Science.gov

Sample records for controlling indoor air

  1. Controlling Indoor Air Pollution.

    ERIC Educational Resources Information Center

    Nero, Anthony V, Jr.

    1988-01-01

    Discusses the health risks posed by indoor air pollutants, such as airborne combustion products, toxic chemicals, and radioactivity. Questions as to how indoor air might be regulated. Calls for new approaches to environmental protection. (TW)

  2. Controlling Indoor Air Pollution from Moxibustion

    PubMed Central

    Lu, Chung-Yen; Kang, Sy-Yuan; Liu, Shu-Hui; Mai, Cheng-Wei; Tseng, Chao-Heng

    2016-01-01

    Indoor air quality (IAQ) control of hospitals plays a critical role in protecting both hospital staffs and patients, particularly those who are highly susceptible to the adverse effects of indoor noxious hazards. However, moxibustion in outpatient departments (OPDs) of traditional Chinese medicine (TCM) may be a source of indoor air pollution in hospitals. Some studies have investigated indoor air pollution during moxibustion in Chinese medicine clinics (CMCs) and moxibustion rooms, demonstrating elevated air pollutants that pose a threat to the health of medical staff and patients. Our study investigated the indoor air pollutants of indoor carbon dioxide (CO2), carbon monoxide (CO), formaldehyde (HCHO), total volatile organic compounds (TVOCs), airborne particulate matter with a diameter of ≤10 µm (PM10) and ≤2.5 µm (PM2.5) during moxibustion in an acupuncture and moxibustion room of the OPD in a hospital in Taipei. To evaluate the different control strategies for indoor air pollution from moxibution, a comparison of air pollutants during moxibution among the methods of using alternative old moxa wools, local exhaust ventilation and an air cleaner was conducted. In this study, burning alternative old moxa wools for moxibustion obviously reduced all gaseous pollutants except for aerosols comparing burning fresh moxa wools. Using local exhaust ventilation reduced most of the aerosols after burning moxa. We also found that using an air cleaner was inefficient for controlling indoor air pollutants, particularly gaseous pollutants. Therefore, combining replacing alternative old moxa wools and local exhaust ventilation could be a suitable design for controlling indoor air pollution during moxibustion therapy. PMID:27331817

  3. Controlling Indoor Air Pollution from Moxibustion.

    PubMed

    Lu, Chung-Yen; Kang, Sy-Yuan; Liu, Shu-Hui; Mai, Cheng-Wei; Tseng, Chao-Heng

    2016-06-20

    Indoor air quality (IAQ) control of hospitals plays a critical role in protecting both hospital staffs and patients, particularly those who are highly susceptible to the adverse effects of indoor noxious hazards. However, moxibustion in outpatient departments (OPDs) of traditional Chinese medicine (TCM) may be a source of indoor air pollution in hospitals. Some studies have investigated indoor air pollution during moxibustion in Chinese medicine clinics (CMCs) and moxibustion rooms, demonstrating elevated air pollutants that pose a threat to the health of medical staff and patients. Our study investigated the indoor air pollutants of indoor carbon dioxide (CO₂), carbon monoxide (CO), formaldehyde (HCHO), total volatile organic compounds (TVOCs), airborne particulate matter with a diameter of ≤10 µm (PM10) and ≤2.5 µm (PM2.5) during moxibustion in an acupuncture and moxibustion room of the OPD in a hospital in Taipei. To evaluate the different control strategies for indoor air pollution from moxibution, a comparison of air pollutants during moxibution among the methods of using alternative old moxa wools, local exhaust ventilation and an air cleaner was conducted. In this study, burning alternative old moxa wools for moxibustion obviously reduced all gaseous pollutants except for aerosols comparing burning fresh moxa wools. Using local exhaust ventilation reduced most of the aerosols after burning moxa. We also found that using an air cleaner was inefficient for controlling indoor air pollutants, particularly gaseous pollutants. Therefore, combining replacing alternative old moxa wools and local exhaust ventilation could be a suitable design for controlling indoor air pollution during moxibustion therapy.

  4. Research review: Indoor air quality control techniques

    SciTech Connect

    Fisk, W.J.

    1986-10-01

    Techniques for controlling the concentration of radon, formaldehyde, and combustion products in the indoor air are reviewed. The most effective techniques, which are generally based on limiting or reducing indoor pollutant source strengths, can decrease indoor pollutant concentrations by a factor of 3 to 10. Unless the initial ventilation rate is unusually low, it is difficult to reduce indoor pollutant concentrations more than approximately 50% by increasing the ventilation rate of an entire building. However, the efficiency of indoor pollutant control by ventilation can be enhanced through the use of local exhaust ventilation near concentrated sources of pollutants, by minimizing short circuiting of air from supply to exhaust when pollutant sources are dispersed and, in some situations, by promoting a displacement flow of air and pollutants toward the exhaust. Active air cleaning is also examined briefly. Filtration and electrostatic air cleaning for removal of particles from the indoor air are the most practical and effective currently available techniques of air cleaning. 49 refs., 7 figs.

  5. Control of asthma triggers in indoor air with air cleaners: a modeling analysis

    PubMed Central

    Myatt, Theodore A; Minegishi, Taeko; Allen, Joseph G; MacIntosh, David L

    2008-01-01

    Background Reducing exposure to environmental agents indoors shown to increase asthma symptoms or lead to asthma exacerbations is an important component of a strategy to manage asthma for individuals. Numerous investigations have demonstrated that portable air cleaning devices can reduce concentrations of asthma triggers in indoor air; however, their benefits for breathing problems have not always been reproducible. The potential exposure benefits of whole house high efficiency in-duct air cleaners for sensitive subpopulations have yet to be evaluated. Methods We used an indoor air quality modeling system (CONTAM) developed by NIST to examine peak and time-integrated concentrations of common asthma triggers present in indoor air over a year as a function of natural ventilation, portable air cleaners, and forced air ventilation equipped with conventional and high efficiency filtration systems. Emission rates for asthma triggers were based on experimental studies published in the scientific literature. Results Forced air systems with high efficiency filtration were found to provide the best control of asthma triggers: 30–55% lower cat allergen levels, 90–99% lower risk of respiratory infection through the inhalation route of exposure, 90–98% lower environmental tobacco smoke (ETS) levels, and 50–75% lower fungal spore levels than the other ventilation/filtration systems considered. These results indicate that the use of high efficiency in-duct air cleaners provide an effective means of controlling allergen levels not only in a single room, like a portable air cleaner, but the whole house. Conclusion These findings are useful for evaluating potential benefits of high efficiency in-duct filtration systems for controlling exposure to asthma triggers indoors and for the design of trials of environmental interventions intended to evaluate their utility in practice. PMID:18684328

  6. HVAC SYSTEMS AS A TOOL IN CONTROLLING INDOOR AIR QUALITY: A LITERATURE REVIEW

    EPA Science Inventory

    The report gives results of a review of literature on the use of heating, ventilating, and air-conditioning (HVAC) systems to control indoor air quality (IAQ). Although significant progress has been made in reducing the energy consumption of HVAC systems, their effect on indoor a...

  7. Indoor Air Pollution

    MedlinePlus

    ... is known as sick building syndrome. Usually indoor air quality problems only cause discomfort. Most people feel better ... and getting rid of pollutants can improve the quality of your indoor air. Environmental Protection Agency

  8. Controlling indoor air pollution from tobacco smoke: models and measurements

    SciTech Connect

    Offermann, F.J.; Girman, J.R.; Sextro, R.G.

    1984-07-01

    The effects of smoking rate, ventilation, surface deposition, and air cleaning on the indoor concentrations of respirable particulate matter and carbon monoxide generated by cigarette smoke are examined. A general mass balance model is presented which has been extended to include the concept of ventilation efficiency. Following a review of the source and removal terms associated with respirable particles and carbon monoxide, model predictions to various health guidelines are compared. 20 references, 1 figure.

  9. Indoor air quality medicolegal issues.

    PubMed

    Ross, C S; Lockey, J E

    1994-08-01

    The regulatory and legal communities have begun only recently to address the medicolegal issues surrounding indoor air quality. No single governmental agency is responsible for indoor air quality issues. The focus of the federal government's indoor air quality programs is on the gathering and dissemination of information rather than on the regulation of indoor air pollution. State and local regulatory controls vary but may include antismoking ordinances, building codes, and contractor certification programs. Numerous lawsuits involving various parties and legal theories have been filed on the basis of illness allegedly related to indoor air quality. Further regulatory and legal review of indoor air problems will likely occur in the near future, particularly as a result of the characterization of environmental tobacco smoke as a class A carcinogen.

  10. Workshop on indoor air quality research needs

    SciTech Connect

    Not Available

    1980-01-01

    Workshop participants report on indoor air quality research needs including the monitoring of indoor air quality, report of the instrumentation subgroup of indoor air quality, health effects, and the report of the control technology session. Risk analysis studies addressing indoor environments were also summarized. (DLS)

  11. Indoor air quality assessment in the air traffic control tower of the Athens Airport, Greece.

    PubMed

    Helmis, Costas G; Assimakopoulos, Vasiliki D; Flocas, Helena A; Stathopoulou, Ourania I; Sgouros, George; Hatzaki, Maria

    2009-01-01

    In this study, an assessment of indoor air quality (IAQ) and thermal comfort in the Athens Traffic Control Tower (ATCT) offices of Hellinicon building complex, which is mechanically ventilated, is presented. Measurements of PM(10), PM(2.5), TVOCs and CO(2) concentrations were performed during three experimental cycles, while the Thom Discomfort Index was calculated to describe the employees' feeling of discomfort. The aim of the first cycle was to identify the IAQ status, the second to investigate the effectiveness of certain measures taken, and the third to continuously monitor and control IAQ. During the first two cycles, daily spot measurements of TVOCs and CO(2) were performed at various indoor locations and at the respective outdoor air intake positions, in addition with mean 24-h spot measurements of indoor PM(10) and PM(2.5). Results revealed that pollution levels vary according to the occupancy and the kind of activity. Following that, an automated system (IMAS) was designed and employed to continuously monitor indoor and outdoor CO(2), TVOCs, temperature and relative humidity. The ultimate scope was to control the IAQ and offer acceptable comfort conditions to the employees, whose work is of special nature and extremely demanding. Intervention scenarios were formulated and applied to the system to improve indoor conditions, when and where necessary. Regarding the third cycle, 1-year measurements collected from the system to examine its effectiveness. While it was shown that discomfort may be attributed to co-existence of unsatisfactory thermal comfort conditions and IAQ, usually the sole predominant factor of discomfort feeling is thermal comfort.

  12. Indoor Air Quality Manual.

    ERIC Educational Resources Information Center

    Baldwin Union Free School District, NY.

    This manual identifies ways to improve a school's indoor air quality (IAQ) and discusses practical actions that can be carried out by school staff in managing air quality. The manual includes discussions of the many sources contributing to school indoor air pollution and the preventive planning for each including renovation and repair work,…

  13. EVALUATION OF AIR PURIFICATION DEVICES FOR CONTROL OF INDOOR PM

    EPA Science Inventory

    Because people spend most of their time indoors (89%), the indoor environment is a primary determinant of particle exposure. The indoor environment is especially an important determinant for the very young, the very old, and those with underlying cardiopulmonary disease because...

  14. Controlling Pollutants and Sources: Indoor Air Quality Design Tools for Schools

    EPA Pesticide Factsheets

    To protect indoor environmental quality the designer should understand indoor air quality problems and seek to eliminate potential sources of contamination that originate from outdoors as well as indoors.

  15. Control of respirable particles in indoor air with portable air cleaners

    NASA Astrophysics Data System (ADS)

    Offermann, F. J.; Sextro, R. G.; Fisk, W. J.; Grimsrud, D. T.; Nazaroff, W. W.; Nero, A. V.; Revzan, K. L.; Yater, J.

    Eleven portable air cleaning devices have been evaluated for control of indoor concentrations of respirable particles using in situ chamber decay tests. Following injection of cigarette smoke in a room-size chamber, decay rates for particle concentrations were obtained for total number concentration and for number concentration by particle size with and without air cleaner operation. The size distribution of the tobacco smoke particles was log normal with a count median diameter of 0.15 μm and a geometric standard deviation of 2.0. Without air cleaner operation, the natural mass-averaged surface deposition rate of particles was observed to be 0.1 h -1. Air cleaning rates for particles were found to be negligible for several small panel-filter devices, a residential-sized ion-generator, and a pair of mixing fans. Electrostatic precipitators and extended surface filters removed particles at substantial rates, and a HEPA-type filter was most efficient air cleaner studied.

  16. Control of Respirable Particles in Indoor Air with Portable AirCleaners

    SciTech Connect

    Offermann, F.J.; Sextro, R.G.; Fisk, W.J.; Grimsrud, D.T.; Nazaroff, W.W.; Nero, A.V.; Revzan, K.L.; Yater, J.

    1984-10-01

    Eleven portable air cleaning devices have been evaluated for control of indoor concentrations of respirable particles using in situ chamber decay tests. Following injection of cigarette smoke in a room-size chamber, decay rates for particle concentrations were obtained for total number concentration and for number concentration by particle size with and without air cleaner operation. The size distribution of the tobacco smoke particles was log normal with a count median diameter of 0.15 {micro}m and a geometric standard deviation of 2.0. Without air cleaner operation, the natural mass-averaged surface deposition rate of particles was observed to be 0.1 h{sup -1}. Air cleaning rates for particles were found to be negligible for several small panel-filter devices, a residential-sized ion-generator, and a pair of mixing fans. Electrostatic precipitators and extended surface filters removed particles at substantial rates, and a HEPA-type filter was the most efficient air cleaner studied.

  17. Indoor Air vs. Indoor Construction: A New Beginning.

    ERIC Educational Resources Information Center

    Manicone, Santo

    2000-01-01

    Identifies the steps that can be taken to lessen the impact of indoor air pollution created from indoor renovation projects, including project management tips to help contractors avoid creating unnecessary air pollution. Final comments address air pollution control when installing new furniture, smoking restrictions, occupant relations, and the…

  18. Improving Indoor Air Quality

    EPA Pesticide Factsheets

    Usually the most effective way to improve indoor air quality is to eliminate individual sources of pollution or to reduce their emissions. Some sources, like those that contain asbestos, can be sealed or enclosed.

  19. Indoor Air Quality in Schools

    EPA Pesticide Factsheets

    This web site will educate the public about indoor environmental issues specific to educational facilities and the importance of developing and sustaining comprehensive indoor air quality management programs.

  20. Air cleaners for indoor-air-pollution control (Chapter 10). Book chapter, Feb 89-Jul 90

    SciTech Connect

    Viner, A.S.; Ramanathan, K.; Hanley, J.T.; Smith, D.D.; Ensor, D.S.

    1991-01-01

    The chapter describes an experimental study to evaluate performance characteristics of currently available controls for indoor air pollutants, including both particles and gases. The study evaluated the particle-size-dependent collection efficiency of seven commercially available devices for particulate control: a common furnace filter, four industrial filters, and two electronic air cleaners (EACs). The furnance filter had negligible effect on particles with diameters between 0.1 and 1 micrometer. The industrial filters, with ASHRAE ratings of 95, 85, 65, and 40% showed minimum efficiency at about 0.1 micrometer, which was substantially less than the ASHRAE efficiency. One EAC, essentially a furnance filter with a high-voltage electrode, reached a maximum efficiency of 30% at low flowrates (7 cu m/min); however, it had a negligible effect at higher flowrates. The other EAC, similar to an industrial ESP, showed efficiencies of 80-90% over the entire size range at low to moderate flowrates. At the highest flowrate, a minimum efficiency was detected at 0.35 micrometer. The study also evaluated the suitability of commerically available carbon-based sorbents (wood, coal, and coconut) for removing low concentrations of volatile organic compounds (benzene, acetaldehyde, and 1,1,1-trichloroethane).

  1. Indoor air quality and human health

    SciTech Connect

    Turiel, I.

    1985-01-01

    The air inside buildings can contain various threats to human health: cigarette smoke, fumes from fires and cookers, microbes, gases, allergens and fumes produced by household products or building materials. Higher standards of insulation and draught-proofing and more use of air conditioning can increase the problems. This book provides a summary of indoor air quality problems in homes, offices and public buildings. Contents: Preface; Introduction; Formaledhyde and other household contaminants; Radon; Particulates; Combustion products; Involuntary smoking; Energy-efficient buildings and indoor air quality; Control of indoor air pollutants; Indoor air quality problems in office buildings; Legal and regulatory issues; Appendices; Sources and suggested reading; Glossary; Index.

  2. Manual on indoor air quality

    SciTech Connect

    Diamond, R.C.; Grimsrud, D.T.

    1983-12-01

    This reference manual was prepared to assist electric utilities in helping homeowners, builders, and new home buyers to understand a broad range of issues related to indoor air quality. The manual is directed to technically knowledgeable persons employed by utility companies - the customer service or marketing representative, applications engineer, or technician - who may not have specific expertise in indoor air quality issues. In addition to providing monitoring and control techniques, the manual summarizes the link between pollutant concentrations, air exchange, and energy conservation and describes the characteristics and health effects of selected pollutants. Where technical information is too lengthy or complex for inclusion in this volume, reference sources are given. Information for this manual was gathered from technical studies, manufacturers' information, and other materials from professional societies, institutes, and associations. The aim has been to provide objective technical and descriptive information that can be used by utility personnel to make informed decisions about indoor air quality issues.

  3. Indoor air pollution.

    PubMed

    Gold, D R

    1992-06-01

    This article summarizes the health effects of indoor air pollutants and the modalities available to control them. The pollutants discussed include active and passive exposure to tobacco smoke; combustion products of carbon monoxide; nitrogen dioxide; products of biofuels, including wood and coal; biologic agents leading to immune responses, such as house dust mites, cockroaches, fungi, animal dander, and urine; biologic agents associated with infection such as Legionella and tuberculosis; formaldehyde; and volatile organic compounds. An approach to assessing building-related illness and "tight building" syndrome is presented. Finally, the article reviews recent data on hospital-related asthma and exposures to potential respiratory hazards such as antineoplastic agents, anesthetic gases, and ethylene oxide.

  4. Indoor air pollution

    SciTech Connect

    Gold, D.R. )

    1992-06-01

    This article summarizes the health effects of indoor air pollutants and the modalities available to control them. The pollutants discussed include active and passive exposure to tobacco smoke; combustion products of carbon monoxide; nitrogen dioxide; products of biofuels, including wood and coal; biologic agents leading to immune responses, such as house dust mites, cockroaches, fungi, animal dander, and urine; biologic agents associated with infection such as Legionella and tuberculosis; formaldehyde; and volatile organic compounds. An approach to assessing building-related illness and tight building' syndrome is presented. Finally, the article reviews recent data on hospital-related asthma and exposures to potential respiratory hazards such as antineoplastic agents, anesthetic gases, and ethylene oxide.88 references.

  5. Carbon Dioxide Detection and Indoor Air Quality Control.

    PubMed

    Bonino, Steve

    2016-04-01

    When building ventilation is reduced, energy is saved because it is not necessary to heat or cool as much outside air. Reduced ventilation can result in higher levels of carbon dioxide, which may cause building occupants to experience symptoms. Heating or cooling for ventilation air can be enhanced by a DCV system, which can save energy while providing a comfortable environment. Carbon dioxide concentrations within a building are often used to indicate whether adequate fresh air is being supplied to the building. These DCV systems use carbon dioxide sensors in each space or in the return air and adjust the ventilation based on carbon dioxide concentration; the higher the concentration, the more people occupy the space relative to the ventilation rate. With a carbon dioxide sensor DCV system, the fresh air ventilation rate varies based on the number ofpeople in the space, saving energy while maintaining a safe and comfortable environment.

  6. Indoor Air Quality

    NASA Astrophysics Data System (ADS)

    Miyazaki, Takeji

    The reduction of intake of outdoor air volume in air conditioned buildings, adopted as the strategy for saving energy, has caused sick building syndrome abroad. Such symptoms of sick building as headache, stimuli of eye and nose and lethargy, appears to result from cigarette smoke, folmaldehyde and volatile organic carbons. On the other hand, in airtight residences not only carbon monoxide and nitrogen oxides from domestic burning appliances but also allergens of mite, fungi, pollen and house dust, have become a subject of discussion. Moreover, asbestos and radon of carcinogen now attract a great deal of attention. Those indoor air pollutants are discussed.

  7. Carbon adsorption for indoor air cleaning

    SciTech Connect

    VanOsdell, D.W.; Sparks, L.E.

    1995-02-01

    Gas-phase air filtration equipment (GPAFE) has been applied for many years to control industrial gaseous contaminants. Interest in cleaning recirculation air to provide ventilation without the need to condition excessive outdoor air has promoted increased interest in GPAFE as indoor air control devices. The removal of volatile organic compounds (VOCs) using granular activated carbon (GAC) is the focus of this article. First, the authors present performance measurements for GAC at low challenge VOC concentrations that might be encountered indoors. Unlike previously reported tests, these were continued long enough to directly determine the GAC`s expected lifetime. The results suggest that test results obtained at high challenge concentrations may be extrapolated to low, indoor concentrations. Further study is needed, but these data are encouraging. Second, they will discuss the implications of these performance measurements for the use of GAC to remove VOCs and improve indoor air quality (IAQ) using an indoor air building simulation model.

  8. The indoor air we breathe.

    PubMed Central

    Oliver, L C; Shackleton, B W

    1998-01-01

    Increasingly recognized as a potential public health problem since the outbreak of Legionnaire's disease in Philadelphia in 1976, polluted indoor air has been associated with health problems that include asthma, sick building syndrome, multiple chemical sensitivity, and hypersensitivity pneumonitis. Symptoms are often nonspecific and include headache, eye and throat irritation, chest tightness and shortness of breath, and fatigue. Air-borne contaminants include commonly used chemicals, vehicular exhaust, microbial organisms, fibrous glass particles, and dust. Identified causes include defective building design and construction, aging of buildings and their ventilation systems, poor climate control, inattention to building maintenance. A major contributory factor is the explosion in the use of chemicals in building construction and furnishing materials over the past four decades. Organizational issues and psychological variables often contribute to the problem and hinder its resolution. This article describes the health problems related to poor indoor air quality and offers solutions. Images p398-a p399-a PMID:9769764

  9. Guidelines for Controlling Indoor Air Quality Problems Associated with Kilns, Copiers, and Welding in Schools. Technical Bulletin.

    ERIC Educational Resources Information Center

    Turner, Ronald W.; And Others

    Guidelines for controlling indoor air quality problems associated with kilns, copiers, and welding in schools are provided in this document. Individual sections on kilns, duplicating equipment, and welding operations contain information on the following: sources of contaminants; health effects; methods of control; ventilation strategies; and…

  10. Fundamentals of Indoor Air Quality in Buildings

    EPA Pesticide Factsheets

    This module provides the fundamentals to understanding indoor air quality. It provides a rudimentary framework for understanding how indoor and outdoor sources of pollution affect the indoor air quality of buildings.

  11. Introduction to Indoor Air Quality

    MedlinePlus

    ... Building materials and furnishings as diverse as: Deteriorated asbestos-containing insulation Newly installed flooring, upholstery or carpet ... more about indoor air pollutants and sources of: Asbestos Biological Pollutants Carbon Monoxide (CO) Formaldehyde/Pressed Wood ...

  12. Indoor Air Quality in Apartments

    EPA Pesticide Factsheets

    Apartments can have the same indoor air problems as single-family homes because many of the pollution sources, such as the interior building materials, furnishings, and household products, are similar.

  13. Indoor Air Quality in Schools.

    ERIC Educational Resources Information Center

    Torres, Vincent M.

    Asserting that the air quality inside schools is often worse than outdoor pollution, leading to various health complaints and loss of productivity, this paper details factors contributing to schools' indoor air quality. These include the design, operation, and maintenance of heating, ventilating, and air conditioning (HVAC) systems; building…

  14. Indoor air pollutants, ventilation rate determinants and potential control strategies in Chinese dwellings: A literature review.

    PubMed

    Ye, Wei; Zhang, Xu; Gao, Jun; Cao, Guangyu; Zhou, Xiang; Su, Xing

    2017-05-15

    After nearly twenty years of rapid modernization and urbanization in China, huge achievements have transformed the daily lives of the Chinese people. However, unprecedented environmental consequences in both indoor and outdoor environments have accompanied this progress and have triggered public awareness and demands for improved living standards, especially in residential environments. Indoor pollution data measured for >7000 dwellings (approximately 1/3 were newly decorated and were tested for volatile organic compound (VOC) measurements, while the rest were tested for particles, phthalates and other semi-volatile organic compounds (SVOCs), moisture/mold, inorganic gases and radon) in China within the last ten years were reviewed, summarized and compared with indoor concentration recommendations based on sensory or health end-points. Ubiquitous pollutants that exceed the concentration recommendations, including particulate matter, formaldehyde, benzene and other VOCs, moisture/mold, inorganic gases and radon, were found, indicating a common indoor air quality (IAQ) issue in Chinese dwellings. With very little prevention, oral, inhalation and dermal exposure to those pollutants at unhealthy concentration levels is almost inevitable. CO2, VOCs, humidity and radon can serve as ventilation determinants, each with different ventilation demands and strategies, at typical occupant densities in China; and particle reduction should be a prerequisite for determining ventilation requirements. Two directional ventilation modes would have profound impacts on improving IAQ for Chinese residences are: 1) natural (or window) ventilation with an air cleaner and 2) mechanical ventilation with an air filtration unit, these two modes were reviewed and compared for their applicability and advantages and disadvantages for reducing human exposure to indoor air pollutants. In general, mode 2 can more reliably ensure good IAQ for occupants; while mode 1 is more applicable due to its low

  15. Using a Ventilation Controller to Optimize Residential Passive Ventilation For Energy and Indoor Air Quality

    SciTech Connect

    Turner, William; Walker, Iain

    2014-08-01

    One way to reduce the energy impact of providing residential ventilation is to use passive and hybrid systems. However, these passive and hybrid (sometimes called mixed-mode) systems must still meet chronic and acute health standards for ventilation. This study uses a computer simulation approach to examine the energy and indoor air quality (IAQ) implications of passive and hybrid ventilation systems, in 16 California climate zones. Both uncontrolled and flow controlled passive stacks are assessed. A new hybrid ventilation system is outlined that uses an intelligent ventilation controller to minimise energy use, while ensuring chronic and acute IAQ standards are met. ASHRAE Standard 62.2-2010 – the United States standard for residential ventilation - is used as the chronic standard, and exposure limits for PM2.5, formaldehyde and NO2 are used as the acute standards.The results show that controlled passive ventilation and hybrid ventilation can be used in homes to provide equivalent IAQ to continuous mechanical ventilation, for less use of energy.

  16. Indoor air problems in hospitals: a challenge for occupational health.

    PubMed

    Hellgren, Ulla-Maija; Reijula, Kari

    2011-03-01

    Indoor air problems, caused by moisture damage and limited ventilation, have been detected in Finnish hospital buildings. A recent survey found that hospital personnel experience indoor air-related symptoms more often than office workers. The aim of this study was to assess the role, capabilities, and methods of hospital occupational health professionals in handling indoor air problems. Data were generated through semi-structured interviews. Representatives of occupational health, occupational safety, and infection control were interviewed in seven central hospitals. The data were analyzed using qualitative methods. According to interviewed professionals, indoor air problems are difficult to tackle. The evaluation of health risks and risk communication were considered particularly difficult. A uniform action model for resolving indoor air problems should be created. An interprofessional indoor air group to handle indoor air problems should be created in all hospitals.

  17. Relationship of Indoor, Outdoor and Personal Air (RIOPA) study: study design, methods and quality assurance/control results.

    PubMed

    Weisel, Clifford P; Zhang, Junfeng; Turpin, Barbara J; Morandi, Maria T; Colome, Steven; Stock, Thomas H; Spektor, Dalia M; Korn, Leo; Winer, Arthur; Alimokhtari, Shahnaz; Kwon, Jaymin; Mohan, Krishnan; Harrington, Robert; Giovanetti, Robert; Cui, William; Afshar, Masoud; Maberti, Silvia; Shendell, Derek

    2005-03-01

    The Relationship of Indoor, Outdoor and Personal Air (RIOPA) Study was undertaken to evaluate the contribution of outdoor sources of air toxics, as defined in the 1990 Clean Air Act Amendments, to indoor concentrations and personal exposures. The concentrations of 18 volatile organic compounds (VOCs), 17 carbonyl compounds, and fine particulate matter mass (PM(2.5)) were measured using 48-h outdoor, indoor and personal air samples collected simultaneously. PM2.5 mass, as well as several component species (elemental carbon, organic carbon, polyaromatic hydrocarbons and elemental analysis) were also measured; only PM(2.5) mass is reported here. Questionnaires were administered to characterize homes, neighborhoods and personal activities that might affect exposures. The air exchange rate was also measured in each home. Homes in close proximity (<0.5 km) to sources of air toxics were preferentially (2:1) selected for sampling. Approximately 100 non-smoking households in each of Elizabeth, NJ, Houston, TX, and Los Angeles, CA were sampled (100, 105, and 105 respectively) with second visits performed at 84, 93, and 81 homes in each city, respectively. VOC samples were collected at all homes, carbonyls at 90% and PM(2.5) at 60% of the homes. Personal samples were collected from nonsmoking adults and a portion of children living in the target homes. This manuscript provides the RIOPA study design and quality control and assurance data. The results from the RIOPA study can potentially provide information on the influence of ambient sources on indoor air concentrations and exposure for many air toxics and will furnish an opportunity to evaluate exposure models for these compounds.

  18. Mind Your Indoor Air Quality

    ERIC Educational Resources Information Center

    Mak, Lily

    2012-01-01

    When it comes to excelling in the classroom, it turns out the air students are breathing is just as important as the lessons they are learning. Studies show poor indoor air quality (IAQ) can lessen the comfort of students as well as staff--affecting concentration, attendance and student performance. It can even lead to lower IQs. What's more, poor…

  19. [Indoor air quality in schools].

    PubMed

    Cartieaux, E; Rzepka, M-A; Cuny, D

    2011-07-01

    Indoor air quality in schools has received particular attention over the past several years. Children are considered as one of the most sensitive groups to atmospheric pollution because their bodies are actively growing and they breathe higher volumes of air relative to their body weights than adults do. They also spend more time in school or group structures (preschools, day nurseries) than in any indoor environments other than the home. The analysis of children's exposure to air pollution at school requires the identification of the main pollutant sources present in these educational institutions. Both a strong contribution of outdoor pollution and a very specific pollution bound to school activities such as the use of paints, markers, glues, and manufactured ink eraser pens, exist. The ventilation in school buildings also plays an important role in air quality. A higher air exchange may improve thermal comfort and air quality. The cause of indoor air pollution is a combinatory effect of physical, chemical, and biological factors, and the adequacy of ventilation in the environment. Several pollutants have been reported to exist in classrooms such as bacteria, molds, volatile organic compounds, persistent organic pollutants and microparticles. There is a correlation between the concentrations of the pollutants and onset of health problems in schoolchildren. We observe predominantly respiratory symptoms as well as a prevalence of respiratory diseases such as asthma and allergies. This study shows that poor indoor air quality affects children's health.

  20. Indoor air quality and health

    NASA Astrophysics Data System (ADS)

    Jones, A. P.

    During the last two decades there has been increasing concern within the scientific community over the effects of indoor air quality on health. Changes in building design devised to improve energy efficiency have meant that modern homes and offices are frequently more airtight than older structures. Furthermore, advances in construction technology have caused a much greater use of synthetic building materials. Whilst these improvements have led to more comfortable buildings with lower running costs, they also provide indoor environments in which contaminants are readily produced and may build up to much higher concentrations than are found outside. This article reviews our current understanding of the relationship between indoor air pollution and health. Indoor pollutants can emanate from a range of sources. The health impacts from indoor exposure to combustion products from heating, cooking, and the smoking of tobacco are examined. Also discussed are the symptoms associated with pollutants emitted from building materials. Of particular importance might be substances known as volatile organic compounds (VOCs), which arise from sources including paints, varnishes, solvents, and preservatives. Furthermore, if the structure of a building begins to deteriorate, exposure to asbestos may be an important risk factor for the chronic respiratory disease mesothelioma. The health effects of inhaled biological particles can be significant, as a large variety of biological materials are present in indoor environments. Their role in inducing illness through immune mechanisms, infectious processes, and direct toxicity is considered. Outdoor sources can be the main contributors to indoor concentrations of some contaminants. Of particular significance is Radon, the radioactive gas that arises from outside, yet only presents a serious health risk when found inside buildings. Radon and its decay products are now recognised as important indoor pollutants, and their effects are

  1. Indoor Air Quality

    MedlinePlus

    ... can protect yourself and your family. Learn more Air Quality at Work Workers should breathe easy while on the job, but worksites with poor air quality put employees at risk. Healthy air is essential ...

  2. Federal Interagency Committee on Indoor Air Quality

    EPA Pesticide Factsheets

    The Federal Interagency Committee on Indoor Air Quality (CIAQ), which meets three times a year, was established by Congress to coordinate the activities of the Federal Government on issues relating to Indoor Air Quality.

  3. Mold and Indoor Air Quality in Schools

    MedlinePlus

    ... Twitter Google+ Pinterest Contact Us Mold and Indoor Air Quality in Schools Mold and Moisture in Schools Webinar ... premier resource on this issue is the Indoor Air Quality Tools for Schools kit. Our schools-related resources ...

  4. Indoor airPLUS Web Linking Guidelines

    EPA Pesticide Factsheets

    As an Indoor airPLUS partner, your organization is listed on the EPA Indoor airPLUS Partner List. Your listing can also include a link to your organization's website when you meet the following requirements.

  5. Building ventilation and indoor air quality

    SciTech Connect

    Hollowell, C.D.; Berk, J.V.; Boegel, M.L.; Miksch, R.R.; Nazaroff, W.W.; Traynor, G.W.

    1980-01-01

    Rising energy prices, among other factors, have generated an incentive to reduce ventilation rates and thereby reduce the cost of heating and cooling buildings. Reduced infiltration and ventilation in buildings may significantly increase exposure to indoor contaminants and perhaps have adverse effects on occupant health and comfort. Four indoor air contaminants - carbon monoxide and nitrogen dioxide from gas appliances; formaldehyde from particleboard, plywood, urea-formaldehyde foam insulation, and gas appliances; and radon from building materials, soil, and ground water - are currently receiving considerable attention in the context of potential health risks associated with reduced infiltration and ventilation rates. These air contaminants in conventional and energy efficient buildings were measured and analyzed with a view to assessing their potential health risks and various control strategies capable of lowering pollutant concentrations. Preliminary findings suggest that further intensive studies are needed in order to develop criteria for maintaining acceptable indoor air quality without compromising energy efficiency.

  6. INDOOR AIR CONCENTRATION UNIT CONVERSIONS

    EPA Science Inventory

    Migration of volatile chemicals from the subsurface into overlying buildings is called vapor intrusion (VI). Volatile organic chemicals in contaminated soils or groundwater can emit vapors, which can migrate through subsurface soils and may enter the indoor air of overlying buil...

  7. Indoor Air Quality Management Program.

    ERIC Educational Resources Information Center

    Anne Arundel County Public Schools, Annapolis, MD.

    In an effort to provide Indoor Air Quality (IAQ) management guidance, Anne Arundel County Public Schools was selected by the Maryland State Department of Education to develop a program that could be used by other school systems. A major goal was to produce a handbook that was "user friendly." Hence, its contents are a mix of history,…

  8. Indoor Air Quality and Disease

    EPA Science Inventory

    Concern over the quality of indoor (i.e., residential) as well as outdoor (i.e., environmental) air is increasing. Accordingly, owners of companion animals may approach their veterinarian about the potential for airborne irritants, allergens, pollutants, or infectious agents to n...

  9. Evaluating sources of indoor air pollution

    SciTech Connect

    Tichenor, B.A.; Sparks, L.E.; White, J.B.; Jackson, M.D.

    1988-05-01

    This paper discusses a three-phase approach, employing environmental chambers, indoor air quality (IAQ) models, and test-house experiments, that is effective in linking sources of indoor pollutants to measured concentrations. Emission factors developed in test chambers can be used to evaluate full-scale indoor environments. A PC-based IAQ model has been developed that can accurately predict indoor concentrations of specific pollutants under controlled conditions in a test house. The model is also useful in examining the effect of pollutant sinks and variations in ventilation parameters. Pollutants were examined from: (1) para-dichloro-benzene emissions from moth crystal cakes; and, (2) particulate emissions from unvented kerosene heaters. However, the approach has not been validated for other source types, including solvent based materials and aerosol products.

  10. Indoor Air Quality and Ice Arenas

    EPA Pesticide Factsheets

    All recreational facilities including ice arenas should use good ventilation practices especially where children are present. It is critical that indoor air quality is protected particularly when using fuel-burning equipment indoors.

  11. Cooperative Agreement Funding for Indoor Air Quality

    EPA Pesticide Factsheets

    The Indoor Environments Division has created partnership with public and private sector entities to help encourage the public to take action to minimize their risk and mitigate indoor air quality problems.

  12. Equivalence in Ventilation and Indoor Air Quality

    SciTech Connect

    Sherman, Max; Walker, Iain; Logue, Jennifer

    2011-08-01

    We ventilate buildings to provide acceptable indoor air quality (IAQ). Ventilation standards (such as American Society of Heating, Refrigerating, and Air-Conditioning Enginners [ASHRAE] Standard 62) specify minimum ventilation rates without taking into account the impact of those rates on IAQ. Innovative ventilation management is often a desirable element of reducing energy consumption or improving IAQ or comfort. Variable ventilation is one innovative strategy. To use variable ventilation in a way that meets standards, it is necessary to have a method for determining equivalence in terms of either ventilation or indoor air quality. This study develops methods to calculate either equivalent ventilation or equivalent IAQ. We demonstrate that equivalent ventilation can be used as the basis for dynamic ventilation control, reducing peak load and infiltration of outdoor contaminants. We also show that equivalent IAQ could allow some contaminants to exceed current standards if other contaminants are more stringently controlled.

  13. Indoor Air Quality and Asthma

    PubMed Central

    Holm, Stewart

    2017-01-01

    Numerous contaminants in indoor air and their potential to cause or exacerbate asthma continue to be a subject of public health concern. Many agents are causally associated with or can exacerbate asthma, particularly in children. For formaldehyde, an established respiratory irritant based on numerous studies, the evidence for an association with asthma is still considered only limited or suggestive. However, there is no evidence that indicates increased sensitivity to sensory irritation to formaldehyde in people often regarded as susceptible such as asthmatics. Acrolein, but not formaldehyde, was significantly associated with asthma in a large cohort of children. This prompted an evaluation of this highly irritating chemical that had never previously been considered in the context of the indoor air/childhood asthma issue. Because acrolein is more potent than formaldehyde as a respiratory irritant and ubiquitous in indoor air, it is plausible that previous studies on potential risk factors and childhood asthma may be confounded by formaldehyde acting as an unrecognized proxy for acrolein. PMID:28250718

  14. Evaluating sources of indoor air pollution

    SciTech Connect

    Tichenor, B.A.; Sparks, L.E.; White, J.B.; Jackson, M.D. )

    1988-01-01

    Scientists and engineers in the Indoor Air Brand of EPS'a Air and Energy Engineering Research Laboratory are conducting research to increase the state of knowledge concerning indoor air pollution factors. A three phase program is being implemented. The purpose of this paper is to show how their approach can be used to evaluate specific sources of indoor air pollution. Pollutants from two sources are examined: para-dichlorobenzene emissions from moth crystal cakes; and particulate emissions from unvented kerosene heaters.

  15. Control of aerosol contaminants in indoor air: combining the particle concentration reduction with microbial inactivation.

    PubMed

    Grinshpun, Sergey A; Adhikari, Atin; Honda, Takeshi; Kim, Ki Youn; Toivola, Mika; Rao, K S Ramchander; Reponen, Tiina

    2007-01-15

    An indoor air purification technique, which combines unipolar ion emission and photocatalytic oxidation (promoted by a specially designed RCI cell), was investigated in two test chambers, 2.75 m3 and 24.3 m3, using nonbiological and biological challenge aerosols. The reduction in particle concentration was measured size selectively in real-time, and the Air Cleaning Factor and the Clean Air Delivery Rate (CADR) were determined. While testing with virions and bacteria, bioaerosol samples were collected and analyzed, and the microorganism survival rate was determined as a function of exposure time. We observed that the aerosol concentration decreased approximately 10 to approximately 100 times more rapidly when the purifier operated as compared to the natural decay. The data suggest that the tested portable unit operating in approximately 25 m3 non-ventilated room is capable to provide CADR-values more than twice as great than the conventional closed-loop HVAC system with a rating 8 filter. The particle removal occurred due to unipolar ion emission, while the inactivation of viable airborne microorganisms was associated with photocatalytic oxidation. Approximately 90% of initially viable MS2 viruses were inactivated resulting from 10 to 60 min exposure to the photocatalytic oxidation. Approximately 75% of viable B. subtilis spores were inactivated in 10 min, and about 90% or greater after 30 min. The biological and chemical mechanisms that led to the inactivation of stress-resistant airborne viruses and bacterial spores were reviewed.

  16. Care for Your Air: A Guide to Indoor Air Quality

    EPA Pesticide Factsheets

    Understand indoor air in homes, schools, and offices. Most of us spend much of our time indoors. The air that we breathe in our homes, in schools, and in offices can put us at risk for health problems.

  17. Evaluation of control strategies for volatile organic compounds in indoor air (journal article)

    SciTech Connect

    Ramanathan, K.; Debler, V.L.

    1988-01-01

    The paper discusses research which evaluates the application of adsorption techniques to the control of indoor organic vapors. The adsorption on activated carbon of three compounds representing three classes of organic species was studied at 30 C in the concentration range zero to 200 ppb using a microbalance. The three were benzene (aromatic), acetaldehyde (oxygenated aliphatic), and 1,1,1-trichloroethane (halogenated aliphatic). Three sorbents (a wood base carbon, a coal base carbon, and a coconut shell base carbon) were examined. Uptakes for all the compounds on all the carbons were low (on the order of 10 to the minus 7th power gmol/g carbon). Simulation of a packed bed of carbon indicated that carbon adsorption may not be practical for continuous removal, but may be applicable to sudden releases (e.g., spills). Potential alternatives to activated carbon adsorption are discussed. Potentially toxic organic vapors are emitted from a wide variety of building materials, consumer products, and human activities. Control of indoor organic vapors generally involves removing the source and/or increasing the ventilation rate. The ubiquitous nature of sources of organic vapors generally makes source removal impractical. Increased ventilation causes increased energy usage with its resultant economic penalties. Therefore, practical removal methods are needed.

  18. A smart indoor air quality sensor network

    NASA Astrophysics Data System (ADS)

    Wen, Jin

    2006-03-01

    The indoor air quality (IAQ) has an important impact on public health. Currently, the indoor air pollution, caused by gas, particle, and bio-aerosol pollutants, is considered as the top five environmental risks to public health and has an estimated cost of $2 billion/year due to medical cost and lost productivity. Furthermore, current buildings are especially vulnerable for chemical and biological warfare (CBW) agent contamination because the central air conditioning and ventilation system serve as a nature carrier to spread the released agent from one location to the whole indoor environment within a short time period. To assure the IAQ and safety for either new or existing buildings, real time comprehensive IAQ and CBW measurements are needed. With the development of new sensing technologies, economic and reliable comprehensive IAQ and CBW sensors become promising. However, few studies exist that examine the design and evaluation issues related to IAQ and CBW sensor network. In this paper, relevant research areas including IAQ and CBW sensor development, demand control ventilation, indoor CBW sensor system design, and sensor system design for other areas such as water system protection, fault detection and diagnosis, are reviewed and summarized. Potential research opportunities for IAQ and CBW sensor system design and evaluation are discussed.

  19. A Breath of Fresh Air: Addressing Indoor Air Quality

    ERIC Educational Resources Information Center

    Palliser, Janna

    2011-01-01

    Indoor air pollution refers to "chemical, biological, and physical contamination of indoor air," which may result in adverse health effects (OECD 2003). The causes, sources, and types of indoor air pollutants will be addressed in this article, as well as health effects and how to reduce exposure. Learning more about potential pollutants in home…

  20. Indoor Air Quality in Schools: Clean Air Is Good Business.

    ERIC Educational Resources Information Center

    Guarneiri, Michele A.

    2003-01-01

    Describes the effect of poor indoor air quality (IAQ) on student health, the cost of safeguarding good IAQ, the cause of poor IAQ in schools, how to tell whether a school has an IAQ problem, and how the U.S. Environmental Protection Agency can help schools improve indoor air quality though the use of their free "Indoor Air Quality Tools for…

  1. Examining antecedents of clean indoor air policy support: implications for campaigns promoting clean indoor air.

    PubMed

    Quick, Brian L; Bates, Benjamin R; Romina, Sharon

    2009-01-01

    This investigation sought to examine the association between knowledge of the risks associated with environmental tobacco smoke and voter support for clean indoor air policies. In doing so, 2 antecedents were employed to enhance understanding of this relationship: attitudes and subjective norms. In addition, differences between nonsmokers and smokers were assessed across the aforementioned variables. The study sampled participants (N = 550) living in the Appalachian foothills as a means of conducting formative research prior to developing messages promoting clean indoor air policies. The study controlled for tobacco usage, age, biological sex, and income. Results revealed that awareness of risk is a good predictor of attitudes and social norms, and in return, attitudes and social norms are good predictors of support for clean indoor air policies. In addition, results reveal that nonsmokers maintain a significantly stronger belief in the dangers associated with environmental tobacco smoke, as well as more favorable attitudes, subjective norms, and support for clean indoor air policies when compared with smokers. These findings are discussed with a focus on message design strategies for practitioners and academics with interests in promoting clean indoor air policies.

  2. Indoor air quality: A psychosocial perspective

    SciTech Connect

    Boxer, P.A. )

    1990-05-01

    The incidence of indoor air quality problems has increased dramatically over the past decade. Investigation of these problems has yielded a definitive cause in only one third of the cases. Psychosocial factors may play a key role in the development and propagation of symptoms attributed to poor indoor air quality. Guidelines for managing indoor air quality problems from the organizational perspective are based upon psychosocial principles and elements of risk perception.

  3. Indoor air quality: a psychosocial perspective.

    PubMed

    Boxer, P A

    1990-05-01

    The incidence of indoor air quality problems has increased dramatically over the past decade. Investigation of these problems has yielded a definitive cause in only one third of the cases. Psychosocial factors may play a key role in the development and propagation of symptoms attributed to poor indoor air quality. Guidelines for managing indoor air quality problems from the organizational perspective are based upon psychosocial principles and elements of risk perception.

  4. Managing Indoor Air Quality in Schools.

    ERIC Educational Resources Information Center

    Woolums, Jennifer

    This publication examines the causes and effects of poor indoor air quality and provides information for reducing exposure to indoor contaminants in schools. It discusses the various indoor pollutants found in schools, including dust, chemical agents, gases, and volatile organic compounds; where they are found in schools; and their health effects…

  5. HVAC System Automatic Controls and Indoor Air Quality in Schools. Technical Bulletin.

    ERIC Educational Resources Information Center

    Wheeler, Arthur E.

    Fans, motors, coils, and other control components enable a heating, ventilating, and air-conditioning (HVAC) system to function smoothly. An explanation of these control components and how they make school HVAC systems work is provided. Different systems may be compared by counting the number of controlled devices that are required. Control…

  6. [Indoor air and allergic diseases].

    PubMed

    Kunkel, G; Rudolph, R; Muckelmann, R

    1982-01-01

    Allergies may be the source of a variety of clinical symptoms. With regard to indoor air, however, the subject will be limited to inhalative allergies. These are diseases which are caused and supported by allergens entering the human organism via the respiratory pathway. The fundamentals of the origin of inhalative allergies are briefly discussed as well as the antigen-antibody reaction and the differentiation between different allergic reactions (Types I and II). In addition, the importance of repetitive infects of the upper respiratory tract for the occurrence of allergies of the respiratory system is pointed out. The most common allergies develop at the mucosae of the nose (allergic rhinitis) and of the bronchiale (allergic asthma bronchiale). Their symptomatology is discussed. Out of the allergologically interesting components of indoor air the following are to be considered primarily: house dust, components of house dust (house dust mite, trogoderma angustum, tenebrio molitor), epithelia of animals, animal feeds, mildew and occupational substances. Unspecific irritants (chimico-physical irritations) which are not acting as allergens, have to be clearly separated from these most frequent allergens. As a possibility of treatment for the therapeutist and the patient, there is the allergen prophylaxis, i.e. an extensive sanitation of the patient's environment including elimination of the allergens and, in addition, an amelioration of the quality of the air with regard to unspecific irritants. To conclude, some socio-medical aspects of respiratory diseases are discussed.

  7. Indoor airPLUS Videos, Podcasts, Webinars and Interviews

    EPA Pesticide Factsheets

    The Webinar presentations will help you discover how Indoor airPLUS homes are designed to improve indoor air quality and increase energy efficiency and learn about the key design and construction features included in Indoor airPLUS homes.

  8. AIRBORNE PARTICLE SIZES AND SOURCES FOUND IN INDOOR AIR

    EPA Science Inventory

    As concern about indoor air quality (IAQ) has grown in recent years, understanding indoor aerosols has become increasingly important so that control techniques may be implemented to reduce damaging health effects and soiling problems. This paper begins with a brief look at the me...

  9. Indoor Air Quality Science and Technology

    EPA Pesticide Factsheets

    Understand indoor air in homes, schools, and offices. Most of us spend much of our time indoors. The air that we breathe in our homes, in schools, and in offices can put us at risk for health problems. Some pollutants can be chemicals, gases, and living or

  10. Indoor Air Quality: Maryland Public Schools.

    ERIC Educational Resources Information Center

    Maryland State Dept. of Education, College Park. Office of Administration and Finance.

    Less than adequate indoor air quality in schools can lead to a higher risk of health problems, an increase in student and teacher absenteeism, diminished learning, and even hazardous conditions. An indoor air quality program that addresses the planning, design, maintenance, and operation of public school buildings should be implemented at the…

  11. ENVIRONMENTAL TECHNOLOGY VERIFICATION FOR INDOOR AIR PRODUCTS

    EPA Science Inventory

    The paper discusses environmental technology verification (ETV) for indoor air products. RTI is developing the framework for a verification testing program for indoor air products, as part of EPA's ETV program. RTI is establishing test protocols for products that fit into three...

  12. ENVIRONMENTAL TECHNOLOGY VERIFICATION AND INDOOR AIR

    EPA Science Inventory

    The paper discusses environmental technology verification and indoor air. RTI has responsibility for a pilot program for indoor air products as part of the U.S. EPA's Environmental Technology Verification (ETV) program. The program objective is to further the development of sel...

  13. Impact of two-way air flow due to temperature difference on preventing the entry of outdoor particles using indoor positive pressure control method.

    PubMed

    Chen, Chun; Zhao, Bin; Yang, Xudong

    2011-02-28

    Maintaining positive pressure indoors using mechanical ventilation system is a popular control method for preventing the entry of outdoor airborne particles. The idea is, as long as the supply air flow rate is larger than return air flow rate, the pressure inside the ventilated room should be positive since the superfluous air flow must exfiltrate from air leakages or other openings of the room to the outdoors. Based on experimental and theoretical analyses this paper aims to show the impact of two-way air flow due to indoor/outdoor temperature difference on preventing the entry of outdoor particles using positive pressure control method. The indoor positive pressure control method is effective only when the size of the opening area is restricted to a certain level, opening degree less than 30° in this study, due to the two-way air flow effect induced by differential temperature. The theoretical model was validated using the experimental data. The impacts of two-way air flow due to temperature difference and the supply air flow rate were also analyzed using the theoretical model as well as experimental data. For real houses, it seems that the idea about the positive pressure control method for preventing the entry of outdoor particles has a blind side.

  14. Office of radiation and indoor air: Program description

    SciTech Connect

    Not Available

    1993-06-01

    The goal of the Environmental Protection Agency`s (EPA) Office of Radiation and Indoor Air is to protect the public and the environment from exposures to radiation and indoor air pollutants. The Office develops protection criteria, standards, and policies and works with other programs within EPA and other agencies to control radiation and indoor air pollution exposures; provides technical assistance to states through EPA`s regional offices and other agencies having radiation and indoor air protection programs; directs an environmental radiation monitoring program; responds to radiological emergencies; and evaluates and assesses the overall risk and impact of radiation and indoor air pollution. The Office is EPA`s lead office for intra- and interagency activities coordinated through the Committee for Indoor Air Quality. It coordinates with and assists the Office of Enforcement in enforcement activities where EPA has jurisdiction. The Office disseminates information and works with state and local governments, industry and professional groups, and citizens to promote actions to reduce exposures to harmful levels of radiation and indoor air pollutants.

  15. Sustainability of the Catalytic Activity of a Silica-Titania Composite (STC) for Long-Term Indoor Air Quality Control

    NASA Technical Reports Server (NTRS)

    Coutts, Janelle L.; Levine, Lanfang H.; Richards, Jeffrey T.

    2011-01-01

    TiO2-assisted photocatalytic oxidation (PCO) is an emerging technology for indoor air quality control and is also being evaluated as an alternative trace contaminant control technology for crew habitats in space exploration. Though there exists a vast range of literature on the development of photocatalysts and associated reactor systems, including catalyst performance and performance-influencing factors, the critical question of whether photocatalysts can sustain their initial catalytic activity over an extended period of operation has not been adequately addressed. For a catalyst to effectively serve as an air quality control product, it must be rugged enough to withstand exposure to a multitude of low concentration volatile organic compounds (VOCs) over long periods of time with minimal loss of activity. The objective of this study was to determine the functional lifetime of a promising photocatalyst - the silica-titania composite (STC) from Sol Gel Solutions, LLC in a real-world scenario. A bench-scale STC-packed annular reactor under continuous irradiation by a UV-A fluorescent black-light blue lamp ((lambda)max = 365 nm) was exposed to laboratory air continuously at an apparent contact time of 0.27 sand challenged with a known concentration of ethanol periodically to assess any changes in catalytic activity. Laboratory air was also episodically spiked with halocarbons (e.g., octafluoropropane), organosulfur compounds (e.g., sulfur hexafluoride), and organosilicons (e.g., siloxanes) to simulate accidental releases or leaks of such VOCs. Total organic carbon (TOC) loading and contaminant profiles of the laboratory air were also monitored. Changes in STC photocatalytic performance were evaluated using the ethanol mineralization rate, mineralization efficiency, and oxidation intermediate (acetaldehyde) formation. Results provide insights to any potential catalyst poisoning by trace halocarbons and organosulfur compounds.

  16. Air Quality and Indoor Environmental Exposures: Clinical ...

    EPA Pesticide Factsheets

    Indoor air quality (IAQ) is a term which refers to the air quality within and around buildings and homes as it relates to the health and comfort of the occupants. Many ambient (outdoor) air pollutants readily permeate indoor spaces. Because indoor air can be considerably more polluted than ambient air, the USEPA lists poor IAQ as a major environmental concern. In the sections that follow, health effects associated with commonly encountered ambient air pollutants and indoor contaminants will be broken down by agent class. In some cases, exposure may be acute, with one or more pets (and owners) experiencing signs within a relatively short period. However, most exposures are episodic or chronic, making it difficult to definitively link poor IAQ to respiratory or other adverse health outcomes. Age or underlying immunologic, cardiac, or respiratory disease may further complicate the clinical picture, as those patients may be more sensitive to (and affected by) lower concentrations than prove problematic for healthy housemates. Because pets, like their owners, spend most of their lives indoors, we will discuss how certain home conditions can worsen indoor air quality and will briefly discuss measures to improve IAQ for owners and their pets. In this overview presentation, health effects associated with commonly encountered ambient air pollutants and indoor contaminants will be broken down by agent class. Because pets, like their owners, spend most of their lives indoo

  17. Evaluating sources of indoor air pollution

    SciTech Connect

    Tichenor, B.A.; Sparks, L.A.; White, J.B.; Jackson, M.D. )

    1990-04-01

    Evaluation of indoor air pollution problems requires an understanding of the relationship between sources, air movement, and outdoor air exchange. Research is underway to investigate these relationships. A three-phase program is being implemented: (1) Environmental chambers are used to provide source emission factors for specific indoor pollutants; (2) An IAQ (Indoor Air Quality) model has been developed to calculate indoor pollutant concentrations based on chamber emissions data and the air exchange and air movement within the indoor environment; and (3) An IAQ test house is used to conduct experiments to evaluate the model results. Examples are provided to show how this coordinated approach can be used to evaluate specific sources of indoor air pollution. Two sources are examined: (1) para-dichlorobenzene emissions from solid moth repellant; and (2) emissions from unvented kerosene heaters. The evaluation process for both sources followed the three-phase approach discussed above. Para-dichlorobenzene emission factors were determined by small chamber testing at EPA's Air and Energy Engineering Research Laboratory. Particle emission factors for the kerosene heaters were developed in large chambers at the J.B. Pierce Foundation Laboratory. Both sources were subsequently evaluated in EPA's IAQ test house. The IAQ model predictions showed good agreement with the test house measurements when appropriate values were provided for source emissions, outside air exchange, in-house air movement, and deposition on sink surfaces.

  18. Office Building Occupant's Guide to Indoor Air Quality

    MedlinePlus

    ... United States Environmental Protection Agency Search Search Indoor Air Quality (IAQ) Share Facebook Twitter Google+ Pinterest Contact Us An Office Building Occupants Guide to Indoor Air Quality Indoor Environments Division (6609J) Washington, DC 20460 EPA- ...

  19. Monitoring Indoor Air Quality for Enhanced Occupational Health.

    PubMed

    Pitarma, Rui; Marques, Gonçalo; Ferreira, Bárbara Roque

    2017-02-01

    Indoor environments are characterized by several pollutant sources. Because people spend more than 90% of their time in indoor environments, several studies have pointed out the impact of indoor air quality on the etiopathogenesis of a wide number of non-specific symptoms which characterizes the "Sick Building Syndrome", involving the skin, the upper and lower respiratory tract, the eyes and the nervous system, as well as many building related diseases. Thus, indoor air quality (IAQ) is recognized as an important factor to be controlled for the occupants' health and comfort. The majority of the monitoring systems presently available is very expensive and only allow to collect random samples. This work describes the system (iAQ), a low-cost indoor air quality monitoring wireless sensor network system, developed using Arduino, XBee modules and micro sensors, for storage and availability of monitoring data on a web portal in real time. Five micro sensors of environmental parameters (air temperature, humidity, carbon monoxide, carbon dioxide and luminosity) were used. Other sensors can be added for monitoring specific pollutants. The results reveal that the system can provide an effective indoor air quality assessment to prevent exposure risk. In fact, the indoor air quality may be extremely different compared to what is expected for a quality living environment. Systems like this would have benefit as public health interventions to reduce the burden of symptoms and diseases related to "sick buildings".

