated biomass, and flow cytometry files of TCC measurements needs to be further processed for particle loaded samples and/or a pretreatment protocol should be developed. Copyright © 2013 Elsevier Ltd. All rights reserved.
Climatic, eustatic, and tectonic controls on Quaternary deposits and landforms, Red Sea coast, Egypt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arvidson, R.; Becker, R.; Shanabrook, A.
1994-06-10
The degree to which local climatic variations, eustatic sea level fluctuations, and tectonic uplift have influenced the development of Quaternary marine and fluvial landforms and deposits along the Red Sea coast, Eastern Desert, Egypt was investigated using a combination of remote sensing and field data, age determinations of corals, and numerical simulations. False color composites generated from Landsat Thematic Mapper and SPOT image data, digital elevation models derived from stereophotogrammetric analysis of SPOT data, and field observations document that a {approximately}10-km-wide swath inland from the coast is covered in many places with coalescing alluvial fans of Quaternary age. Wadis cuttingmore » through the fans exhibit several pairs of fluvial terraces, and wadi walls expose alluvium interbedded with coralline limestone deposits. Further, three distinct coral terraces are evident along the coastline. Climatic, eustatic, and tectonic uplift controls on the overall system were simulated using a cellular automata algorithm with the following characteristics: (1) uplift as a function of position and time, as defined by the elevations and ages of corals; (2) climatic variations driven by insolation changes associated with Milankovitch cycles; (3) sea level fluctuations based on U/Th ages of coral terraces and eustatic data; and (4) parameterized fluvial erosion and deposition. Results imply that the fans and coralline limestones were generated in a setting in which the tectonic uplift rate decreased over the Quaternary to negligible values at present. During lowstands, wadis cut into sedimentary deposits; coupled with continuing uplift, fans were dissected, leaving remnant surfaces, and wadi-related terraces were generated by down cutting. Only landforms from the past three to four eustatic sea level cycles (i.e., {approximately} 300 to 400 kyr) are likely to have survived erosion and deposition associated with fluvial processes. 33 refs., 18 figs., 2 tabs.« less
Controls on nitrogen flux in alpine/subalpine watersheds of Colorado
Campbell, Donald H.; Baron, Jill S.; Tonnessen, Kathy A.; Brooks, Paul D.; Schuster, Paul F.
2000-01-01
High‐altitude watersheds in the Front Range of Colorado show symptoms of advanced stages of nitrogen excess, despite having less nitrogen in atmospheric deposition than other regions where watersheds retain nitrogen. In two alpine/subalpine subbasins of the Loch Vale watershed, atmospheric deposition of NO3− plus NH4+ was 3.2–5.5 kg N ha−1, and watershed export was 1.8–3.9 kg N ha−1 for water years 1992–1997. Annual N export increased in years with greater input of N, but most of the additional N was retained in the watershed, indicating that parts of the ecosystem are nitrogen‐limited. Dissolved inorganic nitrogen (DIN) concentrations were greatest in subsurface water of talus landscapes, where mineralization and nitrification augment high rates of atmospheric deposition of N. Tundra landscapes had moderately high DIN concentrations, whereas forest and wetland landscapes had low concentrations, indicating little export of nitrogen from these landscapes. Between the two subbasins the catchment of Icy Brook had greater retention of nitrogen than that of Andrews Creek because of landscape and hydrologic characteristics that favor greater N assimilation in both the terrestrial and aquatic ecosystems. These results suggest that export of N from alpine/subalpine watersheds is caused by a combination of direct flushing of N from atmospheric deposition and release of N from ecosystem biogeochemical processes (N cycling). Sensitivity of alpine ecosystems in the western United States to atmospheric deposition of N is a function of landscape heterogeneity, hydrologic flow paths, and climatic extremes that limit primary productivity and microbial activity, which, in turn, control retention and release of nitrogen. Conceptual and mechanistic models of N excess that have been developed for forested ecosystems need to be modified in order to predict the response of alpine ecosystems to future changes in climate and atmospheric deposition of N.
NASA Astrophysics Data System (ADS)
You, Eunyoung
Nanostructured metal oxide films have many applications in catalysis, microelectronics, microfluidics, photovoltaics and other fields. Since the performance of a device depends greatly on the structure of the material, the development of methodologies that enable prescriptive control of morphology are of great interest. The focus of this work is to control the structure and properties of the nanostructured metal oxide films using novel synthetic schemes in supercritical fluids and to use those films as key building components in alternative energy applications. A supercritical fluid is a substance at a temperature and pressure above its critical point. It typically exhibits gas-like transport properties and liquid-like densities. Supercritical fluid deposition (SFD) utilizes these properties of supercritical CO2 (scCO2) to deposit chemically pure metal, oxides and alloys of metal films. SFD is a chemical vapor deposition (CVD)-like process in the sense that it uses similar metal organic precursors and deposits films at elevated temperatures. Instead of vaporizing or subliming the precursors, they are dissolved in supercritical fluids. SFD has typically shown to exhibit higher precursor concentrations, lower deposition temperatures, conformal deposition of films on high aspect ratio features as compared to CVD. In2 O3, ZnO and SnO2 are attractive materials because they are used in transparent conductors. SFD of these materials were studied and In2 O3 deposition kinetics using tris(2,2,6,6-tetramethyl-3,5-heptanedionato) In (III) as precursor were determined. Growth rate dependence on the deposition temperature and the precursor concentrations were studied and the physicochemical and optical properties of In2 O3 films were characterized. Metal oxide nanochannels that can potentially be used for microfluidics have been fabricated by sequentially performing nanoimprint lithography (NIL) and SFD. NIL was used to pattern photoresist grating on substrates and SFD of TiO2 was performed thereafter. Subsequent calcination of the samples at high temperature of 400 °C revealed TiO2 nanochannels. H2-assisted-codeposition of Pt and cerium oxide using SFD was performed on porous carbon substrates for their use as anodes for direct methanol fuel cells. X-ray photoelectron analysis revealed that Pt was deposited as a pure metal and Ce was deposited as an oxide. Electrochemical analysis of a full cell revealed that an anode prepared with SFD exhibited better performance than that prepared with conventional brush-painting method. The second process that was developed is a direct spray-on technique to rapidly deposit crystalline nanoscale dendritic TiO2 onto a solid surface. This technique employs atomization of precursor solutions in supercritical fluids combined with the plasma thermal spraying. A solution of metal oxide precursor in scCO2 was expanded across a nozzle into the plasma jet where it is converted to metal oxide. We have investigated TiO2 as our model system using titanium tetra isopropoxide (Ttip) as a precursor. The film structure depends on key process variables including precursor concentration, precursor solution flow rate and plasma gun to substrate distance. The high surface area of the deposited films is attractive for applications in photovoltaics and we have fabricated dye-sensitized solar cells using these films.
