Investigation of Spatial Control Strategies for AHWR: A Comparative Study
NASA Astrophysics Data System (ADS)
Munje, R. K.; Patre, B. M.; Londhe, P. S.; Tiwari, A. P.; Shimjith, S. R.
2016-04-01
Large nuclear reactors such as the Advanced Heavy Water Reactor (AHWR), are susceptible to xenon-induced spatial oscillations in which, though the core average power remains constant, the power distribution may be nonuniform as well as it might experience unstable oscillations. Such oscillations influence the operation and control philosophy and could also drive safety issues. Therefore, large nuclear reactors are equipped with spatial controllers which maintain the core power distribution close to desired distribution during all the facets of operation and following disturbances. In this paper, the case of AHWR has been considered, for which a number of different types of spatial controllers have been designed during the last decade. Some of these designs are based on output feedback while the others are based on state feedback. Also, both the conventional and modern control concepts, such as linear quadratic regulator theory, sliding mode control, multirate output feedback control and fuzzy control have been investigated. The designs of these different controllers for the AHWR have been carried out using a 90th order model, which is highly stiff. Hence, direct application of design methods suffers with numerical ill-conditioning. Singular perturbation and time-scale methods have been applied whereby the design problem for the original higher order system is decoupled into two or three subproblems, each of which is solved separately. Nonlinear simulations have been carried out to obtain the transient responses of the system with different types of controllers and their performances have been compared.
A spatially localized architecture for fast and modular DNA computing
NASA Astrophysics Data System (ADS)
Chatterjee, Gourab; Dalchau, Neil; Muscat, Richard A.; Phillips, Andrew; Seelig, Georg
2017-09-01
Cells use spatial constraints to control and accelerate the flow of information in enzyme cascades and signalling networks. Synthetic silicon-based circuitry similarly relies on spatial constraints to process information. Here, we show that spatial organization can be a similarly powerful design principle for overcoming limitations of speed and modularity in engineered molecular circuits. We create logic gates and signal transmission lines by spatially arranging reactive DNA hairpins on a DNA origami. Signal propagation is demonstrated across transmission lines of different lengths and orientations and logic gates are modularly combined into circuits that establish the universality of our approach. Because reactions preferentially occur between neighbours, identical DNA hairpins can be reused across circuits. Co-localization of circuit elements decreases computation time from hours to minutes compared to circuits with diffusible components. Detailed computational models enable predictive circuit design. We anticipate our approach will motivate using spatial constraints for future molecular control circuit designs.
NASA Technical Reports Server (NTRS)
Hale, Joseph P., II
1994-01-01
Human Factors Engineering support was provided for the 30% design review of the late Space Station Freedom Payload Control Area (PCA). The PCA was to be the payload operations control room, analogous to the Spacelab Payload Operations Control Center (POCC). This effort began with a systematic collection and refinement of the relevant requirements driving the spatial layout of the consoles and PCA. This information was used as input for specialized human factors analytical tools and techniques in the design and design analysis activities. Design concepts and configuration options were developed and reviewed using sketches, 2-D Computer-Aided Design (CAD) drawings, and immersive Virtual Reality (VR) mockups.
Spatial controls of occurrence and spread of wildfires in the Missouri Ozark Highlands
Jian Yang; Hong S. He; Stephen R. Shifley
2008-01-01
Understanding spatial controls on wildfires is important when designing adaptive fire management plans and optimizing fuel treatment locations on a forest landscape. Previous research about this topic focused primarily on spatial controls for fire origin locations alone. Fire spread and behavior were largely overlooked. This paper contrasts the relative importance of...
Decentralized Fuzzy MPC on Spatial Power Control of a Large PHWR
NASA Astrophysics Data System (ADS)
Liu, Xiangjie; Jiang, Di; Lee, Kwang Y.
2016-08-01
Reliable power control for stabilizing the spatial oscillations is quite important for ensuring the safe operation of a modern pressurized heavy water reactor (PHWR), since these spatial oscillations can cause “flux tilting” in the reactor core. In this paper, a decentralized fuzzy model predictive control (DFMPC) is proposed for spatial control of PHWR. Due to the load dependent dynamics of the nuclear power plant, fuzzy modeling is used to approximate the nonlinear process. A fuzzy Lyapunov function and “quasi-min-max” strategy is utilized in designing the DFMPC, to reduce the conservatism. The plant-wide stability is achieved by the asymptotically positive realness constraint (APRC) for this decentralized MPC. The solving optimization problem is based on a receding horizon scheme involving the linear matrix inequalities (LMIs) technique. Through dynamic simulations, it is demonstrated that the designed DFMPC can effectively suppress spatial oscillations developed in PHWR, and further, shows the advantages over the typical parallel distributed compensation (PDC) control scheme.
Boundary control for a flexible manipulator based on infinite dimensional disturbance observer
NASA Astrophysics Data System (ADS)
Jiang, Tingting; Liu, Jinkun; He, Wei
2015-07-01
This paper focuses on disturbance observer and boundary control design for the flexible manipulator in presence of both boundary disturbance and spatially distributed disturbance. Taking the infinite-dimensionality of the flexural dynamics into account, this study proposes a partial differential equation (PDE) model. Since the spatially distributed disturbance is infinite dimensional, it cannot be compensated by the typical disturbance observer, which is designed by finite dimensional approach. To estimate the spatially distributed disturbance, we propose a novel infinite dimensional disturbance observer (IDDO). Applying the IDDO as a feedforward compensator, a boundary control scheme is designed to regulate the joint position and eliminate the elastic vibration simultaneously. Theoretical analysis validates the stability of both the proposed disturbance observer and the boundary controller. The performance of the closed-loop system is demonstrated by numerical simulations.
USDA-ARS?s Scientific Manuscript database
Controlling for spatial variability is important in high-throughput phenotyping studies that enable large numbers of genotypes to be evaluated across time and space. In the current study, we compared the efficacy of different experimental designs and spatial models in the analysis of canopy spectral...
Active control of the spatial MRI phase distribution with optimal control theory
NASA Astrophysics Data System (ADS)
Lefebvre, Pauline M.; Van Reeth, Eric; Ratiney, Hélène; Beuf, Olivier; Brusseau, Elisabeth; Lambert, Simon A.; Glaser, Steffen J.; Sugny, Dominique; Grenier, Denis; Tse Ve Koon, Kevin
2017-08-01
This paper investigates the use of Optimal Control (OC) theory to design Radio-Frequency (RF) pulses that actively control the spatial distribution of the MRI magnetization phase. The RF pulses are generated through the application of the Pontryagin Maximum Principle and optimized so that the resulting transverse magnetization reproduces various non-trivial and spatial phase patterns. Two different phase patterns are defined and the resulting optimal pulses are tested both numerically with the ODIN MRI simulator and experimentally with an agar gel phantom on a 4.7 T small-animal MR scanner. Phase images obtained in simulations and experiments are both consistent with the defined phase patterns. A practical application of phase control with OC-designed pulses is also presented, with the generation of RF pulses adapted for a Magnetic Resonance Elastography experiment. This study demonstrates the possibility to use OC-designed RF pulses to encode information in the magnetization phase and could have applications in MRI sequences using phase images.
A spatial operator algebra for manipulator modeling and control
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Jain, A.; Kreutz-Delgado, K.
1991-01-01
A recently developed spatial operator algebra for manipulator modeling, control, and trajectory design is discussed. The elements of this algebra are linear operators whose domain and range spaces consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial recursion along the span of a manipulator. Inversion of operators can be efficiently obtained via techniques of recursive filtering and smoothing. The operator algebra provides a high-level framework for describing the dynamic and kinematic behavior of a manipulator and for control and trajectory design algorithms. The interpretation of expressions within the algebraic framework leads to enhanced conceptual and physical understanding of manipulator dynamics and kinematics.
TRACON Aircraft Arrival Planning and Optimization Through Spatial Constraint Satisfaction
NASA Technical Reports Server (NTRS)
Bergh, Christopher P.; Krzeczowski, Kenneth J.; Davis, Thomas J.; Denery, Dallas G. (Technical Monitor)
1995-01-01
A new aircraft arrival planning and optimization algorithm has been incorporated into the Final Approach Spacing Tool (FAST) in the Center-TRACON Automation System (CTAS) developed at NASA-Ames Research Center. FAST simulations have been conducted over three years involving full-proficiency, level five air traffic controllers from around the United States. From these simulations an algorithm, called Spatial Constraint Satisfaction, has been designed, coded, undergone testing, and soon will begin field evaluation at the Dallas-Fort Worth and Denver International airport facilities. The purpose of this new design is an attempt to show that the generation of efficient and conflict free aircraft arrival plans at the runway does not guarantee an operationally acceptable arrival plan upstream from the runway -information encompassing the entire arrival airspace must be used in order to create an acceptable aircraft arrival plan. This new design includes functions available previously but additionally includes necessary representations of controller preferences and workload, operationally required amounts of extra separation, and integrates aircraft conflict resolution. As a result, the Spatial Constraint Satisfaction algorithm produces an optimized aircraft arrival plan that is more acceptable in terms of arrival procedures and air traffic controller workload. This paper discusses the current Air Traffic Control arrival planning procedures, previous work in this field, the design of the Spatial Constraint Satisfaction algorithm, and the results of recent evaluations of the algorithm.
Final Report: CNC Micromachines LDRD No.10793
DOE Office of Scientific and Technical Information (OSTI.GOV)
JOKIEL JR., BERNHARD; BENAVIDES, GILBERT L.; BIEG, LOTHAR F.
2003-04-01
The three-year LDRD ''CNC Micromachines'' was successfully completed at the end of FY02. The project had four major breakthroughs in spatial motion control in MEMS: (1) A unified method for designing scalable planar and spatial on-chip motion control systems was developed. The method relies on the use of parallel kinematic mechanisms (PKMs) that when properly designed provide different types of motion on-chip without the need for post-fabrication assembly, (2) A new type of actuator was developed--the linear stepping track drive (LSTD) that provides open loop linear position control that is scalable in displacement, output force and step size. Several versionsmore » of this actuator were designed, fabricated and successfully tested. (3) Different versions of XYZ translation only and PTT motion stages were designed, successfully fabricated and successfully tested demonstrating absolutely that on-chip spatial motion control systems are not only possible, but are a reality. (4) Control algorithms, software and infrastructure based on MATLAB were created and successfully implemented to drive the XYZ and PTT motion platforms in a controlled manner. The control software is capable of reading an M/G code machine tool language file, decode the instructions and correctly calculate and apply position and velocity trajectories to the motion devices linear drive inputs to position the device platform along the trajectory as specified by the input file. A full and detailed account of design methodology, theory and experimental results (failures and successes) is provided.« less
A spatial operator algebra for manipulator modeling and control
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Kreutz, K.; Jain, A.
1989-01-01
A spatial operator algebra for modeling the control and trajectory design of manipulation is discussed, with emphasis on its analytical formulation and implementation in the Ada programming language. The elements of this algebra are linear operators whose domain and range spaces consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial recursion along the span of the manipulator. Inversion is obtained using techniques of recursive filtering and smoothing. The operator alegbra provides a high-level framework for describing the dynamic and kinematic behavior of a manipulator and control and trajectory design algorithms. Implementable recursive algorithms can be immediately derived from the abstract operator expressions by inspection, thus greatly simplifying the transition from an abstract problem formulation and solution to the detailed mechanization of a specific algorithm.
Application of control theory to dynamic systems simulation
NASA Technical Reports Server (NTRS)
Auslander, D. M.; Spear, R. C.; Young, G. E.
1982-01-01
The application of control theory is applied to dynamic systems simulation. Theory and methodology applicable to controlled ecological life support systems are considered. Spatial effects on system stability, design of control systems with uncertain parameters, and an interactive computing language (PARASOL-II) designed for dynamic system simulation, report quality graphics, data acquisition, and simple real time control are discussed.
Visual analytics of geo-social interaction patterns for epidemic control.
Luo, Wei
2016-08-10
Human interaction and population mobility determine the spatio-temporal course of the spread of an airborne disease. This research views such spreads as geo-social interaction problems, because population mobility connects different groups of people over geographical locations via which the viruses transmit. Previous research argued that geo-social interaction patterns identified from population movement data can provide great potential in designing effective pandemic mitigation. However, little work has been done to examine the effectiveness of designing control strategies taking into account geo-social interaction patterns. To address this gap, this research proposes a new framework for effective disease control; specifically this framework proposes that disease control strategies should start from identifying geo-social interaction patterns, designing effective control measures accordingly, and evaluating the efficacy of different control measures. This framework is used to structure design of a new visual analytic tool that consists of three components: a reorderable matrix for geo-social mixing patterns, agent-based epidemic models, and combined visualization methods. With real world human interaction data in a French primary school as a proof of concept, this research compares the efficacy of vaccination strategies between the spatial-social interaction patterns and the whole areas. The simulation results show that locally targeted vaccination has the potential to keep infection to a small number and prevent spread to other regions. At some small probability, the local control strategies will fail; in these cases other control strategies will be needed. This research further explores the impact of varying spatial-social scales on the success of local vaccination strategies. The results show that a proper spatial-social scale can help achieve the best control efficacy with a limited number of vaccines. The case study shows how GS-EpiViz does support the design and testing of advanced control scenarios in airborne disease (e.g., influenza). The geo-social patterns identified through exploring human interaction data can help target critical individuals, locations, and clusters of locations for disease control purposes. The varying spatial-social scales can help geographically and socially prioritize limited resources (e.g., vaccines).
Barbu, Corentin; Dumonteil, Eric; Gourbière, Sébastien
2011-01-01
Background Chagas disease is a major neglected tropical disease with deep socio-economical effects throughout Central and South America. Vector control programs have consistently reduced domestic populations of triatomine vectors, but non-domiciliated vectors still have to be controlled efficiently. Designing control strategies targeting these vectors is challenging, as it requires a quantitative description of the spatio-temporal dynamics of village infestation, which can only be gained from combinations of extensive field studies and spatial population dynamic modelling. Methodology/Principal Findings A spatially explicit population dynamic model was combined with a two-year field study of T. dimidiata infestation dynamics in the village of Teya, Mexico. The parameterized model fitted and predicted accurately both intra-annual variation and the spatial gradient in vector abundance. Five different control strategies were then applied in concentric rings to mimic spatial design targeting the periphery of the village, where vectors were most abundant. Indoor insecticide spraying and insect screens reduced vector abundance by up to 80% (when applied to the whole village), and half of this effect was obtained when control was applied only to the 33% of households closest to the village periphery. Peri-domicile cleaning was able to eliminate up to 60% of the vectors, but at the periphery of the village it has a low effect, as it is ineffective against sylvatic insects. The use of lethal traps and the management of house attractiveness provided similar levels of control. However this required either house attractiveness to be null, or ≥5 lethal traps, at least as attractive as houses, to be installed in each household. Conclusion/Significance Insecticide and insect screens used in houses at the periphery of the village can contribute to reduce house infestation in more central untreated zones. However, this beneficial effect remains insufficient to allow for a unique spatially targeted strategy to offer protection to all households. Most efficiently, control should combine the use of insect screens in outer zones to reduce infestation by both sylvatic and peri-domiciliated vectors, and cleaning of peri-domicile in the centre of the village where sylvatic vectors are absent. The design of such spatially mixed strategies of control offers a promising avenue to reduce the economic cost associated with the control of non-domiciliated vectors. PMID:21610862
Vestibular models for design and evaluation of flight simulator motion
NASA Technical Reports Server (NTRS)
Bussolari, S. R.; Sullivan, R. B.; Young, L. R.
1986-01-01
The use of spatial orientation models in the design and evaluation of control systems for motion-base flight simulators is investigated experimentally. The development of a high-fidelity motion drive controller using an optimal control approach based on human vestibular models is described. The formulation and implementation of the optimal washout system are discussed. The effectiveness of the motion washout system was evaluated by studying the response of six motion washout systems to the NASA/AMES Vertical Motion Simulator for a single dash-quick-stop maneuver. The effects of the motion washout system on pilot performance and simulator acceptability are examined. The data reveal that human spatial orientation models are useful for the design and evaluation of flight simulator motion fidelity.
Facilitating Spatial Thinking in World Geography Using Web-Based GIS
ERIC Educational Resources Information Center
Jo, Injeong; Hong, Jung Eun; Verma, Kanika
2016-01-01
Advocates for geographic information system (GIS) education contend that learning about GIS promotes students' spatial thinking. Empirical studies are still needed to elucidate the potential of GIS as an instructional tool to support spatial thinking in other geography courses. Using a non-equivalent control group research design, this study…
Thompson, Steven K
2006-12-01
A flexible class of adaptive sampling designs is introduced for sampling in network and spatial settings. In the designs, selections are made sequentially with a mixture distribution based on an active set that changes as the sampling progresses, using network or spatial relationships as well as sample values. The new designs have certain advantages compared with previously existing adaptive and link-tracing designs, including control over sample sizes and of the proportion of effort allocated to adaptive selections. Efficient inference involves averaging over sample paths consistent with the minimal sufficient statistic. A Markov chain resampling method makes the inference computationally feasible. The designs are evaluated in network and spatial settings using two empirical populations: a hidden human population at high risk for HIV/AIDS and an unevenly distributed bird population.
Optimizing Experimental Designs: Finding Hidden Treasure.
USDA-ARS?s Scientific Manuscript database
Classical experimental design theory, the predominant treatment in most textbooks, promotes the use of blocking designs for control of spatial variability in field studies and other situations in which there is significant variation among heterogeneity among experimental units. Many blocking design...
ERIC Educational Resources Information Center
Kösa, Temel
2016-01-01
The purpose of this study was to investigate the effects of using dynamic geometry software on preservice mathematics teachers' spatial visualization skills and to determine whether spatial visualization skills can be a predictor of success in learning analytic geometry of space. The study used a quasi-experimental design with a control group.…
Spatial operator approach to flexible multibody system dynamics and control
NASA Technical Reports Server (NTRS)
Rodriguez, G.
1991-01-01
The inverse and forward dynamics problems for flexible multibody systems were solved using the techniques of spatially recursive Kalman filtering and smoothing. These algorithms are easily developed using a set of identities associated with mass matrix factorization and inversion. These identities are easily derived using the spatial operator algebra developed by the author. Current work is aimed at computational experiments with the described algorithms and at modelling for control design of limber manipulator systems. It is also aimed at handling and manipulation of flexible objects.
Research and development of a control system for multi axis cooperative motion based on PMAC
NASA Astrophysics Data System (ADS)
Guo, Xiao-xiao; Dong, Deng-feng; Zhou, Wei-hu
2017-10-01
Based on Programmable Multi-axes Controller (PMAC), a design of a multi axis motion control system for the simulator of spatial targets' dynamic optical properties is proposed. According to analysis the properties of spatial targets' simulator motion control system, using IPC as the main control layer, TurboPMAC2 as the control layer to meet coordinated motion control, data acquisition and analog output. A simulator using 5 servomotors which is connected with speed reducers to drive the output axis was implemented to simulate the motion of both the sun and the space target. Based on PMAC using PID and a notch filter algorithm, negative feedback, the speed and acceleration feed forward algorithm to satisfy the axis' requirements of the good stability and high precision at low speeds. In the actual system, it shows that the velocity precision is higher than 0.04 s ° and the precision of repetitive positioning is better than 0.006° when each axis is at a low-speed. Besides, the system achieves the control function of multi axis coordinated motion. The design provides an important technical support for detecting spatial targets, also promoting the theoretical research.
Design Considerations of Polishing Lap for Computer-Controlled Cylindrical Polishing Process
NASA Technical Reports Server (NTRS)
Khan, Gufran S.; Gubarev, Mikhail; Arnold, William; Ramsey, Brian D.
2009-01-01
This paper establishes a relationship between the polishing process parameters and the generation of mid spatial-frequency error. The consideration of the polishing lap design to optimize the process in order to keep residual errors to a minimum and optimization of the process (speeds, stroke, etc.) and to keep the residual mid spatial-frequency error to a minimum, is also presented.
Spatial-Operator Algebra For Robotic Manipulators
NASA Technical Reports Server (NTRS)
Rodriguez, Guillermo; Kreutz, Kenneth K.; Milman, Mark H.
1991-01-01
Report discusses spatial-operator algebra developed in recent studies of mathematical modeling, control, and design of trajectories of robotic manipulators. Provides succinct representation of mathematically complicated interactions among multiple joints and links of manipulator, thereby relieving analyst of most of tedium of detailed algebraic manipulations. Presents analytical formulation of spatial-operator algebra, describes some specific applications, summarizes current research, and discusses implementation of spatial-operator algebra in the Ada programming language.
Improvements to the Processing and Characterization of Needled Composite Laminates
2014-01-01
the automated processing equipment are shown and discussed. The modifications allow better spatial control at the penetration sites and the ability... automated processing equipment are shown and discussed. The modifications allow better spatial control at the penetration sites and the ability to...semi- automated processing equipment, commercial off-the-shelf (COTS) needles and COTS aramid mat designed for other applications. Needled material
Dynamic nuclear polarization and optimal control spatial-selective 13C MRI and MRS
NASA Astrophysics Data System (ADS)
Vinding, Mads S.; Laustsen, Christoffer; Maximov, Ivan I.; Søgaard, Lise Vejby; Ardenkjær-Larsen, Jan H.; Nielsen, Niels Chr.
2013-02-01
Aimed at 13C metabolic magnetic resonance imaging (MRI) and spectroscopy (MRS) applications, we demonstrate that dynamic nuclear polarization (DNP) may be combined with optimal control 2D spatial selection to simultaneously obtain high sensitivity and well-defined spatial restriction. This is achieved through the development of spatial-selective single-shot spiral-readout MRI and MRS experiments combined with dynamic nuclear polarization hyperpolarized [1-13C]pyruvate on a 4.7 T pre-clinical MR scanner. The method stands out from related techniques by facilitating anatomic shaped region-of-interest (ROI) single metabolite signals available for higher image resolution or single-peak spectra. The 2D spatial-selective rf pulses were designed using a novel Krotov-based optimal control approach capable of iteratively fast providing successful pulse sequences in the absence of qualified initial guesses. The technique may be important for early detection of abnormal metabolism, monitoring disease progression, and drug research.
Predictive and postdictive analysis of forage yield trials
USDA-ARS?s Scientific Manuscript database
Classical experimental design theory, the predominant treatment in most textbooks, promotes the use of blocking designs for control of spatial variability in field studies and other situations in which there is significant variation among heterogeneity among experimental units. Many blocking design...
Design of 2D time-varying vector fields.
Chen, Guoning; Kwatra, Vivek; Wei, Li-Yi; Hansen, Charles D; Zhang, Eugene
2012-10-01
Design of time-varying vector fields, i.e., vector fields that can change over time, has a wide variety of important applications in computer graphics. Existing vector field design techniques do not address time-varying vector fields. In this paper, we present a framework for the design of time-varying vector fields, both for planar domains as well as manifold surfaces. Our system supports the creation and modification of various time-varying vector fields with desired spatial and temporal characteristics through several design metaphors, including streamlines, pathlines, singularity paths, and bifurcations. These design metaphors are integrated into an element-based design to generate the time-varying vector fields via a sequence of basis field summations or spatial constrained optimizations at the sampled times. The key-frame design and field deformation are also introduced to support other user design scenarios. Accordingly, a spatial-temporal constrained optimization and the time-varying transformation are employed to generate the desired fields for these two design scenarios, respectively. We apply the time-varying vector fields generated using our design system to a number of important computer graphics applications that require controllable dynamic effects, such as evolving surface appearance, dynamic scene design, steerable crowd movement, and painterly animation. Many of these are difficult or impossible to achieve via prior simulation-based methods. In these applications, the time-varying vector fields have been applied as either orientation fields or advection fields to control the instantaneous appearance or evolving trajectories of the dynamic effects.
Spatial issues in user interface design from a graphic design perspective
NASA Technical Reports Server (NTRS)
Marcus, Aaron
1989-01-01
The user interface of a computer system is a visual display that provides information about the status of operations on data within the computer and control options to the user that enable adjustments to these operations. From the very beginning of computer technology the user interface was a spatial display, although its spatial features were not necessarily complex or explicitly recognized by the users. All text and nonverbal signs appeared in a virtual space generally thought of as a single flat plane of symbols. Current technology of high performance workstations permits any element of the display to appear as dynamic, multicolor, 3-D signs in a virtual 3-D space. The complexity of appearance and the user's interaction with the display provide significant challenges to the graphic designer of current and future user interfaces. In particular, spatial depiction provides many opportunities for effective communication of objects, structures, processes, navigation, selection, and manipulation. Issues are presented that are relevant to the graphic designer seeking to optimize the user interface's spatial attributes for effective visual communication.
NASA Astrophysics Data System (ADS)
Maximov, Ivan I.; Vinding, Mads S.; Tse, Desmond H. Y.; Nielsen, Niels Chr.; Shah, N. Jon
2015-05-01
There is an increasing need for development of advanced radio-frequency (RF) pulse techniques in modern magnetic resonance imaging (MRI) systems driven by recent advancements in ultra-high magnetic field systems, new parallel transmit/receive coil designs, and accessible powerful computational facilities. 2D spatially selective RF pulses are an example of advanced pulses that have many applications of clinical relevance, e.g., reduced field of view imaging, and MR spectroscopy. The 2D spatially selective RF pulses are mostly generated and optimised with numerical methods that can handle vast controls and multiple constraints. With this study we aim at demonstrating that numerical, optimal control (OC) algorithms are efficient for the design of 2D spatially selective MRI experiments, when robustness towards e.g. field inhomogeneity is in focus. We have chosen three popular OC algorithms; two which are gradient-based, concurrent methods using first- and second-order derivatives, respectively; and a third that belongs to the sequential, monotonically convergent family. We used two experimental models: a water phantom, and an in vivo human head. Taking into consideration the challenging experimental setup, our analysis suggests the use of the sequential, monotonic approach and the second-order gradient-based approach as computational speed, experimental robustness, and image quality is key. All algorithms used in this work were implemented in the MATLAB environment and are freely available to the MRI community.
A spatial operator algebra for manipulator modeling and control
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Kreutz, Kenneth; Jain, Abhinandan
1989-01-01
A recently developed spatial operator algebra, useful for modeling, control, and trajectory design of manipulators is discussed. The elements of this algebra are linear operators whose domain and range spaces consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial recursion along the span of a manipulator. Inversion of operators can be efficiently obtained via techniques of recursive filtering and smoothing. The operator algebra provides a high level framework for describing the dynamic and kinematic behavior of a manipulator and control and trajectory design algorithms. The interpretation of expressions within the algebraic framework leads to enhanced conceptual and physical understanding of manipulator dynamics and kinematics. Furthermore, implementable recursive algorithms can be immediately derived from the abstract operator expressions by inspection. Thus, the transition from an abstract problem formulation and solution to the detailed mechanizaton of specific algorithms is greatly simplified. The analytical formulation of the operator algebra, as well as its implementation in the Ada programming language are discussed.
The effects of computer-aided design software on engineering students' spatial visualisation skills
NASA Astrophysics Data System (ADS)
Kösa, Temel; Karakuş, Fatih
2018-03-01
The purpose of this study was to determine the influence of computer-aided design (CAD) software-based instruction on the spatial visualisation skills of freshman engineering students in a computer-aided engineering drawing course. A quasi-experimental design was applied, using the Purdue Spatial Visualization Test-Visualization of Rotations (PSVT:R) for both the pre- and the post-test. The participants were 116 freshman students in the first year of their undergraduate programme in the Department of Mechanical Engineering at a university in Turkey. A total of 72 students comprised the experimental group; they were instructed with CAD-based activities in an engineering drawing course. The control group consisted of 44 students who did not attend this course. The results of the study showed that a CAD-based engineering drawing course had a positive effect on developing engineering students' spatial visualisation skills. Additionally, the results of the study showed that spatial visualisation skills can be a predictor for success in a computer-aided engineering drawing course.
NASA Astrophysics Data System (ADS)
Xu, Zhipeng; Wei, Jun; Li, Jianwei; Zhou, Qianting
2010-11-01
An image spectrometer of a spatial remote sensing satellite requires shortwave band range from 2.1μm to 3μm which is one of the most important bands in remote sensing. We designed an infrared sub-system of the image spectrometer using a homemade 640x1 InGaAs shortwave infrared sensor working on FPA system which requires high uniformity and low level of dark current. The working temperature should be -15+/-0.2 Degree Celsius. This paper studies the model of noise for focal plane array (FPA) system, investigated the relationship with temperature and dark current noise, and adopts Incremental PID algorithm to generate PWM wave in order to control the temperature of the sensor. There are four modules compose of the FPGA module design. All of the modules are coded by VHDL and implemented in FPGA device APA300. Experiment shows the intelligent temperature control system succeeds in controlling the temperature of the sensor.
NASA Astrophysics Data System (ADS)
Zhu, Hao; Bierden, Paul; Cornelissen, Steven; Bifano, Thomas; Kim, Jin-Hong
2004-10-01
This paper describes design and fabrication of a microelectromechanical metal spatial light modulator (SLM) integrated with complementary metal-oxide semiconductor (CMOS) electronics, for high-dynamic-range wavefront control. The metal SLM consists of a large array of piston-motion MEMS mirror segments (pixels) which can deflect up to 0.78 µm each. Both 32x32 and 150x150 arrays of the actuators (1024 and 22500 elements respectively) were fabricated onto the CMOS driver electronics and individual pixels were addressed. A new process has been developed to reduce the topography during the metal MEMS processing to fabricate mirror pixels with improved optical quality.
ERIC Educational Resources Information Center
Samsudin, Khairulanuar; Rafi, Ahmad; Mohamad Ali, Ahmad Zamzuri; Abd. Rashid, Nazre
2014-01-01
The aim of this study is to develop and to test a low-cost virtual reality spatial trainer in terms of its effectiveness in spatial training. The researchers adopted three features deriving from the constructivist perspective to guide the design of the trainer, namely interaction, instruction, and support. The no control pre test post test…
Electromagnetic Design of a Magnetically Coupled Spatial Power Combiner
NASA Astrophysics Data System (ADS)
Bulcha, B. T.; Cataldo, G.; Stevenson, T. R.; U-Yen, K.; Moseley, S. H.; Wollack, E. J.
2018-04-01
The design of a two-dimensional spatial beam-combining network employing a parallel-plate superconducting waveguide filled with a monocrystalline silicon dielectric substrate is presented. This component uses arrays of magnetically coupled antenna elements to achieve high coupling efficiency and full sampling of the intensity distribution while avoiding diffractive losses in the multimode waveguide region. These attributes enable the structure's use in realizing compact far-infrared spectrometers for astrophysical and instrumentation applications. If unterminated, reflections within a finite-sized spatial beam combiner can potentially lead to spurious couplings between elements. A planar meta-material electromagnetic absorber is implemented to control this response within the device. This broadband termination absorbs greater than 0.99 of the power over the 1.7:1 operational band at angles ranging from normal to near-parallel incidence. The design approach, simulations and applications of the spatial power combiner and meta-material termination structure are presented.
Wang, X-Y; He, J; Yang, K; Liang, S
2016-01-01
Schistosomiasis, as the important parasitic disease, has caused serious threats to human health globally. The People's Republic of China has acquired significant achievements based on large-scale interventions and innovational technology. The spatial technology was introduced in 1980s and widely used in the study and control of schistosomiasis in The People's Republic of China. This chapter reviews the progress and application of spatial technology in schistosomiasis control by analysing the spatiotemporal pattern of and the impact of ecological changes on schistosomiasis transmission, which have provided the information to design and select the control strategy, and assisted the establishment of the monitoring and early warning system in The People's Republic of China, especially in the marshland and mountainous regions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Maximov, Ivan I; Vinding, Mads S; Tse, Desmond H Y; Nielsen, Niels Chr; Shah, N Jon
2015-05-01
There is an increasing need for development of advanced radio-frequency (RF) pulse techniques in modern magnetic resonance imaging (MRI) systems driven by recent advancements in ultra-high magnetic field systems, new parallel transmit/receive coil designs, and accessible powerful computational facilities. 2D spatially selective RF pulses are an example of advanced pulses that have many applications of clinical relevance, e.g., reduced field of view imaging, and MR spectroscopy. The 2D spatially selective RF pulses are mostly generated and optimised with numerical methods that can handle vast controls and multiple constraints. With this study we aim at demonstrating that numerical, optimal control (OC) algorithms are efficient for the design of 2D spatially selective MRI experiments, when robustness towards e.g. field inhomogeneity is in focus. We have chosen three popular OC algorithms; two which are gradient-based, concurrent methods using first- and second-order derivatives, respectively; and a third that belongs to the sequential, monotonically convergent family. We used two experimental models: a water phantom, and an in vivo human head. Taking into consideration the challenging experimental setup, our analysis suggests the use of the sequential, monotonic approach and the second-order gradient-based approach as computational speed, experimental robustness, and image quality is key. All algorithms used in this work were implemented in the MATLAB environment and are freely available to the MRI community. Copyright © 2015 Elsevier Inc. All rights reserved.
Vander Heyden, Karin M; Huizinga, Mariette; Jolles, Jelle
2017-02-01
Children practice their spatial skills when playing with spatial toys, such as construction materials, board games, and puzzles. Sex and SES differences are observed in the engagement in such spatial play activities at home, which relate to individual differences in spatial performance. The current study investigated the effects of explicitly providing spatial play activities in the school setting on different types of spatial ability. We presented 8- to 10-year-old children with a short and easy-to-adopt classroom intervention comprising a set of different spatial play materials. The design involved a pretest-posttest comparison between the intervention group (n = 70) and a control group without intervention (n = 70). Effects were examined on object transformation ability (i.e., a paper-and-pencil mental rotation and paper folding task) and viewer transformation ability (i.e., a hands-on 3D spatial perspective-taking task). Results showed specific effects: there were no differences between the intervention and control group in progress on the two object transformation tasks. Substantial improvements were found for the intervention group compared to the control group on the viewer transformation task. Training progress was not related to sex and socioeconomic background of the child. These findings support the value of spatial play in the classroom for the spatial development of children between 8 and 10 years of age. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Fajnerová, Iveta; Rodriguez, Mabel; Levčík, David; Konrádová, Lucie; Mikoláš, Pavol; Brom, Cyril; Stuchlík, Aleš; Vlček, Kamil; Horáček, Jiří
2014-01-01
Objectives: Cognitive deficit is considered to be a characteristic feature of schizophrenia disorder. A similar cognitive dysfunction was demonstrated in animal models of schizophrenia. However, the poor comparability of methods used to assess cognition in animals and humans could be responsible for low predictive validity of current animal models. In order to assess spatial abilities in schizophrenia and compare our results with the data obtained in animal models, we designed a virtual analog of the Morris water maze (MWM), the virtual Four Goals Navigation (vFGN) task. Methods: Twenty-nine patients after the first psychotic episode with schizophrenia symptoms and a matched group of healthy volunteers performed the vFGN task. They were required to find and remember four hidden goal positions in an enclosed virtual arena. The task consisted of two parts. The Reference memory (RM) session with a stable goal position was designed to test spatial learning. The Delayed-matching-to-place (DMP) session presented a modified working memory protocol designed to test the ability to remember a sequence of three hidden goal positions. Results: Data obtained in the RM session show impaired spatial learning in schizophrenia patients compared to the healthy controls in pointing and navigation accuracy. The DMP session showed impaired spatial memory in schizophrenia during the recall of spatial sequence and a similar deficit in spatial bias in the probe trials. The pointing accuracy and the quadrant preference showed higher sensitivity toward the cognitive deficit than the navigation accuracy. Direct navigation to the goal was affected by sex and age of the tested subjects. The age affected spatial performance only in healthy controls. Conclusions: Despite some limitations of the study, our results correspond well with the previous studies in animal models of schizophrenia and support the decline of spatial cognition in schizophrenia, indicating the usefulness of the vFGN task in comparative research. PMID:24904329
Self-aligned spatial filtering using laser optical tweezers.
Birkbeck, Aaron L; Zlatanovic, Sanja; Esener, Sadik C
2006-09-01
We present an optical spatial filtering device that has been integrated into a microfluidic system and whose motion and alignment is controlled using a laser optical tweezer. The lithographically patterned micro-optical spatial filter device filters out higher frequency additive noise components by automatically aligning itself in three dimensions to the focus of the laser beam. This self-alignment capability is achieved through the attachment of a refractive optical element directly over the circular aperture or pinhole of the spatial filter. A discussion of two different spatial filter designs is presented along with experimental results that demonstrate the effectiveness of the self-aligned micro-optic spatial filter.
Jiang, Zhi Hao; Turpin, Jeremy P.; Morgan, Kennith; Lu, Bingqian; Werner, Douglas H.
2015-01-01
Transformation optics provides scientists and engineers with a new powerful design paradigm to manipulate the flow of electromagnetic waves in a user-defined manner and with unprecedented flexibility, by controlling the spatial distribution of the electromagnetic properties of a medium. Using this approach, over the past decade, various previously undiscovered physical wave phenomena have been revealed and novel electromagnetic devices have been demonstrated throughout the electromagnetic spectrum. In this paper, we present versatile theoretical and experimental investigations on designing transformation optics-enabled devices for shaping electromagnetic wave radiation and guidance, at both radio frequencies and optical wavelengths. Different from conventional coordinate transformations, more advanced and versatile coordinate transformations are exploited here to benefit diverse applications, thereby providing expanded design flexibility, enhanced device performance, as well as reduced implementation complexity. These design examples demonstrate the comprehensive capability of transformation optics in controlling electromagnetic waves, while the associated novel devices will open up new paths towards future integrated electromagnetic component synthesis and design, from microwave to optical spectral regimes. PMID:26217054
Visuospatial training improves elementary students' mathematics performance.
Lowrie, Tom; Logan, Tracy; Ramful, Ajay
2017-06-01
Although spatial ability and mathematics performance are highly correlated, there is scant research on the extent to which spatial ability training can improve mathematics performance. This study evaluated the efficacy of a visuospatial intervention programme within classrooms to determine the effect on students' (1) spatial reasoning and (2) mathematics performance as a result of the intervention. The study involved grade six students (ages 10-12) in eight classes. There were five intervention classes (n = 120) and three non-intervention control classes (n = 66). A specifically designed 10-week spatial reasoning programme was developed collaboratively with the participating teachers, with the intervention replacing the standard mathematics curriculum. The five classroom teachers in the intervention programme presented 20 hr of activities aimed at enhancing students' spatial visualization, mental rotation, and spatial orientation skills. The spatial reasoning programme led to improvements in both spatial ability and mathematics performance relative to the control group who received standard mathematics instruction. Our study is the first to show that a classroom-based spatial reasoning intervention improves elementary school students' mathematics performance. © 2017 The British Psychological Society.
Modeling and simulation of CANDU reactor and its regulating system
NASA Astrophysics Data System (ADS)
Javidnia, Hooman
Analytical computer codes are indispensable tools in design, optimization, and control of nuclear power plants. Numerous codes have been developed to perform different types of analyses related to the nuclear power plants. A large number of these codes are designed to perform safety analyses. In the context of safety analyses, the control system is often neglected. Although there are good reasons for such a decision, that does not mean that the study of control systems in the nuclear power plants should be neglected altogether. In this thesis, a proof of concept code is developed as a tool that can be used in the design. optimization. and operation stages of the control system. The main objective in the design of this computer code is providing a tool that is easy to use by its target audience and is capable of producing high fidelity results that can be trusted to design the control system and optimize its performance. Since the overall plant control system covers a very wide range of processes, in this thesis the focus has been on one particular module of the the overall plant control system, namely, the reactor regulating system. The center of the reactor regulating system is the CANDU reactor. A nodal model for the reactor is used to represent the spatial neutronic kinetics of the core. The nodal model produces better results compared to the point kinetics model which is often used in the design and analysis of control system for nuclear reactors. The model can capture the spatial effects to some extent. although it is not as detailed as the finite difference methods. The criteria for choosing a nodal model of the core are: (1) the model should provide more detail than point kinetics and capture spatial effects, (2) it should not be too complex or overly detailed to slow down the simulation and provide details that are extraneous or unnecessary for a control engineer. Other than the reactor itself, there are auxiliary models that describe dynamics of different phenomena related to the transfer of the energy from the core. The main function of the reactor regulating system is to control the power of the reactor. This is achieved by using a set of detectors. reactivity devices. and digital control algorithms. Three main reactivity devices that are activated during short-term or intermediate-term transients are modeled in this thesis. The main elements of the digital control system are implemented in accordance to the program specifications for the actual control system in CANDU reactors. The simulation results are validated against requirements of the reactor regulating system. actual plant data. and pre-validated data from other computer codes. The validation process shows that the simulation results can be trusted in making engineering decisions regarding the reactor regulating system and prediction of the system performance in response to upset conditions or disturbances. KEYWORDS: CANDU reactors. reactor regulating system. nodal model. spatial kinetics. reactivity devices. simulation.
Auditory spatial processing in Alzheimer’s disease
Golden, Hannah L.; Nicholas, Jennifer M.; Yong, Keir X. X.; Downey, Laura E.; Schott, Jonathan M.; Mummery, Catherine J.; Crutch, Sebastian J.
2015-01-01
The location and motion of sounds in space are important cues for encoding the auditory world. Spatial processing is a core component of auditory scene analysis, a cognitively demanding function that is vulnerable in Alzheimer’s disease. Here we designed a novel neuropsychological battery based on a virtual space paradigm to assess auditory spatial processing in patient cohorts with clinically typical Alzheimer’s disease (n = 20) and its major variant syndrome, posterior cortical atrophy (n = 12) in relation to healthy older controls (n = 26). We assessed three dimensions of auditory spatial function: externalized versus non-externalized sound discrimination, moving versus stationary sound discrimination and stationary auditory spatial position discrimination, together with non-spatial auditory and visual spatial control tasks. Neuroanatomical correlates of auditory spatial processing were assessed using voxel-based morphometry. Relative to healthy older controls, both patient groups exhibited impairments in detection of auditory motion, and stationary sound position discrimination. The posterior cortical atrophy group showed greater impairment for auditory motion processing and the processing of a non-spatial control complex auditory property (timbre) than the typical Alzheimer’s disease group. Voxel-based morphometry in the patient cohort revealed grey matter correlates of auditory motion detection and spatial position discrimination in right inferior parietal cortex and precuneus, respectively. These findings delineate auditory spatial processing deficits in typical and posterior Alzheimer’s disease phenotypes that are related to posterior cortical regions involved in both syndromic variants and modulated by the syndromic profile of brain degeneration. Auditory spatial deficits contribute to impaired spatial awareness in Alzheimer’s disease and may constitute a novel perceptual model for probing brain network disintegration across the Alzheimer’s disease syndromic spectrum. PMID:25468732
NASA Technical Reports Server (NTRS)
Albus, James S.
1996-01-01
The Real-time Control System (RCS) developed at NIST and elsewhere over the past two decades defines a reference model architecture for design and analysis of complex intelligent control systems. The RCS architecture consists of a hierarchically layered set of functional processing modules connected by a network of communication pathways. The primary distinguishing feature of the layers is the bandwidth of the control loops. The characteristic bandwidth of each level is determined by the spatial and temporal integration window of filters, the temporal frequency of signals and events, the spatial frequency of patterns, and the planning horizon and granularity of the planners that operate at each level. At each level, tasks are decomposed into sequential subtasks, to be performed by cooperating sets of subordinate agents. At each level, signals from sensors are filtered and correlated with spatial and temporal features that are relevant to the control function being implemented at that level.
Design and Management of an IMC Micro Center.
ERIC Educational Resources Information Center
Bunson, Stanley N.
1988-01-01
Outlines design and management factors to be considered when developing a microcomputer lab for an instructional media center (IMC). Highlights include environmental considerations, including spatial arrangements, furniture, power requirements, temperature control, and lighting; software and hardware acquisition; and administrative considerations,…
Geostationary Operational Environmental Satellite (GOES-N report). Volume 2: Technical appendix
NASA Technical Reports Server (NTRS)
1992-01-01
The contents include: operation with inclinations up to 3.5 deg to extend life; earth sensor improvements to reduce noise; sensor configurations studied; momentum management system design; reaction wheel induced dynamic interaction; controller design; spacecraft motion compensation; analog filtering; GFRP servo design - modern control approach; feedforward compensation as applied to GOES-1 sounder; discussion of allocation of navigation, inframe registration and image-to-image error budget overview; and spatial response and cloud smearing study.
Lasercom system architecture with reduced complexity
NASA Technical Reports Server (NTRS)
Lesh, James R. (Inventor); Chen, Chien-Chung (Inventor); Ansari, Homayoon (Inventor)
1994-01-01
Spatial acquisition and precision beam pointing functions are critical to spaceborne laser communication systems. In the present invention, a single high bandwidth CCD detector is used to perform both spatial acquisition and tracking functions. Compared to previous lasercom hardware design, the array tracking concept offers reduced system complexity by reducing the number of optical elements in the design. Specifically, the design requires only one detector and one beam steering mechanism. It also provides the means to optically close the point-ahead control loop. The technology required for high bandwidth array tracking was examined and shown to be consistent with current state of the art. The single detector design can lead to a significantly reduced system complexity and a lower system cost.
LaserCom System Architecture With Reduced Complexity
NASA Technical Reports Server (NTRS)
Lesh, James R. (Inventor); Chen, Chien-Chung (Inventor); Ansari, Homa-Yoon (Inventor)
1996-01-01
Spatial acquisition and precision beam pointing functions are critical to spaceborne laser communication systems. In the present invention a single high bandwidth CCD detector is used to perform both spatial acquisition and tracking functions. Compared to previous lasercom hardware design, the array tracking concept offers reduced system complexity by reducing the number of optical elements in the design. Specifically, the design requires only one detector and one beam steering mechanism. It also provides means to optically close the point-ahead control loop. The technology required for high bandwidth array tracking was examined and shown to be consistent with current state of the art. The single detector design can lead to a significantly reduced system complexity and a lower system cost.
NASA Astrophysics Data System (ADS)
Parlett, Christopher M. A.; Isaacs, Mark A.; Beaumont, Simon K.; Bingham, Laura M.; Hondow, Nicole S.; Wilson, Karen; Lee, Adam F.
2016-02-01
The chemical functionality within porous architectures dictates their performance as heterogeneous catalysts; however, synthetic routes to control the spatial distribution of individual functions within porous solids are limited. Here we report the fabrication of spatially orthogonal bifunctional porous catalysts, through the stepwise template removal and chemical functionalization of an interconnected silica framework. Selective removal of polystyrene nanosphere templates from a lyotropic liquid crystal-templated silica sol-gel matrix, followed by extraction of the liquid crystal template, affords a hierarchical macroporous-mesoporous architecture. Decoupling of the individual template extractions allows independent functionalization of macropore and mesopore networks on the basis of chemical and/or size specificity. Spatial compartmentalization of, and directed molecular transport between, chemical functionalities affords control over the reaction sequence in catalytic cascades; herein illustrated by the Pd/Pt-catalysed oxidation of cinnamyl alcohol to cinnamic acid. We anticipate that our methodology will prompt further design of multifunctional materials comprising spatially compartmentalized functions.
The effect of childhood trauma on spatial cognition in adults: a possible role of sex.
Syal, Supriya; Ipser, Jonathan; Phillips, Nicole; Thomas, Kevin G F; van der Honk, Jack; Stein, Dan J
2014-06-01
Although animal evidence indicates that early life trauma results in pervasive hippocampal deficits underlying spatial and cognitive impairment, visuo-spatial data from adult humans with early childhood adversity are lacking. We administered 4 tests of visuo-spatial ability from the Cambridge Neuorpsychological Test Automated Battery (CANTAB) to adults with a history of childhood trauma (measured by the Childhood Trauma Questionnaire) and a matched sample of healthy controls (trauma/control = 27/28). We observed a significant effect of trauma history on spatial/pattern learning. These effects could not be accounted for by adverse adult experiences, and were sex-specific, with prior adversity improving performance in men but worsening performance in women, relative to controls. Limitations include the small sample size and reliance of our study design on a retrospective, self report measure. Our results suggest that early adversity can lead to specific and pervasive deficits in adult cognitive function.
The Role of Visualization in Learning from Computer-Based Images. Research Report
ERIC Educational Resources Information Center
Piburn, Michael D.; Reynolds, Stephen J.; McAuliffe, Carla; Leedy, Debra E.; Birk, James P.; Johnson, Julia K.
2005-01-01
Among the sciences, the practice of geology is especially visual. To assess the role of spatial ability in learning geology, we designed an experiment using: (1) web-based versions of spatial visualization tests, (2) a geospatial test, and (3) multimedia instructional modules built around QuickTime Virtual Reality movies. Students in control and…
Optimal design of tweezer control for chimera states
NASA Astrophysics Data System (ADS)
Omelchenko, Iryna; Omel'chenko, Oleh E.; Zakharova, Anna; Schöll, Eckehard
2018-01-01
Chimera states are complex spatio-temporal patterns which consist of coexisting domains of spatially coherent and incoherent dynamics in systems of coupled oscillators. In small networks, chimera states usually exhibit short lifetimes and erratic drifting of the spatial position of the incoherent domain. A tweezer feedback control scheme can stabilize and fix the position of chimera states. We analyze the action of the tweezer control in small nonlocally coupled networks of Van der Pol and FitzHugh-Nagumo oscillators, and determine the ranges of optimal control parameters. We demonstrate that the tweezer control scheme allows for stabilization of chimera states with different shapes, and can be used as an instrument for controlling the coherent domains size, as well as the maximum average frequency difference of the oscillators.
Spatial controls of occurrence and spread of wildfires in the Missouri Ozark Highlands.
Yang, Jian; He, Hong S; Shifley, Stephen R
2008-07-01
Understanding spatial controls on wildfires is important when designing adaptive fire management plans and optimizing fuel treatment locations on a forest landscape. Previous research about this topic focused primarily on spatial controls for fire origin locations alone. Fire spread and behavior were largely overlooked. This paper contrasts the relative importance of biotic, abiotic, and anthropogenic constraints on the spatial pattern of fire occurrence with that on burn probability (i.e., the probability that fire will spread to a particular location). Spatial point pattern analysis and landscape succession fire model (LANDIS) were used to create maps to show the contrast. We quantified spatial controls on both fire occurrence and fire spread in the Midwest Ozark Highlands region, USA. This area exhibits a typical anthropogenic surface fire regime. We found that (1) human accessibility and land ownership were primary limiting factors in shaping clustered fire origin locations; (2) vegetation and topography had a negligible influence on fire occurrence in this anthropogenic regime; (3) burn probability was higher in grassland and open woodland than in closed-canopy forest, even though fire occurrence density was less in these vegetation types; and (4) biotic and abiotic factors were secondary descriptive ingredients for determining the spatial patterns of burn probability. This study demonstrates how fire occurrence and spread interact with landscape patterns to affect the spatial distribution of wildfire risk. The application of spatial point pattern data analysis would also be valuable to researchers working on landscape forest fire models to integrate historical ignition location patterns in fire simulation.
Jiang, Zhi Hao; Turpin, Jeremy P; Morgan, Kennith; Lu, Bingqian; Werner, Douglas H
2015-08-28
Transformation optics provides scientists and engineers with a new powerful design paradigm to manipulate the flow of electromagnetic waves in a user-defined manner and with unprecedented flexibility, by controlling the spatial distribution of the electromagnetic properties of a medium. Using this approach, over the past decade, various previously undiscovered physical wave phenomena have been revealed and novel electromagnetic devices have been demonstrated throughout the electromagnetic spectrum. In this paper, we present versatile theoretical and experimental investigations on designing transformation optics-enabled devices for shaping electromagnetic wave radiation and guidance, at both radio frequencies and optical wavelengths. Different from conventional coordinate transformations, more advanced and versatile coordinate transformations are exploited here to benefit diverse applications, thereby providing expanded design flexibility, enhanced device performance, as well as reduced implementation complexity. These design examples demonstrate the comprehensive capability of transformation optics in controlling electromagnetic waves, while the associated novel devices will open up new paths towards future integrated electromagnetic component synthesis and design, from microwave to optical spectral regimes. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Spatial and temporal laser pulse design for material processing on ultrafast scales
NASA Astrophysics Data System (ADS)
Stoian, R.; Colombier, J. P.; Mauclair, C.; Cheng, G.; Bhuyan, M. K.; Velpula, P. K.; Srisungsitthisunti, P.
2014-01-01
The spatio-temporal design of ultrafast laser excitation can have a determinant influence on the physical and engineering aspects of laser-matter interactions, with the potential of upgrading laser processing effects. Energy relaxation channels can be synergetically stimulated as the energy delivery rate is synchronized with the material response on ps timescales. Experimental and theoretical loops based on the temporal design of laser irradiation and rapid monitoring of irradiation effects are, therefore, able to predict and determine ideal optimal laser pulse forms for specific ablation objectives. We illustrate this with examples on manipulating the thermodynamic relaxation pathways impacting the ablation products and nanostructuring of bulk and surfaces using longer pulse envelopes. Some of the potential control factors will be pointed out. At the same time the spatial character can dramatically influence the development of laser interaction. We discuss spatial beam engineering examples such as parallel and non-diffractive approaches designed for high-throughput, high-accuracy processing events.
A spatial operator algebra for manipulator modeling and control
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Kreutz, K.; Milman, M.
1988-01-01
A powerful new spatial operator algebra for modeling, control, and trajectory design of manipulators is discussed along with its implementation in the Ada programming language. Applications of this algebra to robotics include an operator representation of the manipulator Jacobian matrix; the robot dynamical equations formulated in terms of the spatial algebra, showing the complete equivalence between the recursive Newton-Euler formulations to robot dynamics; the operator factorization and inversion of the manipulator mass matrix which immediately results in O(N) recursive forward dynamics algorithms; the joint accelerations of a manipulator due to a tip contact force; the recursive computation of the equivalent mass matrix as seen at the tip of a manipulator; and recursive forward dynamics of a closed chain system. Finally, additional applications and current research involving the use of the spatial operator algebra are discussed in general terms.
Spatial Processing in Infancy Predicts Both Spatial and Mathematical Aptitude in Childhood.
Lauer, Jillian E; Lourenco, Stella F
2016-10-01
Despite considerable interest in the role of spatial intelligence in science, technology, engineering, and mathematics (STEM) achievement, little is known about the ontogenetic origins of individual differences in spatial aptitude or their relation to later accomplishments in STEM disciplines. The current study provides evidence that spatial processes present in infancy predict interindividual variation in both spatial and mathematical competence later in development. Using a longitudinal design, we found that children's performance on a brief visuospatial change-detection task administered between 6 and 13 months of age was related to their spatial aptitude (i.e., mental-transformation skill) and mastery of symbolic-math concepts at 4 years of age, even when we controlled for general cognitive abilities and spatial memory. These results suggest that nascent spatial processes present in the first year of life not only act as precursors to later spatial intelligence but also predict math achievement during childhood.
Sampling design optimization for spatial functions
Olea, R.A.
1984-01-01
A new procedure is presented for minimizing the sampling requirements necessary to estimate a mappable spatial function at a specified level of accuracy. The technique is based on universal kriging, an estimation method within the theory of regionalized variables. Neither actual implementation of the sampling nor universal kriging estimations are necessary to make an optimal design. The average standard error and maximum standard error of estimation over the sampling domain are used as global indices of sampling efficiency. The procedure optimally selects those parameters controlling the magnitude of the indices, including the density and spatial pattern of the sample elements and the number of nearest sample elements used in the estimation. As an illustration, the network of observation wells used to monitor the water table in the Equus Beds of Kansas is analyzed and an improved sampling pattern suggested. This example demonstrates the practical utility of the procedure, which can be applied equally well to other spatial sampling problems, as the procedure is not limited by the nature of the spatial function. ?? 1984 Plenum Publishing Corporation.
Liu, Zhihua; Yang, Jian; He, Hong S.
2013-01-01
The relative importance of fuel, topography, and weather on fire spread varies at different spatial scales, but how the relative importance of these controls respond to changing spatial scales is poorly understood. We designed a “moving window” resampling technique that allowed us to quantify the relative importance of controls on fire spread at continuous spatial scales using boosted regression trees methods. This quantification allowed us to identify the threshold value for fire size at which the dominant control switches from fuel at small sizes to weather at large sizes. Topography had a fluctuating effect on fire spread across the spatial scales, explaining 20–30% of relative importance. With increasing fire size, the dominant control switched from bottom-up controls (fuel and topography) to top-down controls (weather). Our analysis suggested that there is a threshold for fire size, above which fires are driven primarily by weather and more likely lead to larger fire size. We suggest that this threshold, which may be ecosystem-specific, can be identified using our “moving window” resampling technique. Although the threshold derived from this analytical method may rely heavily on the sampling technique, our study introduced an easily implemented approach to identify scale thresholds in wildfire regimes. PMID:23383247
High spatial and temporal resolution cell manipulation techniques in microchannels.
Novo, Pedro; Dell'Aica, Margherita; Janasek, Dirk; Zahedi, René P
2016-03-21
The advent of microfluidics has enabled thorough control of cell manipulation experiments in so called lab on chips. Lab on chips foster the integration of actuation and detection systems, and require minute sample and reagent amounts. Typically employed microfluidic structures have similar dimensions as cells, enabling precise spatial and temporal control of individual cells and their local environments. Several strategies for high spatio-temporal control of cells in microfluidics have been reported in recent years, namely methods relying on careful design of the microfluidic structures (e.g. pinched flow), by integration of actuators (e.g. electrodes or magnets for dielectro-, acousto- and magneto-phoresis), or integrations thereof. This review presents the recent developments of cell experiments in microfluidics divided into two parts: an introduction to spatial control of cells in microchannels followed by special emphasis in the high temporal control of cell-stimulus reaction and quenching. In the end, the present state of the art is discussed in line with future perspectives and challenges for translating these devices into routine applications.
The Applications of Model-Based Geostatistics in Helminth Epidemiology and Control
Magalhães, Ricardo J. Soares; Clements, Archie C.A.; Patil, Anand P.; Gething, Peter W.; Brooker, Simon
2011-01-01
Funding agencies are dedicating substantial resources to tackle helminth infections. Reliable maps of the distribution of helminth infection can assist these efforts by targeting control resources to areas of greatest need. The ability to define the distribution of infection at regional, national and subnational levels has been enhanced greatly by the increased availability of good quality survey data and the use of model-based geostatistics (MBG), enabling spatial prediction in unsampled locations. A major advantage of MBG risk mapping approaches is that they provide a flexible statistical platform for handling and representing different sources of uncertainty, providing plausible and robust information on the spatial distribution of infections to inform the design and implementation of control programmes. Focussing on schistosomiasis and soil-transmitted helminthiasis, with additional examples for lymphatic filariasis and onchocerciasis, we review the progress made to date with the application of MBG tools in large-scale, real-world control programmes and propose a general framework for their application to inform integrative spatial planning of helminth disease control programmes. PMID:21295680
Substructure-based control of flexible structures
NASA Technical Reports Server (NTRS)
Babuska, Vit; Craig, Roy R., Jr.
1993-01-01
A decentralized procedure is presented for the design of controllers for flexible structures. Spatially significant components are created which approximate the response of a specific part of the complete structure. For each component, the controller and observer gain matrices which are used in a controller for the complete structure. The proposed method is illustrated on a model of NASA Langley's CSI testbed structure.
Design and application of an array extended blackbody
NASA Astrophysics Data System (ADS)
Zhang, Ya-zhou; Fan, Xiao-li; Lei, Hao; Zhou, Zhi-yuan
2018-02-01
An array extended blackbody is designed to quantitatively measure and evaluate the performance of infrared imaging systems. The theory, structure, control software and application of blackbody are introduced. The parameters of infrared imaging systems such as the maximum detectable range, detection sensitivity, spatial resolution and temperature resolution can be measured.
Inverse Opal Scaffolds with Gradations in Mineral Content for Spatial Control of Osteogenesis.
Zhu, Chunlei; Qiu, Jichuan; Pongkitwitoon, Suphannee; Thomopoulos, Stavros; Xia, Younan
2018-05-30
The design and fabrication of inverse opal scaffolds with gradations in mineral content to achieve spatial control of osteogenesis are described. The gradient in mineral content is established via the diffusion-limited transport of hydroxyapatite nanoparticles in a closely packed lattice of gelatin microbeads. The mineral-graded scaffold has an array of uniform pores and interconnected windows to facilitate efficient transport of nutrients and metabolic wastes, ensuring high cell viability. The graded distribution of mineral content can provide biochemical and mechanical cues for spatially regulating the osteogenic differentiation of adipose-derived stromal cells. This new class of scaffolds holds promise for engineering the interfaces between mineralized and unmineralized tissues. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Precision Attitude Control for the BETTII Balloon-Borne Interferometer
NASA Technical Reports Server (NTRS)
Benford, Dominic J.; Fixsen, Dale J.; Rinehart. Stephen
2012-01-01
The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is an 8-meter baseline far-infrared interferometer to fly on a high altitude balloon. Operating at wavelengths of 30-90 microns, BETTII will obtain spatial and spectral information on science targets at angular resolutions down to less than half an arcsecond, a capability unmatched by other far-infrared facilities. This requires attitude control at a level ofless than a tenth of an arcsecond, a great challenge for a lightweight balloon-borne system. We have designed a precision attitude determination system to provide gondola attitude knowledge at a level of 2 milliarcseconds at rates up to 100Hz, with accurate absolute attitude determination at the half arcsecond level at rates of up to 10Hz. A mUlti-stage control system involving rigid body motion and tip-tilt-piston correction provides precision pointing stability to the level required for the far-infrared instrument to perform its spatial/spectral interferometry in an open-loop control. We present key aspects of the design of the attitude determination and control and its development status.
ERIC Educational Resources Information Center
Yurt, Eyup; Sunbul, Ali Murat
2012-01-01
In this study, the effect of modeling based activities using virtual environments and concrete objects on spatial thinking and mental rotation skills was investigated. The study was designed as a pretest-posttest model with a control group, which is one of the experimental research models. The study was carried out on sixth grade students…
Design of control system for optical fiber drawing machine driven by double motor
NASA Astrophysics Data System (ADS)
Yu, Yue Chen; Bo, Yu Ming; Wang, Jun
2018-01-01
Micro channel Plate (MCP) is a kind of large-area array electron multiplier with high two-dimensional spatial resolution, used as high-performance night vision intensifier. The high precision control of the fiber is the key technology of the micro channel plate manufacturing process, and it was achieved by the control of optical fiber drawing machine driven by dual-motor in this paper. First of all, utilizing STM32 chip, the servo motor drive and control circuit was designed to realize the dual motor synchronization. Secondly, neural network PID control algorithm was designed for controlling the fiber diameter fabricated in high precision; Finally, the hexagonal fiber was manufactured by this system and it shows that multifilament diameter accuracy of the fiber is +/- 1.5μm.
Rout, Saroj; Sonkusale, Sameer
2016-06-27
The ever increasing demand for bandwidth in wireless communication systems will inevitably lead to the extension of operating frequencies toward the terahertz (THz) band known as the 'THz gap'. Towards closing this gap, we present a multi-level amplitude shift keying (ASK) terahertz wireless communication system using terahertz spatial light modulators (SLM) instead of traditional voltage mode modulation, achieving higher spectral efficiency for high speed communication. The fundamental principle behind this higher efficiency is the conversion of a noisy voltage domain signal to a noise-free binary spatial pattern for effective amplitude modulation of a free-space THz carrier wave. Spatial modulation is achieved using an an active metamaterial array embedded with pseudomorphic high-electron mobility (pHEMT) designed in a consumer-grade galium-arsenide (GaAs) integrated circuit process which enables electronic control of its THz transmissivity. Each array is assembled as individually controllable tiles for transmissive terahertz spatial modulation. Using the experimental data from our metamaterial based modulator, we show that a four-level ASK digital communication system has two orders of magnitude improvement in symbol error rate (SER) for a degradation of 20 dB in transmit signal-to-noise ratio (SNR) using spatial light modulation compared to voltage controlled modulation.
Dual-channel near-field control by polarizations using isotropic and inhomogeneous metasurface.
Wan, Xiang; Cai, Ben Geng; Li, Yun Bo; Cui, Tie Jun
2015-11-03
We propose a method for dual-channel near-field manipulations by designing isotropic but inhomogeneous metasurfaces. As example, we present a dual-channel near-field focusing metasurface device. When the device is driven by surface waves from different channels on the metasurface, the near fields will be focused at the same spatial point with different polarizations. Conversely, if a linearly polarized source is radiated at the spatial focal point, different channels will be evoked on the metasurface controlled by polarization. We fabricated and measured the metasurface device in the microwave frequency. Well agreements between the simulation and measurement results are observed. The proposed method exhibits great flexibility in controlling the surface waves and spatial waves simultaneously. It is expected that the proposed method and dual-channel device will facilitate the manipulation of near electromagnetic or optical waves in different frequency regimes.