  20. Clearing the Air: Asthma and Indoor Air Exposure (Highlights)

    EPA Pesticide Factsheets

    The National Academy of Sciences Institute of Medicine issued this report in 2000 describing the role of indoor environmental pollutants in the development and exacerbation of asthma. The report concludes that exposure to indoor pollutants is an important contributor to the asthma problem in this nation. Asthma sufferers should consult with their doctor about reducing their exposure indoor air pollutants.

  1. Clean indoor air: where, why, and how.

    PubMed

    Henson, Rosemarie; Medina, Larry; St Clair, Steve; Blanke, Doug; Downs, Larry; Jordan, Jerelyn

    2002-01-01

    Clean indoor air policies are an effective way to eliminate exposure to second hand smoke and reduce smoking among youth and adults; they are strongly recommended by the Surgeon General and the Task Force on Community Preventive Services. How these policies are put into effect and at what level of government can make a difference. Legislation that preempts local action prevents communities from enacting more stringent laws or tailoring laws to address community-specific issues. Preemptive state laws also can be a barrier to local enforcement because communities not involved in decision making may be less aware of laws, may have no enforcement mechanism, and thus may be less complaint. Preemption is clearly a tobacco industry strategy to take away local control, usually in exchange for a weak law offering little protection from second hand smoke. As communities across the country continue to pass stronger local ordinances, eliminating preemptive laws becomes more important. During 2002, Delaware became the first state to repeal clean air preemption. In Iowa, the attorney general's office has been involved in the determination of whether the state clean air law prevents communities from passing more stringent ordinances. And although Minnesota's pioneer Clean Indoor Air Act does not preempt local laws, the debate over preemption there has not ended but instead has taken new forms.

  2. Indoor Air Quality Basics for Schools.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Radiation and Indoor Air.

    This fact sheet details important information on Indoor Air Quality (IAQ) in school buildings, problems associated with IAQ, and various prevention and problem-solving strategies. Most people spend 90 percent of their time indoors, therefore the Environmental Protection Agency ranks IAQ in the top four environmental risks to the public. The…

  3. Indoor Air Quality Guidelines for Pennsylvania Schools.

    ERIC Educational Resources Information Center

    Zimmerman, Robert S., Jr.

    This report provides information and practical guidance on how to prevent indoor air quality (IAQ) problems in schools, and it describes how to implement a practical plan of action using a minimal amount of resources. It includes general guidelines to prevent or help resolve IAQ problems, guidelines on specific indoor contaminants, recommendations…

  4. ASSESSING ALLERGENICITY OF INDOOR AIR FUNGAL CONTAMINANTS

    EPA Science Inventory

    Assessing Allergenicity of Indoor Air Fungal Contaminants
    M D W Ward1, M E Viana2, N Haykal-Coates1, L B Copeland1, S H Gavett1, and MJ K Selgrade1. 1US EPA, ORD, NHEERL, RTP, NC, USA. 2NCSU, CVM, Raleigh, NC, USA.
    Rationale: The indoor environment has increased in impor...

  5. EVALUATING SOURCES OF INDOOR AIR POLLUTION

    EPA Science Inventory

    The article discusses a three-phase approach, employing environmental chambers, indoor air quality (IAQ) models, and test house experiments, that is effective in linking sources of indoor pollutants to measured concentrations. mission factors developed in test chambers can be use...

  6. Indoor air pollution: an edifice complex.

    PubMed

    Brooks, B O; Utter, G M; DeBroy, J A; Schimke, R D

    1991-01-01

    The collision of escalating technological sophistication and surging environmental awareness has caused the reexamination of many societal paradigms. Horror stories about lethal chemical exposures involving isolated cases of ignorance, carelessness or greed have caused the public to demand constant vigilance to prevent exposure to potentially hazardous substances. Accordingly, much time and resource has been expanded by the U.S. government and citizens to abate and prevent air and water pollution. While these efforts have met with measurable success, there is increasing public concern about a new generation of pollution-related human illness in office, home and transportation environments. New instances of Sick Building Syndrome or Building Related Illness are reported daily by the popular press. Human health effects such as cancer, infectious disease, allergy and irritation have been ascribed to indoor air pollution. The clinical aspects of indoor air pollution are often discounted by consulting engineers and industrial hygienists involved in indoor air quality. Physicians and clinically-trained scientists have received a "Macedonian call" to sift clinical relevance from the emotional aspects of indoor air quality problems. Point sources of pollutants, associated human health effects, and problem solving approaches associated with indoor air pollution are described. Regulatory and litigational aspects of indoor air pollution are also discussed.

  7. Publications about Indoor Air Quality in Schools

    EPA Pesticide Factsheets

    Publications and resources that relate to indoor air quality in schools, and design tools for schools. These publications cover a wide range of issues, including IAQ management, student performance, asthma, mold and moisture, and radon.

  8. Indoor Air Quality and Energy Efficiency

    EPA Pesticide Factsheets

    EPA completed an extensive modeling study to assess the compatibilities and trade-offs between energy, indoor air quality, and thermal comfort objectives for HVAC systems and to formulate strategies for superior performance across all areas.

  9. Bois Forte Indoor Air Quality Program

    EPA Pesticide Factsheets

    The Bois Forte Indoor Air Quality Program acted swiftly and aggressively to tackle mold and moisture problems in its community members’ homes after several residents became ill as a result of environmental exposures.

  10. Indoor Air Pollution (Environmental Health Student Portal)

    MedlinePlus

    ... Pollutants Natural Disasters Drinking Water Waterborne Diseases & Illnesses Water Cycle Water Treatment Videos Games Experiments For Teachers Home ... Pollutants Natural Disasters Drinking Water Waterborne Diseases & Illnesses Water Cycle Water Treatment Indoor Air Pollution The Basics We ...

  11. Air-to-air heat exchangers and the indoor environment

    SciTech Connect

    Vine, E.

    1987-02-01

    Air-to-air heat exchangers were installed in 366 energy-efficient homes as part of a demonstration program in the United States. The median incremental cost of AAHX was $1268 ($7.42/mS), and it was less expensive (per square meter) to install this equipment in larger houses than in smaller houses. While most occupants did not notice problems with their AAHX, some households did experience problems related to noise, unpleasant drafts, condensation around the AAHX, and core freezing. Occupants of energy-efficient homes were found to have less problems with their indoor environment (especially mildew/mold and condensation) than a group of control homes.

  12. Indoor Air Quality: Is Increased Ventilation the Answer?

    ERIC Educational Resources Information Center

    Hansen, Shirley

    1989-01-01

    Explains how indoor air quality is affected by pollutants in the air and also by temperature, humidity, and ventilation. Increased ventilation alone seldom solves the "sick building syndrome." Lists ways to improve indoor air quality and optimize energy efficiency. (MLF)

  13. Indoor air quality environmental information handbook: Combustion sources

    SciTech Connect

    Not Available

    1990-06-01

    This environmental information handbook was prepared to assist both the non-technical reader (i.e., homeowner) and technical persons (such as researchers, policy analysts, and builders/designers) in understanding the current state of knowledge regarding combustion sources of indoor air pollution. Quantitative and descriptive data addressing the emissions, indoor concentrations, factors influencing indoor concentrations, and health effects of combustion-generated pollutants are provided. In addition, a review of the models, controls, and standards applicable to indoor air pollution from combustion sources is presented. The emphasis is on the residential environment. The data presented here have been compiled from government and privately-funded research results, conference proceedings, technical journals, and recent publications. It is intended to provide the technical reader with a comprehensive overview and reference source on the major indoor air quality aspects relating to indoor combustion activities, including tobacco smoking. In addition, techniques for determining potential concentrations of pollutants in residential settings are presented. This is an update of a 1985 study documenting the state of knowledge of combustion-generated pollutants in the indoor environment. 191 refs., 51 figs., 71 tabs.

  14. Enhancing indoor air quality –The air filter advantage

    PubMed Central

    Vijayan, Vannan Kandi; Paramesh, Haralappa; Salvi, Sundeep Santosh; Dalal, Alpa Anil Kumar

    2015-01-01

    Air pollution has become the world's single biggest environmental health risk, linked to around 7 million deaths in 2012 according to a recent World Health Organisation (WHO) report. The new data further reveals a stronger link between, indoor and outdoor air pollution exposure and cardiovascular diseases, such as strokes and ischemic heart disease, as well as between air pollution and cancer. The role of air pollution in the development of respiratory diseases, including acute respiratory infections and chronic obstructive pulmonary diseases, is well known. While both indoor and outdoor pollution affect health, recent statistics on the impact of household indoor pollutants (HAP) is alarming. The WHO factsheet on HAP and health states that 3.8 million premature deaths annually - including stroke, ischemic heart disease, chronic obstructive pulmonary disease (COPD) and lung cancer are attributed to exposure to household air pollution. Use of air cleaners and filters are one of the suggested strategies to improve indoor air quality. This review discusses the impact of air pollutants with special focus on indoor air pollutants and the benefits of air filters in improving indoor air quality. PMID:26628762

  15. Indoor air quality and occupational exposures at a bus terminal.

    PubMed

    El-Fadel, Mutasem; El-Hougeiri, Nisrine

    2003-07-01

    This article presents an assessment of indoor air quality at a bus terminal. For this purpose, field surveys were conducted, and air samples were collected and analyzed for the presence of selected indoor air quality indicators. Mathematical modeling was performed to simulate bus emission rates, occupational exposure, and ventilation requirements to maintain acceptable indoor air quality. A sensitivity analysis based on literature-derived emission rates estimates was conducted to evaluate the effect of seasonal temperature changes within the terminal. Control measures to improve indoor air quality at the terminal are also outlined. While carbon monoxide concentrations were below the corresponding American Conference of Governmental Industrial Hygienists' (ACGIH) standards under normal operating conditions, they exceeded the 8-hr recommended average standard at peak hours and the World Health Organization (WHO) standard at all times. Total suspended particulates levels, on the other hand, were above the 24-hr American Society of Heating, Refrigerating and Air Conditioning Engineers' (ASHRAE) standard. Carbon monoxide emission rates that were estimated using the transient mass balance model correlated relatively well with those reported in the literature. Modeling results showed that the natural ventilation rate should be at least doubled for acceptable indoor air quality. While pollutant exposure levels depended on the individual activity patterns and the pollutant concentration, pollutant emissions rates within the terminal were affected mostly by the temperature with a 20-25 percent variation in carbon monoxide levels due to changes in seasonal temperatures.

  16. The status of indoor air pollution.

    PubMed Central

    Esmen, N A

    1985-01-01

    Indoor air pollution, specifically restricted in its meaning to chemicals in home indoor air environment, presents a new and probably an important challenge to the researchers of the air pollution field. The general overview of this topic suggests that the voluminous data generated in the past ten or so years have only defined the rudiments of the problem, and significant areas of research still exist. Among the important areas where information is lacking, the exposures to contaminants generated by the use of consumer products and through hobbies and crafts represent perhaps the most urgent need for substantial research. PMID:4085429

  17. Building materials and indoor air quality.

    PubMed

    Levin, H

    1989-01-01

    New building materials, products, and furnishings are known to emit a large number of organic chemicals into indoor air. The author addresses the effects of volatile organic compounds (VOCs) on building occupants, including building materials evaluation and strategies to reduce airborne concentrations. A major problem is that little is known about the specific health effects of most VOCs at the low concentrations usually found in indoor environments.

  18. Guide for Indoor Air Quality Surveys

    DTIC Science & Technology

    1992-05-01

    Influencing Indoor Air Quality ................... 5 Carbon Dioxide and Fresh Air ........................ 6 Relative Humidity...037, A Procedural Guide on Sick Building Syndrome (Liebhaber, 1987), and supplements AFOEHL Report 90-169, Recommended Carbon Dioxide and Relative...symptoms. The causes most implicated in the literature include comfort parameters such as carbon dioxide (C02) concentration, relative humidity

  19. When Poor Indoor Air Causes a Crisis.

    ERIC Educational Resources Information Center

    Spencer, Robert D.

    1998-01-01

    An air quality problem originating with a steam leak in an improperly maintained heating system resulted in unanticipated expenses of $420,000 for the Lakeview (Michigan) School District. Indoor air quality complaints require immediate investigation and action; clear communication to parents, staff, and media representatives; competent…

  20. MANAGING INDOOR AIR QUALITY IN THE USA

    EPA Science Inventory

    The paper gives an overview of managing indoor air quality (IAQ) in the U.S. In contrast to outdoor air, which is regulated through various federal and state statutes, there is no unified and comprehensive governmental regulation of IAQ. Therefore, IAQ is managed through variou...

  1. EVALUATION OF CONTROL STRATEGIES FOR VOLATILE ORGANIC COMPOUND IN INDOOR AIR

    EPA Science Inventory

    The Air and Energy Engineering Research Laboratory of the U.S. Environmental Protection Agency (U.S. EPA) conducts and sponsors research on technology to reduce or eliminate emissions of potentially toxic volatile organic compounds (VOCs) from industrial/commercial sources. The r...

  2. Indoor air quality and the law in Singapore.

    PubMed

    Chan, P

    1999-12-01

    With the greater use of air-conditioned offices in Singapore, achieving good indoor air quality has become an important issue. The laws that impose duties upon designers and contractors with respect to the design and construction of air-conditioning and mechanical ventilation (ACMV) systems are set out in the Building Control Regulations and the Singapore Standard Code of Practice for Mechanical Ventilation and Air-conditioning in Buildings (hereinafter "SS CP 13:1980"). ACMV maintenance is governed by the Environmental Public Health Act, the Building and Common Property (Maintenance and Management) Act, and the Land Titles (Strata) Act, as well as by lease or tenancy agreements. Designers, contractors, developers, building owners and management corporations may also be liable to the workers, occupants and other premises users for indoor air quality (IAQ)-related injuries under the general principles of contract and tort. Recently, the Guidelines for Good Indoor Air Quality in Office Premises was issued by the Ministry of Environment to complement SS CP 13:1980 toward improving the indoor air quality of air-conditioned office premises. Although the Guidelines have no statutory effect, they may be adopted as contractual requirements in construction, lease and maintenance contracts. They may also be used to determine the relevant standard of duty of care required to discharge tortious liability. This paper looks at the existing laws and rules affecting the design, construction and maintenance of air-conditioned offices in light of Part III of the Ministry's Guidelines.

  3. Indoor Environmental Control Practices and Asthma Management.

    PubMed

    Matsui, Elizabeth C; Abramson, Stuart L; Sandel, Megan T

    2016-11-01

    Indoor environmental exposures, particularly allergens and pollutants, are major contributors to asthma morbidity in children; environmental control practices aimed at reducing these exposures are an integral component of asthma management. Some individually tailored environmental control practices that have been shown to reduce asthma symptoms and exacerbations are similar in efficacy and cost to controller medications. As a part of developing tailored strategies regarding environmental control measures, an environmental history can be obtained to evaluate the key indoor environmental exposures that are known to trigger asthma symptoms and exacerbations, including both indoor pollutants and allergens. An environmental history includes questions regarding the presence of pets or pests or evidence of pests in the home, as well as knowledge regarding whether the climatic characteristics in the community favor dust mites. In addition, the history focuses on sources of indoor air pollution, including the presence of smokers who live in the home or care for children and the use of gas stoves and appliances in the home. Serum allergen-specific immunoglobulin E antibody tests can be performed or the patient can be referred for allergy skin testing to identify indoor allergens that are most likely to be clinically relevant. Environmental control strategies are tailored to each potentially relevant indoor exposure and are based on knowledge of the sources and underlying characteristics of the exposure. Strategies include source removal, source control, and mitigation strategies, such as high-efficiency particulate air purifiers and allergen-proof mattress and pillow encasements, as well as education, which can be delivered by primary care pediatricians, allergists, pediatric pulmonologists, other health care workers, or community health workers trained in asthma environmental control and asthma education.

  4. Comparing cognitive-behavioural psychotherapy and psychoeducation for non-specific symptoms associated with indoor air: a randomised control trial protocol

    PubMed Central

    Selinheimo, Sanna; Vuokko, Aki; Sainio, Markku; Karvala, Kirsi; Suojalehto, Hille; Järnefelt, Heli; Paunio, Tiina

    2016-01-01

    Introduction Indoor air-related conditions share similarities with other conditions that are characterised by medically unexplained symptoms (MUS)-a combination of non-specific symptoms that cannot be fully explained by structural bodily pathology. In cases of indoor air-related conditions, these symptoms are not fully explained by either medical conditions or the immunological–toxicological effects of environmental factors. The condition may be disabling, including a non-adaptive health behaviour. In this multifaceted phenomenon, psychosocial factors influence the experienced symptoms. Currently, there is no evidence of clinical management of symptoms, which are associated with the indoor environment and cannot be resolved by removing the triggering environmental factors. The aim of this study is to compare the effect of treatment-as-usual (TAU) and two psychosocial interventions on the quality of life, and the work ability of employees with non-specific indoor air-related symptomatology. Methods and analyses The aim of this ongoing randomised controlled trial is to recruit 60 participants, in collaboration with 5 occupational health service units. The main inclusion criterion is the presence of indoor air-related recurrent symptoms in ≥2 organ systems, which have no pathophysiological explanation. After baseline clinical investigations, participants are randomised into interventions, which all include TAU: cognitive-behavioural psychotherapy, psychoeducation and TAU (control condition). Health-related quality of life, measured using the 15D-scale, is the primary outcome. Secondary outcomes include somatic and psychiatric symptoms, occupational factors, and related underlying mechanisms (ie, cognitive functioning). Questionnaires are completed at baseline, at 3, 6 and 12-month follow-ups. Data collection will continue until 2017. The study will provide new information on the individual factors related to indoor air-associated symptoms, and on ways in which to

  5. Air Quality and Indoor Environmental Exposures: Clinical Impacts

    EPA Science Inventory

    Indoor air quality (IAQ) is a term which refers to the air quality within and around buildings and homes as it relates to the health and comfort of the occupants. Many ambient (outdoor) air pollutants readily permeate indoor spaces. Because indoor air can be considerably more pol...

  6. Parent's Guide to School Indoor Air Quality. Revised

    ERIC Educational Resources Information Center

    Healthy Schools Network, Inc., 2012

    2012-01-01

    Air pollution is air pollution, indoors or out. Good indoor air quality (IAQ) contributes to a favorable learning environment for students, protects health, and supports the productivity of school personnel. In schools in poor repair, leaky roofs and crumbling walls have caused additional indoor air quality problems, including contamination with…

  7. Indoor Air Quality in Brazilian Universities

    PubMed Central

    Jurado, Sonia R.; Bankoff, Antônia D. P.; Sanchez, Andrea

    2014-01-01

    This study evaluated the indoor air quality in Brazilian universities by comparing thirty air-conditioned (AC) (n = 15) and naturally ventilated (NV) (n = 15) classrooms. The parameters of interest were indoor carbon dioxide (CO2), temperature, relative humidity (RH), wind speed, viable mold, and airborne dust levels. The NV rooms had larger concentration of mold than the AC rooms (1001.30 ± 125.16 and 367.00 ± 88.13 cfu/m3, respectively). The average indoor airborne dust concentration exceeded the Brazilian standards (<80 μg/m3) in both NV and AC classrooms. The levels of CO2 in the AC rooms were significantly different from the NV rooms (1433.62 ± 252.80 and 520.12 ± 37.25 ppm, respectively). The indoor air quality in Brazilian university classrooms affects the health of students. Therefore, indoor air pollution needs to be considered as an important public health problem. PMID:25019268

  8. Tobacco control policies are egalitarian: a vulnerabilities perspective on clean indoor air laws, cigarette prices, and tobacco use disparities.

    PubMed

    Dinno, Alexis; Glantz, Stanton

    2009-04-01

    This study models independent associations of state or local strong clean indoor air laws and cigarette prices with current smoker status and consumption in a multilevel framework, including interactions with educational attainment, household income and race/ethnicity and the relationships of these policies to vulnerabilities in smoking behavior. Cross sectional survey data are employed from the February 2002 panel of the Tobacco Use Supplement of the Current Population Survey (54,024 individuals representing the US population aged 15-80). Non-linear relationships between both outcome variables and the predictors were modeled. Independent associations of strong clean indoor air laws were found for current smoker status (OR 0.66), and consumption among current smokers (-2.36 cigarettes/day). Cigarette price was found to have independent associations with both outcomes, an effect that saturated at higher prices. The odds ratio for smoking for the highest versus lowest price over the range where there was a price effect was 0.83. Average consumption declined (-1.16 cigarettes/day) over the range of effect of price on consumption. Neither policy varied in its effect by educational attainment, or household income. The association of cigarette price with reduced smoking participation and consumption was not found to vary with race/ethnicity. Population vulnerability in consumption appears to be structured by non-white race categories, but not at the state and county levels at which the policies we studied were enacted. Clean indoor air laws and price increases appear to benefit all socio-economic and race/ethnic groups in our study equally in terms of reducing smoking participation and consumption.

  9. Indoor airPLUS Sales and Marketing Resources

    EPA Pesticide Factsheets

    Presented are useful materials to help you build homes that meet Indoor airPLUS specifications and to promote Indoor airPLUS qualified homes. These materials are FREE of charge and are available in PDF.

  10. Indoor Air Quality Building Education and Assessment Model

    EPA Pesticide Factsheets

    The Indoor Air Quality Building Education and Assessment Model (I-BEAM), released in 2002, is a guidance tool designed for use by building professionals and others interested in indoor air quality in commercial buildings.

  11. Indoor Air Quality Building Education and Assessment Model Forms

    EPA Pesticide Factsheets

    The Indoor Air Quality Building Education and Assessment Model (I-BEAM) is a guidance tool designed for use by building professionals and others interested in indoor air quality in commercial buildings.

  12. Publications and Resources About Indoor airPLUS

    EPA Pesticide Factsheets

    Presented are useful materials to help you build homes that meet Indoor airPLUS specifications and to promote Indoor airPLUS qualified homes. These materials are FREE of charge and are available in PDF.

  13. Fabrication and characterization of micro-porous cellulose filters for indoor air quality control.

    PubMed

    Yoon, Younghan; Kim, Sungyoun; Ahn, Kwang Ho; Ko, Kwang Baik; Kim, Kwang-Soo

    2016-01-01

    Micro-porous cellulose filters were fabricated from paper mulberry pulp, which has been used for thousands of years with Korean history. 'Han-ji' is the name of a traditional paper used widely in Korea in construction, textile, craftworks and many household items but before now it has not been used for filtration purpose. Seeking for the utilization of this abundant natural material, this study aims to develop a fabrication process for the traditional paper to be used as a filter for dust filtration, and evaluate the performance by lab-scale experiments. To create pores in the paper, cellulose pulp was pretreated using several methods such as TEMPO oxidation and enzyme hydrolysis, or freeze dried with an alcoholic freezing medium, t-butyl alcohol, instead of water. The filters were characterized and their dust removal performance was tested at a lab scale while also monitoring pressure loss. Chemical oxidation and enzymatic pretreatment were helpful in fabricating a homogeneous filter but would not remove fine-dust particles because of its loose, enlarged pores. The best removal efficiency was observed with filters that were not pretreated but in which water had been exchanged with t-butyl alcohol before freeze-drying. The filter attained a dust removal efficiency higher than 99% over the entire experimental period, with a pressure loss of less than 230 Pa, at a 6.67 (cm3/s)/cm2 air-to-cloth ratio.

  14. Indoor air quality in a dentistry clinic.

    PubMed

    Helmis, C G; Tzoutzas, J; Flocas, H A; Halios, C H; Stathopoulou, O I; Assimakopoulos, V D; Panis, V; Apostolatou, M; Sgouros, G; Adam, E

    2007-05-15

    The purpose of this work is to assess, both experimentally and theoretically the status of air quality in a dentistry clinic of the Athens University Dentistry Faculty with respect to chemical pollutants and identify the indoor sources associated with dental activities. Total VOCs, CO(2), PM(10), PM(2.5), NO(x) and SO(2) were measured over a period of approximately three months in a selected dentistry clinic. High pollution levels during the operation hours regarding CO(2), total VOCs and Particulate Matter were found, while in the non-working periods lower levels were recorded. On the contrary, NO(x) and SO(2) remained at low levels for the whole experimental period. These conditions were associated with the number of occupants, the nature of the dental clinical procedures, the materials used and the ventilation schemes, which lead to high concentrations, far above the limits that are set by international organizations and concern human exposure. The indoor environmental conditions were investigated using the Computational Fluid Dynamics (CFD) model PHOENICS for inert gases simulation. The results revealed diagonal temperature stratification and low air velocities leading to pollution stratification, accompanied by accumulation of inert gaseous species in certain areas of the room. Different schemes of natural ventilation were also applied in order to examine their effect on the indoor comfort conditions for the occupants, in terms of air renewal and double cross ventilation was found to be most effective. The relative contribution of the indoor sources, which are mainly associated with indoor activities, was assessed by application of the Multi Chamber Indoor Air Quality Model (MIAQ) to the experimental data. It was found that deposition onto indoor surfaces is an important removal mechanism while a great amount of particulate matter emitted in the Clinic burdened severely the indoor air quality. The natural ventilation of the room seemed to reduce the levels of

  15. Foliage Plants for Improving Indoor Air Quality

    NASA Technical Reports Server (NTRS)

    Wolverton, B. C.

    1988-01-01

    NASA's research with foliage houseplants during the past 10 years has produced a new concept in indoor air quality improvement. This new and exciting technology is quite simple. Both plant leaves and roots are utilized in removing trace levels of toxic vapors from inside tightly sealed buildings. Low levels of chemicals such as carbon monoxide and formaldehyde can be removed from indoor environments by plant leaves alone, while higher concentrations of numerous toxic chemicals can be removed by filtering indoor air through the plant roots surrounded by activated carbon. The activated carbon absorbs large quantities of the toxic chemicals and retains them until the plant roots and associated microorganisms degrade and assimilate these chemicals.

  16. Indoor air pollution: a new concern

    SciTech Connect

    Not Available

    1980-10-01

    Radon, asbestos, and formaldehyde are emerging as major health hazards because home-winterization efforts are trapping toxic agents indoors. Other pollution sources, such as tobacco smoke and unvented heating units, also lower indoor air quality. Radon decay products present in the structural materials of well-insulated homes are linked to lung-cancer deaths. Exposure to asbestos fibers has been identified as a problem in many school buildings, while physical discomfort caused by urea-formaldehyde foam insulation has affected the health of many homeowners. The Environmental Protection Agency is collecting and disseminating information to help local officials and homeowners understand the risks and is urging building auditors to inform clients about indoor air pollution. (DCK)

  17. Emerging developments in the standardized chemical characterization of indoor air quality.

    PubMed

    Nehr, Sascha; Hösen, Elisabeth; Tanabe, Shin-Ichi

    2017-01-01

    Despite the fact that the special characteristics of indoor air pollution make closed environments quite different from outdoor environments, the conceptual ideas for assessing air quality indoors and outdoors are similar. Therefore, the elaboration of International Standards for air quality characterization in view of controlling indoor air quality should resort to this common basis. In this short review we describe the possibilities of standardization of tools dedicated to indoor air quality characterization with a focus on the tools permitting to study the indoor air chemistry. The link between indoor exposure and health as well as the critical processes driving the indoor air quality are introduced. Available International Standards for the assessment of indoor air quality are depicted. The standards comprise requirements for the sampling on site, the analytical procedures, and the determination of material emissions. To date, these standardized procedures assure that indoor air, settled dust and material samples are analyzed in a comparable manner. However, existing International Standards exclusively specify conventional, event-driven target-screening using discontinuous measurement methods for long-lived pollutants. Therefore, this review draws a parallel between physico-chemical processes in indoor and outdoor environments. The achievements in atmospheric sciences also improve our understanding of indoor environments. The community of atmospheric scientists can be both ideal and supporter for researchers in the area of indoor air quality characterization. This short review concludes with propositions for future standardization activities for the chemical characterization of indoor air quality. Future standardization efforts should focus on: (i) the elaboration of standardized measurement methods and measurement strategies for online monitoring of long-lived and short-lived pollutants, (ii) the assessment of the potential and the limitations of non

  18. Indoor air and human health: major indoor air pollutants and their health implications

    SciTech Connect

    Not Available

    1984-01-01

    This publication is a collection of abstracts of papers presented at the Indoor Air and Human Health symposium. Session titles include: Radon, Microorganisms, Passive Cigarette Smoke, Combustion Products, Organics, and Panel and Audience Discussion.

  19. Filtration and indoor air quality: A practical approach

    SciTech Connect

    Liu, R.T.; Huza, M.A.

    1995-02-01

    This article describes how filtration systems can be a practical and effective means to control indoor contaminants when properly designed and applied. Although indoor air quality appears to be a complex subject, in reality it reduces to two simple concerns: human health and human comfort. While the interactions exist, the environmental factors that affect human comfort are different from those factors that affect human health. Generally speaking, temperature, relative humidity, air movement and noise level contribute to human comfort, and indoor contaminants affect human health, but they can also cause comfort problems, such as odors. It is important to point out this distinction because many IAQ problems can be solved simply by a small adjustment of the temperature, humidity o ventilation rate, especially when the environment of concern is outside of the comfort zone and the air is perceived as stuffy. However, when the occupants experience headaches, fatigue, eye irritation or coughing or when they smell odors, it is likely that the problems are caused by contaminants in the indoor air. Indoor contaminants may be grouped into four categories: bioaerosols (microorganisms); respirable particulates; gaseous contaminants; and vaporous contaminants. While their concentrations may vary, all of these contaminants may exist regardless of types of building, HVAC system and occupant activity.

  20. Teacher's Guide to Indoor Air Pollutants.

    ERIC Educational Resources Information Center

    National Safety Council, Washington, DC. Environmental Health Center.

    This guide, designed for fourth- through sixth-grade classrooms, contains information teachers will need to teach an educational unit on indoor air quality. It draws on a variety of students' skills, including science, vocabulary, reasoning, math, and basic biology. Each lesson comes with suggested activities that highlight and reinforce what is…

  1. Indoor Air Pollution: An Energy Management Problem?

    ERIC Educational Resources Information Center

    Cousins, David M.; Kulba, John W.

    1987-01-01

    Energy conservation measures have led to airtight buildings and reduced levels of ventilation resulting in indoor air pollution. Five kinds of contaminants--tobacco smoke, combustion products, microorganisms, organic compounds, and radon--are described, their hazards considered, and countermeasures outlined. (MLF)

  2. Flood Cleanup to Protect Indoor Air Quality

    EPA Pesticide Factsheets

    During a flood cleanup, the indoor air quality in your home or office may appear to be the least of your problems. However, failure to remove contaminated materials and to reduce moisture and humidity can present serious long-term health risks.

  3. CARBON ADSORPTION FOR INDOOR AIR CLEANING

    EPA Science Inventory

    The paper discusses the use of carbon adsorption for indoor air cleaning, focusing on the removal of volatile organic compounds (VOCs) using granular activated carbon (GAC). It addresses GAC performance in two directions. Initially, it presents performance measurements for GAC at...

  4. Humidification and perceived indoor air quality in the office environment.

    PubMed Central

    Reinikainen, L M; Aunela-Tapola, L; Jaakkola, J J

    1997-01-01

    OBJECTIVE: To evaluate the effect of humidification on the odour, acceptability, and stuffiness of indoor air. METHODS: In a six period cross over trial at the Pasila Office Center, Helsinki, the air of two wings of the building in turn were ventilated with air of 30%-40% humidity. A third wing served as a non-humidified control area. The quality of indoor air was assessed weekly by a panel containing 18 to 23 members. The intraindividual differences in the ratings for odour, stuffiness, and acceptability between humidified and non-humidified wings were used to assess the effect of humidification. The roles of sex, current smoking, and age as potential effect modifiers were assessed by comparing the mean intraindividual differences in ratings between the groups. RESULTS: Humidified air was found to be more odorous and stuffy (paired t test P = 0.0001) and less acceptable than the non-humidified air (McNemar's test P < 0.001). The differences in odour and stuffiness between humidified and non-humidified air were greater for women and for non-smokers, and greatest differences were in the youngest age group, and least in the oldest age group. The differences were not significant. CONCLUSIONS: An untrained panel of 20 members is able to differentiate a slight malodour and stuffiness in indoor air. The results suggest that steam air humidification decreases the perceived air quality. This effect is strongest in women and young subjects. PMID:9196454

  5. Indoor air pollution: Acute adverse health effects and host susceptibility

    SciTech Connect

    Zummo, S.M.; Karol, M.H.

    1996-01-01

    Increased awareness of the poor quality of indoor air compared with outdoor air has resulted in a significant amount of research on the adverse health effects and mechanisms of action of indoor air pollutants. Common indoor air agents are identified, along with resultant adverse health effects, mechanisms of action, and likely susceptible populations. Indoor air pollutants range from biological agents (such as dust mites) to chemical irritants (such as nitrogen dioxide, carbon monoxide, sulfur dioxide, formaldehyde, and isocyanates). These agents may exert their effects through allergic as well as nonallergic mechanisms. While the public does not generally perceive poor indoor air quality as a significant health risk, increasing reports of illness related to indoor air and an expanding base of knowledge on the health effects of indoor air pollution are likely to continue pushing the issue to the forefront.

  6. Indoor air quality and health in schools*

    PubMed Central

    Ferreira, Ana Maria da Conceição; Cardoso, Massano

    2014-01-01

    Objective: To determine whether indoor air quality in schools is associated with the prevalence of allergic and respiratory diseases in children. Methods: We evaluated 1,019 students at 51 elementary schools in the city of Coimbra, Portugal. We applied a questionnaire that included questions regarding the demographic, social, and behavioral characteristics of students, as well as the presence of smoking in the family. We also evaluated the indoor air quality in the schools. Results: In the indoor air of the schools evaluated, we identified mean concentrations of carbon dioxide (CO2) above the maximum reference value, especially during the fall and winter. The CO2 concentration was sometimes as high as 1,942 ppm, implying a considerable health risk for the children. The most prevalent symptoms and respiratory diseases identified in the children were sneezing, rales, wheezing, rhinitis, and asthma. Other signs and symptoms, such as poor concentration, cough, headache, and irritation of mucous membranes, were identified. Lack of concentration was associated with CO2 concentrations above the maximum recommended level in indoor air (p = 0.002). There were no other significant associations. Conclusions: Most of the schools evaluated presented with reasonable air quality and thermal comfort. However, the concentrations of various pollutants, especially CO2, suggest the need for corrective interventions, such as reducing air pollutant sources and improving ventilation. There was a statistically significant association between lack of concentration in the children and exposure to high levels of CO2. The overall low level of pollution in the city of Coimbra might explain the lack of other significant associations. PMID:25029649

  7. Household Ventilation May Reduce Effects of Indoor Air Pollutants for Prevention of Lung Cancer: A Case-Control Study in a Chinese Population

    PubMed Central

    Han, Ren-Qiang; Zhang, Xiao-Feng; Wang, Xu-Shan; Liu, Ai-Ming; Zhou, Jin-Yi; Lu, Qing-Yi; Kim, Claire H.; Mu, Lina; Zhang, Zuo-Feng; Zhao, Jin-Kou

    2014-01-01

    Background Although the International Agency for Research on Cancer (IARC) has classified various indoor air pollutants as carcinogenic to humans, few studies evaluated the role of household ventilation in reducing the impact of indoor air pollutants on lung cancer risk. Objectives To explore the association between household ventilation and lung cancer. Methods A population-based case-control study was conducted in a Chinese population from 2003 to 2010. Epidemiologic and household ventilation data were collected using a standardized questionnaire. Unconditional logistic regression was employed to estimate adjusted odds ratios (ORadj) and their 95% confidence intervals (CI). Results Among 1,424 lung cancer cases and 4,543 healthy controls, inverse associations were observed for good ventilation in the kitchen (ORadj = 0.86, 95% CI: 0.75, 0.98), bedroom (ORadj = 0.90, 95% CI: 0.79, 1.03), and both kitchen and bedroom (ORadj = 0.87, 95% CI: 0.75, 1.00). Stratified analyses showed lung cancer inversely associated with good ventilation among active smokers (ORadj = 0.85, 95% CI: 0.72, 1.00), secondhand smokers at home (ORadj = 0.77, 95% CI: 0.63, 0.94), and those exposed to high-temperature cooking oil fumes (ORadj = 0.82, 95% CI: 0.68, 0.99). Additive interactions were found between household ventilation and secondhand smoke at home as well as number of household pollutant sources. Conclusions A protective association was observed between good ventilation of households and lung cancer, most likely through the reduction of exposure to indoor air pollutants, indicating ventilation may serve as one of the preventive measures for lung cancer, in addition to tobacco cessation. PMID:25019554

  8. PASSIVE/DIFFUSIVE SAMPLERS FOR PESTICIDES IN RESIDENTIAL INDOOR AIR

    EPA Science Inventory

    Pesticides applied indoors vaporize from treated surfaces (e.g., carpets and baseboards) resulting in elevated air concentrations that may persist for long periods after applications. Estimating long-term respiratory exposures to pesticide vapors in residential indoor environme...

  9. Indoor Air '90: the 5th in a series of international conferences on the indoor environment.

    PubMed

    Walkinshaw, D

    1992-01-01

    The 5th International Conference on Indoor Air Quality and Climate: INDOOR AIR '90 continued a series of international scientific conferences begun in 1978 on a complex, interdisciplinary subject increasingly recognized to be of importance to human comfort, health and productivity, and having important implications for building design and furnishing, office equipment, appliances, cleaning, heating, ventilating, humidifying and air-conditioning. INDOOR AIR '90 constituted a week long program of 542 paper and poster presentations and forum discussions, 100 exhibits, and a public forum. This paper summarizes some of the highlights of this conference and links these to some of the studies reported at earlier INDOOR AIR Conference.

  10. Pilot Implementation of a Field Study Design to Evaluate the Impact of Source Control Measures on Indoor Air Quality in High Performance Homes

    SciTech Connect

    Widder, Sarah H.; Chamness, Michele A.; Petersen, Joseph M.; Singer, Brett C.; Maddalena, Randy L.; Destaillats, Hugo; Russell, M. L.

    2014-10-01

    -emitting and “conventional” materials as installed in newly constructed residential homes using both (1) highly controlled, short-term active samples to precisely characterize the building-related chemical emissions and building contents and (2) a week-long passive sample designed to capture the impact of occupant behavior and related activities on measured IAQ contaminant levels indoors. The combination of detailed short-term measurements with the home under controlled/consistent conditions during pre- and post-occupancy and the week-long passive sampling data provide the opportunity to begin to separate the different emission sources and help isolate and quantify variability in the monitored homes. Between April and August 2014, the research team performed pre-occupancy and post-occupancy sampling in one conventional home and two homes built with low-emitting materials that were generally consistent with EPA’s Indoor airPLUS guidelines. However, for a number of reasons, the full experimental plan was not implemented. The project was intended to continue for up to three years to asses long-term changes in IAQ but the project was limited to one calendar year. As a result, several of the primary research questions related to seasonal impacts and the long-term trends in IAQ could not be addressed. In addition, there were several unexpected issues related to recruiting, availability of home types, and difficulty coordinating with builders/realtors/homeowners. Several field monitoring issues also came up that provide “lessons learned” that led to improvements to the original monitoring plan. The project produced a good experimental plan that is expected to be be useful for future efforts collecting data to support answering these same or similar research questions.

  11. Air Conditioning Does Reduce Air Pollution Indoors

    ERIC Educational Resources Information Center

    Healy, Bud

    1970-01-01

    Report of the winter meeting of the American Society of Heating, Refrigerating and Air-Conditioning Engineers. Subjects covered are--(1) title subject, (2) predictions for the human habitat in 1994, (3) fans, and (4) fire safety in buildings. (JW)

  12. Are Ventilation Filters Degrading Indoor Air Quality in California Classrooms?

    SciTech Connect

    Fisk, William J.; Destaillats, H.; Apte, M.G.; Destaillats,, Hugo; Fisk, Michael G. Apte and William J.

    2008-10-01

    Heating, ventilating, and cooling classrooms in California consume substantial electrical energy. Indoor air quality (IAQ) in classrooms affects studenthealth and performance. In addition to airborne pollutants that are emitted directly by indoor sources and those generated outdoors, secondary pollutants can be formed indoors by chemical reaction of ozone with other chemicals and materials. Filters are used in nearly all classroom heating, ventilation and air?conditioning (HVAC) systems to maintain energy-efficient HVAC performance and improve indoor air quality; however, recent evidence indicates that ozone reactions with filters may, in fact, be a source of secondary pollutants. This project quantitatively evaluated ozone deposition in HVAC filters and byproduct formation, and provided a preliminary assessment of the extent towhich filter systems are degrading indoor air quality. The preliminary information obtained will contribute to the design of subsequent research efforts and the identification of energy efficient solutions that improve indoor air quality in classrooms and the health and performance of students.

  13. Predicting indoor pollutant concentrations, and applications to air quality management

    SciTech Connect

    Lorenzetti, David M.

    2002-10-01

    Because most people spend more than 90% of their time indoors, predicting exposure to airborne pollutants requires models that incorporate the effect of buildings. Buildings affect the exposure of their occupants in a number of ways, both by design (for example, filters in ventilation systems remove particles) and incidentally (for example, sorption on walls can reduce peak concentrations, but prolong exposure to semivolatile organic compounds). Furthermore, building materials and occupant activities can generate pollutants. Indoor air quality depends not only on outdoor air quality, but also on the design, maintenance, and use of the building. For example, ''sick building'' symptoms such as respiratory problems and headaches have been related to the presence of air-conditioning systems, to carpeting, to low ventilation rates, and to high occupant density (1). The physical processes of interest apply even in simple structures such as homes. Indoor air quality models simulate the processes, such as ventilation and filtration, that control pollutant concentrations in a building. Section 2 describes the modeling approach, and the important transport processes in buildings. Because advection usually dominates among the transport processes, Sections 3 and 4 describe methods for predicting airflows. The concluding section summarizes the application of these models.

  14. Endocrine disrupting chemicals in indoor and outdoor air

    NASA Astrophysics Data System (ADS)

    Rudel, Ruthann A.; Perovich, Laura J.

    The past 50 years have seen rapid development of new building materials, furnishings, and consumer products and a corresponding explosion in new chemicals in the built environment. While exposure levels are largely undocumented, they are likely to have increased as a wider variety of chemicals came into use, people began spending more time indoors, and air exchange rates decreased to improve energy efficiency. As a result of weak regulatory requirements for chemical safety testing, only limited toxicity data are available for these chemicals. Over the past 15 years, some chemical classes commonly used in building materials, furnishings, and consumer products have been shown to be endocrine disrupting chemicals - that is they interfere with the action of endogenous hormones. These include PCBs, used in electrical equipment, caulking, paints and surface coatings; chlorinated and brominated flame retardants, used in electronics, furniture, and textiles; pesticides, used to control insects, weeds, and other pests in agriculture, lawn maintenance, and the built environment; phthalates, used in vinyl, plastics, fragrances, and other products; alkylphenols, used in detergents, pesticide formulations, and polystyrene plastics; and parabens, used to preserve products like lotions and sunscreens. This paper summarizes reported indoor and outdoor air concentrations, chemical use and sources, and toxicity data for each of these chemical classes. While industrial and transportation-related pollutants have been shown to migrate indoors from outdoor sources, it is expected that indoor sources predominate for these consumer product chemicals; and some studies have identified indoor sources as the predominant factor influencing outdoor ambient air concentrations in densely populated areas. Mechanisms of action, adverse effects, and dose-response relationships for many of these chemicals are poorly understood and no systematic screening of common chemicals for endocrine disrupting

  15. Endocrine disrupting chemicals in indoor and outdoor air.

    PubMed

    Rudel, Ruthann A; Perovich, Laura J

    2009-01-01

    The past 50 years have seen rapid development of new building materials, furnishings, and consumer products and a corresponding explosion in new chemicals in the built environment. While exposure levels are largely undocumented, they are likely to have increased as a wider variety of chemicals came into use, people began spending more time indoors, and air exchange rates decreased to improve energy efficiency. As a result of weak regulatory requirements for chemical safety testing, only limited toxicity data are available for these chemicals. Over the past 15 years, some chemical classes commonly used in building materials, furnishings, and consumer products have been shown to be endocrine disrupting chemicals-that is they interfere with the action of endogenous hormones. These include PCBs, used in electrical equipment, caulking, paints and surface coatings; chlorinated and brominated flame retardants, used in electronics, furniture, and textiles; pesticides, used to control insects, weeds, and other pests in agriculture, lawn maintenance, and the built environment; phthalates, used in vinyl, plastics, fragrances, and other products; alkylphenols, used in detergents, pesticide formulations, and polystyrene plastics; and parabens, used to preserve products like lotions and sunscreens. This paper summarizes reported indoor and outdoor air concentrations, chemical use and sources, and toxicity data for each of these chemical classes. While industrial and transportation-related pollutants have been shown to migrate indoors from outdoor sources, it is expected that indoor sources predominate for these consumer product chemicals; and some studies have identified indoor sources as the predominant factor influencing outdoor ambient air concentrations in densely populated areas. Mechanisms of action, adverse effects, and dose-response relationships for many of these chemicals are poorly understood and no systematic screening of common chemicals for endocrine disrupting

  16. Endocrine disrupting chemicals in indoor and outdoor air

    PubMed Central

    Rudel, Ruthann A.; Perovich, Laura J.

    2009-01-01

    The past 50 years have seen rapid development of new building materials, furnishings, and consumer products and a corresponding explosion in new chemicals in the built environment. While exposure levels are largely undocumented, they are likely to have increased as a wider variety of chemicals came into use, people began spending more time indoors, and air exchange rates decreased to improve energy efficiency. As a result of weak regulatory requirements for chemical safety testing, only limited toxicity data are available for these chemicals. Over the past 15 years, some chemical classes commonly used in building materials, furnishings, and consumer products have been shown to be endocrine disrupting chemicals—that is they interfere with the action of endogenous hormones. These include PCBs, used in electrical equipment, caulking, paints and surface coatings; chlorinated and brominated flame retardants, used in electronics, furniture, and textiles; pesticides, used to control insects, weeds, and other pests in agriculture, lawn maintenance, and the built environment; phthalates, used in vinyl, plastics, fragrances, and other products; alkylphenols, used in detergents, pesticide formulations, and polystyrene plastics; and parabens, used to preserve products like lotions and sunscreens. This paper summarizes reported indoor and outdoor air concentrations, chemical use and sources, and toxicity data for each of these chemical classes. While industrial and transportation-related pollutants have been shown to migrate indoors from outdoor sources, it is expected that indoor sources predominate for these consumer product chemicals; and some studies have identified indoor sources as the predominant factor influencing outdoor ambient air concentrations in densely populated areas. Mechanisms of action, adverse effects, and dose-response relationships for many of these chemicals are poorly understood and no systematic screening of common chemicals for endocrine disrupting

  17. Modeled Effectiveness of Ventilation with Contaminant Control Devices on Indoor Air Quality in a Swine Farrowing Facility

    PubMed Central

    Anthony, T. Renée; Altmaier, Ralph; Park, Jae Hong; Peters, Thomas M.

    2016-01-01

    Because adverse health effects experienced by swine farm workers in concentrated animal feeding operations (CAFOs) have been associated with exposure to dust and gases, efforts to reduce exposures are warranted, particularly in winter seasons when exposures increase due to decreased ventilation. Simulation of air quality and operating costs for ventilating swine CAFO, including treating and recirculating air through a farrowing room, was performed using mass and energy balance equations over a 90-day winter season. System operation required controlling heater operation to achieve room temperatures optimal to ensure animal health (20 to 22.5°C). Five air pollution control devices, four room ventilation rates, and five recirculation patterns were examined. Inhalable dust concentrations were easily reduced using standard industrial air pollution control devices, including a cyclone, filtration, and electrostatic precipitator. Operating ventilation systems at 0.94 m3 s−1 (2000 cfm) with 75 to 100% recirculation of treated air from cyclone, electrostatic precipitator, and shaker dust filtration system achieves adequate particle control with operating costs under $1.00 per pig produced ($0.22 to 0.54), although carbon dioxide (CO2) concentrations approach 2000 ppm using in-room ventilated gas fired heaters. In no simulation were CO2 concentrations below industry recommended concentrations (1540 ppm), but alternative heating devices could reduce CO2 to acceptable concentrations. While this investigation does not represent all production swine farrowing barns, which differ in characteristics including room dimensions and swine occupancy, the simulation model and ventilation optimization methods can be applied to other production sites. This work shows that ventilation may be a cost-effective control option in the swine industry to reduce exposures. PMID:24433305

  18. Modeled effectiveness of ventilation with contaminant control devices on indoor air quality in a swine farrowing facility.

    PubMed

    Anthony, T Renée; Altmaier, Ralph; Park, Jae Hong; Peters, Thomas M

    2014-01-01

    Because adverse health effects experienced by swine farm workers in concentrated animal feeding operations (CAFOs) have been associated with exposure to dust and gases, efforts to reduce exposures are warranted, particularly in winter seasons when exposures increase due to decreased ventilation. Simulation of air quality and operating costs for ventilating swine CAFO, including treating and recirculating air through a farrowing room, was performed using mass and energy balance equations over a 90-day winter season. System operation required controlling heater operation to achieve room temperatures optimal to ensure animal health (20 to 22.5 °C). Five air pollution control devices, four room ventilation rates, and five recirculation patterns were examined. Inhalable dust concentrations were easily reduced using standard industrial air pollution control devices, including a cyclone, filtration, and electrostatic precipitator. Operating ventilation systems at 0.94 m3 s(-1) (2000 cfm) with 75 to 100% recirculation of treated air from cyclone, electrostatic precipitator, and shaker dust filtration system achieves adequate particle control with operating costs under $1.00 per pig produced ($0.22 to 0.54), although carbon dioxide (CO2) concentrations approach 2000 ppm using in-room ventilated gas fired heaters. In no simulation were CO2 concentrations below industry recommended concentrations (1540 ppm), but alternative heating devices could reduce CO2 to acceptable concentrations. While this investigation does not represent all production swine farrowing barns, which differ in characteristics including room dimensions and swine occupancy, the simulation model and ventilation optimization methods can be applied to other production sites. This work shows that ventilation may be a cost-effective control option in the swine industry to reduce exposures.

  19. Monitoring of pyrocatechol indoor air pollution

    NASA Astrophysics Data System (ADS)

    Eškinja, I.; Grabarić, Z.; Grabarić, B. S.

    Spectrophotometric and electrochemical methods for monitoring of pyrocatechol (PC) indoor air pollution have been investigated. Spectrophotometric determination was performed using Fe(III) and iodine methods. The adherence to Beer's law was found in the concentration range between 0 and 12 μg ml - for iodine method at pH = 5.7 measuring absorbance at 725 nm, and in the range 0-30 μg ml - for Fe(III) method at pH = 9.5 measuring absorbance at 510 nm. The former method showed greater sensitivity than the latter one. Differential pulse voltammetry (DPV) and chronoamperometric (CA) detection in flow injection analysis (FIA) using carbon paste electrode in phosphate buffer solution of pH = 6.5 was also used for pyrocatechol determination. The electrochemical methods allowed pyrocatechol quantitation in submicromolar concentration level with an overall reproducibility of ± 1%. The efficiency of pyrocatechol sampling collection was investigated at two temperatures (27 and 40°C) in water, 0.1 M NaOH and 0.1 M HCl solutions. Solution of 0.1 M HCl gave the best collection efficiency (95.5-98.5%). A chamber testing simulating the indoor pollution has been performed. In order to check the reliability of the proposed methods for monitoring of the indoor pyrocatechol pollution, the air in working premises with pyrocatechol released from meteorological charts during mapping and paper drying was analyzed using proposed methods. The concentration of pyrocatechol in the air during mapping was found to be 1.8 mg m -3 which is below the hygienic standard of permissible exposure of 20 mg m -3 (≈ 5 ppm). The release of pyrocatechol from the paper impregnated with pyrocatechol standing at room temperature during one year was also measured. The proposed methods can be used for indoor pyrocatechol pollution monitoring in working premises of photographic, rubber, oil and dye industries, fur and furniture dyeing and cosmetic or pharmaceutical premises where pyrocatechol and related

  20. Indoor Air Quality in Schools: Understanding the Problem and Finding the Solution.

    ERIC Educational Resources Information Center

    Bacci, Geoff

    2002-01-01

    Describes issues and solutions involving indoor air quality in school. Includes indoor air quality action plans, the role of the environmental consultant, and resources available to help school districts develop an indoor air quality action plan. (PKP)

  1. The compatibility of energy conservation and indoor air quality

    SciTech Connect

    Grimsrud, D.T.; Turk, B.H.; Prill, R.J.; Revzan, K.L.

    1988-10-01

    Two studies of indoor air quality in residences are described. In the first air quality measurements are reported in 111 unweatherized houses followed by careful observation of changes in ventilation rates and air quality in a subset of forty of the houses that received staged weatherization. A large fraction of the houses sampled in the eastern portion of the state of Washington contained high concentrations of radon gas. The major change in air quality seen in the sample as the result of weatherization was a substantial decrease in radon concentration in houses having crawlspaces. A second study reported compares ventilation and air quality in 62 new residences. Half were built using Model Conservation Standards to promote energy efficiency; the other half were built using conventional techniques for the region. Little difference was seen in ventilation rates in spite of significant design differences. Larger variations in air quality were seen between houses in different regions than between the Control and test houses in the same region. We conclude that changes in housing design and construction to promote energy efficiency are not incompatible with good indoor air quality. 20 refs., 13 figs.

  2. Fungi as contaminants in indoor air

    NASA Astrophysics Data System (ADS)

    Miller, J. David

    This article reviews the subject of contamination of indoor air with fungal spores. In the last few years there have been advances in several areas of research on this subject. A number of epidemiological studies have been conducted in the U.K., U.S.A. and Canada. These suggest that exposure to dampness and mold in homes is a significant risk factor for a number of respiratory symptoms. Well-known illnesses caused by fungi include allergy and hypersensitivity pneumonitis. There is now evidence that other consequences of exposure to spores of some fungi may be important. In particular, exposure to low molecular weight compounds retained in spores of some molds such as mycotoxins and β 1,3 glucans appears to contribute to some symptoms reported. Fungal contamination of building air is almost always caused by poor design and/or maintenance. Home owners and building operators need to take evidence of fungal contamination seriously.

  3. School Policies and Practices that Improve Indoor Air Quality

    ERIC Educational Resources Information Center

    Jones, Sherry Everett; Smith, Alisa M.; Wheeler, Lani S.; McManus, Tim

    2010-01-01

    Background: To determine whether schools with a formal indoor air quality management program were more likely than schools without a formal program to have policies and practices that promote superior indoor air quality. Methods: This study analyzed school-level data from the 2006 School Health Policies and Programs Study, a national study of…

  4. Reference Guide. Indoor Air Quality Tools for Schools

    ERIC Educational Resources Information Center

    US Environmental Protection Agency, 2009

    2009-01-01

    Understanding the importance of good indoor air quality (IAQ) in schools is the backbone of developing an effective Indoor Air Quality (IAQ) program. Poor IAQ can lead to a large variety of health problems and potentially affect comfort, concentration, and staff/student performance. In recognition of tight school budgets, this guidance is designed…

  5. Indoor Air Quality and Student Performance [and Case Studies].

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Radiation and Indoor Air.

    This report examines how indoor air quality (IAQ) affects a child's ability to learn and provides several case studies of schools that have successfully addressed their indoor air problems, the lessons learned from that experience, and what long-term practices and policies emerged from the effort. The report covers the effects from…

  6. INDOOR AIR QUALITY AND INHALATION EXPOSURE - SIMULATION TOOL KIT

    EPA Science Inventory

    A Microsoft Windows-based indoor air quality (IAQ) simulation software package is presented. Named Simulation Tool Kit for Indoor Air Quality and Inhalation Exposure, or IAQX for short, this package complements and supplements existing IAQ simulation programs and is desi...

  7. Indoor air quality investigation on commercial aircraft.

    PubMed

    Lee, S C; Poon, C S; Li, X D; Luk, F

    1999-09-01

    Sixteen flights had been investigated for indoor air quality (IAQ) on Cathay Pacific aircraft from June 1996 to August 1997. In general, the air quality on Cathay Pacific aircraft was within relevant air quality standards because the average age of aircraft was less than 2 years. Carbon dioxide (CO2) levels on all flights measured were below the Federal Aviation Administration (FAA) standard (30,000 ppm). The CO2 level was substantially higher during boarding and de-boarding than cruise due to low fresh air supply. Humidity on the aircraft was low, especially for long-haul flights. Minimum humidity during cruise was below the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) minimum humidity standard (20%). The average temperature was within a comfortable temperature range of 23 +/- 2 degrees C. The vertical temperature profile on aircraft was uniform and below the International Standard Organization (ISO) standard. Carbon monoxide levels were below the FAA standard (50 ppm). Trace amount of ozone detected ranged from undetectable to 90 ppb, which was below the FAA standard. Particulate level was low for most non-smoking flights, but peaks were observed during boarding and de-boarding. The average particulate level in smoking flights (138 micrograms/m3) was higher than non-smoking flights (7.6 micrograms/m3). The impact on IAQ by switching from low-mode to high-mode ventilation showed a reduction in CO2 levels, temperature, and relative humidity.