NASA Astrophysics Data System (ADS)
Chávez, G. Moreno; Sarocchi, D.; Santana, E. Arce; Borselli, L.
2015-12-01
The study of grain size distribution is fundamental for understanding sedimentological environments. Through these analyses, clast erosion, transport and deposition processes can be interpreted and modeled. However, grain size distribution analysis can be difficult in some outcrops due to the number and complexity of the arrangement of clasts and matrix and their physical size. Despite various technological advances, it is almost impossible to get the full grain size distribution (blocks to sand grain size) with a single method or instrument of analysis. For this reason development in this area continues to be fundamental. In recent years, various methods of particle size analysis by automatic image processing have been developed, due to their potential advantages with respect to classical ones; speed and final detailed content of information (virtually for each analyzed particle). In this framework, we have developed a novel algorithm and software for grain size distribution analysis, based on color image segmentation using an entropy-controlled quadratic Markov measure field algorithm and the Rosiwal method for counting intersections between clast and linear transects in the images. We test the novel algorithm in different sedimentary deposit types from 14 varieties of sedimentological environments. The results of the new algorithm were compared with grain counts performed manually by the same Rosiwal methods applied by experts. The new algorithm has the same accuracy as a classical manual count process, but the application of this innovative methodology is much easier and dramatically less time-consuming. The final productivity of the new software for analysis of clasts deposits after recording field outcrop images can be increased significantly.
NASA Astrophysics Data System (ADS)
Kreuser, T.; Wopfner, H.; Kaaya, C. Z.; Markwort, S.; Semkiwa, P. M.; Aslandis, P.
The Karoo basins of Tanzania contain in excess of 3000 m of sediments which were preserved in several NNE-NE striking half grabens or other structural basin conditions. They are all intracratonic basins, most of which filled with terrestrial sediments. In some basins situated nearer the coastal region short marine incursions occurred in the Late Permian. The Ruhuhu Rasin in SW Tanzania provides a typical depositional sequence of a Karoo basin in eastern Africa. Sedimentation commenced with glacigene deposits. These are of Late Carboniferous to Early Permian age and may be equated with other glacial successions in Africa and elsewhere in Gondwana. The glacigene beds are overlain by fluvial-deltaic coal-bearing deposits succeeded by arkoses and continental red beds. A transitionary formation of carbonaceous shales with impure coals gradually develops into thick lacustrine series which are topped by Late Permian bone bearing beds. The Triassic is characterized by a very thick fluvio-deltaic succession of siliciclastics resting with regional unconformity on the Permian. This Early Triassic sequence exhibits well-developed repetitive depositional cycles. Current azimuth measurements indicate fluctuating flow regimes in the Early Permian but relative stable source areas to the west of the basin later on. The depositional evolution of the Ruhuhu Basin is controlled by both tectonic and climatic factors. During basin evolution important energy resources were deposited such as considerable reserves of coal and source rocks of moderate potential for hydrocarbon generation. Uranium enrichment is observed in the Triassic arenaceous series where diagenetic alterations and subsequent cementation processes led to the formation of laumontite. Post Karoo dykes and plugs had only local effect on thermal evolution of potential source rocks. Enrichments of elements, i.e., Nb, Zr, Rb, Cr, and V present additional exploration targets. A comparison with the Karoo basins of the coastal region indicates possible lithological correlation by the application of sequence stratigraphy. No early Permian deposits are exposed in the coastal Karoo basins but their existence within the deeper parts of these basins cannot be ruled out. There, composition of organic matter analysed so far suggests subsidence and heat exposure exceeding post maturity stage.
NASA Astrophysics Data System (ADS)
Turner, Brian R.
1986-02-01
The eastern Karoo Basin, South Africa, contains a thick sequence of terrigenous clastic sediments comprising a meanderbelt facies, braided channel facies divided into coarse and fine subfacies, fluviolacustrine facies and aeolian facies. Depositional trends and changes in fluvial style reflect a progressive increase in aridity of the climate under stable tectonic conditions, interrupted by two phases of source area tectonism and the development of fine and coarse clastic wedges of the braided channel subfacies; the latter signifying a short interlude of cool, wet conditions. The fine braided channel subfacies occurs in the upper part of the meanderbelt facies, which was deposited by ephemeral, meandering mixed-load streams of variable discharge and sinuosity, under dry, semi-arid climatic conditions. These deposited complex, internally discordant channel sands and well-developed levee deposits. Following deposition of the coarse braided channel subfacies semi-arid conditions returned and fluvial deposition was dominated by ephemeral, straight to slightly sinuous mixed load streams characterised by simple channel sand bodies. As the aridity of the climate increased, the streams became more localised and carried an increasing proportion of fines. Interbedded with and overlying the fluvial deposits is a mudstone-dominated lacustrine sequence grading up into aeolian sands suggesting a playa lake-type situation. The general absence of evaporites from these sediments is attributed to the fresh nature of the lake waters, as evidenced by the freshwater aquatic organisms and clay-mineral suite, the lack of adequate inflow for solute accumulation and the removal of dust impregnated by salts from the surface of the dry lake bed during the dry season by superheated, upward-spiralling columns of air. Broadly similar environments to the fluvio-lacustrine and aeolian facies sequence are to be found in the Lake Eyre Basin of central Australia and the Okavango "delta" of northern Botswana. The Okavango "delta" model has an important bearing on patterns of fluvial sedimentation in arid regions since it shows many characteristics of temperate, well-vegetated anastomosed fluvial systems despite its location in the Kalahari Desert.
