Science.gov

Sample records for controlling spontaneous emission

  1. Spontaneous emission control in a tunable hybrid photonic system.

    PubMed

    Frimmer, Martin; Koenderink, A Femius

    2013-05-24

    We experimentally demonstrate control of the rate of spontaneous emission in a tunable hybrid photonic system that consists of two canonical building blocks for spontaneous emission control, an optical antenna and a mirror, each providing a modification of the local density of optical states (LDOS). We couple fluorophores to a plasmonic antenna to create a superemitter with an enhanced decay rate. In a superemitter analog of the seminal Drexhage experiment we probe the LDOS of a nanomechanically approached mirror. Because of the electrodynamic interaction of the antenna with its own mirror image, the superemitter traces the inverse of the LDOS enhancement provided by the mirror, in stark contrast to a bare source, whose decay rate is proportional to the mirror LDOS.

  2. Active magneto-optical control of spontaneous emission in graphene

    SciTech Connect

    Kort-Kamp, W. J. M.; Amorim, B.; Bastos, G.; Pinheiro, F. A.; Rosa, F. S. S.; Peres, N. M. R.; Farina, C.

    2015-11-13

    In this study, we investigate the spontaneous emission rate of a two-level quantum emitter near a graphene-coated substrate under the influence of an external magnetic field or strain induced pseudomagnetic field. We demonstrate that the application of the magnetic field can substantially increase or decrease the decay rate. We show that a suppression as large as 99% in the Purcell factor is achieved even for moderate magnetic fields. The emitter's lifetime is a discontinuous function of |B|, which is a direct consequence of the occurrence of discrete Landau levels in graphene. We demonstrate that, in the near-field regime, the magnetic field enables an unprecedented control of the decay pathways into which the photon/polariton can be emitted. Our findings strongly suggest that a magnetic field could act as an efficient agent for on-demand, active control of light-matter interactions in graphene at the quantum level.

  3. Active magneto-optical control of spontaneous emission in graphene

    DOE PAGES

    Kort-Kamp, W. J. M.; Amorim, B.; Bastos, G.; ...

    2015-11-13

    In this study, we investigate the spontaneous emission rate of a two-level quantum emitter near a graphene-coated substrate under the influence of an external magnetic field or strain induced pseudomagnetic field. We demonstrate that the application of the magnetic field can substantially increase or decrease the decay rate. We show that a suppression as large as 99% in the Purcell factor is achieved even for moderate magnetic fields. The emitter's lifetime is a discontinuous function of |B|, which is a direct consequence of the occurrence of discrete Landau levels in graphene. We demonstrate that, in the near-field regime, the magneticmore » field enables an unprecedented control of the decay pathways into which the photon/polariton can be emitted. Our findings strongly suggest that a magnetic field could act as an efficient agent for on-demand, active control of light-matter interactions in graphene at the quantum level.« less

  4. Controlling spontaneous emission dynamics in semiconductor micro cavities

    NASA Astrophysics Data System (ADS)

    Gayral, B.

    Spontaneous emission of light can be controlled, cavity quantum electrodynamics tells us, and many experiments in atomic physics demonstrated this fact. In particular, coupling an emitter to a resonant photon mode of a cavity can enhance its spontaneous emission rate: this is the so-called Purcell effect. Though appealing it might seem to implement these concepts for the benefit of light-emitting semiconductor devices, great care has to be taken as to which emitter/cavity system should be used. Semiconductor quantum boxes prove to be good candidates for witnessing the Purcell effect. Also, low volume cavities having a high optical quality in other words a long photon storage time are required. State-of-the-art fabrication techniques of such cavities are presented and discussed.We demonstrate spontaneous emission rate enhancement for InAs/GaAs quantum boxes in time-resolved and continuous-wave photoluminescence experiments. This is done for two kinds of cavities, namely GaAs/AlAs micropillars (global enhancement by a factor of 5), and GaAs microdisks (global enhancement by a factor of 20). Prospects for lasers, light-emitting diodes and single photon sources based on the Purcell effect are discussed. L'émission spontanée de lumière peut être contrôlée, ainsi que nous l'enseigne l'électrodynamique quantique en cavité, ce fait a été démontré expérimentalement en physique atomique. En particulier, coupler un émetteur à un mode photonique résonnant d'une cavité peut exalter son taux d'émission spontanée : c'est l'effet Purcell. Bien qu'il semble très prometteur de mettre en pratique ces concepts pour améliorer les dispositifs semi-conducteurs émetteurs de lumière, le choix du système émetteur/cavité est crucial. Nous montrons que les boîtes quantiques semi-conductrices sont des bons candidats pour observer l'effet Purcell. Il faut par ailleurs des cavités de faible volume ayant une grande qualité optique en d'autres mots un long temps de

  5. Controlling the directionality of spontaneous emission by evanescent wave coupling

    SciTech Connect

    Wang, Xue-Lun E-mail: gdhao2@hotmail.com; Hao, Guo-Dong E-mail: gdhao2@hotmail.com; Toda, Naoya

    2015-09-28

    We report an approach toward controlling the directionality of spontaneous emissions by employing the evanescent wave coupling effect in a subwavelength-sized ridge or truncated cone structure. An InGaAs/GaAs light-emitting diode in which a stripe-shaped InGaAs/GaAs quantum well with a stripe width of about 100 nm is embedded at the center of a subwavelength-sized GaAs ridge (of width ∼520 nm) is fabricated by micro processing and epitaxial regrowth techniques. Strong directionalities characterized by a half-intensity angle of 43° are observed in planes perpendicular to the ridge axis. The directionality is found to be almost independent of operating conditions.

  6. Quantum dot spontaneous emission control in a ridge waveguide

    SciTech Connect

    Stepanov, Petr; Delga, Adrien; Bleuse, Joël; Dupuy, Emmanuel; Peinke, Emanuel; Gérard, Jean-Michel; Claudon, Julien; Zang, Xiaorun; Lalanne, Philippe

    2015-01-26

    We investigate the spontaneous emission (SE) of self-assembled InAs quantum dots (QDs) embedded in GaAs ridge waveguides that lay on a low index substrate. In thin enough waveguides, the coupling to the fundamental guided mode is vanishingly small. A pronounced anisotropy in the coupling to non-guided modes is then directly evidenced by normal-incidence photoluminescence polarization measurements. In this regime, a measurement of the QD decay rate reveals a SE inhibition by a factor up to 4. In larger wires, which ensure an optimal transverse confinement of the fundamental guided mode, the decay rate approaches the bulk value. Building on the good agreement with theoretical predictions, we infer from calculations the fraction β of SE coupled to the fundamental guided mode for some important QD excitonic complexes. For a charged exciton (isotropic in plane optical dipole), β reaches 0.61 at maximum for an on-axis QD. In the case of a purely transverse linear optical dipole, β increases up to 0.91. This optimal configuration is achievable through the selective excitation of one of the bright neutral excitons.

  7. Spontaneous emission and optical control of spins in quantum dots

    NASA Astrophysics Data System (ADS)

    Economou, Sophia E.

    Quantum dots are attractive due to their potential technological applications and the opportunity they provide for study of fundamental physics in the mesoscopic scale. This dissertation studies optically controlled spins in quantum dots in connection to quantum information processing. The physical realization of the quantum bit (qubit) consists of the two spin states of an extra electron confined in a quantum dot. Spin rotations are performed optically, by use of an intermediate charged exciton (trion) state. The two spin states and the trion form a Λ-type system. The merits of this system for quantum information processing include integrability into a solid-state device, long spin coherence time, and fast and focused optical control. In this dissertation, we study the optical decay mechanisms of the trion state in the quantum dot. Using a master-equation approach, we derive microscopically the optical decay of the three-level system and find a novel term, the so-called spontaneously generated coherence (SGC). The latter, though predicted more than a decade ago for atomic Λ-systems satisfying certain conditions, had not been detected yet in any system. We found that in quantum dots, these conditions can be satisfied. We present the experiment which, in collaboration with our theory, constituted the first measurement of SGC. We establish the unification of SGC, polarization entanglement, and two-pathway decay. By keeping track of the spontaneously emitted photon dynamics, we find the conditions on the couplings that determine which effect will take place. We have thus placed SGC in a more quantum informational framework, characterizing it as lack of entanglement between the emitted photon and the three-level system. We develop a theory of ultrafast optical single-qubit rotations by use of 2pi pulses, which have the two-fold advantage of minimal trion excitation and negligible spin precession. The analytically solvable hyperbolic secant pulses of Rosen and Zener

  8. Two-dimensional sub-half-wavelength atom localization via controlled spontaneous emission.

    PubMed

    Wan, Ren-Gang; Zhang, Tong-Yi

    2011-12-05

    We propose a scheme for two-dimensional (2D) atom localization based on the controlled spontaneous emission, in which the atom interacts with two orthogonal standing-wave fields. Due to the spatially dependent atom-field interaction, the position probability distribution of the atom can be directly determined by measuring the resulting spontaneously emission spectrum. The phase sensitive property of the atomic system leads to quenching of the spontaneous emission in some regions of the standing-waves, which significantly reduces the uncertainty in the position measurement of the atom. We find that the frequency measurement of the emitted light localizes the atom in half-wavelength domain. Especially the probability of finding the atom at a particular position can reach 100% when a photon with certain frequency is detected. By increasing the Rabi frequencies of the driving fields, such 2D sub-half-wavelength atom localization can acquire high spatial resolution.

  9. High-precision atom localization via controllable spontaneous emission in a cycle-configuration atomic system.

    PubMed

    Ding, Chunling; Li, Jiahua; Yu, Rong; Hao, Xiangying; Wu, Ying

    2012-03-26

    A scheme for realizing two-dimensional (2D) atom localization is proposed based on controllable spontaneous emission in a coherently driven cycle-configuration atomic system. As the spatial-position-dependent atom-field interaction, the frequency of the spontaneously emitted photon carries the information about the position of the atom. Therefore, by detecting the emitted photon one could obtain the position information available, and then we demonstrate high-precision and high-resolution 2D atom localization induced by the quantum interference between the multiple spontaneous decay channels. Moreover, we can achieve 100% probability of finding the atom at an expected position by choosing appropriate system parameters under certain conditions.

  10. Controlling spontaneous emission rates of quantum dots with plasmonic nanopatch antennas

    NASA Astrophysics Data System (ADS)

    Hoang, Thang; Akselrod, Gleb; Argyropoulos, Christos; Huang, Jiani; Smith, David; Mikkelsen, Maiken

    2015-03-01

    The radiative processes associated with quantum emitters can be strongly enhanced due to intense electromagnetic fields created by plasmonic nanostructures. Here, we experimentally demonstrate large enhancements of the spontaneous emission rate of colloidal quantum dots coupled to single plasmonic nanopatch antennas. The antennas consist of silver nanocubes (75 nm) coupled to a gold film separated by a thin polyelectrolyte spacer layer (~1 nm) and core-shell CdSe/ZnS quantum dots (~6 nm). By optimizing the size of the nanopatch antenna, the plasmonic mode is tuned to be on resonance with the quantum dot emission. We show an increase in the spontaneous emission rate by a factor of 880 (Purcell factor) and a 2300-fold enhancement in the total fluorescence while maintaining a high radiative quantum efficiency of ~50 %. The nanopatch antenna, as demonstrated here, offers highly directional and broadband radiation that can be tailored for emitters from the visible to the near infrared, providing a promising approach for the spontaneous emission control of single quantum emitters.

  11. Controlling the Spontaneous Emission Rate of Quantum Wells in Rolled-Up Hyperbolic Metamaterials.

    PubMed

    Schulz, K Marvin; Vu, Hoan; Schwaiger, Stephan; Rottler, Andreas; Korn, Tobias; Sonnenberg, David; Kipp, Tobias; Mendach, Stefan

    2016-08-19

    We experimentally demonstrate the enhancement of the spontaneous emission rate of GaAs quantum wells embedded in rolled-up metamaterials. We fabricate microtubes whose walls consist of alternating Ag and (In)(Al)GaAs layers with incorporated active GaAs quantum-well structures. By variation of the layer thickness ratio of the Ag and (In)(Al)GaAs layers we control the effective permittivity tensor of the metamaterial according to an effective medium approach. Thereby, we can design samples with elliptic or hyperbolic dispersion. Time-resolved low temperature photoluminescence spectroscopy supported by finite-difference time-domain simulations reveal a decrease of the quantum well's spontaneous emission lifetime in our metamaterials as a signature of the crossover from elliptic to hyperbolic dispersion.

  12. Controlling the Spontaneous Emission Rate of Quantum Wells in Rolled-Up Hyperbolic Metamaterials

    NASA Astrophysics Data System (ADS)

    Schulz, K. Marvin; Vu, Hoan; Schwaiger, Stephan; Rottler, Andreas; Korn, Tobias; Sonnenberg, David; Kipp, Tobias; Mendach, Stefan

    2016-08-01

    We experimentally demonstrate the enhancement of the spontaneous emission rate of GaAs quantum wells embedded in rolled-up metamaterials. We fabricate microtubes whose walls consist of alternating Ag and (In)(Al)GaAs layers with incorporated active GaAs quantum-well structures. By variation of the layer thickness ratio of the Ag and (In)(Al)GaAs layers we control the effective permittivity tensor of the metamaterial according to an effective medium approach. Thereby, we can design samples with elliptic or hyperbolic dispersion. Time-resolved low temperature photoluminescence spectroscopy supported by finite-difference time-domain simulations reveal a decrease of the quantum well's spontaneous emission lifetime in our metamaterials as a signature of the crossover from elliptic to hyperbolic dispersion.

  13. Optical antenna enhanced spontaneous emission

    PubMed Central

    Eggleston, Michael S.; Messer, Kevin; Zhang, Liming; Yablonovitch, Eli; Wu, Ming C.

    2015-01-01

    Atoms and molecules are too small to act as efficient antennas for their own emission wavelengths. By providing an external optical antenna, the balance can be shifted; spontaneous emission could become faster than stimulated emission, which is handicapped by practically achievable pump intensities. In our experiments, InGaAsP nanorods emitting at ∼200 THz optical frequency show a spontaneous emission intensity enhancement of 35× corresponding to a spontaneous emission rate speedup ∼115×, for antenna gap spacing, d = 40 nm. Classical antenna theory predicts ∼2,500× spontaneous emission speedup at d ∼ 10 nm, proportional to 1/d2. Unfortunately, at d < 10 nm, antenna efficiency drops below 50%, owing to optical spreading resistance, exacerbated by the anomalous skin effect (electron surface collisions). Quantum dipole oscillations in the emitter excited state produce an optical ac equivalent circuit current, Io = qω|xo|/d, feeding the antenna-enhanced spontaneous emission, where q|xo| is the dipole matrix element. Despite the quantum-mechanical origin of the drive current, antenna theory makes no reference to the Purcell effect nor to local density of states models. Moreover, plasmonic effects are minor at 200 THz, producing only a small shift of antenna resonance frequency. PMID:25624503

  14. Optical antenna enhanced spontaneous emission.

    PubMed

    Eggleston, Michael S; Messer, Kevin; Zhang, Liming; Yablonovitch, Eli; Wu, Ming C

    2015-02-10

    Atoms and molecules are too small to act as efficient antennas for their own emission wavelengths. By providing an external optical antenna, the balance can be shifted; spontaneous emission could become faster than stimulated emission, which is handicapped by practically achievable pump intensities. In our experiments, InGaAsP nanorods emitting at ∼ 200 THz optical frequency show a spontaneous emission intensity enhancement of 35 × corresponding to a spontaneous emission rate speedup ∼ 115 ×, for antenna gap spacing, d = 40 nm. Classical antenna theory predicts ∼ 2,500 × spontaneous emission speedup at d ∼ 10 nm, proportional to 1/d(2). Unfortunately, at d < 10 nm, antenna efficiency drops below 50%, owing to optical spreading resistance, exacerbated by the anomalous skin effect (electron surface collisions). Quantum dipole oscillations in the emitter excited state produce an optical ac equivalent circuit current, I(o) = qω|x(o)|/d, feeding the antenna-enhanced spontaneous emission, where q|x(o)| is the dipole matrix element. Despite the quantum-mechanical origin of the drive current, antenna theory makes no reference to the Purcell effect nor to local density of states models. Moreover, plasmonic effects are minor at 200 THz, producing only a small shift of antenna resonance frequency.

  15. Spontaneous emission and absorber theory

    NASA Astrophysics Data System (ADS)

    Pegg, David T.

    1997-01-01

    One of the long term interests of George Series was the construction of a theory of spontaneous emission which does not involve field quantisation. His approach was written in terms of atomic operators only and he drew a parallel with the Wheeler-Feynman absorber theory of radiation. By making a particular extra postulate, he was able to obtain the correct spontaneous emission rate and the Lamb shift reasonably simply and directly. An examination of his approach indicates that this postulate is physically reasonable and the need for it arises because quantisation in his theory occurs after the response of the absorber has been accounted for by means of the radiative reaction field. We review briefly an alternative absorber theory approach to spontaneous emission based on the direct action between the emitting atom and a quantised absorber, and outline some applications to more recent effects of interest in quantum optics.

  16. Controlling the 1 μm spontaneous emission in Er/Yb co-doped fiber amplifiers.

    PubMed

    Sobon, Grzegorz; Kaczmarek, Pawel; Antonczak, Arkadiusz; Sotor, Jaroslaw; Abramski, Krzysztof M

    2011-09-26

    In this paper we present our experimental studies on controlling the amplified spontaneous emission (ASE) from Yb(3+) ions in Er/Yb co-doped fiber amplifiers. We propose a new method of controlling the Yb-ASE by stimulating a laser emission at 1064 nm in the amplifier, by providing a positive 1 μm signal feedback loop. The results are discussed and compared to a conventional amplifier setup without 1 μm ASE control and to an amplifier with auxiliary 1064 nm seeding. We have shown, that applying a 1064 nm signal loop in an Er/Yb amplifier can increase the output power at 1550 nm and provide stable operation without parasitic lasing at 1 μm.

  17. Laser cooling without spontaneous emission.

    PubMed

    Corder, Christopher; Arnold, Brian; Metcalf, Harold

    2015-01-30

    This Letter reports the demonstration of laser cooling without spontaneous emission, and thereby addresses a significant controversy. It works by restricting the atom-light interaction to a time short compared to a cycle of absorption followed by natural decay. It is achieved by using the bichromatic force on an atomic transition with a relatively long excited state lifetime and a relatively short cooling time so that spontaneous emission effects are minimized. The observed width of the one-dimensional velocity distribution is reduced by ×2 thereby reducing the "temperature" by ×4. Moreover, our results comprise a compression in phase space because the spatial expansion of the atomic sample is limited. This accomplishment is of interest to direct laser cooling of molecules or in experiments where working space or time is limited.

  18. Control of spontaneous emission of quantum dots using correlated effects of metal oxides and dielectric materials.

    PubMed

    Sadeghi, S M; Wing, W J; Gutha, R R; Capps, L

    2017-03-03

    We study the emission dynamics of semiconductor quantum dots in the presence of the correlated impact of metal oxides and dielectric materials. For this we used layered material structures consisting of a base substrate, a dielectric layer, and an ultrathin layer of a metal oxide. After depositing colloidal CdSe/ZnS quantum dots on the top of the metal oxide, we used spectral and time-resolved techniques to show that, depending on the type and thickness of the dielectric material, the metal oxide can characteristically change the interplay between intrinsic excitons, defect states, and the environment, offering new material properties. Our results show that aluminum oxide, in particular, can strongly change the impact of amorphous silicon on the emission dynamics of quantum dots by balancing the intrinsic near band emission and fast trapping of carriers. In such a system the silicon/aluminum oxide charge barrier can lead to large variation of the radiative lifetime of quantum dots and control of the photo-ejection rate of electrons in quantum dots. The results provide unique techniques to investigate and modify physical properties of dielectrics and manage optical and electrical properties of quantum dots.

  19. Control of spontaneous emission of quantum dots using correlated effects of metal oxides and dielectric materials

    NASA Astrophysics Data System (ADS)

    Sadeghi, S. M.; Wing, W. J.; Gutha, R. R.; Capps, L.

    2017-03-01

    We study the emission dynamics of semiconductor quantum dots in the presence of the correlated impact of metal oxides and dielectric materials. For this we used layered material structures consisting of a base substrate, a dielectric layer, and an ultrathin layer of a metal oxide. After depositing colloidal CdSe/ZnS quantum dots on the top of the metal oxide, we used spectral and time-resolved techniques to show that, depending on the type and thickness of the dielectric material, the metal oxide can characteristically change the interplay between intrinsic excitons, defect states, and the environment, offering new material properties. Our results show that aluminum oxide, in particular, can strongly change the impact of amorphous silicon on the emission dynamics of quantum dots by balancing the intrinsic near band emission and fast trapping of carriers. In such a system the silicon/aluminum oxide charge barrier can lead to large variation of the radiative lifetime of quantum dots and control of the photo-ejection rate of electrons in quantum dots. The results provide unique techniques to investigate and modify physical properties of dielectrics and manage optical and electrical properties of quantum dots.

  20. Mapping quantum state dynamics in spontaneous emission

    PubMed Central

    Naghiloo, M.; Foroozani, N.; Tan, D.; Jadbabaie, A.; Murch, K. W.

    2016-01-01

    The evolution of a quantum state undergoing radiative decay depends on how its emission is detected. If the emission is detected in the form of energy quanta, the evolution is characterized by a quantum jump to a lower energy state. In contrast, detection of the wave nature of the emitted radiation leads to different dynamics. Here, we investigate the diffusive dynamics of a superconducting artificial atom under continuous homodyne detection of its spontaneous emission. Using quantum state tomography, we characterize the correlation between the detected homodyne signal and the emitter's state, and map out the conditional back-action of homodyne measurement. By tracking the diffusive quantum trajectories of the state as it decays, we characterize selective stochastic excitation induced by the choice of measurement basis. Our results demonstrate dramatic differences from the quantum jump evolution associated with photodetection and highlight how continuous field detection can be harnessed to control quantum evolution. PMID:27167893

  1. Spontaneous emission in stimulated Raman adiabatic passage

    SciTech Connect

    Ivanov, P. A.; Vitanov, N. V.; Bergmann, K.

    2005-11-15

    This work explores the effect of spontaneous emission on the population transfer efficiency in stimulated Raman adiabatic passage (STIRAP). The approach uses adiabatic elimination of weakly coupled density matrix elements in the Liouville equation, from which a very accurate analytic approximation is derived. The loss of population transfer efficiency is found to decrease exponentially with the factor {omega}{sub 0}{sup 2}/{gamma}, where {gamma} is the spontaneous emission rate and {omega}{sub 0} is the peak Rabi frequency. The transfer efficiency increases with the pulse delay and reaches a steady value. For large pulse delay and large spontaneous emission rate STIRAP degenerates into optical pumping.

  2. Dynamics of spontaneous otoacoustic emissions

    NASA Astrophysics Data System (ADS)

    Bergevin, Christopher; Salerno, Anthony

    2015-12-01

    Spontaneous otoacoustic emissions (SOAEs) have become a hallmark feature in modern theories of an `active' inner ear, given their numerous correlations to auditory function (e.g., threshold microstructure, neurophysiological tuning curves), near universality across tetrapod classes, and physiological correlates at the single hair cell level. However, while several different classes of nonlinear models exist that describe the mechanisms underlying SOAE generation (e.g., coupled limit-cycle oscillators, global standing waves), there is still disagreement as to precisely which biophysical concepts are at work. Such is further compounded by the idiosyncratic nature of SOAEs: Not all ears emit, and when present, SOAE activity can occur at seemingly arbitrary frequencies (though always within the most sensitive range of the audiogram) and in several forms (e.g., peaks, broad `baseline' plateaus). The goal of the present study was to develop new signal processing and stimulation techniques that would allow for novel features of SOAE activity to be revealed. To this end, we analyzed data from a variety of different species: human, lizard, and owl. First, we explored several strategies for examining SOAE waveforms in the absence of external stimuli to further ascertain what constitutes `self-sustained sinusoids' versus `filtered noise'. We found that seemingly similar peaks in the spectral domain could exhibit key differences in the time domain, which we interpret as providing critical information about the underlying oscillators and their coupling. Second, we introduced dynamic stimuli (swept-tones, tone bursts) at a range of levels, whose interaction with SOAEs could be visualized in the time-frequency domain. Aside from offering a readily accessible way to visualize many previously reported effects (e.g., entrainment, facilitation), we observed several new features such as subharmonic distortion generation and competing pulling/pushing effects when multiple tones were

  3. Optical Antenna Enhanced Spontaneous Emission in Semiconductors

    NASA Astrophysics Data System (ADS)

    Messer, Kevin James

    Optical antennas can be used to dramatically increase the rate that semiconductors spontaneously emit photons. While traditional LEDs are limited in bandwidth due to the "slow" rate of spontaneous emission, antenna-enhanced LEDs have the potential to be a fast, efficient, nanoscale light emitter. Traditionally, lasers have dominated LEDs as the emitter in optical interconnects due to a 200x speed advantage of stimulated emission over spontaneous emission. This paradigm may be reversed by coupling LEDs to optical antennas. In fact, antenna enhanced spontaneous emission can be faster than the fastest stimulated emission. Spontaneous emission originates from dipole fluctuations within the emitting material. The size of these fluctuations is much less than the wavelength of light emission, which leads to slow spontaneous emission. Coupling the material to an optical antenna corrects the size mismatch and improves the rate of radiation. An optical antenna circuit model is developed to predict the degree to which spontaneous emission can be enhanced. The circuit model presented in this dissertation shows that enhancement over 1000x is possible while still maintaining greater than 50% efficiency. The circuit model provides insight how to design optical antennas for coupling to dipole sources, for maximum enhancement, and for high efficiency. A method for incorporating the anomalous skin effect, often overlooked in metal optics, is provided. While FDTD/FEM simulations cannot include this effect due to its nonlocal nature, its impact can be examined through the use of the optical antenna circuit model. Analysis of the tradeoff between achieving large spontaneous emission enhancement and maintaining high efficiency leads to an ideal antenna feedgap size of 10nm. Experimental demonstration of spontaneous emission enhancement from InP coupled to an arch-dipole antenna is presented. Photoluminescence measurements show light emission from antenna-coupled InP over bare InP ridges

  4. Ultrafast spontaneous emission source using plasmonic nanoantennas

    PubMed Central

    Hoang, Thang B.; Akselrod, Gleb M.; Argyropoulos, Christos; Huang, Jiani; Smith, David R.; Mikkelsen, Maiken H.

    2015-01-01

    Typical emitters such as molecules, quantum dots and semiconductor quantum wells have slow spontaneous emission with lifetimes of 1–10 ns, creating a mismatch with high-speed nanoscale optoelectronic devices such as light-emitting diodes, single-photon sources and lasers. Here we experimentally demonstrate an ultrafast (<11 ps) yet efficient source of spontaneous emission, corresponding to an emission rate exceeding 90 GHz, using a hybrid structure of single plasmonic nanopatch antennas coupled to colloidal quantum dots. The antennas consist of silver nanocubes coupled to a gold film separated by a thin polymer spacer layer and colloidal core–shell quantum dots, a stable and technologically relevant emitter. We show an increase in the spontaneous emission rate of a factor of 880 and simultaneously a 2,300-fold enhancement in the total fluorescence intensity, which indicates a high radiative quantum efficiency of ∼50%. The nanopatch antenna geometry can be tuned from the visible to the near infrared, providing a promising approach for nanophotonics based on ultrafast spontaneous emission. PMID:26212857

  5. Ultrafast spontaneous emission source using plasmonic nanoantennas.

    PubMed

    Hoang, Thang B; Akselrod, Gleb M; Argyropoulos, Christos; Huang, Jiani; Smith, David R; Mikkelsen, Maiken H

    2015-07-27

    Typical emitters such as molecules, quantum dots and semiconductor quantum wells have slow spontaneous emission with lifetimes of 1-10 ns, creating a mismatch with high-speed nanoscale optoelectronic devices such as light-emitting diodes, single-photon sources and lasers. Here we experimentally demonstrate an ultrafast (<11 ps) yet efficient source of spontaneous emission, corresponding to an emission rate exceeding 90 GHz, using a hybrid structure of single plasmonic nanopatch antennas coupled to colloidal quantum dots. The antennas consist of silver nanocubes coupled to a gold film separated by a thin polymer spacer layer and colloidal core-shell quantum dots, a stable and technologically relevant emitter. We show an increase in the spontaneous emission rate of a factor of 880 and simultaneously a 2,300-fold enhancement in the total fluorescence intensity, which indicates a high radiative quantum efficiency of ∼50%. The nanopatch antenna geometry can be tuned from the visible to the near infrared, providing a promising approach for nanophotonics based on ultrafast spontaneous emission.

  6. Ultrafast spontaneous emission source using plasmonic nanoantennas

    NASA Astrophysics Data System (ADS)

    Hoang, Thang B.; Akselrod, Gleb M.; Argyropoulos, Christos; Huang, Jiani; Smith, David R.; Mikkelsen, Maiken H.

    2015-07-01

    Typical emitters such as molecules, quantum dots and semiconductor quantum wells have slow spontaneous emission with lifetimes of 1-10 ns, creating a mismatch with high-speed nanoscale optoelectronic devices such as light-emitting diodes, single-photon sources and lasers. Here we experimentally demonstrate an ultrafast (<11 ps) yet efficient source of spontaneous emission, corresponding to an emission rate exceeding 90 GHz, using a hybrid structure of single plasmonic nanopatch antennas coupled to colloidal quantum dots. The antennas consist of silver nanocubes coupled to a gold film separated by a thin polymer spacer layer and colloidal core-shell quantum dots, a stable and technologically relevant emitter. We show an increase in the spontaneous emission rate of a factor of 880 and simultaneously a 2,300-fold enhancement in the total fluorescence intensity, which indicates a high radiative quantum efficiency of ~50%. The nanopatch antenna geometry can be tuned from the visible to the near infrared, providing a promising approach for nanophotonics based on ultrafast spontaneous emission.

  7. Spontaneous emission in dielectric nanoparticles

    NASA Astrophysics Data System (ADS)

    Pukhov, K. K.; Basiev, T. T.; Orlovskii, Yu. V.

    2008-09-01

    An analytical expression is obtained for the radiative-decay rate of an excited optical center in an ellipsoidal dielectric nanoparticle (with sizes much less than the wavelength) surrounded by a dielectric medium. It is found that the ratio of the decay rate A nano of an excited optical center in the nanoparticle to the decay rate A bulk of an excited optical center in the bulk sample is independent of the local-field correction and, therefore, of the adopted local-field model. Moreover, the expression implies that the ratio A nano/ A bulk for oblate and prolate ellipsoids depends strongly on the orientation of the dipole moment of the transition with respect to the ellipsoid axes. In the case of spherical nanoparticles, a formula relating the decay rate A nano and the dielectric parameters of the nanocomposite and the volumetric content c of these particles in the nanocomposite is derived. This formula reduces to a known expression for spherical nanoparticles in the limit c ≪ 1, while the ratio A nano/ A bulk approaches unity as c tends to unity. The analysis shows that the approach used in a number of papers {H. P. Christensen, D. R. Gabbe, and H. P. Jenssen, Phys. Rev. B 25, 1467 (1982); R. S. Meltzer, S. P. Feofilov, B. Tissue, and H. B. Yuan, Phys. Rev. B 60, R14012 (1999); R. I. Zakharchenya, A. A. Kaplyanskii, A. B. Kulinkin, et al., Fiz. Tverd. Tela 45, 2104 (2003) [Phys. Solid State 45, 2209 (2003)]; G. Manoj Kumar, D. Narayana Rao, and G. S. Agarwal, Phys. Rev. Lett. 91, 203903 (2003); Chang-Kui Duan, Michael F. Reid, and Zhongqing Wang, Phys. Lett. A 343, 474 (2005); K. Dolgaleva, R. W. Boyd, and P. W. Milonni, J. Opt. Soc. Am. B 24, 516 (2007)}, for which the formula for A nano is derived merely by substituting the bulk refractive index by the effective refractive index of the nanocomposite must be revised, because the resulting ratio A nano/ A bulk turns out to depend on the local-field model. The formulas for the emission and absorption cross

  8. Quenching of spontaneous emission coefficients in plasmas

    SciTech Connect

    Chung, Y.; Lemaire, P.; Suckewer, S.

    1987-09-01

    We have observed changing Einstein coefficients of spontaneous emission as a function of electron density in CO/sub 2/ laser-produced plasmas. These measurements are based on the intensity branching ratio of CIV lines 5801 to 5812 A and 312.41 to 312.46 A which share a common upper level. Similar observations for CIII lines are also discussed. 12 refs., 3 figs.

  9. Photonic Crystals-Inhibited Spontaneous Emission: Optical Antennas-Enhanced Spontaneous Emission

    NASA Astrophysics Data System (ADS)

    Yablonovitch, Eli

    Photonic crystals are also part of everyday technological life in opto-electronic telecommunication devices that provide us with internet, cloud storage, and email. But photonic crystals have also been identified in nature, in the coloration of peacocks, parrots, chameleons, butterflies and many other species.In spite of its broad applicability, the original motivation of photonic crystals was to create a ``bandgap'' in which the spontaneous emission of light would be inhibited. Conversely, the opposite is now possible. The ``optical antenna'' can accelerate spontaneous emission. Over 100 years after the radio antenna, we finally have tiny ``optical antennas'' which can act on molecules and quantum dots. Employing optical antennas, spontaneous light emission can become faster than stimulated emission.

  10. Competition between coherent emission and broadband spontaneous emission in the quantum free electron laser

    SciTech Connect

    Robb, G. R. M.; Bonifacio, R.

    2013-03-15

    We extend previous analyses of spontaneous emission in a quantum free electron laser (QFEL) and competition between spontaneous and coherent QFEL emission to include a broad distribution of photon frequencies and momenta appropriate for spontaneous undulator radiation. We show that although the predictions of monochromatic and broadband models predict different electron momentum distributions for the quantum regime due to spontaneous emission alone after many photon emissions, the inclusion of broadband spontaneous emission has a negligible effect on the competition between spontaneous and coherent emission in the QFEL. Numerical results from both models are well described by the same condition for the threshold/critical value of spontaneous emission rate.

  11. Nanophotonic Devices; Spontaneous Emission Faster than Stimulated Emission

    DTIC Science & Technology

    2016-02-02

    antenna enhanced Light Emitting Diodes , can enable short distance optical communication, including possibly on-chip optical interconnect. One of the...approved for public release We believe that these new types of spontaneous emission optical sources, acting as antenna enhanced Light Emitting Diodes ...Conferences, San Jose, CA, October 2015 3. Royal Swedish Academy at the Light in the Service of Mankind conference, Lund, Sweden, October 2015

  12. Spontaneous emission and nonlinear effects in photonic bandgap materials

    NASA Astrophysics Data System (ADS)

    Fogel, Ishella S.; Bendickson, Jon M.; Tocci, Michael D.; Bloemer, Mark J.; Scalora, Michael; Bowden, Charles M.; Dowling, Jonathan P.

    1998-03-01

    We summarize and review our theoretical and experimental work on spontaneous emission and nonlinear effects in one-dimensional, photonic bandgap (PBG) structures. We present a new result: a method for calculating the normal-mode solutions - and hence the spontaneous emission of embedded emitters - in an arbitrary, linear, lossless, one-dimensional, PBG structure.

  13. Modified spontaneous emissions of europium complex in weak PMMA opals.

    PubMed

    Wang, Wei; Song, Hongwei; Bai, Xue; Liu, Qiong; Zhu, Yongsheng

    2011-10-28

    Engineering spontaneous emission by means of photonic crystals (PHC) is under extensive study. However PHC modification of line emissions of rare earth (RE) ions has not been thoroughly understood, especially in cases of weak opal PHCs and while emitters are well dispersed into dielectric media. In this study, poly-methyl methacrylate (PMMA) opal PHCs containing uniformly dispersed europium chelate were fabricated with finely controlled photonic stop band (PSB) positions. Measurements of luminescent dynamics and angle resolved/integrated emission spectra as well as numerical calculations of total densities of states (DOS) were performed. We determined that in weak opals, the total spontaneous emission rate (SER) of Σ(5)D(0)-(7)F(J) for Eu(3+) was independent of PSB positions but was higher than that of the disordered powder sample, which was attributed to higher effective refractive indices in the PHC rather than PSB effect. Branch SER of (5)D(0)-(7)F(2) for Eu(3+) in the PHCs, on the other hand, was spatially redistributed, suppressed or enhanced in directions of elevated or reduced optical modes, keeping the angle-integrated total unchanged. All the results are in agreement with total DOS approximation. Our paper addressed two unstudied issues regarding modified narrow line emission in weak opal PHCs: firstly whether PSB could change the SER of emitters and whether there exist, apart from PSB, other reasons to change SERs; secondly, while directional enhancement and suppression by PSB has been confirmed, whether the angle-integrated overall effect is enhancing or suppressing.

  14. The effect of contralateral acoustic stimulation on spontaneous otoacoustic emissions.

    PubMed

    Zhao, Wei; Dhar, Sumitrajit

    2010-03-01

    Evoked otoacoustic emissions are often used to study the medial olivocochlear (MOC) efferents in humans. There has been concern that the emission-evoking stimulus may itself elicit efferent activity and alter the evoked otoacoustic emission. Spontaneous otoacoustic emissions (SOAEs) are hence advantageous as no external stimulation is necessary to record the response in the test ear. Contralateral acoustic stimulation (CAS) has been shown to suppress SOAE level and elevate SOAE frequency, but the time course of these effects is largely unknown. By utilizing the Choi-Williams distribution, here we report a gradual adaptation during the presence of CAS and an overshoot following CAS offset in both SOAE magnitude and frequency from six normal-hearing female human subjects. Furthermore, we have quantified the time constants of both magnitude and frequency shifts at the onset, presence, and offset of four levels of CAS. Most studies using contralateral elicitors do not stringently control the middle-ear muscle (MEM) reflex, leaving the results difficult to interpret. In addition to clinically available measures of the MEM reflex, we have incorporated a sensitive laboratory technique to monitor the MEM reflex in our subjects, allowing us to interpret the results with greater confidence.

  15. Quantitative analysis of directional spontaneous emission spectra from light sources in photonic crystals

    SciTech Connect

    Nikolaev, Ivan S.; Lodahl, Peter; Vos, Willem L.

    2005-05-15

    We have performed angle-resolved measurements of spontaneous-emission spectra from laser dyes and quantum dots in opal and inverse opal photonic crystals. Pronounced directional dependencies of the emission spectra are observed: angular ranges of strongly reduced emission adjoin with angular ranges of enhanced emission. It appears that emission from embedded light sources is affected both by the periodicity and by the structural imperfections of the crystals: the photons are Bragg diffracted by lattice planes and scattered by unavoidable structural disorder. Using a model comprising diffuse light transport and photonic band structure, we quantitatively explain the directional emission spectra. This work provides detailed understanding of the transport of spontaneously emitted light in real photonic crystals, which is essential in the interpretation of quantum optics in photonic-band-gap crystals and for applications wherein directional emission and total emission power are controlled.

  16. Spontaneous emission from a microwave-driven four-level atom in an anisotropic photonic crystal

    NASA Astrophysics Data System (ADS)

    Jiang, Li; Wan, Ren-Gang; Yao, Zhi-Hai

    2016-10-01

    The spontaneous emission from a microwave-driven four-level atom embedded in an anisotropic photonic crystal is studied. Due to the modified density of state (DOS) in the anisotropic photonic band gap (PBG) and the coherent control induced by the coupling fields, spontaneous emission can be significantly enhanced when the position of the spontaneous emission peak gets close to the band gap edge. As a result of the closed-loop interaction between the fields and the atom, the spontaneous emission depends on the dynamically induced Autler-Townes splitting and its position relative to the PBG. Interesting phenomena, such as spectral-line suppression, enhancement and narrowing, and fluorescence quenching, appear in the spontaneous emission spectra, which are modulated by amplitudes and phases of the coherently driven fields and the effect of PBG. This theoretical study can provide us with more efficient methods to manipulate the atomic spontaneous emission. Project supported by the National Natural Science Foundation of China (Grant Nos. 11447232, 11204367, 11447157, and 11305020).

  17. Spontaneous emission enhancement in micropatterned GaN

    NASA Astrophysics Data System (ADS)

    Niehus, M.; Sanguino, P.; Monteiro, T.; Soares, M. J.; Schwarz, R.

    2004-10-01

    With two interfering pulses from the fourth harmonic of a Nd-YAG laser we burnt a periodic lattice structure into the surface of GaN thin films. The lattice period of this permanent grating could be controlled between less than one and several tens of microns. Above the decomposition threshold, nitrogen evades from the sample surface, and the residual metallic gallium accumulates in the form of tiny droplets at the surfaces. The patterned structure shows structural similarities with microcavities. The question arises if the residual metallic gallium may act as a partially reflecting mirror. To test this hypothesis, we studied the steady-state and transient photoluminescence through the modulation of light emerging from the ubiquitous broad "yellow" photoluminescence band. The microlattice is evidenced by energy-equidistant spontaneous emission enhancement peaks in the steady-state photoluminescence spectra. We suggest that the partial reflection due to the residual metallic gallium leads to the observed enhancement effect.

  18. Large spontaneous emission rate enhancement in grating coupled hyperbolic metamaterials.

    PubMed

    Sreekanth, Kandammathe Valiyaveedu; Krishna, Koduru Hari; De Luca, Antonio; Strangi, Giuseppe

    2014-09-11

    Hyperbolic metamaterial (HMM), a sub-wavelength periodic artificial structure with hyperbolic dispersion, can enhance the spontaneous emission of quantum emitters. Here, we demonstrate the large spontaneous emission rate enhancement of an organic dye placed in a grating coupled hyperbolic metamaterial (GCHMM). A two-dimensional (2D) silver diffraction grating coupled with an Ag/Al2O3 HMM shows 18-fold spontaneous emission decay rate enhancement of dye molecules with respect to the same HMM without grating. The experimental results are compared with analytical models and numerical simulations, which confirm that the observed enhancement of GCHMM is due to the outcoupling of non-radiative plasmonic modes as well as strong plasmon-exciton coupling in HMM via diffracting grating.

  19. Reversible Modulation of Spontaneous Emission by Strain in Silicon Nanowires

    PubMed Central

    Shiri, Daryoush; Verma, Amit; Selvakumar, C. R.; Anantram, M. P.

    2012-01-01

    We computationally study the effect of uniaxial strain in modulating the spontaneous emission of photons in silicon nanowires. Our main finding is that a one to two orders of magnitude change in spontaneous emission time occurs due to two distinct mechanisms: (A) Change in wave function symmetry, where within the direct bandgap regime, strain changes the symmetry of wave functions, which in turn leads to a large change of optical dipole matrix element. (B) Direct to indirect bandgap transition which makes the spontaneous photon emission to be of a slow second order process mediated by phonons. This feature uniquely occurs in silicon nanowires while in bulk silicon there is no change of optical properties under any reasonable amount of strain. These results promise new applications of silicon nanowires as optoelectronic devices including a mechanism for lasing. Our results are verifiable using existing experimental techniques of applying strain to nanowires. PMID:22708056

  20. Modification of spontaneous emission in Bragg onion resonators

    NASA Astrophysics Data System (ADS)

    Liang, Wei; Huang, Yanyi; Yariv, Amnon; Xu, Yong; Lin, Shawn-Yu

    2006-08-01

    We formulated an analytical model and analyzed the modification of spontaneous emission in Bragg onion resonators. We consider both the case of a single light emitter and a uniformly distributed ensemble of light emitters within the resonator. We obtain an expression for the average radiation rate of the light emitters ensemble and discuss the modification of the average radiation rate as a function of cavity parameters such as the core radius, the number of Bragg cladding layers, the index contrast of the Bragg cladding, and the refractive index of surrounding medium. We also consider the possibility of non-exponential decay of the light emitter ensemble due to the strong dependence of spontaneous emission on the location and polarization of individual light emitter. We conclude that Bragg onion resonators can both enhance and inhibit spontaneous emission by several orders of magnitude. This property can have significant impact in the field of cavity quantum electrodynamics (QED).

  1. Modification of spontaneous emission in Bragg onion resonators.

    PubMed

    Liang, Wei; Huang, Yanyi; Yariv, Amnon; Xu, Yong; Lin, Shawn-Yu

    2006-08-07

    We formulated an analytical model and analyzed the modification of spontaneous emission in Bragg onion resonators. We consider both the case of a single light emitter and a uniformly distributed ensemble of light emitters within the resonator. We obtain an expression for the average radiation rate of the light emitters ensemble and discuss the modification of the average radiation rate as a function of cavity parameters such as the core radius, the number of Bragg cladding layers, the index contrast of the Bragg cladding, and the refractive index of surrounding medium. We also consider the possibility of non-exponential decay of the light emitter ensemble due to the strong dependence of spontaneous emission on the location and polarization of individual light emitter. We conclude that Bragg onion resonators can both enhance and inhibit spontaneous emission by several orders of magnitude. This property can have significant impact in the field of cavity quantum electrodynamics (QED).

  2. Picosecond time of spontaneous emission in plasmonic patch nanoantennas

    NASA Astrophysics Data System (ADS)

    Eliseev, S. P.; Vitukhnovsky, A. G.; Chubich, D. A.; Kurochkin, N. S.; Sychev, V. V.; Marchenko, A. A.

    2016-01-01

    A significant (to 12 ps) decrease in the lifetime of excited states of quantum emitters in the form of three-layer colloidal quantum dots (CdSe/CdS/ZnS) placed in an aluminum-triangular silver nanoprism cavity (patch nanoantenna) has been experimentally demonstrated. The decrease in the time of spontaneous emission of quantum dots has been explained by the Purcell effect. The Purcell coefficient for an emitter in the resonator has been found to be 625. Such a significant increase in the rate of spontaneous emission in the patch nanoantenna is due to an increase in the local density of photon states in the plasmonic cavity.

  3. Spontaneous emission in cavity QED with a terminated waveguide

    NASA Astrophysics Data System (ADS)

    Bradford, Matthew; Shen, Jung-Tsung

    2013-06-01

    We investigate the effects of a nanophotonic boundary on the spontaneous emission properties of an excited two-level atom in cavity quantum electrodynamics (QED) geometry. We show that a boundary provides temporally delayed interference, which can be either constructive or destructive. Consequently, the decay of the atomic excitation can be either increased or greatly inhibited. As a concrete example, we investigate the spontaneous emission process in cavity QED with a terminated line-defect waveguide, and show the rich behavior of the atomic response due to the boundary. We also show that the output photonic wave form is strongly influenced by the boundary.

  4. Amplified spontaneous emission in solar-pumped iodine laser

    NASA Technical Reports Server (NTRS)

    Cho, Yong S.; Hwang, In H.; Han, Kwang S.; Lee, Ja H.

    1992-01-01

    The amplified spontaneous emission (ASE) from a long pulse, solar-simulating radiation pumped iodine laser amplifier is studied. The ASE threshold pump intensity is almost proportional to the inverse of the laser gain length when the gas pressure is constant in the laser tube.

  5. Toward Laser Cooling without Spontaneous Emission

    NASA Astrophysics Data System (ADS)

    Corder, Christopher; Arnold, Brian; Metcalf, Harold

    2012-06-01

    The bichromatic force (BF) can be used for laser cooling in the absence of closed cycling transitions because it can cool without spontaneous emissionootnotetextH. Metcalf, Phys. Rev. A 77, 061401 (2008). (SE). Previous BF experiments have used transitions with long characteristic cooling times τc= δp/F ˜π/4 φr thereby allowing many SE events. We are building an experiment using the 2^3S1->3^3P2 transition at λ = 389 nm in He because its large recoil frequency φr= 2 πx330 kHz makes τc comparable to the 3^3P2 lifetime ˜100 ns so that there would be minimal SE events during τc. We will describe our experiment as well as studies of the density matrix solutions for the force integrated over short interaction times accounting for atomic velocity changes. These solutions are used for Monte Carlo simulations of experimental conditions incorporating He beam trajectories and velocity distributions.

  6. Spontaneous emission effects in optically pumped x-ray FEL

    SciTech Connect

    Smetanin, I.V.; Grigor`ev, S.V.

    1995-12-31

    An effect of spontaneous emission in both quantum and classical regimes of the optically pumped X-ray free electron laser (FEL) in investigated. The quantum properties of an FEL are determined by the ratio of the separation {h_bar} between the absorption and emission lines (i.e. the quanta emitted) and their effective width {Delta}{epsilon} {eta}={h_bar}/{Delta}{epsilon}. In the conventional classical regime {eta} {much_lt} 1 an electron emits and absorbes a great number of shortwavelength photons over the interaction region, the gain in FEL being the result of these competitive processes. In the quantum limit {eta} {much_gt} 1 the emission and absorption lines are completely separated and thus the FEL becomes a two-level quantum oscillator with a completely inverted active medium. Spontaneous emission causes the electron to leave the range of energies where resonant interaction with the laser field occurs, thus effectively reducing the number of particles that take part in generating the induced X-ray signal. This effect is found to be crucial for lasing in optically pumped X-ray FEL. The characteristic relaxation times are calculated for both classical and quantum FEL regimes. It is shown that spontaneous emission results in FEL electron beam threshold current, which is of rather high value. An optimal range of pumping laser intensities is determined.

  7. Studies on the amplified spontaneous emission of a polymer fiber

    NASA Astrophysics Data System (ADS)

    Li, Songtao; Wang, Li; Zhai, Tianrui; Wu, Xiaofeng; Tong, Fei; Zhang, Xinping

    2016-11-01

    In this paper, a polymer fiber was constructed by siphoning the xylene solution of a polymer into a capillary tube with 300 μm inner diameter. After the solvent evaporating, the polymer fiber was lighted by an external pump beam and the amplified spontaneous emission (ASE) of the polymer fiber is investigated. The emission spectra are recorded, and the intensity and the full width at half maximum (FWHM) as a function of pump power intensity are analyzed. The absorption coefficient of polymer F8BT is obtained from a polymer F8BT film with a thickness of 200 nm. For the high absorption of polymer, the pump beam can not penetrate the long F8BT fiber. The sketch up diagram and an optical photo show it in vividly. This fabrication method provides a cheap way for application of micro polymer fiber. Keywords: polymer fiber, amplified spontaneous emission, absorption coefficient

  8. Spontaneous emission of the non-Wiener type

    SciTech Connect

    Basharov, A. M.

    2011-09-15

    The spontaneous emission of a quantum particle and superradiation of an ensemble of identical quantum particles in a vacuum electromagnetic field with zero photon density are examined under the conditions of significant Stark particle and field interaction. New fundamental effects are established: suppression of spontaneous emission by the Stark interaction, an additional 'decay' shift in energy of the decaying level as a consequence of Stark interaction unrelated to the Lamb and Stark level shifts, excitation conservation phenomena in a sufficiently dense ensemble of identical particles and suppression of superradiaton in the decay of an ensemble of excited quantum particles of a certain density. The main equations describing the emission processes under conditions of significant Stark interaction are obtained in the effective Hamiltonian representation of quantum stochastic differential equations. It is proved that the Stark interaction between a single quantum particle and a broadband electromagnetic field is represented as a quantum Poisson process and the stochastic differential equations are of the non-Wiener (generalized Langevin) type. From the examined case of spontaneous emission of a quantum particle, the main rules are formulated for studying open systems in the effective Hamiltonian representation.

  9. Are Einstein's transition probabilities for spontaneous emission constant in plasmas?

    NASA Technical Reports Server (NTRS)

    Griem, H. R.; Huang, Y. W.; Wang, J.-S.; Moreno, J. C.