  8. Causes of Indoor Air Quality Problems in Schools: Summary of Scientific Research. Revised Edition.

    ERIC Educational Resources Information Center

    Bayer, Charlene W.; Crow, Sidney A.; Fischer, John

    Understanding the primary causes of indoor air quality (IAQ) problems and how controllable factors--proper heating, ventilation and air-conditioning (HVAC) system design, allocation of adequate outdoor air, proper filtration, effective humidity control, and routine maintenance--can avert problems may help all building owners, operators, and…

  9. Effects of Indoor Air Pollutants on Atopic Dermatitis

    PubMed Central

    Kim, JaKyoung; Kim, HyungJin; Lim, DaeHyun; Lee, Young-Kyu; Kim, Jeong Hee

    2016-01-01

    The increasing prevalence of atopic dermatitis (AD) is associated with variations in indoor environments. In Korea, many inner walls of homes are covered with wallpaper: such walls emit indoor air pollutants, including volatile organic compounds (VOCs) and formaldehyde. This randomized, double-blind study investigated the effects of wallpaper on indoor air quality and AD. Thirty-one children (aged three to eight years) with moderate AD were assigned to environmentally-friendly (EF) and polyvinyl chloride (PVC) wallpaper groups. Indoor air concentrations of VOCs, natural VOCs (NVOCs), formaldehyde, and total suspended bacteria were measured before and two (W2) and eight weeks (W8) after wallpapering. Scoring Atopic Dermatitis (SCORAD) evaluations and blood tests were performed during the same period. The EF wallpaper and PVC wallpaper groups showed similar trends in the changes in total VOCs (TVOC) and formaldehyde content in the indoor air. However, the EF wallpaper group showed more improvement on the SCORAD at W2 and W8 than the PVC wallpaper group. The SCORAD index was positively correlated with several indoor air pollutants. Further, the SCORAD index and NVOC % were negatively correlated. Improved SCORAD index and effects of wallpapering on indoor air quality improvements occurred within a short period of time in both groups. We believe that NVOCs in indoor air after EF wallpapering have a beneficial effect on health. PMID:27941696

  10. Indoor air quality in Latino homes in Boulder, Colorado

    NASA Astrophysics Data System (ADS)

    Escobedo, Luis E.; Champion, Wyatt M.; Li, Ning; Montoya, Lupita D.

    2014-08-01

    Indoor concentrations of airborne pollutants can be several times higher than those found outdoors, often due to poor ventilation, overcrowding, and the contribution of indoor sources within a home. Americans spend most of their time indoors where exposure to poor indoor air quality (IAQ) can result in diminished respiratory and cardiovascular health. This study measured the indoor air quality in 30 homes of a low-income Latino community in Boulder, Colorado during the summer of 2012. Participants were administered a survey, which included questions on their health conditions and indoor air pollution sources like cigarette smoke, heating fuel, and building materials. Twenty-four hour samples of fine particulate matter (PM2.5) from the indoor air were collected in each home; ambient PM2.5 samples were collected each day as well. Concurrent air samples were collected onto 47 mm Teflo and Tissuquartz filter at each location. Teflo filters were analyzed gravimetrically to measure PM2.5 and their extracts were used to determine levels of proteins and endotoxins in the fine fraction. The Tissuquartz filters were analyzed for elemental and organic carbon content (EC/OC). Results indicated that the indoor air contained higher concentrations of PM2.5 than the ambient air, and that the levels of OC were much higher than EC in both indoor and outdoor samples. This community showed no smoking in their homes and kept furry pets indoors at very low rates; therefore, cooking is likely the primary source of indoor PM. For responders with significant exposure to PM, it appeared to be primarily from occupational environments or childhood exposure abroad. Our findings indicate that for immigrant communities such as this, it is important to consider not only their housing conditions but also the relevant prior exposures when conducting health assessments.

  11. Exploring the consequences of climate change for indoor air quality

    NASA Astrophysics Data System (ADS)

    Nazaroff, William W.

    2013-03-01

    Climate change will affect the concentrations of air pollutants in buildings. The resulting shifts in human exposure may influence public health. Changes can be anticipated because of altered outdoor pollution and also owing to changes in buildings effected in response to changing climate. Three classes of factors govern indoor pollutant levels in occupied spaces: (a) properties of pollutants; (b) building factors, such as the ventilation rate; and (c) occupant behavior. Diversity of indoor conditions influences the public health significance of climate change. Potentially vulnerable subpopulations include not only the young and the infirm but also those who lack resources to respond effectively to changing conditions. Indoor air pollutant levels reflect the sum of contributions from indoor sources and from outdoor pollutants that enter with ventilation air. Pollutant classes with important indoor sources include the byproducts of combustion, radon, and volatile and semivolatile organic compounds. Outdoor pollutants of special concern include particulate matter and ozone. To ensure good indoor air quality it is important first to avoid high indoor emission rates for all pollutants and second to ensure adequate ventilation. A third factor is the use of air filtration or air cleaning to achieve further improvements where warranted. Reprinted with permission from Climate Change, the Indoor Environment, and Health (2011) by the National Academy of Sciences, Courtesy of the National Academies Press, Washington, DC.

  12. Use of an indoor air quality model (IAQM) to estimate indoor ozone levels.

    PubMed

    Hayes, S R

    1991-02-01

    Currently, outdoor ozone levels in many U.S. cities exceed the primary health-based national ambient air quality standard. While outdoor ozone levels are an important measure of the severity of those exceedances, people typically spend more than 80 percent of their time indoors, where ozone levels are lower. Indoor ozone levels range from 10 to 80 percent of outdoor levels, with many people receiving a substantial portion of their ozone exposure while indoors. This paper uses an indoor air quality model (IAQM) to estimate indoor ozone levels by microenvironment type (home, office, and vehicle) and configuration (windows open, windows closed, older construction, weatherized, and air conditioned). The formulation of IAQM is discussed, along with specification of model parameters for ozone. The multicompartment version of IAQM is described, with a single-compartment version used for the analyses. IAQM-calculated ozone indoor-outdoor ratios compare well with research-reported values. Results indicate that ozone peak-concentration indoor-outdoor ratios range as follows: home--0.65 (windows open), 0.36 (air conditioned), 0.23 (typical construction, windows closed), and 0.05 (energy-efficient construction, windows closed); office--0.82 (heating, ventilation and air conditioning systems supplying 100 percent outdoor air), 0.60 (typical HVAC), and 0.32 (energy-efficient HVAC); and vehicle--0.41 (85 mph), 0.33 (55 mph), and 0.21 (10 mph). Analysis results are presented to characterize IAQM's sensitivity to assumed model parameters.

  13. Reaching agreements on indoor air quality

    SciTech Connect

    Stewart, S.M.

    1992-08-01

    The phrases sick building syndrome and indoor air quality (IAQ) are in common use today because of a heightened public awareness of various environmental issues. IAQ complaints must be diplomatically resolved because employers and building owners and managers now face a potential impact on their bottom-lines. The office's IAQ was first questioned when 12 of the 47 employees reported complaints particular to the time they spent in the office building. Three employees were so severely affected, they developed respective cases of rhinitis, conjunctivitis and sinus infection. When the tenant presented this information to the building owner, he was told that there was not an IAQ problem within the building. This article summarizes an unfortunate, yet typical, aspect of IAQ problems. It also offers a more efficient method for evaluating and resolving all IAQ problems.

  14. Indoor air flow and pollutant removal in a room with desk-top ventilation

    SciTech Connect

    Faulkner, D.; Fisk, W.J.; Sullivan, D.P.

    1993-04-01

    In a furnished experimental facility with three workstations separated by partitions, we studied indoor air flow patterns and tobacco smoke removal efficiency of a desk-top task ventilation system. The task ventilation system permits occupant control of the temperature, flow rate and direction of air supplied through two desk-mounted supply nozzles. In the configuration evaluated, air exited the ventilated space through a ceiling-mounted return grill. To study indoor air flow patterns, we measured the age of air at multiple indoor locations using the tracer gas step-up procedure. To study the intra-room transport of tobacco smoke particles and the efficiency of panicle removal by ventilation, a cigarette was smoked mechanically in one workstation and particle concentrations were measured at multiple indoor locations including the exhaust airstream. Test variables included the direction of air supply from the nozzles, supply nozzle area, supply flow rate and temperature, percent recirculation of chamber air, and internal heatloads. With nozzles pointed toward the occupants, 100% outside air supplied at the desk-top, and air supply rates of approximately 40 L/s per workstation, the age of air at the breathing level of ventilated workstations was approximately 30% less than the age of air that would occur throughout the test space with perfectly mixed indoor air. With smaller air supply rates and/or air supplied parallel to the edges of the desk, ages of air at breathing locations were not significantly lower than the age with perfect mixing. Indoor tobacco smoke particle concentrations at specific locations were generally within 12% of the average measured indoor concentration and concentrations of particles in the exhaust airstream were not significantly different from concentration of particles at breathing locations.

  15. Mitigation of building-related polychlorinated biphenyls in indoor air of a school

    PubMed Central

    2012-01-01

    Background Sealants and other building materials sold in the U.S. from 1958 - 1971 were commonly manufactured with polychlorinated biphenyls (PCBs) at percent quantities by weight. Volatilization of PCBs from construction materials has been reported to produce PCB levels in indoor air that exceed health protective guideline values. The discovery of PCBs in indoor air of schools can produce numerous complications including disruption of normal operations and potential risks to health. Understanding the dynamics of building-related PCBs in indoor air is needed to identify effective strategies for managing potential exposures and risks. This paper reports on the efficacy of selected engineering controls implemented to mitigate concentrations of PCBs in indoor air. Methods Three interventions (ventilation, contact encapsulation, and physical barriers) were evaluated in an elementary school with PCB-containing caulk and elevated PCB concentrations in indoor air. Fluorescent light ballasts did not contain PCBs. Following implementation of the final intervention, measurements obtained over 14 months were used to assess the efficacy of the mitigation methods over time as well as temporal variability of PCBs in indoor air. Results Controlling for air exchange rates and temperature, the interventions produced statistically significant (p < 0.05) reductions in concentrations of PCBs in indoor air of the school. The mitigation measures remained effective over the course of the entire follow-up period. After all interventions were implemented, PCB levels in indoor air were associated with indoor temperature. In a "broken-stick" regression model with a node at 20°C, temperature explained 79% of the variability of indoor PCB concentrations over time (p < 0.001). Conclusions Increasing outdoor air ventilation, encapsulating caulk, and constructing a physical barrier over the encapsulated material were shown to be effective at reducing exposure concentrations of PCBs in indoor air

  16. The economic impact of clean indoor air laws.

    PubMed

    Eriksen, Michael; Chaloupka, Frank

    2007-01-01

    Clean indoor air laws are easily implemented, are well accepted by the public, reduce nonsmoker exposure to secondhand smoke, and contribute to a reduction in overall cigarette consumption. There are currently thousands of clean indoor air laws throughout the Unites States, and the majority of Americans live in areas where smoking is completely prohibited in workplaces, restaurants, or bars. The vast majority of scientific evidence indicates that there is no negative economic impact of clean indoor air policies, with many studies finding that there may be some positive effects on local businesses. This is despite the fact that tobacco industry-sponsored research has attempted to create fears to the contrary. Further progress in the diffusion of clean indoor air laws will depend on the continued documentation of the economic impact of clean indoor air laws, particularly within the hospitality industry. This article reviews the spread of clean indoor air laws, the effect on public health, and the scientific evidence of the economic impact of implementation of clean indoor air laws.

  17. Influence of indoor air conditions on radon concentration in a detached house.

    PubMed

    Akbari, Keramatollah; Mahmoudi, Jafar; Ghanbari, Mahdi

    2013-02-01

    Radon is released from soil and building materials and can accumulate in residential buildings. Breathing radon and radon progeny for extended periods hazardous to health and can lead to lung cancer. Indoor air conditions and ventilation systems strongly influence indoor radon concentrations. This paper focuses on effects of air change rate, indoor temperature and relative humidity on indoor radon concentrations in a one family detached house in Stockholm, Sweden. In this study a heat recovery ventilation system unit was used to control the ventilation rate and a continuous radon monitor (CRM) was used to measure radon levels. FLUENT, a computational fluid dynamics (CFD) software package was used to simulate radon entry into the building and air change rate, indoor temperature and relative humidity effects using a numerical approach. The results from analytical solution, measurements and numerical simulations showed that air change rate, indoor temperature and moisture had significant effects on indoor radon concentration. Increasing air change rate reduces radon level and for a specific air change rate (in this work Ach = 0.5) there was a range of temperature and relative humidity that minimized radon levels. In this case study minimum radon levels were obtained at temperatures between 20 and 22 °C and a relative humidity of 50-60%.

  18. Use of ozone generating devices to improve indoor air quality.

    PubMed

    Boeniger, M F

    1995-06-01

    Room ozonization has been in widespread use to "freshen" indoor air for more than 100 years. This use is sometimes promoted with the claim that ozone can oxidize airborne gases, and even particulates, to simple carbon dioxide and water vapor. Aside from whether ozone can improve indoor air quality, the potentially deleterious consequences to public health of overexposure to ozone are of concern. The literature on both allegations is reviewed. It indicates that ozone is not a practical and effective means of improving indoor air quality, especially in light of its potentially serious risk to health.

  19. CONCRETE BLOCKS' ADVERSE EFFECTS ON INDOOR AIR AND RECOMMENDED SOLUTIONS

    EPA Science Inventory

    Air infiltration through highly permeable concrete blocks can allow entry of various serious indoor air pollutants. An easy approach to avoiding these pollutants is to select a less–air-permeable concrete block. Tests show that air permeability of concrete blocks can vary by a fa...

  20. WSN based indoor air quality monitoring in classrooms

    NASA Astrophysics Data System (ADS)

    Wang, S. K.; Chew, S. P.; Jusoh, M. T.; Khairunissa, A.; Leong, K. Y.; Azid, A. A.

    2017-03-01

    Indoor air quality monitoring is essential as the human health is directly affected by indoor air quality. This paper presents the investigations of the impact of undergraduate students' concentration during lecture due to the indoor air quality in classroom. Three environmental parameters such as temperature, relative humidity and concentration of carbon dioxide are measured using wireless sensor network based air quality monitoring system. This simple yet reliable system is incorporated with DHT-11 and MG-811 sensors. Two classrooms were selected to install the monitoring system. The level of indoor air quality were measured and students' concentration was assessed using intelligent test during normal lecturing section. The test showed significant correlation between the collected environmental parameters and the students' level of performances in their study.

  1. Combustion Safety for Appliances Using Indoor Air (Fact Sheet)

    SciTech Connect

    Not Available

    2014-05-01

    This measure guideline covers how to assess and carry out the combustion safety procedures for appliances and heating equipment that uses indoor air for combustion in low-rise residential buildings. Only appliances installed in the living space, or in an area freely communicating with the living space, vented alone or in tandem with another appliance are considered here. A separate measure guideline addresses combustion appliances located either within the living space in enclosed closets or side rooms or outside the living space in an adjacent area like an attic or garage that use outdoor air for combustion. This document is for inspectors, auditors, and technicians working in homes where energy upgrades are being conducted whether or not air infiltration control is included in the package of measures being applied. In the indoor combustion air case, guidelines summarized here are based on language provided in several of the codes to establish minimum requirements for the space using simplified prescriptive measures. In addition, building performance testing procedures are provided by testing agencies. The codes in combination with the test procedures offer comprehensive combustion safety coverage to address safety concerns, allowing inexperienced residential energy retrofit inspectors to effectively address combustion safety issues and allow energy retrofits to proceed.

  2. Indoor air quality analysis based on Hadoop

    NASA Astrophysics Data System (ADS)

    Tuo, Wang; Yunhua, Sun; Song, Tian; Liang, Yu; Weihong, Cui

    2014-03-01

    The air of the office environment is our research object. The data of temperature, humidity, concentrations of carbon dioxide, carbon monoxide and ammonia are collected peer one to eight seconds by the sensor monitoring system. And all the data are stored in the Hbase database of Hadoop platform. With the help of HBase feature of column-oriented store and versioned (automatically add the time column), the time-series data sets are bulit based on the primary key Row-key and timestamp. The parallel computing programming model MapReduce is used to process millions of data collected by sensors. By analysing the changing trend of parameters' value at different time of the same day and at the same time of various dates, the impact of human factor and other factors on the room microenvironment is achieved according to the liquidity of the office staff. Moreover, the effective way to improve indoor air quality is proposed in the end of this paper.

  3. Persistent allergic rhinitis and indoor air quality perception--an experimental approach.

    PubMed

    Graudenz, G S; Latorre, M R D O; Tribess, A; Oliveira, C H; Kalil, J

    2006-08-01

    In order to compare patterns of indoor air perception, including perceptions of temperature, air movement, indoor air quality (IAQ), mental concentration, and comfort, 33 subjects either with persistent allergic rhinitis or controls were exposed to different temperatures and constant relative humidity in an experimental office environment. Results were obtained by means of a self-administered visual analogue scale, analyzed using mean score comparisons and principal component analysis. At 14 degrees C, the rhinitis group reported higher scores for sensations of air dryness than controls. At 18 degrees C, in the rhinitis group, there was a correlation between dry, stagnant air, and difficult mental concentration. This group also correlated heat, dry air, and poor IAQ, in contrast to the control group, which correlated comfort, easy mental concentration, and freshness. At 22 degrees C, the rhinitis group correlated heat, dryness, stagnant air, and overall discomfort. This group also correlated non-dry air, freshness, and comfort, whereas the control group correlated heat, humidity, good indoor air, freshness, and comfort. This study suggests that the rhinitis group perceives indoor temperatures of 14 degrees C as dryer than controls do, and that at 18 and 22 degrees C this group positively correlates different adverse perceptions of IAQ. By means of a self-administered questionnaire in an experimental condition, the present study compares subjective patterns of indoor air perception from individuals with respiratory allergy (allergic rhinitis) to control individuals. It reports different patterns of perception of indoor air quality (IAQ) between the two groups, suggesting that allergic individuals could have different IAQ perception.

  4. The Health Protection Act, national guidelines for indoor air quality and development of the national indoor air programs in Finland.

    PubMed

    Husman, T M

    1999-06-01

    This article presents the current handling of disease related to moldy buildings in Finland as an example of an integrated health strategy. It describes the role of the Finnish Health Protection Act for indoor environments and how cases of indoor air problems are dealt with by local, regional, and national authorities.

  5. The Health Protection Act, national guidelines for indoor air quality and development of the national indoor air programs in Finland.

    PubMed Central

    Husman, T M

    1999-01-01

    This article presents the current handling of disease related to moldy buildings in Finland as an example of an integrated health strategy. It describes the role of the Finnish Health Protection Act for indoor environments and how cases of indoor air problems are dealt with by local, regional, and national authorities. PMID:10347001

  6. Indoor Air Quality (IAQ) Schools and Universities: Overview of Indoor Air Quality Issues, and Preliminary Design Guide.

    ERIC Educational Resources Information Center

    Healthy Buildings International, Inc., Fairfax, VA.

    This guide is intended to help the building design, engineering, and maintenance staff of school buildings maintain a common standard of high indoor air quality (IAQ) and a productive and comfortable workplace for students and staff. The report defines the four basic classifications of indoor environmental pollution, lists the factors impacting…

  7. Indoor air quality in elementary schools of Lisbon in spring.

    PubMed

    Pegas, P N; Alves, C A; Evtyugina, M G; Nunes, T; Cerqueira, M; Franchi, M; Pio, C A; Almeida, S M; Freitas, M C

    2011-10-01

    Analysis of indoor air quality (IAQ) in schools usually reveals higher levels of pollutants than in outdoor environments. The aims of this study are to measure indoor and outdoor concentrations of NO(2), speciated volatile organic compounds (VOCs) and carbonyls at 14 elementary schools in Lisbon, Portugal. The investigation was carried out in May-June 2009. Three of the schools were selected to also measure comfort parameters, such as temperature and relative humidity, carbon dioxide (CO(2)), carbon monoxide (CO), total VOCs, and bacterial and fungal colony-forming units per cubic metre. Indoor concentrations of CO(2) in the three main schools indicated inadequate classroom air exchange rates. The indoor/outdoor (I/O) NO(2) ratio ranged between 0.36 and 0.95. At the three main schools, the total bacterial and fungal colony-forming units (CFU) in both indoor and outdoor air were above the advised maximum value of 500 CFU/m(3) defined by Portuguese legislation. The aromatic compounds benzene, toluene, ethylbenzene and xylenes, followed by ethers, alcohols and terpenes, were usually the most abundant classes of VOCs. In general, the indoor total VOC concentrations were markedly higher than those observed outdoors. At all locations, indoor aldehyde levels were higher than those observed outdoors, particularly for formaldehyde. The inadequate ventilation observed likely favours accumulation of pollutants with additional indoor sources.

  8. Energy, Weatherization and Indoor Air Quality

    EPA Pesticide Factsheets

    Climate change presents many challenges, including the production of severe weather events. These events and efforts to minimize their effects through weatherization can adversely affect indoor environments.

  9. Working with the Media on Tribal Indoor Air Quality Issues

    EPA Pesticide Factsheets

    Working with the media can be beneficial in publicizing your indoor air quality (IAQ) messages and getting the word out about any activities or events that raise awareness about IAQ in your community.

  10. Indoor Air Quality Tools for Schools Action Kit

    EPA Pesticide Factsheets

    The IAQ Tools for Schools Action Kit provides schools with information on how to carry out a practical plan to improve indoor air problems at little- or no-cost using straightforward activities and in-house staff.

  11. OFFICE EQUIPMENT: DESIGN, INDOOR AIR EMISSIONS, AND POLLUTION PREVENTION OPPORTUNITIES

    EPA Science Inventory

    The report summarizes available information on office equipment design; indoor air emissions of organics, ozone, and particulates from office equipment; and pollution prevention approaches for reducing these emissions. Since much of the existing emissions data from office equipme...

  12. Doing Your Homework on Indoor Air Quality Issues.

    ERIC Educational Resources Information Center

    Caldwell, Rick

    2000-01-01

    Explains how administrators at the Georgia Institute of Technology were able to build a new residence hall that included a cost-effective ventilation system providing high quality indoor air. Project considerations, design solutions, and project economies are discussed. (GR)

  13. Technical Solutions to Common Indoor Air Quality Issues in Schools

    EPA Pesticide Factsheets

    Indoor Air Quality (IAQ) Design Tools for Schools provides voluntary guidance for school personnel, architects, engineers, builders and contractors, parents, and the community on key school construction and renovation issues.

  14. The utility of anger in promoting clean indoor air policies.

    PubMed

    Quick, Brian L; Bates, Benjamin R; Quinlan, Margaret M; Quinlan, Margaret R

    2009-09-01

    This investigation examined antecedents associated with support for clean indoor air policies. Participants (N = 550) living in a Midwestern county (population = 62,223) were randomly sampled. Results suggest that beliefs in the health risks associated with secondhand smoke are positively associated with favorable attitudes toward clean indoor air policies, whereas trait reactance is negatively associated with these attitudes. Findings also indicate that risks and trait reactance are indirectly associated with support for clean indoor air policies, mediated through anger arousal toward exposure to secondhand smoke. In addition, regression analyses revealed that health risks, trait reactance, and smoking status explained a significant amount of variance regarding anger toward exposure to secondhand smoke, but only health risks and smoking status accounted for a significant amount of variance toward clean indoor air attitudes. Finally, the Smoking Status x Health Risks interaction was supported for anger toward exposure to secondhand smoke and favorable attitudes toward clean indoor air policies. Our findings suggest the incorporation of anger appeals when promoting clean indoor air policies.

  15. Control of indoor radon and radon progeny concentrations

    SciTech Connect

    Sextro, R.G.

    1985-05-01

    There are three general categories of techniques for the control of radon and radon progeny concentrations in indoor air - restriction of radon entry, reduction of indoor radon concentrations by ventilation or air cleaning, and removal of airborne radon progeny. The predominant radon entry process in most residences appears to be pressure driven flow of soil gas through cracks or other openings in the basement, slab, or subfloor. Sealing these openings or ventilation of the subslab or subfloor space are methods of reducing radon entry rates. Indoor radon concentrations may be reduced by increased ventilation. The use of charcoal filters for removal of radon gas in the indoor air by adsorption has also been proposed. Concentrations of radon progeny, which are responsible for most of the health risks associated with radon exposures, can be controlled by use of electrostatic or mechanical filtration. Air circulation can also reduce radon progeny concentrations in certain cases. This paper reviews the application and limitations of each of these control measures and discusses recent experimental results.

  16. An Innovative Reactor Technology to Improve Indoor Air Quality

    SciTech Connect

    Rempel, Jane

    2013-03-30

    As residential buildings achieve tighter envelopes in order to minimize energy used for space heating and cooling, accumulation of indoor air pollutants such as volatile organic compounds (VOCs), becomes a major concern causing poor air quality and increased health risks. Current VOC removal methods include sorbents, ultraviolet photocatalytic oxidation (UVPCO), and increased ventilation, but these methods do not capture or destroy all VOCs or are prohibitively expensive to implement. TIAX's objective in this program was to develop a new VOC removal technology for residential buildings. This novel air purification technology is based on an innovative reactor and light source design along with UVPCO properties of the chosen catalyst to purify indoor air and enhance indoor air quality (IAQ). During the program we designed, fabricated and tested a prototype air purifier to demonstrate its feasibility and effectiveness. We also measured kinetics of VOC destruction on photocatalysts, providing deep insight into reactor design.

  17. Indoor air as a vehicle for human pathogens: Introduction, objectives, and expectation of outcome.

    PubMed

    Sattar, Syed A

    2016-09-02

    Airborne spread of pathogens can be rapid, widespread, and difficult to prevent. In this international workshop, a panel of 6 experts will expound on the following: (1) the potential for indoor air to spread a wide range of human pathogens, plus engineering controls to reduce the risk for exposure to airborne infectious agents; (2) the behavior of aerosolized infectious agents indoors and the use of emerging air decontamination technologies; (3) a survey of quantitative methods to recover infectious agents and their surrogates from indoor air with regard to survival and inactivation of airborne pathogens; (4) mathematical models to predict the movement of pathogens indoors and the use of such information to optimize the benefits of air decontamination technologies; and (5) synergy between different infectious agents, such as legionellae and fungi, in the built environment predisposing to possible transmission-related health impacts of aerosolized biofilm-based opportunistic pathogens. After the presentations, the panel will address a set of preformulated questions on selection criteria for surrogate microbes to study the survival and inactivation of airborne human pathogens, desirable features of technologies for microbial decontamination of indoor air, knowledge gaps, and research needs. It is anticipated that the deliberations of the workshop will provide the attendees with an update on the significance of indoor air as a vehicle for transmitting human pathogens with a brief on what is currently being done to mitigate the risks from airborne infectious agents.

  18. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    SciTech Connect

    Rudd, A.; Bergey, D.

    2014-02-01

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. It was inferior because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

  19. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    SciTech Connect

    Rudd, Armin; Bergey, Daniel

    2014-02-01

    In this project, Building America research team Building Science Corporation tested the effectiveness of ventilation systems at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. This was because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four system factor categories: balance, distribution, outside air source, and recirculation filtration. Recommended system factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

  20. Indoor air quality in homes, offices and restaurants in Korean urban areas—indoor/outdoor relationships

    NASA Astrophysics Data System (ADS)

    Baek, Sung-Ok; Kim, Yoon-Shin; Perry, Roger

    Air quality monitoring was carried out to collect data on the levels of various indoor and ambient air constituents in two cities in Korea (Seoul and Taegu). Sampling was conducted simultaneously indoors and outdoors at six residences, six offices and six restaurants in each city during summer 1994 and winter 1994-1995. Measured pollutants were respirable suspended particulate matter (RSP), carbon monoxide (CO), carbon dioxide (CO 2), nitrogen dioxide (NO 2), and a range of volatile organic compounds (VOCs). In addition, in order to evaluate the effect of smoking on indoor air quality, analyses of parameters associated with environmental tobacco smoke (ETS) were undertaken, which are nicotine, ultraviolet (UVPM), fluorescence (FPM) and solanesol particulate matter (SolPM). The results of this study have confirmed the importance of ambient air in determining the quality of air indoors in two major Korean cities. The majority of VOCs measured in both indoor and outdoor environments were derived from outdoor sources, probably motor vehicles. Benzene and other VOC concentrations were much higher during the winter months than the summer months and were not significantly greater in the smoking sites examined. Heating and cooking practices, coupled with generally inadequate ventilation, also were shown to influence indoor air quality. In smoking sites, ETS appears to be a minor contributor to VOC levels as no statistically significant relationships were identified with ETS components and VOCs, whereas very strong correlations were found between indoor and outdoor levels of vehicle-related pollutants. The average contribution of ETS to total RSP concentrations was estimated to range from 10 to 20%.

  1. Indoor air quality at nine shopping malls in Hong Kong.

    PubMed

    Li, W M; Lee, S C; Chan, L Y

    2001-06-12

    Hong Kong is one of the most attractive shopping paradises in the world. Many local people and international tourists favor to spend their time in shopping malls in Hong Kong. Good indoor air quality is, therefore, very essential to shoppers. In order to characterize the indoor air quality in shopping malls, nine shopping malls in Hong Kong were selected for this study. The indoor air pollutants included carbon dioxide (CO2), carbon monoxide (CO), total hydrocarbons (THC), formaldehyde (HCHO), respirable particulate matter (PM10) and total bacteria count (TBC). More than 40% of the shopping malls had 1-h average CO2 levels above the 1000 ppm of the ASHRAE standard on both weekdays and weekends. Also, they had average weekday PM10 concentrations that exceeded the Hong Kong Indoor Air Quality Objective (HKIAQO). The highest indoor PM10 level at a mall was 380 microg/m3. Of the malls surveyed, 30% had indoor airborne bacteria levels above 1000 cfu/m3 set by the HKIAQO. The elevated indoor CO2 and bacteria levels could result from high occupancy combined with insufficient ventilation. The increased PM10 levels could be probably attributed to illegal smoking inside these establishments. In comparison, the shopping malls that contained internal public transport drop-off areas, where vehicles were parked with idling engines and had major entry doors close to heavy traffic roads had higher CO and PM10 indoor levels. In addition, the extensive use of cooking stoves without adequate ventilation inside food courts could increase indoor CO2, CO and PM10 levels.

  2. Impact of kerosene space heaters on indoor air quality.

    PubMed

    Hanoune, B; Carteret, M

    2015-09-01

    In recent years, the use of kerosene space heaters as additional or principal heat source has been increasing, because these heaters allow a continuous control on the energy cost. These devices are unvented, and all combustion products are released into the room where the heaters are operated. The indoor air quality of seven private homes using wick-type or electronic injection-type kerosene space heaters was investigated. Concentrations of CO, CO2, NOx, formaldehyde and particulate matter (0.02-10 μm) were measured, using time-resolved instruments when available. All heaters tested are significant sources of submicron particles, NOx and CO2. The average NO2 and CO2 concentrations are determined by the duration of use of the kerosene heaters. These results stress the need to regulate the use of unvented combustion appliances to decrease the exposure of people to air contaminants.

  3. CFD simulation research on residential indoor air quality.

    PubMed

    Yang, Li; Ye, Miao; He, Bao-Jie

    2014-02-15

    Nowadays people are excessively depending on air conditioning to create a comfortable indoor environment, but it could cause some health problems in a long run. In this paper, wind velocity field, temperature field and air age field in a bedroom with wall-hanging air conditioning running in summer are analyzed by CFD numerical simulation technology. The results show that wall-hanging air conditioning system can undertake indoor heat load and conduct good indoor thermal comfort. In terms of wind velocity, air speed in activity area where people sit and stand is moderate, most of which cannot feel wind flow and meet the summer indoor wind comfort requirement. However, for air quality, there are local areas without ventilation and toxic gases not discharged in time. Therefore it is necessary to take effective measures to improve air quality. Compared with the traditional measurement method, CFD software has many advantages in simulating indoor environment, so it is hopeful for humans to create a more comfortable, healthy living environment by CFD in the future.

  4. Which ornamental plant species effectively remove benzene from indoor air?

    NASA Astrophysics Data System (ADS)

    Liu, Yan-Ju; Mu, Yu-Jing; Zhu, Yong-Guan; Ding, Hui; Crystal Arens, Nan

    Phytoremediation—using plants to remove toxins—is an attractive and cost effective way to improve indoor air quality. This study screened ornamental plants for their ability to remove volatile organic compounds from air by fumigating 73 plant species with 150 ppb benzene, an important indoor air pollutant that poses a risk to human health. The 10 species found to be most effective at removing benzene from air were fumigated for two more days (8 h per day) to quantify their benzene removal capacity. Crassula portulacea, Hydrangea macrophylla, Cymbidium Golden Elf., Ficus microcarpa var. fuyuensis, Dendranthema morifolium, Citrus medica var. sarcodactylis, Dieffenbachia amoena cv. Tropic Snow; Spathiphyllum Supreme; Nephrolepis exaltata cv. Bostoniensis; Dracaena deremensis cv. Variegata emerged as the species with the greatest capacity to remove benzene from indoor air.

  5. Evaluation of indoor air composition time variation in air-tight occupied spaces during night periods

    NASA Astrophysics Data System (ADS)

    Markov, Detelin

    2012-11-01

    This paper presents an easy-to-understand procedure for prediction of indoor air composition time variation in air-tight occupied spaces during the night periods. The mathematical model is based on the assumptions for homogeneity and perfect mixing of the indoor air, the ideal gas model for non-reacting gas mixtures, mass conservation equations for the entire system and for each species, a model for prediction of basal metabolic rate of humans as well as a model for prediction of O2 consumption rate and both CO2 and H2O generation rates by breathing. Time variation of indoor air composition is predicted at constant indoor air temperature for three scenarios based on the analytical solution of the mathematical model. The results achieved reveal both the most probable scenario for indoor air time variation in air-tight occupied spaces as well as the cause for morning tiredness after having a sleep in a modern energy efficient space.

  6. Nitrogen Dioxide's Impact on Indoor Air Quality

    EPA Pesticide Factsheets

    The two most prevalent oxides of nitrogen are nitrogen dioxide (NO2) and nitric oxide (NO). Both are toxic gases with NO2 being a highly reactive oxidant and corrosive. The primary sources indoors are combustion processes.

  7. Bioassay of complex mixtures of indoor air pollutants. Chapter 7

    SciTech Connect

    Lewtas, J.; Claxton, L.; Mumford, J.; Lofroth, G.

    1990-01-01

    There are several strategies for conducting bioassay studies of indoor air pollutant mixtures. One approach is to generate indoor pollutants from sources under laboratory conditions suitable for human, animal, or in vitro bioassay studies. This approach was used extensively to evaluate tobacco smoke and to a lesser extent for other indoor combustion sources such as kerosene heaters. A second approach is to simulate these complex mixtures by simpler mixtures of pure chemicals which can be used in biological studies. The third approach, which is described in more detail here, is to use bioassays in the direct evaluation of complex mixtures of indoor air pollutants. The mixtures of organics found indoors from combustion sources, building materials, household products and human activities are extremely complex. They consist of thousands of components which are not well characterized or quantified. Many of these mixtures and certain components are potential human carcinogens. The development of short-term bioassays to detect mutagens and potential carcinogens has facilitated studies of complex mixtures including air pollutants and combustion emissions. Chapter 7 will focus on the development and application of bacterial mutagenicity assays to complex mixtures of indoor air pollutants.

  8. Development of a model for radon concentration in indoor air.

    PubMed

    Jelle, Bjørn Petter

    2012-02-01

    A model is developed for calculation of the radon concentration in indoor air. The model takes into account various important parameters, e.g. radon concentration in ground, radon diffusion resistance of radon barrier, air permeance of ground, air pressure difference between outdoor ground and indoor at ground level, ventilation of the building ground and number of air changes per hour due to ventilation. Characteristic case studies are depicted in selected 2D and 3D graphical plots for easy visualization and interpretation. The radon transport into buildings might be dominated by diffusion, pressure driven flow or a mixture of both depending on the actual values of the various parameters. The results of our work indicate that with realistic or typical values of the parameters, most of the transport of radon from the building ground to the indoor air is due to air leakage driven by pressure differences through the construction. By incorporation of various and realistic values in the radon model, valuable information about the miscellaneous parameters influencing the indoor radon level is gained. Hence, the presented radon model may be utilized as a simple yet versatile and powerful tool for examining which preventive or remedial measures should be carried out to achieve an indoor radon level below the reference level as set by the authorities.

  9. Indoor air quality of houses located in the urban environment of Agra, India.

    PubMed

    Taneja, Ajay; Saini, Renuka; Masih, Amit

    2008-10-01

    Increased concern over the adverse health effects of air pollution has highlighted the need for air-pollution measurements, especially in urban areas, where many sources of air pollutants are normally monitored outdoors as part of obligations under the National Air Quality Strategies. Very little is known about air pollution indoors. In fact, the largest exposure to health-damaging indoor pollution probably occurs in the developing world, not in households, schools, and offices of developed countries where most research and control efforts have been focused to date. As a result much of the health impacts from air pollution worldwide seem to occur among the poorest and most vulnerable populations. The authors in their earlier studies have confirmed the importance of ambient air in determining the quality of air indoors. In this study an observation of air quality indoors and outdoors of domestic homes located in an urban environment from October 2004 to December 2005 in Agra, north central India, is performed. The purpose of this study was to characterize the indoor/outdoor (I/O) relationship of airborne pollutants and recognize their probable source in all three seasons, that is, winter, summer, and rainy season. Concentrations of SO(2), NO(2), CO(2), Cl(2), H(2)S, NH(3), RSPM, and PAH were monitored simultaneously and I/O ratios were calculated. In order to investigate the effect of seasonality on indoor and ambient air quality, winter to summer and winter to monsoon average ratios were calculated. It is apparent that there is a general pattern of increasing levels from monsoon to summer to winter, and similarly from outdoor to indoor air. Regressions analysis had been done to further investigate the influence of outdoor air-pollutant concentrations on indoor concentrations. The most probable categories of sources for these pollutants have been identified by using principal-component analysis. Indoor air pollution is a complex function of energy housing and

  10. Dynamic behavior of semivolatile organic compounds in indoor air

    SciTech Connect

    Loy, Michael David Van

    1998-12-09

    Exposures to a wide range of air pollutants are often dominated by those occurring in buildings because of three factors: 1) most people spend a large fraction of their time indoors, 2) many pollutants have strong indoor sources, and 3) the dilution volume in buildings is generally several orders of magnitude smaller than that of an urban airshed. Semivolatile organic compounds (SVOCS) are emitted by numerous indoor sources, including tobacco combustion, cooking, carpets, paints, resins, and glues, so indoor gasphase concentrations of these compounds are likely to be elevated relative to ambient levels. The rates of uptake and release of reversibly sorbing SVOCS by indoor materials directly affect both peak concentrations and persistence of the pollutants indoors after source elimination. Thus, accurate predictions of SVOC dynamics in indoor air require an understanding of contaminant sorption on surface materials such as carpet and wallboard. The dynamic behaviors of gas-phase nicotine and phenanthrene were investigated in a 20 ms stainless steel chamber containing carpet and painted wallboard. Each compound was studied independently, first in the empty chamber, then with each sorbent individually, and finally with both sorbents in the chamber.

  11. The influence of photocatalytic interior paints on indoor air quality

    NASA Astrophysics Data System (ADS)

    Auvinen, Joonas; Wirtanen, Leif

    2008-06-01

    A clean indoor air is important for the well-being and health of people. Lately, new photocatalytic paints have been launched on the market, which are claimed to have air-purifying effects. Photocatalysis initiates radical reactions. Radicals are formed when a photocatalyst (e.g. TiO2) is subjected to radiation. Typical radicals are the hydroxyl radical (radOH) and the superoxide radical (radO2-). Radicals cause chain reactions, which degrade and decompose organic compounds. The end products of these chain reactions are water and carbon dioxide, if the reactions are fully completed (mineralization). If mineralization does not take place, then a great number of side products can be formed, whose properties are not well understood. The side products of photocatalytic reactions can be permanent and stabile. The decomposition of indoor air impurities on the surface of photocatalytic paints is not obvious. The ability of photocatalytic indoor paints to reduce chemical indoor air impurities is the key issue of this study. Six different paints with different binder systems, such as lime, polyorganic siloxane, silica sol-gel and organic binders, were examined. The experiments were divided into three topics: degradation of an organic binder, photocatalytic decomposition of formaldehyde, and a volatile organic compound (VOC) mixture consisting of five different indoor air VOCs. All tests were carried out in an environmental test chamber under dynamic conditions. The test results indicate that many indoor pollutants are generated under normal- and UVA-light. Typical compounds formed include formaldehyde, acetone, acetaldehyde, etc. A clear decrease of formaldehyde or the VOC mixture concentration was not observed. All possibly generated compounds could not be collected or analyzed in this research project, but the measurements show that photocatalytic reactions do not generate only carbon dioxide and water. Photocatalytic decomposition of indoor air impurities can, however

  12. Improving Indoor Air Quality in St. Cloud Schools.

    ERIC Educational Resources Information Center

    Forer, Mike; Haus, El

    2000-01-01

    Describes how the St. Cloud Area School District (Minnesota), using Tools for Schools provided by the U.S. Environmental Protection Agency, managed the improvement of their school building indoor air quality (IAQ). The district goals of the IAQ Management Committee and the policy elements used to maintain high classroom air quality are…

  13. Text Version of the Indoor Air Quality House Tour

    EPA Pesticide Factsheets

    Get a quick glimpse of some of the most important ways to protect the air in your home by touring the Indoor Air Quality (IAQ) House. Room-by-room, you'll learn about the key pollutants and how to address them.

  14. Distributions of indoor and outdoor air pollutants in Rio de Janeiro, Brazil: Implications to indoor air quality in bayside offices

    SciTech Connect

    Brickus, L.S.R.; Cardoso, J.N.; De Aquino Neto, F.R.

    1998-11-15

    An indoor air quality survey was conducted on selected floors in an office building in Rio de Janeiro, Brazil. The sampling sites comprised four offices located along the same vertical column of the building. Measurements were made on alternate days at the same time of day during working hours. Indoor and outdoor samples were collected for volatile organic compounds (VOC), formaldehyde, total suspended particles (TSP), nicotine, and ultraviolet respirable suspended particles (UV-RSP). Compared with formaldehyde, acetaldehyde was found in higher concentrations outdoors because of the use of ethanol or ethanol/gasoline blends as alternative fuels for automobiles in Brazil. The TVOC concentration ranged from 304.3 to 1679.9 {micro}g/m{sup 3} indoors and 22 to 643.2 {micro}g/m{sup 3} outdoors. The indoor level of total volatile organic compounds (TVOC) was especially high in the 13th floor office. A minor contribution from environmental tobacco smoke was found. TSP values exceed the Brazilian Legislation in both outdoor and indoor air in the office located near the street traffic. For all pollutants evaluated 1/0 ratios appeared to be higher in offices located on the top of the building. The characterization of indoor air pollutants allowed the suggestion of several remediation measures to improve air quality in the offices.

  15. Indoor air VOC concentrations in suburban and rural New Jersey.

    PubMed

    Weisel, Clifford P; Alimokhtari, Shahnaz; Sanders, Paul F

    2008-11-15

    Indoor VOC air concentrations of many compounds are higher than outdoor concentrations due to indoor sources. However, most studies have measured residential indoor air in urban centers so the typical indoor air levels in suburban and rural regions have not been well characterized. Indoor VOC air concentrations were measured in 100 homes in suburban and rural areas in NJ to provide background levels for investigations of the impact from subsurface contamination sources. Of the 57 target compounds, 23 were not detected in any of the homes, and 14 compounds were detected in at least 50% of the homes with detection limits of approximately 1 microg/m3. The common compounds identified included aromatic and aliphatic hydrocarbons from mobile sources, halogenated hydrocarbons commonly used in consumer products or from chlorinated drinking water, acetone and 2-butanone emitted from cosmetic products, and Freons. Typical concentrations were in the low microg/m3 range, though values of tens, hundreds or even thousands of microg/m3 were measured in individual homes in which activities related to specific sources of VOCs were reported. Compounds with known similar sources were highly correlated. The levels observed are consistent with concentrations found in the air of urban homes.

  16. Heating, Ventilation and Air-Conditioning Systems, Part of Indoor Air Quality Design Tools for Schools

    EPA Pesticide Factsheets

    The main purposes of a Heating, Ventilation, and Air-Conditioning system are to help maintain good indoor air quality through adequate ventilation with filtration and provide thermal comfort. HVAC systems are among the largest energy consumers in schools.

  17. Participant evaluation results for two indoor air quality studies

    SciTech Connect

    Hawthorne, A.R.; Dudney, C.S.; Cohen, M.A.; Spengler, J.D.

    1987-01-01

    After two surveys for indoor air pollutants (radon and other chemicals) the homeowners were surveyed for their reactions. The results of these participant evaluation surveys, assuming that the participants that responded to the survey were representative, indicate that homeowners will accept a significant level of monitoring activity as part of an indoor air quality field study. Those participants completing surveys overwhelmingly enjoyed being in the studies and would do it again. We believe that the emphasis placed on positive homeowner interactions and efforts made to inform participants throughout our studies were positive factors in this result. There was no substantial differences noted in the responses between the 70-house study, which included a homeowner compensation payment of $100, and the 300-house study, which did not include a compensation payment. These results provide encouragement to conduct future complex, multipollutant indoor air quality studies when they are scientifically sound and cost effective.

  18. An investigation of infiltration and indoor air quality

    SciTech Connect

    Not Available

    1990-09-01

    A multitask study was performed in the State of New York to provide information for guiding home energy conservation programs while maintaining acceptable indoor air quality. During this study, the statistical distribution of radon concentrations inside 2400 homes was determined. The relationships among radon levels, house characteristics, and sources were also investigated. The direct impact that two specific air infiltration reduction measures -- caulking and weatherstripping of windows and doors, and installation of storm windows and storm doors -- have on house air leakage was investigated in 60 homes. The effect of house age on the impact of weatherization was also evaluated. Indoor and outdoor measurements of NO{sub 2}, CO, SO{sub 2}, and respirable suspended particulates (RSP) were made for 400 homes to determine the effect of combustion sources on indoor air quality and to characterize the statistical distribution of the concentrations. Finally, the combustion source data were combined with the information on air infiltration reduction measures to estimate the potential impact of these measures on indoor air quality. 87 tabs.

  19. Indoor Air Quality Management for Operations and Maintenance Personnel

    DTIC Science & Technology

    1991-09-01

    about indoor air quality (IAQ). Items in the news-notably the outbreak of legionnaires disease in 1976-focused widespread public attention on the IAQ...humans can be transmitted by the air (Table 2). Legionnaires disease , a potentially fatal lung infection, has been associated with infiltration of...aerosols from exterior sources such as cooling towers. The most common means of spreading legionnaires disease involves air-cooling equipment that becomes

  20. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  1. INDOOR AIR CONCENTRATIONS OF ORGANOCHLORINE, ORGANOPHOSPHATE AND PYRETHROID PESTICIDES IN THE US: FOUR STUDIES, SIX STATES AND TWENTY YEARS

    EPA Science Inventory

    Pesticides used to control indoor pests have transitioned across the chemicals classes of organochlorine, organophosphate, and pyrethroid compounds from the 1980's to the present. This work summarizes the pesticide concentrations measured from the indoor air of homes from four st...

  2. Links Related to the Indoor Air Quality Building Education and Assessment Model

    EPA Pesticide Factsheets

    The Indoor Air Quality Building Education and Assessment Model (I-BEAM) is a guidance tool designed for use by building professionals and others interested in indoor air quality in commercial buildings.

  3. Bibliography for the Indoor Air Quality Building Education and Assessment Model

    EPA Pesticide Factsheets

    The Indoor Air Quality Building Education and Assessment Model (I-BEAM) is a guidance tool designed for use by building professionals and others interested in indoor air quality in commercial buildings.

  4. MANAGING EXPOSURE TO INDOOR AIR POLLUTANTS IN RESIDENTIAL AND OFFICE ENVIRONMENTS

    EPA Science Inventory

    The paper discusses the factors to be considered in managing indoor air pollutants in residential and office environments to reduce occupant exposures. Techniques for managing indoor air pollution sources include: source elimination, substitution, modification, and pretreatment a...

  5. Interior Landscape Plants for Indoor Air Pollution Abatement

    NASA Technical Reports Server (NTRS)

    Wolverton, B. C.; Johnson, Anne; Bounds, Keith

    1989-01-01

    In this study, the leaves, roots, soil, and associated microorganisms of plants have been evaluated as a possible means of reducing indoor air pollutants. Additionally, a novel approach of using plant systems for removing high concentrations of indoor air pollutants such as cigarette smoke, organic solvents, and possibly radon has been designed from this work. This air filter design combines plants with an activated carbon filter. The rationale for this design, which evolved from wastewater treatment studies, is based on moving large volumes of contaminated air through an activated carbon bed where smoke, organic chemicals, pathogenic microorganisms (if present), and possibly radon are absorbed by the carbon filter. Plant roots and their associated microorganisms then destroy the pathogenic viruses, bacteria, and the organic chemicals, eventually converting all of these air pollutants into new plant tissue. It is believed that the decayed radon products would be taken up the plant roots and retained in the plant tissue.

  6. Indoor air quality at Salarjung Museum, Hyderabad, India.

    PubMed

    Reddy, M K; Suneela, M; Sumathi, M; Reddy, R C

    2005-06-01

    Deterioration of art objects at Salarjung Museum has been noticed such as blackening of white and pink pigments of Indian miniature paintings and other objects like pigments, paints, varnishes, coatings, silver ware, zari works, textiles, which are displayed in museum galleries. The cause of deterioration of the artifacts is attributed to air pollution. The outdoor air pollution levels with respect to suspended particulate matter, sulphur dioxide, oxides of nitrogen, ammonia, aldehydes and oxidants are observed to be high when compared with background environment and ambient air quality standards for sensitive areas. The indoor air quality levels in terms of various parameters including temperature and relative humidity (RH) observed to be more than the threshold limits. The climatic conditions coupled with polluted indoor air are the main causes for the deterioration of art objects. Hence remedial measures are suggested to avoid further deterioration of objects.

  7. Indoor air and respiratory health in preadolescent children

    NASA Astrophysics Data System (ADS)

    Gomzi, M.

    The effect of indoor exposure to nitrogen dioxide, ammonia, particulate matter and parental tobacco smoke on respiratory health was studied over a period of six months in all second graders born and living in two area of continental Croatia 8-10 yr of age. The study group was divided into two sections corresponding to area of residence (industrial/rural). Information on respiratory symptoms was collected from a self-administered questionnaire completed by the parents of the children. The mean values of concentrations of indoor air pollution that had been recorded in 24-h samples of air collected at schools were mostly below threshold limit for ambient pollution. In addition, information on parental smoking, the density of habitation and the type of fuel used for heating and/or cooking in the home was obtained by a questionnaire. In the investigated period the prevalence of respiratory illness was 22% in the children exposed to lower indoor air pollution and 25% in those exposed to higher indoor air pollution. Exposure to parental smoking was also associated with more respiratory symptoms (28 : 19%). The results indicate that the measured air pollutants only had a slight effect on the respiratory health of preadolescent children. However, the effect of exposure to parental smoking was more pronounced.

  8. Ventilation, indoor air quality, and health in homes undergoing weatherization.

    PubMed

    Francisco, P W; Jacobs, D E; Targos, L; Dixon, S L; Breysse, J; Rose, W; Cali, S

    2017-03-01

    Ventilation standards, health, and indoor air quality have not been adequately examined for residential weatherization. This randomized trial showed how ASHRAE 62-1989 (n=39 houses) and ASHRAE 62.2-2010 (n=42 houses) influenced ventilation rates, moisture balance, indoor air quality, and self-reported physical and mental health outcomes. Average total airflow was nearly twice as high for ASHRAE 62.2-2010 (79 vs. 39 cfm). Volatile organic compounds, formaldehyde and carbon dioxide were all significantly reduced for the newer standard and first-floor radon was marginally lower, but for the older standard, only formaldehyde significantly decreased. Humidity in the ASHRAE 62.2-2010 group was only about half that of the ASHRAE 62-1989 group using the moisture balance metric. Radon was higher in the basement but lower on the first floor for ASHRAE 62.2-2010. Children in each group had fewer headaches, eczema, and skin allergies after weatherization and adults had improvements in psychological distress. Indoor air quality and health improve when weatherization is accompanied by an ASHRAE residential ventilation standard, and the 2010 ASHRAE standard has greater improvements in certain outcomes compared to the 1989 standard. Weatherization, home repair, and energy conservation projects should use the newer ASHRAE standard to improve indoor air quality and health.

  9. School Indoor Air Quality Assessment and Program Implementation.

    ERIC Educational Resources Information Center

    Prill, R.; Blake, D.; Hales, D.

    This paper describes the effectiveness of a three-step indoor air quality (IAQ) program implemented by 156 schools in the states of Washington and Idaho during the 2000-2001 school year. An experienced IAQ/building science specialist conducted walk-through assessments at each school. These assessments documented deficiencies and served as an…

  10. Impact of Florida's Clean Indoor Air Act on Student Life.

    ERIC Educational Resources Information Center

    Chandler, Steven B.; Daly, Janice; Lee, Dae Taek

    1997-01-01

    Surveys college students to determine the impact of the Florida Clean Indoor Air Act on student life. Results show that smoking regulations were well supported by the majority of students, represented an inconvenience to smokers rather than a deterrent to smoking and that such restrictions are unlikely to lead to conflict among students. (MKA)

  11. THE ALLERGENIC POTENTIAL OF INDOOR AIR FUNGAL CONTAMINANTS

    EPA Science Inventory


    The Allergenic Potential of Indoor Air Fungal Contaminants
    Marsha D W Ward1, Michael E Viana2, Yongjoo Chung3, Najwa Haykal-Coates1, Lisa B Copeland1, Steven H Gavett1, and MaryJane K Selgrade1. 1US EPA, ORD, NHEERL, RTP, NC, USA. 2NCSU, CVM, Raleigh, NC, USA, 3 UNC, SPH,...

  12. CLASSIFICATION OF MATERIALS AS POTENTIAL SOURCES OF INDOOR AIR POLLUTION

    EPA Science Inventory

    The report gives a complete classification of all materials used in the construction of, or brought inside, homes and office buildings. n the classification tables Presented in the report, shaded entries are potential Sources of indoor air emissions. he classification system is b...

  13. Assessment of Indoor Air Pollution in Homes with Infants

    PubMed Central

    Pickett, Anna Ruth; Bell, Michelle L.

    2011-01-01

    Infants spend most of their indoor time at home; however, residential air quality is poorly understood. We investigated the air quality of infants’ homes in the New England area of the U.S. Participants (N = 53) were parents of infants (0–6 months) who completed telephone surveys to identify potential pollutant sources in their residence. Carbon monoxide (CO), carbon dioxide (CO2), particulate matter with aerodynamic diameter ≤0.5 µm (PM0.5), and total volatile organic compounds (TVOCs) were measured in 10 homes over 4–7 days, and levels were compared with health-based guidelines. Pollutant levels varied substantially across homes and within homes with overall levels for some homes up to 20 times higher than for other homes. Average levels were 0.85 ppm, 663.2 ppm, 18.7 µg/m3, and 1626 µg/m3 for CO, CO2, PM0.5, and TVOCs, respectively. CO2, TVOCs, and PM0.5 levels exceeded health-based indoor air quality guidelines. Survey results suggest that nursery renovations and related potential pollutant sources may be associated with differences in urbanicity, income, and presence of older children with respiratory ailments, which could potentially confound health studies. While there are no standards for indoor residential air quality, our findings suggest that additional research is needed to assess indoor pollution exposure for infants, which may be a vulnerable population. PMID:22408586

  14. AIRBORNE PARTICLE SIZES AND SOURCES FOUND IN INDOOR AIR

    EPA Science Inventory

    The paper summarizes results of a literature search into the sources, sizes, and concentrations of particles in indoor air, including the various types: plant, animal, mineral, combustion, home/personal care, and radioactive aerosols. This information, presented in a summary figu...

  15. ASSESSING THE ALLERGIC POTENTIAL OF INDOOR AIR FUNGAL CONTAMINANTS

    EPA Science Inventory

    Assessing the Allergic Potential of Indoor Air Fungal Contaminants
    Marsha D W Ward1, Michael E Viana2, Yonjoo Chung3, Najwa Haykal-Coates1, Lisa B Copeland1, Steven H Gavett1, and MaryJane K Selgrade1. 1US EPA, ORD, NHEERL, RTP, NC, USA. 2NCSU, CVM, Raleigh, NC, USA, 3 UNC, S...

  16. School Indoor Air Quality Best Management Practices Manual.

    ERIC Educational Resources Information Center

    Hall, Richard; Ellis, Richard; Hardin, Tim

    This manual, written in response to requirements of the Washington State legislature, focuses on practices which can be undertaken during the siting, design, construction, or renovation of a school, recommends practices to help ensure good indoor air quality during building occupancy, and suggests protocols and useful reference documents for…

  17. Indoor air quality standards of performance applications guide

    SciTech Connect

    Linder, R.J.; Dorgan, C.B.; Dorgan, C.E.

    1999-07-01

    This paper discusses the development and application of standards of performance (SOPs) for HVAC and R equipment, plumbing systems, and building envelope systems in relation to maintaining acceptable indoor air quality (IAQ) in buildings. The utilization of the SOP procedure, developed in ASHRAE Research Project 853, will aid in the proper operation of systems and verify that acceptable building IAQ levels are obtained.

  18. Science Laboratories and Indoor Air Quality in Schools. Technical Bulletin.

    ERIC Educational Resources Information Center

    Jacobs, Bruce W.

    Some of the issues surrounding the indoor air quality (IAQ) problems presented by science labs are discussed. Described are possible contaminants in labs, such as chemicals and biological organisms, and ways to lessen accidents arising from these sources are suggested. Some of the factors contributing to comfort, such as temperature levels, are…

  19. Indoor Air Quality Tools for Schools Action Kit. Second Edition.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC.

    This kit contains materials to assist a school indoor air quality (IAQ) coordinator in conducting a school IAQ program. The kit contains the following: IAQ coordinator's guide; IAQ coordinator forms; IAQ backgrounder; teacher's classroom checklist; administrative staff checklist; health officer/school nurse checklist; ventilation checklist and…

  20. Interior Painting and Indoor Air Quality in Schools. Technical Bulletin.

    ERIC Educational Resources Information Center

    Jacobs, Bruce W.

    Ways in which school facility planners, managers, and others can guard against the potential indoor air quality (IAQ) problems presented by paint are covered in this bulletin. It opens with an overview of paint formulations and the functional quality of different paints, paying special attention to the volatile organic compounds present in some…

  1. Carpet and Indoor Air Quality in Schools. Technical Bulletin.

    ERIC Educational Resources Information Center

    Maryland State Dept. of Education, Baltimore.