Seramur, K.C.; Powell, R.D.; Carlson, P.R.
1997-01-01
In the marine environment, stability of the glacier terminus and the location of subglacial streams are the dominant controls on the distribution of grounding-line deposits within morainal banks. A morainal bank complex in Muir Inlet, Glacier Bay, SE Alaska, is used to develop a model of terminus stability and location of subglacial streams along the grounding line of temperate marine glaciers. This model can be used to interpret former grounding-line conditions in other glacimarine settings from the facies architecture within morainal bank deposits. The Muir Inlet morainal bank complex was deposited between 1860 A.D. and 1899 A.D., and historical observations provide a record of terminus positions, glacial retreat rates and sedimentary sources. These data are used to reconstruct the depositional environment and to develop a correlation between sedimentary facies and conditions along the grounding line. Four seismic facies identified on the high-resolution seismic-reflection profiles are used to interpret sedimentary facies within the morainal bank complex. Terminus stability is interpreted from the distribution of sedimentary facies within three distinct submarine geomorphic features, a grounding-line fan; stratified ridges, and a field of push ridges. The grounding-line fan was deposited along a stable terminus and is represented on seismic-reflection profiles by two distinct seismic facies, a proximal and a distal fan facies. The proximal fan facies was deposited at the efflux of subglacial streams and indicates the location of former glacifluvial discharges into the sea. Stratified ridges formed as a result of the influence of a quasi-stable terminus on the distribution of sedimentary facies along the grounding line. A field of push ridges formed along the grounding line of an unstable terminus that completely reworked the grounding-line deposits through glacitectonic deformation. Between 1860 A.D. and 1899 A.D. (39 years), 8.96 x 108 m3 of sediment were deposited within the Muir Inlet morainal bank complex at an average annual sediment accumulation rate of 2.3 x 107 m3/a. This rate represents the annual sediment production capacity of the glacier when the Muir Inlet drainage basin is filled with glacial ice.
The Ebro margin study, northwestern Mediterranean Sea - an introduction
Maldonado, A.; Hans, Nelson C.
1990-01-01
The Ebro continental margin from the coast to the deep sea off northeastern Spain was selected for a multidisciplinary project because of the abundant Ebro River sediment supply, Pliocene and Quaternary progradation, and margin development in a restricted basin where a variety of controlling factors could be evaluated. The nature of this young passive margin for the last 5 m.y. was investigated with particular emphasis on marine circulation, sediment dynamics, sediment geochemistry, depositional facies, seismic stratigraphy, geotechnical properties, geological hazards and human influences. These studies show the importance of marine circulation, variation in sediment supply, sea-level oscillation and tectonic setting for the understanding of modern and ancient margin depositional processes and growth patterns. ?? 1990.
Spray forming of NiTi and NiTiPd shape-memory alloys
NASA Astrophysics Data System (ADS)
Smith, Ronald; Mabe, James; Ruggeri, Robert; Noebe, Ronald
2008-03-01
In the work to be presented, vacuum plasma spray forming has been used as a process to deposit and consolidate prealloyed NiTi and NiTiPd powders into near net shape actuators. Testing showed that excellent shape memory behavior could be developed in the deposited materials and the investigation proved that VPS forming could be a means to directly form a wide range of shape memory alloy components. The results of DSC characterization and actual actuation test results will be presented demonstrating the behavior of a Nitinol 55 alloy and a higher transition temperature NiTiPd alloy in the form of torque tube actuators that could be used in aircraft and aerospace controls.
Spray Forming of NiTi and NiTiPd Shape-Memory Alloys
NASA Technical Reports Server (NTRS)
Mabe, James; Ruggeri, Robert; Noebe, Ronald
2008-01-01
In the work to be presented, vacuum plasma spray forming has been used as a process to deposit and consolidate prealloyed NiTi and NiTiPd powders into near net shape actuators. Testing showed that excellent shape memory behavior could be developed in the deposited materials and the investigation proved that VPS forming could be a means to directly form a wide range of shape memory alloy components. The results of DSC characterization and actual actuation test results will be presented demonstrating the behavior of a Nitinol 55 alloy and a higher transition temperature NiTiPd alloy in the form of torque tube actuators that could be used in aircraft and aerospace controls.
2006-10-02
Al -TM-RE) alloy which could by spray applied using various deposition routes or deposited as a powder that is...corrosion properties of various spray deposited alloys from their properties as defective coatings on 2024-T3. "* HVOF spray deposited and cold spray ...layer. "* A method has been developed to distinguish the intrinsic corrosion properties of various spray deposited
NASA Astrophysics Data System (ADS)
Reesink, A. J. H.; Best, J.; Freiburg, J. T.; Nathan, W.
2016-12-01
Rivers that existed before land plants colonized the Earth are commonly considered to be unaffected by microbial activity on their floodplains, because the limited cementation produced by microbial activity is insufficient to stabilize the river banks. Although this assumption is likely correct, such emphasis on channel dynamics ignores the potential role of floodplain dynamics as an integral component of the river system. Detailed analysis of cores from the Cambrian Mount Simon Sandstone, Illinois, suggests that a significant proportion of the terrestrial sequence is composed of flat-bedded `crinkly' structures that provide evidence of cementation by soil crusts and microbial biofilms, and that promoted the adhesion of sediment to sticky surfaces. Wind ripples and local desert pavements were abundant. These findings highlight that sediment deposition on Cambrian floodplains was often dominated by wind in locations where the ground water table reached the surface, and was thus likely independent of sediment transport within the river channel. Erosion by wind would thus have been hindered by surface cementation and the formation of desert pavements. Such ground water control on deposition, and resistance to erosion by floodplain surface hardening, appear to have been the primary controls on Cambrian floodplain topography. Because floodplain topography poses a key control on channel and floodplain flow, these processes may have affected patterns of erosion and deposition, as well as reach-scale dynamics such as channel avulsions. The autonomous operation of wind-and-groundwater controlled floodplains makes pre-vegetated river systems more sensitive to climatic conditions such as precipitation and evaporation, and strikingly different from those that occurred after the development of land plants.