Spatial Control of Functional Response in 4D-Printed Active Metallic Structures
NASA Astrophysics Data System (ADS)
Ma, Ji; Franco, Brian; Tapia, Gustavo; Karayagiz, Kubra; Johnson, Luke; Liu, Jun; Arroyave, Raymundo; Karaman, Ibrahim; Elwany, Alaa
2017-04-01
We demonstrate a method to achieve local control of 3-dimensional thermal history in a metallic alloy, which resulted in designed spatial variations in its functional response. A nickel-titanium shape memory alloy part was created with multiple shape-recovery stages activated at different temperatures using the selective laser melting technique. The multi-stage transformation originates from differences in thermal history, and thus the precipitate structure, at various locations created from controlled variations in the hatch distance within the same part. This is a first example of precision location-dependent control of thermal history in alloys beyond the surface, and utilizes additive manufacturing techniques as a tool to create materials with novel functional response that is difficult to achieve through conventional methods.
Yang, Chifu; Zhao, Jinsong; Li, Liyi; Agrawal, Sunil K
2018-01-01
Robotic spine brace based on parallel-actuated robotic system is a new device for treatment and sensing of scoliosis, however, the strong dynamic coupling and anisotropy problem of parallel manipulators result in accuracy loss of rehabilitation force control, including big error in direction and value of force. A novel active force control strategy named modal space force control is proposed to solve these problems. Considering the electrical driven system and contact environment, the mathematical model of spatial parallel manipulator is built. The strong dynamic coupling problem in force field is described via experiments as well as the anisotropy problem of work space of parallel manipulators. The effects of dynamic coupling on control design and performances are discussed, and the influences of anisotropy on accuracy are also addressed. With mass/inertia matrix and stiffness matrix of parallel manipulators, a modal matrix can be calculated by using eigenvalue decomposition. Making use of the orthogonality of modal matrix with mass matrix of parallel manipulators, the strong coupled dynamic equations expressed in work space or joint space of parallel manipulator may be transformed into decoupled equations formulated in modal space. According to this property, each force control channel is independent of others in the modal space, thus we proposed modal space force control concept which means the force controller is designed in modal space. A modal space active force control is designed and implemented with only a simple PID controller employed as exampled control method to show the differences, uniqueness, and benefits of modal space force control. Simulation and experimental results show that the proposed modal space force control concept can effectively overcome the effects of the strong dynamic coupling and anisotropy problem in the physical space, and modal space force control is thus a very useful control framework, which is better than the current joint space control and work space control. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Auditory Attentional Control and Selection during Cocktail Party Listening
Hill, Kevin T.
2010-01-01
In realistic auditory environments, people rely on both attentional control and attentional selection to extract intelligible signals from a cluttered background. We used functional magnetic resonance imaging to examine auditory attention to natural speech under such high processing-load conditions. Participants attended to a single talker in a group of 3, identified by the target talker's pitch or spatial location. A catch-trial design allowed us to distinguish activity due to top-down control of attention versus attentional selection of bottom-up information in both the spatial and spectral (pitch) feature domains. For attentional control, we found a left-dominant fronto-parietal network with a bias toward spatial processing in dorsal precentral sulcus and superior parietal lobule, and a bias toward pitch in inferior frontal gyrus. During selection of the talker, attention modulated activity in left intraparietal sulcus when using talker location and in bilateral but right-dominant superior temporal sulcus when using talker pitch. We argue that these networks represent the sources and targets of selective attention in rich auditory environments. PMID:19574393
NASA Astrophysics Data System (ADS)
Na, M.; Lee, S.; Kim, G.; Kim, H. S.; Rho, J.; Ok, J. G.
2017-12-01
Detecting and mapping the spatial distribution of radioactive materials is of great importance for environmental and security issues. We design and present a novel hemispherical rotational modulation collimator (H-RMC) system which can visualize the location of the radiation source by collecting signals from incident rays that go through collimator masks. The H-RMC system comprises a servo motor-controlled rotating module and a hollow heavy-metallic hemisphere with slits/slats equally spaced with the same angle subtended from the main axis. In addition, we also designed an auxiliary instrument to test the imaging performance of the H-RMC system, comprising a high-precision x- and y-axis staging station on which one can mount radiation sources of various shapes. We fabricated the H-RMC system which can be operated in a fully-automated fashion through the computer-based controller, and verify the accuracy and reproducibility of the system by measuring the rotational and linear positions with respect to the programmed values. Our H-RMC system may provide a pivotal tool for spatial radiation imaging with high reliability and accuracy.
Iserbyt, Peter; Byra, Mark
2013-11-01
Research investigating design effects of instructional tools for learning Basic Life Support (BLS) is almost non-existent. To demonstrate the design of instructional tools matter. The effect of spatial contiguity, a design principle stating that people learn more deeply when words and corresponding pictures are placed close (i.e., integrated) rather than far from each other on a page was investigated on task cards for learning Cardiopulmonary Resuscitation (CPR) during reciprocal peer learning. A randomized controlled trial. A total of 111 students (mean age: 13 years) constituting six intact classes learned BLS through reciprocal learning with task cards. Task cards combine a picture of the skill with written instructions about how to perform it. In each class, students were randomly assigned to the experimental group or the control. In the control, written instructions were placed under the picture on the task cards. In the experimental group, written instructions were placed close to the corresponding part of the picture on the task cards reflecting application of the spatial contiguity principle. One-way analysis of variance found significantly better performances in the experimental group for ventilation volumes (P=.03, ηp2=.10) and flow rates (P=.02, ηp2=.10). For chest compression depth, compression frequency, compressions with correct hand placement, and duty cycles no significant differences were found. This study shows that the design of instructional tools (i.e., task cards) affects student learning. Research-based design of learning tools can enhance BLS and CPR education. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Enhanced control of light and sound trajectories with three-dimensional gradient index lenses
NASA Astrophysics Data System (ADS)
Chang, T. M.; Dupont, G.; Enoch, S.; Guenneau, S.
2012-03-01
We numerically study the focusing and bending effects of light and sound waves through heterogeneous isotropic cylindrical and spherical devices. We first point out that transformation optics and acoustics show that the control of light requires spatially varying anisotropic permittivity and permeability, while the control of sound is achieved via spatially anisotropic density and isotropic compressibility. Moreover, homogenization theory applied to electromagnetic and acoustic periodic structures leads to such artificial (although not spatially varying) anisotropic permittivity, permeability and density. We stress that homogenization is thus a natural mathematical tool for the design of structured metamaterials. To illustrate the two-step geometric transform-homogenization approach, we consider the design of cylindrical and spherical electromagnetic and acoustic lenses displaying some artificial anisotropy along their optical axis (direction of periodicity of the structural elements). Applications are sought in the design of Eaton and Luneburg lenses bending light at angles ranging from 90° to 360°, or mimicking a Schwartzchild metric, i.e. a black hole. All of these spherical metamaterials are characterized by a refractive index varying inversely with the radius which is approximated by concentric layers of homogeneous material. We finally propose some structured cylindrical metamaterials consisting of infinitely conducting or rigid toroidal channels in a homogeneous bulk material focusing light or sound waves. The functionality of these metamaterials is demonstrated via full-wave three-dimensional computations using nodal elements in the context of acoustics, and finite edge-elements in electromagnetics.
Chen, J Y C; Terrence, P I
2009-08-01
This study investigated the performance and workload of the combined position of gunner and robotics operator in a simulated military multitasking environment. Specifically, the study investigated how aided target recognition (AiTR) capabilities for the gunnery task with imperfect reliability (false-alarm-prone vs. miss-prone) might affect the concurrent robotics and communication tasks. Additionally, the study examined whether performance was affected by individual differences in spatial ability and attentional control. Results showed that when the robotics task was simply monitoring the video, participants had the best performance in their gunnery and communication tasks and the lowest perceived workload, compared with the other robotics tasking conditions. There was a strong interaction between the type of AiTR unreliability and participants' perceived attentional control. Overall, for participants with higher perceived attentional control, false-alarm-prone alerts were more detrimental; for low attentional control participants, conversely, miss-prone automation was more harmful. Low spatial ability participants preferred visual cueing and high spatial ability participants favoured tactile cueing. Potential applications of the findings include personnel selection for robotics operation, robotics user interface designs and training development. The present results will provide further understanding of the interplays among automation reliability, multitasking performance and individual differences in military tasking environments. These results will also facilitate the implementation of robots in military settings and will provide useful data to military system designs.
Designing artificial 2D crystals with site and size controlled quantum dots.
Xie, Xuejun; Kang, Jiahao; Cao, Wei; Chu, Jae Hwan; Gong, Yongji; Ajayan, Pulickel M; Banerjee, Kaustav
2017-08-30
Ordered arrays of quantum dots in two-dimensional (2D) materials would make promising optical materials, but their assembly could prove challenging. Here we demonstrate a scalable, site and size controlled fabrication of quantum dots in monolayer molybdenum disulfide (MoS 2 ), and quantum dot arrays with nanometer-scale spatial density by focused electron beam irradiation induced local 2H to 1T phase change in MoS 2 . By designing the quantum dots in a 2D superlattice, we show that new energy bands form where the new band gap can be controlled by the size and pitch of the quantum dots in the superlattice. The band gap can be tuned from 1.81 eV to 1.42 eV without loss of its photoluminescence performance, which provides new directions for fabricating lasers with designed wavelengths. Our work constitutes a photoresist-free, top-down method to create large-area quantum dot arrays with nanometer-scale spatial density that allow the quantum dots to interfere with each other and create artificial crystals. This technique opens up new pathways for fabricating light emitting devices with 2D materials at desired wavelengths. This demonstration can also enable the assembly of large scale quantum information systems and open up new avenues for the design of artificial 2D materials.
NASA Astrophysics Data System (ADS)
Edler, Karl T.
The issue of eddy currents induced by the rapid switching of magnetic field gradients is a long-standing problem in magnetic resonance imaging. A new method for dealing with this problem is presented whereby spatial harmonic components of the magnetic field are continuously sensed, through their temporal rates of change, and corrected. In this way, the effects of the eddy currents on multiple spatial harmonic components of the magnetic field can be detected and corrections applied during the rise time of the gradients. Sensing the temporal changes in each spatial harmonic is made possible with specially designed detection coils. However to make the design of these coils possible, general relationships between the spatial harmonics of the field, scalar potential, and vector potential are found within the quasi-static approximation. These relationships allow the vector potential to be found from the field -- an inverse curl operation -- and may be of use beyond the specific problem of detection coil design. Using the detection coils as sensors, methods are developed for designing a negative feedback system to control the eddy current effects and optimizing that system with respect to image noise and distortion. The design methods are successfully tested in a series of proof-of-principle experiments which lead to a discussion of how to incorporate similar designs into an operational MRI. Keywords: magnetic resonance imaging, eddy currents, dynamic shimming, negative feedback, quasi-static fields, vector potential, inverse curl
Wan, Weishi; Yu, Lei; Zhu, Lin; Yang, Xiaodong; Wei, Zheng; Liu, Jefferson Zhe; Feng, Jun; Kunze, Kai; Schaff, Oliver; Tromp, Ruud; Tang, Wen-Xin
2017-03-01
We describe the design and commissioning of a novel aberration-corrected low energy electron microscope (AC-LEEM). A third magnetic prism array (MPA) is added to the standard AC-LEEM with two prism arrays, allowing the incorporation of an ultrafast spin-polarized electron source alongside the standard cold field emission electron source, without degrading spatial resolution. The high degree of symmetries of the AC-LEEM are utilized while we design the electron optics of the ultrafast spin-polarized electron source, so as to minimize the deleterious effect of time broadening, while maintaining full control of electron spin. A spatial resolution of 2nm and temporal resolution of 10ps (ps) are expected in the future time resolved aberration-corrected spin-polarized LEEM (TR-AC-SPLEEM). The commissioning of the three-prism AC-LEEM has been successfully finished with the cold field emission source, with a spatial resolution below 2nm. Copyright © 2017 Elsevier B.V. All rights reserved.
The applications of model-based geostatistics in helminth epidemiology and control.
Magalhães, Ricardo J Soares; Clements, Archie C A; Patil, Anand P; Gething, Peter W; Brooker, Simon
2011-01-01
Funding agencies are dedicating substantial resources to tackle helminth infections. Reliable maps of the distribution of helminth infection can assist these efforts by targeting control resources to areas of greatest need. The ability to define the distribution of infection at regional, national and subnational levels has been enhanced greatly by the increased availability of good quality survey data and the use of model-based geostatistics (MBG), enabling spatial prediction in unsampled locations. A major advantage of MBG risk mapping approaches is that they provide a flexible statistical platform for handling and representing different sources of uncertainty, providing plausible and robust information on the spatial distribution of infections to inform the design and implementation of control programmes. Focussing on schistosomiasis and soil-transmitted helminthiasis, with additional examples for lymphatic filariasis and onchocerciasis, we review the progress made to date with the application of MBG tools in large-scale, real-world control programmes and propose a general framework for their application to inform integrative spatial planning of helminth disease control programmes. Copyright © 2011 Elsevier Ltd. All rights reserved.
Design and Implementation of Campus Application APP Based on Android
NASA Astrophysics Data System (ADS)
dongxu, Zhu; yabin, liu; xian lei, PI; weixiang, Zhou; meng, Huang
2017-07-01
In this paper, "Internet + campus" as the entrance of the Android technology based on the application of campus design and implementation of Application program. Based on GIS(Geographic Information System) spatial database, GIS spatial analysis technology, Java development technology and Android development technology, this system server adopts the Model View Controller architectue to realize the efficient use of campus information and provide real-time information of all kinds of learning and life for campus student at the same time. "Fingertips on the Institute of Disaster Prevention Science and Technology" release for the campus students of all grades of life, learning, entertainment provides a convenient.
NASA Astrophysics Data System (ADS)
Mayer, J. M.; Stead, D.
2017-04-01
With the increased drive towards deeper and more complex mine designs, geotechnical engineers are often forced to reconsider traditional deterministic design techniques in favour of probabilistic methods. These alternative techniques allow for the direct quantification of uncertainties within a risk and/or decision analysis framework. However, conventional probabilistic practices typically discretize geological materials into discrete, homogeneous domains, with attributes defined by spatially constant random variables, despite the fact that geological media display inherent heterogeneous spatial characteristics. This research directly simulates this phenomenon using a geostatistical approach, known as sequential Gaussian simulation. The method utilizes the variogram which imposes a degree of controlled spatial heterogeneity on the system. Simulations are constrained using data from the Ok Tedi mine site in Papua New Guinea and designed to randomly vary the geological strength index and uniaxial compressive strength using Monte Carlo techniques. Results suggest that conventional probabilistic techniques have a fundamental limitation compared to geostatistical approaches, as they fail to account for the spatial dependencies inherent to geotechnical datasets. This can result in erroneous model predictions, which are overly conservative when compared to the geostatistical results.
Spatial Control of Functional Response in 4D-Printed Active Metallic Structures
Ma, Ji; Franco, Brian; Tapia, Gustavo; Karayagiz, Kubra; Johnson, Luke; Liu, Jun; Arroyave, Raymundo; Karaman, Ibrahim; Elwany, Alaa
2017-01-01
We demonstrate a method to achieve local control of 3-dimensional thermal history in a metallic alloy, which resulted in designed spatial variations in its functional response. A nickel-titanium shape memory alloy part was created with multiple shape-recovery stages activated at different temperatures using the selective laser melting technique. The multi-stage transformation originates from differences in thermal history, and thus the precipitate structure, at various locations created from controlled variations in the hatch distance within the same part. This is a first example of precision location-dependent control of thermal history in alloys beyond the surface, and utilizes additive manufacturing techniques as a tool to create materials with novel functional response that is difficult to achieve through conventional methods. PMID:28429796
ERIC Educational Resources Information Center
Al-Balushi, Sulaiman M.; Al-Musawi, Ali S.; Ambusaidi, Abdullah K.; Al-Hajri, Fatemah H.
2017-01-01
The purpose of the current study was to investigate the effectiveness of interacting with animations using mobile devices on grade 12 students' spatial and reasoning abilities. The study took place in a grade 12 context in Oman. A quasi-experimental design was used with an experimental group of 32 students and a control group of 28 students. The…
ERIC Educational Resources Information Center
Liao, Kun-Hsi
2017-01-01
Three-dimensional (3D) product design is an essential ability that students of subjects related to product design must acquire. The factors that affect designers' performance in 3D design are numerous, one of which is spatial abilities. Studies have reported that spatial abilities can be used to effectively predict people's performance in…
NASA Astrophysics Data System (ADS)
Whidden, E.; Roulet, N.
2003-04-01
Interpretation of a site average terrestrial flux may be complicated in the presence of inhomogeneities. Inhomogeneity may invalidate the basic assumptions of aerodynamic flux measurement. Chamber measurement may miss or misinterpret important temporal or spatial anomalies. Models may smooth over important nonlinearities depending on the scale of application. Although inhomogeneity is usually seen as a design problem, many sites have spatial variance that may have a large impact on net flux, and in many cases a large homogeneous surface is unrealistic. The sensitivity and validity of a site average flux are investigated in the presence of an inhomogeneous site. Directional differences are used to evaluate the validity of aerodynamic methods and the computation of a site average tower flux. Empirical and modelling methods are used to interpret the spatial controls on flux. An ecosystem model, Ecosys, is used to assess spatial length scales appropriate to the ecophysiologic controls. A diffusion model is used to compare tower, chamber, and model data, by spatially weighting contributions within the tower footprint. Diffusion model weighting is also used to improve tower flux estimates by producing footprint averaged ecological parameters (soil moisture, soil temperature, etc.). Although uncertainty remains in the validity of measurement methods and the accuracy of diffusion models, a detailed spatial interpretation is required at an inhomogeneous site. Flux estimation between methods improves with spatial interpretation, showing the importance to an estimation of a site average flux. Small-scale temporal and spatial anomalies may be relatively unimportant to overall flux, but accounting for medium-scale differences in ecophysiological controls is necessary. A combination of measurements and modelling can be used to define the appropriate time and length scales of significant non-linearity due to inhomogeneity.
Spatial gradient tuning in metamaterials
NASA Astrophysics Data System (ADS)
Driscoll, Tom; Goldflam, Michael; Jokerst, Nan; Basov, Dimitri; Smith, David
2011-03-01
Gradient Index (GRIN) metamaterials have been used to create devices inspired by, but often surpassing the potential of, conventional GRIN optics. The unit-cell nature of metamaterials presents the opportunity to exert much greater control over spatial gradients than is possible in natural materials. This is true not only during the design phase but also offers the potential for real-time reconfiguration of the metamaterial gradient. This ability fits nicely into the picture of transformation-optics, in which spatial gradients can enable an impressive suite of innovative devices. We discuss methods to exert control over metamaterial response, focusing on our recent demonstrations using Vanadium Dioxide. We give special attention to role of memristance and mem-capacitance observed in Vanadium Dioxide, which simplify the demands of stimuli and addressing, as well as intersecting metamaterials with the field of memory-materials.
The Effects of City Streets on an Urban Disease Vector
Barbu, Corentin M.; Hong, Andrew; Manne, Jennifer M.; Small, Dylan S.; Quintanilla Calderón, Javier E.; Sethuraman, Karthik; Quispe-Machaca, Víctor; Ancca-Juárez, Jenny; Cornejo del Carpio, Juan G.; Málaga Chavez, Fernando S.; Náquira, César; Levy, Michael Z.
2013-01-01
With increasing urbanization vector-borne diseases are quickly developing in cities, and urban control strategies are needed. If streets are shown to be barriers to disease vectors, city blocks could be used as a convenient and relevant spatial unit of study and control. Unfortunately, existing spatial analysis tools do not allow for assessment of the impact of an urban grid on the presence of disease agents. Here, we first propose a method to test for the significance of the impact of streets on vector infestation based on a decomposition of Moran's spatial autocorrelation index; and second, develop a Gaussian Field Latent Class model to finely describe the effect of streets while controlling for cofactors and imperfect detection of vectors. We apply these methods to cross-sectional data of infestation by the Chagas disease vector Triatoma infestans in the city of Arequipa, Peru. Our Moran's decomposition test reveals that the distribution of T. infestans in this urban environment is significantly constrained by streets (p<0.05). With the Gaussian Field Latent Class model we confirm that streets provide a barrier against infestation and further show that greater than 90% of the spatial component of the probability of vector presence is explained by the correlation among houses within city blocks. The city block is thus likely to be an appropriate spatial unit to describe and control T. infestans in an urban context. Characteristics of the urban grid can influence the spatial dynamics of vector borne disease and should be considered when designing public health policies. PMID:23341756
Qiu, Jianfeng; Wang, Guozhu; Min, Jiao; Wang, Xiaoyan; Wang, Pengcheng
2013-12-21
Our aim was to measure the performance of desktop magnetic resonance imaging (MRI) systems using specially designed phantoms, by testing imaging parameters and analysing the imaging quality. We designed multifunction phantoms with diameters of 18 and 60 mm for desktop MRI scanners in accordance with the American Association of Physicists in Medicine (AAPM) report no. 28. We scanned the phantoms with three permanent magnet 0.5 T desktop MRI systems, measured the MRI image parameters, and analysed imaging quality by comparing the data with the AAPM criteria and Chinese national standards. Image parameters included: resonance frequency, high contrast spatial resolution, low contrast object detectability, slice thickness, geometrical distortion, signal-to-noise ratio (SNR), and image uniformity. The image parameters of three desktop MRI machines could be measured using our specially designed phantoms, and most parameters were in line with MRI quality control criterion, including: resonance frequency, high contrast spatial resolution, low contrast object detectability, slice thickness, geometrical distortion, image uniformity and slice position accuracy. However, SNR was significantly lower than in some references. The imaging test and quality control are necessary for desktop MRI systems, and should be performed with the applicable phantom and corresponding standards.
Caudill, Cassie L; Perry, Jillian L; Tian, Shaomin; Luft, J Christopher; DeSimone, Joseph M
2018-06-09
Microneedle patches, arrays of micron-scale projections that penetrate skin in a minimally invasive manner, are a promising tool for transdermally delivering therapeutic proteins. However, current microneedle fabrication techniques are limited in their ability to fabricate microneedles rapidly and with a high degree of control over microneedle design parameters. We have previously demonstrated the ability to fabricate microneedle patches with a range of compositions and geometries using the novel additive manufacturing technique Continuous Liquid Interface Production (CLIP). Here, we establish a method for dip coating CLIP microneedles with protein cargo in a spatially controlled manner. Microneedle coating mask devices were fabricated with CLIP and utilized to coat polyethylene glycol-based CLIP microneedles with model proteins bovine serum albumin, ovalbumin, and lysozyme. The design of the coating mask device was used to control spatial deposition and loading of coated protein cargo on the microneedles. CLIP microneedles rapidly released coated protein cargo both in solution and upon insertion into porcine skin. The model enzyme lysozyme was shown to retain its activity throughout the CLIP microneedle coating process, and permeation of bovine serum albumin across full thickness porcine skin was observed after application with coated CLIP microneedles. Protein-coated CLIP microneedles were applied to live mice and showed sustained retention of protein cargo in the skin over 72 h. These results demonstrate the utility of a versatile coating platform for preparation of precisely coated microneedles for transdermal therapeutic delivery. Copyright © 2018. Published by Elsevier B.V.
Design and performance characteristics of a mechanically driven vestibular stimulator.
DOT National Transportation Integrated Search
1964-01-01
In order to determine basic response characteristics of mammalian vestibular systems, the sytems so important for spatial orientation, a device to provide programs of controlled angular accelerations about the vertical axis was required. The small ro...
The role of visualization in learning from computer-based images
NASA Astrophysics Data System (ADS)
Piburn, Michael D.; Reynolds, Stephen J.; McAuliffe, Carla; Leedy, Debra E.; Birk, James P.; Johnson, Julia K.
2005-05-01
Among the sciences, the practice of geology is especially visual. To assess the role of spatial ability in learning geology, we designed an experiment using: (1) web-based versions of spatial visualization tests, (2) a geospatial test, and (3) multimedia instructional modules built around QuickTime Virtual Reality movies. Students in control and experimental sections were administered measures of spatial orientation and visualization, as well as a content-based geospatial examination. All subjects improved significantly in their scores on spatial visualization and the geospatial examination. There was no change in their scores on spatial orientation. A three-way analysis of variance, with the geospatial examination as the dependent variable, revealed significant main effects favoring the experimental group and a significant interaction between treatment and gender. These results demonstrate that spatial ability can be improved through instruction, that learning of geological content will improve as a result, and that differences in performance between the genders can be eliminated.
[Design and implementation of Geographical Information System on prevention and control of cholera].
Li, Xiu-jun; Fang, Li-qun; Wang, Duo-chun; Wang, Lu-xi; Li, Ya-pin; Li, Yan-li; Yang, Hong; Kan, Biao; Cao, Wu-chun
2012-04-01
To build the Geographical Information System (GIS) database for prevention and control of cholera programs as well as using management analysis and function demonstration to show the spatial attribute of cholera. Data from case reporting system regarding diarrhoea, vibrio cholerae, serotypes of vibrio cholerae at the surveillance spots and seafoods, as well as surveillance data on ambient environment and climate were collected. All the data were imported to system database to show the incidence of vibrio cholerae in different provinces, regions and counties to support the spatial analysis through the spatial analysis of GIS. The epidemic trends of cholera, seasonal characteristics of the cholera and the variation of the vibrio cholerae with times were better understood. Information on hotspots, regions and time of epidemics was collected, and helpful in providing risk prediction on the incidence of vibrio cholerae. The exploitation of the software can predict and simulate the spatio-temporal risks, so as to provide guidance for the prevention and control of the disease.
A spatially augmented reality sketching interface for architectural daylighting design.
Sheng, Yu; Yapo, Theodore C; Young, Christopher; Cutler, Barbara
2011-01-01
We present an application of interactive global illumination and spatially augmented reality to architectural daylight modeling that allows designers to explore alternative designs and new technologies for improving the sustainability of their buildings. Images of a model in the real world, captured by a camera above the scene, are processed to construct a virtual 3D model. To achieve interactive rendering rates, we use a hybrid rendering technique, leveraging radiosity to simulate the interreflectance between diffuse patches and shadow volumes to generate per-pixel direct illumination. The rendered images are then projected on the real model by four calibrated projectors to help users study the daylighting illumination. The virtual heliodon is a physical design environment in which multiple designers, a designer and a client, or a teacher and students can gather to experience animated visualizations of the natural illumination within a proposed design by controlling the time of day, season, and climate. Furthermore, participants may interactively redesign the geometry and materials of the space by manipulating physical design elements and see the updated lighting simulation. © 2011 IEEE Published by the IEEE Computer Society
Fuel cell-gas turbine hybrid system design part II: Dynamics and control
NASA Astrophysics Data System (ADS)
McLarty, Dustin; Brouwer, Jack; Samuelsen, Scott
2014-05-01
Fuel cell gas turbine hybrid systems have achieved ultra-high efficiency and ultra-low emissions at small scales, but have yet to demonstrate effective dynamic responsiveness or base-load cost savings. Fuel cell systems and hybrid prototypes have not utilized controls to address thermal cycling during load following operation, and have thus been relegated to the less valuable base-load and peak shaving power market. Additionally, pressurized hybrid topping cycles have exhibited increased stall/surge characteristics particularly during off-design operation. This paper evaluates additional control actuators with simple control methods capable of mitigating spatial temperature variation and stall/surge risk during load following operation of hybrid fuel cell systems. The novel use of detailed, spatially resolved, physical fuel cell and turbine models in an integrated system simulation enables the development and evaluation of these additional control methods. It is shown that the hybrid system can achieve greater dynamic response over a larger operating envelope than either individual sub-system; the fuel cell or gas turbine. Results indicate that a combined feed-forward, P-I and cascade control strategy is capable of handling moderate perturbations and achieving a 2:1 (MCFC) or 4:1 (SOFC) turndown ratio while retaining >65% fuel-to-electricity efficiency, while maintaining an acceptable stack temperature profile and stall/surge margin.
MEDSAT - A remote sensing satellite for malaria early warning and control
NASA Technical Reports Server (NTRS)
Vesecky, John; Slawski, James; Stottlemeyer, Bret; De La Sierra, Ruben; Daida, Jason; Wood, Byron; Lawless, James
1992-01-01
A remote sensing, medical satellite (MEDSAT) aids in the control of carrier (vector) borne disease. The prototype design is a light satellite to test for control of malaria. The design features a 340-kg satellite with visual/IR and SAR sensors in a low inclination orbit observing a number of worldwide test sites. The approach is to use four-band visual/IR and dual-polarized L-band SAR images obtained from MEDSAT in concert with in-situ data to estimate the temporal and spatial variations of malaria risk. This allows public health resources to focus on the most vulnerable areas at the appropriate time. It is concluded that a light-satellite design for a MEDSAT satellite with a Pegasus launch is feasible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Grace; Brown, Judith Alice; Bishop, Joseph E.
The texture of a polycrystalline material refers to the preferred orientation of the grains within the material. In metallic materials, texture can significantly affect the mechanical properties such as elastic moduli, yield stress, strain hardening, and fracture toughness. Recent advances in additive manufacturing of metallic materials offer the possibility in the not too distant future of controlling the spatial variation of texture. In this work, we investigate the advantages, in terms of mechanical performance, of allowing the texture to vary spatially. We use an adjoint-based gradient optimization algorithm within a finite element solver (COMSOL) to optimize several engineering quantities ofmore » interest in a simple structure (hole in a plate) and loading (uniaxial tension) condition. As a first step to general texture optimization, we consider the idealized case of a pure fiber texture in which the homogenized properties are transversely isotropic. In this special case, the only spatially varying design variables are the three Euler angles that prescribe the orientation of the homogenized material at each point within the structure. This work paves a new way to design metallic materials for tunable mechanical properties at the microstructure level.« less
Packaging of ferroelectric liquid crystal-on-silicon spatial light modulators
NASA Astrophysics Data System (ADS)
Lin, W.; Morozova, Nina D.; Ju, TehHua; Zhang, Weidong; Lee, Yung-Cheng; McKnight, Douglas J.; Johnson, Kristina M.
1996-11-01
A self-pulling soldering technology has been demonstrated for assembling liquid crystal on silicon (LCOS) spatial light modulators (SLMs). One of the major challenges in manufacturing the LCOS modules is to reproducibly control the thickness of the gap between the very large scale integrated circuit (VLSI) chip and the cover glass. The liquid crystal material is sandwiched between the VLSI chop and the cover glass which is coated with a transparent conductor. Solder joints with different profiles and sizes have been designed to provide surface tension forces to control the gap accommodating the ferroelectric liquid crystal layer in the range of a micron level with sub- micron uniformity. The optimum solder joint design is defined as a joint that results in the maximum pulling force. This technology provides an automatic, batch assembly process for a LCOS SLM through one reflow process. Fluxless soldering technology is used to assemble the module. This approach avoids residues from chemical of flux and oxides, and eliminates potential contamination to the device. Two different LCOS SLM designs and the process optimization are described.
NASA Astrophysics Data System (ADS)
Geints, Yu E.; Zemlyanov, A. A.; Minin, O. V.; Minin, I. V.
2018-06-01
We present the systematic study of key characteristics (field intensity enhancement, spatial extents) of the 2D- and 3D-photonic nanojets (PNJs) produced by geometrically-regular micron-sized dielectric particles illuminated by a plane laser wave. By means of the finite-difference time-domain calculations, we highlight the differences and similarities between PNJs in these two spatial configurations for curved- (sphere, circular cylinder) and rectangle-shaped scatterers (cube, square bar). Our findings can be useful, for example, for the design of particle-based high-resolution imaging because the spatial resolution by such systems might be further controlled by the optimization of refractive index contrast and geometrical shape of the particle-lens.
Design of an integrated aerial image sensor
NASA Astrophysics Data System (ADS)
Xue, Jing; Spanos, Costas J.
2005-05-01
The subject of this paper is a novel integrated aerial image sensor (IAIS) system suitable for integration within the surface of an autonomous test wafer. The IAIS could be used as a lithography processing monitor, affording a "wafer's eye view" of the process, and therefore facilitating advanced process control and diagnostics without integrating (and dedicating) the sensor to the processing equipment. The IAIS is composed of an aperture mask and an array of photo-detectors. In order to retrieve nanometer scale resolution of the aerial image with a practical photo-detector pixel size, we propose a design of an aperture mask involving a series of spatial phase "moving" aperture groups. We demonstrate a design example aimed at the 65nm technology node through TEMPEST simulation. The optimized, key design parameters include an aperture width in the range of 30nm, aperture thickness in the range of 70nm, and offer a spatial resolution of about 5nm, all with comfortable fabrication tolerances. Our preliminary simulation work indicates the possibility of the IAIS being applied to the immersion lithography. A bench-top far-field experiment verifies that our approach of the spatial frequency down-shift through forming large Moire patterns is feasible.
Modeling the Impact of Spatial Structure on Growth Dynamics of Invasive Plant Species
NASA Astrophysics Data System (ADS)
Murphy, James T.; Johnson, Mark P.; Walshe, Ray
2013-07-01
Invasive nonindigenous plant species can have potentially serious detrimental effects on local ecosystems and, as a result, costly control efforts often have to be put in place to protect habitats. An example of an invasive problem on a global scale involves the salt marsh grass species from the genus Spartina. The spread of Spartina anglica in Europe and Asia has drawn much concern due to its ability to convert coastal habitats into cord-grass monocultures and to alter the native food webs. However, the patterns of invasion of Spartina species are amenable to spatially-explicit modeling strategies that take into account both temporal and spatio-temporal processes. In this study, an agent-based model of Spartina growth on a simulated mud flat environment was developed in order to study the effects of spatial pattern and initial seedling placement on the invasion dynamics of the population. The spatial pattern of an invasion plays a key role in the rate of spread of the species and understanding this can lead to significant cost savings when designing efficient control strategies. We present here a model framework that can be used to explicitly represent complex spatial and temporal patterns of invasion in order to be able to predict quantitatively the impact of these factors on invasion dynamics. This would be a useful tool for assessing eradication strategies and choosing optimal control solutions in order to be able to minimize future control costs.
Van Vleet, Thomas M; DeGutis, Joseph M
2013-03-01
Prominent deficits in spatial attention evident in patients with hemispatial neglect are often accompanied by equally prominent deficits in non-spatial attention (e.g., poor sustained and selective attention, pronounced vigilance decrement). A number of studies now show that deficits in non-spatial attention influence spatial attention. Treatment strategies focused on improving vigilance or sustained attention may effectively remediate neglect. For example, a recent study employing Tonic and Phasic Alertness Training (TAPAT), a task that requires monitoring a constant stream of hundreds of novel scenes, demonstrated group-level (n=12) improvements after training compared to a test-retest control group or active treatment control condition on measures of visual search, midpoint estimation and working memory (DeGutis and Van Vleet, 2010). To determine whether the modality of treatment or stimulus novelty are key factors to improving hemispatial neglect, we designed a similar continuous performance training task in which eight patients with chronic and moderate to severe neglect were challenged to rapidly and continuously discriminate a limited set of centrally presented auditory tones once a day for 9 days (36-min/day). All patients demonstrated significant improvement in several, untrained measures of spatial and non-spatial visual attention, and as a group failed to demonstrate a lateralized attention deficit 24-h post-training compared to a control group of chronic neglect patients who simply waited during the training period. The results indicate that TAPAT-related improvements in hemispatial neglect are likely due to improvements in the intrinsic regulation of supramodal, non-spatial attentional resources. Published by Elsevier Ltd.
Optical computer switching network
NASA Technical Reports Server (NTRS)
Clymer, B.; Collins, S. A., Jr.
1985-01-01
The design for an optical switching system for minicomputers that uses an optical spatial light modulator such as a Hughes liquid crystal light valve is presented. The switching system is designed to connect 80 minicomputers coupled to the switching system by optical fibers. The system has two major parts: the connection system that connects the data lines by which the computers communicate via a two-dimensional optical matrix array and the control system that controls which computers are connected. The basic system, the matrix-based connecting system, and some of the optical components to be used are described. Finally, the details of the control system are given and illustrated with a discussion of timing.
Design principles of a cooperative robot controller
NASA Technical Reports Server (NTRS)
Hayward, Vincent; Hayati, Samad
1987-01-01
The paper describes the design of a controller for cooperative robots being designed at McGill University in a collaborative effort with the Jet Propulsion Laboratory. The first part of the paper discusses the background and motivation for multiple arm control. Then, a set of programming primitives, which are based on the RCCL system and which permit a programmer to specify cooperative tasks are described. The first group of primitives are motion primitives which specify asynchronous motions, master/slave motions, and cooperative motions. In the context of cooperative robots, trajectory generation issues will be discussed and the implementation described. A second set of primitives provides for the specification of spatial relationships. The relations between programming and control in the case of multiple robot are examined. Finally, the paper describes the allocation of various tasks among a set of microprocessors sharing a common bus.
On the Planning and Design of Hospital Circulation Zones.
Jiang, Shan; Verderber, Stephen
2017-01-01
This present literature review explores current issues and research inconsistencies regarding the design of hospital circulation zones and the associated health-related outcomes. Large general hospitals are immense, highly sophisticated institutions. Empirical studies have indicated excessively institutional environments in large medical centers are a cause of negative effects to occupants, including stress, anxiety, wayfinding difficulties and spatial disorientation, lack of cognitional control, and stress associated with inadequate access to nature. The rise of patient-centered and evidence-based movements in healthcare planning and design has resulted in a general rise in the quality of hospital physical environments. However, as a core component of any healthcare delivery system, hospital circulation zones have tended to remain neglected within the comparatively broad palette of research conducted and reported to date. A systematic literature review was conducted based upon combinations of key words developed vis-à-vis a literature search in 11 major databases in the realm of the health sciences and the planning and design of built environments for healthcare. Eleven peer-reviewed articles were included in the analysis. Six research themes were identified according to associated health-related outcomes, including wayfinding difficulties and spatial disorientation, communication and socialization patterns, measures and control of excessive noise, patient fall incidents, and occupants' stress and satisfaction levels. Several knowledge gaps as well as commonalities in the pertinent research literature were identified. Perhaps the overriding finding is that occupants' meaningful exposure to views of nature from within hospital circulation zones can potentially enhance wayfinding and spatial navigation. Future research priories on this subject are discussed.
ERIC Educational Resources Information Center
Brown, Jane
2012-01-01
This article explores the relevance of school design in providing an important social-spatial context for promoting citizenship in young people. Drawing on a small-scale study that investigated the perspectives of pupils and teachers, it contrasts the ways in which the social control and monitoring of pupils differed in two secondary schools.…
Representing spatial information in a computational model for network management
NASA Technical Reports Server (NTRS)
Blaisdell, James H.; Brownfield, Thomas F.
1994-01-01
While currently available relational database management systems (RDBMS) allow inclusion of spatial information in a data model, they lack tools for presenting this information in an easily comprehensible form. Computer-aided design (CAD) software packages provide adequate functions to produce drawings, but still require manual placement of symbols and features. This project has demonstrated a bridge between the data model of an RDBMS and the graphic display of a CAD system. It is shown that the CAD system can be used to control the selection of data with spatial components from the database and then quickly plot that data on a map display. It is shown that the CAD system can be used to extract data from a drawing and then control the insertion of that data into the database. These demonstrations were successful in a test environment that incorporated many features of known working environments, suggesting that the techniques developed could be adapted for practical use.
NASA Astrophysics Data System (ADS)
Guo, Siyang; Lin, Jiarui; Yang, Linghui; Ren, Yongjie; Guo, Yin
2017-07-01
The workshop Measurement Position System (wMPS) is a distributed measurement system which is suitable for the large-scale metrology. However, there are some inevitable measurement problems in the shipbuilding industry, such as the restriction by obstacles and limited measurement range. To deal with these factors, this paper presents a method of reconstructing the spatial measurement network by mobile transmitter. A high-precision coordinate control network with more than six target points is established. The mobile measuring transmitter can be added into the measurement network using this coordinate control network with the spatial resection method. This method reconstructs the measurement network and broadens the measurement scope efficiently. To verify this method, two comparison experiments are designed with the laser tracker as the reference. The results demonstrate that the accuracy of point-to-point length is better than 0.4mm and the accuracy of coordinate measurement is better than 0.6mm.
Rauscher, Larissa; Kohn, Juliane; Käser, Tanja; Mayer, Verena; Kucian, Karin; McCaskey, Ursina; Esser, Günter; von Aster, Michael
2016-01-01
Calcularis is a computer-based training program which focuses on basic numerical skills, spatial representation of numbers and arithmetic operations. The program includes a user model allowing flexible adaptation to the child's individual knowledge and learning profile. The study design to evaluate the training comprises three conditions (Calcularis group, waiting control group, spelling training group). One hundred and thirty-eight children from second to fifth grade participated in the study. Training duration comprised a minimum of 24 training sessions of 20 min within a time period of 6-8 weeks. Compared to the group without training (waiting control group) and the group with an alternative training (spelling training group), the children of the Calcularis group demonstrated a higher benefit in subtraction and number line estimation with medium to large effect sizes. Therefore, Calcularis can be used effectively to support children in arithmetic performance and spatial number representation.
Identifying, characterizing and predicting spatial patterns of lacustrine groundwater discharge
NASA Astrophysics Data System (ADS)
Tecklenburg, Christina; Blume, Theresa
2017-10-01
Lacustrine groundwater discharge (LGD) can significantly affect lake water balances and lake water quality. However, quantifying LGD and its spatial patterns is challenging because of the large spatial extent of the aquifer-lake interface and pronounced spatial variability. This is the first experimental study to specifically study these larger-scale patterns with sufficient spatial resolution to systematically investigate how landscape and local characteristics affect the spatial variability in LGD. We measured vertical temperature profiles around a 0.49 km2 lake in northeastern Germany with a needle thermistor, which has the advantage of allowing for rapid (manual) measurements and thus, when used in a survey, high spatial coverage and resolution. Groundwater inflow rates were then estimated using the heat transport equation. These near-shore temperature profiles were complemented with sediment temperature measurements with a fibre-optic cable along six transects from shoreline to shoreline and radon measurements of lake water samples to qualitatively identify LGD patterns in the offshore part of the lake. As the hydrogeology of the catchment is sufficiently homogeneous (sandy sediments of a glacial outwash plain; no bedrock control) to avoid patterns being dominated by geological discontinuities, we were able to test the common assumptions that spatial patterns of LGD are mainly controlled by sediment characteristics and the groundwater flow field. We also tested the assumption that topographic gradients can be used as a proxy for gradients of the groundwater flow field. Thanks to the extensive data set, these tests could be carried out in a nested design, considering both small- and large-scale variability in LGD. We found that LGD was concentrated in the near-shore area, but alongshore variability was high, with specific regions of higher rates and higher spatial variability. Median inflow rates were 44 L m-2 d-1 with maximum rates in certain locations going up to 169 L m-2 d-1. Offshore LGD was negligible except for two local hotspots on steep steps in the lake bed topography. Large-scale groundwater inflow patterns were correlated with topography and the groundwater flow field, whereas small-scale patterns correlated with grain size distributions of the lake sediment. These findings confirm results and assumptions of theoretical and modelling studies more systematically than was previously possible with coarser sampling designs. However, we also found that a significant fraction of the variance in LGD could not be explained by these controls alone and that additional processes need to be considered. While regression models using these controls as explanatory variables had limited power to predict LGD rates, the results nevertheless encourage the use of topographic indices and sediment heterogeneity as an aid for targeted campaigns in future studies of groundwater discharge to lakes.
Broussard, John I; Acion, Laura; De Jesús-Cortés, Héctor; Yin, Terry; Britt, Jeremiah K; Salas, Ramiro; Costa-Mattioli, Mauro; Robertson, Claudia; Pieper, Andrew A; Arciniegas, David B; Jorge, Ricardo
2018-01-01
Repeated traumatic brain injuries (rmTBI) are frequently associated with debilitating neuropsychiatric conditions such as cognitive impairment, mood disorders, and post-traumatic stress disorder. We tested the hypothesis that repeated mild traumatic brain injury impairs spatial memory and enhances anxiety-like behaviour. We used a between groups design using single (smTBI) or repeated (rmTBI) controlled cranial closed skull impacts to mice, compared to a control group. We assessed the effects of smTBI and rmTBI using measures of motor performance (Rotarod Test [RT]), anxiety-like behaviour (Elevated Plus Maze [EPM] and Open Field [OF] tests), and spatial memory (Morris Water Maze [MWM]) within 12 days of the final injury. In separate groups of mice, astrocytosis and microglial activation were assessed 24 hours after the final injury using GFAP and IBA-1 immunohistochemistry. RmTBI impaired spatial memory in the MWM and increased anxiety-like behaviour in the EPM and OFT. In addition, rmTBI elevated GFAP and IBA-1 immunohistochemistry throughout the mouse brain. RmTBI produced astrocytosis and microglial activation, and elicited impaired spatial memory and anxiety-like behaviour. rmTBI produces acute cognitive and anxiety-like disturbances associated with inflammatory changes in brain regions involved in spatial memory and anxiety.
Halim, Dunant; Cheng, Li; Su, Zhongqing
2011-04-01
The work proposed an optimization approach for structural sensor placement to improve the performance of vibro-acoustic virtual sensor for active noise control applications. The vibro-acoustic virtual sensor was designed to estimate the interior sound pressure of an acoustic-structural coupled enclosure using structural sensors. A spectral-spatial performance metric was proposed, which was used to quantify the averaged structural sensor output energy of a vibro-acoustic system excited by a spatially varying point source. It was shown that (i) the overall virtual sensing error energy was contributed additively by the modal virtual sensing error and the measurement noise energy; (ii) each of the modal virtual sensing error system was contributed by both the modal observability levels for the structural sensing and the target acoustic virtual sensing; and further (iii) the strength of each modal observability level was influenced by the modal coupling and resonance frequencies of the associated uncoupled structural/cavity modes. An optimal design of structural sensor placement was proposed to achieve sufficiently high modal observability levels for certain important panel- and cavity-controlled modes. Numerical analysis on a panel-cavity system demonstrated the importance of structural sensor placement on virtual sensing and active noise control performance, particularly for cavity-controlled modes.
Design of modular control system for grain dryers
NASA Astrophysics Data System (ADS)
He, Gaoqing; Liu, Yanhua; Zu, Yuan
In order to effectively control the temperature of grain drying bin, grain ,air outlet as well as the grain moisture, it designed the control system of 5HCY-35 which is based on MCU to adapt to all grains drying conditions, high drying efficiency, long life usage and less manually. The system includes: the control module of the constant temperature and the temperature difference control in drying bin, the constant temperature control of heating furnace, on-line testing of moisture, variety of grain-circulation speed control and human-computer interaction interface. Spatial curve simulation, which takes moisture as control objectives, controls the constant temperature and the temperature difference in drying bin according to preset parameter by the user or a list to reduce the grains explosive to ensure the seed germination percentage. The system can realize the intelligent control of high efficiency and various drying, the good scalability and the high quality.
ERIC Educational Resources Information Center
Erkan Yazici, Yasemin
2013-01-01
There are many factors that influence designers in the architectural design process. Cognitive style, which varies according to the cognitive structure of persons, and spatial experience, which is created with spatial data acquired during life are two of these factors. Designers usually refer to their spatial experiences in order to find solutions…
GIS-based spatial regression and prediction of water quality in river networks: A case study in Iowa
Yang, X.; Jin, W.
2010-01-01
Nonpoint source pollution is the leading cause of the U.S.'s water quality problems. One important component of nonpoint source pollution control is an understanding of what and how watershed-scale conditions influence ambient water quality. This paper investigated the use of spatial regression to evaluate the impacts of watershed characteristics on stream NO3NO2-N concentration in the Cedar River Watershed, Iowa. An Arc Hydro geodatabase was constructed to organize various datasets on the watershed. Spatial regression models were developed to evaluate the impacts of watershed characteristics on stream NO3NO2-N concentration and predict NO3NO2-N concentration at unmonitored locations. Unlike the traditional ordinary least square (OLS) method, the spatial regression method incorporates the potential spatial correlation among the observations in its coefficient estimation. Study results show that NO3NO2-N observations in the Cedar River Watershed are spatially correlated, and by ignoring the spatial correlation, the OLS method tends to over-estimate the impacts of watershed characteristics on stream NO3NO2-N concentration. In conjunction with kriging, the spatial regression method not only makes better stream NO3NO2-N concentration predictions than the OLS method, but also gives estimates of the uncertainty of the predictions, which provides useful information for optimizing the design of stream monitoring network. It is a promising tool for better managing and controlling nonpoint source pollution. ?? 2010 Elsevier Ltd.
Spatial curvilinear path following control of underactuated AUV with multiple uncertainties.
Miao, Jianming; Wang, Shaoping; Zhao, Zhiping; Li, Yuan; Tomovic, Mileta M
2017-03-01
This paper investigates the problem of spatial curvilinear path following control of underactuated autonomous underwater vehicles (AUVs) with multiple uncertainties. Firstly, in order to design the appropriate controller, path following error dynamics model is constructed in a moving Serret-Frenet frame, and the five degrees of freedom (DOFs) dynamic model with multiple uncertainties is established. Secondly, the proposed control law is separated into kinematic controller and dynamic controller via back-stepping technique. In the case of kinematic controller, to overcome the drawback of dependence on the accurate vehicle model that are present in a number of path following control strategies described in the literature, the unknown side-slip angular velocity and attack angular velocity are treated as uncertainties. Whereas in the case of dynamic controller, the model parameters perturbations, unknown external environmental disturbances and the nonlinear hydrodynamic damping terms are treated as lumped uncertainties. Both kinematic and dynamic uncertainties are estimated and compensated by designed reduced-order linear extended state observes (LESOs). Thirdly, feedback linearization (FL) based control law is implemented for the control model using the estimates generated by reduced-order LESOs. For handling the problem of computational complexity inherent in the conventional back-stepping method, nonlinear tracking differentiators (NTDs) are applied to construct derivatives of the virtual control commands. Finally, the closed loop stability for the overall system is established. Simulation and comparative analysis demonstrate that the proposed controller exhibits enhanced performance in the presence of internal parameter variations, external unknown disturbances, unmodeled nonlinear damping terms, and measurement noises. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
SDRE controller for motion design of cable-suspended robot with uncertainties and moving obstacles
NASA Astrophysics Data System (ADS)
Behboodi, Ahad; Salehi, Seyedmohammad
2017-10-01
In this paper an optimal control approach for nonlinear dynamical systems was proposed based on State Dependent Riccati Equation (SDRE) and its robustness against uncertainties is shown by simulation results. The proposed method was applied on a spatial six-cable suspended robot, which was designed to carry loads or perform different tasks in huge workspaces. Motion planning for cable-suspended robots in such a big workspace is subjected to uncertainties and obstacles. First, we emphasized the ability of SDRE to construct a systematic basis and efficient design of controller for wide variety of nonlinear dynamical systems. Then we showed how this systematic design improved the robustness of the system and facilitated the integration of motion planning techniques with the controller. In particular, obstacle avoidance technique based on artificial potential field (APF) can be easily combined with SDRE controller with efficient performance. Due to difficulties of exact solution for SDRE, an approximation method was used based on power series expansion. The efficiency and robustness of the SDRE controller was illustrated on a six-cable suspended robot with proper simulations.
NASA Astrophysics Data System (ADS)
Vinding, Mads S.; Maximov, Ivan I.; Tošner, Zdeněk; Nielsen, Niels Chr.
2012-08-01
The use of increasingly strong magnetic fields in magnetic resonance imaging (MRI) improves sensitivity, susceptibility contrast, and spatial or spectral resolution for functional and localized spectroscopic imaging applications. However, along with these benefits come the challenges of increasing static field (B0) and rf field (B1) inhomogeneities induced by radial field susceptibility differences and poorer dielectric properties of objects in the scanner. Increasing fields also impose the need for rf irradiation at higher frequencies which may lead to elevated patient energy absorption, eventually posing a safety risk. These reasons have motivated the use of multidimensional rf pulses and parallel rf transmission, and their combination with tailoring of rf pulses for fast and low-power rf performance. For the latter application, analytical and approximate solutions are well-established in linear regimes, however, with increasing nonlinearities and constraints on the rf pulses, numerical iterative methods become attractive. Among such procedures, optimal control methods have recently demonstrated great potential. Here, we present a Krotov-based optimal control approach which as compared to earlier approaches provides very fast, monotonic convergence even without educated initial guesses. This is essential for in vivo MRI applications. The method is compared to a second-order gradient ascent method relying on the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method, and a hybrid scheme Krotov-BFGS is also introduced in this study. These optimal control approaches are demonstrated by the design of a 2D spatial selective rf pulse exciting the letters "JCP" in a water phantom.
Yelk, Joseph; Sukharev, Maxim; Seideman, Tamar
2008-08-14
An optimal control approach based on multiple parameter genetic algorithms is applied to the design of plasmonic nanoconstructs with predetermined optical properties and functionalities. We first develop nanoscale metallic lenses that focus an incident plane wave onto a prespecified, spatially confined spot. Our results illustrate the mechanism of energy flow through wires and cavities. Next we design a periodic array of silver particles to modify the polarization of an incident, linearly polarized plane wave in a desired fashion while localizing the light in space. The results provide insight into the structural features that determine the birefringence properties of metal nanoparticles and their arrays. Of the variety of potential applications that may be envisioned, we note the design of nanoscale light sources with controllable coherence and polarization properties that could serve for coherent control of molecular, electronic, or electromechanical dynamics in the nanoscale.
Modelling and simulation of a heat exchanger
NASA Technical Reports Server (NTRS)
Xia, Lei; Deabreu-Garcia, J. Alex; Hartley, Tom T.
1991-01-01
Two models for two different control systems are developed for a parallel heat exchanger. First by spatially lumping a heat exchanger model, a good approximate model which has a high system order is produced. Model reduction techniques are applied to these to obtain low order models that are suitable for dynamic analysis and control design. The simulation method is discussed to ensure a valid simulation result.
Application of Artificial Neural Networks to the Design of Turbomachinery Airfoils
NASA Technical Reports Server (NTRS)
Rai, Man Mohan; Madavan, Nateri
1997-01-01
Artificial neural networks are widely used in engineering applications, such as control, pattern recognition, plant modeling and condition monitoring to name just a few. In this seminar we will explore the possibility of applying neural networks to aerodynamic design, in particular, the design of turbomachinery airfoils. The principle idea behind this effort is to represent the design space using a neural network (within some parameter limits), and then to employ an optimization procedure to search this space for a solution that exhibits optimal performance characteristics. Results obtained for design problems in two spatial dimensions will be presented.
Indicators of suboptimal performance embedded in the Wechsler Memory Scale-Fourth Edition (WMS-IV).
Bouman, Zita; Hendriks, Marc P H; Schmand, Ben A; Kessels, Roy P C; Aldenkamp, Albert P
2016-01-01
Recognition and visual working memory tasks from the Wechsler Memory Scale-Fourth Edition (WMS-IV) have previously been documented as useful indicators for suboptimal performance. The present study examined the clinical utility of the Dutch version of the WMS-IV (WMS-IV-NL) for the identification of suboptimal performance using an analogue study design. The patient group consisted of 59 mixed-etiology patients; the experimental malingerers were 50 healthy individuals who were asked to simulate cognitive impairment as a result of a traumatic brain injury; the last group consisted of 50 healthy controls who were instructed to put forth full effort. Experimental malingerers performed significantly lower on all WMS-IV-NL tasks than did the patients and healthy controls. A binary logistic regression analysis was performed on the experimental malingerers and the patients. The first model contained the visual working memory subtests (Spatial Addition and Symbol Span) and the recognition tasks of the following subtests: Logical Memory, Verbal Paired Associates, Designs, Visual Reproduction. The results showed an overall classification rate of 78.4%, and only Spatial Addition explained a significant amount of variation (p < .001). Subsequent logistic regression analysis and receiver operating characteristic (ROC) analysis supported the discriminatory power of the subtest Spatial Addition. A scaled score cutoff of <4 produced 93% specificity and 52% sensitivity for detection of suboptimal performance. The WMS-IV-NL Spatial Addition subtest may provide clinically useful information for the detection of suboptimal performance.
Radiometric infrared focal plane array imaging system for thermographic applications
NASA Technical Reports Server (NTRS)
Esposito, B. J.; Mccafferty, N.; Brown, R.; Tower, J. R.; Kosonocky, W. F.
1992-01-01
This document describes research performed under the Radiometric Infrared Focal Plane Array Imaging System for Thermographic Applications contract. This research investigated the feasibility of using platinum silicide (PtSi) Schottky-barrier infrared focal plane arrays (IR FPAs) for NASA Langley's specific radiometric thermal imaging requirements. The initial goal of this design was to develop a high spatial resolution radiometer with an NETD of 1 percent of the temperature reading over the range of 0 to 250 C. The proposed camera design developed during this study and described in this report provides: (1) high spatial resolution (full-TV resolution); (2) high thermal dynamic range (0 to 250 C); (3) the ability to image rapid, large thermal transients utilizing electronic exposure control (commandable dynamic range of 2,500,000:1 with exposure control latency of 33 ms); (4) high uniformity (0.5 percent nonuniformity after correction); and (5) high thermal resolution (0.1 C at 25 C background and 0.5 C at 250 C background).
Radiometric infrared focal plane array imaging system for thermographic applications
NASA Astrophysics Data System (ADS)
Esposito, B. J.; McCafferty, N.; Brown, R.; Tower, J. R.; Kosonocky, W. F.
1992-11-01
This document describes research performed under the Radiometric Infrared Focal Plane Array Imaging System for Thermographic Applications contract. This research investigated the feasibility of using platinum silicide (PtSi) Schottky-barrier infrared focal plane arrays (IR FPAs) for NASA Langley's specific radiometric thermal imaging requirements. The initial goal of this design was to develop a high spatial resolution radiometer with an NETD of 1 percent of the temperature reading over the range of 0 to 250 C. The proposed camera design developed during this study and described in this report provides: (1) high spatial resolution (full-TV resolution); (2) high thermal dynamic range (0 to 250 C); (3) the ability to image rapid, large thermal transients utilizing electronic exposure control (commandable dynamic range of 2,500,000:1 with exposure control latency of 33 ms); (4) high uniformity (0.5 percent nonuniformity after correction); and (5) high thermal resolution (0.1 C at 25 C background and 0.5 C at 250 C background).
A TEMPLATE-BASED FABRICATION TECHNIQUE FOR SPATIALLY-DESIGNED POLYMER MICRO/NANOFIBER COMPOSITES
Naik, Nisarga; Caves, Jeff; Kumar, Vivek; Chaikof, Elliot; Allen, Mark G.
2013-01-01
This paper reports a template-based technique for the fabrication of polymer micro/nanofiber composites, exercising control over the fiber dimensions and alignment. Unlike conventional spinning-based methods of fiber production, the presented approach is based on micro-transfer molding. It is a parallel processing technique capable of producing fibers with control over both in-plane and out-of-plane geometries, in addition to packing density and layout of the fibers. Collagen has been used as a test polymer to demonstrate the concept. Hollow and solid collagen fibers with various spatial layouts have been fabricated. Produced fibers have widths ranging from 2 µm to 50 µm, and fiber thicknesses ranging from 300 nm to 3 µm. Also, three-dimensionality of the process has been demonstrated by producing in-plane serpentine fibers with designed arc lengths, out-of-plane wavy fibers, fibers with focalized particle encapsulation, and porous fibers with desired periodicity and pore sizes. PMID:24533428
NASA Astrophysics Data System (ADS)
Bubolz, K.; Schenk, H.; Hirsch, T.
2016-05-01
Concentrating solar field operation is affected by shadowing through cloud movement. For line focusing systems the impact of varying irradiance has been studied before by several authors with simulations of relevant thermodynamics assuming spatially homogeneous irradiance or using artificial test signals. While today's simulation capabilities allow more and more a higher spatiotemporal resolution of plant processes there are only few studies on influence of spatially distributed irradiance due to lack of available data. Based on recent work on generating real irradiance maps with high spatial resolution this paper demonstrates their influence on solar field thermodynamics. For a case study an irradiance time series is chosen. One solar field section with several loops and collecting header is modeled for simulation purpose of parabolic trough collectors and oil as heat transfer medium. Assuming homogeneous mass flow distribution among all loops we observe spatially varying temperature characteristics. They are analysed without and with mass flow control and their impact on solar field control design is discussed. Finally, the potential of distributed irradiance data is outlined.
Compatible Spatial Discretizations for Partial Differential Equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnold, Douglas, N, ed.
From May 11--15, 2004, the Institute for Mathematics and its Applications held a hot topics workshop on Compatible Spatial Discretizations for Partial Differential Equations. The numerical solution of partial differential equations (PDE) is a fundamental task in science and engineering. The goal of the workshop was to bring together a spectrum of scientists at the forefront of the research in the numerical solution of PDEs to discuss compatible spatial discretizations. We define compatible spatial discretizations as those that inherit or mimic fundamental properties of the PDE such as topology, conservation, symmetries, and positivity structures and maximum principles. A wide varietymore » of discretization methods applied across a wide range of scientific and engineering applications have been designed to or found to inherit or mimic intrinsic spatial structure and reproduce fundamental properties of the solution of the continuous PDE model at the finite dimensional level. A profusion of such methods and concepts relevant to understanding them have been developed and explored: mixed finite element methods, mimetic finite differences, support operator methods, control volume methods, discrete differential forms, Whitney forms, conservative differencing, discrete Hodge operators, discrete Helmholtz decomposition, finite integration techniques, staggered grid and dual grid methods, etc. This workshop seeks to foster communication among the diverse groups of researchers designing, applying, and studying such methods as well as researchers involved in practical solution of large scale problems that may benefit from advancements in such discretizations; to help elucidate the relations between the different methods and concepts; and to generally advance our understanding in the area of compatible spatial discretization methods for PDE. Particular points of emphasis included: + Identification of intrinsic properties of PDE models that are critical for the fidelity of numerical simulations. + Identification and design of compatible spatial discretizations of PDEs, their classification, analysis, and relations. + Relationships between different compatible spatial discretization methods and concepts which have been developed; + Impact of compatible spatial discretizations upon physical fidelity, verification and validation of simulations, especially in large-scale, multiphysics settings. + How solvers address the demands placed upon them by compatible spatial discretizations. This report provides information about the program and abstracts of all the presentations.« less
Spatial and temporal control of microwave triggered chemiluminescence: a protein detection platform.
Previte, Michael J R; Aslan, Kadir; Geddes, Chris D
2007-09-15
We have combined the principles of microwave circuitry and antenna design and our recent work in microwave-triggered metal-enhanced chemiluminescence to now "trigger" chemically and enzyme-catalyzed chemiluminescent reactions with spatial and temporal control. With this technology platform, we achieve spatial and temporal control of enzyme and chemically catalyzed chemiluminescence reactions to achieve more than 500-fold increases in "on-demand" photon flux from chemically catalyzed chemiluminescent reactions. We also report a 6-fold increase in photon flux from HRP-catalyzed assays on disposable coverslips functionalized with HRP and placed proximal to the substrates modified with thin-film aluminum triangle disjointed "bow-tie" structures. In addition, we demonstrate the applicability of this technology to develop multiplexed or high-throughput chemiluminescent assays. We also demonstrate the clinical and biological relevance of this technology platform by affixing aluminum structures in proximity to HRP protein immobilized on nitrocellulose to improve the sensitivity for this model Western blot scheme by 50-fold. We believe analytical applications that rely on enzyme-catalyzed chemiluminescence, such as immunoassays, may greatly benefit from this new platform technology.
Optimal Sparse Upstream Sensor Placement for Hydrokinetic Turbines
NASA Astrophysics Data System (ADS)
Cavagnaro, Robert; Strom, Benjamin; Ross, Hannah; Hill, Craig; Polagye, Brian
2016-11-01
Accurate measurement of the flow field incident upon a hydrokinetic turbine is critical for performance evaluation during testing and setting boundary conditions in simulation. Additionally, turbine controllers may leverage real-time flow measurements. Particle image velocimetry (PIV) is capable of rendering a flow field over a wide spatial domain in a controlled, laboratory environment. However, PIV's lack of suitability for natural marine environments, high cost, and intensive post-processing diminish its potential for control applications. Conversely, sensors such as acoustic Doppler velocimeters (ADVs), are designed for field deployment and real-time measurement, but over a small spatial domain. Sparsity-promoting regression analysis such as LASSO is utilized to improve the efficacy of point measurements for real-time applications by determining optimal spatial placement for a small number of ADVs using a training set of PIV velocity fields and turbine data. The study is conducted in a flume (0.8 m2 cross-sectional area, 1 m/s flow) with laboratory-scale axial and cross-flow turbines. Predicted turbine performance utilizing the optimal sparse sensor network and associated regression model is compared to actual performance with corresponding PIV measurements.