    Ways in which carpeting can affect a school's indoor air quality (IAQ) are discussed. Carpeting is defined as a system of components that includes pads, adhesives, floor preparation compounds, and seam sealers. For the last several years, these products have been increasingly scrutinized as to how they affect IAQ. Carpeting gives off volatile…

  2. Evaluating sources of indoor air pollution. Report for March 1988-May 1989

    SciTech Connect

    Tichenor, B.A.; Sparks, L.E.; White, J.B.; Jackson, M.D.

    1990-04-01

    The article discusses a three-phase approach, employing environmental chambers, indoor air quality (IAQ) models, and test house experiments, that is effective in linking sources of indoor pollutants to measured concentrations. Emission factors developed in test chambers can be used to evaluate full-scale indoor environments. A PC-based IAQ model has been developed that can accurately predict indoor concentrations of specific pollutants under controlled conditions in a test house. The model is also useful in examining the effect of pollutant sinks and variations in ventilation parameters. Pollutants were examined from: para-dichlorobenzene emissions from moth crystal cakes, and particulate emissions from unvented kerosene heaters. However, the approach has not been validated for other source types.

  3. Organic compounds in indoor air—their relevance for perceived indoor air quality?

    NASA Astrophysics Data System (ADS)

    Wolkoff, Peder; Nielsen, Gunnar D.

    It is generally believed that indoor air pollution, one way or another may cause indoor air complaints. However, any association between volatile organic compounds (VOCs) concentrations and increase of indoor climate complaints, like the sick-building syndrome symptoms, is not straightforward. The reported symptom rates of, in particular, eye and upper airway irritation cannot generally be explained by our present knowledge of common chemically non-reactive VOCs measured indoors. Recently, experimental evidence has shown those chemical reactions between ozone (either with or without nitrogen dioxide) and unsaturated organic compounds (e.g. from citrus and pine oils) produce strong eye and airway irritating species. These have not yet been well characterised by conventional sampling and analytical techniques. The chemical reactions can occur indoors, and there is indirect evidence that they are associated with eye and airway irritation. However, many other volatile and non-volatile organic compounds have not generally been measured which could equally well have potent biological effects and cause an increase of complaint rates, and posses a health/comfort risk. As a consequence, it is recommended to use a broader analytical window of organic compounds than the classic VOC window as defined by the World Health Organisation. It may include hitherto not yet sampled or identified intermediary species (e.g., radicals, hydroperoxides and ionic compounds like detergents) as well as species deposited onto particles. Additionally, sampling strategies including emission testing of building products should carefully be linked to the measurement of organic compounds that are expected, based on the best available toxicological knowledge, to have biological effects at indoor concentrations.

  4. Car indoor air pollution - analysis of potential sources.

    PubMed

    Müller, Daniel; Klingelhöfer, Doris; Uibel, Stefanie; Groneberg, David A

    2011-12-16

    The population of industrialized countries such as the United States or of countries from the European Union spends approximately more than one hour each day in vehicles. In this respect, numerous studies have so far addressed outdoor air pollution that arises from traffic. By contrast, only little is known about indoor air quality in vehicles and influences by non-vehicle sources.Therefore the present article aims to summarize recent studies that address i.e. particulate matter exposure. It can be stated that although there is a large amount of data present for outdoor air pollution, research in the area of indoor air quality in vehicles is still limited. Especially, knowledge on non-vehicular sources is missing. In this respect, an understanding of the effects and interactions of i.e. tobacco smoke under realistic automobile conditions should be achieved in future.

  5. [Effect of combustion devices on the quality of indoor air].

    PubMed

    Ulbrich, G

    1982-01-01

    Combustion devices and the equipment conducting their effluent gases such as ducts and chimneys are factors which might have an unreasonable or even dangerous impact on the quality of air inside buildings. There is a danger of flue gases entering the indoor environment during the heating process (a) if the air-circulation associated with the operation of a combustion device is disturbed or even interrupted, (b) if the air stream - as far as flue gases are involved - flows under elevated pressure, and (c) if the combustion device and the flue gas conducting equipment are not leak-proof. These three cases and their influence on indoor air quality are extensively discussed. In the German Combustion Device Code from 1980 care is taken to minimize the pollutant concentrations in rooms with combustion devices by setting special requirements for the room in which the device is located, and by prescribing the standardization of the technical characteristics of chimneys and combustion devices.

  6. Indoor Air Pollutants and Health in the United Arab Emirates

    PubMed Central

    El-Sadig, Mohamed; Leith, David; Kalsbeek, William; Al-Maskari, Fatma; Couper, David; Funk, William E.; Zoubeidi, Taoufik; Chan, Ronna L.; Trent, Chris B.; Davidson, Christopher A.; Boundy, Maryanne G.; Kassab, Maamoon M.; Hasan, Mohamed Y.; Rusyn, Ivan; Gibson, Jacqueline MacDonald; Olshan, Andrew F.

    2012-01-01

    Background: Comprehensive global data on the health effects of indoor air pollutants are lacking. There are few large population-based multi–air pollutant health assessments. Further, little is known about indoor air health risks in the Middle East, especially in countries undergoing rapid economic development. Objectives: To provide multifactorial indoor air exposure and health data, we conducted a population-based study of indoor air pollution and health in the United Arab Emirates (UAE). Methods: We conducted a cross-sectional study in a population-based sample of 628 households in the UAE. Indoor air pollutants [sulfur dioxide (SO2), nitrogen dioxide (NO2), hydrogen sulfide (H2S), formaldehyde (HCHO), carbon monoxide (CO), and particulate matter] were measured using passive samplers over a 7-day period. Health information was collected from 1,590 household members via in-person interviews. Results: Participants in households with quantified SO2, NO2, and H2S (i.e., with measured concentrations above the limit of quantification) were twice as likely to report doctor-diagnosed asthma. Participants in homes with quantified SO2 were more likely to report wheezing symptoms {ever wheezing, prevalence odds ratio [POR] 1.79 [95% confidence interval (CI) 1.05, 3.05]; speech-limiting wheeze, POR 3.53 (95% CI: 1.06, 11.74)}. NO2 and H2S were similarly associated with wheezing symptoms. Quantified HCHO was associated with neurologic symptoms (difficulty concentrating POR 1.47; 95% CI: 1.02, 2.13). Burning incense daily was associated with increased headaches (POR 1.87; 95% CI: 1.09, 3.21), difficulty concentrating (POR 3.08; 95% CI: 1.70, 5.58), and forgetfulness (POR 2.68: 95% CI: 1.47, 4.89). Conclusions: This study provides new information regarding potential health risks from pollutants commonly found in indoor environments in the UAE and other countries. Multipollutant exposure and health assessments in cohort studies are needed to better characterize health effects

  7. Indoor airPLUS constructores profesionales

    EPA Pesticide Factsheets

    El Programa Interior de airPLUS es una asociación entre EPA, los constructores, raters, las utilidades, y organizaciones sanitarias e interiores ambientales de mejorar aire interior en nuevas casas casas verdes.

  8. Solid waste transuranic storage and assay facility indoor air sampling

    SciTech Connect

    Pingel, L.A., Westinghouse Hanford

    1996-08-20

    The purpose of the study is to collect and analyze samples of the indoor air at the Transuranic Storage and Assay Facility (TRUSAF), Westinghouse Hanford. A modified US EPA TO-14 methodology, using gas chromatography/mass spectrography, may be used for the collection and analysis of the samples. The information obtained will be used to estimate the total release of volatile organic compounds from TRUSAF to determine the need for air emmission permits.

  9. Indoor Air Quality in Chemistry Laboratories.

    ERIC Educational Resources Information Center

    Hays, Steve M.

    This paper presents air quality and ventilation data from an existing chemical laboratory facility and discusses the work practice changes implemented in response to deficiencies in ventilation. General methods for improving air quality in existing laboratories are presented and investigation techniques for characterizing air quality are…

  10. A PRELIMINARY METHODOLOGY FOR EVALUATING THE COST-EFFECTIVENESS OF ALTERNATIVE INDOOR AIR QUALITY APPROACHES

    EPA Science Inventory

    The report defines a simplified methodology that can be used by indoor air quality (IAQ) diagnosticians, architects/engineers, building owners/operators, and the scientific community for preliminary comparison of the cost-effectiveness of alternative IAQ control measures for any ...

  11. Maintaining Acceptable Indoor Air Quality during the Renovation of a School. Technical Bulletin.

    ERIC Educational Resources Information Center

    Jacobs, Bruce W.

    Information that school facility personnel can use concerning the potential impacts of renovation projects on indoor air quality (IAQ), along with details of some effective control strategies, are presented. Various kinds of contaminants may be generated by renovations, including volatile and semivolatile organic compounds, dusts and fibers (e.g.,…

  12. Impacts of Changes of Indoor Air Pressure and Air Exchange Rate in Vapor Intrusion Scenarios.

    PubMed

    Shen, Rui; Suuberg, Eric M

    2016-02-01

    There has, in recent years, been increasing interest in understanding the transport processes of relevance in vapor intrusion of volatile organic compounds (VOCs) into buildings on contaminated sites. These studies have included fate and transport modeling. Most such models have simplified the prediction of indoor air contaminant vapor concentrations by employing a steady state assumption, which often results in difficulties in reconciling these results with field measurements. This paper focuses on two major factors that may be subject to significant transients in vapor intrusion situations, including the indoor air pressure and the air exchange rate in the subject building. A three-dimensional finite element model was employed with consideration of daily and seasonal variations in these factors. From the results, the variations of indoor air pressure and air exchange rate are seen to contribute to significant variations in indoor air contaminant vapor concentrations. Depending upon the assumptions regarding the variations in these parameters, the results are only sometimes consistent with the reports of several orders of magnitude in indoor air concentration variations from field studies. The results point to the need to examine more carefully the interplay of these factors in order to quantitatively understand the variations in potential indoor air exposures.

  13. Impacts of Changes of Indoor Air Pressure and Air Exchange Rate in Vapor Intrusion Scenarios

    PubMed Central

    Shen, Rui; Suuberg, Eric M.

    2016-01-01

    There has, in recent years, been increasing interest in understanding the transport processes of relevance in vapor intrusion of volatile organic compounds (VOCs) into buildings on contaminated sites. These studies have included fate and transport modeling. Most such models have simplified the prediction of indoor air contaminant vapor concentrations by employing a steady state assumption, which often results in difficulties in reconciling these results with field measurements. This paper focuses on two major factors that may be subject to significant transients in vapor intrusion situations, including the indoor air pressure and the air exchange rate in the subject building. A three-dimensional finite element model was employed with consideration of daily and seasonal variations in these factors. From the results, the variations of indoor air pressure and air exchange rate are seen to contribute to significant variations in indoor air contaminant vapor concentrations. Depending upon the assumptions regarding the variations in these parameters, the results are only sometimes consistent with the reports of several orders of magnitude in indoor air concentration variations from field studies. The results point to the need to examine more carefully the interplay of these factors in order to quantitatively understand the variations in potential indoor air exposures. PMID:28090133

  14. Tobacco Smoke, Indoor Air Pollution and Tuberculosis: A Systematic Review and Meta-Analysis

    PubMed Central

    Lin, Hsien-Ho; Ezzati, Majid; Murray, Megan

    2007-01-01

    Background Tobacco smoking, passive smoking, and indoor air pollution from biomass fuels have been implicated as risk factors for tuberculosis (TB) infection, disease, and death. Tobacco smoking and indoor air pollution are persistent or growing exposures in regions where TB poses a major health risk. We undertook a systematic review and meta-analysis to quantitatively assess the association between these exposures and the risk of infection, disease, and death from TB. Methods and Findings We conducted a systematic review and meta-analysis of observational studies reporting effect estimates and 95% confidence intervals on how tobacco smoking, passive smoke exposure, and indoor air pollution are associated with TB. We identified 33 papers on tobacco smoking and TB, five papers on passive smoking and TB, and five on indoor air pollution and TB. We found substantial evidence that tobacco smoking is positively associated with TB, regardless of the specific TB outcomes. Compared with people who do not smoke, smokers have an increased risk of having a positive tuberculin skin test, of having active TB, and of dying from TB. Although we also found evidence that passive smoking and indoor air pollution increased the risk of TB disease, these associations are less strongly supported by the available evidence. Conclusions There is consistent evidence that tobacco smoking is associated with an increased risk of TB. The finding that passive smoking and biomass fuel combustion also increase TB risk should be substantiated with larger studies in future. TB control programs might benefit from a focus on interventions aimed at reducing tobacco and indoor air pollution exposures, especially among those at high risk for exposure to TB. PMID:17227135

  15. Indoor Air Quality: Federal and State Actions To Address the Indoor Air Quality Problems of Selected Buildings.

    ERIC Educational Resources Information Center

    Guerrero, Peter F.

    U.S. House of Representative members requested that the General Accounting Office determine what federal and state actions have been taken in addressing indoor air quality (IAQ) concerns raised in certain school, state, and federal buildings within Vermont, Maryland, and the District of Columbia. This report responds to this request and describes…

  16. Indoor Radon and Its Decay Products: Concentrations, Causes, and Control Strategies

    SciTech Connect

    Nero, A.V.; Gadgil, A.J.; Nazaroff, W.W.; Revzan, K.L.

    1990-01-01

    This report is an introduction to the behavior of radon 222 and its decay products in indoor air. This includes review of basic characteristics of radon and its decay products and of features of the indoor environment itself, all of which factors affect behavior in indoor air. The experimental and theoretical evidence on behavior of radon and its decay products is examined, providing a basis for understanding the influence of geological, structural, and meteorological factors on indoor concentrations, as well as the effectiveness of control techniques. We go on to examine three important issues concerning indoor radon. We thus include (1) an appraisal of the concentration distribution in homes, (2) an examination of the utility and limitations of popular monitoring techniques and protocols, and (3) an assessment of the key elements of strategies for controlling radon levels in homes.

  17. Relationships of Indoor, Outdoor, and Personal Air (RIOPA). Part I. Collection methods and descriptive analyses.

    PubMed

    Weisel, Clifford P; Zhang, Junfeng; Turpin, Barbara J; Morandi, Maria T; Colome, Steven; Stock, Thomas H; Spektor, Dalia M; Korn, Leo; Winer, Arthur M; Kwon, Jaymin; Meng, Qing Yu; Zhang, Lin; Harrington, Robert; Liu, Weili; Reff, Adam; Lee, Jong Hoon; Alimokhtari, Shahnaz; Mohan, Kishan; Shendell, Derek; Jones, Jennifer; Farrar, L; Maberti, Slivia; Fan, Tina

    2005-11-01

    This study on the relationships of indoor, outdoor, and personal air (RIOPA) was undertaken to collect data for use in evaluating the contribution of outdoor sources of air toxics and particulate matter (PM) to personal exposure. The study was not designed to obtain a population-based sample, but rather to provide matched indoor, outdoor, and personal concentrations in homes that varied in their proximity to outdoor pollution sources and had a wide range of air exchange rates (AERs). This design allowed examination of relations among indoor, outdoor, and personal concentrations of air toxics and PM across a wide range of environmental conditions; the resulting data set obtained for a wide range of environmental pollutants and AERs can be used to evaluate exposure models. Approximately 100 households with residents who do not smoke participated in each of three cities in distinct locations expected to have different climates and housing characteristics: Elizabeth, New Jersey; Houston, Texas; and Los Angeles County, California. Questionnaires were administered to characterize homes, neighborhoods, and personal activities that might affect exposures. The concentrations of a suite of volatile organic compounds (VOCs) and carbonyl compounds, as well as the fraction of airborne particulate matter with a mass median aerodynamic diameter < or = 2.5 microm (PM2.5), were measured during continuous 48-hour sessions in which indoor, outdoor, and personal air samples were collected simultaneously. During the same 48-hour period, the AER (exchanges/hr; x hr(-1)) was determined in each home, and carbonyl compounds were measured inside vehicle cabins driven by a subset of the participants. In most of the homes, measurements were made twice, during two different seasons, to obtain a wide distribution of AERs. This report presents in detail the data collection methods, quality control measures, and initial analyses of data distributions and relations among indoor, outdoor, and

  18. Indoor air pollution in slum neighbourhoods of Addis Ababa, Ethiopia

    NASA Astrophysics Data System (ADS)

    Sanbata, Habtamu; Asfaw, Araya; Kumie, Abera

    2014-06-01

    An estimated 95% of the population of Ethiopia uses traditional biomass fuels, such as wood, dung, charcoal, or crop residues, to meet household energy needs. As a result of the harmful smoke emitted from the combustion of biomass fuels, indoor air pollution is responsible for more than 50,000 deaths annually and causes nearly 5% of the burden of disease in Ethiopia. Very limited research on indoor air pollution and its health impacts exists in Ethiopia. This study was, therefore, undertaken to assess the magnitude of indoor air pollution from household fuel use in Addis Ababa, the capital city of Ethiopia. During January and February, 2012, the concentration of fine particulate matter (PM2.5) in 59 households was measured using the University of California at Berkeley Particle Monitor (UCB PM). The raw data was analysed using Statistical Package of Social Science (SPSS version 20.0) software to determine variance between groups and descriptive statistics. The geometric mean of 24-h indoor PM2.5 concentration is approximately 818 μg m-3 (Standard deviation (SD = 3.61)). The highest 24-h geometric mean of PM2.5 concentration observed were 1134 μg m-3 (SD = 3.36), 637 μg m-3 (SD = 4.44), and 335 μg m-3 (SD = 2.51), respectively, in households using predominantly solid fuel, kerosene, and clean fuel. Although 24-h mean PM2.5 concentration between fuel types differed statistically (P < 0.05), post hoc pairwise comparison indicated no significant difference in mean concentration of PM2.5 between improved biomass stoves and traditional stoves (P > 0.05). The study revealed indoor air pollution is a major environmental and health hazard from home using biomass fuel in Addis Ababa. The use of clean fuels and efficient cooking stoves is recommended.

  19. Influence of relative humidity on VOC concentrations in indoor air.

    PubMed

    Markowicz, Pawel; Larsson, Lennart

    2015-04-01

    Volatile organic compounds (VOCs) may be emitted from surfaces indoors leading to compromised air quality. This study scrutinized the influence of relative humidity (RH) on VOC concentrations in a building that had been subjected to water damage. While air samplings in a damp room at low RH (21-22%) only revealed minor amounts of 2-ethylhexanol (3 μg/m(3)) and 2,2,4-trimethyl-1,3-pentanediol diisobutyrate (TXIB, 8 μg/m(3)), measurements performed after a rapid increase of RH (to 58-75%) revealed an increase in VOC concentrations which was 3-fold for 2-ethylhexanol and 2-fold for TXIB. Similar VOC emission patterns were found in laboratory analyses of moisture-affected and laboratory-contaminated building materials. This study demonstrates the importance of monitoring RH when sampling indoor air for VOCs in order to avoid misleading conclusions from the analytical results.

  20. Concrete blocks` adverse effects on indoor air and recommended solutions

    SciTech Connect

    Ruppersberger, J.S.

    1995-04-01

    Air infiltration through highly permeable concrete blocks can allow entry of various serious indoor air pollutants including radon. An easy approach to avoiding these pollutants is to select a less-air-permeable concrete block. Tests show that air permeability of concrete blocks can vary by a factor greater than 50 (0.63--35 standard L/min/m{sup 2} at 3 Pa). The surface texture of the blocks correlates well with air permeability; test results of smoother, closed-surface-texture blocks were usually less air-permeable. During construction, air infiltration can be minimized by capping walls and carefully sealing around openings for utilities or other penetrations. Structures with indoor air-quality problems due to soil-gas entry can be mitigated more effectively with less coating material if the blocks have a closed surface texture. All coatings evaluated--cementaceous block filler (which has the lowest applied cost and is more than 99.5% effective), surface bonding cement, water-based epoxy, polysulfide vinyl acrylic, and latex (three coats)--were highly effective (more than 98%) in reducing air permeability when adequately applied. Coating selection should be influenced by expected service life, considering surface condition and cost.

  1. Development of an indoor air quality checklist for risk assessment of indoor air pollutants by semiquantitative score in nonindustrial workplaces

    PubMed Central

    Syazwan, AI; Rafee, B Mohd; Hafizan, Juahir; Azman, AZF; Nizar, AM; Izwyn, Z; Muhaimin, AA; Yunos, MA Syafiq; Anita, AR; Hanafiah, J Muhamad; Shaharuddin, MS; Ibthisham, A Mohd; Ismail, Mohd Hasmadi; Azhar, MN Mohamad; Azizan, HS; Zulfadhli, I; Othman, J

    2012-01-01

    Background To meet the current diversified health needs in workplaces, especially in nonindustrial workplaces in developing countries, an indoor air quality (IAQ) component of a participatory occupational safety and health survey should be included. Objectives The purpose of this study was to evaluate and suggest a multidisciplinary, integrated IAQ checklist for evaluating the health risk of building occupants. This IAQ checklist proposed to support employers, workers, and assessors in understanding a wide range of important elements in the indoor air environment to promote awareness in nonindustrial workplaces. Methods The general structure of and specific items in the IAQ checklist were discussed in a focus group meeting with IAQ assessors based upon the result of a literature review, previous industrial code of practice, and previous interviews with company employers and workers. Results For practicality and validity, several sessions were held to elicit the opinions of company members, and, as a result, modifications were made. The newly developed IAQ checklist was finally formulated, consisting of seven core areas, nine technical areas, and 71 essential items. Each item was linked to a suitable section in the Industry Code of Practice on Indoor Air Quality published by the Department of Occupational Safety and Health. Conclusion Combined usage of an IAQ checklist with the information from the Industry Code of Practice on Indoor Air Quality would provide easily comprehensible information and practical support. Intervention and evaluation studies using this newly developed IAQ checklist will clarify the effectiveness of a new approach in evaluating the risk of indoor air pollutants in the workplace. PMID:22570579

  2. Indoor Air Quality and Ventilation in Residential Deep Energy Retrofits

    SciTech Connect

    Less, Brennan; Walker, Iain

    2014-06-01

    Because airtightening is a significant part of Deep Energy Retrofits (DERs), concerns about ventilation and Indoor Air Quality (IAQ) have emerged. To investigate this, ventilation and IAQ were assessed in 17 non-smoking California Deep Energy Retrofit homes. Inspections and surveys were used to assess household activities and ventilation systems. Pollutant sampling performed in 12 homes included six-day passive samples of nitrogen dioxide (NO2), formaldehyde and air exchange rate (AER); time-resolved data loggers were used to measure particle counts. Half of the homes provided continuous mechanical ventilation. Despite these homes being twice as airtight (3.0 and 7.6 ACH50, respectively), their median AER was indistinguishable from naturally vented homes (0.36 versus 0.37 hr-1). Numerous problems were found with ventilation systems; however, pollutant levels did not reach levels of concern in most homes. Ambient NO2 standards were exceeded in some gas cooking homes that used legacy ranges with standing pilots, and in Passive House-style homes without range hoods exhausted to outside. Cooking exhaust systems were installed and used inconsistently. The majority of homes reported using low-emitting materials, and formaldehyde levels were approximately half those in conventional new CA homes (19.7 versus 36 μg/m3), with emissions rates nearly 40percent less (12.3 versus 20.6 μg/m2/hr.). Presence of air filtration systems led to lower indoor particle number concentrations (PN>0.5: 8.80E+06 PN/m3 versus 2.99E+06; PN>2.5: 5.46E+0.5 PN/m3 versus 2.59E+05). The results indicate that DERs can provide adequate ventilation and IAQ, and that DERs should prioritize source control, particle filtration and well-designed local exhaust systems, while still providing adequate continuous ventilation.

  3. Indoor Air Pollution and Risk of Lung Cancer among Chinese Female Non-Smokers

    PubMed Central

    Mu, Lina; Liu, Li; Niu, Rungui; Zhao, Baoxing; Shi, Jianping; Li, Yanli; Scheider, William; Su, Jia; Chang, Shen-Chih; Yu, Shunzhang; Zhang, Zuo-Feng

    2013-01-01

    Purpose To investigate indoor particulate matter (PM) level and various indoor air pollution exposure, and to examine their relationships with risk of lung cancer in an urban Chinese population, with a focus on non-smoking women. Methods We conducted a case-control study in Taiyuan, China, consisting of 399 lung cancer cases and 466 controls, of which 164 cases and 218 controls were female non-smokers. Indoor PM concentrations, including PM1, PM2.5, PM7, PM10 and TSP, were measured using a particle mass monitor. Unconditional logistic regression models were used to calculate odds ratios (ORs) and 95% confidence intervals after adjusting for age, education, annual income and smoking. Results Among non-smoking women, lung cancer was strongly associated with multiple sources of indoor air pollution 10 years ago, including heavy exposure to ETS at work (aOR=3.65), high frequency of cooking (aOR=3.30), and solid fuel usage for cooking (aOR=4.08) and heating (aORcoal stove=2.00). Housing characteristics related to poor ventilation, including single-story, less window area, no separate kitchen, no ventilator and rarely having windows open, are associated with lung cancer. Indoor medium PM2.5 concentration was 68ug/m3, and PM10 was 230ug/m3. PM levels in winter are strongly correlated with solid fuel usage for cooking, heating and ventilators. PM1 levels in cases are more than 3-time higher than that in controls. Every 10 ug/m3 increase in PM1 is associated with 45% increased risk of lung cancer. Conclusions Indoor air pollution plays an important role in the development of lung cancer among non-smoking Chinese women. PMID:23314675

  4. 41 CFR 102-80.25 - What are Federal agencies' responsibilities concerning the management of indoor air quality?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... agencies' responsibilities concerning the management of indoor air quality? 102-80.25 Section 102-80.25... Environmental Management Indoor Air Quality § 102-80.25 What are Federal agencies' responsibilities concerning the management of indoor air quality? Federal agencies must assess indoor air quality of buildings...

  5. 41 CFR 102-80.25 - What are Federal agencies' responsibilities concerning the management of indoor air quality?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... agencies' responsibilities concerning the management of indoor air quality? 102-80.25 Section 102-80.25... Environmental Management Indoor Air Quality § 102-80.25 What are Federal agencies' responsibilities concerning the management of indoor air quality? Federal agencies must assess indoor air quality of buildings...

  6. 41 CFR 102-80.25 - What are Federal agencies' responsibilities concerning the management of indoor air quality?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... agencies' responsibilities concerning the management of indoor air quality? 102-80.25 Section 102-80.25... Environmental Management Indoor Air Quality § 102-80.25 What are Federal agencies' responsibilities concerning the management of indoor air quality? Federal agencies must assess indoor air quality of buildings...

  7. 41 CFR 102-80.25 - What are Federal agencies' responsibilities concerning the management of indoor air quality?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... agencies' responsibilities concerning the management of indoor air quality? 102-80.25 Section 102-80.25... Environmental Management Indoor Air Quality § 102-80.25 What are Federal agencies' responsibilities concerning the management of indoor air quality? Federal agencies must assess indoor air quality of buildings...

  8. 41 CFR 102-80.25 - What are Federal agencies' responsibilities concerning the management of indoor air quality?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... agencies' responsibilities concerning the management of indoor air quality? 102-80.25 Section 102-80.25... Environmental Management Indoor Air Quality § 102-80.25 What are Federal agencies' responsibilities concerning the management of indoor air quality? Federal agencies must assess indoor air quality of buildings...

  9. Exhaust ventilation in attached garages improves residential indoor air quality.

    PubMed

    Mallach, G; St-Jean, M; MacNeill, M; Aubin, D; Wallace, L; Shin, T; Van Ryswyk, K; Kulka, R; You, H; Fugler, D; Lavigne, E; Wheeler, A J

    2017-03-01

    Previous research has shown that indoor benzene levels in homes with attached garages are higher than homes without attached garages. Exhaust ventilation in attached garages is one possible intervention to reduce these concentrations. To evaluate the effectiveness of this intervention, a randomized crossover study was conducted in 33 Ottawa homes in winter 2014. VOCs including benzene, toluene, ethylbenzene, and xylenes, nitrogen dioxide, carbon monoxide, and air exchange rates were measured over four 48-hour periods when a garage exhaust fan was turned on or off. A blower door test conducted in each garage was used to determine the required exhaust fan flow rate to provide a depressurization of 5 Pa in each garage relative to the home. When corrected for ambient concentrations, the fan decreased geometric mean indoor benzene concentrations from 1.04 to 0.40 μg/m(3) , or by 62% (P<.05). The garage exhaust fan also significantly reduced outdoor-corrected geometric mean indoor concentrations of other pollutants, including toluene (53%), ethylbenzene (47%), m,p-xylene (45%), o-xylene (43%), and carbon monoxide (23%) (P<.05) while having no impact on the home air exchange rate. This study provides evidence that mechanical exhaust ventilation in attached garages can reduce indoor concentrations of pollutants originating from within attached garages.

  10. Indoor air pollution in developing countries.

    PubMed

    Chen, B H; Hong, C J; Pandey, M R; Smith, K R

    1990-01-01

    Of the four principal categories of indoor pollution (combustion products, chemicals, radon and biologicals), research in developing countries has focused on combustion-generated pollutants, and principally those from solid-fuel-fired cooking and heating stoves. Such stoves are used in more than half the world's households and have been shown in many locations to produce high indoor concentrations of particulates, carbon monoxide and other combustion-related pollutants. Although the proportion of all such household stoves that are used in poorly ventilated situations is uncertain, the total population exposed to excessive concentrations is potentially high, probably several hundred million. A number of studies were carried out in the 1980s to discover the health effects of such stove exposures. The majority of such studies were done in South Asia in homes burning biomass fuels or in China with coal-burning homes, although a sprinkling of studies examining biomass-burning have been done in Oceania, Latin America and Africa. Of the health effects that might be expected from such exposures, little, if any, work seems to have been done on low birthweight and eye problems, although there are anecdotal accounts making the connection. Decreased lung function has been noted in Nepali women reporting more time spent near the stove as it has for Chinese women using coal stoves as compared to those using gas stoves. Respiratory distress symptoms have been associated with use of smoky fuels in West India, Ladakh and in several Chinese studies among different age groups, some with large population samples. Acute respiratory infection in children, one of the chief causes of infant and childhood mortality, has been associated with Nepali household-smoke exposures. Studies of chronic disease endpoints are difficult because of the need to construct exposure histories over long periods. Nevertheless, chronic obstructive lung disease has been associated with the daily time spent near

  11. Measurement of Radon in Indoor Air.

    ERIC Educational Resources Information Center

    Downey, Daniel M.; Simolunas, Glenn

    1988-01-01

    Describes a laboratory experiment to teach the principles of air sampling, gamma ray spectroscopy, nuclear decay, and radioactive equilibrium. Analyzes radon by carbon adsorption and gamma ray counting. Provides methodology and rate of decay equations. (MVL)

  12. Lead's Impact on Indoor Air Quality

    EPA Pesticide Factsheets

    Lead has long been recognized as a harmful environmental pollutant. There are many ways in which humans are exposed to lead: through air, drinking water, food, contaminated soil, deteriorating paint, and dust.

  13. Coordinator's Guide for Indoor Air Quality

    EPA Pesticide Factsheets

    IAQ Tools for Schools Action Kit - IAQ Coordinator's Guide. This guidance is designed to present practical and often low-cost actions you can take to identify and address existing or potential air quality problems.

  14. Indoor Air Quality in the Metro System in North Taiwan

    PubMed Central

    Chen, Ying-Yi; Sung, Fung-Chang; Chen, Mei-Lien; Mao, I-Fang; Lu, Chung-Yen

    2016-01-01

    Indoor air pollution is an increasing health concern, especially in enclosed environments such as underground subway stations because of increased global usage by urban populations. This study measured the indoor air quality of underground platforms at 10 metro stations of the Taipei Rapid Transit system (TRTS) in Taiwan, including humidity, temperature, carbon monoxide (CO), carbon dioxide (CO2), formaldehyde (HCHO), total volatile organic compounds (TVOCs), ozone (O3), airborne particulate matter (PM10 and PM2.5), bacteria and fungi. Results showed that the CO2, CO and HCHO levels met the stipulated standards as regulated by Taiwan’s Indoor Air Quality Management Act (TIAQMA). However, elevated PM10 and PM2.5 levels were measured at most stations. TVOCs and bacterial concentrations at some stations measured in summer were higher than the regulated standards stipulated by Taiwan’s Environmental Protection Administration. Further studies should be conducted to reduce particulate matters, TVOCs and bacteria in the air of subway stations. PMID:27918460

  15. Respiratory health effects of indoor air pollution.

    PubMed

    Perez-Padilla, R; Schilmann, A; Riojas-Rodriguez, H

    2010-09-01

    Domestic pollution is relevant to health because people spend most of their time indoors. One half of the world's population is exposed to high concentrations of solid fuel smoke (biomass and coal) that are produced by inefficient open fires, mainly in the rural areas of developing countries. Concentrations of particulate matter in kitchens increase to the range of milligrams per cubic meter during cooking. Solid fuel smoke possesses the majority of the toxins found in tobacco smoke and has also been associated with a variety of diseases, such as chronic obstructive pulmonary disease in women, acute respiratory infection in children and lung cancer in women (if exposed to coal smoke). Other tobacco smoke-associated diseases, such as tuberculosis, asthma, respiratory tract cancer and interstitial lung diseases, may also be associated with solid fuel smoke inhalation, but evidence is limited. As the desirable change to clean fuels is unlikely, efforts have been made to use efficient, vented wood or coal stoves, with varied success due to inconsistent acceptance by the community.

  16. An Office Building Occupants Guide to Indoor Air Quality - Printable Version

    EPA Pesticide Factsheets

    This guide is intended to help people who work in office buildings learn about the factors that contribute to indoor air quality and comfort problems and the roles of building managers and occupants in maintaining a good indoor environment.

  17. Estimating the radon concentration in water and indoor air.

    PubMed

    Maged, A F

    2009-05-01

    The paper presents the results of radon concentration measurements in the vicinity of water, indoor air and in contact to building walls. The investigations were carried out using CR-39 track detectors. Samples of ground water flowing out of many springs mostly in Arabian Gulf area except one from Germany have been studied. The results are compared with international recommendations and the values are found to be lower than the recommended value. Measuring the mean indoor radon concentrations in air and in contact to building walls in the dwellings of Kuwait University Campus were found 24.2 +/- 7.7, and 462 +/- 422 Bq m(-3) respectively. These values lead to average effective dose equivalent rates of 1.3 +/- 0.4 and 23 +/- 21 mSv year(-1), respectively.

  18. Characterization of Micrococcus strains isolated from indoor air

    PubMed Central

    Kooken, Jennifer M.; Fox, Karen F.; Fox, Alvin

    2014-01-01

    The characterization of microbes, such as of opportunists and pathogens (e.g. methicillin resistant Staphylococcus aureus [MRSA]), in indoor air is important for understanding disease transmission from person-to-person. Common genera found in the human skin microbiome include Micrococcus and Staphylococcus, but there only a limited number of tests to differentiate these genera and/or species. Both genera are believed to be released into indoor air from the shedding of human skin and are morphologically difficult to distinguish. In the current work, after the extraction of proteins from micrococci and the separation of these proteins on one dimensional electrophoretic gels, tryptic peptides were analyzed by MALDI TOF MS and the mass profiles compared with those of a reference strain (ATCC 4698). The results confirmed that all strains were consistent in identity with Micrococcus luteus. PMID:21963944

  19. Characterization of Micrococcus strains isolated from indoor air.

    PubMed

    Kooken, Jennifer M; Fox, Karen F; Fox, Alvin

    2012-02-01

    The characterization of microbes, such as opportunists and pathogens (e.g., methicillin resistant Staphylococcus aureus [MRSA]), in indoor air is important for understanding disease transmission from person-to-person. Common genera found in the human skin microbiome include Micrococcus and Staphylococcus, but there only a limited number of tests to differentiate these genera and/or species. Both genera are believed to be released into indoor air from the shedding of human skin and are morphologically difficult to distinguish. In the current work, after the extraction of proteins from micrococci and the separation of these proteins on one dimensional electrophoretic gels, tryptic peptides were analyzed by MALDI TOF MS and the mass profiles compared with those of a reference strain (ATCC 4698). The results confirmed that all strains were consistent in identity with Micrococcus luteus.

  20. Field study of exhaust fans for mitigating indoor air quality problems: Final report

    SciTech Connect

    Grimsrud, D.T.; Szydlowski, R.F.; Turk, B.H.

    1986-09-01

    Residential ventilation in the United States housing stock is provided primarily by infiltration, the natural leakage of outdoor air into a building through cracks and holes in the building shell. Since ventilation is the dominant mechanism for control of indoor pollutant concentrations, low infiltration rates caused fluctuation in weather conditions may lead to high indoor pollutant concentrations. Supplemental mechanical ventilation can be used to eliminate these periods of low infiltration. This study examined effects of small continuously-operating exhaust fan on pollutant concentrations and energy use in residences.

  1. Indoor air quality during renovation actions: a case study.

    PubMed

    Abdel Hameed, A A; Yasser, I H; Khoder, I M

    2004-09-01

    A temporary renovation activity releases considerably high concentrations of particulate matter, viable and non-viable, into air. These pollutants are a potential contributor to unacceptable indoor air quality (IAQ). Particulate matter and its constituents lead, sulfate, nitrate, chloride, ammonium and fungi as well as fungal spores in air were evaluated in a building during renovation action. Suspended dust was recorded at a mean value of 6.1 mg m(-3) which exceeded the Egyptian limit values for indoor air (0.15 mg m(-3)) and occupational environments (5 mg m(-3)). The highest particle frequency (23%) of aerodynamic diameter (dae) was 1.7 microm. Particulate sulfate (SO(4)(2-)), nitrate (NO(3)(-)), chloride (Cl(-)), ammonium (NH(4)(+)) and lead components of suspended dust averaged 2960, 28, 1350, 100 and 13.3 microg m(-3), respectively. Viable fungi associated with suspended dust and that in air averaged 1.11 x 10(6) colony forming unit per gram (cfu g(-1)) and 92 colony forming unit per plate per hour (cfu p(-1) h(-1)), respectively. Cladosporium(33%), Aspergillus(25.6%), Alternaria(11.2%) and Penicillium(6.6%) were the most frequent fungal genera in air, whereas Aspergillus(56.8%), Penicillium(10.3%) and Eurotium(10.3%) were the most common fungal genera associated with suspended dust. The detection of Aureobasidium, Epicoccum, Exophiala, Paecilomyces, Scopulariopsis, Ulocladium and Trichoderma is an indication of moisture-damaged building materials. Alternaria, Aureobasidium, Cladosporium, Scopulariopsis and Nigrospora have dae > 5 microm whereas Aspergillus, Penicillium and Verticillium have dae < 5 microm which are suited to penetrate deeply into lungs. Particulate matter from the working area infiltrates the occupied zones if precautionary measures are inadequate. This may cause deterioration of IAQ, discomfort and acute health problems. Renovation should be carefully designed and managed, in order to minimize degradation of the indoor and outdoor air

  2. Investigation of Indoor Air Quality in Houses of Macedonia

    PubMed Central

    Vilčeková, Silvia; Apostoloski, Ilija Zoran; Mečiarová, Ľudmila; Krídlová Burdová, Eva; Kiseľák, Jozef

    2017-01-01

    People who live in buildings are exposed to harmful effects of indoor air pollution for many years. Therefore, our research is aimed to investigate the indoor air quality in family houses. The measurements of indoor air temperature, relative humidity, total volatile organic compounds (TVOC), particulate matters (PM) and sound pressure level were carried out in 25 houses in several cities of the Republic of Macedonia. Mean values of indoor air temperature and relative humidity ranged from 18.9 °C to 25.6 °C and from 34.1% to 68.0%, respectively. With regard to TVOC, it can be stated that excessive occurrence was recorded. Mean values ranged from 50 μg/m3 to 2610 μg/m3. Recommended value (200 μg/m3) for human exposure to TVOC was exceeded in 32% of houses. Mean concentrations of PM2.5 (particular matter with diameter less than 2.5 µm) and PM10 (diameter less than 10 µm) are determined to be from 16.80 µg/m3 to 30.70 µg/m3 and from 38.30 µg/m3 to 74.60 µg/m3 individually. Mean values of sound pressure level ranged from 29.8 dB(A) to 50.6 dB(A). Dependence between characteristics of buildings (Year of construction, Year of renovation, Smoke and Heating system) and data from measurements (Temperature, Relative humidity, TVOC, PM2.5 and PM10) were analyzed using R software. Van der Waerden test shows dependence of Smoke on TVOC and PM2.5. Permutational multivariate analysis of variance shows the effect of interaction of Renovation and Smoke. PMID:28045447

  3. Investigation of Indoor Air Quality in Houses of Macedonia.

    PubMed

    Vilčeková, Silvia; Apostoloski, Ilija Zoran; Mečiarová, Ľudmila; Burdová, Eva Krídlová; Kiseľák, Jozef

    2017-01-01

    People who live in buildings are exposed to harmful effects of indoor air pollution for many years. Therefore, our research is aimed to investigate the indoor air quality in family houses. The measurements of indoor air temperature, relative humidity, total volatile organic compounds (TVOC), particulate matters (PM) and sound pressure level were carried out in 25 houses in several cities of the Republic of Macedonia. Mean values of indoor air temperature and relative humidity ranged from 18.9 °C to 25.6 °C and from 34.1% to 68.0%, respectively. With regard to TVOC, it can be stated that excessive occurrence was recorded. Mean values ranged from 50 μg/m³ to 2610 μg/m³. Recommended value (200 μg/m³) for human exposure to TVOC was exceeded in 32% of houses. Mean concentrations of PM2.5 (particular matter with diameter less than 2.5 μm) and PM10 (diameter less than 10 μm) are determined to be from 16.80 μg/m³ to 30.70 μg/m³ and from 38.30 μg/m³ to 74.60 μg/m³ individually. Mean values of sound pressure level ranged from 29.8 dB(A) to 50.6 dB(A). Dependence between characteristics of buildings (Year of construction, Year of renovation, Smoke and Heating system) and data from measurements (Temperature, Relative humidity, TVOC, PM2.5 and PM10) were analyzed using R software. Van der Waerden test shows dependence of Smoke on TVOC and PM2.5. Permutational multivariate analysis of variance shows the effect of interaction of Renovation and Smoke.

  4. Indoor air and human health revisited: A recent IAQ symposium

    SciTech Connect

    Gammage, R.B.

    1994-12-31

    Indoor Air and Human Health Revisited was a speciality symposium examining the scientific underpinnings of sensory and sensitivity effects, allergy and respiratory disease, neurotoxicity and cancer. An organizing committee selected four persons to chain the sessions and invite experts to give state-of-the-art presentations that will be published as a book. A summary of the presentations is made and some critical issues identified.

  5. Impacts of air cleaners on indoor air quality in residences impacted by wood smoke.

    PubMed

    Wheeler, Amanda J; Gibson, Mark D; MacNeill, Morgan; Ward, Tony J; Wallace, Lance A; Kuchta, James; Seaboyer, Matt; Dabek-Zlotorzynska, Ewa; Guernsey, Judith Read; Stieb, David M

    2014-10-21

    Residential wood combustion is an important source of ambient air pollution, accounting for over 25% of fine particulate matter (PM2.5) emissions in Canada. In addition to these ambient contributions, wood smoke pollutants can enter the indoor environment directly when loading or stoking stoves, resulting in a high potential for human exposure. A study of the effectiveness of air cleaners at reducing wood smoke-associated PM2.5 of indoor and outdoor origin was conducted in 31 homes during winter 2009-10. Day 1, the residents' wood burning appliance operated as usual with no air cleaner. Days 2 and 3, the wood burning appliance was not operational and the air cleaner was randomly chosen to operate in "filtration" or "placebo filtration" mode. When the air cleaner was operating, total indoor PM2.5 levels were significantly lower than on placebo filtration days (p = 0.0001) resulting in a median reduction of 52%. There was also a reduction in the median PM2.5 infiltration factor from 0.56 to 0.26 between these 2 days, suggesting the air cleaner was responsible for increased PM2.5 deposition on filtration days. Our findings suggest that the use of an air cleaner reduces exposure to indoor PM2.5 resulting from both indoor and ambient wood smoke sources.

  6. Field Study of Exhaust Fans for Mitigating Indoor Air Quality Problems & Indoor Air Quality - Exhaust Fan Mitigation.

    SciTech Connect

    United States. Bonneville Power Administration.

    1987-07-01

    Overall, the findings show that exhaust fans basically provide small amounts of ventilation compensation. By monitoring the common indoor air pollutants (radon, formaldehyde, carbon monoxide, nitrogen dioxide, and water vapor), it was found that the quality of the indoor air was not adversely affected by the use of exhaust fans. Nor did their use provide any measurable or significant benefits since no improvement in air quality was ascertained. While exhaust fans of this small size did not increase radon, which is the contaminant of most concern, the researchers caution that operation of a larger fan or installation in a very tight home could result in higher levels because depressurization is greater. The daily energy consumption for use of these appliances during the heating season was calculated to be 1.5 kilowatt hours or approximately 3% of the energy consumption in the study homes. The information collected in this collaborative field study indicates that the use of these particular ventilation systems has no significant effect on indoor air quality.

  7. Assessing microbial decontamination of indoor air with particular focus on human pathogenic viruses.

    PubMed

    Duchaine, Caroline

    2016-09-02

    Transmission of bacterial, fungal, and viral pathogens is of primary importance in public and occupational health and infection control. Although several standardized protocols have been proposed to target microbes on fomites through surface decontamination, use of microbicidal agents, and cleaning processes, only limited guidance is available on microbial decontamination of indoor air to reduce the risk of pathogen transmission between individuals. This article reviews the salient aspects of airborne transmission of infectious agents, exposure assessment, in vitro assessment of microbicidal agents, and processes for air decontamination for infection prevention and control. Laboratory-scale testing (eg, rotating chambers, wind tunnels) and promising field-scale methodologies to decontaminate indoor air are also presented. The potential of bacteriophages as potential surrogates for the study of airborne human pathogenic viruses is also discussed.

  8. Plants Clean Air and Water for Indoor Environments

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Wolverton Environmental Services Inc., founded by longtime government environmental scientist B.C. "Bill" Wolverton, is an environmental consulting firm that gives customers access to the results of his decades of cutting-edge bioremediation research. Findings about how to use plants to improve indoor air quality have been published in dozens of NASA technical papers and in the book, "How to Grow Fresh Air: 50 Houseplants That Purify Your Home or Office." The book has now been translated into 12 languages and has been on the shelves of bookstores for nearly 10 years. A companion book, "Growing Clean Water: Nature's Solution to Water Pollution," explains how plants can clean waste water. Other discoveries include that the more air that is allowed to circulate through the roots of the plants, the more effective they are at cleaning polluted air; and that plants play a psychological role in welfare in that people recover from illness faster in the presence of plants. Wolverton Environmental is also working in partnership with Syracuse University, to engineer systems consisting of modular wicking filters tied into duct work and water supplies, essentially tying plant-based filters into heating, ventilation, and air conditioning (HVAC) systems. Also, the company has recently begun to assess the ability of the EcoPlanter to remove formaldehyde from interior environments. Wolverton Environmental is also in talks with designers of the new Stennis Visitor's Center, who are interested in using its designs for indoor air-quality filters

  9. Practical approaches for health care: Indoor air quality management

    SciTech Connect

    Turk, A.R.; Poulakos, E.M.

    1996-05-01

    The management of indoor air quality (IAQ) is of interest to building occupants, managers, owners, and regulators alike. Whether by poor design, improper attention, inadequate maintenance or the intent to save energy, many buildings today have significantly degraded IAQ levels. Acceptable IAQ is defined by the American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) in Standard 62-1989 {open_quotes}Ventilation for Acceptable Indoor Air Quality{close_quotes} as {open_quotes}air in which there are no known contaminants at harmful concentrations as determined by cognizant authorities and with which a substantial majority (80 percent or more) of the people exposed do not express dissatisfaction.{close_quotes} ASHRAE`s definition not only addresses the chemical compounds that may be present in the air, but it also recognizes a need to address both physiological and psychosocial comfort. The second step is to conduct a performance review of the HVAC systems based on equipment design specifications and guidelines for acceptable IAQ. And the third step is to identify potential chemical, physical and biological sources that are known to contribute to adverse air quality. Upon completion of these three steps, you will able to identify the more significant contributors to IAQ problems and establish applications for prevention and mitigation.

  10. Application of zonal model on indoor air sensor network design

    NASA Astrophysics Data System (ADS)

    Chen, Y. Lisa; Wen, Jin

    2007-04-01

    Growing concerns over the safety of the indoor environment have made the use of sensors ubiquitous. Sensors that detect chemical and biological warfare agents can offer early warning of dangerous contaminants. However, current sensor system design is more informed by intuition and experience rather by systematic design. To develop a sensor system design methodology, a proper indoor airflow modeling approach is needed. Various indoor airflow modeling techniques, from complicated computational fluid dynamics approaches to simplified multi-zone approaches, exist in the literature. In this study, the effects of two airflow modeling techniques, multi-zone modeling technique and zonal modeling technique, on indoor air protection sensor system design are discussed. Common building attack scenarios, using a typical CBW agent, are simulated. Both multi-zone and zonal models are used to predict airflows and contaminant dispersion. Genetic Algorithm is then applied to optimize the sensor location and quantity. Differences in the sensor system design resulting from the two airflow models are discussed for a typical office environment and a large hall environment.

  11. A New Tool for Eliminating Indoor Air Quality Complaints

    NASA Astrophysics Data System (ADS)

    Keady, Patricia B.; Halvorsen, Tom

    2000-06-01

    Poor indoor air quality (IAQ) can cause a variety of health problems for building occupants including headaches, respiratory problems, eye irritation and fatigue. Traditional IAQ measurements often fail to identify the root cause of the problems and solutions remain elusive. A new IAQ metric, ultrafine particles, is shown to have a high correlation with complaint areas. Researchers are studying the toxicology of these tiny pollutants on animals and humans. Ultrafine particles are defined as particles smaller than 100 nm diameter; `nanoparticles', those smaller than 50 nm diameter, are a subset of ultrafine particles. A battery-powered, portable condensation particle counter (CPC) can be used to quickly identify the source and transport pathways of ultrafine particle contaminants so they can be eliminated or controlled. The CPC condenses isopropyl alcohol on the particles to grow them to an optically detectable size. The hand-held instrument is fast responding, has a wide concentration range, and can log data to detect trends and short-term excursions. Adding the metric of ultrafine particles may become very important to IAQ investigations in the future.

  12. Detection of volatile organic peroxides in indoor air.

    PubMed

    Hong, J; Maguhn, J; Freitag, D; Kettrup, A

    2001-12-01

    A supercritical fluid extraction cell filled with adsorbent (Carbotrap and Carbotrap C) was used directly as a sampling tube to enrich volatile organic compounds in air. After sampling, the analytes were extracted by supercritical fluid CO2 with methanol as modifier. Collected organic peroxides were then determined by a RP-HPLC method developed and validated previously using post-column derivatization and fluorescence detection. Some volatile organic peroxides were found in indoor air in a new car and a newly decorated kitchen in the lower microg m(-3) range. tert-Butyl perbenzoate, di-tert-butyl peroxide, and tert-butylcumyl peroxide could be identified.

  13. Numerical Assessment of Indoor Air Exposure Risk from Subsurface NAPL Contamination under Hydrologic Uncertainties

    NASA Astrophysics Data System (ADS)

    Unger, A.; Yu, S.

    2007-12-01

    Understanding the risk of indoor air exposure to residual contaminants in the subsurface following the redevelopment of contaminated land redevelopment project is a central issue at many brownfield sites. In this study, we examine various mechanisms controlling vapor phase intrusion into the indoor air of a typical residential dwelling from a NAPL source located below the water table, and consequently assess the indoor air exposure risk under multiple hydrologic uncertainties. For this purpose, a multi-phase multi-component numerical model, CompFlow Bio is used to simulate the evolution of a TCE source zone and dissolved plume in a variably saturated heterogeneous aquifer, along with the transport of dissolved TCE upwards through the capillary fringe with subsequent migration of TCE vapors in the vadose zone subject to barometric pressure fluctuations. The TCE vapors then enter the basement of the residential dwelling through a crack in the foundation slab, driven by a slight vacuum within the basement relative to the ambient atmosphere as well as the barometric pressure fluctuations. Hydrologic uncertainties affecting the indoor air concentration of TCE include the vacuum in the basement, the aperture of the crack in the foundation slab, the heterogeneous permeability field, the thickness of the capillary fringe, barometric fluctuations, recharge rates and the location of the TCE source zone. CompFlow Bio is then used to determine the future concentration of TCE into the basement as a consequence of imperfect knowledge in the various hydrologic parameters, and to evaluate the effectiveness of alternative remedial and foundation design options to minimize the exposure risk to the indoor air conditional upon the available data collected at the site. The outcome of this approach is two-fold. First, the owner of the site can reasonably evaluate the future indoor air exposure risk following the redevelopment of a formerly contaminated site following remediation

  14. Measuring Infiltration Rates in Homes as a Basis for Understanding Indoor Air Quality

    NASA Astrophysics Data System (ADS)

    Jerz, G. G.; Lamb, B. K.; Pressley, S. N.; O'Keeffe, P.; Fuchs, M.; Kirk, M.

    2015-12-01

    Infiltration rates, or the rate of air exchange, of houses are important to understand because ventilation can be a dominate factor in determining indoor air quality. There are chemicals that are emitted from surfaces or point sources inside the home which are harmful to humans; these chemicals come from various objects including furniture, cleaning supplies, building materials, gas stoves, and the surrounding environment. The use of proper ventilation to cycle cleaner outdoor air into the house can be crucial for maintaining healthy living conditions in the home. At the same time, there can also be outdoor pollutants which infiltrate the house and contribute to poor indoor air quality. In either case, it is important to determine infiltration rates as a function of outdoor weather conditions, the house structure properties and indoor heating and cooling systems. In this work, the objective is to measure ventilation rates using periodic releases of a tracer gas and measuring how quickly the tracer concentration decays. CO2 will be used as the tracer gas because it is inert and harmless at low levels. An Arduino timer is connected to a release valve which controls the release of 9.00 SLPM of CO2 into the uptake vent within the test home. CO2 will be released until there is at least a 200 to 300 ppm increase above ambient indoor levels. Computers with CO2 sensors and temperature/pressure sensors attached will be used to record data from different locations within the home which will continuously record data up to a week. The results from these periodic ventilation measurements will be analyzed with respect to outdoor wind and temperature conditions and house structure properties. The data will be used to evaluate an established indoor air quality model.

  15. HVAC system performance and indoor air quality

    SciTech Connect

    Newman, J.L. )

    1991-01-01

    This paper reports that in the mid-seventies, the American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE) promulgated ASHRAE Standard 90-75 Energy Conservation in New Building Design, which called for revised minimum ventilation rates and the elimination of energy-wasting HVAC systems. Most building codes which cover energy conservation in the late seventies and eighties referred to this standard. This lowering of ventilation rates, coupled with the tighter building envelope (walls, windows, doors and roof) led to a reduction in outside air, both by engineering design and by minimizing infiltration through the structure. The minimum ventilation rates are based on the assumption that average concentrations of tobacco smoke exist in all enclosed spaces (30 percent of the population being smokers at two cigarettes per hour), rather than having separate rates for smoking and nonsmoking areas, as in the 1981 revision of the Standard. If tobacco smoke is ever declared a carcinogen, it will undoubtedly prompt a review of Standard 62-1989, as well as hasten totally smoke-free buildings.

  16. Impacts of Mixing on Acceptable Indoor Air Quality in Homes

    SciTech Connect

    Sherman, Max H.; Walker, Iain I.

    2010-01-01

    Ventilation reduces occupant exposure to indoor contaminants by diluting or removing them. In a multi-zone environment such as a house, every zone will have different dilution rates and contaminant source strengths. The total ventilation rate is the most important factor in determining occupant exposure to given contaminant sources, but the zone-specific distribution of exhaust and supply air and the mixing of ventilation air can play significant roles. Different types of ventilation systems will provide different amounts of mixing depending on several factors such as air leakage, air distribution system, and contaminant source and occupant locations. Most U.S. and Canadian homes have central heating, ventilation, and air conditioning systems, which tend to mix the air; thus, the indoor air in different zones tends to be well mixed for significant fractions of the year. This article reports recent results of investigations to determine the impact of air mixing on exposures of residential occupants to prototypical contaminants of concern. We summarize existing literature and extend past analyses to determine the parameters than affect air mixing as well as the impacts of mixing on occupant exposure, and to draw conclusions that are relevant for standards development and for practitioners designing and installing home ventilation systems. The primary conclusion is that mixing will not substantially affect the mean indoor air quality across a broad population of occupants, homes, and ventilation systems, but it can reduce the number of occupants who are exposed to extreme pollutant levels. If the policy objective is to minimize the number of people exposed above a given pollutant threshold, some amount of mixing will be of net benefit even though it does not benefit average exposure. If the policy is to minimize exposure on average, then mixing air in homes is detrimental and should not be encouraged. We also conclude that most homes in the US have adequate mixing

  17. Real-time sensors for indoor air monitoring and challenges ahead in deploying them to urban buildings.

    PubMed

    Kumar, Prashant; Skouloudis, Andreas N; Bell, Margaret; Viana, Mar; Carotta, M Cristina; Biskos, George; Morawska, Lidia

    2016-08-01

    Household air pollution is ranked the 9(th) largest Global Burden of Disease risk (Forouzanfar et al., The Lancet 2015). People, particularly urban dwellers, typically spend over 90% of their daily time indoors, where levels of air pollution often surpass those of outdoor environments. Indoor air quality (IAQ) standards and approaches for assessment and control of indoor air require measurements of pollutant concentrations and thermal comfort using conventional instruments. However, the outcomes of such measurements are usually averages over long integrated time periods, which become available after the exposure has already occurred. Moreover, conventional monitoring is generally incapable of addressing temporal and spatial heterogeneity of indoor air pollution, or providing information on peak exposures that occur when specific indoor sources are in operation. This article provides a review of new air pollution sensing methods to determine IAQ and discusses how real-time sensing could bring a paradigm shift in controlling the concentration of key air pollutants in billions of urban houses worldwide. We also show that besides the opportunities, challenges still remain in terms of maturing technologies, or data mining and their interpretation. Moreover, we discuss further research and essential development needed to close gaps between what is available today and needed tomorrow. In particular, we demonstrate that awareness of IAQ risks and availability of appropriate regulation are lagging behind the technologies.