Aerial electrostatic spray deposition and canopy penetration in cotton
USDA-ARS?s Scientific Manuscript database
Spray deposition on abaxial and adaxial leaf surfaces along with canopy penetration are essential for insect control and foliage defoliation in cotton production agriculture. Researchers have reported that electrostatically charged sprays have increased spray deposit onto these surfaces under widel...
Development of an Aerosol Surface Inoculation Method for Bacillus Spores ▿
Lee, Sang Don; Ryan, Shawn P.; Snyder, Emily Gibb
2011-01-01
A method was developed to deposit Bacillus subtilis spores via aerosolization onto various surface materials for biological agent decontamination and detection studies. This new method uses an apparatus coupled with a metered dose inhaler to reproducibly deposit spores onto various surfaces. A metered dose inhaler was loaded with Bacillus subtilis spores, a surrogate for Bacillus anthracis. Five different material surfaces (aluminum, galvanized steel, wood, carpet, and painted wallboard paper) were tested using this spore deposition method. This aerosolization method deposited spores at a concentration of more than 107 CFU per coupon (18-mm diameter) with less than a 50% coefficient of variation, showing that the aerosolization method developed in this study can deposit reproducible numbers of spores onto various surface coupons. Scanning electron microscopy was used to probe the spore deposition patterns on test coupons. The deposition patterns observed following aerosol impaction were compared to those of liquid inoculation. A physical difference in the spore deposition patterns was observed to result from the two different methods. The spore deposition method developed in this study will help prepare spore coupons via aerosolization fast and reproducibly for bench top decontamination and detection studies. PMID:21193670
Development of an aerosol surface inoculation method for bacillus spores.
Lee, Sang Don; Ryan, Shawn P; Snyder, Emily Gibb
2011-03-01
A method was developed to deposit Bacillus subtilis spores via aerosolization onto various surface materials for biological agent decontamination and detection studies. This new method uses an apparatus coupled with a metered dose inhaler to reproducibly deposit spores onto various surfaces. A metered dose inhaler was loaded with Bacillus subtilis spores, a surrogate for Bacillus anthracis. Five different material surfaces (aluminum, galvanized steel, wood, carpet, and painted wallboard paper) were tested using this spore deposition method. This aerosolization method deposited spores at a concentration of more than 10(7) CFU per coupon (18-mm diameter) with less than a 50% coefficient of variation, showing that the aerosolization method developed in this study can deposit reproducible numbers of spores onto various surface coupons. Scanning electron microscopy was used to probe the spore deposition patterns on test coupons. The deposition patterns observed following aerosol impaction were compared to those of liquid inoculation. A physical difference in the spore deposition patterns was observed to result from the two different methods. The spore deposition method developed in this study will help prepare spore coupons via aerosolization fast and reproducibly for bench top decontamination and detection studies.
Mao, J.; Qiu, Yumin; Goldfarb, R.J.; Zhang, Z.; Garwin, S.; Fengshou, R.
2002-01-01
Gold deposits of the western Qinling belt occur within the western part of the Qinling-Dabie-Sulu orogen, which is located between the Precambrian North China and Yangtze cratons and east of the Songpan-Ganzi basin. The early Paleozoic to early Mesozoic orogen can be divided into northern, central, and southern zones, separated by the Shangdan and Lixian-Shanyang thrust fault systems. The northern zone consists of an early Paleozoic arc accreted to the North China craton by ca. 450 Ma. The central zone, which contains numerous orogenic gold deposits, is dominated by clastic rocks formed in a late Paleozoic basin between the converging cratonic blocks. The southern zone is characterized by the easternmost exposure of Triassic sedimentary rocks of the Songpan-Ganzi basin. These Early to Late Triassic turbidities, in part calcareous, of the immense Songpan-Ganzi basin also border the western Qinling belt to the west. Carlinlike gold deposits are abundant (1) along a westward extension of the southern zone defined by a window of early Paleozoic clastic rocks extending into the basin, and (2) within the easternmost margin of the basinal rocks to the south of the extension, and in adjacent cover rocks of the Yangtze craton. Triassic and Early Jurassic synkinematic granitoids are widespread across the western Qinling belt, as well as in the Songpan-Ganzi basin. Orogenic lode gold deposits along brittle-ductile shear zones occur within greenschist-facies, highly deformed, Devonian and younger clastic rocks of the central zone. Mainly coarse-grained gold, along with pyrite, pyrrhotite, arsenopyrite, and minor base metal sulfides, occur in networks of quartz veinlets, brecciated wall rock, and are dissminated in altered wall rock. Isotopic dates suggest that the deposits formed during the Late Triassic to Middle Jurassic as the leading edge of the Yangtze craton was thrust beneath rocks of the western Qinling belt. Many gold-bearing placers are distributed along the river systems that flow south from the lode-bearing central zone. Carlin-like gold deposits have only been identified during the last decade in the southern zone of the western Qinling and in the northeastern corner of the Songpan-Ganzi basin. The deposits mainly contain micron-diameter gold in arsenical pyrite; are characterized by the common occurence of cinnabar, stibnite, realgar, and orpiment; exhibit strong silicification, carbonatization, pyritization, and decalcification dissolution textures; and are structurally controlled. The lack of reactive host lithologies may have prevented development of large (> 100 tones of gold), stratigraphically-controlled orebodies, which are typical of the Carlin deposits in the western USA. These deposits are hosted by Triassic turbidities and shallow-water carbonates, and an early Paleozoic inlier in the Songpan-Ganzi basin that extends in an east-west belt for about 300 km. Rather than true "Carlin" deposits, these Carlin-like deposits may be some type of shallow-crustal (i.e., epithermal) hybrid with features intermediate to Nevada-style Carlin deposits and the orogenic gold deposits to the immediate north. These Carlin-like deposits also overlap in age with the early Mesozoic orogenic gold deposits and, therefore, also formed during the final stages of collision between the cratons and intermediate basin closure.