Spanish Transcultural Adaptation and Validity of the Behavioral Inattention Test
Sánchez-Cabeza, Ángel; Huertas-Hoyas, Elisabet; Máximo-Bocanegra, Nuria; Rosa María Martínez-Piédrola; Pérez-de-Heredia-Torres, Marta
2017-01-01
Objective To adapt, validate, and translate the Behavioral Inattention Test as an assessment tool for Spanish individuals with unilateral spatial neglect. Design A cross-sectional descriptive study. Setting University laboratories. Participants A sample of 75 Spanish stroke patients and 18 healthy control subjects. Interventions Not applicable. Main Outcome Measures The Behavioral Inattention Test. Results The Spanish version of the Behavioral Inattention Test shows a high degree of reliability both in the complete test (α = .90) and in the conventional (α = .93) and behavioral subtests (α = .75). The concurrent validity between the total conventional and behavioral scores was high (r = −.80; p < 0.001). Significant differences were found between patients with and without unilateral spatial neglect (p < 0.001). In the comparison between right and left damaged sides, differences were found in all items, except for article reading (p = 0.156) and card sorting (p = 0.117). Conclusions This measure is a useful tool for evaluating unilateral spatial neglect as it provides information on everyday problems. The BIT discriminates between stroke patients with and without unilateral spatial neglect. This measure constitutes a reliable tool for the diagnosis, planning, performance, and design of specific treatment programs intended to improve the functionality and quality of life of people with unilateral spatial neglect. PMID:29097959
Localized modelling and feedback control of linear instabilities in 2-D wall bounded shear flows
NASA Astrophysics Data System (ADS)
Tol, Henry; Kotsonis, Marios; de Visser, Coen
2016-11-01
A new approach is presented for control of instabilities in 2-D wall bounded shear flows described by the linearized Navier-Stokes equations (LNSE). The control design accounts both for spatially localized actuators/sensors and the dominant perturbation dynamics in an optimal control framework. An inflow disturbance model is proposed for streamwise instabilities that drive laminar-turbulent transition. The perturbation modes that contribute to the transition process can be selected and are included in the control design. A reduced order model is derived from the LNSE that captures the input-output behavior and the dominant perturbation dynamics. This model is used to design an optimal controller for suppressing the instability growth. A 2-D channel flow and a 2-D boundary layer flow over a flat plate are considered as application cases. Disturbances are generated upstream of the control domain and the resulting flow perturbations are estimated/controlled using wall shear measurements and localized unsteady blowing and suction at the wall. It will be shown that the controller is able to cancel the perturbations and is robust to unmodelled disturbances.
In-Operando Spatial Imaging of Edge Termination Electric Fields in GaN Vertical p-n Junction Diodes
Leonard, Francois; Dickerson, J. R.; King, M. P.; ...
2016-05-03
Control of electric fields with edge terminations is critical to maximize the performance of high-power electronic devices. We proposed a variety of edge termination designs which makes the optimization of such designs challenging due to many parameters that impact their effectiveness. And while modeling has recently allowed new insight into the detailed workings of edge terminations, the experimental verification of the design effectiveness is usually done through indirect means, such as the impact on breakdown voltages. In this letter, we use scanning photocurrent microscopy to spatially map the electric fields in vertical GaN p-n junction diodes in operando. We alsomore » reveal the complex behavior of seemingly simple edge termination designs, and show how the device breakdown voltage correlates with the electric field behavior. Modeling suggests that an incomplete compensation of the p-type layer in the edge termination creates a bilayer structure that leads to these effects, with variations that significantly impact the breakdown voltage.« less
The effects of heavy particle irradiation on exploration and response to environmental change
NASA Astrophysics Data System (ADS)
Casadesus, G.; Shukitt-Hale, B.; Cantuti-Castelvetri, I.; Rabin, B.; Joseph, J.
Free radicals produced by exposure to heavy particles have been found to produce motor and behavioral toxicity effects in rats similar to those found during aging. The present research was designed to investigate the effects of exposure to 56Fe particles on the ability to detect novel arrangements in a given environment of male Sprague-Dawley rats. Using a test of spatial memory previously demonstrated to be sensitive to aging, open-field activity and reaction to spatial and non-spatial changes were measured in a group that received a dose of 1.5 Gy (n=10) of 56Fe heavy particle radiation or in non- radiated controls. Animals irradiated with 1.5 Gy of56Fe particles exhibited some age-like effects in animals tested, even though they were for the most part, subtle. Animals took longer to enter, visited less and spent significantly less time in the middle and the center portions of the open-field independently of total frequency and duration of activity of both groups. Likewise, irradiated subjects reacted significantly more to novel objects placed in the open-field than did controls. However, irradiated subjects did not vary from controls in their exploration patterns when objects in the open-field were spatially rearranged. Thus, irradiation with a dose of 1.5 Gy of 56Fe high-energy particle radiation elicited age-like effects in general open-field exploratory behavior, but did not elicit age- like effects during the spatial and non-spatial rearrangement tasks. Supported by N.A.S.A. Grant NAG9-1190.
The effects of heavy particle irradiation on exploration and response to environmental change
NASA Astrophysics Data System (ADS)
Casadesus, G.; Shukitt-Hale, B.; Cantuti-Castelvetri, I.; Rabin, B. M.; Joseph, J. A.
2004-01-01
Free radicals produced by exposure to heavy particles have been found to produce motor and cognitive behavioral toxicity effects in rats similar to those found during aging. The present research was designed to investigate the effects of exposure to 56Fe particles on the ability of male Sprague-Dawley rats to detect novel arrangements in a given environment. Using a test of spatial memory previously demonstrated to be sensitive to aging, open field activity and reaction to spatial and non-spatial changes were measured in a group that received a dose of 1.5 Gy ( n=10) of 56Fe heavy particle radiation or in non-radiated controls ( n=10). Animals irradiated with 1.5 Gy of 56Fe particles exhibited some age-like effects in rats tested, even though they were, for the most part, subtle. Animals took longer to enter, visited less and spent significantly less time in the middle and the center portions of the open field, independently of total frequency and duration of activity of both groups. Likewise, irradiated subjects spend significantly more time exploring novel objects placed in the open field than did controls. However, irradiated subjects did not vary from controls in their exploration patterns when objects in the open field were spatially rearranged. Thus, irradiation with a dose of 1.5 Gy of 56Fe high-energy particle radiation elicited age-like effects in general open field exploratory behavior, but did not elicit age-like effects during the spatial and non-spatial rearrangement tasks.
The effects of heavy particle irradiation on exploration and response to environmental change
NASA Technical Reports Server (NTRS)
Casadesus, G.; Shukitt-Hale, B.; Cantuti-Castelvetri, I.; Rabin, B. M.; Joseph, J. A.
2004-01-01
Free radicals produced by exposure to heavy particles have been found to produce motor and cognitive behavioral toxicity effects in rats similar to those found during aging. The present research was designed to investigate the effects of exposure to 56Fe particles on the ability of male Sprague-Dawley rats to detect novel arrangements in a given environment. Using a test of spatial memory previously demonstrated to be sensitive to aging, open field activity and reaction to spatial and non-spatial changes were measured in a group that received a dose of 1.5 Gy (n=10) of 56Fe heavy particle radiation or in non-radiated controls (n=10). Animals irradiated with 1.5 Gy of 56Fe particles exhibited some age-like effects in rats tested, even though they were, for the most part, subtle. Animals took longer to enter, visited less and spent significantly less time in the middle and the center portions of the open field, independently of total frequency and duration of activity of both groups. Likewise, irradiated subjects spend significantly more time exploring novel objects placed in the open field than did controls. However, irradiated subjects did not vary from controls in their exploration patterns when objects in the open field were spatially rearranged. Thus, irradiation with a dose of 1.5 Gy of 56Fe high-energy particle radiation elicited age-like effects in general open field exploratory behavior, but did not elicit age-like effects during the spatial and non-spatial rearrangement tasks. Published by Elsevier Ltd on behalf of COSPAR.
Development of management information system for land in mine area based on MapInfo
NASA Astrophysics Data System (ADS)
Wang, Shi-Dong; Liu, Chuang-Hua; Wang, Xin-Chuang; Pan, Yan-Yu
2008-10-01
MapInfo is current a popular GIS software. This paper introduces characters of MapInfo and GIS second development methods offered by MapInfo, which include three ones based on MapBasic, OLE automation, and MapX control usage respectively. Taking development of land management information system in mine area for example, in the paper, the method of developing GIS applications based on MapX has been discussed, as well as development of land management information system in mine area has been introduced in detail, including development environment, overall design, design and realization of every function module, and simple application of system, etc. The system uses MapX 5.0 and Visual Basic 6.0 as development platform, takes SQL Server 2005 as back-end database, and adopts Matlab 6.5 to calculate number in back-end. On the basis of integrated design, the system develops eight modules including start-up, layer control, spatial query, spatial analysis, data editing, application model, document management, results output. The system can be used in mine area for cadastral management, land use structure optimization, land reclamation, land evaluation, analysis and forecasting for land in mine area and environmental disruption, thematic mapping, and so on.
Center for Neural Engineering at Tennessee State University, ASSERT Annual Progress Report.
1995-07-01
neural networks . Their research topics are: (1) developing frequency dependent oscillatory neural networks ; (2) long term pontentiation learning rules...as applied to spatial navigation; (3) design and build a servo joint robotic arm and (4) neural network based prothesis control. One graduate student
Design and Test of an Event Detector for the ReflectoActive Seals System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stinson, Brad J
2006-05-01
The purpose of this thesis was to research, design, develop and test a novel instrument for detecting fiber optic loop continuity and spatially locating fiber optic breaches. The work is for an active seal system called ReflectoActive Seals whose purpose is to provide real time container tamper indication. A Field Programmable Gate Array was used to implement a loop continuity detector and a spatial breach locator based on a high acquisition speed single photon counting optical time domain reflectometer. Communication and other control features were added in order to create a usable instrument that met defined requirements. A host graphicalmore » user interface was developed to illustrate system use and performance. The resulting device meets performance specifications by exhibiting a dynamic range of 27dB and a spatial resolution of 1.5 ft. The communication scheme used expands installation options and allows the device to communicate to a central host via existing Local Area Networks and/or the Internet.« less
Design and Test of an Event Detector and Locator for the ReflectoActive Seals System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stinson, Brad J
2006-06-01
The purpose of this work was to research, design, develop and test a novel instrument for detecting fiber optic loop continuity and spatially locating fiber optic breaches. The work is for an active seal system called ReflectoActive{trademark} Seals whose purpose is to provide real time container tamper indication. A Field Programmable Gate Array was used to implement a loop continuity detector and a spatial breach locator based on a high acquisition speed single photon counting optical time domain reflectometer. Communication and other control features were added in order to create a usable instrument that met defined requirements. A host graphicalmore » user interface was developed to illustrate system use and performance. The resulting device meets performance specifications by exhibiting a dynamic range of 27dB and a spatial resolution of 1.5 ft. The communication scheme used expands installation options and allows the device to communicate to a central host via existing Local Area Networks and/or the Internet.« less
Influence of Design Training and Spatial Solution Strategies on Spatial Ability Performance
ERIC Educational Resources Information Center
Lin, Hanyu
2016-01-01
Numerous studies have reported that spatial ability improves through training. This study investigated the following: (1) whether design training enhances spatial ability and (2) whether differing solution strategies are applied or generated following design training. On the basis of these two research objectives, this study divided the…
Santo, Vítor E; Gomes, Manuela E; Mano, João F; Reis, Rui L
2012-07-01
The field of biomaterials has advanced towards the molecular and nanoscale design of bioactive systems for tissue engineering, regenerative medicine and drug delivery. Spatial cues are displayed in the 3D extracellular matrix and can include signaling gradients, such as those observed during chemotaxis. Architectures range from the nanometer to the centimeter length scales as exemplified by extracellular matrix fibers, cells and macroscopic shapes. The main focus of this review is the application of a biomimetic approach by the combination of architectural cues, obtained through the application of micro- and nanofabrication techniques, with the ability to sequester and release growth factors and other bioactive agents in a spatiotemporal controlled manner for bone and cartilage engineering.
Controlling shockwave dynamics using architecture in periodic porous materials
Branch, Brittany; Ionita, Axinte; Clements, Bradford E.; ...
2017-04-07
Additive manufacturing (AM) is an attractive approach for the design and fabrication of structures capable of achieving controlled mechanical response of the underlying deformation mechanisms. While there are numerous examples illustrating how the quasi-static mechanical responses of polymer foams have been tailored by additive manufacturing, there is limited understanding of the response of these materials under shockwave compression. Dynamic compression experiments coupled with time-resolved X-ray imaging were performed to obtain insights into the in situ evolution of shockwave coupling to porous, periodic polymer foams. We further demonstrate shock wave modulation or “spatially graded-flow” in shock-driven experiments via the spatial controlmore » of layer symmetries afforded by additive manufacturing techniques at the micron scale.« less
Evolutionary Computation with Spatial Receding Horizon Control to Minimize Network Coding Resources
Leeson, Mark S.
2014-01-01
The minimization of network coding resources, such as coding nodes and links, is a challenging task, not only because it is a NP-hard problem, but also because the problem scale is huge; for example, networks in real world may have thousands or even millions of nodes and links. Genetic algorithms (GAs) have a good potential of resolving NP-hard problems like the network coding problem (NCP), but as a population-based algorithm, serious scalability and applicability problems are often confronted when GAs are applied to large- or huge-scale systems. Inspired by the temporal receding horizon control in control engineering, this paper proposes a novel spatial receding horizon control (SRHC) strategy as a network partitioning technology, and then designs an efficient GA to tackle the NCP. Traditional network partitioning methods can be viewed as a special case of the proposed SRHC, that is, one-step-wide SRHC, whilst the method in this paper is a generalized N-step-wide SRHC, which can make a better use of global information of network topologies. Besides the SRHC strategy, some useful designs are also reported in this paper. The advantages of the proposed SRHC and GA for the NCP are illustrated by extensive experiments, and they have a good potential of being extended to other large-scale complex problems. PMID:24883371
NASA Astrophysics Data System (ADS)
Arabanian, Atoosa Sadat; Najafi, Somayeh; Ajami, Aliasghar; Husinsky, Wolfgang; Massudi, Reza
2018-02-01
We have succeeded in realizing a method to control the spatial distribution of optical retardation as a result of nanogratings in bulk-fused silica induced by ultrashort laser pulses. A colorimetry-based retardation measurement (CBRM) based on the Michel-Levy interference color chart using a polarization microscope is used to determine the profiles of the optical retardation. Effects of the spatial overlap of written regions as well as the energy and polarization of the writing pulses on the induced retardations are studied. It has been found that the spatial overlap of lines written by pulse trains with different energies and polarizations can result in an adjustment of the induced birefringence in the overlap region. This approach offers the possibility of designing polarization-sensitive components with a desired birefringence profile.
Lee, Duncan; Sarran, Christophe
2015-11-01
The health impact of long-term exposure to air pollution is now routinely estimated using spatial ecological studies, owing to the recent widespread availability of spatial referenced pollution and disease data. However, this areal unit study design presents a number of statistical challenges, which if ignored have the potential to bias the estimated pollution-health relationship. One such challenge is how to control for the spatial autocorrelation present in the data after accounting for the known covariates, which is caused by unmeasured confounding. A second challenge is how to adjust the functional form of the model to account for the spatial misalignment between the pollution and disease data, which causes within-area variation in the pollution data. These challenges have largely been ignored in existing long-term spatial air pollution and health studies, so here we propose a novel Bayesian hierarchical model that addresses both challenges and provide software to allow others to apply our model to their own data. The effectiveness of the proposed model is compared by simulation against a number of state-of-the-art alternatives proposed in the literature and is then used to estimate the impact of nitrogen dioxide and particulate matter concentrations on respiratory hospital admissions in a new epidemiological study in England in 2010 at the local authority level. © 2015 The Authors. Environmetrics published by John Wiley & Sons Ltd.
Network analysis reveals multiscale controls on streamwater chemistry
McGuire, Kevin J.; Torgersen, Christian E.; Likens, Gene E.; Buso, Donald C.; Lowe, Winsor H.; Bailey, Scott W.
2014-01-01
By coupling synoptic data from a basin-wide assessment of streamwater chemistry with network-based geostatistical analysis, we show that spatial processes differentially affect biogeochemical condition and pattern across a headwater stream network. We analyzed a high-resolution dataset consisting of 664 water samples collected every 100 m throughout 32 tributaries in an entire fifth-order stream network. These samples were analyzed for an exhaustive suite of chemical constituents. The fine grain and broad extent of this study design allowed us to quantify spatial patterns over a range of scales by using empirical semivariograms that explicitly incorporated network topology. Here, we show that spatial structure, as determined by the characteristic shape of the semivariograms, differed both among chemical constituents and by spatial relationship (flow-connected, flow-unconnected, or Euclidean). Spatial structure was apparent at either a single scale or at multiple nested scales, suggesting separate processes operating simultaneously within the stream network and surrounding terrestrial landscape. Expected patterns of spatial dependence for flow-connected relationships (e.g., increasing homogeneity with downstream distance) occurred for some chemical constituents (e.g., dissolved organic carbon, sulfate, and aluminum) but not for others (e.g., nitrate, sodium). By comparing semivariograms for the different chemical constituents and spatial relationships, we were able to separate effects on streamwater chemistry of (i) fine-scale versus broad-scale processes and (ii) in-stream processes versus landscape controls. These findings provide insight on the hierarchical scaling of local, longitudinal, and landscape processes that drive biogeochemical patterns in stream networks.
Network analysis reveals multiscale controls on streamwater chemistry
McGuire, Kevin J.; Torgersen, Christian E.; Likens, Gene E.; Buso, Donald C.; Lowe, Winsor H.; Bailey, Scott W.
2014-01-01
By coupling synoptic data from a basin-wide assessment of streamwater chemistry with network-based geostatistical analysis, we show that spatial processes differentially affect biogeochemical condition and pattern across a headwater stream network. We analyzed a high-resolution dataset consisting of 664 water samples collected every 100 m throughout 32 tributaries in an entire fifth-order stream network. These samples were analyzed for an exhaustive suite of chemical constituents. The fine grain and broad extent of this study design allowed us to quantify spatial patterns over a range of scales by using empirical semivariograms that explicitly incorporated network topology. Here, we show that spatial structure, as determined by the characteristic shape of the semivariograms, differed both among chemical constituents and by spatial relationship (flow-connected, flow-unconnected, or Euclidean). Spatial structure was apparent at either a single scale or at multiple nested scales, suggesting separate processes operating simultaneously within the stream network and surrounding terrestrial landscape. Expected patterns of spatial dependence for flow-connected relationships (e.g., increasing homogeneity with downstream distance) occurred for some chemical constituents (e.g., dissolved organic carbon, sulfate, and aluminum) but not for others (e.g., nitrate, sodium). By comparing semivariograms for the different chemical constituents and spatial relationships, we were able to separate effects on streamwater chemistry of (i) fine-scale versus broad-scale processes and (ii) in-stream processes versus landscape controls. These findings provide insight on the hierarchical scaling of local, longitudinal, and landscape processes that drive biogeochemical patterns in stream networks. PMID:24753575
Network analysis reveals multiscale controls on streamwater chemistry.
McGuire, Kevin J; Torgersen, Christian E; Likens, Gene E; Buso, Donald C; Lowe, Winsor H; Bailey, Scott W
2014-05-13
By coupling synoptic data from a basin-wide assessment of streamwater chemistry with network-based geostatistical analysis, we show that spatial processes differentially affect biogeochemical condition and pattern across a headwater stream network. We analyzed a high-resolution dataset consisting of 664 water samples collected every 100 m throughout 32 tributaries in an entire fifth-order stream network. These samples were analyzed for an exhaustive suite of chemical constituents. The fine grain and broad extent of this study design allowed us to quantify spatial patterns over a range of scales by using empirical semivariograms that explicitly incorporated network topology. Here, we show that spatial structure, as determined by the characteristic shape of the semivariograms, differed both among chemical constituents and by spatial relationship (flow-connected, flow-unconnected, or Euclidean). Spatial structure was apparent at either a single scale or at multiple nested scales, suggesting separate processes operating simultaneously within the stream network and surrounding terrestrial landscape. Expected patterns of spatial dependence for flow-connected relationships (e.g., increasing homogeneity with downstream distance) occurred for some chemical constituents (e.g., dissolved organic carbon, sulfate, and aluminum) but not for others (e.g., nitrate, sodium). By comparing semivariograms for the different chemical constituents and spatial relationships, we were able to separate effects on streamwater chemistry of (i) fine-scale versus broad-scale processes and (ii) in-stream processes versus landscape controls. These findings provide insight on the hierarchical scaling of local, longitudinal, and landscape processes that drive biogeochemical patterns in stream networks.
Spatial Displays and Spatial Instruments
NASA Technical Reports Server (NTRS)
Ellis, Stephen R. (Editor); Kaiser, Mary K. (Editor); Grunwald, Arthur J. (Editor)
1989-01-01
The conference proceedings topics are divided into two main areas: (1) issues of spatial and picture perception raised by graphical electronic displays of spatial information; and (2) design questions raised by the practical experience of designers actually defining new spatial instruments for use in new aircraft and spacecraft. Each topic is considered from both a theoretical and an applied direction. Emphasis is placed on discussion of phenomena and determination of design principles.
Spatially-Interactive Biomolecular Networks Organized by Nucleic Acid Nanostructures
Fu, Jinglin; Liu, Minghui; Liu, Yan; Yan, Hao
2013-01-01
Conspectus Living systems have evolved a variety of nanostructures to control the molecular interactions that mediate many functions including the recognition of targets by receptors, the binding of enzymes to substrates, and the regulation of enzymatic activity. Mimicking these structures outside of the cell requires methods that offer nanoscale control over the organization of individual network components. Advances in DNA nanotechnology have enabled the design and fabrication of sophisticated one-, two- and three-dimensional (1D, 2D and 3D) nanostructures that utilize spontaneous and sequence specific DNA hybridization. Compared to other self-assembling biopolymers, DNA nanostructures offer predictable and programmable interactions, and surface features to which other nanoparticles and bio-molecules can be precisely positioned. The ability to control the spatial arrangement of the components while constructing highly-organized networks will lead to various applications of these systems. For example, DNA nanoarrays with surface displays of molecular probes can sense noncovalent hybridization interactions with DNA, RNA, and proteins and covalent chemical reactions. DNA nanostructures can also align external molecules into well-defined arrays, which may improve the resolution of many structural determination methods, such as X-ray diffraction, cryo-EM, NMR, and super-resolution fluorescence. Moreover, by constraining target entities to specific conformations, self-assembled DNA nanostructures can serve as molecular rulers to evaluate conformation-dependent activities. This Account describes the most recent advances in the DNA nanostructure directed assembly of biomolecular networks and explores the possibility of applying this technology to other fields of study. Recently, several reports have demonstrated the DNA nanostructure directed assembly of spatially-interactive biomolecular networks. For example, researchers have constructed synthetic multi-enzyme cascades by organizing the position of the components using DNA nanoscaffolds in vitro, or by utilizing RNA matrices in vivo. These structures display enhanced efficiency compared to the corresponding unstructured enzyme mixtures. Such systems are designed to mimic cellular function, where substrate diffusion between enzymes is facilitated and reactions are catalyzed with high efficiency and specificity. In addition, researchers have assembled multiple choromophores into arrays using a DNA nanoscaffold that optimizes the relative distance between the dyes and their spatial organization. The resulting artificial light harvesting system exhibits efficient cascading energy transfers. Finally, DNA nanostructures have been used as assembly templates to construct nanodevices that execute rationally-designed behaviors, including cargo loading, transportation and route control. PMID:22642503
Spatial Probability Cuing and Right Hemisphere Damage
ERIC Educational Resources Information Center
Shaqiri, Albulena; Anderson, Britt
2012-01-01
In this experiment we studied statistical learning, inter-trial priming, and visual attention. We assessed healthy controls and right brain damaged (RBD) patients with and without neglect, on a simple visual discrimination task designed to measure priming effects and probability learning. All participants showed a preserved priming effect for item…
NASA Technical Reports Server (NTRS)
Tilton, James C. (Inventor)
2010-01-01
A method, computer readable storage, and apparatus for implementing recursive segmentation of data with spatial characteristics into regions including splitting-remerging of pixels with contagious region designations and a user controlled parameter for providing a preference for merging adjacent regions to eliminate window artifacts.
Temporal associations for spatial events: the role of the dentate gyrus.
Morris, Andrea M; Curtis, Brian J; Churchwell, John C; Maasberg, David W; Kesner, Raymond P
2013-11-01
Previous research suggests that the dorsal dentate gyrus (DG) hippocampal subregion mediates spatial processing functions. However, a novel role for the DG in temporal processing for spatial information has begun to emerge based on the development of a computational model of neurogenesis. According to this model, adult born granule cells in the DG contribute to a temporal associative integration process for events presented closer in time. Currently, there is a paucity of behavioral evidence to support the temporal integration theory. Therefore, we developed a novel behavioral paradigm to investigate the role of the dDG in temporal integration for proximal and distal spatial events. Male Long-Evans rats were randomly assigned to a control group or to receive bilateral intracranial infusions of colchicine into the dDG. Following recovery from surgery, each rat was tested on a cued-recall of sequence paradigm. In this task, animals were allowed to explore identical objects placed in designated spatial locations on a cheeseboard maze across 2 days (e.g., Day 1: A and B; Day 2: C and D). One week later, animals were given a brief cue (A or C) followed by a preference test between spatial location B and D. Control animals had a significant preference for the spatial location previously paired with the cue (the temporal associate) whereas dDG lesioned animals failed to show a preference. These findings suggest that selective colchicine-induced dDG lesions are capable of disrupting the formation of temporal associations between spatial events presented close in time. Copyright © 2013 Elsevier B.V. All rights reserved.
Farias, Paulo R S; Barbosa, José C; Busoli, Antonio C; Overal, William L; Miranda, Vicente S; Ribeiro, Susane M
2008-01-01
The fall armyworm, Spodoptera frugiperda (J.E. Smith), is one of the chief pests of maize in the Americas. The study of its spatial distribution is fundamental for designing correct control strategies, improving sampling methods, determining actual and potential crop losses, and adopting precise agricultural techniques. In São Paulo state, Brazil, a maize field was sampled at weekly intervals, from germination through harvest, for caterpillar densities, using quadrates. In each of 200 quadrates, 10 plants were sampled per week. Harvest weights were obtained in the field for each quadrate, and ear diameters and lengths were also sampled (15 ears per quadrate) and used to estimate potential productivity of the quadrate. Geostatistical analyses of caterpillar densities showed greatest ranges for small caterpillars when semivariograms were adjusted for a spherical model that showed greatest fit. As the caterpillars developed in the field, their spatial distribution became increasingly random, as shown by a model adjusted to a straight line, indicating a lack of spatial dependence among samples. Harvest weight and ear length followed the spherical model, indicating the existence of spatial variability of the production parameters in the maize field. Geostatistics shows promise for the application of precise methods in the integrated control of pests.
Keck adaptive optics: control subsystem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brase, J.M.; An, J.; Avicola, K.
1996-03-08
Adaptive optics on the Keck 10 meter telescope will provide an unprecedented level of capability in high resolution ground based astronomical imaging. The system is designed to provide near diffraction limited imaging performance with Strehl {gt} 0.3 n median Keck seeing of r0 = 25 cm, T =10 msec at 500 nm wavelength. The system will be equipped with a 20 watt sodium laser guide star to provide nearly full sky coverage. The wavefront control subsystem is responsible for wavefront sensing and the control of the tip-tilt and deformable mirrors which actively correct atmospheric turbulence. The spatial sampling interval formore » the wavefront sensor and deformable mirror is de=0.56 m which gives us 349 actuators and 244 subapertures. This paper summarizes the wavefront control system and discusses particular issues in designing a wavefront controller for the Keck telescope.« less
NASA Astrophysics Data System (ADS)
Meng, Yueyu; Ma, Hua; Li, Yongfeng; Feng, Mingde; Wang, Jiafu; Li, Zhiqiang; Qu, Shaobo
2018-05-01
Realizing fine control of surface plasmon polaritons (SPPs) and spoof surface plasmon polaritons (SSPPs) is highly desired in many integrated photonic and microwave applications, but the flexibility to control the wavefront of SPPs and SSPPs still need addressing. In this paper, a Pancharatnam–Berry (PB) phase manipulating metasurface (PMM) was designed to achieve SSPPs excitation and wavefront control. Under circular polarization (CP) incidence, simply by designing the rotation angle of the unit cells the reflection phase spatial distribution can be manipulated. By means of different phase profiles on the 2D unit cells array, the SSPPs can be excited with various wavefront shapes, without the need of special excitation structure pattern. Meanwhile, a plasmonic metal is also designed to support SSPPs with both TE and TM polarizations, which can efficiently guide out the energies from the input CP waves. As a proof of concept, a PB PMM composed of N-shape metallic structure was designed. Through designing the rotation of the unit cells, two typical phase profiles were designed to excite SSPPs in arbitrary slant direction or focusing. This scheme could be used to achieve SSPPs excitation with many other wavefront shapes, and would also enable promising applications in other spectra.
The Intelligent Control System and Experiments for an Unmanned Wave Glider.
Liao, Yulei; Wang, Leifeng; Li, Yiming; Li, Ye; Jiang, Quanquan
2016-01-01
The control system designing of Unmanned Wave Glider (UWG) is challenging since the control system is weak maneuvering, large time-lag and large disturbance, which is difficult to establish accurate mathematical model. Meanwhile, to complete marine environment monitoring in long time scale and large spatial scale autonomously, UWG asks high requirements of intelligence and reliability. This paper focuses on the "Ocean Rambler" UWG. First, the intelligent control system architecture is designed based on the cerebrum basic function combination zone theory and hierarchic control method. The hardware and software designing of the embedded motion control system are mainly discussed. A motion control system based on rational behavior model of four layers is proposed. Then, combining with the line-of sight method(LOS), a self-adapting PID guidance law is proposed to compensate the steady state error in path following of UWG caused by marine environment disturbance especially current. Based on S-surface control method, an improved S-surface heading controller is proposed to solve the heading control problem of the weak maneuvering carrier under large disturbance. Finally, the simulation experiments were carried out and the UWG completed autonomous path following and marine environment monitoring in sea trials. The simulation experiments and sea trial results prove that the proposed intelligent control system, guidance law, controller have favorable control performance, and the feasibility and reliability of the designed intelligent control system of UWG are verified.
The Intelligent Control System and Experiments for an Unmanned Wave Glider
Liao, Yulei; Wang, Leifeng; Li, Yiming; Li, Ye; Jiang, Quanquan
2016-01-01
The control system designing of Unmanned Wave Glider (UWG) is challenging since the control system is weak maneuvering, large time-lag and large disturbance, which is difficult to establish accurate mathematical model. Meanwhile, to complete marine environment monitoring in long time scale and large spatial scale autonomously, UWG asks high requirements of intelligence and reliability. This paper focuses on the “Ocean Rambler” UWG. First, the intelligent control system architecture is designed based on the cerebrum basic function combination zone theory and hierarchic control method. The hardware and software designing of the embedded motion control system are mainly discussed. A motion control system based on rational behavior model of four layers is proposed. Then, combining with the line-of sight method(LOS), a self-adapting PID guidance law is proposed to compensate the steady state error in path following of UWG caused by marine environment disturbance especially current. Based on S-surface control method, an improved S-surface heading controller is proposed to solve the heading control problem of the weak maneuvering carrier under large disturbance. Finally, the simulation experiments were carried out and the UWG completed autonomous path following and marine environment monitoring in sea trials. The simulation experiments and sea trial results prove that the proposed intelligent control system, guidance law, controller have favorable control performance, and the feasibility and reliability of the designed intelligent control system of UWG are verified. PMID:28005956
NASA Astrophysics Data System (ADS)
Phu, D. X.; Choi, S. B.; Lee, Y. S.; Han, M. S.
2014-10-01
This paper presents a new design of a magnetorheological fluid (MR) mount for vibration control considering both vertical forces and horizontal moments such as are met in various engine systems, including a medium high-speed engine of ship. The newly designed mount, called a MR brake mount, offers several salient benefits such as small size and relatively high load capacity compared with a conventional MR engine mount that can control vertical vibration only. The principal design parameters of the proposed mount are optimally determined to achieve maximum torque with geometric and spatial constraints. Subsequently, the proposed MR mount is designed and manufactured based on the optimized design parameters. It is shown from experimental testing that the proposed mount, which combines MR mount with MR brake, can produce the desired force and torque to reduce unwanted vibration of a medium high-speed engine system of ship subjected to both vertical and horizontal exciting motions. In addition, it is verified that there is no large difference between experiment results and simulation results that are obtained from an analytical model derived in this work.
ERIC Educational Resources Information Center
Ben Youssef, Belgacem; Berry, Barbara
2012-01-01
Spatial thinking skills are vital for success in everyday living and work, not to mention the centrality of spatial reasoning in scientific discoveries, design-based disciplines, medicine, geosciences and mathematics to name a few. This case study describes a course in spatial thinking and communicating designed and delivered by an…
Optimal control of first order distributed systems. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Johnson, T. L.
1972-01-01
The problem of characterizing optimal controls for a class of distributed-parameter systems is considered. The system dynamics are characterized mathematically by a finite number of coupled partial differential equations involving first-order time and space derivatives of the state variables, which are constrained at the boundary by a finite number of algebraic relations. Multiple control inputs, extending over the entire spatial region occupied by the system ("distributed controls') are to be designed so that the response of the system is optimal. A major example involving boundary control of an unstable low-density plasma is developed from physical laws.
Evaluate error correction ability of magnetorheological finishing by smoothing spectral function
NASA Astrophysics Data System (ADS)
Wang, Jia; Fan, Bin; Wan, Yongjian; Shi, Chunyan; Zhuo, Bin
2014-08-01
Power Spectral Density (PSD) has been entrenched in optics design and manufacturing as a characterization of mid-high spatial frequency (MHSF) errors. Smoothing Spectral Function (SSF) is a newly proposed parameter that based on PSD to evaluate error correction ability of computer controlled optical surfacing (CCOS) technologies. As a typical deterministic and sub-aperture finishing technology based on CCOS, magnetorheological finishing (MRF) leads to MHSF errors inevitably. SSF is employed to research different spatial frequency error correction ability of MRF process. The surface figures and PSD curves of work-piece machined by MRF are presented. By calculating SSF curve, the correction ability of MRF for different spatial frequency errors will be indicated as a normalized numerical value.
Space and time aliasing structure is monthly mean polar-orbiting satellite data
NASA Technical Reports Server (NTRS)
Zeng, Lixin; Levy, Gad
1995-01-01
Monthly mean wind fields from the European Remote Sensing Satellite (ERS1) scatterometer are presented. A banded structure which resembles the satellite subtrack is clearly and consistently apparent in the isotachs as well as the u and v components of the routinely produced fields. The structure also appears in the means of data from other polar-orbiting satellites and instruments. An experiment is designed to trace the cause of the banded structure. The European Centre for Medium-Range Weather Forecast (ECMWF) gridded surface wind analyses are used as a control set. These analyses are also sampled with the ERS1 temporal-spatial samplig pattern to form a simulated scatterometer wind set. Both sets are used to create monthly averages. The banded structures appear in the monthly mean simulated data but do not appear in the control set. It is concluded that the source of the banded structure lies in the spatial and temporal sampling of the polar-orbiting satellite which results in undersampling. The problem involves multiple timescales and space scales, oversampling and under-sampling in space, aliasing in the time and space domains, and preferentially sampled variability. It is shown that commonly used spatial smoothers (or filters), while producing visually pleasing results, also significantly bias the true mean. A three-dimensional spatial-temporal interpolator is designed and used to determine the mean field. It is found to produce satisfactory monthly means from both simulated and real ERS1 data. The implications to climate studies involving polar-orbiting satellite data are discussed.
Spatial regression analysis of traffic crashes in Seoul.
Rhee, Kyoung-Ah; Kim, Joon-Ki; Lee, Young-ihn; Ulfarsson, Gudmundur F
2016-06-01
Traffic crashes can be spatially correlated events and the analysis of the distribution of traffic crash frequency requires evaluation of parameters that reflect spatial properties and correlation. Typically this spatial aspect of crash data is not used in everyday practice by planning agencies and this contributes to a gap between research and practice. A database of traffic crashes in Seoul, Korea, in 2010 was developed at the traffic analysis zone (TAZ) level with a number of GIS developed spatial variables. Practical spatial models using available software were estimated. The spatial error model was determined to be better than the spatial lag model and an ordinary least squares baseline regression. A geographically weighted regression model provided useful insights about localization of effects. The results found that an increased length of roads with speed limit below 30 km/h and a higher ratio of residents below age of 15 were correlated with lower traffic crash frequency, while a higher ratio of residents who moved to the TAZ, more vehicle-kilometers traveled, and a greater number of access points with speed limit difference between side roads and mainline above 30 km/h all increased the number of traffic crashes. This suggests, for example, that better control or design for merging lower speed roads with higher speed roads is important. A key result is that the length of bus-only center lanes had the largest effect on increasing traffic crashes. This is important as bus-only center lanes with bus stop islands have been increasingly used to improve transit times. Hence the potential negative safety impacts of such systems need to be studied further and mitigated through improved design of pedestrian access to center bus stop islands. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Grujicic, M.; Snipes, J. S.; Galgalikar, R.; Ramaswami, S.; Yavari, R.; Yen, C.-F.; Cheeseman, B. A.
2014-09-01
In our recent work, a multi-physics computational model for the conventional gas metal arc welding (GMAW) joining process was introduced. The model is of a modular type and comprises five modules, each designed to handle a specific aspect of the GMAW process, i.e.: (i) electro-dynamics of the welding-gun; (ii) radiation-/convection-controlled heat transfer from the electric-arc to the workpiece and mass transfer from the filler-metal consumable electrode to the weld; (iii) prediction of the temporal evolution and the spatial distribution of thermal and mechanical fields within the weld region during the GMAW joining process; (iv) the resulting temporal evolution and spatial distribution of the material microstructure throughout the weld region; and (v) spatial distribution of the as-welded material mechanical properties. In the present work, the GMAW process model has been upgraded with respect to its predictive capabilities regarding the spatial distribution of the mechanical properties controlling the ballistic-limit (i.e., penetration-resistance) of the weld. The model is upgraded through the introduction of the sixth module in the present work in recognition of the fact that in thick steel GMAW weldments, the overall ballistic performance of the armor may become controlled by the (often inferior) ballistic limits of its weld (fusion and heat-affected) zones. To demonstrate the utility of the upgraded GMAW process model, it is next applied to the case of butt-welding of a prototypical high-hardness armor-grade martensitic steel, MIL A46100. The model predictions concerning the spatial distribution of the material microstructure and ballistic-limit-controlling mechanical properties within the MIL A46100 butt-weld are found to be consistent with prior observations and general expectations.
Latent spatial models and sampling design for landscape genetics
Hanks, Ephraim M.; Hooten, Mevin B.; Knick, Steven T.; Oyler-McCance, Sara J.; Fike, Jennifer A.; Cross, Todd B.; Schwartz, Michael K.
2016-01-01
We propose a spatially-explicit approach for modeling genetic variation across space and illustrate how this approach can be used to optimize spatial prediction and sampling design for landscape genetic data. We propose a multinomial data model for categorical microsatellite allele data commonly used in landscape genetic studies, and introduce a latent spatial random effect to allow for spatial correlation between genetic observations. We illustrate how modern dimension reduction approaches to spatial statistics can allow for efficient computation in landscape genetic statistical models covering large spatial domains. We apply our approach to propose a retrospective spatial sampling design for greater sage-grouse (Centrocercus urophasianus) population genetics in the western United States.
Hua, Ying; Becker, Franklin; Wurmser, Teri; Bliss-Holtz, Jane; Hedges, Christine
2012-01-01
Studies investigating factors contributing to improved quality of care have found that effective team member communication is among the most critical and influential aspects in the delivery of quality care. Relatively little research has examined the role of the physical design of nursing units on communication patterns among care providers. Although the concept of decentralized unit design is intended to increase patient safety, reduce nurse fatigue, and control the noisy, chaotic, and crowded space associated with centralized nursing stations, until recently little attention has been paid to how such nursing unit designs affected communication patterns or other medical and organizational outcomes. Using a pre/post research design comparing more centralized or decentralized unit designs with a new multi-hub design, the aim of this study was to describe the relationship between the clinical spatial environment and its effect on communication patterns, nurse satisfaction, distance walked, organizational outcomes, patient safety, and patient satisfaction. Hospital institutional data indicated that patient satisfaction increased substantially. Few significant changes were found in communication patterns; no significant changes were found in nurse job satisfaction, patient falls, pressure ulcers, or organizational outcomes such as average length of stay or patient census.
Yue, Jingwei; Zhou, Zongtan; Jiang, Jun; Liu, Yadong; Hu, Dewen
2012-08-30
Most brain-computer interfaces (BCIs) are non-time-restraint systems. However, the method used to design a real-time BCI paradigm for controlling unstable devices is still a challenging problem. This paper presents a real-time feedback BCI paradigm for controlling an inverted pendulum on a cart (IPC). In this paradigm, sensorimotor rhythms (SMRs) were recorded using 15 active electrodes placed on the surface of the subject's scalp. Subsequently, common spatial pattern (CSP) was used as the basic filter to extract spatial patterns. Finally, linear discriminant analysis (LDA) was used to translate the patterns into control commands that could stabilize the simulated inverted pendulum. Offline trainings were employed to teach the subjects to execute corresponding mental tasks, such as left/right hand motor imagery. Five subjects could successfully balance the online inverted pendulum for more than 35s. The results demonstrated that BCIs are able to control nonlinear unstable devices. Furthermore, the demonstration and extension of real-time continuous control might be useful for the real-life application and generalization of BCI. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Design of Cell-Matrix Interactions in Hyaluronic Acid Hydrogel Scaffolds
Segura, Tatiana
2013-01-01
The design of hyaluronic acid-based hydrogel scaffolds to elicit highly controlled and tunable cell response and behavior is a major field of interest in developing tissue engineering and regenerative medicine applications. This review will begin with an overview of the biological context of hyaluronic acid, knowledge needed to better understand how to engineer cell-matrix interactions in the scaffolds via the incorporation of different types of signals in order to direct and control cell behavior. Specifically, recent methods of incorporating various bioactive, mechanical, and spatial signals are reviewed, as well as novel hyaluronic acid modifications and crosslinking schemes with a focus on specificity. PMID:23899481
A Electro-Optical Image Algebra Processing System for Automatic Target Recognition
NASA Astrophysics Data System (ADS)
Coffield, Patrick Cyrus
The proposed electro-optical image algebra processing system is designed specifically for image processing and other related computations. The design is a hybridization of an optical correlator and a massively paralleled, single instruction multiple data processor. The architecture of the design consists of three tightly coupled components: a spatial configuration processor (the optical analog portion), a weighting processor (digital), and an accumulation processor (digital). The systolic flow of data and image processing operations are directed by a control buffer and pipelined to each of the three processing components. The image processing operations are defined in terms of basic operations of an image algebra developed by the University of Florida. The algebra is capable of describing all common image-to-image transformations. The merit of this architectural design is how it implements the natural decomposition of algebraic functions into spatially distributed, point use operations. The effect of this particular decomposition allows convolution type operations to be computed strictly as a function of the number of elements in the template (mask, filter, etc.) instead of the number of picture elements in the image. Thus, a substantial increase in throughput is realized. The implementation of the proposed design may be accomplished in many ways. While a hybrid electro-optical implementation is of primary interest, the benefits and design issues of an all digital implementation are also discussed. The potential utility of this architectural design lies in its ability to control a large variety of the arithmetic and logic operations of the image algebra's generalized matrix product. The generalized matrix product is the most powerful fundamental operation in the algebra, thus allowing a wide range of applications. No other known device or design has made this claim of processing speed and general implementation of a heterogeneous image algebra.
High-performance image processing architecture
NASA Astrophysics Data System (ADS)
Coffield, Patrick C.
1992-04-01
The proposed architecture is a logical design specifically for image processing and other related computations. The design is a hybrid electro-optical concept consisting of three tightly coupled components: a spatial configuration processor (the optical analog portion), a weighting processor (digital), and an accumulation processor (digital). The systolic flow of data and image processing operations are directed by a control buffer and pipelined to each of the three processing components. The image processing operations are defined by an image algebra developed by the University of Florida. The algebra is capable of describing all common image-to-image transformations. The merit of this architectural design is how elegantly it handles the natural decomposition of algebraic functions into spatially distributed, point-wise operations. The effect of this particular decomposition allows convolution type operations to be computed strictly as a function of the number of elements in the template (mask, filter, etc.) instead of the number of picture elements in the image. Thus, a substantial increase in throughput is realized. The logical architecture may take any number of physical forms. While a hybrid electro-optical implementation is of primary interest, the benefits and design issues of an all digital implementation are also discussed. The potential utility of this architectural design lies in its ability to control all the arithmetic and logic operations of the image algebra's generalized matrix product. This is the most powerful fundamental formulation in the algebra, thus allowing a wide range of applications.
Lateral specialization in unilateral spatial neglect: a cognitive robotics model.
Conti, Daniela; Di Nuovo, Santo; Cangelosi, Angelo; Di Nuovo, Alessandro
2016-08-01
In this paper, we present the experimental results of an embodied cognitive robotic approach for modelling the human cognitive deficit known as unilateral spatial neglect (USN). To this end, we introduce an artificial neural network architecture designed and trained to control the spatial attentional focus of the iCub robotic platform. Like the human brain, the architecture is divided into two hemispheres and it incorporates bio-inspired plasticity mechanisms, which allow the development of the phenomenon of the specialization of the right hemisphere for spatial attention. In this study, we validate the model by replicating a previous experiment with human patients affected by the USN and numerical results show that the robot mimics the behaviours previously exhibited by humans. We also simulated recovery after the damage to compare the performance of each of the two hemispheres as additional validation of the model. Finally, we highlight some possible advantages of modelling cognitive dysfunctions of the human brain by means of robotic platforms, which can supplement traditional approaches for studying spatial impairments in humans.
van Mantgem, P.J.; Schwilk, D.W.
2009-01-01
Fire is an important feature of many forest ecosystems, although the quantification of its effects is compromised by the large scale at which fire occurs and its inherent unpredictability. A recurring problem is the use of subsamples collected within individual burns, potentially resulting in spatially autocorrelated data. Using subsamples from six different fires (and three unburned control areas) we show little evidence for strong spatial autocorrelation either before or after burning for eight measures of forest conditions (both fuels and vegetation). Additionally, including a term for spatially autocorrelated errors provided little improvement for simple linear models contrasting the effects of early versus late season burning. While the effects of spatial autocorrelation should always be examined, it may not always greatly influence assessments of fire effects. If high patch scale variability is common in Sierra Nevada mixed conifer forests, even following more than a century of fire exclusion, treatments designed to encourage further heterogeneity in forest conditions prior to the reintroduction of fire will likely be unnecessary.
NASA Astrophysics Data System (ADS)
Takabayashi, Sadao; Klein, William P.; Onodera, Craig; Rapp, Blake; Flores-Estrada, Juan; Lindau, Elias; Snowball, Lejmarc; Sam, Joseph T.; Padilla, Jennifer E.; Lee, Jeunghoon; Knowlton, William B.; Graugnard, Elton; Yurke, Bernard; Kuang, Wan; Hughes, William L.
2014-10-01
High precision, high yield, and high density self-assembly of nanoparticles into arrays is essential for nanophotonics. Spatial deviations as small as a few nanometers can alter the properties of near-field coupled optical nanostructures. Several studies have reported assemblies of few nanoparticle structures with controlled spacing using DNA nanostructures with variable yield. Here, we report multi-tether design strategies and attachment yields for homo- and hetero-nanoparticle arrays templated by DNA origami nanotubes. Nanoparticle attachment yield via DNA hybridization is comparable with streptavidin-biotin binding. Independent of the number of binding sites, >97% site-occupation was achieved with four tethers and 99.2% site-occupation is theoretically possible with five tethers. The interparticle distance was within 2 nm of all design specifications and the nanoparticle spatial deviations decreased with interparticle spacing. Modified geometric, binomial, and trinomial distributions indicate that site-bridging, steric hindrance, and electrostatic repulsion were not dominant barriers to self-assembly and both tethers and binding sites were statistically independent at high particle densities.High precision, high yield, and high density self-assembly of nanoparticles into arrays is essential for nanophotonics. Spatial deviations as small as a few nanometers can alter the properties of near-field coupled optical nanostructures. Several studies have reported assemblies of few nanoparticle structures with controlled spacing using DNA nanostructures with variable yield. Here, we report multi-tether design strategies and attachment yields for homo- and hetero-nanoparticle arrays templated by DNA origami nanotubes. Nanoparticle attachment yield via DNA hybridization is comparable with streptavidin-biotin binding. Independent of the number of binding sites, >97% site-occupation was achieved with four tethers and 99.2% site-occupation is theoretically possible with five tethers. The interparticle distance was within 2 nm of all design specifications and the nanoparticle spatial deviations decreased with interparticle spacing. Modified geometric, binomial, and trinomial distributions indicate that site-bridging, steric hindrance, and electrostatic repulsion were not dominant barriers to self-assembly and both tethers and binding sites were statistically independent at high particle densities. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03069a
ERIC Educational Resources Information Center
Ramful, Ajay; Lowrie, Thomas; Logan, Tracy
2017-01-01
This article describes the development and validation of a newly designed instrument for measuring the spatial ability of middle school students (11-13 years old). The design of the Spatial Reasoning Instrument (SRI) is based on three constructs (mental rotation, spatial orientation, and spatial visualization) and is aligned to the type of spatial…
Aubertot, Jean-Noël; Peyrard, Nathalie; Sabbadin, Régis
2017-01-01
Designing management policies in ecology and agroecology is complex. Several components must be managed together while they strongly interact spatially. Decision choices must be made under uncertainty on the results of the actions and on the system dynamics. Furthermore, the objectives pursued when managing ecological systems or agroecosystems are usually long term objectives, such as biodiversity conservation or sustainable crop production. The framework of Graph-Based Markov Decision Processes (GMDP) is well adapted to the qualitative modeling of such problems of sequential decision under uncertainty. Spatial interactions are easily modeled and integrated control policies (combining several action levers) can be designed through optimization. The provided policies are adaptive, meaning that management actions are decided at each time step (for instance yearly) and the chosen actions depend on the current system state. This framework has already been successfully applied to forest management and invasive species management. However, up to now, no “easy-to-use” implementation of this framework was available. We present GMDPtoolbox, a Matlab toolbox which can be used both for the design of new management policies and for comparing policies by simulation. We provide an illustration of the use of the toolbox on a realistic crop disease management problem: the design of long term management policy of blackleg of canola using an optimal combination of three possible cultural levers. This example shows how GMDPtoolbox can be used as a tool to support expert thinking. PMID:28982151
Cros, Marie-Josée; Aubertot, Jean-Noël; Peyrard, Nathalie; Sabbadin, Régis
2017-01-01
Designing management policies in ecology and agroecology is complex. Several components must be managed together while they strongly interact spatially. Decision choices must be made under uncertainty on the results of the actions and on the system dynamics. Furthermore, the objectives pursued when managing ecological systems or agroecosystems are usually long term objectives, such as biodiversity conservation or sustainable crop production. The framework of Graph-Based Markov Decision Processes (GMDP) is well adapted to the qualitative modeling of such problems of sequential decision under uncertainty. Spatial interactions are easily modeled and integrated control policies (combining several action levers) can be designed through optimization. The provided policies are adaptive, meaning that management actions are decided at each time step (for instance yearly) and the chosen actions depend on the current system state. This framework has already been successfully applied to forest management and invasive species management. However, up to now, no "easy-to-use" implementation of this framework was available. We present GMDPtoolbox, a Matlab toolbox which can be used both for the design of new management policies and for comparing policies by simulation. We provide an illustration of the use of the toolbox on a realistic crop disease management problem: the design of long term management policy of blackleg of canola using an optimal combination of three possible cultural levers. This example shows how GMDPtoolbox can be used as a tool to support expert thinking.
Control of hierarchical polymer mechanics with bioinspired metal-coordination dynamics
Grindy, Scott C.; Learsch, Robert; Mozhdehi, Davoud; Cheng, Jing; Barrett, Devin G.; Guan, Zhibin; Messersmith, Phillip B.; Holten-Andersen, Niels
2015-01-01
In conventional polymer materials, mechanical performance is traditionally engineered via material structure, using motifs such as polymer molecular weight, polymer branching, or copolymer-block design1. Here, by means of a model system of 4-arm poly(ethylene glycol) hydrogels crosslinked with multiple, kinetically distinct dynamic metal-ligand coordinate complexes, we show that polymer materials with decoupled spatial structure and mechanical performance can be designed. By tuning the relative concentration of two types of metal-ligand crosslinks, we demonstrate control over the material’s mechanical hierarchy of energy-dissipating modes under dynamic mechanical loading, and therefore the ability to engineer a priori the viscoelastic properties of these materials by controlling the types of crosslinks rather than by modifying the polymer itself. This strategy to decouple material mechanics from structure may inform the design of soft materials for use in complex mechanical environments. PMID:26322715
Moertl, Peter M; Canning, John M; Gronlund, Scott D; Dougherty, Michael R P; Johansson, Joakim; Mills, Scott H
2002-01-01
Prior research examined how controllers plan in their traditional environment and identified various information uncertainties as detriments to planning. A planning aid was designed to reduce this uncertainty by perceptually representing important constraints. This included integrating spatial information on the radar screen with discrete information (planned sequences of air traffic). Previous research reported improved planning performance and decreased workload in the planning aid condition. The purpose of this paper was to determine the source of these performance improvements. Analysis of computer interactions using log-linear modeling showed that the planning interface led to less repetitive--but more integrated--information retrieval compared with the traditional planning environment. Ecological interface design principles helped explain how the integrated information retrieval gave rise to the performance improvements. Actual or potential applications of this research include the design and evaluation of interface automation that keeps users in active control by modification of perceptual task characteristics.
Smart optical writing head design for laser-based manufacturing
NASA Astrophysics Data System (ADS)
Amin, M. Junaid; Riza, Nabeel A.
2014-03-01
Proposed is a smart optical writing head design suitable for high precision industrial laser based machining and manufacturing applications. The design uses an Electronically Controlled Variable Focus Lens (ECVFL) which enables the highest achievable spatial resolution of writing head spot sizes for axial target distances reaching 8 meters. A proof-of-concept experiment is conducted using a visible wavelength laser with a collimated beam that is coupled to beam conditioning optics which includes an electromagnetically actuated deformable membrane liquid ECVFL cascaded with a bias convex lens of fixed focal length. Electronic tuning and control of the ECVFL keeps the laser writing head far-field spot beam radii under 1 mm that is demonstrated over a target range of 20 cm to 800 cm. Applications for the proposed writing head design, which can accommodate both continuous wave and pulsed wave sources, include laser machining, high precision industrial molding of components, as well as materials processing requiring material sensitive optical power density control.
NASA Technical Reports Server (NTRS)
Jain, A.; Man, G. K.
1993-01-01
This paper describes the Dynamics Algorithms for Real-Time Simulation (DARTS) real-time hardware-in-the-loop dynamics simulator for the National Aeronautics and Space Administration's Cassini spacecraft. The spacecraft model consists of a central flexible body with a number of articulated rigid-body appendages. The demanding performance requirements from the spacecraft control system require the use of a high fidelity simulator for control system design and testing. The DARTS algorithm provides a new algorithmic and hardware approach to the solution of this hardware-in-the-loop simulation problem. It is based upon the efficient spatial algebra dynamics for flexible multibody systems. A parallel and vectorized version of this algorithm is implemented on a low-cost, multiprocessor computer to meet the simulation timing requirements.
Microscale architecture in biomaterial scaffolds for spatial control of neural cell behavior
NASA Astrophysics Data System (ADS)
Meco, Edi; Lampe, Kyle J.
2018-02-01
Biomaterial scaffolds mimic aspects of the native central nervous system (CNS) extracellular matrix (ECM) and have been extensively utilized to influence neural cell (NC) behavior in in vitro and in vivo settings. These biomimetic scaffolds support NC cultures, can direct the differentiation of NCs, and have recapitulated some native NC behavior in an in vitro setting. However, NC transplant therapies and treatments used in animal models of CNS disease and injury have not fully restored functionality. The observed lack of functional recovery occurs despite improvements in transplanted NC viability when incorporating biomaterial scaffolds and the potential of NC to replace damaged native cells. The behavior of NCs within biomaterial scaffolds must be directed in order to improve the efficacy of transplant therapies and treatments. Biomaterial scaffold topography and imbedded bioactive cues, designed at the microscale level, can alter NC phenotype, direct migration, and differentiation. Microscale patterning in biomaterial scaffolds for spatial control of NC behavior has enhanced the capabilities of in vitro models to capture properties of the native CNS tissue ECM. Patterning techniques such as lithography, electrospinning and 3D bioprinting can be employed to design the microscale architecture of biomaterial scaffolds. Here, the progress and challenges of the prevalent biomaterial patterning techniques of lithography, electrospinning, and 3D bioprinting are reported. This review analyzes NC behavioral response to specific microscale topographical patterns and spatially organized bioactive cues.
Integrating Cognitive Linguistics Insights into Data-Driven Learning: Teaching Vertical Prepositions
ERIC Educational Resources Information Center
Kilimci, Abdurrahman
2017-01-01
The present study investigates the impact of the integration of the Cognitive Linguistics (CL) pedagogy into Data-driven learning (DDL) on the learners' acquisition of two sets of English spatial prepositions of verticality, "over/under" and "above/below." The study followed a quasi-experimental design with a control and an…
A "Musical Pathway" for Spatially Disoriented Blind Residents of a Skilled Nursing Facility.
ERIC Educational Resources Information Center
Uslan, M. M.; And Others
1988-01-01
The "Auditory Directional System" designed to help blind persons get to interior destinations in an institutional setting, uses a compact disc player, a network of speakers, infrared "people" detection equipment, and a computer controlled speaker-sequencing system. After initial destination selection, musical cues are activated as the person…
Modeling disturbance and succession in forest landscapes using LANDIS: introduction
Brian R. Sturtevant; Eric J. Gustafson; Hong S. He
2004-01-01
Modeling forest landscape change is challenging because it involves the interaction of a variety of factors and processes, such as climate, succession, disturbance, and management. These processes occur at various spatial and temporal scales, and the interactions can be complex on heterogeneous landscapes. Because controlled field experiments designed to investigate...
Computer-Based Working Memory Training in Children with Mild Intellectual Disability
ERIC Educational Resources Information Center
Delavarian, Mona; Bokharaeian, Behrouz; Towhidkhah, Farzad; Gharibzadeh, Shahriar
2015-01-01
We designed a working memory (WM) training programme in game framework for mild intellectually disabled students. Twenty-four students participated as test and control groups. The auditory and visual-spatial WM were assessed by primary test, which included computerised Wechsler numerical forward and backward sub-tests and secondary tests, which…
Programmable and coherent crystallization of semiconductors
Yu, Liyang; Niazi, Muhammad R.; Ngongang Ndjawa, Guy O.; Li, Ruipeng; Kirmani, Ahmad R.; Munir, Rahim; Balawi, Ahmed H.; Laquai, Frédéric; Amassian, Aram
2017-01-01
The functional properties and technological utility of polycrystalline materials are largely determined by the structure, geometry, and spatial distribution of their multitude of crystals. However, crystallization is seeded through stochastic and incoherent nucleation events, limiting the ability to control or pattern the microstructure, texture, and functional properties of polycrystalline materials. We present a universal approach that can program the microstructure of materials through the coherent seeding of otherwise stochastic homogeneous nucleation events. The method relies on creating topographic variations to seed nucleation and growth at designated locations while delaying nucleation elsewhere. Each seed can thus produce a coherent growth front of crystallization with a geometry designated by the shape and arrangement of seeds. Periodic and aperiodic crystalline arrays of functional materials, such as semiconductors, can thus be created on demand and with unprecedented sophistication and ease by patterning the location and shape of the seeds. This approach is used to demonstrate printed arrays of organic thin-film transistors with remarkable performance and reproducibility owing to their demonstrated spatial control over the microstructure of organic and inorganic polycrystalline semiconductors. PMID:28275737
Creating biomaterials with spatially organized functionality.
Chow, Lesley W; Fischer, Jacob F
2016-05-01
Biomaterials for tissue engineering provide scaffolds to support cells and guide tissue regeneration. Despite significant advances in biomaterials design and fabrication techniques, engineered tissue constructs remain functionally inferior to native tissues. This is largely due to the inability to recreate the complex and dynamic hierarchical organization of the extracellular matrix components, which is intimately linked to a tissue's biological function. This review discusses current state-of-the-art strategies to control the spatial presentation of physical and biochemical cues within a biomaterial to recapitulate native tissue organization and function. © 2016 by the Society for Experimental Biology and Medicine.
NASA Technical Reports Server (NTRS)
Dubowsky, Steven
1989-01-01
An approach is described to modeling the flexibility effects in spatial mechanisms and manipulator systems. The method is based on finite element representations of the individual links in the system. However, it should be noted that conventional finite element methods and software packages will not handle the highly nonlinear dynamic behavior of these systems which results form their changing geometry. In order to design high-performance lightweight systems and their control systems, good models of their dynamic behavior which include the effects of flexibility are required.
Market-based control strategy for long-span structures considering the multi-time delay issue
NASA Astrophysics Data System (ADS)
Li, Hongnan; Song, Jianzhu; Li, Gang
2017-01-01
To solve the different time delays that exist in the control device installed on spatial structures, in this study, discrete analysis using a 2 N precise algorithm was selected to solve the multi-time-delay issue for long-span structures based on the market-based control (MBC) method. The concept of interval mixed energy was introduced from computational structural mechanics and optimal control research areas, and it translates the design of the MBC multi-time-delay controller into a solution for the segment matrix. This approach transforms the serial algorithm in time to parallel computing in space, greatly improving the solving efficiency and numerical stability. The designed controller is able to consider the issue of time delay with a linear controlling force combination and is especially effective for large time-delay conditions. A numerical example of a long-span structure was selected to demonstrate the effectiveness of the presented controller, and the time delay was found to have a significant impact on the results.
Evaluating an immersive virtual environment prototyping and simulation system
NASA Astrophysics Data System (ADS)
Nemire, Kenneth
1997-05-01
An immersive virtual environment (IVE) modeling and simulation tool is being developed for designing advanced weapon and training systems. One unique feature of the tool is that the design, and not just visualization of the design is accomplished with the IVE tool. Acceptance of IVE tools requires comparisons with current commercial applications. In this pilot study, expert users of a popular desktop 3D graphics application performed identical modeling and simulation tasks using both the desktop and IVE applications. The IVE tool consisted of a head-mounted display, 3D spatialized sound, spatial trackers on head and hands, instrumented gloves, and a simulated speech recognition system. The results are preliminary because performance from only four users has been examined. When using the IVE system, users completed the tasks to criteria in less time than when using the desktop application. Subjective ratings of the visual displays in each system were similar. Ratings for the desktop controls were higher than for the IVE controls. Ratings of immersion and user enjoyment were higher for the IVE than for the desktop application. These results are particular remarkable because participants had used the desktop application regularly for three to five years and the prototype IVE tool for only three to six hours.
Design of the 2D electron cyclotron emission imaging instrument for the J-TEXT tokamak.