  18. Reflections on the history of indoor air science, focusing on the last 50 years.

    PubMed

    Sundell, J

    2017-01-20

    The scientific articles and Indoor Air conference publications of the indoor air sciences (IAS) during the last 50 years are summarized. In total 7524 presentations, from 79 countries, have been made at Indoor Air conferences held between 1978 (49 presentations) and 2014 (1049 presentations). In the Web of Science, 26 992 articles on indoor air research (with the word "indoor" as a search term) have been found (as of 1 Jan 2016) of which 70% were published during the last 10 years. The modern scientific history started in the 1970s with a question: "did indoor air pose a threat to health as did outdoor air?" Soon it was recognized that indoor air is more important, from a health point of view, than outdoor air. Topics of concern were first radon, environmental tobacco smoke, and lung cancer, followed by volatile organic compounds, formaldehyde and sick building syndrome, house dust-mites, asthma and allergies, Legionnaires disease, and other airborne infections. Later emerged dampness/mold-associated allergies and today's concern with "modern exposures-modern diseases." Ventilation, thermal comfort, indoor air chemistry, semi-volatile organic compounds, building simulation by computational fluid dynamics, and fine particulate matter are common topics today. From their beginning in Denmark and Sweden, then in the USA, the indoor air sciences now show increasing activity in East and Southeast Asia.

  19. Arabidopsis thaliana as Bioindicator of Fungal VOCs in Indoor Air

    PubMed Central

    Hung, Richard; Yin, Guohua; Klich, Maren A.; Grimm, Casey; Bennett, Joan W.

    2016-01-01

    In this paper, we demonstrate the ability of Arabidopsis thaliana to detect different mixtures of volatile organic compounds (VOCs) emitted by the common indoor fungus, Aspergillus versicolor, and demonstrate the potential usage of the plant as a bioindicator to monitor fungal VOCs in indoor air. We evaluated the volatile production of Aspergillus versicolor strains SRRC 108 (NRRL 3449) and SRRC 2559 (ATCC 32662) grown on nutrient rich fungal medium, and grown under conditions to mimic the substrate encountered in the built environment where fungi would typically grow indoors (moist wallboard and ceiling tiles). Using headspace solid phase microextraction/gas chromatography-mass spectrometry, we analyzed VOC profiles of the two strains. The most abundant compound produced by both strains on all three media was 1-octen-3-ol. Strain SRRC 2559 made several terpenes not detected from strain SRRC 108. Using a split-plate bioassay, we grew Arabidopsis thaliana in a shared atmosphere with VOCs from the two strains of Aspergillus versicolor grown on yeast extract sucrose medium. The VOCs emitted by SRRC 2559 had an adverse impact on seed germination and plant growth. Chemical standards of individual VOCs from the Aspergillus versicolor mixture (2-methyl-1-butanol, 3-methyl-1-butanol, 1-octen-3-ol, limonene, and β-farnesene), and β-caryophyllene were tested one by one in seed germination and vegetative plant growth assays. The most inhibitory compound to both seed germination and plant growth was 1-octen-3-ol. Our data suggest that Arabidopsis is a useful model for monitoring indoor air quality as it is sensitive to naturally emitted fungal volatile mixtures as well as to chemical standards of individual compounds, and it exhibits relatively quick concentration- and duration-dependent responses. PMID:27790067

  20. Emissions of air pollutants from indoor charcoal barbecue.

    PubMed

    Huang, Hsiao-Lin; Lee, Whei-May Grace; Wu, Feng-Shu

    2016-01-25

    Ten types of commercial charcoal commonly used in Taiwan were investigated to study the potential health effects of air pollutants generated during charcoal combustion in barbecue restaurants. The charcoal samples were combusted in a tubular high-temperature furnace to simulate the high-temperature charcoal combustion in barbecue restaurants. The results indicated that traditional charcoal has higher heating value than green synthetic charcoal. The amount of PM10 and PM2.5 emitted during the smoldering stage increased when the burning temperature was raised. The EF for CO and CO2 fell within the range of 68-300 and 644-1225 g/kg, respectively. Among the charcoals, the lowest EF for PM2.5 and PM10 were found in Binchōtan (B1). Sawdust briquette charcoal (I1S) emitted the smallest amount of carbonyl compounds. Charcoal briquettes (C2S) emitted the largest amount of air pollutants during burning, with the EF for HC, PM2.5, PM10, formaldehyde, and acetaldehyde being the highest among the charcoals studied. The emission of PM2.5, PM10, formaldehyde, and acetaldehyde were 5-10 times those of the second highest charcoal. The results suggest that the adverse effects of the large amounts of air pollutants generated during indoor charcoal combustion on health and indoor air quality must not be ignored.

  1. Can commonly-used fan-driven air cleaning technologies improve indoor air quality? A literature review

    NASA Astrophysics Data System (ADS)

    Zhang, Yinping; Mo, Jinhan; Li, Yuguo; Sundell, Jan; Wargocki, Pawel; Zhang, Jensen; Little, John C.; Corsi, Richard; Deng, Qihong; Leung, Michael H. K.; Fang, Lei; Chen, Wenhao; Li, Jinguang; Sun, Yuexia

    2011-08-01

    Air cleaning techniques have been applied worldwide with the goal of improving indoor air quality. The effectiveness of applying these techniques varies widely, and pollutant removal efficiency is usually determined in controlled laboratory environments which may not be realized in practice. Some air cleaners are largely ineffective, and some produce harmful by-products. To summarize what is known regarding the effectiveness of fan-driven air cleaning technologies, a state-of-the-art review of the scientific literature was undertaken by a multidisciplinary panel of experts from Europe, North America, and Asia with expertise in air cleaning, aerosol science, medicine, chemistry and ventilation. The effects on health were not examined. Over 26,000 articles were identified in major literature databases; 400 were selected as being relevant based on their titles and abstracts by the first two authors, who further reduced the number of articles to 160 based on the full texts. These articles were reviewed by the panel using predefined inclusion criteria during their first meeting. Additions were also made by the panel. Of these, 133 articles were finally selected for detailed review. Each article was assessed independently by two members of the panel and then judged by the entire panel during a consensus meeting. During this process 59 articles were deemed conclusive and their results were used for final reporting at their second meeting. The conclusions are that: (1) None of the reviewed technologies was able to effectively remove all indoor pollutants and many were found to generate undesirable by-products during operation. (2) Particle filtration and sorption of gaseous pollutants were among the most effective air cleaning technologies, but there is insufficient information regarding long-term performance and proper maintenance. (3) The existing data make it difficult to extract information such as Clean Air Delivery Rate (CADR), which represents a common benchmark for

  2. A rights-based approach to indoor air pollution.

    PubMed

    Lim, Jamie; Petersen, Stephen; Schwarz, Dan; Schwarz, Ryan; Maru, Duncan

    2013-12-12

    Household indoor air pollution from open-fire cookstoves remains a public health and environmental hazard which impacts negatively on people's right to health. Technologically improved cookstoves designed to reduce air pollution have demonstrated their efficacy in laboratory studies. Despite the tremendous need for such stoves, in the field they have often failed to be effective, with low rates of long-term adoption by users, mainly due to poor maintenance of the stoves. In poor, rural, isolated communities, there is unlikely to be a single behavioral or technological "fix" to this problem. In this paper, we suggest that improved cookstoves are an important health intervention to which people have a right, as they do to family planning, vaccination, and essential primary care medicines. Like these other necessary elements in the fulfillment of the right to health, access to clean indoor air should be incorporated into state health strategies, policies, and plans. State infrastructure and health systems should support public and private sector delivery of improved cookstove services, and ensure that such services reach all communities, even those that are poor, located remotely, and likely not to be served by the market. We suggest that community health workers could play a critical role in creating demand for, implementing facilitation and delivery of, and monitoring these cookstoves and related services. Through this approach, improved cookstoves could become an appealing, available, and sustainable option for the rural poor. In this paper, we adopt a human rights-based approach to overcome the problem of indoor air pollution, and we use Nepal as an example.

  3. Houseplants, Indoor Air Pollutants, and Allergic Reactions

    NASA Technical Reports Server (NTRS)

    Wolverton, B. C.

    1986-01-01

    The technology of using houseplant leaves for reducing volatile organics inside closed facilities has been demonstrated with formaldehyde and benzene. Philodendrons are among the most effective plants tested to date. Philodendron domesticum had demonstrated the ability to remove formaldehyde from small experimental chambers at a rate of 4.31 micro-g/sq cm leaf surface area with initial starting concentrations of 22 ppm. At initial starting concentrations of 2.3 ppm a formaldehyde removal rate of 0.57 micro-g/sq cm was achieved during a 24 hour test. Aleo vera demonstrated a much higher formaldehyde efficiency removal rate than Philodendron domesticum at low formaldehyde concentrations. During a 24 hour exposure period 5 ppm of formaldehyde were reduced to 0.5 ppm demonstrating a removal efficiency rate of 3.27 micro-g/sq cm. Removal efficiency rates can be expected to decrease with concentration levels because fewer molecules of chemicals come in contact with the leaf surface area. Several centimeters of small washed gravel should be used to cover the surface of pot plants when large numbers of plants are kept in the home. The reason for this is to reduce the exposed area of damp potting soil which encourages the growth of molds (fungi). The leaves of Philodendron domesticum and golden pothos (Scindapsus aureus) have also demonstrated their ability to remove benzene and carbon monoxide from closed chambers. A combination of activated carbon and plant roots have demonstrated the greatest potential for removing large volumes of volatile organics along with smoke and possible radon from closed systems. Although fewer plants are required for this concept a mechanical blower motor must be used to pull or push the air through the carbon-root filter. NASA studies on motor sizes and bioregeneration rates should be completed by 1988.

  4. THE EFFECTS OF BUILDING FEATURES ON INDOOR AIR AND POLLUTANT MOVEMENTS

    EPA Science Inventory

    The paper discusses full-scale residential building tests to determine the effects of building features on indoor air and pollutant movement. It was found that the activated heating and air-conditioning (HAC) system served as a conductor that enhanced the indoor air movement and ...

  5. A pilot study of indoor air quality in screen golf courses.

    PubMed

    Goung, Sun-Ju Nam; Yang, Jinho; Kim, Yoon Shin; Lee, Cheol Min

    2015-05-01

    The aims of this study were to provide basic data for determining policies on air quality for multi-user facilities, including the legal enrollment of the indoor air quality regulation as designated by the Ministry of Environment, and to establish control plans. To this end, concentrations of ten pollutants (PM10, carbon monoxide (CO), carbon dioxide (CO2), nitrogen dioxide (NO2), formaldehyde (HCHO), total volatile organic compounds (TVOCs), radon (Rn), oxone (O3), total bacteria counts (TBC), and asbestos) in addition to nicotine, a smoking index material used to determine the impact of smoking on the air quality, were investigated in indoor game rooms and lobbies of 64 screen golf courses. The average concentration of none of the ten pollutants in the game rooms and lobbies of screen golf courses was found to exceed the limit set by the law. There were, however, pollutant concentrations exceeding limits in some screen golf courses, in order to establish a control plan for the indoor air quality of screen golf courses, a study on the emission sources of each pollutant was conducted. The major emission sources were found to be facility users' activities such as smoking and the use of combustion appliances, building materials, and finishing materials.

  6. Indoor air quality study of forty east Tennessee homes

    SciTech Connect

    Hawthorne, A.R.; Gammage, R.B.; Dudney, C.S.; Hingerty, B.E.; Schuresko, D.D.; Parzyck, D.C.; Womack, D.R.; Morris, S.A.; Westley, R.R.; White, D.A.

    1984-12-01

    Over a one-year period, measurements of indoor air pollutants (CO/sub x/, NO/sub x/, formaldehyde, volatile organics, particulates, and radon) were made in 40 homes in East Tennessee. The houses were of various ages with different types of insulation and heating. Over one-half of the houses exceeded the ASHRAE indoor ceiling guideline of 0.1 ppM for formaldehyde on at least one occasion. Over the duration of the study, older houses averaged 0.04 ppM of formaldehyde while houses less than 5 years old averaged 0.08 ppM (P < 0.01). The highest concentration of formaldehyde measured was 0.4 ppM in a new home. Diurnal and seasonal fluctuations in levels of formaldehyde in some homes were as much as twofold and tenfold, respectively. The highest levels of formaldehyde were usually recorded during summer months. The concentration in indoor air of various organics was at least tenfold higher than in outdoor air. Carbon monoxide and nitrgen oxides were usually <2 and <0.02 ppM, respectively, except when gas stoves or kerosene space heaters were operating, or when a car was running in the garage. In 30% of the houses, the annual indoor guideline for radon, 4 pCi/L, was exceeded. The mean radon level in houses built on the ridgelines was 4.4 pCi/L, while houses located in the valleys had a mean level of 1.7 pCi/L (P < 0.01). The factor having the most impact on infiltration was operation of the central duct fan of the heating, ventilation, and air conditioning system. The mean rate of air exchange increased from 0.39 to 0.74 h/sup -1/ when the duct fan was operated (measurements prior to December 1982). This report presents the study design and implementation, describes the monitoring protocols, and provides a complete set of the data collected during the project. 25 references, 29 figures, 42 tables.

  7. An indoor air quality assessment for vulnerable populations exposed to volcanic vog from Kilauea Volcano.

    PubMed

    Longo, Bernadette M; Yang, Wei; Green, Joshua B; Longo, Anthony A; Harris, Merylin; Bibilone, Renwick

    2010-01-01

    The Ka'u District of Hawaii is exposed to sulfurous air pollution called vog from the ongoing eruption of Kilauea Volcano. Increased volcanic activity in 2008 prompted an indoor air quality assessment of the district's hospital and schools. All indoor sulfur dioxide concentrations were above the World Health Organization's average 24-hour recommendation. Indoor penetration ratios were up to 94% of ambient levels and dependent upon building construction or the use of air-conditioning. Health-promotion efforts for vulnerable populations at the hospital and schools are under way to improve indoor air quality and respond to those affected by vog exposure.

  8. Magnetic signature of indoor air pollution: Household dust study

    NASA Astrophysics Data System (ADS)

    Górka-Kostrubiec, Beata; Jeleńska, Maria; Król, Elżbieta

    2014-12-01

    The combination of magnetic and geochemical methods was used to determine the mineralogy, grain size and domain structure of magnetic particles in indoor dust collected in 195 sites in Warsaw, Poland. Data show an asymmetric distribution of magnetic susceptibility (χ) in the wide range of 20-1514 × 10-8 m3 kg-1. Comparison of magnetic parameters shows that the internal dust contains outside pollution characteristic for air and soil. More than 90% of indoor dust samples were characterized by roughly uniform magnetic mineralogy, typical for fine grained magnetite (diameter of 0.2-5 μm), and grain size between pseudo-single-domain and small multi-domain with small contribution of superpara-magnetic particles (˜10%). Samples with χ larger than 220 × 10-8 m3 kg-1 contain mainly magnetite and an anthropogenic metallic Fe with T C > 700°C. The indoor dust contains, characteristic for the urban areas, spherical magnetic particles originated from fossil fuel combustion processes and mixture of irregular angular iron-oxides grains containing other elements, including Na, Ca, Al, Si, K, S, Mn, Cl, and Mg.

  9. Dispersal in microbes: fungi in indoor air are dominated by outdoor air and show dispersal limitation at short distances.

    PubMed

    Adams, Rachel I; Miletto, Marzia; Taylor, John W; Bruns, Thomas D

    2013-07-01

    The indoor microbiome is a complex system that is thought to depend on dispersal from the outdoor biome and the occupants' microbiome combined with selective pressures imposed by the occupants' behaviors and the building itself. We set out to determine the pattern of fungal diversity and composition in indoor air on a local scale and to identify processes behind that pattern. We surveyed airborne fungal assemblages within 1-month time periods at two seasons, with high replication, indoors and outdoors, within and across standardized residences at a university housing facility. Fungal assemblages indoors were diverse and strongly determined by dispersal from outdoors, and no fungal taxa were found as indicators of indoor air. There was a seasonal effect on the fungi found in both indoor and outdoor air, and quantitatively more fungal biomass was detected outdoors than indoors. A strong signal of isolation by distance existed in both outdoor and indoor airborne fungal assemblages, despite the small geographic scale in which this study was undertaken (<500 m). Moreover, room and occupant behavior had no detectable effect on the fungi found in indoor air. These results show that at the local level, outdoor air fungi dominate the patterning of indoor air. More broadly, they provide additional support for the growing evidence that dispersal limitation, even on small geographic scales, is a key process in structuring the often-observed distance-decay biogeographic pattern in microbial communities.

  10. A proactive approach for managing indoor air quality

    SciTech Connect

    Greene, R.E.; Casey, J.M.; Williams, P.L.

    1997-11-01

    Ventilation and maintenance, followed by psychosocial issues, are the factors most often implicated in indoor air quality (IAQ) investigations. The absence of accepted exposure standards and the presence of a wide variety of building designs, ages, ventilation systems, and usages often make IAQ complaint investigations ineffective. Thus, the best approach to achieving IAQ is to prevent problems from occurring. This paper presents the framework for a proactive approach to managing the causes most often implicated in IAQ investigations. It is the aim of this proactive protocol to provide a cost-effective guide for preventing IAQ problems in nonindustrial settings and in buildings for which there are no current IAQ complaints. The proposed protocol focuses on heating, ventilation, and air-conditioning (HVAC) system maintenance and operation; psychosocial factors; and the handling and investigation of complaints. An IAQ manager is designated to implement and manage the protocol. The HVAC system portion of the protocol focuses on proper maintenance of the components often identified as sources of problems in IAQ studies, documentation of the maintenance procedures, and training of individuals responsible for building maintenance. The protocol addresses the psychosocial factors with an environmental survey that rates the occupants` perceptions of the indoor air to identify potential IAQ problems. The psychosocial portion of the protocol also incorporates occupant education and awareness. Finally, a three-step initial investigation procedure for addressing IAQ problems is presented.

  11. Indoor Air Quality Assessment of the San Francisco Federal Building

    SciTech Connect

    Apte, Michael; Bennett, Deborah H.; Faulkner, David; Maddalena, Randy L.; Russell, Marion L.; Spears, Michael; Sullivan, Douglas P; Trout, Amber L.

    2008-07-01

    An assessment of the indoor air quality (IAQ) of the San Francisco Federal Building (SFFB) was conducted on May 12 and 14, 2009 at the request of the General Services Administration (GSA). The purpose of the assessment was for a general screening of IAQ parameters typically indicative of well functioning building systems. One naturally ventilated space and one mechanically ventilated space were studied. In both zones, the levels of indoor air contaminants, including CO2, CO, particulate matter, volatile organic compounds, and aldehydes, were low, relative to reference exposure levels and air quality standards for comparable office buildings. We found slightly elevated levels of volatile organic compounds (VOCs) including two compounds often found in"green" cleaning products. In addition, we found two industrial solvents at levels higher than typically seen in office buildings, but the levels were not sufficient to be of a health concern. The ventilation rates in the two study spaces were high by any standard. Ventilation rates in the building should be further investigated and adjusted to be in line with the building design. Based on our measurements, we conclude that the IAQ is satisfactory in the zone we tested, but IAQ may need to be re-checked after the ventilation rates have been lowered.

  12. Indoor air quality of schools in Alexandria City.

    PubMed

    Abou Taleb, Magda A; Mohamed, Mahmoud F; Nofal, Faten H; Noweir, Kamal H; El-Barawy, Mohamed A

    2002-01-01

    Poor air quality in schools can affect children's desire and ability to concentrate and learn and may lead to increased rate of absenteeism. This study was carried out with the aim of characterizing and measuring indoor air quality in school buildings, measuring ventilation status and studying the impact of design and environmental parameters on some measured pollutant levels. The study was carried out in some primary schools of Alexandria City. All ventilation rate levels exceeded the ASHRAE standard of 15 cfm/pupil except for a few cases. Badly located and small window area led to air stagnation and low ventilation rates. Levels of TSP greatly exceeded a suggested daily guideline of 150 microg/m3. The highest average levels of TSP were found inside classrooms surrounded by unpaved playground and located near semi rural, commercial and heavy traffic areas, while lowest levels were in classrooms located next to residential areas. The average total bacteria were highest in winter. There was also a slight increase in respiratory symptoms and signs in winter. There was a significant positive correlation between average total, pathogenic and non-pathogenic bacteria with average TSP levels, indoor CO2 levels and relative humidity while a significant negative correlation was observed with ventilation rate and class volume occupied. The average attack rate of respiratory conditions was 1.96 episode per child. Running nose was the highest frequent symptom. Students of first grade, had an incidence rate higher than that among fifth grade students.

  13. New units for indoor air quality: decicarbdiox and decitvoc

    NASA Astrophysics Data System (ADS)

    Jokl, M. V.

    Two new units are proposed for the evaluation of indoor air quality using the decibel concept, which give a much better approximation of the human perception of odour intensity, compared to the CO2 and total volatile organic compounds (TVOC) concentration scales: the decicarbdiox and the devitvoc. On the psychophysical scale according to Yaglou, the weakest odour that can be detected by the human smell sensors is equal to one, and corresponds to the lower limit of percentage dissatisfaction (PD) of 5.8%. It is equivalent to: (1) a CO2 threshold concentration of 485 ppm - 0 dB (odour CO2) - 0 dCd (decicarbdiox), and (2) a TVOC threshold concentration of 50 µg m-3- 0 dB (odour TVOC) - 0 dTv (decitvoc). The upper limit is determined by the initial value of toxicity: (1) CO2- 15,000 ppm - 134 dCd, and (2) TVOC - 25,000 g/m-3- 135 dTv. Optimal pollutant values (corresponding to PD=20%) and admissible values (PD=30%) for unadapted and adapted persons are calculated. Long-term tolerable values (determining the sick building syndrome range) and short-term tolerable values (the beginning of the toxic range) are also stated. The same system used to evaluate noise can be used to evaluate air quality. Additionally, the contribution of the individual constituents (at present acoustic and odour) to the overall quality of the environment can be ascertained. The new units dCd and dTv can express an increase or decrease in air contamination, e.g. by the use of air cleaners, new building materials etc. The proposed system of using dCd and dTv is compatible with BSR/ASHRAE 62-1989 R which can be used to determine the required volume of fresh air for ventilation by an improved method, which takes into account different levels of required indoor air quality.

  14. New units for indoor air quality: decicarbdiox and decitvoc.

    PubMed

    Jokl, M V

    1998-12-01

    Two new units are proposed for the evaluation of indoor air quality using the decibel concept, which give a much better approximation of the human perception of odour intensity, compared to the CO2 and total volatile organic compounds (TVOC) concentration scales: the decicarbdiox and the devitvoc. On the psychophysical scale according to Yaglou, the weakest odour that can be detected by the human smell sensors is equal to one, and corresponds to the lower limit of percentage dissatisfaction (PD) of 5.8%. It is equivalent to: (1) a CO2 threshold concentration of 485 ppm-0 dB (odour CO2)-0 dCd (decicarbdiox), and (2) a TVOC threshold concentration of 50 micrograms m-3-0 dB (odour TVOC)-0 dTv (decitvoc). The upper limit is determined by the initial value of toxicity: (1) CO2-15,000 ppm-134 dCd, and (2) TVOC-25,000 g/m-3-135 dTv. Optimal pollutant values (corresponding to PD = 20%) and admissible values (PD = 30%) for unadapted and adapted persons are calculated. Long-term tolerable values (determining the sick building syndrome range) and short-term tolerable values (the beginning of the toxic range) are also stated. The same system used to evaluate noise can be used to evaluate air quality. Additionally, the contribution of the individual constituents (at present acoustic and odour) to the overall quality of the environment can be ascertained. The new units dCd and dTv can express an increase or decrease in air contamination, e.g. by the use of air cleaners, new building materials etc. The proposed system of using dCd and dTv is compatible with BSR/ASHRAE 62-1989 R which can be used to determine the required volume of fresh air for ventilation by an improved method, which takes into account different levels of required indoor air quality.

  15. Indoor air quality in the 21st century: search for excellence.

    PubMed

    Fanger, P O

    2000-06-01

    Field studies demonstrate that there are substantial numbers of dissatisfied people in many buildings, among them those suffering from sick building syndrome (SBS) symptoms, even though existing standards and guidelines are met. The reason is that the requirements specified in these standards are rather low, allowing a substantial group of people to become dissatisfied and to be adversely affected. A paradigm shift from rather mediocre to excellent indoor environments is foreseen in the 21st century. Based on existing information and on new research results, five principles are suggested as elements behind a new philosophy of excellence: 1) better indoor air quality increases productivity and decreases SBS symptoms; 2) unnecessary indoor pollution sources should be avoided; 3) the air should be served cool and dry to the occupants; 4) "personalized air", i.e. a small amount of clean air, should be served gently, close to the breathing zone of each individual; and 5) individual control of the thermal environment should be provided. These principles of excellence are compatible with energy efficiency and sustainability.

  16. Indoor air quality in schools and its relationship with children's respiratory symptoms

    NASA Astrophysics Data System (ADS)

    Madureira, Joana; Paciência, Inês; Rufo, João; Ramos, Elisabete; Barros, Henrique; Teixeira, João Paulo; de Oliveira Fernandes, Eduardo

    2015-10-01

    A cross-sectional survey was conducted to characterize the indoor air quality (IAQ) in schools and its relationship with children's respiratory symptoms. Concentrations of volatile organic compounds (VOC), aldehydes, PM2.5, PM10, carbon dioxide, bacteria and fungi were assessed in 73 classrooms from 20 public primary schools located in Porto, Portugal. Children who attended the selected classrooms (n = 1134) were evaluated by a standardised health questionnaire completed by the legal guardians; spirometry and exhaled nitric oxide tests. The results indicated that no classrooms presented individual VOC pollutant concentrations higher than the WHO IAQ guidelines or by INDEX recommendations; while PM2.5, PM10 and bacteria levels exceeded the WHO air quality guidelines or national limit values. High levels of total VOC, acetaldehyde, PM2.5 and PM10 were associated with higher odds of wheezing in children. Thus, indoor air pollutants, some even at low exposure levels, were related with the development of respiratory symptoms. The results pointed out that it is crucial to take into account the unique characteristics of the public primary schools, to develop appropriate control strategies in order to reduce the exposure to indoor air pollutants and, therefore, to minimize the adverse health effects.

  17. Youth participation in a community campaign to pass a clean indoor air ordinance.

    PubMed

    Bozlak, Christine Taggart; Kelley, Michele A

    2010-07-01

    Because of the harmful effects of secondhand smoke, communities are organizing to pass clean indoor air policies. With youth being considered one of the most vulnerable populations to this health hazard, it can be strategic to campaigns and beneficial to the youth's development to involve them in efforts to control this toxin. However, youth participation in health campaigns is limited because of barriers inherent in these initiatives. This article presents lessons learned from a qualitative case study on the youth involvement in a successful local clean indoor air campaign. Through the analysis of semistructured interviews with the adult members of the campaign, group interviews and questionnaire completion by the youth members of the campaign, and additional insight made possible by participant observation, recommendations are provided to engage and sustain youth involvement in local public health initiatives.

  18. Indoor air quality large building characterization project planning. Report for September 1992--May 1997

    SciTech Connect

    Menetrez, M.Y.; Kulp, R.N.; Pyle, B.; Williamson, A.; McDonough, S.

    1998-08-01

    Three buildings were characterized in this project by examining radon concentrations and indoor air quality (IAQ) levels as affected by building ventilation dynamics. IAQ data collection stations (IAQDS) for monitoring and data logging, remote switches (pressure and sail switches), and a weather station were installed. Measurements of indoor radon carbon dioxide, particle concentrations, temperature, humidity, pressure differentials, ambient and sub-slab radon concentrations, and outdoor air (OA) intake flow rates were collected. The OA intake was adjusted when possible, and fan cycles were controlled while tracer gas measurements were taken in all zones and IAQDS data were collected. Ventilation, infiltration, mixing rates, radon entry, pressure/temperature convective driving forces, CO{sub 2} generation/decay rates, and IAQ levels were established for baseline and OA-adjusted conditions.

  19. Evaluation of the Indoor Air Quality Procedure for Use in Retail Buildings

    SciTech Connect

    Dutton, Spencer M.; Chan, Wanyu R.; Mendell, Mark J.; Barrios, Marcella; Parthasarathy, Srinandini; Sidheswaran, Meera; Sullivan, Douglas P.; Eliseeva, Katerina; Fisk, William J.

    2013-02-01

    that for the big box store and 11 of the 12 other stores, neither current measured VRs nor the Title 24-prescribed VRs would be sufficient to maintain indoor concentrations of all CoCs below RELs. In the intervention study, with the IAQP-based VR applied in the big box store, all CoCs were controlled below RELs (within margins of error). Also, at all three VRs in this store, the percentage of subjects reporting acceptable air quality exceeded an 80% criterion of acceptability. The IAQP allows consideration of outdoor air ventilation as just one of several possible tools for achieving adequate IAQ. In two of the 13 surveyed buildings, applying the IAQP to allow lower VRs could have saved energy whilst still maintaining acceptable indoor air quality. In the remaining 11 buildings, saving energy through lower VRs would require combination with other strategies, either reducing indoor sources of CoCs such as formaldehyde, or use of gas phase air cleaning technologies. Based on the findings from applying the IAQP calculations to retail stores and the IAQP-based intervention study, recommendations are made regarding the potential introduction of a comparable procedure in Title 24.

  20. Evaluation of a passive air sampler for measuring indoor formaldehyde.

    PubMed

    Kim, Sun-Tae; Yim, Bongbeen; Jeong, Jaeho

    2007-04-01

    A passive air sampler, using 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole, was evaluated for the determination of formaldehyde in indoor environments. Chromatography paper cleaned using a 3% hydrogen peroxide solution was experimentally determined as being the optimum absorption filter for the collection of formaldehyde (0.05 microg cm(-2) formaldehyde). From a linear-regression analysis between the mass of formaldehyde time-collected on a passive air sampler and the formaldehyde concentration measured by an active sampler, the sampling rate of the passive air sampler was 1.52 L h(-1). The sampling rate, determined for the passive air sampler in relation to the temperature (19 - 28 degrees C) and the relative humidity (30 - 90%), were 1.56 +/- 0.04 and 1.58 +/- 0.07 L h(-1), respectively. The relationship between the sampling rate and the air velocity was a linear-regression within the observed range. In the case of exposed samplers, the stability of the collected formaldehyde decreased with increasing storage time (decrease of ca. 25% after 22 days); but with the unexposed samplers the stability of the blank remained relatively unchanged for 7 days (decrease of ca. 37% after 22 days). The detection limits for the passive air sampler with an exposure time of 1 day and 7 days were 10.4 and 1.48 microg m(-3), respectively.

  1. A Study of Interior Landscape Plants for Indoor Air Pollution Abatement

    NASA Technical Reports Server (NTRS)

    Wolverton, B. C.; Douglas, Willard L.; Bounds, Keith

    1989-01-01

    Previously, preliminary data on the ability of a group of common indoor plants to remove organic chemical from indoor air was presented. The group of plants chosen for this study was determined by joint agreement between NASA and the Associated Landscape Contractors of America. The chemicals chosen for study were benzene, trichloroethylene, and formaldehyde. The results show that plants can play a major role in removal of organic chemicals from indoor air.

  2. Characterization of indoor aerosol temporal variations for the real-time management of indoor air quality

    NASA Astrophysics Data System (ADS)

    Ciuzas, Darius; Prasauskas, Tadas; Krugly, Edvinas; Sidaraviciute, Ruta; Jurelionis, Andrius; Seduikyte, Lina; Kauneliene, Violeta; Wierzbicka, Aneta; Martuzevicius, Dainius

    2015-10-01

    The study presents the characterization of dynamic patterns of indoor particulate matter (PM) during various pollution episodes for real-time IAQ management. The variation of PM concentrations was assessed for 20 indoor activities, including cooking related sources, other thermal sources, personal care and household products. The pollution episodes were modelled in full-scale test chamber representing a standard usual living room with the forced ventilation of 0.5 h-1. In most of the pollution episodes, the maximum concentration of particles in exhaust air was reached within a few minutes. The most rapid increase in particle concentration was during thermal source episodes such as candle, cigarette, incense stick burning and cooking related sources, while the slowest decay of concentrations was associated with sources, emitting ultrafine particle precursors, such as furniture polisher spraying, floor wet mopping with detergent etc. Placement of the particle sensors in the ventilation exhaust vs. in the centre of the ceiling yielded comparable results for both measured maximum concentrations and temporal variations, indicating that both locations were suitable for the placement of sensors for the management of IAQ. The obtained data provides information that may be utilized considering measurements of aerosol particles as indicators for the real-time management of IAQ.

  3. The effects of evaporating essential oils on indoor air quality

    NASA Astrophysics Data System (ADS)

    Su, Huey-Jen; Chao, Chung-Jen; Chang, Ho-Yuan; Wu, Pei-Chih

    Essential oils, predominantly comprised of a group of aromatic chemicals, have attracted increasing attention as they are introduced into indoor environments through various forms of consumer products via different venues. Our study aimed to characterize the profiles and concentrations of emitted volatile organic compounds (VOCs) when evaporating essential oils indoors. Three popular essential oils in the market, lavender, eucalyptus, and tea tree, based on a nation-wide questionnaire survey, were tested. Specific aromatic compounds of interest were sampled during evaporating the essential oils, and analyzed by GC-MS. Indoor carbon monoxide (CO), carbon dioxide (CO 2), total volatile organic compounds (TVOCs), and particulate matters (PM 10) were measured by real-time, continuous monitors, and duplicate samples for airborne fungi and bacteria were collected in different periods of the evaporation. Indoor CO (average concentration 1.48 vs. 0.47 ppm at test vs. background), CO 2 (543.21 vs. 435.47 ppm), and TVOCs (0.74 vs. 0.48 ppm) levels have increased significantly after evaporating essential oils, but not the PM 10 (2.45 vs. 2.42 ppm). The anti-microbial activity on airborne microbes, an effect claimed by the use of many essential oils, could only be found at the first 30-60 min after the evaporation began as the highest levels of volatile components in these essential oils appeared to emit into the air, especially in the case of tea tree oil. High emissions of linalool (0.092-0.787 mg m -3), eucalyptol (0.007-0.856 mg m -3), D-limonene (0.004-0.153 mg m -3), ρ-cymene (0.019-0.141 mg m -3), and terpinene-4-ol-1 (0.029-0.978 mg m -3), all from the family of terpenes, were observed, and warranted for further examination for their health implications, especially for their potential contribution to the increasing indoor levels of secondary pollutants such as formaldehyde and secondary organic aerosols (SOAs) in the presence of ozone.

  4. Autocorrelation and variability of indoor air quality measurements.

    PubMed

    Luoma, M; Batterman, S A

    2000-01-01

    Measurements of gaseous and particulate concentrations are used to characterize the indoor environment, but such measurements may reflect temporary conditions that are not representative of longer time periods. Moreover, indoor air quality (IAQ) measurements are autocorrelated, a result of limited mixing and air exchange, cyclic emissions, HVAC operation, and other factors. This article analyzes the autocorrelation and variability of IAQ measurements using time series analysis techniques in conjunction with a simple IAQ model. Autocorrelations may be estimated using the air exchange rate (alpha) and ventilation effectiveness (epsilon) of the building or room under study, or estimated from pollutant measurements. From this, the variability, required sample size, and other sampling parameters are estimated. The method is tested in a case study in which particle number, fungi, bacteria, and carbon dioxide concentrations were continuously measured in an office building over a 1-week period. The estimated air exchange rate (1.4/hr) for area studied was predicted to yield autocorrelation coefficients of approximately 0.5 for measurements collected on 30-min intervals. Autocorrelation coefficients based on airborne measurements (lag 0.5 hr) ranged from 0.5 to 0.7 for 1-25 microm diameter particles, fungi, and CO2, but near zero for particles < or =1 microm diameter and bacteria. As expected, the variability of measurements with the lowest autocorrelation decreased the most at long sampling times. The implications for spaces with low alpha * epsilon products are that measurements may not benefit significantly from longer averaging periods, measurements on any single day may not be representative, and day-to-day variability may be significant. Steps to determine sample sizes, averaging times, and sampling strategies that can improve the representativeness of IAQ measurements are discussed.

  5. Indoor Air Quality Tools for Schools Program: Benefits of Improving Air Quality in the School Environment.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Radiation and Indoor Air.

    The U.S. Environmental Protection Agency (EPA) developed the Indoor Air Quality Tools for Schools (IAQ TfS) Program to help schools prevent, identify, and resolve their IAQ problems. This publication describes the program and its advantages, explaining that through simple, low-cost measures, schools can: reduce IAQ-related health risks and…

  6. Method, system and apparatus for monitoring and adjusting the quality of indoor air

    DOEpatents

    Hartenstein, Steven D.; Tremblay, Paul L.; Fryer, Michael O.; Hohorst, Frederick A.

    2004-03-23

    A system, method and apparatus is provided for monitoring and adjusting the quality of indoor air. A sensor array senses an air sample from the indoor air and analyzes the air sample to obtain signatures representative of contaminants in the air sample. When the level or type of contaminant poses a threat or hazard to the occupants, the present invention takes corrective actions which may include introducing additional fresh air. The corrective actions taken are intended to promote overall health of personnel, prevent personnel from being overexposed to hazardous contaminants and minimize the cost of operating the HVAC system. The identification of the contaminants is performed by comparing the signatures provided by the sensor array with a database of known signatures. Upon identification, the system takes corrective actions based on the level of contaminant present. The present invention is capable of learning the identity of previously unknown contaminants, which increases its ability to identify contaminants in the future. Indoor air quality is assured by monitoring the contaminants not only in the indoor air, but also in the outdoor air and the air which is to be recirculated. The present invention is easily adaptable to new and existing HVAC systems. In sum, the present invention is able to monitor and adjust the quality of indoor air in real time by sensing the level and type of contaminants present in indoor air, outdoor and recirculated air, providing an intelligent decision about the quality of the air, and minimizing the cost of operating an HVAC system.

  7. Children's exposure to indoor air in urban nurseries-part I: CO{sub 2} and comfort assessment

    SciTech Connect

    Branco, P.T.B.S.; Alvim-Ferraz, M.C.M.; Martins, F.G.; Sousa, S.I.V.

    2015-07-15

    Indoor air quality (IAQ) in nurseries is an emerging case-study. Thus, this study, as the Part I of the larger study “Children's exposure to indoor air in urban nurseries”, aimed to: i) evaluate nurseries’ indoor concentrations of carbon dioxide (CO{sub 2}), a global IAQ indicator, in class and lunch rooms; ii) assess indoor comfort parameters–temperature (T) and relative humidity (RH); and iii) analyse them according to guidelines and references for IAQ, comfort and children's health. Indoor continuous measurements were performed. Non-compliances with guidelines were found in comfort parameters, which could cause discomfort situations and also microbial proliferation. Exceedances in CO{sub 2} concentrations were also found and they were caused by poor ventilation and high classroom occupation. More efficient ventilation and control of comfort parameters, as well as to reduce occupation by reviewing Portuguese legislation on that matter, would certainly improve IAQ and comfort in nurseries and consequently safeguard children's health. - Highlights: • High occupation and poor ventilation were main determinants of IAQ in nurseries. • T and RH indoor values found in nurseries are likely to cause thermal discomfort. • Building characteristics and an inadequate ventilation determined T and RH values. • High CO{sub 2} concentrations found could indicate accumulation of other air pollutants.

  8. New Courses: Unlock the Mysteries of Productivity, Air Quality, and the Indoor Environment in Schools.

    ERIC Educational Resources Information Center

    Raiford, Regina

    2001-01-01

    Discusses the relationship between indoor air quality and productivity and a three-year research project to measure productivity within an educational setting. Also discusses research showing the impact of good indoor air quality on increasing productivity. Ten ways to manage asthma in a school environment are highlighted. (GR)

  9. Healthier Schools: A Review of State Policies for Improving Indoor Air Quality. Research Report.

    ERIC Educational Resources Information Center

    Bernstein, Tobie

    Existing indoor air quality (IAQ) policies for schools reflect the variety of institutional, political, social, and economic contexts that exist within individual states. The purpose of this report is to provide a better understanding of the types of policy strategies used by states in addressing general indoor air quality problems. The policies…

  10. A Behavioral Intervention to Reduce Child Exposure to Indoor Air Pollution: Identifying Possible Target Behaviors

    ERIC Educational Resources Information Center

    Barnes, Brendon R.; Mathee, Angela; Shafritz, Lonna B.; Krieger, Laurie; Zimicki, Susan

    2004-01-01

    Indoor air pollution has been causally linked to acute lower respiratory infections in children younger than 5. The aim of this study was to identify target behaviors for a behavioral intervention to reduce child exposure to indoor air pollution by attempting to answer two research questions: Which behaviors are protective of child respiratory…

  11. Modeling indoor air pollution of outdoor origin in homes of SAPALDIA subjects in Switzerland.

    PubMed

    Meier, Reto; Schindler, Christian; Eeftens, Marloes; Aguilera, Inmaculada; Ducret-Stich, Regina E; Ineichen, Alex; Davey, Mark; Phuleria, Harish C; Probst-Hensch, Nicole; Tsai, Ming-Yi; Künzli, Nino

    2015-09-01

    Given the shrinking spatial contrasts in outdoor air pollution in Switzerland and the trends toward tightly insulated buildings, the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults (SAPALDIA) needs to understand to what extent outdoor air pollution remains a determinant for residential indoor exposure. The objectives of this paper are to identify determining factors for indoor air pollution concentrations of particulate matter (PM), ultrafine particles in the size range from 15 to 300nm, black smoke measured as light absorbance of PM (PMabsorbance) and nitrogen dioxide (NO2) and to develop predictive indoor models for SAPALDIA. Multivariable regression models were developed based on indoor and outdoor measurements among homes of selected SAPALDIA participants in three urban (Basel, Geneva, Lugano) and one rural region (Wald ZH) in Switzerland, various home characteristics and reported indoor sources such as cooking. Outdoor levels of air pollutants were important predictors for indoor air pollutants, except for the coarse particle fraction. The fractions of outdoor concentrations infiltrating indoors were between 30% and 66%, the highest one was observed for PMabsorbance. A modifying effect of open windows was found for NO2 and the ultrafine particle number concentration. Cooking was associated with increased particle and NO2 levels. This study shows that outdoor air pollution remains an important determinant of residential indoor air pollution in Switzerland.

  12. Testing Selected Behaviors to Reduce Indoor Air Pollution Exposure in Young Children

    ERIC Educational Resources Information Center

    Barnes, B. R.; Mathee, A.; Krieger, L.; Shafritz, L.; Favin, M.; Sherburne, L.

    2004-01-01

    Indoor air pollution is responsible for the deaths and illness of millions of young children in developing countries. This study investigated the acceptability (willingness to try) and feasibility (ability to perform) of four indoor air pollution reduction behaviors (improve stove maintenance practices, child location practices, ventilation…

  13. DEVELOPMENT OF A WINDOWS-BASED INDOOR AIR QUALITY SIMULATION SOFTWARE PACKAGE

    EPA Science Inventory

    A Microsoft Windows-based indoor air quality (IAQ) simulation software package has been developed and is currently undergoing small-scale beta test and quality assurance review. Tentatively named Simulation Tool Kit for Indoor Air Quality and Inhalation Exposure, or STKi for sho...

  14. INDOOR AIR QUALITY AND FURNITURE PROCUREMENT IN EPA'S NEW RESEARCH TRIANGLE CAMPUS

    EPA Science Inventory

    The paper discusses various aspects of the EPA's new 1.2 million square foot building in Research Triangle Park that pertain to indoor air, with a particular focus on the process EPA used to select furniture to meet its indoor air guidelines. In keeping with its mission of protec...

  15. The study of indoor air pollution by means of magnetometry

    NASA Astrophysics Data System (ADS)

    Jelenska, M.; Górka-Kostrubiec, B.; Król, E.

    2012-04-01

    The aim of this study is to establish what kind of outside pollution penetrate into indoor spaces. Here we report preliminary results of magnetic monitoring study of indoor air pollution by particulate matter (PM) measured inside flats and houses placed in different locations in Warsaw area. Indoor air pollution level was evaluated by measuring magnetic properties of dust taken from vacuum cleaners used in private flats. The dust samples were taken from about 180 locations in Warsaw distributed in such polluted places as city centre or communication lines with heavy traffic and in unpolluted suburb places. The locations were also distributed according to height above ground level. There were taken in flats situated from first to 16th floors. The basic magnetic parameters such us, χ mass magnetic susceptibility, hysteresis loop parameters: coercive force (Hc), coercivity of remanence (Hcr), saturation magnetization (Ms) and saturation remanent magnetization (Mrs or SIRM) and χfd frequency dependence of susceptibility, have been used to identify indoor pollution level and to characterize domain state and granulometry of magnetic minerals. Identification of magnetic minerals have been made by measuring decay curve of SIRM during heating to temperature of 700 °C. For chosen samples concentration of 20 elements were measured. The most frequent values of susceptibility of dust are between 50 and 150 10-8 m3/kg with the maximum around 100 10-8 m3/kg. Thermomagnetic analysis for dust differs from that for soil samples taken in the vicinity. SIRM(T) curves for dust show remanence loss at 320 °C and at 520- 540 °C. This is diagnostic for pyrrhotite and magnetite as dominant magnetic minerals. Some samples demonstrate loss of remanence at 160 °C and at temperature characteristic for magnetite. Soil samples do not show pyrrhotite presence or loss of remanence at 160 °C. Display of hysteresis parameters on Day-Dunlop plot indicates predominance of SD/MD grains with

  16. Windsor, Ontario Exposure Assessment Study: Design and Methods Validation of Personal, Indoor and Outdoor Air Pollution Monitoring

    EPA Science Inventory

    The Windsor, Ontario Exposure Assessment Study evaluated the contribution of ambient air pollutants to personal and indoor exposures of adults and asthmatic children living in Windsor, Ontario, Canada. In addition, the role of personal, indoor, and outdoor air pollution exposures...

  17. HVAC SYSTEMS AS EMISSION SOURCES AFFECTING INDOOR AIR QUALITY: A CRITICAL REVIEW

    EPA Science Inventory

    The study evaluates heating, ventilating, and air-conditioning (HVAC) systems as contaminant emission sources that affect indoor air quality (IAQ). Various literature sources and methods for characterizing HVAC emission sources are reviewed. Available methods include in situ test...

  18. THE SPATIAL AND TEMPORAL DISTRIBUTION OF CHLORPYRIFOS IN THE U.S. EPA INDOOR AIR QUALITY (IAQ) TEST HOUSE FOLLOWING CRACK AND CREVICE TYPE APPLICATIONS

    EPA Science Inventory

    Pesticides found in homes may result from indoor applications to control household pests or by translocation from outdoor sources. Pesticides disperse according to their physical properties and other factors such as human activity, air exchange, temperature and humidity. Insect...

  19. THE DISTRIBUTION OF CHLORPYRIFOS FOLLOWING A CRACK AND CREVICE TYPE APPLICAITON IN THE U.S. EPA INDOOR AIR QUALITY (IAQ) TEST HOUSE

    EPA Science Inventory

    Pesticides found in homes may result from indoor applications to control household pests or by translocation from outdoor sources. Pesticides disperse according to their physical properties and other factors such as human activity, residential air exchange, temperature and humi...

  20. Indoor air pollution in rural China: cooking fuels, stoves, and health status.

    PubMed

    Peabody, John W; Riddell, Travis J; Smith, Kirk R; Liu, Yaping; Zhao, Yanyun; Gong, Jianghui; Milet, Meredith; Sinton, Jonathan E

    2005-01-01

    Solid fuels are a major source of indoor air pollution, but in less developed countries the short-term health effects of indoor air pollution are poorly understood. The authors conducted a large cross-sectional study of rural Chinese households to determine associations between individual health status and domestic cooking as a source of indoor air pollution. The study included measures of health status as well as measures of indoor air-pollution sources, such as solid cooking fuels and cooking stoves. Compared with other fuel types, coal was associated with a lower health status, including negative impacts on exhaled carbon monoxide level, forced vital capacity, lifetime prevalence of chronic obstructive pulmonary disease and asthma, and health care utilization. Decreasing household coal use, increasing use of improved stove technology, and increasing kitchen ventilation may decrease the short-term health effects of indoor air pollution.

  1. Indoor air pollution by different heating systems: coal burning, open fireplace and central heating.

    PubMed

    Moriske, H J; Drews, M; Ebert, G; Menk, G; Scheller, C; Schöndube, M; Konieczny, L

    1996-11-01

    Investigations of indoor air pollution by different heating systems in private homes are described. Sixteen homes, 7 with coal burning, 1 with open fireplace (wood burning) and 8 with central heating have been investigated. We measured the concentrations of carbon monoxide, carbon dioxide and sedimented dust in indoor air, of total suspended particulates, heavy metals and of polycyclic aromatic hydrocarbons in indoor and outdoor air. Measurements were taken during winter (heating period) and during summer (non-heating period). Generally, we found higher indoor air pollution in homes with coal burning and open fireplace than in homes with central heating. Especially, the concentrations of carbon monoxide, sedimented dust and of some heavy metals were higher. In one case, we found also high indoor air pollution in a home with central heating. This apartment is on the ground floor of a block of flats, and the central heating system in the basement showed a malfunctioning of the exhaust system.

  2. On the use of a risk ladder: Linking public perception of risks associated with indoor air with cognitive elements and attitudes toward risk reduction

    NASA Astrophysics Data System (ADS)

    Moschandreas, D. J.; Chang, P. E.

    In recent years a number of building managers have invested small amounts of money to measure indoor air quality in offices and other non-industrial buildings. Their objective is to reduce the number of occupant complaints, and not necessarily to reduce the risk associated with such complaints. Clearly, reduction of the risk would require greater investment of funds and effort. This paper focuses on individuals and the amount of money they are willing to invest in order to reduce risks associated with indoor air pollution in their home. Psychologists assert that lay judgement of risks are influenced by cognitive biases and attitudes. This study investigates the possibility that cognitive elements and general attitudes influence not only the perceived risk associated with exposures to indoor air pollutants, but also the willingness of individuals to invest in order to reduce the risk. A three-stage study was performed to determine some of the factors that influence public decisions to control the quality of the air inside their home. The study is focused on the design of a risk ladder, and the survey of 400 randomly selected individuals in the Chicago metropolitan area. The survey was designed to determine if demographics, smoking, education, or income influence the desire of individuals to invest in order to reduce indoor air pollution. The following conclusions were reached: (i) public awareness of indoor air pollution is high; (ii) media campaigns on indoor air pollution affect the determination of the specific pollutant the public perceives as important, but do not influence the public's desire to invest larger amounts of money to reduce risks from exposures to air pollutants in the residential environment; (iii) the public is not willing to spend large amounts of money to reduce indoor residential air pollution; (iv) education does not affect the level of awareness regarding indoor air pollution, but it increases the willingness to invest in an effort to reduce

  3. Prediction of Indoor Air Exposure from Outdoor Air Quality Using an Artificial Neural Network Model for Inner City Commercial Buildings.

    PubMed

    Challoner, Avril; Pilla, Francesco; Gill, Laurence

    2015-12-01

    NO₂ and particulate matter are the air pollutants of most concern in Ireland, with possible links to the higher respiratory and cardiovascular mortality and morbidity rates found in the country compared to the rest of Europe. Currently, air quality limits in Europe only cover outdoor environments yet the quality of indoor air is an essential determinant of a person's well-being, especially since the average person spends more than 90% of their time indoors. The modelling conducted in this research aims to provide a framework for epidemiological studies by the use of publically available data from fixed outdoor monitoring stations to predict indoor air quality more accurately. Predictions are made using two modelling techniques, the Personal-exposure Activity Location Model (PALM), to predict outdoor air quality at a particular building, and Artificial Neural Networks, to model the indoor/outdoor relationship of the building. This joint approach has been used to predict indoor air concentrations for three inner city commercial buildings in Dublin, where parallel indoor and outdoor diurnal monitoring had been carried out on site. This modelling methodology has been shown to provide reasonable predictions of average NO₂ indoor air quality compared to the monitored data, but did not perform well in the prediction of indoor PM2.5 concentrations. Hence, this approach could be used to determine NO₂ exposures more rigorously of those who work and/or live in the city centre, which can then be linked to potential health impacts.

  4. Prediction of Indoor Air Exposure from Outdoor Air Quality Using an Artificial Neural Network Model for Inner City Commercial Buildings

    PubMed Central

    Challoner, Avril; Pilla, Francesco; Gill, Laurence

    2015-01-01

    NO2 and particulate matter are the air pollutants of most concern in Ireland, with possible links to the higher respiratory and cardiovascular mortality and morbidity rates found in the country compared to the rest of Europe. Currently, air quality limits in Europe only cover outdoor environments yet the quality of indoor air is an essential determinant of a person’s well-being, especially since the average person spends more than 90% of their time indoors. The modelling conducted in this research aims to provide a framework for epidemiological studies by the use of publically available data from fixed outdoor monitoring stations to predict indoor air quality more accurately. Predictions are made using two modelling techniques, the Personal-exposure Activity Location Model (PALM), to predict outdoor air quality at a particular building, and Artificial Neural Networks, to model the indoor/outdoor relationship of the building. This joint approach has been used to predict indoor air concentrations for three inner city commercial buildings in Dublin, where parallel indoor and outdoor diurnal monitoring had been carried out on site. This modelling methodology has been shown to provide reasonable predictions of average NO2 indoor air quality compared to the monitored data, but did not perform well in the prediction of indoor PM2.5 concentrations. Hence, this approach could be used to determine NO2 exposures more rigorously of those who work and/or live in the city centre, which can then be linked to potential health impacts. PMID:26633448

  5. Indoor weather related to the energy consumption of air conditioned classroom: Monitoring system for energy efficient building plan

    NASA Astrophysics Data System (ADS)

    Rattanongphisat, W.; Suwannakom, A.; Harfield, A.

    2016-08-01

    The current research aims to investigate the relation of indoor weather to energy consumption of air conditioned classroom by design and construct the indoor weather and energy monitoring systems. In this research, a combined temperature and humidity sensor in conjunction with a microcontroller was constructed for the indoor weather monitoring system. The wire sensor network for the temperature-humidity sensor nodes is the Controller Area Network (CAN). Another part is using a nonintrusive method where a wireless current transformer sending the signal to the data collection box then transmitted by the radio frequency to the computer where the Ethernet application software was installed for the energy monitoring system. The results show that the setting air temperature, outdoor ambient temperature and operating time impact to the energy consumption of the air conditioned classroom.

  6. [European community guidelines and standards in indoor air quality: what proposals for Italy].

    PubMed

    Settimo, Gaetano; D'Alessandro, Daniela

    2014-01-01

    Indoor air quality is an issue on which to focus because of the increasing number of exposed population and in view of the strong public feeling on this issue. This paper reports the rules of EU and several European countries about indoor air quality, focusing on the initiatives performed in Italy to respond to WHO recommendations. Several EU countries have introduced in their legislation rules relating to indoor air quality. At the moment, in Italy, a reference rule has not been issued. For this reason, up to date main informations concerning some guidelines or reference values in indoor air, to be used for a first comparison, are those obtained by the scientific literature, or by the guidelines issued by other European countries or, for analogy, by other standard values such as limit or reference values regarding outdoor air. Even the EU, while reaffirming the priority of energy efficiency measures, recommends healthier indoor environments and the development of a specific European strategy on the issue of indoor air quality. The National Study Group on indoor pollution of the Italian National Health Institute (ISS), is working for the development of shared technical and scientific documents, in order to provide greater uniformity of actions at national level, waiting for a legal framework for indoor air quality, in the light of the indication already produced by the WHO.

  7. Respiratory Health and Indoor Air Pollution at High Elevation

    PubMed Central

    Rosati, Jacky Ann; Yoneda, Ken Y.; Yasmeen, Shagufta; Wood, Steve; Eldridge, Marlowe W.

    2009-01-01

    In this research, the authors sought to provide experimental data on indoor air quality, and the resulting respiratory impact, for a high-elevation (4550 m), rural community in Ladakh, India. This community is of interest because the primarily nomadic residents burn biomass inside the home for heating and cooking. The concentrations of particulate matter (PM), endotoxin, and carbon monoxide were determined for 6 homes. Lung function data and induced sputum samples were collected for 9 female test-home subjects. In addition, lung function data were collected for 84 additional Ladakhi highlanders at this location. Sputum from 3 visiting scientists (sojourners) was collected and analyzed as well. The average PM concentration ranged from 2 mg/m3 to 7 mg/m3, with 85% of the sampled PM sized as respirable. The average endotoxin concentration ranged from 2.4 ng/m3 to 19 ng/m3, and average carbon monoxide levels ranged from 50 ppm to 120 ppm. Lung function values for the highlander population and the test-home subjects were equal to or greater than predicted, despite the highlanders’ significant exposure to indoor pollutants. An induced sputum analysis revealed a significantly greater total inflammatory cell count (M ± SD, 105 cell/mg) in the Ladakhi natives than in the sojourners (107.5 ± 75.2 vs 7.1 ± 8.1, p .01). Although the high levels of indoor pollutants did not correlate with significant decrements in lung function, the induced sputum analysis revealed marked airway inflammation dominated by macrophages and neutrophils. It appears that augmented lung mechanics of this high-altitude population are adaptive to reduce the work of breathing; thus, decrements in lung function go undetected because the true predicted values are greater than expected. PMID:16983862

  8. Plant leaves as indoor air passive samplers for volatile organic compounds (VOCs).

    PubMed

    Wetzel, Todd A; Doucette, William J

    2015-03-01

    Volatile organic compounds (VOCs) enter indoor environments through internal and external sources. Indoor air concentrations of VOCs vary greatly but are generally higher than outdoors. Plants have been promoted as indoor air purifiers for decades, but reports of their effectiveness differ. However, while air-purifying applications may be questionable, the waxy cuticle coating on leaves may provide a simple, cost-effective approach to sampling indoor air for VOCs. To investigate the potential use of plants as indoor air VOC samplers, a static headspace approach was used to examine the relationship between leaf and air concentrations, leaf lipid contents and octanol-air partition coefficients (Koa) for six VOCs and four plant species. The relationship between leaf and air concentrations was further examined in an actual residence after the introduction of several chlorinated VOC emission sources. Leaf-air concentration factors (LACFs), calculated from linear regressions of the laboratory headspace data, were found to increase as the solvent extractable leaf lipid content and Koa value of the VOC increased. In the studies conducted in the residence, leaf concentrations paralleled the changing air concentrations, indicating a relatively rapid air to leaf VOC exchange. Overall, the data from the laboratory and residential studies illustrate the potential for plant leaves to be used as cost effective, real-time indoor air VOC samplers.