Guo, Jing; Valdesueiro, David; Yuan, Shaojun; Liang, Bin; van Ommen, J. Ruud
2018-01-01
This work investigated the suppression of photocatalytic activity of titanium dioxide (TiO2) pigment powders by extremely thin aluminum oxide (Al2O3) films deposited via an atomic-layer-deposition-type process using trimethylaluminum (TMA) and H2O as precursors. The deposition was performed on multiple grams of TiO2 powder at room temperature and atmospheric pressure in a fluidized bed reactor, resulting in the growth of uniform and conformal Al2O3 films with thickness control at sub-nanometer level. The as-deposited Al2O3 films exhibited excellent photocatalytic suppression ability. Accordingly, an Al2O3 layer with a thickness of 1 nm could efficiently suppress the photocatalytic activities of rutile, anatase, and P25 TiO2 nanoparticles without affecting their bulk optical properties. In addition, the influence of high-temperature annealing on the properties of the Al2O3 layers was investigated, revealing the possibility of achieving porous Al2O3 layers. Our approach demonstrated a fast, efficient, and simple route to coating Al2O3 films on TiO2 pigment powders at the multigram scale, and showed great potential for large-scale production development. PMID:29364840
Bierlein, F.P.; Northover, H.J.; Groves, D.I.; Goldfarb, R.J.; Marsh, E.E.
2008-01-01
The assessment of spatial relationships between the location, abundance and size of orogenic-gold deposits in the highly endowed Sierra Foothills gold province in California, via the combination of field studies and a GIS-based analysis, illustrates the power of such an approach to the characterisation of important parameters of mineral systems, and the prediction of districts likely to host economic mineralisation. Regional- to deposit-scale reconnaissance mapping suggests that deposition of gold-bearing quartz veins occurred in second- and third-order, east-over-west thrusts during regional east - west compression and right-lateral transpression. At the district-scale, significant zones of mineralisation correspond with such transpressional reactivation zones and dilational jogs that developed during the Late Jurassic - Early Cretaceous along the misaligned segments of first-order faults throughout the Sierra Nevada Foothills Metamorphic Belt. Field-based observations and interpretation of GIS data (including solid geology, structural elements, deposit locations, magnetics, gravity) also highlight the importance of structural permeability contrasts, rheological gradients, and variations in fault orientation for localising mineralisation. Although this approach confirms empirical findings and produces promising results at the province scale, enhanced geological, structural, geophysical and geochronological data density is required to generate regionally consistent, high-quality input layers that improve predictive targeting at the goldfield to deposit-scale.
Self-contained in-vacuum in situ thin film stress measurement tool
NASA Astrophysics Data System (ADS)
Reinink, J.; van de Kruijs, R. W. E.; Bijkerk, F.
2018-05-01
A fully self-contained in-vacuum device for measuring thin film stress in situ is presented. The stress was measured by measuring the curvature of a cantilever on which the thin film was deposited. For this, a dual beam laser deflectometer was used. All optics and electronics needed to perform the measurement are placed inside a vacuum-compatible vessel with the form factor of the substrate holders of the deposition system used. The stand-alone nature of the setup allows the vessel to be moved inside a deposition system independently of optical or electronic feedthroughs while measuring continuously. A Mo/Si multilayer structure was analyzed to evaluate the performance of the setup. A radius of curvature resolution of 270 km was achieved. This allows small details of the stress development to be resolved, such as the interlayer formation between the layers and the amorphous-to-crystalline transition of the molybdenum which occurs at around 2 nm. The setup communicates with an external computer via a Wi-Fi connection. This wireless connection allows remote control over the acquisition and the live feedback of the measured stress. In principle, the vessel can act as a general metrology platform and add measurement capabilities to deposition setups with no modification to the deposition system.
Simple evaporation controller for thin-film deposition from a resistively heated boat
NASA Technical Reports Server (NTRS)
Scofield, John H.; Bajuk, Lou; Mohler, William
1990-01-01
A simple, inexpensive circuit is described for switching the current through a resistively heated evaporation boat during thin-film deposition. The circuit uses a silicon-controlled rectifier (SCR) to switch the 0-15-A current in the primary of a 2-kV A step-down transformer that supplies the 0-200-A current to an evaporation boat. The circuit is controlled by a 0-10 V-dc signal similar to that furnished by an Inficon XTC deposition-rate controller. This circuit may be assembled from a handful of parts for a cost of about $400, nearly one-tenth the cost of similar commercial units. Minimum construction is required, since the circuit is built around an off-the-shelf, self-contained SCR unit.
Surface morphology of a modified ballistic deposition model.
Banerjee, Kasturi; Shamanna, J; Ray, Subhankar
2014-08-01
The surface and bulk properties of a modified ballistic deposition model are investigated. The deposition rule interpolates between nearest- and next-nearest-neighbor ballistic deposition and the random deposition models. The stickiness of the depositing particle is controlled by a parameter and the type of interparticle force. Two such forces are considered: Coulomb and van der Waals type. The interface width shows three distinct growth regions before eventual saturation. The rate of growth depends more strongly on the stickiness parameter than on the type of interparticle force. However, the porosity of the deposits is strongly influenced by the interparticle force.