Pan, X M; Yang, Z J; Ma, X D; Zhu, Y L; Luhmann, N C; Domier, C W; Ruan, B W; Zhuang, G
2016-11-01
A new 2D Electron Cyclotron Emission Imaging (ECEI) diagnostic is being developed for the J-TEXT tokamak. It will provide the 2D electron temperature information with high spatial, temporal, and temperature resolution. The new ECEI instrument is being designed to support fundamental physics investigations on J-TEXT including MHD, disruption prediction, and energy transport. The diagnostic contains two dual dipole antenna arrays corresponding to F band (90-140 GHz) and W band (75-110 GHz), respectively, and comprises a total of 256 channels. The system can observe the same magnetic surface at both the high field side and low field side simultaneously. An advanced optical system has been designed which permits the two arrays to focus on a wide continuous region or two radially separate regions with high imaging spatial resolution. It also incorporates excellent field curvature correction with field curvature adjustment lenses. An overview of the diagnostic and the technical progress including the new remote control technique are presented.
Design of the 2D electron cyclotron emission imaging instrument for the J-TEXT tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, X. M.; Yang, Z. J., E-mail: yangzj@hust.edu.cn; Ma, X. D.
2016-11-15
A new 2D Electron Cyclotron Emission Imaging (ECEI) diagnostic is being developed for the J-TEXT tokamak. It will provide the 2D electron temperature information with high spatial, temporal, and temperature resolution. The new ECEI instrument is being designed to support fundamental physics investigations on J-TEXT including MHD, disruption prediction, and energy transport. The diagnostic contains two dual dipole antenna arrays corresponding to F band (90-140 GHz) and W band (75-110 GHz), respectively, and comprises a total of 256 channels. The system can observe the same magnetic surface at both the high field side and low field side simultaneously. An advancedmore » optical system has been designed which permits the two arrays to focus on a wide continuous region or two radially separate regions with high imaging spatial resolution. It also incorporates excellent field curvature correction with field curvature adjustment lenses. An overview of the diagnostic and the technical progress including the new remote control technique are presented.« less
Alac, Morana; Movellan, Javier; Tanaka, Fumihide
2011-12-01
Social roboticists design their robots to function as social agents in interaction with humans and other robots. Although we do not deny that the robot's design features are crucial for attaining this aim, we point to the relevance of spatial organization and coordination between the robot and the humans who interact with it. We recover these interactions through an observational study of a social robotics laboratory and examine them by applying a multimodal interactional analysis to two moments of robotics practice. We describe the vital role of roboticists and of the group of preverbal infants, who are involved in a robot's design activity, and we argue that the robot's social character is intrinsically related to the subtleties of human interactional moves in laboratories of social robotics. This human involvement in the robot's social agency is not simply controlled by individual will. Instead, the human-machine couplings are demanded by the situational dynamics in which the robot is lodged.
Active noise control using a steerable parametric array loudspeaker.
Tanaka, Nobuo; Tanaka, Motoki
2010-06-01
Arguably active noise control enables the sound suppression at the designated control points, while the sound pressure except the targeted locations is likely to augment. The reason is clear; a control source normally radiates the sound omnidirectionally. To cope with this problem, this paper introduces a parametric array loudspeaker (PAL) which produces a spatially focused sound beam due to the attribute of ultrasound used for carrier waves, thereby allowing one to suppress the sound pressure at the designated point without causing spillover in the whole sound field. First the fundamental characteristics of PAL are overviewed. The scattered pressure in the near field contributed by source strength of PAL is then described, which is needed for the design of an active noise control system. Furthermore, the optimal control law for minimizing the sound pressure at control points is derived, the control effect being investigated analytically and experimentally. With a view to tracking a moving target point, a steerable PAL based upon a phased array scheme is presented, with the result that the generation of a moving zone of quiet becomes possible without mechanically rotating the PAL. An experiment is finally conducted, demonstrating the validity of the proposed method.
Design of a Minimum Surface-Effect Three Degree-of-Freedom Micromanipulator
NASA Technical Reports Server (NTRS)
Goldfarb, Michael; Speich, John E.
1997-01-01
This paper describes the fundamental physical motivations for small-scale minimum surface-effect design, and presents a three degree-of-freedom micromanipulator design that incorporates a minimum surface-effect approach. The primary focus of the design is the split-tube flexure, a unique small-scale revolute joint that exhibits a considerably larger range of motion and significantly better multi-axis revolute joint characteristics than a conventional flexure. The development of this joint enables the implementation of a small-scale spatially-loaded revolute joint-based manipulator with well-behaved kinematic characteristics and without the backlash and stick-slip behavior that would otherwise prevent precision control
Prediction of plasma properties in mercury ion thrusters
NASA Technical Reports Server (NTRS)
Longhurst, G. R.
1978-01-01
A simplified theoretical model was developed which obtains to first order the plasma properties in the discharge chamber of a mercury ion thruster from basic thruster design and controllable operating parameters. The basic operation and design of ion thrusters is discussed, and the important processes which influence the plasma properties are described in terms of the design and control parameters. The conservation for mass, charge and energy were applied to the ion production region, which was defined as the region of the discharge chamber having as its outer boundary the surface of revolution of the innermost field line to intersect the anode. Mass conservation and the equations describing the various processes involved with mass addition and removal from the ion production region are satisfied by a Maxwellian electron density spatial distribution in that region.
Probabilistic Modeling of Settlement Risk at Land Disposal Facilities - 12304
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foye, Kevin C.; Soong, Te-Yang
2012-07-01
The long-term reliability of land disposal facility final cover systems - and therefore the overall waste containment - depends on the distortions imposed on these systems by differential settlement/subsidence. The evaluation of differential settlement is challenging because of the heterogeneity of the waste mass (caused by inconsistent compaction, void space distribution, debris-soil mix ratio, waste material stiffness, time-dependent primary compression of the fine-grained soil matrix, long-term creep settlement of the soil matrix and the debris, etc.) at most land disposal facilities. Deterministic approaches to long-term final cover settlement prediction are not able to capture the spatial variability in the wastemore » mass and sub-grade properties which control differential settlement. An alternative, probabilistic solution is to use random fields to model the waste and sub-grade properties. The modeling effort informs the design, construction, operation, and maintenance of land disposal facilities. A probabilistic method to establish design criteria for waste placement and compaction is introduced using the model. Random fields are ideally suited to problems of differential settlement modeling of highly heterogeneous foundations, such as waste. Random fields model the seemingly random spatial distribution of a design parameter, such as compressibility. When used for design, the use of these models prompts the need for probabilistic design criteria. It also allows for a statistical approach to waste placement acceptance criteria. An example design evaluation was performed, illustrating the use of the probabilistic differential settlement simulation methodology to assemble a design guidance chart. The purpose of this design evaluation is to enable the designer to select optimal initial combinations of design slopes and quality control acceptance criteria that yield an acceptable proportion of post-settlement slopes meeting some design minimum. For this specific example, relative density, which can be determined through field measurements, was selected as the field quality control parameter for waste placement. This technique can be extended to include a rigorous performance-based methodology using other parameters (void space criteria, debris-soil mix ratio, pre-loading, etc.). As shown in this example, each parameter range, or sets of parameter ranges can be selected such that they can result in an acceptable, long-term differential settlement according to the probabilistic model. The methodology can also be used to re-evaluate the long-term differential settlement behavior at closed land disposal facilities to identify, if any, problematic facilities so that remedial action (e.g., reinforcement of upper and intermediate waste layers) can be implemented. Considering the inherent spatial variability in waste and earth materials and the need for engineers to apply sound quantitative practices to engineering analysis, it is important to apply the available probabilistic techniques to problems of differential settlement. One such method to implement probability-based differential settlement analyses for the design of landfill final covers has been presented. The design evaluation technique presented is one tool to bridge the gap from deterministic practice to probabilistic practice. (authors)« less
Le Cointe, Ronan; Simon, Thomas E.; Delarue, Patrick; Hervé, Maxime; Leclerc, Melen; Poggi, Sylvain
2016-01-01
Reducing our reliance on pesticides is an essential step towards the sustainability of agricultural production. One approach involves the rational use of pesticides combined with innovative crop management. Most control strategies currently focus on the temporal aspect of epidemics, e.g. determining the optimal date for spraying, regardless of the spatial mechanics and ecology of disease spread. Designing innovative pest management strategies incorporating the spatial aspect of epidemics involves thorough knowledge on how disease control affects the life-history traits of the pathogen. In this study, using Rhizoctonia solani/Raphanus sativus as an example of a soil-borne pathosystem, we investigated the effects of a chemical control currently used by growers, Monceren® L, on key epidemiological components (saprotrophic spread and infectivity). We tested the potential “shield effect” of Monceren® L on pathogenic spread in a site-specific application context, i.e. the efficiency of this chemical to contain the spread of the fungus from an infected host when application is spatially localized, in our case, a strip placed between the infected host and a recipient bait. Our results showed that Monceren® L mainly inhibits the saprotrophic spread of the fungus in soil and may prevent the fungus from reaching its host plant. However, perhaps surprisingly we did not detect any significant effect of the fungicide on the pathogen infectivity. Finally, highly localized application of the fungicide—a narrow strip of soil (12.5 mm wide) sprayed with Monceren® L—significantly decreased local transmission of the pathogen, suggesting lowered risk of occurrence of invasive epidemics. Our results highlight that detailed knowledge on epidemiological processes could contribute to the design of innovative management strategies based on precision agriculture tools to improve the efficacy of disease control and reduce pesticide use. PMID:27668731
Vertical electrostatic actuator with extended digital range via tailored topology
NASA Astrophysics Data System (ADS)
Zhang, Yanhang; Dunn, Martin L.
2002-07-01
We describe the design, fabrication, and testing of an electrostatic vertical actuator that exhibits a range of motion that covers the entire initial gap between the actuator and substrate and provides controllable digital output motion. This is obtained by spatially tailoring the electrode arrangement and the stiffness characteristics of the microstructure to control the voltage-deflection characteristics. The concept is based on the electrostatic pull down of bimaterial beams, via a series of electrodes attached to the beams by flexures with tailored stiffness characteristics. The range of travel of the actuator is defined by the post-release deformed shape of the bilayer beams, and can be controlled by a post-release heat-treat process combined with a tailored actuator topology (material distribution and geometry, including spatial geometrical patterning of the individual layers of the bilayer beams). Not only does this allow an increase in the range of travel to cover the entire initial gap, but it also permits digital control of the tip of the actuator which can be designed to yield linear displacement - pull in step characteristics. We fabricated these actuators using the MUMPs surface micromachining process, and packaged them in-house. We measured, using an interferometric microscope, full field deformed shapes of the actuator at each pull in step. The measurements compare well with companion simulation results, both qualitatively and quantitatively.
Visions of visualization aids: Design philosophy and experimental results
NASA Technical Reports Server (NTRS)
Ellis, Stephen R.
1990-01-01
Aids for the visualization of high-dimensional scientific or other data must be designed. Simply casting multidimensional data into a two- or three-dimensional spatial metaphor does not guarantee that the presentation will provide insight or parsimonious description of the phenomena underlying the data. Indeed, the communication of the essential meaning of some multidimensional data may be obscured by presentation in a spatially distributed format. Useful visualization is generally based on pre-existing theoretical beliefs concerning the underlying phenomena which guide selection and formatting of the plotted variables. Two examples from chaotic dynamics are used to illustrate how a visulaization may be an aid to insight. Two examples of displays to aid spatial maneuvering are described. The first, a perspective format for a commercial air traffic display, illustrates how geometric distortion may be introduced to insure that an operator can understand a depicted three-dimensional situation. The second, a display for planning small spacecraft maneuvers, illustrates how the complex counterintuitive character of orbital maneuvering may be made more tractable by removing higher-order nonlinear control dynamics, and allowing independent satisfaction of velocity and plume impingement constraints on orbital changes.
Visuo-spatial processing and executive functions in children with specific language impairment
Marton, Klara
2007-01-01
Background Individual differences in complex working memory tasks reflect simultaneous processing, executive functions, and attention control. Children with specific language impairment (SLI) show a deficit in verbal working memory tasks that involve simultaneous processing of information. Aims The purpose of the study was to examine executive functions and visuo-spatial processing and working memory in children with SLI and in their typically developing peers (TLD). Experiment 1 included 40 children with SLI (age=5;3–6;10) and 40 children with TLD (age=5;3–6;7); Experiment 2 included 25 children with SLI (age=8;2–11;2) and 25 children with TLD (age=8;3–11;0). It was examined whether the difficulties that children with SLI show in verbal working memory tasks are also present in visuo-spatial working memory. Methods & Procedures In Experiment 1, children's performance was measured with three visuo-spatial processing tasks: space visualization, position in space, and design copying. The stimuli in Experiment 2 were two widely used neuropsychological tests: the Wisconsin Card Sorting Test — 64 (WCST-64) and the Tower of London test (TOL). Outcomes & Results In Experiment 1, children with SLI performed more poorly than their age-matched peers in all visuo-spatial working memory tasks. There was a subgroup within the SLI group that included children whose parents and teachers reported a weakness in the child's attention control. These children showed particular difficulties in the tasks of Experiment 1. The results support Engle's attention control theory: individuals need good attention control to perform well in visuo-spatial working memory tasks. In Experiment 2, the children with SLI produced more perseverative errors and more rule violations than their peers. Conclusions Executive functions have a great impact on SLI children's working memory performance, regardless of domain. Tasks that require an increased amount of attention control and executive functions are more difficult for the children with SLI than for their peers. Most children with SLI scored either below average or in the low average range on the neuropsychological tests that measured executive functions. PMID:17852522
Flexible detection optics for light scattering
NASA Astrophysics Data System (ADS)
Taratuta, Victor G.; Hurd, Alan J.; Meyer, Robert B.
1984-05-01
We have designed and built a compact, modular apparatus for the collection, viewing, and detection of scattered light for less than 1200, based on a commercially available optical bench. The novelty of our instrument is that it has the flexibility of modular design while allowing the user to see exactly what is happening: both the real image of the sample and the spatial coherence of the scattered light can be examined. There is built-in control over polarization, filtering, magnification, and other parameters.
2017-07-10
Center (DTIC), Fort Belvoir, Virginia 22060. Orders will be expedited if placed through the librarian or other person designated to request...construed as an official Department of the Army position, policy, or decision, unless so designated by other official documentation. Citation of trade names...collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, S., E-mail: shailesh.sharma6@mail.dcu.ie; National Centre for Plasma Science and Technology, Dublin City University, Glasnevin, Dublin 9; Gahan, D., E-mail: david.gahan@impedans.com
2014-04-15
A novel retarding field energy analyzer design capable of measuring the spatial uniformity of the ion energy and ion flux across the surface of a semiconductor wafer is presented. The design consists of 13 individual, compact-sized, analyzers, all of which are multiplexed and controlled by a single acquisition unit. The analyzers were tested to have less than 2% variability from unit to unit due to tight manufacturing tolerances. The main sensor assembly consists of a 300 mm disk to mimic a semiconductor wafer and the plasma sampling orifices of each sensor are flush with disk surface. This device is placedmore » directly on top of the rf biased electrode, at the wafer location, in an industrial capacitively coupled plasma reactor without the need for any modification to the electrode structure. The ion energy distribution, average ion energy, and average ion flux were measured at the 13 locations over the surface of the powered electrode to determine the degree of spatial nonuniformity. The ion energy and ion flux are shown to vary by approximately 20% and 5%, respectively, across the surface of the electrode for the range of conditions investigated in this study.« less
Effect of teaching mathematics using GeoGebra on students' with dissimilar spatial visualisation
NASA Astrophysics Data System (ADS)
Bakar, Kamariah Abu; Ayub, Ahmad Fauzi Mohd; Tarmizi, Rohani Ahmad; Luan, Wong Su
2015-10-01
This study examined the effects of GeoGebra on mathematics performance of students with different spatial visualization. A qusai-experimental, pretest-posttest control group design was conducted. A total of 71 students from two intact groups were involved in the study. They were in two groups and each group was randonly assigned to the experimental group (36 students) and control group (35 students). A spatial visual test to identify students with high or low visualization, and a mathematics performance pre-test were administered at the initial stage of this study. A post-test was administered after 12 weeks of treatment using GeoGebra. Analyses of Covarion (ANCOVA) was used to adjust for the pre-test score. Findings showed that the group with access to GeoGebra achieved significantly better test scores in the posttest as compared to the group which followed the traditional teaching method. A two-way ANCOVA used to analyse the effect of students' spatial visualization on post-test performance showed that there was no effect. The results from this study suggested that using GeoGebra had helped the students to score better in the posttest. However, there is no significance difference on mathematics performances on students with difference types of spatial visualisastion. This study indicates that GeoGebra is useful in enhancing the teaching and learning of mathematics.
Alirezaei, Masoud; Rezaei, Maryam; Hajighahramani, Shahin; Sookhtehzari, Ali; Kiani, Katayoun
2017-01-01
The present study was designed to evaluate the antioxidant effects of oleuropein against oxidative stress in the hippocampal area of rats. We used seven experimental groups as follows: Control, Propofol, Propofol-Ketamine (Pro.-Ket.), Xylazine-Ketamine (Xyl.-Ket.), and three oleuropein-pretreated groups (Ole.-Pro., Ole.-Pro.-Ket. and Ole.-Xyl.-Ket.). The oleuropein-pretreated groups received oleuropein (15 mg/kg body weight as orally) for 10 consecutive days. Propofol 100 mg/kg, xylazine 3 mg/kg, and ketamine 75 mg/kg once as ip was used on the 11th day of treatment. Spatial memory impairment and antioxidant status of hippocampus were measured via Morris water maze, lipid peroxidation marker, and antioxidant enzyme activities. Spatial memory impairment and lipid peroxidation significantly increased in Xyl.-Ket.-treated rats in comparison to the control, propofol, Ole.-Pro. and Ole.-Pro.-Ket. groups. Oleuropein pretreatment significantly reversed spatial memory impairment and lipid peroxidation in the Ole.-Xyl.-Ket. group as compared to the Xyl.-Ket.-treated rats. There was no significant difference between the control and the propofol group in lipid peroxidation and spatial memory status. Superoxide dismutase and catalase activities both significantly decreased in Xyl.-Ket.-treated rats when compared to the control, propofol, Ole.-Pro., Ole.-Pro.-Ket., and Ole.-Xyl.-Ket. groups. In contrast, glutathione peroxidase activity in Xyl.-Ket.-treated rats significantly increased as compared to the control, propofol, Pro.-Ket., Ole.-Pro., and Ole.-Pro.-Ket. groups. We concluded that xylazine in combination with ketamine is an oxidative anesthetic drug and oleuropein pretreatment attenuates cognitive dysfunction and oxidative stress induced by anesthesia in the hippocampal area of rats. We also confirmed the antioxidant properties of propofol as a promising antioxidant anesthetic agent.
Tambwe, Mgeni Mohamed; Mbeyela, Edgar Mtaki; Massinda, Brian Migamyo; Moore, Sarah Jane; Maia, Marta Ferreira
2014-12-05
Malaria vector control is in need of new tools to face its current challenges such as the spread of pyrethroid-resistance and the increase of outdoor feeding mosquitoes. New strategies such as spatial repellents need to be evaluated as supplemental tools to existing control measures such as insecticide treated bed nets and indoor residual spraying. Linalool is a naturally occurring terpene alcohol commonly found in flowers and spices with reportedly repellent properties. Four experimental huts fitted with exit traps and enclosed inside a large screened semi-field system were used for the evaluation. The tested spatial repellent product consisted of an agar gel emanator containing 73% linalool. Two rounds of experiments using a Latin square design were conducted to evaluate the efficacy of the linalool emanators compared to no treatment (negative control) and a transfluthrin coil (positive) against lab-reared disease free Anopheles gambiae s.s.. The emanators were hung inside experimental huts where two volunteers were sleeping unprotected. The outcome measures were repellency, % feeding inhibition, %mortality and post 24 h % mortality. Unlike the mosquito coil, the linalool emanators did not show any feeding inhibition, repellency or induced mortality compared to the negative control. On the other hand mosquitoes kept for 24 h post exposure were 3 times more likely to die after being exposed to two 73% linalool emanators than the negative control. Our results indicate that linalool agar gel emanators are not adequate as a spatial repellent against Anopheles gambiae s.s.. However adding linalool to known repellent formulations could be advantageous, not only because of its pleasant scent but also because of the delayed mortality effect it has on mosquitoes.
Great expectations: top-down attention modulates the costs of clutter and eccentricity.
Steelman, Kelly S; McCarley, Jason S; Wickens, Christopher D
2013-12-01
An experiment and modeling effort examined interactions between bottom-up and top-down attentional control in visual alert detection. Participants performed a manual tracking task while monitoring peripheral display channels for alerts of varying salience, eccentricity, and spatial expectancy. Spatial expectancy modulated the influence of salience and eccentricity; alerts in low-probability locations engendered higher miss rates, longer detection times, and larger costs of visual clutter and eccentricity, indicating that top-down attentional control offset the costs of poor bottom-up stimulus quality. Data were compared to the predictions of a computational model of scanning and noticing that incorporates bottom-up and top-down sources of attentional control. The model accounted well for the overall pattern of miss rates and response times, predicting each of the observed main effects and interactions. Empirical results suggest that designers should expect the costs of poor bottom-up visibility to be greater for low expectancy signals, and that the placement of alerts within a display should be determined based on the combination of alert expectancy and response priority. Model fits suggest that the current model can serve as a useful tool for exploring a design space as a precursor to empirical data collection and for generating hypotheses for future experiments. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Ultra-short beam expander with segmented curvature control: the emergence of a semi-lens
Abbaslou, Siamak; Gatdula, Robert; Lu, Ming; ...
2017-01-01
We introduce direct curvature control in designing a segmented beam expander, and explore novel design possibilities for ultra-compact beam expanders. Assisted by the particle swarm optimization algorithm, we search for an optimal curvature-controlled multi-segment taper that maintains width continuity. Counterintuitively, the optimization yields a structure with abrupt width discontinuity and width compression features. Through spatial phase and parameterized analysis, a semi-lens feature is revealed that helps to flatten the wavefront at the output end for higher coupling efficiency. Such functionality cannot be achieved by normal tapers in a short distance. The structure is fabricated and characterized experimentally. By a figuremore » of merit that accounts for expansion ratio, length, and efficiency, this structure outperforms an adiabatic taper by 9 times.« less
Grossberg, Stephen
2015-09-24
This article provides an overview of neural models of synaptic learning and memory whose expression in adaptive behavior depends critically on the circuits and systems in which the synapses are embedded. It reviews Adaptive Resonance Theory, or ART, models that use excitatory matching and match-based learning to achieve fast category learning and whose learned memories are dynamically stabilized by top-down expectations, attentional focusing, and memory search. ART clarifies mechanistic relationships between consciousness, learning, expectation, attention, resonance, and synchrony. ART models are embedded in ARTSCAN architectures that unify processes of invariant object category learning, recognition, spatial and object attention, predictive remapping, and eye movement search, and that clarify how conscious object vision and recognition may fail during perceptual crowding and parietal neglect. The generality of learned categories depends upon a vigilance process that is regulated by acetylcholine via the nucleus basalis. Vigilance can get stuck at too high or too low values, thereby causing learning problems in autism and medial temporal amnesia. Similar synaptic learning laws support qualitatively different behaviors: Invariant object category learning in the inferotemporal cortex; learning of grid cells and place cells in the entorhinal and hippocampal cortices during spatial navigation; and learning of time cells in the entorhinal-hippocampal system during adaptively timed conditioning, including trace conditioning. Spatial and temporal processes through the medial and lateral entorhinal-hippocampal system seem to be carried out with homologous circuit designs. Variations of a shared laminar neocortical circuit design have modeled 3D vision, speech perception, and cognitive working memory and learning. A complementary kind of inhibitory matching and mismatch learning controls movement. This article is part of a Special Issue entitled SI: Brain and Memory. Copyright © 2014 Elsevier B.V. All rights reserved.
Photography activities for developing students’ spatial orientation and spatial visualization
NASA Astrophysics Data System (ADS)
Hendroanto, Aan; van Galen, Frans; van Eerde, D.; Prahmana, R. C. I.; Setyawan, F.; Istiandaru, A.
2017-12-01
Spatial orientation and spatial visualization are the foundation of students’ spatial ability. They assist students’ performance in learning mathematics, especially geometry. Considering its importance, the present study aims to design activities to help young learners developing their spatial orientation and spatial visualization ability. Photography activity was chosen as the context of the activity to guide and support the students. This is a design research study consisting of three phases: 1) preparation and designing 2) teaching experiment, and 3) retrospective analysis. The data is collected by tests and interview and qualitatively analyzed. We developed two photography activities to be tested. In the teaching experiments, 30 students of SD Laboratorium UNESA, Surabaya were involved. The results showed that the activities supported the development of students’ spatial orientation and spatial visualization indicated by students’ learning progresses, answers, and strategies when they solved the problems in the activities.
Li, Mingzhou; Schiano, Jeffrey L; Samra, Jenna E; Shetty, Kiran K; Brey, William W
2011-10-01
Resistive and hybrid (resistive/superconducting) magnets provide substantially higher magnetic fields than those available in low-temperature superconducting magnets, but their relatively low spatial homogeneity and temporal field fluctuations are unacceptable for high resolution NMR. While several techniques for reducing temporal fluctuations have demonstrated varying degrees of success, this paper restricts attention to methods that utilize inductive measurements and feedback control to actively cancel the temporal fluctuations. In comparison to earlier studies using analog proportional control, this paper shows that shaping the controller frequency response results in significantly higher reductions in temporal fluctuations. Measurements of temporal fluctuation spectra and the frequency response of the instrumentation that cancels the temporal fluctuations guide the controller design. In particular, we describe a sampled-data phase-lead-lag controller that utilizes the internal model principle to selectively attenuate magnetic field fluctuations caused by the power supply ripple. We present a quantitative comparison of the attenuation in temporal fluctuations afforded by the new design and a proportional control design. Metrics for comparison include measurements of the temporal fluctuations using Faraday induction and observations of the effect that the fluctuations have on nuclear resonance measurements. Copyright © 2011. Published by Elsevier Inc.
Painting with light-powered bacteria.
Arlt, Jochen; Martinez, Vincent A; Dawson, Angela; Pilizota, Teuta; Poon, Wilson C K
2018-02-22
Self-assembly is a promising route for micro- and nano-fabrication with potential to revolutionise many areas of technology, including personalised medicine. Here we demonstrate that external control of the swimming speed of microswimmers can be used to self assemble reconfigurable designer structures in situ. We implement such 'smart templated active self assembly' in a fluid environment by using spatially patterned light fields to control photon-powered strains of motile Escherichia coli bacteria. The physics and biology governing the sharpness and formation speed of patterns is investigated using a bespoke strain designed to respond quickly to changes in light intensity. Our protocol provides a distinct paradigm for self-assembly of structures on the 10 μm to mm scale.
Modeling fuel treatment leverage: Encounter rates, risk reduction, and suppression cost impacts
Matthew P. Thompson; Karin L. Riley; Dan Loeffler; Jessica R. Haas
2017-01-01
The primary theme of this study is the cost-effectiveness of fuel treatments at multiple scales of investment. We focused on the nexus of fuel management and suppression response planning, designing spatial fuel treatment strategies to incorporate landscape features that provide control opportunities that are relevant to fire operations. Our analysis explored the...
Exploring 3-D Virtual Reality Technology for Spatial Ability and Chemistry Achievement
ERIC Educational Resources Information Center
Merchant, Z.; Goetz, E. T.; Keeney-Kennicutt, W.; Cifuentes, L.; Kwok, O.; Davis, T. J.
2013-01-01
We investigated the potential of Second Life® (SL), a three-dimensional (3-D) virtual world, to enhance undergraduate students' learning of a vital chemistry concept. A quasi-experimental pre-posttest control group design was used to conduct the study. A total of 387 participants completed three assignment activities either in SL or using…
Designing degradable hydrogels for orthogonal control of cell microenvironments
Kharkar, Prathamesh M.
2013-01-01
Degradable and cell-compatible hydrogels can be designed to mimic the physical and biochemical characteristics of native extracellular matrices and provide tunability of degradation rates and related properties under physiological conditions. Hence, such hydrogels are finding widespread application in many bioengineering fields, including controlled bioactive molecule delivery, cell encapsulation for controlled three-dimensional culture, and tissue engineering. Cellular processes, such as adhesion, proliferation, spreading, migration, and differentiation, can be controlled within degradable, cell-compatible hydrogels with temporal tuning of biochemical or biophysical cues, such as growth factor presentation or hydrogel stiffness. However, thoughtful selection of hydrogel base materials, formation chemistries, and degradable moieties is necessary to achieve the appropriate level of property control and desired cellular response. In this review, hydrogel design considerations and materials for hydrogel preparation, ranging from natural polymers to synthetic polymers, are overviewed. Recent advances in chemical and physical methods to crosslink hydrogels are highlighted, as well as recent developments in controlling hydrogel degradation rates and modes of degradation. Special attention is given to spatial or temporal presentation of various biochemical and biophysical cues to modulate cell response in static (i.e., non-degradable) or dynamic (i.e., degradable) microenvironments. This review provides insight into the design of new cell-compatible, degradable hydrogels to understand and modulate cellular processes for various biomedical applications. PMID:23609001
The Effects of Computer-Aided Design Software on Engineering Students' Spatial Visualisation Skills
ERIC Educational Resources Information Center
Kösa, Temel; Karakus, Fatih
2018-01-01
The purpose of this study was to determine the influence of computer-aided design (CAD) software-based instruction on the spatial visualisation skills of freshman engineering students in a computer-aided engineering drawing course. A quasi-experimental design was applied, using the Purdue Spatial Visualization Test-Visualization of Rotations…
Pan, Mei; Zhu, Yi-Xuan; Wu, Kai; Chen, Ling; Hou, Ya-Jun; Yin, Shao-Yun; Wang, Hai-Ping; Fan, Ya-Nan; Su, Cheng-Yong
2017-11-13
Core-shell or striped heteroatomic lanthanide metal-organic framework hierarchical single crystals were obtained by liquid-phase anisotropic epitaxial growth, maintaining identical periodic organization while simultaneously exhibiting spatially segregated structure. Different types of domain and orientation-controlled multicolor photophysical models are presented, which show either visually distinguishable or visible/near infrared (NIR) emissive colors. This provides a new bottom-up strategy toward the design of hierarchical molecular systems, offering high-throughput and multiplexed luminescence color tunability and readability. The unique capability of combining spectroscopic coding with 3D (three-dimensional) microscale spatial coding is established, providing potential applications in anti-counterfeiting, color barcoding, and other types of integrated and miniaturized optoelectronic materials and devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Ormand, C. J.; Shipley, T. F.; Dutrow, B. L.; Goodwin, L. B.; Hickson, T. A.; Tikoff, B.; Atit, K.; Gagnier, K. M.; Resnick, I.
2015-12-01
Spatial visualization is an essential skill in the STEM disciplines, including the geological sciences. Undergraduate students, including geoscience majors in upper-level courses, bring a wide range of spatial skill levels to the classroom. Students with weak spatial skills may struggle to understand fundamental concepts and to solve geological problems with a spatial component. However, spatial thinking skills are malleable. Using strategies that have emerged from cognitive science research, we developed a set of curricular materials that improve undergraduate geology majors' abilities to reason about 3D concepts and to solve spatially complex geological problems. Cognitive science research on spatial thinking demonstrates that predictive sketching, making visual comparisons, gesturing, and the use of analogy can be used to develop students' spatial thinking skills. We conducted a three-year study of the efficacy of these strategies in strengthening the spatial skills of students in core geology courses at three universities. Our methodology is a quasi-experimental quantitative design, utilizing pre- and post-tests of spatial thinking skills, assessments of spatial problem-solving skills, and a control group comprised of students not exposed to our new curricular materials. Students taught using the new curricular materials show improvement in spatial thinking skills. Further analysis of our data, to be completed prior to AGU, will answer additional questions about the relationship between spatial skills and academic performance, spatial skills and gender, spatial skills and confidence, and the impact of our curricular materials on students who are struggling academically. Teaching spatial thinking in the context of discipline-based exercises has the potential to transform undergraduate education in the geological sciences by removing one significant barrier to success.
Shutter mechanism for spacecraft spectrophotometer
NASA Technical Reports Server (NTRS)
Weilbach, A.
1972-01-01
A shutter mechanism is described for the backscatter ultraviolet spectrophotometer experiment on the Nimbus D satellite. The purpose of the experiment is to determine spatial distribution of atmospheric ozone from measurements of ultraviolet radiation backscattered by the earth's atmosphere. The system consists of two independent, rotary cylinder shutters, controlled by a dual star Geneva mechanism, and driven by a single stepper motor. A single driver controls a combination of two independently driven Geneva stars. Design considerations involved the use of low friction, nonmetallic materials.
Meuwese, Julia D.I.; Towgood, Karren J.; Frith, Christopher D.; Burgess, Paul W.
2009-01-01
Multi-voxel pattern analyses have proved successful in ‘decoding’ mental states from fMRI data, but have not been used to examine brain differences associated with atypical populations. We investigated a group of 16 (14 males) high-functioning participants with autism spectrum disorder (ASD) and 16 non-autistic control participants (12 males) performing two tasks (spatial/verbal) previously shown to activate medial rostral prefrontal cortex (mrPFC). Each task manipulated: (i) attention towards perceptual versus self-generated information and (ii) reflection on another person's mental state (‘mentalizing'versus ‘non-mentalizing’) in a 2 × 2 design. Behavioral performance and group-level fMRI results were similar between groups. However, multi-voxel similarity analyses revealed strong differences. In control participants, the spatial distribution of activity generalized significantly between task contexts (spatial/verbal) when examining the same function (attention/mentalizing) but not when comparing different functions. This pattern was disrupted in the ASD group, indicating abnormal functional specialization within mrPFC, and demonstrating the applicability of multi-voxel pattern analysis to investigations of atypical populations. PMID:19174370
Protected area effectiveness against land development in Spain.
Rodríguez-Rodríguez, David; Martínez-Vega, Javier
2018-06-01
Land use-land cover (LULC) changes towards artificial covers are one of the main global threats to biodiversity conservation. In this comprehensive study, we tested a number of methodological and research hypotheses, and a new covariate control technique in order to address common protected area (PA) assessment issues and accurately assess whether different PA networks have had an effect at preventing development of artificial LULCs in Spain, a highly biodiverse country that has experienced massive socioeconomic transformations in the past two decades. We used digital census data for four PA networks designated between 1990 and 2000: Nature Reserves (NRs), Nature Parks (NPs), Sites of Community Importance (SCIs) and Special Protection Areas (SPAs). We analysed the effect of explanatory variables on the ecological effectiveness of protected polygons (PPs): Legislation stringency, cummulative legal designations, management, size, age and bio-physical characteristics. A multiple Before-After-Control-Impact (BACI) semi-experimental research design was used whereby artificial land cover increase (ALCI) and proportional artificial land cover increase (PALCI) results were compared inside and outside PAs, using 1 km and 5 km buffer areas surrounding PAs as controls. LULC data were retrieved from Corine Land Cover (CLC) 1990 and 2006 data. Results from three spatial-statistical models using progressively restrictive criteria to select control areas increasingly more accurate and similar to the assessed PPs were compared. PAs were a generally effective territorial policy to prevent land development in Spain. NRs were the most effective PA category, with no new artificial land covers in the assessed period, although exact causality could not be attributed due to legal overlaps. SPAs were the least effective category, with worse ALCI data than their control areas. Legal protection was effective against land development, which was influenced by most bio-physical variables. However, cumulative legal designations and PA management did not seem to influence land development. The spatial-statistical technique used to make cases and control environmentally similar did not produce consistent outcomes and should be refined. Copyright © 2018 Elsevier Ltd. All rights reserved.
Tarafder, Solaiman; Koch, Alia; Jun, Yena; Chou, Conrad; Awadallah, Mary R; Lee, Chang H
2016-04-25
Three dimensional (3D) printing has emerged as an efficient tool for tissue engineering and regenerative medicine, given its advantages for constructing custom-designed scaffolds with tunable microstructure/physical properties. Here we developed a micro-precise spatiotemporal delivery system embedded in 3D printed scaffolds. PLGA microspheres (μS) were encapsulated with growth factors (GFs) and then embedded inside PCL microfibers that constitute custom-designed 3D scaffolds. Given the substantial difference in the melting points between PLGA and PCL and their low heat conductivity, μS were able to maintain its original structure while protecting GF's bioactivities. Micro-precise spatial control of multiple GFs was achieved by interchanging dispensing cartridges during a single printing process. Spatially controlled delivery of GFs, with a prolonged release, guided formation of multi-tissue interfaces from bone marrow derived mesenchymal stem/progenitor cells (MSCs). To investigate efficacy of the micro-precise delivery system embedded in 3D printed scaffold, temporomandibular joint (TMJ) disc scaffolds were fabricated with micro-precise spatiotemporal delivery of CTGF and TGFβ3, mimicking native-like multiphase fibrocartilage. In vitro, TMJ disc scaffolds spatially embedded with CTGF/TGFβ3-μS resulted in formation of multiphase fibrocartilaginous tissues from MSCs. In vivo, TMJ disc perforation was performed in rabbits, followed by implantation of CTGF/TGFβ3-μS-embedded scaffolds. After 4 wks, CTGF/TGFβ3-μS embedded scaffolds significantly improved healing of the perforated TMJ disc as compared to the degenerated TMJ disc in the control group with scaffold embedded with empty μS. In addition, CTGF/TGFβ3-μS embedded scaffolds significantly prevented arthritic changes on TMJ condyles. In conclusion, our micro-precise spatiotemporal delivery system embedded in 3D printing may serve as an efficient tool to regenerate complex and inhomogeneous tissues.
Integration of Spatial and Social Network Analysis in Disease Transmission Studies.
Emch, Michael; Root, Elisabeth D; Giebultowicz, Sophia; Ali, Mohammad; Perez-Heydrich, Carolina; Yunus, Mohammad
2012-01-01
This study presents a case study of how social network and spatial analytical methods can be used simultaneously for disease transmission modeling. The paper first reviews strategies employed in previous studies and then offers the example of transmission of two bacterial diarrheal diseases in rural Bangladesh. The goal is to understand how diseases vary socially above and beyond the effects of the local neighborhood context. Patterns of cholera and shigellosis incidence are analyzed in space and within kinship-based social networks in Matlab, Bangladesh. Data include a spatially referenced longitudinal demographic database which consists of approximately 200,000 people and laboratory-confirmed cholera and shigellosis cases from 1983 to 2003. Matrices are created of kinship ties between households using a complete network design and distance matrices are also created to model spatial relationships. Moran's I statistics are calculated to measure clustering within both social and spatial matrices. Combined spatial effects-spatial disturbance models are built to simultaneously analyze spatial and social effects while controlling for local environmental context. Results indicate that cholera and shigellosis always clusters in space and only sometimes within social networks. This suggests that the local environment is most important for understanding transmission of both diseases however kinship-based social networks also influence their transmission. Simultaneous spatial and social network analysis can help us better understand disease transmission and this study has offered several strategies on how.
Integration of Spatial and Social Network Analysis in Disease Transmission Studies
Root, Elisabeth D; Giebultowicz, Sophia; Ali, Mohammad; Perez-Heydrich, Carolina; Yunus, Mohammad
2013-01-01
This study presents a case study of how social network and spatial analytical methods can be used simultaneously for disease transmission modeling. The paper first reviews strategies employed in previous studies and then offers the example of transmission of two bacterial diarrheal diseases in rural Bangladesh. The goal is to understand how diseases vary socially above and beyond the effects of the local neighborhood context. Patterns of cholera and shigellosis incidence are analyzed in space and within kinship-based social networks in Matlab, Bangladesh. Data include a spatially referenced longitudinal demographic database which consists of approximately 200,000 people and laboratory-confirmed cholera and shigellosis cases from 1983 to 2003. Matrices are created of kinship ties between households using a complete network design and distance matrices are also created to model spatial relationships. Moran's I statistics are calculated to measure clustering within both social and spatial matrices. Combined spatial effects-spatial disturbance models are built to simultaneously analyze spatial and social effects while controlling for local environmental context. Results indicate that cholera and shigellosis always clusters in space and only sometimes within social networks. This suggests that the local environment is most important for understanding transmission of both diseases however kinship-based social networks also influence their transmission. Simultaneous spatial and social network analysis can help us better understand disease transmission and this study has offered several strategies on how. PMID:24163443
Design & implementation of distributed spatial computing node based on WPS
NASA Astrophysics Data System (ADS)
Liu, Liping; Li, Guoqing; Xie, Jibo
2014-03-01
Currently, the research work of SIG (Spatial Information Grid) technology mostly emphasizes on the spatial data sharing in grid environment, while the importance of spatial computing resources is ignored. In order to implement the sharing and cooperation of spatial computing resources in grid environment, this paper does a systematical research of the key technologies to construct Spatial Computing Node based on the WPS (Web Processing Service) specification by OGC (Open Geospatial Consortium). And a framework of Spatial Computing Node is designed according to the features of spatial computing resources. Finally, a prototype of Spatial Computing Node is implemented and the relevant verification work under the environment is completed.
Latent spatial models and sampling design for landscape genetics
Ephraim M. Hanks; Melvin B. Hooten; Steven T. Knick; Sara J. Oyler-McCance; Jennifer A. Fike; Todd B. Cross; Michael K. Schwartz
2016-01-01
We propose a spatially-explicit approach for modeling genetic variation across space and illustrate how this approach can be used to optimize spatial prediction and sampling design for landscape genetic data. We propose a multinomial data model for categorical microsatellite allele data commonly used in landscape genetic studies, and introduce a latent spatial...
UTOOLS: microcomputer software for spatial analysis and landscape visualization.
Alan A. Ager; Robert J. McGaughey
1997-01-01
UTOOLS is a collection of programs designed to integrate various spatial data in a way that allows versatile spatial analysis and visualization. The programs were designed for watershed-scale assessments in which a wide array of resource data must be integrated, analyzed, and interpreted. UTOOLS software combines raster, attribute, and vector data into "spatial...
The Impact of Model Uncertainty on Spatial Compensation in Active Structural Acoustic Control
NASA Technical Reports Server (NTRS)
Cabell, Randolph H.; Gibbs, Gary P.; Sprofera, Joseph D.; Clark, Robert L.
2004-01-01
Turbulent boundary layer (TBL) noise is considered a primary factor in the interior noise experienced by passengers aboard commercial airliners. There have been numerous investigations of interior noise control devoted to aircraft panels; however, practical realization is a challenge since the physical boundary conditions are uncertain at best. In most prior studies, pinned or clamped boundary conditions have been assumed; however, realistic panels likely display a range of varying boundary conditions between these two limits. Uncertainty in boundary conditions is a challenge for control system designers, both in terms of the compensator implemented and the location of actuators and sensors required to achieve the desired control. The impact of model uncertainties, uncertain boundary conditions in particular, on the selection of actuator and sensor locations for structural acoustic control are considered herein. Results from this research effort indicate that it is possible to optimize the design of actuator and sensor location and aperture, which minimizes the impact of boundary conditions on the desired structural acoustic control.
Cohen, Justin M; Wilson, Mark L; Cruz-Celis, Adriana; Ordoñez, Rosalinda; Ramsey, Janine M
2006-11-01
Long-term control of Chagas disease requires not only interruption of the human transmission cycle of Trypanosoma cruzi Schyzotrypanum, Chagas, 1909 by controlling its domestic triatomine vectors but also surveillance to prevent reinfestation of residences from sylvatic or persistent peridomestic populations. Although a number of potential risk factors for infestation have been implicated in previous studies, the explanatory power of resulting models has been low. Two years after cessation of triatomine vector control efforts in the town of Chalcatzingo, Morelos, 78 environmental, socioecological, and spatial variables were analyzed for association with infestation by Triatoma pallidipennis Stal 1872 (Hemiptera: Reduviidae: Triatominae), the principal vector of T. cruzi. We studied 712 residences in this rural community to identify specific intradomestic and peridomestic risk factors that predicted infestation with T. pallidipennis. From numerous characteristics that were identified as correlated with infestation, we derived multivariate logistic regression models to predict residences that were more or less likely to be infested with T. pallidipennis. The most important risk factors for infestation included measurements of house age, upkeep, and spatial location in the town. The effects of certain risk factors on infestation were found to be modified by spatial characteristics of residences. The results of this study provide new information regarding risk factors for infestation by T. pallidipennis that may aid in designing sustainable disease control programs in rural Mexico.
Shi, Xun; Miller, Stephanie; Mwenda, Kevin; Onda, Akikazu; Reese, Judy; Onega, Tracy; Gui, Jiang; Karagas, Margret; Demidenko, Eugene; Moeschler, John
2013-09-06
Limited by data availability, most disease maps in the literature are for relatively large and subjectively-defined areal units, which are subject to problems associated with polygon maps. High resolution maps based on objective spatial units are needed to more precisely detect associations between disease and environmental factors. We propose to use a Restricted and Controlled Monte Carlo (RCMC) process to disaggregate polygon-level location data to achieve mapping aggregate data at an approximated individual level. RCMC assigns a random point location to a polygon-level location, in which the randomization is restricted by the polygon and controlled by the background (e.g., population at risk). RCMC allows analytical processes designed for individual data to be applied, and generates high-resolution raster maps. We applied RCMC to the town-level birth defect data for New Hampshire and generated raster maps at the resolution of 100 m. Besides the map of significance of birth defect risk represented by p-value, the output also includes a map of spatial uncertainty and a map of hot spots. RCMC is an effective method to disaggregate aggregate data. An RCMC-based disease mapping maximizes the use of available spatial information, and explicitly estimates the spatial uncertainty resulting from aggregation.
Genetic circuit design automation.
Nielsen, Alec A K; Der, Bryan S; Shin, Jonghyeon; Vaidyanathan, Prashant; Paralanov, Vanya; Strychalski, Elizabeth A; Ross, David; Densmore, Douglas; Voigt, Christopher A
2016-04-01
Computation can be performed in living cells by DNA-encoded circuits that process sensory information and control biological functions. Their construction is time-intensive, requiring manual part assembly and balancing of regulator expression. We describe a design environment, Cello, in which a user writes Verilog code that is automatically transformed into a DNA sequence. Algorithms build a circuit diagram, assign and connect gates, and simulate performance. Reliable circuit design requires the insulation of gates from genetic context, so that they function identically when used in different circuits. We used Cello to design 60 circuits forEscherichia coli(880,000 base pairs of DNA), for which each DNA sequence was built as predicted by the software with no additional tuning. Of these, 45 circuits performed correctly in every output state (up to 10 regulators and 55 parts), and across all circuits 92% of the output states functioned as predicted. Design automation simplifies the incorporation of genetic circuits into biotechnology projects that require decision-making, control, sensing, or spatial organization. Copyright © 2016, American Association for the Advancement of Science.
Yeh, Chun-Ting; Brunette, T J; Baker, David; McIntosh-Smith, Simon; Parmeggiani, Fabio
2018-02-01
Computational protein design methods have enabled the design of novel protein structures, but they are often still limited to small proteins and symmetric systems. To expand the size of designable proteins while controlling the overall structure, we developed Elfin, a genetic algorithm for the design of novel proteins with custom shapes using structural building blocks derived from experimentally verified repeat proteins. By combining building blocks with compatible interfaces, it is possible to rapidly build non-symmetric large structures (>1000 amino acids) that match three-dimensional geometric descriptions provided by the user. A run time of about 20min on a laptop computer for a 3000 amino acid structure makes Elfin accessible to users with limited computational resources. Protein structures with controlled geometry will allow the systematic study of the effect of spatial arrangement of enzymes and signaling molecules, and provide new scaffolds for functional nanomaterials. Copyright © 2017 Elsevier Inc. All rights reserved.
Enhanced learning of proportional math through music training and spatial-temporal training.
Graziano, A B; Peterson, M; Shaw, G L
1999-03-01
It was predicted, based on a mathematical model of the cortex, that early music training would enhance spatial-temporal reasoning. We have demonstrated that preschool children given six months of piano keyboard lessons improved dramatically on spatial-temporal reasoning while children in appropriate control groups did not improve. It was then predicted that the enhanced spatial-temporal reasoning from piano keyboard training could lead to enhanced learning of specific math concepts, in particular proportional math, which is notoriously difficult to teach using the usual language-analytic methods. We report here the development of Spatial-Temporal Math Video Game software designed to teach fractions and proportional math, and its strikingly successful use in a study involving 237 second-grade children (age range six years eight months-eight years five months). Furthermore, as predicted, children given piano keyboard training along with the Math Video Game training scored significantly higher on proportional math and fractions than children given a control training along with the Math Video Game. These results were readily measured using the companion Math Video Game Evaluation Program. The training time necessary for children on the Math Video Game is very short, and they rapidly reach a high level of performance. This suggests that, as predicted, we are tapping into fundamental cortical processes of spatial-temporal reasoning. This spatial-temporal approach is easily generalized to teach other math and science concepts in a complementary manner to traditional language-analytic methods, and at a younger age. The neural mechanisms involved in thinking through fractions and proportional math during training with the Math Video Game might be investigated in EEG coherence studies along with priming by specific music.
NASA Astrophysics Data System (ADS)
Martini, Edoardo; Wollschläger, Ute; Kögler, Simon; Behrens, Thorsten; Dietrich, Peter; Reinstorf, Frido; Schmidt, Karsten; Weiler, Markus; Werban, Ulrike; Zacharias, Steffen
2016-04-01
Characterizing the spatial patterns of soil moisture is critical for hydrological and meteorological models, as soil moisture is a key variable that controls matter and energy fluxes and soil-vegetation-atmosphere exchange processes. Deriving detailed process understanding at the hillslope scale is not trivial, because of the temporal variability of local soil moisture dynamics. Nevertheless, it remains a challenge to provide adequate information on the temporal variability of soil moisture and its controlling factors. Recent advances in wireless sensor technology allow monitoring of soil moisture dynamics with high temporal resolution at varying scales. In addition, mobile geophysical methods such as electromagnetic induction (EMI) have been widely used for mapping soil water content at the field scale with high spatial resolution, as being related to soil apparent electrical conductivity (ECa). The objective of this study was to characterize the spatial and temporal pattern of soil moisture at the hillslope scale and to infer the controlling hydrological processes, integrating well established and innovative sensing techniques, as well as new statistical methods. We combined soil hydrological and pedological expertise with geophysical measurements and methods from digital soil mapping for designing a wireless soil moisture monitoring network. For a hillslope site within the Schäfertal catchment (Central Germany), soil water dynamics were observed during 14 months, and soil ECa was mapped on seven occasions whithin this period of time using an EM38-DD device. Using the Spearman rank correlation coefficient, we described the temporal persistence of a dry and a wet characteristic state of soil moisture as well as the switching mechanisms, inferring the local properties that control the observed spatial patterns and the hydrological processes driving the transitions. Based on this, we evaluated the use of EMI for mapping the spatial pattern of soil moisture under different hydrologic conditions and the factors controlling the temporal variability of the ECa-soil moisture relationship. The approach provided valuable insight into the time-varying contribution of local and nonlocal factors to the characteristic spatial patterns of soil moisture and the transition mechanisms. The spatial organization of soil moisture was controlled by different processes in different soil horizons, and the topsoil's moisture did not mirror processes that take place within the soil profile. Results show that, for the Schäfertal hillslope site which is presumed to be representative for non-intensively managed soils with moderate clay content, local soil properties (e.g., soil texture and porosity) are the major control on the spatial pattern of ECa. In contrast, the ECa-soil moisture relationship is small and varies over time indicating that ECa is not a good proxy for soil moisture estimation at the investigated site.Occasionally observed stronger correlations between ECa and soil moisture may be explained by background dependencies of ECa to other state variables such as pore water electrical conductivity. The results will help to improve conceptual understanding for hydrological model studies at similar or smaller scales, and to transfer observation concepts and process understanding to larger or less instrumented sites, as well as to constrain the use of EMI-based ECa data for hydrological applications.
Design of an intelligent flight instrumentation unit using embedded RTOS
NASA Astrophysics Data System (ADS)
Estrada-Marmolejo, R.; García-Torales, G.; Torres-Ortega, H. H.; Flores, J. L.
2011-09-01
Micro Unmanned Aerial Vehicles (MUAV) must calculate its spatial position to control the flight dynamics, which is done by Inertial Measurement Units (IMUs). MEMS Inertial sensors have made possible to reduce the size and power consumption of such units. Commonly the flight instrumentation operates independently of the main processor. This work presents an instrumentation block design, which reduces size and power consumption of the complete system of a MUAV. This is done by coupling the inertial sensors to the main processor without considering any intermediate level of processing aside. Using Real Time Operating Systems (RTOS) reduces the number of intermediate components, increasing MUAV reliability. One advantage is the possibility to control several different sensors with a single communication bus. This feature of the MEMS sensors makes a smaller and less complex MUAV design possible.
Bioactive Molecule Delivery Systems for Dentin-pulp Tissue Engineering.
Shrestha, Suja; Kishen, Anil
2017-05-01
Regenerative endodontic procedures use bioactive molecules (BMs), which are active signaling molecules that initiate and maintain cell responses and interactions. When applied in a bolus form, they may undergo rapid diffusion and denaturation resulting in failure to induce the desired effects on target cells. The controlled release of BMs from a biomaterial carrier is expected to enhance and accelerate functional tissue engineering during regenerative endodontic procedures. This narrative review presents a comprehensive review of different polymeric BM release strategies with relevance to dentin-pulp engineering. Carrier systems designed to allow the preprogrammed release of BMs in a spatial- and temporal-controlled manner would aid in mimicking the natural wound healing process while overcoming some of the challenges faced in clinical translation of regenerative endodontic procedures. Spatial- and temporal-controlled BM release systems have become an exciting option in dentin-pulp tissue engineering; nonetheless, further validation of this concept and knowledge is required for their potential clinical translation. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Vilaplana, Cristina; Prats, Clara; Marzo, Elena; Barril, Carles; Vegué, Marina; Diaz, Jorge; Valls, Joaquim; López, Daniel; Cardona, Pere-Joan
2014-01-01
The temporo-spatial relationship between the three organs (lung, spleen and lymph node) involved during the initial stages of Mycobacterium tuberculosis infection has been poorly studied. As such, we performed an experimental study to evaluate the bacillary load in each organ after aerosol or intravenous infection and developed a mathematical approach using the data obtained in order to extract conclusions. The results showed that higher bacillary doses result in an earlier IFN-γ response, that a certain bacillary load (BL) needs to be reached to trigger the IFN-γ response, and that control of the BL is not immediate after onset of the IFN-γ response, which might be a consequence of the spatial dimension. This study may have an important impact when it comes to designing new vaccine candidates as it suggests that triggering an earlier IFN-γ response might not guarantee good infection control, and therefore that additional properties should be considered for these candidates.
Marzo, Elena; Barril, Carles; Vegué, Marina; Diaz, Jorge; Valls, Joaquim; López, Daniel; Cardona, Pere-Joan
2014-01-01
The temporo-spatial relationship between the three organs (lung, spleen and lymph node) involved during the initial stages of Mycobacterium tuberculosis infection has been poorly studied. As such, we performed an experimental study to evaluate the bacillary load in each organ after aerosol or intravenous infection and developed a mathematical approach using the data obtained in order to extract conclusions. The results showed that higher bacillary doses result in an earlier IFN-γ response, that a certain bacillary load (BL) needs to be reached to trigger the IFN-γ response, and that control of the BL is not immediate after onset of the IFN-γ response, which might be a consequence of the spatial dimension. This study may have an important impact when it comes to designing new vaccine candidates as it suggests that triggering an earlier IFN-γ response might not guarantee good infection control, and therefore that additional properties should be considered for these candidates. PMID:24959669
Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation.
Yang, Y; Liu, A Q; Chin, L K; Zhang, X M; Tsai, D P; Lin, C L; Lu, C; Wang, G P; Zheludev, N I
2012-01-31
Transformation optics represents a new paradigm for designing light-manipulating devices, such as cloaks and field concentrators, through the engineering of electromagnetic space using materials with spatially variable parameters. Here we analyse liquid flowing in an optofluidic waveguide as a new type of controllable transformation optics medium. We show that a laminar liquid flow in an optofluidic channel exhibits spatially variable dielectric properties that support novel wave-focussing and interference phenomena, which are distinctively different from the discrete diffraction observed in solid waveguide arrays. Our work provides new insight into the unique optical properties of optofluidic waveguides and their potential applications.
Soil nutrient-landscape relationships in a lowland tropical rainforest in Panama
Barthold, F.K.; Stallard, R.F.; Elsenbeer, H.
2008-01-01
Soils play a crucial role in biogeochemical cycles as spatially distributed sources and sinks of nutrients. Any spatial patterns depend on soil forming processes, our understanding of which is still limited, especially in regards to tropical rainforests. The objective of our study was to investigate the effects of landscape properties, with an emphasis on the geometry of the land surface, on the spatial heterogeneity of soil chemical properties, and to test the suitability of soil-landscape modeling as an appropriate technique to predict the spatial variability of exchangeable K and Mg in a humid tropical forest in Panama. We used a design-based, stratified sampling scheme to collect soil samples at 108 sites on Barro Colorado Island, Panama. Stratifying variables are lithology, vegetation and topography. Topographic variables were generated from high-resolution digital elevation models with a grid size of 5 m. We took samples from five depths down to 1 m, and analyzed for total and exchangeable K and Mg. We used simple explorative data analysis techniques to elucidate the importance of lithology for soil total and exchangeable K and Mg. Classification and Regression Trees (CART) were adopted to investigate importance of topography, lithology and vegetation for the spatial distribution of exchangeable K and Mg and with the intention to develop models that regionalize the point observations using digital terrain data as explanatory variables. Our results suggest that topography and vegetation do not control the spatial distribution of the selected soil chemical properties at a landscape scale and lithology is important to some degree. Exchangeable K is distributed equally across the study area indicating that other than landscape processes, e.g. biogeochemical processes, are responsible for its spatial distribution. Lithology contributes to the spatial variation of exchangeable Mg but controlling variables could not be detected. The spatial variation of soil total K and Mg is mainly influenced by lithology. ?? 2007 Elsevier B.V. All rights reserved.
Multi-frequency metasurface carpet cloaks.
Wang, Chan; Yang, Yihao; Liu, Qianghu; Liang, Dachuan; Zheng, Bin; Chen, Hongsheng; Xu, Zhiwei; Wang, Huaping
2018-05-28
Metasurfaces provide an alternative way to design three-dimensional arbitrary-shaped carpet cloaks with ultrathin thicknesses. Nevertheless, the previous metasurface carpet cloaks work only at a single frequency. To overcome this challenge, we here propose a macroscopic metasurface carpet cloak. The cloak is designed with a metasurface of a few layers that exhibit a special spatial distribution of the conductance and inductance in the unit cell; therefore, it can fully control the reflection phases at several independent frequencies simultaneously. Because of this, the present metasurface cloak can work at dual frequencies based on multi-resonance principle. The proposed design methodology will be very useful in future broadband macroscopic cloaks design with low profiles, light weights, and easy access.
Digital characterization of a neuromorphic IRFPA
NASA Astrophysics Data System (ADS)
Caulfield, John T.; Fisher, John; Zadnik, Jerome A.; Mak, Ernest S.; Scribner, Dean A.
1995-05-01
This paper reports on the performance of the Neuromorphic IRFPA, the first IRFPA designed and fabricated to conduct temporal and spatial processing on the focal plane. The Neuromorphic IRFPA's unique on-chip processing capability can perform retina-like functions such as lateral inhibition and contrast enhancement, spatial and temporal filtering, image compression and edge enhancement, and logarithmic response. Previously, all evaluations of the Neuromorphic IRFPA camera have been performed on the analog video output. In the work leading up to this paper, the Neuromorphic was integrated to a digital recorder to collect quantitative laboratory and field data. This paper describes the operation and characterization of specific on-chip processes such as spatial and temporal kernel size control. The use of Neuromorphic on-chip processing in future IRFPAs is analyzed as applied to improving SNR via adaptive nonuniformity, charge handling, and dynamic range problems.
Hodgkiss, Alex; Gilligan, Katie A; Tolmie, Andrew K; Thomas, Michael S C; Farran, Emily K
2018-01-22
Prior longitudinal and correlational research with adults and adolescents indicates that spatial ability is a predictor of science learning and achievement. However, there is little research to date with primary-school aged children that addresses this relationship. Understanding this association has the potential to inform curriculum design and support the development of early interventions. This study examined the relationship between primary-school children's spatial skills and their science achievement. Children aged 7-11 years (N = 123) completed a battery of five spatial tasks, based on a model of spatial ability in which skills fall along two dimensions: intrinsic-extrinsic; static-dynamic. Participants also completed a curriculum-based science assessment. Controlling for verbal ability and age, mental folding (intrinsic-dynamic spatial ability), and spatial scaling (extrinsic-static spatial ability) each emerged as unique predictors of overall science scores, with mental folding a stronger predictor than spatial scaling. These spatial skills combined accounted for 8% of the variance in science scores. When considered by scientific discipline, mental folding uniquely predicted both physics and biology scores, and spatial scaling accounted for additional variance in biology and variance in chemistry scores. The children's embedded figures task (intrinsic-static spatial ability) only accounted for variance in chemistry scores. The patterns of association were consistent across the age range. Spatial skills, particularly mental folding, spatial scaling, and disembedding, are predictive of 7- to 11-year-olds' science achievement. These skills make a similar contribution to performance for each age group. © 2018 The Authors. British Journal of Education Psychology published by John Wiley & Sons Ltd on behalf of British Psychological Society.
Meegan, Daniel V; Honsberger, Michael J M
2005-05-01
Many neuroimaging studies have been designed to differentiate domain-specific processes in the brain. A common design constraint is to use identical stimuli for different domain-specific tasks. For example, an experiment investigating spatial versus identity processing would present compound spatial-identity stimuli in both spatial and identity tasks, and participants would be instructed to attend to, encode, maintain, or retrieve spatial information in the spatial task, and identity information in the identity task. An assumption in such studies is that spatial information will not be processed in the identity task, as it is irrelevant for that task. We report three experiments demonstrating violations of this assumption. Our results suggest that comparisons of spatial and identity tasks in existing neuroimaging studies have underestimated the amount of brain activation that is spatial-specific. For future neuroimaging studies, we recommend unique stimulus displays for each domain-specific task, and event-related measurement of post-stimulus processing.
PandaEPL: a library for programming spatial navigation experiments.
Solway, Alec; Miller, Jonathan F; Kahana, Michael J
2013-12-01
Recent advances in neuroimaging and neural recording techniques have enabled researchers to make significant progress in understanding the neural mechanisms underlying human spatial navigation. Because these techniques generally require participants to remain stationary, computer-generated virtual environments are used. We introduce PandaEPL, a programming library for the Python language designed to simplify the creation of computer-controlled spatial-navigation experiments. PandaEPL is built on top of Panda3D, a modern open-source game engine. It allows users to construct three-dimensional environments that participants can navigate from a first-person perspective. Sound playback and recording and also joystick support are provided through the use of additional optional libraries. PandaEPL also handles many tasks common to all cognitive experiments, including managing configuration files, logging all internal and participant-generated events, and keeping track of the experiment state. We describe how PandaEPL compares with other software for building spatial-navigation experiments and walk the reader through the process of creating a fully functional experiment.
PandaEPL: A library for programming spatial navigation experiments
Solway, Alec; Miller, Jonathan F.
2013-01-01
Recent advances in neuroimaging and neural recording techniques have enabled researchers to make significant progress in understanding the neural mechanisms underlying human spatial navigation. Because these techniques generally require participants to remain stationary, computer-generated virtual environments are used. We introduce PandaEPL, a programming library for the Python language designed to simplify the creation of computer-controlled spatial-navigation experiments. PandaEPL is built on top of Panda3D, a modern open-source game engine. It allows users to construct three-dimensional environments that participants can navigate from a first-person perspective. Sound playback and recording and also joystick support are provided through the use of additional optional libraries. PandaEPL also handles many tasks common to all cognitive experiments, including managing configuration files, logging all internal and participant-generated events, and keeping track of the experiment state. We describe how PandaEPL compares with other software for building spatial-navigation experiments and walk the reader through the process of creating a fully functional experiment. PMID:23549683
Analysis of a spatial tracking subsystem for optical communications
NASA Technical Reports Server (NTRS)
Win, Moe Z.; Chen, CHIEN-C.
1992-01-01
Spatial tracking plays a very critical role in designing optical communication systems because of the small angular beamwidth associated with the optical signal. One possible solution for spatial tracking is to use a nutating mirror which dithers the incoming beam at a rate much higher than the mechanical disturbances. A power detector then senses the change in detected power as the signal is reflected off the nutating mirror. This signal is then correlated with the nutator driver signals to obtain estimates of the azimuth and elevation tracking signals to control the fast scanning mirrors. A theoretical analysis is performed for a spatial tracking system using a nutator disturbed by shot noise and mechanical vibrations. Contributions of shot noise and mechanical vibrations to the total tracking error variance are derived. Given the vibration spectrum and the expected signal power, there exists an optimal amplitude for the nutation which optimizes the receiver performance. The expected performance of a nutator based system is estimated based on the choice of nutation amplitude.