    1991-01-01

    An investigation is conducted with a ruby laser to experimentally confirm the quenching of spontaneous emission coefficients and propose a mechanism for the phenomenon. Results of previous experiments are examined to determine the consistency and validity of interpretations of the spontaneous emissions. For the C IV 3s-3p and 2s-3p transitions, the line-intensity ratios are found to be dependent on the separation of the laser from the target. Density gradients and Stark broadening are proposed to interpret the results in a way that does not invalidate the Einstein A values. The interpretation is extended to C III and N V, both of which demonstrate similar changes in A values in previous experiments. The apparent quenching of Ar II by photon collisions is explained by Rabi oscillations and power broadening in the argon-ion laser cavity. It is concluded that the changes in A values cannot result from dense plasma effects.

  10. Spontaneous pion emission as a new natural radioactivity

    NASA Astrophysics Data System (ADS)

    Ion, D. B.; Ivascu, M.; Ion-Mihai, R.

    1986-10-01

    In this paper the pionic nuclear radioactivity or spontaneous poin emission by a nucleus from its ground state is investigated. The Qπ-values as well as the statistical factors are calculated using the experimental masses tabulated by Wapstra and Audi. Then it was shown that the pionic radioactivity of the nuclear ground state is energetically possible via three-body channels for all nuclides with Z > 80. This new type of natural radioactivity is statistically favored especially for Z = 92 - 106 for which F π/F SF = 40 - 200 [ MeV] 2. Experimental detection of the neutral pion and also some possible emission mechanisms are discussed.

  11. 2-.mu.m fiber amplified spontaneous emission (ASE) source

    NASA Technical Reports Server (NTRS)

    Jiang, Shibin (Inventor); Wu, Jianfeng (Inventor); Geng, Jihong (Inventor)

    2007-01-01

    A 2-.mu.m fiber Amplified Spontaneous Emission (ASE) source provides a wide emission bandwidth and improved spectral stability/purity for a given output power. The fiber ASE source is formed from a heavy metal oxide multicomponent glass selected from germanate, tellurite and bismuth oxides and doped with high concentrations, 0.5-15 wt. %, thulium oxides (Tm.sub.2O.sub.3) or 0.1-5 wt% holmium oxides (Ho.sub.2O.sub.3) or mixtures thereof. The high concentration of thulium dopants provide highly efficient pump absorption and high quantum efficiency. Co-doping of Tm and Ho can broaden the ASE spectrum.

  12. Directional and enhanced spontaneous emission with a corrugated metal probe

    NASA Astrophysics Data System (ADS)

    Shen, Hongming; Lu, Guowei; He, Yingbo; Cheng, Yuqing; Liu, Haitao; Gong, Qihuang

    2014-06-01

    A three-dimensional corrugated metal tapered probe with surface corrugated gratings at the tip apex is proposed and investigated theoretically, which leads to an obvious emission beaming effect of spontaneous emission from a single emitter near the probe. In contrast with conventional apertureless metal probes, where only the enhancement of an optical near-field is concerned, the corrugated probe is able to manipulate local excitation intensity and far-field emission direction simultaneously. The angular emission from a single dipole source, being placed close to the corrugated probe, falls into a cone with a maximum directivity angle of +/-11.6°, which improves the collection efficiency 25-fold. Such a probe simultaneously increases the localized field intensity to about twice as strong as the conventional bare tip. In addition, the radiation pattern is sensitive to the working wavelength and the dipole to tip-apex separation. These findings make a promising route to the development of plasmonic spontaneous emission manipulation based on corrugated tapered antenna--for instance, tip-enhanced spectroscopy, single-molecule sensing, and single-photon source .

  13. Temperature dependence of spontaneous emission from AlGaAs-GaAs laser diodes

    SciTech Connect

    Zabrowski, D.W.; Rice, R.R.; Specht, A.P.

    1986-04-01

    The relationship between spontaneous and stimulated emission from a variety of AlGaAs-GaAs double-heterostructure laser diodes has been studied as a function of temperature over a range of 10--70 /sup 0/C. The spontaneous emission varied exponentially with temperature, and we introduce T/sup prime//sub 0/(J) as the characteristic temperature of spontaneous emission. As the temperature was changed, the laser threshold and slope efficiency for a device strongly covaried with spontaneous emission. A moderately high correlation (r>0.75) was obtained between the lasing and spontaneous emission slope efficiencies of 20 randomly selected lasers from different suppliers.

  14. Nanophotonic Devices - Spontaneous Emission Faster than Stimulated Emission

    DTIC Science & Technology

    2014-11-04

    emission, light emitting diode . 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE...important threshold is 200× enhancement, in which case a light emitting diode becomes faster than a directly modulated semiconductor laser. 200...131109. 25. Fattal D, et al. (2008) Design of an efficient light - emitting diode with 10 GHz modulation bandwidth. Applied Physics Letters 93(24

  15. Highly enhanced spontaneous emission with nanoshell-based metallodielectric hybrid antennas

    NASA Astrophysics Data System (ADS)

    Cheng, Yuqing; Lu, Guowei; shen, Hongming; Wang, Yuwei; He, Yingbo; Chou, R. Yuanying; Gong, Qihuang

    2015-09-01

    The metallodielectric hybrid nanoantenna integrating plasmonic nanostructures with dielectric planar substrate can improve the spontaneous emission greatly. We demonstrated that the performances of the hybrid antenna can be substantially optimized with specific plasmonic nanostructures by employing finite-difference time-domain method. The hybrid antenna with core-shell nanostructure can enhance spontaneous emission greatly rather than the individual spherical nanoparticle. Moreover, the performances of the hybrid antenna can be boosted further through using asymmetrical nanoshell. The mechanism of the high enhancement effect is due to the hybrid structure being able to couple efficiently with the electric field by a larger dipolar moment. And the emission directivity of the hybrid antenna is able to be modified by adjusting the geometry of the plasmonic nanostructures. The results should be beneficial for various fundamental and applied research fields, including single molecule fluorescence and surface enhance Raman spectroscopy, etc. The enhancement of spontaneous emission is in demand in fundamental interests and various applied research fields. However, the electromagnetic enhancement of single plasmonic nanostructure is limited due to intrinsic loss of metal materials and quantum tunneling effect which also limits the ability of enhancement of spontaneous emission. Interestingly, it was found that hybrid structures can provide higher enhancement effect. This study is about a kind new type of optical antenna to control spontaneous emission of single emitter, i.e. a metallodielectric hybrid nanoantenna integrating plasmonic nanostructures with dielectric planar substrate which can improve the spontaneous emission greatly. We demonstrated that the performances of the hybrid antenna can be substantially optimized with specific plasmonic nanostructures by employing finite-difference time-domain method. The hybrid antenna with core-shell nanostructure can enhance

  16. Directive and enhanced spontaneous emission using shifted cubes nanoantenna

    NASA Astrophysics Data System (ADS)

    Bahari, B.; Tellez-Limon, R.; Kante, B.

    2016-09-01

    Recent studies have demonstrated that nano-patch antennas formed by metallic nanocubes placed on top of a metallic film largely enhance the spontaneous emission rate of quantum emitters due to the confinement of the electromagnetic field in the small nanogap cavity. The popularity of this architecture is, in part, due to the ease in fabrication. In this contribution, we theoretically demonstrate that a dimer formed by two metallic nanocubes embedded in a dielectric medium exhibits enhanced emission rate compared to the nano-patch antenna. Furthermore, we compare the directivity and radiation efficiency of both nanoantennas. From these characteristics, we obtained information about the "material efficiency" and the coupling mismatch efficiency between a dipole emitter and the nanoantenna. These quantities provide a more intuitive insight than the Purcell factor or localized density of states, opening new perspectives in nanoantenna design for ultra-directive light emission.

  17. Laser Cooling Without Spontaneous Emission Using the Bichromatic Force

    NASA Astrophysics Data System (ADS)

    Corder, Christopher; Arnold, Brian; Hua, Xiang; Metcalf, Harold

    2015-05-01

    We have demonstrated laser cooling without spontaneous emission using the bichromatic force (BF). It works by restricting the atom-light interaction to a time short compared to a cycle of absorption followed by spontaneous emission. The BF exploits multiple absorption-stimulated emission cycles to cause many rapid momentum exchanges, with these cycles redistributing both energy and entropy between the atoms and light fields in the total atoms+light system. This momentum exchange is restricted to a well-defined velocity range, resulting from nonadiabatic transitions at a velocity that can be understood from simple energy conservation. The observed width of our one-dimensional velocity distribution is reduced by ×2 thereby reducing the ``temperature'' by ×4. Moreover, our results comprise a compression in phase space because the spatial expansion of the atomic sample is negligible. We have also done various simulations of the motion of atoms under the BF and they compare well with our data. This accomplishment is of interest to direct laser cooling of molecules or in experiments where working space or time is limited. Supported by ONR and Dept. of Education GAANN.

  18. Dual-channel spontaneous emission of quantum dots in magnetic metamaterials

    NASA Astrophysics Data System (ADS)

    Decker, Manuel; Staude, Isabelle; Shishkin, Ivan I.; Samusev, Kirill B.; Parkinson, Patrick; Sreenivasan, Varun K. A.; Minovich, Alexander; Miroshnichenko, Andrey E.; Zvyagin, Andrei; Jagadish, Chennupati; Neshev, Dragomir N.; Kivshar, Yuri S.

    2013-12-01

    Metamaterials, artificial electromagnetic media realized by subwavelength nano-structuring, have become a paradigm for engineering electromagnetic space, allowing for independent control of both electric and magnetic responses of the material. Whereas most metamaterials studied so far are limited to passive structures, the need for active metamaterials is rapidly growing. However, the fundamental question on how the energy of emitters is distributed between both (electric and magnetic) interaction channels of the metamaterial still remains open. Here we study simultaneous spontaneous emission of quantum dots into both of these channels and define the control parameters for tailoring the quantum-dot coupling to metamaterials. By superimposing two orthogonal modes of equal strength at the wavelength of quantum-dot photoluminescence, we demonstrate a sharp difference in their interaction with the magnetic and electric metamaterial modes. Our observations reveal the importance of mode engineering for spontaneous emission control in metamaterials, paving a way towards loss-compensated metamaterials and metamaterial nanolasers.

  19. Negative spontaneous emission by a moving two-level atom

    NASA Astrophysics Data System (ADS)

    Lannebère, Sylvain; Silveirinha, Mário G.

    2017-01-01

    In this paper we investigate how the dynamics of a two-level atom is affected by its interaction with the quantized near field of a plasmonic slab in relative motion. We demonstrate that for small separation distances and a relative velocity greater than a certain threshold, this interaction can lead to a population inversion, such that the probability of the excited state exceeds the probability of the ground state, corresponding to a negative spontaneous emission rate. It is shown that the developed theory is intimately related to a classical problem. The problem of quantum friction is analyzed and the differences with respect to the corresponding classical effect are highlighted.

  20. Improvement of amplified spontaneous emission performance in organic waveguides

    NASA Astrophysics Data System (ADS)

    Du, Qianqian; Wang, Wenjun; Li, Shuhong; Wang, Qingru; Xia, Shuzhen; Zhang, Binyuan; Wang, Minghong; Fan, Quli

    2016-09-01

    Metal film is an essential part of the electrically pumped organic semiconductor lasers. But the large loss is the most important factor restricting the electrical pumping. In this paper, we investigate optically pumped amplified spontaneous emission (ASE) in the presence of metal films. The ASE threshold of device with metallic film is reduced by 2.5 times in comparison with that of the metal-free devices. The SiO2 space layer with optimizing thickness between gain media and metal film can effectively prevent absorption loss but also provides a proper waveguide effect. Furthermore, the metal film can prevent the light leaking to the substrate and reflect the lights back into the media, which increases the intensity of pumping and emission again.

  1. Spontaneous Radiation Emission from Short, High Field Strength Insertion Devices

    SciTech Connect

    Geoffrey Krafft

    2005-09-15

    Since the earliest papers on undulaters were published, it has been known how to calculate the spontaneous emission spectrum from ''short'' undulaters when the magnetic field strength parameter is small compared to unity, or in ''single'' frequency sinusoidal undulaters where the magnetic field strength parameter is comparable to or larger than unity, but where the magnetic field amplitude is constant throughout the undulater. Fewer general results have been obtained in the case where the insertion device is both short, i.e., the magnetic field strength parameter changes appreciably throughout the insertion device, and the magnetic field strength is high enough that ponderomotive effects, radiation retardation, and harmonic generation are important physical phenomena. In this paper a general method is presented for calculating the radiation spectrum for short, high-field insertion devices. It is used to calculate the emission from some insertion device designs of recent interest.

  2. Amplified spontaneous emission properties of semiconducting organic materials.

    PubMed

    Calzado, Eva M; Boj, Pedro G; Díaz-García, María A

    2010-06-18

    This paper aims to review the recent advances achieved in the field of organic solid-state lasers with respect to the usage of semiconducting organic molecules and oligomers in the form of thin films as active laser media. We mainly focus on the work performed in the last few years by our research group. The amplified spontaneous emission (ASE) properties, by optical pump, of various types of molecules doped into polystyrene films in waveguide configuration, are described. The various systems investigated include N,N'-bis(3-methylphenyl)-N,N'-diphenylbenzidine (TPD), several perilenediimide derivatives (PDIs), as well as two oligo-phenylenevinylene derivatives. The ASE characteristics, i.e., threshold, emission wavelength, linewidth, and photostability are compared with that of other molecular materials investigated in the literature.

  3. Amplified Spontaneous Emission Properties of Semiconducting Organic Materials

    PubMed Central

    Calzado, Eva M.; Boj, Pedro G.; Díaz-García, María A.

    2010-01-01

    This paper aims to review the recent advances achieved in the field of organic solid-state lasers with respect to the usage of semiconducting organic molecules and oligomers in the form of thin films as active laser media. We mainly focus on the work performed in the last few years by our research group. The amplified spontaneous emission (ASE) properties, by optical pump, of various types of molecules doped into polystyrene films in waveguide configuration, are described. The various systems investigated include N,N′-bis(3-methylphenyl)-N,N′-diphenylbenzidine (TPD), several perilenediimide derivatives (PDIs), as well as two oligo-phenylenevinylene derivatives. The ASE characteristics, i.e., threshold, emission wavelength, linewidth, and photostability are compared with that of other molecular materials investigated in the literature. PMID:20640167

  4. TRASER - Total Reflection Amplification of Spontaneous Emission of Radiation

    PubMed Central

    Zachary, Christopher B.; Gustavsson, Morgan

    2012-01-01

    Background and Objective Light and lasers in medical therapy have made dramatic strides since their invention five decades ago. However, the manufacture of lasers can be complex and expensive which often makes treatments limited and costly. Further, no single laser will provide the correct parameters to treat all things. Hence, laser specialists often need multiple devices to practice their specialty. A new concept is described herein that has the potential to replace many lasers and light sources with a single ‘tunable’ device. Study Design/Material and Methods This device amplifies spontaneous emission of radiation by capturing and retaining photons through total internal reflection, hence the acronym Total Reflection Amplification of Spontaneous Emission of Radiation, or TRASER. Results Specific peaks of light can be produced in a reproducible manner with high peak powers of variable pulse durations, a large spot size, and high repetition rate. Conclusion Considering the characteristics and parameters of Traser technology, it is possible that this one device would likely be able to replace the pulsed dye laser and many other light based systems. PMID:22558261

  5. Spontaneous emission enhancement of colloidal CdSe nanoplatelets

    NASA Astrophysics Data System (ADS)

    Yang, Zhili; Pelton, Matthew; Waks, Edo

    Colloidal CdS /CdSe/CdS nanoplatelets synthesized recently are high efficient nano-emitters and gain media for nanoscale lasers and other nonlinear optical devices. They are characterized as quantum well structure due to energy gap difference between core CdSe and shell CdS, of which the luminescent wavelength could be tuned precisely by their thickness of growth. However, the influence of environment on the material's optical properties and further enhancement of the emission to implement nanoscale systems remains to be investigated. Here we demonstrate spontaneous emission rate enhancement of these CdSe nanoplatelets coupled to a photonic crystal cavity. We show clearly the photoluminescent spectrum modification of the nanoplatelets emission and an averaged Purcell enhancement factor of 3.1 is achieved when they are coupled to carefully-designed nanobeam photonic crystal cavities compared to the ones on unpatterned surface in our experiment of lifetime measurement. Also the phenomenon of cavity quality factor increasing is observed when increasing intensity of pumping, which attributes to saturable absorption of the nanoplatelets. Our success in enhancement of emission from these nanoplatelets here paves the road to realize actual nanoscale integrated systems such as ultra-low threshold micro-cavity lasers.

  6. Temperature quenching of spontaneous emission in tunnel-injection nanostructures

    SciTech Connect

    Talalaev, V. G. Novikov, B. V.; Cirlin, G. E.; Leipner, H. S.

    2015-11-15

    The spontaneous-emission spectra in the near-IR range (0.8–1.3 μm) from inverted tunnel-injection nanostructures are measured. These structures contain an InAs quantum-dot layer and an InGaAs quantum-well layer, separated by GaAs barrier spacer whose thickness varies in the range 3–9 nm. The temperature dependence of this emission in the range 5–295 K is investigated, both for optical excitation (photoluminescence) and for current injection in p–n junction (electroluminescence). At room temperature, current pumping proves more effective for inverted tunnel-injection nanostructures with a thin barrier (<6 nm), when the apexes of the quantum dots connect with the quantum well by narrow InGaAs straps (nanobridges). In that case, the quenching of the electroluminescence by heating from 5 to 295 K is slight. The quenching factor S{sub T} of the integrated intensity I is S{sub T} = I{sub 5}/I{sub 295} ≈ 3. The temperature stability of the emission from inverted tunnel-injection nanostructures is discussed on the basis of extended Arrhenius analysis.

  7. WDM optical steganography based on amplified spontaneous emission noise.

    PubMed

    Wu, Ben; Tait, Alexander N; Chang, Matthew P; Prucnal, Paul R

    2014-10-15

    We propose and experimentally demonstrate a wavelength-division multiplexed (WDM) optical stealth transmission system carried by amplified spontaneous emission (ASE) noise. The stealth signal is hidden in both time and frequency domains by using ASE noise as the signal carrier. Each WDM channel uses part of the ASE spectrum, which provides more flexibility to apply stealth transmission in a public network and adds another layer of security to the stealth channel. Multi-channel transmission also increases the overall channel capacity, which is the major limitation of the single stealth channel transmission based on ASE noise. The relations between spectral bandwidth and coherence length of ASE carrier have been theoretically analyzed and experimentally investigated.

  8. Optical steganography based on amplified spontaneous emission noise.

    PubMed

    Wu, Ben; Wang, Zhenxing; Tian, Yue; Fok, Mable P; Shastri, Bhavin J; Kanoff, Daniel R; Prucnal, Paul R

    2013-01-28

    We propose and experimentally demonstrate an optical steganography method in which a data signal is transmitted using amplified spontaneous emission (ASE) noise as a carrier. The ASE serving as a carrier for the private signal has an identical frequency spectrum to the existing noise generated by the Erbium doped fiber amplifiers (EDFAs) in the transmission system. The system also carries a conventional data channel that is not private. The so-called "stealth" or private channel is well-hidden within the noise of the system. Phase modulation is used for both the stealth channel and the public channel. Using homodyne detection, the short coherence length of the ASE ensures that the stealth signal can only be recovered if the receiver closely matches the delay-length difference, which is deliberately changed in a dynamic fashion that is only known to the transmitter and its intended receiver.

  9. Spontaneous emission in confined space according to stochastic electrodynamics

    NASA Astrophysics Data System (ADS)

    França, H. M.; Marshall, T. W.; Santos, E.

    1992-05-01

    Modeling an atomic excited state as a simple charged dipole oscillator immersed in a random (zero-point) radiation, we discuss the effects of two metallic plates on the properties of a microscopic system. The spectral distribution of the zero-point electromagnetic field, characteristic of stochastic electrodynamics, and the rate of emission of the oscillator are modified by the boundaries of the cavity. As a result, the lifetime of the oscillator excited states are different from the free-space values. A comparison with recent experimental results [W. Jhe et al., Phys. Rev. Lett. 58, 666 (1987)] exhibiting suppression of spontaneous decay of excited Cs atoms shows a good agreement with our simplified model calculation.

  10. Randomness generation based on spontaneous emissions of lasers

    NASA Astrophysics Data System (ADS)

    Zhou, Hongyi; Yuan, Xiao; Ma, Xiongfeng

    2015-06-01

    Random numbers play a key role in information science, especially in cryptography. Based on the probabilistic nature of quantum mechanics, quantum random number generators can produce genuine randomness. In particular, random numbers can be produced from laser phase fluctuations with a very high speed, typically in the Gbps regime. In this work, by developing a physical model, we investigate the origin of the randomness in quantum random number generators based on laser phase fluctuations. We show how the randomness essentially stems from spontaneous emissions. The laser phase fluctuation can be quantitatively evaluated from basic principles and qualitatively explained by the Brownian motion model. After taking account of practical device precision, we show that the randomness generation speed is limited by the finite resolution of detection devices. Our result also provides the optimal experiment design in order to achieve the maximum generation speed.

  11. Amplified spontaneous emission of pyranyliden derivatives in PVK matrix

    NASA Astrophysics Data System (ADS)

    Vembris, Aivars; Zarinsh, Elmars; Kokars, Valdis

    2016-04-01

    One of the well-known red light emitting laser dyes is 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4Hpyran (DCM). Amplified spontaneous emission (ASE) has been widely investigated of DCM molecules or its derivatives in polymer or low molecular weight matrix. The main issue for these molecules is aggregation which limits doping concentration in matrix. Lowest ASE threshold values within concentration range of 2 and 4 wt% were obtained. In this work ASE properties of two original DCM derivatives in poly(N-vinylcarbazole) (PVK) at various concentrations will be discussed. One of the derivatives is the same DCM dye with replaced butyl groups at electron donor part with bulky trytiloxyethyl groups (DWK-1). These groups do not influence electron transitions in the dye but prevent aggregation of the molecules. Second derivative (DWK-2) consists of two equal donor groups with the attached trytiloxyethyl groups. All results were compared with DCM:PVK system. Photoluminescence quantum yield (PLQY) is almost three times larger for DWK-1 concentration up to 20wt% with respect to DCM systems. PLQY was saturated on 0.06 at higher DWK-1 concentrations. Bulky trytiloxyethyl groups prevent aggregation of the molecules thus decreasing interaction between dyes and numbers of non-radiative decays. Red shift of photoluminescence and amplified spontaneous emission at higher concentrations were observed due to the solid state solvation effect. Increases of dye density in matrix with smaller lose in PLQY resulted in low ASE threshold energy. The lowest threshold value was obtained around 29 μJ/cm2 in DWK-1:PVK films.

  12. Sex and Ear Differences in Spontaneous and Click-Evoked Otoacoustic Emissions in Young Adults

    ERIC Educational Resources Information Center

    Snihur, Adrian W. K.; Hampson, Elizabeth

    2011-01-01

    Effects of sex and handedness on the production of spontaneous and click-evoked otoacoustic emissions (OAEs) were explored in a non-hearing impaired population (ages 17-25 years). A sex difference in OAEs, either produced spontaneously (spontaneous OAEs or SOAEs) or in response to auditory stimuli (click-evoked OAEs or CEOAEs) has been reported in…

  13. Spontaneous emission noise in long-range surface plasmon polariton waveguide based optical gyroscope.

    PubMed

    Wang, Yang-Yang; Zhang, Tong

    2014-09-19

    Spontaneous emission noise is an important limit to the performance of active plasmonic devices. Here, we investigate the spontaneous emission noise in the long-range surface plasmon-polariton waveguide based optical gyroscope. A theoretical model of the sensitivity is established to study the incoherent multi-beam interference of spontaneous emission in the gyroscope. Numerical results show that spontaneous emission produces a drift in the transmittance spectra and lowers the signal-to-noise-ratio of the gyroscope. It also strengthens the shot noise to be the main limit to the sensitivity of the gyroscope for high propagation loss. To reduce the negative effects of the spontaneous emission noise on the gyroscope, an external feedback loop is suggested to estimate the drift in the transmittance spectra and therefor enhance the sensitivity. Our work lays a foundation for the improvement of long-range surface plasmon-polariton gyroscope and paves the way to its practical application.

  14. Spontaneous emission noise in long-range surface plasmon polariton waveguide based optical gyroscope

    PubMed Central

    Wang, Yang-Yang; Zhang, Tong

    2014-01-01

    Spontaneous emission noise is an important limit to the performance of active plasmonic devices. Here, we investigate the spontaneous emission noise in the long-range surface plasmon-polariton waveguide based optical gyroscope. A theoretical model of the sensitivity is established to study the incoherent multi-beam interference of spontaneous emission in the gyroscope. Numerical results show that spontaneous emission produces a drift in the transmittance spectra and lowers the signal-to-noise-ratio of the gyroscope. It also strengthens the shot noise to be the main limit to the sensitivity of the gyroscope for high propagation loss. To reduce the negative effects of the spontaneous emission noise on the gyroscope, an external feedback loop is suggested to estimate the drift in the transmittance spectra and therefor enhance the sensitivity. Our work lays a foundation for the improvement of long-range surface plasmon-polariton gyroscope and paves the way to its practical application. PMID:25234712

  15. Automotive Emission Control.

    ERIC Educational Resources Information Center

    Lee, Billy D.; Ragazzi, Ronald

    This guide designed to assist teachers in improving instruction in the area of automotive emission control curriculum includes four areas. Each area consists of one or more units of instruction, with each instructional unit including some or all of the following basic components: Performance objectives, suggested activities for teacher and…

  16. Automotive Emission Control.

    ERIC Educational Resources Information Center

    Lee, Billy D.; And Others

    This publication contains instructional materials for both teachers and students for a course in automotive emission control. Instructional materials in this publication are written in terms of student performance using measurable objectives. The course includes 16 units. Each instructional unit includes some or all of the basic components of a…

  17. Excitation dependent two-component spontaneous emission and ultrafast amplified spontaneous emission in dislocation-free InGaN nanowires

    NASA Astrophysics Data System (ADS)

    You, Guanjun; Guo, Wei; Zhang, Chunfeng; Bhattacharya, Pallab; Henderson, Ron; Xu, Jian

    2013-03-01

    Amplified spontaneous emission (ASE) at 456 nm from In0.2Ga0.8N nanowires grown on (001) silicon by catalyst-free molecular beam epitaxy was observed at room temperature under femtosecond excitation. The photoluminescence spectra below ASE threshold consist of two spontaneous emission bands centered at ˜555 nm and ˜480 nm, respectively, revealing the co-existence of deeply and shallowly localized exciton states in the nanowires. The ASE peak emerges from the 480 nm spontaneous emission band when the excitation density exceeds ˜120 μJ/cm2, indicating that optical gain arises from the radiative recombination of shallowly localized excitons in the nanowires. Time-resolved photoluminescence measurements revealed that the ASE process completes within 1.5 ps, suggesting a remarkably high stimulated emission recombination rate in one-dimensional InGaN nanowires.

  18. Broadband enhancement of spontaneous emission in a photonic-plasmonic structure.

    PubMed

    Zhu, Xiaolong; Xie, Fengxian; Shi, Lei; Liu, Xiaohan; Mortensen, N Asger; Xiao, Sanshui; Zi, Jian; Choy, Wallace

    2012-06-01

    We demonstrate that a broadband enhancement of spontaneous emission can be achieved within a photonic-plasmonic structure. The structure can strongly modify the spontaneous emission by exciting plasmonic modes. Because of the excited plasmonic modes, an enhancement up to 30 times is observed, leading to a 4 times broader emission spectrum. The reflectance measurement and the finite-difference time-domain simulation are carried out to support these results.

  19. Fast random number generation with spontaneous emission noise of a single-mode semiconductor laser

    NASA Astrophysics Data System (ADS)

    Zhang, Jianzhong; Zhang, Mingjiang; Liu, Yi; Li, Pu; Yi, Xiaogang; Zhang, Mingtao; Wang, Yuncai

    2016-11-01

    We experimentally demonstrate a 12.5 Gb s-1 random number generator based on measuring the spontaneous emission noise of a single-mode semiconductor laser. The spontaneous emission of light is quantum mechanical in nature and is an inborn physical entropy source of true randomness. By combining a high-speed analog-to-digital converter and off-line processing, random numbers are extracted from the spontaneous emission with the verified randomness. The generator is simple, robust, and with no need of accurately tuning the comparison threshold. The use of semiconductor lasers makes it particularly compatible with the delivery of random numbers in optical networks.

  20. Spontaneous emission enhancement and saturable absorption of colloidal quantum dots coupled to photonic crystal cavity.

    PubMed

    Gupta, Shilpi; Waks, Edo

    2013-12-02

    We demonstrate spontaneous emission rate enhancement and saturable absorption of cadmium selenide colloidal quantum dots coupled to a nanobeam photonic crystal cavity. We perform time-resolved lifetime measurements and observe an average enhancement of 4.6 for the spontaneous emission rate of quantum dots located at the cavity as compared to those located on an unpatterned surface. We also demonstrate that the cavity linewidth narrows with increasing pump intensity due to quantum dot saturable absorption.

  1. Spontaneous emission near the electron plasma frequency in a plasma with a runaway electron tail

    NASA Technical Reports Server (NTRS)

    Freund, H. P.; Lee, L. C.; Wu, C. S.

    1978-01-01

    Spontaneous emission of radiation with frequencies near the electron plasma frequency is studied for a plasma which consists of both thermal and runaway electrons. It is found that a substantial enhancement of the spontaneous radiation intensity can occur in this frequency regime via a Cherenkov resonance with the runaway electrons. Numerical analysis indicates that, for reasonable estimates of densities and energies, the plasma-frequency radiation can attain levels greater than the peak thermal emission at the second gyroharmonic.

  2. Manipulation of the spontaneous emission in mesoporous synthetic opals impregnated with fluorescent guests.

    PubMed

    Yamada, Yuri; Yamada, Hisashi; Nakamura, Tadashi; Yano, Kazuhisa

    2009-12-01

    The spontaneous emission of light from light-emitting materials adsorbed within the ordered pores of monodispersed mesoporous silica spheres (MMSS) has been investigated. By taking advantage of the ordered starburst pores of MMSS, we can provide a simple strategy for fabricating synthetic opals consisting of homogeneous individual building blocks in which fluorescent guests are uniformly and stably impregnated. In this study, tris(8-hydroxyquinolinato)aluminum(III) (Alq(3)) and Rhodamine B (Rh B) are selected as the fluorescent guests. The former has a wider emission band than the reflection spectrum of MMSS synthetic opals, whereas the emission band of the latter is considerably narrower than the reflection spectrum of the opals. The spontaneous emissions of these functionalized synthetic opals are clearly influenced by the stop band governed by the Bragg equation. In the case of the Alq(3)-MMSS conjugate, the shape of the Alq(3) emission spectrum varies in accordance with the shift in the stop band. The emission of the Rh B-MMSS conjugate is noticeably narrowed, and its intensity is enhanced when the excitation intensity is increased. These results are well explained by an inhibition of spontaneous emission caused by a reduction in the density of optical states within the stop band. The results of this study indicate that MMSS synthetic opals are promising for use in novel optical applications in which the spontaneous emission can be manipulated.

  3. Spontaneous emission of electromagnetic radiation in turbulent plasmas

    SciTech Connect

    Ziebell, L. F.; Yoon, P. H.; Simões, F. J. R.; Pavan, J.; Gaelzer, R.

    2014-01-15

    Known radiation emission mechanisms in plasmas include bremmstrahlung (or free-free emission), gyro- and synchrotron radiation, cyclotron maser, and plasma emission. For unmagnetized plasmas, only bremmstrahlung and plasma emissions are viable. Of these, bremmstrahlung becomes inoperative in the absence of collisions, and the plasma emission requires the presence of electron beam, followed by various scattering and conversion processes. The present Letter proposes a new type of radiation emission process for plasmas in a state of thermodynamic quasi-equilibrium between particles and enhanced Langmuir turbulence. The radiation emission mechanism proposed in the present Letter is not predicted by the linear theory of thermal plasmas, but it relies on nonlinear wave-particle resonance processes. The electromagnetic particle-in-cell numerical simulation supports the new mechanism.

  4. Control of Emissions

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor); Chung, Landy (Inventor)

    2013-01-01

    Methods and apparatus utilizing chlorine dioxide and hydrogen peroxide are useful to reduce NOx emissions, as well as SOx and mercury (or other heavy metal) emissions, from combustion flue gas streams.

  5. Calculation of spontaneous emission and gain spectra for quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Yang, Q. K.; Li, A. Z.

    2000-02-01

    In this paper, a quantum cascade laser has been treated as a three-level system, and the calculation of the spontaneous emission and gain spectra has been given. In the calculation, the conduction band nonparabolicity and the injection and exit of electrons have been considered. Results have shown that with increasing injection current, the spontaneous emission peak blue shifts, and the peak intensity increases near linearly with current. With increasing temperatures, the broadening of the spontaneous emission spectra has been attributed to the electron-optical phonon interactions. The peak gain of the stimulated emission has been shown to be determined mainly by the subband lifespans. We have pointed out that it is essential to obtain a long lifespan for the second excited state and short lifespan for the first excited state in order to obtain efficient population inversion and high peak gain for quantum cascade lasers.

  6. [Thoracoscopic surgery using voice controlled robot for spontaneous pneumothorax].

    PubMed

    Okada, S; Tanaba, Y; Kimura, K; Yamauchi, H; Sato, S

    1998-07-01

    We investigated the feasibility and applicability of using voice controlled robot-assisted thoracoscopic surgery for spontaneous pneumothorax. Eleven patients with spontaneous pneumothorax were involved in this study. Five patients were treated by voice controlled robot-assisted thoracoscopic procedure and 6 by historical human-assisted thoracoscopic procedure. All procedures were successfully completed without complications. The number of times the thoracoscope required cleaning per 60-minute interval for cases involving voice controlled robot-assisted surgery were 1.4 compared to 8 per 60-minute interval for comparable cases when the robot was not used. Operative times, the amount of analgesics, the duration of indwelling chest tube, the number of recurrences after operation during thoracoscopic procedures were not statistically different. We found that use of voice-controlled robot as surgical assistant during thoracoscopic surgery for spontaneous pneumothorax is feasible.

  7. Effects of quantum interference in spectra of cascade spontaneous emission from multilevel systems

    NASA Astrophysics Data System (ADS)

    Makarov, A. A.; Yudson, V. I.

    2016-12-01

    A general expression for the spectrum of cascade spontaneous emission from an arbitrary multilevel system is presented. Effects of the quantum interference of photons emitted in different transitions are analyzed. These effects are especially essential when the transition frequencies are close. Several examples are considered: (i) Three-level system; (ii) Harmonic oscillator; (iii) System with equidistant levels and equal rates of the spontaneous decay for all the transitions; (iv) Dicke superradiance model.

  8. Spontaneous emission of a chiral molecule near a cluster of two chiral spherical particles

    SciTech Connect

    Guzatov, D V; Klimov, V V

    2015-03-31

    We have obtained and investigated analytical expressions for the radiative spontaneous decay rate of a chiral (optically active) molecule located near a cluster of two identical chiral (biisotropic) spherical particles. It is found that the composition of the particles, their location and size have a significant effect on the spontaneous emission of chiral molecules. In particular, it is shown that in the case of nanoparticles of chiral metamaterials, the radiative spontaneous decay rate for the 'right-' and 'left-handed' enantiomers of chiral molecules located in the gap of the cluster are significantly different. (metamaterials)

  9. Advanced Emissions Control Development Program

    SciTech Connect

    G. A. Farthing; G. T. Amrhein; G. A. Kudlac; D. A. Yurchison; D. K. McDonald; M. G. Milobowski

    2001-03-31

    The primary objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (HAPs, or air toxics) from coal-fired boilers. This objective is being met by identifying ways to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPs), fabric filters (fabric filters), and wet flue gas desulfurization (wet FGD) systems. Development work initially concentrated on the capture of trace metals, hydrogen chloride, and hydrogen fluoride. Recent work has focused almost exclusively on the control of mercury emissions.

  10. ADVANCED EMISSIONS CONTROL DEVELOPMENT PROGRAM

    SciTech Connect

    G.A. Farthing

    2001-02-06

    The primary objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (HAPs, or air toxics) from coal-fired boilers. The project goal is to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPs), fabric filters (baghouses), and wet flue gas desulfurization (WFGD) systems. Development work initially concentrated on the capture of trace metals, fine particulate, hydrogen chloride, and hydrogen fluoride. Recent work has focused almost exclusively on the control of mercury emissions.

  11. Spontaneous synchrotron emission from a plasma with an energetic runaway electron tail

    NASA Technical Reports Server (NTRS)

    Freund, H. P.; Dillenburg, D.; Wu, C. S.; Lee, L. C.

    1978-01-01

    The emissivity of spontaneous synchrotron radiation is computed for a plasma consisting of a background thermal plasma in addition to an energetic runaway electron component. The analysis is performed for both the ordinary and extraordinary modes, for frequencies in the vicinity of the electron plasma frequency and the higher harmonics of the electron gyrofrequency, and for the case when the electron plasma frequency is approximately the same as or smaller than the cyclotron frequency. The relativistic gyroresonance with the runaway electrons is found to result in a level of spontaneous emission which, for frequencies in the neighborhood of the electron plasma frequency, is significantly enhanced over the thermal radiation.

  12. Spontaneous emission measurements from a low voltage pre-bunched electron beam

    SciTech Connect

    Dearden, G.; Mayhew, S.E.; Lucas, J.

    1995-12-31

    Recently we have carried out measurements on the spontaneous microwave (8.2 GHz) emission which results when a low-voltage (55kV) pre-punched electron beam is passed through a waveguide in a wiggler magnetic field. The variation of the spontaneous emission output power level with the average electron beam current and energy are reported and compared with the theory presented by Doria et al. The effect of the degree of bunching of the electron beam has also been observed and compared with theory.

  13. Plasmon-mediated Enhancement of Rhodamine 6G Spontaneous Emission on Laser-spalled Nanotextures

    NASA Astrophysics Data System (ADS)

    Kuchmizhak, A. A.; Nepomnyashchii, A. V.; Vitrik, O. B.; Kulchin, Yu. N.

    Biosensing characteristics of the laser-spalled nanotextures produced under single-pulse irradiation of a 500-nm thick Ag film surface were assessed by measuring spontaneous emission enhancement of overlaying Rhodamine 6G (Rh6G) molecules utilizing polarization-resolved confocal microspectroscopy technique. Our preliminary study shows for the first time that a single spalled micro-sized crater covered with sub-100 nm sharp tips at a certain excitation conditions provides up to 40-fold plasmon-mediated enhancement of the spontaneous emission from the 10-nm thick Rh6G over-layer indicating high potential of these easy-to-do structures for routine biosensing tasks.

  14. Highly elevated emission of mercury vapor due to the spontaneous combustion of refuse in a landfill

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Sommar, Jonas; Li, Zhonggen; Feng, Xinbin; Lin, Che-Jen; Li, Guanghui

    2013-11-01

    Refuse disposal (e.g., landfilling and incineration) have been recognized as a significant anthropogenic source of mercury (Hg) emission globally. However, in-situ measurements of Hg emission from landfill or refuse dumping sites where fugitive spontaneous combustion occurs have not been reported. Gaseous elemental mercury (Hg0) concentration and emission flux were observed near spontaneous combustions of refuse at a landfill site in southwestern China. Ambient Hg0 concentrations above the refuse surface ranged from 42.7 ± 20.0 to 396.4 ± 114.2 ng m-3, up to 10 times enhancement due to the spontaneous burning. Using a box model with Hg0 data obtained from 2004 to 2013, we estimated that the Hg0 emission from refuse was amplified by 8-40 times due to spontaneous combustion. A micrometeorological flux measurement system based on relaxed eddy accumulation was configured downwind of the combustion sites to quantify the Hg0 emission. Extremely large turbulent deposition fluxes (up to -128.6 μg m-2 h-1, 20 min average) were detected during periods of high Hg0 concentration events over the measurement footprint. The effect of temperature, moisture and light on the air-surface exchange of Hg0 exchange was found to be masked by the overwhelming deposition of Hg0 from the enriched air from the refuse combustion plumes. This research reveals that mercury emission from the landfill refuse can be boosted by fugitive spontaneous combustion of refuse. The emission represents an anthropogenic source that has been overlooked in Hg inventory estimates.

  15. Emission control system

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor); Chung, J. Landy (Inventor)

    2009-01-01

    Methods and apparatus utilizing hydrogen peroxide are useful to reduce SOx and mercury (or other heavy metal) emissions from combustion flue gas streams. The methods and apparatus may further be modified to reduce NOx emissions. Continuous concentration of hydrogen peroxide to levels approaching or exceeding propellant-grade hydrogen peroxide facilitates increased system efficiency. In this manner, combustion flue gas streams can be treated for the removal of SOx and heavy metals, while isolating useful by-products streams of sulfuric acid as well as solids for the recovery of the heavy metals. Where removal of NOx emissions is included, nitric acid may also be isolated for use in fertilizer or other industrial applications.

  16. Nonlocal effects: relevance for the spontaneous emission rates of quantum emitters coupled to plasmonic structures.

    PubMed

    Filter, Robert; Bösel, Christoph; Toscano, Giuseppe; Lederer, Falk; Rockstuhl, Carsten

    2014-11-01

    The spontaneous emission rate of dipole emitters close to plasmonic dimers are theoretically studied within a nonlocal hydrodynamic model. A nonlocal model has to be used since quantum emitters in the immediate environment of a metallic nanoparticle probe its electronic structure. Compared to local calculations, the emission rate is significantly reduced. The influence is mostly pronounced if the emitter is located close to sharp edges. We suggest to use quantum emitters to test nonlocal effects in experimentally feasible configurations.

  17. Plasmonic engineering of spontaneous emission from silicon nanocrystals

    PubMed Central

    Goffard, Julie; Gérard, Davy; Miska, Patrice; Baudrion, Anne-Laure; Deturche, Régis; Plain, Jérôme

    2013-01-01

    Silicon nanocrystals offer huge advantages compared to other semi-conductor quantum dots as they are made from an abundant, non-toxic material and are compatible with silicon devices. Besides, among a wealth of extraordinary properties ranging from catalysis to nanomedicine, metal nanoparticles are known to increase the radiative emission rate of semiconductor quantum dots. Here, we use gold nanoparticles to accelerate the emission of silicon nanocrystals. The resulting integrated hybrid emitter is 5-fold brighter than bare silicon nanocrystals. We also propose an in-depth analysis highlighting the role of the different physical parameters in the photoluminescence enhancement phenomenon. This result has important implications for the practical use of silicon nanocrystals in optoelectronic devices, for instance for the design of efficient down-shifting devices that could be integrated within future silicon solar cells. PMID:24037020

  18. Effect of surface-plasmon polaritons on spontaneous emission and intermolecular energy-transfer rates in multilayered geometries

    SciTech Connect

    Marocico, C. A.; Knoester, J.

    2011-11-15

    We use a Green's tensor method to investigate the spontaneous emission rate of a molecule and the energy-transfer rate between molecules placed in two types of layered geometries: a slab geometry and a planar waveguide. We focus especially on the role played by surface-plasmon polaritons in modifying the spontaneous emission and energy-transfer rates as compared to free space. In the presence of more than one interface, the surface-plasmon polariton modes split into several branches, and each branch can contribute significantly to modifying the electromagnetic properties of atoms and molecules. Enhancements of several orders of magnitude both in the spontaneous emission rate of a molecule and the energy-transfer rate between molecules are obtained and, by tuning the parameters of the geometry, one has the ability to control the range and magnitude of these enhancements. For the energy-transfer rate interference effects between contributions of different plasmon-polariton branches are observed as oscillations in the distance dependence of this rate.

  19. Noise-color-induced quenching of fluctuations in a correlated spontaneous-emission laser model

    SciTech Connect

    Habiger, R.G.K.; Risken, H. ); James, M.; Moss, F. ); Schleich, W. Center for Advanced Studies and Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131 )

    1990-04-01

    We show via (1) an approximate, analytical technique, (2) a formally exact matrix continued-fraction analysis, and (3) an analog simulation of the classical Langevin equation of a correlated spontaneous-emission laser (CEL) that noise of nonzero correlation time leads to an enhancement of the characteristic CEL noise quenching.

  20. Comparison of amplified spontaneous emission pulse cleaners for use in chirped pulse amplification front end lasers

    SciTech Connect

    Dawson, J; Siders, C; Phan, H; Kanz, V; Barty, C

    2007-07-02

    We compare various schemes for removing amplified spontaneous emission from seed laser pulses. We focus on compact schemes that are compatible with fiber laser front end systems with pulse energies in the 10nJ-1{micro}J range and pulse widths in the 100fs-10ps range. Pre-pulse contrast ratios greater than 10{sup 9} have been measured.

  1. Atomic nuclei decay modes by spontaneous emission of heavy ions

    NASA Astrophysics Data System (ADS)

    Poenaru, D. N.; Ivaşcu, M.; Sndulescu, A.; Greiner, Walter

    1985-08-01

    The great majority of the known nuclides with Z>40, including the so-called stable nuclides, are metastable with respect to several modes of spontaneous superasymmetric splitting. A model extended from the fission theory of alpha decay allows one to estimate the lifetimes and the branching ratios relative to the alpha decay for these natural radioactivities. From a huge amount of systematic calculations it is concluded that the process should proceed with maximum intensity in the trans-lead nuclei, where the minimum lifetime is obtained from parent-emitted heavy ion combinations leading to a magic (208Pb) or almost magic daughter nucleus. More than 140 nuclides with atomic number smaller than 25 are possible candidates to be emitted from heavy nuclei, with half-lives in the range of 1010-1030 s: 5He, 8-10Be, 11,12B, 12-16C, 13-17N, 15-22O, 18-23F, 20-26Ne, 23-28Na, 23-30Mg, 27-32Al, 28-36Si, 31-39P, 32-42S, 35-45Cl, 37-47Ar, 40-49 K, 42-51. . .Ca, 44-53 Sc, 46-53Ti, 48-54V, and 49-55 Cr. The shell structure and the pairing effects are clearly manifested in these new decay modes.

  2. Optical instabilities and spontaneous light emission in moving media

    NASA Astrophysics Data System (ADS)

    Silveirinha, Mario

    2015-03-01

    We show that when an uncharged plasmonic material is set in relative motion with respect to another uncharged polarizable body the system may be electromagnetically unstable. Particularly, when the relative velocity of the two bodies is enforced to remain constant the system may support natural oscillations that grow exponentially with time, even in presence of realistic material loss and dispersion. It is proven that a friction-type force acts on the moving bodies to oppose their relative motion. Hence, the optical instabilities result from the conversion of kinetic energy into electromagnetic energy. This new purely classical phenomenon is analogous to the Cherenkov and Smith-Purcell effects but for uncharged polarizable matter. We link the optical instabilities to a spontaneous parity-time symmetry breaking of the system, and demonstrate the possibility of optical amplification of a light pulse in the broken parity-time symmetry regime. This work is supported in part by Fundação para a Ciência e a Tecnologia Grant Number PTDC/EEI-TEL/2764/2012.

  3. Spontaneous emission intensity and anisotropy of quantum dot films in proximity to nanoscale photonic-plasmonic templates

    NASA Astrophysics Data System (ADS)

    Indukuri, Chaitanya; Basu, J. K.

    2016-07-01

    We discuss results on spontaneous emission intensity and lifetime anisotropy of cadmium selenide quantum dot monolayer films placed in close proximity to a porous block copolymer based photonic-plasmonic two dimensional array. The porous block copolymer cylinders can be filled with metal nanoparticles and the concentration of these nanoparticles is varied to control both the photoluminescence intensity and lifetime of a layer of quantum dots placed above the template. Significant emission enhancement is achieved even for the quantum dot layer whose core lies about 1 nm above the template surface. Interestingly, polarised decay lifetime analysis indicates considerable emission anisotropy, as well for these quantum dots. Our results thus demonstrates how such hybrid optical materials can be created with controlled optical properties and suggests extension of this method to other novel two dimensional materials in combination with the photonic-plasmonic template.

  4. Odd-even staggering of heavy cluster spontaneous emission rates

    NASA Astrophysics Data System (ADS)

    Poenaru, D. N.; Greiner, W.; Ivaşcu, M.; Mazilu, D.; Plonski, I. H.

    1986-12-01

    Experimentally observed enhanced14C and24Ne emission rates from even-even parents in comparison with that from even-odd or odd-even nuclei are explained in the framework of the analytical superasymmetric fission model, by taking various prescriptions for the zero point vibration energy of even-even, even-odd, odd-even and odd-odd emitters. Longer half-lives than previously computed are obtained by extrapolating the present prescriptions to emitted clusters heavier than24Ne.

  5. ADVANCED EMISSIONS CONTROL DEVELOPMENT PROGRAM

    SciTech Connect

    M.J. Holmes

    1998-07-01

    The objective of this project is to develop practical strategies and systems for the simultaneous control of SO{sub 2}, NO{sub x}, particulate matter, and air toxics emissions from coal-fired boilers in such a way as to keep coal economically and environmentally competitive as a utility boiler fuel. Of particular interest is the control of air toxics emissions through the cost-effective use of conventional flue gas clean-up equipment such as electrostatic precipitators (ESP's), fabric filters (baghouses), and SO{sub 2} removal systems such as wet scrubbers and various clean coal technologies. This objective will be achieved through extensive development testing in the state-of-the art, 10 MW{sub e} equivalent, Clean Environment Development Facility (CEDF). The project has extended the capabilities of the CEDF to facilitate air toxics emissions control development work on backend flue gas cleanup equipment. Specifically, an ESP, a baghouse, and a wet scrubber for SO{sub 2} (and air toxics) control were added--all designed to yield air toxics emissions data under controlled conditions, and with proven predictability to commercial systems. A schematic of the CEDF and the project test equipment is shown in Figure 1. The specific objectives of the project are to: (1) Measure and understand production and partitioning of air toxics species in coal-fired power plant systems; (2) Optimize the air toxics removal performance of conventional flue gas cleanup systems; (3) Quantify the impacts of coal cleaning on air toxics emissions; (4) Identify and/or develop advanced air toxics emissions control concepts; (5) Develop and validate air toxics emissions measurement and monitoring techniques; (6) Establish an air toxics data library to facilitate studies of the impacts of coal selection, coal cleaning, and emissions control strategies on the emissions of coal-fired power plants.

  6. ADVANCED EMISSIONS CONTROL DEVELOPMENT PROGRAM

    SciTech Connect

    M.J. Holmes

    1999-01-01

    The objective of this project is to develop practical strategies and systems for the simultaneous control of SO{sub 2}, NO{sub x}, particulate matter, and air toxics emissions from coal-fired boilers in such a way as to keep coal economically and environmentally competitive as a utility boiler fuel. Of particular interest is the control of air toxics emissions through the cost-effective use of conventional flue gas clean-up equipment such as electrostatic precipitators (ESP's), fabric filters (baghouses), and SO{sub 2} removal systems such as wet scrubbers and various clean coal technologies. This objective will be achieved through extensive development testing in the state-of-the art, 10 MW{sub e} equivalent, Clean Environment Development Facility (CEDF). The project has extended the capabilities of the CEDF to facilitate air toxics emissions control development work on backend flue gas cleanup equipment. Specifically, an ESP, a baghouse, and a wet scrubber for SO{sub 2} (and air toxics) control were added--all designed to yield air toxics emissions data under controlled conditions, and with proven predictability to commercial systems. A schematic of the CEDF and the project test equipment is shown in Figure 1. The specific objectives of the project are to: (1) Measure and understand production and partitioning of air toxics species in coal-fired power plant systems; (2) Optimize the air toxics removal performance of conventional flue gas cleanup systems; (3) Quantify the impacts of coal cleaning on air toxics emissions; (4) Identify and/or develop advanced air toxics emissions control concepts; (5) Develop and validate air toxics emissions measurement and monitoring techniques; (6) Establish an air toxics data library to facilitate studies of the impacts of coal selection, coal cleaning, and emissions control strategies on the emissions of coal-fired power plants.