Metals as radio-enhancers in oncology: The industry perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pottier, Agnés, E-mail: agnes.pottier@nanobiotix.com; Borghi, Elsa; Levy, Laurent
Radio-enhancers, metal-based nanosized agents, could play a key role in oncology. They may unlock the potential of radiotherapy by enhancing the radiation dose deposit within tumors when the ionizing radiation source is ‘on’, while exhibiting chemically inert behavior in cellular and subcellular systems when the radiation beam is ‘off’. Important decision points support the development of these new type of therapeutic agents originated from nanotechnology. Here, we discuss from an industry perspective, the interest of developing radio-enhancer agents to improve tumor control, the relevance of nanotechnology to achieve adequate therapeutic attributes, and present some considerations for their development in oncology.more » - Highlights: • Oncology is a field of high unmet medical need. • Despites of its widespread usage, radiation therapy presents a narrow therapeutic window. • High density material at the nanoscale may enhance radiation dose deposit from cancer cells. • Metal-based nanosized radio-enhancers could unlock the potential of radiotherapy.« less
Influence of Preferred Orientation on the Electrical Conductivity of Fluorine-Doped Tin Oxide Films
Wang, Jian Tao; Shi, Xiang Lei; Liu, Wei Wei; Zhong, Xin Hua; Wang, Jian Nong; Pyrah, Leo; Sanderson, Kevin D.; Ramsey, Philip M.; Hirata, Masahiro; Tsuri, Keiko
2014-01-01
Current development of high-performance transparent conductive oxide (TCO) films is limited with tradeoff between carrier mobility and concentration since none of them can be improved without sacrificing the other. In this study, we prepare fluorine doped tin oxide (FTO) films by chemical vapor deposition with inclusions of different additives and report that the mobility can be varied from 0.65 to 28.5 cm2 V−1 s−1 without reducing the achieved high carrier concentration of 4 × 1020 cm−3. Such an increase in mobility is shown to be clearly associated with the development of (200) preferred orientation (PO) but concurrent degradation of (110) PO in films. Thus, at a constant high carrier concentration, the electrical conductivity can be improved via carrier mobility simply by PO control. Such a one-step approach avoiding conventional post-deposition treatment is suggested for developing next-generation FTO as well as other TCO films with better than ever conductivities. PMID:24419455
Allelic Variants of Complement Genes Associated with Dense Deposit Disease
Abrera-Abeleda, Maria Asuncion; Nishimura, Carla; Frees, Kathy; Jones, Michael; Maga, Tara; Katz, Louis M.; Zhang, Yuzhou
2011-01-01
The alternative pathway of the complement cascade plays a role in the pathogenesis of dense deposit disease (DDD). Deficiency of complement factor H and mutations in CFH associate with the development of DDD, but it is unknown whether allelic variants in other complement genes also associate with this disease. We studied patients with DDD and identified previously unreported sequence alterations in several genes in addition to allelic variants and haplotypes common to patients with DDD. We found that the likelihood of developing DDD increases with the presence of two or more risk alleles in CFH and C3. To determine the functional consequence of this finding, we measured the activity of the alternative pathway in serum samples from phenotypically normal controls genotyped for variants in CFH and C3. Alternative pathway activity was higher in the presence of variants associated with DDD. Taken together, these data confirm that DDD is a complex genetic disease and may provide targets for the development of disease-specific therapies. PMID:21784901
Corrosion of Highly Specular Vapor Deposited Aluminum (VDA) on Earthshade Door Sandwich Structure
NASA Technical Reports Server (NTRS)
Plaskon, Daniel; Hsieh, Cheng
2003-01-01
High-resolution infrared (IR) imaging requires spacecraft instrument design that is tightly coupled with overall thermal control design. The JPL Tropospheric Emission Spectrometer (TES) instrument measures the 3-dimensional distribution of ozone and its precursors in the lower atmosphere on a global scale. The TES earthshade must protect the 180-K radiator and the 230-K radiator from the Earth IR and albedo. Requirements for specularity, emissivity, and solar absorptance of inner surfaces could only be met with vapor deposited aluminum (VDA). Circumstances leading to corrosion of the VDA are described. Innovative materials and processing to meet the optical and thermal cycle requirements were developed. Examples of scanning electronmicroscope (SEM), atomic force microscope (AFM), and other surface analysis techniques used in failure analysis, problem solving, and process development are given. Materials and process selection criteria and development test results are presented in a decision matrix. Examples of conditions promoting and preventing galvanic corrosion between VDA and graphite fiber-reinforced laminates are provided.
Development Status of a CVD System to Deposit Tungsten onto UO2 Powder via the WCI6 Process
NASA Technical Reports Server (NTRS)
Mireles, O. R.; Kimberlin, A.; Broadway, J.; Hickman, R.
2014-01-01
Nuclear Thermal Propulsion (NTP) is under development for deep space exploration. NTP's high specific impulse (> 850 second) enables a large range of destinations, shorter trip durations, and improved reliability. W-60vol%UO2 CERMET fuel development efforts emphasize fabrication, performance testing and process optimization to meet service life requirements. Fuel elements must be able to survive operation in excess of 2850 K, exposure to flowing hydrogen (H2), vibration, acoustic, and radiation conditions. CTE mismatch between W and UO2 result in high thermal stresses and lead to mechanical failure as a result UO2 reduction by hot hydrogen (H2) [1]. Improved powder metallurgy fabrication process control and mitigated fuel loss can be attained by coating UO2 starting powders within a layer of high density tungsten [2]. This paper discusses the advances of a fluidized bed chemical vapor deposition (CVD) system that utilizes the H2-WCl6 reduction process.
Information system of mineral deposits in Slovenia
NASA Astrophysics Data System (ADS)
Hribernik, K.; Rokavec, D.; Šinigioj, J.; Šolar, S.
2010-03-01
At the Geologic Survey of Slovenia the need for complex overview and control of the deposits of available non-metallic mineral raw materials and of their exploitations became urgent. In the framework of the Geologic Information System we established the Database of non-metallic mineral deposits comprising all important data of deposits and concessionars. Relational database is built with program package MS Access, but in year 2008 we plan to transfer it on SQL server. In the evidence there is 272 deposits and 200 concessionars. The mineral resources information system of Slovenia, which was started back in 2002, consists of two integrated parts, mentioned relational database of mineral deposits, which relates information in tabular way so that rules of relational algebra can be applied, and geographic information system (GIS), which relates spatial information of deposits. . The complex relationships between objects and the concepts of normalized data structures, lead to the practical informative and useful data model, transparent to the user and to better decision-making by allowing future scenarios to be developed and inspected. Computerized storage, and display system is as already said, developed and managed under the support of Geological Survey of Slovenia, which conducts research on the occurrence, quality, quantity, and availability of mineral resources in order to help the Nation make informed decisions using earth-science information. Information about deposit is stored in records in approximately hundred data fields. A numeric record number uniquely identifies each site. The data fields are grouped under principal categories. Each record comprise elementary data of deposit (name, type, location, prospect, rock), administrative data (concessionar, number of decree in official paper, object of decree, number of contract and its duration) and data of mineral resource produced amount and size of exploration area). The data can also be searched, sorted and printed using any of these fields. New records are being added annually, and existing records updated or upgraded. Relational database is connected with scanned exploration/exploitation areas of deposits, defined on the base of digital ortofoto. Register of those areas is indispensable because of spatial planning and spatial municipal and regional strategy development. Database is also part of internet application for quick search and review of data and part of web page of mineral resources of Slovenia. The technology chosen for internet application is ESRI's ArcIMS Internet Map Server. ArcIMS allows users to readily and easily display, analyze, and interpret spatial data from desktop using a Web browser connected to the Internet. We believe that there is an opportunity for cooperation within this activity. We can offer a single location where users can come to browse relatively simply for geoscience-related digital data sets.