HARMONI instrument control electronics
NASA Astrophysics Data System (ADS)
Gigante, José V.; Rodríguez Ramos, Luis F.; Zins, Gerard; Schnetler, Hermine; Pecontal, Arlette; Herreros, José Miguel; Clarke, Fraser; Bryson, Ian; Thatte, Niranjan
2014-07-01
HARMONI is an integral field spectrograph working at visible and near-infrared wavelengths over a range of spatial scales from ground layer corrected to fully diffraction-limited. The instrument has been chosen to be part of the first-light complement at the European Extremely Large Telescope (E-ELT). This paper describes the instrument control electronics to be developed at IAC. The large size of the HARMONI instrument, its cryogenic operation, and the fact that it must operate with enhanced reliability is a challenge from the point of view of the control electronics design. The present paper describes a design proposal based on the current instrument requirements and intended to be fully compliant with the ESO E-ELT standards, as well as with the European EMC and safety standards. The modularity of the design and the use of COTS standard hardware will benefit the project in several aspects, as reduced costs, shorter schedule by the use of commercially available components, and improved quality by the use of well proven solutions.
Generation and precise control of dynamic biochemical gradients for cellular assays
NASA Astrophysics Data System (ADS)
Saka, Yasushi; MacPherson, Murray; Giuraniuc, Claudiu V.
2017-03-01
Spatial gradients of diffusible signalling molecules play crucial roles in controlling diverse cellular behaviour such as cell differentiation, tissue patterning and chemotaxis. In this paper, we report the design and testing of a microfluidic device for diffusion-based gradient generation for cellular assays. A unique channel design of the device eliminates cross-flow between the source and sink channels, thereby stabilizing gradients by passive diffusion. The platform also enables quick and flexible control of chemical concentration that makes highly dynamic gradients in diffusion chambers. A model with the first approximation of diffusion and surface adsorption of molecules recapitulates the experimentally observed gradients. Budding yeast cells cultured in a gradient of a chemical inducer expressed a reporter fluorescence protein in a concentration-dependent manner. This microfluidic platform serves as a versatile prototype applicable to a broad range of biomedical investigations.
Fluorescence advantages with microscopic spatiotemporal control
NASA Astrophysics Data System (ADS)
Goswami, Debabrata; Roy, Debjit; De, Arijit K.
2013-03-01
We present a clever design concept of using femtosecond laser pulses in microscopy by selective excitation or de-excitation of one fluorophore over the other overlapping one. Using either a simple pair of femtosecond pulses with variable delay or using a train of laser pulses at 20-50 Giga-Hertz excitation, we show controlled fluorescence excitation or suppression of one of the fluorophores with respect to the other through wave-packet interference, an effect that prevails even after the fluorophore coherence timescale. Such an approach can be used both under the single-photon excitation as well as in the multi-photon excitation conditions resulting in effective higher spatial resolution. Such high spatial resolution advantage with broadband-pulsed excitation is of immense benefit to multi-photon microscopy and can also be an effective detection scheme for trapped nanoparticles with near-infrared light. Such sub-diffraction limit trapping of nanoparticles is challenging and a two-photon fluorescence diagnostics allows a direct observation of a single nanoparticle in a femtosecond high-repetition rate laser trap, which promises new directions to spectroscopy at the single molecule level in solution. The gigantic peak power of femtosecond laser pulses at high repetition rate, even at low average powers, provide huge instantaneous gradient force that most effectively result in a stable optical trap for spatial control at sub-diffraction limit. Such studies have also enabled us to explore simultaneous control of internal and external degrees of freedom that require coupling of various control parameters to result in spatiotemporal control, which promises to be a versatile tool for the microscopic world.
A Context-sensitive Approach to Anonymizing Spatial Surveillance Data: Impact on Outbreak Detection
Cassa, Christopher A.; Grannis, Shaun J.; Overhage, J. Marc; Mandl, Kenneth D.
2006-01-01
Objective: The use of spatially based methods and algorithms in epidemiology and surveillance presents privacy challenges for researchers and public health agencies. We describe a novel method for anonymizing individuals in public health data sets by transposing their spatial locations through a process informed by the underlying population density. Further, we measure the impact of the skew on detection of spatial clustering as measured by a spatial scanning statistic. Design: Cases were emergency department (ED) visits for respiratory illness. Baseline ED visit data were injected with artificially created clusters ranging in magnitude, shape, and location. The geocoded locations were then transformed using a de-identification algorithm that accounts for the local underlying population density. Measurements: A total of 12,600 separate weeks of case data with artificially created clusters were combined with control data and the impact on detection of spatial clustering identified by a spatial scan statistic was measured. Results: The anonymization algorithm produced an expected skew of cases that resulted in high values of data set k-anonymity. De-identification that moves points an average distance of 0.25 km lowers the spatial cluster detection sensitivity by less than 4% and lowers the detection specificity less than 1%. Conclusion: A population-density–based Gaussian spatial blurring markedly decreases the ability to identify individuals in a data set while only slightly decreasing the performance of a standardly used outbreak detection tool. These findings suggest new approaches to anonymizing data for spatial epidemiology and surveillance. PMID:16357353
Jack E. Janisch; Steven M. Wondzell; William J. Ehinger
2012-01-01
We examined stream temperature response to forest harvest in small forested headwater catchments in western Washington, USA over a seven year period (2002-2008). These streams have very low discharge in late summer and many become spatially intermittent. We used a before-after, control-impact (BACl) study design to contrast the effect of clearcut logging with two...
Hong S. He; Robert E. Keane; Louis R. Iverson
2008-01-01
Forest landscape models have become important tools for understanding large-scale and long-term landscape (spatial) processes such as climate change, fire, windthrow, seed dispersal, insect outbreak, disease propagation, forest harvest, and fuel treatment, because controlled field experiments designed to study the effects of these processes are often not possible (...
Perforated-Layer Implementation Of Radio-Frequency Lenses
NASA Technical Reports Server (NTRS)
Dolgin, Benjamin P.
1996-01-01
Luneberg-type radio-frequency dielectric lenses made of stacked perforated circular dielectric sheets, according to proposal. Perforation pattern designed to achieve required spatial variation of permittivity. Consists of round holes distributed across face of each sheet in "Swiss-cheese" pattern, plus straight or curved slots that break up outer parts into petals in "daisy-wheel" pattern. Holes and slots made by numerically controlled machining.
Robert E. Keane; Geoffrey J. Cary; Mike D. Flannigan; Russell A. Parsons; Ian D. Davies; Karen J. King; Chao Li; Ross A. Bradstock; Malcolm Gill
2013-01-01
An assessment of the relative importance of vegetation change and disturbance as agents of landscape change under current and future climates would (1) provide insight into the controls of landscape dynamics, (2) help inform the design and development of coarse scale spatially explicit ecosystem models such as Dynamic Global Vegetation Models (DGVMs), and (3) guide...
The Effect of Using Dynamic Mathematics Software: Cross Section and Visualization
ERIC Educational Resources Information Center
Kösa, Temel
2016-01-01
The main purpose of this study is to determine the effects of using dynamic mathematics software on pre-service mathematics teachers' ability to infer the shape of a cross section of a three-dimensional solid, as well as on their spatial visualization skills. The study employed a quasi-experimental design with a control group; the Purdue Spatial…
Over the next several years, grid-based photochemical models such as the Community Multiscale Air Quality (CMAQ) model and REMSAD will be used by regulatory agencies to design emission control strategies aimed at meeting and maintaining the NAAQS for O3 and PM2.5. The evaluation ...
NASA Technical Reports Server (NTRS)
Roske-Hofstrand, Renate J.
1990-01-01
The man-machine interface and its influence on the characteristics of computer displays in automated air traffic is discussed. The graphical presentation of spatial relationships and the problems it poses for air traffic control, and the solution of such problems are addressed. Psychological factors involved in the man-machine interface are stressed.
Optical functional performance of the osteo-odonto-keratoprosthesis.
Lee, Richard M H; Ong, Gek L; Lam, Fook Chang; White, Joy; Crook, David; Liu, Christopher S C; Hull, Chris C
2014-10-01
The aim of this study was to evaluate optical and visual functional performance of the osteo-odonto-keratoprosthesis (OOKP). Optical design and analysis was performed with customized optical design software. Nine patients with implanted OOKP devices and 9 age-matched control patients were assessed. Contrast sensitivity was assessed and glare effect was measured with a brightness acuity test. All OOKP patients underwent kinetic Goldmann perimetry and wavefront aberrometry and completed the National Eye Institute Visual Function Questionnaire-25 (NEI VFQ-25). Optical analysis showed that the optical cylinder is near diffraction-limited. A reduction in median visual acuity (VA) with increasing glare settings was observed from 0.04 logMAR (without glare) to 0.20 logMAR (with glare at "high" setting) and significantly reduced statistically when compared with the control group at all levels of glare (P < 0.05). Contrast sensitivity was significantly reduced when compared with age-matched controls at medium and high spatial frequencies (P < 0.05). Median Goldmann perimetry was 65 degrees (interquartile range, 64-74 degrees; V-4e isopters) and 69 degrees excluding 2 glaucomatous subjects. Several vision-related NEI VFQ-25 subscales correlated significantly with VA at various brightness acuity test levels and contrast sensitivity at medium spatial frequencies, including dependency, general vision, near activities and distance activities. The OOKP optical cylinder provides patients with a good level of VA that is significantly reduced by glare. We have shown in vivo that updates to the optical cylinder design have improved the patient's field of view. Reduction of glare and refinement of cylinder alignment methods may further improve visual function and patient satisfaction.
The Impact of Model Uncertainty on Spatial Compensation in Structural Acoustic Control
NASA Technical Reports Server (NTRS)
Clark, Robert L.
2005-01-01
Turbulent boundary layer (TBL) noise is considered a primary contribution to the interior noise present in commercial airliners. There are numerous investigations of interior noise control devoted to aircraft panels; however, practical realization is a potential challenge since physical boundary conditions are uncertain at best. In most prior studies, pinned or clamped boundary conditions were assumed; however, realistic panels likely display a range of boundary conditions between these two limits. Uncertainty in boundary conditions is a challenge for control system designers, both in terms of the compensator implemented and the location of transducers required to achieve the desired control. The impact of model uncertainties, specifically uncertain boundaries, on the selection of transducer locations for structural acoustic control is considered herein. The final goal of this work is the design of an aircraft panel structure that can reduce TBL noise transmission through the use of a completely adaptive, single-input, single-output control system. The feasibility of this goal is demonstrated through the creation of a detailed analytical solution, followed by the implementation of a test model in a transmission loss apparatus. Successfully realizing a control system robust to variations in boundary conditions can lead to the design and implementation of practical adaptive structures that could be used to control the transmission of sound to the interior of aircraft. Results from this research effort indicate it is possible to optimize the design of actuator and sensor location and aperture, minimizing the impact of boundary conditions on the desired structural acoustic control.
Design of titania nanotube structures by focused laser beam direct writing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Enachi, Mihai; Stevens-Kalceff, Marion A.; Sarua, Andrei
In this work, we report on electrochemical fabrication of titania films consisting of nanotubes (NTs) and their treatment by focused laser beam. The results of sample characterization by optical and scanning electron microscopy, cathodoluminescence imaging, and Raman scattering scanning spectroscopy are compared to those inherent to specimens subjected to thermal treatment in a furnace. The obtained data demonstrate possibilities for controlling crystallographic structure of TiO{sub 2} NTs by focused laser beam direct writing. These findings open new prospects for the design and fabrication of spatial architectures based on titania nanotubes.
Mandal, Rakesh; Kesari, Shreekant; Kumar, Vijay; Das, Pradeep
2018-04-02
Visceral leishmaniasis (VL) in Bihar State (India) continues to be endemic, despite the existence of effective treatment and a vector control program to control disease morbidity. A clear understanding of spatio-temporal distribution of VL may improve surveillance and control implementation. This study explored the trends in spatio-temporal dynamics of VL endemicity at a meso-scale level in Vaishali District, based on geographical information systems (GIS) tools and spatial statistical analysis. A GIS database was used to integrate the VL case data from the study area between 2009 and 2014. All cases were spatially linked at a meso-scale level. Geospatial techniques, such as GIS-layer overlaying and mapping, were employed to visualize and detect the spatio-temporal patterns of a VL endemic outbreak across the district. The spatial statistic Moran's I Index (Moran's I) was used to simultaneously evaluate spatial-correlation between endemic villages and the spatial distribution patterns based on both the village location and the case incidence rate (CIR). Descriptive statistics such as mean, standard error, confidence intervals and percentages were used to summarize the VL case data. There were 624 endemic villages with 2719 (average 906 cases/year) VL cases during 2012-2014. The Moran's I revealed a cluster pattern (P < 0.05) of CIR distribution at the meso-scale level. On average, 68 villages were newly-endemic each year. Of which 93.1% of villages' endemicity were found to have occurred on the peripheries of the previous year endemic villages. The mean CIR of the endemic villages that were peripheral to the following year newly-endemic villages, compared to all endemic villages of the same year, was higher (P < 0.05). The results show that the VL endemicity of new villages tends to occur on the periphery of villages endemic in the previous year. High-CIR plays a major role in the spatial dispersion of the VL cases between non-endemic and endemic villages. This information can help achieve VL elimination throughout the Indian subcontinent by improving vector control design and implementation in highly-endemic district.
Single Degree-of-Freedom Exoskeleton Mechanism Design for Thumb Rehabilitation*
Yihun, Yimesker; Miklos, Robert; Perez-Gracia, Alba; Reinkensmeyer, David J.; Denney, Keith; Wolbrecht, Eric T.
2014-01-01
This paper presents the kinematic design of a spatial, 1-degree-of-freedom closed linkage to be used as an exoskeleton for thumb motion. Together with an already-designed finger mechanism, it forms a robotic device for hand therapy. The goal for the exoskeleton is to generate the desired grasping and pinching path of the thumb with one degree of freedom, rather than using a system actuating all its joints independently. In addition to the path of the thumb, additional constraints are added in order to control the position and size of the exoskeleton, reducing physical and sensory interference with the user. PMID:23366289
NASA Astrophysics Data System (ADS)
McMackin, Lenore; Herman, Matthew A.; Weston, Tyler
2016-02-01
We present the design of a multi-spectral imager built using the architecture of the single-pixel camera. The architecture is enabled by the novel sampling theory of compressive sensing implemented optically using the Texas Instruments DLP™ micro-mirror array. The array not only implements spatial modulation necessary for compressive imaging but also provides unique diffractive spectral features that result in a multi-spectral, high-spatial resolution imager design. The new camera design provides multi-spectral imagery in a wavelength range that extends from the visible to the shortwave infrared without reduction in spatial resolution. In addition to the compressive imaging spectrometer design, we present a diffractive model of the architecture that allows us to predict a variety of detailed functional spatial and spectral design features. We present modeling results, architectural design and experimental results that prove the concept.
Numerical simulation of human orientation perception during lunar landing
NASA Astrophysics Data System (ADS)
Clark, Torin K.; Young, Laurence R.; Stimpson, Alexander J.; Duda, Kevin R.; Oman, Charles M.
2011-09-01
In lunar landing it is necessary to select a suitable landing point and then control a stable descent to the surface. In manned landings, astronauts will play a critical role in monitoring systems and adjusting the descent trajectory through either supervisory control and landing point designations, or by direct manual control. For the astronauts to ensure vehicle performance and safety, they will have to accurately perceive vehicle orientation. A numerical model for human spatial orientation perception was simulated using input motions from lunar landing trajectories to predict the potential for misperceptions. Three representative trajectories were studied: an automated trajectory, a landing point designation trajectory, and a challenging manual control trajectory. These trajectories were studied under three cases with different cues activated in the model to study the importance of vestibular cues, visual cues, and the effect of the descent engine thruster creating dust blowback. The model predicts that spatial misperceptions are likely to occur as a result of the lunar landing motions, particularly with limited or incomplete visual cues. The powered descent acceleration profile creates a somatogravic illusion causing the astronauts to falsely perceive themselves and the vehicle as upright, even when the vehicle has a large pitch or roll angle. When visual pathways were activated within the model these illusions were mostly suppressed. Dust blowback, obscuring the visual scene out the window, was also found to create disorientation. These orientation illusions are likely to interfere with the astronauts' ability to effectively control the vehicle, potentially degrading performance and safety. Therefore suitable countermeasures, including disorientation training and advanced displays, are recommended.
NASA Technical Reports Server (NTRS)
Hyers, Robert W.; Motakef, S.; Witt, A. F.; Wuensch, B.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
Realization of the full potential of photorefractive materials in device technology is seriously impeded by our inability to achieve controlled formation of critical defects during single crystal growth and by difficulties in meeting the required degree of compositional uniformity on a micro-scale over macroscopic dimensions. The exact nature and origin of the critical defects which control photorefractivity could not as yet be identified because of gravitational interference. There exists, however, strong evidence that the density of defect formation and their spatial distribution are adversely affected by gravitational interference which precludes the establishment of quantifiable and controllable heat and mass transfer conditions during crystal growth. The current, NASA sponsored research at MIT is directed at establishing a basis for the development of a comprehensive approach to the optimization of property control during melt growth of photorefractive materials, making use of the m-g environment, provided in the International Space Station. The objectives to be pursued in m-g research on photorefractive BSO (Bi12SiO20) are: (a) identification of the x-level(s) responsible for photorefractivity in undoped BSO; (b) development of approaches leading to the control of x-level formation at uniform spatial distribution; (c) development of doping and processing procedures for optimization of the critical, application specific parameters, spectral response, sensitivity, response time and matrix stability. The presentation will focus on: the rationale for the justification of the space experiment, ground-based development efforts, design considerations for the space experiments, strategic plan of the space experiments, and approaches to the quantitative analysis of the space experiments.
Contribution to an effective design method for stationary reaction-diffusion patterns.
Szalai, István; Horváth, Judit; De Kepper, Patrick
2015-06-01
The British mathematician Alan Turing predicted, in his seminal 1952 publication, that stationary reaction-diffusion patterns could spontaneously develop in reacting chemical or biochemical solutions. The first two clear experimental demonstrations of such a phenomenon were not made before the early 1990s when the design of new chemical oscillatory reactions and appropriate open spatial chemical reactors had been invented. Yet, the number of pattern producing reactions had not grown until 2009 when we developed an operational design method, which takes into account the feeding conditions and other specificities of real open spatial reactors. Since then, on the basis of this method, five additional reactions were shown to produce stationary reaction-diffusion patterns. To gain a clearer view on where our methodical approach on the patterning capacity of a reaction stands, numerical studies in conditions that mimic true open spatial reactors were made. In these numerical experiments, we explored the patterning capacity of Rabai's model for pH driven Landolt type reactions as a function of experimentally attainable parameters that control the main time and length scales. Because of the straightforward reversible binding of protons to carboxylate carrying polymer chains, this class of reaction is at the base of the chemistry leading to most of the stationary reaction-diffusion patterns presently observed. We compare our model predictions with experimental observations and comment on agreements and differences.
NASA Astrophysics Data System (ADS)
Birkbeck, Aaron L.
A new technology is developed that functionally integrates arrays of lasers and micro-optics into microfluidic systems for the purpose of imaging, analyzing, and manipulating objects and biological cells. In general, the devices and technologies emerging from this area either lack functionality through the reliance on mechanical systems or provide a serial-based, time consuming approach. As compared to the current state of art, our all-optical design methodology has several distinguishing features, such as parallelism, high efficiency, low power, auto-alignment, and high yield fabrication methods, which all contribute to minimizing the cost of the integration process. The potential use of vertical cavity surface emitting lasers (VCSELs) for the creation of two-dimensional arrays of laser optical tweezers that perform independently controlled, parallel capture, and transport of large numbers of individual objects and biological cells is investigated. One of the primary biological applications for which VCSEL array sourced laser optical tweezers are considered is the formation of engineered tissues through the manipulation and spatial arrangement of different types of cells in a co-culture. Creating devices that combine laser optical tweezers with select micro-optical components permits optical imaging and analysis functions to take place inside the microfluidic channel. One such device is a micro-optical spatial filter whose motion and alignment is controlled using a laser optical tweezer. Unlike conventional spatial filter systems, our device utilizes a refractive optical element that is directly incorporated onto the lithographically patterned spatial filter. This allows the micro-optical spatial filter to automatically align itself in three-dimensions to the focal point of the microscope objective, where it then filters out the higher frequency additive noise components present in the laser beam. As a means of performing high resolution imaging in the microfluidic channel, we developed a novel technique that integrates the capacity of a laser tweezer to optically trap and manipulate objects in three-dimensions with the resolution-enhanced imaging capabilities of a solid immersion lens (SIL). In our design, the SIL is a free-floating device whose imaging beam, motion control and alignment is provided by a laser optical tweezer, which allows the microfluidic SIL to image in areas that are inaccessible to traditional solid immersion microscopes.
Kim, Min-Kook; Daigle, John J
2011-09-01
This study examines the efficacy of management strategies implemented in 2000 to reduce visitor-induced vegetation impact and enhance vegetation recovery at the summit loop trail on Cadillac Mountain at Acadia National Park, Maine. Using single-spectral high-resolution remote sensing datasets captured in 1979, 2001, and 2007, pre-classification change detection analysis techniques were applied to measure fractional vegetation cover changes between the time periods. This popular sub-alpine summit with low-lying vegetation and attractive granite outcroppings experiences dispersed visitor use away from the designated trail, so three pre-defined spatial scales (small, 0-30 m; medium, 0-60 m; and large, 0-90 m) were examined in the vicinity of the summit loop trail with visitor use (experimental site) and a site chosen nearby in a relatively pristine undisturbed area (control site) with similar spatial scales. Results reveal significant changes in terms of rates of vegetation impact between 1979 and 2001 extending out to 90 m from the summit loop trail with no management at the site. No significant differences were detected among three spatial zones (inner, 0-30 m; middle, 30-60 m; and outer, 60-90 m) at the experimental site, but all were significantly higher rates of impact compared to similar spatial scales at the control site (all p < 0.001). In contrast, significant changes in rates of recovery between 2001 and 2007 were observed in the medium and large spatial scales at the experimental site under management as compared to the control site (all p < 0.05). Also during this later period a higher rate of recovery was observed in the outer zone as compared to the inner zone at the experimental site (p < 0.05). The overall study results suggest a trend in the desired direction for the site and visitor management strategies designed to reduce vegetation impact and enhance vegetation recovery at the summit loop trail of Cadillac Mountain since 2000. However, the vegetation recovery has been rather minimal and did not reach the level of cover observed during the 1979 time period. In addition, the advantages and some limitations of using remote sensing technologies are discussed in detecting vegetation change in this setting and potential application to other recreation settings.
Wilkins, Leanne K; Girard, Todd A; Konishi, Kyoko; King, Matthew; Herdman, Katherine A; King, Jelena; Christensen, Bruce; Bohbot, Veronique D
2013-11-01
Spatial memory is impaired among persons with schizophrenia (SCZ). However, different strategies may be used to solve most spatial memory and navigation tasks. This study investigated the hypothesis that participants with schizophrenia-spectrum disorders (SSD) would demonstrate differential impairment during acquisition and retrieval of target locations when using a hippocampal-dependent spatial strategy, but not a response strategy, which is more associated with caudate function. Healthy control (CON) and SSD participants were tested using the 4-on-8 virtual maze (4/8VM), a virtual navigation task designed to differentiate between participants' use of spatial and response strategies. Consistent with our predictions, SSD participants demonstrated a differential deficit such that those who navigated using a spatial strategy made more errors and took longer to locate targets. In contrast, SSD participants who spontaneously used a response strategy performed as well as CON participants. The differential pattern of spatial-memory impairment in SSD provides only indirect support for underlying hippocampal dysfunction. These findings emphasize the importance of considering individual strategies when investigating SSD-related memory and navigation performance. Future cognitive intervention protocols may harness SSD participants' intact ability to navigate using a response strategy and/or train the deficient ability to navigate using a spatial strategy to improve navigation and memory abilities in participants with SSD. Copyright © 2013 Wiley Periodicals, Inc.
Modality dependence and intermodal transfer in the Corsi Spatial Sequence Task: Screen vs. Floor.
Röser, Andrea; Hardiess, Gregor; Mallot, Hanspeter A
2016-07-01
Four versions of the Corsi Spatial Sequence Task (CSST) were tested in a complete within-subject design, investigating whether participants' performance depends on the modality of task presentation and reproduction that put different demands on spatial processing. Presentation of the sequence (encoding phase) and the reproduction (recall phase) were each carried out either on a computer screen or on the floor of a room, involving actual walking in the recall phase. Combinations of the two different encoding and recall procedures result in the modality conditions Screen-Screen, Screen-Floor, Floor-Screen, and Floor-Floor. Results show the expected decrease in performance with increasing sequence length, which is likely due to processing limitations of working memory. We also found differences in performance between the modality conditions indicating different involvements of spatial working memory processes. Participants performed best in the Screen-Screen modality condition. Floor-Screen and Floor-Floor modality conditions require additional working memory resources for reference frame transformation and spatial updating, respectively; the resulting impairment of the performance was about the same in these two conditions. Finally, the Screen-Floor modality condition requires both types of additional spatial demands and led to the poorest performance. Therefore, we suggest that besides the well-known spatial requirements of CSST, additional working memory resources are demanded in walking CSST supporting processes such as spatial updating, mental rotation, reference frame transformation, and the control of walking itself.
[An object-oriented intelligent engineering design approach for lake pollution control].
Zou, Rui; Zhou, Jing; Liu, Yong; Zhu, Xiang; Zhao, Lei; Yang, Ping-Jian; Guo, Huai-Cheng
2013-03-01
Regarding the shortage and deficiency of traditional lake pollution control engineering techniques, a new lake pollution control engineering approach was proposed in this study, based on object-oriented intelligent design (OOID) from the perspective of intelligence. It can provide a new methodology and framework for effectively controlling lake pollution and improving water quality. The differences between the traditional engineering techniques and the OOID approach were compared. The key points for OOID were described as object perspective, cause and effect foundation, set points into surface, and temporal and spatial optimization. The blue algae control in lake was taken as an example in this study. The effect of algae control and water quality improvement were analyzed in details from the perspective of object-oriented intelligent design based on two engineering techniques (vertical hydrodynamic mixer and pumping algaecide recharge). The modeling results showed that the traditional engineering design paradigm cannot provide scientific and effective guidance for engineering design and decision-making regarding lake pollution. Intelligent design approach is based on the object perspective and quantitative causal analysis in this case. This approach identified that the efficiency of mixers was much higher than pumps in achieving the goal of low to moderate water quality improvement. However, when the objective of water quality exceeded a certain value (such as the control objective of peak Chla concentration exceeded 100 microg x L(-1) in this experimental water), the mixer cannot achieve this goal. The pump technique can achieve the goal but with higher cost. The efficiency of combining the two techniques was higher than using one of the two techniques alone. Moreover, the quantitative scale control of the two engineering techniques has a significant impact on the actual project benefits and costs.
Vierling, L.A.; Fersdahl, M.; Chen, X.; Li, Z.; Zimmerman, P.
2006-01-01
We describe a new remote sensing system called the Short Wave Aerostat-Mounted Imager (SWAMI). The SWAMI is designed to acquire co-located video imagery and hyperspectral data to study basic remote sensing questions and to link landscape level trace gas fluxes with spatially and temporally appropriate spectral observations. The SWAMI can fly at altitudes up to 2 km above ground level to bridge the spatial gap between radiometric measurements collected near the surface and those acquired by other aircraft or satellites. The SWAMI platform consists of a dual channel hyperspectral spectroradiometer, video camera, GPS, thermal infrared sensor, and several meteorological and control sensors. All SWAMI functions (e.g. data acquisition and sensor pointing) can be controlled from the ground via wireless transmission. Sample data from the sampling platform are presented, along with several potential scientific applications of SWAMI data.
Kilohertz binary phase modulator for pulsed laser sources using a digital micromirror device.
Hoffmann, Maximilian; Papadopoulos, Ioannis N; Judkewitz, Benjamin
2018-01-01
The controlled modulation of an optical wavefront is required for aberration correction, digital phase conjugation, or patterned photostimulation. For most of these applications, it is desirable to control the wavefront modulation at the highest rates possible. The digital micromirror device (DMD) presents a cost-effective solution to achieve high-speed modulation and often exceeds the speed of the more conventional liquid crystal spatial light modulator but is inherently an amplitude modulator. Furthermore, spatial dispersion caused by DMD diffraction complicates its use with pulsed laser sources, such as those used in nonlinear microscopy. Here we introduce a DMD-based optical design that overcomes these limitations and achieves dispersion-free high-speed binary phase modulation. We show that this phase modulation can be used to switch through binary phase patterns at the rate of 20 kHz in two-photon excitation fluorescence applications.
Kilohertz binary phase modulator for pulsed laser sources using a digital micromirror device
NASA Astrophysics Data System (ADS)
Hoffmann, Maximilian; Papadopoulos, Ioannis N.; Judkewitz, Benjamin
2018-01-01
The controlled modulation of an optical wavefront is required for aberration correction, digital phase conjugation or patterned photostimulation. For most of these applications it is desirable to control the wavefront modulation at the highest rates possible. The digital micromirror device (DMD) presents a cost-effective solution to achieve high-speed modulation and often exceeds the speed of the more conventional liquid crystal spatial light modulator, but is inherently an amplitude modulator. Furthermore, spatial dispersion caused by DMD diffraction complicates its use with pulsed laser sources, such as those used in nonlinear microscopy. Here we introduce a DMD-based optical design that overcomes these limitations and achieves dispersion-free high-speed binary phase modulation. We show that this phase modulation can be used to switch through binary phase patterns at the rate of 20 kHz in two-photon excitation fluorescence applications.
Design and realization of tourism spatial decision support system based on GIS
NASA Astrophysics Data System (ADS)
Ma, Zhangbao; Qi, Qingwen; Xu, Li
2008-10-01
In this paper, the existing problems of current tourism management information system are analyzed. GIS, tourism as well as spatial decision support system are introduced, and the application of geographic information system technology and spatial decision support system to tourism management and the establishment of tourism spatial decision support system based on GIS are proposed. System total structure, system hardware and software environment, database design and structure module design of this system are introduced. Finally, realization methods of this systemic core functions are elaborated.
Inflatable Antenna Microwave Radiometer for Soil Moisture Measurement
NASA Technical Reports Server (NTRS)
Bailey, M. C.; Kendall, Bruce M.; Schroeder, Lyle C.; Harrington, Richard F.
1993-01-01
Microwave measurements of soil moisture are not being obtained at the required spatial Earth resolution with current technology. Recently, new novel designs for lightweight reflector systems have been developed using deployable inflatable antenna structures which could enable lightweight real-aperture radiometers. In consideration of this, a study was conducted at the NASA Langley Research Center (LaRC) to determine the feasibility of developing a microwave radiometer system using inflatable reflector antenna technology to obtain high spatial resolution radiometric measurements of soil moisture from low Earth orbit and which could be used with a small and cost effective launch vehicle. The required high resolution with reasonable swath width coupled with the L-band measurement frequency for soil moisture dictated the use of a large (30 meter class) real aperture antenna in conjunction with a pushbroom antenna beam configuration and noise-injection type radiometer designs at 1.4 and 4.3 GHz to produce a 370 kilometer cross-track swath with a 10 kilometer resolution that could be packaged for launch with a Titan 2 class vehicle. This study includes design of the inflatable structure, control analysis, structural and thermal analysis, antenna and feed design, radiometer design, payload packaging, orbital analysis, and electromagnetic losses in the thin membrane inflatable materials.
Chemistry with spatial control using particles and streams†
Kalinin, Yevgeniy V.; Murali, Adithya
2012-01-01
Spatial control of chemical reactions, with micro- and nanometer scale resolution, has important consequences for one pot synthesis, engineering complex reactions, developmental biology, cellular biochemistry and emergent behavior. We review synthetic methods to engineer this spatial control using chemical diffusion from spherical particles, shells and polyhedra. We discuss systems that enable both isotropic and anisotropic chemical release from isolated and arrayed particles to create inhomogeneous and spatially patterned chemical fields. In addition to such finite chemical sources, we also discuss spatial control enabled with laminar flow in 2D and 3D microfluidic networks. Throughout the paper, we highlight applications of spatially controlled chemistry in chemical kinetics, reaction-diffusion systems, chemotaxis and morphogenesis. PMID:23145348
Protection heater design validation for the LARP magnets using thermal imaging
Marchevsky, M.; Turqueti, M.; Cheng, D. W.; ...
2016-03-16
Protection heaters are essential elements of a quench protection scheme for high-field accelerator magnets. Various heater designs fabricated by LARP and CERN have been already tested in the LARP high-field quadrupole HQ and presently being built into the coils of the high-field quadrupole MQXF. In order to compare the heat flow characteristics and thermal diffusion timescales of different heater designs, we powered heaters of two different geometries in ambient conditions and imaged the resulting thermal distributions using a high-sensitivity thermal video camera. We observed a peculiar spatial periodicity in the temperature distribution maps potentially linked to the structure of themore » underlying cable. Two-dimensional numerical simulation of heat diffusion and spatial heat distribution have been conducted, and the results of simulation and experiment have been compared. Imaging revealed hot spots due to a current concentration around high curvature points of heater strip of varying cross sections and visualized thermal effects of various interlayer structural defects. Furthermore, thermal imaging can become a future quality control tool for the MQXF coil heaters.« less
ERIC Educational Resources Information Center
O'Leary, Timothy P.; Brown, Richard E.
2013-01-01
We have previously shown that apparatus design can affect visual-spatial cue use and memory performance of mice on the Barnes maze. The present experiment extends these findings by determining the optimal behavioral measures and test procedure for analyzing visuo-spatial learning and memory in three different Barnes maze designs. Male and female…
NASA Astrophysics Data System (ADS)
Cherri, Abdallah K.
1999-02-01
Trinary signed-digit (TSD) symbolic-substitution-based (SS-based) optical adders, which were recently proposed, are used as the basic modules for designing highly parallel optical multiplications by use of cascaded optical correlators. The proposed multiplications perform carry-free generation of the multiplication partial products of two words in constant time. Also, three different multiplication designs are presented, and new joint spatial encodings for the TSD numbers are introduced. The proposed joint spatial encodings allow one to reduce the SS computation rules involved in optical multiplication. In addition, the proposed joint spatial encodings increase the space bandwidth product of the spatial light modulators of the optical system. This increase is achieved by reduction of the numbers of pixels in the joint spatial encodings for the input TSD operands as well as reduction of the number of pixels used in the proposed matched spatial filters for the optical multipliers.
Cherri, A K
1999-02-10
Trinary signed-digit (TSD) symbolic-substitution-based (SS-based) optical adders, which were recently proposed, are used as the basic modules for designing highly parallel optical multiplications by use of cascaded optical correlators. The proposed multiplications perform carry-free generation of the multiplication partial products of two words in constant time. Also, three different multiplication designs are presented, and new joint spatial encodings for the TSD numbers are introduced. The proposed joint spatial encodings allow one to reduce the SS computation rules involved in optical multiplication. In addition, the proposed joint spatial encodings increase the space-bandwidth product of the spatial light modulators of the optical system. This increase is achieved by reduction of the numbers of pixels in the joint spatial encodings for the input TSD operands as well as reduction of the number of pixels used in the proposed matched spatial filters for the optical multipliers.
Pangle, Luke A.; DeLong, Stephen B.; Abramson, Nate; Adams, John; Barron-Gafford, Greg A.; Breshears, David D.; Brooks, Paul D.; Chorover, Jon; Dietrich, William E.; Dontsova, Katerina; Durcik, Matej; Espeleta, Javier; Ferré, T.P.A.; Ferriere, Regis; Henderson, Whitney; Hunt, Edward A.; Huxman, Travis E.; Millar, David; Murphy, Brendan; Niu, Guo-Yue; Pavao-Zuckerman, Mitch; Pelletier, Jon D.; Rasmussen, Craig; Ruiz, Joaquin; Saleska, Scott; Schaap, Marcel; Sibayan, Michael; Troch, Peter A.; Tuller, Markus; van Haren, Joost; Zeng, Xubin
2015-01-01
Zero-order drainage basins, and their constituent hillslopes, are the fundamental geomorphic unit comprising much of Earth's uplands. The convergent topography of these landscapes generates spatially variable substrate and moisture content, facilitating biological diversity and influencing how the landscape filters precipitation and sequesters atmospheric carbon dioxide. In light of these significant ecosystem services, refining our understanding of how these functions are affected by landscape evolution, weather variability, and long-term climate change is imperative. In this paper we introduce the Landscape Evolution Observatory (LEO): a large-scale controllable infrastructure consisting of three replicated artificial landscapes (each 330 m2 surface area) within the climate-controlled Biosphere 2 facility in Arizona, USA. At LEO, experimental manipulation of rainfall, air temperature, relative humidity, and wind speed are possible at unprecedented scale. The Landscape Evolution Observatory was designed as a community resource to advance understanding of how topography, physical and chemical properties of soil, and biological communities coevolve, and how this coevolution affects water, carbon, and energy cycles at multiple spatial scales. With well-defined boundary conditions and an extensive network of sensors and samplers, LEO enables an iterative scientific approach that includes numerical model development and virtual experimentation, physical experimentation, data analysis, and model refinement. We plan to engage the broader scientific community through public dissemination of data from LEO, collaborative experimental design, and community-based model development.
House-to-house human movement drives dengue virus transmission
Stoddard, Steven T.; Forshey, Brett M.; Morrison, Amy C.; Paz-Soldan, Valerie A.; Vazquez-Prokopec, Gonzalo M.; Astete, Helvio; Reiner, Robert C.; Vilcarromero, Stalin; Elder, John P.; Halsey, Eric S.; Kochel, Tadeusz J.; Kitron, Uriel; Scott, Thomas W.
2013-01-01
Dengue is a mosquito-borne disease of growing global health importance. Prevention efforts focus on mosquito control, with limited success. New insights into the spatiotemporal drivers of dengue dynamics are needed to design improved disease-prevention strategies. Given the restricted range of movement of the primary mosquito vector, Aedes aegypti, local human movements may be an important driver of dengue virus (DENV) amplification and spread. Using contact-site cluster investigations in a case-control design, we demonstrate that, at an individual level, risk for human infection is defined by visits to places where contact with infected mosquitoes is likely, independent of distance from the home. Our data indicate that house-to-house human movements underlie spatial patterns of DENV incidence, causing marked heterogeneity in transmission rates. At a collective level, transmission appears to be shaped by social connections because routine movements among the same places, such as the homes of family and friends, are often similar for the infected individual and their contacts. Thus, routine, house-to-house human movements do play a key role in spread of this vector-borne pathogen at fine spatial scales. This finding has important implications for dengue prevention, challenging the appropriateness of current approaches to vector control. We argue that reexamination of existing paradigms regarding the spatiotemporal dynamics of DENV and other vector-borne pathogens, especially the importance of human movement, will lead to improvements in disease prevention. PMID:23277539
Zoller, Thomas; Fèvre, Eric M; Welburn, Susan C; Odiit, Martin; Coleman, Paul G
2008-01-01
Background Sleeping sickness (HAT) caused by T.b. rhodesiense is a major veterinary and human public health problem in Uganda. Previous studies have investigated spatial risk factors for T.b. rhodesiense at large geographic scales, but none have properly investigated such risk factors at small scales, i.e. within affected villages. In the present work, we use a case-control methodology to analyse both behavioural and spatial risk factors for HAT in an endemic area. Methods The present study investigates behavioural and occupational risk factors for infection with HAT within villages using a questionnaire-based case-control study conducted in 17 villages endemic for HAT in SE Uganda, and spatial risk factors in 4 high risk villages. For the spatial analysis, the location of homesteads with one or more cases of HAT up to three years prior to the beginning of the study was compared to all non-case homesteads. Analysing spatial associations with respect to irregularly shaped geographical objects required the development of a new approach to geographical analysis in combination with a logistic regression model. Results The study was able to identify, among other behavioural risk factors, having a family member with a history of HAT (p = 0.001) as well as proximity of a homestead to a nearby wetland area (p < 0.001) as strong risk factors for infection. The novel method of analysing complex spatial interactions used in the study can be applied to a range of other diseases. Conclusion Spatial risk factors for HAT are maintained across geographical scales; this consistency is useful in the design of decision support tools for intervention and prevention of the disease. Familial aggregation of cases was confirmed for T. b. rhodesiense HAT in the study and probably results from shared behavioural and spatial risk factors amongmembers of a household. PMID:18590541
NASA Astrophysics Data System (ADS)
Heine, A.; Berger, M.
The classical meaning of motion design is the usage of laws of motion with convenient characteristic values. Whereas the software MOCAD supports a graphical and interactive mode of operation, among others by using an automatic polynomial interpolation. Besides a direct coupling for motion control systems, different file formats for data export are offered. The calculation of plane and spatial cam mechanisms is also based on the data, generated in the motion design module. Drawing on an example of an intermittent cam mechanism with an inside cam profile used as a new drive concept for indexing tables, the influence of motion design on the transmission properties is shown. Another example gives an insight into the calculation and export of envelope curves for cylindrical cam mechanisms. The gained geometry data can be used for generating realistic 3D-models in the CAD-system Pro/ENGINEER, using a special data exchange format.
A Rule Based Approach to ISS Interior Volume Control and Layout
NASA Technical Reports Server (NTRS)
Peacock, Brian; Maida, Jim; Fitts, David; Dory, Jonathan
2001-01-01
Traditional human factors design involves the development of human factors requirements based on a desire to accommodate a certain percentage of the intended user population. As the product is developed human factors evaluation involves comparison between the resulting design and the specifications. Sometimes performance metrics are involved that allow leniency in the design requirements given that the human performance result is satisfactory. Clearly such approaches may work but they give rise to uncertainty and negotiation. An alternative approach is to adopt human factors design rules that articulate a range of each design continuum over which there are varying outcome expectations and interactions with other variables, including time. These rules are based on a consensus of human factors specialists, designers, managers and customers. The International Space Station faces exactly this challenge in interior volume control, which is based on anthropometric, performance and subjective preference criteria. This paper describes the traditional approach and then proposes a rule-based alternative. The proposed rules involve spatial, temporal and importance dimensions. If successful this rule-based concept could be applied to many traditional human factors design variables and could lead to a more effective and efficient contribution of human factors input to the design process.
Metaoptics for Spectral and Spatial Beam Manipulation
NASA Astrophysics Data System (ADS)
Raghu Srimathi, Indumathi
Laser beam combining and beam shaping are two important areas with applications in optical communications, high power lasers, and atmospheric propagation studies. In this dissertation, metaoptical elements have been developed for spectral and spatial beam shaping, and multiplexing. Beams carrying orbital angular momentum (OAM), referred to as optical vortices, have unique propagation properties. Optical vortex beams carrying different topological charges are orthogonal to each other and have low inter-modal crosstalk which allows for them to be (de)multiplexed. Efficient spatial (de)multiplexing of these beams have been carried out by using diffractive optical geometrical coordinate transformation elements. The spatial beam combining technique shown here is advantageous because the efficiency of the system is not dependent on the number of OAM states being combined. The system is capable of generating coaxially propagating beams in the far-field and the beams generated can either be incoherently or coherently multiplexed with applications in power scaling and dynamic intensity profile manipulations. Spectral beam combining can also be achieved with the coordinate transformation elements. The different wavelengths emitted by fiber sources can be spatially overlapped in the far-field plane and the generated beams are Bessel-Gauss in nature with enhanced depth of focus properties. Unique system responses and beam shapes in the far-field can be realized by controlling amplitude, phase, and polarization at the micro-scale. This has been achieved by spatially varying the structural parameters at the subwavelength scale and is analogous to local modification of material properties. With advancements in fabrication technology, it is possible to control not just the lithographic process, but also the deposition process. In this work, a unique combination of spatial structure variations in conjunction with the conformal coating properties of an atomic layer deposition tool has been utilized to create metal-oxide nano-hair structures that are compatible with high power laser systems. These devices are multifunctional--acting as resonant structures for one wavelength regime and as effective index structures in a different wavelength regime. Discrete and continuous phase functions have been realized with this controlled fabrication process. The design, simulation, fabrication and experimental characterization of these optical elements are presented.
Deploying digital health data to optimize influenza surveillance at national and local scales
Arab, Ali; Viboud, Cécile; Grenfell, Bryan T.; Bansal, Shweta
2018-01-01
The surveillance of influenza activity is critical to early detection of epidemics and pandemics and the design of disease control strategies. Case reporting through a voluntary network of sentinel physicians is a commonly used method of passive surveillance for monitoring rates of influenza-like illness (ILI) worldwide. Despite its ubiquity, little attention has been given to the processes underlying the observation, collection, and spatial aggregation of sentinel surveillance data, and its subsequent effects on epidemiological understanding. We harnessed the high specificity of diagnosis codes in medical claims from a database that represented 2.5 billion visits from upwards of 120,000 United States healthcare providers each year. Among influenza seasons from 2002-2009 and the 2009 pandemic, we simulated limitations of sentinel surveillance systems such as low coverage and coarse spatial resolution, and performed Bayesian inference to probe the robustness of ecological inference and spatial prediction of disease burden. Our models suggest that a number of socio-environmental factors, in addition to local population interactions, state-specific health policies, as well as sampling effort may be responsible for the spatial patterns in U.S. sentinel ILI surveillance. In addition, we find that biases related to spatial aggregation were accentuated among areas with more heterogeneous disease risk, and sentinel systems designed with fixed reporting locations across seasons provided robust inference and prediction. With the growing availability of health-associated big data worldwide, our results suggest mechanisms for optimizing digital data streams to complement traditional surveillance in developed settings and enhance surveillance opportunities in developing countries. PMID:29513661
Optimal design of a bank of spatio-temporal filters for EEG signal classification.
Higashi, Hiroshi; Tanaka, Toshihisa
2011-01-01
The spatial weights for electrodes called common spatial pattern (CSP) are known to be effective in EEG signal classification for motor imagery based brain computer interfaces (MI-BCI). To achieve accurate classification in CSP, the frequency filter should be properly designed. To this end, several methods for designing the filter have been proposed. However, the existing methods cannot consider plural brain activities described with different frequency bands and different spatial patterns such as activities of mu and beta rhythms. In order to efficiently extract these brain activities, we propose a method to design plural filters and spatial weights which extract desired brain activity. The proposed method designs finite impulse response (FIR) filters and the associated spatial weights by optimization of an objective function which is a natural extension of CSP. Moreover, we show by a classification experiment that the bank of FIR filters which are designed by introducing an orthogonality into the objective function can extract good discriminative features. Moreover, the experiment result suggests that the proposed method can automatically detect and extract brain activities related to motor imagery.
NASA Astrophysics Data System (ADS)
Xia, Huanxiong; Xiang, Dong; Yang, Wang; Mou, Peng
2014-12-01
Low-temperature plasma technique is one of the critical techniques in IC manufacturing process, such as etching and thin-film deposition, and the uniformity greatly impacts the process quality, so the design for the plasma uniformity control is very important but difficult. It is hard to finely and flexibly regulate the spatial distribution of the plasma in the chamber via controlling the discharge parameters or modifying the structure in zero-dimensional space, and it just can adjust the overall level of the process factors. In the view of this problem, a segmented non-uniform dielectric module design solution is proposed for the regulation of the plasma profile in a CCP chamber. The solution achieves refined and flexible regulation of the plasma profile in the radial direction via configuring the relative permittivity and the width of each segment. In order to solve this design problem, a novel simulation-based auto-design approach is proposed, which can automatically design the positional sequence with multi independent variables to make the output target profile in the parameterized simulation model approximate the one that users preset. This approach employs an idea of quasi-closed-loop control system, and works in an iterative mode. It starts from initial values of the design variable sequences, and predicts better sequences via the feedback of the profile error between the output target profile and the expected one. It never stops until the profile error is narrowed in the preset tolerance.
Piwoński, Hubert; Michinobu, Tsuyoshi; Habuchi, Satoshi
2017-01-01
Applications of conjugated polymer nanoparticles (Pdots) for imaging and sensing depend on their size, fluorescence brightness and intraparticle energy transfer. The molecular design of conjugated polymers (CPs) has been the main focus of the development of Pdots. Here we demonstrate that proper control of the physical interactions between the chains is as critical as the molecular design. The unique design of twisted CPs and fine-tuning of the reprecipitation conditions allow us to fabricate ultrasmall (3.0–4.5 nm) Pdots with excellent photostability. Extensive photophysical and structural characterization reveals the essential role played by the packing of the polymer chains in the particles in the intraparticle spatial alignment of the emitting sites, which regulate the fluorescence brightness and the intraparticle energy migration efficiency. Our findings enhance understanding of the relationship between chain interactions and the photophysical properties of CP nanomaterials, providing a framework for designing and fabricating functional Pdots for imaging applications. PMID:28508857
Gagliardo, Anna; Vallortigara, Giorgio; Nardi, Daniele; Bingman, Verner P
2005-11-01
The hippocampal formation (HF) plays a crucial role in amniote spatial cognition. There are also indications of functional lateralization in the contribution of the left and right HF in processes that enable birds to navigate space. The experiments described in this study were designed to examine left and right HF differences in a task of sun compass-based spatial learning in homing pigeons (Columba livia). Control, left (HFL) and right (HFR) HF lesioned pigeons were trained in an outdoor arena to locate a food reward using their sun compass in the presence or absence of alternative feature cues. Subsequent to training, the pigeons were subjected to test sessions to determine if they learned to represent the goal location with their sun compass and the relative importance of the sun compass vs. feature cues. Under all test conditions, the control pigeons demonstrated preferential use of the sun compass in locating the goal. By contrast, the HFL pigeons demonstrated no ability to locate the goal by the sun compass but an ability to use the feature cues. The behaviour of the HFR pigeons demonstrated that an intact left HF is sufficient to support sun compass-based learning, but in conflict situations and in contrast to controls, they often relied on feature cues. In conclusion, only the left HF is capable of supporting sun compass-based learning. However, preferential use of the sun compass for learning requires an intact right HF. The data support the hypothesis that the left and right HF make different but complementary contributions toward avian spatial cognition.
Safi, Sare; Rahimi, Anoushiravan; Raeesi, Afsaneh; Safi, Hamid; Aghazadeh Amiri, Mohammad; Malek, Mojtaba; Yaseri, Mehdi; Haeri, Mohammad; Middleton, Frank A; Solessio, Eduardo; Ahmadieh, Hamid
2017-01-01
Objective To evaluate the ability of contrast sensitivity (CS) to discriminate loss of visual function in diabetic subjects with no clinical signs of retinopathy relative to that of normal subjects. Research design and methods In this prospective cross-sectional study, we measured CS in 46 diabetic subjects with a mean age of 48±6 years, a best-corrected visual acuity of 20/20 and no signs of diabetic retinopathy. The CS in these subjects was compared with CS measurements in 46 normal control subjects at four spatial frequencies (3, 6, 12, 18 cycles per degree) under moderate (500 lux) and dim (less than 2 lux) background light conditions. Results CS was approximately 0.16 log units lower in patients with diabetes relative to controls both in moderate and in dim background light conditions. Logistic regression classification and receiver operating characteristic curve analysis indicated that CS analysis using two light conditions was more accurate (0.78) overall compared with CS analysis using only a single illumination condition (accuracy values were 0.67 and 0.70 in moderate and dim light conditions, respectively). Conclusions Our results showed that patients with diabetes without clinical signs of retinopathy exhibit a uniform loss in CS at all spatial frequencies tested. Measuring the loss in CS at two spatial frequencies (3 and 6 cycles per degree) and two light conditions (moderate and dim) is sufficiently robust to classify diabetic subjects with no retinopathy versus control subjects. PMID:28878937
Goto, Osamu; Tomiya, Shigetaka; Murakami, Yosuke; Shinozaki, Akira; Toda, Akira; Kasahara, Jiro; Hobara, Daisuke
2012-02-21
A method for forming organic single-crystal arrays from solution is demonstrated using an organic semiconductor, 3,9-bis(4-ethylphenyl)-peri-xanthenoxanthene (C(2) Ph-PXX). Supersaturation of C(2) Ph-PXX/tetralin solution is spatially changed by making a large difference in solvent evaporation to generate nuclei at the designated location. The method is simple to implement since it employs only a micropattern and control of the solvent vapor pressure during growth. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Broadband and stable acoustic vortex emitter with multi-arm coiling slits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Xue; Liang, Bin, E-mail: liangbin@nju.edu.cn, E-mail: eleqc@nus.edu.sg, E-mail: jccheng@nju.edu.cn; Zou, Xin-ye
2016-05-16
We present the analytical design and experimental realization of a scheme based on multi-arm coiling slits to generate the stable acoustic vortices in a broadband. The proposed structure is able to spiral the acoustic wave spatially and generate the twisted acoustic vortices with invariant topological charge for a long propagation distance. Compared with conventional methods which require the electronic control of a bulky loudspeaker, this scheme provides an effective and compact solution to generate acoustic vortices with controllable topological charge in the broadband, which offers more initiatives in the demanding applications.
A methodology for design of a linear referencing system for surface transportation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vonderohe, A.; Hepworth, T.
1997-06-01
The transportation community has recently placed significant emphasis on development of data models, procedural standards, and policies for management of linearly-referenced data. There is an Intelligent Transportation Systems initiative underway to create a spatial datum for location referencing in one, two, and three dimensions. Most recently, a call was made for development of a unified linear reference system to support public, private, and military surface transportation needs. A methodology for design of the linear referencing system was developed from geodetic engineering principles and techniques used for designing geodetic control networks. The method is founded upon the law of propagation ofmore » random error and the statistical analysis of systems of redundant measurements, used to produce best estimates for unknown parameters. A complete mathematical development is provided. Example adjustments of linear distance measurement systems are included. The classical orders of design are discussed with regard to the linear referencing system. A simple design example is provided. A linear referencing system designed and analyzed with this method will not only be assured of meeting the accuracy requirements of users, it will have the potential for supporting delivery of error estimates along with the results of spatial analytical queries. Modeling considerations, alternative measurement methods, implementation strategies, maintenance issues, and further research needs are discussed. Recommendations are made for further advancement of the unified linear referencing system concept.« less
Frick, Andrea; Möhring, Wenke
2016-01-01
Recent research has shown close links between spatial and mathematical thinking and between spatial abilities and motor skills. However, longitudinal research examining the relations between motor, spatial, and mathematical skills is rare, and the nature of these relations remains unclear. The present study thus investigated the relation between children’s motor control and their spatial and proportional reasoning. We measured 6-year-olds’ spatial scaling (i.e., the ability to reason about different-sized spaces), their mental transformation skills, and their ability to balance on one leg as an index for motor control. One year later (N = 126), we tested the same children’s understanding of proportions. We also assessed several control variables (verbal IQ and socio-economic status) as well as inhibitory control, visuo-spatial and verbal working memory. Stepwise hierarchical regressions showed that, after accounting for effects of control variables, children’s balance skills significantly increased the explained variance in their spatial performance and proportional reasoning. Our results suggest specific relations between balance skills and spatial as well as proportional reasoning skills that cannot be explained by general differences in executive functioning or intelligence. PMID:26793157
Landscape genetics and the spatial distribution of chronic wasting disease
Blanchong, Julie A.; Samuel, M.D.; Scribner, K.T.; Weckworth, B.V.; Langenberg, J.A.; Filcek, K.B.
2008-01-01
Predicting the spread of wildlife disease is critical for identifying populations at risk, targeting surveillance and designing proactive management programmes. We used a landscape genetics approach to identify landscape features that influenced gene flow and the distribution of chronic wasting disease (CWD) in Wisconsin white-tailed deer. CWD prevalence was negatively correlated with genetic differentiation of study area deer from deer in the area of disease origin (core-area). Genetic differentiation was greatest, and CWD prevalence lowest, in areas separated from the core-area by the Wisconsin River, indicating that this river reduced deer gene flow and probably disease spread. Features of the landscape that influence host dispersal and spatial patterns of disease can be identified based on host spatial genetic structure. Landscape genetics may be used to predict high-risk populations based on their genetic connection to infected populations and to target disease surveillance, control and preventative activities. ?? 2007 The Royal Society.
The acute effects of cocoa flavanols on temporal and spatial attention.
Karabay, Aytaç; Saija, Jefta D; Field, David T; Akyürek, Elkan G
2018-05-01
In this study, we investigated how the acute physiological effects of cocoa flavanols might result in specific cognitive changes, in particular in temporal and spatial attention. To this end, we pre-registered and implemented a randomized, double-blind, placebo- and baseline-controlled crossover design. A sample of 48 university students participated in the study and each of them completed the experimental tasks in four conditions (baseline, placebo, low dose, and high-dose flavanol), administered in separate sessions with a 1-week washout interval. A rapid serial visual presentation task was used to test flavanol effects on temporal attention and integration, and a visual search task was similarly employed to investigate spatial attention. Results indicated that cocoa flavanols improved visual search efficiency, reflected by reduced reaction time. However, cocoa flavanols did not facilitate temporal attention nor integration, suggesting that flavanols may affect some aspects of attention, but not others. Potential underlying mechanisms are discussed.
NASA Astrophysics Data System (ADS)
Xu, Mingzhu; Gao, Zhiqiang; Ning, Jicai
2014-10-01
To improve the access efficiency of geoscience data, efficient data model and storage solutions should be used. Geoscience data is usually classified by format or coordinate system in existing storage solutions. When data is large, it is not conducive to search the geographic features. In this study, a geographical information integration system of Shandong province, China was developed based on the technology of ArcGIS Engine, .NET, and SQL Server. It uses Geodatabase spatial data model and ArcSDE to organize and store spatial and attribute data and establishes geoscience database of Shangdong. Seven function modules were designed: map browse, database and subject management, layer control, map query, spatial analysis and map symbolization. The system's characteristics of can be browsed and managed by geoscience subjects make the system convenient for geographic researchers and decision-making departments to use the data.
Shaping the spatial and spectral emissivity at the diffraction limit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makhsiyan, Mathilde; MiNaO, Laboratoire de Photonique et de Nanostructures; Bouchon, Patrick, E-mail: patrick.bouchon@onera.fr
Metasurfaces have attracted a growing interest for their ability to artificially tailor an electromagnetic response on various spectral ranges. In particular, thermal sources with unprecedented abilities, such as directionality or monochromaticity, have been achieved. However, these metasurfaces exhibit homogeneous optical properties whereas the spatial modulation of the emissivity up to the wavelength scale is at the crux of the design of original emitters. In this letter, we study an inhomogeneous metasurface made of a nonperiodic set of optical nano-antennas that spatially and spectrally control the emitted light up to the diffraction limit. Each antenna acts as an independent deep subwavelengthmore » emitter for given polarization and wavelength. Their juxtaposition at the subwavelength scale encodes far field multispectral and polarized images. This opens up promising breakthroughs for applications such as optical storage, anti-counterfeit devices, and multispectral emitters for biochemical sensing.« less
Computer aided analysis and optimization of mechanical system dynamics
NASA Technical Reports Server (NTRS)
Haug, E. J.
1984-01-01
The purpose is to outline a computational approach to spatial dynamics of mechanical systems that substantially enlarges the scope of consideration to include flexible bodies, feedback control, hydraulics, and related interdisciplinary effects. Design sensitivity analysis and optimization is the ultimate goal. The approach to computer generation and solution of the system dynamic equations and graphical methods for creating animations as output is outlined.
Stereoscopic Configurations To Minimize Distortions
NASA Technical Reports Server (NTRS)
Diner, Daniel B.
1991-01-01
Proposed television system provides two stereoscopic displays. Two-camera, two-monitor system used in various camera configurations and with stereoscopic images on monitors magnified to various degrees. Designed to satisfy observer's need to perceive spatial relationships accurately throughout workspace or to perceive them at high resolution in small region of workspace. Potential applications include industrial, medical, and entertainment imaging and monitoring and control of telemanipulators, telerobots, and remotely piloted vehicles.
Natural Models for Autonomous Control of Spatial Navigation, Sensing, and Guidance
2013-05-28
the opsins of deep-sea fishes , including their ability to withstand pressure, a significant study of how sensing proteins function in difficult...polarization sensing, we will gain insight concerning functional differences among materials which could have application for fabrication or design...have made excellent progress towards understanding how polarized-light receptors in animals function as well, including their function at the
Senathirajah, Yalini; Kaufman, David; Bakken, Suzanne
2014-12-01
User-composable approaches provide clinicians with the control to design and assemble information elements on screen via drag/drop. They hold considerable promise for enhancing the electronic-health-records (EHRs) user experience. We previously described this novel approach to EHR design and our illustrative system, MedWISE. The purpose of this paper is to describe clinician users' intelligent uses of space during completion of real patient case studies in a laboratory setting using MedWISE. Thirteen clinicians at a quaternary academic medical center used the system to review four real patient cases. We analyzed clinician utterances, behaviors, screen layouts (i.e., interface designs), and their perceptions associated with completing patient case studies. Clinicians effectively used the system to review all cases. Two coding schemata pertaining to human-computer interaction and diagnostic reasoning were used to analyze the data. Users adopted three main interaction strategies: rapidly gathering items on screen and reviewing ('opportunistic selection' approach); creating highly structured screens ('structured' approach); and interacting with small groups of items in sequence as their case review progressed ('dynamic stage' approach). They also used spatial arrangement in ways predicted by theory and research on workplace spatial arrangement. This includes assignment of screen regions for particular purposes (24% of spatial codes), juxtaposition to facilitate calculation or other cognitive tasks ('epistemic action'), and grouping elements with common meanings or relevance to the diagnostic facets of the case (20.3%). A left-to-right progression of orienting materials, data, and action items or reflection space was a commonly observed pattern. Widget selection was based on user assessment of what information was useful or relevant. We developed and tested an illustrative system that gives clinicians greater control of the EHR, and demonstrated its feasibility for case review by typical clinicians. Producing the simplifying inventions, such as user-composable platforms that shift control to the user, may serve to promote productive EHR use and enhance its value as an instrument of patient care. Copyright © 2014 Elsevier Inc. All rights reserved.
Senathirajah, Yalini; Kaufman, David; Bakken, Suzanne
2018-01-01
User-composable approaches provide clinicians with the control to design and assemble information elements on screen via drag/drop. They hold considerable promise for enhancing the electronic-health-records (EHRs) user experience. We previously described this novel approach to EHR design and our illustrative system, MedWISE. The purpose of this paper is to describe clinician users’ intelligent uses of space during completion of real patient case studies in a laboratory setting using MedWISE. Thirteen clinicians at a quaternary academic medical center used the system to review four real patient cases. We analyzed clinician utterances, behaviors, screen layouts (i.e., interface designs), and their perceptions associated with completing patient case studies. Clinicians effectively used the system to review all cases. Two coding schemata pertaining to human-computer interaction and diagnostic reasoning were used to analyze the data. Users adopted three main interaction strategies: rapidly gathering items on screen and reviewing (‘opportunistic selection’ approach); creating highly structured screens (‘structured’ approach); and interacting with small groups of items in sequence as their case review progressed (‘dynamic stage’ approach). They also used spatial arrangement in ways predicted by theory and research on workplace spatial arrangement. This includes assignment of screen regions for particular purposes (24% of spatial codes), juxtaposition to facilitate calculation or other cognitive tasks (‘epistemic action’), and grouping elements with common meanings or relevance to the diagnostic facets of the case (20.3%). A left-to-right progression of orienting materials, data, and action items or reflection space was a commonly observed pattern. Widget selection was based on user assessment of what information was useful or relevant. We developed and tested an illustrative system that gives clinicians greater control of the EHR, and demonstrated its feasibility for case review by typical clinicians. Producing the simplifying inventions, such as user-composable platforms that shift control to the user, may serve to promote productive EHR use and enhance its value as an instrument of patient care. PMID:25445921
Spatially explicit multi-criteria decision analysis for managing vector-borne diseases
2011-01-01
The complex epidemiology of vector-borne diseases creates significant challenges in the design and delivery of prevention and control strategies, especially in light of rapid social and environmental changes. Spatial models for predicting disease risk based on environmental factors such as climate and landscape have been developed for a number of important vector-borne diseases. The resulting risk maps have proven value for highlighting areas for targeting public health programs. However, these methods generally only offer technical information on the spatial distribution of disease risk itself, which may be incomplete for making decisions in a complex situation. In prioritizing surveillance and intervention strategies, decision-makers often also need to consider spatially explicit information on other important dimensions, such as the regional specificity of public acceptance, population vulnerability, resource availability, intervention effectiveness, and land use. There is a need for a unified strategy for supporting public health decision making that integrates available data for assessing spatially explicit disease risk, with other criteria, to implement effective prevention and control strategies. Multi-criteria decision analysis (MCDA) is a decision support tool that allows for the consideration of diverse quantitative and qualitative criteria using both data-driven and qualitative indicators for evaluating alternative strategies with transparency and stakeholder participation. Here we propose a MCDA-based approach to the development of geospatial models and spatially explicit decision support tools for the management of vector-borne diseases. We describe the conceptual framework that MCDA offers as well as technical considerations, approaches to implementation and expected outcomes. We conclude that MCDA is a powerful tool that offers tremendous potential for use in public health decision-making in general and vector-borne disease management in particular. PMID:22206355
Pooler, P.S.; Smith, D.R.