  9. Indoor and outdoor air pollution in the Himalayas

    SciTech Connect

    Davidson, C.I.; Lin, S.F.; Osborn, J.F.; Pandey, M.R.; Rasmussen, R.A.; Khalil, M.A.K.

    1986-06-01

    Air pollutant concentrations have been measured in residences in the Himalayas of Nepal where biomass fuels are used for cooking and heating. Levels of total suspended particles are in the range 3-42 mg/m/sup 3/, with respirable suspended particles in the range 1-14 mg/m/sup 3/ in the houses sampled. Limited data for gaseous species show appreciable levels of carbon monoxide, carbon dioxide, methane, and several non-methane hydrocarbons. A questionnaire concerning energy use administered in each household suggests that high per capita use of biomass fuels is responsible for excessive pollutant concentrations. Application of a one-compartment mass balance model to these houses shows only rough agreement between calculated and measured values, due to uncertainties in model input parameters as well as difficulties in estimating average pollutant concentrations throughout each house. High outdoor concentrations of potassium and methyl chloride, previously shown to be tracers of biomass combustion, indicate that the indoor biomass combustion also degrades the outdoor environment. Values of crustal enrichment factors for trace elements in the air and snow of the region suggest that the polluted air is generally confined to the populated villages, with more pristine air at higher elevations. 58 references, 1 figure, 5 tables.

  10. Indoor air quality in green vs conventional multifamily low-income housing.

    PubMed

    Colton, Meryl D; MacNaughton, Piers; Vallarino, Jose; Kane, John; Bennett-Fripp, Mae; Spengler, John D; Adamkiewicz, Gary

    2014-07-15

    Indoor air quality is an important predictor of health, especially in low-income populations. It is unclear how recent trends in "green" building affect the indoor exposure profile. In two successive years, we conducted environmental sampling, home inspections, and health questionnaires with families in green and conventional (control) apartments in two public housing developments. A subset of participants was followed as they moved from conventional to green or conventional to conventional housing. We measured particulate matter less than 2.5 μm aerodynamic diameter (PM2.5), formaldehyde, nitrogen dioxide (NO2), nicotine, carbon dioxide (CO2), and air exchange rate (AER) over a seven-day sampling period coincident with survey administration. In multivariate models, we observed 57%, 65%, and 93% lower concentrations of PM2.5, NO2, and nicotine (respectively) in green vs control homes (p=0.032, p<0.001, p=0.003, respectively), as well as fewer reports of mold, pests, inadequate ventilation, and stuffiness. Differences in formaldehyde and CO2 were not statistically significant. AER was marginally lower in green buildings (p=0.109). Participants in green homes experienced 47% fewer sick building syndrome symptoms (p<0.010). We observed significant decreases in multiple indoor exposures and improved health outcomes among participants who moved into green housing, suggesting multilevel housing interventions have the potential to improve long-term resident health.

  11. A 14-year longitudinal study of the impact of clean indoor air legislation on state smoking prevalence, USA, 1997-2010.

    PubMed

    Becker, Craig M; Lee, Joseph G L; Hudson, Suzanne; Hoover, Jeanne; Civils, Donald

    2017-02-08

    While clean indoor air legislation at the state level is an evidence-based recommendation, only limited evidence exists regarding the impact of clean indoor air policies on state smoking prevalence. Using state smoking prevalence data from 1997 to 2010, a repeated measures observational analysis assessed the association between clean indoor air policies (i.e., workplace, restaurant, and bar) and state smoking prevalence while controlling for state cigarette taxes and year. The impacts from the number of previous years with any clean indoor air policy, the number of policies in effect during the current year, and the number of policies in effect the previous year were analyzed. Findings indicate a smoking prevalence predicted decrease of 0.13 percentage points (p=0.03) for each additional year one or more clean indoor air policies were in effect, a predicted decrease of 0.12 percentage points (p=0.09) for each policy in effect in the current year, and a predicted decrease of 0.22 percentage points (p=0.01) for each policy in effect in the previous year on the subsequent year. Clean indoor air policies show measurable associations with reductions in smoking prevalence within a year of implementation above and beyond taxes and time trends. Further efforts are needed to diffuse clean indoor air policies across states and provinces that have not yet adopted such policies.

  12. Guidelines on Thermal Comfort of Air Conditioned Indoor Environment

    NASA Astrophysics Data System (ADS)

    Miura, Toyohiko

    The thermal comfort of air conditioned indoor environment for workers depended, of course, on metabolic rate of work, race, sex, age, clothing, climate of the district and state of acclimatization. The attention of the author was directed to the seasonal variation and the sexual difference of comfortable temperature and a survey through a year was conducted on the thermal comfort, and health conditions of workers engaged in light work in a precision machine factory, in some office workers. Besides, a series of experiments were conducted for purpose of determinning the optimum temperature of cooling in summer time in relation to the outdoor temperature. It seemed that many of workers at present would prefer somewhat higher temperature than those before the World War II. Forty years ago the average homes and offices were not so well heated as today, and clothing worn on the average was considerably heavier.

  13. Energy Code Enforcement Training Manual : Covering the Washington State Energy Code and the Ventilation and Indoor Air Quality Code.

    SciTech Connect

    Washington State Energy Code Program

    1992-05-01

    This manual is designed to provide building department personnel with specific inspection and plan review skills and information on provisions of the 1991 edition of the Washington State Energy Code (WSEC). It also provides information on provisions of the new stand-alone Ventilation and Indoor Air Quality (VIAQ) Code.The intent of the WSEC is to reduce the amount of energy used by requiring energy-efficient construction. Such conservation reduces energy requirements, and, as a result, reduces the use of finite resources, such as gas or oil. Lowering energy demand helps everyone by keeping electricity costs down. (It is less expensive to use existing electrical capacity efficiently than it is to develop new and additional capacity needed to heat or cool inefficient buildings.) The new VIAQ Code (effective July, 1991) is a natural companion to the energy code. Whether energy-efficient or not, an homes have potential indoor air quality problems. Studies have shown that indoor air is often more polluted than outdoor air. The VIAQ Code provides a means of exchanging stale air for fresh, without compromising energy savings, by setting standards for a controlled ventilation system. It also offers requirements meant to prevent indoor air pollution from building products or radon.

  14. Microbial air contamination in indoor environment of a university library.

    PubMed

    Kalwasińska, Agnieszka; Burkowska, Aleksandra; Wilk, Iwona

    2012-01-01

    The present study was aimed at evaluating the number of bacteria and mould fungi in the indoor and outdoor environment of Toruń University Library. The sampling sites were located in the rooms serving the functions typical of libraries (i.e. in the Main Reading Room, Current Periodicals Reading Room, Collections Conservation Laboratory, Old Prints Storeroom, in rooms serving other (non-library) functions (i.e. main hall, cafeteria, and toilet) as well as outside the library building. The analyses reveal that the concentrations of bacterial as well as fungal aerosols estimated with the use of the impaction method ranged between 10(1)-10(3) CFU·m(-3), which corresponds to the concentrations normally observed in areas of this kind. Evaluation of the hygienic condition of the studied areas was based on the criteria for microbiological cleanliness in interiors submitted by the European Commission in 1993. According to this classification, the air was considered to be heavily or moderately contaminated with bacteria, while the air contamination with mould fungi was described as low or moderate. The air in the Old Prints Storeroom was considered the least contaminated with microbial aerosol.

  15. Association of Sick Building Syndrome with Indoor Air Parameters

    PubMed Central

    Jafari, Mohammad Javad; Khajevandi, Ali Asghar; Mousavi Najarkola, Seyed Ali; Yekaninejad, Mir Saeed; Pourhoseingholi, Mohammad Amin; Kalantary, Saba

    2015-01-01

    Background: Energy crisis in 1973 led to smaller residential and office buildings with lower air changes. This resulted in development of Sick Building Syndrome (SBS). The objective of this study was to assess the association of SBS with individual factors and indoor air pollutants among employees in two office buildings of Petroleum Industry Health Organization in Tehran city. Materials and Methods: The association between personal and environmental factors and SBS symptoms was examined by a reliable and valid combined questionnaire. Environmental parameters were measured using calibrated instruments. Results: The results suggested that SBS symptoms were more common in women than men. Malaise and headache were the most common symptoms in women and men. Throat dryness, cough, sputum, and wheezing were less prevalent among employees in both offices. Light-intensity was significantly associated with some symptoms such as skin dryness (P = 0.049), eye pain (P = 0.026), and malaise (P = 0.043). There were no significant differences in prevalence of SBS symptoms between female workers of the two offices (P>0.05) Conclusion: The main causes of SBS among the employees were recycling of air in rooms using fan coils, traffic noise, poor lighting, and buildings located in a polluted metropolitan area. PMID:26221153

  16. Indoor air pollution and asthma in hospitalized children in a tropical environment.

    PubMed

    Azizi, B H; Zulkifli, H I; Kasim, S

    1995-01-01

    We performed a hospital-based study to examine a hypothesis that indoor air pollution was associated with acute asthma in young children living in Kuala Lumpur City. A total of 158 children aged 1 month to 5 years hospitalized for the first time for asthma were recruited as cases. Controls were 201 children of the same age group who were hospitalized for causes other than a respiratory illness. Information was obtained from mothers using a standardized questionnaire. Univariate analysis identified two indoor pollution variables as significant factors. Sharing a bedroom with an adult smoker and exposure to mosquito coil smoke at least three nights in a week were both associated with increased risk for asthma. Logistic regression analysis confirmed that sharing a bedroom with an adult smoker (OR = 1.91, 95% CI 1.13, 3.21) and exposure to mosquito coil smoke (OR = 1.73, 95% CI 1.02, 2.93) were independent risk factors. Other factors independently associated with acute asthma were previous history of allergy, history of asthma in first-degree relatives, low birth weight, and the presence of a coughing sibling. There was no association between asthma and exposure to kerosene stove, wood stove, aerosol mosquito repellent, type of housing, or crowding. We conclude that indoor air pollution is an avoidable factor in the increasing morbidity due to asthma in children in a tropical environment.

  17. Qualitative detection of Volatile Organic Compounds in outdoor and indoor air.

    PubMed

    Srivastava, Anjali; Joseph, A E; Wachasunder, S D

    2004-01-01

    The present work attempts to identify VOC's in outdoor and indoor air in Mumbai City India. Ambient air was adsorbed on especially fabricated stainless steel cartridge packed with activated coconut charcoal at uniform flow rate. Qualitative identification of VOC's was done by thermally desorbing air from the cartridges and subsequent analysis on Varian GC-MS using NIST Library. The outdoor monitoring locations include residential area, commercial area, industrial, airport, petrol pumps, traffic junctions, arterial roads, highways, slums, parking area, service garages and municipal dump sites. The indoor locations comprised of air-conditioned and non air-conditioned offices, bedrooms, shops and instrumentation laboratory. The identified VOC's include aldehydes, ketones, polynuclear aromatic hydrocarbons, aromatic acids, oxygenated hydrocarbons, amines, esters and halogenated compounds. Thirteen VOCs in outdoor air and seven in indoor air amongst those identified, figure in the list of Hazardous Air Pollutants listed in Title III of the U.S. EPA Clean Air Act Amendments of 1990.

  18. Behavioural change, indoor air pollution and child respiratory health in developing countries: a review.

    PubMed

    Barnes, Brendon R

    2014-04-25

    Indoor air pollution caused by the indoor burning of solid biomass fuels has been associated with Acute Respiratory Infections such as pneumonia amongst children of less than five years of age. Behavioural change interventions have been identified as a potential strategy to reduce child indoor air pollution exposure, yet very little is known about the impact of behavioural change interventions to reduce indoor air pollution. Even less is known about how behaviour change theory has been incorporated into indoor air pollution behaviour change interventions. A review of published studies spanning 1983-2013 suggests that behavioural change strategies have the potential to reduce indoor air pollution exposure by 20%-98% in laboratory settings and 31%-94% in field settings. However, the evidence is: (1) based on studies that are methodologically weak; and (2) have little or no underlying theory. The paper concludes with a call for more rigorous studies to evaluate the role of behavioural change strategies (with or without improved technologies) to reduce indoor air pollution exposure in developing countries as well as interventions that draw more strongly on existing behavioural change theory and practice.

  19. Acetaldehyde removal from indoor air through chemical absorption using L-cysteine.

    PubMed

    Yamashita, Kyoko; Noguchi, Miyuki; Mizukoshi, Atsushi; Yanagisawa, Yukio

    2010-09-01

    The irreversible removal of acetaldehyde from indoor air via a chemical reaction with amino acids was investigated. To compare effectiveness, five types of amino acid (glycine, l-lysine, l-methionine, l-cysteine, and l-cystine) were used as the reactants. First, acetaldehyde-laden air was introduced into aqueous solutions of each amino acid and the removal abilities were compared. Among the five amino acids, l-cysteine solution showed much higher removal efficiency, while the other amino acids solutions didn't show any significant differences from the removal efficiency of water used as a control. Next, as a test of the removal abilities of acetaldehyde by semi-solid l-cysteine, a gel containing l-cysteine solution was put in a fluororesin bag filled with acetaldehyde gas, and the change of acetaldehyde concentration was measured. The l-cysteine-containing gel removed 80% of the acetaldehyde in the air within 24 hours. The removal ability likely depended on the unique reaction whereby acetaldehyde and l-cysteine rapidly produce 2-methylthiazolidine-4-carboxylic acid. These results suggested that the reaction between acetaldehyde and l-cysteine has possibilities for irreversibly removing toxic acetaldehyde from indoor air.

  20. Measure Guideline: Combustion Safety for Natural Draft Appliances Using Indoor Air

    SciTech Connect

    Brand, L.

    2014-04-01

    This measure guideline covers how to assess and carry out the combustion safety procedures for appliances and heating equipment that uses indoor air for combustion in low-rise residential buildings. Only appliances installed in the living space, or in an area freely communicating with the living space, vented alone or in tandem with another appliance are considered here. A separate measure guideline addresses combustion appliances located either within the living space in enclosed closets or side rooms or outside the living space in an adjacent area like an attic or garage that use outdoor air for combustion. This document is for inspectors, auditors, and technicians working in homes where energy upgrades are being conducted whether or not air infiltration control is included in the package of measures being applied. In the indoor combustion air case, guidelines summarized here are based on language provided in several of the codes to establish minimum requirements for the space using simplified prescriptive measures. In addition, building performance testing procedures are provided by testing agencies. The codes in combination with the test procedures offer comprehensive combustion safety coverage to address safety concerns, allowing inexperienced residential energy retrofit inspectors to effectively address combustion safety issues and allow energy retrofits to proceed.

  1. Seasonality and indoor/outdoor relationships of flame retardants and PCBs in residential air.

    PubMed

    Melymuk, Lisa; Bohlin-Nizzetto, Pernilla; Kukučka, Petr; Vojta, Šimon; Kalina, Jiří; Čupr, Pavel; Klánová, Jana

    2016-11-01

    This study is a systematic assessment of different houses and apartments, their ages and renovation status, indoors and outdoors, and in summer vs. winter, with a goal of bringing some insight into the major sources of semivolatile organic compounds (SVOCs) and their variability. Indoor and outdoor air concentrations of polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and novel flame retardants (NFRs) were determined at 17-20 homes in Czech Republic in winter and summer. Indoor concentrations were consistently higher than outdoor concentrations for all compounds; indoor/outdoor ratios ranged from 2-20, with larger differences for the current use NFRs than for legacy PCBs. Seasonal trends differed according to the use status of the compounds: the PCBs had higher summer concentrations both indoors and outdoors, suggesting volatilization as a source of PCBs to air. PBDEs had no seasonal trends indoors, but higher summer concentrations outdoors. Several NFRs (TBX, PBT, PBEB) had higher indoor concentrations in winter relative to summer. The seasonal trends in the flame retardants suggest differences in air exchange rates due to lower building ventilation in winter could be driving the concentration differences. Weak relationships were found with building age for PCBs, with higher concentrations indoors in buildings built before 1984, and with the number of electronics for PBDEs, with higher concentrations in rooms with three or more electronic items. Indoor environments are the primary contributor to human inhalation exposure to these SVOCs, due to the high percentage of time spent indoors (>90%) combined with the higher indoors levels for all the studied compounds. Exposure via the indoor environment contributed ∼96% of the total chronic daily intake via inhalation in summer and ∼98% in winter.

  2. Indoor-Outdoor Air Leakage of Apartments and Commercial Buildings

    SciTech Connect

    Price, P.N.; Shehabi, A.; Chan, R.W.; Gadgil, A.J.

    2006-06-01

    We compiled and analyzed available data concerning indoor-outdoor air leakage rates and building leakiness parameters for commercial buildings and apartments. We analyzed the data, and reviewed the related literature, to determine the current state of knowledge of the statistical distribution of air exchange rates and related parameters for California buildings, and to identify significant gaps in the current knowledge and data. Very few data were found from California buildings, so we compiled data from other states and some other countries. Even when data from other developed countries were included, data were sparse and few conclusive statements were possible. Little systematic variation in building leakage with construction type, building activity type, height, size, or location within the u.s. was observed. Commercial buildings and apartments seem to be about twice as leaky as single-family houses, per unit of building envelope area. Although further work collecting and analyzing leakage data might be useful, we suggest that a more important issue may be the transport of pollutants between units in apartments and mixed-use buildings, an under-studied phenomenon that may expose occupants to high levels of pollutants such as tobacco smoke or dry cleaning fumes.

  3. Indoor radon and decay products: Concentrations, causes, and control strategies

    SciTech Connect

    Nero, A.V.; Gadgil, A.J.; Nazaroff, W.W.; Revzan, K.L.

    1990-11-01

    This report is another in the on going technical report series that addresses various aspects of the DOE Radon Research Program. It provides an overview of what is known about the behavior of radon and its decay products in the indoor environment and examines the manner in which several important classes of factors -- structural, geological, and meteorological -- affect indoor radon concentrations. Information on US indoor radon concentrations, currently available monitoring methods and novel radon control strategies are also explored. 238 refs., 22 figs., 9 tabs.

  4. Indoor air quality issues related to the acquisition of conservation in commercial buildings

    SciTech Connect

    Baechler, M.C.; Hadley, D.L.; Marseille, T.J.

    1990-09-01

    The quality of indoor air in commercial buildings is dependent on the complex interaction between sources of indoor pollutants, environmental factors within buildings such as temperature and humidity, the removal of air pollutants by air-cleaning devices, and the removal and dilution of pollutants from outside air. To the extent that energy conservation measures (ECMs) may affect a number of these factors, the relationship between ECMs and indoor air quality is difficult to predict. Energy conservation measures may affect pollutant levels in other ways. Conservation measures, such as caulking and insulation, may introduce sources of indoor pollutants. Measures that reduce mechanical ventilation may allow pollutants to build up inside structures. Finally, heating, ventilation, and air-conditioning (HVAC) systems may provide surface areas for the growth of biogenic agents, or may encourage the dissemination of pollutants throughout a building. Information about indoor air quality and ventilation in both new and existing commercial buildings is summarized in this report. Sick building syndrome and specific pollutants are discussed, as are broader issues such as ventilation, general mitigation techniques, and the interaction between energy conservation activities and indoor air quality. Pacific Northwest Laboratory (PNL) prepared this review to aid the Bonneville Power Administration (Bonneville) in its assessment of potential environmental effects resulting from conservation activities in commercial buildings. 76 refs., 2 figs., 19 tabs.

  5. Fungal microcolonies on indoor surfaces — an explanation for the base-level fungal spore counts in indoor air

    NASA Astrophysics Data System (ADS)

    Pasanen, A.-L.; Heinonen-Tanski, H.; Kalliokoski, P.; Jantunen, M. J.

    In the subarctic winter, fungal spores are found in indoor air even when outdoor spore levels are very low. The results of this study support an explanation that some indoor airborne fungal spores are derived from unnoticeable fungal microcolonies, which may develop on temporarily wet surfaces. Laboratory experiments on Penicillium verrucosum indicated that the fungus germinated on new wallpaper very quickly (about half an hour) under moist conditions. Hyphal growth and sporulation of the fungus on moist wallpaper occured within one day of incubation. In gravity-settling tape samples from occasionally wet surfaces in a suburban home, large spore aggregates, hyphal fragments with some spores and spores in the germination stage were found, indicating fungal growth. These experiments showed that fungal microcolonies can develop within a week on occasionally wet indoor surfaces.

  6. Indoor air quality in urban nurseries at Porto city: Particulate matter assessment

    NASA Astrophysics Data System (ADS)

    Branco, P. T. B. S.; Alvim-Ferraz, M. C. M.; Martins, F. G.; Sousa, S. I. V.

    2014-02-01

    Indoor air quality in nurseries is an interesting case of study mainly due to children's high vulnerability to exposure to air pollution (with special attention to younger ones), and because nursery is the public environment where young children spend most of their time. Particulate matter (PM) constitutes one of the air pollutants with greater interest. In fact, it can cause acute effects on children's health, as well as may contribute to the prevalence of chronic respiratory diseases like asthma. Thus, the main objectives of this study were: i) to evaluate indoor concentrations of particulate matter (PM1, PM2.5, PM10 and PMTotal) on different indoor microenvironments in urban nurseries of Porto city; and ii) to analyse those concentrations according to guidelines and references for indoor air quality and children's health. Indoor PM measurements were performed in several class and lunch rooms in three nurseries on weekdays and weekends. Outdoor PM10 concentrations were also obtained to determine I/O ratios. PM concentrations were often found high in the studied classrooms, especially for the finer fractions, reaching maxima hourly mean concentrations of 145 μg m-3 for PM1 and 158 μg m-3 PM2.5, being often above the limits recommended by WHO, reaching 80% of exceedances for PM2.5, which is concerning in terms of exposure effects on children's health. Mean I/O ratios were always above 1 and most times above 2 showing that indoor sources (re-suspension phenomena due to children's activities, cleaning and cooking) were clearly the main contributors to indoor PM concentrations when compared with the outdoor influence. Though, poor ventilation to outdoors in classrooms affected indoor air quality by increasing the PM accumulation. So, enhancing air renovation rate and performing cleaning activities after the occupancy period could be good practices to reduce PM indoor air concentrations in nurseries and, consequently, to improve children's health and welfare.

  7. Impact of operating wood-burning fireplace ovens on indoor air quality.

    PubMed

    Salthammer, Tunga; Schripp, Tobias; Wientzek, Sebastian; Wensing, Michael

    2014-05-01

    The use of combustion heat sources like wood-burning fireplaces has regained popularity in the past years due to increasing energy costs. While the outdoor emissions from wood ovens are strictly regulated in Germany, the indoor release of combustion products is rarely considered. Seven wood burning fireplaces were tested in private homes between November 2012 and March 2013. The indoor air quality was monitored before, during and after operation. The following parameters were measured: ultra-fine particles (5.6-560 nm), fine particles (0.3-20 μm), PM2.5, NOx, CO, CO2, formaldehyde, acetaldehyde, volatile organic compounds (VOCs) and benzo[a]pyrene (BaP). Most ovens were significant sources of particulate matter. In some cases, an increase of benzene and BaP concentrations was observed in the indoor air. The results illustrate that wood-burning fireplaces are potential sources of indoor air contaminants, especially ultra-fine particles. Under the aspect of lowering indoor air exchange rates and increasing the use of fuels with a net zero-carbon footprint, indoor combustion sources are an important topic for the future. With regards to consumer safety, product development and inspection should consider indoor air quality in addition to the present fire protection requirements.

  8. Building America Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts, Tyler, Texas

    SciTech Connect

    2015-08-01

    ?Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy.

  9. Microbial contamination of indoor air due to leakages from crawl space: a field study.

    PubMed

    Airaksinen, M; Pasanen, P; Kurnitski, J; Seppänen, O

    2004-02-01

    Mechanical exhaust ventilation system is typical in apartment buildings in Finland. In most buildings the base floor between the first floor apartments and crawl space is not air tight. As the apartments have lower pressure than the crawl space due to ventilation, contaminated air may flow from the crawl space to the apartments. The object of this study was to find out whether a potential air flow from crawl space has an influence on the indoor air quality. The results show that in most cases the concentration of fungal spores was clearly higher in the crawl space than inside the building. The size distribution of fungal spores depended on the fungal species. Correlation between the fungal spores in the crawl space and indoors varied with microbial species. Some species have sources inside the building, which confounds the possible relation between crawl pace and indoor concentrations. Some species, such as Acremonium, do not normally have a source indoors, but its concentration in the crawl space was elevated; our measurements showed also elevated concentrations of Acremonium in the air of the apartments. This consistent finding shows a clear linkage between fungal spores in the indoor air and crawl space. We conclude that a building with a crawl space and pressure difference over the base floor could be a potential risk for indoor air quality in the first floor apartments.

  10. Estimation of optimum requirements for indoor air quality and energy consumption in some residences in Kuwait.

    PubMed

    Elkilani, A; Bouhamra, W

    2001-12-01

    Contrasting effects of the dilution of indoor generated pollutants and the energy efficiency of heating and ventilating air conditioning systems (HVAC) for indoor air quality (IAQ) and thermal comfort were studied for 10 Kuwaiti residences. The levels of volatile organic compounds (VOCs) and the calculated cooling load of the HVAC systems were used as indicators for the IAQ and for the energy consumption, respectively. Air exchange rates and VOCs levels (both indoor and outdoor) were measured. It was found that the outdoor VOC concentrations were always less than the indoor values. Therefore reduction of indoor VOC levels can be accomplished either by increasing the ratio of the makeup air to the recirculation air of the HVAC system or by increasing the infiltration airflow rate through openings. A single compartment IAQ model, modified by the authors, was used to test for the variation in the above two dilution modes and to test the performance sensitivity. Hence, the optimum parameters in terms of IAQ and energy consumption were determined. The results indicated that it was necessary to increase the ratio of the makeup air to the recirculation air from its typical design value of 0.5 to a range of 0.7-1.3 in order to reduce indoor VOC to acceptable levels.

  11. Adapting Buildings for Indoor Air Quality in a Changing Climate

    EPA Pesticide Factsheets

    Climate change presents many challenges, including the production of severe weather events. These events and efforts to minimize their effects through weatherization can adversely affect indoor environments.

  12. EPA Research Funding Aims to Improve Understanding of Climate Change Impacts on Indoor Air Quality

    EPA Pesticide Factsheets

    Harvard College is one of only nine institutions that will share nearly $8 million from the US Environmental Protection Agency to study how climate change affects indoor air quality and the resulting health effects.

  13. FIAM-pwp-Formaldehyde Indoor Air Model – Pressed Wood Products

    EPA Pesticide Factsheets

    The Formaldehyde Indoor Air Model-pressed wood products (FIAM-pwp) user guide contains information on the equations and defaults used to estimate exposure from formaldehye emitted from pressed wood products.

  14. School Indoor Air Quality Assessments Go Mobile / EPA Launches School IAQ Assessment Mobile App

    EPA Pesticide Factsheets

    WASHINGTON -- The U.S. Environmental Protection Agency (EPA) today launched a new mobile app to assist schools and school districts with performing comprehensive indoor air quality (IAQ) facility assessments to protect the health of children and sch

  15. Field evaluation of sampling and analysis for organic pollutants in indoor air

    SciTech Connect

    Chuang, J.C.; Mack, G.A.; Stockrahm, J.W.; Hannan, S.W.; Bridges, C.

    1988-08-01

    The objectives of the study were to determine the feasibility of the use of newly developed indoor air samplers in residential indoor air sampling and to evaluate methodology for characterization of the concentrations of polynuclear aromatic hydrocarbons (PAH), PAH derivatives, and nicotine in residential air. Residential air sampling was conducted in Columbus, Ohio during the winter of 1986/87. The PAH derivatives were found at much lower levels than their parent PAH. Higher average indoor levels of all but three target compounds were found compared to outdoor levels. The higher outdoor levels of these three compounds (naphthalene dicarboxylic acid anhydride, pyrene dicarboxylic acid anhydride, and 2-nitrofluoranthene) are probably due to atmospheric transformation. Cigarette smoking was identified as the most-significant contributor to indoor levels of PAH and PAH derivatives. Homes with gas-heating systems appeared to have higher pollutant levels compared to homes with electric-heating systems.

  16. MICROBIOLOGICAL SCREENING OF THE INDOOR AIR QUALITY IN THE POLK COUNTY ADMINISTRATION BUILDING

    EPA Science Inventory

    The report gives results of a microbiological screening of the indoor air quality in the Polk County (Bartow, FL) Administration Building (PCAB), a large, negatively pressured building not known to be biocontaminated. The microbiological screening included bioaerosol, bulk materi...

  17. The Use of Sensory Analysis Techniques to Assess the Quality of Indoor Air.

    PubMed

    Lewkowska, Paulina; Dymerski, Tomasz; Gębicki, Jacek; Namieśnik, Jacek

    2017-01-02

    The quality of indoor air is one of the significant elements that influences people's well-being and health inside buildings. Emissions of pollutants, which may cause odor nuisance, are the main reason for people's complaints regarding the quality of indoor air. As a result, it is necessary to perform tests aimed at identifying the sources of odors inside buildings. The article contains basic information on the characteristics of the sources of indoor air pollution and the influence of the odor detection threshold on people's health and comfort. An attempt was also made to classify and use sensory analysis techniques to perform tests of the quality of indoor air, which would enable identification of sensory experience and would allow for indication of the degree of their intensity.

  18. How to Use the Indoor Air Quality Guidelines for Multifamily Building Upgrades

    EPA Pesticide Factsheets

    Remodeling or renovating an existing multifamily building not only has the potential to release pollutants into the home; it is also an opportunity to make changes that will improve the indoor air quality in your home.

  19. Energy Savings Plus Health Indoor Air Quality Guidelines for Multifamily Building Upgrades

    EPA Pesticide Factsheets

    Remodeling or renovating an existing multifamily building not only has the potential to release pollutants into the home; it is also an opportunity to make changes that will improve the indoor air quality in your home.

  20. TESTING INDOOR AIR PRODUCTS: ONE APPROACH TO DEVELOPING WIDELY ACCEPTED PROTOCOLS

    EPA Science Inventory

    The paper describes an approach to developing widely acce ted products for testing indoor air products. [NOTE: Research Triangle Institute (RTI) is a partner in the U.S. Environmental Protection Agency's (EPA's) Environmental Technology Verification (ETV) Program with responsibil...

  1. Spotlight on the Tribal Indoor Air Quality Summit Workgroup in Midwest Region 5

    EPA Pesticide Factsheets

    The Tribal IAQ Summit Workgroup uses a collaborative approach to increase the impact of tribes’ efforts to manage indoor air quality and improve community health for tribes in Illinois, Indiana, Michigan, Minnesota, Ohio and Wisconsin.

  2. REVIEW OF CONCENTRATION STANDARDS AND GUIDELINES FOR FUNGI IN INDOOR AIR

    EPA Science Inventory

    The paper reviews and compares existing guidelines for indoor airborne fungi, discusses limitations of existing guidelines, and identifies research needs that should contribute to the development of realistic and useful guidelines for these important air pollutants. (NOTE: Exposu...

  3. Indoor air quality and its determinants in tropical child care centers

    NASA Astrophysics Data System (ADS)

    Zuraimi, M. S.; Tham, K. W.

    This cross-sectional study aims to investigate indoor pollutants concentrations in child care centers (CCCs) and evaluate their determinants involving representative samples in Singapore. Measurements were performed for air temperature, relative humidity, air velocity, ventilation rates, carbon dioxide, carbon monoxide, ozone, fine particle mass, bacteria and fungi while information on CCC characteristics and maintenance activities were collected via a combination of inspection and interviews. It was found that due to higher ventilation rates, indoor CO 2 concentration levels were lower in Singapore CCCs compared to those in the cold climates. Determinants of indoor pollutant levels from outdoor and indoor sources and maintenance activities were evaluated with regression analyses based on mass balance principles. Indoor carbon dioxide was positively associated with outdoor concentrations and occupant density while only outdoor levels significantly determined indoor carbon monoxide concentrations. For PM 2.5, outdoor concentration, carpeted floor, presence of curtains and soft toys, recent renovation, shelf area and fan cleaning frequencies were positively associated with indoor levels while determinants of indoor ozone include outdoor concentration, shelf area and table cleaning. Increased human related bacteria levels were associated with high occupant densities and irregular floor but regular table cleaning frequencies. Outdoor concentration, curtain types and floor cleaning were significant determinants for environmental bacteria. Outdoor concentrations, presence of dampness, irregular floor and fan cleaning were associated with increased indoor mesophilic fungi levels. For indoor xerophilic fungi, levels were associated with outdoor concentrations, curtain types, dampness, occupant density and floor cleaning. We conclude that our findings confirm the important influence of indoor sources and maintenance activities on indoor concentrations of pollutants in

  4. Indoor Air Quality Investigations on Particulate Matter, Carbonyls, and Tobacco Specific Nitrosamines

    NASA Astrophysics Data System (ADS)

    Frey, Sarah E.

    Americans spend upwards of 90% of their time indoors, hence indoor air quality (IAQ) and the impact of IAQ on human health is a major public health concern. IAQ can be negatively impacted by outdoor pollution infiltrating indoors, the emission of indoor pollutants, indoor atmospheric chemistry and poor ventilation. Energy saving measures like retrofits to seal the building envelope to prevent the leakage of heated or cooled air will impact IAQ. However, existing studies have been inconclusive as to whether increased energy efficiency is leading to detrimental IAQ. In this work, field campaigns were conducted in apartment homes in Phoenix, Arizona to evaluate IAQ as it relates to particulate matter (PM), carbonyls, and tobacco specific nitrosamines (TSNA). To investigate the impacts of an energy efficiency retrofit on IAQ, indoor and outdoor air quality sampling was carried out at Sunnyslope Manor, a city-subsidized senior living apartment complex. Measured indoor formaldehyde levels before the building retrofit exceeded reference exposure limits, but in the long term follow-up sampling, indoor formaldehyde decreased for the entire study population by a statistically significant margin. Indoor PM levels were dominated by fine particles and showed a statistically significant decrease in the long term follow-up sampling within certain resident subpopulations (i.e. residents who reported smoking and residents who had lived longer at the apartment complex). Additionally, indoor glyoxal and methylglyoxal exceeded outdoor concentrations, with methylglyoxal being more prevalent pre-retrofit than glyoxal, suggesting different chemical pathways are involved. Indoor concentrations reported are larger than previous studies. TSNAs, specifically N'-nitrosonornicotine (NNN), 4-(methyl-nitrosamino)-4-(3-pyridyl)-butanal (NNA) and 4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanone (NNK) were evaluated post-retrofit at Sunnyslope Manor. Of the units tested, 86% of the smoking units and

  5. The effects of an energy efficiency retrofit on indoor air quality.

    PubMed

    Frey, S E; Destaillats, H; Cohn, S; Ahrentzen, S; Fraser, M P

    2015-04-01

    To investigate the impacts of an energy efficiency retrofit, indoor air quality and resident health were evaluated at a low-income senior housing apartment complex in Phoenix, Arizona, before and after a green energy building renovation. Indoor and outdoor air quality sampling was carried out simultaneously with a questionnaire to characterize personal habits and general health of residents. Measured indoor formaldehyde levels before the building retrofit routinely exceeded reference exposure limits, but in the long-term follow-up sampling, indoor formaldehyde decreased for the entire study population by a statistically significant margin. Indoor PM levels were dominated by fine particles and showed a statistically significant decrease in the long-term follow-up sampling within certain resident subpopulations (i.e. residents who report smoking and residents who had lived longer at the apartment complex).

  6. Causes of Indoor Air Quality Problems in Schools: Summary of Scientific Research

    SciTech Connect

    Bayer, C.W.

    2001-02-22

    In the modern urban setting, most individuals spend about 80% of their time indoors and are therefore exposed to the indoor environment to a much greater extent than to the outdoors (Lebowitz 1992). Concomitant with this increased habitation in urban buildings, there have been numerous reports of adverse health effects related to indoor air quality (IAQ) (sick buildings). Most of these buildings were built in the last two decades and were constructed to be energy-efficient. The quality of air in the indoor environment can be altered by a number of factors: release of volatile compounds from furnishings, floor and wall coverings, and other finishing materials or machinery; inadequate ventilation; poor temperature and humidity control; re-entrainment of outdoor volatile organic compounds (VOCs); and the contamination of the indoor environment by microbes (particularly fungi). Armstrong Laboratory (1992) found that the three most frequent causes of IAQ are (1) inadequate design and/or maintenance of the heating, ventilation, and air-conditioning (HVAC) system, (2) a shortage of fresh air, and (3) lack of humidity control. A similar study by the National Institute for Occupational Safety and Health (NIOSH 1989) recognized inadequate ventilation as the most frequent source of IAQ problems in the work environment (52% of the time). Poor IAQ due to microbial contamination can be the result of the complex interactions of physical, chemical, and biological factors. Harmful fungal populations, once established in the HVAC system or occupied space of a modern building, may episodically produce or intensify what is known as sick building syndrome (SBS) (Cummings and Withers 1998). Indeed, SBS caused by fungi may be more enduring and recalcitrant to treatment than SBS from multiple chemical exposures (Andrae 1988). An understanding of the microbial ecology of the indoor environment is crucial to ultimately resolving many IAQ problems. The incidence of SBS related to multiple

  7. Indoor air quality investigation according to age of the school buildings in Korea.

    PubMed

    Sohn, Jongryeul; Yang, Wonho; Kim, Jihwan; Son, Busoon; Park, Jinchul

    2009-01-01

    Since the majority of schools are housed in buildings dating from the 1960s and 1970s, a comprehensive construction and renovation program of school buildings has been carried out to improve the educational conditions in Korea. However, classrooms and computer rooms, with pressed wood desks, chairs and furnishings, as well as construction materials, might have negative effects on the indoor air quality. Furthermore, most schools have naturally ventilated classrooms. The purpose of this study was to characterize the concentrations of different indoor air pollutants within Korean schools and to compare their indoor levels within schools according to the age of school buildings. Indoor and outdoor air samples of carbon monoxide (CO), carbon dioxide (CO(2)), particulate matter (PM(10)), total microbial count (TBC), total volatile organic compounds (TVOCs) and formaldehyde (HCHO) were obtained during summer, autumn and winter from three sites; a classroom, a laboratory and a computer classroom at 55 different schools. The selection of the schools was based on the number of years since the schools had been constructed. The problems causing indoor air pollution at the schools were chemicals emitted by building materials or furnishings, and insufficient ventilation rates. The I/O ratio for HCHO was 6.32 during the autumn, and the indoor HCHO concentrations (mean = 0.16 ppm) in schools constructed within 1 year were significantly higher than the Korean Indoor Air Standard, indicating that schools have indoor sources of HCHO. Therefore, increasing the ventilation rate by means of a mechanical system and the use of low-emission furnishings can play key roles in improving the indoor air quality within schools.

  8. Epizootiological characteristics of viable bacteria and fungi in indoor air from porcine, chicken, or bovine husbandry confinement buildings

    PubMed Central

    Roque, Katharine; Lim, Gyeong-Dong; Jo, Ji-Hoon; Shin, Kyung-Min; Song, Eun-Seob; Gautam, Ravi; Kim, Chang-Yul; Lee, Kyungsuk; Shin, Seungwon; Yoo, Han-Sang; Heo, Yong

    2016-01-01

    Microorganisms found in bioaerosols from animal confinement buildings not only foster the risk of spreading diseases among livestock buildings, but also pose health hazards to farm workers and nearby residents. This study identified the various microorganisms present in the air of swine, chicken, and cattle farms with different kinds of ventilation conditions in Korea. Microbial air samples were collected onto Petri dishes with bacterial or fungal growth media using a cascade impactor. Endotoxin levels in total dust were determined by the limulus amebocyte lysate kinetic QCL method. Prevalent Gram-positive bacteria were Staphylococcus (S.) lentus, S. chromogenes, Bacillus (B.) cereus, B. licheniformis, and Enterococcus faecalis, while the dominant fungi and Gram-negative bacteria were Candida albicans and Sphingomonas paucimobilis, respectively. Considering no significant relationship between the indoor dust endotoxin levels and the isolation of Gram-negative bacteria from the indoor air, monitoring the indoor airborne endotoxin level was found to be also critical for risk assessment on health for animals or workers. The present study confirms the importance of microbiological monitoring and control on animal husbandry indoor air to ensure animal and worker welfare. PMID:27456779

  9. Epizootiological characteristics of viable bacteria and fungi in indoor air from porcine, chicken, or bovine husbandry confinement buildings.

    PubMed

    Roque, Katharine; Lim, Gyeong-Dong; Jo, Ji-Hoon; Shin, Kyung-Min; Song, Eun-Seob; Gautam, Ravi; Kim, Chang-Yul; Lee, Kyungsuk; Shin, Seungwon; Yoo, Han-Sang; Heo, Yong; Kim, Hyoung-Ah

    2016-12-30

    Microorganisms found in bioaerosols from animal confinement buildings not only foster the risk of spreading diseases among livestock buildings, but also pose health hazards to farm workers and nearby residents. This study identified the various microorganisms present in the air of swine, chicken, and cattle farms with different kinds of ventilation conditions in Korea. Microbial air samples were collected onto Petri dishes with bacterial or fungal growth media using a cascade impactor. Endotoxin levels in total dust were determined by the limulus amebocyte lysate kinetic QCL method. Prevalent Gram-positive bacteria were Staphylococcus (S.) lentus, S. chromogenes, Bacillus (B.) cereus, B. licheniformis, and Enterococcus faecalis, while the dominant fungi and Gram-negative bacteria were Candida albicans and Sphingomonas paucimobilis, respectively. Considering no significant relationship between the indoor dust endotoxin levels and the isolation of Gram-negative bacteria from the indoor air, monitoring the indoor airborne endotoxin level was found to be also critical for risk assessment on health for animals or workers. The present study confirms the importance of microbiological monitoring and control on animal husbandry indoor air to ensure animal and worker welfare.

  10. Technology Solutions Case Study: Combustion Safety for Appliances Using Indoor Air

    SciTech Connect

    2014-05-01

    This case study describes how to assess and carry out the combustion safety procedures for appliances and heating equipment that uses indoor air for combustion in low-rise residential buildings. Only appliances installed in the living space, or in an area freely communicating with the living space, vented alone or in tandem with another appliance are considered here. This document is for inspectors, auditors, and technicians working in homes where energy upgrades are being conducted whether or not air infiltration control is included in the package of measures being applied. In the indoor combustion air case, guidelines summarized here are based on language provided in several of the codes to establish minimum requirements for the space using simplified prescriptive measures. In addition, building performance testing procedures are provided by testing agencies. The codes in combination with the test procedures offer comprehensive combustion safety coverage to address safety concerns, allowing inexperienced residential energy retrofit inspectors to effectively address combustion safety issues and allow energy retrofits to proceed.

  11. Development of indoor environmental index: Air quality index and thermal comfort index

    NASA Astrophysics Data System (ADS)

    Saad, S. M.; Shakaff, A. Y. M.; Saad, A. R. M.; Yusof, A. M.; Andrew, A. M.; Zakaria, A.; Adom, A. H.

    2017-03-01

    In this paper, index for indoor air quality (also known as IAQI) and thermal comfort index (TCI) have been developed. The IAQI was actually modified from previous outdoor air quality index (AQI) designed by the United States Environmental Protection Agency (US EPA). In order to measure the index, a real-time monitoring system to monitor indoor air quality level was developed. The proposed system consists of three parts: sensor module cloud, base station and service-oriented client. The sensor module cloud (SMC) contains collections of sensor modules that measures the air quality data and transmit the captured data to base station through wireless. Each sensor modules includes an integrated sensor array that can measure indoor air parameters like Carbon Dioxide, Carbon Monoxide, Ozone, Nitrogen Dioxide, Oxygen, Volatile Organic Compound and Particulate Matter. Temperature and humidity were also being measured in order to determine comfort condition in indoor environment. The result from several experiments show that the system is able to measure the air quality presented in IAQI and TCI in many indoor environment settings like air-conditioner, chemical present and cigarette smoke that may impact the air quality. It also shows that the air quality are changing dramatically, thus real-time monitoring system is essential.

  12. Assessment of microbiological indoor air quality in an Italian office building equipped with an HVAC system.

    PubMed

    Bonetta, Sa; Bonetta, Si; Mosso, S; Sampò, S; Carraro, E

    2010-02-01

    The purpose of this study was to evaluate the level and composition of bacteria and fungi in the indoor air of an Italian office building equipped with a heating, ventilation and air conditioning (HVAC) system. Airborne bacteria and fungi were collected in three open-space offices during different seasons. The microbial levels in the outdoor air, supply air diffusers, fan coil air flow and air treatment unit humidification water tank were used to evaluate the influence of the HVAC system on indoor air quality (IAQ). A medium-low level of bacterial contamination (50-500 CFU/m(3)) was found in indoor air. Staphylococcus and Micrococcus were the most commonly found genera, probably due to human presence. A high fungal concentration was measured due to a flood that occurred during the winter. The indoor seasonal distribution of fungal genera was related to the fungal outdoor distribution. Significant seasonal and daily variation in airborne microorganisms was found, underlining a relationship with the frequency of HVAC system switching on/off. The results of this monitoring highlight the role of the HVAC system on IAQ and could be useful to better characterise bacterial and fungal population in the indoor air of office buildings.

  13. The effect of indoor air pollutants on otitis media and asthma in children

    SciTech Connect

    Daigler, G.E.; Markello, S.J.; Cummings, K.M. )

    1991-03-01

    This case-control study investigated the possible association between home environmental air pollutants and their effect on otitis media and asthma in children. Patients with physician-diagnosed otitis (n = 125, 74% response), with asthma (n = 137, 80% response), and controls (n = 237, 72% response) from a private pediatric practice seen between October 1986 and May 1987 were studied. A questionnaire inquired about housing characteristics (i.e., age, insulation, heating system) and sources of indoor air pollution such as cigarette smoking, use of woodburning stoves, household pets, etc. Analysis of the responses confirmed previous findings of significant relationships between maternal smoking (P = .021), and the presence of pets (P = .034) and the occurrence of asthma. A newly reported relationship between exposure to woodburning stoves and the occurrence of otitis (P less than .05) was reported. This implicates yet another risk factor (wood burning) in the etiology of otitis media.

  14. The effect of structures on indoor humidity--possibility to improve comfort and perceived air quality.

    PubMed

    Simonson, C J; Salonvaara, M; Ojanen, T

    2002-12-01

    The research presented in this paper shows that moisture transfer between indoor air and hygroscopic building structures can generally improve indoor humidity conditions. This is important because the literature shows that indoor humidity has a significant effect on occupant comfort, perceived air quality (PAQ), occupant health, building durability, material emissions, and energy consumption. Therefore, it appears possible to improve the quality of life of occupants when appropriately applying hygroscopic wood-based materials. The paper concentrates on the numerical investigation of a bedroom in a wooden building located in four European countries (Finland, Belgium, Germany, and Italy). The results show that moisture transfer between indoor air and the hygroscopic structure significantly reduces the peak indoor humidity. Based on correlations from the literature, which quantify the effect of temperature and humidity on comfort and PAQ for sedentary adults, hygroscopic structures can improve indoor comfort and air quality. In all the investigated climates, it is possible to improve the indoor conditions such that, as many as 10 more people of 100 are satisfied with the thermal comfort conditions (warm respiratory comfort) at the end of occupation. Similarly, the percent dissatisfied with PAQ can be 25% lower in the morning when permeable and hygroscopic structures are applied.

  15. Human reactions to a mixture of indoor air volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Kjærgaard, Søren K.; Mølhave, Lars; Pedersen, Ole F.

    A controlled experimental study of human reactions to a mixture of 22 volatile organic compounds often found in indoor air was performed in a climate chamber. Twenty-one healthy subjects were compared with a group of 14 subjects suffering from the 'sick building syndrome' (SBS subjects), i.e. having symptoms related to the indoor environment (irritated mucous membranes, headache, etc.) as defined by WHO in 1982. In groups of 4 these subjects were exposed during two successive periods to either 0 and 0 mg m -3, 25 and 0 mg m -3, or 0 and 25 mg m -3; 25 mg m -3 is equivalent to the highest concentrations expected in a new building. The study was double blinded, and a latin square design was used to balance out effects of day in the week and season. Both groups reacted subjectively to the air reporting worse odor, worse indoor air quality as defined by the subject, and more irritated mucous membranes in eye, throat and nose than in the clean environment. A tendency to a stronger response was seen among the SBS subjects. Objective measures indicated among others an exposure related reduction in lung function among SBS subjects. Both groups had an increased number of polymorphonuclear leucocytes in tear fluid as a result of exposure. This was not seen for nasal secretions. Psychological performance tests indicated an exposure related diminished ability to learn. In conclusion, the experiment indicates that exposure to volatile organic compounds in low concentrations as seen in new houses causes both subjective complaints and objective signs in normal healty subjects; but more so in subjects from the sick building syndrome.

  16. Political Factors Affecting the Enactment of State-Level Clean Indoor Air Laws

    PubMed Central

    Vernick, Jon S.; Stuart, Elizabeth A.; Webster, Daniel W.

    2014-01-01

    Objectives. We examined the effects of key political institutional factors on the advancement of state-level clean indoor air laws. Methods. We performed an observational study of state-level clean indoor air law enactment among all 50 US states from 1993 to 2010 by using extended Cox hazard models to assess risk of enacting a relevant law. Results. During the 18-year period from 1993 to 2010, 28 states passed a law covering workplaces, 33 states passed a law covering restaurants, 29 states passed a law covering bars, and 16 states passed a law covering gaming facilities. States with term limits had a 2.15 times greater hazard (95% confidence interval [CI] = 1.27, 3.65; P = .005) of enacting clean indoor air laws. The presence of state-level preemption of local clean indoor air laws was associated with a 3.26 times greater hazard (95% CI = 1.11, 9.53; P = .031) of state-level policy enactment. In the presence of preemption, increased legislative professionalism was strongly associated (hazard ratio = 3.28; 95% CI = 1.10, 9.75; P = .033) with clean indoor air law enactment. Conclusions. Political institutional factors do influence state-level clean indoor air law enactment and may be relevant to other public health policy areas. PMID:24825239

  17. Indoor airborne bacterial communities are influenced by ventilation, occupancy, and outdoor air source

    PubMed Central

    Meadow, J F; Altrichter, A E; Kembel, S W; Kline, J; Mhuireach, G; Moriyama, M; Northcutt, D; O'Connor, T K; Womack, A M; Brown, G Z; Green, J L ; Bohannan, B J M

    2014-01-01

    Architects and engineers are beginning to consider a new dimension of indoor air: the structure and composition of airborne microbial communities. A first step in this emerging field is to understand the forces that shape the diversity of bioaerosols across space and time within the built environment. In an effort to elucidate the relative influences of three likely drivers of indoor bioaerosol diversity – variation in outdoor bioaerosols, ventilation strategy, and occupancy load – we conducted an intensive temporal study of indoor airborne bacterial communities in a high-traffic university building with a hybrid HVAC (mechanically and naturally ventilated) system. Indoor air communities closely tracked outdoor air communities, but human-associated bacterial genera were more than twice as abundant in indoor air compared with outdoor air. Ventilation had a demonstrated effect on indoor airborne bacterial community composition; changes in outdoor air communities were detected inside following a time lag associated with differing ventilation strategies relevant to modern building design. Our results indicate that both occupancy patterns and ventilation strategies are important for understanding airborne microbial community dynamics in the built environment. PMID:23621155

  18. Indoor airborne bacterial communities are influenced by ventilation, occupancy, and outdoor air source.

    PubMed

    Meadow, J F; Altrichter, A E; Kembel, S W; Kline, J; Mhuireach, G; Moriyama, M; Northcutt, D; O'Connor, T K; Womack, A M; Brown, G Z; Green, J L; Bohannan, B J M

    2014-02-01

    Architects and engineers are beginning to consider a new dimension of indoor air: the structure and composition of airborne microbial communities. A first step in this emerging field is to understand the forces that shape the diversity of bioaerosols across space and time within the built environment. In an effort to elucidate the relative influences of three likely drivers of indoor bioaerosol diversity - variation in outdoor bioaerosols, ventilation strategy, and occupancy load - we conducted an intensive temporal study of indoor airborne bacterial communities in a high-traffic university building with a hybrid HVAC (mechanically and naturally ventilated) system. Indoor air communities closely tracked outdoor air communities, but human-associated bacterial genera were more than twice as abundant in indoor air compared with outdoor air. Ventilation had a demonstrated effect on indoor airborne bacterial community composition; changes in outdoor air communities were detected inside following a time lag associated with differing ventilation strategies relevant to modern building design. Our results indicate that both occupancy patterns and ventilation strategies are important for understanding airborne microbial community dynamics in the built environment.

  19. Indoor air pollution and childhood asthma: effective environmental interventions.

    PubMed Central

    Etzel, R A

    1995-01-01

    Exposure to indoor air pollutants such as tobacco smoke and dust mites may exacerbate childhood asthma. Environmental interventions to reduce exposures to these pollutants can help prevent exacerbations of the disease. Among the most important interventions is the elimination of environmental tobacco smoke from the environments of children with asthma. However, the effectiveness of reducing asthmatic children's exposure to environmental tobacco smoke on the severity of their symptoms has not yet been systematically evaluated. Dust mite reduction is another helpful environmental intervention. This can be achieved by enclosing the child's mattresses, blankets, and pillows in zippered polyurethane-coated casings. Primary prevention of asthma is not as well understood. It is anticipated that efforts to reduce smoking during pregnancy could reduce the incidence of asthma in children. European studies have suggested that reducing exposure to food and house dust mite antigens during lactation and for the first 12 months of life diminishes the development of allergic disorders in infants with high total IgE in the cord blood and a family history of atopy. Many children with asthma and their families are not receiving adequate counseling about environmental interventions from health care providers or other sources. PMID:8549490

  20. THE ALLERGENIC POTENTIAL OF INDOOR AIR FUNGAL CONTAMINANTS

    EPA Science Inventory

    ABSTRACT

    The indoor environment has increased in importance to children's health with children now spending more than 90% of their time indoors. Molds are an important component of this environment and have been associated with exacerbation of asthma. Their contribution t...

  1. Indoor-Outdoor Air Pollution Relationship: A Literature Review.

    ERIC Educational Resources Information Center

    Benson, Ferris B.; And Others

    While extensive measurements have been and are being made of outdoor pollution, relatively few data have been gathered on indoor pollution. The data that are available are compiled and analyzed in the report. Based on a review of the literature, it was possible to infer relationships between indoor and outdoor pollution and to identify factors…

  2. CHARACTERIZATION OF INDOOR AND OUTDOOR AIR POLLUTION EXPOSURES AND SOURCES

    EPA Science Inventory

    Human exposures to indoor and outdoor pollutants vary depending on the sources and concentrations of pollutants as well as human behavioral factors that determine the extent of an individual's contact with indoor or outdoor pollutants. In general, the older populations spend more...

  3. Knowledge of, and Attitudes to, Indoor Air Pollution in Kuwaiti Students, Teachers and University Faculty

    ERIC Educational Resources Information Center

    Al Khamees, Nedaa A.; Alamari, Hanaa

    2009-01-01

    The concentrations of air pollutants in residences can be many times those in outside air, and many of these pollutants are known to have adverse health consequences. Despite this, there have been very few attempts to delineate knowledge of, and attitudes to, indoor air pollution. This study aimed to establish the knowledge of, and attitudes to,…

  4. Natural radioactivity content in soil and indoor air of Chellanam.

    PubMed

    Mathew, S; Rajagopalan, M; Abraham, J P; Balakrishnan, D; Umadevi, A G

    2012-11-01

    Contribution of terrestrial radiation due to the presence of naturally occurring radionuclides in soil and air constitutes a significant component of the background radiation exposure to the population. The concentrations of natural radionuclides in the soil and indoor air of Chellanam were investigated with an aim of evaluating the environmental radioactivity level and radiation hazard to the population. Chellanam is in the suburbs of Cochin, with the Arabian Sea in the west and the Cochin backwaters in the east. Chellanam is situated at ∼25 km from the sites of these factories. The data obtained serve as a reference in documenting changes to the environmental radioactivity due to technical activities. Soil samples were collected from 30 locations of the study area. The activity concentrations of (232)Th, (238)U and (40)K in the samples were analysed using gamma spectrometry. The gamma dose rates were calculated using conversion factors recommended by UNSCEAR [United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and effects of ionizing radiation. UNSCEAR (2000)]. The ambient radiation exposure rates measured in the area ranged from 74 to 195 nGy h(-1) with a mean value of 131 nGy h(-1). The significant radionuclides being (232)Th, (238)U and (40)K, their activities were used to arrive at the absorbed gamma dose rate with a mean value of 131 nGy h(-1) and the radium equivalent activity with a mean value of 162 Bq kg(-1). The radon progeny levels varied from 0.21 to 1.4 mWL with a mean value of 0.6 mWL. The thoron progeny varied from 0.34 to 2.9 mWL with a mean value of 0.85 mWL. The ratio between thoron and radon progenies varied from 1.4 to 2.3 with a mean of 1.6. The details of the study, analysis and results are discussed.