NASA Astrophysics Data System (ADS)
Gaffney, Monique Suzanne
1998-11-01
Metalorganic chemical vapor deposition (MOCVD) is a process used to manufacture electronic and optoelectronic devices that has traditionally lacked real-time growth monitoring and control. Controlling the growth rate and composition using the existing sensors, as well as advanced monitoring systems developed in-house, is shown to improve device quality. Specific MOCVD growth objectives are transformed into controller performance goals. Group III bubbler concentration variations, which perturb both growth rate and composition precision, are identified to be the primary disturbances. First a feed forward control system was investigated, which used an ultrasonic concentration monitor, located upstream in the process. This control strategy resulted in improved regulation of the gallium delivery rate by cancelling the sensed gallium bubbler concentration disturbances via the injection mass flow controller. The controller performance is investigated by growing GaInAs/InP superlattices. Results of growths performed under normal operating conditions and also under large perturbations include X-ray diffraction from the samples as well as real-time sensor signal data. High quality superlattices that display up to eight orders of satellite peaks are obtained under the feed forward compensation scheme, demonstrating improved layer-to-layer reproducibility of thickness and composition. The success of the feed forward control demonstration led to the development of a more complex downstream feedback control system. An ultraviolet absorption monitor was fabricated and retrofitted as a feedback control signal. A control-oriented model of the downstream process was developed for the feedback controller synthesis. Although challenged with both the photolysis and multi-gas detection issues common to UV absorption monitors, closed loop control with the UV sensor was performed and proved to be an effective method of disturbance rejection. An InP/GaInAs test structure was grown under both open and closed loop conditions. During the growth of a bulk GaInAs layer, an indium concentration disturbance was injected by way of the bubbler pressure control valve. The controller goal was to reject this concentration disturbance. The UV absorption real-time data, as well as both X-ray diffraction and photoluminescence post-growth sample measurements were used to evaluate the controller performance. All results indicate that the closed loop control system greatly improved the quality of the perturbed growth.
Superheater Corrosion In Biomass Boilers: Today's Science and Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharp, William
2011-12-01
This report broadens a previous review of published literature on corrosion of recovery boiler superheater tube materials to consider the performance of candidate materials at temperatures near the deposit melting temperature in advanced boilers firing coal, wood-based fuels, and waste materials as well as in gas turbine environments. Discussions of corrosion mechanisms focus on the reactions in fly ash deposits and combustion gases that can give corrosive materials access to the surface of a superheater tube. Setting the steam temperature of a biomass boiler is a compromise between wasting fuel energy, risking pluggage that will shut the unit down, andmore » creating conditions that will cause rapid corrosion on the superheater tubes and replacement expenses. The most important corrosive species in biomass superheater corrosion are chlorine compounds and the most corrosion resistant alloys are typically FeCrNi alloys containing 20-28% Cr. Although most of these materials contain many other additional additions, there is no coherent theory of the alloying required to resist the combination of high temperature salt deposits and flue gases that are found in biomass boiler superheaters that may cause degradation of superheater tubes. After depletion of chromium by chromate formation or chromic acid volatilization exceeds a critical amount, the protective scale gives way to a thick layer of Fe{sub 2}O{sub 3} over an unprotective (FeCrNi){sub 3}O{sub 4} spinel. This oxide is not protective and can be penetrated by chlorine species that cause further acceleration of the corrosion rate by a mechanism called active oxidation. Active oxidation, cited as the cause of most biomass superheater corrosion under chloride ash deposits, does not occur in the absence of these alkali salts when the chloride is present as HCl gas. Although a deposit is more corrosive at temperatures where it is molten than at temperatures where it is frozen, increasing superheater tube temperatures through the measured first melting point of fly ash deposits does not necessarily produce a step increase in corrosion rate. Corrosion rate typically accelerates at temperatures below the first melting temperature and mixed deposits may have a broad melting temperature range. Although the environment at a superheater tube surface is initially that of the ash deposits, this chemistry typically changes as the deposits mature. The corrosion rate is controlled by the environment and temperature at the tube surface, which can only be measured indirectly. Some results are counter-intuitive. Two boiler manufacturers and a consortium have developed models to predict fouling and corrosion in biomass boilers in order to specify tube materials for particular operating conditions. It would be very useful to compare the predictions of these models regarding corrosion rates and recommended alloys in the boiler environments where field tests will be performed in the current program. Manufacturers of biomass boilers have concluded that it is more cost-effective to restrict steam temperatures, to co-fire biofuels with high sulfur fuels and/or to use fuel additives rather than try to increase fuel efficiency by operating with superheater tube temperatures above melting temperature of fly ash deposits. Similar strategies have been developed for coal fired and waste-fired boilers. Additives are primarily used to replace alkali metal chloride deposits with higher melting temperature and less corrosive alkali metal sulfate or alkali aluminum silicate deposits. Design modifications that have been shown to control superheater corrosion include adding a radiant pass (empty chamber) between the furnace and the superheater, installing cool tubes immediately upstream of the superheater to trap high chloride deposits, designing superheater banks for quick replacement, using an external superheater that burns a less corrosive biomass fuel, moving circulating fluidized bed (CFB) superheaters from the convective pass into the hot recirculated fluidizing medium and adding an insulating layer to superheater tubes to raise their surface temperature above the dew point temperature of alkali chlorides. These design changes offer advantages but introduce other challenges. For example, operating with superheater temperatures above the dew point of alkali chlorides could require the use of creep-resistant tube alloys and doesn't eliminate chloride corrosion. Improved test methods that can be applied within this project include automated dimensional metrology to make a statistical analysis of depth of penetration and corrosion product thickness, and simultaneous thermal analysis measurements to quantify the melting of complex ashes and avoid the unreliability of the standard ash fusion test. Other important developments in testing include the installation of individually-temperature-controlled superheater loops for corrosion testing in operating boilers and temperature gradient testing.« less
Geotechnical approaches to coal ash content control in mining of complex structure deposits
NASA Astrophysics Data System (ADS)
Batugin, SA; Gavrilov, VL; Khoyutanov, EA
2017-02-01
Coal deposits having complex structure and nonuniform quality coal reserves require improved processes of production quality control. The paper proposes a method to present coal ash content as components of natural and technological dilution. It is chosen to carry out studies on the western site of Elginsk coal deposit, composed of four coal beds of complex structure. The reported estimates of coal ash content in the beds with respect to five components point at the need to account for such data in confirmation exploration, mine planning and actual mining. Basic means of analysis and control of overall ash content and its components are discussed.