2005-01-01
We compared the ability of simple random sampling (SRS) and a variety of systematic sampling (SYS) designs to estimate abundance, quantify spatial clustering, and predict spatial distribution of freshwater mussels. Sampling simulations were conducted using data obtained from a census of freshwater mussels in a 40 X 33 m section of the Cacapon River near Capon Bridge, West Virginia, and from a simulated spatially random population generated to have the same abundance as the real population. Sampling units that were 0.25 m 2 gave more accurate and precise abundance estimates and generally better spatial predictions than 1-m2 sampling units. Systematic sampling with ???2 random starts was more efficient than SRS. Estimates of abundance based on SYS were more accurate when the distance between sampling units across the stream was less than or equal to the distance between sampling units along the stream. Three measures for quantifying spatial clustering were examined: Hopkins Statistic, the Clumping Index, and Morisita's Index. Morisita's Index was the most reliable, and the Hopkins Statistic was prone to false rejection of complete spatial randomness. SYS designs with units spaced equally across and up stream provided the most accurate predictions when estimating the spatial distribution by kriging. Our research indicates that SYS designs with sampling units equally spaced both across and along the stream would be appropriate for sampling freshwater mussels even if no information about the true underlying spatial distribution of the population were available to guide the design choice. ?? 2005 by The North American Benthological Society.
NASA Astrophysics Data System (ADS)
Wang, Peng; Ebeling, Carl G.; Gerton, Jordan; Menon, Rajesh
In this paper, we demonstrate hyper-spectral imaging of fluorescent microspheres in a scanning-confocal-fluorescence microscope by spatially dispersing the spectra using a novel broadband diffractive optic, and applying a nonlinear optimization technique to extract the full-incident spectra. This broadband diffractive optic has a designed optical efficiency of over 90% across the entire visible spectrum. We used this technique to create two-color images of two fluorophores and also extracted their emission spectra with good fidelity. This method can be extended to image both spatially and spectrally overlapping fluorescent samples. Full control in the number of emission spectra and the feasibility of enhanced imaging speed are demonstrated as well.
AFRL Commander's Challenge 2015: stopping the active shooter
NASA Astrophysics Data System (ADS)
McIntire, John P.; Boston, Jonathan; Smith, Brandon; Swartz, Pete; Whitney-Rawls, Amy; Martinez Calderon, Julian; Magin, Jonathan
2017-05-01
In this work, we describe a rapid-innovation challenge to combat and deal with the problem of internal, insider physical threats (e.g., active shooters) and associated first-responder situation awareness on military installations. Our team's research and development effort described within focused on several key tech development areas: (1) indoor acoustical gunshot detection, (2) indoor spatial tracking of first responders, (3) bystander safety and protection, (4) two-way mass alerting capability, and (5) spatial information displays for command and control. The technological solutions were specifically designed to be innovative, low-cost, and (relatively) easy-to-implement, and to provide support across the spectrum of possible users including potential victims/bystanders, first responders, dispatch, and incident command.
In Situ Detection of MicroRNA Expression with RNAscope Probes.
Yin, Viravuth P
2018-01-01
Elucidating the spatial resolution of gene transcripts provides important insight into potential gene function. MicroRNAs are short, singled-stranded noncoding RNAs that control gene expression through base-pair complementarity with target mRNAs in the 3' untranslated region (UTR) and inhibiting protein expression. However, given their small size of ~22- to 24-nt and low expression levels, standard in situ hybridization detection methods are not amendable for microRNA spatial resolution. Here, I describe a technique that employs RNAscope probe design and propriety amplification technology that provides simultaneous single molecule detection of individual microRNA and its target gene. This method allows for rapid and sensitive detection of noncoding RNA transcripts in frozen tissue sections.
Monitoring air quality in mountains: Designing an effective network
Peterson, D.L.
2000-01-01
A quantitatively robust yet parsimonious air-quality monitoring network in mountainous regions requires special attention to relevant spatial and temporal scales of measurement and inference. The design of monitoring networks should focus on the objectives required by public agencies, namely: 1) determine if some threshold has been exceeded (e.g., for regulatory purposes), and 2) identify spatial patterns and temporal trends (e.g., to protect natural resources). A short-term, multi-scale assessment to quantify spatial variability in air quality is a valuable asset in designing a network, in conjunction with an evaluation of existing data and simulation-model output. A recent assessment in Washington state (USA) quantified spatial variability in tropospheric ozone distribution ranging from a single watershed to the western third of the state. Spatial and temporal coherence in ozone exposure modified by predictable elevational relationships ( 1.3 ppbv ozone per 100 m elevation gain) extends from urban areas to the crest of the Cascade Range. This suggests that a sparse network of permanent analyzers is sufficient at all spatial scales, with the option of periodic intensive measurements to validate network design. It is imperative that agencies cooperate in the design of monitoring networks in mountainous regions to optimize data collection and financial efficiencies.
Dynamical beam manipulation based on 2-bit digitally-controlled coding metasurface.
Huang, Cheng; Sun, Bo; Pan, Wenbo; Cui, Jianhua; Wu, Xiaoyu; Luo, Xiangang
2017-02-08
Recently, a concept of digital metamaterials has been proposed to manipulate field distribution through proper spatial mixtures of digital metamaterial bits. Here, we present a design of 2-bit digitally-controlled coding metasurface that can effectively modulate the scattered electromagnetic wave and realize different far-field beams. Each meta-atom of this metasurface integrates two pin diodes, and by tuning their operating states, the metasurface has four phase responses of 0, π/2, π, and 3π/2, corresponding to four basic digital elements "00", "01", "10", and "11", respectively. By designing the coding sequence of the above digital element array, the reflected beam can be arbitrarily controlled. The proposed 2-bit digital metasurface has been demonstrated to possess capability of achieving beam deflection, multi-beam and beam diffusion, and the dynamical switching of these different scattering patterns is completed by a programmable electric source.
Dynamical beam manipulation based on 2-bit digitally-controlled coding metasurface
Huang, Cheng; Sun, Bo; Pan, Wenbo; Cui, Jianhua; Wu, Xiaoyu; Luo, Xiangang
2017-01-01
Recently, a concept of digital metamaterials has been proposed to manipulate field distribution through proper spatial mixtures of digital metamaterial bits. Here, we present a design of 2-bit digitally-controlled coding metasurface that can effectively modulate the scattered electromagnetic wave and realize different far-field beams. Each meta-atom of this metasurface integrates two pin diodes, and by tuning their operating states, the metasurface has four phase responses of 0, π/2, π, and 3π/2, corresponding to four basic digital elements “00”, “01”, “10”, and “11”, respectively. By designing the coding sequence of the above digital element array, the reflected beam can be arbitrarily controlled. The proposed 2-bit digital metasurface has been demonstrated to possess capability of achieving beam deflection, multi-beam and beam diffusion, and the dynamical switching of these different scattering patterns is completed by a programmable electric source. PMID:28176870
Severcan, Isil; Geary, Cody; Chworos, Arkadiusz; Voss, Neil; Jacovetty, Erica; Jaeger, Luc
2010-09-01
Supramolecular assembly is a powerful strategy used by nature to build nanoscale architectures with predefined sizes and shapes. With synthetic systems, however, numerous challenges remain to be solved before precise control over the synthesis, folding and assembly of rationally designed three-dimensional nano-objects made of RNA can be achieved. Here, using the transfer RNA molecule as a structural building block, we report the design, efficient synthesis and structural characterization of stable, modular three-dimensional particles adopting the polyhedral geometry of a non-uniform square antiprism. The spatial control within the final architecture allows the precise positioning and encapsulation of proteins. This work demonstrates that a remarkable degree of structural control can be achieved with RNA structural motifs for the construction of thermostable three-dimensional nano-architectures that do not rely on helix bundles or tensegrity. RNA three-dimensional particles could potentially be used as carriers or scaffolds in nanomedicine and synthetic biology.
Severcan, Isil; Geary, Cody; Chworos, Arkadiusz; Voss, Neil; Jacovetty, Erica; Jaeger, Luc
2010-01-01
Supra-molecular assembly is a powerful strategy used by nature for building nano-scale architectures with predefined sizes and shapes. Numerous challenges remain however to be solved in order to demonstrate precise control over the synthesis, folding and assembly of rationally designed three-dimensional (3D) nano-objects made of RNA. Using the transfer RNA molecule as a structural building block, we report the design, efficient synthesis and structural characterization of stable, modular 3D particles adopting the polyhedral geometry of a non-uniform square antiprism. The spatial control within the final architecture allows precise positioning and encapsulation of proteins. This work demonstrates that a remarkable degree of structural control can be achieved with RNA structural motifs to build thermostable 3D nano-architectures that do not rely on helix bundles or tensegrity. RNA 3D particles can potentially be used as carriers or scaffolds in nano-medicine and synthetic biology. PMID:20729899
High-resolution liquid patterns via three-dimensional droplet shape control.
Raj, Rishi; Adera, Solomon; Enright, Ryan; Wang, Evelyn N
2014-09-25
Understanding liquid dynamics on surfaces can provide insight into nature's design and enable fine manipulation capability in biological, manufacturing, microfluidic and thermal management applications. Of particular interest is the ability to control the shape of the droplet contact area on the surface, which is typically circular on a smooth homogeneous surface. Here, we show the ability to tailor various droplet contact area shapes ranging from squares, rectangles, hexagons, octagons, to dodecagons via the design of the structure or chemical heterogeneity on the surface. We simultaneously obtain the necessary physical insights to develop a universal model for the three-dimensional droplet shape by characterizing the droplet side and top profiles. Furthermore, arrays of droplets with controlled shapes and high spatial resolution can be achieved using this approach. This liquid-based patterning strategy promises low-cost fabrication of integrated circuits, conductive patterns and bio-microarrays for high-density information storage and miniaturized biochips and biosensors, among others.
NASA Astrophysics Data System (ADS)
Loranty, Michael M.; Mackay, D. Scott; Ewers, Brent E.; Adelman, Jonathan D.; Kruger, Eric L.
2008-02-01
Assumed representative center-of-stand measurements are typical inputs to models that scale forest transpiration to stand and regional extents. These inputs do not consider gradients in transpiration at stand boundaries or along moisture gradients and therefore potentially bias the large-scale estimates. We measured half-hourly sap flux (JS) for 173 trees in a spatially explicit cyclic sampling design across a topographically controlled gradient between a forested wetland and upland forest in northern Wisconsin. Our analyses focused on three dominant species in the site: quaking aspen (Populus tremuloides Michx), speckled alder (Alnus incana (DuRoi) Spreng), and white cedar (Thuja occidentalis L.). Sapwood area (AS) was used to scale JS to whole tree transpiration (EC). Because spatial patterns imply underlying processes, geostatistical analyses were employed to quantify patterns of spatial autocorrelation across the site. A simple Jarvis type model parameterized using a Monte Carlo sampling approach was used to simulate EC (EC-SIM). EC-SIM was compared with observed EC(EC-OBS) and found to reproduce both the temporal trends and spatial variance of canopy transpiration. EC-SIM was then used to examine spatial autocorrelation as a function of environmental drivers. We found no spatial autocorrelation in JS across the gradient from forested wetland to forested upland. EC was spatially autocorrelated and this was attributed to spatial variation in AS which suggests species spatial patterns are important for understanding spatial estimates of transpiration. However, the range of autocorrelation in EC-SIM decreased linearly with increasing vapor pressure deficit, implying that consideration of spatial variation in the sensitivity of canopy stomatal conductance to D is also key to accurately scaling up transpiration in space.
Occupants' Perceptions of Amenity and Efficiency for Verification of Spatial Design Adequacy.
Lee, Sangwon; Wohn, Kwangyun
2016-01-14
The best spatial design condition to satisfy the occupancy needs of amenity and efficiency is determined through analyzing the spatial design adequacy (SDA). In this study, the relationship between the space design elements and space on future occupants' perception are analyzed. The thirty-three participants reported their self-evaluated SDA that describes the quality of eight alternative housing living rooms with different spatial factors. The occupants were guided through the perception processing elaboration in order for them to evaluate the actual perception in the real space. The findings demonstrated that the spatial size (e.g., width, depth, and height) is significantly correlated with the overall satisfaction of amenity. It is also found that the spatial shape (e.g., the width-to-depth ratio, the height-to-area ratio, and room shape) may significantly influence the overall satisfaction of efficiency. The findings also demonstrate that the causal relationship between the spatial factors and space is clearly present in the occupants' perception, reflecting the time-sequential characteristics of the actual experience divided into amenity and efficiency. This result indicates that the correlation between the spatial factors and space of SDA under the occupants' perception processing elaboration can be a useful guide to predict the occupancy satisfaction of amenity and efficiency in real spaces.
Occupants’ Perceptions of Amenity and Efficiency for Verification of Spatial Design Adequacy
Lee, Sangwon; Wohn, Kwangyun
2016-01-01
The best spatial design condition to satisfy the occupancy needs of amenity and efficiency is determined through analyzing the spatial design adequacy (SDA). In this study, the relationship between the space design elements and space on future occupants’ perception are analyzed. The thirty-three participants reported their self-evaluated SDA that describes the quality of eight alternative housing living rooms with different spatial factors. The occupants were guided through the perception processing elaboration in order for them to evaluate the actual perception in the real space. The findings demonstrated that the spatial size (e.g., width, depth, and height) is significantly correlated with the overall satisfaction of amenity. It is also found that the spatial shape (e.g., the width-to-depth ratio, the height-to-area ratio, and room shape) may significantly influence the overall satisfaction of efficiency. The findings also demonstrate that the causal relationship between the spatial factors and space is clearly present in the occupants’ perception, reflecting the time-sequential characteristics of the actual experience divided into amenity and efficiency. This result indicates that the correlation between the spatial factors and space of SDA under the occupants’ perception processing elaboration can be a useful guide to predict the occupancy satisfaction of amenity and efficiency in real spaces. PMID:26784211
Effects of lorazepam on visual perceptual abilities.
Pompéia, S; Pradella-Hallinan, M; Manzano, G M; Bueno, O F A
2008-04-01
To evaluate the effects of an acute dose of the benzodiazepine (BZ) lorazepam in young healthy volunteers on five distinguishable visual perception abilities determined by previous factor-analytic studies. This was a double-blind, cross-over design study of acute oral doses of lorazepam (2 mg) and placebo in young healthy volunteers. We focused on a set of paper-and-pencil tests of visual perceptual abilities that load on five correlated but distinguishable factors (Spatial Visualization, Spatial Relations, Perceptual Speed, Closure Speed, and Closure Flexibility). Some other tests (DSST, immediate and delayed recall of prose; measures of subjective mood alterations) were used to control for the classic BZ-induced effects. Lorazepam impaired performance in the DSST and delayed recall of prose, increased subjective sedation and impaired tasks of all abilities except Spatial Visualization and Closure Speed. Only impairment in Perceptual Speed (Identical Pictures task) and delayed recall of prose were not explained by sedation. Acute administration of lorazepam, in a dose that impaired episodic memory, selectively affected different visual perceptual abilities before and after controlling for sedation. Central executive demands and sedation did not account for results, so impairment in the Identical Pictures task may be attributed to lorazepam's visual processing alterations. 2008 John Wiley & Sons, Ltd.
Students’ Spatial Ability through Open-Ended Approach Aided by Cabri 3D
NASA Astrophysics Data System (ADS)
Priatna, N.
2017-09-01
The use of computer software such as Cabri 3D for learning activities is very unlimited. Students can adjust their learning speed according to their level of ability. Open-ended approach strongly supports the use of computer software in learning, because the goal of open-ended learning is to help developing creative activities and mathematical mindset of students through problem solving simultaneously. In other words, creative activities and mathematical mindset of students should be developed as much as possible in accordance with the ability of spatial ability of each student. Spatial ability is the ability of students in constructing and representing geometry models. This study aims to determine the improvement of spatial ability of junior high school students who obtained learning with open-ended approach aided by Cabri 3D. It adopted a quasi-experimental method with the non-randomized control group pretest-posttest design and the 2×3 factorial model. The instrument of the study is spatial ability test. Based on analysis of the data, it is found that the improvement of spatial ability of students who received open-ended learning aided by Cabri 3D was greater than students who received expository learning, both as a whole and based on the categories of students’ initial mathematical ability.
Report on Component 2 - Designing New Methods for Visualizing Text in Spatial Contexts
2012-10-31
W9132V-11-P-0010 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Alexander Savelyev , Scott Pezanowski, Anthony C. Robinson, and Alan M...e Component 2 – Designing New Methods for Visualizing Text in Spatial Contexts Alexander Savelyev , Scott Pezanowski, Anthony Robinson and Alan...Center, Penn State University Report on Component 2: Component 2 – Designing New Methods for Visualizing Text in Spatial Contexts Alexander
NASA Astrophysics Data System (ADS)
Benhalouche, Fatima Zohra; Karoui, Moussa Sofiane; Deville, Yannick; Ouamri, Abdelaziz
2017-04-01
This paper proposes three multisharpening approaches to enhance the spatial resolution of urban hyperspectral remote sensing images. These approaches, related to linear-quadratic spectral unmixing techniques, use a linear-quadratic nonnegative matrix factorization (NMF) multiplicative algorithm. These methods begin by unmixing the observable high-spectral/low-spatial resolution hyperspectral and high-spatial/low-spectral resolution multispectral images. The obtained high-spectral/high-spatial resolution features are then recombined, according to the linear-quadratic mixing model, to obtain an unobservable multisharpened high-spectral/high-spatial resolution hyperspectral image. In the first designed approach, hyperspectral and multispectral variables are independently optimized, once they have been coherently initialized. These variables are alternately updated in the second designed approach. In the third approach, the considered hyperspectral and multispectral variables are jointly updated. Experiments, using synthetic and real data, are conducted to assess the efficiency, in spatial and spectral domains, of the designed approaches and of linear NMF-based approaches from the literature. Experimental results show that the designed methods globally yield very satisfactory spectral and spatial fidelities for the multisharpened hyperspectral data. They also prove that these methods significantly outperform the used literature approaches.
Symmetry-protected zero-mode laser with a tunable spatial profile
NASA Astrophysics Data System (ADS)
Ge, Li
Majorana zero modes in condense matter systems have attracted considerable interest in topological quantum computation. In contrast, while robust zero modes have been observed in various photonic lattices, it remains an open question whether they can be used for the same purpose. To advance significantly the state-of-the-art in zero-mode photonics, new inspirations are needed for a better design and control of photonic systems. Using the zero modes protected by non-Hermitian particle-hole symmetry in a photonic lattice and the spatial degrees of freedom they offer, we propose a single-mode, fixed-frequency, and spatially tunable zero-mode laser. The system does not need to have zero modes before a localized pump is applied; they are created by the spontaneous restoration of particle-hole symmetry. By modifying this process using different pump configurations, we present a versatile way to tune the spatial profile of our zero-mode laser, with its lasing frequency pinned at the zero energy. Such a zero-mode laser may find applications in telecommunication, where spatial encoding is held by some to be last frontier of signal processing. This project is supported by the NSF under Grant No. DMR-1506987.
Web-based GIS for spatial pattern detection: application to malaria incidence in Vietnam.
Bui, Thanh Quang; Pham, Hai Minh
2016-01-01
There is a great concern on how to build up an interoperable health information system of public health and health information technology within the development of public information and health surveillance programme. Technically, some major issues remain regarding to health data visualization, spatial processing of health data, health information dissemination, data sharing and the access of local communities to health information. In combination with GIS, we propose a technical framework for web-based health data visualization and spatial analysis. Data was collected from open map-servers and geocoded by open data kit package and data geocoding tools. The Web-based system is designed based on Open-source frameworks and libraries. The system provides Web-based analyst tool for pattern detection through three spatial tests: Nearest neighbour, K function, and Spatial Autocorrelation. The result is a web-based GIS, through which end users can detect disease patterns via selecting area, spatial test parameters and contribute to managers and decision makers. The end users can be health practitioners, educators, local communities, health sector authorities and decision makers. This web-based system allows for the improvement of health related services to public sector users as well as citizens in a secure manner. The combination of spatial statistics and web-based GIS can be a solution that helps empower health practitioners in direct and specific intersectional actions, thus provide for better analysis, control and decision-making.
Reducing the pressure drag of a D-shaped bluff body using linear feedback control
NASA Astrophysics Data System (ADS)
Dalla Longa, L.; Morgans, A. S.; Dahan, J. A.
2017-12-01
The pressure drag of blunt bluff bodies is highly relevant in many practical applications, including to the aerodynamic drag of road vehicles. This paper presents theory revealing that a mean drag reduction can be achieved by manipulating wake flow fluctuations. A linear feedback control strategy then exploits this idea, targeting attenuation of the spatially integrated base (back face) pressure fluctuations. Large-eddy simulations of the flow over a D-shaped blunt bluff body are used as a test-bed for this control strategy. The flow response to synthetic jet actuation is characterised using system identification, and controller design is via shaping of the frequency response to achieve fluctuation attenuation. The designed controller successfully attenuates integrated base pressure fluctuations, increasing the time-averaged pressure on the body base by 38%. The effect on the flow field is to push the roll-up of vortices further downstream and increase the extent of the recirculation bubble. This control approach uses only body-mounted sensing/actuation and input-output model identification, meaning that it could be applied experimentally.
Characterization of a normal control group: are they healthy?
Aine, C J; Sanfratello, L; Adair, J C; Knoefel, J E; Qualls, C; Lundy, S L; Caprihan, A; Stone, D; Stephen, J M
2014-01-01
We examined the health of a control group (18-81years) in our aging study, which is similar to control groups used in other neuroimaging studies. The current study was motivated by our previous results showing that one third of the elder control group had moderate to severe white matter hyperintensities and/or cortical volume loss which correlated with poor performance on memory tasks. Therefore, we predicted that cardiovascular risk factors (e.g., hypertension, high cholesterol) within the control group would account for significant variance on working memory task performance. Fifty-five participants completed 4 verbal and spatial working memory tasks, neuropsychological exams, diffusion tensor imaging (DTI), and blood tests to assess vascular risk. In addition to using a repeated measures ANOVA design, a cluster analysis was applied to the vascular risk measures as a data reduction step to characterize relationships between conjoint risk factors. The cluster groupings were used to predict working memory performance. The results show that higher levels of systolic blood pressure were associated with: 1) poor spatial working memory accuracy; and 2) lower fractional anisotropy (FA) values in multiple brain regions. In contrast, higher levels of total cholesterol corresponded with increased accuracy in verbal working memory. An association between lower FA values and higher cholesterol levels were identified in different brain regions from those associated with systolic blood pressure. The conjoint risk analysis revealed that Risk Cluster Group 3 (the group with the greatest number of risk factors) displayed: 1) the poorest performance on the spatial working memory tasks; 2) the longest reaction times across both spatial and verbal memory tasks; and 3) the lowest FA values across widespread brain regions. Our results confirm that a considerable range of vascular risk factors are present in a typical control group, even in younger individuals, which have robust effects on brain anatomy and function. These results present a new challenge to neuroimaging studies both for defining a cohort from which to characterize 'normative' brain circuitry and for establishing a control group to compare with other clinical populations. © 2013.
Active control of transmission loss with smart foams.
Kundu, Abhishek; Berry, Alain
2011-02-01
Smart foams combine the complimentary advantages of passive foam material and spatially distributed piezoelectric actuator embedded in it for active noise control applications. In this paper, the problem of improving the transmission loss of smart foams using active control strategies has been investigated both numerically and experimentally inside a waveguide under the condition of plane wave propagation. The finite element simulation of a coupled noise control system has been undertaken with three different smart foam designs and their effectiveness in cancelling the transmitted wave downstream of the smart foam have been studied. The simulation results provide insight into the physical phenomenon of active noise cancellation and explain the impact of the smart foam designs on the optimal active control results. Experimental studies aimed at implementing the real-time control for transmission loss optimization have been performed using the classical single input/single output filtered-reference least mean squares algorithm. The active control results with broadband and single frequency primary source inputs demonstrate a good improvement in the transmission loss of the smart foams. The study gives a comparative description of the transmission and absorption control problems in light of the modification of the vibration response of the piezoelectric actuator under active control.
Method and Apparatus for Improved Spatial Light Modulation
NASA Technical Reports Server (NTRS)
Soutar, Colin (Inventor); Juday, Richard D. (Inventor)
2000-01-01
A method and apparatus for modulating a light beam in an optical processing system is described. Preferably, an electrically-controlled polarizer unit and/or an analyzer unit are utilized in combination with a spatial light modulator and a controller. Preferably, the spatial light modulator comprises a pixelated birefringent medium such as a liquid crystal video display. The combination of the electrically controlled polarizer unit and analyzer unit make it simple and fast to reconfigure the modulation described by the Jones matrix of the spatial light modulator. A particular optical processing objective is provided to the controller. The controller performs calculations and supplies control signals to the polarizer unit, the analyzer unit, and the spatial light modulator in order to obtain the optical processing objective.
Method and Apparatus for Improved Spatial Light Modulation
NASA Technical Reports Server (NTRS)
Colin, Soutar (Inventor); Juday, Richard D. (Inventor)
1999-01-01
A method and apparatus for modulating a light beam in an optical processing system is described. Preferably, an electrically-controlled polarizer unit and/or an analyzer unit are utilized in combination with a spatial light modulator and a controller. Preferably, the spatial light modulator comprises a pixelated birefringent medium such as a liquid crystal video display. The combination of the electrically controlled polarizer unit and analyzer unit make it simple and fast to reconfigure the modulation described by the Jones matrix of the spatial light modulator. A particular optical processing objective is provided to the controller. The controller performs calculations and supplies control signals to the polarizer unit, the analyzer unit, and the spatial light modulator in order to obtain die optical processing objective.
Spatial resolution properties of motion-compensated tomographic image reconstruction methods.
Chun, Se Young; Fessler, Jeffrey A
2012-07-01
Many motion-compensated image reconstruction (MCIR) methods have been proposed to correct for subject motion in medical imaging. MCIR methods incorporate motion models to improve image quality by reducing motion artifacts and noise. This paper analyzes the spatial resolution properties of MCIR methods and shows that nonrigid local motion can lead to nonuniform and anisotropic spatial resolution for conventional quadratic regularizers. This undesirable property is akin to the known effects of interactions between heteroscedastic log-likelihoods (e.g., Poisson likelihood) and quadratic regularizers. This effect may lead to quantification errors in small or narrow structures (such as small lesions or rings) of reconstructed images. This paper proposes novel spatial regularization design methods for three different MCIR methods that account for known nonrigid motion. We develop MCIR regularization designs that provide approximately uniform and isotropic spatial resolution and that match a user-specified target spatial resolution. Two-dimensional PET simulations demonstrate the performance and benefits of the proposed spatial regularization design methods.
Designing in vivo concentration gradients with discrete controlled release: a computational model
NASA Astrophysics Data System (ADS)
Walker, Edgar Y.; Barbour, Dennis L.
2010-08-01
One promising neurorehabilitation therapy involves presenting neurotrophins directly into the brain to induce growth of new neural connections. The precise control of neurotrophin concentration gradients deep within neural tissue that would be necessary for such a therapy is not currently possible, however. Here we evaluate the theoretical potential of a novel method of drug delivery, discrete controlled release (DCR), to control effective neurotrophin concentration gradients in an isotropic region of neocortex. We do so by constructing computational models of neurotrophin concentration profiles resulting from discrete release locations into the cortex and then optimizing their design for uniform concentration gradients. The resulting model indicates that by rationally selecting initial neurotrophin concentrations for drug-releasing electrode coatings in a square 16-electrode array, nearly uniform concentration gradients (i.e. planar concentration profiles) from one edge of the electrode array to the other should be obtainable. DCR therefore represents a promising new method of precisely directing neuronal growth in vivo over a wider spatial profile than would be possible with single release points.
Poulin, Robert; Lagrue, Clément
2017-01-01
The spatial distribution of individuals of any species is a basic concern of ecology. The spatial distribution of parasites matters to control and conservation of parasites that affect human and nonhuman populations. This paper develops a quantitative theory to predict the spatial distribution of parasites based on the distribution of parasites in hosts and the spatial distribution of hosts. Four models are tested against observations of metazoan hosts and their parasites in littoral zones of four lakes in Otago, New Zealand. These models differ in two dichotomous assumptions, constituting a 2 × 2 theoretical design. One assumption specifies whether the variance function of the number of parasites per host individual is described by Taylor's law (TL) or the negative binomial distribution (NBD). The other assumption specifies whether the numbers of parasite individuals within each host in a square meter of habitat are independent or perfectly correlated among host individuals. We find empirically that the variance–mean relationship of the numbers of parasites per square meter is very well described by TL but is not well described by NBD. Two models that posit perfect correlation of the parasite loads of hosts in a square meter of habitat approximate observations much better than two models that posit independence of parasite loads of hosts in a square meter, regardless of whether the variance–mean relationship of parasites per host individual obeys TL or NBD. We infer that high local interhost correlations in parasite load strongly influence the spatial distribution of parasites. Local hotspots could influence control and conservation of parasites. PMID:27994156
NASA Technical Reports Server (NTRS)
Khan, Gufran Sayeed; Gubarev, Mikhail; Speegle, Chet; Ramsey, Brian
2010-01-01
The presentation includes grazing incidence X-ray optics, motivation and challenges, mid spatial frequency generation in cylindrical polishing, design considerations for polishing lap, simulation studies and experimental results, future scope, and summary. Topics include current status of replication optics technology, cylindrical polishing process using large size polishing lap, non-conformance of polishin lap to the optics, development of software and polishing machine, deterministic prediction of polishing, polishing experiment under optimum conditions, and polishing experiment based on known error profile. Future plans include determination of non-uniformity in the polishing lap compliance, development of a polishing sequence based on a known error profile of the specimen, software for generating a mandrel polishing sequence, design an development of a flexible polishing lap, and computer controlled localized polishing process.
Visual-Spatial Art and Design Literacy as a Prelude to Aesthetic Growth
ERIC Educational Resources Information Center
Lerner, Fern
2018-01-01
In bridging ideas from the forum of visual-spatial learning with those of art and design learning, inspiration is taken from Piaget who explained that the evolution of spatial cognition occurs through perception, as well as through thought and imagination. Insights are embraced from interdisciplinary educational theorists, intertwining and…
3D-CAD Effects on Creative Design Performance of Different Spatial Abilities Students
ERIC Educational Resources Information Center
Chang, Y.
2014-01-01
Students' creativity is an important focus globally and is interrelated with students' spatial abilities. Additionally, three-dimensional computer-assisted drawing (3D-CAD) overcomes barriers to spatial expression during the creative design process. Does 3D-CAD affect students' creative abilities? The purpose of this study was to explore the…
Design and Implementation of a Mechanical Control System for the Scanning Microwave Limb Sounder
NASA Technical Reports Server (NTRS)
Bowden, William
2011-01-01
The Scanning Microwave Limb Sounder (SMLS) will use technological improvements in low noise mixers to provide precise data on the Earth's atmospheric composition with high spatial resolution. This project focuses on the design and implementation of a real time control system needed for airborne engineering tests of the SMLS. The system must coordinate the actuation of optical components using four motors with encoder readback, while collecting synchronized telemetric data from a GPS receiver and 3-axis gyrometric system. A graphical user interface for testing the control system was also designed using Python. Although the system could have been implemented with a FPGA-based setup, we chose to use a low cost processor development kit manufactured by XMOS. The XMOS architecture allows parallel execution of multiple tasks on separate threads-making it ideal for this application and is easily programmed using XC (a subset of C). The necessary communication interfaces were implemented in software, including Ethernet, with significant cost and time reduction compared to an FPGA-based approach. For these reasons, the XMOS technology is an attractive, cost effective, alternative to FPGA-based technologies for this design and similar rapid prototyping projects.
A computer graphics system for visualizing spacecraft in orbit
NASA Technical Reports Server (NTRS)
Eyles, Don E.
1989-01-01
To carry out unanticipated operations with resources already in space is part of the rationale for a permanently manned space station in Earth orbit. The astronauts aboard a space station will require an on-board, spatial display tool to assist the planning and rehearsal of upcoming operations. Such a tool can also help astronauts to monitor and control such operations as they occur, especially in cases where first-hand visibility is not possible. A computer graphics visualization system designed for such an application and currently implemented as part of a ground-based simulation is described. The visualization system presents to the user the spatial information available in the spacecraft's computers by drawing a dynamic picture containing the planet Earth, the Sun, a star field, and up to two spacecraft. The point of view within the picture can be controlled by the user to obtain a number of specific visualization functions. The elements of the display, the methods used to control the display's point of view, and some of the ways in which the system can be used are described.
Laser beam riding artillery missiles guidance device is designed
NASA Astrophysics Data System (ADS)
Yan, Mingliang; Huo, Zhicheng; Chen, Wei
2014-09-01
Laser driving gun missile guidance type beam of laser information field formed by any link failure or reduced stability will directly lead to ballistic or miss out of control, and based on this, this paper designed the driving beam of laser guided missile guidance beam type forming device modulation and zoom mechanism, in order to make the missile can recognize its position in the laser beam, laser beam gun missile, by means of spatial encoding of the laser beam laser beam into information after forming device, a surface to achieve the purpose of precision guidance.
Photoinitated charge separation in a hybrid titanium dioxide metalloporphyrin peptide material
NASA Astrophysics Data System (ADS)
Fry, H. Christopher; Liu, Yuzi; Dimitrijevic, Nada M.; Rajh, Tijana
2014-08-01
In natural systems, electron flow is mediated by proteins that spatially organize donor and acceptor molecules with great precision. Achieving this guided, directional flow of information is a desirable feature in photovoltaic media. Here, we design self-assembled peptide materials that organize multiple electronic components capable of performing photoinduced charge separation. Two peptides, c16-AHL3K3-CO2H and c16-AHL3K9-CO2H, self-assemble into fibres and provide a scaffold capable of binding a metalloporphyrin via histidine axial ligation and mineralize titanium dioxide (TiO2) on the lysine-rich surface of the resulting fibrous structures. Electron paramagnetic resonance studies of this self-assembled material under continuous light excitation demonstrate charge separation induced by excitation of the metalloporphyrin and mediated by the peptide assembly structure. This approach to dye-sensitized semiconducting materials offers a means to spatially control the dye molecule with respect to the semiconducting material through careful, strategic peptide design.
Hohimer, John P.
1994-01-01
A high-power broad-area semiconductor laser having a intracavity spatial phase controller is disclosed. The integrated intracavity spatial phase controller is easily formed by patterning an electrical contact metallization layer when fabricating the semiconductor laser. This spatial phase controller changes the normally broad far-field emission beam of such a laser into a single-lobed near-diffraction-limited beam at pulsed output powers of over 400 mW. Two operating modes, a thermal and a gain operating mode, exist for the phase controller, allowing for steering and switching the beam as the modes of operation are switched, and the emission beam may be scanned, for example, over a range of 1.4 degrees or switched by 8 degrees. More than one spatial phase controller may be integrated into the laser structure.
Hohimer, J.P.
1994-06-07
A high-power broad-area semiconductor laser having a intracavity spatial phase controller is disclosed. The integrated intracavity spatial phase controller is easily formed by patterning an electrical contact metallization layer when fabricating the semiconductor laser. This spatial phase controller changes the normally broad far-field emission beam of such a laser into a single-lobed near-diffraction-limited beam at pulsed output powers of over 400 mW. Two operating modes, a thermal and a gain operating mode, exist for the phase controller, allowing for steering and switching the beam as the modes of operation are switched, and the emission beam may be scanned, for example, over a range of 1.4 degrees or switched by 8 degrees. More than one spatial phase controller may be integrated into the laser structure. 6 figs.
Paltoglou, Aspasia E; Sumner, Christian J; Hall, Deborah A
2011-01-01
Feature-specific enhancement refers to the process by which selectively attending to a particular stimulus feature specifically increases the response in the same region of the brain that codes that stimulus property. Whereas there are many demonstrations of this mechanism in the visual system, the evidence is less clear in the auditory system. The present functional magnetic resonance imaging (fMRI) study examined this process for two complex sound features, namely frequency modulation (FM) and spatial motion. The experimental design enabled us to investigate whether selectively attending to FM and spatial motion enhanced activity in those auditory cortical areas that were sensitive to the two features. To control for attentional effort, the difficulty of the target-detection tasks was matched as closely as possible within listeners. Locations of FM-related and motion-related activation were broadly compatible with previous research. The results also confirmed a general enhancement across the auditory cortex when either feature was being attended to, as compared with passive listening. The feature-specific effects of selective attention revealed the novel finding of enhancement for the nonspatial (FM) feature, but not for the spatial (motion) feature. However, attention to spatial features also recruited several areas outside the auditory cortex. Further analyses led us to conclude that feature-specific effects of selective attention are not statistically robust, and appear to be sensitive to the choice of fMRI experimental design and localizer contrast. PMID:21447093
Control of Plasmon Dynamics in Coupled Plasmonic Hybrid Mode Microcavities
2012-07-10
the electromagnetic resonances , the development of plasmonic metamaterials with negative index of refraction opened a new perspective towards achieving...signals in a deep-subwavelength regime, spatially localized surface plasmons show strong electronic resonances that allow their use for the design of...ring resonators ,21 and metallic photonic crystals .22,23 In this paper we focus our attention on a silicon-based plasmonic pulsar; essentially, we address
1977-02-01
Complex Displays.............................. 121 *The Nature of the Internal Representation................ 122 Spatial Memory...Purpose Function Keyboards....................... 290 Natural Language.......................................... 291 - .Human Speech...course, the information with which any given individual has to cope is likely to be of more than one type. In general, the nature of the information that
Attention Effects on Form Discrimination at Different Eccentricities
1989-01-01
and Zimba (1985) also were not suggestive of a fixed-velocity movement of attention, althouqh their study was not designed to test this hypothesis. In...opposite hemifield as the foveal or peripheral precue. Similar results occurred at the vertical meridian and at the horizontal meridian (Hughes & Zimba ...M. S. (1981). Dissociation of spatial information for stimulus localization and the control of attention. Brain, 104, 861-872. Hughes, H. C., & Zimba
The mathematics behind chimera states
NASA Astrophysics Data System (ADS)
Omel’chenko, O. E.
2018-05-01
Chimera states are self-organized spatiotemporal patterns of coexisting coherence and incoherence. We give an overview of the main mathematical methods used in studies of chimera states, focusing on chimera states in spatially extended coupled oscillator systems. We discuss the continuum limit approach to these states, Ott-Antonsen manifold reduction, finite size chimera states, control of chimera states and the influence of system design on the type of chimera state that is observed.
Supervisory Presentation for Research, Information, Integration and Testing (SPRINT)
2015-03-29
autonomous UAVs in subsequent tests. The Vigilant Spirit Control Station ( VSCS ) is a test bed designed by the Air Force Research Laboratory for studying... VSCS has tactical situation displays (i.e., geo-spatial maps), vehicle status displays, route planning interfaces for creating vehicle flight plans...is considered one of those novel displays; Figure 2). The model builder software was integrated into the VSCS that constructs a mission model that is
Chen, Chen; Duru, Paul; Joseph, Pierre; Geoffroy, Sandrine; Prat, Marc
2017-11-08
Evaporation is a key phenomenon in the natural environment and in many technological systems involving capillary structures. Understanding the evaporation front dynamics enables the evaporation rate from microfluidic devices and porous media to be finely controlled. Of particular interest is the ability to control the position of the front through suitable design of the capillary structure. Here, we show how to design model capillary structures in microfluidic devices so as to control the drying kinetics. This is achieved by acting on the spatial organization of the constrictions that influence the invasion of the structure by the gas phase. Two types of control are demonstrated. The first is intended to control the sequence of primary invasions through the pore space, while the second aims to control the secondary liquid structures: films, bridges, etc., that can form in the region of pore space invaded by the gas phase. It is shown how the latter can be obtained from phyllotaxy-inspired geometry. Our study thus opens up a route toward the control of the evaporation kinetics by means of tailored capillary structures.
Synthetic perspective optical flow: Influence on pilot control tasks
NASA Technical Reports Server (NTRS)
Bennett, C. Thomas; Johnson, Walter W.; Perrone, John A.; Phatak, Anil V.
1989-01-01
One approach used to better understand the impact of visual flow on control tasks has been to use synthetic perspective flow patterns. Such patterns are the result of apparent motion across a grid or random dot display. Unfortunately, the optical flow so generated is based on a subset of the flow information that exists in the real world. The danger is that the resulting optical motions may not generate the visual flow patterns useful for actual flight control. Researchers conducted a series of studies directed at understanding the characteristics of synthetic perspective flow that support various pilot tasks. In the first of these, they examined the control of altitude over various perspective grid textures (Johnson et al., 1987). Another set of studies was directed at studying the head tracking of targets moving in a 3-D coordinate system. These studies, parametric in nature, utilized both impoverished and complex virtual worlds represented by simple perspective grids at one extreme, and computer-generated terrain at the other. These studies are part of an applied visual research program directed at understanding the design principles required for the development of instruments displaying spatial orientation information. The experiments also highlight the need for modeling the impact of spatial displays on pilot control tasks.
Hajiaghajani, Amirhossein; Abdolali, Ali
2018-05-01
In cancer therapy, magnetic drug targeting is considered as an effective treatment to reduce chemotherapy's side effects. The accurate design and shaping of magnetic fields are crucial for healthy cells to be immune from chemotherapeutics. In this paper, arbitrary 2-dimensional spatial patterns of magnetic fields from DC to megahertz are represented in terms of spatial Fourier spectra with sinusoidal eigenfunctions. Realization of each spatial frequency was investigated by a set of elliptical coils. Therefore, it is shown that the desired pattern was synthesized by simultaneous use of coil sets. Currents running on each set were obtained via fast and straightforward analytical Fourier series calculation. Experimentally scanned sample patterns were in close agreement with full wave analysis. Discussions include the evaluation of the Fourier series approximation error and cross-polarization of produced magnetic fields. It was observed that by employing the controlled magnetic field produced by the proposed setup, we were able to steer therapeutic particles toward the right or left half-spheres of the breast, with an efficiency of 90%. Such a pattern synthesizer may be employed in numerous human arteries as well as other bioelectromagnetic patterning applications, e.g., wireless power transfer, magnetic innervation, and tomography. Bioelectromagnetics. 39:325-338, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
Effects of checklist interface on non-verbal crew communications
NASA Technical Reports Server (NTRS)
Segal, Leon D.
1994-01-01
The investigation looked at the effects of the spatial layout and functionality of cockpit displays and controls on crew communication. Specifically, the study focused on the intra-cockpit crew interaction, and subsequent task performance, of airline pilots flying different configurations of a new electronic checklist, designed and tested in a high-fidelity simulator at NASA Ames Research Center. The first part of this proposal establishes the theoretical background for the assumptions underlying the research, suggesting that in the context of the interaction between a multi-operator crew and a machine, the design and configuration of the interface will affect interactions between individual operators and the machine, and subsequently, the interaction between operators. In view of the latest trends in cockpit interface design and flight-deck technology, in particular, the centralization of displays and controls, the introduction identifies certain problems associated with these modern designs and suggests specific design issues to which the expected results could be applied. A detailed research program and methodology is outlined and the results are described and discussed. Overall, differences in cockpit design were shown to impact the activity within the cockpit, including interactions between pilots and aircraft and the cooperative interactions between pilots.
Visualizing topography: Effects of presentation strategy, gender, and spatial ability
NASA Astrophysics Data System (ADS)
McAuliffe, Carla
2003-10-01
This study investigated the effect of different presentation strategies (2-D static visuals, 3-D animated visuals, and 3-D interactive, animated visuals) and gender on achievement, time-spent-on visual treatment, and attitude during a computer-based science lesson about reading and interpreting topographic maps. The study also examined the relationship of spatial ability and prior knowledge to gender, achievement, and time-spent-on visual treatment. Students enrolled in high school chemistry-physics were pretested and given two spatial ability tests. They were blocked by gender and randomly assigned to one of three levels of presentation strategy or the control group. After controlling for the effects of spatial ability and prior knowledge with analysis of covariance, three significant differences were found between the versions: (a) the 2-D static treatment group scored significantly higher on the posttest than the control group; (b) the 3-D animated treatment group scored significantly higher on the posttest than the control group; and (c) the 2-D static treatment group scored significantly higher on the posttest than the 3-D interactive animated treatment group. Furthermore, the 3-D interactive animated treatment group spent significantly more time on the visual screens than the 2-D static treatment group. Analyses of student attitudes revealed that most students felt the landform visuals in the computer-based program helped them learn, but not in a way they would describe as fun. Significant differences in attitude were found by treatment and by gender. In contrast to findings from other studies, no gender differences were found on either of the two spatial tests given in this study. Cognitive load, cognitive involvement, and solution strategy are offered as three key factors that may help explain the results of this study. Implications for instructional design include suggestions about the use of 2-D static, 3-D animated and 3-D interactive animations as well as a recommendation about the inclusion of pretests in similar instructional programs. Areas for future research include investigating the effects of combinations of presentation strategies, continuing to examine the role of spatial ability in science achievement, and gaining cognitive insights about what it is that students do when learning to read and interpret topographic maps.
Retrieving and Indexing Spatial Data in the Cloud Computing Environment
NASA Astrophysics Data System (ADS)
Wang, Yonggang; Wang, Sheng; Zhou, Daliang
In order to solve the drawbacks of spatial data storage in common Cloud Computing platform, we design and present a framework for retrieving, indexing, accessing and managing spatial data in the Cloud environment. An interoperable spatial data object model is provided based on the Simple Feature Coding Rules from the OGC such as Well Known Binary (WKB) and Well Known Text (WKT). And the classic spatial indexing algorithms like Quad-Tree and R-Tree are re-designed in the Cloud Computing environment. In the last we develop a prototype software based on Google App Engine to implement the proposed model.
NASA Astrophysics Data System (ADS)
Troch, Peter A.; Pangle, Luke; Niu, Guo-Yue; Dontsova, Katerina; Barron-Gafford, Greg; van Haren, Joost; Pavao-Zuckerman, Mitch
2014-05-01
The Landscape Evolution Observatory (LEO) at Biosphere 2-The University of Arizona consists of three identical, sloping, 333 m2 convergent landscapes inside a 5,000 m2 environmentally controlled facility. These engineered landscapes contain 1-meter depth of basaltic tephra, ground to homogenous loamy sand that will undergo physical, chemical, and mineralogical changes over many years. Each landscape contains a spatially dense sensor and sampler network capable of resolving meter-scale lateral heterogeneity and sub-meter scale vertical heterogeneity in moisture, energy and carbon states and fluxes. The density of sensors and frequency at which they can be polled allows for data collection at spatial and temporal scales that are impossible in natural field settings. Embedded solution and gas samplers allow for quantification of biogeochemical processes, and facilitate the use of chemical tracers to study water movement at very high spatial resolutions. Each ~600 metric ton landscape has load cells embedded into the structure to measure changes in total system mass with 0.05% full-scale repeatability (equivalent to less than 1 cm of precipitation). This facilitates the real time accounting of hydrological partitioning at the hillslope scale. Each hillslope is equipped with an engineered rain system capable of raining at rates between 3 and 45 mm/hr in a range of spatial patterns. The rain systems are capable of creating long-term steady state conditions or running complex simulations. The precipitation water supply storage system is flexibly designed to facilitate addition of tracers at constant or time-varying rates for any of the three hillslopes. This presentation will discuss detection of early landscape evolution in terms of hydrological, geochemical and microbial processes through controlled experimentation, data analysis, and numerical modeling during the commissioning phase of the first hillslope at LEO.
3D printing of bacteria into functional complex materials.
Schaffner, Manuel; Rühs, Patrick A; Coulter, Fergal; Kilcher, Samuel; Studart, André R
2017-12-01
Despite recent advances to control the spatial composition and dynamic functionalities of bacteria embedded in materials, bacterial localization into complex three-dimensional (3D) geometries remains a major challenge. We demonstrate a 3D printing approach to create bacteria-derived functional materials by combining the natural diverse metabolism of bacteria with the shape design freedom of additive manufacturing. To achieve this, we embedded bacteria in a biocompatible and functionalized 3D printing ink and printed two types of "living materials" capable of degrading pollutants and of producing medically relevant bacterial cellulose. With this versatile bacteria-printing platform, complex materials displaying spatially specific compositions, geometry, and properties not accessed by standard technologies can be assembled from bottom up for new biotechnological and biomedical applications.
Rathee, Manu; Tamrakar, Amit Kumar; Kundu, Renu; Yunus, Nadeem
2014-01-01
Facial deformity can be debilitating, especially in the psychological and cosmetic aspects. Although surgical correction or replacement of deformed or missing parts is the ideal treatment, prosthetic replacement serves the purpose in case of surgical limitations. Prosthetic rehabilitation of a missing auricle is an acceptable option as it provides better control over the tortuous anatomical shape and shade of the missing portion. Improper spatial orientation of the prosthetic ear on the face can damage the results of even the most aesthetic prosthesis. This case report describes a simple and innovative method for precise spatial orientation of auricular trial prosthesis using a facebow and custom-made adjustable mechanical retention design using stainless steel wire. PMID:25096652
3D printing of bacteria into functional complex materials
Schaffner, Manuel; Rühs, Patrick A.; Coulter, Fergal; Kilcher, Samuel; Studart, André R.
2017-01-01
Despite recent advances to control the spatial composition and dynamic functionalities of bacteria embedded in materials, bacterial localization into complex three-dimensional (3D) geometries remains a major challenge. We demonstrate a 3D printing approach to create bacteria-derived functional materials by combining the natural diverse metabolism of bacteria with the shape design freedom of additive manufacturing. To achieve this, we embedded bacteria in a biocompatible and functionalized 3D printing ink and printed two types of “living materials” capable of degrading pollutants and of producing medically relevant bacterial cellulose. With this versatile bacteria-printing platform, complex materials displaying spatially specific compositions, geometry, and properties not accessed by standard technologies can be assembled from bottom up for new biotechnological and biomedical applications. PMID:29214219
Modularity and design principles in the sea urchin embryo gene regulatory network
Peter, Isabelle S.; Davidson, Eric H.
2010-01-01
The gene regulatory network (GRN) established experimentally for the pre-gastrular sea urchin embryo provides causal explanations of the biological functions required for spatial specification of embryonic regulatory states. Here we focus on the structure of the GRN which controls the progressive increase in complexity of territorial regulatory states during embryogenesis; and on the types of modular subcircuits of which the GRN is composed. Each of these subcircuit topologies executes a particular operation of spatial information processing. The GRN architecture reflects the particular mode of embryogenesis represented by sea urchin development. Network structure not only specifies the linkages constituting the genomic regulatory code for development, but also indicates the various regulatory requirements of regional developmental processes. PMID:19932099
The development and modeling of devices and paradigms for transcranial magnetic stimulation
Goetz, Stefan M.; Deng, Zhi-De
2017-01-01
Magnetic stimulation is a noninvasive neurostimulation technique that can evoke action potentials and modulate neural circuits through induced electric fields. Biophysical models of magnetic stimulation have become a major driver for technological developments and the understanding of the mechanisms of magnetic neurostimulation and neuromodulation. Major technological developments involve stimulation coils with different spatial characteristics and pulse sources to control the pulse waveform. While early technological developments were the result of manual design and invention processes, there is a trend in both stimulation coil and pulse source design to mathematically optimize parameters with the help of computational models. To date, macroscopically highly realistic spatial models of the brain as well as peripheral targets, and user-friendly software packages enable researchers and practitioners to simulate the treatment-specific and induced electric field distribution in the brains of individual subjects and patients. Neuron models further introduce the microscopic level of neural activation to understand the influence of activation dynamics in response to different pulse shapes. A number of models that were designed for online calibration to extract otherwise covert information and biomarkers from the neural system recently form a third branch of modeling. PMID:28443696
A cylindrical SPECT camera with de-centralized readout scheme
NASA Astrophysics Data System (ADS)
Habte, F.; Stenström, P.; Rillbert, A.; Bousselham, A.; Bohm, C.; Larsson, S. A.
2001-09-01
An optimized brain single photon emission computed tomograph (SPECT) camera is being designed at Stockholm University and Karolinska Hospital. The design goal is to achieve high sensitivity, high-count rate and high spatial resolution. The sensitivity is achieved by using a cylindrical crystal, which gives a closed geometry with large solid angles. A de-centralized readout scheme where only a local environment around the light excitation is readout supports high-count rates. The high resolution is achieved by using an optimized crystal configuration. A 12 mm crystal plus 12 mm light guide combination gave an intrinsic spatial resolution better than 3.5 mm (140 keV) in a prototype system. Simulations show that a modified configuration can improve this value. A cylindrical configuration with a rotating collimator significantly simplifies the mechanical design of the gantry. The data acquisition and control system uses early digitization and subsequent digital signal processing to extract timing and amplitude information, and monitors the position of the collimator. The readout system consists of 12 or more modules each based on programmable logic and a digital signal processor. The modules send data to a PC file server-reconstruction engine via a Firewire (IEEE-1394) network.
A delivery device for presentation of tactile stimuli during functional magnetic resonance imaging.
Dykes, Robert W; Miqueé, Aline; Xerri, Christian; Zennou-Azogui, Yoh'i; Rainville, Constant; Dumoulin, André; Marineau, Daniel
2007-01-30
We describe a novel stimulus delivery system designed to present tactile stimuli to a subject in the tunnel of a magnetic resonance imaging (MRI) system. Using energy from an air-driven piston to turn a wheel, the device advances a conveyor belt with a pre-determined sequence of stimuli that differ in their spatial features into the tunnel of the MRI. The positioning of one or several stimulus objects in a window near the subject's hand is controlled by a photoelectric device that detects periodic openings in the conveyor belt. Using this electric signal to position each presentation avoids cumulative positioning errors and provides a signal related to the progression of the experiment. We used a series of shapes that differed in their spatial features but the device could carry stimuli with a diversity of shapes and textures. This flexibility allows the experimenter to design a wide variety of psychophysical experiments in the haptic world and possibly to compare and contrast these stimuli with the cognitive treatment of similar stimuli delivered to the other senses. Appropriate experimental design allows separation of motor, sensory and memory storage phases of mental processes.
The development and modelling of devices and paradigms for transcranial magnetic stimulation.
Goetz, Stefan M; Deng, Zhi-De
2017-04-01
Magnetic stimulation is a non-invasive neurostimulation technique that can evoke action potentials and modulate neural circuits through induced electric fields. Biophysical models of magnetic stimulation have become a major driver for technological developments and the understanding of the mechanisms of magnetic neurostimulation and neuromodulation. Major technological developments involve stimulation coils with different spatial characteristics and pulse sources to control the pulse waveform. While early technological developments were the result of manual design and invention processes, there is a trend in both stimulation coil and pulse source design to mathematically optimize parameters with the help of computational models. To date, macroscopically highly realistic spatial models of the brain, as well as peripheral targets, and user-friendly software packages enable researchers and practitioners to simulate the treatment-specific and induced electric field distribution in the brains of individual subjects and patients. Neuron models further introduce the microscopic level of neural activation to understand the influence of activation dynamics in response to different pulse shapes. A number of models that were designed for online calibration to extract otherwise covert information and biomarkers from the neural system recently form a third branch of modelling.
Performance Evaluation of Passive Haptic Feedback for Tactile HMI Design in CAVEs.
Lassagne, Antoine; Kemeny, Andras; Posselt, Javier; Merienne, Frederic
2018-01-01
This article presents a comparison of different haptic systems, which are designed to simulate flat Human Machine Interfaces (HMIs) like touchscreens in virtual environments (VEs) such as CAVEs, and their respective performance. We compare a tangible passive transparent slate to a classic tablet and a sensory substitution system. These systems were tested during a controlled experiment. The performance and impressions from 20 subjects were collected to understand more about the modalities in the given context. The results show that the preferences of the subjects are strongly related to the use-cases and needs. In terms of performance, passive haptics proved to be significantly useful, acting as a space reference and a real-time continuous calibration system, allowing subjects to have lower execution durations and relative errors. Sensory substitution induced perception drifts during the experiment, causing significant performance disparities, demonstrating the low robustness of perception when spatial cues are insufficiently available. Our findings offer a better understanding on the nature of perception drifts and the need of strong multisensory spatial markers for such use-cases in CAVEs. The importance of a relevant haptic modality specifically designed to match a precise use-case is also emphasized.
Children's Spatial Thinking: Does Talk about the Spatial World Matter?
ERIC Educational Resources Information Center
Pruden, Shannon M.; Levine, Susan C.; Huttenlocher, Janellen
2011-01-01
In this paper we examine the relations between parent spatial language input, children's own production of spatial language, and children's later spatial abilities. Using a longitudinal study design, we coded the use of spatial language (i.e. words describing the spatial features and properties of objects; e.g. big, tall, circle, curvy, edge) from…
The display of spatial information and visually guided behavior
NASA Technical Reports Server (NTRS)
Bennett, C. Thomas
1991-01-01
The basic informational elements of spatial orientation are attitude and position within a coordinate system. The problem that faces aeronautical designers is that a pilot must deal with several coordinate systems, sometimes simultaneously. The display must depict unambiguously not only position and attitude, but also designate the relevant coordinate system. If this is not done accurately, spatial disorientation can occur. The different coordinate systems used in aeronautical tasks and the problems that occur in the display of spatial information are explained.
Spatial filters for high-peak-power multistage laser amplifiers.
Potemkin, A K; Barmashova, T V; Kirsanov, A V; Martyanov, M A; Khazanov, E A; Shaykin, A A
2007-07-10
We describe spatial filters used in a Nd:glass laser with an output pulse energy up to 300 J and a pulse duration of 1 ns. This laser is designed for pumping of a chirped-pulse optical parametric amplifier. We present data required to choose the shape and diameter of a spatial filter lens, taking into account aberrations caused by spherical surfaces. Calculation of the optimal pinhole diameter is presented. Design features of the spatial filters and the procedure of their alignment are discussed in detail.
Modification of Motion Perception and Manual Control Following Short-Durations Spaceflight
NASA Technical Reports Server (NTRS)
Wood, S. J.; Vanya, R. D.; Esteves, J. T.; Rupert, A. H.; Clement, G.
2011-01-01
Adaptive changes during space flight in how the brain integrates vestibular cues with other sensory information can lead to impaired movement coordination and spatial disorientation following G-transitions. This ESA-NASA study was designed to examine both the physiological basis and operational implications for disorientation and tilt-translation disturbances following short-duration spaceflights. The goals of this study were to (1) examine the effects of stimulus frequency on adaptive changes in motion perception during passive tilt and translation motion, (2) quantify decrements in manual control of tilt motion, and (3) evaluate vibrotactile feedback as a sensorimotor countermeasure.
Spatial Light Modulator Would Serve As Electronic Iris
NASA Technical Reports Server (NTRS)
Gutow, David A.
1991-01-01
In proposed technique for controlling brightness of image formed by lens, spatial light modulator serves as segmented, electronically variable aperture. Offers several advantages: spatial light modulator controlled remotely and responds faster than motorized iris or other remotely controlled mechanical iris. Unlike iris, modulator also configured so as not to vary depth of field appreciably. Unlike lead lanthanum zirconate titanate crystal, spatial light modulator does not require high voltage.
Design of a broadband active silencer using μ-synthesis
NASA Astrophysics Data System (ADS)
Bai, Mingsian R.; Zeung, Pingshun
2004-01-01
A robust spatially feedforward controller is developed for broadband attenuation of noise in ducts. To meet the requirements of robust performance and robust stability in the presence of plant uncertainties, a μ-synthesis procedure via D- K iteration is exploited to obtain the optimal controller. This approach considers uncertainties as modelling errors of the nominal plant in high frequency and is implemented using a floating point digital signal processor (DSP). Experimental investigation was undertaken on a finite-length duct to justify the proposed controller. The μ- controller is compared to other control algorithms such as the H2 method, the H∞ method and the filtered-U least mean square (FULMS) algorithm. Experimental results indicate that the proposed system has attained 25.8 dB maximal attenuation in the band 250-650 Hz.
Spatial Control of Condensation using Chemical Micropatterns
NASA Astrophysics Data System (ADS)
Murphy, Kevin; Hansen, Ryan; Nath, Saurabh; Retterer, Scott; Collier, Patrick; Boreyko, Jonathan; Nature-Inspired Fluids; Interfaces Team; CenterNanophase Materials Sciences Team
2015-11-01
Surfaces exhibiting wettability patterns can spatially control the nucleation of condensation to enable enhanced fog harvesting and phase-change heat transfer. To date, studies of patterned condensation have utilized a combination of chemical and topographical features, making it difficult to isolate the effects of intrinsic wettability versus surface roughness on spatially controlling the condensate. Here, we fabricate chemical micropatterns consisting of hydrophilic silicon oxide and a smooth hydrophobic silane monolayer to isolate the effects of changes in intrinsic wettability on the spatial control of condensation. Complete spatial control, defined as every nucleation and growth event occurring exclusively on the hydrophilic features, was observed even for supercooled droplets at high water vapor supersaturation. However, this complete spatial control was found to break down beyond a critical spacing that depended upon the extent of supersaturation. The average diameter of condensate was found to be smaller for the chemically micropatterned surfaces compared to a uniformly hydrophobic surface. Control of inter-droplet spacing between supercooled condensate through chemical patterning can be employed to minimize the growth of inter-droplet frost on cold surfaces.
KBGIS-II: A knowledge-based geographic information system
NASA Technical Reports Server (NTRS)
Smith, Terence; Peuquet, Donna; Menon, Sudhakar; Agarwal, Pankaj
1986-01-01
The architecture and working of a recently implemented Knowledge-Based Geographic Information System (KBGIS-II), designed to satisfy several general criteria for the GIS, is described. The system has four major functions including query-answering, learning and editing. The main query finds constrained locations for spatial objects that are describable in a predicate-calculus based spatial object language. The main search procedures include a family of constraint-satisfaction procedures that use a spatial object knowledge base to search efficiently for complex spatial objects in large, multilayered spatial data bases. These data bases are represented in quadtree form. The search strategy is designed to reduce the computational cost of search in the average case. The learning capabilities of the system include the addition of new locations of complex spatial objects to the knowledge base as queries are answered, and the ability to learn inductively definitions of new spatial objects from examples. The new definitions are added to the knowledge base by the system. The system is performing all its designated tasks successfully. Future reports will relate performance characteristics of the system.
Spatial design and strength of spatial signal: Effects on covariance estimation
Irvine, Kathryn M.; Gitelman, Alix I.; Hoeting, Jennifer A.
2007-01-01
In a spatial regression context, scientists are often interested in a physical interpretation of components of the parametric covariance function. For example, spatial covariance parameter estimates in ecological settings have been interpreted to describe spatial heterogeneity or “patchiness” in a landscape that cannot be explained by measured covariates. In this article, we investigate the influence of the strength of spatial dependence on maximum likelihood (ML) and restricted maximum likelihood (REML) estimates of covariance parameters in an exponential-with-nugget model, and we also examine these influences under different sampling designs—specifically, lattice designs and more realistic random and cluster designs—at differing intensities of sampling (n=144 and 361). We find that neither ML nor REML estimates perform well when the range parameter and/or the nugget-to-sill ratio is large—ML tends to underestimate the autocorrelation function and REML produces highly variable estimates of the autocorrelation function. The best estimates of both the covariance parameters and the autocorrelation function come under the cluster sampling design and large sample sizes. As a motivating example, we consider a spatial model for stream sulfate concentration.
NASA Astrophysics Data System (ADS)
Linn, Marcia C.