  5. A ventilation intervention study in classrooms to improve indoor air quality: the FRESH study

    PubMed Central

    2013-01-01

    Background Classroom ventilation rates often do not meet building standards, although it is considered to be important to improve indoor air quality. Poor indoor air quality is thought to influence both children’s health and performance. Poor ventilation in The Netherlands most often occurs in the heating season. To improve classroom ventilation a tailor made mechanical ventilation device was developed to improve outdoor air supply. This paper studies the effect of this intervention. Methods The FRESH study (Forced-ventilation Related Environmental School Health) was designed to investigate the effect of a CO2 controlled mechanical ventilation intervention on classroom CO2 levels using a longitudinal cross-over design. Target CO2 concentrations were 800 and 1200 parts per million (ppm), respectively. The study included 18 classrooms from 17 schools from the north-eastern part of The Netherlands, 12 experimental classrooms and 6 control classrooms. Data on indoor levels of CO2, temperature and relative humidity were collected during three consecutive weeks per school during the heating seasons of 2010–2012. Associations between the intervention and weekly average indoor CO2 levels, classroom temperature and relative humidity were assessed by means of mixed models with random school-effects. Results At baseline, mean CO2 concentration for all schools was 1335 ppm (range: 763–2000 ppm). The intervention was able to significantly decrease CO2 levels in the intervention classrooms (F (2,10) = 17.59, p < 0.001), with a mean decrease of 491 ppm. With the target set at 800 ppm, mean CO2 was 841 ppm (range: 743–925 ppm); with the target set at 1200 ppm, mean CO2 was 975 ppm (range: 887–1077 ppm). Conclusions Although the device was not capable of precisely achieving the two predefined levels of CO2, our study showed that classroom CO2 levels can be reduced by intervening on classroom ventilation using a CO2 controlled mechanical ventilation system

  6. Inter-comparison of air pollutant concentrations in different indoor environments in Hong Kong

    NASA Astrophysics Data System (ADS)

    Lee, Shun-Cheng; Guo, Hai; Li, Wai-Ming; Chan, Lo-Yin

    Indoor air quality in selected indoor environments in Hong Kong such as homes, offices, schools, shopping malls and restaurants were investigated. Average CO 2 levels and total bacteria counts in air-conditioned classrooms, shopping malls and restaurants were comparatively higher than those measured in occupied offices and homes. Elevated CO 2 levels exceeding 1000 ppm and total bacteria counts resulted from high occupancy combined with inadequate ventilation. Average PM 10 levels were usually higher indoors than outdoors in homes, shopping malls and restaurants. The highest indoor PM 10 levels were observed at investigated restaurants due to the presence of cigarette smoking and extensive use of gas stoves for cooking. The restaurants and shopping malls investigated had higher formaldehyde levels than other indoor environments when building material, smoking and internal renovation work were present. Volatile organic compounds (VOCs) in both indoor and outdoor environments mainly resulted from vehicle exhaust emissions. It was observed that interior decoration work and the use of industrial solvents in an indoor environment could significantly increase the indoor levels of VOCs.

  7. Building characteristics, indoor air quality and recurrent wheezing in very young children (BAMSE).

    PubMed

    Emenius, G; Svartengren, M; Korsgaard, J; Nordvall, L; Pershagen, G; Wickman, M

    2004-02-01

    This study was conducted to examine the impact of building characteristics and indoor air quality on recurrent wheezing in infants. We followed a birth cohort (BAMSE) comprising 4089 children, born in predefined areas of Stockholm, during their first 2 years of life. Information on exposures was obtained from parental questionnaires when the children were 2 months and on symptoms and diseases when the children were 1 and 2 years old. Children with recurrent wheezing, and two age-matched controls per case, were identified and enrolled in a nested case-control study. The homes were investigated and ventilation rate, humidity, temperature and NO2 measured. We found that living in an apartment erected after 1939, or in a private home with crawl space/concrete slab foundation were associated with an increased risk of recurrent wheezing, odds ratio (OR) 2.5 (1.3-4.8) and 2.5 (1.1-5.4), respectively. The same was true for living in homes with absolute indoor humidity >5.8 g/kg, OR 1.7 (1.0-2.9) and in homes where windowpane condensation was consistently reported over several years, OR 2.2 (1.1-4.5). However, air change rate and type of ventilation system did not seem to affect the risk. In conclusion, relatively new apartment buildings, single-family homes with crawl space/concrete slab foundation, elevated indoor humidity, and reported wintertime windowpane condensation were associated with recurrent wheezing in infants. Thus, improvements of the building quality may have potential to prevent infant wheezing.

  8. Carbonyl levels in indoor and outdoor air in Mexico City and Xalapa, Mexico.

    PubMed

    Báez, Armando; Padilla, Hugo; García, Rocío; Torres, Ma del Carmen; Rosas, Irma; Belmont, Raúl

    2003-01-20

    Carbonyl compounds in air were measured at two houses, three museums, and two offices. All sites lacked air-conditioning systems. Although indoor and outdoor air was measured simultaneously at each site, the sites themselves were sampled in different dates. Mean concentrations were higher in indoor air. Outdoor means concentrations of acetone were the highest in all sites, ranging from 12 to 60 microg m(-3). In general, formaldehyde and acetaldehyde had similar mean concentrations, ranging from 4 to 32 and 6 to 28 microg m(-3), respectively. Formaldehyde and acetone mean indoor concentrations were the highest, ranging from 11 to 97 and 17 to 89 microg m(-3), respectively, followed by acetaldehyde with 5 to 47 microg m(-3). Formaldehyde and acetaldehyde had the highest mean concentration in the offices where there were smokers. Propionaldehyde and butyraldehyde concentrations did not show definite differences between indoor and outdoor air. In general, the highest outdoor and indoor hourly concentrations were observed from 10:00 to 15:00 h. Mean indoor/outdoor ratios of carbonyls exceeded 1. Formaldehyde and acetaldehyde risks were higher in smoking environments.

  9. Quantifying the impact of traffic-related air pollution on the indoor air quality of a naturally ventilated building.

    PubMed

    Tong, Zheming; Chen, Yujiao; Malkawi, Ali; Adamkiewicz, Gary; Spengler, John D

    2016-01-01

    Improper natural ventilation practices may deteriorate indoor air quality when in close proximity to roadways, although the intention is often to reduce energy consumption. In this study, we employed a CFD-based air quality model to quantify the impact of traffic-related air pollution on the indoor air quality of a naturally ventilated building. Our study found that the building envelope restricts dispersion and dilution of particulate matter. The indoor concentration in the baseline condition located 10m away from the roadway is roughly 16-21% greater than that at the edge of the roadway. The indoor flow recirculation creates a well-mixed zone with little variation in fine particle concentration (i.e., 253nm). For ultrafine particles (<100nm), a noticeable decrease in particle concentrations indoors with increasing distance from the road is observed due to Brownian and turbulent diffusion. In addition, the indoor concentration strongly depends on the distance between the roadway and building, particle size, wind condition, and window size and location. A break-even point is observed at D'~2.1 (normalized distance from the roadway by the width of the road). The indoor particle concentration is greater than that at the highway where D'<2.1, and vice versa. For new building planning, the distance from the roadway and the ambient wind condition need to be considered at the early design stage whereas the size and location of the window openings, the interior layout, and the placement of fresh air intakes are important to the indoor air quality of existing buildings adjacent to roadways.

  10. Effectiveness of HVAC duct cleaning procedures in improving indoor air quality.

    PubMed

    Ahmad, I; Tansel, B; Mitrani, J D

    2001-12-01

    Indoor air quality has become one of the most serious environmental concerns as an average person spends about 22 hr indoors on a daily basis. The study reported in this article, was conducted to determine the effectiveness of three commercial HVAC (Heating Ventilation Air Conditioning) duct cleaning processes in reducing the level of airborne particulate matter and viable bioaerosols. The three HVAC sanitation processes were: (1) Contact method (use of conventional vacuum cleaning of interior duct surfaces); (2) Air sweep method (use of compressed air to dislodging dirt and debris); (3) Rotary brush method (insertion of a rotary brush into the ductwork to agitate and dislodge the debris). Effectiveness of these sanitation processes was evaluated in terms of airborne particulate and viable bioaerosol concentrations in residential homes. Eight identical homes were selected in the same neighborhood. Two homes were cleaned using each procedure and two were used as controls. It was found that both particle count readings and bioaerosol concentrations were higher when cleaning was being performed than before or after cleaning, which suggests that dirt, debris and other pollutants may become airborne as a result of disturbances caused by the cleaning processes. Particle count readings at 0.3 micron size were found to have increased due to cigarette smoking. Particle counts at 1.0 micron size were reduced due to HVAC duct cleaning. Post-level bioaerosol concentrations, taken two days after cleaning, were found to be lower than the pre-level concentrations suggesting that the cleaning procedures were effective to some extent. Homes cleaned with the Air Sweep procedure showed the highest degree of reduction in bioaerosol concentration among the three procedures investigated.

  11. Association between State Assistance on the Topic of Indoor Air Quality and School District-Level Policies That Promote Indoor Air Quality in Schools

    ERIC Educational Resources Information Center

    Everett Jones, Sherry; Doroski, Brenda; Glick, Sherry

    2015-01-01

    Nationally representative data from the 2012 School Health Policies and Practices Study examined whether state assistance on indoor air quality (IAQ) was associated with district-level policies and practices related to IAQ and integrated pest management (IPM). Districts in states that provided assistance on IAQ were more likely than districts not…

  12. A SURVEY OF INDOOR AIR CONTAMINATES USING SEMIPERMEABLE MEMBRANE DEVICES

    EPA Science Inventory

    Semipermeable membrane devices (SPMDs) were deployed in indoor areas in approximately 50 residences along the border between Arizona and Mexico to measure airborne contaminants. The results of the primary analyses and gas chromatographic/mass spectrometric confirmation for org...

  13. AN INDOOR PESTICIDE AIR AND SURFACE CONCENTRATION MODEL

    EPA Science Inventory

    A thorough assessment of human exposure to environmental chemicals requires consideration of all processes in the sequence from source to dose. For assessment of exposure to pesticides following their use indoors, data and models are needed to estimate pesticide concentrations...

  14. [Impact of air fresheners and deodorizers on the indoor total volatile organic compounds].

    PubMed

    Jinno, Hideto; Tanaka-Kagawa, Toshiko; Obama, Tomoko; Miyagawa, Makoto; Yoshikawa, Jun; Komatsu, Kazuhiro; Tokunaga, Hiroshi

    2007-01-01

    Indoor air quality is a growing health concern because of the increased incidence of the building-related illness, such as sick-building syndrome and multiple chemical sensitivity/idiopathic environmental intolerance. In order to effectively reduce the unnecessary chemical exposure in the indoor environment, it would be important to quantitatively compare the emissions from many types of sources. Besides the chemical emissions from the building materials, daily use of household products may contribute at significant levels to the indoor volatile organic compounds (VOCs). In this study, we investigated the emission rate of VOCs and carbonyl compounds for 30 air fresheners and deodorizers by the standard small chamber test method (JIS A 1901). The total VOC (TVOC) emission rates of these household products ranged from the undetectable level (< 20 microg/unit/h) to 6,900 microg/unit/h. The mean TVOC emission rate of the air fresheners for indoor use (16 products) was 1,400 microg/unit/ h and that of the deodorizers for indoor use (6 products) was 58 microg/unit/h, indicating that the fragrances in the products account for the major part of the TVOC emissions. Based on the emission rates, the impacts on the indoor TVOC were estimated by the simple model with a volume of 17.4 m3 and a ventilation frequency of 0.5 times/h. The mean of the TVOC increment for the indoor air fresheners was 170 microg/m3, accounting for 40% of the current provisional target value, 400 microg/m3. These results suggest that daily use of household products can significantly influence the indoor air quality.

  15. Energy Efficiency and Indoor Environmental Quality in Schools. A Joint EPA Working Paper from Energy Star[R] and Indoor Air Quality.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Radiation and Indoor Air.

    This paper describes how to protect and enhance indoor environmental quality without sacrificing energy performance, lists the common pollutants and their sources, and explores how energy efficiency projects affect indoor environmental quality. Also highlighted are study figures showing the energy costs of outdoor air ventilation and an…

  16. Case study of odor and indoor air quality assessment in the dewatering building at the Stickney Water Reclamation Plant.

    PubMed

    Sharma, Manju; O'Connell, Susan; Garelli, Brett; Sattayatewa, Chakkrid; Moschandreas, Demetrios; Pagilla, Krishna

    2012-01-01

    Indoor air quality (IAQ) and odors were determined using sampling/monitoring, measurement, and modeling methods in a large dewatering building at a very large water reclamation plant. The ultimate goal was to determine control strategies to reduce the sensory impacts on the workforce and achieve odor reduction within the building. Study approaches included: (1) investigation of air mixing by using CO(2) as an indicator, (2) measurement of airflow capacity of ventilation fans, (3) measurement of odors and odorants, (4) development of statistical and IAQ models, and (5) recommendation of control strategies. The results showed that air quality in the building complies with occupational safety and health guidelines; however, nuisance odors that can increase stress and productivity loss still persist. Excess roof fan capacity induced odor dispersion to the upper levels. Lack of a local air exhaust system of sufficient capacity and optimum design was found to be the contributor to occasional less than adequate indoor air quality and odors. Overall, air ventilation rate in the building has less effect on persistence of odors in the building. Odor/odorant emission rates from centrifuge drops were approximately 100 times higher than those from the open conveyors. Based on measurements and modeling, the key control strategies recommended include increasing local air exhaust system capacity and relocation of exhaust hoods closer to the centrifuge drops.

  17. Integrating Human Indoor Air Pollutant Exposure within Life Cycle Impact Assessment

    SciTech Connect

    Hellweg, Stefanie; Demou, Evangelia; Bruzzi, Raffaella; Meijer, Arjen; Rosenbaum, Ralph K.; Huijbregts, Mark A.J.; McKone, Thomas E.

    2008-12-21

    Neglecting health effects from indoor pollutant emissions and exposure, as currently done in Life Cycle Assessment (LCA), may result in product or process optimizations at the expense of workers? or consumers? health. To close this gap, methods for considering indoor exposure to chemicals are needed to complement the methods for outdoor human exposure assessment already in use. This paper summarizes the work of an international expert group on the integration of human indoor and outdoor exposure in LCA, within the UNEP/SETAC Life Cycle Initiative. A new methodological framework is proposed for a general procedure to include human-health effects from indoor exposure in LCA. Exposure models from occupational hygiene and household indoor air quality studies and practices are critically reviewed and recommendations are provided on the appropriateness of various model alternatives in the context of LCA. A single-compartment box model is recommended for use as a default in LCA, enabling one to screen occupational and household exposures consistent with the existing models to assess outdoor emission in a multimedia environment. An initial set of model parameter values was collected. The comparison between indoor and outdoor human exposure per unit of emission shows that for many pollutants, intake per unit of indoor emission may be several orders of magnitude higher than for outdoor emissions. It is concluded that indoor exposure should be routinely addressed within LCA.

  18. CO and particle pollution of indoor air in Beijing and its elemental analysis

    SciTech Connect

    Wang, J.N.; Zhang, Y. )

    1990-06-01

    Three representative types of houses in Beijing were selected and, in each type, smoking and nonsmoking households were compared, IP, RP, and CO concentrations in the living room and kitchen were monitored during each season, and the level of COHb in the heads of the households were measured. The study showed that indoor air pollution was rather severe, especially during winter, when particulate concentrations markedly exceeded the standard and CO concentration was as high as 47 ppm. Indoor air pollution was closely related to the type of house, particularly to the mode of heating. In houses, of the same type, pollution improved greatly after central heating facilities were installed. Analysis of 30 elements revealed that pollution was typically caused by coal burning, aggravated by dusty wind, but high indoor Pb levels were probably due to the use of LPG for cooking. In the authors study the effect of cigarette smoking was sometimes masked by the severe indoor pollution.

  19. Pattern of polynuclear aromatic hydrocarbons on indoor air: Exploratory principal component analysis

    SciTech Connect

    Mitra, S. ) Wilson, N.K. )

    1992-01-01

    Principal component analysis (PCA) was used to study polynuclear aromatic hydrocarbon (PAH) profiles in indoor air. Fifteen PAHs were measured in ten different homes in Columbus (Ohio) which had different indoor emission characteristics such as gas utilities, wood-burning fireplaces, and cigarette smokers. Different PAH concentration patterns emerged depending upon the emission sources present in the different homes. Of these, cigarette smoking appeared to have the greatest impact on the indoor PAH concentrations. The PCA allowed convenient displays of the multidimensional data set from which the PAH concentration characteristics could be elucidated. The interrelationship between the different PAHs was also studied by correlation analysis.

  20. Predictors of Indoor Air Concentrations in Smoking and Non-Smoking Residences

    PubMed Central

    Héroux, Marie-Eve; Clark, Nina; Van Ryswyk, Keith; Mallick, Ranjeeta; Gilbert, Nicolas L.; Harrison, Ian; Rispler, Kathleen; Wang, Daniel; Anastassopoulos, Angelos; Guay, Mireille; MacNeill, Morgan; Wheeler, Amanda J.

    2010-01-01

    Indoor concentrations of air pollutants (benzene, toluene, formaldehyde, acetaldehyde, acrolein, nitrogen dioxide, particulate matter, elemental carbon and ozone) were measured in residences in Regina, Saskatchewan, Canada. Data were collected in 106 homes in winter and 111 homes in summer of 2007, with 71 homes participating in both seasons. In addition, data for relative humidity, temperature, air exchange rates, housing characteristics and occupants’ activities during sampling were collected. Multiple linear regression analysis was used to construct season-specific models for the air pollutants. Where smoking was a major contributor to indoor concentrations, separate models were constructed for all homes and for those homes with no cigarette smoke exposure. The housing characteristics and occupants’ activities investigated in this study explained between 11% and 53% of the variability in indoor air pollutant concentrations, with ventilation, age of home and attached garage being important predictors for many pollutants. PMID:20948949

  1. Bioluminescent liquid light guide pad biosensor for indoor air toxicity monitoring.

    PubMed

    Eltzov, Evgeni; Cohen, Avital; Marks, Robert S

    2015-04-07

    Indoor air pollution became a recent concern found to be oftentimes worse than outdoor air quality. We developed a tool that is cheap and simple and enables continuous monitoring of air toxicity. It is a biosensor with both a nondisposable (monitor) and disposable (calcium alginate pads with immobilized bacteria) elements. Various parameters to enhance its signal have been tested (including the effect of the pad's orientation, it's exposure to either temperature or time with the air toxicant analyte, and various concentrations thereof). Lastly, the sensor has demonstrated its ability to sense the presence of chemicals in a real, indoor environment. This is the first step in the creation of a sensitive and simple operative tool that may be used in different indoor environments.

  2. Environmental assessment of three egg production systems–Part I: Monitoring system and indoor air quality

    PubMed Central

    Zhao, Y.; Shepherd, T. A.; Li, H.; Xin, H.

    2015-01-01

    To comprehensively assess conventional vs. some alternative laying-hen housing systems under U.S. production conditions, a multi-institute and multi-disciplinary project, known as the Coalition for Sustainable Egg Supply (CSES) study, was carried out at a commercial egg production farm in the Midwestern United States over two single-cycle production flocks. The housing systems studied include a conventional cage house (200,000 hen capacity), an aviary house (50,000 hen capacity), and an enriched colony house (50,000 hen capacity). As an integral part of the CSES project, continual environmental monitoring over a 27-month period described in this paper quantifies indoor gaseous and particulate matter concentrations, thermal environment, and building ventilation rate of each house. Results showed that similar indoor thermal environments in all three houses were maintained through ventilation management and environmental control. Gaseous and particulate matter concentrations of the enriched colony house were comparable with those of the conventional cage house. In comparison, the aviary house had poorer indoor air quality, especially in wintertime, resulting from the presence of floor litter (higher ammonia levels) and hens’ activities (higher particulate matter levels) in it. Specifically, daily mean indoor ammonia concentrations had the 95% confidence interval values of 3.8 to 4.2 (overall mean of 4.0) ppm for the conventional cage house; 6.2 to 7.2 (overall mean of 6.7) ppm for the aviary house; and 2.7 to 3.0 (overall mean of 2.8) ppm for the enriched colony house. The 95% confidence interval (overall mean) values of daily mean indoor carbon dioxide concentrations were 1997 to 2170 (2083) ppm for the conventional cage house, 2367 to 2582 (2475) ppm for the aviary house, and 2124 to 2309 (2216) ppm for the enriched colony house. Daily mean indoor methane concentrations were similar for all three houses, with 95% confidence interval values of 11.1 to 11.9 (overall

  3. Environmental assessment of three egg production systems--Part I: Monitoring system and indoor air quality.

    PubMed

    Zhao, Y; Shepherd, T A; Li, H; Xin, H

    2015-03-01

    To comprehensively assess conventional vs. some alternative laying-hen housing systems under U.S. production conditions, a multi-institute and multi-disciplinary project, known as the Coalition for Sustainable Egg Supply (CSES) study, was carried out at a commercial egg production farm in the Midwestern United States over two single-cycle production flocks. The housing systems studied include a conventional cage house (200,000 hen capacity), an aviary house (50,000 hen capacity), and an enriched colony house (50,000 hen capacity). As an integral part of the CSES project, continual environmental monitoring over a 27-month period described in this paper quantifies indoor gaseous and particulate matter concentrations, thermal environment, and building ventilation rate of each house. Results showed that similar indoor thermal environments in all three houses were maintained through ventilation management and environmental control. Gaseous and particulate matter concentrations of the enriched colony house were comparable with those of the conventional cage house. In comparison, the aviary house had poorer indoor air quality, especially in wintertime, resulting from the presence of floor litter (higher ammonia levels) and hens' activities (higher particulate matter levels) in it. Specifically, daily mean indoor ammonia concentrations had the 95% confidence interval values of 3.8 to 4.2 (overall mean of 4.0) ppm for the conventional cage house; 6.2 to 7.2 (overall mean of 6.7) ppm for the aviary house; and 2.7 to 3.0 (overall mean of 2.8) ppm for the enriched colony house. The 95% confidence interval (overall mean) values of daily mean indoor carbon dioxide concentrations were 1997 to 2170 (2083) ppm for the conventional cage house, 2367 to 2582 (2475) ppm for the aviary house, and 2124 to 2309 (2216) ppm for the enriched colony house. Daily mean indoor methane concentrations were similar for all three houses, with 95% confidence interval values of 11.1 to 11.9 (overall

  4. IMPACT OF AN OZONE GENERATOR AIR CLEANER ON STYRENE CONCENTRATIONS IN AN INDOOR AIR QUALITY RESEARCH CHAMBER

    EPA Science Inventory

    The paper gives results of an investigation of the impact of an ozone generator air cleaner on vapor-phase styrene concentrations in a full-scale indoor air quality test chamber. The time history of the concentrations of styrene and ozone is well predicted by a simulation model u...

  5. Indoor Air Quality in Schools (IAQ): The Importance of Monitoring Carbon Dioxide Levels.

    ERIC Educational Resources Information Center

    Sundersingh, David; Bearg, David W.

    This article highlights indoor air quality and exposure to pollutants at school. Typical air pollutants within schools include environmental tobacco smoke, formaldehyde, volatile organic compounds, nitrogen oxides, carbon monoxide, carbon dioxide, allergens, pathogens, radon, pesticides, lead, and dust. Inadequate ventilation, inefficient…

  6. Characteristics of indoor radon and its progeny in a Japanese dwelling while using air appliances.

    PubMed

    Pornnumpa, C; Tokonami, S; Sorimachi, A; Kranrod, C

    2015-11-01

    Characteristics of radon and its progeny were investigated in different air conditions by turning four types of indoor air appliances on and off in a two-story concrete Japanese dwelling. The four appliances were air conditioner, air cleaner, gas heater and cooker hood. The measurements were done using two devices: (1) a Si-based semiconductor detector for continuous measurement of indoor radon concentration and (2) a ZnS(Ag) scintillation counting system for equilibrium-equivalent radon concentration. Throughout the entire experiment, the cooker hood was the most effective in decreasing indoor radon concentration over a long period of time and the less effective was the air conditioner, while the air cleaner and gas heater did not affect the concentration of radon. However, the results measured in each air condition will differ according to the lifestyles and activities of the inhabitants. In this study, indoor radon and its progeny in a Japanese dwelling will be characterised by the different air conditions.

  7. Causes of Indoor Air Quality Problems in Schools: Summary of Scientific Research.

    ERIC Educational Resources Information Center

    Bayer, Charlene W.; Crow, Sidney A.; Fischer, John

    Research show that one in five U.S. schools has indoor air quality (IAQ) problems; 36 percent have inadequate heating, ventilation, and air conditioning (HVAC) systems; and there appears to be a correlation between IAQs and the proportion of a school's students coming from low-income households. This report examines the IAQ issue in U.S. public…

  8. A PARTICIPANT-BASED APPROACH TO INDOOR/OUTDOOR AIR MONITORING IN COMMUNITY HEALTH STUDIES

    EPA Science Inventory

    Community health studies of traffic-related air pollution have been hampered by the cost and participant burden associated with collecting household-level exposure data. The current study utilized a novel participant-based approach to collect indoor and outdoor air monitoring da...

  9. HVAC SYSTEMS AS EMISSION SOURCES AFFECTING INDOOR AIR QUALITY: A CRITICAL REVIEW

    EPA Science Inventory

    The paper discusses results of an evaluation of literature on heating, ventilating, and air-conditioning (HVAC) systems as contaminant emission sources that affect indoor air quality (IAQ). The various literature sources and methods for characterizing HVAC emission sources are re...

  10. *A participant-based approach to indoor/outdoor air monitoring in Community Health Studies

    EPA Science Inventory

    Community health studies of traffic-related air pollution have been hampered by the cost and participant burden associated with collecting household-level exposure data. The current study utilized a participant-based approach to collect indoor and outdoor air monitoring data from...

  11. NIOSH testimony on indoor air quality by P. Bierbaum on July 17, 1991

    SciTech Connect

    Not Available

    1991-07-17

    The testimony contains the comments of NIOSH regarding the activities of NIOSH in the area of indoor air quality and on the view of NIOSH on HR 1066. NIOSH initiated a project to improve the ability to measure air contaminants in the breathing zones of workers at the low levels encountered in indoor air pollution. NIOSH is also working to improve the simplicity of techniques for evaluating ventilation systems. Recently NIOSH expanded its investigation of other factors that may impact workers' perception of the quality of the office environment through the analysis of various stressors present in the workplace. In recent indoor environmental assesments, NIOSH has evaluated ergonomic and job related psychosocial stressors along with conducting environmental monitoring. A prospective study is also underway to collect data on indoor air in a newly renovated building occupied by the National Center for Health Statistics. NIOSH is in the process of modifying existing training courses for occupational safety and health professionals and paraprofessionals to include elements of indoor environmental assessments. NIOSH has also been involved in several interagency activities to study the associated health effects of poor air quality.

  12. Regulation of indoor air quality: The last frontier of environmental regulation

    SciTech Connect

    Dickson, R.B.

    1994-12-31

    Indoor air pollution (IAP) is ranked by the Environmental Protection Agency (EPA) among the top five environmental risks to human health. The World Health Organization estimates that nearly one in every six commercial buildings in the United States suffers from sick-building syndrome and that occupants of another one in twelve suffer from building-related illnesses. Indoor air quality (IAQ) problems cost American business $10 billion per year through lowered productivity, absenteeism, and medical costs. Yet despite the importance and high cost of IAQ problems, indoor air is not yet specifically addressed in any federal regulatory program. The reason probably is because indoor air is a quanitatively different environment in which traditional modes of regulation, based on pollutant-by pollutant risk assessments, are of limited utility. This paper covers the following topics: four factors influencing IAQ regulation; EPA regulation of indoor air; the role of the consumer product safety commission; OSHA and IAQ issues; state regulation and economic concerns; the pressure for legislation.

  13. Photocatalytic air purifiers for indoor air: European standard and pilot room experiments.

    PubMed

    Costarramone, N; Cantau, C; Desauziers, V; Pécheyran, C; Pigot, T; Lacombe, S

    2016-09-15

    At the European level (CEN/TC386), some efforts are currently devoted to new standards for comparing the efficiency of commercial photocatalytic material/devices in various application fields. Concerning prototype or commercial indoor photocatalytic air purifiers designed for volatile organic compounds (VOC) abatement, the methodology is based on a laboratory airtight chamber. The photocatalytic function is demonstrated by the mineralization of a mixture of five VOCs. Experimental data were obtained for four selected commercial devices and three commercial materials: drop of VOC concentration, but also identification of secondary species (with special attention to formaldehyde), mineralization rates, and Clean Air Delivery Rate (CADR). With two efficient air purifiers, these laboratory experiments were compared to the results in two experimental rooms (35-40 m(3)) where air pollution was introduced through wooden floor and furniture. The systems' ageing was also studied. The safety of the commercial products was also assessed by the determination of nanoparticle release. Standardized tests are useful to rank photocatalytic air purifiers and passive materials and to discard inefficient ones. A good correlation between the standard experiments and the experimental room experiments was found, even if in the latter case, the concentration of lower weight VOCs drops less quickly than that of heavier VOCs.

  14. Ultramicro forward-mutation assay and it's application to the survey of indoor air pollution

    SciTech Connect

    Takagi, Y.; Goto, S.; Kuo, C.T.; Sugita, S.; Murata, M.

    1988-01-01

    A highly sensitive ultramicro forward-mutation assay using Salmonella typhimurium TM677 was achieved by the introduction of a micro-vessel in the preincubation. The assay was about 10 times higher in sensitivity than the micro forward-mutation assay and was able to measure mutagenicity of extracts from airborne particulates obtained by only 3 cu m air sampling. Repeatability of the assay was nearly same as that of the micro forward-mutation assay, that is, the coefficient of variation of the mutation frequency for airborne particular extracts was 12.3% in the test condition without S9 mix and 13.7% with S9 mix. The assay was applied to the measurement of hourly variation mutagenic activity of airborne particulates indoors and outdoors, and revealed the mutagenic activity of indoor air was generally higher than that of outdoor air and that the mutagenic activity indoors in the absence of S9 mix was well correlated with human activity. It was also found by the assay and PAH analysis that indoor pollution by carcinogens and mutagens was largely affected by cigarette smoking and an air cleaner was useful for reduction of indoor pollution by mutagens and PAHs.

  15. Passive dosimeters for nitrogen dioxide in personal/indoor air sampling: A review

    PubMed Central

    Yu, Chang Ho; Morandi, Maria T.; Weisel, Clifford P.

    2015-01-01

    Accurate measurement of nitrogen dioxide concentrations in both outdoor and indoor environments, including personal exposures, is a fundamental step for linking atmospheric nitrogen dioxide levels to potential health and ecological effects. The measurement has been conducted generally in two ways: active (pumped) sampling and passive (diffusive) sampling. Diffusion samplers, initially developed and used for workplace air monitoring, have been found to be useful and cost-effective alternatives to conventional pumped samplers for monitoring ambient, indoor and personal exposures at the lower concentrations found in environmental settings. Since the 1970s, passive samplers have been deployed for ambient air monitoring in urban and rural sites, and to determine personal and indoor exposure to NO2. This article reviews the development of NO2 passive samplers, the sampling characteristics of passive samplers currently available, and their application in ambient and indoor air monitoring and personal exposure studies. The limitations and advantages of the various passive sampler geometries (i.e., tube, badge, and radial type) are also discussed. This review provides researchers and risk assessors with practical information about NO2 passive samplers, especially useful when designing field sampling strategies for exposure and indoor/outdoor air sampling. PMID:18446185

  16. Indoor and outdoor air quality investigation at schools in Hong Kong.

    PubMed

    Lee, S C; Chang, M

    2000-07-01

    Five classrooms in Hong Kong (HK), air-conditioned or ceiling fans ventilated, were chosen for investigation of indoor and outdoor air quality. Parameters such as temperature, relative humidity (RH), carbon dioxide (CO2), sulphur dioxide (SO2), nitric oxide (NO), nitrogen dioxide (NO2), respirable particulate matter (PM10), formaldehyde (HCHO), and total bacteria counts were monitored indoors and outdoors simultaneously. The average respirable particulate matter concentrations were higher than the HK Objective, and the maximum indoor PM10 level exceeded 1000 microg/m3. Indoor CO2 concentrations often exceeded 1000 microl/l in air-conditioning and ceiling fan classrooms, indicating inadequate ventilation. Maximum indoor CO2 level reached 5900 microl/l during class at the classroom with cooling tower ventilation. Increasing the rate of ventilation or implementation of breaks between classes is recommended to alleviate the high CO2 level. Other pollution parameters measured in this study complied with the standards. The two most important classroom air quality problems in Hong Kong were PM10 and CO2 levels.

  17. Diffusion of clean indoor air ordinances in the southwestern United States.

    PubMed

    Rogers, Everett M; Peterson, Jeffery C

    2008-10-01

    The authors investigate the process through which clean indoor air ordinances were considered in 10 communities in the southwestern United States and key factors that influenced diffusion and adoption. Clean indoor air ordinances, which ban smoking in public places, were adopted in approximately 1,409 U.S. communities from 1986 to April 2004. The authors gathered data from 10 communities in New Mexico and Texas by means of face-to-face interview, e-mail, and telephone interviews and by analyzing archival materials. Important influences on the adoption or rejection of clean indoor air ordinances were (a) personal experiences of policy champions, (b) local framing of the ordinance as a public health issue versus as an economic/ business or an individual rights issue, and (c) interpersonal networks connecting a community to previously adopting communities. The policies that were adopted ranged in comprehensiveness, with each community of study reinventing model policies obtained from other communities.

  18. Volatile organic compounds in indoor air: A review ofconcentrations measured in North America since 1990

    SciTech Connect

    ATHodgson@lbl.gov

    2003-04-01

    Central tendency and upper limit concentrations of volatile organic compounds (VOCs) measured in indoor air are summarized and reviewed. Data were obtained from published cross-sectional studies of residential and office buildings conducted in North America from 1990through the present. VOC concentrations in existing residences reported in 12 studies comprise the majority of the data set. Central tendency and maximum concentrations are compared between new and existing residences and between existing residences and office buildings. Historical changes in indoor VOC concentrations since the Clean Air Act Amendments of 1990 are explored by comparing the current data set with two published reviews of previous data obtained primarily in the 1980s. These historical comparisons suggest average indoor concentrations of some toxic air contaminants, such as 1,1,1-trichloroethane have decreased.

  19. Analysis of industrial contaminants in indoor air. Part 2. Emergent contaminants and pesticides.

    PubMed

    Garcia-Jares, Carmen; Regueiro, Jorge; Barro, Ruth; Dagnac, Thierry; Llompart, Maria

    2009-01-16

    This article reviews recent literature on the analysis of several contaminants related to the industrial development in indoor air in the framework of the REACH project. In this second part, the attention is focused on emergent contaminants and biocides. Among these chemicals, phthalates, polybrominated and phosphate flame retardants, fragrances, pesticides, as well as other emerging pollutants, are increasing their environmental and health concern and are extensively found in indoor air. Some of them are suspected to behave as priority organic pollutants (POPs) and/or endocrine disrupting compounds (EDC), and can be found both in air and associated to the suspended particulate matter (PM) and settled dust. Main literature considered for this review is from the last ten years, reporting analytical developments and applications regarding the considered contaminants in the indoor environment. Sample collection and pretreatment, analyte extraction or desorption, clean-up procedures, determination techniques, and performance results are summarized and discussed.

  20. Evaluation of indoor air pollution and its effect on human health in Beijing's rural areas

    SciTech Connect

    Hu, Hansheng; Liu, Youcheng )

    1989-01-01

    Average exposures to SO{sub 2}, NO{sub 2}, CO{sub 2}, CO, Inhalable Particles (IP), common bacteria and streptococci were monitored in 1986 in 24 new and old village households in the northern suburb of Beijing. Four hundred and fifty school children were also measured and observed for chronic and acute respiratory symptoms and illnesses, pulmonary function, immune response, carboxyhemoglobin level and eye response time to signals so as to evaluate the effects of rural indoor air pollution on human health. The results of air monitoring data showed that the new heating systems were effective in reducing the indoor concentrations of the measured pollutants by 23 to 76% in winter, but present concentrations still exceed China's Standard because of inadequate house design. Health outcomes suggested that children in the new village demonstrated signs of improvement for better health. The implications of different factors affecting indoor air pollution are evaluated and discussed.

  1. Effect of indoor air pollution from biomass fuel use on argyrophilic nuclear organizer regions in buccal epithelial cells.

    PubMed

    Mondal, Nandan K; Dutta, Anindita; Banerjee, Anirban; Chakraborty, Sreeparna; Lahiri, Twisha; Ray, Manas Ranjan

    2009-01-01

    This study investigated the effect of indoor air pollution from biomass-fuel use on the expression of argyrophilic nucleolar organizer regions (AgNORs), an indicator of ribosome biosynthesis, in epithelial cells of oral mucosa. AgNORs were evaluated using cytochemical staining in 62 nonsmoking indian women (median age, 34 years), who cooked exclusively with biomass, and 55 age-matched women, who were from a similar neighborhood and cooked with relatively clean liquefied petroleum gas (LPG). Concentrations of particulate pollutants in indoor air were measured using a real-time aerosol monitor. Compared to the LPG-using controls, biomass-fuel users showed a remarkably increased number of AgNOR dots per nucleus (6.08 +/-2.26 vs 3.16 +/-0.86, p < 0.001), AgNOR size (0.85 +/-0.19 vs 0.53 +/-0.15 mum2, p < 0.001), and percentage of AgNOR-occupied nuclear area (4.88 +/-1.49 vs 1.75 +/-0.13%, p < 0.001). Biomass-using households had 2 to 4 times more particulate pollutants than that of LPG-using households. The changes in AgNOR expression were positively associated with PM10 and PM2.5 levels in indoor air after controlling for potential confounders such as age, kitchen location, and family income. Thus, biomass smoke appears to be a risk factor for abnormal cell growth via upregulation of ribosome biogenesis.

  2. Within- and Between-Home Variability in Indoor-Air Insecticide Levels during Pregnancy among an Inner-City Cohort from New York City

    PubMed Central

    Whyatt, Robin M.; Garfinkel, Robin; Hoepner, Lori A.; Holmes, Darrell; Borjas, Mejico; Williams, Megan K.; Reyes, Andria; Rauh, Virginia; Perera, Frederica P.; Camann, David E.

    2007-01-01

    Background Residential insecticide use is widespread in the United States, but few data are available on the persistence and variability in levels in the indoor environment. Objective The study aim was to assess within- and between-home variability in indoor-air insecticides over the final 2 months of pregnancy among a cohort of African-American and Dominican women from New York City. Methods Women not employed outside the home were enrolled between February 2001 and May 2004 (n = 102); 9 insecticides and an adjuvant were measured in 48-hr personal air samples and 2-week integrated indoor air samples collected sequentially for 7.0 ± 2.3 weeks (n = 337 air samples). Results Sixty-one percent of the women reported using pest control during the air samplings. Chlorpyrifos, diazinon, and propoxur were detected in 99–100% of personal and indoor samples (range, 0.4–641 ng/m3). Piperonyl butoxide (a pyrethroid adjuvant) was detected in 45.5–68.5% (0.2–608 ng/m3). There was little within-home variability and no significant difference in air concentrations within homes over time (p ≥ 0.2); between-home variability accounted for 88% of the variance in the indoor air levels of propoxur, 92% in chlorpyrifos, 94% in diazinon, and 62% in piperonyl butoxide (p < 0.001). Indoor and maternal personal air insecticide levels were highly correlated (r = 0.7–0.9, p < 0.001). Diazinon and chlorpyrifos levels declined 5-fold between 2001 and 2004 but were detected in all homes 1.5 and 2.5 years, respectively, after the U.S. Environmental Protection Agency ban on their residential use. Conclusion Results showed that the insecticides were persistent in the home with little variability in air concentrations over the 2 months and contributed to chronic maternal inhalation exposures during pregnancy. PMID:17431487

  3. Association of indoor air pollution from coal combustion with influenza-like illness in housewives.

    PubMed

    Wang, Bin; Liu, Yingying; Li, Zhenjiang; Li, Zhiwen

    2016-09-01

    An association of influenza-like illness (ILI) with outdoor air pollution has been reported. However, the effect of indoor air pollution on ILI was rarely investigated. We aimed to determine an association of indoor air pollution from coal combustion (IAPCC) and lifestyle with ILI risk in housewives, and the modification effect of phase II metabolic enzyme genes. We recruited 403 housewives for a cross-sectional study in Shanxi Province, China, including 135 with ILI frequency (≥1 time per year in the past ten years) as the case group and 268 with ILI frequency (<1 times per year) as the control group. Information on their energy usage characteristics and lifestyle was collected by questionnaires, as well as the single nucleotide polymorphisms (SNPs) of epoxide hydrolase 1 (rs1051740 and rs2234922), N-acetyltransferase 2 (rs1041983), and glutathione S-transferase (rs1695). We used exposure index to indicate the level of IAPCC among housewives. Our results revealed that the exposure index was positively correlated with ILI frequency. A significant dose-response trend between the exposure index and ILI risk was found with or without adjusting for confounders. Cooking frequency in kitchen with coal as primary fuel and ventilation frequency in the living room or bedroom with a coal-fueled stove for heating during the heating season were two important risk factors to affect ILI frequency. Only rs1051740 was found to be associated with exposure index, whereas it didn't have interaction effect with exposure index on ILI frequency. In conclusion, IAPCC and SNPs of rs1051740 were both associated with ILI frequency.

  4. Identifying an indoor air exposure limit for formaldehyde considering both irritation and cancer hazards

    PubMed Central

    Golden, Robert

    2011-01-01

    Formaldehyde is a well-studied chemical and effects from inhalation exposures have been extensively characterized in numerous controlled studies with human volunteers, including asthmatics and other sensitive individuals, which provide a rich database on exposure concentrations that can reliably produce the symptoms of sensory irritation. Although individuals can differ in their sensitivity to odor and eye irritation, the majority of authoritative reviews of the formaldehyde literature have concluded that an air concentration of 0.3 ppm will provide protection from eye irritation for virtually everyone. A weight of evidence-based formaldehyde exposure limit of 0.1 ppm (100 ppb) is recommended as an indoor air level for all individuals for odor detection and sensory irritation. It has recently been suggested by the International Agency for Research on Cancer (IARC), the National Toxicology Program (NTP), and the US Environmental Protection Agency (US EPA) that formaldehyde is causally associated with nasopharyngeal cancer (NPC) and leukemia. This has led US EPA to conclude that irritation is not the most sensitive toxic endpoint and that carcinogenicity should dictate how to establish exposure limits for formaldehyde. In this review, a number of lines of reasoning and substantial scientific evidence are described and discussed, which leads to a conclusion that neither point of contact nor systemic effects of any type, including NPC or leukemia, are causally associated with exposure to formaldehyde. This conclusion supports the view that the equivocal epidemiology studies that suggest otherwise are almost certainly flawed by identified or yet to be unidentified confounding variables. Thus, this assessment concludes that a formaldehyde indoor air limit of 0.1 ppm should protect even particularly susceptible individuals from both irritation effects and any potential cancer hazard. PMID:21635194

  5. Smart Sensors Enable Smart Air Conditioning Control

    PubMed Central

    Cheng, Chin-Chi; Lee, Dasheng

    2014-01-01

    In this study, mobile phones, wearable devices, temperature and human motion detectors are integrated as smart sensors for enabling smart air conditioning control. Smart sensors obtain feedback, especially occupants' information, from mobile phones and wearable devices placed on human body. The information can be used to adjust air conditioners in advance according to humans' intentions, in so-called intention causing control. Experimental results show that the indoor temperature can be controlled accurately with errors of less than ±0.1 °C. Rapid cool down can be achieved within 2 min to the optimized indoor capacity after occupants enter a room. It's also noted that within two-hour operation the total compressor output of the smart air conditioner is 48.4% less than that of the one using On-Off control. The smart air conditioner with wearable devices could detect the human temperature and activity during sleep to determine the sleeping state and adjusting the sleeping function flexibly. The sleeping function optimized by the smart air conditioner with wearable devices could reduce the energy consumption up to 46.9% and keep the human health. The presented smart air conditioner could provide a comfortable environment and achieve the goals of energy conservation and environmental protection. PMID:24961213

  6. Smart sensors enable smart air conditioning control.

    PubMed

    Cheng, Chin-Chi; Lee, Dasheng

    2014-06-24

    In this study, mobile phones, wearable devices, temperature and human motion detectors are integrated as smart sensors for enabling smart air conditioning control. Smart sensors obtain feedback, especially occupants' information, from mobile phones and wearable devices placed on human body. The information can be used to adjust air conditioners in advance according to humans' intentions, in so-called intention causing control. Experimental results show that the indoor temperature can be controlled accurately with errors of less than ±0.1 °C. Rapid cool down can be achieved within 2 min to the optimized indoor capacity after occupants enter a room. It's also noted that within two-hour operation the total compressor output of the smart air conditioner is 48.4% less than that of the one using On-Off control. The smart air conditioner with wearable devices could detect the human temperature and activity during sleep to determine the sleeping state and adjusting the sleeping function flexibly. The sleeping function optimized by the smart air conditioner with wearable devices could reduce the energy consumption up to 46.9% and keep the human health. The presented smart air conditioner could provide a comfortable environment and achieve the goals of energy conservation and environmental protection.

  7. INDOOR AIR QUALITY DATA BASE FOR ORGANIC COMPOUNDS

    EPA Science Inventory

    The report gives results of the compilation of a data base for concentrations of organic compounds measured indoors. ased on a review of the literature from 1979 through 1990, the data base contains information on over 220 compounds ranging in molecular weight from 30 to 446. he ...

  8. Indoor tests of a hot-air solar collector

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Data taken relating indoor testing using solar simulator at Marshall Space Center has been compared with data taken during outdoor tests in previous studies. Data includes tests on thermal performance, time constance, and incidence-angle modifier tests in table/graph form.

  9. SOURCES OF INDOOR AIR CONTAMINANTS: CHARACTERIZING EMISSIONS AND HEALTH EFFECTS

    EPA Science Inventory

    This document consists of the Preface, Chapter 1. Introduction, Chapter 6. Conclusion, and References relating to an October 1990 conference at the John B. Pierce Laboratory and Yale University, New Haven, CT.

    The purpose of a May 1985 international conference on indoor s...

  10. Indoor air quality in public buildings. Volume 2

    SciTech Connect

    Sheldon, L.; Zelon, H.; Sickles, J.; Eaton, C.; Hartwell, T.

    1988-08-01

    Two separate but closely related studies of exposures to volatile organic compounds (VOCs) in buildings where people spend long periods of time were conducted. This report summarizes results obtained in six buildings: a new hospital, office and nursing home and another office, office/school, and nursing home. At each building sampling was performed at three indoor locations and a single outdoor location.

  11. JV Task 86 - Identifying the Source of Benzene in Indoor Air Using Different Compound Classes from TO-15 Data

    SciTech Connect

    Steven B. Hawthorne

    2007-04-15

    Volatile organic compound (VOC) data that had already been collected using EPA method TO-15 at four different sites under regulatory scrutiny (a school, strip mall, apartment complex, and business/residential neighborhood) were evaluated to determine whether the source of indoor air benzene was outdoor air or vapor intrusion from contaminated soil. Both the use of tracer organics characteristic of different sources and principal component statistical analysis demonstrated that the source of indoor air at virtually all indoor sampling locations was a result of outdoor air, and not contaminated soil in and near the indoor air-sampling locations. These results show that proposed remediation activities to remove benzene-contaminated soil are highly unlikely to reduce indoor air benzene concentrations. A manuscript describing these results is presently being prepared for submission to a peer-reviewed journal.

  12. AIR POLLUTION CONTROL TECHNOLOGIES

    EPA Science Inventory

    This is a chapter for John Wiley & Son's Mechanical Engineers' Handbook, and covers issues involving air pollution control. Various technologies for controlling sulfur oxides is considered including fuel desulfurization. It also considers control of nitrogen oxides including post...

  13. Uptake of toluene and ethylbenzene by plants: removal of volatile indoor air contaminants.

    PubMed

    Sriprapat, Wararat; Suksabye, Parinda; Areephak, Sirintip; Klantup, Polawat; Waraha, Atcharaphan; Sawattan, Anuchit; Thiravetyan, Paitip

    2014-04-01

    Air borne uptake of toluene and ethylbenzene by twelve plant species was examined. Of the twelve plant species examined, the highest toluene removal was found in Sansevieria trifasciata, while the ethylbenzene removal from air was with Chlorophytum comosum. Toluene and ethylbenzene can penetrate the plant׳s cuticle. However, the removal rates do not appear to be correlated with numbers of stomata per plant. It was found that wax of S. trifasciata and Sansevieria hyacinthoides had greater absorption of toluene and ethylbenzene, and it contained high hexadecanoic acid. Hexadecanoic acid might be involved in toluene and ethylbenzene adsorption by cuticles wax of plants. Chlorophyll fluorescence analysis or the potential quantum yield of PSII (Fv/Fm) in toluene exposed plants showed no significant differences between the control and the treated plants, whereas plants exposed to ethylbenzene showed significant differences or those parameters, specifically in Dracaena deremensis (Lemon lime), Dracaena sanderiana, Kalanchoe blossfeldiana, and Cordyline fruticosa. The Fv/Fm ratio can give insight into the ability of plants to tolerate (indoor) air pollution by volatile organic chemicals (VOC). This index can be used for identification of suitable plants for treating/sequestering VOCs in contaminated air.

  14. The ORNL Indoor Air Quality Study: Re-cap, Context, and Assessment on Radon

    SciTech Connect

    Tonn, Bruce Edward; Rose, Erin M.; Ternes, Mark P.

    2015-10-01

    As part of the retrospective evaluation of the U.S. Department of Energy s low-income Weatherization Assistance Program that was led by Oak Ridge National Laboratory (ORNL), an assessment of the impacts of weatherization on indoor air quality (IAQ) was conducted. This assessment included nearly 500 treatment and control homes across the country. Homes were monitored for carbon monoxide, radon, formaldehyde, temperature and humidity pre- and post-weatherization. This report focuses on the topic of radon and addresses issues not thoroughly discussed in the original IAQ report. The size, scope and rigor of the radon component of the IAQ study are compared to previous studies that assessed the impacts of weatherization on indoor radon levels. It is found that the ORNL study is by far the most extensive study conducted to date, though the ORNL results are consistent with the findings of the other studies. However, the study does have limitations related to its reliance on short-term measurements of radon and inability to attribute changes in radon levels in homes post-weatherization to specific weatherization measures individually or in combination.

  15. Indoor air quality in Portuguese schools: levels and sources of pollutants.

    PubMed

    Madureira, J; Paciência, I; Pereira, C; Teixeira, J P; Fernandes, E de O

    2016-08-01

    Indoor air quality (IAQ) parameters in 73 primary classrooms in Porto were examined for the purpose of assessing levels of volatile organic compounds (VOCs), aldehydes, particulate matter, ventilation rates and bioaerosols within and between schools, and potential sources. Levels of VOCs, aldehydes, PM2.5 , PM10 , bacteria and fungi, carbon dioxide (CO2 ), carbon monoxide, temperature and relative humidity were measured indoors and outdoors and a walkthrough survey was performed concurrently. Ventilation rates were derived from CO2 and occupancy data. Concentrations of CO2 exceeding 1000 ppm were often encountered, indicating poor ventilation. Most VOCs had low concentrations (median of individual species <5 μg/m(3) ) and were below the respective WHO guidelines. Concentrations of particulate matter and culturable bacteria were frequently higher than guidelines/reference values. The variability of VOCs, aldehydes, bioaerosol concentrations, and CO2 levels between schools exceeded the variability within schools. These findings indicate that IAQ problems may persist in classrooms where pollutant sources exist and classrooms are poorly ventilated; source control strategies (related to building location, occupant behavior, maintenance/cleaning activities) are deemed to be the most reliable for the prevention of adverse health consequences in children in schools.

  16. Endotoxins in indoor air and settled dust in primary schools in a subtropical climate.

    PubMed

    Salonen, Heidi; Duchaine, Caroline; Létourneau, Valérie; Mazaheri, Mandana; Clifford, Sam; Morawska, Lidia

    2013-09-03

    Endotoxins can significantly affect the air quality in school environments. However, there is currently no reliable method for the measurement of endotoxins, and there is a lack of reference values for endotoxin concentrations to aid in the interpretation of measurement results in school settings. We benchmarked the "baseline" range of endotoxin concentration in indoor air, together with endotoxin load in floor dust, and evaluated the correlation between endotoxin levels in indoor air and settled dust, as well as the effects of temperature and humidity on these levels in subtropical school settings. Bayesian hierarchical modeling indicated that the concentration in indoor air and the load in floor dust were generally (<95th percentile) <13 EU/m(3) and <24,570 EU/m(2), respectively. Exceeding these levels would indicate abnormal sources of endotoxins in the school environment and the need for further investigation. Metaregression indicated no relationship between endotoxin concentration and load, which points to the necessity for measuring endotoxin levels in both the air and settled dust. Temperature increases were associated with lower concentrations in indoor air and higher loads in floor dust. Higher levels of humidity may be associated with lower airborne endotoxin concentrations.

  17. Very volatile organic compounds: an understudied class of indoor air pollutants.

    PubMed

    Salthammer, T

    2016-02-01

    Very volatile organic compounds (VVOCs), as categorized by the WHO, are an important subgroup of indoor pollutants and cover a wide spectrum of chemical substances. Some VVOCs are components of products commonly used indoors, some result from chemical reactions and some are reactive precursors of secondary products. Nevertheless, there is still no clear and internationally accepted definition of VVOCs. Current approaches are based on the boiling point, and the saturation vapor pressure or refer to analytical procedures. A significant problem is that many airborne VVOCs cannot be routinely analyzed by the usually applied technique of sampling on Tenax TA® followed by thermal desorption GC/MS or by DNPH-sampling/HPLC/UV. Some VVOCs are therefore often neglected in indoor-related studies. However, VVOCs are of high significance for indoor air quality assessment and there is need for their broader consideration in measurement campaigns and material emission testing.

  18. Indoor air pollution and pulmonary performance: Investigating errors in exposure assessment

    SciTech Connect

    Hasabelnaby, N.A.; Ware, J.H.; Fuller, W.A.; Glesser, L.

    1989-01-01

    Pulmonary function measurements on pre-adolescent children and indoor air pollution measurements in the homes of these children are used to illustrate estimation techniques for linear regression models containing independent variables measured with error. In the data set, replicate measures of indoor air pollutant concentrations provide one method of estimating measurement error variances. Surrogate information in the form of cigarettes smoked is also available for the pollutant of interest. Several estimation procedures are presented, and two estimators were combined, one based on surrogate information and one based on replication information, using generalized least squares.

  19. Quantitative Passive Diffusive Sampling for Assessing Soil Vapor Intrusion to Indoor Air

    DTIC Science & Technology

    2012-03-28

    4/11/2012 1 Quantitative Passive Diffusive Sampling for Assessing Soil Vapor Intrusion to Indoor Air Todd McAlary and Hester Groenevelt, Geosyntec... Intrusion to Indoor Air 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK...10-6 risk (ppb) Vapour pressure (atm) Water solubility (g/l) 1,1,1-Trichloroethane 110 400 0.16 1.33 1,2,4-Trimethylbenzene

  20. SIMULATION TOOL KIT FOR INDOOR AIR QUALITY AND INHALATION EXPOSURE (IAQX) VERSION 1.0 USER'S GUIDE

    EPA Science Inventory

    The User's Guide describes a Microsoft Windows-based indoor air quality (IAQ) simulation software package designed Simulation Tool Kit for Indoor Air Quality and Inhalation Exposure, or IAQX for short. This software complements and supplements existing IAQ simulation programs and...

  1. Background Indoor Air Concentrations of Volatile Organic Compounds in North American Residences (1990 – 2005): A Compilation of Statistics for Assessing Vapor Intrusion

    EPA Pesticide Factsheets

    This technical report presents a summary of indoor air studies that measured background concentrations of VOCs in the indoor air of thousands of North American residences and an evaluation and compilation of their reported statistical information.

  2. Indoor air polychlorinated biphenyl concentrations in three communities along the Upper Hudson River, New York.

    PubMed

    Wilson, Lloyd R; Palmer, Patrick M; Belanger, Erin E; Cayo, Michael R; Durocher, Lorie A; Hwang, Syni-An A; Fitzgerald, Edward F

    2011-10-01

    Indoor air polychlorinated biphenyl (PCB) concentrations were measured in upstate New York as part of a nonoccupational exposure investigation. The adjacent study communities contain numerous sites of current and former PCB contamination, including two capacitor-manufacturing facilities. Indoor air PCB concentrations in the study area homes were not significantly different than in the comparison area homes. Total PCB concentrations in the study area homes ranged from 0.3 to 114.3 ng/m(3) (median 7.9). For the comparison area homes, concentrations ranged from 0.3 to 233.3 ng/m(3) (median 6.8). No correlations were found between PCB concentrations in indoor and outdoor air, with indoor concentrations generally 20 times higher than outdoor concentrations. Of the home characteristics cataloged, the presence of fluorescent lights was significantly associated with total PCB concentration in the study area only. The indoor PCB concentrations measured in this study are similar to those in other communities with known PCB-contaminated sites and similar to levels reported in other locations from the northeastern United States.

  3. Housing characteristics and indoor air quality in households of Alaska Native children with chronic lung conditions.

    PubMed

    Singleton, R; Salkoski, A J; Bulkow, L; Fish, C; Dobson, J; Albertson, L; Skarada, J; Kovesi, T; McDonald, C; Hennessy, T W; Ritter, T

    2017-03-01

    Alaska Native children experience high rates of respiratory infections and conditions. Household crowding, indoor smoke, lack of piped water, and poverty have been associated with respiratory infections. We describe the baseline household characteristics of children with severe or chronic lung disease participating in a 2012-2015 indoor air study. We monitored indoor PM2.5, CO2 , relative humidity %, temperature, and VOCs and interviewed caregivers about children's respiratory symptoms. We evaluated the association between reported children's respiratory symptoms and indoor air quality indicators using multiple logistic regression analysis. Compared with general US households, study households were more likely overcrowded 73% (62%-82%) vs 3.2% (3.1%-3.3%); had higher woodstove use as primary heat source 16% (9%-25%) vs 2.1% (2.0%-2.2%); and higher proportion of children in a household with a smoker 49% (38%-60%) vs 26.2% (25.5%-26.8%). Median PM2.5 was 33 μg/m(3) . Median CO2 was 1401 ppm. VOCs were detectable in all homes. VOCs, smoker, primary wood heat, and PM2.5>25 μg/m(3) were associated with higher risk for cough between colds; VOCs were associated with higher risk for wheeze between colds and asthma diagnosis. High indoor air pollutant levels were associated with respiratory symptoms in household children, likely related to overcrowding, poor ventilation, woodstove use, and tobacco smoke.

  4. Influence of a portable air treatment unit on health-related quality indicators of indoor air in a classroom.

    PubMed

    Scheepers, Paul T J; Cremers, Robbert; van Hout, Stef P R; Anzion, Rob B M

    2012-02-01

    During periods of two weeks in February and June 2010 the performance of portable air treatment units (PATUs) was evaluated in a primary school classroom using indicators of indoor air quality. Air samples were collected in an undisturbed setting on weekend days and in an occupied setting during teaching hours. In the first week PATUs were turned off and in the second week they were turned on. On weekend days PATUs reduced indoor levels of PM-10 by 87% in February and by 70% in June compared to weekend days when PATUs were turned off. On schooldays, indoor PM-10 was increased by 6% in February and reduced by 42% in June. For PM-2.5 reductions on weekend days were 89% in February and 80% in June. On school days PM-2.5 was increased by 15% in February and reduced by 83% in June. Turning on the PATUs reduced total VOC by 80% on weekend days and by 57% on school days (but not in June). No influence on formaldehyde, NO(2), O(3) and molds was observed. PATUs appeared to be less effective in removal of air pollutants when used in an occupied classroom compared to an unoccupied setting. Our study suggests that such devices should be tested in real-life settings to evaluate their influence on indoor air quality.