Steffener, Jason; Razlighi, Qolamreza R.; Habeck, Christian; Stern, Yaakov
2016-01-01
The accumulation of β-amyloid (Aβ) peptides, a pathological hallmark of Alzheimer's disease (AD), has been associated with functional alterations, often in an episodic memory system with a particular emphasis on medial temporal lobe function. The topography of Aβ deposition, however, largely overlaps with frontoparietal control (FPC) regions implicated in cognitive control that has been shown to be impaired in early mild AD. To understand the neural mechanism underlying early changes in cognitive control with AD, we examined the impact of Aβ deposition on task-evoked FPC activation using functional magnetic resonance imaging (fMRI) in humans. Forty-three young and 62 cognitively normal older adults underwent an fMRI session during an executive contextual task in which task difficulty varied: single (either letter case or vowel/consonant judgment task) vs dual (switching between letter case and vowel/consonant decisions) task. Older subjects additionally completed 18F-florbetaben positron emission tomography scans and were classified as either amyloid positive (Aβ+) or negative (Aβ−). Consistent with previous reports, age-related increases in brain activity were found in FPC regions commonly identified across groups. For both task conditions, Aβ-related increases in brain activity were found compared with baseline activity. For higher cognitive control load, however, Aβ+ elderly showed reduced task-switching activation in the right inferior frontal cortex. Our findings suggest that with Aβ deposition, brain activation in the cognitive control region reaches a maximum with lower control demand and decreases with higher control demand, which may underlie early impairment in cognitive control with AD progression. SIGNIFICANCE STATEMENT The accumulation of β-amyloid (Aβ) peptides, a pathological hallmark of Alzheimer's disease, spatially overlaps with frontoparietal control (FPC) regions implicated in cognitive control, but the impact of Aβ deposition on FPC regions is largely unknown. Using functional magnetic resonance imaging with a task-switching task, we found Aβ-related increases in FPC regions compared with baseline activity. For higher cognitive control load, however, Aβ-related hypoactivity was found in the right inferior frontal cortex, a region highly implicated in cognitive control. The findings suggest that with Aβ deposition, task-related brain activity may reach a plateau early and undergo downstream pathways of neural dysfunction, which may relate to the early impairment of cognitive control seen in the progression of Aβ pathology. PMID:26865619
Singer, Donald A.; Kouda, Ryoichi
1988-01-01
A new method (FINDER) that uses the area of influence and Bayesian statistics to aid in selection of target areas on the basis of one or more variables and multiple observations was tested with drill hole data. A previously defined bimodal distribution of Na 2 O with the low sodium group confined to a 1.5 X 3.0-km zone beneath the cluster of deposits at Fukazawa was used as a control area for one test of FINDER. Using the Na 2 O means and standard deviations for the control area and minimum Na 2 O values from 174 drill holes, a probability map of centers of sodium depletion is produced for the Hokuroku district. High probability areas correspond to the known deposits that should have been rediscovered and to several areas without known deposits.Use of X-ray data from 165 drill holes, some of which also have chemical analyses, led to the identification of two additional variables, sericite and gypsum plus anhydrite, that allow more drill holes to be used and that expand the areas of influence around drill holes. Sericite is enriched up to 2.15 km and gypsum plus anhydrite up to 3.5 km from the centroid of the control area Fukazawa deposits. For the deposit groups with X-ray data nearby, Fukazawa, Shakanai, and Furutobe, a pattern of sericite enrichment, kuroko deposits, and gypsum plus anhydrite enrichment over 4 or 5 km is shown.With sodium, sericite, and gypsum plus anhydrite, FINDER's high probability areas include each of the four groups of kuroko deposits that should have been rediscovered and only one known deposit that is much smaller than Fukazawa is missed. Several large areas that are favorable centers of undiscovered deposits and other areas that are unlikely centers of deposits are also identified.
NASA Technical Reports Server (NTRS)
Conrad, G. W.; Stephens, A. P.; Conrad, A. H.; Spooner, B. S. (Principal Investigator)
1993-01-01
Fertilized eggs of Ilyanassa obsoleta Stimpson were collected immediately after their deposition in egg capsules. Unopened egg capsules then were affixed to glass slides, and incubated either statically (controls) or on a clinostat (experimentals). After incubation for 9-14 days, hatching occurred sooner and in a higher percentage of clinostated capsules than in controls. Embryos that hatched while undergoing clinostat incubation were abnormal in morphology, whereas other embryos present in non-hatched capsules in the same tubes appeared normal, as did embryos in the control tubes. Although the results are compatible with a conclusion that vector-averaged gravity in the experimental tubes caused the altered development, some other aspects of how the incubations were done may have contributed to the differences between the control and experimental results.