1995-06-01
Designing effective curricula for complex topics and incorporating technological tools is an evolving process. One important way to foster effective design is to synthesize successful practices. This paper describes a framework called scaffolded knowledge integration and illustrates how it guided the design of two successful course enhancements in the field of computer science and engineering. One course enhancement, the LISP Knowledge Integration Environment, improved learning and resulted in more gender-equitable outcomes. The second course enhancement, the spatial reasoning environment, addressed spatial reasoning in an introductory engineering course. This enhancement minimized the importance of prior knowledge of spatial reasoning and helped students develop a more comprehensive repertoire of spatial reasoning strategies. Taken together, the instructional research programs reinforce the value of the scaffolded knowledge integration framework and suggest directions for future curriculum reformers.
An exploratory study of a number sense program to develop kindergarten students' number proficiency.
Sood, Sheetal; Jitendra, Asha K
2013-01-01
This study examined the effectiveness of a number sense program on kindergarten students' number proficiency and responsiveness to treatment as a function of students' risk for mathematics difficulties. The program targeted development of relationships among numbers (e.g., spatial, more and less). A total of 101 kindergarten students (not at risk: 22 control and 36 experimental; at risk: 18 and 25) from five classrooms in a high-poverty elementary school participated in the study. Using a quasi-experimental design, classrooms were randomly assigned to either the intervention (number sense instruction, NSI) or control condition. Results indicated significant differences favoring the treatment students on all measures of number sense (e.g., spatial relationships, more and less relationships, benchmarks of five and ten, nonverbal calculations) at posttest and on a 3-week retention test. Furthermore, the effects were not mediated by at-risk status, suggesting that NSI may benefit a wide range of students. Implications in terms of preventing early mathematical learning difficulties are discussed.
Li, Shujuan; Ren, Hongyan; Hu, Wensheng; Lu, Liang; Xu, Xinliang; Zhuang, Dafang; Liu, Qiyong
2014-01-01
Hemorrhagic fever with renal syndrome (HFRS) is an important public health problem in China. The identification of the spatiotemporal pattern of HFRS will provide a foundation for the effective control of the disease. Based on the incidence of HFRS, as well as environmental factors, and social-economic factors of China from 2005–2012, this paper identified the spatiotemporal characteristics of HFRS distribution and the factors that impact this distribution. The results indicate that the spatial distribution of HFRS had a significant, positive spatial correlation. The spatiotemporal heterogeneity was affected by the temperature, precipitation, humidity, NDVI of January, NDVI of August for the previous year, land use, and elevation in 2005–2009. However, these factors did not explain the spatiotemporal heterogeneity of HFRS incidences in 2010–2012. Spatiotemporal heterogeneity of provincial HFRS incidences and its relation to environmental factors would provide valuable information for hygiene authorities to design and implement effective measures for the prevention and control of HFRS in China. PMID:25429681
Liow, Chi Hao; Lu, Xin; Tan, Chuan Fu; Chan, Kwok Hoe; Zeng, Kaiyang; Li, Shuzhou; Ho, Ghim Wei
2018-02-01
Surface plasmon-based photonics offers exciting opportunities to enable fine control of the site, span, and extent of mechanical harvesting. However, the interaction between plasmonic photothermic and piezoresponse still remains underexplored. Here, spatially localized and controllable piezoresponse of a hybrid self-polarized polymeric-metallic system that correlates to plasmonic light-to-heat modulation of the local strain is demonstrated. The piezoresponse is associated to the localized plasmons that serve as efficient nanoheaters leading to self-regulated strain via thermal expansion of the electroactive polymer. Moreover, the finite-difference time-domain simulation and linear thermal model also deduce the local strain to the surface plasmon heat absorption. The distinct plasmonic photothermic-piezoelectric phenomenon mediates not only localized external stimulus light response but also enhances dynamic piezoelectric energy harvesting. The present work highlights a promising surface plasmon coordinated piezoelectric response which underpins energy localization and transfer for diversified design of unique photothermic-piezotronic technology. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Towards a Visual Quality Metric for Digital Video
NASA Technical Reports Server (NTRS)
Watson, Andrew B.
1998-01-01
The advent of widespread distribution of digital video creates a need for automated methods for evaluating visual quality of digital video. This is particularly so since most digital video is compressed using lossy methods, which involve the controlled introduction of potentially visible artifacts. Compounding the problem is the bursty nature of digital video, which requires adaptive bit allocation based on visual quality metrics. In previous work, we have developed visual quality metrics for evaluating, controlling, and optimizing the quality of compressed still images. These metrics incorporate simplified models of human visual sensitivity to spatial and chromatic visual signals. The challenge of video quality metrics is to extend these simplified models to temporal signals as well. In this presentation I will discuss a number of the issues that must be resolved in the design of effective video quality metrics. Among these are spatial, temporal, and chromatic sensitivity and their interactions, visual masking, and implementation complexity. I will also touch on the question of how to evaluate the performance of these metrics.
Automated Assessment of Visual Quality of Digital Video
NASA Technical Reports Server (NTRS)
Watson, Andrew B.; Ellis, Stephen R. (Technical Monitor)
1997-01-01
The advent of widespread distribution of digital video creates a need for automated methods for evaluating visual quality of digital video. This is particularly so since most digital video is compressed using lossy methods, which involve the controlled introduction of potentially visible artifacts. Compounding the problem is the bursty nature of digital video, which requires adaptive bit allocation based on visual quality metrics. In previous work, we have developed visual quality metrics for evaluating, controlling, and optimizing the quality of compressed still images[1-4]. These metrics incorporate simplified models of human visual sensitivity to spatial and chromatic visual signals. The challenge of video quality metrics is to extend these simplified models to temporal signals as well. In this presentation I will discuss a number of the issues that must be resolved in the design of effective video quality metrics. Among these are spatial, temporal, and chromatic sensitivity and their interactions, visual masking, and implementation complexity. I will also touch on the question of how to evaluate the performance of these metrics.
A Macro-to-Micro Interface for the Control of Cellular Organization
Hui, Elliot E.; Li, Chun; Agrawal, Amit; Bhatia, Sangeeta N.
2015-01-01
The spatial organization of cellular communities plays a fundamental role in determining intercellular communication and emergent behavior. However, few tools exist to modulate tissue organization at the scale of individual cells, particularly in the case of dynamic manipulation. Micromechanical reconfigurable culture achieves dynamic control of tissue organization by culturing adherent cells on microfabricated plates that can be shifted to reorganize the arrangement of the cells. While biological studies utilizing this approach have been previously reported, this paper focuses on the engineering of the device, including the mechanism for translating manual manipulation to precise microscale position control, fault-tolerant design for manufacture, and the synthetic-to-living interface. PMID:26167106
Virtual reality in neurologic rehabilitation of spatial disorientation
2013-01-01
Background Topographical disorientation (TD) is a severe and persistent impairment of spatial orientation and navigation in familiar as well as new environments and a common consequence of brain damage. Virtual reality (VR) provides a new tool for the assessment and rehabilitation of TD. In VR training programs different degrees of active motor control over navigation may be implemented (i.e. more passive spatial navigation vs. more active). Increasing demands of active motor control may overload those visuo-spatial resources necessary for learning spatial orientation and navigation. In the present study we used a VR-based verbally-guided passive navigation training program to improve general spatial abilities in neurologic patients with spatial disorientation. Methods Eleven neurologic patients with focal brain lesions, which showed deficits in spatial orientation, as well as 11 neurologic healthy controls performed a route finding training in a virtual environment. Participants learned and recalled different routes for navigation in a virtual city over five training sessions. Before and after VR training, general spatial abilities were assessed with standardized neuropsychological tests. Results Route finding ability in the VR task increased over the five training sessions. Moreover, both groups improved different aspects of spatial abilities after VR training in comparison to the spatial performance before VR training. Conclusions Verbally-guided passive navigation training in VR enhances general spatial cognition in neurologic patients with spatial disorientation as well as in healthy controls and can therefore be useful in the rehabilitation of spatial deficits associated with TD. PMID:23394289
Jacquez, Geoffrey M; Essex, Aleksander; Curtis, Andrew; Kohler, Betsy; Sherman, Recinda; Emam, Khaled El; Shi, Chen; Kaufmann, Andy; Beale, Linda; Cusick, Thomas; Goldberg, Daniel; Goovaerts, Pierre
2017-07-01
As the volume, accuracy and precision of digital geographic information have increased, concerns regarding individual privacy and confidentiality have come to the forefront. Not only do these challenge a basic tenet underlying the advancement of science by posing substantial obstacles to the sharing of data to validate research results, but they are obstacles to conducting certain research projects in the first place. Geospatial cryptography involves the specification, design, implementation and application of cryptographic techniques to address privacy, confidentiality and security concerns for geographically referenced data. This article defines geospatial cryptography and demonstrates its application in cancer control and surveillance. Four use cases are considered: (1) national-level de-duplication among state or province-based cancer registries; (2) sharing of confidential data across cancer registries to support case aggregation across administrative geographies; (3) secure data linkage; and (4) cancer cluster investigation and surveillance. A secure multi-party system for geospatial cryptography is developed. Solutions under geospatial cryptography are presented and computation time is calculated. As services provided by cancer registries to the research community, de-duplication, case aggregation across administrative geographies and secure data linkage are often time-consuming and in some instances precluded by confidentiality and security concerns. Geospatial cryptography provides secure solutions that hold significant promise for addressing these concerns and for accelerating the pace of research with human subjects data residing in our nation's cancer registries. Pursuit of the research directions posed herein conceivably would lead to a geospatially encrypted geographic information system (GEGIS) designed specifically to promote the sharing and spatial analysis of confidential data. Geospatial cryptography holds substantial promise for accelerating the pace of research with spatially referenced human subjects data.
Smith, Catherine M; Downs, Sara H; Mitchell, Andy; Hayward, Andrew C; Fry, Hannah; Le Comber, Steven C
2015-01-01
Bovine tuberculosis is a disease of historical importance to human health in the UK that remains a major animal health and economic issue. Control of the disease in cattle is complicated by the presence of a reservoir species, the Eurasian badger. In spite of uncertainty in the degree to which cattle disease results from transmission from badgers, and opposition from environmental groups, culling of badgers has been licenced in two large areas in England. Methods to limit culls to smaller areas that target badgers infected with TB whilst minimising the number of uninfected badgers culled is therefore of considerable interest. Here, we use historical data from a large-scale field trial of badger culling to assess two alternative hypothetical methods of targeting TB-infected badgers based on the distribution of cattle TB incidents: (i) a simple circular 'ring cull'; and (ii) geographic profiling, a novel technique for spatial targeting of infectious disease control that predicts the locations of sources of infection based on the distribution of linked cases. Our results showed that both methods required coverage of very large areas to ensure a substantial proportion of infected badgers were removed, and would result in many uninfected badgers being culled. Geographic profiling, which accounts for clustering of infections in badger and cattle populations, produced a small but non-significant increase in the proportion of setts with TB-infected compared to uninfected badgers included in a cull. It also provided no overall improvement at targeting setts with infected badgers compared to the ring cull. Cattle TB incidents in this study were therefore insufficiently clustered around TB-infected badger setts to design an efficient spatially targeted cull; and this analysis provided no evidence to support a move towards spatially targeted badger culling policies for bovine TB control.
Kivlin, Stephanie N; Hawkes, Christine V
2016-01-01
The high diversity of tree species has traditionally been considered an important controller of belowground processes in tropical rainforests. However, soil water availability and resources are also primary regulators of soil bacteria in many ecosystems. Separating the effects of these biotic and abiotic factors in the tropics is challenging because of their high spatial and temporal heterogeneity. To determine the drivers of tropical soil bacteria, we examined tree species effects using experimental tree monocultures and secondary forests at La Selva Biological Station in Costa Rica. A randomized block design captured spatial variation and we sampled at four dates across two years to assess temporal variation. We measured bacteria richness, phylogenetic diversity, community composition, biomass, and functional potential. All bacteria parameters varied significantly across dates. In addition, bacteria richness and phylogenetic diversity were affected by the interaction of vegetation type and date, whereas bacteria community composition was affected by the interaction of vegetation type and block. Shifts in bacteria community richness and composition were unrelated to shifts in enzyme function, suggesting physiological overlap among taxa. Based on the observed temporal and spatial heterogeneity, our understanding of tropical soil bacteria will benefit from additional work to determine the optimal temporal and spatial scales for sampling. Understanding spatial and temporal variation will facilitate prediction of how tropical soil microbes will respond to future environmental change. PMID:27391450
Kivlin, Stephanie N; Hawkes, Christine V
2016-01-01
The high diversity of tree species has traditionally been considered an important controller of belowground processes in tropical rainforests. However, soil water availability and resources are also primary regulators of soil bacteria in many ecosystems. Separating the effects of these biotic and abiotic factors in the tropics is challenging because of their high spatial and temporal heterogeneity. To determine the drivers of tropical soil bacteria, we examined tree species effects using experimental tree monocultures and secondary forests at La Selva Biological Station in Costa Rica. A randomized block design captured spatial variation and we sampled at four dates across two years to assess temporal variation. We measured bacteria richness, phylogenetic diversity, community composition, biomass, and functional potential. All bacteria parameters varied significantly across dates. In addition, bacteria richness and phylogenetic diversity were affected by the interaction of vegetation type and date, whereas bacteria community composition was affected by the interaction of vegetation type and block. Shifts in bacteria community richness and composition were unrelated to shifts in enzyme function, suggesting physiological overlap among taxa. Based on the observed temporal and spatial heterogeneity, our understanding of tropical soil bacteria will benefit from additional work to determine the optimal temporal and spatial scales for sampling. Understanding spatial and temporal variation will facilitate prediction of how tropical soil microbes will respond to future environmental change.
The promise of cyborg intelligence.
Brown, Michael F; Brown, Alexander A
2017-03-01
Yu et al. (2016) demonstrated that algorithms designed to find efficient routes in standard mazes can be integrated with the natural processes controlling rat navigation and spatial choices, and they pointed out the promise of such "cyborg intelligence" for biorobotic applications. Here, we briefly describe Yu et al.'s work, explore its relevance to the study of comparative cognition, and indicate how work involving cyborg intelligence would benefit from interdisciplinary collaboration between behavioral scientists and engineers.
Structural DNA Nanotechnology: State of the Art and Future Perspective
2015-01-01
Over the past three decades DNA has emerged as an exceptional molecular building block for nanoconstruction due to its predictable conformation and programmable intra- and intermolecular Watson–Crick base-pairing interactions. A variety of convenient design rules and reliable assembly methods have been developed to engineer DNA nanostructures of increasing complexity. The ability to create designer DNA architectures with accurate spatial control has allowed researchers to explore novel applications in many directions, such as directed material assembly, structural biology, biocatalysis, DNA computing, nanorobotics, disease diagnosis, and drug delivery. This Perspective discusses the state of the art in the field of structural DNA nanotechnology and presents some of the challenges and opportunities that exist in DNA-based molecular design and programming. PMID:25029570
Note: Design and fabrication of a simple versatile microelectrochemical cell and its accessories
NASA Astrophysics Data System (ADS)
Rajan, Viswanathan; Neelakantan, Lakshman
2015-09-01
A microelectrochemical cell housed in an optical microscope and custom-made accessories have been designed and fabricated, which allows performing spatially resolved corrosion measurements. The cell assembly was designed to directly integrate the reference electrode close to the capillary tip to avoid air bubbles. A hard disk along with an old optical microscope was re-engineered into a microgrinder, which made the vertical grinding of glass capillary tips very easy. A stepper motor was customized into a microsyringe pump to dispense a controlled volume of electrolyte through the capillary. A force sensitive resistor was used to achieve constant wetting area. The functionality of the developed instrument is demonstrated by studying μ-electrochemical behavior of worn surface on AA2014-T6 alloy.
Polymeric Biomaterials: Diverse Functions Enabled by Advances in Macromolecular Chemistry
Liang, Yingkai; Li, Linqing; Scott, Rebecca A.; Kiick, Kristi L.
2017-01-01
Biomaterials have been extensively used to leverage beneficial outcomes in various therapeutic applications, such as providing spatial and temporal control over the release of therapeutic agents in drug delivery as well as engineering functional tissues and promoting the healing process in tissue engineering and regenerative medicine. This perspective presents important milestones in the development of polymeric biomaterials with defined structures and properties. Contemporary studies of biomaterial design have been reviewed with focus on constructing materials with controlled structure, dynamic functionality, and biological complexity. Examples of these polymeric biomaterials enabled by advanced synthetic methodologies, dynamic chemistry/assembly strategies, and modulated cell-material interactions have been highlighted. As the field of polymeric biomaterials continues to evolve with increased sophistication, current challenges and future directions for the design and translation of these materials are also summarized. PMID:29151616
Yu, Guangwei; Tan, Meijuan; Chong, Yunxiao; Long, Xinxian
2015-01-01
For verification of spatial distribution of phosphorous retention capacity in constructed wetlands systems(CWs), two horizontal subsurface flow(HSSF) CWs and two vertical subsurface flow(VSSF) CWs, using sand as substrate and Typha latifolia as wetland plants, were constructed and put into use for synthetic wastewater treatment. Five months later, significant spatial variations of TP and inorganic phosphorus(Ca-P, Fe-P and Al-P) were observed, which were found to be greatly affected by CWs type and hydraulic loading. The results revealed that though spatial distribution of Fe-P and Al-P displayed a similar order of substrate content as "rhizosphere" > "near-rhizosphere" > "non-rhizosphere" and "inflow section" > "outflow section" regardless of types and loading, the distribution of Ca-P was positively correlated to that of Fe-P and Al-P in HSSF CWs, while negative correlation was shown in VSSF CWs. As a result, TP spatial distribution in HSSF CWs demonstrated a greater dissimilarity than that in VSSF CWs. For HSSF CWs with low hydraulic loading, the lowest TP content was found in non-rhizosphere substrate of outflow section, while the highest one was discovered in rhizonsphere substrate of inflow section. The values in 6 parts of areas ranged from 0.138 g·kg-1 to 2.710 g·kg-1, which also were from -33.5% to 1209% compared to the control value. On contrast, spatial difference of TP content in substrates of VSSF CWs was insignificant, with a variation ranging from 0.776 g·kg-1 to 1.080 g·kg-1, that was 275% to 421% higher than the control value. In addition, when hydraulic loading was increased, TP content in VSSF CWs sharply decreased, ranging from 0.210 g·kg-1 to 0.634 g·kg-1. Meanwhile, dissimilarity of TP spatial distribution in HSSF CWs was reduced, with TP content ranging from 0.258 g·kg-1 to 2.237 g·kg-1. The results suggested that P spatial distribution should be taken into account for CWs design and operation. PMID:26218872
Yu, Guangwei; Tan, Meijuan; Chong, Yunxiao; Long, Xinxian
2015-01-01
For verification of spatial distribution of phosphorous retention capacity in constructed wetlands systems(CWs), two horizontal subsurface flow(HSSF) CWs and two vertical subsurface flow(VSSF) CWs, using sand as substrate and Typha latifolia as wetland plants, were constructed and put into use for synthetic wastewater treatment. Five months later, significant spatial variations of TP and inorganic phosphorus(Ca-P, Fe-P and Al-P) were observed, which were found to be greatly affected by CWs type and hydraulic loading. The results revealed that though spatial distribution of Fe-P and Al-P displayed a similar order of substrate content as "rhizosphere" > "near-rhizosphere" > "non-rhizosphere" and "inflow section" > "outflow section" regardless of types and loading, the distribution of Ca-P was positively correlated to that of Fe-P and Al-P in HSSF CWs, while negative correlation was shown in VSSF CWs. As a result, TP spatial distribution in HSSF CWs demonstrated a greater dissimilarity than that in VSSF CWs. For HSSF CWs with low hydraulic loading, the lowest TP content was found in non-rhizosphere substrate of outflow section, while the highest one was discovered in rhizonsphere substrate of inflow section. The values in 6 parts of areas ranged from 0.138 g·kg-1 to 2.710 g·kg-1, which also were from -33.5% to 1209% compared to the control value. On contrast, spatial difference of TP content in substrates of VSSF CWs was insignificant, with a variation ranging from 0.776 g·kg-1 to 1.080 g·kg-1, that was 275% to 421% higher than the control value. In addition, when hydraulic loading was increased, TP content in VSSF CWs sharply decreased, ranging from 0.210 g·kg-1 to 0.634 g·kg-1. Meanwhile, dissimilarity of TP spatial distribution in HSSF CWs was reduced, with TP content ranging from 0.258 g·kg-1 to 2.237 g·kg-1. The results suggested that P spatial distribution should be taken into account for CWs design and operation.
Lu, Binglong; Jiang, Haijun; Hu, Cheng; Abdurahman, Abdujelil
2018-05-04
The exponential synchronization of hybrid coupled reaction-diffusion neural networks with time delays is discussed in this article. At first, a generalized intermittent control with spacial sampled-data is introduced, which is intermittent in time and data sampling in space. This type of control strategy not only can unify the traditional periodic intermittent control and the aperiodic case, but also can lower the update rate of the controller in both temporal and spatial domains. Next, based on the designed control protocol and the Lyapunov-Krasovskii functional approach, some novel and readily verified criteria are established to guarantee the exponential synchronization of the considered networks. These criteria depend on the diffusion coefficients, coupled strengths, time delays as well as control parameters. Finally, the effectiveness of the proposed control strategy is shown by a numerical example. Copyright © 2018 Elsevier Ltd. All rights reserved.
Spatial Patterns in Alternative States and Thresholds: A Missing Link for Management of Landscapes?
USDA-ARS?s Scientific Manuscript database
The detection of threshold dynamics (and other dynamics of interest) would benefit from explicit representations of spatial patterns of disturbance, spatial dependence in responses to disturbance, and the spatial structure of feedbacks in the design of monitoring and management strategies. Spatially...
NASA Astrophysics Data System (ADS)
Grant-Jacob, James A.; Zin Oo, Swe; Carpignano, Francesca; Boden, Stuart A.; Brocklesby, William S.; Charlton, Martin D. B.; Melvin, Tracy
2016-02-01
Three-dimensionally structured gold membrane films with nanopores of defined, periodic geometries are designed and fabricated to provide the spatially localised enhancement of electric fields by manipulation of the plasmons inside nanopores. Square nanopores of different size and orientation relative to the pyramid are considered for films in aqueous and air environments, which allow for control of the position of electric fields within the structure. Designs suitable for use with 780 nm light were created. Here, periodic pyramidal cavities produced by potassium hydroxide etching to the {111} planes of (100) silicon substrates are used as templates for creating a periodic, pyramidal structured, free-standing thin gold film. Consistent with the findings from the theoretical studies, a nano-sized hole of 50 nm square was milled through the gold film at a specific location in the cavity to provide electric field control which can subsequently used for enhancement of fluorescence or Raman scattering of molecules in the nanopore.
Grant-Jacob, James A; Oo, Swe Zin; Carpignano, Francesca; Boden, Stuart A; Brocklesby, William S; Charlton, Martin D B; Melvin, Tracy
2016-02-12
Three-dimensionally structured gold membrane films with nanopores of defined, periodic geometries are designed and fabricated to provide the spatially localised enhancement of electric fields by manipulation of the plasmons inside nanopores. Square nanopores of different size and orientation relative to the pyramid are considered for films in aqueous and air environments, which allow for control of the position of electric fields within the structure. Designs suitable for use with 780 nm light were created. Here, periodic pyramidal cavities produced by potassium hydroxide etching to the {111} planes of (100) silicon substrates are used as templates for creating a periodic, pyramidal structured, free-standing thin gold film. Consistent with the findings from the theoretical studies, a nano-sized hole of 50 nm square was milled through the gold film at a specific location in the cavity to provide electric field control which can subsequently used for enhancement of fluorescence or Raman scattering of molecules in the nanopore.
Spatial and temporal temperature distribution optimization for a geostationary antenna
NASA Technical Reports Server (NTRS)
Tsuyuki, G.; Miyake, R.
1992-01-01
The Geostationary Microwave Precipitation Radiometer antenna is considered and a thermal design analysis is performed to determine a design that would minimize on-orbit antenna temporal and spatial temperature gradients. The final design is based on an optically opaque radome which covered the antenna. The average orbital antenna temperature is found to be 9 C with maximum temporal and spatial variations of 34 C and 1 C, respectively. An independent thermal distortion analysis showed that this temporal variation would give an antenna figure error of 14 microns.
Lack of awareness for spatial and verbal constructive apraxia.
Rinaldi, Maria Cristina; Piras, Federica; Pizzamiglio, Luigi
2010-05-01
It is still a matter of debate whether constructive apraxia (CA) should be considered a form of apraxia or, rather, the motor expression of a more pervasive impairment in visuo-spatial processing. Constructive disorders were linked to visuo-spatial disorders and to deficits in appreciating spatial relations among component sub-parts or problems in reproducing three-dimensionality. We screened a large population of brain-damaged patients for CA. Only patients with constructive disorders and no signs of neglect and/or aphasia were selected. Five apractic subjects were tested with both visuo-spatial and verbal tasks requiring constructive abilities. The former ones were tests such as design copying, while the latter were experimental tasks built to transpose into the linguistic domain the constructive process as phrasing by arranging paper scraps into a sentence. A first result showed a constructive impairment in both the visuo-spatial and the linguistic domain; this finding challenges the idea that CA is confined to the visuo-spatial domain. A second result showed a systematic association between CA and unawareness for constructive disorders. Third, lack of awareness was always associated with a lesion in the right dorsolateral prefrontal cortex, a region deemed as involved in managing a conflict between intentions and sensory feed-back. Anosognosia for constructive disorders and the potential role of the right prefrontal cortex in generating the impairment, are discussed in the light of current models of action control. The core of CA could be the inability to detect any inconsistency between intended and executed action rather than a deficit in reproducing spatial relationship. 2010 Elsevier Ltd. All rights reserved.
APPLICATION OF SPATIAL INFORMATION TECHNOLOGY TO PETROLEUM RESOURCE ASSESSMENT ANALYSIS.
Miller, Betty M.; Domaratz, Michael A.
1984-01-01
Petroleum resource assessment procedures require the analysis of a large volume of spatial data. The US Geological Survey (USGS) has developed and applied spatial information handling procedures and digital cartographic techniques to a recent study involving the assessment of oil and gas resource potential for 74 million acres of designated and proposed wilderness lands in the western United States. The part of the study which dealt with the application of spatial information technology to petroleum resource assessment procedures is reviewed. A method was designed to expedite the gathering, integrating, managing, manipulating and plotting of spatial data from multiple data sources that are essential in modern resource assessment procedures.
NASA Technical Reports Server (NTRS)
Fischer, Robert E. (Editor); Rogers, Philip J. (Editor)
1986-01-01
The present conference considers topics in the fields of optical systems design software, the design and analysis of optical systems, illustrative cases of advanced optical system design, the integration of optical designs into greater systems, and optical fabrication and testing techniques. Attention is given to an extended range diffraction-based merit function for lens design optimization, an assessment of technologies for stray light control and evaluation, the automated characterization of IR systems' spatial resolution, a spectrum of design techniques based on aberration theory, a three-field IR telescope, a large aperture zoom lens for 16-mm motion picture cameras, and the use of concave holographic gratings as monochomators. Also discussed are the use of aspherics in optical systems, glass choice procedures for periscope design, the fabrication and testing of unconventional optics, low mass mirrors for large optics, and the diamond grinding of optical surfaces on aspheric lens molds.
Cluster detection methods applied to the Upper Cape Cod cancer data.
Ozonoff, Al; Webster, Thomas; Vieira, Veronica; Weinberg, Janice; Ozonoff, David; Aschengrau, Ann
2005-09-15
A variety of statistical methods have been suggested to assess the degree and/or the location of spatial clustering of disease cases. However, there is relatively little in the literature devoted to comparison and critique of different methods. Most of the available comparative studies rely on simulated data rather than real data sets. We have chosen three methods currently used for examining spatial disease patterns: the M-statistic of Bonetti and Pagano; the Generalized Additive Model (GAM) method as applied by Webster; and Kulldorff's spatial scan statistic. We apply these statistics to analyze breast cancer data from the Upper Cape Cancer Incidence Study using three different latency assumptions. The three different latency assumptions produced three different spatial patterns of cases and controls. For 20 year latency, all three methods generally concur. However, for 15 year latency and no latency assumptions, the methods produce different results when testing for global clustering. The comparative analyses of real data sets by different statistical methods provides insight into directions for further research. We suggest a research program designed around examining real data sets to guide focused investigation of relevant features using simulated data, for the purpose of understanding how to interpret statistical methods applied to epidemiological data with a spatial component.
2014-01-01
This study evaluates a spatial-filtering algorithm as a method to improve speech reception for cochlear-implant (CI) users in reverberant environments with multiple noise sources. The algorithm was designed to filter sounds using phase differences between two microphones situated 1 cm apart in a behind-the-ear hearing-aid capsule. Speech reception thresholds (SRTs) were measured using a Coordinate Response Measure for six CI users in 27 listening conditions including each combination of reverberation level (T60 = 0, 270, and 540 ms), number of noise sources (1, 4, and 11), and signal-processing algorithm (omnidirectional response, dipole-directional response, and spatial-filtering algorithm). Noise sources were time-reversed speech segments randomly drawn from the Institute of Electrical and Electronics Engineers sentence recordings. Target speech and noise sources were processed using a room simulation method allowing precise control over reverberation times and sound-source locations. The spatial-filtering algorithm was found to provide improvements in SRTs on the order of 6.5 to 11.0 dB across listening conditions compared with the omnidirectional response. This result indicates that such phase-based spatial filtering can improve speech reception for CI users even in highly reverberant conditions with multiple noise sources. PMID:25330772
Nickoloff, Edward Lee
2011-01-01
This article reviews the design and operation of both flat-panel detector (FPD) and image intensifier fluoroscopy systems. The different components of each imaging chain and their functions are explained and compared. FPD systems have multiple advantages such as a smaller size, extended dynamic range, no spatial distortion, and greater stability. However, FPD systems typically have the same spatial resolution for all fields of view (FOVs) and are prone to ghosting. Image intensifier systems have better spatial resolution with the use of smaller FOVs (magnification modes) and tend to be less expensive. However, the spatial resolution of image intensifier systems is limited by the television system to which they are coupled. Moreover, image intensifier systems are degraded by glare, vignetting, spatial distortions, and defocusing effects. FPD systems do not have these problems. Some recent innovations to fluoroscopy systems include automated filtration, pulsed fluoroscopy, automatic positioning, dose-area product meters, and improved automatic dose rate control programs. Operator-selectable features may affect both the patient radiation dose and image quality; these selectable features include dose level setting, the FOV employed, fluoroscopic pulse rates, geometric factors, display software settings, and methods to reduce the imaging time. © RSNA, 2011.
Graziano, Martin; Sigman, Mariano
2008-05-23
When a stimulus is presented, its sensory trace decays rapidly, lasting for approximately 1000 ms. This brief and labile memory, referred as iconic memory, serves as a buffer before information is transferred to working memory and executive control. Here we explored the effect of different factors--geometric, spatial, and experience--with respect to the access and the maintenance of information in iconic memory and the progressive distortion of this memory. We studied performance in a partial report paradigm, a design wherein recall of only part of a stimulus array is required. Subjects had to report the identity of a letter in a location that was cued in a variable delay after the stimulus onset. Performance decayed exponentially with time, and we studied the different parameters (time constant, zero-delay value, and decay amplitude) as a function of the different factors. We observed that experience (determined by letter frequency) affected the access to iconic memory but not the temporal decay constant. On the contrary, spatial position affected the temporal course of delay. The entropy of the error distribution increased with time reflecting a progressive morphological distortion of the iconic buffer. We discuss our results on the context of a model of information access to executive control and how it is affected by learning and attention.
Wang, S Q; Zhang, H Y; Li, Z L
2016-10-01
Understanding spatio-temporal distribution of pest in orchards can provide important information that could be used to design monitoring schemes and establish better means for pest control. In this study, the spatial and temporal distribution of Bactrocera minax (Enderlein) (Diptera: Tephritidae) was assessed, and activity trends were evaluated by using probability kriging. Adults of B. minax were captured in two successive occurrences in a small-scale citrus orchard by using food bait traps, which were placed both inside and outside the orchard. The weekly spatial distribution of B. minax within the orchard and adjacent woods was examined using semivariogram parameters. The edge concentration was discovered during the most weeks in adult occurrence, and the population of the adults aggregated with high probability within a less-than-100-m-wide band on both of the sides of the orchard and the woods. The sequential probability kriged maps showed that the adults were estimated in the marginal zone with higher probability, especially in the early and peak stages. The feeding, ovipositing, and mating behaviors of B. minax are possible explanations for these spatio-temporal patterns. Therefore, spatial arrangement and distance to the forest edge of traps or spraying spot should be considered to enhance pest control on B. minax in small-scale orchards.
The cognitive science of visual-spatial displays: implications for design.
Hegarty, Mary
2011-07-01
This paper reviews cognitive science perspectives on the design of visual-spatial displays and introduces the other papers in this topic. It begins by classifying different types of visual-spatial displays, followed by a discussion of ways in which visual-spatial displays augment cognition and an overview of the perceptual and cognitive processes involved in using displays. The paper then argues for the importance of cognitive science methods to the design of visual displays and reviews some of the main principles of display design that have emerged from these approaches to date. Cognitive scientists have had good success in characterizing the performance of well-defined tasks with relatively simple visual displays, but many challenges remain in understanding the use of complex displays for ill-defined tasks. Current research exemplified by the papers in this topic extends empirical approaches to new displays and domains, informs the development of general principles of graphic design, and addresses current challenges in display design raised by the recent explosion in availability of complex data sets and new technologies for visualizing and interacting with these data. Copyright © 2011 Cognitive Science Society, Inc.
An approach of characterizing the degree of spatial color mixture
NASA Astrophysics Data System (ADS)
Chu, Miao; Tian, Shaohui
2017-07-01
The digital camouflage technology arranges different color mosaics according to a certain rules, compared with traditional camouflage, it has more outstanding results deal with different distance reconnaissance. The better result of digital camouflage is mainly attributed to spatial color mixture, and is also a key factor to improve digital camouflage design. However, the research of space color mixture is relatively lack, cannot provide inadequate support for digital camouflage design. Therefore, according to the process of spatial color mixture, this paper proposes an effective parameter, spatial-color-mixture ratio, to characterize the degree of spatial color mixture. The experimental results show that spatial-color-mixture ratio is feasible and effective in practice, which could provide a new direction for further research on digital camouflage.
Erin L. Landguth; Bradley C. Fedy; Sara J. Oyler-McCance; Andrew L. Garey; Sarah L. Emel; Matthew Mumma; Helene H. Wagner; Marie-Josee Fortin; Samuel A. Cushman
2012-01-01
The influence of study design on the ability to detect the effects of landscape pattern on gene flow is one of the most pressing methodological gaps in landscape genetic research. To investigate the effect of study design on landscape genetics inference, we used a spatially-explicit, individual-based program to simulate gene flow in a spatially continuous population...
A high-power spatial filter for Thomson scattering stray light reduction
NASA Astrophysics Data System (ADS)
Levesque, J. P.; Litzner, K. D.; Mauel, M. E.; Maurer, D. A.; Navratil, G. A.; Pedersen, T. S.
2011-03-01
The Thomson scattering diagnostic on the High Beta Tokamak-Extended Pulse (HBT-EP) is routinely used to measure electron temperature and density during plasma discharges. Avalanche photodiodes in a five-channel interference filter polychromator measure scattered light from a 6 ns, 800 mJ, 1064 nm Nd:YAG laser pulse. A low cost, high-power spatial filter was designed, tested, and added to the laser beamline in order to reduce stray laser light to levels which are acceptable for accurate Rayleigh calibration. A detailed analysis of the spatial filter design and performance is given. The spatial filter can be easily implemented in an existing Thomson scattering system without the need to disturb the vacuum chamber or significantly change the beamline. Although apertures in the spatial filter suffer substantial damage from the focused beam, with proper design they can last long enough to permit absolute calibration.
Iterative inversion of deformation vector fields with feedback control.
Dubey, Abhishek; Iliopoulos, Alexandros-Stavros; Sun, Xiaobai; Yin, Fang-Fang; Ren, Lei
2018-05-14
Often, the inverse deformation vector field (DVF) is needed together with the corresponding forward DVF in four-dimesional (4D) reconstruction and dose calculation, adaptive radiation therapy, and simultaneous deformable registration. This study aims at improving both accuracy and efficiency of iterative algorithms for DVF inversion, and advancing our understanding of divergence and latency conditions. We introduce a framework of fixed-point iteration algorithms with active feedback control for DVF inversion. Based on rigorous convergence analysis, we design control mechanisms for modulating the inverse consistency (IC) residual of the current iterate, to be used as feedback into the next iterate. The control is designed adaptively to the input DVF with the objective to enlarge the convergence area and expedite convergence. Three particular settings of feedback control are introduced: constant value over the domain throughout the iteration; alternating values between iteration steps; and spatially variant values. We also introduce three spectral measures of the displacement Jacobian for characterizing a DVF. These measures reveal the critical role of what we term the nontranslational displacement component (NTDC) of the DVF. We carry out inversion experiments with an analytical DVF pair, and with DVFs associated with thoracic CT images of six patients at end of expiration and end of inspiration. The NTDC-adaptive iterations are shown to attain a larger convergence region at a faster pace compared to previous nonadaptive DVF inversion iteration algorithms. By our numerical experiments, alternating control yields smaller IC residuals and inversion errors than constant control. Spatially variant control renders smaller residuals and errors by at least an order of magnitude, compared to other schemes, in no more than 10 steps. Inversion results also show remarkable quantitative agreement with analysis-based predictions. Our analysis captures properties of DVF data associated with clinical CT images, and provides new understanding of iterative DVF inversion algorithms with a simple residual feedback control. Adaptive control is necessary and highly effective in the presence of nonsmall NTDCs. The adaptive iterations or the spectral measures, or both, may potentially be incorporated into deformable image registration methods. © 2018 American Association of Physicists in Medicine.
Tian, Liangfei; Martin, Nicolas; Bassindale, Philip G.; Patil, Avinash J.; Li, Mei; Barnes, Adrian; Drinkwater, Bruce W.; Mann, Stephen
2016-01-01
The spontaneous assembly of chemically encoded, molecularly crowded, water-rich micro-droplets into periodic defect-free two-dimensional arrays is achieved in aqueous media by a combination of an acoustic standing wave pressure field and in situ complex coacervation. Acoustically mediated coalescence of primary droplets generates single-droplet per node micro-arrays that exhibit variable surface-attachment properties, spontaneously uptake dyes, enzymes and particles, and display spatial and time-dependent fluorescence outputs when exposed to a reactant diffusion gradient. In addition, coacervate droplet arrays exhibiting dynamical behaviour and exchange of matter are prepared by inhibiting coalescence to produce acoustically trapped lattices of droplet clusters that display fast and reversible changes in shape and spatial configuration in direct response to modulations in the acoustic frequencies and fields. Our results offer a novel route to the design and construction of ‘water-in-water' micro-droplet arrays with controllable spatial organization, programmable signalling pathways and higher order collective behaviour. PMID:27708286
Suppression of dilution in Ni-Cr-Si-B alloy cladding layer by controlling diode laser beam profile
NASA Astrophysics Data System (ADS)
Tanigawa, Daichi; Funada, Yoshinori; Abe, Nobuyuki; Tsukamoto, Masahiro; Hayashi, Yoshihiko; Yamazaki, Hiroyuki; Tatsumi, Yoshihiro; Yoneyama, Mikio
2018-02-01
A Ni-Cr-Si-B alloy layer was produced on a type 304 stainless steel plate by laser cladding. In order to produce cladding layer with smooth surface and low dilution, influence of laser beam profile on cladding layer was investigated. A laser beam with a constant spatial intensity at the focus spot was used to suppress droplet formation during the cladding layer formation. This line spot, formed with a focussing unit designed by our group, suppressed droplet generation. The layer formed using this line spot with a constant spatial intensity had a much smoother surface compared to a layer formed using a line spot with a Gaussian-like beam. In addition, the dilution of the former layer was much smaller. These results indicated that a line spot with a constant spatial intensity was more effective in producing a cladding layer with smooth surface and low dilution because it suppressed droplet generation.
A Fractional Cartesian Composition Model for Semi-Spatial Comparative Visualization Design.
Kolesar, Ivan; Bruckner, Stefan; Viola, Ivan; Hauser, Helwig
2017-01-01
The study of spatial data ensembles leads to substantial visualization challenges in a variety of applications. In this paper, we present a model for comparative visualization that supports the design of according ensemble visualization solutions by partial automation. We focus on applications, where the user is interested in preserving selected spatial data characteristics of the data as much as possible-even when many ensemble members should be jointly studied using comparative visualization. In our model, we separate the design challenge into a minimal set of user-specified parameters and an optimization component for the automatic configuration of the remaining design variables. We provide an illustrated formal description of our model and exemplify our approach in the context of several application examples from different domains in order to demonstrate its generality within the class of comparative visualization problems for spatial data ensembles.
Spatial Encounters: Exercises in Spatial Awareness.
ERIC Educational Resources Information Center
New Mexico Univ., Albuquerque.
This series of activities on spatial relationships was designed to help users acquire the skills of spatial visualization and orientation and to improve their effectiveness in applying those skills. The series contains an introduction to spatial orientation with several self-directed activities to help improve that skill. It also contains seven…
Head-mounted spatial instruments II: Synthetic reality or impossible dream
NASA Technical Reports Server (NTRS)
Ellis, Stephen R.; Grunwald, Arthur
1989-01-01
A spatial instrument is defined as a spatial display which has been either geometrically or symbolically enhanced to enable a user to accomplish a particular task. Research conducted over the past several years on 3-D spatial instruments has shown that perspective displays, even when viewed from the correct viewpoint, are subject to systematic viewer biases. These biases interfere with correct spatial judgements of the presented pictorial information. The design of spatial instruments may not only require the introduction of compensatory distortions to remove the naturally occurring biases but also may significantly benefit from the introduction of artificial distortions which enhance performance. However, these image manipulations can cause a loss of visual-vestibular coordination and induce motion sickness. Consequently, the design of head-mounted spatial instruments will require an understanding of the tolerable limits of visual-vestibular discord.
Storbeck, Justin; Maswood, Raeya
2016-08-01
The effects of emotion on working memory and executive control are often studied in isolation. Positive mood enhances verbal and impairs spatial working memory, whereas negative mood enhances spatial and impairs verbal working memory. Moreover, positive mood enhances executive control, whereas negative mood has little influence. We examined how emotion influences verbal and spatial working memory capacity, which requires executive control to coordinate between holding information in working memory and completing a secondary task. We predicted that positive mood would improve both verbal and spatial working memory capacity because of its influence on executive control. Positive, negative and neutral moods were induced followed by completing a verbal (Experiment 1) or spatial (Experiment 2) working memory operation span task to assess working memory capacity. Positive mood enhanced working memory capacity irrespective of the working memory domain, whereas negative mood had no influence on performance. Thus, positive mood was more successful holding information in working memory while processing task-irrelevant information, suggesting that the influence mood has on executive control supersedes the independent effects mood has on domain-specific working memory.
A look at spatial abilities in undergraduate women science majors
NASA Astrophysics Data System (ADS)
Lord, Thomas R.
Contemporary investigations indicate that men generally perform significantly better in tasks involving visuo-spatial awareness than do women. Researchers have attempted to explain this difference through several hypotheses but as yet the reason for the dimorphism has not been established. Further, contemporary studies have indicated that enhancement of mental image formation and manipulation is possible when students are subjected to carefully designed spatial interventions. Present research was conducted to see if women in the sciences were as spatial perceptively accurate as their male counterparts. The researcher also was interested to find if the women that received the intervention excercises improved in their visuo-spatial awareness as rapidly as their male counterparts.The study was conducted on science majors at a suburban two year college. The population was randomly divided into groups (experimental, placebo, and control) each containing approximately the same number of men and women. All groups were given a battery of spatial perception tests (Ekstrom et al, 1976) at the onset of the winter semester and a second version of the battery at the conclusion of the semester. An analysis of variance followed by Scheffe contrasts were run on the results. The statistics revealed that the experimental group significantly outperformed the nonexperimental groups on the tests. When the differences between the mean scores for the women in the experimental group were statistically compared to those of the men in the experimental group the women were improving at a more rapid rate. Many women have the capacity to develop visuo-spatial aptitude and although they may start out behind men in spatial ability, they learn quickly and often catch up to the men's level when given meaningful visuo-spatial interventions.
Spatial Designation of Critical Habitats for Endangered and Threatened Species in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuttle, Mark A; Singh, Nagendra; Sabesan, Aarthy
Establishing biological reserves or "hot spots" for endangered and threatened species is critical to support real-world species regulatory and management problems. Geographic data on the distribution of endangered and threatened species can be used to improve ongoing efforts for species conservation in the United States. At present no spatial database exists which maps out the location endangered species for the US. However, spatial descriptions do exists for the habitat associated with all endangered species, but in a form not readily suitable to use in a geographic information system (GIS). In our study, the principal challenge was extracting spatial data describingmore » these critical habitats for 472 species from over 1000 pages of the federal register. In addition, an appropriate database schema was designed to accommodate the different tiers of information associated with the species along with the confidence of designation; the interpreted location data was geo-referenced to the county enumeration unit producing a spatial database of endangered species for the whole of US. The significance of these critical habitat designations, database scheme and methodologies will be discussed.« less
Bagny Beilhe, Leïla; Piou, Cyril; Tadu, Zéphirin; Babin, Régis
2018-06-06
The use of ants for biological control of insect pests was the first reported case of conservation biological control. Direct and indirect community interactions between ants and pests lead to differential spatial pattern. We investigated spatial interactions between mirids, the major cocoa pest in West Africa and numerically dominant ant species, using bivariate point pattern analysis to identify potential biological control agents. We assume that potential biological control agents should display negative spatial interactions with mirids considering their niche overlap. The mirid/ant data were collected in complex cacao-based agroforestry systems sampled in three agroecological areas over a forest-savannah gradient in Cameroon. Three species, Crematogaster striatula Emery (Hymenoptera: Formicidae), Crematogaster clariventris Mayr (Hymenoptera: Formicidae), and Oecophylla longinoda Latreille (Hymenoptera: Formicidae) with high predator and aggressive behaviors were identified as dominant and showed negative spatial relationships with mirids. The weaver ant, O. longinoda was identified as the only potential biological control agent, considering its ubiquity in the plots, the similarity in niche requirements, and the spatial segregation with mirids resulting probably from exclusion mechanisms. Combining bivariate point pattern analysis to good knowledge of insect ecology was an effective method to identify a potentially good biological control agent.
Mahoney, Peter J; Young, Julie K; Hersey, Kent R; Larsen, Randy T; McMillan, Brock R; Stoner, David C
2018-04-01
Predator control is often implemented with the intent of disrupting top-down regulation in sensitive prey populations. However, ambiguity surrounding the efficacy of predator management, as well as the strength of top-down effects of predators in general, is often exacerbated by the spatially implicit analytical approaches used in assessing data with explicit spatial structure. Here, we highlight the importance of considering spatial context in the case of a predator control study in south-central Utah. We assessed the spatial match between aerial removal risk in coyotes (Canis latrans) and mule deer (Odocoileus hemionus) resource selection during parturition using a spatially explicit, multi-level Bayesian model. With our model, we were able to evaluate spatial congruence between management action (i.e., coyote removal) and objective (i.e., parturient deer site selection) at two distinct scales: the level of the management unit and the individual coyote removal. In the case of the former, our results indicated substantial spatial heterogeneity in expected congruence between removal risk and parturient deer site selection across large areas, and is a reflection of logistical constraints acting on the management strategy and differences in space use between the two species. At the level of the individual removal, we demonstrated that the potential management benefits of a removed coyote were highly variable across all individuals removed and in many cases, spatially distinct from parturient deer resource selection. Our methods and results provide a means of evaluating where we might anticipate an impact of predator control, while emphasizing the need to weight individual removals based on spatial proximity to management objectives in any assessment of large-scale predator control. Although we highlight the importance of spatial context in assessments of predator control strategy, we believe our methods are readily generalizable in any management or large-scale experimental framework where spatial context is likely an important driver of outcomes. © 2018 by the Ecological Society of America.
Crawford, Brian A.; Moore, Clinton; Norton, Terry M.; Maerz, John C.
2017-01-01
Roads represent a pervasive feature on most landscapes that can pose multiple threats to wildlife populations and substantial challenges for management. To be effective, management strategies must often target where threats are most concentrated. Road mortality and nest predation are well-documented threats to Diamond-backed Terrapins (Malaclemys terrapin) across the majority of their range, including the 8.7-km causeway to Jekyll Island, Georgia, USA, where both are predicted to contribute to population declines if left unmitigated. From 2009 to 2014, we used intensive road surveying to identify spatial peaks (hot spots) of terrapin crossing activity and road mortality and exploit these as targets for management. In 2011, we deployed a hybrid barrier composed of nest boxes, which were designed to prevent terrapins from accessing the road and mitigate nest predation, at one hot spot while leaving two other hot spots unmanaged. We evaluated the impact of the barrier on terrapin emergences on the causeway under a Before-After-Control-Impact (BACI) design, and a companion study evaluated the effects of nest boxes on nest predation rates. We estimated a 57% reduction in annual terrapin emergences at the barrier site compared to no measurable change at control hot spots. Our findings support the use of hybrid barriers for simultaneously addressing road mortality and nest predation for other terrapin populations at risk to these threats. Our approach highlights the need to design feasible but robust management strategies that target spatial peaks of road mortality while addressing additional threats contributing to population declines of terrapins and other species.
Remote Control of Neuronal Signaling
Rogan, Sarah C.
2011-01-01
A significant challenge for neuroscientists is to determine how both electrical and chemical signals affect the activity of cells and circuits and how the nervous system subsequently translates that activity into behavior. Remote, bidirectional manipulation of those signals with high spatiotemporal precision is an ideal approach to addressing that challenge. Neuroscientists have recently developed a diverse set of tools that permit such experimental manipulation with varying degrees of spatial, temporal, and directional control. These tools use light, peptides, and small molecules to primarily activate ion channels and G protein-coupled receptors (GPCRs) that in turn activate or inhibit neuronal firing. By monitoring the electrophysiological, biochemical, and behavioral effects of such activation/inhibition, researchers can better understand the links between brain activity and behavior. Here, we review the tools that are available for this type of experimentation. We describe the development of the tools and highlight exciting in vivo data. We focus primarily on designer GPCRs (receptors activated solely by synthetic ligands, designer receptors exclusively activated by designer drugs) and microbial opsins (e.g., channelrhodopsin-2, halorhodopsin, Volvox carteri channelrhodopsin) but also describe other novel techniques that use orthogonal receptors, caged ligands, allosteric modulators, and other approaches. These tools differ in the direction of their effect (activation/inhibition, hyperpolarization/depolarization), their onset and offset kinetics (milliseconds/minutes/hours), the degree of spatial resolution they afford, and their invasiveness. Although none of these tools is perfect, each has advantages and disadvantages, which we describe, and they are all still works in progress. We conclude with suggestions for improving upon the existing tools. PMID:21415127
Sturrock, Hugh J W; Gething, Pete W; Ashton, Ruth A; Kolaczinski, Jan H; Kabatereine, Narcis B; Brooker, Simon
2011-09-01
In schistosomiasis control, there is a need to geographically target treatment to populations at high risk of morbidity. This paper evaluates alternative sampling strategies for surveys of Schistosoma mansoni to target mass drug administration in Kenya and Ethiopia. Two main designs are considered: lot quality assurance sampling (LQAS) of children from all schools; and a geostatistical design that samples a subset of schools and uses semi-variogram analysis and spatial interpolation to predict prevalence in the remaining unsurveyed schools. Computerized simulations are used to investigate the performance of sampling strategies in correctly classifying schools according to treatment needs and their cost-effectiveness in identifying high prevalence schools. LQAS performs better than geostatistical sampling in correctly classifying schools, but at a cost with a higher cost per high prevalence school correctly classified. It is suggested that the optimal surveying strategy for S. mansoni needs to take into account the goals of the control programme and the financial and drug resources available.
NASA Astrophysics Data System (ADS)
Kwon, Do-Hoon; Tretyakov, Sergei A.
2018-01-01
For passive, lossless impenetrable metasurfaces, a design technique for arbitrary beam control of receiving, guiding, and launching is presented. Arbitrary control is enabled by a custom surface wave in an orthogonal polarization such that its addition to the incident (input) and the desired scattered (output) fields is supported by a reactive surface impedance everywhere on the reflecting surface. Such a custom surface wave (SW) takes the form of an evanescent wave propagating along the surface with a spatially varying envelope. A growing SW appears when an illuminating beam is received. The SW amplitude stays constant when power is guided along the surface. The amplitude diminishes as a propagating wave (PW) is launched from the surface as a leaky wave. The resulting reactive tensor impedance profile may be realized as an array of anisotropic metallic resonators printed on a grounded dielectric substrate. Illustrative design examples of a Gaussian beam translator-reflector, a probe-fed beam launcher, and a near-field focusing lens are provided.
Rauter, Georg; Sigrist, Roland; Riener, Robert; Wolf, Peter
2015-01-01
In literature, the effectiveness of haptics for motor learning is controversially discussed. Haptics is believed to be effective for motor learning in general; however, different types of haptic control enhance different movement aspects. Thus, in dependence on the movement aspects of interest, one type of haptic control may be effective whereas another one is not. Therefore, in the current work, it was investigated if and how different types of haptic controllers affect learning of spatial and temporal movement aspects. In particular, haptic controllers that enforce active participation of the participants were expected to improve spatial aspects. Only haptic controllers that provide feedback about the task's velocity profile were expected to improve temporal aspects. In a study on learning a complex trunk-arm rowing task, the effect of training with four different types of haptic control was investigated: position control, path control, adaptive path control, and reactive path control. A fifth group (control) trained with visual concurrent augmented feedback. As hypothesized, the position controller was most effective for learning of temporal movement aspects, while the path controller was most effective in teaching spatial movement aspects of the rowing task. Visual feedback was also effective for learning temporal and spatial movement aspects.
NASA Astrophysics Data System (ADS)
Huang, Shieh-Kung; Loh, Kenneth J.
2015-04-01
The main goal of this study was to develop and validate the performance of a miniature and portable data acquisition (DAQ) system designed for interrogating carbon nanotube (CNT)-based thin films for real-time spatial structural sensing and damage detection. Previous research demonstrated that the electrical properties of CNT-based thin film strain sensors were linearly correlated with applied strains. When coupled with an electrical impedance tomography (EIT) algorithm, the detection and localization of damage was possible. In short, EIT required that the film or "sensing skin" be interrogated along its boundaries. Electrical current was injected across a pair of boundary electrodes, and voltage was simultaneously recorded along the remaining electrode pairs. This was performed multiple times to obtain a large dataset needed for solving the EIT spatial conductivity mapping inverse problem. However, one of the main limitations of this technique was the large amount of time required for data acquisition. In order to facilitate the adoption of this technology and for field implementation purposes, a miniature DAQ that could interrogate these CNT-based sensing skins at high sampling rates was designed and tested. The prototype DAQ featured a Howland current source that could generate stable and controlled direct current. Measurement of boundary electrode voltages and the switching of the input, output, and measurement channels were achieved using multiplexer units. The DAQ prototype was fabricated on a two-layer printed circuit board, and it was designed for integration with a prototype wireless sensing system, which is the next phase of this research.
Spatially variant periodic structures in electromagnetics.
Rumpf, Raymond C; Pazos, Javier J; Digaum, Jennefir L; Kuebler, Stephen M
2015-08-28
Spatial transforms are a popular technique for designing periodic structures that are macroscopically inhomogeneous. The structures are often required to be anisotropic, provide a magnetic response, and to have extreme values for the constitutive parameters in Maxwell's equations. Metamaterials and photonic crystals are capable of providing these, although sometimes only approximately. The problem still remains about how to generate the geometry of the final lattice when it is functionally graded, or spatially varied. This paper describes a simple numerical technique to spatially vary any periodic structure while minimizing deformations to the unit cells that would weaken or destroy the electromagnetic properties. New developments in this algorithm are disclosed that increase efficiency, improve the quality of the lattices and provide the ability to design aplanatic metasurfaces. The ability to spatially vary a lattice in this manner enables new design paradigms that are not possible using spatial transforms, three of which are discussed here. First, spatially variant self-collimating photonic crystals are shown to flow unguided waves around very tight bends using ordinary materials with low refractive index. Second, multi-mode waveguides in spatially variant band gap materials are shown to guide waves around bends without mixing power between the modes. Third, spatially variant anisotropic materials are shown to sculpt the near-field around electric components. This can be used to improve electromagnetic compatibility between components in close proximity. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Spatially variant periodic structures in electromagnetics
Rumpf, Raymond C.; Pazos, Javier J.; Digaum, Jennefir L.; Kuebler, Stephen M.
2015-01-01
Spatial transforms are a popular technique for designing periodic structures that are macroscopically inhomogeneous. The structures are often required to be anisotropic, provide a magnetic response, and to have extreme values for the constitutive parameters in Maxwell's equations. Metamaterials and photonic crystals are capable of providing these, although sometimes only approximately. The problem still remains about how to generate the geometry of the final lattice when it is functionally graded, or spatially varied. This paper describes a simple numerical technique to spatially vary any periodic structure while minimizing deformations to the unit cells that would weaken or destroy the electromagnetic properties. New developments in this algorithm are disclosed that increase efficiency, improve the quality of the lattices and provide the ability to design aplanatic metasurfaces. The ability to spatially vary a lattice in this manner enables new design paradigms that are not possible using spatial transforms, three of which are discussed here. First, spatially variant self-collimating photonic crystals are shown to flow unguided waves around very tight bends using ordinary materials with low refractive index. Second, multi-mode waveguides in spatially variant band gap materials are shown to guide waves around bends without mixing power between the modes. Third, spatially variant anisotropic materials are shown to sculpt the near-field around electric components. This can be used to improve electromagnetic compatibility between components in close proximity. PMID:26217058
2017-11-01
magnitude, intensity, and seasonality of climate. For infrastructure projects, relevant design life often exceeds 30 years—a period of time of...uncertainty about future statistical properties of climate at time and spatial scales required for planning and design purposes. Information...about future statistical properties of climate at time and spatial scales required for planning and design , and for assessing future operational
Overview and example application of the Landscape Treatment Designer
Alan A. Ager; Nicole M. Vaillant; David E. Owens; Stuart Brittain; Jeff Hamann
2012-01-01
The Landscape Treatment Designer (LTD) is a multicriteria spatial prioritization and optimization system to help design and explore landscape fuel treatment scenarios. The program fills a gap between fire model programs such as FlamMap, and planning systems such as ArcFuels, in the fuel treatment planning process. The LTD uses inputs on spatial treatment objectives,...
Review of Spatial-Database System Usability: Recommendations for the ADDNS Project
2007-12-01
basic GIS background information , with a closer look at spatial databases. A GIS is also a computer- based system designed to capture, manage...foundation for deploying enterprise-wide spatial information systems . According to Oracle® [18], it enables accurate delivery of location- based services...Toronto TR 2007-141 Lanter, D.P. (1991). Design of a lineage- based meta-data base for GIS. Cartography and Geographic Information Systems , 18
Design and control of an IPMC wormlike robot.
Arena, Paolo; Bonomo, Claudia; Fortuna, Luigi; Frasca, Mattia; Graziani, Salvatore
2006-10-01
This paper presents an innovative wormlike robot controlled by cellular neural networks (CNNs) and made of an ionic polymer-metal composite (IPMC) self-actuated skeleton. The IPMC actuators, from which it is made of, are new materials that behave similarly to biological muscles. The idea that inspired the work is the possibility of using IPMCs to design autonomous moving structures. CNNs have already demonstrated their powerfulness as new structures for bio-inspired locomotion generation and control. The control scheme for the proposed IPMC moving structure is based on CNNs. The wormlike robot is totally made of IPMCs, and each actuator has to carry its own weight. All the actuators are connected together without using any other additional part, thereby constituting the robot structure itself. Worm locomotion is performed by bending the actuators sequentially from "tail" to "head," imitating the traveling wave observed in real-world undulatory locomotion. The activation signals are generated by a CNN. In the authors' opinion, the proposed strategy represents a promising solution in the field of autonomous and light structures that are capable of reconfiguring and moving in line with spatial-temporal dynamics generated by CNNs.
Enhancing synchronization stability in a multi-area power grid
Wang, Bing; Suzuki, Hideyuki; Aihara, Kazuyuki
2016-01-01
Maintaining a synchronous state of generators is of central importance to the normal operation of power grids, in which many networks are generally interconnected. In order to understand the condition under which the stability can be optimized, it is important to relate network stability with feedback control strategies as well as network structure. Here, we present a stability analysis on a multi-area power grid by relating it with several control strategies and topological design of network structure. We clarify the minimal feedback gain in the self-feedback control, and build the optimal communication network for the local and global control strategies. Finally, we consider relationship between the interconnection pattern and the synchronization stability; by optimizing the network interlinks, the obtained network shows better synchronization stability than the original network does, in particular, at a high power demand. Our analysis shows that interlinks between spatially distant nodes will improve the synchronization stability. The results seem unfeasible to be implemented in real systems but provide a potential guide for the design of stable power systems. PMID:27225708
Independent polarisation control of multiple optical traps
Preece, Daryl; Keen, Stephen; Botvinick, Elliot; Bowman, Richard; Padgett, Miles; Leach, Jonathan
2009-01-01
We present a system which uses a single spatial light modulator to control the spin angular momentum of multiple optical traps. These traps may be independently controlled both in terms of spatial location and in terms of their spin angular momentum content. The system relies on a spatial light modulator used in a “split-screen” configuration to generate beams of orthogonal polarisation states which are subsequently combined at a polarising beam splitter. Defining the phase difference between the beams with the spatial light modulator enables control of the polarisation state of the light. We demonstrate the functionality of the system by controlling the rotation and orientation of birefringent vaterite crystals within holographic optical tweezers. PMID:18825226
Pitting temporal against spatial integration in schizophrenic patients.
Herzog, Michael H; Brand, Andreas
2009-06-30
Schizophrenic patients show strong impairments in visual backward masking possibly caused by deficits on the early stages of visual processing. The underlying aberrant mechanisms are not clearly understood. Spatial as well as temporal processing deficits have been proposed. Here, by combining a spatial with a temporal integration paradigm, we show further evidence that temporal but not spatial processing is impaired in schizophrenic patients. Eleven schizophrenic patients and ten healthy controls were presented with sequences composed of Vernier stimuli. Patients needed significantly longer presentation times for sequentially presented Vernier stimuli to reach a performance level comparable to that of healthy controls (temporal integration deficit). When we added spatial contextual elements to some of the Vernier stimuli, performance changed in a complex but comparable manner in patients and controls (intact spatial integration). Hence, temporal but not spatial processing seems to be deficient in schizophrenia.
A Unified Fisher's Ratio Learning Method for Spatial Filter Optimization.
Li, Xinyang; Guan, Cuntai; Zhang, Haihong; Ang, Kai Keng
To detect the mental task of interest, spatial filtering has been widely used to enhance the spatial resolution of electroencephalography (EEG). However, the effectiveness of spatial filtering is undermined due to the significant nonstationarity of EEG. Based on regularization, most of the conventional stationary spatial filter design methods address the nonstationarity at the cost of the interclass discrimination. Moreover, spatial filter optimization is inconsistent with feature extraction when EEG covariance matrices could not be jointly diagonalized due to the regularization. In this paper, we propose a novel framework for a spatial filter design. With Fisher's ratio in feature space directly used as the objective function, the spatial filter optimization is unified with feature extraction. Given its ratio form, the selection of the regularization parameter could be avoided. We evaluate the proposed method on a binary motor imagery data set of 16 subjects, who performed the calibration and test sessions on different days. The experimental results show that the proposed method yields improvement in classification performance for both single broadband and filter bank settings compared with conventional nonunified methods. We also provide a systematic attempt to compare different objective functions in modeling data nonstationarity with simulation studies.To detect the mental task of interest, spatial filtering has been widely used to enhance the spatial resolution of electroencephalography (EEG). However, the effectiveness of spatial filtering is undermined due to the significant nonstationarity of EEG. Based on regularization, most of the conventional stationary spatial filter design methods address the nonstationarity at the cost of the interclass discrimination. Moreover, spatial filter optimization is inconsistent with feature extraction when EEG covariance matrices could not be jointly diagonalized due to the regularization. In this paper, we propose a novel framework for a spatial filter design. With Fisher's ratio in feature space directly used as the objective function, the spatial filter optimization is unified with feature extraction. Given its ratio form, the selection of the regularization parameter could be avoided. We evaluate the proposed method on a binary motor imagery data set of 16 subjects, who performed the calibration and test sessions on different days. The experimental results show that the proposed method yields improvement in classification performance for both single broadband and filter bank settings compared with conventional nonunified methods. We also provide a systematic attempt to compare different objective functions in modeling data nonstationarity with simulation studies.