  7. ADVANCED EMISSIONS CONTROL DEVELOPMENT PROGRAM

    SciTech Connect

    M.J. Holmes

    1998-10-01

    The objective of this project is to develop practical strategies and systems for the simultaneous control of SO{sub 2}, NO{sub x}, particulate matter, and air toxics emissions from coal-fired boilers in such a way as to keep coal economically and environmentally competitive as a utility boiler fuel. Of particular interest is the control of air toxics emissions through the cost-effective use of conventional flue gas clean-up equipment such as electrostatic precipitators (ESP's), fabric filters (baghouses), and SO{sub 2} removal systems such as wet scrubbers and various clean coal technologies. This objective will be achieved through extensive development testing in the state-of-the art, 10 MW{sub e} equivalent, Clean Environment Development Facility (CEDF). The project has extended the capabilities of the CEDF to facilitate air toxics emissions control development work on backend flue gas cleanup equipment. Specifically, an ESP, a baghouse, and a wet scrubber for SO{sub 2} (and air toxics) control were added--all designed to yield air toxics emissions data under controlled conditions, and with proven predictability to commercial systems. A schematic of the CEDF and the project test equipment is shown in Figure 1. The specific objectives of the project are to: (1) Measure and understand production and partitioning of air toxics species in coal-fired power plant systems; (2) Optimize the air toxics removal performance of conventional flue gas cleanup systems; (3) Quantify the impacts of coal cleaning on air toxics emissions; (4) Identify and/or develop advanced air toxics emissions control concepts; (5) Develop and validate air toxics emissions measurement and monitoring techniques; (6) Establish an air toxics data library to facilitate studies of the impacts of coal selection, coal cleaning, and emissions control strategies on the emissions of coal-fired power plants.

  8. Spontaneous ultraweak photon emission imaging of oxidative metabolic processes in human skin: effect of molecular oxygen and antioxidant defense system

    NASA Astrophysics Data System (ADS)

    Rastogi, Anshu; Pospíšil, Pavel

    2011-09-01

    All living organisms emit spontaneous ultraweak photon emission as a result of cellular metabolic processes. In this study, the involvement of reactive oxygen species (ROS) formed as the byproduct of oxidative metabolic processes in spontaneous ultraweak photon emission was studied in human hand skin. The effect of molecular oxygen and ROS scavengers on spontaneous ultraweak photon emission from human skin was monitored using a highly sensitive photomultiplier tube and charged coupled device camera. When spontaneous ultraweak photon emission was measured under anaerobic conditions, the photon emission was decreased, whereas under hyperaerobic condition the enhancement in photon emission was observed. Spontaneous ultraweak photon emission measured after topical application of glutathione, α-tocopherol, ascorbate, and coenzyme Q10 was observed to be decreased. These results reveal that ROS formed during the cellular metabolic processes in the epidermal cells play a significant role in the spontaneous ultraweak photon emission. It is proposed that spontaneous ultraweak photon emission can be used as a noninvasive tool for the temporal and spatial monitoring of the oxidative metabolic processes and intrinsic antioxidant system in human skin.

  9. Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials.

    PubMed

    Lu, Dylan; Kan, Jimmy J; Fullerton, Eric E; Liu, Zhaowei

    2014-01-01

    Plasmonic nanostructures have been extensively used to manipulate the spontaneous light emission rate of molecules and their radiative efficiency. Because molecules near a metallic surface experience a different environment than in free space, their spontaneous radiative emission rate is generally enhanced. Such enhancement, measured by means of the Purcell factor, arises as a consequence of the overlap between the surface plasmon mode frequency and the emission spectrum of the molecule. However, such overlap is available only for a few narrow bands of frequency due to the limited plasmonic materials existing in nature. Although this limitation can be overcome by using hyperbolic metamaterials (HMMs)—a type of nanoscale artificial material with hyperbolic dispersion relations—the Purcell factor and the radiative power have remained relatively low. Here, we show that by nanopatterning a hyperbolic metamaterial made of Ag and Si multilayers, the spontaneous emission rate of rhodamine dye molecules is enhanced 76-fold at tunable frequencies and the emission intensity of the dye increases by ~80-fold compared with the same hyperbolic metamaterial without nanostructuring. We explain these results using a dynamic Lorentzian model in the time domain.

  10. Master equation for collective spontaneous emission with quantized atomic motion

    NASA Astrophysics Data System (ADS)

    Damanet, François; Braun, Daniel; Martin, John

    2016-02-01

    We derive a Markovian master equation for the internal dynamics of an ensemble of two-level atoms including all effects related to the quantization of their motion. Our equation provides a unifying picture of the consequences of recoil and indistinguishability of atoms beyond the Lamb-Dicke regime on both their dissipative and conservative dynamics, and applies equally well to distinguishable and indistinguishable atoms. We give general expressions for the decay rates and the dipole-dipole shifts for any motional states, and we find closed-form formulas for a number of relevant states (Gaussian states, Fock states, and thermal states). In particular, we show that dipole-dipole interactions and cooperative photon emission can be modulated through the external state of motion.

  11. Spontaneous emission of Schrödinger cats in a waveguide at ultrastrong coupling

    NASA Astrophysics Data System (ADS)

    Gheeraert, Nicolas; Bera, Soumya; Florens, Serge

    2017-02-01

    Josephson circuits provide a realistic physical setup where the light–matter fine structure constant can become of order one, allowing to reach a regime dominated by non-perturbative effects beyond standard quantum optics. Simple processes, such as spontaneous emission, thus acquire a many-body character, that can be tackled using a new description of the time-dependent state vector in terms of quantum-superposed coherent states. We find that spontaneous atomic decay at ultrastrong coupling leads to the emission of spectrally broad Schrödinger cats rather than of monochromatic single photons. These cats states remain partially entangled with the emitter at intermediate stages of the dynamics, even after emission, due to a large separation in time scales between fast energy relaxation and exponentially slow decoherence. Once decoherence of the qubit is finally established, quantum information is completely transfered to the state of the emitted cat.

  12. Emission control system

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2008-01-01

    Methods and apparatus utilizing hydrogen peroxide are useful to reduce NOx, SOx and mercury (or other heavy metal) emissions from combustion flue gas streams. Continuous concentration of hydrogen peroxide to levels approaching or exceeding propellant-grade hydrogen peroxide facilitates increased system efficiency. In this manner, combustion flue gas streams can be treated for the removal of NOx, SOx and heavy metals, while isolating useful by-products streams of sulfuric acid and nitric acid as well as solids for the recovery of the heavy metals.

  13. Fabrication and characterization of plasmonic nanocone antennas for strong spontaneous emission enhancement.

    PubMed

    Hoffmann, Björn; Vassant, Simon; Chen, Xue-Wen; Götzinger, Stephan; Sandoghdar, Vahid; Christiansen, Silke

    2015-10-09

    Plasmonic antennas are attractive nanostructures for a large variety of studies ranging from fundamental aspects of light-matter interactions at the nanoscale to industry-relevant applications such as ultrasensitive sensing, enhanced absorption in solar cells or solar fuel generation. A particularly interesting feature of these antennas is that they can enhance the fluorescence properties of emitters. Theoretical calculations have shown that nanocone antennas provide ideal results, but a high degree of manufacturing precision and control is needed to reach optimal performance. In this study, we report on the fabrication of nanocones with base diameters and heights in the range of 100 nm with variable aspect ratios using focused ion beam milling of sputtered nano-crystalline gold layers. The controlled fabrication process allows us to obtain cones with tailored plasmon resonances. The measured plasmon spectra show very good agreement with finite-difference time-domain calculations. Theoretical investigations predict that these nanocones can enhance the spontaneous emission rate of a quantum emitter by several hundred times while keeping its quantum efficiency above 60%.

  14. Fabrication and characterization of plasmonic nanocone antennas for strong spontaneous emission enhancement

    NASA Astrophysics Data System (ADS)

    Hoffmann, Björn; Vassant, Simon; Chen, Xue-Wen; Götzinger, Stephan; Sandoghdar, Vahid; Christiansen, Silke

    2015-10-01

    Plasmonic antennas are attractive nanostructures for a large variety of studies ranging from fundamental aspects of light-matter interactions at the nanoscale to industry-relevant applications such as ultrasensitive sensing, enhanced absorption in solar cells or solar fuel generation. A particularly interesting feature of these antennas is that they can enhance the fluorescence properties of emitters. Theoretical calculations have shown that nanocone antennas provide ideal results, but a high degree of manufacturing precision and control is needed to reach optimal performance. In this study, we report on the fabrication of nanocones with base diameters and heights in the range of 100 nm with variable aspect ratios using focused ion beam milling of sputtered nano-crystalline gold layers. The controlled fabrication process allows us to obtain cones with tailored plasmon resonances. The measured plasmon spectra show very good agreement with finite-difference time-domain calculations. Theoretical investigations predict that these nanocones can enhance the spontaneous emission rate of a quantum emitter by several hundred times while keeping its quantum efficiency above 60%.

  15. Characteristics of Spontaneous Emission of Polarized Atoms in Metal Dielectric Multiple Layer Structures

    NASA Astrophysics Data System (ADS)

    Zhao, Li-Ming; Gu, Ben-Yuan; Zhou, Yun-Song

    2007-11-01

    The spontaneous emission (SE) progress of polarized atoms in a stratified structure of air-dielectric(D0)-metal(M)-dielectric(D1)-air can be controlled effectively by changing the thickness of the D1 layer and rotating the polarized direction of atoms. It is found that the normalized SE rate of atoms located inside the D0 layer crucially depends on the atomic position and the thickness of the D1 layer. When the atom is located near the D0-M interface, the normalized atomic SE rate as a function of the atomic position is abruptly onset for the thin D1 layer. However, with the increasing thickness of the D1 layer, the corresponding curve profile exhibits plateau and stays nearly unchanged. The substantial change of the SE rate stems from the excitation of the surface plasmon polaritons in metal-dielectric interface, and the feature crucially depends on the thickness of D1 layer. If atoms are positioned near the D0-air interface, the substantial variation of the normalized SE rate appears when rotating the polarized direction of atoms. These findings manifest that the atomic SE processes can be flexibly controlled by altering the thickness of the dielectric layer D1 or rotating the orientation of the polarization of atoms.

  16. Advanced Emissions Control Development Program

    SciTech Connect

    A.P.Evans; K.E. Redinger; M.J. Holmes

    1998-04-01

    The objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of air toxics from coal-fired boilers. Ideally, the project aim is to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPS), fabric filters (baghouse), and wet flue gas desulfurization. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate and hydrogen chloride. Following the construction and evaluation of a representative air toxics test facility in Phase I, Phase II focused on the evaluation of mercury and several other air toxics emissions. The AECDP is jointly funded by the United States Department of Energy's Federal Energy Technology Center (DOE), the Ohio Coal Development Office within the Ohio Department of Development (oCDO), and Babcock& Wilcox-a McDermott company (B&W).

  17. Experimental Demonstration of Enhanced Self-Amplified Spontaneous Emission by an Optical Klystron

    NASA Astrophysics Data System (ADS)

    Penco, G.; Allaria, E.; De Ninno, G.; Ferrari, E.; Giannessi, L.

    2015-01-01

    We report the first experimental evidence of enhancement of self-amplified spontaneous emission, due to the use of an optical klystron. In this free-electron laser scheme, a relativistic electron beam passes through two undulators, separated by a dispersive section. The latter converts the electron-beam energy modulation produced in the first undulator in density modulation, thus enhancing the free-electron laser gain. The experiment has been carried out at the FERMI facility in Trieste. Powerful radiation has been produced in the extreme ultraviolet range, with an intensity a few orders of magnitude larger than in pure self-amplified spontaneous emission mode. Data have been benchmarked with an existing theoretical model.

  18. Effect of amplified spontaneous emission on selectivity of laser photoionisation of the 177Lu radioisotope

    NASA Astrophysics Data System (ADS)

    D'yachkov, A. B.; Gorkunov, A. A.; Labozin, A. V.; Mironov, S. M.; Panchenko, V. Ya; Firsov, V. A.; Tsvetkov, G. O.

    2016-06-01

    A significant deselecting effect of amplified spontaneous emission has been observed in the experiments on selective laser photoionisation of the 177Lu radioisotope according to the scheme 5d6s2 2D3/2 → 5d6s6p 4Fo5/2 (18505 cm-1) → 5d6s7s 4D3/2(37194 cm-1) → autoionisation state (53375 cm-1). The effect is conditioned by involvement of non-target isotopes from the lower metastable level 5d6s2 2D5/2(1994 cm-1) into the ionisation process. Spectral filtering of spontaneous emission has allowed us to significantly increase the selectivity of the photoionisation process of the radioisotope and to attain a selectivity value of 105 when using saturating light intensities.

  19. Advanced Emissions Control Development Program

    SciTech Connect

    Evans, A P

    1998-12-03

    Babcock & Wilcox (B&W) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using B&W's new Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species hydrogen chloride and hydrogen fluoride.

  20. Advanced Emission Control Development Program.

    SciTech Connect

    Evans, A.P.

    1997-12-31

    Babcock & Wilcox (B&W) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using B&W`s new Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species hydrogen chloride and hydrogen fluoride.

  1. Advanced Emissions Control Development Program

    SciTech Connect

    M. J. Holmes

    1998-12-03

    McDermott Technology, Inc. (MTI) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using the Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and hydrogen chloride and hydrogen fluoride.

  2. Advanced Emissions Control Development Program

    SciTech Connect

    A. P. Evans

    1998-12-03

    McDermott Technology, Inc. (MTI) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using the Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species, hydrogen chloride and hydrogen fluoride.

  3. GENERAL: Steady State Entanglement and Saturation Effects in Correlated Spontaneous Emission Lasers

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Hu, Xiang-Ming; Shi, Wen-Xing

    2009-08-01

    It has recently been shown that correlated spontaneous emission lasers (CEL) exhibit transient entanglement in the linear regime. Here we re-examine the quantum correlations in two-photon CEL and explore the saturation effects on continuous variable entanglement. It is shown that the steady state entanglement is obtainable in the weak or moderate saturation regime, while is washed out in the deep saturation regime.

  4. Self-amplified spontaneous emission for a single pass free-electron laser

    NASA Astrophysics Data System (ADS)

    Giannessi, L.; Alesini, D.; Antici, P.; Bacci, A.; Bellaveglia, M.; Boni, R.; Boscolo, M.; Briquez, F.; Castellano, M.; Catani, L.; Chiadroni, E.; Cianchi, A.; Ciocci, F.; Clozza, A.; Couprie, M. E.; Cultrera, L.; Dattoli, G.; Del Franco, M.; Dipace, A.; di Pirro, G.; Doria, A.; Drago, A.; Fawley, W. M.; Ferrario, M.; Ficcadenti, L.; Filippetto, D.; Frassetto, F.; Freund, H. P.; Fusco, V.; Gallerano, G.; Gallo, A.; Gatti, G.; Ghigo, A.; Giovenale, E.; Marinelli, A.; Labat, M.; Marchetti, B.; Marcus, G.; Marrelli, C.; Mattioli, M.; Migliorati, M.; Moreno, M.; Mostacci, A.; Orlandi, G.; Pace, E.; Palumbo, L.; Petralia, A.; Petrarca, M.; Petrillo, V.; Poletto, L.; Quattromini, M.; Rau, J. V.; Reiche, S.; Ronsivalle, C.; Rosenzweig, J.; Rossi, A. R.; Rossi Albertini, V.; Sabia, E.; Serafini, L.; Serluca, M.; Spassovsky, I.; Spataro, B.; Surrenti, V.; Vaccarezza, C.; Vescovi, M.; Vicario, C.

    2011-06-01

    SPARC (acronym of “Sorgente Pulsata ed Amplificata di Radiazione Coerente”, i.e. Pulsed and Amplified Source of Coherent Radiation) is a single pass free-electron laser designed to obtain high gain amplification at a radiation wavelength of 500 nm. Self-amplified spontaneous emission has been observed driving the amplifier with the high-brightness beam of the SPARC linac. We report measurements of energy, spectra, and exponential gain. Experimental results are compared with simulations from several numerical codes.

  5. Exhaust emission control apparatus

    SciTech Connect

    Eng, J.W.

    1991-09-24

    This patent describes an exhaust control apparatus for muffling noise and treating odors and pollutants, including solid particulate and gases in the exhaust of an internal combustion engine. It comprises an exhaust inlet tube for receiving the exhaust generated by an internal combustion engine; a cyclone barrier concentrically surrounding the exhaust inlet tube, a ring cavity between the cyclone tube and exhaust inlet tube defining a cyclone chamber in which the exhaust is treated; means for directing the exhaust from the exhaust inlet tube into the cyclone chamber; electrode means having small openings through which the exhaust passes to enter the cyclone chamber, the electrode means generating electrostatic forces which charge the solid particulate in the exhaust, ionize air and generate ozone in the cyclone chamber near the electrode; means for injecting air into the cyclone chamber causing centrifugal flow of the air and the exhausted within the cyclone chamber and increasing a dwell time of the exhaust within the cyclone chamber.

  6. Coupling of spontaneous emission from GaN-AlN quantum dots into silver surface plasmons

    NASA Astrophysics Data System (ADS)

    Neogi, Arup; Morkoç, Hadis; Kuroda, Takamasa; Tackeuchi, Atsushi

    2005-01-01

    We have demonstrated the decay of spontaneous emission (SE) from AlN-GaN quantum dots (QDs) into silver surface plasmon (SP) modes in the ultraviolet at approximately 375-380 nm. Using time-resolved photoluminescence (PL), we show that the electron-hole recombination rate in AlN-GaN QDs is enhanced when SE is resonantly coupled to a metal SP mode, corresponding to the dip in the continuous-wave PL spectrum. Exciton recombination by means of silver SP modes is as much as 3-7 times faster than in normal QD SE and depends strongly on emission wavelength and thickness of the silver.

  7. Ultrafast spontaneous emission modulation of graphene quantum dots interacting with Ag nanoparticles in solution

    NASA Astrophysics Data System (ADS)

    Zhao, Jianwei; Lu, Jian; Wang, Liang; Tian, Linfan; Deng, Xingxia; Tian, Lijun; Pan, Dengyu; Wang, Zhongyang

    2016-07-01

    We investigated the strong interaction between graphene quantum dots and silver nanoparticles in solution using time-resolved photoluminescence techniques. In solution, the silver nanoparticles are surrounded by graphene quantum dots and interacted with graphene quantum dots through exciton-plasmon coupling. An ultrafast spontaneous emission process (lifetime 27 ps) was observed in such a mixed solution. This ultrafast lifetime corresponds to the emission rate exceeding 35 GHz, with the purcell enhancement by a factor of ˜12. These experiment results pave the way for the realization of future high speed light sources applications.

  8. Enhanced spontaneous emission into the mode of a cavity QED system.

    PubMed

    Terraciano, M L; Knell, R Olson; Freimund, D L; Orozco, L A; Clemens, J P; Rice, P R

    2007-04-15

    We study the light generated by spontaneous emission into a mode of a cavity QED system under weak excitation of the orthogonally polarized mode. Operating in the intermediate regime of cavity QED with comparable coherent and decoherent coupling constants, we find an enhancement of the emission into the undriven cavity mode by more than a factor of 18.5 over that expected by the solid angle subtended by the mode. A model that incorporates three atomic levels and two polarization modes quantitatively explains the observations.

  9. Spontaneous otoacoustic emissions in an active nonlinear cochlear model in the time domain

    NASA Astrophysics Data System (ADS)

    Fruth, Florian; Jülicher, Frank; Lindner, Benjamin

    2015-12-01

    A large fraction of human cochleas emits sounds even in the absence of external stimulation. These so-called spontaneous otoacoustic emissions (SOAEs) are a hallmark of the active nonlinear amplification process taking place in the cochlea. Here, we extend a previously proposed frequency domain model and put forward an active nonlinear one-dimensional model of the cochlea in the time domain describing human SOAEs [5]. In our model, oscillatory elements are close to an instability (Hopf bifurcation), they are subject to dynamical noise and coupled by hydrodynamic, elastic and dissipative interactions. Furthermore, oscillators are subject to a weak spatial irregularity in their activity (normally distributed and exponentially correlated in space) that gives rise to the individuality of each simulated cochlea. Our model captures main statistical features of the distribution of emission frequencies, the distribution of the numbers of emissions per cochlea, and the distribution of the distances between neighboring emissions as were previously measured in experiment [14].

  10. Temperature-dependent spontaneous emission of PbS quantum dots inside photonic nanostructures at telecommunication wavelength

    NASA Astrophysics Data System (ADS)

    Birowosuto, Muhammad Danang; Takiguchi, Masato; Olivier, Aurelien; Tobing, Landobasa Y.; Kuramochi, Eiichi; Yokoo, Atsushi; Hong, Wang; Notomi, Masaya

    2017-01-01

    Spontaneous emission of PbS quantum dots (QDs) in different photonic nanostructures has been studied. We use the temperature-dependent exciton photoluminescence and the classic dipole near interface models to understand the spontaneous emission control at various temperatures. Then, we demonstrate that the enhancement and the inhibition of PbS QDs due to the local density of states (LDOS) inside nanostructures are more efficient at temperature as low as 77 K than the inhibition at 300 K. Largest emission rate enhancement at 77 K of 1.67 ± 0.10 and inhibition factors at 100 K of 2.27 ± 0.15 are reported for the gold (Au) planar mirror and silicon (Si) two-dimensional photonic crystal bandgap, respectively. We attribute those enhancement and inhibition to the large quantum yields Qe at low temperatures, which is much larger than that at 300 K. These results are relevant for application and optimization of PbS QDs in nanophotonics at telecommunication wavelength.

  11. Greenhouse gas emissions from Australian open-cut coal mines: contribution from spontaneous combustion and low-temperature oxidation.

    PubMed

    Day, Stuart J; Carras, John N; Fry, Robyn; Williams, David J

    2010-07-01

    Spontaneous combustion and low-temperature oxidation of waste coal and other carbonaceous material at open-cut coal mines are potentially significant sources of greenhouse gas emissions. However, the magnitude of these emissions is largely unknown. In this study, emissions from spontaneous combustion and low-temperature oxidation were estimated for six Australian open-cut coal mines with annual coal production ranging from 1.7 to more than 16 Mt. Greenhouse emissions from all other sources at these mines were also estimated and compared to those from spontaneous combustion and low-temperature oxidation. In all cases, fugitive emission of methane was the largest source of greenhouse gas; however, in some mines, spontaneous combustion accounted for almost a third of all emissions. For one mine, it was estimated that emissions from spontaneous combustion were around 250,000 t CO(2)-e per annum. The contribution from low-temperature oxidation was generally less than about 1% of the total for all six mines. Estimating areas of spoil affected by spontaneous combustion by ground-based surveys was prone to under-report the area. Airborne infrared imaging appears to be a more reliable method.

  12. Periodontal disease and spontaneous preterm birth: a case control study

    PubMed Central

    Wood, Stephen; Frydman, Albert; Cox, Stephen; Brant, Rollin; Needoba, Sheilia; Eley, Barry; Sauve, Reg

    2006-01-01

    Background Several studies have suggested an association between periodontal disease and prematurity but this finding has not been consistently observed. Methods Case control study. Cases (n = 50) were women who had delivered after spontaneous preterm labor at <35 weeks gestation. Two groups of controls (n = 101) were recruited: women who were undelivered but at a preterm gestation and women who delivered at term. A standard, clinical, periodontal examination was performed and gingival crevicular fluid was obtained from standardized locations and tested for neutrophil elastase along with the bacterial enzymes gingipain and dipeptidylpeptidase. Data were analyzed with Fisher's exact tests, ANOVA and multivariate logistic regression. Results There was no difference in the proportion of sites with significant attachment loss (≥3 mm): Cases-3.2%, Controls-2.2% p = 0.21. The gingival crevicular fluid concentrations of elastase and gingipain were elevated in cases vs. controls 238.8 uU/ul vs. 159.6 uU/ul p = .007 and 2.70 uU/ul vs. 1.56 uU/ul p = .001. On multivariate analysis, the mean log concentration of elastase, but not of gingipain, remained a significant predictor of preterm labor p = .0.015. Conclusion We found no evidence that clinical periodontal disease is associated with spontaneous preterm birth. Elevated gingival crevicular fluid levels of elastase were associated with preterm birth but further research is needed before this can be assumed to be a causal relationship. PMID:16848912

  13. Application of Spontaneous Photon Emission in the Growth Ages and Varieties Screening of Fresh Chinese Herbal Medicines

    PubMed Central

    Zhao, Xiaolei; Fu, Jialei; Van Wijk, Eduard; Liu, Yanli; Fan, Hua; Zhang, Yufeng

    2017-01-01

    Ultraweak photon emission emitted by all living organisms has been confirmed to be a noninvasive indicator for their physiological and pathological characteristics. In this study, we investigated the characteristics of spontaneous photon emission (SPE) and the contents of specific active compounds of roots and flowers buds of several fresh Chinese herbal medicines (natural medicines) with different growth ages and varieties. The results revealed that the contents of specific active compounds from same species herbs with different growth ages and varieties were significantly different, and this difference could be reflected by their SPE. Because the contents of specific bioactive constituents in Chinese herbs are closely related to their quality and curative effect, the SPE measurement technique may contribute to the quality control of Chinese herbal medicine in the future. PMID:28250790

  14. The effects of air pressure on spontaneous otoacoustic emissions of lizards.

    PubMed

    van Dijk, Pim; Manley, Geoffrey A

    2013-06-01

    Small changes of air pressure outside the eardrum of five lizard species led to changes in frequency, level, and peak width of spontaneous otoacoustic emissions (SOAE). In contrast to humans, these changes generally occurred at very small pressures (<20 mbar). As in humans, SOAE amplitudes were generally reduced. Changes of SOAE frequency were both positive and negative, while in humans, they are mostly positive. In addition, in lizards, these effects often showed obvious hysteresis and non-repeatability. The correlation between peak width and height was negative in two species (comparable to humans) and positive in one species. In two other species, no correlation was found. Consequently, a simple oscillator model that explained the negative correlation in humans could not be generally applied to lizards. This presumably reflects the fact that in lizards, the spontaneous otoacoustic emission of sound from the ear consists of a combination of stable oscillations (as in humans), unstable narrow-band oscillations, and broad-band emissions, evident as "plateaus" in emission spectra.

  15. Tunable amplified spontaneous emission in graphene quantum dots doped cholesteric liquid crystals.

    PubMed

    Cao, Mingxuan; Yang, Siwei; Zhang, Yating; Song, Xiaoxian; Che, Yongli; Zhang, Haiting; Yu, Yu; Ding, Gu; Zhang, Guizhong; Yao, Jianquan

    2017-03-20

    Graphene quantum dots (GQDs) have received great attention owing to their unique structure and novel phenomena of optical absorption/emission. In this letter, we observed the tunable amplified spontaneous emission (ASE) in GQDs doped cholesteric liquid crystals (CLC) for the first time. The GQDs are dispersed in CLC homogeneously with the weight ratio of 0.5 wt%. Under optical excitation, a typical ASE is triggered in the system above a 1.25 mJ/cm2 threshold. In addition, the emission peak at the long wavelength edge of the photonic bandgap shifts from 662 nm to 669 nm with the change of working temperature. Combining the GQDs gain material and the self-assembled CLC resonator has great potential in fabricating ASE source and laser devices with advantages of low cost, simple preparation and photostability, and non-toxicity.

  16. Broadband Enhancement of Spontaneous Emission in Two-Dimensional Semiconductors Using Photonic Hypercrystals.

    PubMed

    Galfsky, Tal; Sun, Zheng; Considine, Christopher R; Chou, Cheng-Tse; Ko, Wei-Chun; Lee, Yi-Hsien; Narimanov, Evgenii E; Menon, Vinod M

    2016-08-10

    The low quantum yield observed in two-dimensional semiconductors of transition metal dichalcogenides (TMDs) has motivated the quest for approaches that can enhance the light emission from these systems. Here, we demonstrate broadband enhancement of spontaneous emission and increase in Raman signature from archetype two-dimensional semiconductors: molybdenum disulfide (MoS2) and tungsten disulfide (WS2) by placing the monolayers in the near field of a photonic hypercrystal having hyperbolic dispersion. Hypercrystals are characterized by a large broadband photonic density of states due to hyperbolic dispersion while having enhanced light in/out coupling by a subwavelength photonic crystal lattice. This dual advantage is exploited here to enhance the light emission from the 2D TMDs and can be utilized for developing light emitters and solar cells using two-dimensional semiconductors.

  17. Spontaneous rereading within sentences: Eye movement control and visual sampling.

    PubMed

    White, Sarah J; Lantz, Laura M T; Paterson, Kevin B

    2017-02-01

    Three experiments examine the role of previously read text in sentence comprehension and the control of eye movements during spontaneous rereading. Spontaneous rereading begins with a regressive saccade and involves reinspection of previously read text. All 3 experiments employed the gaze-contingent change technique to modulate the availability of previously read text. In Experiment 1, previously read text was permanently masked either immediately to the left of the fixated word (beyond wordn) or more than 1 word to the left (beyond wordn-1). The results of Experiment 1 indicate that the availability of the word immediately to the left (wordn-1) is important for comprehension. Experiments 2 and 3 further explored the role of previously read text beyond wordn-1. In these studies, text beyond wordn-1 was replaced, retaining only word length information, or word length and shape information. Following a regression back within a sentence, meaningful text either reappeared or remained unavailable during rereading. The experiments show that the visual format of text beyond wordn-1 (the parafoveal postview) is important for triggering regressions. The results also indicate that, as least for more complex sentences, the availability of meaningful text is important in driving eye movement control during rereading. (PsycINFO Database Record

  18. An Active Oscillator Model Describes the Statistics of Spontaneous Otoacoustic Emissions

    PubMed Central

    Fruth, Florian; Jülicher, Frank; Lindner, Benjamin

    2014-01-01

    Even in the absence of external stimulation, the cochleas of most humans emit very faint sounds below the threshold of hearing, sounds that are known as spontaneous otoacoustic emissions. They are a signature of the active amplification mechanism in the cochlea. Emissions occur at frequencies that are unique for an individual and change little over time. The statistics of a population of ears exhibit characteristic features such as a preferred relative frequency distance between emissions (interemission intervals). We propose a simplified cochlea model comprising an array of active nonlinear oscillators coupled both hydrodynamically and viscoelastically. The oscillators are subject to a weak spatial disorder that lends individuality to the simulated cochlea. Our model captures basic statistical features of the emissions: distributions of 1), emission frequencies; 2), number of emissions per ear; and 3), interemission intervals. In addition, the model reproduces systematic changes of the interemission intervals with frequency. We show that the mechanism for the preferred interemission interval in our model is the occurrence of synchronized clusters of oscillators. PMID:25140416

  19. Bremsstrahlung emission of high energy accompanying spontaneous fission of {sup 252}Cf

    SciTech Connect

    Maydanyuk, S. P.; Olkhovsky, V. S.; Mandaglio, G.; Manganaro, M.; Fazio, G.; Giardina, G.

    2010-07-15

    The study of the bremsstrahlung photon emission accompanying fragments produced in the spontaneous fission of heavy nuclei by a fully quantum approach is presented for the first time. This kind of problem requires the knowledge of wave functions of the fissioning system leading to a wide distribution of couples of fragments that are the products of fission. With the aim of obtaining these wave functions, the interaction potential between the emitted fragment and residual nucleus is calculated by a standard approach. A new procedure was performed that allows an increase in the accuracy of calculations of radial integrals in the far asymptotic region and the achievement of the convenient convergence in calculations of the spectra. The total probability of the emitted photons in the spontaneous fission of {sup 252}Cf was calculated in such a way. We obtained good agreement between theory and experimental data up to 38 MeV for the bremsstrahlung spectrum of photons while the calculation of the total probability of photon emission accompanying fragments was performed up to an energy of 60 MeV. The analysis of contributions in the bremsstrahlung spectrum accompanying the emission of light, medium, and heavy fragments in the fission of {sup 252}Cf is presented.

  20. Modified spontaneous emission of organic molecules in-filled in inverse opals.

    PubMed

    Deng, Lier; Wang, Yongsheng; He, Dawei

    2011-11-01

    Inverse opals were prepared by replication of colloidal crystal templates made from silica spheres 298 nm in diameter. The air between the silica spheres was filled with the mixture of the monomer poly(methyl methacrylate) (PMMA) and the organic molecule Alq3 that can be subsequently polymerized. After removing the silica sphere templates, the photonic bandgap effect on the spontaneous emission of Alq3 were investigated. The dip in the fluorescence spectrum was interpreted in terms of redistribution of the photon density of states in the photonic crystal.

  1. Optical cavity temperature measurement based on the first overtones spontaneous emission spectra for HF chemical laser

    NASA Astrophysics Data System (ADS)

    Tang, Shukai; Li, Liucheng; Duo, Liping; Wang, Yuanhu; Yu, Haijun; Jin, Yuqi; Sang, Fengting

    2015-02-01

    An optical cavity temperature test method has been established for the HF chemical laser. This method assumes that in HF optical cavity the rotational distribution of vibrationally excited HF molecules meets the statistical thermodynamic distribution, the first overtones (v = 3-1 and 2-0) spontaneous emission spectral intensity distribution is obtained by using OMA V, the optical cavity temperature is calculated by linear fitting the rotational thermal equilibrium distribution formula for each HF vibrationally excited state. This method is simple, reliable, and repeatable. This method can be used to test the optical cavity temperature not only without lasing, but also with lasing.

  2. Equivalent circuit theory of spontaneous emission power in semiconductor laser optical amplifiers

    NASA Astrophysics Data System (ADS)

    Chu, James Chi-Yin; Ghafouri-Shiraz, H.

    1994-05-01

    An equivalent circuit model for a semiconductor laser amplifier (SLA) has been developed. This model can be used with a transfer matrix method (TMM) to analyze the performance of a SLA. The validity of the model is explored in this paper by analyzing the spontaneous emission noise power in a Fabry-Perot SLA with a uniform distribution of material gain coefficient. The result is found to be identical with that derived by the Green function approach. The physical reasons for the validity of the equivalent circuit model are also discussed, and possible further applications of the model are suggested.

  3. Broadband filters for abatement of spontaneous emission in circuit quantum electrodynamics

    SciTech Connect

    Bronn, Nicholas T. Hertzberg, Jared B.; Córcoles, Antonio D.; Gambetta, Jay M.; Chow, Jerry M.; Liu, Yanbing; Houck, Andrew A.

    2015-10-26

    The ability to perform fast, high-fidelity readout of quantum bits (qubits) is essential to the goal of building a quantum computer. However, coupling a fast measurement channel to a superconducting qubit typically also speeds up its relaxation via spontaneous emission. Here, we use impedance engineering to design a filter by which photons may easily leave the resonator at the cavity frequency but not at the qubit frequency. We implement this broadband filter in both an on-chip and off-chip configuration.

  4. Trace element emissions from spontaneous combustion of gob piles in coal mines, Shanxi, China

    USGS Publications Warehouse

    Zhao, Y.; Zhang, Jiahua; Chou, C.-L.; Li, Y.; Wang, Z.; Ge, Y.; Zheng, C.

    2008-01-01

    The emissions of potentially hazardous trace elements from spontaneous combustion of gob piles from coal mining in Shanxi Province, China, have been studied. More than ninety samples of solid waste from gob piles in Shanxi were collected and the contents of twenty potentially hazardous trace elements (Be, F, V, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Sn, Sb, Hg, Tl, Pb, Th, and U) in these samples were determined. Trace element contents in solid waste samples showed wide ranges. As compared with the upper continental crust, the solid waste samples are significantly enriched in Se (20x) and Tl (12x) and are moderately enriched in F, As, Mo, Sn, Sb, Hg, Th, and U (2-5x). The solid waste samples are depleted in V, Cr, Mn, Co, Ni, Cu, and Zn. The solid waste samples are enriched in F, V, Mn, Cr, Co, Ni, Cu, Zn, Sb, Th, and U as compared with the Shanxi coals. Most trace elements are higher in the clinker than in the unburnt solid waste except F, Sn, and Hg. Trace element abundances are related to the ash content and composition of the samples. The content of F is negatively correlated with the ash content, while Pb is positively correlated with the ash. The concentrations of As, Mn, Zn, and Cd are highly positively correlated with Fe2O3 in the solid waste. The As content increases with increasing sulfur content in the solid waste. The trace element emissions are calculated for mass balance. The emission factors of trace elements during the spontaneous combustion of the gobs are determined and the trace element concentrations in the flue gas from the spontaneous combustion of solid waste are calculated. More than a half of F, Se, Hg and Pb are released to the atmosphere during spontaneous combustion. Some trace element concentrations in flue gas are higher than the national emission standards. Thus, gob piles from coal mining pose a serious environmental problem. ?? 2007 Elsevier B.V. All rights reserved.

  5. Transverse amplified spontaneous emission: The limiting factor for output energy of ultra-high power lasers

    NASA Astrophysics Data System (ADS)

    Chvykov, Vladimir; Nees, John; Krushelnick, Karl

    2014-02-01

    For the new generation of the ultra-high power lasers with tens of PW of output power, kJ-level energies have to be reached. Our modeling, applied to Ti:sapphire amplifiers, demonstrates for the first time, according our knowledge, that Transverse Amplified Spontaneous Emission (TASE) places an additional restriction on storing and extracting energy in larger gain apertures, even stronger than transverse parasitic generation (TPG). Nevertheless, we demonstrate that extracting during pumping (EDP) can significantly reduce parasitic losses due to both TASE and TPG.

  6. Amplified spontaneous emission from the exciplex state of a conjugated polymer "PFO" in oleic acid

    NASA Astrophysics Data System (ADS)

    Idriss, Hajo; Taha, Kamal K.; Aldaghri, O.; Alhathlool, R.; AlSalhi, M. S.; Ibnaouf, K. H.

    2016-09-01

    The amplified spontaneous emission (ASE) characteristics of a conjugated polymer poly (9, 9-dioctylfluorenyl-2, 7-diyl) (PFO) in oleic acid have been studied under different concentrations and temperatures. Here, the ASE spectra of PFO in oleic acid have been obtained using a transverse cavity configuration where the conjugated PFO was pumped by laser pulses from the third harmonic of Nd: YAG laser (355 nm). The PFO in oleic acid produces ASE from an exciplex state - a new molecular species. The obtained results were compared with the PFO in benzene. Such ASE spectra from the exciplex state have not been observed for the PFO in benzene.

  7. Light-charged-particle emission in the spontaneous fission of /sup 250/Cf, /sup 256/Fm, and /sup 257/Fm

    SciTech Connect

    Wild, J.F.; Baisden, P.A.; Dougan, R.J.; Hulet, E.K.; Lougheed, R.W.; Landrum, J.H.

    1985-08-01

    We have measured the energy spectra for the emission of long-range ..cap alpha.. particles from the spontaneous fission of /sup 250/Cf, /sup 256/Fm, and /sup 257/Fm, and for tritons and protons from the spontaneous fission of /sup 250/Cf and /sup 256/Fm. We have determined ..cap alpha.., triton, and proton emission probabilities and estimated total light-particle emission probabilities for these nuclides. We compare these and known emission probabilities for five other spontaneously fissioning nuclides with the deformation energy available at scission and show that there is a possible correlation that is consistent with a one-body dissipation mechanism for transferring release energy to particle clusters.

  8. The generation of amplified spontaneous emission in high-power CPA laser systems.

    PubMed

    Keppler, Sebastian; Sävert, Alexander; Körner, Jörg; Hornung, Marco; Liebetrau, Hartmut; Hein, Joachim; Kaluza, Malte Christoph

    2016-03-01

    An analytical model is presented describing the temporal intensity contrast determined by amplified spontaneous emission in high-intensity laser systems which are based on the principle of chirped pulse amplification. The model describes both the generation and the amplification of the amplified spontaneous emission for each type of laser amplifier. This model is applied to different solid state laser materials which can support the amplification of pulse durations ≤350 fs . The results are compared to intensity and fluence thresholds, e.g. determined by damage thresholds of a certain target material to be used in high-intensity applications. This allows determining if additional means for contrast improvement, e.g. plasma mirrors, are required for a certain type of laser system and application. Using this model, the requirements for an optimized high-contrast front-end design are derived regarding the necessary contrast improvement and the amplified "clean" output energy for a desired focussed peak intensity. Finally, the model is compared to measurements at three different high-intensity laser systems based on Ti:Sapphire and Yb:glass. These measurements show an excellent agreement with the model.

  9. Brillouin optical correlation domain analysis with 4 millimeter resolution based on amplified spontaneous emission.

    PubMed

    Cohen, Raphael; London, Yosef; Antman, Yair; Zadok, Avi

    2014-05-19

    A new technique for Brillouin scattering-based, distributed fiber-optic measurements of temperature and strain is proposed, analyzed, simulated, and demonstrated. Broadband Brillouin pump and signal waves are drawn from the filtered amplified spontaneous emission of an erbium-doped fiber amplifier, providing high spatial resolution. The reconstruction of the position-dependent Brillouin gain spectra along 5 cm of a silica single-mode fiber under test, with a spatial resolution of 4 mm, is experimentally demonstrated using a 25 GHz-wide amplified spontaneous emission source. A 4 mm-long localized hot spot is identified by the measurements. The uncertainty in the reconstruction of the local Brillouin frequency shift is ± 1.5 MHz. The single correlation peak between the pump and signal is scanned along a fiber under test using a mechanical variable delay line. The analysis of the expected spatial resolution and the measurement signal-to-noise ratio is provided. The measurement principle is supported by numerical simulations of the stimulated acoustic field as a function of position and time. Unlike most other Brillouin optical correlation domain analysis configurations, the proposed scheme is not restricted by the bandwidth of available electro-optic modulators, microwave synthesizers, or pattern generators. Resolution is scalable to less than one millimeter in highly nonlinear media.

  10. Performance of a quantum teleportation protocol based on collective spontaneous emission

    SciTech Connect

    Wagner, Richard Jr.; Clemens, James P.

    2009-03-15

    Recently a conditional quantum teleportation protocol has been proposed by Chen et al. [New J. Phys. 7, 172 (2005)], which is based on the collective spontaneous emission of a photon from a pair of quantum dots. We formulate a similar protocol for collective emission from a pair of atoms, one of which is entangled with a single mode of an optical cavity. We focus on the performance of the protocol as characterized by the fidelity of the teleported state and the overall success probability. We consider a strategy employing spatially resolved photodetection of the emitted photon in order to distinguish superradiant from subradiant emission on the basis of a single detected photon. We find that fidelity approaches unity as the spacing of the atoms becomes much smaller than the emission wavelength with a success probability of 0.25. The fidelity remains above the classical limit of 2/3 for arbitrary atomic separations with the ultimate limit of performance coming from the spatial resolution of the detectors.

  11. Generalized theory and simulation of spontaneous and super-radiant emissions in electron devices and free-electron lasers.

    PubMed

    Pinhasi, Y; Lurie, Yu

    2002-02-01

    A unified formulation of spontaneous (shot-noise) and super-radiant emissions in electron devices is presented. We consider an electron beam with an arbitrary temporal current modulation propagating through the interaction region of the electronic device. The total electromagnetic field is presented as a stochastic process and expanded in terms of transverse eigenmodes of the medium (free space or waveguide), in which the field is excited and propagates. Using the waveguide excitation equations, formulated in the frequency domain, an analytical expression for the power spectral density of the electromagnetic radiation is derived. The spectrum of the excited radiation is shown to be composed of two terms, which are the spontaneous and super-radiant emissions. For a continuous, unmodulated beam, the shot noise produces only incoherent spontaneous emission of a power proportional to the flux eI(0) (DC current) of the particles in the electron beam. When the beam is modulated or prebunched, a partially coherent super-radiant emission is also produced with power proportional to the current spectrum /I(omega)/(2). Based on a three-dimensional model, a numerical particle simulation code was developed. A set of coupled-mode excitation equations in the frequency domain are solved self-consistently with the equations of particles motion. The simulation considers random distributions of density and energy in the electron beam and takes into account the statistical and spectral features of the excited radiation. At present, the code can simulate free-electron lasers (FELs) operation in various modes: spontaneous and self-amplified spontaneous emission, super-radiance and stimulated emission, in the linear and nonlinear Compton or Raman regimes. We employed the code to demonstrate spontaneous and super-radiant emission excited when a prebunched electron beam passes through a wiggler of an FEL.

  12. The evolution of automobile exhaust emission control

    SciTech Connect

    Taylor, K.C.

    1993-12-31

    Automobile catalytic converters have progressed from oxidation-only systems in the mid 1970`s to the current three-way catalytic converters which control emissions of carbon monoxide, hydrocarbons, and nitrogen oxide to very low levels. New exhaust emission regulations adopted Federally and in California which come into effect during the 1990`s once again demand new emission control system technology. A new generation of catalytic converter systems coupled with attention to fuel composition characterizes this third phase of exhaust emission control.

  13. Exhaust emission control and diagnostics

    DOEpatents

    Mazur, Christopher John; Upadhyay, Devesh

    2006-11-14

    A diesel engine emission control system uses an upstream oxidation catalyst and a downstream SCR catalyst to reduce NOx in a lean exhaust gas environment. The engine and upstream oxidation catalyst are configured to provide approximately a 1:1 ratio of NO to NO2 entering the downstream catalyst. In this way, the downstream catalyst is insensitive to sulfur contamination, and also has improved overall catalyst NOx conversion efficiency. Degradation of the system is determined when the ratio provided is no longer near the desired 1:1 ratio. This condition is detected using measurements of engine operating conditions such as from a NOx sensor located downstream of the catalysts. Finally, control action to adjust an injected amount of reductant in the exhaust gas based on the actual NO to NO2 ratio upstream of the SCR catalyst and downstream of the oxidation catalyst.

  14. Investigation of the spontaneous emission rate of perylene dye molecules encapsulated into three-dimensional nanofibers via FLIM method

    NASA Astrophysics Data System (ADS)

    Acikgoz, Sabriye; Demir, Mustafa M.; Yapasan, Ece; Kiraz, Alper; Unal, Ahmet A.; Inci, M. Naci

    2014-09-01

    The decay dynamics of perylene dye molecules encapsulated in polymer nanofibers produced by electrospinning of polymethyl methacrylate are investigated using a confocal fluorescence lifetime imaging microscopy technique. Time-resolved experiments show that the fluorescence lifetime of perylene dye molecules is enhanced when the dye molecules are encapsulated in a three-dimensional photonic environment. It is hard to produce a sustainable host with exactly the same dimensions all the time during fabrication to accommodate dye molecules for enhancement of spontaneous emission rate. The electrospinning method allows us to have a control over fiber diameter. It is observed that the wavelength of monomer excitation of perylene dye molecules is too short to cause enhancement within nanofiber photonic environment of 330 nm diameters. However, when these nanofibers are doped with more concentrated perylene, in addition to monomer excitation, an excimer excitation is generated. This causes observation of the Purcell effect in the three-dimensional nanocylindrical photonic fiber geometry.

  15. Frequency selectivity of the human cochlea: Suppression tuning of spontaneous otoacoustic emissions.

    PubMed

    Manley, Geoffrey A; van Dijk, Pim

    2016-06-01

    Frequency selectivity is a key functional property of the inner ear and since hearing research began, the frequency resolution of the human ear has been a central question. In contrast to animal studies, which permit invasive recording of neural activity, human studies must rely on indirect methods to determine hearing selectivity. Psychophysical studies, which used masking of a tone by other sounds, indicate a modest frequency selectivity in humans. By contrast, estimates using the phase delays of stimulus-frequency otoacoustic emissions (SFOAE) predict a remarkably high selectivity, unique among mammals. An alternative measure of cochlear frequency selectivity are suppression tuning curves of spontaneous otoacoustic emissions (SOAE). Several animal studies show that these measures are in excellent agreement with neural frequency selectivity. Here we contribute a large data set from normal-hearing young humans on suppression tuning curves (STC) of spontaneous otoacoustic emissions (SOAE). The frequency selectivities of human STC measured near threshold levels agree with the earlier, much lower, psychophysical estimates. They differ, however, from the typical patterns seen in animal auditory nerve data in that the selectivity is remarkably independent of frequency. In addition, SOAE are suppressed by higher-level tones in narrow frequency bands clearly above the main suppression frequencies. These narrow suppression bands suggest interactions between the suppressor tone and a cochlear standing wave corresponding to the SOAE frequency being suppressed. The data show that the relationship between pre-neural mechanical processing in the cochlea and neural coding at the hair-cell/auditory nerve synapse needs to be reconsidered.

  16. Quantum theory of spontaneous emission in a one-dimensional optical cavity with two-side output coupling

    NASA Astrophysics Data System (ADS)

    Feng, Xiao-Ping; Ujihara, Kikuo

    1990-03-01

    A quantum theory of spontaneous emission from an initially excited two-level atom in a one-dimensional optical cavity with output coupling from both sides is developed. Orthonormal mode functions with a continuous spectrum are employed, which are derived by imposing a periodic boundary condition on the whole space with a period much larger than the cavity length. The delay differential equation of the atomic state of Cook and Milonni [Phys. Rev. A 35, 5081 (1987)] is re-derived in a strict manner, where the reflectivity of the cavity mirrors is included naturally in the mode functions. An approximate solution at a single-resonant-mode limit shows the results of ``vacuum'' Rabi oscillation in an underdamped cavity and enhanced spontaneous emission rate in an overdamped cavity. For the latter case, it is found that in the optical range the spontaneous emission rate is enhanced by a factor F (finesse of the cavity).

  17. Final LDRD report : enhanced spontaneous emission rate in visible III-nitride LEDs using 3D photonic crystal cavities.

    SciTech Connect

    Fischer, Arthur Joseph; Subramania, Ganapathi S.; Coley, Anthony J.; Lee, Yun-Ju; Li, Qiming; Wang, George T.; Luk, Ting Shan; Koleske, Daniel David; Fullmer, Kristine Wanta

    2009-09-01

    The fundamental spontaneous emission rate for a photon source can be modified by placing the emitter inside a periodic dielectric structure allowing the emission to be dramatically enhanced or suppressed depending on the intended application. We have investigated the relatively unexplored realm of interaction between semiconductor emitters and three dimensional photonic crystals in the visible spectrum. Although this interaction has been investigated at longer wavelengths, very little work has been done in the visible spectrum. During the course of this LDRD, we have fabricated TiO{sub 2} logpile photonic crystal structures with the shortest wavelength band gap ever demonstrated. A variety of different emitters with emission between 365 nm and 700 nm were incorporated into photonic crystal structures. Time-integrated and time-resolved photoluminescence measurements were performed to measure changes to the spontaneous emission rate. Both enhanced and suppressed emission were demonstrated and attributed to changes to the photonic density of states.

  18. Spontaneous Emission Between - and Para-Levels of Water-Ion H_2O^+

    NASA Astrophysics Data System (ADS)

    Tanaka, Keiichi; Harada, Kensuke; Nanbu, Shinkoh; Oka, Takeshi

    2012-06-01

    Nuclear spin conversion interaction of water ion, H_2O^+, has been studied to derive spontaneous emission lifetime between ortho- and para-levels. H_2O^+ is a radical ion with the ^2B_1 electronic ground state. Its off-diagonal electron spin-nuclear spin interaction term, Tab(S_aΔ I_b + S_bΔ I_a), connects para and ortho levels, because Δ I = I_1 - I_2 has nonvanishing matrix elements between I = 0 and 1. The mixing by this term with Tab = 72 MHz predicted by ab initio theory in the MRD-CI/Bk level, is many orders of magnitude larger than for closed shell molecules because of the large magnetic interaction due to the un-paired electron. Using the molecular constants reported by Mürtz et al. by FIR-LMR, we searched for ortho and para coupling channels below 1000 cm-1 with accidental near degeneracy between para and ortho levels. For example, hyperfine components of the 42,2(ortho) and 33,0(para) levels mix by 1.2 × 10-3 due to their near degeneracy (Δ E = 0.417 cm-1), and give the ortho-para spontaneous emission lifetime of about 0.63 year. The most significant low lying 10,1(para) and 11,1(ortho) levels, on the contrary, mix only by 8.7 × 10-5 because of their large separation (Δ E = 16.267 cm-1) and give the spontaneous emission lifetime from 10,1(para) to 00,0(ortho) of about 100 year.These results qualitatively help to understand the observed high ortho- to para- H_2O^+ ratio of 4.8 ± 0.5 toward Sgr B2 but they are too slow to compete with the conversion by collision unless the number density of the region is very low (n ˜1 cm-3) or radiative temperature is very high (T_r > 100 K). M. Staikova, B. Engels, M. Peric, and S.D. Peyerimhoff, Mol. Phys. 80, 1485 (1993) P. Mürtz, L.R. Zink, K.M. Evenson, and J.M. Brown J. Chem. Phys. 109, 9744 (1998). LP. Schilke, et al., A&A 521, L11 (2010).