  5. Analysis of feature selection with Probabilistic Neural Network (PNN) to classify sources influencing indoor air quality

    NASA Astrophysics Data System (ADS)

    Saad, S. M.; Shakaff, A. Y. M.; Saad, A. R. M.; Yusof, A. M.; Andrew, A. M.; Zakaria, A.; Adom, A. H.

    2017-03-01

    There are various sources influencing indoor air quality (IAQ) which could emit dangerous gases such as carbon monoxide (CO), carbon dioxide (CO2), ozone (O3) and particulate matter. These gases are usually safe for us to breathe in if they are emitted in safe quantity but if the amount of these gases exceeded the safe level, they might be hazardous to human being especially children and people with asthmatic problem. Therefore, a smart indoor air quality monitoring system (IAQMS) is needed that able to tell the occupants about which sources that trigger the indoor air pollution. In this project, an IAQMS that able to classify sources influencing IAQ has been developed. This IAQMS applies a classification method based on Probabilistic Neural Network (PNN). It is used to classify the sources of indoor air pollution based on five conditions: ambient air, human activity, presence of chemical products, presence of food and beverage, and presence of fragrance. In order to get good and best classification accuracy, an analysis of several feature selection based on data pre-processing method is done to discriminate among the sources. The output from each data pre-processing method has been used as the input for the neural network. The result shows that PNN analysis with the data pre-processing method give good classification accuracy of 99.89% and able to classify the sources influencing IAQ high classification rate.

  6. Concentrations and decay rates of ozone in indoor air in dependence on building and surface materials.

    PubMed

    Moriske, H J; Ebert, G; Konieczny, L; Menk, G; Schöndube, M

    1998-08-01

    The decay of ozone in indoor air was measured in a closed chamber after contact with different building materials and residential surfaces. The tested materials were: vinyl wall paper, woodchip paper, plywood, latex paint, fitted carpet, and plaster. In the summer of 1996, the entry of ozone from ambient air into indoor air during ventilation and the ozone decay in indoor air, after windows had been closed again, were studied. Measurements were done in a residential house on the outskirts of Berlin. The following results were gained: the chamber measurements showed a decay of ozone after contact with most of the materials put inside the chamber. Higher decay rates have been obtained for wall papers, plywood, fitted carpet and plaster. As described in the literature, ozone is able to react with olefines inside the materials and is able to form formaldehyde and other components. This formation of formaldehyde could also be confirmed in our investigations. Thus, in most cases, the formaldehyde concentrations were lower than the German guideline value of 0.1 ppm. The formation of formaldehyde could be prevented when a special wall paper that was coated with activated carbon was used. In the house, a complete ozone diffusion into indoor air took place during ventilation within 30 min. After closing the windows, the ozone concentrations decreased to the basic level before ventilation within 60-90 min.

  7. Perfluoroalkyl acids and their precursors in indoor air sampled in children's bedrooms.

    PubMed

    Winkens, Kerstin; Koponen, Jani; Schuster, Jasmin; Shoeib, Mahiba; Vestergren, Robin; Berger, Urs; Karvonen, Anne M; Pekkanen, Juha; Kiviranta, Hannu; Cousins, Ian T

    2017-03-01

    The contamination levels and patterns of perfluoroalkyl acids (PFAAs) and their precursors in indoor air of children's bedrooms in Finland, Northern Europe, were investigated. Our study is among the most comprehensive indoor air monitoring studies (n = 57) and to our knowledge the first one to analyse air in children's bedrooms for PFASs (17 PFAAs and 9 precursors, including two acrylates, 6:2 FTAC and 6:2 FTMAC). The most frequently detected compound was 8:2 fluorotelomer alcohol (8:2 FTOH) with the highest median concentration (3570 pg/m(3)). FTOH concentrations were generally similar to previous studies, indicating that in 2014/2015 the impact of the industrial transition had been minor on FTOH levels in indoor air. However, in contrast to earlier studies (with one exception), median concentrations of 6:2 FTOH were higher than 10:2 FTOH. The C8 PFAAs are still the most abundant acids, even though they have now been phased out by major manufacturers. The mean concentrations of FOSE/As, especially MeFOSE (89.9 pg/m(3)), were at least an order of magnitude lower compared to previous studies. Collectively the comparison of FTOHs, PFAAs and FOSE/FOSAs with previous studies indicates that indoor air levels of PFASs display a time lag to changes in production of several years. This is the first indoor air study investigating 6:2 FTMAC, which was frequently detected (58%) and displayed some of the highest maximum concentrations (13 000 pg/m(3)). There were several statistically significant correlations between particular house and room characteristics and PFAS concentrations, most interestingly higher EtFOSE air concentrations in rooms with plastic floors compared to wood or laminate.

  8. Distribution of volatile organic chemicals in outdoor and indoor air

    NASA Technical Reports Server (NTRS)

    Shah, Jitendra J.; Singh, Hanwant B.

    1988-01-01

    The EPA volatile organic chemistry (VOC) national ambient data base (Shah, 1988) is discussed. The 320 chemicals included in the VOC data base are listed. The methods used to obtain the data are reviewed and the availability, accessibility, and operation of the data base are examined. Tables of the daily outdoor concentrations for 66 chemicals and the daily indoor concentrations for 35 chemicals are presented.

  9. Understanding the impact of molds on indoor air quality and ...

    EPA Pesticide Factsheets

    Molds are multi-celled, colony forming, eukaryotic microorganisms lacking chlorophyll belonging to the Kingdom Fungi. Furthermore, molds are ubiquitous in both indoor and outdoor environments. There are more than 200 different types of fungi to which people are routinely exposed (NAS. 2000). The growth of molds in homes, schools, offices, and other public buildings has been implicated as the cause of a wide variety of adverse health effects. Headlines resulting from moldy, water-damaged homes, particularly

  10. Indoor Air Pollution by Methylsiloxane in Household and Automobile Settings.

    PubMed

    Meng, Fanyong; Wu, Hao

    2015-01-01

    This study examines characteristics of atmospheric methylsiloxane pollution in indoor settings where interior renovation/redecoration is being undertaken, in addition to ordinary family homes and inside family cars. Concentrations of atmospheric methylsiloxane in these locations were approximately one order of magnitude higher than that in outdoor areas. The average indoor concentration of methylsiloxane where renovation was being undertaken was 9.4 μg/m3, which is slightly higher than that in an ordinary family home (7.88 μg/m3), while samples from family cars showed lower concentration (3.10 μg/m3). The indoor atmospheric concentration during renovation/redecoration work was significantly positively correlated with the duration of the work. The structure of atmospheric methylsiloxane pollution is basically the same in these three venues. The concentration of annulus siloxane was much higher than that of linear compounds (85% of the total methylsiloxane concentrations). Household dust in average family homes showed total methylsiloxane concentration of 9.5 μg/m3 (average); the structure mainly consisted of linear siloxane (approximately 98% of total concentration), thereby differing from that of atmospheric methylsiloxane pollution. The comparatively high concentration of methylsiloxane in these three venues indicates that interior renovation and decoration work, and even travelling in cars, can involve exposure to more serious siloxane contamination during everyday activities.

  11. Measurement of air exchange rates in different indoor environments using continuous CO2 sensors.

    PubMed

    You, Yan; Niu, Can; Zhou, Jian; Liu, Yating; Bai, Zhipeng; Zhang, Jiefeng; He, Fei; Zhang, Nan

    2012-01-01

    A new air exchange rate (AER) monitoring method using continuous CO2 sensors was developed and validated through both laboratory experiments and field studies. Controlled laboratory simulation tests were conducted in a 1-m3 environmental chamber at different AERs (0.1-10.0 hr(-1)). AERs were determined using the decay method based on box model assumptions. Field tests were conducted in classrooms, dormitories, meeting rooms and apartments during 2-5 weekdays using CO2 sensors coupled with data loggers. Indoor temperature, relative humidity (RH), and CO2 concentrations were continuously monitored while outdoor parameters combined with on-site climate conditions were recorded. Statistical results indicated that good laboratory performance was achieved: duplicate precision was within 10%, and the measured AERs were 90%-120% of the real AERs. Average AERs were 1.22, 1.37, 1.10, 1.91 and 0.73 hr(-1) in dormitories, air-conditioned classrooms, classrooms with an air circulation cooling system, reading rooms, and meeting rooms, respectively. In an elderly particulate matter exposure study, all the homes had AER values ranging from 0.29 to 3.46 hr(-1) in fall, and 0.12 to 1.39 hr(-1) in winter with a median AER of 1.15.

  12. Association between indoor and outdoor air pollution and adolescent asthma from 1995 to 1996 in Taiwan

    SciTech Connect

    Wang, T.N.; Ko, Y.C.; Chao, Y.Y.; Huang, C.C.; Lin, R.S.

    1999-10-01

    The study aim was to estimate the contribution of indoor and outdoor air pollution to the 1-year prevalence of adolescent asthma after personal susceptibility and other potential risk factors were taken into account. A large-scaled cross-sectional study was conducted among 165,173 high school students aged 11 to 16 years in the different communities of Kaohsiung and Pintong in Taiwan, from October 1995 to June 1996. Each student and his/her parents participating in the study completed a video and a written International Study of Asthma and Allergies in Childhood questionnaire about symptoms of wheezing and allergies, passive smoking, and demographic variables. After adjustment for potential confounders, adolescents exposed to cigarette smoking and environmental tobacco smoke were found to suffer from asthma at an increased frequency. The authors observed a statistically significant association between outdoor air pollution and asthma, after controlling for potential confound variables. Total suspended particulate, nitrogen dioxide, carbon monoxide, ozone, and airborne dust particles all displayed an independent association with asthma, respectively. There were no selection biases in this community-based study, which provides evidence that passive smoking and long-term, high average outdoor air pollution are independent risk factors of asthma.

  13. Bacterial constituents of indoor air in a high throughput building in the tropics.

    PubMed

    Li, Tee Chin; Ambu, Stephen; Mohandas, Kavitha; Wah, Mak Joon; Sulaiman, Lokman Hakim; Murgaiyah, Malathi

    2014-09-01

    Airborne bacteria are significant biotic constituents of bioaerosol. Bacteria at high concentrations in the air can compromise indoor air quality (IAQ) and result in many diseases. In tropical environments like Malaysia that extensively utilize air-conditioning systems, this is particularly significant due to continuous recirculation of indoor air and the potential implications for human health. Currently, there is a lack of knowledge regarding the impact of airborne bacteria on IAQ in Malaysia. This study was prompted by a need for reliable baseline data on airborne bacteria in the indoor environment of tropical equatorial Malaysia, that may be used as a reference for further investigations on the potential role played by airborne bacteria as an agent of disease in this region. It was further necessitated due to the threat of bioterrorism with the potentiality of release of exotic pathogenic microorganisms into indoor or outdoor air. Before scientists can detect the latter, a gauge of the common microorganisms in indoor (as well as outdoor) air needs to be ascertained, hence the expediency of this study. Bacterial counts from the broad-based and targeted study were generally in the order of 10(2) colony-forming units (CFU) per m(3) of air. The most prevalent airborne bacteria found in the broad-based study that encompassed all five levels of the building were Gram-positive cocci (67.73%), followed by Gram-positive rods (24.26%) and Gram-negative rods (7.10%). Gram-negative cocci were rarely detected (0.71%). Amongst the genera identified, Kytococcus sp., Micrococcus sp., Staphylococcus sp., Leifsonia sp., Bacillus sp. and Corynebacterium sp. predominated in indoor air. The most dominant bacterial species were Kytococcus sedentarius, Staphylococcus epidermidis and Micrococcus luteus. The opportunistic and nosocomial pathogen, Stenotrophomonas maltophilia was also discovered at a high percentage in the cafeteria. The bacteria isolated in this study have been

  14. Phthalate esters (PAEs) in indoor PM10/PM2.5 and human exposure to PAEs via inhalation of indoor air in Tianjin, China

    NASA Astrophysics Data System (ADS)

    Zhang, Leibo; Wang, Fumei; Ji, Yaqin; Jiao, Jiao; Zou, Dekun; Liu, Lingling; Shan, Chunyan; Bai, Zhipeng; Sun, Zengrong

    2014-03-01

    In this study, filter samples of six Phthalate esters (PAEs) in indoor PM10 and PM2.5 were collected from thirteen homes in Tianjin, China. The results showed that the concentrations of Σ6PAEs in indoor PM10 and PM2.5 were in the range of 13.878-1591.277 ng m-3 and 7.266-1244.178 ng m-3, respectively. Dibutyl phthalate (DBP) was the most abundant compounds followed by di-2-ethylhexyl phthalate (DEHP) in indoor PM10 and PM2.5. Whereas DBP and dimethyl phthalate (DMP) were the predominant compounds in indoor air (gas-phase + particle-phase), the median values were 573.467 and 368.364 ng m-3 respectively. The earlier construction time, the lesser indoor area, the old decoration, the very crowded items coated with plastic and a lower frequency of dusting may lead to a higher level of PAEs in indoor environment. The six PAEs in indoor PM10 and PM2.5 were higher in summer than those in winter. The daily intake (DI) of six PAEs for five age groups through air inhalation in indoor air in Tianjin was estimated. The results indicated that the highest exposure dose was DBP in every age group, and infants experienced the highest total DIs (median: 664.332 ng kg-bw-1 day-1) to ∑6PAEs, whereas adults experienced the lowest total DIs (median: 155.850 ng kg-bw-1 day-1) to ∑6PAEs. So, more attention should be paid on infants in the aspect of indoor inhalation exposure to PAEs.

  15. Review of bioaerosols in indoor environment with special reference to sampling, analysis and control mechanisms.

    PubMed

    Ghosh, Bipasha; Lal, Himanshu; Srivastava, Arun

    2015-12-01

    Several tiny organisms of various size ranges present in air are called airborne particles or bioaerosol which mainly includes live or dead fungi and bacteria, their secondary metabolites, viruses, pollens, etc. which have been related to health issues of human beings and other life stocks. Bio-terror attacks in 2001 as well as pandemic outbreak of flue due to influenza A H1N1 virus in 2009 have alarmed us about the importance of bioaerosol research. Hence characterization i.e. identification and quantification of different airborne microorganisms in various indoor environments is necessary to identify the associated risks and to establish exposure threshold. Along with the bioaerosol sampling and their analytical techniques, various literatures revealing the concentration levels of bioaerosol have been mentioned in this review thereby contributing to the knowledge of identification and quantification of bioaerosols and their different constituents in various indoor environments (both occupational and non-occupational sections). Apart from recognition of bioaerosol, developments of their control mechanisms also play an important role. Hence several control methods have also been briefly reviewed. However, several individual levels of efforts such as periodic cleaning operations, maintenance activities and proper ventilation system also serve in their best way to improve indoor air quality.

  16. Exposure to Air Ions in Indoor Environments: Experimental Study with Healthy Adults

    PubMed Central

    Wallner, Peter; Kundi, Michael; Panny, Michael; Tappler, Peter; Hutter, Hans-Peter

    2015-01-01

    Since the beginning of the 20th century there has been a scientific debate about the potential effects of air ions on biological tissues, wellbeing and health. Effects on the cardiovascular and respiratory system as well as on mental health have been described. In recent years, there has been a renewed interest in this topic. In an experimental indoor setting we conducted a double-blind cross-over trial to determine if higher levels of air ions, generated by a special wall paint, affect cognitive performance, wellbeing, lung function, and cardiovascular function. Twenty healthy non-smoking volunteers (10 female, 10 male) participated in the study. Levels of air ions, volatile organic compounds and indoor climate factors were determined by standardized measurement procedures. Air ions affected the autonomous nervous system (in terms of an increase of sympathetic activity accompanied by a small decrease of vagal efferent activity): In the test room with higher levels of air ions (2194/cm3 vs. 1038/cm3) a significantly higher low to high frequency ratio of the electrocardiography (ECG) beat-to-beat interval spectrogram was found. Furthermore, six of nine subtests of a cognitive performance test were solved better, three of them statistically significant (verbal factor, reasoning, and perceptual speed), in the room with higher ion concentration. There was no influence of air ions on lung function and on wellbeing. Our results indicate slightly activating and cognitive performance enhancing effects of a short-term exposure to higher indoor air ion concentrations. PMID:26569277

  17. Exposure to Air Ions in Indoor Environments: Experimental Study with Healthy Adults.

    PubMed

    Wallner, Peter; Kundi, Michael; Panny, Michael; Tappler, Peter; Hutter, Hans-Peter

    2015-11-10

    Since the beginning of the 20th century there has been a scientific debate about the potential effects of air ions on biological tissues, wellbeing and health. Effects on the cardiovascular and respiratory system as well as on mental health have been described. In recent years, there has been a renewed interest in this topic. In an experimental indoor setting we conducted a double-blind cross-over trial to determine if higher levels of air ions, generated by a special wall paint, affect cognitive performance, wellbeing, lung function, and cardiovascular function. Twenty healthy non-smoking volunteers (10 female, 10 male) participated in the study. Levels of air ions, volatile organic compounds and indoor climate factors were determined by standardized measurement procedures. Air ions affected the autonomous nervous system (in terms of an increase of sympathetic activity accompanied by a small decrease of vagal efferent activity): In the test room with higher levels of air ions (2194/cm³ vs. 1038/cm³) a significantly higher low to high frequency ratio of the electrocardiography (ECG) beat-to-beat interval spectrogram was found. Furthermore, six of nine subtests of a cognitive performance test were solved better, three of them statistically significant (verbal factor, reasoning, and perceptual speed), in the room with higher ion concentration. There was no influence of air ions on lung function and on wellbeing. Our results indicate slightly activating and cognitive performance enhancing effects of a short-term exposure to higher indoor air ion concentrations.

  18. Application of receptor modeling to indoor air emissions from electroplating

    SciTech Connect

    Wadden, R.A.; Liao, S.L.; Scheff, P.A.; Franke, J.E.; Conroy, L.M.

    1998-12-01

    In work areas containing multiple sources of the same air pollutant, it is useful for control purposes to be able to separate out the contribution from each individual source. In this study, the chemical mass balance (CMB) receptor model was used to allocate the contributions from multiple sources to area concentration measurements in three electroplating shops. Shop 1 was a room with a single copper electroplating line; shop 2 was a large bay containing a chromium conversion coating line, a continuous chromium electroplating line, and several manual electroplating operations; shop 3 contained a piston chrome plating line, a decorative chrome plating line, and manual and barrel zinc coating lines. The receptor modeling approach uses the elemental composition of one or more source categories to determine what fraction of an area sample is contributed by each source. In most cases the CMB model predicted over 90% of the measured concentrations. The allocation procedure explained 100% of the copper measured at three locations in shop 1, with contributions of 95 to 98% from the plating line and the rest from air outside the room. For shop 2, a two-source model explained 100% of the chromium measured at five sampling locations. For shop 3, the percent contributions of chromium from the piston plating line and the decorative plating line were consistent with distance from each of the sources.

  19. [Establishing IAQ Metrics and Baseline Measures.] "Indoor Air Quality Tools for Schools" Update #20

    ERIC Educational Resources Information Center

    US Environmental Protection Agency, 2009

    2009-01-01

    This issue of "Indoor Air Quality Tools for Schools" Update ("IAQ TfS" Update) contains the following items: (1) News and Events; (2) IAQ Profile: Establishing Your Baseline for Long-Term Success (Feature Article); (3) Insight into Excellence: Belleville Township High School District #201, 2009 Leadership Award Winner; and (4) Have Your Questions…

  20. [Reduce Energy Costs While Maintaining Healthy IAQ.] "Indoor Air Quality Tools for Schools" Update #17

    ERIC Educational Resources Information Center

    US Environmental Protection Agency, 2009

    2009-01-01

    This issue of "Indoor Air Quality Tools for Schools" Update ("IAQ TfS" Update) contains the following items: (1) News and Events; (2) Feature Article: Reduce Energy Costs while Maintaining Healthy IAQ; (3) Insight into Excellence: North East Independent School District ; (4) School Building Week 2009; and (5) Have Your Questions Answered!

  1. COST ANALYSIS OF ACTIVATED CARBON VERSUS PHOTOCATALYTIC OXIDATION FOR REMOVING ORGANIC COMPOUNDS FROM INDOOR AIR

    EPA Science Inventory

    A cost comparison has been conducted of 1 m3/s indoor air cleaners using granular activated carbon (GAC) vs. photocatalytic oxidation (PCO) for treating a steady-state inlet volatile organic compound (VOC) concentration of 0.3 mg/m3. The commercial GAC unit was costed assuming t...

  2. Indoor air pollution: a poverty-related cause of mortality among the children of the world.

    PubMed

    Emmelin, Anders; Wall, Stig

    2007-11-01

    This article reviews the research on the relation between indoor air pollution exposure and acute respiratory infection (ARI) in children in developing countries. ARI is a cause of death globally, causing approximately 19% of all deaths before the age of 5 years, according to a World Health Organization estimate. Indoor air pollution from biomass fuels, which is strongly poverty related, has long been regarded as an important risk factor for ARI morbidity and mortality. The empirical base for this view is comparatively narrow, with few empirical studies in relation to the magnitude of the global public health importance of the problem. Most existing reports consistently indicate that indoor air pollution is indeed a risk factor for ARI, but studies are generally small and use indirect indicators of pollution, such as use of biomass fuel or type of stove. Exposure assessment for indoor air pollution in developing countries is recognized as a major obstacle because of high cost and infrastructural limitations to chemical pollution sampling. Use of proxy indicators without measurement support may increase the risk of both misclassification of exposure and of confounding by other poverty-related factors. The issue of sufficient sample size further underlines the need for decisions to invest in this research field. Areas where further research is needed also include exploring qualitatively options for interventions that are culturally and economically acceptable to local communities.

  3. Weatherization and Indoor Air Quality: Measured Impacts in Single Family Homes Under the Weatherization Assistance Program

    SciTech Connect

    Pigg, Scott; Cautley, Dan; Francisco, Paul; Hawkins, Beth A; Brennan, Terry M

    2014-09-01

    This report summarizes findings from a national field study of indoor air quality parameters in homes treated under the Weatherization Assistance Program (WAP). The study involved testing and monitoring in 514 single-family homes (including mobile homes) located in 35 states and served by 88 local weatherization agencies.

  4. SERDP and ESTCP Workshop on Vapor Intrusion into Indoor Air from Contaminated Groundwater

    DTIC Science & Technology

    2014-03-01

    mitigating radon and volatile organic compound (VOC) subsurface vapor intrusion. These projects have determined that vapor concentrations can be highly...Validation of More Cost-Effective Methods for Mitigating Radon and VOC Subsurface Vapor Intrusion to Indoor Air Todd McAlary Geosyntec 1045 Morning

  5. Comfort, Indoor Air Quality, and Energy Consumption in Low Energy Homes

    SciTech Connect

    Englemann, P.; Roth, K.; Tiefenbeck, V.

    2013-01-01

    This report documents the results of an in-depth evaluation of energy consumption and thermal comfort for two potential net zero-energy homes (NZEHs) in Massachusetts, as well as an indoor air quality (IAQ) evaluation performed in conjunction with Lawrence Berkeley National Laboratory (LBNL).

  6. Relationships between estimated flame retardant emissions and levels in indoor air and house dust.

    PubMed

    Liagkouridis, I; Cequier, E; Lazarov, B; Palm Cousins, A; Thomsen, C; Stranger, M; Cousins, I T

    2016-09-10

    A significant number of consumer goods and building materials can act as emission sources of flame retardants (FRs) in the indoor environment. We investigate the relationship between the emission source strength and the levels of 19 brominated flame retardants (BFRs) and seven organophosphate flame retardants (OPFRs) in air and dust collected in 38 indoor microenvironments in Norway. We use modeling methods to back-calculate emission rates from indoor air and dust measurements and identify possible indications of an emission-to-dust pathway. Experimentally based emission estimates provide a satisfactory indication of the relative emission strength of indoor sources. Modeling results indicate an up to two orders of magnitude enhanced emission strength for OPFRs (median emission rates of 0.083 and 0.41 μg h(-1) for air-based and dust-based estimates) compared to BFRs (0.52 and 0.37 ng h(-1) median emission rates). A consistent emission-to-dust signal, defined as higher dust-based than air-based emission estimates, was identified for four of the seven OPFRs, but only for one of the 19 BFRs. It is concluded, however, that uncertainty in model input parameters could potentially lead to the false identification of an emission-to-dust signal.

  7. Comparison of mold concentrations quantified by MSQPCR in indoor and outdoor air sampled simultaneously

    SciTech Connect

    Meklin, Teija; Reponen, Tina; McKinstry, Craig A.; Cho, Seung H.; Grinshpun, Sergey A.; Nevalainen, Aino; Vepsalainen, Asko; Haugland, Richard A.; Lemasters, Grace; Vesper, Sephen J.

    2007-08-15

    Mold specific quantitative PCR (MSQPCR) was used to measure the concentrations of 36 mold species in dust and in indoor and in outdoor air samples that were taken simultaneously in 17 homes in Cincinnati with no-known water damage. The total spore concentrations in the indoor (I) and outdoor (O) air samples were statistically significantly different and the concentrations in the three sample types of many of the individual species were significantly different (p < 0.05 based on the Wilcoxon Signed Rank Test). The I/O ratios of the averages or geometric means of the individual species were generally less than 1; but these I/O ratios were quite variable ranging from 0.03 for A. sydowii to 1.2 for Acremonium strictum. There were no significant correlations for the 36 specific mold concentrations between the dust samples and the indoor or outdoor air samples (based on the Spearman’s Rho test). The indoor and outdoor air concentrations of 32 of the species were not correlated. Only Aspergillus penicillioides, C. cladosporioides types 1 and 2 and C. herbarum had sufficient data to estimate a correlation at rho > 0.5 with signicance (p < 0.05) In six of these homes, a previous dust sample had been collected and analyzed 2 years earlier. The ERMI© values for the dust samples taken in the same home two years apart were not significantly different (p=0.22) based on Wilcoxon Signed Rank Test.

  8. Emissions of indoor air pollutants from six user scenarios in a model room

    NASA Astrophysics Data System (ADS)

    Höllbacher, Eva; Ters, Thomas; Rieder-Gradinger, Cornelia; Srebotnik, Ewald

    2017-02-01

    In this study six common user scenarios putatively influencing indoor air quality were performed in a model room constructed according to the specifications of the European Reference Room given in the new horizontal prestandard prEN 16516 to gain further information about the influence of user activities on indoor air quality. These scenarios included the use of cleaning agent, an electric air freshener, an ethanol fireplace and cosmetics as well as cigarette smoking and peeling of oranges. Four common indoor air pollutants were monitored: volatile organic compounds (VOC), particulate matter (PM), carbonyl compounds and CO2. The development of all pollutants was determined during and after the test performance. For each measured pollutant, well-defined maximum values could be assigned to one or more of the individual user scenarios. The highest VOC concentration was measured during orange-peeling reaching a maximum value of 3547 μg m-3. Carbonyl compounds and PM were strongly elevated while cigarette smoking. Here, a maximum formaldehyde concentration of 76 μg m-3 and PM concentration of 378 μg m-3 were measured. CO2 was only slightly affected by most of the tests except the use of the ethanol fireplace where a maximum concentration of 1612 ppm was reached. Generally, the user scenarios resulted in a distinct increase of several indoor pollutants that usually decreased rapidly after the removal of the source.

  9. Indoor air condensate as a novel matrix for monitoring inhalable organic contaminants.

    PubMed

    Roll, Isaac B; Halden, Rolf U; Pycke, Benny F G

    2015-05-15

    With the population of developed nations spending nearly 90% of their time indoors, indoor air quality (IAQ) is a critical indicator of human health risks from inhalation of airborne contaminants. We present a novel approach for qualitative monitoring of IAQ through the collection and analysis of indoor air condensate discharged from heat exchangers of heating, ventilation, and air conditioning (HVAC) systems. Condensate samples were collected from six suburban homes and one business in Maricopa County, Arizona, concentrated via solid-phase extraction, analyzed for 10 endocrine disrupting chemicals (EDCs) by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and screened for additional organic compounds by gas chromatography-mass spectrometry (GC-MS). All 10 EDCs were detected in at least one of the sampled buildings. More than 100 additional compounds were detected by GC-MS, of which 40 were tentatively identified using spectral database searches. Twelve compounds listed as designated chemicals for biomonitoring by the California Environmental Contaminant Biomonitoring Program were detected. Microfiltration of condensate samples prior to extraction had no discernable effect on contaminant concentration, suggesting that contaminants were freely dissolved or associated with inhalable, submicron particles. This study is the first to document the utility of HVAC condensate for the qualitative assessment of indoor air for pollutants.

  10. Fact Sheet on Avoiding Indoor Air Quality Problems During Flood Cleanup

    EPA Pesticide Factsheets

    This fact sheet discusses problems caused by microbial growth, and other effects of flooding, on indoor air quality and the steps you can take to lessen these effects. This focuses on residential flood cleanup, but it applies to other building types.

  11. Sewer Gas: An Indoor Air Source of PCE to Consider During Vapor Intrusion Investigations.

    PubMed

    Pennell, Kelly G; Scammell, Madeleine Kangsen; McClean, Michael D; Ames, Jennifer; Weldon, Brittany; Friguglietti, Leigh; Suuberg, Eric M; Shen, Rui; Indeglia, Paul A; Heiger-Bernays, Wendy J

    2013-01-01

    The United States Environmental Protection Agency (USEPA) is finalizing its vapor intrusion guidelines. One of the important issues related to vapor intrusion is background concentrations of volatile organic chemicals (VOCs) in indoor air, typically attributed to consumer products and building materials. Background concentrations can exist even in the absence of vapor intrusion and are an important consideration when conducting site assessments. In addition, the development of accurate conceptual models that depict pathways for vapor entry into buildings is important during vapor intrusion site assessments. Sewer gas, either as a contributor to background concentrations or as part of the site conceptual model, is not routinely evaluated during vapor intrusion site assessments. The research described herein identifies an instance where vapors emanating directly from a sanitary sewer pipe within a residence were determined to be a source of tetrachloroethylene (PCE) detected in indoor air. Concentrations of PCE in the bathroom range from 2.1 to 190 ug/m(3) and exceed typical indoor air concentrations by orders of magnitude resulting in human health risk classified as an "Imminent Hazard" condition. The results suggest that infiltration of sewer gas resulted in PCE concentrations in indoor air that were nearly two-orders of magnitude higher as compared to when infiltration of sewer gas was not known to be occurring. This previously understudied pathway whereby sewers serve as sources of PCE (and potentially other VOC) vapors is highlighted. Implications for vapor intrusion investigations are also discussed.

  12. CANDLES AND INCENSE AS POTENTIAL SOURCES OF INDOOR AIR POLLUTION: MARKET ANALYSIS AND LITERATURE SEARCH

    EPA Science Inventory

    The report summarizes available information on candles and incense as potential sources of indoor air pollution. It covers market information and a review of the scientific literature. The market information collected focuses on production and sales data, typical uses in the U.S....

  13. Research Opportunities for Cancer Associated with Indoor Air Pollution from Solid-Fuel Combustion

    EPA Science Inventory

    Background: Indoor air pollution (IAP) derived largely from the use of solid fuels for cooking and heating affects about 3 billion people worldwide, resulting in substantial adverse health outcomes, including cancer. Women and children from developing countries are the most expos...

  14. COMPARISON OF MOLD CONCENTRATIONS IN INDOOR AND OUTDOOR AIR SAMPLED SIMULTANEOUSLY AND THEN QUANTIFIED BY MSQPCR

    EPA Science Inventory

    Mold specific quantitative PCR (MSQPCR) was used to measure the concentrations of the 36 mold species in indoor and outdoor air samples that were taken simultaneously for 48 hours in and around 17 homes in Cincinnati, Ohio. The total spore concentrations of 353 per m3...

  15. EVALUATION OF A TEST METHOD FOR MEASURING INDOOR AIR EMISSIONS FROM DRY-PROCESS PHOTOCOPIERS

    EPA Science Inventory

    A large chamber test method for measuring indoor air emissions from office equipment was developed, evaluated, and revised based on the initial testing of four dry-process photocopiers. Because all chambers may not necessarily produce similar results (e.g., due to differences in ...

  16. MEASUREMENT OF INDOOR AIR EMISSIONS FROM DRY-PROCESS PHOTOCOPY MACHINES

    EPA Science Inventory

    The article provides background information on indoor air emissions from office equipment, with emphasis on dry-process photocopy machines. The test method is described in detail along with results of a study to evaluate the test method using four dry-process photocopy machines. ...

  17. Assessment of ventilation and indoor air pollutants in nursery and elementary schools in France.

    PubMed

    Canha, N; Mandin, C; Ramalho, O; Wyart, G; Ribéron, J; Dassonville, C; Hänninen, O; Almeida, S M; Derbez, M

    2016-06-01

    The aim of this study was to characterize the relationship between Indoor Air Quality (IAQ) and ventilation in French classrooms. Various parameters were measured over one school week, including volatile organic compounds, aldehydes, particulate matter (PM2.5 mass concentration and number concentration), carbon dioxide (CO2 ), air temperature, and relative humidity in 51 classrooms at 17 schools. The ventilation was characterized by several indicators, such as the air exchange rate, ventilation rate (VR), and air stuffiness index (ICONE), that are linked to indoor CO2 concentration. The influences of the season (heating or non-heating), type of school (nursery or elementary), and ventilation on the IAQ were studied. Based on the minimum value of 4.2 l/s per person required by the French legislation for mechanically ventilated classrooms, 91% of the classrooms had insufficient ventilation. The VR was significantly higher in mechanically ventilated classrooms compared with naturally ventilated rooms. The correlations between IAQ and ventilation vary according to the location of the primary source of each pollutant (outdoor vs. indoor), and for an indoor source, whether it is associated with occupant activity or continuous emission.

  18. Sewer Gas: An Indoor Air Source of PCE to Consider During Vapor Intrusion Investigations

    PubMed Central

    Pennell, Kelly G.; Scammell, Madeleine Kangsen; McClean, Michael D.; Ames, Jennifer; Weldon, Brittany; Friguglietti, Leigh; Suuberg, Eric M.; Shen, Rui; Indeglia, Paul A.; Heiger-Bernays, Wendy J.

    2013-01-01

    The United States Environmental Protection Agency (USEPA) is finalizing its vapor intrusion guidelines. One of the important issues related to vapor intrusion is background concentrations of volatile organic chemicals (VOCs) in indoor air, typically attributed to consumer products and building materials. Background concentrations can exist even in the absence of vapor intrusion and are an important consideration when conducting site assessments. In addition, the development of accurate conceptual models that depict pathways for vapor entry into buildings is important during vapor intrusion site assessments. Sewer gas, either as a contributor to background concentrations or as part of the site conceptual model, is not routinely evaluated during vapor intrusion site assessments. The research described herein identifies an instance where vapors emanating directly from a sanitary sewer pipe within a residence were determined to be a source of tetrachloroethylene (PCE) detected in indoor air. Concentrations of PCE in the bathroom range from 2.1 to 190 ug/m3 and exceed typical indoor air concentrations by orders of magnitude resulting in human health risk classified as an “Imminent Hazard” condition. The results suggest that infiltration of sewer gas resulted in PCE concentrations in indoor air that were nearly two-orders of magnitude higher as compared to when infiltration of sewer gas was not known to be occurring. This previously understudied pathway whereby sewers serve as sources of PCE (and potentially other VOC) vapors is highlighted. Implications for vapor intrusion investigations are also discussed. PMID:23950637

  19. ASSESSMENT OF VAPOR INTRUSION USING INDOOR AND SUB-SLAB AIR SAMPLING

    EPA Science Inventory

    The objective of this investigation was to develop a method for evaluating vapor intrusion using indoor and sub-slab air measurement and at the same time directly assist EPA’s New England Regional Office in evaluating vapor intrusion in 15 homes and one business near the former R...

  20. Self-Evaluation Instrument: Awards Program for Indoor Air Quality Management in Schools.

    ERIC Educational Resources Information Center

    Maryland State Dept. of Education, Baltimore.

    This self-evaluation instrument is used to nominate and evaluate schools for the Indoor Air Quality Management in Schools award. The evaluation contains three categories: Communications/Training; Design; and Operations/Maintenance. Each principle is detailed along with the required criteria used to meet that principle. Communications/Training…

  1. Preventing Indoor Air Quality Problems in Educational Facilities: Guidelines for Hot, Humid Climates. Revised.

    ERIC Educational Resources Information Center

    Odom, J. David; DuBose, George

    This manual addresses the errors that occur during new construction that subsequently contribute to indoor air quality (IAQ) problems in newly constructed buildings in hot and humid climates, and offers guidelines for preventing them during the design and construction phases. It defines the roles and responsibilities of the design team, the…

  2. House-plant placement for indoor air purification and health benefits on asthmatics

    PubMed Central

    Kim, Ho-Hyun; Yang, Ji-Yeon; Lee, Jae-Young; Park, Jung-Won; Kim, Kwang-Jin; Lim, Byung-Seo; Lee, Geon-Woo; Lee, Si-Eun; Shin, Dong-Chun; Lim, Young-Wook

    2014-01-01

    Objectives Some plants were placed in indoor locations frequented by asthmatics in order to evaluate the quality of indoor air and examine the health benefits to asthmatics. Methods The present study classified the participants into two groups: households of continuation and households of withdrawal by a quasi-experimental design. The households of continuation spent the two observation terms with indoor plants, whereas the households of withdrawal passed the former observation terms with indoor plants and went through the latter observation term without any indoor plants. Results The household of continuation showed a continual decrease in the indoor concentrations of volatile organic compounds (VOCs) during the entire observation period, but the household of withdrawal performed an increase in the indoor concentrations of VOCs, except formaldehyde and toluene during the latter observation term after the decrease during the former observation term. Peak expiratory flow rate (PEFR) increased in the households of continuation with the value of 13.9 L/min in the morning and 20.6 L/ min in the evening, but decreased in the households of withdrawal with the value of -24.7 L/min in the morning and -30.2 L/min in the evening in the first experimental season. All of the households exhibited a decrease in the value of PEFR in the second experimental season. Conclusions Limitations to the generalizability of findings regarding the presence of plants indoors can be seen as a more general expression of such a benefit of human-environment relations. PMID:25384387

  3. [Indoor air guide values for acetaldehyde. Announcement of the German Ad-hoc Working Group on Indoor Guidelines of the Indoor Air Hygiene Committee and of the States' Supreme Health Authorities].

    PubMed

    2013-10-01

    The German Ad-hoc Working Group on Indoor Guidelines of the Indoor Air Hygiene Committee and the States' Supreme Health Authorities is issuing indoor air guide values to protect public health. No suitable human studies are available for health evaluation of acetaldehyde in indoor air. In a well-documented subchronic inhalation animal study with rats assessed as reliable, local irritation effects were observed in nasal epithelia, most prominently in the olfactory epithelium with loss of olfactory neuronal cells. This study leads to a LOAEC of 48 mg acetaldehyde/m3 for continuous exposure for the endpoint nasal epithelium degeneration. By applying an interspecies factor of 1, a factor of 10 for interindividual variability, and a factor of 2 to account for the higher respiratory rate of children compared to adults, a health hazard guide value (RW II) of 1 mg acetaldehyde/m3 is obtained. A health precaution guide value (RW I) of 0.1 mg acetaldehyde/m3 is recommended.

  4. Windsor, Ontario exposure assessment study: design and methods validation of personal, indoor, and outdoor air pollution monitoring.

    PubMed

    Wheeler, Amanda J; Xu, Xiaohong; Kulka, Ryan; You, Hongyu; Wallace, Lance; Mallach, Gary; Van Ryswyk, Keith; MacNeill, Morgan; Kearney, Jill; Rasmussen, Pat E; Dabek-Zlotorzynska, Ewa; Wang, Daniel; Poon, Raymond; Williams, Ron; Stocco, Corinne; Anastassopoulos, Angelos; Miller, J David; Dales, Robert; Brook, Jeffrey R

    2011-03-01

    The Windsor, Ontario Exposure Assessment Study evaluated the contribution of ambient air pollutants to personal and indoor exposures of adults and asthmatic children living in Windsor, Ontario, Canada. In addition, the role of personal, indoor, and outdoor air pollution exposures upon asthmatic children's respiratory health was assessed. Several active and passive sampling methods were applied, or adapted, for personal, indoor, and outdoor residential monitoring of nitrogen dioxide, volatile organic compounds, particulate matter (PM; PM-2.5 pm [PM2.5] and < or =10 microm [PM10] in aerodynamic diameter), elemental carbon, ultrafine particles, ozone, air exchange rates, allergens in settled dust, and particulate-associated metals. Participants completed five consecutive days of monitoring during the winter and summer of 2005 and 2006. During 2006, in addition to undertaking the air pollution measurements, asthmatic children completed respiratory health measurements (including peak flow meter tests and exhaled breath condensate) and tracked respiratory symptoms in a diary. Extensive quality assurance and quality control steps were implemented, including the collocation of instruments at the National Air Pollution Surveillance site operated by Environment Canada and at the Michigan Department of Environmental Quality site in Allen Park, Detroit, MI. During field sampling, duplicate and blank samples were also completed and these data are reported. In total, 50 adults and 51 asthmatic children were recruited to participate, resulting in 922 participant days of data. When comparing the methods used in the study with standard reference methods, field blanks were low and bias was acceptable, with most methods being within 20% of reference methods. Duplicates were typically within less than 10% of each other, indicating that study results can be used with confidence. This paper covers study design, recruitment, methodology, time activity diary, surveys, and quality

  5. Seasonal evaluation of outdoor/indoor air quality in primary schools in Lisbon.

    PubMed

    Pegas, P N; Alves, C A; Evtyugina, M G; Nunes, T; Cerqueira, M; Franchi, M; Pio, C A; Almeida, S M; Verde, S Cabo; Freitas, M C

    2011-03-01

    The aim of this study was to evaluate the indoor (I) and outdoor (O) levels of NO₂, speciated volatile organic compounds (VOCs) and carbonyls at fourteen primary schools in Lisbon (Portugal) during spring, autumn and winter. Three of these schools were also selected to be monitored for comfort parameters, such as temperature and relative humidity, carbon dioxide (CO₂), carbon monoxide (CO), total VOCs, and both bacterial and fungal colony-forming units per cubic metre. The concentration of CO₂ and bioaerosols greatly exceeded the acceptable maximum values of 1800 mg m⁻³ and 500 CFU m⁻³, respectively, in all seasons. Most of the assessed VOCs and carbonyls occurred at I/O ratios above unity in all seasons, thus showing the importance of indoor sources and building conditions in indoor air quality. However, it has been observed that higher indoor VOC concentrations occurred more often in the colder months, while carbonyl concentrations were higher in the warm months. In general, the I/O NO₂ ratios ranged between 0.35 and 1, never exceeding the unity. Some actions are suggested to improve the indoor air quality in Lisbon primary schools.

  6. Indoor air quality in hospitality venues before and after implementation of a clean indoor air law--Western New York, 2003.

    PubMed

    2004-11-12

    Secondhand smoke (SHS) contains more than 50 carcinogens. SHS exposure is responsible for an estimated 3,000 lung cancer deaths and more than 35,000 coronary heart disease deaths among never smokers in the United States each year, and for lower respiratory infections, asthma, sudden infant death syndrome, and chronic ear infections among children. Even short-term exposures to SHS, such as those that might be experienced by a patron in a restaurant or bar that allows smoking, can increase the risk of experiencing an acute cardiovascular event. Although population-based data indicate declining SHS exposure in the United States over time, SHS exposure remains a common but preventable public health hazard. Policies requiring smoke-free environments are the most effective method of reducing SHS exposure. Effective July 24, 2003, New York implemented a comprehensive state law requiring almost all indoor workplaces and public places (e.g., restaurants, bars, and other hospitality venues) to be smoke-free. This report describes an assessment of changes in indoor air quality that occurred in 20 hospitality venues in western New York where smoking or indirect SHS exposure from an adjoining room was observed at baseline. The findings indicate that, on average, levels of respirable suspended particles (RSPs), an accepted marker for SHS levels, decreased 84% in these venues after the law took effect. Comprehensive clean indoor air policies can rapidly and effectively reduce SHS exposure in hospitality venues.

  7. Evaluation of a Combined Ultraviolet Photocatalytic Oxidation(UVPCO)/Chemisorbent Air Cleaner for Indoor Air Applications

    SciTech Connect

    Hodgson, Alfred T.; Destaillats, Hugo; Hotchi, Toshifumi; Fisk,William J.

    2007-02-01

    We previously reported that gas-phase byproducts of incomplete oxidation were generated when a prototype ultraviolet photocatalytic oxidation (UVPCO) air cleaner was operated in the laboratory with indoor-relevant mixtures of VOCs at realistic concentrations. Under these conditions, there was net production of formaldehyde and acetaldehyde, two important indoor air toxicants. Here, we further explore the issue of byproduct generation. Using the same UVPCO air cleaner, we conducted experiments to identify common VOCs that lead to the production of formaldehyde and acetaldehyde and to quantify their production rates. We sought to reduce the production of formaldehyde and acetaldehyde to acceptable levels by employing different chemisorbent scrubbers downstream of the UVPCO device. Additionally, we made preliminary measurements to estimate the capacity and expected lifetime of the chemisorbent media. For most experiments, the system was operated at 680-780 m{sup 3}/h (400-460 cfm). A set of experiments was conducted with common VOCs introduced into the UVPCO device individually and in mixture. Compound conversion efficiencies and the production of formaldehyde and acetaldehyde were determined by comparison of compound concentrations upstream and downstream of the reactor. There was general agreement between compound conversions efficiencies determined individually and in the mixture. This suggests that competition among compounds for active sites on the photocatalyst surface will not limit the performance of the UVPCO device when the total VOC concentration is low. A possible exception was the very volatile alcohols, for which there were some indications of competitive adsorption. The results also showed that formaldehyde was produced from many commonly encountered VOCs, while acetaldehyde was generated by specific VOCs, particularly ethanol. The implication is that formaldehyde concentrations are likely to increase when an effective UVPCO air cleaner is used in

  8. ¿Qué es Indoor airPLUS?

    EPA Pesticide Factsheets

    El Programa Interior de airPLUS es una asociación entre EPA, los constructores, raters, las utilidades, y organizaciones sanitarias e interiores ambientales de mejorar aire interior en nuevas casas casas verdes.

  9. Características de Indoor airPLUS

    EPA Pesticide Factsheets

    El Programa Interior de airPLUS es una asociación entre EPA, los constructores, raters, las utilidades, y organizaciones sanitarias e interiores ambientales de mejorar aire interior en nuevas casas casas verdes.

  10. Lista de socios de Indoor airPLUS

    EPA Pesticide Factsheets

    El Programa Interior de airPLUS es una asociación entre EPA, los constructores, raters, las utilidades, y organizaciones sanitarias e interiores ambientales de mejorar aire interior en nuevas casas casas verdes.

  11. VENTILATION RESEARCH: A REVIEW OF RECENT INDOOR AIR QUALITY LITERATURE

    EPA Science Inventory

    The report gives results of a literature review, conducted to survey and summarize recent and ongoing engineering research into building ventilation, air exchange rate, pollutant distribution and dispersion, and other effects of heating, ventilation, and air-conditioning (HVAC) s...

  12. [Guide values for 1-butanol in indoor air. Report of the German Ad Hoc Working Group on Indoor Guidelines of the Indoor Air Hygiene Committee and of the States' Supreme Health Authorities].

    PubMed

    2014-06-01

    The German Ad Hoc Working Group on Indoor Guidelines of the Indoor Air Hygiene Committee and the States' Supreme Health Authorities is issuing indoor air guide values to protect public health. No human studies of sufficient quality are available for the evaluation of 1-butanol in indoor air. In a well-documented oral study on reproduction toxicity in rats, assessed as reliable, impairment of embryo development was observed. Benchmark modeling of the study data by US-EPA revealed a BMDL10 of 26.1 mg/kg b.w. per day. The working group used this BMDL10 as the point of departure for the derivation of the guide value II. Considering a human respiration rate of 20 m(3) per day and a human body weight of 70 kg, this dose was converted into an inhalative concentration. Applying a factor of 0.6 to account for the inhalative absorption rate, an allometric extrapolation factor from rat to human (factor 4), an interspecies factor of 2.5 for toxicodynamics, and a factor of 10 to account for individual differences (intraspecies factor), results in a health hazard guide value (RW II) of 2 mg 1-butanol/m(3). The benchmark dose calculation of the same study generated a BMDL05 of 12.4 mg/kg b.w. per day. Applying the same assessment factors as for RW II, a precautionary guide value (RW I) of 0.7 mg 1-butanol/m(3) indoor air is calculated.

  13. Comparison of EPA (Environmental Protection Agency) test house data with predictions of an indoor-air-quality model

    SciTech Connect

    Sparks, L.E.; Jackson, M.D.; Tichenor, B.A.

    1988-07-01

    An easy-to-use indoor-air-quality (IAQ) model is described. It is multi-compartmented and based on a well-mixed mixing model. Sources and sinks are allowed in each compartment. A menu-driven fill-in-the-form user interface controls program flow and is used to obtain data from the user. On-screen graphical output is provided. The model estimates the effects of heating, ventilation, and air conditioning (HVAC), air cleaning, room-to-room air movement, and natural ventilation on pollutant concentrations. Experiments conducted in the EPA test house using moth crystal cakes for model verification are described. The agreement between small chamber emission factors, model predictions, and test house data is very good. Predicted weight loss of the moth crystal cakes was within 5% of the measured weight loss. Predicted room concentrations of p-dichlorobenzene are within 20% of the measured values. Future directions for model development and experimental studies are discussed.

  14. A brief review of control measures for indoor formaldehyde

    SciTech Connect

    Matthews, T.G.

    1988-01-01

    Indoor environments contain a variety of consumer and construction products that emit formaldehyde (CH/sub 2/O) vapor. The strongest CH/sub 2/O emitters are typically particleboard underlayment and industrial particleboard, hardwood plywood paneling, urea-formaldehyde foam insulation, and medium density fiberboard, all of which contain urea-formaldehyde (UF) resins. The contribution of individual products to indoor CH/sub 2/O levels depends on several parameters, including the quantity and age of the product, building ventilation rate, presence of permeation barriers, temperature (T), relative humidity (RH), and CH/sub 2/O vapor concentration resulting from all of the CH/sub 2/O emitters (1,3-8). Combustion sources (e.g., kerosene heaters, gas stoves and cigarettes), carpet and carpet padding, resilient flooring (e.g., linoleum), gypsum board, non-apparel and apparel textiles, ceiling tiles, fibrous glass insulation and softwood plywood subflooring are generally weak emitters that do not contribute significantly to steady-state, indoor CH/sub 2/O levels. Control measures exist to reduce CH/sub 2/O emissions from consumer and construction products during their manufacturer and in post-installation applications. This note summarized the effectiveness of the following subset of post-installation control measures: product aging, installations of permeation barriers (i.e., flooring) and increased building ventilation. 14 refs.

  15. Sources and perceptions of indoor and ambient air pollution in rural Alaska.

    PubMed

    Ware, Desirae; Lewis, Johnnye; Hopkins, Scarlett; Boyer, Bert; Noonan, Curtis; Ward, Tony

    2013-08-01

    Even though Alaska is the largest state in the United States, much of the population resides in rural and underserved areas with documented disparities in respiratory health. This is especially true in the Yukon-Kuskokwim (southwest) and Ahtna (southcentral) Regions of Alaska. In working with community members, the goal of this study was to identify the air pollution issues (both indoors and outdoors) of concern within these two regions. Over a two-year period, 328 air quality surveys were disseminated within seven communities in rural Alaska. The surveys focused on understanding the demographics, home heating practices, indoor activities, community/outdoor activities, and air quality perceptions within each community. Results from these surveys showed that there is elevated potential for PM10/PM2.5 exposures in rural Alaska communities. Top indoor air quality concerns included mold, lack of ventilation or fresh air, and dust. Top outdoor air pollution concerns identified were open burning/smoke, road dust, and vehicle exhaust (e.g., snow machines, ATVs, etc.). These data can now be used to seek additional funding for interventions, implementing long-term, sustainable solutions to the identified problems. Further research is needed to assess exposures to PM10/PM2.5 and the associated impacts on respiratory health, particularly among susceptible populations such as young children.

  16. Sources and Perceptions of Indoor and Ambient Air Pollution in Rural Alaska

    PubMed Central

    Ware, Desirae; Lewis, Johnnye; Hopkins, Scarlett; Boyer, Bert; Noonan, Curtis; Ward, Tony

    2013-01-01

    Even though Alaska is the largest state in the United States, much of the population resides in rural and underserved areas with documented disparities in respiratory health. This is especially true in the Yukon-Kuskokwim (southwest) and Ahtna (southcentral) Regions of Alaska. In working with community members, the goal of this study was to identify the air pollution issues (both indoors and outdoors) of concern within these two regions. Over a two-year period, 328 air quality surveys were disseminated within seven communities in rural Alaska. The surveys focused on understanding the demographics, home heating practices, indoor activities, community/outdoor activities, and air quality perceptions within each community. Results from these surveys showed that there is elevated potential for PM10/PM2.5 exposures in rural Alaska communities. Top indoor air quality concerns included mold, lack of ventilation or fresh air, and dust. Top outdoor air pollution concerns identified were open burning/smoke, road dust, and vehicle exhaust (e.g., snow machines, ATVs, etc.). These data can now be used to seek additional funding for interventions, implementing long-term, sustainable solutions to the identified problems. Further research is needed to assess exposures to PM10/PM2.5 and the associated impacts on respiratory health, particularly among susceptible populations such as young children. PMID:23526077

  17. Source, significance, and control of indoor microbial aerosols: human health aspects.

    PubMed Central

    Spendlove, J C; Fannin, K F

    1983-01-01

    The usual profile of indoor microbial aerosols probably has little meaning to healthy people. However, hazardous microbial aerosols can penetrate buildings or be generated within them; in either case, they can have significant adverse effects on human health. These aerosols can be controlled to some extent by eliminating or reducing their sources. In this regard, careful consideration should be given in building construction to the design of ventilation and air-conditioning systems and to the flooring material, so that these systems and the flooring material will not act as microbial reservoirs. It is evident that in spite of the considerable body of data available on indoor microbial aerosols, little is known of their true significance to human health except in terms of overt epidemic disease. Continued research is needed in this area, particularly in respect to situations of high risk in such locations as hospitals and schools for young children. PMID:6867255

  18. Indoor air quality: recommendations relevant to aircraft passenger cabins.

    PubMed

    Hocking, M B

    1998-07-01

    To evaluate the human component of aircraft cabin air quality the effects of respiration of a resting adult on air quality in an enclosed space are estimated using standard equations. Results are illustrated for different air volumes per person, with zero air exchange, and with various air change rates. Calculated ventilation rates required to achieve a specified air quality for a wide range of conditions based on theory agree to within 2% of the requirements determined using a standard empirical formula. These calculations quantitatively confirm that the air changes per hour per person necessary for ventilation of an enclosed space vary inversely with the volume of the enclosed space. However, they also establish that the ventilation required to achieve a target carbon dioxide concentration in the air of an enclosed space with a resting adult remains the same regardless of the volume of the enclosed space. Concentration equilibria resulting from the interaction of the respiration of a resting adult with various ventilation conditions are compared with the rated air exchange rates of samples of current passenger aircraft, both with and without air recirculation capability. Aircraft cabin carbon dioxide concentrations calculated from the published ventilation ratings are found to be intermediate to these sets of results obtained by actual measurement. These findings are used to arrive at recommendations for aircraft builders and operators to help improve aircraft cabin air quality at minimum cost. Passenger responses are suggested to help improve their comfort and decrease their exposure to disease transmission, particularly on long flights.

  19. Chamber bioaerosol study: outdoor air and human occupants as sources of indoor airborne microbes.

    PubMed

    Adams, Rachel I; Bhangar, Seema; Pasut, Wilmer; Arens, Edward A; Taylor, John W; Lindow, Steven E; Nazaroff, William W; Bruns, Thomas D

    2015-01-01

    Human occupants are an important source of microbes in indoor environments. In this study, we used DNA sequencing of filter samples to assess the fungal and bacterial composition of air in an environmental chamber under different levels of occupancy, activity, and exposed or covered carpeting. In this office-like, mechanically ventilated environment, results showed a strong influence of outdoor-derived particles, with the indoor microbial composition tracking that of outdoor air for the 2-hour sampling periods. The number of occupants and their activity played a significant but smaller role influencing the composition of indoor bioaerosols. Human-associated taxa were observed but were not particularly abundant, except in the case of one fungus that appeared to be transported into the chamber on the clothing of a study participant. Overall, this study revealed a smaller signature of human body-associated taxa than had been expected based on recent studies of indoor microbiomes, suggesting that occupants may not exert a strong influence on bioaerosol microbial composition in a space that, like many offices, is well ventilated with air that is moderately filtered and moderately occupied.

  20. Assessment of Indoor Air Quality Benefits and Energy Costs of Mechanical Ventilation

    SciTech Connect

    Logue, J.M.; Price, P.N.; Sherman, M.H.; Singer, B.C.

    2011-07-01

    Intake of chemical air pollutants in residences represents an important and substantial health hazard. Sealing homes to reduce air infiltration can save space conditioning energy, but can also increase indoor pollutant concentrations. Mechanical ventilation ensures a minimum amount of outdoor airflow that helps reduce concentrations of indoor emitted pollutants while requiring some energy for fan(s) and thermal conditioning of the added airflow. This work demonstrates a physics based, data driven modeling framework for comparing the costs and benefits of whole-house mechanical ventilation and applied the framework to new California homes. The results indicate that, on a population basis, the health benefits from reduced exposure to indoor pollutants in New California homes are worth the energy costs of adding mechanical ventilation as specified by ASHRAE Standard 62.2.This study determines the health burden for a subset of pollutants in indoor air and the costs and benefits of ASHRAE's mechanical ventilation standard (62.2) for new California homes. Results indicate that, on a population basis, the health benefits of new home mechanical ventilation justify the energy costs.