Rathee, Manu; Tamrakar, Amit Kumar; Kundu, Renu; Yunus, Nadeem
2014-08-05
Facial deformity can be debilitating, especially in the psychological and cosmetic aspects. Although surgical correction or replacement of deformed or missing parts is the ideal treatment, prosthetic replacement serves the purpose in case of surgical limitations. Prosthetic rehabilitation of a missing auricle is an acceptable option as it provides better control over the tortuous anatomical shape and shade of the missing portion. Improper spatial orientation of the prosthetic ear on the face can damage the results of even the most aesthetic prosthesis. This case report describes a simple and innovative method for precise spatial orientation of auricular trial prosthesis using a facebow and custom-made adjustable mechanical retention design using stainless steel wire. 2014 BMJ Publishing Group Ltd.
NASA Astrophysics Data System (ADS)
Oungrinis, Konstantinos-Alketas; Liapi, Marianthi; Kelesidi, Anna; Gargalis, Leonidas; Telo, Marinela; Ntzoufras, Sotiris; Paschidi, Mariana
2014-12-01
The paper presents the development of an on-going research project that focuses on a human-centered design approach to habitable spacecraft modules. It focuses on the technical requirements and proposes approaches on how to achieve a spatial arrangement of the interior that addresses sufficiently the functional, physiological and psychosocial needs of the people living and working in such confined spaces that entail long-term environmental threats to human health and performance. Since the research perspective examines the issue from a qualitative point of view, it is based on establishing specific relationships between the built environment and its users, targeting people's bodily and psychological comfort as a measure toward a successful mission. This research has two basic branches, one examining the context of the system's operation and behavior and the other in the direction of identifying, experimenting and formulating the environment that successfully performs according to the desired context. The latter aspect is researched upon the construction of a scaled-model on which we run series of tests to identify the materiality, the geometry and the electronic infrastructure required. Guided by the principles of sensponsive architecture, the ISM research project explores the application of the necessary spatial arrangement and behavior for a user-centered, functional interior where the appropriate intelligent systems are based upon the existing mechanical and chemical support ones featured on space today, and especially on the ISS. The problem is set according to the characteristics presented at the Mars500 project, regarding the living quarters of six crew-members, along with their hygiene, leisure and eating areas. Transformable design techniques introduce spatial economy, adjustable zoning and increased efficiency within the interior, securing at the same time precise spatial orientation and character at any given time. The sensponsive configuration is programmed to exhibit behavior in direct relation to human activity. It is based upon two active systems, the Activity Evaluation System (AES) and the Response System (RS), with combined action that is always open to the control of the user. The AES monitors the daily schedule of the astronauts in order to find patterns of activity, understand the context of actions and moreover to assess the psychological condition of the crew-members. If it finds cause for intervention, AES will give way to the RS which employs smart materials, controllers and actuators in order to perform required changes in the environmental factors, both spatial (volume and surface) and ambient (audio, visual, olfactory, and haptic), and induce a desirable spatial and/or psychological condition that is beneficial for the astronauts' comfort and well being.
Artificial Symmetry-Breaking for Morphogenetic Engineering Bacterial Colonies.
Nuñez, Isaac N; Matute, Tamara F; Del Valle, Ilenne D; Kan, Anton; Choksi, Atri; Endy, Drew; Haseloff, Jim; Rudge, Timothy J; Federici, Fernan
2017-02-17
Morphogenetic engineering is an emerging field that explores the design and implementation of self-organized patterns, morphologies, and architectures in systems composed of multiple agents such as cells and swarm robots. Synthetic biology, on the other hand, aims to develop tools and formalisms that increase reproducibility, tractability, and efficiency in the engineering of biological systems. We seek to apply synthetic biology approaches to the engineering of morphologies in multicellular systems. Here, we describe the engineering of two mechanisms, symmetry-breaking and domain-specific cell regulation, as elementary functions for the prototyping of morphogenetic instructions in bacterial colonies. The former represents an artificial patterning mechanism based on plasmid segregation while the latter plays the role of artificial cell differentiation by spatial colocalization of ubiquitous and segregated components. This separation of patterning from actuation facilitates the design-build-test-improve engineering cycle. We created computational modules for CellModeller representing these basic functions and used it to guide the design process and explore the design space in silico. We applied these tools to encode spatially structured functions such as metabolic complementation, RNAPT7 gene expression, and CRISPRi/Cas9 regulation. Finally, as a proof of concept, we used CRISPRi/Cas technology to regulate cell growth by controlling methionine synthesis. These mechanisms start from single cells enabling the study of morphogenetic principles and the engineering of novel population scale structures from the bottom up.
NASA Technical Reports Server (NTRS)
Lindsey, Patricia F.
1993-01-01
In its search for higher level computer interfaces and more realistic electronic simulations for measurement and spatial analysis in human factors design, NASA at MSFC is evaluating the functionality of virtual reality (VR) technology. Virtual reality simulation generates a three dimensional environment in which the participant appears to be enveloped. It is a type of interactive simulation in which humans are not only involved, but included. Virtual reality technology is still in the experimental phase, but it appears to be the next logical step after computer aided three-dimensional animation in transferring the viewer from a passive to an active role in experiencing and evaluating an environment. There is great potential for using this new technology when designing environments for more successful interaction, both with the environment and with another participant in a remote location. At the University of North Carolina, a VR simulation of a the planned Sitterson Hall, revealed a flaw in the building's design that had not been observed during examination of the more traditional building plan simulation methods on paper and on computer aided design (CAD) work station. The virtual environment enables multiple participants in remote locations to come together and interact with one another and with the environment. Each participant is capable of seeing herself and the other participants and of interacting with them within the simulated environment.
Prospects and pitfalls of occupational hazard mapping: 'between these lines there be dragons'.
Koehler, Kirsten A; Volckens, John
2011-10-01
Hazard data mapping is a promising new technique that can enhance the process of occupational exposure assessment and risk communication. Hazard maps have the potential to improve worker health by providing key input for the design of hazard intervention and control strategies. Hazard maps are developed with aid from direct-reading instruments, which can collect highly spatially and temporally resolved data in a relatively short period of time. However, quantifying spatial-temporal variability in the occupational environment is not a straightforward process, and our lack of understanding of how to ascertain and model spatial and temporal variability is a limiting factor in the use and interpretation of workplace hazard maps. We provide an example of how sources of and exposures to workplace hazards may be mischaracterized in a hazard map due to a lack of completeness and representativeness of collected measurement data. Based on this example, we believe that a major priority for research in this emerging area should focus on the development of a statistical framework to quantify uncertainty in spatially and temporally varying data. In conjunction with this need is one for the development of guidelines and procedures for the proper sampling, generation, and evaluation of workplace hazard maps.
NASA Astrophysics Data System (ADS)
Li, Dongfang; Pacifici, Domenico
The spectral degree of coherence describes the correlation of electromagnetic fields, which plays a key role in many applications, including free-space optical communications and speckle-free bioimaging. Recently, plasmonic interferometry, i.e. optical interferometry that employs surface plasmon polaritons (SPPs), has enabled enhanced light transmission and high-sensitivity biosensing, among other applications. It offers new ways to characterize and engineer electromagnetic fields using nano-structured thin metal films. Here, we employ plasmonic interferometry to demonstrate full control of spatial coherence at length scales comparable to the wavelength of the incident light. Specifically, by measuring the diffraction pattern of several double-slit plasmonic structures etched on a metal film, the amplitude and phase of the degree of spatial coherence is determined as a function of slit-slit separation distance and incident wavelength. When the SPP contribution is turned on (i.e., by changing the polarization of the incident light from TE to TM illumination mode), strong modulation of both amplitude and phase of the spatial coherence is observed. These findings may help design compact modulators of optical spatial coherence and other optical elements to shape the light intensity in the far-field.
Compressive Feedback Control Design for Spatially Distributed Systems
2017-01-03
NecSys 2015 & 2016 Abstract The goal of this research is the development of new fundamental insights and methodologies to exploit structural properties of...Measures One of the simplest class of dynamical networks that our proposed methodology can be explained in a simple setting is the class of first–order...developed a novel methodology to obtain tight lower and upper bounds for the class of systemic measures. In the following, some of the key ideas behind our
Vector optical fields with polarization distributions similar to electric and magnetic field lines.
Pan, Yue; Li, Si-Min; Mao, Lei; Kong, Ling-Jun; Li, Yongnan; Tu, Chenghou; Wang, Pei; Wang, Hui-Tian
2013-07-01
We present, design and generate a new kind of vector optical fields with linear polarization distributions modeling to electric and magnetic field lines. The geometric configurations of "electric charges" and "magnetic charges" can engineer the spatial structure and symmetry of polarizations of vector optical field, providing additional degrees of freedom assisting in controlling the field symmetry at the focus and allowing engineering of the field distribution at the focus to the specific applications.
Marco-Rius, Irene; Cao, Peng; von Morze, Cornelius; Merrit, Matthew; Moreno, Karlos X; Chang, Gene-Yuan; Ohliger, Michael A.; Pearce, David; Kurhanewicz, John; Larson, Peder E. Z.; Vigneron, Daniel B.
2016-01-01
Purpose To develop a specialized multislice, single-acquisition approach to detect the metabolites of hyperpolarized [2-13C]dihydroxyacetone (DHAc) to probe gluconeogenesis in vivo, which have a broad 144 ppm spectral range (~4.6 KHz at 3T). A novel multiband RF excitation pulse was designed for independent flip angle control over 5-6 spectral-spatial (SPSP) excitation bands, each corrected for chemical shift misregistration effects. Methods Specialized multi-band SPSP RF pulses were designed, tested and applied to investigate hyperpolarized [2-13C]DHAc metabolism in kidney and liver of fasted rats with dynamic 13C-MRS and an optimal flip angle scheme. For comparison, experiments were also performed with narrow-band slice-selective RF pulses and a sequential change of the frequency offset to cover the five frequency bands of interest. Results The SPSP pulses provided a controllable spectral profile free of baseline distortion with improved signal to noise of the metabolite peaks, allowing for quantification of the metabolic products. We observed organ-specific differences in DHAc metabolism. There was 2-5 times more [2-13C]phosphoenolpyruvate and about 19 times more [2-13C]glycerol 3-phosphate in the liver than in the kidney. Conclusion A multiband SPSP RF pulse covering a spectral range over 144 ppm enabled in vivo characterization of HP [2-13C]dihydroxyacetone metabolism in rat liver and kidney. PMID:27017966
The use of miniature supersonic nozzles for microparticle acceleration: a numerical study.
Liu, Y
2007-10-01
By means of a high-speed gas flow generated by a miniature supersonic nozzle, we proposed a unique biolistic method to accelerate microparticle formulation of drugs to sufficient momentum, to penetrate the outer layer of human skin or mucosal tissue for the treatment of a range of diseases. One of the main concerns for designing and evaluating this system is ensuring microparticles delivery into human skin with a controllable velocity range and spatial distribution. The initial experimental work suggested that the performance of the transdermal delivery strongly depends on aerodynamics of the supersonic nozzles employed. In this paper, computational fluid dynamics (CFD) is utilized to characterize existing prototype biolistic delivery systems, the device with a converging-diverging supersonic nozzle (CDSN) and the device based on the contoured-shock-tube (CST) design, with the aim at investigating the transient gas and particle dynamics in the supersonic nozzles. Whenever possible, predicted pressure and Mach number histories, 2-D flow structures, and particle velocity distributions are made to compare with the corresponding experimental measurements to validate the implemented numerical approach. The gas-particle interaction and performance of two biolistic devices are interrogated and distinguished. Subsequently, the particle impact conditions are presented and discussed. It is demonstrated that the CST can deliver microparticles with a narrow and more controllable velocity range and spatial distribution.
Spatially balanced survey designs for natural resources
Ecological resource monitoring programs typically require the use of a probability survey design to select locations or entities to be physically sampled in the field. The ecological resource of interest, the target population, occurs over a spatial domain and the sample selecte...
Head-mounted spatial instruments: Synthetic reality or impossible dream
NASA Technical Reports Server (NTRS)
Ellis, Stephen R.; Grunwald, Arthur; Velger, Mordekhai
1988-01-01
A spatial instrument is defined as a display device which has been either geometrically or symbolically enhanced to better enable a user to accomplish a particular task. Research conducted over the past several years on 3-D spatial instruments has shown that perspective displays, even when viewed from the correct viewpoint, are subject to systematic viewer biases. These biases interfere with correct spatial judgements of the presented pictorial information. It is also found that deliberate, appropriate geometric distortion of the perspective projection of an image can improve user performance. These two findings raise intriguing questions concerning the design of head-mounted spatial instruments. The design of such instruments may not only require the introduction of compensatory distortions to remove the neutrally occurring biases but also may significantly benefit from the introduction of artificial distortions which enhance performance. These image manipulations, however, can cause a loss of visual-vestibular coordination and induce motion sickness. Additionally, adaptation to these manipulations is apt to be impaired by computational delays in the image display. Consequently, the design of head-mounted spatial instruments will require an understanding of the tolerable limits of visual-vestibular discord.
Blended Interaction Design: A Spatial Workspace Supporting HCI and Design Practice
NASA Astrophysics Data System (ADS)
Geyer, Florian
This research investigates novel methods and techniques along with tool support that result from a conceptual blend of human-computer interaction with design practice. Using blending theory with material anchors as a theoretical framework, we frame both input spaces and explore emerging structures within technical, cognitive, and social aspects. Based on our results, we will describe a framework of the emerging structures and will design and evaluate tool support within a spatial, studio-like workspace to support collaborative creativity in interaction design.
Using GIS to generate spatially balanced random survey designs for natural resource applications.
Theobald, David M; Stevens, Don L; White, Denis; Urquhart, N Scott; Olsen, Anthony R; Norman, John B
2007-07-01
Sampling of a population is frequently required to understand trends and patterns in natural resource management because financial and time constraints preclude a complete census. A rigorous probability-based survey design specifies where to sample so that inferences from the sample apply to the entire population. Probability survey designs should be used in natural resource and environmental management situations because they provide the mathematical foundation for statistical inference. Development of long-term monitoring designs demand survey designs that achieve statistical rigor and are efficient but remain flexible to inevitable logistical or practical constraints during field data collection. Here we describe an approach to probability-based survey design, called the Reversed Randomized Quadrant-Recursive Raster, based on the concept of spatially balanced sampling and implemented in a geographic information system. This provides environmental managers a practical tool to generate flexible and efficient survey designs for natural resource applications. Factors commonly used to modify sampling intensity, such as categories, gradients, or accessibility, can be readily incorporated into the spatially balanced sample design.
Collaborative simulation method with spatiotemporal synchronization process control
NASA Astrophysics Data System (ADS)
Zou, Yisheng; Ding, Guofu; Zhang, Weihua; Zhang, Jian; Qin, Shengfeng; Tan, John Kian
2016-10-01
When designing a complex mechatronics system, such as high speed trains, it is relatively difficult to effectively simulate the entire system's dynamic behaviors because it involves multi-disciplinary subsystems. Currently,a most practical approach for multi-disciplinary simulation is interface based coupling simulation method, but it faces a twofold challenge: spatial and time unsynchronizations among multi-directional coupling simulation of subsystems. A new collaborative simulation method with spatiotemporal synchronization process control is proposed for coupling simulating a given complex mechatronics system across multiple subsystems on different platforms. The method consists of 1) a coupler-based coupling mechanisms to define the interfacing and interaction mechanisms among subsystems, and 2) a simulation process control algorithm to realize the coupling simulation in a spatiotemporal synchronized manner. The test results from a case study show that the proposed method 1) can certainly be used to simulate the sub-systems interactions under different simulation conditions in an engineering system, and 2) effectively supports multi-directional coupling simulation among multi-disciplinary subsystems. This method has been successfully applied in China high speed train design and development processes, demonstrating that it can be applied in a wide range of engineering systems design and simulation with improved efficiency and effectiveness.
Image routing via atomic spin coherence
Wang, Lei; Sun, Jia-Xiang; Luo, Meng-Xi; Sun, Yuan-Hang; Wang, Xiao-Xiao; Chen, Yi; Kang, Zhi-Hui; Wang, Hai-Hua; Wu, Jin-Hui; Gao, Jin-Yue
2015-01-01
Coherent storage of optical image in a coherently-driven medium is a promising method with possible applications in many fields. In this work, we experimentally report a controllable spatial-frequency routing of image via atomic spin coherence in a solid-state medium driven by electromagnetically induced transparency (EIT). Under the EIT-based light-storage regime, a transverse spatial image carried by the probe field is stored into atomic spin coherence. By manipulating the frequency and spatial propagation direction of the read control field, the stored image is transferred into a new spatial-frequency channel. When two read control fields are used to retrieve the stored information, the image information is converted into a superposition of two spatial-frequency modes. Through this technique, the image is manipulated coherently and all-optically in a controlled fashion. PMID:26658846
False Discovery Control in Large-Scale Spatial Multiple Testing
Sun, Wenguang; Reich, Brian J.; Cai, T. Tony; Guindani, Michele; Schwartzman, Armin
2014-01-01
Summary This article develops a unified theoretical and computational framework for false discovery control in multiple testing of spatial signals. We consider both point-wise and cluster-wise spatial analyses, and derive oracle procedures which optimally control the false discovery rate, false discovery exceedance and false cluster rate, respectively. A data-driven finite approximation strategy is developed to mimic the oracle procedures on a continuous spatial domain. Our multiple testing procedures are asymptotically valid and can be effectively implemented using Bayesian computational algorithms for analysis of large spatial data sets. Numerical results show that the proposed procedures lead to more accurate error control and better power performance than conventional methods. We demonstrate our methods for analyzing the time trends in tropospheric ozone in eastern US. PMID:25642138
A Design Principle for an Autonomous Post-translational Pattern Formation.
Sugai, Shuhei S; Ode, Koji L; Ueda, Hiroki R
2017-04-25
Previous autonomous pattern-formation models often assumed complex molecular and cellular networks. This theoretical study, however, shows that a system composed of one substrate with multisite phosphorylation and a pair of kinase and phosphatase can generate autonomous spatial information, including complex stripe patterns. All (de-)phosphorylation reactions are described with a generic Michaelis-Menten scheme, and all species freely diffuse without pre-existing gradients. Computational simulation upon >23,000,000 randomly generated parameter sets revealed the design motifs of cyclic reaction and enzyme sequestration by slow-diffusing substrates. These motifs constitute short-range positive and long-range negative feedback loops to induce Turing instability. The width and height of spatial patterns can be controlled independently by distinct reaction-diffusion processes. Therefore, multisite reversible post-translational modification can be a ubiquitous source for various patterns without requiring other complex regulations such as autocatalytic regulation of enzymes and is applicable to molecular mechanisms for inducing subcellular localization of proteins driven by post-translational modifications. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Chemical morphogenesis: recent experimental advances in reaction–diffusion system design and control
Szalai, István; Cuiñas, Daniel; Takács, Nándor; Horváth, Judit; De Kepper, Patrick
2012-01-01
In his seminal 1952 paper, Alan Turing predicted that diffusion could spontaneously drive an initially uniform solution of reacting chemicals to develop stable spatially periodic concentration patterns. It took nearly 40 years before the first two unquestionable experimental demonstrations of such reaction–diffusion patterns could be made in isothermal single phase reaction systems. The number of these examples stagnated for nearly 20 years. We recently proposed a design method that made their number increase to six in less than 3 years. In this report, we formally justify our original semi-empirical method and support the approach with numerical simulations based on a simple but realistic kinetic model. To retain a number of basic properties of real spatial reactors but keep calculations to a minimal complexity, we introduce a new way to collapse the confined spatial direction of these reactors. Contrary to similar reduced descriptions, we take into account the effect of the geometric size in the confinement direction and the influence of the differences in the diffusion coefficient on exchange rates of species with their feed environment. We experimentally support the method by the observation of stationary patterns in red-ox reactions not based on oxihalogen chemistry. Emphasis is also brought on how one of these new systems can process different initial conditions and memorize them in the form of localized patterns of different geometries. PMID:23919126
Neighborhood Effects in a Behavioral Randomized Controlled Trial
Pruitt, Sandi L.; Leonard, Tammy; Murdoch, James; Hughes, Amy; McQueen, Amy; Gupta, Samir
2015-01-01
Randomized controlled trials (RCTs) of interventions intended to modify health behaviors may be influenced by neighborhood effects which can impede unbiased estimation of intervention effects. Examining a RCT designed to increase colorectal cancer (CRC) screening (N=5,628), we found statistically significant neighborhood effects: average CRC test use among neighboring study participants was significantly and positively associated with individual patient’s CRC test use. This potentially important spatially-varying covariate has not previously been considered in a RCT. Our results suggest that future RCTs of health behavior interventions should assess potential social interactions between participants, which may cause intervention arm contamination and may bias effect size estimation. PMID:25456014
Shaping reverberating sound fields with an actively tunable metasurface.
Ma, Guancong; Fan, Xiying; Sheng, Ping; Fink, Mathias
2018-06-26
A reverberating environment is a common complex medium for airborne sound, with familiar examples such as music halls and lecture theaters. The complexity of reverberating sound fields has hindered their meaningful control. Here, by combining acoustic metasurface and adaptive wavefield shaping, we demonstrate the versatile control of reverberating sound fields in a room. This is achieved through the design and the realization of a binary phase-modulating spatial sound modulator that is based on an actively reconfigurable acoustic metasurface. We demonstrate useful functionalities including the creation of quiet zones and hotspots in a typical reverberating environment. Copyright © 2018 the Author(s). Published by PNAS.
Toward microscale flow control using non-uniform electro-osmotic flow
NASA Astrophysics Data System (ADS)
Paratore, Federico; Boyko, Evgeniy; Gat, Amir D.; Kaigala, Govind V.; Bercovici, Moran
2018-02-01
We present a novel method that allows establishing desired flow patterns in a Hele-Shaw cell, solely by controlling the surface chemistry, without the use of physical walls. Using weak electrolytes, we locally pattern the chamber's ceiling and/or floor, thus defining a spatial distribution of surface charge. This translates to a non-uniform electric double layer which when subjected to an external electric field applied along the chamber, gives rise to non-uniform electroosmotic flow (EOF). We present the theory that allows prediction and design of such flows fields, as well as experimental demonstrations opening the door to configurable microfluidic devices.
Professional mathematicians differ from controls in their spatial-numerical associations.
Cipora, Krzysztof; Hohol, Mateusz; Nuerk, Hans-Christoph; Willmes, Klaus; Brożek, Bartosz; Kucharzyk, Bartłomiej; Nęcka, Edward
2016-07-01
While mathematically impaired individuals have been shown to have deficits in all kinds of basic numerical representations, among them spatial-numerical associations, little is known about individuals with exceptionally high math expertise. They might have a more abstract magnitude representation or more flexible spatial associations, so that no automatic left/small and right/large spatial-numerical association is elicited. To pursue this question, we examined the Spatial Numerical Association of Response Codes (SNARC) effect in professional mathematicians which was compared to two control groups: Professionals who use advanced math in their work but are not mathematicians (mostly engineers), and matched controls. Contrarily to both control groups, Mathematicians did not reveal a SNARC effect. The group differences could not be accounted for by differences in mean response speed, response variance or intelligence or a general tendency not to show spatial-numerical associations. We propose that professional mathematicians possess more abstract and/or spatially very flexible numerical representations and therefore do not exhibit or do have a largely reduced default left-to-right spatial-numerical orientation as indexed by the SNARC effect, but we also discuss other possible accounts. We argue that this comparison with professional mathematicians also tells us about the nature of spatial-numerical associations in persons with much less mathematical expertise or knowledge.
Non-airborne conflicts: The causes and effects of runway transgressions
NASA Technical Reports Server (NTRS)
Tarrel, Richard J.
1985-01-01
The 1210 ASRS runway transgression reports are studied and expanded to yield descriptive statistics. Additionally, a one of three subset was studied in detail for purposes of evaluating the causes, risks, and consequences behind trangression events. Occurrences are subdivided by enabling factor and flight phase designations. It is concluded that a larger risk of collision is associated with controller enabled departure transgressions over all other categories. The influence of this type is especially evident during the period following the air traffic controllers' strike of 1981. Causal analysis indicates that, coincidentally, controller enabled departure transgressions also, show the strongest correlations between causal factors. It shows that departure errors occur more often when visibility is reduced, and when multiple takeoff runways or intersection takeoffs are employed. In general, runway transgressions attributable to both pilot and controller errors arise from three problem areas: information transfer, awareness, and spatial judgement. Enhanced awareness by controllers will probably reduce controller enabled incidents.
Bédard, Anne-Claude V; Newcorn, Jeffrey H; Clerkin, Suzanne M; Krone, Beth; Fan, Jin; Halperin, Jeffrey M; Schulz, Kurt P
2014-09-01
Visuospatial working memory impairments have been implicated in the pathophysiology of attention-deficit/hyperactivity disorder (ADHD). However, most ADHD research has focused on the neural correlates of nonspatial mnemonic processes. This study examined brain activation and functional connectivity for visuospatial working memory in youth with and without ADHD. Twenty-four youth with ADHD and 21 age- and sex-matched healthy controls were scanned with functional magnetic resonance imaging while performing an N-back test of working memory for spatial position. Block-design analyses contrasted activation and functional connectivity separately for high (2-back) and low (1-back) working memory load conditions versus the control condition (0-back). The effect of working memory load was modeled with linear contrasts. The 2 groups performed comparably on the task and demonstrated similar patterns of frontoparietal activation, with no differences in linear gains in activation as working memory load increased. However, youth with ADHD showed greater activation in the left dorsolateral prefrontal cortex (DLPFC) and left posterior cingulate cortex (PCC), greater functional connectivity between the left DLPFC and left intraparietal sulcus, and reduced left DLPFC connectivity with left midcingulate cortex and PCC for the high load contrast compared to controls (p < .01; k > 100 voxels). Reanalysis using a more conservative statistical approach (p < .001; k > 100 voxels) yielded group differences in PCC activation and DLPFC-midcingulate connectivity. Youth with ADHD show decreased efficiency of DLPFC for high-load visuospatial working memory and greater reliance on posterior spatial attention circuits to store and update spatial position than healthy control youth. Findings should be replicated in larger samples. Copyright © 2014 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.
Barbu, Corentin; Dumonteil, Eric; Gourbière, Sébastien
2010-01-01
Background Chagas disease is a major parasitic disease in Latin America, prevented in part by vector control programs that reduce domestic populations of triatomines. However, the design of control strategies adapted to non-domiciliated vectors, such as Triatoma dimidiata, remains a challenge because it requires an accurate description of their spatio-temporal distributions, and a proper understanding of the underlying dispersal processes. Methodology/Principal Findings We combined extensive spatio-temporal data sets describing house infestation dynamics by T. dimidiata within a village, and spatially explicit population dynamics models in a selection model approach. Several models were implemented to provide theoretical predictions under different hypotheses on the origin of the dispersers and their dispersal characteristics, which we compared with the spatio-temporal pattern of infestation observed in the field. The best models fitted the dynamic of infestation described by a one year time-series, and also predicted with a very good accuracy the infestation process observed during a second replicate one year time-series. The parameterized models gave key insights into the dispersal of these vectors. i) About 55% of the triatomines infesting houses came from the peridomestic habitat, the rest corresponding to immigration from the sylvatic habitat, ii) dispersing triatomines were 5–15 times more attracted by houses than by peridomestic area, and iii) the moving individuals spread on average over rather small distances, typically 40–60 m/15 days. Conclusion/Significance Since these dispersal characteristics are associated with much higher abundance of insects in the periphery of the village, we discuss the possibility that spatially targeted interventions allow for optimizing the efficacy of vector control activities within villages. Such optimization could prove very useful in the context of limited resources devoted to vector control. PMID:20689823
Development of a Geometric Spatial Visualization Tool
ERIC Educational Resources Information Center
Ganesh, Bibi; Wilhelm, Jennifer; Sherrod, Sonya
2009-01-01
This paper documents the development of the Geometric Spatial Assessment. We detail the development of this instrument which was designed to identify middle school students' strategies and advancement in understanding of four geometric concept domains (geometric spatial visualization, spatial projection, cardinal directions, and periodic patterns)…
Structural acoustic control of plates with variable boundary conditions: design methodology.
Sprofera, Joseph D; Cabell, Randolph H; Gibbs, Gary P; Clark, Robert L
2007-07-01
A method for optimizing a structural acoustic control system subject to variations in plate boundary conditions is provided. The assumed modes method is used to build a plate model with varying levels of rotational boundary stiffness to simulate the dynamics of a plate with uncertain edge conditions. A transducer placement scoring process, involving Hankel singular values, is combined with a genetic optimization routine to find spatial locations robust to boundary condition variation. Predicted frequency response characteristics are examined, and theoretically optimized results are discussed in relation to the range of boundary conditions investigated. Modeled results indicate that it is possible to minimize the impact of uncertain boundary conditions in active structural acoustic control by optimizing the placement of transducers with respect to those uncertainties.
The spatial comfort study of shophouse at Kampung Madras
NASA Astrophysics Data System (ADS)
Ginting, Y. U. U.; Ginting, N.; Zahrah, W.
2018-03-01
This Research comes from the increasing quantity of shophouse in downtown Medan and the suburban area. The condition of shophouse tend to have narrowly spaced rooms, the middle area of the house are poorly lighted, and lots of space left unused. This research is supported by many spatial issues from previous studies. This study is conducted to determine the level of comfort of shophouse as a function of living space and focused on the spatial aspect namely anthropometry, indoor space circulation, space requirement and function, spatial design and indoor visual. This study uses the descriptive method with the qualitative and quantitative approach. Data collection technique is done by field observation, questionnaire method is also used to get the respondent perception of the spatial comfort of a shophouse. The result indicates that the level of spatial comfort of the shophouse is an uncomfort. So the improvements in the circulation of access to the building, spatial design, lighting, and aeration are needed to improve the spatial comfort of a shophouse.
ERIC Educational Resources Information Center
Turgut, Melih; Uygan, Candas
2015-01-01
In this work, certain task designs to enhance middle school students' spatial visualisation ability, in the context of an instrumental approach, have been developed. 3D modelling software, SketchUp®, was used. In the design process, software tools were focused on and, thereafter, the aim was to interpret the instrumental genesis and spatial…
On spatial spillover in feedforward and feedback noise control
NASA Astrophysics Data System (ADS)
Xie, Antai; Bernstein, Dennis
2017-03-01
Active feedback noise control for rejecting broadband disturbances must contend with the Bode integral constraint, which implies that suppression over some frequency range gives rise to amplification over another range at the performance microphone. This is called spectral spillover. The present paper deals with spatial spillover, which refers to the amplification of noise at locations where no microphone is located. A spatial spillover function is defined, which is valid for both feedforward and feedback control with scalar and vector control inputs. This function is numerically analyzed and measured experimentally. Obstructions are introduced in the acoustic space to investigate their effect on spatial spillover.
Martins, Marina C M; Caldana, Camila; Wolf, Lucia Daniela; de Abreu, Luis Guilherme Furlan
2018-01-01
The output of metabolomics relies to a great extent upon the methods and instrumentation to identify, quantify, and access spatial information on as many metabolites as possible. However, the most modern machines and sophisticated tools for data analysis cannot compensate for inappropriate harvesting and/or sample preparation procedures that modify metabolic composition and can lead to erroneous interpretation of results. In addition, plant metabolism has a remarkable degree of complexity, and the number of identified compounds easily surpasses the number of samples in metabolomics analyses, increasing false discovery risk. These aspects pose a large challenge when carrying out plant metabolomics experiments. In this chapter, we address the importance of a proper experimental design taking into consideration preventable complications and unavoidable factors to achieve success in metabolomics analysis. We also focus on quality control and standardized procedures during the metabolomics workflow.
Toward rational design of electrical stimulation strategies for epilepsy control
Sunderam, Sridhar; Gluckman, Bruce; Reato, Davide; Bikson, Marom
2009-01-01
Electrical stimulation is emerging as a viable alternative for epilepsy patients whose seizures are not alleviated by drugs or surgery. Its attractions are temporal and spatial specificity of action, flexibility of waveform parameters and timing, and the perception that its effects are reversible unlike resective surgery. However, despite significant advances in our understanding of mechanisms of neural electrical stimulation, clinical electrotherapy for seizures relies heavily on empirical tuning of parameters and protocols. We highlight concurrent treatment goals with potentially conflicting design constraints that must be resolved when formulating rational strategies for epilepsy electrotherapy: namely seizure reduction versus cognitive impairment, stimulation efficacy versus tissue safety, and mechanistic insight versus clinical pragmatism. First, treatment markers, objectives, and metrics relevant to electrical stimulation for epilepsy are discussed from a clinical perspective. Then the experimental perspective is presented, with the biophysical mechanisms and modalities of open-loop electrical stimulation, and the potential benefits of closed-loop control for epilepsy. PMID:19926525
Spatial Visualization by Isometric View
ERIC Educational Resources Information Center
Yue, Jianping
2007-01-01
Spatial visualization is a fundamental skill in technical graphics and engineering designs. From conventional multiview drawing to modern solid modeling using computer-aided design, visualization skills have always been essential for representing three-dimensional objects and assemblies. Researchers have developed various types of tests to measure…
VARIANCE ESTIMATION FOR SPATIALLY BALANCED SAMPLES OF ENVIRONMENTAL RESOURCES
The spatial distribution of a natural resource is an important consideration in designing an efficient survey or monitoring program for the resource. We review a unified strategy for designing probability samples of discrete, finite resource populations, such as lakes within som...
Spatial Reasoning Training Through Light Curves Of Model Asteroids
NASA Astrophysics Data System (ADS)
Ziffer, Julie; Nakroshis, Paul A.; Rudnick, Benjamin T.; Brautigam, Maxwell J.; Nelson, Tyler W.
2015-11-01
Recent research has demonstrated that spatial reasoning skills, long known to be crucial to math and science success, are teachable. Even short stints of training can improve spatial reasoning skills among students who lack them (Sorby et al., 2006). Teaching spatial reasoning is particularly valuable to women and minorities who, through societal pressure, often doubt their spatial reasoning skill (Hill et al., 2010). We have designed a hands on asteroid rotation lab that provides practice in spatial reasoning tasks while building the student’s understanding of photometry. For our tool, we mount a model asteroid, with any shape of our choosing, on a slowly rotating motor shaft, whose speed is controlled by the experimenter. To mimic an asteroid light curve, we place the model asteroid in a dark box, shine a movable light source upon our asteroid, and record the light reflected onto a moveable camera. Students may then observe changes in the light curve that result from varying a) the speed of rotation, b) the model asteroid’s orientation with respect to the motor axis, c) the model asteroid’s shape or albedo, and d) the phase angle. After practicing with our tool, students are asked to pair new objects to their corresponding light curves. To correctly pair objects to their light curves, students must imagine how light scattering off of a three dimensional rotating object is imaged on a ccd sensor plane, and then reduced to a series of points on a light curve plot. Through the use of our model asteroid, the student develops confidence in spatial reasoning skills.
Tigers on trails: occupancy modeling for cluster sampling.
Hines, J E; Nichols, J D; Royle, J A; MacKenzie, D I; Gopalaswamy, A M; Kumar, N Samba; Karanth, K U
2010-07-01
Occupancy modeling focuses on inference about the distribution of organisms over space, using temporal or spatial replication to allow inference about the detection process. Inference based on spatial replication strictly requires that replicates be selected randomly and with replacement, but the importance of these design requirements is not well understood. This paper focuses on an increasingly popular sampling design based on spatial replicates that are not selected randomly and that are expected to exhibit Markovian dependence. We develop two new occupancy models for data collected under this sort of design, one based on an underlying Markov model for spatial dependence and the other based on a trap response model with Markovian detections. We then simulated data under the model for Markovian spatial dependence and fit the data to standard occupancy models and to the two new models. Bias of occupancy estimates was substantial for the standard models, smaller for the new trap response model, and negligible for the new spatial process model. We also fit these models to data from a large-scale tiger occupancy survey recently conducted in Karnataka State, southwestern India. In addition to providing evidence of a positive relationship between tiger occupancy and habitat, model selection statistics and estimates strongly supported the use of the model with Markovian spatial dependence. This new model provides another tool for the decomposition of the detection process, which is sometimes needed for proper estimation and which may also permit interesting biological inferences. In addition to designs employing spatial replication, we note the likely existence of temporal Markovian dependence in many designs using temporal replication. The models developed here will be useful either directly, or with minor extensions, for these designs as well. We believe that these new models represent important additions to the suite of modeling tools now available for occupancy estimation in conservation monitoring. More generally, this work represents a contribution to the topic of cluster sampling for situations in which there is a need for specific modeling (e.g., reflecting dependence) for the distribution of the variable(s) of interest among subunits.
Gilles, Luc; Massioni, Paolo; Kulcsár, Caroline; Raynaud, Henri-François; Ellerbroek, Brent
2013-05-01
This paper discusses the performance and cost of two computationally efficient Fourier-based tomographic wavefront reconstruction algorithms for wide-field laser guide star (LGS) adaptive optics (AO). The first algorithm is the iterative Fourier domain preconditioned conjugate gradient (FDPCG) algorithm developed by Yang et al. [Appl. Opt.45, 5281 (2006)], combined with pseudo-open-loop control (POLC). FDPCG's computational cost is proportional to N log(N), where N denotes the dimensionality of the tomography problem. The second algorithm is the distributed Kalman filter (DKF) developed by Massioni et al. [J. Opt. Soc. Am. A28, 2298 (2011)], which is a noniterative spatially invariant controller. When implemented in the Fourier domain, DKF's cost is also proportional to N log(N). Both algorithms are capable of estimating spatial frequency components of the residual phase beyond the wavefront sensor (WFS) cutoff frequency thanks to regularization, thereby reducing WFS spatial aliasing at the expense of more computations. We present performance and cost analyses for the LGS multiconjugate AO system under design for the Thirty Meter Telescope, as well as DKF's sensitivity to uncertainties in wind profile prior information. We found that, provided the wind profile is known to better than 10% wind speed accuracy and 20 deg wind direction accuracy, DKF, despite its spatial invariance assumptions, delivers a significantly reduced wavefront error compared to the static FDPCG minimum variance estimator combined with POLC. Due to its nonsequential nature and high degree of parallelism, DKF is particularly well suited for real-time implementation on inexpensive off-the-shelf graphics processing units.
Intelligent automated surface grid generation
NASA Technical Reports Server (NTRS)
Yao, Ke-Thia; Gelsey, Andrew
1995-01-01
The goal of our research is to produce a flexible, general grid generator for automated use by other programs, such as numerical optimizers. The current trend in the gridding field is toward interactive gridding. Interactive gridding more readily taps into the spatial reasoning abilities of the human user through the use of a graphical interface with a mouse. However, a sometimes fruitful approach to generating new designs is to apply an optimizer with shape modification operators to improve an initial design. In order for this approach to be useful, the optimizer must be able to automatically grid and evaluate the candidate designs. This paper describes and intelligent gridder that is capable of analyzing the topology of the spatial domain and predicting approximate physical behaviors based on the geometry of the spatial domain to automatically generate grids for computational fluid dynamics simulators. Typically gridding programs are given a partitioning of the spatial domain to assist the gridder. Our gridder is capable of performing this partitioning. This enables the gridder to automatically grid spatial domains of wide range of configurations.
Local signaling from a retinal prosthetic in a rodent retinitis pigmentosa model in vivo
NASA Astrophysics Data System (ADS)
Fransen, James W.; Pangeni, Gobinda; Pardue, Machelle T.; McCall, Maureen A.
2014-08-01
Objective. In clinical trials, retinitis pigmentosa patients implanted with a retinal prosthetic device show enhanced spatial vision, including the ability to read large text and navigate. New prosthetics aim to increase spatial resolution by decreasing pixel/electrode size and limiting current spread. To examine spatial resolution of a new prosthetic design, we characterized and compared two photovoltaic array (PVA) designs and their interaction with the retina after subretinal implantation in transgenic S334ter line 3 rats (Tg S334ter-3). Approach. PVAs were implanted subretinally at two stages of degeneration and assessed in vivo using extracellular recordings in the superior colliculus (SC). Several aspects of this interaction were evaluated by varying duration, irradiance and position of a near infrared laser focused on the PVA. These characteristics included: activation threshold, response linearity, SC signal topography and spatial localization. The major design difference between the two PVA designs is the inclusion of local current returns in the newer design. Main results. When tested in vivo, PVA-evoked response thresholds were independent of pixel/electrode size, but differ between the new and old PVA designs. Response thresholds were independent of implantation age and duration (⩽7.5 months). For both prosthesis designs, threshold intensities were within established safety limits. PVA-evoked responses require inner retina synaptic transmission and do not directly activate retinal ganglion cells. The new PVA design evokes local retinal activation, which is not found with the older PVA design that lacks local current returns. Significance. Our study provides in vivo evidence that prosthetics make functional contacts with the inner nuclear layer at several stages of degeneration. The new PVA design enhances local activation within the retina and SC. Together these results predict that the new design can potentially harness the inherent processing within the retina and is likely to produce higher spatial resolution in patients.
Trap configuration and spacing influences parameter estimates in spatial capture-recapture models
Sun, Catherine C.; Fuller, Angela K.; Royle, J. Andrew
2014-01-01
An increasing number of studies employ spatial capture-recapture models to estimate population size, but there has been limited research on how different spatial sampling designs and trap configurations influence parameter estimators. Spatial capture-recapture models provide an advantage over non-spatial models by explicitly accounting for heterogeneous detection probabilities among individuals that arise due to the spatial organization of individuals relative to sampling devices. We simulated black bear (Ursus americanus) populations and spatial capture-recapture data to evaluate the influence of trap configuration and trap spacing on estimates of population size and a spatial scale parameter, sigma, that relates to home range size. We varied detection probability and home range size, and considered three trap configurations common to large-mammal mark-recapture studies: regular spacing, clustered, and a temporal sequence of different cluster configurations (i.e., trap relocation). We explored trap spacing and number of traps per cluster by varying the number of traps. The clustered arrangement performed well when detection rates were low, and provides for easier field implementation than the sequential trap arrangement. However, performance differences between trap configurations diminished as home range size increased. Our simulations suggest it is important to consider trap spacing relative to home range sizes, with traps ideally spaced no more than twice the spatial scale parameter. While spatial capture-recapture models can accommodate different sampling designs and still estimate parameters with accuracy and precision, our simulations demonstrate that aspects of sampling design, namely trap configuration and spacing, must consider study area size, ranges of individual movement, and home range sizes in the study population.
Gesture-Controlled Interfaces for Self-Service Machines
NASA Technical Reports Server (NTRS)
Cohen, Charles J.; Beach, Glenn
2006-01-01
Gesture-controlled interfaces are software- driven systems that facilitate device control by translating visual hand and body signals into commands. Such interfaces could be especially attractive for controlling self-service machines (SSMs) for example, public information kiosks, ticket dispensers, gasoline pumps, and automated teller machines (see figure). A gesture-controlled interface would include a vision subsystem comprising one or more charge-coupled-device video cameras (at least two would be needed to acquire three-dimensional images of gestures). The output of the vision system would be processed by a pure software gesture-recognition subsystem. Then a translator subsystem would convert a sequence of recognized gestures into commands for the SSM to be controlled; these could include, for example, a command to display requested information, change control settings, or actuate a ticket- or cash-dispensing mechanism. Depending on the design and operational requirements of the SSM to be controlled, the gesture-controlled interface could be designed to respond to specific static gestures, dynamic gestures, or both. Static and dynamic gestures can include stationary or moving hand signals, arm poses or motions, and/or whole-body postures or motions. Static gestures would be recognized on the basis of their shapes; dynamic gestures would be recognized on the basis of both their shapes and their motions. Because dynamic gestures include temporal as well as spatial content, this gesture- controlled interface can extract more information from dynamic than it can from static gestures.
Narragansett Bay (NB) has been extensively sampled over the last 50 years by various government agencies, academic institutions, and private groups. To date, most spatial research conducted within the estuary has employed deterministic sampling designs. Several studies have used ...
Sampling design for spatially distributed hydrogeologic and environmental processes
Christakos, G.; Olea, R.A.
1992-01-01
A methodology for the design of sampling networks over space is proposed. The methodology is based on spatial random field representations of nonhomogeneous natural processes, and on optimal spatial estimation techniques. One of the most important results of random field theory for physical sciences is its rationalization of correlations in spatial variability of natural processes. This correlation is extremely important both for interpreting spatially distributed observations and for predictive performance. The extent of site sampling and the types of data to be collected will depend on the relationship of subsurface variability to predictive uncertainty. While hypothesis formulation and initial identification of spatial variability characteristics are based on scientific understanding (such as knowledge of the physics of the underlying phenomena, geological interpretations, intuition and experience), the support offered by field data is statistically modelled. This model is not limited by the geometric nature of sampling and covers a wide range in subsurface uncertainties. A factorization scheme of the sampling error variance is derived, which possesses certain atttactive properties allowing significant savings in computations. By means of this scheme, a practical sampling design procedure providing suitable indices of the sampling error variance is established. These indices can be used by way of multiobjective decision criteria to obtain the best sampling strategy. Neither the actual implementation of the in-situ sampling nor the solution of the large spatial estimation systems of equations are necessary. The required values of the accuracy parameters involved in the network design are derived using reference charts (readily available for various combinations of data configurations and spatial variability parameters) and certain simple yet accurate analytical formulas. Insight is gained by applying the proposed sampling procedure to realistic examples related to sampling problems in two dimensions. ?? 1992.
The Impact of Conflicting Spatial Representations in Airborne Unmanned Aerial System Sensor Control
2016-02-01
Spatial Discordance 1 Running head: SPATIAL DISCORDANCE IN AIRBORNE UAS OPERATIONS The impact of conflicting spatial...representations in airborne unmanned aerial system sensor control Joseph W Geeseman, James E Patrey, Caroline Davy, Katherine Peditto, & Christine Zernickow...system (UAS) simulation while riding in the fuselage of an airborne Lockheed P-3 Orion. The P-3 flew a flight profile of intermittent ascending
KBGIS-2: A knowledge-based geographic information system
NASA Technical Reports Server (NTRS)
Smith, T.; Peuquet, D.; Menon, S.; Agarwal, P.
1986-01-01
The architecture and working of a recently implemented knowledge-based geographic information system (KBGIS-2) that was designed to satisfy several general criteria for the geographic information system are described. The system has four major functions that include query-answering, learning, and editing. The main query finds constrained locations for spatial objects that are describable in a predicate-calculus based spatial objects language. The main search procedures include a family of constraint-satisfaction procedures that use a spatial object knowledge base to search efficiently for complex spatial objects in large, multilayered spatial data bases. These data bases are represented in quadtree form. The search strategy is designed to reduce the computational cost of search in the average case. The learning capabilities of the system include the addition of new locations of complex spatial objects to the knowledge base as queries are answered, and the ability to learn inductively definitions of new spatial objects from examples. The new definitions are added to the knowledge base by the system. The system is currently performing all its designated tasks successfully, although currently implemented on inadequate hardware. Future reports will detail the performance characteristics of the system, and various new extensions are planned in order to enhance the power of KBGIS-2.
Upside-Down Brilliance: The Visual-Spatial Learner.
ERIC Educational Resources Information Center
Silverman, Linda Kreger
This book describes the unique characteristics of visual-spatial learners and teaching techniques designed for this population. Following a quiz to identify visual-spatial learners, chapters address: (1) how visual-spatial learners think and the plight of being non-sequential; (2) the power of the right hemisphere, eye movement patterns, and…
Multiport optical circulator by using polarizing beam splitter cubes as spatial walk-off polarizers.
Chen, Jing-Heng; Chen, Kun-Huang; Lin, Jiun-You; Hsieh, Hsiang-Yung
2010-03-10
Optical circulators are necessary passive devices applied in optical communication systems. In the design of optical circulators, the implementation of the function of spatial walk-off polarizers is a key technique that significantly influences the performance and cost of a device. This paper proposes a design of a multiport optical circulator by using polarizing beam splitter cubes as spatial walk-off polarizers. To show the feasibility of the design, a prototype of a six-port optical circulator was fabricated. The insertion losses are 0.94-1.49 dB, the isolations are 25-51 dB, and return losses are 27.72 dB.
The Speech, Spatial and Qualities of Hearing Scale (SSQ)
Gatehouse, Stuart; Noble, William
2017-01-01
The Speech, Spatial and Qualities of Hearing Scale (SSQ) is designed to measure a range of hearing disabilities across several domains. Particular attention is given to hearing speech in a variety of competing contexts, and to the directional, distance and movement components of spatial hearing. In addition, the abilities both to segregate sounds and to attend to simultaneous speech streams are assessed, reflecting the reality of hearing in the everyday world. Qualities of hearing experience include ease of listening, and the naturalness, clarity and identifiability of different speakers, different musical pieces and instruments, and different everyday sounds. Application of the SSQ to 153 new clinic clients prior to hearing aid fitting showed that the greatest difficulty was experienced with simultaneous speech streams, ease of listening, listening in groups and in noise, and judging distance and movement. SSQ ratings were compared with an independent measure of handicap. After differences in hearing level were controlled for, it was found that identification, attention and effort problems, as well as spatial hearing problems, feature prominently in the disability–handicap relationship, along with certain features of speech hearing. The results implicate aspects of temporal and spatial dynamics of hearing disability in the experience of handicap. The SSQ shows promise as an instrument for evaluating interventions of various kinds, particularly (but not exclusively) those that implicate binaural function. PMID:15035561
NASA Astrophysics Data System (ADS)
Al-Balushi, Sulaiman M.; Al-Musawi, Ali S.; Ambusaidi, Abdullah K.; Al-Hajri, Fatemah H.
2017-02-01
The purpose of the current study was to investigate the effectiveness of interacting with animations using mobile devices on grade 12 students' spatial and reasoning abilities. The study took place in a grade 12 context in Oman. A quasi-experimental design was used with an experimental group of 32 students and a control group of 28 students. The experimental group studied chemistry using mobile tablets that had a digital instructional package with different animation and simulations. There was one tablet per student. A spatial ability test and a scientific reasoning test were administered to both groups prior and after the study, which lasted for 9 weeks. The findings showed that there were significant statistical differences between the two groups in terms of spatial ability in favour of the experimental group. However, there were no differences between the two groups in terms of reasoning ability. The authors reasoned that the types of animations and simulations used in the current study featured a wide range of three-dimensional animated illustrations at the particulate level of matter. Most probably, this decreased the level of abstractness that usually accompanies chemical entities and phenomena and helped the students to visualize the interactions between submicroscopic entities spatially. Further research is needed to decide on types of scientific animations that could help students improve their scientific reasoning.
Relun, Anne; Grosbois, Vladimir; Sánchez-Vizcaíno, José Manuel; Alexandrov, Tsviatko; Feliziani, Francesco; Waret-Szkuta, Agnès; Molia, Sophie; Etter, Eric Marcel Charles; Martínez-López, Beatriz
2016-01-01
Understanding the complexity of live pig trade organization is a key factor to predict and control major infectious diseases, such as classical swine fever (CSF) or African swine fever (ASF). Whereas the organization of pig trade has been described in several European countries with indoor commercial production systems, little information is available on this organization in other systems, such as outdoor or small-scale systems. The objective of this study was to describe and compare the spatial and functional organization of live pig trade in different European countries and different production systems. Data on premise characteristics and pig movements between premises were collected during 2011 from Bulgaria, France, Italy, and Spain, which swine industry is representative of most of the production systems in Europe (i.e., commercial vs. small-scale and outdoor vs. indoor). Trade communities were identified in each country using the Walktrap algorithm. Several descriptive and network metrics were generated at country and community levels. Pig trade organization showed heterogeneous spatial and functional organization. Trade communities mostly composed of indoor commercial premises were identified in western France, northern Italy, northern Spain, and north-western Bulgaria. They covered large distances, overlapped in space, demonstrated both scale-free and small-world properties, with a role of trade operators and multipliers as key premises. Trade communities involving outdoor commercial premises were identified in western Spain, south-western and central France. They were more spatially clustered, demonstrated scale-free properties, with multipliers as key premises. Small-scale communities involved the majority of premises in Bulgaria and in central and Southern Italy. They were spatially clustered and had scale-free properties, with key premises usually being commercial production premises. These results indicate that a disease might spread very differently according to the production system and that key premises could be targeted to more cost-effectively control diseases. This study provides useful epidemiological information and parameters that could be used to design risk-based surveillance strategies or to more accurately model the risk of introduction or spread of devastating swine diseases, such as ASF, CSF, or foot-and-mouth disease.
Vincenti-Gonzalez, Maria F; Grillet, María-Eugenia; Velasco-Salas, Zoraida I; Lizarazo, Erley F; Amarista, Manuel A; Sierra, Gloria M; Comach, Guillermo; Tami, Adriana
2017-01-01
Dengue virus (DENV) transmission is spatially heterogeneous. Hence, to stratify dengue prevalence in space may be an efficacious strategy to target surveillance and control efforts in a cost-effective manner particularly in Venezuela where dengue is hyperendemic and public health resources are scarce. Here, we determine hot spots of dengue seroprevalence and the risk factors associated with these clusters using local spatial statistics and a regression modeling approach. From August 2010 to January 2011, a community-based cross-sectional study of 2012 individuals in 840 households was performed in high incidence neighborhoods of a dengue hyperendemic city in Venezuela. Local spatial statistics conducted at household- and block-level identified clusters of recent dengue seroprevalence (39 hot spot households and 9 hot spot blocks) in all neighborhoods. However, no clusters were found for past dengue seroprevalence. Clustering of infection was detected at a very small scale (20-110m) suggesting a high disease focal aggregation. Factors associated with living in a hot spot household were occupation (being a domestic worker/housewife (P = 0.002), lower socio-economic status (living in a shack (P<0.001), sharing a household with <7 people (P = 0.004), promoting potential vector breeding sites (storing water in containers (P = 0.024), having litter outdoors (P = 0.002) and mosquito preventive measures (such as using repellent, P = 0.011). Similarly, low socio-economic status (living in crowded conditions, P<0.001), having an occupation of domestic worker/housewife (P = 0.012) and not using certain preventive measures against mosquitoes (P<0.05) were directly associated with living in a hot spot block. Our findings contribute to a better comprehension of the spatial dynamics of dengue by assessing the relationship between disease clusters and their risk factors. These results can inform health authorities in the design of surveillance and control activities. Focalizing dengue control measures during epidemic and inter-epidemic periods to disease high risk zones at household and neighborhood-level may significantly reduce virus transmission in comparison to random interventions.
Relun, Anne; Grosbois, Vladimir; Sánchez-Vizcaíno, José Manuel; Alexandrov, Tsviatko; Feliziani, Francesco; Waret-Szkuta, Agnès; Molia, Sophie; Etter, Eric Marcel Charles; Martínez-López, Beatriz
2016-01-01
Understanding the complexity of live pig trade organization is a key factor to predict and control major infectious diseases, such as classical swine fever (CSF) or African swine fever (ASF). Whereas the organization of pig trade has been described in several European countries with indoor commercial production systems, little information is available on this organization in other systems, such as outdoor or small-scale systems. The objective of this study was to describe and compare the spatial and functional organization of live pig trade in different European countries and different production systems. Data on premise characteristics and pig movements between premises were collected during 2011 from Bulgaria, France, Italy, and Spain, which swine industry is representative of most of the production systems in Europe (i.e., commercial vs. small-scale and outdoor vs. indoor). Trade communities were identified in each country using the Walktrap algorithm. Several descriptive and network metrics were generated at country and community levels. Pig trade organization showed heterogeneous spatial and functional organization. Trade communities mostly composed of indoor commercial premises were identified in western France, northern Italy, northern Spain, and north-western Bulgaria. They covered large distances, overlapped in space, demonstrated both scale-free and small-world properties, with a role of trade operators and multipliers as key premises. Trade communities involving outdoor commercial premises were identified in western Spain, south-western and central France. They were more spatially clustered, demonstrated scale-free properties, with multipliers as key premises. Small-scale communities involved the majority of premises in Bulgaria and in central and Southern Italy. They were spatially clustered and had scale-free properties, with key premises usually being commercial production premises. These results indicate that a disease might spread very differently according to the production system and that key premises could be targeted to more cost-effectively control diseases. This study provides useful epidemiological information and parameters that could be used to design risk-based surveillance strategies or to more accurately model the risk of introduction or spread of devastating swine diseases, such as ASF, CSF, or foot-and-mouth disease. PMID:26870738
Vincenti-Gonzalez, Maria F.; Grillet, María-Eugenia; Velasco-Salas, Zoraida I.; Lizarazo, Erley F.; Amarista, Manuel A.; Sierra, Gloria M.; Comach, Guillermo
2017-01-01
Background Dengue virus (DENV) transmission is spatially heterogeneous. Hence, to stratify dengue prevalence in space may be an efficacious strategy to target surveillance and control efforts in a cost-effective manner particularly in Venezuela where dengue is hyperendemic and public health resources are scarce. Here, we determine hot spots of dengue seroprevalence and the risk factors associated with these clusters using local spatial statistics and a regression modeling approach. Methodology/Principal Findings From August 2010 to January 2011, a community-based cross-sectional study of 2012 individuals in 840 households was performed in high incidence neighborhoods of a dengue hyperendemic city in Venezuela. Local spatial statistics conducted at household- and block-level identified clusters of recent dengue seroprevalence (39 hot spot households and 9 hot spot blocks) in all neighborhoods. However, no clusters were found for past dengue seroprevalence. Clustering of infection was detected at a very small scale (20-110m) suggesting a high disease focal aggregation. Factors associated with living in a hot spot household were occupation (being a domestic worker/housewife (P = 0.002), lower socio-economic status (living in a shack (P<0.001), sharing a household with <7 people (P = 0.004), promoting potential vector breeding sites (storing water in containers (P = 0.024), having litter outdoors (P = 0.002) and mosquito preventive measures (such as using repellent, P = 0.011). Similarly, low socio-economic status (living in crowded conditions, P<0.001), having an occupation of domestic worker/housewife (P = 0.012) and not using certain preventive measures against mosquitoes (P<0.05) were directly associated with living in a hot spot block. Conclusions/Significance Our findings contribute to a better comprehension of the spatial dynamics of dengue by assessing the relationship between disease clusters and their risk factors. These results can inform health authorities in the design of surveillance and control activities. Focalizing dengue control measures during epidemic and inter-epidemic periods to disease high risk zones at household and neighborhood-level may significantly reduce virus transmission in comparison to random interventions. PMID:28114342
NASA Astrophysics Data System (ADS)
Carles, Guillem; Ferran, Carme; Carnicer, Artur; Bosch, Salvador
2012-01-01
A computational imaging system based on wavefront coding is presented. Wavefront coding provides an extension of the depth-of-field at the expense of a slight reduction of image quality. This trade-off results from the amount of coding used. By using spatial light modulators, a flexible coding is achieved which permits it to be increased or decreased as needed. In this paper a computational method is proposed for evaluating the output of a wavefront coding imaging system equipped with a spatial light modulator, with the aim of thus making it possible to implement the most suitable coding strength for a given scene. This is achieved in an unsupervised manner, thus the whole system acts as a dynamically selfadaptable imaging system. The program presented here controls the spatial light modulator and the camera, and also processes the images in a synchronised way in order to implement the dynamic system in real time. A prototype of the system was implemented in the laboratory and illustrative examples of the performance are reported in this paper. Program summaryProgram title: DynWFC (Dynamic WaveFront Coding) Catalogue identifier: AEKC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKC_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 10 483 No. of bytes in distributed program, including test data, etc.: 2 437 713 Distribution format: tar.gz Programming language: Labview 8.5 and NI Vision and MinGW C Compiler Computer: Tested on PC Intel ® Pentium ® Operating system: Tested on Windows XP Classification: 18 Nature of problem: The program implements an enhanced wavefront coding imaging system able to adapt the degree of coding to the requirements of a specific scene. The program controls the acquisition by a camera, the display of a spatial light modulator and the image processing operations synchronously. The spatial light modulator is used to implement the phase mask with flexibility given the trade-off between depth-of-field extension and image quality achieved. The action of the program is to evaluate the depth-of-field requirements of the specific scene and subsequently control the coding established by the spatial light modulator, in real time.
2013-09-29
recent works on optical metasurfaces consisting of an array of plasmonic rods with spatially varying orientations, where the local phase profile is...the concept of interfacial phase discontinuity for circularly polarizations on a metasurface to the design of a novel type of helicity dependent SPP...realization of three dimensional (3D) holography by using metasurfaces . As the phase can be controlled locally at each subwavelength unit cell by the
Source Localization in a Cognitive Radio Environment Consisting of Frequency and Spatial Mobility
2011-12-01
are designed to track position over time using a wireless RF sensor network, such as Kalman filtering [13]. 74 THIS PAGE INTENTIONALLY LEFT BLANK...Radio,” Proceedings of the IEEE, vol. 97, no. 4, pp. 612–625, Apr. 2009. 80 [12] J. B. Bernthal, T. X. Brown , D. N. Hatfield, D. C. Sicker, P. A... Kalman Filtering in Wireless Sensor Networks,” IEEE Control Systems, vol. 30, no. 2, pp. 66–86, April 2010. [14] J. Nemeroff, L. Garcia, D
Tree-based approach for exploring marine spatial patterns with raster datasets.
Liao, Xiaohan; Xue, Cunjin; Su, Fenzhen
2017-01-01
From multiple raster datasets to spatial association patterns, the data-mining technique is divided into three subtasks, i.e., raster dataset pretreatment, mining algorithm design, and spatial pattern exploration from the mining results. Comparison with the former two subtasks reveals that the latter remains unresolved. Confronted with the interrelated marine environmental parameters, we propose a Tree-based Approach for eXploring Marine Spatial Patterns with multiple raster datasets called TAXMarSP, which includes two models. One is the Tree-based Cascading Organization Model (TCOM), and the other is the Spatial Neighborhood-based CAlculation Model (SNCAM). TCOM designs the "Spatial node→Pattern node" from top to bottom layers to store the table-formatted frequent patterns. Together with TCOM, SNCAM considers the spatial neighborhood contributions to calculate the pattern-matching degree between the specified marine parameters and the table-formatted frequent patterns and then explores the marine spatial patterns. Using the prevalent quantification Apriori algorithm and a real remote sensing dataset from January 1998 to December 2014, a successful application of TAXMarSP to marine spatial patterns in the Pacific Ocean is described, and the obtained marine spatial patterns present not only the well-known but also new patterns to Earth scientists.
Dominkovics, Pau; Granell, Carlos; Pérez-Navarro, Antoni; Casals, Martí; Orcau, Angels; Caylà, Joan A
2011-11-29
Health professionals and authorities strive to cope with heterogeneous data, services, and statistical models to support decision making on public health. Sophisticated analysis and distributed processing capabilities over geocoded epidemiological data are seen as driving factors to speed up control and decision making in these health risk situations. In this context, recent Web technologies and standards-based web services deployed on geospatial information infrastructures have rapidly become an efficient way to access, share, process, and visualize geocoded health-related information. Data used on this study is based on Tuberculosis (TB) cases registered in Barcelona city during 2009. Residential addresses are geocoded and loaded into a spatial database that acts as a backend database. The web-based application architecture and geoprocessing web services are designed according to the Representational State Transfer (REST) principles. These web processing services produce spatial density maps against the backend database. The results are focused on the use of the proposed web-based application to the analysis of TB cases in Barcelona. The application produces spatial density maps to ease the monitoring and decision making process by health professionals. We also include a discussion of how spatial density maps may be useful for health practitioners in such contexts. In this paper, we developed web-based client application and a set of geoprocessing web services to support specific health-spatial requirements. Spatial density maps of TB incidence were generated to help health professionals in analysis and decision-making tasks. The combined use of geographic information tools, map viewers, and geoprocessing services leads to interesting possibilities in handling health data in a spatial manner. In particular, the use of spatial density maps has been effective to identify the most affected areas and its spatial impact. This study is an attempt to demonstrate how web processing services together with web-based mapping capabilities suit the needs of health practitioners in epidemiological analysis scenarios.