  19. PARTICULATE EMISSION MEASUREMENTS FROM CONTROLLED CONSTRUCTION ACTIVITIES

    EPA Science Inventory

    The report summarized the results of field testing of the effectiveness of control measures for sources of fugitive particulate emissions found at construction sites. The effectiveness of watering temporary, unpaved travel surfaces on emissions of particulate matter with aerodyna...

  20. Observation of novel radioactive decay by spontaneous emission of complex nuclei

    SciTech Connect

    Barwick, S.W.

    1986-01-01

    Two years of experimental investigation on the subject of spontaneous emission of intermediate-mass fragments is described in this manuscript. A short introduction on this subject and a historical review are presented in chapter 1. In chapter 2, the author describe the experimental methods which led to the observation of /sup 14/C emission in polycarbonate etched-track detectors from the isotopes /sup 222/Ra, /sup 223/Ra, /sup 224/Ra and /sup 226/Ra at the branching ratios with respect to ..cap alpha..-decay of (3.7 +/- 0.6) x 10/sup -10/, (6.1 +/- 1.0) x 10/sup -10/, (4.3 +/- 1.2) x 10/sup -10/ and (2.9 +/- 1.0) x 10/sup -11/ respectively. Branching ratio limits for heavy-ion emission from /sup 221/Fr, /sup 221/Ra and /sup 225/Ac were determined to be at < 5.0 x 10/sup -14/, < 1.2 x 10/sup -13/ and < 4.0 x 10/sup -13/ respectively for the 90% C.L. The emission of /sup 24/Ne from /sup 232/U at a branching ratio of (2.0 +/- 0.5) x 10/sup -12/ has been discovered using polyethylene terephthalate etched-track plastics. A confirmation of /sup 24/Ne and/or /sup 25/Ne emission from /sup 233/U at a branching ratio of (5.3 +/- 2.3) x 10/sup -13/ is also reported. In chapter 3, three models of intermediate-mass decay are discussed-the analytic superasymmetric fission model, the model by Shi and Swiatecki, and a model based on a square-well + Coulomb potential.

  1. Spontaneous otoacoustic emissions in two gecko species, Gekko gecko and Eublepharis macularius.

    PubMed

    Manley, G A; Gallo, L; Koppl, C

    1996-03-01

    Spontaneous otoacoustic emissions (SPOAE) of the gecko species Gekko gecko and Eublepharis macularius appear as broad spectral peaks (bandwidth 44 to 170 Hz) between 1 and 4.5 kHz that have peak levels of -7 to 10 dB SPL. Most ears showed SPOAE at many frequencies. In some ears, the peaks were superimposed on a broad baseline emission. The instantaneous frequency of any emission varied rapidly within its bandwidth limits and frequencies in the center of the band occurred most commonly, but not with higher levels than frequencies on the periphery of the band. SPOAE were temperature dependent, rising in frequency with an increase in temperature and falling with a decrease in temperature (rate of change from 54 to 107 Hz/degrees C), with no systematic changes in peak level except that at the temperature extremes, the SPOAE disappeared into the noise. External tones suppressed SPOAE peak level in a frequency-dependent way. Isosuppression tuning curves were V-shaped. In restricted frequency ranges, facilitation also occurred. External tones also caused shifts in the frequency of SPOAE; frequency "pushing" was more common than "pulling." The maximal frequency shift observed was 313 Hz. In general, the SPOAE characteristics strongly resemble those already reported in the bobtail lizard Tiliqua rugosa.

  2. Three-dimensional analysis of harmonic generation in self-amplified spontaneous emission.

    SciTech Connect

    Huang, Z.; Kim, K.-J.

    1999-09-01

    In a high-gain free-electron laser, strong bunching at the fundamental wavelength can drive substantial harmonic bunching and sizable power levels at the harmonic frequencies. In this paper, we investigate the three-dimensional evolution of the harmonic fields based on the coupled Maxwell-Vlasov equations that take into account the nonlinear harmonic interaction. Each harmonic field is the sum of a self-amplified term and a term driven by the nonlinear harmonic interaction. In the exponential gain regime, the growth rate of the dominant nonlinear term is much faster than that of the self-amplified harmonic field. As a result, the gain length and the transverse profile of the first few harmonics are completely determined by those of the fundamental. A percentage of the fundamental power level is found at the third harmonic frequency right before saturation for the current self-amplified spontaneous emission projects.

  3. Spontaneous Hot-Electron Light Emission from Electron-Fed Optical Antennas.

    PubMed

    Buret, Mickael; Uskov, Alexander V; Dellinger, Jean; Cazier, Nicolas; Mennemanteuil, Marie-Maxime; Berthelot, Johann; Smetanin, Igor V; Protsenko, Igor E; Colas-des-Francs, Gérard; Bouhelier, Alexandre

    2015-09-09

    Nanoscale electronics and photonics are among the most promising research areas providing functional nanocomponents for data transfer and signal processing. By adopting metal-based optical antennas as a disruptive technological vehicle, we demonstrate that these two device-generating technologies can be interfaced to create an electronically driven self-emitting unit. This nanoscale plasmonic transmitter operates by injecting electrons in a contacted tunneling antenna feedgap. Under certain operating conditions, we show that the antenna enters a highly nonlinear regime in which the energy of the emitted photons exceeds the quantum limit imposed by the applied bias. We propose a model based upon the spontaneous emission of hot electrons that correctly reproduces the experimental findings. The electron-fed optical antennas described here are critical devices for interfacing electrons and photons, enabling thus the development of optical transceivers for on-chip wireless broadcasting of information at the nanoscale.

  4. Flexible all-polymer waveguide for low threshold amplified spontaneous emission

    PubMed Central

    Smirnov, José R. Castro; Zhang, Qi; Wannemacher, Reinhold; Wu, Longfei; Casado, Santiago; Xia, Ruidong; Rodriguez, Isabel; Cabanillas-González, Juan

    2016-01-01

    The fabrication of all polymer optical waveguides, based on a highly fluorescent conjugated polymer (CP) poly(9,9-dioctylfluorene-alt-benzothiadiazole) (F8BT) and a mechanically flexible and biodegradable polymer, cellulose acetate (CA), is reported. The replication by hot embossing of patterned surfaces in CA substrates, onto which high quality F8BT films can be easily processed by spin coating, is exploited to produce an entirely plastic device that exhibits low optical loss and low threshold for amplified spontaneous emission (ASE). As a result, highly transparent and flexible waveguides are obtained, with excellent optical properties that remain unaltered after bending, allowing them to be adapted in various flexible photonic devices. PMID:27686745

  5. Highly pH-responsive sensor based on amplified spontaneous emission coupled to colorimetry

    PubMed Central

    Zhang, Qi; Castro Smirnov, Jose R.; Xia, Ruidong; Pedrosa, Jose M.; Rodriguez, Isabel; Cabanillas-Gonzalez, Juan; Huang, Wei

    2017-01-01

    We demonstrated a simple, directly-readable approach for high resolution pH sensing. The method was based on sharp changes in Amplified Spontaneous Emission (ASE) of a Stilbene 420 (ST) laser dye triggered by the pH-dependent absorption of Bromocresol Green (BG). The ASE threshold of BG:ST solution mixtures exhibited a strong dependence on BG absorption, which was drastically changed by the variations of the pH of BG solution. As a result, ASE on-off or off-on was observed with different pH levels achieved by ammonia doping. By changing the concentration of the BG solution and the BG:ST blend ratio, this approach allowed to detect pH changes with a sensitivity down to 0.05 in the 10–11 pH range. PMID:28387354

  6. Decoherence by spontaneous emission: A single-atom analog of superradiance

    NASA Astrophysics Data System (ADS)

    Souza, Reinaldo de Melo e.; Impens, François; Neto, Paulo A. Maia

    2016-12-01

    We show that the decoherence of the atomic center-of-mass induced by spontaneous emission involves interferences corresponding to a single-atom analog of superradiance. We use a decomposition of the stationary decoherence rate as a sum of local and nonlocal contributions obtained to second order in the interaction by the influence functional method. These terms are respectively related to the strength of the coupling between system and environment, and to the quality of the information about the system leaking into the environment. While the local contribution always yields a positive decoherence rate, the nonlocal one may lead to recoherence when only partial information about the system is obtained from the disturbed environment. The nonlocal contribution contains interferences between different quantum amplitudes leading to oscillations of the decoherence rate reminiscent of superradiance. These concepts, illustrated here in the framework of atom interferometry within a trap, may be applied to a variety of quantum systems.

  7. Proton-transfer laser: gain spectrum and amplification of spontaneous emission of 3-hydroxyflavone

    SciTech Connect

    Chou, P.; McMorrow, D.; Aartsma, T.J.; Kasha, M.

    1984-09-27

    The efficient generations of amplified spontaneous emission (ASE) in 3-hydroxyflavone in methylcyclohexane and p-dioxane solutions at 293 K is reported. This application of excited-state proton-transfer tautomerization approaches an ideal four-level laser system involving four different molecular electronic species in separate electronic states and constitutes a photoinduced chemical laser. The gain coefficient for the ASE (530 nm) of 3-hydroxyflavone in methylcyclohexane (293 K) is calculated to be 10-15. Under similar conditions in our apparatus, the gain coefficient is observed to be in the range 7-9 for a proprietary coumarin laser dye (Molectron 70371-4 C485) and for rhodamine-6G. The tunable range for 3-hydroxyflavone is observed to be 518-545 nm. The peak laser power is comparable with that observed for the coumarin dye.

  8. Temporal phase mask encrypted optical steganography carried by amplified spontaneous emission noise.

    PubMed

    Wu, Ben; Wang, Zhenxing; Shastri, Bhavin J; Chang, Matthew P; Frost, Nicholas A; Prucnal, Paul R

    2014-01-13

    A temporal phase mask encryption method is proposed and experimentally demonstrated to improve the security of the stealth channel in an optical steganography system. The stealth channel is protected in two levels. In the first level, the data is carried by amplified spontaneous emission (ASE) noise, which cannot be detected in either the time domain or spectral domain. In the second level, even if the eavesdropper suspects the existence of the stealth channel, each data bit is covered by a fast changing phase mask. The phase mask code is always combined with the wide band noise from ASE. Without knowing the right phase mask code to recover the stealth data, the eavesdropper can only receive the noise like signal with randomized phase.

  9. Spontaneous Hot-Electron Light Emission from Electron-Fed Optical Antennas

    NASA Astrophysics Data System (ADS)

    Buret, Mickael; Uskov, Alexander V.; Dellinger, Jean; Cazier, Nicolas; Mennemanteuil, Marie-Maxime; Berthelot, Johann; Smetanin, Igor V.; Protsenko, Igor E.; Colas-des-Francs, Gérard; Bouhelier, Alexandre

    2015-09-01

    Nanoscale electronics and photonics are among the most promising research areas providing functional nano-components for data transfer and signal processing. By adopting metal-based optical antennas as a disruptive technological vehicle, we demonstrate that these two device-generating technologies can be interfaced to create an electronically-driven self-emitting unit. This nanoscale plasmonic transmitter operates by injecting electrons in a contacted tunneling antenna feedgap. Under certain operating conditions, we show that the antenna enters a highly nonlinear regime in which the energy of the emitted photons exceeds the quantum limit imposed by the applied bias. We propose a model based upon the spontaneous emission of hot electrons that correctly reproduces the experimental findings. The electron-fed optical antennas described here are critical devices for interfacing electrons and photons, enabling thus the development of optical transceivers for on-chip wireless broadcasting of information at the nanoscale.

  10. Modeling and analysis of overmodulation in erbium-doped fiber amplifiers including amplified spontaneous emission

    NASA Astrophysics Data System (ADS)

    Sharma, Reena; Raghuwanshi, Sanjeev Kumar

    2017-02-01

    Line surveillance and management information in erbium-doped fiber amplifiers (EDFAs) can be broadcast by modulating the amplitude of the low-frequency lightwave information signal, the process termed as overmodulation in the literature. This paper presents systematic solutions for the overmodulated pump and information signal transfer functions for EDFA. It includes amplified spontaneous emission (ASE) that has an impact on outcomes in the high-gain system. To the extent of our belief, the methodical model simulated with the current approach leads to a distinct perspective of an outcome in the respective field. The test bed described here is realistic. It specifically represents the overmodulation behavior in an EDFA under the influence of ASE.

  11. Enhanced amplified spontaneous emission using layer-by-layer assembled cowpea mosaic virus

    NASA Astrophysics Data System (ADS)

    Li, Na; Deng, Zhaoqi; Lin, Yuan; Zhang, Xiaojie; Geng, Yanhou; Ma, Dongge; Su, Zhaohui

    2009-01-01

    Layer-by-layer assembly technique was used to construct ultrathin film of cowpea mosaic virus (CPMV) by electrostatic interactions, and the film was employed as a precursor on which an OF8T2 film was deposited by spin coating. Amplified spontaneous emission (ASE) was observed and improved for the OF8T2 film. Compared with OF8T2 film on quartz, the introduction of CPMV nanoparticles reduced the threshold and loss, and remarkably increased the net gain. The threshold, loss, and gain reached 0.05 mJ/pulse, 6.9 cm-1, and 82 cm-1, respectively. CPMV nanoparticles may enormously scatter light, resulting in a positive feedback, thus the ASE is easily obtained and improved.

  12. Amplified spontaneous emission in polymer films doped with a perylenediimide derivative.

    PubMed

    Calzado, Eva M; Villalvilla, José M; Boj, Pedro G; Quintana, José A; Gómez, Rafael; Segura, José L; Díaz García, María A

    2007-06-20

    The presence of amplified spontaneous emission (ASE) by optical pump in polystyrene films doped with N,N'-di(10-nonadecyl)perylene-3,4:9,10-tetracarboxylic diimide (PDI-N) in a range of PDI-N concentrations between 0.25 and 5 wt. % is reported. Gain coefficients up to 10 cm(-1), at a pump intensity of 74 kW/cm2, were obtained. The lowest thresholds (approximately 15 kW/cm2) and largest photostabilities measured at 50% (approximately 50 min, i.e., 30,000 pump pulses) were obtained for concentrations up to 1 wt. %. The observation of an increase in the ASE threshold and a decrease in the photostability for larger concentrations is attributed to the presence of aggregated species.

  13. Flexible all-polymer waveguide for low threshold amplified spontaneous emission

    NASA Astrophysics Data System (ADS)

    Smirnov, José R. Castro; Zhang, Qi; Wannemacher, Reinhold; Wu, Longfei; Casado, Santiago; Xia, Ruidong; Rodriguez, Isabel; Cabanillas-González, Juan

    2016-09-01

    The fabrication of all polymer optical waveguides, based on a highly fluorescent conjugated polymer (CP) poly(9,9-dioctylfluorene-alt-benzothiadiazole) (F8BT) and a mechanically flexible and biodegradable polymer, cellulose acetate (CA), is reported. The replication by hot embossing of patterned surfaces in CA substrates, onto which high quality F8BT films can be easily processed by spin coating, is exploited to produce an entirely plastic device that exhibits low optical loss and low threshold for amplified spontaneous emission (ASE). As a result, highly transparent and flexible waveguides are obtained, with excellent optical properties that remain unaltered after bending, allowing them to be adapted in various flexible photonic devices.

  14. Gravity Wave Emission by Spontaneous Imbalance of Baroclinic Waves in the Continuously Stratified Rotating Annulus

    NASA Astrophysics Data System (ADS)

    Borchert, Sebastian; Achatz, Ulrich; Rieper, Felix; Fruman, Mark

    2013-04-01

    We use a numerical model of the classic differentially heated rotating annulus experiment to study the spontaneous emission of gravity waves (GWs) from jet stream imbalances, which is a major source of these waves in the atmosphere for which no satisfactory parameterization exists. Atmospheric observations are the main tool for the testing and verification of theoretical concepts but have their limitations. Given their specific potential for yielding reproducible data and for studying process dependence on external system parameters, laboratory experiments are an invaluable complementary tool. Experiments with a rotating annulus exhibiting a jet modulated by large-scale waves due to baroclinic instability have already been used to study GWs: Williams et al (2008) observed spontaneously emitted interfacial GWs in a two-layer flow, and Jacoby et al (2011) detected GWs emitted from boundary-layer instabilities in a differentially heated rotating annulus. Employing a finite-volume code for the numerical simulation of a continuously stratified liquid in a differentially heated rotating annulus, we here investigate the GWs in a wide and shallow annulus with relatively large temperature difference between inner and outer cylinder walls. In this atmosphere-like regime where the Brunt-Vaisala frequency is larger than the inertial frequency, various analyses suggest a distinct gravity wave activity. To identify regions of GW emission we decompose the flow into the geostrophic and ageostrophic part through the inversion of the quasi-geostrophic potential vorticity (e.g. Verkley, 2009). The analysis of the geostrophic sources of the ageostrophic flow indicates that, in addition to boundary layer instabilities, spontaneous imbalance in the jet region acts as an important source mechanism. Jacoby, T. N. L., Read, P. L., Williams, P. D. and Young, R. M. B., 2011: Generation of inertia-gravity waves in the rotating thermal annulus by a localised boundary layer instability. Geophys

  15. EFFECTS OF INSTILLED EMISSION PARTICULATE MATTER ON ELECTROCARDIOGRAPHIC INDICES AND HEART RATE VARIABILITY (HRV) IN SPONTANEOUSLY HYPERTENSIVE RATS

    EPA Science Inventory

    EFFECTS OF INSTILLED EMISSION PARTICULATE MATTER (EPM) ON ELECTROCARDIOGRAPHIC INDICES AND HEART RATE VARIABILITY (HRV) IN SPONTANEOUSLY HYPERTENSIVE (SH) RATS. L.B. Wichers1, J.P. Nolan2, W.H. Rowan2, M.J. Campen3, T.P. Jenkins4, D.L. Costa2, and W.P. Watkinson2. 1UNC SPH, Chap...

  16. Prolonged spontaneous emission and dephasing of localized excitons in air-bridged carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Sarpkaya, Ibrahim; Zhang, Zhengyi; Walden-Newman, William; Wang, Xuesi; Hone, James; Wong, Chee W.; Strauf, Stefan

    2013-07-01

    The bright exciton emission of carbon nanotubes is appealing for optoelectronic devices and fundamental studies of light-matter interaction in one-dimensional nanostructures. However, to date, the photophysics of excitons in carbon nanotubes is largely affected by extrinsic effects. Here we perform time-resolved photoluminescence measurements over 14 orders of magnitude for ultra-clean carbon nanotubes bridging an air gap over pillar posts. Our measurements demonstrate a new regime of intrinsic exciton photophysics with prolonged spontaneous emission times up to T1=18 ns, about two orders of magnitude better than prior measurements and in agreement with values hypothesized by theorists about a decade ago. Furthermore, we establish for the first time exciton decoherence times of individual nanotubes in the time domain and find fourfold prolonged values up to T2=2.1 ps compared with ensemble measurements. These first observations motivate new discussions about the magnitude of the intrinsic dephasing mechanism while the prolonged exciton dynamics is promising for applications.

  17. Spectroscopic properties and amplified spontaneous emission of fluorescein laser dye in ionic liquids as green media

    NASA Astrophysics Data System (ADS)

    AL-Aqmar, Dalal M.; Abdelkader, H. I.; Abou Kana, Maram T. H.

    2015-09-01

    The use of ionic liquids (ILs) as milieu materials for laser dyes is a promising field and quite competitive with volatile organic solvents and solid state-dye laser systems. This paper investigates some photo-physical parameters of fluorescein dye incorporated into ionic liquids; 1-Butyl-3-methylimidazolium chloride (BMIM Cl), 1-Butyl-3-methylimidazolium tetrachloroaluminate (BMIM AlCl4) and 1-Butyl-3-methylimidazolium tetrafluoroborate (BMIM BF4) as promising host matrix in addition to ethanol as reference. These parameters are: absorption and emission cross-sections, fluorescence lifetime and quantum yield, in addition to the transition dipole moment, the attenuation length and oscillator strength were also investigated. Lasing characteristics such as amplified spontaneous emission (ASE), the gain, and the photostability of fluorescein laser dye dissolved in different host materials were assessed. The composition and properties of the matrix of ILs were found that it has great interest in optimizing the laser performance and photostability of the investigated laser dye. Under transverse pumping of fluorescein dye by blue laser diode (450 nm) of (400 mW), the initial ASE for dye dissolved in BMIM AlCl4 and ethanol were decreased to 39% and 36% respectively as time progressed 132 min. Relatively high efficiency and high fluorescence quantum yield (11.8% and 0.82% respectively) were obtained with good photostability in case of fluorescein in BMIM BF4 that was decreased to ∼56% of the initial ASE after continuously pumping with 400 mW for 132 min.

  18. Control of oxidative stress in microcirculation of spontaneously hypertensive rats.

    PubMed

    DeLano, F A; Balete, R; Schmid-Schönbein, G W

    2005-02-01

    One mechanism for organ damage in individuals with arterial hypertension may be due to oxygen free radical production. This study was designed to localize free radicals in a microvascular network of mature spontaneously hypertensive rats (SHRs) and normotensive Wistar-Kyoto (WKY) rats. Because glucocorticoids play a role in pressure elevation of SHRs, we investigated their role in microvascular free radical formation. Oxygen radical production in mesentery was detected by tetranitroblue tetrazolium reduction to formazan aided by digital light-absorption measurements. Formazan deposits were observed in the endothelial cells and lumens of all microvessels and in lymphatic endothelia but were fewer in tissue parenchyma. The formazan distribution in younger (14-16 wk old) WKY rats and SHRs was heterogeneous with low values in capillaries and small arterioles/venules (<30 microm) but enhanced deposits in larger venules. Adrenalectomy served to reduce the formazan density in SHRs to the level of WKY rats, whereas dexamethasone supplementation of the adrenalectomized rats caused elevation in the larger venules of SHRs. In older (40 wk old) SHRs, formazan levels were elevated in all hierarchies of microvessels. After pressure reduction was employed with chronic hydralazine treatment, the formazan deposits were reduced in all locations of the microcirculation in both WKY rats and SHRs. Elevated formazan deposits were also found in lymphatic endothelium. These results suggest that oxygen free radical production is elevated in both high- and low-pressure regions of SHR microcirculation via a process that is controlled by glucocorticoids. Older SHRs have higher formazan levels than younger SHRs in all microvessels. Chronic hydralazine treatment, which serves to reduce arterial blood pressure, attenuates tetranitroblue tetrazolium reduction in WKY rats and SHRs even in venules of the microcirculation, which has no micropressure elevation. Free radical production may be a more

  19. Calcium modulates the frequency and amplitude of spontaneous otoacoustic emissions in the bobtail skink.

    PubMed

    Manley, Geoffrey A; Sienknecht, Ulrike; Köppl, Christine

    2004-11-01

    Active processes in the inner ear of lizards can be monitored using spontaneous otoacoustic emissions (SOAE) measured outside the eardrum. In the Australian bobtail lizard, SOAE are generated by an active motility process in the hair-cell bundle. This mechanism has been shown to be sensitive to the calcium-chelating agent 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid and is presumed to be related to the calcium-sensitive transduction-channel motor implicated in other nonmammalian hair cell systems. In studies of frog saccular and turtle auditory papillar hair cells in vitro, the frequency and amplitude of bundle oscillations depend on the concentration of calcium in the bathing solutions. In the present study, the calcium concentration in the endolymph was changed in vivo in the Australian bobtail lizard Tiliqua rugosa, and SOAE were monitored. Glass pipettes with large tips and containing different calcium concentrations in their fluids were introduced into scala media, and their contents were allowed to passively flow into the endolymph. Low calcium concentrations resulted in a downward shift in the frequency of SOAE spectral peaks and generally an increase in their amplitudes. Calcium concentrations > 2 mM resulted in increases in frequency of SOAE peaks and generally a loss in amplitude. These frequency shifts were consistent with in vitro data on the frequencies and amplitudes of spontaneous oscillation of hair cell bundles and thus also implicate calcium ions in the generation of active motility in nonmammalian hair cells. The data also suggest that in this lizard species, the ionic calcium concentration in the cochlear endolymph is > or = 1 mM.

  20. Gravity Wave Emission by Spontaneous Imbalance of Baroclinic Waves in the Continuously Stratified Rotating Annulus

    NASA Astrophysics Data System (ADS)

    Borchert, S.; Achatz, U.; Rieper, F.; Fruman, M. D.

    2012-04-01

    We use a numerical model of the classic differentially heated rotating annulus experiment to study the spontaneous emission of gravity waves (GWs) from jet stream imbalances, which is a major source of these waves in the atmosphere for which no satisfactory parameterization exists. Atmospheric observations are the main tool for the testing and verification of theoretical concepts but have their limitations. Given their specific potential for yielding reproducible data and for studying process dependence on external system parameters, laboratory experiments are an invaluable complementary tool. Experiments with a rotating annulus exhibiting a jet modulated by large-scale waves due to baroclinic instability have already been used to study GWs: Williams et al (2008) observed spontaneously emitted interfacial GWs in a two-layer flow, and Jacoby et al (2011) detected GWs emitted from boundary-layer instabilities in a differentially heated rotating annulus. Employing a new finite-volume code for the numerical simulation of a continuously stratified liquid in a differentially heated rotating annulus, we here investigate whether such an experiment might be useful for studies of spontaneous imbalance. A major problem was the identification of experimental parameters yielding an atmosphere-like regime where the Brunt-Vaisala frequency is larger than the inertial frequency, so that energy transport by the lowest-frequency waves is predominantly horizontal while high-frequency GWs transport energy vertically. We show that this is indeed the case for a wide and shallow annulus with relatively large temperature difference between the inner and outer cylinder walls. We also show that this set-up yields a conspicuous signal in the horizontal divergence field close to the meandering jet. Various analyses support the notion that this signal is predominantly due to GWs superposed on a geostrophic flow. Jacoby, T. N. L., Read, P. L., Williams, P. D. and Young, R. M. B., 2011

  1. Plasmonic Structures for CMOS Photonics and Control of Spontaneous Emission

    DTIC Science & Technology

    2013-04-01

    record low coupling loss from silicon-on-insulator waveguides to dielectrically-loaded surface plasmon polariton waveguides with 1 dB/transition...loaded surface plasmon polariton waveguides with < 1 dB/transition insertion loss, iii. efficient coupling from silicon-on-insulator waveguides to...Plasmonic  and  Silicon  Photonic  Waveguides In this work, we demonstrate dielectric-loaded surface plasmon polariton (DLSPP) waveguides

  2. Measurement of spontaneous-emission enhancement near the one-dimensional photonic band edge of semiconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Tocci, Michael D.; Scalora, Michael; Bloemer, Mark J.; Dowling, Jonathan P.; Bowden, Charles M.

    1996-04-01

    We present results of an experimental investigation into alteration of the spontaneous emission spectrum of GaAs from within one-dimensional photonic band gap (PBG) structures. The PBG samples are multilayer AlAs/Al0.2Ga0.8As/GaAs p-i-n light-emitting diodes, with layers arranged as a distributed Bragg reflector. The emission spectra normal to the layers are measured, and we use a simple method to model the power spectrum of spontaneous emission from within the structures. We find that the emitted power is enhanced by a factor of 3.5 at the frequencies near the photonic band edge.

  3. Loss of the tectorial membrane protein CEACAM16 enhances spontaneous, stimulus-frequency, and transiently evoked otoacoustic emissions.

    PubMed

    Cheatham, Mary Ann; Goodyear, Richard J; Homma, Kazuaki; Legan, P Kevin; Korchagina, Julia; Naskar, Souvik; Siegel, Jonathan H; Dallos, Peter; Zheng, Jing; Richardson, Guy P

    2014-07-30

    α-Tectorin (TECTA), β-tectorin (TECTB), and carcinoembryonic antigen-related cell adhesion molecule 16 (CEACAM) are secreted glycoproteins that are present in the tectorial membrane (TM), an extracellular structure overlying the hearing organ of the inner ear, the organ of Corti. Previous studies have shown that TECTA and TECTB are both required for formation of the striated-sheet matrix within which collagen fibrils of the TM are imbedded and that CEACAM16 interacts with TECTA. To learn more about the structural and functional significance of CEACAM16, we created a Ceacam16-null mutant mouse. In the absence of CEACAM16, TECTB levels are reduced, a clearly defined striated-sheet matrix does not develop, and Hensen's stripe, a prominent feature in the basal two-thirds of the TM in WT mice, is absent. CEACAM16 is also shown to interact with TECTB, indicating that it may stabilize interactions between TECTA and TECTB. Although brain-stem evoked responses and distortion product otoacoustic emissions are, for most frequencies, normal in young mice lacking CEACAM16, stimulus-frequency and transiently evoked emissions are larger. We also observed spontaneous otoacoustic emissions (SOAEs) in 70% of the homozygous mice. This incidence is remarkable considering that <3% of WT controls have SOAEs. The predominance of SOAEs >15 kHz correlates with the loss of Hensen's stripe. Results from mice lacking CEACAM16 are consistent with the idea that the organ of Corti evolved to maximize the gain of the cochlear amplifier while preventing large oscillations. Changes in TM structure appear to influence the balance between energy generation and dissipation such that the system becomes unstable.

  4. Estimate of sulfur, arsenic, mercury, fluorine emissions due to spontaneous combustion of coal gangue: An important part of Chinese emission inventories.

    PubMed

    Wang, Shaobin; Luo, Kunli; Wang, Xing; Sun, Yuzhuang

    2016-02-01

    A rough estimate of the annual amount of sulfur, arsenic, mercury and fluoride emission from spontaneous combustion of coal gangue in China was determined. The weighted mean concentrations of S, As, Hg, and F in coal gangue are 1.01%, 7.98, 0.18, and 365.54 mg/kg, respectively. Amounts of S, As, Hg, and F emissions from coal gangue spontaneous combustion show approximately 1.13 Mt, and 246, 45, and 63,298 tons in 2013, respectively. The atmospheric release amount of sulfur from coal gangue is more than one tenth of this from coal combustion, and the amounts of As, Hg, and F are close to or even exceed those from coal combustion. China's coal gangue production growth from 1992 to 2013 show an obvious growth since 2002. It may indicate that Chinese coal gangue has become a potential source of air pollution, which should be included in emission inventories.

  5. Effects of contralateral acoustic stimulation on spontaneous otoacoustic emissions and hearing threshold fine structure.

    PubMed

    Dewey, James B; Lee, Jungmee; Dhar, Sumitrajit

    2014-12-01

    Medial olivocochlear (MOC) influence on cochlear mechanics can be noninvasively, albeit indirectly, explored via the effects of contralateral acoustic stimulation (CAS) on otoacoustic emissions. CAS-mediated effects are particularly pronounced for spontaneous otoacoustic emissions (SOAEs), which are typically reduced in amplitude and shifted upward in frequency by CAS. We investigated whether similar frequency shifts and magnitude reductions were observed behaviorally in the fine structure of pure-tone hearing thresholds, a phenomenon thought to share a common underlying mechanism with SOAEs. In normal-hearing listeners, fine-resolution thresholds were obtained over a narrow frequency range centered on the frequency of an SOAE, both in the absence and presence of 60-dB SPL broadband CAS. While CAS shifted threshold fine structure patterns and SOAEs upward in frequency by a comparable amount, little reduction in the presence or depth of fine structure was observed at frequencies near those of SOAEs. In fact, CAS typically improved thresholds, particularly at threshold minima, and increased fine structure depth when reductions in the amplitude of the associated SOAE were less than 10 dB. Additional measurements made at frequencies distant from SOAEs, or near SOAEs that were more dramatically reduced in amplitude by the CAS, revealed that CAS tended to elevate thresholds and reduce threshold fine structure depth. The results suggest that threshold fine structure is sensitive to MOC-mediated changes in cochlear gain, but that SOAEs complicate the interpretation of threshold measurements at nearby frequencies, perhaps due to masking or other interference effects. Both threshold fine structure and SOAEs may be significant sources of intersubject and intrasubject variability in psychoacoustic investigations of MOC function.

  6. Mono- to few-layered graphene oxide embedded randomness assisted microcavity amplified spontaneous emission source

    NASA Astrophysics Data System (ADS)

    Das, Pratyusha; Maiti, Rishi; Barman, Prahalad K.; Ray, Samit K.; Shivakiran, Bhaktha B. N.

    2016-02-01

    The realization of optoelectronic devices using two-dimensional materials such as graphene and its intermediate product graphene oxide (GO) is extremely challenging owing to the zero band gap of the former. Here, a novel amplified spontaneous emission (ASE) system based on a GO-embedded all-dielectric one-dimensional photonic crystal (1DPhC) micro-resonator is presented. The mono- to few-layered GO sheet is inserted within a microcavity formed by two 5-bilayered SiO2/SnO2 Bragg reflectors. Significantly enhanced photoluminescence (PL) emission of GO embedded in 1DPhC is explicated by studying the electric field confined within the micro-resonator using the transfer matrix method. The inherent randomness, due to fabrication limitations, in the on-average periodic 1DPhC is exploited to further enhance the PL of the optically active micro-resonator. The 1DPhC and randomness assisted field confinement reduces the ASE threshold of the mono- to few-layered weak emitter making the realization of an ASE source feasible. Consequently, ASE at the microcavity resonance and at the low-frequency band-edge of photonic stop-band is demonstrated. Variation of the detection angle from 5° to 30°, with respect to the sample surface normal allows reallocation of the defect mode ASE peak over a spectral range of 558-542 nm, making the GO-incorporated 1DPhC a novel and attractive system for integrated optic applications.

  7. Validity of the Relation Between Spontaneous and Stimulated Emissions in Semiconductors

    NASA Technical Reports Server (NTRS)

    Ning, Cun-Zheng; Saini, Subhash (Technical Monitor)

    1999-01-01

    The Einstein relation between spontaneous emission and absorption was originally derived for a system consists of a two-state subsystem representing matter and harmonic fields representing radiation. The derivation is based on the detailed balance between these two subsystems under thermal equilibrium. The relationship was later investigated in connection with the interactions between radiation field and solids or semiconductors. The simple derivation dose not hold for semiconductors in general. In certain limiting cases, simple relation was obtained. The validity of this relation is important not only because of its fundamental role connecting two of the most fundamental optical processes in semiconductors, but mostly also because of its wide use as a practical method to measure the optical gain of a semiconductor. The validity of this relation for semiconductors has been an issue of controversial for some time. In this paper we numerically examine the validity of this relationship for several different lineshapes including Lorentzian, Gaussian, Sech, and a convoluted double Lorentzians (CDL). We find out that at relatively low density above transparency level, all first three lineshapes violate the Einstein relation. The relation is approximately valid at high density. At very high density, the validity of the Einstein relation holds well for all three lineshapes. The reason behind this observation is explained. The CDL lineshape has been shown analytically to obey the Einstein relationship previously. We show that for a 2D semiconductor with parabolic bands, the CDL lineshape can be integrated analytically. This analytic lineshape is compared with a simple Lorentzian lineshape.

  8. Energy reflectance in the ear canal can exceed unity near spontaneous otoacoustic emission frequencies.

    PubMed

    Burns, E M; Keefe, D H; Ling, R

    1998-01-01

    There is some controversy in the literature over whether the so-called "active mechanism" or "cochlear amplifier" is actually a power amplifier that can produce an output signal with more power than its input, or whether it simply minimizes dissipative losses within the cochlea without providing an actual power gain greater than unity. A corollary of this controversy is whether spontaneous otoacoustic emissions (SOAEs) represent the output of a nonlinear oscillator mechanism, i.e., a power amplifier which can produce an oscillatory output signal in the absence of an input oscillatory signal, or whether they represent the output of a noise-driven, passive, nonlinear system. This paper describes measurements of energy reflectance, and acoustic impedance in the ear canals of human subjects with strong SOAEs. The reflectance, and the resistive and reactive parts of the acoustic impedance, all show a frequency fine structure which correlates with SOAE frequencies, and which becomes more pronounced at low stimulus levels. In some ears at some SOAE frequencies, energy reflectance exceeds unity, and correspondingly, acoustic resistance is negative. This result demonstrates that there is a power gain at these frequencies: The power reflected from the cochlea to the ear canal exceeds the power incident. It is also consistent with the theory that these SOAEs are produced by a nonlinear oscillator mechanism in the cochlea.

  9. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites

    PubMed Central

    Yakunin, Sergii; Protesescu, Loredana; Krieg, Franziska; Bodnarchuk, Maryna I.; Nedelcu, Georgian; Humer, Markus; De Luca, Gabriele; Fiebig, Manfred; Heiss, Wolfgang; Kovalenko, Maksym V.

    2015-01-01

    Metal halide semiconductors with perovskite crystal structures have recently emerged as highly promising optoelectronic materials. Despite the recent surge of reports on microcrystalline, thin-film and bulk single-crystalline metal halides, very little is known about the photophysics of metal halides in the form of uniform, size-tunable nanocrystals. Here we report low-threshold amplified spontaneous emission and lasing from ∼10 nm monodisperse colloidal nanocrystals of caesium lead halide perovskites CsPbX3 (X=Cl, Br or I, or mixed Cl/Br and Br/I systems). We find that room-temperature optical amplification can be obtained in the entire visible spectral range (440–700 nm) with low pump thresholds down to 5±1 μJ cm−2 and high values of modal net gain of at least 450±30 cm−1. Two kinds of lasing modes are successfully observed: whispering-gallery-mode lasing using silica microspheres as high-finesse resonators, conformally coated with CsPbX3 nanocrystals and random lasing in films of CsPbX3 nanocrystals. PMID:26290056

  10. Cold test, spontaneous emission and gain in a rectangular Cerenkov amplifier

    SciTech Connect

    Scharer, J.E.; Joe, J.; Booske, J.H.; Basten, M.; Kirolous, H.

    1994-12-31

    The authors present experimental results for the rectangular Cerenkov grating amplifier. This research is being carried out to develop a Ka-band (35 GHz), low voltage (10 kV), moderate power (10 kW) source. They have constructed a Ku-band grating structure to study a scaled version of this source. The tapered grating consists of two tapered Ku-band smooth wave guide sections and two 3.5-inch sections of five-step-tapered gratings. Both tapered and untapered grating structures have been cold tested utilizing the network analyzer measurements. They find that their taper design reduced the reflection coefficient from {minus}5 dB to less than {minus}20 dB over a 12--15 GHz bandwidth. Spontaneous emission results resulting from passing the circular electron beam from a Litton thermionic gun over the grating structure will be presented. They have theoretically investigated the sheet beam interaction with hybrid modes in a deep groove rectangular grating waveguide. A complex dispersion relation, which includes a finite axial energy spread of the beam, describing the interaction has been solved. The authors find that the instability is always convective in the forward wave mode regime.

  11. Enhancement and Inhibition of Spontaneous Photon Emission by Resonant Silicon Nanoantennas

    NASA Astrophysics Data System (ADS)

    Bouchet, Dorian; Mivelle, Mathieu; Proust, Julien; Gallas, Bruno; Ozerov, Igor; Garcia-Parajo, Maria F.; Gulinatti, Angelo; Rech, Ivan; De Wilde, Yannick; Bonod, Nicolas; Krachmalnicoff, Valentina; Bidault, Sébastien

    2016-12-01

    Substituting noble metals for high-index dielectrics has recently been proposed as an alternative strategy in nanophotonics to design broadband optical resonators and circumvent the Ohmic losses of plasmonic materials. In this paper, we demonstrate that subwavelength silicon nanoantennas can manipulate the photon emission dynamics of fluorescent molecules. In practice, we show that dielectric nanoantennas can both increase and decrease the local density of optical states at room temperature, a process that is inaccessible with noble metals at the nanoscale. Using scanning probe microscopy, we analyze quantitatively, in three dimensions, the near-field interaction between a 100-nm fluorescent nanosphere and silicon nanoantennas with diameters ranging between 170 and 250 nm. Associated with numerical simulations, these measurements indicate increased or decreased total spontaneous decay rates by up to 15% and a gain in the collection efficiency of emitted photons by up to 85%. Our study demonstrates the potential of silicon-based nanoantennas for the low-loss manipulation of solid-state emitters at the nanoscale and at room temperature.

  12. Non-Markovian dynamics in plasmon-induced spontaneous emission interference

    NASA Astrophysics Data System (ADS)

    Thanopulos, I.; Yannopapas, V.; Paspalakis, E.

    2017-02-01

    We investigate theoretically the non-Markovian dynamics of a degenerate V-type quantum emitter in the vicinity of a metallic nanosphere, a system that exhibits quantum interference in spontaneous emission due to the anisotropic Purcell effect. We calculate numerically the electromagnetic Green's tensor and employ the effective modes differential equation method for calculating the quantum dynamics of the emitter population, with respect to the resonance frequency and the initial state of the emitter, as well as its distance from the nanosphere. We find that the emitter population evolution varies between a gradual total decay and a partial decay combined with oscillatory population dynamics, depending strongly on the specific values of the above three parameters. Under strong-coupling conditions, coherent population trapping can be observed in this system. We compare our exact results with results when the flat continuum approximation for the vacuum modified by the metallic nanosphere is applied. We conclude that the flat continuum approximation is an excellent approximation only when the spectral density of the system under study is characterized by nonoverlapping plasmonic resonances.

  13. Influence of spontaneous emission on a single-state atom interferometer

    NASA Astrophysics Data System (ADS)

    Beattie, S.; Barrett, B.; Weel, M.; Chan, I.; Mok, C.; Cahn, S. B.; Kumarakrishnan, A.

    2008-01-01

    We have studied the effects of spontaneous emission (SE) on a single-state time domain atom interferometer (AI) that uses trapped Rb atoms. The AI uses two standing wave pulses separated by time T to produce an echo signal at time 2T due to interference between momentum states. We find that SE influences both the shape of the echo signal and its periodic time-dependent amplitude in a manner consistent with theoretical predictions. The results show that the time-dependent signal from the AI is related to the effective radiative decay rate of the excited state. We also present results that test theoretical predictions for several properties of the echo formation such as the variation in momentum transfer due to the change in the angle between the traveling wave components of the excitation pulses, strength of the atom-field interaction, and the effect of spatial profile of the excitation beams. These studies are important for realizing precision measurements of the atomic fine structure constant and gravity using this interferometer.

  14. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites

    NASA Astrophysics Data System (ADS)

    Yakunin, Sergii; Protesescu, Loredana; Krieg, Franziska; Bodnarchuk, Maryna I.; Nedelcu, Georgian; Humer, Markus; de Luca, Gabriele; Fiebig, Manfred; Heiss, Wolfgang; Kovalenko, Maksym V.

    2015-08-01

    Metal halide semiconductors with perovskite crystal structures have recently emerged as highly promising optoelectronic materials. Despite the recent surge of reports on microcrystalline, thin-film and bulk single-crystalline metal halides, very little is known about the photophysics of metal halides in the form of uniform, size-tunable nanocrystals. Here we report low-threshold amplified spontaneous emission and lasing from ~10 nm monodisperse colloidal nanocrystals of caesium lead halide perovskites CsPbX3 (X=Cl, Br or I, or mixed Cl/Br and Br/I systems). We find that room-temperature optical amplification can be obtained in the entire visible spectral range (440-700 nm) with low pump thresholds down to 5+/-1 μJ cm-2 and high values of modal net gain of at least 450+/-30 cm-1. Two kinds of lasing modes are successfully observed: whispering-gallery-mode lasing using silica microspheres as high-finesse resonators, conformally coated with CsPbX3 nanocrystals and random lasing in films of CsPbX3 nanocrystals.

  15. Assessment of Pneumatic Controller Emission Measurements ...

    EPA Pesticide Factsheets

    Oil and Natural Gas (ONG) production facilities have the potential to emit greenhouse gases such as methane (CH4) and other hydrocarbons (HCs) to the atmosphere. ONG production sites have multiple emission sources including storage tank venting, enclosed combustion devices, engine exhaust, pneumatic controllers and uncontrolled leaks. Accounting for up to 37.8 percent of CH4 emissions, pneumatic controllers are one of the most significant sources of CH4 in ONG production field operations. Recent measurement studies used the only commercially-available high volume sampling (HVS) technology (Bacharach Hi Flow Sampler, Bacharach, Inc., New Kensington, PA) to quantify CH4 emission rates of pneumatic devices on ONG production pads and compare to inventory estimates. Other studies indicate that this HVS may malfunction, causing underestimates of emissions in certain scenarios encountered in ONG production and should not be used for some sources such as heavy emissions from condensate storage tanks. The HVS malfunction can occur on relatively large emissions, where the measured leak concentrations exceed 5%, and is ascribed to a sensor transition failure in the instrument. The HVS malfunction is believed to be exacerbated by several factors (large emission rates, amount of non-CH4 HCs in the emission stream, non-optimal HVS calibration frequency, firmware, and emission measurement coupling geometries). The degree to which HVS measurements of emissions from pneumatic co

  16. Spontaneous emission and level shifts in absorbing disordered dielectrics and dense atomic gases: A Green's-function approach

    NASA Astrophysics Data System (ADS)

    Fleischhauer, Michael

    1999-09-01

    Spontaneous emission and Lamb shift of atoms in absorbing dielectrics and dense atomic gases are discussed using a microscopic Green's-function approach. Uncorrelated and random atomic positions are assumed, and the associated unphysical interactions between different atoms at the same location are eliminated (local field correction). For the case of an atom in a purely dispersive medium, the spontaneous-emission rate is altered by the well-known Lorentz local-field factor. When the mean distance between atoms becomes less than the resonance wavelength, results different from previously suggested expressions are found. In particular, it is shown that nearest-neighbor interactions become important. The results suggest that, for large densities, absorbing disordered dielectrics cannot accurately be described by a macroscopic approach that neglects correlations between atomic positions.

  17. Calculation of spontaneous emission from a V-type three-level atom in photonic crystals using fractional calculus

    SciTech Connect

    Huang, Chih-Hsien; Hsieh, Wen-Feng; Wu, Jing-Nuo; Cheng, Szu-Cheng; Li, Yen-Yin

    2011-07-15

    Fractional time derivative, an abstract mathematical operator of fractional calculus, is used to describe the real optical system of a V-type three-level atom embedded in a photonic crystal. A fractional kinetic equation governing the dynamics of the spontaneous emission from this optical system is obtained as a fractional Langevin equation. Solving this fractional kinetic equation by fractional calculus leads to the analytical solutions expressed in terms of fractional exponential functions. The accuracy of the obtained solutions is verified through reducing the system into the special cases whose results are consistent with the experimental observation. With accurate physical results and avoiding the complex integration for solving this optical system, we propose fractional calculus with fractional time derivative as a better mathematical method to study spontaneous emission dynamics from the optical system with non-Markovian dynamics.

  18. Detailed Study of the Angular Correlations in the Prompt Neutron Emission in Spontaneous Fission of 252Cf

    NASA Astrophysics Data System (ADS)

    Kopatch, Yu.; Chietera, A.; Stuttgé, L.; Gönnenwein, F.; Mutterer, M.; Gagarski, A.; Guseva, I.; Chernysheva, E.; Dorvaux, O.; Hambsch, F.-J.; Hanappe, F.; Mezentseva, Z.; Telezhnikov, S.

    An experiment has been performed at IPHC Strasbourg, aimed at the detailed investigation of angular correlations in the neutron emission from spontaneous fission of 252Cf. Fission fragments were measured by the angle-sensitive double ionization chamber CODIS while neutrons were detected by a set of 60 DEMON scintillator counters. The main aim of the experiment is the observation of the correlation between the fragment spins and neutron emission anisotropy. Preliminary results, based on the Monte-Carlo simulations, as well as the preliminary analysis of the experimental data are shown.

  19. Analysis and simulation of nonlinearity and effects of spontaneous emission in Schottky-junction-based plasmonic amplifiers.

    PubMed

    Livani, Abdolber Mallah; Kaatuzian, Hassan

    2015-07-01

    An amplifier that operates on surface plasmon polaritons has been analyzed and simulated. Nonlinearity behavior and the spontaneous emission effects of the plasmonic amplifier are investigated in this paper. A rate equations approach has been used in which parameters are derived from simulation results of the plasmonic amplifier (Silvaco/ATLAS). Details on the method of this derivation are included, which were not previously reported. Rate equations are solved numerically by MATLAB codes. These codes verify the Silvaco results. The plasmonic amplifier operates on surface plasmons with a free-space wavelength of 1550 nm. Results show that, even without the effect of spontaneous emission, gain of the plasmonic amplifier saturates in high input levels. Saturation power, which can be used for comparing nonlinearity of different amplifiers, is 2.1 dBm for this amplifier. Amplified spontaneous emission reduces the gain of the amplifiers, which is long. There is an optimum value for the length of the amplifier. For the amplifier of this work, the optimum length for the small signal condition is 265 μm.

  20. Aftereffects of Intense Low-Frequency Sound on Spontaneous Otoacoustic Emissions: Effect of Frequency and Level.

    PubMed

    Jeanson, Lena; Wiegrebe, Lutz; Gürkov, Robert; Krause, Eike; Drexl, Markus

    2017-02-01

    The presentation of intense, low-frequency (LF) sound to the human ear can cause very slow, sinusoidal oscillations of cochlear sensitivity after LF sound offset, coined the "Bounce" phenomenon. Changes in level and frequency of spontaneous otoacoustic emissions (SOAEs) are a sensitive measure of the Bounce. Here, we investigated the effect of LF sound level and frequency on the Bounce. Specifically, the level of SOAEs was tracked for minutes before and after a 90-s LF sound exposure. Trials were carried out with several LF sound levels (93 to 108 dB SPL corresponding to 47 to 75 phons at a fixed frequency of 30 Hz) and different LF sound frequencies (30, 60, 120, 240 and 480 Hz at a fixed loudness level of 80 phons). At an LF sound frequency of 30 Hz, a minimal sound level of 102 dB SPL (64 phons) was sufficient to elicit a significant Bounce. In some subjects, however, 93 dB SPL (47 phons), the lowest level used, was sufficient to elicit the Bounce phenomenon and actual thresholds could have been even lower. Measurements with different LF sound frequencies showed a mild reduction of the Bounce phenomenon with increasing LF sound frequency. This indicates that the strength of the Bounce not only is a simple function of the spectral separation between SOAE and LF sound frequency but also depends on absolute LF sound frequency, possibly related to the magnitude of the AC component of the outer hair cell receptor potential.

  1. Comment on “Competition between coherent emission and broadband spontaneous emission in the quantum free electron laser” [Phys. Plasmas 20, 033106 (2013)

    SciTech Connect

    Petrillo, V.; Rossi, A. R.; Serafini, L.

    2013-12-15

    We point out that in the equation for the electron distribution evolution during Thomson/Compton or undulator radiation used in the paper: “Competition between coherent emission and broadband spontaneous emission in the quantum free electron laser” by G. R. M. Robb and R. Bonifacio [Phys. Plasmas 20, 033106 (2013)], the weight function should be the distribution of the number of emitted photons and not the photon energy distribution. Nevertheless, the considerations expressed in this comment do not alter the conclusions drawn in the paper in object.

  2. Comment on ``Competition between coherent emission and broadband spontaneous emission in the quantum free electron laser'' [Phys. Plasmas 20, 033106 (2013)

    NASA Astrophysics Data System (ADS)

    Petrillo, V.; Rossi, A. R.; Serafini, L.

    2013-12-01

    We point out that in the equation for the electron distribution evolution during Thomson/Compton or undulator radiation used in the paper: "Competition between coherent emission and broadband spontaneous emission in the quantum free electron laser" by G. R. M. Robb and R. Bonifacio [Phys. Plasmas 20, 033106 (2013)], the weight function should be the distribution of the number of emitted photons and not the photon energy distribution. Nevertheless, the considerations expressed in this comment do not alter the conclusions drawn in the paper in object.

  3. Economic growth and carbon emission control

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenyu

    The question about whether environmental improvement is compatible with continued economic growth remains unclear and requires further study in a specific context. This study intends to provide insight on the potential for carbon emissions control in the absence of international agreement, and connect the empirical analysis with theoretical framework. The Chinese electricity generation sector is used as a case study to demonstrate the problem. Both social planner and private problems are examined to derive the conditions that define the optimal level of production and pollution. The private problem will be demonstrated under the emission regulation using an emission tax, an input tax and an abatement subsidy respectively. The social optimal emission flow is imposed into the private problem. To provide tractable analytical results, a Cobb-Douglas type production function is used to describe the joint production process of the desired output and undesired output (i.e., electricity and emissions). A modified Hamiltonian approach is employed to solve the system and the steady state solutions are examined for policy implications. The theoretical analysis suggests that the ratio of emissions to desired output (refer to 'emission factor'), is a function of productive capital and other parameters. The finding of non-constant emission factor shows that reducing emissions without further cutting back the production of desired outputs is feasible under some circumstances. Rather than an ad hoc specification, the optimal conditions derived from our theoretical framework are used to examine the relationship between desired output and emission level. Data comes from the China Statistical Yearbook and China Electric Power Yearbook and provincial information of electricity generation for the year of 1993-2003 are used to estimate the Cobb-Douglas type joint production by the full information maximum likelihood (FIML) method. The empirical analysis shed light on the optimal

  4. Bleederless ventilation systems as a spontaneous combustion control measure in US coal mines. Information circular/1994

    SciTech Connect

    Smith, A.C.; Diamond, W.P.; Mucho, T.P.; Organiscak, J.A.

    1994-01-01

    The U.S. Bureau of Mines conducted a worldwide literature review of bleederless ventilation practices to evaluate their use as a spontaneous combustion control measure in U.S. coal mines. Factors that must be taken into account in the design and use of these systems include seal construction, the use of ventilation control devices, the use of methane-drainage systems in gassy mines, and the ground control plan. Monitoring for the detection of spontaneous combustion and the control of methane when methane-drainage techniques are employed is critical to the successful use of a bleederless ventilation system. The report describes the types of ventilation systems used throughout the world and the spontaneous combustion risks associated with these systems.

  5. Examination of bleederless ventilation practices for spontaneous combustion control in US coal mines

    SciTech Connect

    Organiscak, J.A.; Smith, A.C.; Diamond, W.P.; Mucho, T.P.

    1995-12-31

    The U.S. Bureau of Mines examined bleederless ventilation practices to evaluate their use as a spontaneous combustion control measure in U.S. coal mines. Results indicate that restricting airflow into mined-out areas (bleederless ventilation) is recognized worldwide as a spontaneous combustion control measure. However, ventilation practices commonly used to limit airflow to mined-out areas are not easily applicable to United States mining conditions, systems, experience and regulations. The types of bleederless ventilation systems used throughout the world and the spontaneous combustion risks associated with these systems are discussed. Primary design considerations for bleederless ventilation consist of the interaction of ventilation practices, methane drainage, ground control, seal construction and mine monitoring. Technological improvements needed for U.S. application of bleederless ventilation are also discussed.

  6. [Emission control way of volatile organic compounds in industry].

    PubMed

    Jiang, Mei; Zhang, Guo-Ning; Wei, Yu-Xia; Zou, Lan; Zhang, Ming-Hui

    2011-12-01

    Due to the volatile nature, the way of controlling way of VOCs was different from other atmospheric pollutants. By analyzing the emission characteristics of VOCs, four kinds of control way were proposed, which were the source control, organized emission control, fugitive emission control and the total amount control, and the control modes of each control way were also analyzed and compared.

  7. Environmental controls over methanol emission from leaves

    NASA Astrophysics Data System (ADS)

    Harley, P.; Greenberg, J.; Niinemets, É.; Guenther, A.

    2007-12-01

    Methanol is found throughout the troposphere, with average concentrations second only to methane among atmospheric hydrocarbons. Proposed global methanol budgets are highly uncertain, but all agree that at least 60% of the total source arises from the terrestrial biosphere and primary emissions from plants. However, the magnitude of these emissions is also highly uncertain, and the environmental factors which control them require further elucidation. Using a temperature-controlled leaf enclosure, we measured methanol emissions from leaves of six plant species by proton transfer reaction mass spectrometry, with simultaneous measurements of leaf evapotranspiration and stomatal conductance. Rates of emission at 30°C varied from 0.2 to 38 μg g (dry mass)-1 h-1, with higher rates measured on young leaves, consistent with the production of methanol via pectin demethylation in expanding foliage. On average, emissions increased by a factor of 2.3 for each 10°C increase in leaf temperature. At constant temperature, emissions were also correlated with co-varying incident photosynthetic photon flux density and rates of stomatal conductance. The data were analyzed using the emission model developed by Niinemets and Reichstein (2003a, b), with the incorporation of a methanol production term that increased exponentially with temperature. It was concluded that control of emissions, during daytime, was shared by leaf temperature and stomatal conductance, although rates of production may also vary diurnally in response to variations in leaf growth rate in expanding leaves. The model, which generally provided reasonable simulations of the measured data during the day, significantly overestimated emissions on two sets of measurements made through the night, suggesting that production rates of methanol were reduced at night, perhaps because leaf growth was reduced or possibly through a direct effect of light on production. Although the short-term dynamics of methanol emissions can

  8. Controlling light scattering and emission at subwavelength scale with plasmonic nanopatch antennas (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Wu, Zilong; Zheng, Yuebing

    2015-09-01

    Controlling light scattering and emission at subwavelength scale has significant implications for solar energy conversion, sensing, and nanophotonic devices. Plasmonic nanopatch antennas (PNAs), which consist of plasmonic nanoparticle coupled with metallic films, have shown directionality of radiation and large emission rate enhancement due to the strong plasmonic waveguide modes within the spacer layer. Herein, we comparatively study the light scattering and emission behaviors of a series of plasmonic nanopatch antennas (PNAs) with different plasmonic nanoparticles (i.e., nanosquare, nanotriangle, nanorod, and nanodisk) to develop the design rules of the PNAs. Using finite-difference time-domain (FDTD) simulations, we show that the shape and size of plasmonic nanoparticles can be tuned to control the resonance peak, intensity, directionality, and spatial distribution of the scattering light as well as the directionality, spatial distribution, spontaneous emission rate, quantum efficiency, and radiation enhancement factor of light emission. For example, high radiative quantum efficiency (0.74) and radiation enhancement factor (>20) can be achieved by disk PNA, while triangle PNA shows remarkable spontaneous emission rate enhancement of over 2,500. The effects of locations of emitters relative to the PNAs on the emission properties are also examined. Our results pave the way towards the rational design of PNAs for the optimal light scattering and emission as required by targeted applications.

  9. Nanophotonic control of circular dipole emission

    NASA Astrophysics Data System (ADS)

    Le Feber, B.; Rotenberg, N.; Kuipers, L.

    2015-04-01

    Controlling photon emission by single emitters with nanostructures is crucial for scalable on-chip information processing. Nowadays, nanoresonators can affect the lifetime of linear dipole emitters, while nanoantennas can steer the emission direction. Expanding this control to the emission of orbital angular momentum-changing transitions would enable a future coupling between solid state and photonic qubits. As these transitions are associated with circular dipoles, such control requires knowledge of the interaction of a complex dipole with optical eigenstates containing local helicity. We experimentally map the coupling of classical, circular dipoles to photonic modes in a photonic crystal waveguide. We show that, depending on the combination of the local helicity of the mode and the dipole helicity, circular dipoles can couple to left- or rightwards propagating modes with a near-unity directionality. The experimental maps are in excellent agreement with calculations. Our measurements, therefore, demonstrate the possibility of coupling the spin to photonic pathway.

  10. Advanced CIDI Emission Control System Development

    SciTech Connect

    Lambert, Christine

    2006-05-31

    Ford Motor Company, with ExxonMobil and FEV, participated in the Department of Energy's (DOE) Ultra-Clean Transportation Fuels Program with the goal to develop an innovative emission control system for light-duty diesel vehicles. The focus on diesel engine emissions was a direct result of the improved volumetric fuel economy (up to 50%) and lower CO2 emissions (up to 25%) over comparable gasoline engines shown in Europe. Selective Catalytic Reduction (SCR) with aqueous urea as the NOx reductant and a Catalyzed Diesel Particulate Filter (CDPF) were chosen as the primary emission control system components. The program expected to demonstrate more than 90% durable reduction in particulate matter (PM) and NOx emissions on a light-duty truck application, based on the FTP-75 drive cycle. Very low sulfur diesel fuel (<15 ppm-wt) enabled lower PM emissions, reduced fuel economy penalty due to the emission control system and improved long-term system durability. Significant progress was made toward a durable system to meet Tier 2 Bin 5 emission standards on a 6000 lbs light-duty truck. A 40% reduction in engine-out NOx emissions was achieved with a mid-size prototype diesel engine through engine recalibration and increased exhaust gas recirculation. Use of a rapid warm-up strategy and urea SCR provided over 90% further NOx reduction while the CDPF reduced tailpipe PM to gasoline vehicle levels. Development work was conducted to separately improve urea SCR and CDPF system durability, as well as improved oxidation catalyst function. Exhaust gas NOx and ammonia sensors were also developed further. While the final emission control system did not meet Tier 2 Bin 5 NOx after 120k mi of aging on the dynamometer, it did meet the standards for HC, NMOG, and PM, and an improved SCR catalyst was shown to have potential to meet the NOx standard, assuming the DOC durability could be improved further. Models of DOC and SCR function were developed to guide the study of several key design

  11. Controlling formaldehyde emissions with MBS scrubbing

    SciTech Connect

    Lundquist, P.R.

    1998-12-31

    Sodium metabisulfite (MBS)-assisted water scrubbing was selected as the most cost-effective and reliable technology for removal of dilute formaldehyde emissions from a resin manufacturing plant. Dilute formaldehyde emission streams (e.g., from process hoods, sample hoods, and other miscellaneous captured sources) required treatment in order to meet the anticipated Maximum Achievable Control Technology (MACT) standards and state air toxic requirements. Other conventional technologies (e.g., thermal oxidation, carbon adsorption, and biofiltration) were considered, but later discarded because they were cost prohibitive or technically impractical. Segregation of dilute volatile organic compound (VOC) and hazardous air pollutant (HAP) emissions from other more concentrated VOC and HAP emissions facilitated the use of technologies tailored to the characteristics of each stream type, and thereby provided significant cost savings. While past experience has shown that simple water scrubbing of dilute formaldehyde emissions would not meet generally accepted treatment performance (90+% control), removals in excess of 95% can be readily achieved with the addition of a reactant like MBS to the scrubbing liquor. MBS in solution reacts with formaldehyde absorbed by the scrubber water to form a bisulfite salt, rendering the reacted formaldehyde non-volatile. The reaction accelerates mass transfer of formaldehyde into the scrubbing liquid, thereby decreasing the size and cost of emission control equipment. Design of such systems should also consider the chemistry of the make-up water (and scrubber water) used in the process. Recirculating water scrubbers can be susceptible to carbonate scaling and other inorganic fouling experienced in similar water treatment systems (e.g., air strippers). The addition of salts to the recirculating scrubber solutions can be controlled to limit potential sulfur dioxide emissions and deposits.

  12. CO2 emission of coal spontaneous combustion and its relation with coal microstructure, China.

    PubMed

    Wang, Haiyan; Chen Chen; Huang, Tao; Gao, Wei

    2015-07-01

    Coal spontaneous combustion is widely distributed all over the world. CO2 is the main greenhouse gas emitted by coal spontaneous combustion. In the present study characters of CO2 emitted by 10 typical Chinese coal spontaneous combustion and the influence of raw coal functional group on CO2 was studied. CO2 already exists under normal temperature as coal exposed in atmosphere. Under low temperature, the quality of CO2 released by coal spontaneous combustion is relatively small, but tends to increase. And corresponding with it, the oxygen consumption amount is also small. At medium temperature, the oxygen consumption increases rapidly and CO2 mass release rate begins to increase rapidly. Then, CO2 release rate increase rapidly under relatively high temperature (higher than 673 K). Over 873K, concentration of O2 is 6% and release rate of CO2 tends to be steady. It also concluded that mass ratio of CO to CO2 (CO/CO2) during coal spontaneous combustion was lowerthan 0.10 at low temperature. And then, it increased rapidly at medium temperature and reached to top at about 673 K. At 673-873 K, the ratio decreased again, and did not decrease evidently at about 873K. At temperature higher than 873K, the ratio was about 0.13. During the whole testing temperature range, CO/CO2 was not be higher than 0.26, lower than 0.2. This means that release rate of CO2 was much higher than CO during the whole process of coal spontaneous combustion. Moreover, the gas release quantity of CO2 is positively related with carbony content in raw coal. Carbonyl and carboxyl were both material basis of CO2.

  13. Quantum-noise quenching in the correlated spontaneous-emission laser as a multiplicative noise process. I. A geometrical argument

    SciTech Connect

    Schleich, W.; Scully, M.O.

    1988-02-15

    We show, via simple geometrical arguments, the quantum-noise quenching in a correlated (spontaneous) emission laser (CEL). This noise quenching is a consequence of the correlation between noise sources which results in a multiplicative noise process. The steady-state distribution for the phase difference between the two electric fields in a CEL is compared and contrasted to that of a standard phase-locked laser. Noise quenching is shown to occur in the case of the CEL via an explicit solution of the Fokker-Planck equation.

  14. Self-Amplified Spontaneous Emission Free-Electron Laser with an Energy-Chirped Electron Beam and Undulator Tapering

    SciTech Connect

    Giannessi, L.; Ciocci, F.; Dattoli, G.; Del Franco, M.; Petralia, A.; Quattromini, M.; Ronsivalle, C.; Sabia, E.; Spassovsky, I.; Surrenti, V.; Bacci, A.; Rossi, A. R.; Bellaveglia, M.; Castellano, M.; Chiadroni, E.; Cultrera, L.; Filippetto, D.; Di Pirro, G.; Ferrario, M.; Ficcadenti, L.

    2011-04-08

    We report the first experimental implementation of a method based on simultaneous use of an energy chirp in the electron beam and a tapered undulator, for the generation of ultrashort pulses in a self-amplified spontaneous emission mode free-electron laser (SASE FEL). The experiment, performed at the SPARC FEL test facility, demonstrates the possibility of compensating the nominally detrimental effect of the chirp by a proper taper of the undulator gaps. An increase of more than 1 order of magnitude in the pulse energy is observed in comparison to the untapered case, accompanied by FEL spectra where the typical SASE spiking is suppressed.

  15. Extremely low amplified spontaneous emission threshold and blue electroluminescence from a spin-coated octafluorene neat film

    NASA Astrophysics Data System (ADS)

    Kim, D.-H.; Sandanayaka, A. S. D.; Zhao, L.; Pitrat, D.; Mulatier, J. C.; Matsushima, T.; Andraud, C.; Ribierre, J. C.; Adachi, C.

    2017-01-01

    We report on the photophysical, amplified spontaneous emission (ASE), and electroluminescence properties of a blue-emitting octafluorene derivative in spin-coated films. The neat film shows an extremely low ASE threshold of 90 nJ/cm2, which is related to its high photoluminescence quantum yield of 87% and its large radiative decay rate of 1.7 × 109 s-1. Low-threshold organic distributed feedback semiconductor lasers and fluorescent organic light-emitting diodes with a maximum external quantum efficiency as high as 4.4% are then demonstrated, providing evidence that this octafluorene derivative is a promising candidate for organic laser applications.

  16. EFFECT OF LASER LIGHT ON MATTER. LASER PLASMAS: Distributed extraction of amplified spontaneous emission from a randomly inhomogeneous active medium

    NASA Astrophysics Data System (ADS)

    Starikov, F. A.

    1993-05-01

    This paper investigates the dynamics of amplified spontaneous x-ray emission escaping from a randomly inhomogeneous plasma active medium through its ends and lateral surface. It is shown that the scattering of radiation by fluctuations in the dielectric permittivity, ɛ˜, can be utilized to extract energy through the lateral surface of the active medium. The radiant intensity is maximal in an off-axis direction in this case. When both regular refraction and scattering by ɛ˜ are operating, the distributed extraction of the light is determined by that effect which has the smaller characteristic length (i.e., the scattering length or the refraction length).

  17. Spontaneous centralization of control in a network of company ownerships.

    PubMed

    Krause, Sebastian M; Peixoto, Tiago P; Bornholdt, Stefan

    2013-01-01

    We introduce a model for the adaptive evolution of a network of company ownerships. In a recent work it has been shown that the empirical global network of corporate control is marked by a central, tightly connected "core" made of a small number of large companies which control a significant part of the global economy. Here we show how a simple, adaptive "rich get richer" dynamics can account for this characteristic, which incorporates the increased buying power of more influential companies, and in turn results in even higher control. We conclude that this kind of centralized structure can emerge without it being an explicit goal of these companies, or as a result of a well-organized strategy.

  18. Spontaneous Emission and Fundamental Limitations on the Signal-to-Noise Ratio in Deep-Subwavelength Plasmonic Waveguide Structures with Gain

    NASA Astrophysics Data System (ADS)

    Vyshnevyy, Andrey A.; Fedyanin, Dmitry Yu.

    2016-12-01

    Incorporation of gain media in plasmonic nanostructures can give the possibility to compensate for high Ohmic losses in the metal and design truly nanoscale optical components for diverse applications ranging from biosensing to on-chip data communication. However, the process of stimulated emission in the gain medium is inevitably accompanied by spontaneous emission. This spontaneous emission greatly impacts the performance characteristics of deep-subwavelength active plasmonic devices and casts doubt on their practical use. Here we develop a theoretical framework to evaluate the influence of spontaneous emission, which can be applied to waveguide structures of any shape and level of mode confinement. In contrast to the previously developed theories, we take into account that the spectrum of spontaneous emission can be very broad and nonuniform, which is typical for deep-subwavelength structures, where a high optical gain (approximately 1000 cm-1 ) in the active medium is required to compensate for strong absorption in the metal. We also present a detailed study of the spontaneous emission noise in metal-semiconductor active plasmonic nanowaveguides and demonstrate that by using both optical and electrical filtering techniques, it is possible to decrease the noise to a level sufficient for practical applications at telecom and midinfrared wavelengths.

  19. Systematics of spontaneous emission of intermediate mass fragments from heavy nuclei

    SciTech Connect

    Barwick, S.W.; Price, P.B.; Ravn, H.L.; Hourani, E.; Hussonnois, M.

    1986-07-01

    We have used polycarbonate track-recording films to confirm the rare decay mode of /sup 226/Ra by /sup 14/C emission and to set stringent upper limits on /sup 14/C-emission rates of /sup 221/Fr, /sup 221/Ra, and /sup 225/Ac. The /sup 14/C-emission rate exhibits a pronounced odd-even effect. For Ra isotopes the hindrance factor for odd-even parents relative to even-even parents is at least 10 times higher for /sup 14/C emission than for ..cap alpha.. emission.

  20. Validity of the Classical Theory of Spontaneous Emission and the Fast Multipole Method for Electromagnetic Scattering

    NASA Astrophysics Data System (ADS)

    Yeung, Si Chuen Michael

    1995-01-01

    The interaction of the electromagnetic field with material boundaries has long been a subject of intense investigation. On the theoretical side are problems concerning the quantum-mechanical properties of the electromagnetic field near material boundaries. Such problems are of interest to physicists in the field of quantum optics near surfaces. On the practical side are problems concerning the numerical techniques used to solve the equations of classical electrodynamics in various practical situations involving boundaries. Such problems are of interest to engineers in the field of electromagnetic scattering. This thesis provides quantitative solutions to specific theoretical and practical problems in the subject of the interaction between the electromagnetic field and material boundaries. First, the lifetime of an excited atom near a lossy dielectric surface is calculated from an exact solution of a microscopic Hamiltonian model, which includes the effects of dispersion, local field correction and near -field Coulomb interaction. Results for the total decay rate are shown to be in excellent agreement with those based on classical electromagnetic theory and to yield the well-known result for the rate of nonradiative energy transfer in the limit of very small distance from the surface. Because our calculation is based on a fully canonical quantum theory, it provides the first fundamental demonstration of the validity of the classical electromagnetic theory of the rate of spontaneous emission near a lossy dielectric surface. Next, two new numerical techniques for three-dimensional electromagnetic scattering are proposed. The first technique is based on the physical-optics approximation and is suitable for piecewise-linear topography. The formalism of generalized Sommerfeld integrals is used to treat the effects of intra -surface multiple scattering in the physical-optics approximation. The technique of multipole acceleration is used to reduce the CPU cost of intra

  1. CONTROLLING ODOROUS EMISSIONS FROM IRON FOUNDRIES

    EPA Science Inventory

    The report discusses the control of odorous emissions from iron foundries. he main process sources of odors in iron foundries are mold and core making, casting, and sand shakeout. he odors are usually caused by chemicals, which may be present as binders and other additives to the...

  2. CONTROLLING EMISSIONS FROM FUEL AND WASTE COMBUSTION

    EPA Science Inventory

    Control of emissions from combustion of fuels and wastes has been a traditional focus of air pollution regulations. Significant technology developments of the '50s and '60s have been refined into reliable chemical and physical process unit operations. In the U.S., acid rain legis...

  3. Amplified spontaneous emission from core and shell transitions in CdSe/CdS nanorods fabricated by seeded growth

    NASA Astrophysics Data System (ADS)

    Krahne, Roman; Zavelani-Rossi, Margherita; Lupo, Maria Grazia; Manna, Liberato; Lanzani, Guglielmo

    2011-02-01

    We studied the optical properties of core-shell CdSe/CdS nanorods with various lengths and core diameters that were fabricated by wet chemical synthesis using the seeded growth method. We investigated the optical emission from thin films consisting of dense nanorod arrays, where we observed amplified spontaneous emission from states related either to the CdSe core or to the CdS shell depending on the nanorod's length. The optical gain of the nanorods was studied by transient absorption experiments and we found optical gain for the core and shell states of short rods, whereas for long rods, the optical gain of the core was quenched by defect states and we observed optical gain solely from the states of the shell material.

  4. Strain-mediated multiferroic control of spontaneous exchange bias in Ni-NiO heterostructures

    NASA Astrophysics Data System (ADS)

    Domann, John P.; Sun, Wei-Yang; Schelhas, Laura T.; Carman, Greg P.

    2016-10-01

    This paper presents the measurement of strain-mediated multiferroic control of spontaneous exchange bias (SEB) in magnetostrictive nickel/nickel oxide (Ni/NiO) bilayers on ferroelectric lead magnesium niobate-lead titanate (PMN-PT). Electric field control of a positive to negative exchange bias shift was measured, with an overall shift of 40.5 Oe, corresponding to a 325% change. Observed changes in coercivity are also reported and provide insight into the role of competing anisotropies in these structures. The findings in this paper provide evidence that magnetoelastic anisotropy can be utilized to control spontaneous exchange bias (SEB). This control of SEB is accomplished by modifying a bulk anisotropy (magnetoelasticity) that adjusts the mobility of interfacial anti-ferromagnetic spins and, therefore, the magnitude of the exchange bias. The demonstrated magnetoelastic control of exchange bias provides a useful tool in the creation of future magnetoelectric devices.

  5. Photoelectric charging of dust particles: Effect of spontaneous and light induced field emission of electrons

    SciTech Connect

    Sodha, M. S.; Dixit, A.

    2009-09-07

    The authors have analyzed the charging of dust particles in a plasma, taking into account the electron/ion currents to the particles, electron/ion generation and recombination, electric field emission, photoelectric emission and photoelectric field emission of electrons under the influence of light irradiation; the irradiance has been assumed to be at a level, which lets the particles retain the negative sign of the charge. Numerical results and discussion conclude the papers.

  6. Advanced Emissions Control Development Program: Phase III

    SciTech Connect

    G.T. Amrhein; R.T. Bailey; W. Downs; M.J. Holmes; G.A. Kudlac; D.A. Madden

    1999-07-01

    The primary objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of air toxics from coal-fired boilers. The project goal is to effectively control air toxic emissions through the use of conventional flue gas clean-up equipment such as electrostatic precipitators (ESPs), fabric filters (baghouses - BH), and wet flue gas desulfurization systems (WFGD). Development work concentrated on the capture of trace metals, fine particulate, hydrogen chloride and hydrogen fluoride, with an emphasis on the control of mercury. The AECDP project is jointly funded by the US Department of Energy's Federal Energy Technology Center (DOE), the Ohio Coal Development Office within the Ohio Department of Development (OCDO), and Babcock and Wilcox, a McDermott company (B and W). This report discusses results of all three phases of the AECDP project with an emphasis on Phase III activities. Following the construction and evaluation of a representative air toxics test facility in Phase I, Phase II focused on characterization of the emissions of mercury and other air toxics and the control of these emissions for typical operating conditions of conventional flue gas clean-up equipment. Some general comments that can be made about the control of air toxics while burning a high-sulfur bituminous coal are as follows: (1) particulate control devices such as ESP's and baghouses do a good job of removing non-volatile trace metals, (2) particulate control devices (ESPs and baghouses) effectively remove the particulate-phase mercury, but the particulate-phase mercury was only a small fraction of the total for the coals tested, (3) wet scrubbing can effectively remove hydrogen chloride and hydrogen fluoride, and (4) wet scrubbers show good potential for the removal of mercury when operated under certain conditions, however, for certain applications, system enhancements can be required to achieve high

  7. Imaging of ultraweak spontaneous photon emission from human body displaying diurnal rhythm.

    PubMed

    Kobayashi, Masaki; Kikuchi, Daisuke; Okamura, Hitoshi

    2009-07-16

    The human body literally glimmers. The intensity of the light emitted by the body is 1000 times lower than the sensitivity of our naked eyes. Ultraweak photon emission is known as the energy released as light through the changes in energy metabolism. We successfully imaged the diurnal change of this ultraweak photon emission with an improved highly sensitive imaging system using cryogenic charge-coupled device (CCD) camera. We found that the human body directly and rhythmically emits light. The diurnal changes in photon emission might be linked to changes in energy metabolism.

  8. Controlling NOx emission from industrial sources

    SciTech Connect

    Srivastava, R.K.; Nueffer, W.; Grano, D.; Khan, S.; Staudt, J.E.; Jozewicz, W.

    2005-07-01

    A number of regulatory actions focused on reducing NOx emissions from stationary combustion sources have been taken in the United States in the last decade. These actions include the Acid Rain NOx regulations, the Ozone Transport Commission's NOx Budget Program, and the NOx SIP Call rulemakings. In addition to these regulations, the recent Interstate Air Quality Rulemaking proposal and other bills in the Congress are focusing on additional reductions of NOx. Industrial combustion sources accounted for about 18016 of NOx emissions in the United States in 2000 and constituted the second largest emitting source category within stationary sources, only behind electric utility sources. Based on these data, reduction of NOx emissions from industrial combustion sources is an important consideration in efforts undertaken to address the environmental concerns associated with NOx. This paper discusses primary and secondary NOx control technologies applicable to various major categories of industrial sources. The sources considered in this paper include large boilers, furnaces and fired heaters, combustion turbines, large IC engines, and cement kilns. For each source category considered in this paper, primary NOx controls are discussed first, followed by a discussion of secondary NOx controls.

  9. Surface-plasmon-polariton assisted modification of spontaneous emission of colloidal quantum dots in metal nanostructures

    NASA Astrophysics Data System (ADS)

    Briscoe, Jayson L.; Jayasundara, Nadeepa; Cho, Sang-Yeon

    2013-01-01

    We experimentally demonstrate extraordinary optical transmission (EOT) assisted photoluminescence (PL) of CdSe/CdS colloidal quantum dots (QDs). The quantum dots were encapsulated between a metallic nanostructure and a Bragg reflector to enhance the interaction of spontaneously emitted photons with a resonant electromagnetic surface wave. The measured PL spectrum of the fabricated sample exhibits spectral narrowing and a shift in peak wavelength of 22 nm and 7 nm, respectively. Furthermore, we tested the angular dependence of the signal to confirm the existence of EOT. This demonstration is a critical step towards realizing plasmonic colloidal QD based coherent emitters.

  10. Prompt neutron emission from the spontaneous fission of sup 260 Md

    SciTech Connect

    Wild, J.F.; van Aarle, J.; Westmeier, W.; Lougheed, R.W.; Hulet, E.K.; Moody, K.J.; Dougan, R.J.; Koop, E.; Glaser, R.E.; Brandt, R.; Patzelt, P. Philipps University, D-3550, Marburg an der Lahn, )

    1990-02-01

    We have made the first measurement of the number of neutrons emitted from the spontaneous fission of a nuclide in which very high fragment energies dominate the fission process. In bombardments of {sup 254}Es, we produced a large sample of 28-d {sup 260}Md, which was neutron counted in a 1-m-diameter spherical tank containing a Gd-doped scintillator solution. The average number of neutrons emitted per fission is only 2.58{plus minus}0.11, substantially less than for other actinides. A linear dependence of neutron multiplicity on fragment-excitation energy is observed to the highest values of total kinetic energy.

  11. Neutron emission as a function of fragment energy in the spontaneous fission of /sup 260/Md

    SciTech Connect

    Wild, J.F.; van Aarle, J.; Westmeiser, W.; Lougheed, R.W.; Hulet, E.K.; Moody, K.J.; Dougan, R.J.; Brandt, R.; Patzelt, P.

    1989-04-19

    We have made the first measurement of the number of neutrons emitted in the spontaneous fission of a nuclide in which very high fragment energies dominate the fission process. In bombardments of /sup 254/Es, we produced 28-d /sup 260/Md, which was neutron-counted in a 1-m-diam spherical tank containing a Gd-doped scintillator solution. The average number of neutrons emitted per fission is only 2.58 +- 0.11, substantially less than for other actinides. A direct correlation of neutron multiplicity with fragment excitation energy is clearly demonstrated. 3 refs., 5 figs.

  12. Factors controlling dimethylsulfide emission from salt marshes

    NASA Technical Reports Server (NTRS)

    Dacey, John W. H.; Wakeham, S. G.; Howes, B. L.

    1985-01-01

    The factors that control the emission of methylated gases from salt marshes are being studied. Research focusses on dimethylsulfide (DMS) formation and the mechanism of DMS and CH4 emission to the atmosphere. The approach is to consider the plants as valves regulating the emission of methylated gases to the atmosphere with the goal of developing appropriate methods for emission measurement. In the case of CH4, the sediment is the source and transport to the atmosphere occurs primarily through the internal gas spaces in the plants. The source of DMS appears to be dimethyl sulfoniopropionate (DMSP) which may play a role in osmoregulation in plant tissues. Concentrations of DMSP in leaves are typically several-fold higher than in roots and rhizomes. Even so, the large below ground biomass of this plant means that 2/3 of the DMSP in the ecosystem is below ground on the aerial basis. Upon introduction to sediment water, DMSP rapidly decomposes to DMS and acrylic acid. The solubility of a gas (its equilibrium vapor pressure) is a fundamental aspect of gas exchange kinetics. The first comprehensive study was conducted of DMS solubility in freshwater and seawater. Data suggest that the Setchenow relation holds for H at intermediate salinities collected. These data support the concept that the concentration of DMS in the atmosphere is far from equilibrium with seawater.

  13. Terahertz-range spontaneous emission under the optical excitation of donors in uniaxially stressed bulk silicon and SiGe/Si heterostructures

    SciTech Connect

    Zhukavin, R. Kh. Kovalevsky, K. A.; Orlov, M. L.; Tsyplenkov, V. V.; Bekin, N. A.; Yablonskiy, A. N.; Yunin, P. A.; Pavlov, S. G.; Abrosimov, N. V.; Hübers, H.-W.; Radamson, H. H.; Shastin, V. N.

    2015-01-15

    The results of measurements of the total terahertz-range photoluminescence of Group-V donors (phosphorus, antimony, bismuth, arsenic) in bulk silicon and SiGe/Si heterostructures depending on the excitation intensity are presented. The signal of bulk silicon was also measured as a function of uniaxial stress. The results of measurement of the dependence of the spontaneous emission intensity on the uniaxial stress is in rather good agreement with theoretical calculations of the relaxation times of excited states of donors in bulk silicon. Comparative measurements of the spontaneous emission from various strained heterostructures showed that the photoluminescence signal is caused by donor-doped silicon regions.

  14. Criterion of transverse coherence of self-amplified spontaneous emission in high gain free electron laser amplifiers

    SciTech Connect

    Xie, M.; Kim, K.J.

    1995-12-31

    In a high gain free electron laser amplifier based on Self-Amplified Spontaneous Emission (SASE) the spontaneous radiation generated by an electron beam near the undulator entrance is amplified many orders of magnitude along the undulator. The transverse coherence properties of the amplified radiation depends on both the amplification process and the coherence of the seed radiation (the undulator radiation generated in the first gain length or so). The evolution of the transverse coherence in the amplification process is studied based on the solution of the coupled Maxwell-Vlasov equations including higher order transverse modes. The coherence of the seed radiation is determined by the number of coherent modes in the phase space area of the undulator radiation. We discuss the criterion of transverse coherence and identify governing parameters over a broad range of parameters. In particular we re-examine the well known emittance criterion for the undulator radiation, which states that full transverse coherence is guaranteed if the rms emittance is smaller than the wavelength divided by 4{pi}. It is found that this criterion is modified for SASE because of the different optimization conditions required for the electron beam. Our analysis is a generalization of the previous study by Yu and Krinsky for the case of vanishing emittance with parallel electron beam. Understanding the transverse coherence of SASE is important for the X-ray free electron laser projects now under consideration at SLAC and DESY.

  15. Experimental study on CO and CO2 emissions from spontaneous heating of coals at varying temperatures and O2 concentrations.

    PubMed

    Yuan, Liming; Smith, Alex C

    2013-11-01

    Laboratory experiments were conducted to investigate carbon monoxide (CO) and carbon dioxide (CO2) emissions from spontaneous heating of three U.S. coal samples in an isothermal oven at temperatures between 50 and 110 °C. The oxygen (O2) concentration of an oxygen/nitrogen (N2) mixture flowing through the coal sample was 3, 5, 10, 15, and 21%, respectively. The temperature at the center of the coal sample was continuously monitored, while the CO, CO2, and O2 concentrations of the exit gas were continuously measured. The results indicate that the CO and CO2 concentrations and the CO/CO2 ratio increased when the initial temperature was increased. As the inlet O2 concentration increased, the CO and CO2 concentrations increased, while the CO/CO2 ratios tended to converge to the same value. The ratio of CO/CO2 was found to be independent of coal properties, approaching a constant value of 0.2. The maximum CO production rate correlated well with the maximum coal temperature rise. The apparent order of reaction for coal oxidation was estimated to be between 0.52 and 0.72. The experimental results in this study could be used for early detection and evaluation of a spontaneous heating in underground coal mines.

  16. Analytical solution for phase space evolution of electrons operating in a self-amplified spontaneous emission free electron laser

    NASA Astrophysics Data System (ADS)

    Nishimori, Nobuyuki

    2005-10-01

    I present an analytical solution for the phase space evolution of electrons in a self-amplified spontaneous emission (SASE) free-electron laser (FEL) operating in the linear regime before saturation in the resonant case by solving the one dimensional FEL equation together with the solution of the cubic equation, which represents the evolution of the SASE FEL field. The electrons are shown to be bunched around π/6 ahead of a resonant electron every resonant FEL wavelength in the high gain regime. The phase relation is similar to that in a low gain FEL where an electron beam above resonance is injected, explaining the positive FEL gain. The analytical solutions agree well with numerical simulations and are applied to obtain the coherent optical transition radiation (OTR) intensity produced from electron microbunching at FEL wavelength. The coherent OTR intensity is shown to be proportional to FEL intensity.

  17. Modal theory of modified spontaneous emission of a quantum emitter in a hybrid plasmonic photonic-crystal cavity system

    NASA Astrophysics Data System (ADS)

    Kamandar Dezfouli, Mohsen; Gordon, Reuven; Hughes, Stephen

    2017-01-01

    We present an intuitive and accurate modal description of the rich optical physics involved for quantum dipole emitters coupled to hybrid plasmonic photonic-cavity structures. A significant frequency dependence for the spontaneous emission decay rate of a quantum dipole emitter coupled to these hybrid structures is found. In particular, it is shown that a Fano-type resonance reported experimentally in hybrid plasmonic systems arises from a large interference between two dominant quasinormal modes of the systems in the frequency range of interest. The presented modal theory forms an efficient basis for modeling quantum light-matter interactions in these complex hybrid systems and also enables the quantitative prediction and understanding of both radiative and nonradiative coupling for a wide range of dipole positions.

  18. Amplified spontaneous emission measurement of a line-narrowed, tunable, Ti:Al2O3 amplifier using rubidium absorption

    NASA Technical Reports Server (NTRS)

    Barnes, James C.; Barnes, Norman P.; Lockard, George E.; Cross, Patricia L.

    1989-01-01

    Amplified spontaneous emission, ASE, generated by a Ti:Al2O3 laser amplifier has been measured as a function of pump energy, and thus gain, using the atomic absorption of rubidium, Rb, gas at 0.780 micron. By tuning the Ti:Al2O3 laser, the Rb cell could selectively absorb the narrow spectral bandwidth laser radiation while transmitting the wide spectral bandwidth ASE. Transmission of laser amplifier pulses through a Rb absorption cell, measured at various temperatures, thus allows the measurement of the weak ASE in the vicinity of the strong laser pulse. A model for the transmission of Rb as a function of temperature and wavelength has been developed. The measured transmissions are in good agreement with the transmission model predictions.

  19. Spontaneous emission from a two-level atom in anisotropic one-band photonic crystals: A fractional calculus approach

    SciTech Connect

    Wu, J.-N.; Huang, C.-H.; Cheng, S.-C.; Hsieh, W.-F.

    2010-02-15

    Spontaneous emission (SE) from a two-level atom in an anisotropic photonic crystal (PC) is investigated by the fractional calculus. Physical phenomena of the SE are studied analytically by solving the fractional kinetic equations of the SE. There is a dynamical discrepancy between the SE of anisotropic and isotropic PCs. We find that, contrary to the SE phenomenon of the isotropic PC, the SE near the band edge of an anisotropic PC shows no photon-atom bound state. It is consistent with the experimental results of Barth, Schuster, Gruber, and Cichos [Phys. Rev. Lett. 96, 243902 (2006)] that the anisotropic property of the system enhances the SE. We also study effects of dispersion curvatures on the changes of the photonic density of states and the appearance of the diffusion fields in the SE.

  20. Spontaneous emission study on 1.3 µm InAs/InGaAs/GaAs quantum dot lasers.

    PubMed

    Liu, C Y; Stubenrauch, M; Bimberg, D

    2011-06-10

    True spontaneous emission (TSE) measurements on InAs/InGaAs/GaAs quantum dot (QD) lasers have been performed as a function of injection current and cavity length. For each laser, TSE from both the ground state (GS) transition and the excited state (ES) transition has been analyzed. It is found that Auger processes are the major nonradiative recombination (NR) processes for both the GS and ES transitions. In particular, for the first time, the existence of Auger like NR features in ES transitions has been experimentally demonstrated. In addition, obvious competition for carriers between the ES transition and the GS transition has been observed in TSE analysis. Furthermore, the QD laser's cavity length has a strong effect on the NR process in GS transitions, due to GS gain saturation. Therefore, when analyzing the NR processes in operating QD lasers, gain saturation due to cavity length limits should be properly considered.

  1. Strong enhancement of spontaneous emission in amorphous-silicon-nitride photonic crystal based coupled-microcavity structures

    NASA Astrophysics Data System (ADS)

    Bayindir, M.; Tanriseven, S.; Aydinli, A.; Ozbay, E.

    We investigated photoluminescence (PL) from one-dimensional photonic band gap structures. The photonic crystals, a Fabry-Perot (FP) resonator and a coupled-microcavity (CMC) structure, were fabricated by using alternating hydrogenated amorphous-silicon-nitride and hydrogenated amorphous-silicon-oxide layers. It was observed that these structures strongly modify the PL spectra from optically active amorphous-silicon-nitride thin films. Narrow-band and wide-band PL spectra were achieved in the FP microcavity and the CMC structure, respectively. The angle dependence of PL peak of the FP resonator was also investigated. We also observed that the spontaneous emission increased drastically at the coupled-cavity band edge of the CMC structure due to extremely low group velocity and long photon lifetime. The measurements agree well with the transfer-matrix method results and the prediction of the tight-binding approximation.

  2. CONTROLLING MULTIPLE EMISSIONS FROM COAL-FIRED POWER PLANTS

    EPA Science Inventory

    The paper presents and analyzes nine existing and novel control technologies designed to achieve multipollutant emissions reductions. It provides an evaluation of multipollutant emission control technologies that are potentially available for coal-fired power plants of 25 MW capa...

  3. Spectral discrimination between healthy people and cold patients using spontaneous photon emission

    PubMed Central

    Yang, Meina; Pang, Jiangxiang; Liu, Junyan; Liu, Yanli; Fan, Hua; Han, Jinxiang

    2015-01-01

    In this paper, ultra-weak photon emission (UPE) was used to distinguish cold patients from healthy subjects. The UPE intensity of fingertips of two hands from healthy subjects and cold patients was measured using a two-hand UPE detecting system and a group of cut-off filters. We found a significant difference in the maximum spectral peak and photon emission ratio between the filter of 550nm and 495nm, which can be used in distinguish cold patients from healthy people. Methods and results in this work could be useful for developing a new optical diagnostic tool for early disease diagnosis in the future. PMID:25909016

  4. On what controls the spacing of spontaneous adiabatic shear bands in collapsing thick-walled cylinders

    NASA Astrophysics Data System (ADS)

    Lovinger, Zev; Rosenberg, Zvi; Rittel, Daniel

    2015-09-01

    Shear bands formation in collapsing thick walled cylinders occurs in a spontaneous manner. The advantage of examining spontaneous, as opposed to forced shear localization, is that it highlights the inherent susceptibility of the material to adiabatic shear banding without prescribed geometrical constraints. The Thick-Walled Cylinder technique (TWC) provides a controllable and repeatable technique to create and study multiple adiabatic shear bands. The technique, reported in the literature uses an explosive cylinder to create the driving force, collapsing the cylindrical sample. Recently, we developed an electro-magnetic set-up using a pulsed current generator to provide the collapsing force, replacing the use of explosives. Using this platform we examined the shear band evolution at different stages of formation in 7 metallic alloys, spanning a wide range of strength and failure properties. We examined the number of shear bands and spacing between them for the different materials to try and figure out what controls these parameters. The examination of the different materials enabled us to better comprehend the mechanisms which control the spatial distribution of multiple shear bands in this geometry. The results of these tests are discussed and compared to explosively driven collapsing TWC results in the literature and to existing analytical models for spontaneous adiabatic shear localization.

  5. Controllable optical bistability and multistability in asymmetric double quantum wells via spontaneously generated coherence

    SciTech Connect

    Chen, Yuan; Deng, Li; Chen, Aixi

    2015-02-15

    We investigate the nonlinear optical phenomena of the optical bistability and multistability via spontaneously generated coherence in an asymmetric double quantum well structure coupled by a weak probe field and a controlling field. It is shown that the threshold and hysteresis cycle of the optical bistability can be conveniently controlled only by adjusting the intensity of the SGC or the controlling field. Moreover, switching between optical bistability and multistability can be achieved. These studies may have practical significance for the preparation of optical bistable switching device.

  6. Broadband enhancement of spontaneous emission from nitrogen-vacancy centers in nanodiamonds by hyperbolic metamaterials

    NASA Astrophysics Data System (ADS)

    Shalaginov, M. Y.; Ishii, S.; Liu, J.; Liu, J.; Irudayaraj, J.; Lagutchev, A.; Kildishev, A. V.; Shalaev, V. M.

    2013-04-01

    We experimentally demonstrate a broadband enhancement of emission from nitrogen-vacancy centers in nanodiamonds. The enhancement is achieved by using a multilayer metamaterial with hyperbolic dispersion. The metamaterial is fabricated as a stack of alternating gold and alumina layers. Our approach paves the way towards the construction of efficient single-photon sources as planar on-chip devices.

  7. Dynamically correlated spontaneous-emission laser: theory and comparison with experiment

    SciTech Connect

    Bergou, J.; Orszag, M.

    1988-02-01

    A higher-order correlated-emission laser (CEL) effect is found theoretically in a Doppler-broadened medium. A full quantum-mechanical account of the CEL in the nonlinear regime shows a large reduction in the beat-signal linewidth. This behavior is confirmed by a recent experiment.

  8. Spontaneous nonneoplastic lesions in control Syrian hamsters in three 24-month long-term carcinogenicity studies.

    PubMed

    McInnes, Elizabeth F; Ernst, Heinrich; Germann, Paul-Georg

    2015-02-01

    Information about the incidence of spontaneously occurring, nonneoplastic background findings in Syrian hamsters is essential if Syrian hamsters are to be used for toxicity studies. Male and female Syrian hamsters of the strain Han:AURA from the Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM) breeding colony were maintained as control animals for carcinogenicity studies and were examined for the presence of nonneoplastic background findings either when they died or when the study was terminated. The nonneoplastic background lesions observed at an incidence of >50% (high), >25% (moderate), and >10% (low) in either male or female animals or in both sexes in one or more long-term studies are detailed. The results are compared to previous published reports of nonneoplastic, spontaneous background lesions in Syrian hamsters. Background information about the incidence of background lesions in Syrian hamsters on short- and long-term studies is useful to both toxicologists and toxicological pathologists.

  9. Enhancement of spontaneous emission in metal-dielectric multilayer structures accounting losses

    NASA Astrophysics Data System (ADS)

    Gubaydullin, A. R.; Kaliteevski, M. A.

    2015-11-01

    We study the emission rate enhancement of the dipole emitter centred in the stratified metal-dielectric metamaterial, characterized by the hyperbolic isofrequency surface. We find out a limited enhancement of the Purcell factor in the layered metamaterial. We demonstrate that the radiative decay rate is strongly depends on a ratio of the thickness of layers and is affected by the level of losses in metal.

  10. Influence of pump-phase fluctuations on entanglement generation using a correlated spontaneous-emission laser

    SciTech Connect

    Qamar, Shahid; Xiong Han; Zubairy, M. Suhail

    2007-06-15

    In this paper, we study the effect of phase fluctuations of the pump field upon the entanglement generation in a two-photon correlated emission laser (CEL). We consider initial vacuum and coherent state for the two-cavity modes. In both cases, we find reduction in the entanglement due to the phase fluctuations. However, our results indicate that entanglement generation is highly sensitive to phase fluctuations when we have initial coherent state in the two modes.

  11. The research and implementation of coalfield spontaneous combustion of carbon emission WebGIS based on Silverlight and ArcGIS server

    NASA Astrophysics Data System (ADS)

    Zhu, Z.; Bi, J.; Wang, X.; Zhu, W.

    2014-02-01

    As an important sub-topic of the natural process of carbon emission data public information platform construction, coalfield spontaneous combustion of carbon emission WebGIS system has become an important study object. In connection with data features of coalfield spontaneous combustion carbon emissions (i.e. a wide range of data, which is rich and complex) and the geospatial characteristics, data is divided into attribute data and spatial data. Based on full analysis of the data, completed the detailed design of the Oracle database and stored on the Oracle database. Through Silverlight rich client technology and the expansion of WCF services, achieved the attribute data of web dynamic query, retrieval, statistical, analysis and other functions. For spatial data, we take advantage of ArcGIS Server and Silverlight-based API to invoke GIS server background published map services, GP services, Image services and other services, implemented coalfield spontaneous combustion of remote sensing image data and web map data display, data analysis, thematic map production. The study found that the Silverlight technology, based on rich client and object-oriented framework for WCF service, can efficiently constructed a WebGIS system. And then, combined with ArcGIS Silverlight API to achieve interactive query attribute data and spatial data of coalfield spontaneous emmission, can greatly improve the performance of WebGIS system. At the same time, it provided a strong guarantee for the construction of public information on China's carbon emission data.

  12. Coherent optical transition radiation and self-amplified spontaneous emission generated by chicane-compressed electron beams

    SciTech Connect

    Lumpkin, A.H.; Dejus, R.J.; Sereno, N.S.; /Argonne

    2009-02-01

    Observations of strongly enhanced optical transition radiation (OTR) following significant bunch compression of photoinjector beams by a chicane have been reported during the commissioning of the Linac Coherent Light Source (LCLS) accelerator and recently at the Advanced Photon Source (APS) linac. These localized transverse spatial features involve signal enhancements of nearly a factor of 10 and 100 in the APS case at the 150-MeV and 375-MeV OTR stations, respectively. They are consistent with a coherent process seeded by noise and may be evidence of a longitudinal space charge (LSC) microbunching instability which leads to coherent OTR (COTR) emissions. Additionally, we suggest that localized transverse structure in the previous self-amplified spontaneous emission (SASE) free-electron laser (FEL) data at APS in the visible-UV regime as reported at FEL02 may be attributed to such beam structure entering the FEL undulators and inducing the SASE startup at those structures. Separate beam structures 120 microns apart in x and 2.9 nm apart in wavelength were reported. The details of these observations and operational parameters will be presented.

  13. Coherent optical transition radiation and self-amplified spontaneous emission generated by chicane-compressed electron beams

    NASA Astrophysics Data System (ADS)

    Lumpkin, A. H.; Dejus, R. J.; Sereno, N. S.

    2009-04-01

    Observations of strongly enhanced optical transition radiation (OTR) following significant bunch compression of photoinjector beams by a chicane have been reported during the commissioning of the Linac Coherent Light Source accelerator and recently at the Advanced Photon Source (APS) linac. These localized transverse spatial features involve signal enhancements of nearly a factor of 10 and 100 in the APS case at the 150-MeV and 375-MeV OTR stations, respectively. They are consistent with a coherent process seeded by noise and may be evidence of a longitudinal space charge microbunching instability which leads to coherent OTR emissions. Additionally, we suggest that localized transverse structure in the previous self-amplified spontaneous emission (SASE) free-electron laser (FEL) data at APS in the visible regime as reported at FEL02 may be attributed to such beam structure entering the FEL undulators and inducing the SASE startup at those “prebunched” structures. Separate beam structures 120 microns apart in x and 2.9 nm apart in wavelength were reported. The details of these observations and operational parameters will be presented.

  14. Spontaneous emission spectra and quantum light-matter interactions from a strongly coupled quantum dot metal-nanoparticle system

    NASA Astrophysics Data System (ADS)

    van Vlack, C.; Kristensen, Philip Trøst; Hughes, S.

    2012-02-01

    We investigate the quantum optical properties of a quantum-dot dipole emitter coupled to a finite-size metal nanoparticle using a photon Green-function technique that rigorously quantizes the electromagnetic fields. We first obtain pronounced Purcell factors and photonic Lamb shifts for both a 7- and 20-nm-radius metal nanoparticle, without adopting a dipole approximation. We then consider a quantum-dot photon emitter positioned sufficiently near the metal nanoparticle so that the strong-coupling regime is possible. Accounting for nondipole interactions, quenching, and photon transport from the dot to the detector, we demonstrate that the strong-coupling regime should be observable in the far-field spontaneous emission spectrum, even at room temperature. The vacuum-induced emission spectra show that the usual vacuum Rabi doublet becomes a rich spectral triplet or quartet with two of the four peaks anticrossing, which survives in spite of significant nonradiative decays. We discuss the emitted light spectrum and the effects of quenching for two different dipole polarizations.

  15. IL28B single-nucleotide polymorphism rs12979860 is associated with spontaneous HIV control in white subjects.

    PubMed

    Machmach, Kawthar; Abad-Molina, Christina; Romero-Sánchez, María C; Abad, María A; Ferrando-Martínez, Sara; Genebat, Miguel; Pulido, Ildefonso; Viciana, Pompeyo; González-Escribano, María F; Leal, Manuel; Ruiz-Mateos, Ezequiel

    2013-02-15

    The single-nucleotide polymorphism (SNP) rs12979860 near the IL28B gene has been associated with the spontaneous clearance of hepatitis C virus. We sought to determine whether this SNP could be associated with the spontaneous control of human immunodeficiency virus (HIV) infection. We studied the prevalence of the IL28B CC genotype among 53 white HIV controllers, compared with the prevalence among 389 HIV-infected noncontrollers. We found that the IL28B CC genotype was independently associated with spontaneous HIV control (odds ratio [OR], 2.669; P = .017), as were female sex (OR, 7.077; P ≤ .001) and the presence of HLA-B57 and/or B27 (OR, 3.080; P = .017). This result supports the idea that common host mechanisms are involved in the spontaneous control of these 2 chronic infections.

  16. Averaged kinetic temperature controlling algorithm: Application to spontaneous alloying in microclusters

    NASA Astrophysics Data System (ADS)

    Kobayashi, Taizo R.; Ikeda, Kensuke S.; Shimizu, Yasushi; Sawada, Shin-ichi

    2003-04-01

    A simple algorithm of velocity scaling is proposed for the isothermal simulation of nonequilibrium relaxation processes accompanied with heat generation or absorption. The algorithm controls the kinetic temperature averaged over an arbitrary time interval at an arbitrary relaxation rate and at an arbitrary velocity scaling interval. The general conditions of controlling temperature are derived analytically and criteria for stable control are established. Our algorithm is applied to simulating the effect of substrate on the "spontaneous alloying" process of metal microclusters [H. Yasuda, H. Mori, M. Komatsu, K. Takeda, and H. Fujita, J. Electron Microsc. 41, 267 (1992)]. The results are compared with the results obtained by the Langevin algorithm in which the kinetic energy of every atom is controlled by respective stochastic heat reservoir. In spite of the marked difference between the two algorithms the relaxation dynamics agree very well in quantity over a sufficient wide range of control parameters.

  17. Characterization of the spontaneous light emission of the PMTs used in the Double Chooz experiment

    NASA Astrophysics Data System (ADS)

    Abe, Y.; Abrahão, T.; Alt, C.; Appel, S.; Bekman, I.; Bergevin, M.; Bezerra, T. J. C.; Bezrukov, L.; Blucher, E.; Brugière, T.; Buck, C.; Busenitz, J.; Cabrera, A.; Calvo, E.; Camilleri, L.; Carr, R.; Cerrada, M.; Chauveau, E.; Chimenti, P.; Collin, A. P.; Conover, E.; Conrad, J. M.; Crespo-Anadón, J. I.; Crum, K.; Cucoanes, A. S.; Damon, E.; Dawson, J. V.; de Kerret, H.; Dhooghe, J.; Dietrich, D.; Djurcic, Z.; dos Anjos, J. C.; Dracos, M.; Etenko, A.; Fallot, M.; Felde, J.; Fernandes, S. M.; Fischer, V.; Franco, D.; Franke, M.; Furuta, H.; Gil-Botella, I.; Giot, L.; Göger-Neff, M.; Gomez, H.; Gonzalez, L. F. G.; Goodenough, L.; Goodman, M. C.; Haag, N.; Hara, T.; Haser, J.; Hellwig, D.; Hofmann, M.; Horton-Smith, G. A.; Hourlier, A.; Ishitsuka, M.; Jiménez, S.; Jochum, J.; Jollet, C.; Kaether, F.; Kalousis, L. N.; Kamyshkov, Y.; Kaneda, M.; Kaplan, D. M.; Kawasaki, T.; Kemp, E.; Kryn, D.; Kuze, M.; Lachenmaier, T.; Lane, C. E.; Lasserre, T.; Letourneau, A.; Lhuillier, D.; Lima, H. P., Jr.; Lindner, M.; López-Castaño, J. M.; LoSecco, J. M.; Lubsandorzhiev, B.; Lucht, S.; Maeda, J.; Mariani, C.; Maricic, J.; Martino, J.; Matsubara, T.; Mention, G.; Meregaglia, A.; Miletic, T.; Minotti, A.; Nagasaka, Y.; Navas-Nicolás, D.; Novella, P.; Nunokawa, H.; Obolensky, M.; Onillon, A.; Osborn, A.; Palomares, C.; Pepe, I. M.; Perasso, S.; Porta, A.; Pronost, G.; Reichenbacher, J.; Reinhold, B.; Röhling, M.; Roncin, R.; Rybolt, B.; Sakamoto, Y.; Santorelli, R.; Schilithz, A. C.; Schönert, S.; Schoppmann, S.; Shaevitz, M. H.; Sharankova, R.; Shrestha, D.; Sibille, V.; Sinev, V.; Skorokhvatov, M.; Smith, E.; Soiron, M.; Spitz, J.; Stahl, A.; Stancu, I.; Stokes, L. F. F.; Strait, M.; Suekane, F.; Sukhotin, S.; Sumiyoshi, T.; Sun, Y.; Svoboda, R.; Terao, K.; Tonazzo, A.; Trinh Thi, H. H.; Valdiviesso, G.; Vassilopoulos, N.; Verdugo, A.; Veyssiere, C.; Vivier, M.; von Feilitzsch, F.; Wagner, S.; Walsh, N.; Watanabe, H.; Wiebusch, C.; Wurm, M.; Yang, G.; Yermia, F.; Zimmer, V.

    2016-08-01

    During the commissioning of the first of the two detectors of the Double Chooz experiment, an unexpected and dominant background caused by the emission of light inside the optical volume has been observed. A specific study of the ensemble of phenomena called Light Noise has been carried out in-situ, and in an external laboratory, in order to characterize the signals and to identify the possible processes underlying the effect. Some mechanisms of instrumental noise originating from the PMTs were identified and it has been found that the leading one arises from the light emission localized on the photomultiplier base and produced by the combined effect of heat and high voltage across the transparent epoxy resin covering the electric components. The correlation of the rate and the amplitude of the signal with the temperature has been observed. For the first detector in operation the induced background has been mitigated using online and offline analysis selections based on timing and light pattern of the signals, while a modification of the photomultiplier assembly has been implemented for the second detector in order to blacken the PMT bases.

  18. Control emissions from marine vessel loading

    SciTech Connect

    Lawrence, G.N.; Cross, S.R.

    1994-03-01

    Regulations set by the US Coast Guard require safety measures during the loading of marine vessels connected to vapor collection systems. These regulations (which were promulgated in July 1990) immediately impacted all companies involved with the loading of benzene, due to previously enacted US Environmental Protection Agency regulations governing benzene transfer. In addition, regulations issued by the states of California, New Jersey, and Louisiana impose additional marine emission control requirements. These regulations effectively work together--the federal or state environmental rule first requires the collection of the vapors generate from vessel loading, and then the Coast Guard regulation governs the safety features that must be applied to the system. Depending on the vapor pressure of the chemical, a 10,000-barrel barge may emit over one ton of chemical to the atmosphere. Such large volumes make marine loading a prime target for the push to further reduce atmospheric pollution, and its is a good be that many more companies will be asked to look at the recovery of vapors during the loading of marine vessels. This article will aid the engineer who may be asked to evaluate the various methods of controlling emissions from vessel loading. It provides some guidance on the requirements of the Coast Guard regulations and briefly outlines some of the technologies that have been used to process the collected vapors. Some important design considerations unique to marine systems are discussed to help engineers avoid some of the potential pitfalls. Finally, some estimated costs are provided for two common types of marine vapor control systems.

  19. Implications of diesel emissions control failures to emission factors and road transport NOx evolution

    NASA Astrophysics Data System (ADS)

    Ntziachristos, Leonidas; Papadimitriou, Giannis; Ligterink, Norbert; Hausberger, Stefan

    2016-09-01

    Diesel NOx emissions have been at the forefront of research and regulation scrutiny as a result of failures of late vehicle technologies to deliver on-road emissions reductions. The current study aims at identifying the actual emissions levels of late light duty vehicle technologies, including Euro 5 and Euro 6 ones. Mean NOx emission factor levels used in the most popular EU vehicle emission models (COPERT, HBEFA and VERSIT+) are compared with latest emission information collected in the laboratory over real-world driving cycles and on the road using portable emissions measurement systems (PEMS). The comparison shows that Euro 5 passenger car (PC) emission factors well reflect on road levels and that recently revealed emissions control failures do not call for any significant corrections. However Euro 5 light commercial vehicles (LCVs) and Euro 6 PCs in the 2014-2016 period exhibit on road emission levels twice as high as used in current models. Moreover, measured levels vary a lot for Euro 6 vehicles. Scenarios for future evolution of Euro 6 emission factors, reflecting different degree of effectiveness of emissions control regulations, show that total NOx emissions from diesel Euro 6 PC and LCV may correspond from 49% up to 83% of total road transport emissions in 2050. Unless upcoming and long term regulations make sure that light duty diesel NOx emissions are effectively addressed, this will have significant implications in meeting future air quality and national emissions ceilings targets.

  20. Coke quench car emission control system

    SciTech Connect

    Baum, J.P.

    1983-07-19

    A coke quench car emission control system includes a coke car and a filter car connected in tandem for joint movement on rails disposed adjacent a coke oven. A hood and recuperator are mounted on a third car disposed on auxiliary rails which extend longitudinally along the upper portions of both the quench car and the filter car and in end-wise alignment. The hood is adapted to be coupled to the coke oven for receiving coke during a pushing operation. The recuperation has an inlet coupled to the hood for receiving emissions and withdrawing heat therefrom. The recuperator also has an outlet which is disposed adjacent the inlet of a filter system mounted on the filter car, when the third car is positioned atop the quench car. The third car is sized so that it can be moved on the auxiliary rails from a position atop the quench car to a position atop the filter car whereby the quench car can be exposed for a quenching operation.

  1. Control of one-dimensional magnetism in graphene via spontaneous hydrogenation of the grain boundary.

    PubMed

    Yin, Wan-Jian; Wei, Su-Huai; Yan, Yanfa

    2013-06-07

    We propose that control of one-dimensional (1D) magnetism in graphene could be made easier by spontaneous hydrogenation of chemically reactive grain boundaries (GBs) in polycrystalline graphenes. Unlike pristine graphene, where hydrogen adsorption favors the formation of zero-dimensional (0D) clusters, the defect cores (pentagon, heptagon and octagon) at the GBs in polycrystalline graphene promote hydrogenation along the GBs. The hydrogenation in polycrystalline graphene starts at the GBs, proceeds gradually towards the grain interior (GI) and results in smooth 1D graphane-graphene interfaces. Our calculations show that the type (ferro- or antiferro-magnetism) and strength of the magnetism can be controlled by controlling the orientation of GBs. Since GBs in single-layer graphenes can be fabricated in a controllable way in experiments, the hydrogenation of GBs could be a unique method to realize large-area magnetic graphenes for future spintronic applications.

  2. Ionic strength and pH as control parameters for spontaneous surface oscillations.

    PubMed

    Kovalchuk, N M; Pimienta, V; Tadmouri, R; Miller, R; Vollhardt, D

    2012-05-01

    A system far from equilibrium, where the surfactant transfer from a small drop located in the aqueous bulk to the air-water interface results in spontaneous nonlinear oscillations of surface tension, is theoretically and experimentally considered. The oscillations in this system are the result of periodically arising and terminating Marangoni instability. The surfactant under consideration is octanoic acid, the dissociated form of which is much less surface-active than the protonated form. Numerical simulations show how the system behavior can be controlled by changes in pH and ionic strength of the aqueous phase. The results of numerical simulations are in good agreement with experimental data.

  3. Pilot randomized controlled trial of Reciprocal Imitation Training for teaching elicited and spontaneous imitation to children with autism.

    PubMed

    Ingersoll, Brooke

    2010-09-01

    Children with autism exhibit significant deficits in imitation skills. Reciprocal Imitation Training (RIT), a naturalistic imitation intervention, was developed to teach young children with autism to imitate during play. This study used a randomized controlled trial to evaluate the efficacy of RIT on elicited and spontaneous imitation skills in 21 young children with autism. Results found that children in the treatment group made significantly more gains in elicited and spontaneous imitation, replicating previous single-subject design studies. Number of spontaneous play acts at pre-treatment was related to improvements in imitation during the intervention, suggesting that children with a greater play repertoire make greater gains during RIT.

  4. Rat gastroduodenal motility in vivo: interaction of GABA and VIP in control of spontaneous relaxations.

    PubMed

    Krantis, A; Mattar, K; Glasgow, I

    1998-11-01

    Spontaneous relaxations occurring within motor activity in the rat gastroduodenum in vivo can be distinguished by their dependence on either nitric oxide (NO) or ATP. We examined the interaction of gamma-aminobutyric acid (GABA) and vasoactive intestinal peptide (VIP) within pathways controlling this activity in the antrum (S) and duodenum (D) of anesthetized Sprague-Dawley rats, using miniaturized extraluminal foil strain gauges oriented perpendicular to (S1, D1) or in the axis of (S2) the circular smooth muscle. The NO synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME; 10 mg/kg iv) attenuated (P < 0.05) antral relaxations and, in the duodenum, nonpropagating "intergroup" relaxations. The GABAA receptor antagonist bicuculline (350 micrograms/kg sc) had similar effects. The GABAA agonist 3-amino-1-propanesulfonic acid stimulated L-NAME-sensitive relaxations at S1 and D1. Propagating "grouped" responses were unchanged. VIP (6 micrograms/kg iv) always induced a relaxation of the duodenum, which was attenuated by bicuculline and L-NAME. VIP caused simultaneous responses at S1 and S2; however, the antrum displayed either contraction or relaxation in response to VIP. All antral relaxations in response to VIP were attenuated (P < 0. 05) by L-NAME; however, only VIP-induced relaxations at S1 were sensitive to bicuculline. VIP-induced contractions were also unaffected. GABAA receptors mediate the pathway(s) controlling NO-related spontaneous relaxations of the antrum and duodenal circular muscle. All VIP-induced relaxations are mediated by NO. Spontaneous relaxations of the rat gastroduodenum include responses that involve a GABAAergic NO-related pathway, which is targeted by VIP. In addition, VIP can target NO relaxations of the antrum via other pathways.

  5. Towards Monodisperse Star-Shaped Ladder-Type Conjugated Systems: Design, Synthesis, Stabilized Blue Electroluminescence, and Amplified Spontaneous Emission.

    PubMed

    Jiang, Yi; Fang, Mei; Chang, Si-Ju; Huang, Jin-Jin; Chu, Shuang-Quan; Hu, Shan-Ming; Liu, Cheng-Fang; Lai, Wen-Yong; Huang, Wei

    2017-02-14

    A novel series of monodisperse star-shaped ladder-type oligo(p-phenylene)s, named as TrL-n (n=1-3), have been explored. Their thermal and electrochemical properties, fluorescence transients, photoluminescence quantum yields, density functional theory calculations, electroluminescence (EL) and amplified spontaneous emission (ASE) properties have been systematically investigated to unravel the molecular design on optoelectronic properties. The resulting materials showed excellent structural perfection, free of chemical defects, and exhibited great thermal stability (Td : 404-418 °C and Tg : 147-184 °C) and amorphous glassy morphologies. Compared with their corresponding linear counterparts FL-m (m=1-3), TrL-n showed only little bathochromic shifts (5-12 nm) for the absorption maxima λmax in both solution and films. The star-shaped ladder-type compounds exhibited enhanced optical stability and suppressed low-energy emission. Their EL spectra exhibited excellent stability with increasing the driving voltage from 6 to 12 V. Moreover, superior low ASE thresholds were recorded for TrL-n compared with FL-m. Rather low ASE threshold (29 nJ per pulse or 1.60 μJ cm(-2) ) was recorded for TrL-3, demonstrating their promising potential as excellent gain media. This study provides a novel design concept to develop monodisperse star-shaped ladder-type materials with excellent structural perfection, which are vital for shedding light on exploring robust organic emitters for optoelectronic applications.

  6. Powerful linearly-polarized high-order random fiber laser pumped by broadband amplified spontaneous emission source

    NASA Astrophysics Data System (ADS)

    Xu, Jiangming; Zhou, Pu; Leng, Jinyong; Wu, Jian; Zhang, Hanwei

    2016-10-01

    A great deal of attention has been drawn to Random fiber lasers (RFLs) for their typical features of modeless, cavity-less and low coherence length. However, most previously reported high power RFLs employ narrowband fiber lasers as the pump source, thus inducing the self-pulsing transferring from pump source to output Stokes. In this contribution, linearly-polarized RFL pumped by broadband amplified-spontaneous-emission (ASE) is demonstrated and continuous-wave (CW) high order Stokes can be obtained.With 30.6 W pump injected into the half-opened cavity, 23.51 W the 2nd order Stokes centered at 1178 nm with a full width at half-maximum linewidth of 1.73 nm and polarization extinction ratio of about 25 dB can be obtained. The standard deviation and peak-vale value of the 2nd order Stokes light at maximal output power is just 0.47% and 4.10%, which indicates the good power stability. Significantly, the corresponding quantum efficiency of the 1st and 2nd order Stokes light is about 87% and 85%, and almost all pump photons are converted into Stokes photons. As far as we know, it is the highest power ever reported from linearly polarized RFL, and further power scaling is available in the case of more powerful pump source and optimization of system parameters.

  7. Efficiency enhancement in seeded and self-amplified spontaneous emission free-electron lasers by means of a tapered wiggler

    SciTech Connect

    Freund, H. P.; Miner, W. H. Jr.

    2009-06-01

    The enhancement of the efficiency in free-electron lasers (FELs) through the use of a tapered wiggler is well known. The physics of the tapered wiggler interaction has been studied in theory and simulation, and large efficiency enhancements have been observed in the laboratory in oscillators and seeded amplifiers. In this paper, we study the differences in the tapered wiggler interaction between seeded amplifiers and in FELs that start up from noise and grow to saturation in a single pass through the wiggler. This configuration is commonly referred to as self-amplified spontaneous emission (SASE). In comparison with seeded amplifiers, SASE FELs exhibit shot-to-shot fluctuations due to random phase noise in the electron bunches, and our purpose in this paper is to determine the effect of this phase noise on the tapered wiggler interaction. To this end, we study the interaction numerically using the MEDUSA simulation code for seeded and SASE FELs operating in the infrared regime. The results of the simulations indicate that the overall efficiencies of the seeded and SASE FELs are comparable for a uniform wiggler but that the output spectrum for the SASE FEL is much broader than for the seeded case. For a tapered wiggler, the efficiency enhancement in the SASE FEL is less than that found in the seeded example due to the broader excited spectrum that detunes the tapered wiggler interaction.

  8. Powerful linearly-polarized high-order random fiber laser pumped by broadband amplified spontaneous emission source

    PubMed Central

    Xu, Jiangming; Zhou, Pu; Leng, Jinyong; Wu, Jian; Zhang, Hanwei

    2016-01-01

    A great deal of attention has been drawn to Random fiber lasers (RFLs) for their typical features of modeless, cavity-less and low coherence length. However, most previously reported high power RFLs employ narrowband fiber lasers as the pump source, thus inducing the self-pulsing transferring from pump source to output Stokes. In this contribution, linearly-polarized RFL pumped by broadband amplified-spontaneous-emission (ASE) is demonstrated and continuous-wave (CW) high order Stokes can be obtained.With 30.6 W pump injected into the half-opened cavity, 23.51 W the 2nd order Stokes centered at 1178 nm with a full width at half-maximum linewidth of 1.73 nm and polarization extinction ratio of about 25 dB can be obtained. The standard deviation and peak-vale value of the 2nd order Stokes light at maximal output power is just 0.47% and 4.10%, which indicates the good power stability. Significantly, the corresponding quantum efficiency of the 1st and 2nd order Stokes light is about 87% and 85%, and almost all pump photons are converted into Stokes photons. As far as we know, it is the highest power ever reported from linearly polarized RFL, and further power scaling is available in the case of more powerful pump source and optimization of system parameters. PMID:27725759

  9. Unregulated emissions from a heavy-duty diesel engine with various fuels and emission control systems.

    PubMed

    Tang, Shida; Frank, Brian P; Lanni, Thomas; Rideout, Greg; Meyer, Norman; Beregszaszy, Chris

    2007-07-15

    This study evaluated the effects of various combinations of fuels and emission control technologies on exhaust emissions from a heavy-duty diesel engine tested on an engine dynamometer. Ten fuels were studied in twenty four combinations of fuel and emission control technology configurations. Emission control systems evaluated were diesel oxidation catalyst (DOC), continuously regenerating diesel particulate filter (CRDPF), and the CRDPF coupled with an exhaust gas recirculation system (EGRT). The effects of fuel type and emission control technology on emissions of benzene, toluene, ethylbenzene, xylene (BTEX), and 1,3-butadiene, elemental carbon and organic carbon (EC/OC), carbonyls, polycyclic aromatic hydrocarbons (PAHs), and nitro-PAHs (n-PAHs) are presented in this paper. Regulated gaseous criteria pollutants of total hydrocarbons (THC), carbon monoxide (CO), oxides of nitrogen (NO(x)) and particulate matter (PM) emissions have been reported elsewhere. In general, individual unregulated emission with a CRDPF or an EGRT system is similar (at very low emission level) or much lower than that operating solely with a DOC and choosing a "best" fuel. The water emulsion PuriNO(x) fuel exhibited higher BTEX, carbonyls and PAHs emissions compared to other ultralow sulfur diesel (ULSD) fuels tested in this study while n-PAH emissions were comparable to that from other ULSD fuels. Naphthalene accounted for greater than 50% of the total PAH emissions in this study and there was no significant increase of n-PAHs with the usage of CRDPF.

  10. Organic Crystals with Near-Infrared Amplified Spontaneous Emissions Based on 2'-Hydroxychalcone Derivatives: Subtle Structure Modification but Great Property Change.

    PubMed

    Cheng, Xiao; Wang, Kai; Huang, Shuo; Zhang, Houyu; Zhang, Hongyu; Wang, Yue

    2015-07-13

    A series of highly efficient deep red to near-infrared (NIR) emissive organic crystals 1-3 based on the structurally simple 2'-hydroxychalcone derivatives were synthesized through a simple one-step condensation reaction. Crystal 1 displays the highest quantum yield (Φf) of 0.32 among the reported organic single crystals with an emission maximum (λem) over 710 nm. Comparison between the bright emissive crystals 1-3 and the nearly nonluminous compounds 4-7 clearly gives evidence that a subtle structure modification can arouse great property changes, which is instructive in designing new high-efficiency organic luminescent materials. Notably, crystals 1-3 exhibit amplified spontaneous emissions (ASE) with extremely low thresholds. Thus, organic deep red to NIR emissive crystals with very high Φf have been obtained and are found to display the first example of NIR fluorescent crystal ASE.

  11. Purcell enhancement of fast-dephasing spontaneous emission from electron-hole droplets in high-Q silicon photonic crystal nanocavities

    NASA Astrophysics Data System (ADS)

    Sumikura, Hisashi; Kuramochi, Eiichi; Taniyama, Hideaki; Notomi, Masaya

    2016-11-01

    We have observed electron-hole droplet emission enhanced by silicon photonic crystal nanocavities with different Q values and simulated their Purcell effect using a semiclassical theory considering the temporal dephasing of the emission. When the photon loss rate of the nanocavities is smaller than the dephasing rate of the emission, the cavity-enhanced integrated photoluminescence (PL) intensity is unchanged by the cavity Q value. This is because the Purcell enhancement of the spontaneous emission rate is saturated in a high-Q region. In contrast, the peak intensity of the cavity-enhanced PL is proportional to the cavity Q value without saturation. These results suggest that a high-Q nanocavity is suitable for fabricating bright narrowband light emitting devices that concentrate the broadband emission energy of fast-dephasing emitters in a narrowband cavity resonance.

  12. Emissions control for ground power gas turbines

    NASA Technical Reports Server (NTRS)

    Rudney, R. A.; Priem, R. J.; Juhasz, A. J.; Anderson, D. N.; Mroz, T. S.; Mularz, E. J.

    1977-01-01

    The similarities and differences of emissions reduction technology for aircraft and ground power gas turbines is described. The capability of this technology to reduce ground power emissions to meet existing and proposed emissions standards is presented and discussed. Those areas where the developing aircraft gas turbine technology may have direct application to ground power and those areas where the needed technology may be unique to the ground power mission are pointed out. Emissions reduction technology varying from simple combustor modifications to the use of advanced combustor concepts, such as catalysis, is described and discussed.

  13. Inhibitory Control under Threat: The Role of Spontaneous Eye Blinks in Post-Traumatic Stress Disorder.

    PubMed

    Rubin, Mikael; Hien, Denise A; Das, Dipanjana; Melara, Robert D

    2017-02-04

    This study is the first to explore spontaneous eye blink rate (sEBR) in individuals with post-traumatic stress disorder (PTSD). We investigated the connection between the magnitude of flanker interference in PTSD participants and sEBR during performance on a modified version of the Eriksen flanker task. As a peripheral measure of cognitive control and dopaminergic function, sEBR may illuminate the relationship between PTSD and executive function. Findings revealed a positive relationship between sEBR and flanker interference in participants diagnosed with PTSD, to both threat-related and neutral stimuli, whereas this relationship was negative in participants exposed to trauma but without PTSD and in healthy controls. Although our results are suggestive of sEBR as a potential physiological index of emotional management in PTSD, most of the correlations were not significant, indicating that further research with a larger sample is needed.

  14. Inhibitory Control under Threat: The Role of Spontaneous Eye Blinks in Post-Traumatic Stress Disorder

    PubMed Central

    Rubin, Mikael; Hien, Denise A.; Das, Dipanjana; Melara, Robert D.

    2017-01-01

    This study is the first to explore spontaneous eye blink rate (sEBR) in individuals with post-traumatic stress disorder (PTSD). We investigated the connection between the magnitude of flanker interference in PTSD participants and sEBR during performance on a modified version of the Eriksen flanker task. As a peripheral measure of cognitive control and dopaminergic function, sEBR may illuminate the relationship between PTSD and executive function. Findings revealed a positive relationship between sEBR and flanker interference in participants diagnosed with PTSD, to both threat-related and neutral stimuli, whereas this relationship was negative in participants exposed to trauma but without PTSD and in healthy controls. Although our results are suggestive of sEBR as a potential physiological index of emotional management in PTSD, most of the correlations were not significant, indicating that further research with a larger sample is needed. PMID:28165364

  15. An Easy Approach to Control β-Phase Formation in PFO Films for Optimized Emission Properties.

    PubMed

    Zhang, Qi; Chi, Lang; Hai, Gang; Fang, Yueting; Li, Xiangchun; Xia, Ruidong; Huang, Wei; Gu, Erdan

    2017-02-18

    We demonstrate a novel approach to control β-phase content generated in poly(9,9-dioctylfluorene) (PFO) films. A very small amount of paraffin oil was used as the additive to the PFO solution in toluene. The β-phase fraction in the spin-coated PFO films can be modified from 0% to 20% simply by changing the volume percentage of paraffin oil in the mixed solution. Organic light emitting diodes (OLEDs) and amplified spontaneous emission (ASE) study confirmed low β-phase fraction promise better OLEDs device, while high β-phase fraction benefits ASE performance.

  16. Three-dimensional simulations of the generation of one Angstrom radiation by a self-amplified spontaneous emission free-electron laser

    SciTech Connect

    Goldstein, J.C.; Elliott, C.J.; Schmitt, M.J.

    1990-01-01

    Three-dimensional numerical simulations of the generation of one Angstrom x-rays by a free-electron laser operating in the self-amplified spontaneous emission mode have been performed. Using model electron beam and wiggler parameters, we have investigated the length of wiggler needed to just avoid bandwidth broadening effects associated with gain saturation, and we have also obtained requirements for wiggler field errors to avoid significant loss of performance. 14 refs., 5 figs., 1 tab.

  17. Quantum-noise quenching in the correlated spontaneous-emission laser as a multiplicative noise process. II. Rigorous analysis including amplitude noise

    SciTech Connect

    Schleich, W.; Scully, M.O.; von Garssen, H.

    1988-04-15

    An analytical steady-state distribution for the phase difference psi in a correlated spontaneous-emission laser (CEL) is derived based on the amplitude and phase equations of a CEL. This distribution is shown to be an excellent approximation to that obtained from a numerical simulation of the complete set of CEL equations. In particular, the effects of amplitude noise on CEL operation are considered and it is shown that fluctuations in the relative amplitude are also noise quenched.

  18. Polyfunctional HIV-Specific Antibody Responses Are Associated with Spontaneous HIV Control

    PubMed Central

    Ackerman, Margaret E.; Mikhailova, Anastassia; Brown, Eric P.; Dowell, Karen G.; Walker, Bruce D.; Bailey-Kellogg, Chris; Suscovich, Todd J.; Alter, Galit

    2016-01-01

    Elite controllers (ECs) represent a unique model of a functional cure for HIV-1 infection as these individuals develop HIV-specific immunity able to persistently suppress viremia. Because accumulating evidence suggests that HIV controllers generate antibodies with enhanced capacity to drive antibody-dependent cellular cytotoxicity (ADCC) that may contribute to viral containment, we profiled an array of extra-neutralizing antibody effector functions across HIV-infected populations with varying degrees of viral control to define the characteristics of antibodies associated with spontaneous control. While neither the overall magnitude of antibody titer nor individual effector functions were increased in ECs, a more functionally coordinated innate immune–recruiting response was observed. Specifically, ECs demonstrated polyfunctional humoral immune responses able to coordinately recruit ADCC, other NK functions, monocyte and neutrophil phagocytosis, and complement. This functionally coordinated response was associated with qualitatively superior IgG3/IgG1 responses, whereas HIV-specific IgG2/IgG4 responses, prevalent among viremic subjects, were associated with poorer overall antibody activity. Rather than linking viral control to any single activity, this study highlights the critical nature of functionally coordinated antibodies in HIV control and associates this polyfunctionality with preferential induction of potent antibody subclasses, supporting coordinated antibody activity as a goal in strategies directed at an HIV-1 functional cure. PMID:26745376

  19. Quantum theory of two-photon correlated-spontaneous-emission lasers: Exact atom-field interaction Hamiltonian approach

    SciTech Connect

    Lu, N.; Zhu, S. )

    1989-11-15

    A quantum theory of two-photon correlated-spontaneous-emission lasers (CEL's) is developed, starting from the exact atom-field interaction Hamiltonian for cascade three-level atoms interacting with a single-mode radiation field. We consider the situation where the active atoms are prepared initially in a coherent superposition of three atomic levels and derive a master equation for the field-density operator by using a quantum theory for coherently pumped lasers. The master equation is transformed into a Fokker-Planck equation for the antinormal-ordering {ital Q} function. The drift coefficients of the Fokker-Planck equation enable us to study the steady-state operation of the two-photon CEL's analytically. We have studied both resonant two-photon CEL for which there is no threshold, and off-resonant two-photon CEL for which there exists a threshold. In both cases the initial atomic coherences provide phase locking, and squeezing in the phase quadrature of the field is found. The off-resonant two-photon CEL can build up from a vacuum when its linear gain is larger than the cavity loss (even without population inversion). Maximum squeezing is found in the no-population-inversion region with the laser intensities far below saturation in both cases, which are more than 90% for the resonant two-photon CEL and nearly 50% for the off-resonant one. Approximate steady-state {ital Q} functions are obtained for the resonant two-photon CEL and, in certain circumstances, for the off-resonant one.

  20. Spontaneous otoacoustic emissions in lizards: a comparison of the skink-like lizard families Cordylidae and Gerrhosauridae.

    PubMed

    Manley, Geoffrey A

    2009-09-01

    Lizard families can be grouped into larger units comprising those families that are closely related and whose auditory papillae are morphologically very similar. Based on the few species studied at that time [Manley, G.A., 1997. Diversity in hearing-organ structure and the characteristics of spontaneous otoacoustic emissions in lizards. In: Lewis, E.R., Long, G.R., Lyon, R.F., Narins, P.M., Steele, C.R. (Eds.), Diversity in Auditory Mechanics. World Scientific Publishing Co., Singapore, pp. 32-38], it was suggested that SOAE spectral patterns are strongly influenced by papillar anatomy. However, in two family groups, only one single species has been studied and we have no data on the regularity of pattern within related lizard families. Within the group of skink-like lizards, whose papillae all have salletal tectorial structures, the only detailed SOAE studies so far were on the skink genus Tiliqua. To ascertain the similarity of SOAE in species from families related to the skinks, we have studied one species each from two families that are closely related to skinks, the Cordylidae (Girdle-tailed lizards) and the Gerrhosauridae (plated lizards). Gerrhosaurus and Cordylus have a similar number and amplitudes of SOAE to Tiliqua (Skinkidae). The maximal frequency shifts of SOAE under the influence of external tones is also similar to that of Tiliqua. However, the maximal suppression and maximal facilitation are smaller. In general, the patterns displayed by the SOAE of lizards of these two new families are recognizably similar to the skink Tiliqua, suggesting that the anatomy of the papilla and the tectorial structures do play an important role in determining how SOAE are manifested in papillae that possess tectorial sallets.

  1. 40 CFR 52.987 - Control of hydrocarbon emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Control of hydrocarbon emissions. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Louisiana § 52.987 Control of hydrocarbon... compliance date of January 1, 1980. This shall result in an estimated hydrocarbon emission reduction of...

  2. 40 CFR 52.987 - Control of hydrocarbon emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Control of hydrocarbon emissions. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Louisiana § 52.987 Control of hydrocarbon... compliance date of January 1, 1980. This shall result in an estimated hydrocarbon emission reduction of...

  3. 40 CFR 52.987 - Control of hydrocarbon emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Control of hydrocarbon emissions. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Louisiana § 52.987 Control of hydrocarbon... compliance date of January 1, 1980. This shall result in an estimated hydrocarbon emission reduction of...

  4. 40 CFR 52.987 - Control of hydrocarbon emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Control of hydrocarbon emissions. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Louisiana § 52.987 Control of hydrocarbon... compliance date of January 1, 1980. This shall result in an estimated hydrocarbon emission reduction of...

  5. 40 CFR 52.987 - Control of hydrocarbon emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Control of hydrocarbon emissions. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Louisiana § 52.987 Control of hydrocarbon... compliance date of January 1, 1980. This shall result in an estimated hydrocarbon emission reduction of...

  6. 40 CFR 266.104 - Standards to control organic emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Standards to control organic emissions... Standards to control organic emissions. (a) DRE standard—(1) General. Except as provided in paragraph (a)(3... and removal efficiency (DRE) of 99.99% for all organic hazardous constituents in the waste feed....

  7. 40 CFR 266.104 - Standards to control organic emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Standards to control organic emissions... Standards to control organic emissions. (a) DRE standard—(1) General. Except as provided in paragraph (a)(3... and removal efficiency (DRE) of 99.99% for all organic hazardous constituents in the waste feed....

  8. 40 CFR 266.104 - Standards to control organic emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Standards to control organic emissions... Standards to control organic emissions. (a) DRE standard—(1) General. Except as provided in paragraph (a)(3... and removal efficiency (DRE) of 99.99% for all organic hazardous constituents in the waste feed....

  9. 40 CFR 266.104 - Standards to control organic emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Standards to control organic emissions... Standards to control organic emissions. (a) DRE standard—(1) General. Except as provided in paragraph (a)(3... and removal efficiency (DRE) of 99.99% for all organic hazardous constituents in the waste feed....

  10. 40 CFR 266.104 - Standards to control organic emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Standards to control organic emissions... Standards to control organic emissions. (a) DRE standard—(1) General. Except as provided in paragraph (a)(3... and removal efficiency (DRE) of 99.99% for all organic hazardous constituents in the waste feed....

  11. 40 CFR 266.106 - Standards to control metals emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Standards to control metals emissions... Standards to control metals emissions. (a) General. The owner or operator must comply with the metals standards provided by paragraphs (b), (c), (d), (e), or (f) of this section for each metal listed...

  12. 40 CFR 266.106 - Standards to control metals emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Standards to control metals emissions... Standards to control metals emissions. (a) General. The owner or operator must comply with the metals standards provided by paragraphs (b), (c), (d), (e), or (f) of this section for each metal listed...

  13. 40 CFR 266.106 - Standards to control metals emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Standards to control metals emissions... Standards to control metals emissions. (a) General. The owner or operator must comply with the metals standards provided by paragraphs (b), (c), (d), (e), or (f) of this section for each metal listed...

  14. 40 CFR 266.106 - Standards to control metals emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Standards to control metals emissions... Standards to control metals emissions. (a) General. The owner or operator must comply with the metals standards provided by paragraphs (b), (c), (d), (e), or (f) of this section for each metal listed...

  15. 40 CFR 266.106 - Standards to control metals emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Standards to control metals emissions... Standards to control metals emissions. (a) General. The owner or operator must comply with the metals standards provided by paragraphs (b), (c), (d), (e), or (f) of this section for each metal listed...

  16. Dynamic behavioural changes in the Spontaneously Hyperactive Rat: 1. Control by place, timing, and reinforcement rate.

    PubMed

    Williams, Jonathan; Sagvolden, Geir; Taylor, Eric; Sagvolden, Terje

    2009-03-17

    Several existing theoretical models of Attention Deficit Hyperactivity Disorder (ADHD) predict that a high or low learning rate contributes to some cases of ADHD; and that this is controlled by the dopamine signal. The Spontaneously Hypertensive (Hyperactive) Rat has an abnormal Dopamine Transporter (DAT), which is likely to be hypofunctional, thereby increasing the dopamine concentration and the learning rate. We therefore test the prediction that the SHR learns too fast. Using a variable interval reinforcement schedule, we looked for increased responding within each interval, at around the durations of the last three intervals. At the time predicted by the previous interval, SHR responded significantly (10%) more than their baseline rate, and control WKY rats similarly less than their baseline. At the time predicted by the second (and third) previous intervals, there were minor trends (and no change) in the same direction. In summary, at the times predicted, SHR respond more than control rats. The effect size is insufficient to account for all the differences from control rats, such as their nearly threefold greater operant responding. At the times when SHR increase responding, WKY suppress it. This demonstrates similar learning to the SHR but the opposite response, probably due to anxiety about the bang accompanying reinforcer delivery: WKY are known to have a very negative response to stress. Interval schedules with randomised interval lengths have considerable potential for assessing multiple causes of behaviour, particularly those acting over short timecourses. Alterations in learning rate are not a sufficient explanation for either SHR or ADHD difference from controls.

  17. Gaseous emissions from plants in controlled environments

    NASA Technical Reports Server (NTRS)

    Dubay, Denis T.

    1988-01-01

    Plant growth in a controlled ecological life support system may entail the build-up over extended time periods of phytotoxic concentrations of volatile organic compounds produced by the plants themselves. Ethylene is a prominent gaseous emission of plants, and is the focus of this report. The objective was to determine the rate of ethylene release by spring wheat, white potato, and lettuce during early, middle, and late growth stages, and during both the light and dark segments of the diurnal cycle. Plants grown hydroponically using the nutrient film technique were covered with plexiglass containers for 4 to 6 h. At intervals after enclosure, gas samples were withdrawn with a syringe and analyzed for ethylene with a gas chromatograph. Lettuce produced 10 to 100 times more ethylene than wheat or potato, with production rates ranging from 141 to 158 ng g-dry/wt/h. Wheat produced from 1.7 to 14.3 ng g-dry/wt/h, with senescent wheat producing the least amount and flowering wheat the most. Potatoes produced the least amount of ethylene, with values never exceeding 5 ng g-dry/wt/h. Lettuce and potatoes each produced ethylene at similar rates whether in dark period or light period. Ethylene sequestering of 33 to 43 percent by the plexiglass enclosures indicated that these production estimates may be low by one-third to one-half. These results suggest that concern for ethylene build-up in a contained atmosphere should be greatest when growing lettuce, and less when growing wheat or potato.

  18. Temperature Dependence of Factors Controlling Isoprene Emissions

    NASA Technical Reports Server (NTRS)

    Duncan, Bryan N.; Yoshida, Yasuko; Damon, Megan R.; Douglass, Anne R.; Witte, Jacquelyn C.

    2009-01-01

    We investigated the relationship of variability in the formaldehyde (HCHO) columns measured by the Aura Ozone Monitoring Instrument (OMI) to isoprene emissions in the southeastern United States for 2005-2007. The data show that the inferred, regional-average isoprene emissions varied by about 22% during summer and are well correlated with temperature, which is known to influence emissions. Part of the correlation with temperature is likely associated with other causal factors that are temperature-dependent. We show that the variations in HCHO are convolved with the temperature dependence of surface ozone, which influences isoprene emissions, and the dependence of the HCHO column to mixed layer height as OMI's sensitivity to HCHO increases with altitude. Furthermore, we show that while there is an association of drought with the variation in HCHO, drought in the southeastern U.S. is convolved with temperature.

  19. Cold-start hydrocarbon emissions control

    SciTech Connect

    1995-10-01

    This article describes an effective, energy-efficient strategy for dealing with this problem using HC traps and heat-exchange related catalyst beds that have been successfully tested. The worldwide regulatory climate for continued and dramatic reductions in vehicle exhaust emissions will continue unabated for some time. The best known of these mandates includes California Air Resources Board`s Low Emission Vehicle (CARB LEV) program, the Ozone Transport Commission`s recent petition to the EPA for partial adoption of CARB`s LEV program, and the European Economic Community`s proposed staged multi-tier approach to reduce auto exhaust pollution. Since up to 70% of hydrocarbon tailpipe emissions occur during the cold-start portion of the Federal Test Procedure (FTP), significant reductions in total FTP HC emissions must include a cold-start HC abatement strategy.

  20. CO emissions in China: Uncertainties and implications of improved energy efficiency and emission control

    NASA Astrophysics Data System (ADS)

    Zhao, Yu; Nielsen, Chris P.; McElroy, Michael B.; Zhang, Lin; Zhang, Jie

    2012-03-01

    A bottom-up methodology and an improved database of emission factors combining the latest domestic field measurements are developed to estimate the emissions of anthropogenic CO from China at national and provincial levels. The CO emission factors for major economic sectors declined to varying degrees from 2005 to 2009, attributed to improved energy efficiency and/or emission control regulations. Total national CO emissions are estimated at 173 Tg for 2005 and have been relatively stable for subsequent years, despite fast growth of energy consumption and industrial production. While industry and transportation sources dominated CO emissions in developed eastern and north-central China, residential combustion played a much greater role in the less developed western provinces. The uncertainties of national Chinese CO emissions are quantified using Monte Carlo simulation at -20% to +45% (95% confidence interval). Due to poor understanding of emission factors and activity levels for combustion of solid fuels, the largest uncertainties are found for emissions from the residential sector. The trends of bottom-up emissions compare reasonably to satellite observation of CO columns and to ground observations of CO2-CO correlation slopes. The increase in the ratio for emissions of CO2 relative to CO suggests that China has successfully improved combustion efficiencies across its economy in recent years, consistent with national policies to improve energy efficiency and to control criteria air pollutants.

  1. Precipitation controls isoprene emissions from tropical ecosystems

    NASA Astrophysics Data System (ADS)

    Potosnak, M. J.; Gatti, L. V.; Guenther, A. B.; Karl, T.; Trostdorf, C. R.; Martins, W. C.; Rinne, H. J.; Yamazaki, A.

    2003-12-01

    Isoprene emissions from tropical regions account for a majority of isoprene produced globally. Current estimates of global isoprene emissions use meteorological inputs (temperature and light), ecosystem leaf area, and a time invariant, ecosystem specific emissions factor. This approach has been verified to work well for deciduous mid-latitude forests, but the approach has not been tested for tropical ecosystems where seasonality is induced by precipitation. Recent flux studies at two field stations in the tropics found strong effects of precipitation regime (dry vs. wet season) on isoprene emissions. A flux study conducted during the wet season (October 1999) at the La Selva Biological Station (10° 26' N, 83° 59' W, precipitation 4000 mm yr{-1}) found whole system isoprene emissions rates between 2--10 mg C m-2 h-1, while a second campaign during the dry season (April 2003) found values ranging 8--16 mg C m-2 h-1. This difference could not be explained by changes in ambient temperature or light using established emissions algorithms. The second field site near Santarém, Brazil in the Floresta Nacional do Tapajós (2° 51' S, 54° 58' W, precipitation 2000 mm yr{-1}), part of the Large scale Biosphere-atmosphere experiment in Amazônia (LBA), showed a similar pattern. Additionally, a 13 month isoprene concentration record at this station found a 4 fold increase during the dry season. Application of a one dimensional chemistry model predicts a similar change in isoprene source strength. A standard emission model using temperature and light could not account for these seasonal changes, but adding an empirical term that accounted for previous precipitation greatly enhanced the fit.

  2. Assessment and control of chrysotile asbestos emissions from unpaved roads

    NASA Astrophysics Data System (ADS)

    Serra, R. K.; Connor, M. A., Jr.

    1981-05-01

    The findings of field surveys and a test program to assess chrysotile asbestos emissions generated by vehicular use of unpaved roads surfaced with crushed serpentinite rock are presented. Included are discussions of Federal asbestos regulations, sampling and analysis procedures, human health effects, and various emission control techniques. The Enviromental Protection Agency believes that asbestos emissions which occur from unpaved roads and other dusty sources surfaced with serpentinite should be reduced to the greatest extent practical. Local, State, and Federal agencies responsible for road maintenance in the limited areas where asbestos emissions occur are in the best position to assess local conditions and implement the most appropriate control measures.

  3. Active control of excessive sound emission on a mobile device.

    PubMed

    Jeon, Se-Woon; Youn, Dae Hee; Park, Young-cheol; Lee, Gun-Woo

    2015-04-01

    During a phone conversation, loud vocal emission from the far-end to the near-end space can disturb nearby people. In this paper, the possibility of actively controlling such unwanted sound emission using a control source placed on the mobile device is investigated. Two different approaches are tested: Global control, minimizing the potential energy measured along a volumetric space surface, and local control, minimizing the squared sound pressure at a discrete point on the phone. From the test results, both approaches can reduce the unwanted sound emission by more than 6 dB in the frequency range up to 2 kHz.

  4. Effect of socio-cultural factors on spontaneous abortion in Burdur, Turkey: A population based case-control study

    PubMed Central

    Catak, Binali; Oner, Can; Sutlu, Sevinc; Kilinc, Selcuk

    2016-01-01

    Objective: To determine the sociocultural factors that have effect on spontaneous abortion in Burdur, Turkey. Methods: Study was designed as case-control study. The case group consist of 257 women whose pregnancies ended with spontaneous abortion. The control group consisted of 514 women whose pregnancy continued since 22 weeks and more during the study. Chi-square, and backward LR logistic regression were utilized in analyses. Results: In multifactorial-analyses it was determined that four factors (educational status of women, employment status of women, exposure to physical violence and non-receipt of ANC) created independent risk on spontaneous abortions. Conclusions: Pregnant women with these risk factors should be followed up more frequently and in a more qualified way in primary and secondary and tertiary health institutions. PMID:27882032

  5. Controlling laser emission by selecting crystal orientation

    NASA Astrophysics Data System (ADS)

    Chen, Lijuan; Han, Shujuan; Wang, Zhengping; Wang, Jiyang; Zhang, Huanjin; Yu, Haohai; Han, Shuo; Xu, Xinguang

    2013-01-01

    Based on the anisotropy of laser crystal, we demonstrate a method of adjusting laser emission by selecting crystal orientation. When the light propagating direction varies from a to c axis of Nd:LiGd(MoO4)2 crystal, emission wavelength exhibits a sensitive change of 1061 nm → 1061/1062 + 1068 nm → 1068 nm. The experimental discipline is well explained by a theoretical study of simulating on the spatial distribution of stimulated emission cross-section. This letter manifests that the laser property along non-principal-axis direction is also valuable for research and application, which breaks through the traditional custom of using laser materials processed along principal-axis.

  6. Decoupling activation and exhaustion of B cells in spontaneous controllers of HIV infection

    PubMed Central

    Sciaranghella, Gaia; Tong, Neath; Mahan, Alison E.; Suscovich, Todd J.; Alter, Galit

    2013-01-01

    Objective To define the impact of chronic viremia and associated immune activation on B-cell exhaustion in HIV infection. Design Progressive HIV infection is marked by B-cell anergy and exhaustion coupled with dramatic hypergammaglobulinemia. Although both upregulation of CD95 and loss of CD21 have been used as markers of infection-associated B-cell dysfunction, little is known regarding the specific profiles of dysfunctional B cells and whether persistent viral replication and its associated immune activation play a central role in driving B-cell dysfunction. Methods Multiparameter flow cytometry was used to define the profile of dysfunctional B cells. The changes in the expression of CD21 and CD95 were tracked on B-cell subpopulations in patients with differential control of viral replication. Results Although the emergence of exhausted, CD21low tissue-like memory B cells followed similar patterns in both progressors and controllers, the frequency of CD21low activated memory B cells was lower in spontaneous controllers. Conclusion Our results suggest that the loss of CD21 and the upregulation of CD95 occur as separate events during the development of B-cell dysfunction. The loss of CD21 is a marker of B-cell exhaustion induced in the absence of appreciable viral replication, whereas the upregulation of CD95 is tightly linked to persistent viral replication and its associated immune activation. Thus, these dysfunctional profiles potentially represent two functionally distinct states within the B-cell compartment. PMID:23135171

  7. Dynamic control of light emission faster than the lifetime limit using VO2 phase-change

    NASA Astrophysics Data System (ADS)

    Cueff, Sébastien; Li, Dongfang; Zhou, You; Wong, Franklin J.; Kurvits, Jonathan A.; Ramanathan, Shriram; Zia, Rashid

    2015-10-01

    Modulation is a cornerstone of optical communication, and as such, governs the overall speed of data transmission. Currently, the two main strategies for modulating light are direct modulation of the excited emitter population (for example, using semiconductor lasers) and external optical modulation (for example, using Mach-Zehnder interferometers or ring resonators). However, recent advances in nanophotonics offer an alternative approach to control spontaneous emission through modifications to the local density of optical states. Here, by leveraging the phase-change of a vanadium dioxide nanolayer, we demonstrate broadband all-optical direct modulation of 1.5 μm emission from trivalent erbium ions more than three orders of magnitude faster than their excited state lifetime. This proof-of-concept demonstration shows how integration with phase-change materials can transform widespread phosphorescent materials into high-speed optical sources that can be integrated in monolithic nanoscale devices for both free-space and on-chip communication.

  8. Emission control devices, fuel additive, and fuel composition changes.

    PubMed Central

    Piver, W T

    1977-01-01

    Emission control devices are installed to meet the exhaust standards of the Clean Air Act for carbon monoxide and hydrocarbons, and it is necessary to know, from a public health point of view, how exhaust emissions may be affected by changes in fuel additives and fuel composition. Since these topics are concerned with developing technologies, the available literature on exhaust emission characteristics and the limited information on health effects, is reviewed. PMID:71235

  9. Sulfur oxide adsorbents and emissions control

    DOEpatents

    Li, Liyu; King, David L.

    2006-12-26

    High capacity sulfur oxide absorbents utilizing manganese-based octahedral molecular sieve (Mn--OMS) materials are disclosed. An emissions reduction system for a combustion exhaust includes a scrubber 24 containing these high capacity sulfur oxide absorbents located upstream from a NOX filter 26 or particulate trap.

  10. Self-amplified spontaneous emission saturation at the Advanced Photon Source free-electron laser (abstract) (invited)

    NASA Astrophysics Data System (ADS)

    Moog, E. R.; Milton, S. V.; Arnold, N. D.; Benson, C.; Berg, W.; Biedron, S. G.; Borland, M.; Chae, Y.-C.; Dejus, R. J.; Den Hartog, P. K.; Deriy, B.; Erdmann, M.; Gluskin, E.; Huang, Z.; Kim, K.-J.; Lewellen, J. W.; Li, Y.; Lumpkin, A. H.; Makarov, O.; Nassiri, A.; Sajaev, V.; Soliday, R.; Tieman, B. J.; Trakhtenberg, E. M.; Travish, G.; Vasserman, I. B.; Vinokurov, N. A.; Wiemerslage, G.; Yang, B. X.

    2002-03-01

    Today, many bright photon beams in the ultraviolet and x-ray wavelength range are produced by insertion devices installed in specially designed third-generation storage rings. There is the possibility of producing photon beams that are orders of magnitude brighter than presently achieved at synchrotron sources, by using self-amplified spontaneous emission (SASE). At the Advanced Photon Source (APS), the low-energy undulator test line (LEUTL) free-electron laser (FEL) project was built to explore the SASE process in the visible through vacuum ultraviolet wavelength range. While the understanding gained in these experiments will guide future work to extend SASE FELs to shorter wavelengths, the APS FEL itself will become a continuously tunable, bright light source. Measurements of the SASE process to saturation have been made at 530 and 385 nm. A number of quantities were measured to confirm our understanding of the SASE process and to verify that saturation was reached. The intensity of the FEL light was measured versus distance along the FEL, and was found to flatten out at saturation. The statistical variation of the light intensity was found to be wide in the exponential gain region where the intensity is expected to be noisy, and narrower once saturation was reached. Absolute power measurements compare well with GINGER simulations. The FEL light spectrum at different distances along the undulator line was measured with a high-resolution spectrometer, and the many sharp spectral spikes at the beginning of the SASE process coalesce into a single peak at saturation. The energy spread in the electron beam widens markedly after saturation due to the number of electrons that transfer a significant amount of energy to the photon beam. Coherent transition radiation measurements of the electron beam as it strikes a foil provide additional confirmation of the microbunching of the electron beam. The quantities measured confirm that saturation was indeed reached. Details are

  11. Cooperative spontaneous emission of N atoms: Many-body eigenstates, the effect of virtual Lamb shift processes, and analogy with radiation of N classical oscillators

    SciTech Connect

    Svidzinsky, Anatoly A.; Chang, J.-T.; Scully, Marlan O.

    2010-05-15

    We consider collective emission of a single photon from a cloud of N two-level atoms (one excited, N-1 ground state). For a dense cloud the problem is reduced to finding eigenfunctions and eigenvalues of an integral equation. We discuss an exact analytical solution of this many-atom problem for a spherically symmetric atomic cloud. Some eigenstates decay much faster then the single atom decay rate, while the others undergo very slow decay. We show that virtual processes yield a small effect on the evolution of rapidly decaying states. However, they change the long time dynamics from exponential decay into a power-law behavior which can be observed experimentally. For trapped states virtual processes are much more important yielding additional decay channels which results in a slow decay of the otherwise trapped states. We also show that quantum mechanical treatment of spontaneous emission of weakly excited atomic ensemble is analogous to emission of N classical harmonic oscillators.

  12. Alternative control technology document for bakery oven emissions. Final report

    SciTech Connect

    Sanford, C.W.

    1992-12-01

    The document was produced in response to a request by the baking industry for Federal guidance to assist in providing a more uniform information base for State decision-making with regard to control of bakery oven emissions. The information in the document pertains to bakeries that produce yeast-leavened bread, rolls, buns, and similar products but not crackers, sweet goods, or baked foodstuffs that are not yeast leavened. Information on the baking processes, equipment, operating parameters, potential emissions from baking, and potential emission control options are presented. Catalytic and regenerative oxidation are identified as the most appropriate existing control technologies applicable to VOC emissions from bakery ovens. Cost analyses for catalytic and regenerative oxidation are included. A predictive formula for use in estimating oven emissions has been derived from source tests done in junction with the development of the document. Its use and applicability are described.

  13. Structure of the spontaneous emission spectra of high-{gamma} free electron lasers as measured at the Darmstadt (S-Dalinac) FEL

    SciTech Connect

    Renz, G.; Spindler, G.; Schlott, V.

    1995-12-31

    Recent spontaneous emission measurements at the Darmstadt infrared FEL indicate a relatively broad (down-shifted) spectrum with several intensity maxima. The typical features of the measured spectrum can be well reproduced by a numerical simulation comprising the 3-d electron dynamics in a realizable planar wiggler field, the spontaneous radiation according to the well-known Jackson formula, as well as the detection of the radiation with a finite aperture detector. An analytical consideration attributes the observed down-shift to the reduced Doppler up-shift of the radiation as observed under a finite angle with respect to the axis. The intensity peaks appear as a consequence of a modulation of the transverse velocity amplitudes of the electrons due to the betatron oscillation. The spectral spacing of these {open_quote}sidebands{close_quote} are roughly given by the Doppler up-shifted betatron frequency. Consequences for very high energy FELs will be discussed.

  14. Integrated emissions control system for residential CWS furnace

    SciTech Connect

    Balsavich, J.C. Jr.

    1991-11-01

    To meet the emission goals set by the Pittsburgh Energy Technology Center (PETC), Tecogen Inc. is developing a novel, integrated emission control system to control NO{sub x}, SO{sub 2}, and particulate emissions. At the heart of this system is a unique emissions control reactor for the control of SO{sub 2}. This reactor provides high sorbent particle residence time within the reactor while doing so in a very compact geometry. In addition to controlling SO{sub 2} emissions, the reactor provides a means of extracting a substantial amount of the particulates present in the combustion gases. Final cleanup of any fine particulates exiting the reactor, including respirable-sized particulates, is completed with the use of high efficiency bag filters. With SO{sub 2} and particulate emissions being dealt with by an emissions control reactor and bag filters, the control of NO{sub x} emissions needs to be addressed. Under a previous contract with PETC (contract No. AC22-87PC79650), Tecogen developed a residential-scale Coal Water Slurry (CWS) combustor. This combustor makes use of centrifugal forces, set up by a predominantly tangential flow field, to separate and confine larger unburned coal particles in the furnace upper chamber. Various partitions are used to retard the axial, downward flow of these particles, and thus maximize their residence time in the hottest section of the combustor. By operating this combustor under staged conditions, the local stoichiometry in the primary zone can be controlled in such a manner as to minimize NO{sub x} emissions.

  15. 40 CFR 89.110 - Emission control information label.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements of this section may be attached to a location other than the engine, in cases where the required... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission Standards... affix at the time of manufacture a permanent and legible label identifying each nonroad engine....

  16. Advanced Combustion and Emission Control Technical Team Roadmap

    SciTech Connect

    2013-06-01

    The Advanced Combustion and Emission Control (ACEC) Technical Team is focused on removing technical barriers to the commercialization of advanced, high-efficiency, emission-compliant internal combustion (IC) engines for light-duty vehicle powertrains (i.e., passenger car, minivan, SUV, and pickup trucks).

  17. Controls on methane emissions from Alnus glutinosa saplings.

    PubMed

    Pangala, Sunitha R; Gowing, David J; Hornibrook, Edward R C; Gauci, Vincent

    2014-02-01

    Recent studies have confirmed significant tree-mediated methane emissions in wetlands; however, conditions and processes controlling such emissions are unclear. Here we identify factors that control the emission of methane from Alnus glutinosa. Methane fluxes from the soil surface, tree stem surfaces, leaf surfaces and whole mesocosms, pore water methane concentrations and physiological factors (assimilation rate, stomatal conductance and transpiration) were measured from 4-yr old A. glutinosa trees grown under two artificially controlled water-table positions. Up to 64% of methane emitted from the high water-table mesocosms was transported to the atmosphere through A. glutinosa. Stem emissions from 2 to 22 cm above the soil surface accounted for up to 42% of total tree-mediated methane emissions. Methane emissions were not detected from leaves and no relationship existed between leaf surface area and rates of tree-mediated methane emissions. Tree stem methane flux strength was controlled by the amount of methane dissolved in pore water and the density of stem lenticels. Our data show that stem surfaces dominate methane egress from A. glutinosa, suggesting that leaf area index is not a suitable approach for scaling tree-mediated methane emissions from all types of forested wetland.

  18. X-RAY NONLINEAR OPTICAL PROCESSES IN ATOMS USING A SELF-AMPLIFIED SPONTANEOUS EMISSION FREE-ELECTRON LASER

    SciTech Connect

    Rohringer, N

    2008-08-08

    X-ray free electron lasers (xFEL) will open new avenues to the virtually unexplored territory of non-linear interactions of x rays with matter. Initially xFELs will be based on the principle of self-amplified spontaneous emission (SASE). Each SASE pulse consists of a number of coherent intensity spikes of random amplitude, i.e. the process is chaotic and pulses are irreproducible. The coherence time of SASE xFELs will be a few femtoseconds for a photon energy near 1 keV. The importance of coherence properties of light in non-linear optical processes was theoretically discovered in the early 1960s. In this contribution we will illustrate the impact of field chaoticity on x-ray non-linear optical processes on neon for photon energies around 1 keV and intensities up to 10{sup 18} W/cm{sup 2}. Resonant and non-resonant processes are discussed. The first process to be addressed is the formation of a double-core hole in neon by photoionization with x rays above 1.25 keV energy. In contrast to the long-wavelength regime, non-linear optical processes in the x-ray regime are characterized in general by sequential single-photon single-electron interactions. Despite this fact, the sequential absorption of multiple x-ray photons depends on the statistical properties of the radiation field. Treating the x rays generated by a SASE FEL as fully chaotic, a quantum-mechanical analysis of inner-shell two-photon absorption is performed. By solving a system of time-dependent rate equations, we demonstrate that double-core hole formation in neon via x-ray two-photon absorption is enhanced by chaotic photon statistics. At an intensity of 10{sup 16} W/cm{sup 2}, the statistical enhancement is about 30%, much smaller than typical values in the optical regime. The second part of this presentation discusses the resonant Auger effect of atomic neon at the 1s-3p transition (at 867.1 eV). For low X-ray intensity, the excitation process 1s {yields} 3p in Neon can be treated perturbatively. The

  19. Controlling quantum-dot light absorption and emission by a surface-plasmon field.

    PubMed

    Huang, Danhong; Easter, Michelle; Gumbs, Godfrey; Maradudin, A A; Lin, Shawn-Yu; Cardimona, D A; Zhang, Xiang

    2014-11-03

    The possibility for controlling both the probe-field optical gain and absorption, as well as photon conversion by a surface-plasmon-polariton near field is explored for a quantum dot located above a metal surface. In contrast to the linear response in the weak-coupling regime, the calculated spectra show an induced optical gain and a triply-split spontaneous emission peak resulting from the interference between the surface-plasmon field and the probe or self-emitted light field in such a strongly-coupled nonlinear system. Our result on the control of the mediated photon-photon interaction, very similar to the 'gate' control in an optical transistor, may be experimentally observable and applied to ultra-fast intrachip/interchip optical interconnects, improvement in the performance of fiber-optic communication networks, and developments of optical digital computers and quantum communications.

  20. Developments and advances in emission control technology. SP-1120

    SciTech Connect

    1995-12-31

    Automotive emission control is an increasingly complex subject that continues to be of vital importance. Tighter emission standards as well as requirements for increased emission system performance and durability have resulted in ongoing development and continuing advances in emission control technology. A great deal of attention continues to be focused on technologies for emission control during cold-start. Detailed analyses are required to determine fundamental mechanisms which govern emission control under a wide variety of operating conditions. Effects of possible catalyst poisons as well as the mechanical durability of aftertreatment systems are being evaluated. Engine, vehicle, and aftertreatment sensors are being utilized to monitor and ensure emission control performance. Improved analytical techniques are being used to help understand emissions problems and to suggest avenues to solutions. Papers assembled in this volume touch on all of these areas. Catalyst durability papers address issues related to hot vibration testing and catalyst durability based on substrate surface area. A variety of papers related to the chemical composition of fuels address issues such as fuel hydrocarbon and NO conversion in three-way catalysts, fuel composition effects on emissions in urban traffic, and fuel sulfur effects on catalysts and on-board diagnostics (OBD-II) systems. Information useful for understanding the performance of cold-start technologies is described in papers on a numerical method for predicting warm-up characteristics of catalysts systems, axial characterization of warmup and underfloor catalytic converters, and EHC impact on extended soak times. Other approaches for reducing cold-start emissions are addressed in papers on in-cylinder catalysts and the use of intake air oxygen enrichment technology. All papers have been processed separately for inclusion on the database.

  1. VOC from Vehicular Evaporation Emissions: Status and Control Strategy.

    PubMed

    Liu, Huan; Man, Hanyang; Tschantz, Michael; Wu, Ye; He, Kebin; Hao, Jiming

    2015-12-15

    Vehicular evaporative emissions is an important source of volatile organic carbon (VOC), however, accurate estimation of emission amounts and scientific evaluation of control strategy for these emissions have been neglected outside of the United States. This study provides four kinds of basic emission factors: diurnal, hot soak, permeation, and refueling. Evaporative emissions from the Euro 4 vehicles (1.6 kg/year/car) are about four times those of U.S. vehicles (0.4 kg/year/car). Closing this emissions gap would have a larger impact than the progression from Euro 3 to Euro 6 tailpipe HC emission controls. Even in the first 24 h of parking, China's current reliance upon the European 24 h diurnal standard results in 508 g/vehicle/year emissions, higher than 32 g/vehicle/year from Tier 2 vehicles. The U.S. driving cycle matches Beijing real-world conditions much better on both typical trip length and average speed than current European driving cycles. At least two requirements should be added to the Chinese emissions standards: an onboard refueling vapor recovery to force the canister to be sized sufficiently large, and a 48-h evaporation test requirement to ensure that adequate purging occurs over a shorter drive sequence.

  2. Spontaneous release of GABA activates GABAB receptors and controls network activity in the neonatal rat hippocampus.

    PubMed

    McLean, H A; Caillard, O; Khazipov, R; Ben-Ari, Y; Gaiarsa, J L

    1996-08-01

    1. We investigated the effects of the selective gamma-aminobutyric acid-B (GABAB) receptor antagonist, P-3 aminopropyl-P-diethoxymethyl phosphoric acid (CGP 35348), on spontaneous and evoked postsynaptic potentials (PSPs) and currents (PSCs) in CA3 pyramidal cells and interneurons of hippocampal slices obtained between postnatal day 3 and 7 with the use of intracellular and whole cell recording techniques. The intracellular pipette solution contained either 2 M CsCl or 50 mM 2(triethylamino)-N-(2,6-dimethylphenyl) acetamine (QX314) dissolved in 2 M KMeSO4. Cesium and QX314 block postsynaptic responses mediated by GABAB receptors. 2. Under control conditions, bath application of CGP 35348 (0.5-1 mM) progressively increased the duration of spontaneous and evoked polysynaptic giant GABAergic PSPs leading to the appearance of ictal-like discharges. The effects of CGP 35348 were dose dependent and voltage independent. 3. In CA3 pyramidal neurons, CGP 35348 (0.5 mM) had no effect on monosynaptic GABAergic inhibitory PSPs (IPSPs) that were isolated in the presence of ionotropic glutamate receptor antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 10 microM) and D(-)2-amino-5-phosphovaleric acid (D-APV, 50 microM). Similarly, CGP 35348 (0.5 mM) had no effect on monosynaptic glutamatergic excitatory PSPs (EPSPs) that were isolated in the presence of bicuculline (10 microM) and high divalent cation artificial cerebrospinal fluid (ACSF; 6 mM Mg2+/4 mM Ca2+). 4. In CA3 pyramidal neurons exposed to CNQX (20 microM) and D-APV (50 microM), application of the potassium channel blocker 4-aminopyridine (4-AP, 50 microM) generated synchronous giant GABAergic PSPS that were blocked in the presence of high divalent cation ACSF (6 mM Mg2+/4 mM Ca2+) or bicuculline (10 microM). The duration of these synchronous GABAergic PSPs was prolonged in the presence of CGP 35348 (0.5 mM) but did not lead to the appearance of ictal-like discharges. 5. In the presence of bicuculline, interictal

  3. Further exhaust emission control for two-stroke engines

    SciTech Connect

    Sato, Kazuo; Nakano, Masamitsu; Ukawa, Haruo; Inaga, Hisashi

    1994-09-01

    Two-stroke engines are being utilized in large numbers as small utility, lawn and garden equipment engines. The following two subjects were examined with regards to exhaust emission control. The first subject was to compare the theoretical values of a combustion model simulation with the experimentally measured values of the base line emission of two-stroke volume. The second subject was to examine the emission conformability to the 1995 and 1999 California Air Resources Board (CARB) exhaust emission regulations California Regulations for 1995 and Later Utility and Lawn and Garden Equipment Engine, adopted at March 20, 1992, amended, at November 3, 1993. in two-stroke engines with various combinations between various fuels, fuel supply systems and scavenging systems. For this subject it was determine;that the emission control systems based on the lean combustion can be used to meet the 1995 CARB exhaust emission regulations. However, it was also concluded that to meet the 1999 CARB exhaust emission regulations, various emission control systems with various combinations regarding such parameters as fuels, scavenging systems and exhaust systems must be used. 27 refs., 20 figs., 4 tabs.

  4. Diesel particulate emission control without engine modifications

    SciTech Connect

    Filowitz, M.S.; Vataru, M.

    1989-01-01

    This paper describes an ashless, fuel supplement which was found to typically reduce diesel particulate emissions by over 30% while significantly improving fuel economy and power output without any modifications to existing diesel engines or fuels. The treating cost is an order of magnitude less than the estimated cost of reducing aromatic content at the refinery to achieve particulate reductions. The particulate reduction is virtually all from the carbon (soot) fraction. The reduced soot formation translates into less abrasives and less soot-loading stress on the engine oil. Diesel tests conducted are also discussed.

  5. Emission current control system for multiple hollow cathode devices

    NASA Technical Reports Server (NTRS)

    Beattie, John R. (Inventor); Hancock, Donald J. (Inventor)

    1988-01-01

    An emission current control system for balancing the individual emission currents from an array of hollow cathodes has current sensors for determining the current drawn by each cathode from a power supply. Each current sensor has an output signal which has a magnitude proportional to the current. The current sensor output signals are averaged, the average value so obtained being applied to a respective controller for controlling the flow of an ion source material through each cathode. Also applied to each controller are the respective sensor output signals for each cathode and a common reference signal. The flow of source material through each hollow cathode is thereby made proportional to the current drawn by that cathode, the average current drawn by all of the cathodes, and the reference signal. Thus, the emission current of each cathode is controlled such that each is made substantially equal to the emission current of each of the other cathodes. When utilized as a component of a multiple hollow cathode ion propulsion motor, the emission current control system of the invention provides for balancing the thrust of the motor about the thrust axis and also for preventing premature failure of a hollow cathode source due to operation above a maximum rated emission current.

  6. HASEonGPU-An adaptive, load-balanced MPI/GPU-code for calculating the amplified spontaneous emission in high power laser media

    NASA Astrophysics Data System (ADS)

    Eckert, C. H. J.; Zenker, E.; Bussmann, M.; Albach, D.

    2016-10-01

    We present an adaptive Monte Carlo algorithm for computing the amplified spontaneous emission (ASE) flux in laser gain media pumped by pulsed lasers. With the design of high power lasers in mind, which require large size gain media, we have developed the open source code HASEonGPU that is capable of utilizing multiple graphic processing units (GPUs). With HASEonGPU, time to solution is reduced to minutes on a medium size GPU cluster of 64 NVIDIA Tesla K20m GPUs and excellent speedup is achieved when scaling to multiple GPUs. Comparison of simulation results to measurements of ASE in Y b 3 + : Y AG ceramics show perfect agreement.

  7. Wavefront Analysis of Nonlinear Self-Amplified Spontaneous-Emission Free-Electron Laser Harmonics in the Single-Shot Regime

    SciTech Connect

    Bachelard, R.; Chubar, O.; Mercere, P.; Idir, M.; Couprie, M.E.; Lambert, G.; Zeitoun, Ph.; Kimura, H.; Ohashi, H.; Higashiya, A.; Yabashi, M.; Nagasono, M.; Hara, T. and Ishikawa, T.

    2011-06-08

    The single-shot spatial characteristics of the vacuum ultraviolet self-amplified spontaneous emission of a free electron laser (FEL) is measured at different stages of amplification up to saturation with a Hartmann wavefront sensor. We show that the fundamental radiation at 61.5 nm tends towards a single-mode behavior as getting closer to saturation. The measurements are found in good agreement with simulations and theory. A near diffraction limited wavefront was measured. The analysis of Fresnel diffraction through the Hartmann wavefront sensor hole array also provides some further insight for the evaluation of the FEL transverse coherence, of high importance for various applications.

  8. Wideband thulium-holmium-doped fiber source with combined forward and backward amplified spontaneous emission at 1600-2300  nm spectral band.

    PubMed

    Honzatko, Pavel; Baravets, Yauhen; Kasik, Ivan; Podrazky, Ondrej

    2014-06-15

    We have experimentally demonstrated two extremely wideband amplified spontaneous emission (ASE) sources. High bandwidth is achieved by combining the backward and forward ASEs generated in thulium-holmium-doped fiber using appropriate wideband couplers. The ASE source optimized for flat spectral power density covers a spectral range from 1527 to 2171 nm at a -10  dB level. The ASE source optimized for spectroscopy features an enhancement with respect to single-mode fiber (SMF) coupled halogen lamps within the spectral range from 1540 nm to more than 2340 nm covering the 800 nm bandwidth.

  9. Phase control in an open Λ-type system with spontaneously generated coherence

    NASA Astrophysics Data System (ADS)

    Cui, Ni; Fan, Xi-Jun; Li, Ai-Yun; Liu, Cheng-Pu; Gong, Shang-Qing; Xu, Zhi-Zhan

    2007-03-01

    This paper investigates the control role of the relative phase between the probe and driving fields on the gain, dispersion and populations in an open Λ system with spontaneously generated coherence (SGC). It shows that by adjusting the value of the relative phase, a change from lasing with inversion to lasing without inversion can be realized; the values and frequency spectrum regions of the inversionless gain and dispersion can be obviously varied; high refractive index with zero absorption and electromagnetically induced transparency can be achieved. It is also found that when the driving field is resonant, the shapes of the dispersion and the gain curves versus the probe detuning are very similar if the relative phase of the dispersion lags π/2 than that of the gain, however for the off-resonant driving field the similarity will disappear; the gain, dispersion and populations are periodical functions of the relative phase, the modulation period is always 2π the contribution of SGC to the inversionless gain and dispersion is much larger than that of the dynamically induced coherence.

  10. Dynamic behavioural changes in the Spontaneously Hyperactive Rat: 3. Control by reinforcer rate changes and predictability.

    PubMed

    Williams, Jonathan; Sagvolden, Geir; Taylor, Eric; Sagvolden, Terje

    2009-03-17

    Variable intervals are widely believed to produce steady rates of responding. However, based on the calming effect of unpredictability in attention deficit hyperactivity disorder (ADHD) we hypothesised that an animal model of this disorder, the Spontaneously Hyperactive (or Hypertensive) Rat, would become less active following particularly variable sequences of interval-lengths in a variable interval schedule. From a large dataset of holepokes and tray-reports by rats in a variable interval reinforcement schedule, we extracted numerous short sequences of intervals on the basis of the first, second, and third derivatives of reinforcement timing (i.e. rate, acceleration, and jerk) in recent intervals. Sets of selected intervals were compared with one another to elucidate the effect of these different derivatives on behaviour in the current interval. Results show that SHR are more active after richer recent reinforcement; after decelerating reinforcers; and after predictable reinforcers. The hypothesis is supported. In conclusion, SHR behaviour largely complies with the Extended Temporal Difference model which in turn has been previously validated against published data in ADHD. The Extended TD model therefore is able to account for two species' behaviour in a wide range of experimental paradigms. SHR are similar in several respects to group averages of children with ADHD, except that SHR have reduced variability and perform actions faster than controls. Hyperactivity in the SHR is very dependent on momentary environmentally determined states, which is an important area for future investigation of ADHD.

  11. Numerical investigation of spontaneous flame propagation under Reactivity Controlled Compression Ignition (RCCI) conditions

    NASA Astrophysics Data System (ADS)

    Bhagatwala, Ankit; Sankaran, Ramanan; Kokjohn, Sage; Chen, Jacqueline

    2014-11-01

    Results from one and two-dimensional direct numerical simulations under dual-fuel Reactivity Controlled Compression Ignition (RCCI) conditions will be presented. These simulations employ an improved model of compression heating through mass source/sink terms developed in a previous work, which incorporates feedback from the flow to follow a predetermined experimental pressure trace. One-dimensional simulations explored the effect of temperature and fuel concentration gradients on the combustion mode. Two-dimensional simulations explored parametric variation in temperature stratification, pressure profiles and n-heptane concentration. Statistics derived from analysis of local diffusion/reaction balances were used to elucidate combustion characteristics for the different cases. Both deflagration and spontaneous ignition modes were observed to co-exist. Higher n-heptane concentration and higher level of thermal stratification resulted in a greater degree of flame propagation, whereas lower n-heptane concentration (higher fraction of iso-octane) and higher pressure resulted in more prevalent autoignition. Starting with a uniform initial temperature and a stratified n-heptane concentration also resulted in a large fraction of combustion occurring through flame propagation.

  12. Historical evaluation of vehicle emission control in Guangzhou based on a multi-year emission inventory

    NASA Astrophysics Data System (ADS)

    Zhang, Shaojun; Wu, Ye; Liu, Huan; Wu, Xiaomeng; Zhou, Yu; Yao, Zhiliang; Fu, Lixin; He, Kebin; Hao, Jiming

    2013-09-01

    The Guangzhou government adopted many vehicle emission control policies and strategies during the five-year preparation (2005-2009) to host the 2010 Asian Games. This study established a multi-year emission inventory for vehicles in Guangzhou during 2005-2009 and estimated the uncertainty in total vehicle emissions by taking the assumed uncertainties in fleet-average emission factors and annual mileage into account. In 2009, the estimated total vehicle emissions in Guangzhou were 313 000 (242 000-387 000) tons of CO, 60 900 (54 000-70 200) tons of THC, 65 600 (56 800-74 100) tons of NOx and 2740 (2100-3400) tons of PM10. Vehicle emissions within the urban area of Guangzhou were estimated to be responsible for ˜40% of total gaseous pollutants and ˜25% of total PM10 in the entire city. Although vehicle use intensity increased rapidly in Guangzhou during 2005-2009, vehicle emissions were estimated to have been reduced by 12% for CO, 21% for THC and 20% for PM10 relative to those in 2005. NOx emissions were estimated to have remained almost constant during this period. Compared to the "without control" scenario, 19% (15%-23%) of CO, 20% (18%-23%) of THC, 9% (8%-10%) of NOx and 16% (12%-20%) of PM10 were estimated to have been mitigated from a combination of the implementation of Euro III standards for light-duty vehicles (LDVs) and heavy-duty diesel vehicles and improvement of fuel quality. This study also evaluated several enhanced vehicle emission control actions taken recently. For example, the enhanced I/M program for LDVs was estimated to reduce 11% (9%-14%) of CO, 9% (8%-10%) of THC and 2% (2%-3%) of NOx relative to total vehicle emissions in 2009. Total emission reductions by temporary traffic controls for the Asian Games were estimated equivalent to 9% (7%-11%) of CO, 9% (8%-10%) of THC, 5% (5%-6%) of NOx and 10% (8%-13%) of PM10 estimated total vehicle emissions in 2009. Those controls are essential to further vehicle emission mitigation in Guangzhou

  13. Electric-utility emissions: control strategies and costs

    SciTech Connect

    Van Horn, A.; Arpi, D.; Bowen, C.; Chapman, R.; Cooper, R.; Greenfield, S.; Moffett, M.; Wells, M.

    1981-04-01

    The Utility Simulation Model has been used to project the emissions, costs, and operating decisions of the electric utilities for each year between 1980 and 2000. For each steam generating unit in the United States, the model simulates the compliance decision, including choice of fuels and pollution controls, as well as emissions and pollution control costs. Results are aggregated to state, regional, and national levels. The results presented here, summarized by strategy for selected years, include SO/sub 2/ and NO/sub x/ emissions, annual revenue requirements, the average price of electricity, dollars per ton of SO/sub 2/ reduced, coal capacity with FGD, utility fuel consumption, and regional production of coal for utility consumption. Because the strategies analyzed were aimed at SO/sub 2/ reduction, the results focus on the emissions and costs of controlling SO/sub 2/. This report is not intended to provide complete analysis and interpretation of the numerical results given in Section 3.

  14. Detection and control of spontaneous heating in coal mine pillars -- A case study

    SciTech Connect

    Timko, R.J.; Derick, R.L.

    1995-12-31

    This US Bureau of Mines study examined spontaneous heating episodes in coal mine pillars in an active underground coal mine. The information obtained from these incidents was then analyzed to learn which sampling methods provided the earliest indication of pillar heating. The objective of this study was to discover if the location of future events of pillar spontaneous heating could be inferred from the available information. The spontaneous heating-prone area in this evaluation involved pillars located just in by the mine portals. Several detection methods were used to determine gas levels outside as well as inside the affected pillars. It was hoped that, by incorporating external and internal sampling methods into an organized program, locations undergoing spontaneous heat could be determined more readily. This study found that by drilling small-diameter boreholes into the pillars, then obtaining gas samples from the affected pillars, the ability to locate early spontaneous heating episodes was improved. However, the ability to accurately predict future spontaneous heat events remains in question.

  15. Controlled and spontaneous magnetic field generation in a gun-driven spheromak

    NASA Astrophysics Data System (ADS)

    Woodruff, S.; Cohen, B. I.; Hooper, E. B.; Mclean, H. S.; Stallard, B. W.; Hill, D. N.; Holcomb, C. T.; Romero-Talamas, C.; Wood, R. D.; Cone, G.; Sovinec, C. R.

    2005-05-01

    In the Sustained Spheromak Physics Experiment, SSPX [E. B. Hooper, D. Pearlstein, and D. D. Ryutov, Nucl. Fusion 39, 863 (1999)], progress has been made in understanding the mechanisms that generate fields by helicity injection. SSPX injects helicity (linked magnetic flux) from 1 m diameter magnetized coaxial electrodes into a flux-conserving confinement region. Control of magnetic fluctuations (δB /B˜1% on the midplane edge) yields Te profiles peaked at >200eV. Trends indicate a limiting beta (βe˜4%-6%), and so we have been motivated to increase Te by operating with stronger magnetic field. Two new operating modes are observed to increase the magnetic field: (A) Operation with constant current and spontaneous gun voltage fluctuations. In this case, the gun is operated continuously at the threshold for ejection of plasma from the gun: stored magnetic energy of the spheromak increases gradually with δB /B˜2% and large voltage fluctuations (δV˜1kV), giving a 50% increase in current amplification, Itor/Igun. (B) Operation with controlled current pulses. In this case, spheromak magnetic energy increases in a stepwise fashion by pulsing the gun, giving the highest magnetic fields observed for SSPX (˜0.7T along the geometric axis). By increasing the time between pulses, a quasisteady sustainment is produced (with periodic good confinement), comparing well with resistive magnetohydrodynamic simulations. In each case, the processes that transport the helicity into the spheromak are inductive and exhibit a scaling of field with current that exceeds those previously obtained. We use our newly found scaling to suggest how to achieve higher temperatures with a series of pulses.

  16. Controlled and Spontaneous Magnetic Field Generation in a Gun-Driven Spheromak

    SciTech Connect

    Woodruff, S; Cohen, B I; Hooper, E B; McLean, H S; Stallard, B W; Hill, D N; Holcomb, C T; Romero-Talamas, C; Wood, R D; Cone, G; Sovinec, C R

    2004-10-01

    In the Sustained Spheromak Physics Experiment, SSPX, progress has been made in understanding the mechanisms that generate fields by helicity injection. SSPX injects helicity (linked magnetic flux) from 1-m diameter magnetized coaxial electrodes into a flux-conserving confinement region. Control of magnetic fluctuations ({delta}B/B{approx}1% on the midplane edge) yields T{sub e} profiles peaked at > 200eV. Trends indicate a limiting beta ({beta}{sub e} {approx} 4-6%), and so we have been motivated to increase T{sub e} by operating with stronger magnetic field. Two new operating modes are observed to increase the magnetic field: (A) Operation with constant current and spontaneous gun voltage fluctuations. In this case, the gun is operated continuously at the threshold for ejection of plasma from the gun: stored magnetic energy of the spheromak increases gradually with {delta}B/B {approx}2% and large voltage fluctuations ({delta}V {approx} 1kV), giving a 50% increase in current amplification, I{sub tor}/I{sub gun}. (B) Operation with controlled current pulses. In this case, spheromak magnetic energy increases in a stepwise fashion by pulsing the gun, giving the highest magnetic fields observed for SSPX ({approx}0.7T along the geometric axis). By increasing the time between pulses, a quasi-steady sustainment is produced (with periodic good confinement), comparing well with resistive MHD simulations. In each case, the processes that transport the helicity into the spheromak are inductive and exhibit a scaling of field with current that exceeds those previously obtained. We use our newly found scaling to suggest how to achieve higher temperatures with a series of pulses.

  17. Modeling study of natural emissions, source apportionment, and emission control of atmospheric mercury

    NASA Astrophysics Data System (ADS)

    Shetty, Suraj K.

    ) and CAMNet (Canadian Atmospheric Mercury Measurement Network). The model estimated a total deposition of 474 Mg yr-1 to the CONUS (Contiguous United States) domain, with two-thirds being dry deposited. Reactive gaseous mercury contributed the most to 60% of deposition. Emission speciation distribution is a key factor for local deposition as contribution from large point sources can be as high as 75% near (< 100 km) the emission sources, indicating that emission reduction may result in direct deposition decrease near the source locations. Among the sources, BC contributes to about 68% to 91% of total deposition. Excluding the BC's contribution, EGU contributes to nearly 50% of deposition caused by CONUS emissions in the Northeast, Southeast and East Central regions, while emissions from natural processes are more important in the Pacific and West Central regions (contributing up to 40% of deposition). The modeling results implies that implementation of the new emission standards proposed by USEPA (United States Environmental Protection Agency) would significantly benefit regions that have larger contributions from EGU sources. Control of mercury emissions from coal combustion processes has attracted great attention due to its toxicity and the emission-control regulations and has lead to advancement in state-of-the-art control technologies that alleviate the impact of mercury on ecosystem and human health. This part of the work applies a sorption model to simulate adsorption of mercury in flue gases, onto a confined-bed of activated carbon. The model's performances were studied at various flue gas flow rates, inlet mercury concentrations and adsorption bed temperatures. The process simulated a flue gas, with inlet mercury concentration of 300 ppb, entering at a velocity of 0.3 m s-1 from the bottom into a fixed bed (inside bed diameter of 1 m and 3 m bed height; bed temperature of 25 °C) of activated carbon (particle size of 0.004 m with density of 0.5 g cm-3 and

  18. Modeling of Control Costs, Emissions, and Control Retrofits for Cost Effectiveness and Feasibility Analyses

    EPA Pesticide Factsheets

    Learn about EPA’s use of the Integrated Planning Model (IPM) to develop estimates of SO2 and NOx emission control costs, projections of futureemissions, and projections of capacity of future control retrofits, assuming controls on EGUs.

  19. Spontaneous ultra-weak light emissions from wheat seedlings are rhythmic and synchronized with the time profile of the local gravimetric tide

    NASA Astrophysics Data System (ADS)

    Moraes, Thiago A.; Barlow, Peter W.; Klingelé, Emile; Gallep, Cristiano M.

    2012-06-01

    Semi-circadian rhythms of spontaneous photon emission from wheat seedlings germinated and grown in a constant environment (darkened chamber) were found to be synchronized with the rhythm of the local gravimetric (lunisolar) tidal acceleration. Time courses of the photon-count curves were also found to match the growth velocity profile of the seedlings. Pair-wise analyses of the data—growth, photon count, and tidal—by local tracking correlation always revealed significant coefficients ( P > 0.7) for more than 80% of any of the time periods considered. Using fast Fourier transform, the photon-count data revealed periodic components similar to those of the gravimetric tide. Time courses of biophoton emissions would appear to be an additional, useful, and innovative tool in both chronobiological and biophysical studies.

  20. Emissions and fuel economy effects of vehicle exhaust emission control device (revision). Technical report

    SciTech Connect

    Johnson, H.

    1998-10-01

    This report describes testing by EPA of the Vehicle Exhaust Emission Control Device (VEECD) retrofit device under Section 32918 of Title 49 U.S.C. Retrofit Devices (RD). The VEECD is described by the developer in the international patent application as an embodiment of air bleed principle. It is intended to be retrofitted to vehicles produced without any, or with earlier-technology emission control systems. The developer claims (RD Application Appendix A) that the valve significantly reduces CO and HC emissions without substantially increasing CO{sub 2} or NOx emissions. Incidental city fuel economy enhancement was also claimed. Non-FTP test data obtained for 1986/87 European vehicles from two laboratories in the UK was submitted. This data (Appendix B) was analyzed using the t-test for the difference of constant speed data (30/60/85MPH) at 95% confidence level.

  1. Size-dependent one-photon- and two-photon-pumped amplified spontaneous emission from organometal halide CH3NH3PbBr3 perovskite cubic microcrystals.

    PubMed

    Zhang, Zhen-Yu; Wang, Hai-Yu; Zhang, Yan-Xia; Li, Kai-Jiao; Zhan, Xue-Peng; Gao, Bing-Rong; Chen, Qi-Dai; Sun, Hong-Bo

    2017-01-18

    In the past few years, organometal halide light-emitting perovskite thin films and colloidal nanocrystals (NCs) have attracted significant research interest in the field of highly purified illuminating applications. However, knowledge of photoluminescence (PL) characteristics, such as amplified spontaneous emission (ASE) of larger-sized perovskite crystals, is still relatively scarce. Here, we presented room-temperature size-dependent spontaneous emission (SE) and ASE of the organometal halide CH3NH3PbBr3 perovskite cubic microcrystals pumped through one-photon-(1P) and two-photon-(2P) excitation paradigms. The results showed that the optical properties of SE and ASE were sensitively dependent on the sizes of perovskite microcrystals irrespective of whether 1P or 2P excitation was used. Moreover, by comparing the spectral results of 1P- and 2P-pumped experiments, 2P pumping was found to be an effective paradigm to reduce thresholds by one order of magnitude. Finally, we carried out fluences-dependent time-resolved fluorescence dynamics experiments to study the underlying effects of these scale-dependent SE and ASE. We found that the photoluminescence (PL) recombination rates sensitively became faster with increasing carriers' densities, and that the ASE pumped from larger-sized CH3NH3PbBr3 perovskite cubic microcrystals showed faster lifetimes. This work shows that micro-sized perovskite cubic crystals could be the ideal patterns of perovskite materials for realizing ASE applications in the future.

  2. A new gas detection technique utilizing amplified spontaneous emission light source from a ? co-doped silica fibre in the 2.0 ?m region

    NASA Astrophysics Data System (ADS)

    Oh, Kyunghwan; Morse, T. F.; Kilian, A.

    1998-09-01

    A new technique for the measurement of the concentration of gas species is presented. The method is based on absorption spectroscopy in the infrared region utilizing a high-power broad band amplified spontaneous emission source from an optical fibre. Vibrational bands of 0957-0233/9/9/007/img8 gas in the range 1.9-2.1 0957-0233/9/9/007/img9m were measured and the relative intensities of bands were calibrated in terms of concentration. The amplified spontaneous emission from a 0957-0233/9/9/007/img10 co-doped silica fibre pumped near 800 nm was used as a light source that consisted of the 0957-0233/9/9/007/img11 transition of the 0957-0233/9/9/007/img12 ion and the 0957-0233/9/9/007/img13 transition of the 0957-0233/9/9/007/img14 ion with a full width at half maximum of 225 nm and total output power over 1 mW. The technique has potential for the simultaneous detection of multiple gas species due to its high spectral energy density over a wide wavelength band in the infrared where the vibrational overtones of gas molecules are located.

  3. Characterization of emissions from combustion sources: controlled studies

    SciTech Connect

    Tucker, W.G.

    1987-01-01

    This paper summarizes Session I papers (given at the EPA Workshop on Characterization of Contaminant Emissions from Indoor Sources, Chapel Hill, NC, May 1985) that illustrate the progress made to date on characterizing indoor-combustion emissions from unvented space heaters, gas appliances, and sidestream cigarette smoke. The state of knowledge of such emissions and their controllability is summarized by four general statements: (1) Unvented gas-fired appliances are important sources of indoor CO and NOx, but not of organic emissions; (2) Important combustion sources of indoor organics, include smoking and possibly kerosene heaters; (3) The extent of the problems of leakage from vented appliances is simply not known; (4) Indoor combustion sources do not appear to present major problems with controllability, if source removal is an acceptable alternative. From an engineering standpoint, the most-challenging issue is burner design changes for unvented appliances.

  4. Systems and methods for controlling diesel engine emissions

    DOEpatents

    Webb, Cynthia Chaffin; Weber, Phillip Anthony; Khair, Magdi K.

    2004-06-01

    Systems and methods for controlling diesel engine emissions, including, for example, oxides of nitrogen emissions, particulate matter emissions, and the like. The emission control system according to this invention is provided in the exhaust passageway of a diesel engine and includes a catalyst-based particulate filter; and first and second lean NO.sub.x trap systems coupled to the catalyst-based particulate filter. The first and second lean NO.sub.x trap systems are arranged in a parallel flow configuration with each other. Each of the first and second lean NO.sub.x trap systems include a carbon monoxide generating catalyst device, a sulfur trap device, a lean NO.sub.x device, a supplemental fuel injector device, and a plurality of flow diverter devices.

  5. Optical control of the emission direction of a quantum dot

    SciTech Connect

    Luxmoore, I. J.; Wasley, N. A.; Fox, A. M.; Skolnick, M. S.; Ramsay, A. J.; Thijssen, A. C. T.; Oulton, R.; Hugues, M.

    2013-12-09

    Using the helicity of a non-resonant excitation laser, control over the emission direction of an InAs/GaAs quantum dot is demonstrated. The quantum dot is located off-center in a crossed-waveguide structure, such that photons of opposite circular polarization are emitted into opposite waveguide directions. By preferentially exciting spin-polarized excitons, the direction of emission can therefore be controlled. The directional control is quantified by using the ratio of the intensity of the light coupled into the two waveguides, which reaches a maximum of ±35%.

  6. Primary production control of methane emission from wetlands

    NASA Technical Reports Server (NTRS)

    Whiting, G. J.; Chanton, J. P.

    1993-01-01

    Based on simultaneous measurements of CO2 and CH4 exchange in wetlands extending from subarctic peatlands to subtropical marshes, a positive correlation between CH4 emission and net ecosystem production is reported. It is suggested that net ecosystem production is a master variable integrating many factors which control CH4 emission in vegetated wetlands. It is found that about 3 percent of the daily net ecosystem production is emitted back to the atmosphere as CH4. With projected stimulation of primary production and soil microbial activity in wetlands associated with elevated atmospheric CO2 concentration, the potential for increasing CH4 emission from inundated wetlands, further enhancing the greenhouse effect, is examined.

  7. Controlling thermal emission of phonon by magnetic metasurfaces.

    PubMed

    Zhang, X; Liu, H; Zhang, Z G; Wang, Q; Zhu, S N

    2017-02-03

    Our experiment shows that the thermal emission of phonon can be controlled by magnetic resonance (MR) mode in a metasurface (MTS). Through changing the structural parameter of metasurface, the MR wavelength can be tuned to the phonon resonance wavelength. This introduces a strong coupling between phonon and MR, which results in an anticrossing phonon-plasmons mode. In the process, we can manipulate the polarization and angular radiation of thermal emission of phonon. Such metasurface provides a new kind of thermal emission structures for various thermal management applications.

  8. Controlling thermal emission of phonon by magnetic metasurfaces

    PubMed Central

    Zhang, X.; Liu, H.; Zhang, Z. G.; Wang, Q.; Zhu, S. N.

    2017-01-01

    Our experiment shows that the thermal emission of phonon can be controlled by magnetic resonance (MR) mode in a metasurface (MTS). Through changing the structural parameter of metasurface, the MR wavelength can be tuned to the phonon resonance wavelength. This introduces a strong coupling between phonon and MR, which results in an anticrossing phonon-plasmons mode. In the process, we can manipulate the polarization and angular radiation of thermal emission of phonon. Such metasurface provides a new kind of thermal emission structures for various thermal management applications. PMID:28157206

  9. Controlling thermal emission of phonon by magnetic metasurfaces

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Liu, H.; Zhang, Z. G.; Wang, Q.; Zhu, S. N.

    2017-02-01

    Our experiment shows that the thermal emission of phonon can be controlled by magnetic resonance (MR) mode in a metasurface (MTS). Through changing the structural parameter of metasurface, the MR wavelength can be tuned to the phonon resonance wavelength. This introduces a strong coupling between phonon and MR, which results in an anticrossing phonon-plasmons mode. In the process, we can manipulate the polarization and angular radiation of thermal emission of phonon. Such metasurface provides a new kind of thermal emission structures for various thermal management applications.

  10. SUMMARY REPORT CONTROL OF NOX EMISSIONS BY REBURNING

    EPA Science Inventory

    This report covers NOx control employing reburning technology: A new, effective method of controlling NOx emissions from a wide range of stationary combustion sources including large, coal-fired, utility boilers. Although reburning potentially is applicable ...

  11. Positional control of plasmonic fields and electron emission

    SciTech Connect

    Word, R. C.; Fitzgerald, J. P. S.; Könenkamp, R.

    2014-09-15

    We report the positional control of plasmonic fields and electron emission in a continuous gap antenna structure of sub-micron size. We show experimentally that a nanoscale area of plasmon-enhanced electron emission can be motioned by changing the polarization of an exciting optical beam of 800 nm wavelength. Finite-difference calculations are presented to support the experiments and to show that the plasmon-enhanced electric field distribution of the antenna can be motioned precisely and predictively.

  12. Controlled and Spontaneous Magnetic Field Generation in a Gun-Driven Spheromak.

    NASA Astrophysics Data System (ADS)

    Woodruff, Simon

    2003-10-01

    In the Sustained Spheromak Physics Experiment, SSPX, progress has been made in understanding the mechanisms that generate fields by helicity injection [1][2]. SSPX injects helicity (linked magnetic flux) from a 1-m diameter magnetized coaxial gun into a flux-conserving confinement region. Control of magnetic fluctuations (δB/B<1%) yields Te profiles peaked at 200eV (2x higher than previously obtained [3]). Trends indicate a limiting beta (β _e ˜ 4%), so further increases of Te requires operating with higher fields. Two new operating modes are observed to increase the magnetic field: with constant current and spontaneous gun voltage fluctuations; and with current pulses to harness specific processes. In the first case, the gun is operated continuously at the ejection threshold: stored magnetic energy of the spheromak increases gradually with δB/B ˜2% and large voltage fluctuations (δV ˜1kV), giving a 50% increase in current amplification, I_tor/I_gun. In the second case, we show that the B-field can be increased in a stepwise fashion by pulsing the gun. By increasing the timing between pulses, a quasi-steady sustainment is produced (with periodic good confinement), which we compare with 3D MHD simulations [4]. In each case, the processes that transport the helicity into the spheromak are inductive. Internal magnetic probing helps identify these processes and also show that the discharge in the gun can be asymmetric, causing a practical limitation in applying helicity balance. [1] S. Woodruff et al Phys. Rev. Lett. 90 095001-1 (2003); [2] B. W. Stallard et al Phys. of Plasmas 10 2912 (2003); [3] H. S. McLean, et al Phys. Rev. Lett. 88 125004 (2002); [4] R. Cohen et al to appear in Nuclear Fusion

  13. Study protocol for a randomised controlled trial of invasive versus conservative management of primary spontaneous pneumothorax

    PubMed Central

    Brown, Simon G A; Ball, Emma L; Perrin, Kyle; Read, Catherine A; Asha, Stephen E; Beasley, Richard; Egerton-Warburton, Diana; Jones, Peter G; Keijzers, Gerben; Kinnear, Frances B; Kwan, Ben C H; Lee, Y C Gary; Smith, Julian A; Summers, Quentin A; Simpson, Graham

    2016-01-01

    Introduction Current management of primary spontaneous pneumothorax (PSP) is variable, with little evidence from randomised controlled trials to guide treatment. Guidelines emphasise intervention in many patients, which involves chest drain insertion, hospital admission and occasionally surgery. However, there is evidence that conservative management may be effective and safe, and it may also reduce the risk of recurrence. Significant questions remain regarding the optimal initial approach to the management of PSP. Methods and analysis This multicentre, prospective, randomised, open label, parallel group, non-inferiority study will randomise 342 participants with a first large PSP to conservative or interventional management. To maintain allocation concealment, randomisation will be performed in real time by computer and stratified by study site. Conservative management will involve a period of observation prior to discharge, with intervention for worsening symptoms or physiological instability. Interventional treatment will involve insertion of a small bore drain. If drainage continues after 1 hour, the patient will be admitted. If drainage stops, the drain will be clamped for 4 hours. The patient will be discharged if the lung remains inflated. Otherwise, the patient will be admitted. The primary end point is the proportion of participants with complete lung re-expansion by 8 weeks. Secondary end points are as follows: days in hospital, persistent air leak, predefined complications and adverse events, time to resolution of symptoms, and pneumothorax recurrence during a follow-up period of at least 1 year. The study has 95% power to detect an absolute non-inferiority margin of 9%, assuming 99% successful expansion at 8 weeks in the invasive treatment arm. The primary analysis will be by intention to treat. Ethics and dissemination Local ethics approval has been obtained for all sites. Study findings will be disseminated by publication in a high

  14. Soil acidification in China: is controlling SO2 emissions enough?

    PubMed

    Zhao, Yu; Duan, Lei; Xing, Jia; Larssen, Thorjorn; Nielsen, Chris P; Hao, Jiming

    2009-11-01

    Facing challenges of increased energy consumption and related regional air pollution, China has been aggressively implementing flue gas desulfurization (FGD) and phasing out small inefficient units in the power sector in order to achieve the national goal of 10% reduction in sulfur dioxide (SO(2)) emissions from 2005 to 2010. In this paper, the effect of these measures on soil acidification is explored. An integrated methodology is used, combining emission inventory data, emission forecasts, air quality modeling, and ecological sensitivities indicated by critical load. National emissions of SO(2), oxides of nitrogen (NO(X)), particulate matter (PM), and ammonia (NH(3)) in 2005 were estimated to be 30.7, 19.6, 31.3, and 16.6 Mt, respectively. Implementation of existing policy will lead to reductions in SO(2) and PM emissions, while those of NO(X) and NH(3) will continue to rise, even under tentatively proposed control measures. In 2005, the critical load for soil acidification caused by sulfur (S) deposition was exceeded in 28% of the country's territory, mainly in eastern and south-central China. The area in exceedance will decrease to 26% and 20% in 2010 and 2020, respectively, given implementation of current plans for emission reductions. However, the exceedance of the critical load for nitrogen (N, combining effects of eutrophication and acidification) will double from 2005 to 2020 due to increased NO(X) and NH(3) emissions. Combining the acidification effects of S and N, the benefits of SO(2) reductions during 2005-2010 will almost be negated by increased N emissions. Therefore abatement of N emissions (NO(X) and NH(3)) and deposition will be a major challenge to China, requiring policy development and technology investments. To mitigate acidification in the future, China needs a multipollutant control strategy that integrates measures to reduce S, N, and PM.

  15. EPA moves to control offshore emissions

    SciTech Connect

    Not Available

    1991-12-09

    This paper reports that except for most of the Gulf Coast, the Environmental Protection Agency proposes to hold all U.S. offshore rigs and platforms within about 28 miles from shore to the same standards as onshore facilities. EPA estimated compliance will cost the oil industry $2.2 million/year for all sources on the Outer Continental Shelf. The rule, the first EPA has proposed to control air pollution from OCS operations, covers drilling and production off Alaska, the Pacific coast states, the Atlantic coast states, and the Florida Gulf Coast. It does not affect OCS areas off Texas, Louisiana, Mississippi, and Alabama.

  16. Controlling formaldehyde emissions with boiler ash.

    PubMed

    Cowan, Jennifer; Abu-Daabes, Malyuba; Banerjee, Sujit

    2005-07-01

    Fluidized wood ash reduces formaldehyde in air from about 20 to <1 ppmv. Methanol is removed to a much lower extent. The efficiency of formaldehyde reduction increases with increasing moisture content of the ash. Sorption of formaldehyde to ash can be substantially accounted for by partitioning to the water contained in the ash followed by rate-controlling binding to the ash solids. Adsorption occurs at temperatures of up to 165 degrees C; oxidation predominates thereafter. It is proposed that formaldehyde could be stripped from an air stream in a fluidized bed containing ash, which could then be returned to a boiler to incinerate the formaldehyde.

  17. Plasmonic beaming and active control over fluorescent emission.

    PubMed

    Jun, Young Chul; Huang, Kevin C Y; Brongersma, Mark L

    2011-01-01

    Nanometallic optical antennas are rapidly gaining popularity in applications that require exquisite control over light concentration and emission processes. The search is on for high-performance antennas that offer facile integration on chips. Here we demonstrate a new, easily fabricated optical antenna design that achieves an unprecedented level of control over fluorescent emission by combining concepts from plasmonics, radiative decay engineering and optical beaming. The antenna consists of a nanoscale plasmonic cavity filled with quantum dots coupled to a miniature grating structure that can be engineered to produce one or more highly collimated beams. Electromagnetic simulations and confocal microscopy were used to visualize the beaming process. The metals defining the plasmonic cavity can be utilized to electrically control the emission intensity and wavelength. These findings facilitate the realization of a new class of active optical antennas for use in new optical sources and a wide range of nanoscale optical spectroscopy applications.

  18. New emission controls for Missouri batch-type charcoal kilns

    SciTech Connect

    Yronwode, P.; Graf, W.J.

    1999-07-01

    Charcoal kilns have been exempted from air emission regulation in the state of Missouri. Today, 80% of US charcoal production takes place in Missouri. As a result of a petition filed by people in the area around an installation in southern Missouri, the US Environmental Protection Agency (EPA) set up air monitors and measured ambient air levels at that charcoal manufacturing installation. These monitors yielded the highest particulate matter less than 10 micron (PM{sub 10}) levels ever recorded in the state. Earlier stack testing at another charcoal manufacturing installation indicated that toxics and carcinogens are present in charcoal kiln air emissions. A Charcoal Kiln Workgroup was formed to determine the Best Available Control Technology (BACT) for charcoal kilns and to draft a charcoal kiln rule that requires BACT. The BACT report determined that afterburners were suitable for controlling emissions from batch-type charcoal kilns. In addition, the charcoal industry supported incorporating the BACT limits and requirements into an enforceable state rule and submitting this rule to the EPA for federal approval. A consent agreement between the EPA and three major charcoal companies was signed with provisions to install, operate, and maintain emission control devices on charcoal kilns. This agreement was to settle complaints alleging that the three major charcoal producers had failed to report toxic air emissions to federal and state regulators. The agreement provided that industry would install control devices on a set schedule with some charcoal kilns being shut down.

  19. Coal-fueled diesel technology development Emissions Control

    SciTech Connect

    Van Kleunen, W.; Kaldor, S.; Gal, E.; Mengel, M.; Arnold, M.

    1994-01-01

    GEESI Emissions Control program activity ranged from control concept testing of 10 CFM slipstream from a CWS fuel single cylinder research diesel engine to the design, installation, and operation of a full-size Emissions Control system for a full-size CWS fuel diesel engine designed for locomotive operation.Early 10 CFM slipstream testing program activity was performed to determine Emissions Characteristics and to evaluate Emissions Control concepts such a Barrier filtration, Granular bed filtration, and Cyclone particulate collection for reduction of particulate and gaseous emissions. Use of sorbent injection into the engine exhaust gas upstream of the barrier filter or use of sorbent media in the granular bed filter were found to provide reduction of exhaust gas SO{sub 2} and NO{sub x} in addition to collection of ash particulate. Emergence of the use of barrier filtration as a most practical Emissions Control concept disclosed a need to improve cleanability of the filter media in order to avoid reduction of turbocharger performance by excessive barrier filter pressure drop. The next progression of program activity, after the slipstream feasibility state, was 500 CFM cold flow testing of control system concepts. The successful completion of 500 CFM cold flow testing of the Envelope Filter led to a subsequent progression to a similar configuration Envelope Filter designed to operate at 500 CFM hot gas flow from the CWS fuel research diesel engine in the GETS engine test laboratory. This Envelope Filter included the design aspect proven by cold flow testing as well as optimization of the selection of the installed filter media.

  20. Coal-fueled diesel technology development emissions control

    NASA Astrophysics Data System (ADS)

    Vankleunen, W.; Kaldor, S.; Gal, E.; Mengel, M.; Arnold, M.

    1994-01-01

    General Electric Environmental Services, Inc. (GEESI), Emissions Control program activity ranged from control concept testing of 10 CFM slipstream from a coal-water-slurry (CWS) fuel single cylinder research diesel engine to the design, installation, and operation of a full-size emissions control system for a full-size CWS fuel diesel engine designed for locomotive operation. Early 10 CFM slipstream testing program activity was performed to determine emissions characteristics and to evaluate emissions control concepts such a barrier filtration, granular bed filtration, and cyclone particulate collection for reduction of particulate and gaseous emissions. Use of sorbent injection into the engine exhaust gas upstream of the barrier filter or use of sorbent media in the granular bed filter were found to provide reduction of exhaust gas SO2 and NO(x) in addition to collection of ash particulate. Emergence of the use of barrier filtration as a most practical emissions control concept disclosed a need to improve cleanability of the filter media in order to avoid reduction of turbocharger performance by excessive barrier filter pressure drop. The next progression of program activity, after the slipstream feasibility state, was 500 CFM cold flow testing of control system concepts. The successful completion of 500 CFM cold flow testing of the envelope filter led to a subsequent progression to a similar configuration envelope filter designed to operate at 500 CFM hot gas flow from the CWS fuel research diesel engine in the GETS engine test laboratory. This envelope filter included the design aspect proven by cold flow testing as well as optimization of the selection of the installed filter media.

  1. Resource recovery emission control system comparison

    SciTech Connect

    Teller, A.J.

    1985-01-01

    The response to the necessity for control of acid gases, fine particulate, mercury vapor, and organics present in the flue gas emitted from the incineration of municipal solid waste and hazardous waste has followed the conventional steps for emerging technology. These are: adaptation of existing equipment and its failure; development of new technologies; fear of failure of new technologies; modification of technology; overcoming of concerns by extended operation. It has been established that incineration of wastes produces a flue gas containing: particulates including fine particulates in which toxic heavy metals and organics are concentrated; acid gases, primarily HCl and SO/sub 2/ with quantities produced increasing with time; mercury and organic vapor; high concentrations of incandescent particles. The initial reponse was to apply existing types of equipment to the problem.

  2. Cliffside 6 integrated emissions control system

    SciTech Connect

    McGinnis, D.G.; Rader, P.C.; Gansley, R.R.; Wang, W.

    2009-04-15

    The article takes an inside look into the environmental hardware going into one of the highest profile coal-fired power plants projects in the US, a new 800 MW supercritical coal-fired facility at Cliffside, NC, Unit C6. This is currently under construction and scheduled to be in commercial service in 2012. To evaluate the alternative air quality control system (AQCS) options, Duke Energy established a cross-functional team and used a decision analysis process to select the 'best balanced choice'. Alstom's integrated AQCS which combines dry and wet flue gas desulfurization systems was the best balanced choice. Replacing an ESP with a spray dryer absorber achieved major cost savings and eliminated the need for wastewater treatment. 1 ref., 2 photos.

  3. Mercury emissions control technologies for mixed waste thermal treatment

    SciTech Connect

    Chambers, A.; Knecht, M.; Soelberg, N.; Eaton, D.; Roberts, D.; Broderick, T.

    1997-12-31

    EPA has identified wet scrubbing at low mercury feedrates, as well as carbon adsorption via carbon injection into the offgas or via flow through fixed carbon beds, as control technologies that can be used to meet the proposed Maximum Achievable Control Technology (MACT) rule limit for mercury emissions from hazardous waste incinerators. DOE is currently funding demonstrations of gold amalgamation that may also control mercury to the desired levels. Performance data from a variety of sources was reviewed to determine ranges of achievable mercury control. Preliminary costs were estimated for using these technologies to control mercury emissions from mixed waste incineration. Mercury emissions control for mixed waste incineration may need to be more efficient than for incineration of other hazardous wastes because of higher mercury concentrations in some mixed waste streams. However, mercury control performance data for wet scrubbing and carbon adsorption is highly variable. More information is needed to demonstrate control efficiencies that are achievable under various design and operating conditions for wet scrubbing, carbon adsorption, and gold amalgamation technologies. Given certain assumptions made in this study, capital costs, operating costs, and lifecycle costs for carbon injection, carbon beds, and gold amalgamation generally vary for different assumed mercury feedrates and for different offgas flowrates. Assuming that these technologies can in fact provide the necessary mercury control performance, each of these technologies may be less costly than the others for certain mercury feedrates and the offgas flowrates.

  4. Acoustic emission feedback control for control of boiling in a microwave oven

    SciTech Connect

    White, T.L.

    1991-02-26

    This patent describes an acoustic emission based feedback system for controlling the boiling level of a liquid medium in a microwave oven. The acoustic emissions from the medium correlated with surface boiling is used to generate a feedback control signal proportional to the level of boiling of the medium. This signal is applied to a power controller to automatically and continuously vary the power applied to the oven to control the boiling at a selected level.

  5. Acoustic emission feedback control for control of boiling in a microwave oven

    SciTech Connect

    White, T.L.

    1990-05-02

    An acoustic emission based feedback system for controlling the boiling level of a liquid medium in a microwave oven is provided. The acoustic emissions from the medium correlated with surface boiling is used to generate a feedback control signal proportional to the level of boiling of the medium. This signal is applied to a power controller to automatically and continuously vary the power applied to the oven to control the boiling at a selected level. 2 figs.

  6. Acoustic emission feedback control for control of boiling in a microwave oven

    DOEpatents

    White, Terry L.

    1991-01-01

    An acoustic emission based feedback system for controlling the boiling level of a liquid medium in a microwave oven is provided. The acoustic emissions from the medium correlated with surface boiling is used to generate a feedback control signal proportional to the level of boiling of the medium. This signal is applied to a power controller to automatically and continuoulsly vary the power applied to the oven to control the boiling at a selected level.

  7. NOx Sensor for Direct Injection Emission Control

    SciTech Connect

    Betteridge, William J

    2006-02-28

    The Electricore/Delphi team continues to leverage the electrochemical planar sensor technology that has produced stoichiometric planar and wide range oxygen sensors as the basis for development of a NOx sensor. Zirconia cell technology with an integrated heater will provide the foundation for the sensor structure. Proven materials and packaging technology will help to ensure a cost-effective approach to the manufacture of this sensor. The electronics technique and interface is considered to be an area where new strategies need to be employed to produce higher S/N ratios of the NOx signal with emphasis on signal stability over time for robustness and durability Both continuous mode and pulse mode control techniques are being evaluated. Packaging the electronics requires careful design and circuit partitioning so that only the necessary signal conditioning electronics are coupled directly in the wiring harness, while the remainder is situated within the ECM for durability and costs reasons. This task continues to be on hold due to the limitation that the definition of the interface electronics was unavailable until very late in the project. The sense element is based on the amperometric method utilizing integrated alumina and zirconia ceramics. Precious metal electrodes are used to form the integrated heater, the cell electrodes and leads. Inside the actual sense cell structure, it is first necessary to separate NOx from the remaining oxygen constituents of the exhaust, without reducing the NOx. Once separated, the NOx will be measured using a measurement cell. Development or test coupons have been used to facilitate material selection and refinement, cell, diffusion barrier, and chamber development. The sense element currently requires elaborate interconnections. To facilitate a robust durable connection, mechanical and metallurgical connections are under investigation. Materials and process refinements continue to play an important role in the development of the

  8. Controlled drop emission by wetting properties in driven liquid filaments.

    PubMed

    Ledesma-Aguilar, R; Nistal, R; Hernández-Machado, A; Pagonabarraga, I

    2011-05-01

    The controlled formation of micrometre-sized drops is of great importance to many technological applications. Here we present a wetting-based destabilization mechanism of forced microfilaments on either hydrophilic or hydrophobic stripes that leads to the periodic emission of droplets. The drop emission mechanism is triggered above the maximum critical forcing at which wetting, capillarity, viscous friction and gravity can balance to sustain a stable driven contact line. The corresponding critical filament velocity is predicted as a function of the static wetting angle, which can be tuned through the substrate behaviour, and shows a strong dependence on the filament size. This sensitivity explains the qualitative difference in the critical velocity between hydrophilic and hydrophobic stripes, and accounts for previous experimental results of splashing solids. We demonstrate that this mechanism can be used to control independently the drop size and emission period, opening the possibility of highly monodisperse and flexible drop production techniques in open microfluidic geometries.

  9. Energy gaps in the 4f(13)5d(1) manifold and multiple spontaneous emissions in Yb(2+)-doped CsCaBr(3).

    PubMed

    Sánchez-Sanz, Goar; Seijo, Luis; Barandiarán, Zoila

    2009-11-12

    Multiple spontaneous 4f(13)5d(1) --> 4f(14) emissions are predicted in Yb(2+)-doped CsCaBr(3) crystals by ab initio quantum chemical calculations. Four emission bands are found at 23,900, 26,600, 34,600, and 43,900 cm(-1) that should be experimentally observable at low temperatures. The first, third, and fourth bands are slow, electric dipole forbidden emissions that can be described as spin-forbidden. The second band is a fast, electric dipole-allowed emission that cannot be described as spin-allowed, but as spin-enabled; its radiative emission lifetime is 400 ns. Large energy gaps (23 900, 4600, 4000 cm(-1), respectively), relative to the maximum local phonon energies calculated (around 185 cm(-1)), are found below the emitting levels of the slow bands, which indicates that these states should be significantly stable and multiphonon relaxation to the lower states should be negligible. A smaller gap (2600 cm(-1)) separates the states of the fast band, which should result in a temperature dependent competition between radiative and nonradiative decay. Differential correlation between 4f-4f and 4f-5d pairs, splitting of the 5d shell by interactions with the host, and spin-orbit effects within the 4f(13) subshell, are found to be responsible for the existence of the gaps, which, in turn, split the absorption spectrum into four groups of separate bands, three of which could lie below the host absorption threshold. The quantum chemical methods employed make use of explicit wave functions expanded in terms of flexible basis sets, multiconfigurational self-consistent-field and multireference second-order perturbation methods to account for nondynamic and dynamic electron correlation, scalar and relativistic terms in the (YbBr(6))(4-) defect cluster Hamiltonian, and quantum mechanical embedding potentials to represent the host crystal.

  10. Particulate Emissions from a Pre-Emissions Control Era Spark-Ignition Vehicle: A Historical Benchmark

    SciTech Connect

    John M.E. Storey; C. Scott Sluder; Douglas A. Blom; Erin Higinbotham

    2000-06-19

    This study examined the particulate emissions from a pre-emissions control era vehicle operated on both leaded and unleaded fuels for the purpose of establishing a historical benchmark. A pre-control vehicle was located that had been rebuilt with factory original parts to approximate an as-new vehicle prior to 1968. The vehicle had less than 20,000 miles on the rebuilt engine and exhaust. The vehicle underwent repeated FTP-75 tests to determine its regulated emissions, including particulate mass. Additionally, measurements of the particulate size distribution were made, as well as particulate lead concentration. These tests were conducted first with UTG96 certification fuel, followed by UTG96 doped with tetraethyl lead to approximate 1968 levels. Results of these tests, including transmission electron micrographs of individual particles from both the leaded and unleaded case are presented. The FTP composite PM emissions from this vehicle averaged 40.5 mg/mile using unleaded fuel. The results from the leaded fuel tests showed that the FTP composite PM emissions increased to an average of 139.5 mg/mile. Analysis of the particulate size distribution for both cases demonstrated that the mass-based size distribution of particles for this vehicle is heavily skewed towards the nano-particle range. The leaded-fuel tests showed a significant increase in mass concentration at the <0.1 micron size compared with the unleaded-fuel test case. The leaded-fuel tests produced lead emissions of nearly 0.04 g/mi, more than a 4-order-of-magnitude difference compared with unleaded-fuel results. Analysis of the size-fractionated PM samples showed that the lead PM emissions tended to be distributed in the 0.25 micron and smaller size range.

  11. Enhanced control of mercury emissions through modified speciation

    SciTech Connect

    Livengood, C.D.; Mendelsohn, M.H.

    1997-07-01

    In anticipation of possible regulations regarding mercury emissions, research efforts sponsored by DOE, EPRI, and others are investigating the risks posed by mercury emissions, improved techniques for measuring those emissions, and possible control measures. The focus in the control research is on techniques that can be used in conjunction with existing flue-gas-cleanup (FGC) systems in order to minimize additional capital costs and operational complexity. Argonne National Laboratory has supported the DOE Fossil Energy Program for over 15 years with research on advanced environmental control technologies. The emphasis in Argonne`s work has been on integrated systems that combine control of several pollutants. Specific topics have included spray drying for sulfur dioxide and particulate-matter control with high-sulfur coal, combined sulfur dioxide and nitrogen oxides control technologies, and techniques to enhance mercury control in existing FGC systems. The latter area has focused on low-cost dry sorbents for use with fabric filters or electrostatic precipitators and techniques for improving the capture of mercury in wet flue-gas desulfurization (FGD) systems. This paper presents results from recent work that has studied the effects of several oxidizing agents in combination with typical flue-gas species (e.g., nitrogen oxides and sulfur dioxide) on the oxidation of Hg{sup 0}.

  12. Neurophysiology of spontaneous facial expressions: I. Motor control of the upper and lower face is behaviorally independent in adults.

    PubMed

    Ross, Elliott D; Gupta, Smita S; Adnan, Asif M; Holden, Thomas L; Havlicek, Joseph; Radhakrishnan, Sridhar

    2016-03-01

    Facial expressions are described traditionally as monolithic entities. However, humans have the capacity to produce facial blends, in which the upper and lower face simultaneously display different emotional expressions. This, in turn, has led to the Component Theory of facial expressions. Recent neuroanatomical studies in monkeys have demonstrated that there are separate cortical motor areas for controlling the upper and lower face that, presumably, also occur in humans. The lower face is represented on the posterior ventrolateral surface of the frontal lobes in the primary motor and premotor cortices and the upper face is represented on the medial surface of the posterior frontal lobes in the supplementary motor and anterior cingulate cortices. Our laboratory has been engaged in a series of studies exploring the perception and production of facial blends. Using high-speed videography, we began measuring the temporal aspects of facial expressions to develop a more complete understanding of the neurophysiology underlying facial expressions and facial blends. The goal of the research presented here was to determine if spontaneous facial expressions in adults are predominantly monolithic or exhibit independent motor control of the upper and lower face. We found that spontaneous facial expressions are very complex and that the motor control of the upper and lower face is overwhelmingly independent, thus robustly supporting the Component Theory of facial expressions. Seemingly monolithic expressions, be they full facial or facial blends, are most likely the result of a timing coincident rather than a synchronous coordination between the ventrolateral and medial cortical motor areas responsible for controlling the lower and upper face, respectively. In addition, we found evidence that the right and left face may also exhibit independent motor control, thus supporting the concept that spontaneous facial expressions are organized predominantly across the horizontal facial

  13. High-coverage organic-inorganic perovskite film fabricated by double spin coating for improved solar power conversion and amplified spontaneous emission

    NASA Astrophysics Data System (ADS)

    Matsushima, Toshinori; Inoue, Munetomo; Fujihara, Takashi; Terakawa, Shinobu; Qin, Chuanjiang; Sandanayaka, Atula S. D.; Adachi, Chihaya

    2016-09-01

    We demonstrate that double spin coating, where a perovskite film is covered with another perovskite film, can increase substrate coverage from 81% to 97% along with an increase of film thickness from 151 ± 17 to 246 ± 18 nm. The increased substrate coverage by double coating improves the solar power conversion efficiency from 7.1 ± 0.6 to 10.3 ± 1.0%, an approximate 1.5-fold increase. Additionally, a double-coated film of higher substrate coverage exhibits amplified spontaneous emission (ASE) while a single-coated film of lower substrate coverage does not exhibit ASE. Double coating is an attractive method for increasing substrate coverage and improving solar power conversion and ASE.

  14. The recombination mechanisms leading to amplified spontaneous emission at the true-green wavelength in CH3NH3PbBr3 perovskites

    NASA Astrophysics Data System (ADS)

    Priante, D.; Dursun, I.; Alias, M. S.; Shi, D.; Melnikov, V. A.; Ng, T. K.; Mohammed, O. F.; Bakr, O. M.; Ooi, B. S.

    2015-02-01

    We investigated the mechanisms of radiative recombination in a CH3NH3PbBr3 hybrid perovskite material using low-temperature, power-dependent (77 K), and temperature-dependent photoluminescence (PL) measurements. Two bound-excitonic radiative transitions related to grain size inhomogeneity were identified. Both transitions led to PL spectra broadening as a result of concurrent blue and red shifts of these excitonic peaks. The red-shifted bound-excitonic peak dominated at high PL excitation led to a true-green wavelength of 553 nm for CH3NH3PbBr3 powders that are encapsulated in polydimethylsiloxane. Amplified spontaneous emission was eventually achieved for an excitation threshold energy of approximately 350 μJ/cm2. Our results provide a platform for potential extension towards a true-green light-emitting device for solid-state lighting and display applications.

  15. Inhibitory control and l2 proficiency modulate bilingual language production: evidence from spontaneous monologue and dialogue speech.

    PubMed

    Pivneva, Irina; Palmer, Caroline; Titone, Debra

    2012-01-01

    Bilingual language production requires that speakers recruit inhibitory control (IC) to optimally balance the activation of more than one linguistic system when they produce speech. Moreover, the amount of IC necessary to maintain an optimal balance is likely to vary across individuals as a function of second language (L2) proficiency and inhibitory capacity, as well as the demands of a particular communicative situation. Here, we investigate how these factors relate to bilingual language production across monologue and dialogue spontaneous speech. In these tasks, 42 English-French and French-English bilinguals produced spontaneous speech in their first language (L1) and their L2, with and without a conversational partner. Participants also completed a separate battery that assessed L2 proficiency and inhibitory capacity. The results showed that L2 vs. L1 production was generally more effortful, as was dialogue vs. monologue speech production although the clarity of what was produced was higher for dialogues vs. monologues. As well, language production effort significantly varied as a function of individual differences in L2 proficiency and inhibitory capacity. Taken together, the overall pattern of findings suggests that both increased L2 proficiency and inhibitory capacity relate to efficient language production during spontaneous monologue and dialogue speech.

  16. Application of Foam-gel Technique to Control CO Exposure Generated During Spontaneous Combustion of Coal in Coal Mines.

    PubMed

    Ren, Xing W; Wang, Feng Z; Guo, Qing; Zuo, Zhao B; Fang, Qi S

    2015-01-01

    In China, 47.3% of state-owned coal mines are located in coal seams that are prone to spontaneous combustion. The spontaneous combustion of coal is the main cause of the generation of a large amount of carbon monoxide, which can cause serious health issues to miners. A new technique using foam-gel formation was developed to effectively control the spontaneous combustion of coal. The gel can capture more than 90% of the water in the grout and at the same time the foam can cover dangerous areas in the goaf by stacking and cooling of foam in all directions. In this study, a mechanism of foam-gel formation was introduced and the optimal proportions of additives were defined based on experiments of different foaming properties, gelling time and water loss rate as the main index parameters. The results of a field application in a coal mine promise that this new technique would effectively prevent coal oxidation in the goaf and reduce the generation of carbon monoxide.

  17. Solar wind control of Jupiter's hectometric radio emission

    NASA Technical Reports Server (NTRS)

    Barrow, C. H.; Desch, M. D.

    1989-01-01

    Radio, plasma, and magnetic field data obtained by Voyager 1 and Voyager 2 were used to examine the manner in which the Jovian hectometric radio emission (HOM) is controlled by the solar wind. Using the method of superposed epochs, it was found that the higher energy HOM is correlated with the IMF as well as with the solar wind density and pressure. However, unlike the Io-independent decametric radio emission (Non-Io DAM), the HOM displayed no correlation with the solar wind velocity, although this radio component appear to be also influenced by the IMF. The results suggest separate HOM amd Non-Io DAM sources.

  18. Control of Trace Metal Emissions During Coal Combustion

    SciTech Connect

    Thomas C. Ho

    1997-10-01

    Emissions of toxic trace metals in the form of metal fumes or submicron particulates from a coal-fired combustion source have received greater environmental and regulatory concern over the past years. Current practice of controlling these emissions is to collect them at the cold-end of the process by air-pollution control devices (APCDs) such as electrostatic precipitators and baghouses. However, trace metal fumes may not always be effectively collected by these devices because the formed fumes are extremely small. The proposed research is to explore the opportunities for improved control of toxic trace metal emissions, alternatively, at the hot-end of the coal combustion process, i.e., in the combustion chamber. The technology proposed is to prevent the metal fumes from forming during the process, which would effectively eliminate the metal emission problems. Specifically, the technology is to employ suitable sorbents to (1) reduce the amount of metal volatilization during combustion and (2) capture volatilized metal vapors. The objectives of the project are to demonstrate the technology and to characterize the metal capture process during coal combustion in a fluidized bed combustor. The project was started on July 1, 1994 and this is the thirteenth quarterly technical progress report. Specifically, the following progress has been made during this performance period from July 1, 1997 through September 30, 1997.

  19. Emissions from premixed charge compression ignition (PCCI) combustion and affect on emission control devices

    SciTech Connect

    Parks, II, James E; Kass, Michael D; Huff, Shean P; Barone, Teresa L; Lewis Sr, Samuel Arthur; Prikhodko, Vitaly Y; Storey, John Morse

    2010-01-01

    A light-duty diesel engine has been operated in advanced combustion modes known generally as premixed charge compression ignition (PCCI). The emissions have been characterized for several load and speed combinations. Fewer NO{sub x} and particulate matter (PM) emissions are produced by PCCI, but higher CO and hydrocarbon (HC) emissions result. In addition, the nature of the PM differs from conventional combustion; the PM is smaller and has a much higher soluble organic fraction (SOF) content (68% vs. 30% for conventional combustion). Three catalyst technologies were studied to determine the affects of HECC on catalyst performance; the technologies were a lean NO{sub x} trap (LNT), diesel oxidation catalyst (DOC), and diesel particulate filter (DPF). The LNT benefited greatly from the reduced NO{sub x} emissions associated with PCCI. NO{sub x} capacity requirements are reduced as well as overall tailpipe NO{sub x} levels particularly at low load and temperature conditions where regeneration of the LNT is difficult. The DOC performance requirements for PCCI are more stringent due to the higher CO and HC emissions; however, the DOC was effective at controlling the higher CO and HC emissions at conditions above the light-off temperature. Below light-off, CO and HC emissions are problematic. The study of DPF technology focused on the fuel penalties associated with DPF regeneration or 'desoot' due to the different PM loading rates from PCCI vs. conventional combustion. Less frequent desoot events were required from the lower PM from PCCI and, when used in conjunction with an LNT, the lower PM from less frequent LNT regeneration. The lower desoot frequency leads a {approx}3% fuel penalty for a mixture of PCCI and conventional loads vs. {approx}4% for conventional only combustion.

  20. Air quality assessment and control of emission rates.

    PubMed

    Skiba, Yuri N; Parra-Guevara, David; Belitskaya, Davydova Valentina

    2005-12-01

    Mathematical methods based on the adjoint model approach are given for the air-pollution estimation and control in an urban region. A simple advection-diffusion-reaction model and its adjoint are used to illustrate the application of the methods. Dual pollution concentration estimates in ecologically important zones are derived and used to develop two non-optimal strategies and one optimal strategy for controlling the emission rates of enterprises. A linear convex combination of these strategies represents a new sufficient strategy. A method for detecting the enterprises, which violate the emission rates prescribed by a control, is given. A method for determining an optimal position for a new enterprise in the region is also described.

  1. Biofiltration: An innovative air pollution control technology for VOC emissions

    SciTech Connect

    Leson, G. ); Winer, A.M. )

    1991-08-01

    Biofiltration is a relatively recent air pollution control (APC) technology in which off-gases containing biodegradable volatile organic compounds (VOC) or inorganic air toxics are vented through a biologically active material. This technology has been successfully applied in Germany and The Netherlands in many full-scale applications to control odors, VOC and air toxic emissions from a wide range of industrial and public sector sources. Control efficiencies of more than 90 percent have been achieved for many common air pollutants. Due to lower operating costs, biofiltration can provide significant economic advantages over other APC technologies if applied to off-gases that contain readily biodegradable pollutants in low concentrations. Environmental benefits include low energy requirements and the avoidance of cross media transfer of pollutants. This paper reviews the history and current status of biofiltration, outlines its underlying scientific and engineering principles, and discusses the applicability of biofilters for a wide range of specific emission sources.

  2. Cardiovascular effects of halothane anesthesia after diazepam and ketamine administration in beavers (Castor canadensis) during spontaneous or controlled ventilation.

    PubMed

    Greene, S A; Keegan, R D; Gallagher, L V; Alexander, J E; Harari, J

    1991-05-01

    Fourteen adult beavers (Castor canadensis) weighing 16.5 +/- 4.14 kg (mean +/- SD) were anesthetized for surgical implantation of radio telemetry devices. Beavers were anesthetized with diazepam (0.1 mg/kg) and ketamine (25 mg/kg) administered IM, which provided smooth anesthetic induction and facilitated tracheal intubation. Anesthesia was maintained with halothane in oxygen via a semiclosed circle anesthetic circuit. Values for heart rate, respiratory rate, esophageal temperature, direct arterial blood pressure, end-tidal halothane concentration, and end-tidal CO2 tension were recorded every 15 minutes during the surgical procedure. Arterial blood samples were collected every 30 minutes to determine pH, PaO2, and PaCO2. Values for plasma bicarbonate, total CO2, and base excess were calculated. Ventilation was spontaneous in 7 beavers and controlled to maintain normocapnia (PaCO2 approx 40 mm of Hg) in 7 others. Vaporizer settings were adjusted to maintain a light surgical plane of anesthesia. Throughout the surgical procedure, all beavers had mean arterial pressure less than 60 mm of Hg and esophageal temperature less than 35 C. Mean values for arterial pH, end-tidal CO2, PaO2, and PaCO2 were significantly (P less than 0.05) different in spontaneously ventilating beavers, compared with those in which ventilation was controlled. Respiratory acidosis during halothane anesthesia was observed in spontaneously ventilating beavers, but not in beavers maintained with controlled ventilation. All beavers recovered unremarkably from anesthesia.

  3. Control of several emissions during olive pomace thermal degradation.

    PubMed

    Miranda, Teresa; Nogales, Sergio; Román, Silvia; Montero, Irene; Arranz, José Ignacio; Sepúlveda, Francisco José

    2014-10-13

    Biomass plays an important role as an energy source, being an interesting alternative to fossil fuels due to its environment-friendly and sustainable characteristics. However, due to the exposure of customers to emissions during biomass heating, evolved pollutants should be taken into account and controlled. Changing raw materials or mixing them with another less pollutant biomass could be a suitable step to reduce pollution. This work studied the thermal behaviour of olive pomace, pyrenean oak and their blends under combustion using thermogravimetric analysis. It was possible to monitor the emissions released during the process by coupling mass spectrometry analysis. The experiments were carried out under non-isothermal conditions at the temperature range 25-750 °C and a heating rate of 20 °C·min⁻¹. The following species were analysed: aromatic compounds (benzene and toluene), sulphur emissions (sulphur dioxide), 1,4-dioxin, hydrochloric acid, carbon dioxide and nitrogen oxides. The results indicated that pollutants were mainly evolved in two different stages, which are related to the thermal degradation steps. Thus, depending on the pollutant and raw material composition, different emission profiles were observed. Furthermore, intensity of the emission profiles was related, in some cases, to the composition of the precursor.

  4. Ozone trends in Atlanta, Georgia - Have emission controls been effective?

    NASA Technical Reports Server (NTRS)

    Lindsay, Ronald W.; Richardson, Jennifer L.; Chameldes, William L.

    1989-01-01

    Nine years of summertime ozone data from the Atlanta metropolitan area are analyzed and compared to local emissions of volatile organic carbon and nitrogen oxides. Trends from 1979 to 1987 were studied for the number of days per year ozone exceeded the NAAQS standard, the second-highest ozone level observed per year, and the first quartile summertime average ozone observed, as well as the mean difference between the ozone level observed downwind and upwind of the city. Because this last parameter is sensitive to chemical factors but relatively insensitive to the number of days each year with meteorological conditions conducive to ozone formation, its trend may be best suited for determining how effective emission controls have been in reducing O3 in the Atlanta area. In spite of the fact that sizeable reductions have been claimed for volatile organic carbon emissions over the past several years, the data give no indication that ozone levels have decreased and in fact, imply that summertime ozone production may have increased. The results imply that either emissions have not decreased as much as has been claimed or that ozone is not sensitive to anthropogenic volatile organic carbon emissions.

  5. Venturi/vortex technology for controlling chromium electroplating emissions

    SciTech Connect

    Hay, K.J.; Northrup, J.; Heck, S.R.

    1997-12-31

    A new technology has been developed to control air emissions from hexavalent chromium electroplating tanks. The venturi/vortex scrubber uses a patented drain assembly to pull plating solution, air with toxic particulates above the solution, and unpopped bubbles of generated gases down with a gravity generated vortex effect. The recirculated plating solution acts as the scrubbing liquid and air agitation is eliminated. Separated gases are passed through a condenser/filter to remove any remaining fumes. The device is almost entirely constructed of CPVC. This device offers several advantages over conventional end-of-pipe systems including significantly lower cost, no wastewater, no extensive ventilation system, and emissions are recycled. The system can be is easily retrofitted to existing tanks, however, a loose fitting tank lid is recommended. A pilot demonstration has been performed at Benet Laboratory, Watervliet, NY (US Army) with a 1,500 gallon chromic acid electroplating tank and 1,500 Amps of applied current. Overall chromium emissions results were 0.00002 mg/Amp-hr, surpassing the stringent California State requirement of 0.006 mg/Amp-hr. Emission prevention by capturing unpopped bubbles is the method in which this system reduces the most emissions. The system met current ambient worker safety standards. Two major improvements are recommended: an increase in gas flow rate through the system and a solution to the system`s sensitivity to the plating solution level.

  6. Control of Several Emissions during Olive Pomace Thermal Degradation

    PubMed Central

    Miranda, Teresa; Nogales, Sergio; Román, Silvia; Montero, Irene; Arranz, José Ignacio; Sepúlveda, Francisco José

    2014-01-01

    Biomass plays an important role as an energy source, being an interesting alternative to fossil fuels due to its environment-friendly and sustainable characteristics. However, due to the exposure of customers to emissions during biomass heating, evolved pollutants should be taken into account and controlled. Changing raw materials or mixing them with another less pollutant biomass could be a suitable step to reduce pollution. This work studied the thermal behaviour of olive pomace, pyrenean oak and their blends under combustion using thermogravimetric analysis. It was possible to monitor the emissions released during the process by coupling mass spectrometry analysis. The experiments were carried out under non-isothermal conditions at the temperature range 25–750 °C and a heating rate of 20 °C·min−1. The following species were analysed: aromatic compounds (benzene and toluene), sulphur emissions (sulphur dioxide), 1,4-dioxin, hydrochloric acid, carbon dioxide and nitrogen oxides. The results indicated that pollutants were mainly evolved in two different stages, which are related to the thermal degradation steps. Thus, depending on the pollutant and raw material composition, different emission profiles were observed. Furthermore, intensity of the emission profiles was related, in some cases, to the composition of the precursor. PMID:25314298

  7. 78 FR 36776 - Proposed Information Collection Request; Comment Request; Emission Control System Performance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-19

    ... AGENCY Proposed Information Collection Request; Comment Request; Emission Control System Performance... an information collection request (ICR), ``Emission Control System Performance Warranty Regulations and Voluntary Aftermarket Part Certification Program (Renewal)'' (EPA ICR No. 0116.10, OMB Control...

  8. Spontaneous baroreflex control of cardiac output during dynamic exercise, muscle metaboreflex activation, and heart failure.

    PubMed

    Ichinose, Masashi; Sala-Mercado, Javier A; O'Leary, Donal S; Hammond, Robert L; Coutsos, Matthew; Ichinose, Tomoko; Pallante, Marco; Iellamo, Ferdinando

    2008-03-01

    We have previously shown that spontaneous baroreflex-induced changes in heart rate (HR) do not always translate into changes in cardiac output (CO) at rest. We have also shown that heart failure (HF) decreases this linkage between changes in HR and CO. Whether dynamic exercise and muscle metaboreflex activation (via imposed reductions in hindlimb blood flow) further alter this translation in normal and HF conditions is unknown. We examined these questions using conscious, chronically instrumented dogs before and after pacing-induced HF during mild and moderate dynamic exercise with and without muscle metaboreflex activation. We measured left ventricular systolic pressure (LVSP), CO, and HR and analyzed the spontaneous HR-LVSP and CO-LVSP relationships. In normal animals, mild exercise significantly decreased HR-LVSP (-3.08 +/- 0.5 vs. -5.14 +/- 0.6 beats.min(-1).mmHg(-1); P < 0.05) and CO-LVSP (-134.74 +/- 24.5 vs. -208.6 +/- 22.2 ml.min(-1).mmHg(-1); P < 0.05). Moderate exercise further decreased both and, in addition, significantly reduced HR-CO translation (25.9 +/- 2.8% vs. 52.3 +/- 4.2%; P < 0.05). Muscle metaboreflex activation at both workloads decreased HR-LVSP, whereas it had no significant effect on CO-LVSP and the HR-CO translation. HF significantly decreased HR-LVSP, CO-LVSP, and the HR-CO translation in all situations. We conclude that spontaneous baroreflex HR responses do not always cause changes in CO during exercise. Moreover, muscle metaboreflex activation during mild and moderate dynamic exercise reduces this coupling. In addition, in HF the HR-CO translation also significantly decreases during both workloads and decreases even further with muscle metaboreflex activation.

  9. Single-displacement controlled spontaneous electrolysis towards CuTCNQ microribbon electrodes in organic single-crystal transistors.

    PubMed

    He, Liangfu; Ji, Zhuoyu; Zhen, Yonggang; Liu, Jie; Yang, Fangxu; Zhao, Qiang; Dong, Huanli; Hu, Wenping

    2015-10-28

    Using single-displacement controlled spontaneous electrolysis solution-prepared CuTCNQ microribbons as the source/drain electrodes, we have fabricated 9,10-bis(2-phenylethynyl)anthracene (BEPA) based organic single crystal top-contact field-effect transistors. The interfacial energetic match between organic semiconductors and CuTCNQ electrodes with the low contact resistance accounts for the compelling improvement in electrical characteristics relative to the copper electrode, even comparable to gold counterparts. Furthermore, we have estimated the contact resistance of single-crystal transistors by the transfer line method (TLM).

  10. A quantum dot single-photon source with on-the-fly all-optical polarization control and timed emission

    PubMed Central

    Heinze, Dirk; Breddermann, Dominik; Zrenner, Artur; Schumacher, Stefan

    2015-01-01

    Sources of single photons are key elements for applications in quantum information science. Among the different sources available, semiconductor quantum dots excel with their integrability in semiconductor on-chip solutions and the potential that photon emission can be triggered on demand. Usually, the photon is emitted from a single-exciton ground state. Polarization of the photon and time of emission are either probabilistic or pre-determined by electronic properties of the system. Here, we study the direct two-photon emission from the biexciton. The two-photon emission is enabled by a laser pulse driving the system into a virtual state inside the band gap. From this intermediate state, the single photon of interest is then spontaneously emitted. We show that emission through this higher-order transition provides a versatile approach to generate a single photon. Through the driving laser pulse, polarization state, frequency and emission time of the photon can be controlled on-the-fly. PMID:26436776

  11. LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL

    SciTech Connect

    Don Augenstein

    1999-01-11

    ''Conventional'' waste landfills emit methane, a potent greenhouse gas, in quantities such that landfill methane is a major factor in global climate change. Controlled landfilling is a novel approach to manage landfills for rapid completion of total gas generation, maximizing gas capture and minimizing emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated and brought to much earlier completion by improving conditions for biological processes (principally moisture levels) in the landfill. Gas recovery efficiency approaches 100% through use of surface membrane cover over porous gas recovery layers operated at slight vacuum. A field demonstration project's results at the Yolo County Central Landfill near Davis, California are, to date, highly encouraging. Two major controlled landfilling benefits would be the reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role in reduction of US greenhouse gas emissions.

  12. Understanding and constraining global controls on dust emissions from playas

    NASA Astrophysics Data System (ADS)

    Bryant, Robert; Eckardt, Frank; Vickery, Kate; Wiggs, Giles; Hipondoka, Martin; Murray, Jon; Baddock, Matt; Brindley, Helen; King, James; Nield, Jo; Thomas, Dave; Washington, Richard; Haustein, Karsten

    2016-04-01

    Playas are ephemeral, endorheic lake systems that are common in arid regions. They have been identified as both regionally and globally significant sources of mineral dust. Emissions of dust from large playas can therefore impact significantly on regional climate through a range of land/atmosphere interactions. However, not all playas have or will emit dust, and those that do emit dust rarely do so consistently. Thus, global models that target ephemeral lakes at source areas often struggle to model the emission characteristics of the locations accurately. It is clear that our understanding of controls on dust emission from these environments varies at global scales (i.e. relevant to climate models) is poorly understood. Existing research confirms that the potential for dust emission from playas within dryland regions can be extremely varied; large disparities are noted to exist from one playa to another, and significant spatial/temporal heterogeneity has been observed within those playas that do emit dust. Research also shows that dust fluxes from playa surfaces varies vary based on hydrological gradient or ephemeral inflows and may change over time in response to human or climate forcing mechanisms. Consequently, despite the presence of abundant fine sediment and suitable wind conditions, some playas will remain supply limited and will not emit dust as they are either too wet (e.g. via extensive groundwater discharge) not salty enough (e.g. salts have been removed from the surface by groundwater recharge) or there is not a sufficient supply of sand (coarse particles) on or at the upwind edge of the playa surface to cause dust emission. Other playas (e.g. Owens Lake) have emitted dust at a disproportionate (regionally/nationally) significant level seemingly without constraint (becoming effectively transport capacity limited) through optimal combinations of the same factors. Finally, we can also see situations where dust emitting playa systems flip between supply

  13. The disrupted basal ganglia and behavioural control: an integrative cross-domain perspective of spontaneous stereotypy.

    PubMed

    McBride, Sebastian D; Parker, Matthew O

    2015-01-01

    Spontaneous stereotypic behaviour (SB) is common in many captive animal species, as well as in humans with some severe psychiatric disorders, and is often cited as being related to general basal ganglia dysfunction. Despite this assertion, there is little in the literature examining SB specifically in terms of the basal ganglia mechanics. In this review, we attempt to fill this gap by offering an integrative, cross-domain perspective of SB by linking what we currently understand about the SB phenotype with the ever-growing literature on the anatomy and functionality of the basal ganglia. After outlining current models of SB from different theoretical perspectives, we offer a broad but detailed overview of normally functioning basal ganglia mechanics, and attempt to link this with current neurophysiological evidence related to spontaneous SB. Based on this we present an empirically derived theoretical framework, which proposes that SB is the result of a dysfunctional action selection system that may reflect dysregulation of excitatory (direct) and inhibitory (indirect and hyperdirect) pathways as well as alterations in mechanisms of behavioural switching. This approach also suggests behaviours that specifically become stereotypic may reflect inbuilt low selection threshold behavioural sequences associated with early development and the species-specific ethogram or, low threshold behavioural sequences that are the result of stress-induced dopamine exposure at the time of performance.

  14. Related or not? Development of spontaneous Creutzfeldt–Jakob disease in a patient with chronic, well-controlled HIV: A case report and review of the literature

    PubMed Central

    Babi, M-Alain; Kraft, Bryan D; Sengupta, Sweta; Peterson, Haley; Orgel, Ryan; Wegermann, Zachary; Lugogo, Njira L; Luedke, Matthew W

    2016-01-01

    Background: We report a novel case of a rare disease: spontaneous Creutzfeldt–Jakob disease in a patient with well-controlled HIV. We explore the relationship between spontaneous Creutzfeldt–Jakob disease and HIV. Case report: A 66-year-old man with long-standing, well-controlled HIV infection presented with 3 months of progressive, subacute neurocognitive decline. His symptoms included conceptual apraxia, apathy, memory impairment, and gait disturbance, and were initially attributed to depressive “pseudo-dementia.” Unfortunately, the patient’s symptoms rapidly progressed and he ultimately succumbed to his illness. Autopsy confirmed the clinical diagnosis of spontaneous Creutzfeldt–Jakob disease. Discussion: This case highlights spontaneous Creutzfeldt–Jakob disease as a rare terminal illness in the setting of well-controlled chronic HIV. To our knowledge, this is the first report of a patient with chronic and previously well-controlled HIV infection dying from a prion disease. Despite the very different epidemiology and pathophysiology of HIV and spontaneous Creutzfeldt–Jakob disease, this case does raise questions of whether certain host genetic factors could predispose to both conditions, albeit currently, there is no clear causal link between HIV and spontaneous Creutzfeldt–Jakob disease. PMID:27781099

  15. Solid state carbon nanotube device for controllable trion electroluminescence emission

    NASA Astrophysics Data System (ADS)

    Liang, Shuang; Ma, Ze; Wei, Nan; Liu, Huaping; Wang, Sheng; Peng, Lian-Mao

    2016-03-01

    Semiconducting carbon nanotubes (CNTs) have a direct chirality-dependent bandgap and reduced dimensionality-related quantum confinement effects, which are closely related to the performance of optoelectronic devices. Here, taking advantage of the large energy separations between neutral singlet excitons and charged excitons, i.e. trions in CNTs, we have achieved for the first time all trion electroluminescence (EL) emission from chirality-sorted (8,3) and (8,4) CNT-based solid state devices. We showed that strong trion emission can be obtained as a result of localized impact excitation and electrically injected holes, with an estimated efficiency of ~5 × 10-4 photons per injected hole. The importance of contact-controlled carrier injection (including symmetric and asymmetric contact configurations) and EL spectral stability for gradually increasing bias were also investigated. The realization of electrically induced pure trion emission opens up a new opportunity for CNT film-based optoelectronic devices, providing a new degree of freedom in controlling the devices to extend potential applications in spin or magnetic optoelectronics fields.Semiconducting carbon nanotubes (CNTs) have a direct chirality-dependent bandgap and reduced dimensionality-related quantum confinement effects, which are closely related to the performance of optoelectronic devices. Here, taking advantage of the large energy separations between neutral singlet excitons and charged excitons, i.e. trions in CNTs, we have achieved for the first time all trion electroluminescence (EL) emission from chirality-sorted (8,3) and (8,4) CNT-based solid state devices. We showed that strong trion emission can be obtained as a result of localized impact excitation and electrically injected holes, with an estimated efficiency of ~5 × 10-4 photons per injected hole. The importance of contact-controlled carrier injection (including symmetric and asymmetric contact configurations) and EL spectral stability for

  16. Dynamic control of light emission faster than the lifetime limit using VO2 phase-change

    PubMed Central

    Cueff, Sébastien; Li, Dongfang; Zhou, You; Wong, Franklin J.; Kurvits, Jonathan A.; Ramanathan, Shriram; Zia, Rashid

    2015-01-01

    Modulation is a cornerstone of optical communication, and as such, governs the overall speed of data transmission. Currently, the two main strategies for modulating light are direct modulation of the excited emitter population (for example, using semiconductor lasers) and external optical modulation (for example, using Mach–Zehnder interferometers or ring resonators). However, recent advances in nanophotonics offer an alternative approach to control spontaneous emission through modifications to the local density of optical states. Here, by leveraging the phase-change of a vanadium dioxide nanolayer, we demonstrate broadband all-optical direct modulation of 1.5 μm emission from trivalent erbium ions more than three orders of magnitude faster than their excited state lifetime. This proof-of-concept demonstration shows how integration with phase-change materials can transform widespread phosphorescent materials into high-speed optical sources that can be integrated in monolithic nanoscale devices for both free-space and on-chip communication. PMID:26489436

  17. THE IMPACT OF PARTICULATE EMISSIONS CONTROL ON THE CONTROL OF OTHER MWC AIR EMISSIONS

    EPA Science Inventory

    On December 20, 1989, the Environmental Protection Agency (EPA) proposed revised new source performance standards for new municipal waste combustion (MWC) units and guidelines for existing sources. The proposed national regulations require tighter particulate matter control and a...

  18. VOC emissions controls for aluminum cold rolling mills

    SciTech Connect

    Genoble, A.L.; Lagoe, D.J.; Wasyluk, W.J.R.

    1997-12-31

    This paper is a case history of retrofitting VOC emissions controls to two (2) aluminum cold rolling mills at an aluminum sheet complex in central New York. The plant site was located in the northeast ozone transport region, and it was necessary to achieve compliance with VOC emissions limitations. Emissions control equipment included high efficiency filters for VOC mists and a wash oil process for scrubbing VOC vapors. All rolling oil was recovered for reuse on site. A vacuum distillation process was used to separate wash oil from rolling oil. The equipment began operating in mid-1995, and long term results have proven the validity of the recovery concept. Total project costs were $7.2 million for two (2) 60,000 ACFM systems. Project duration from the date of the initial request for equipment price quotations to the first round of stack testing was twenty (20) months. The modular construction of the vacuum distillation equipment simplified field erection and shortened the duration of field work. Stack testing indicated overall VOC collection efficiencies that exceeded regulatory requirements. Initially, problems were experienced with Method 25 stack testing methodology. Final results were confirmed by two (2) independent methods.

  19. Technology for CO{sub 2} emission monitoring and control

    SciTech Connect

    Joyce, E.L. Jr.; Unkefer, P.J.; Pendergrass, J.H.; Parkinson, W.J.; Loose, V.W.; Brainard, J.R.

    1998-12-31

    The authors examined three specific areas relative to CO{sub 2} emissions and controls: (1) the effect of deregulation of the utility industry on emissions, (2) the role of advanced power systems in reducing emissions, and (3) developing CO{sub 2} mitigation technologies. In this work the Energy Technologies program office at Los Alamos attempted to initiate an integrated approach that includes a range of tasks involving both point and distributed CO{sub 2} control. The authors have examined evolving mitigation (separation and sequestration) technologies for CO{sub 2} disposal. The separation of hydrogen gas from high-temperature CO{sub 2}-containing streams is a critical component of carbon dioxide mitigation technology, and cost-effective point sequestration will require separation of CO{sub 2} from H{sub 2}. They investigated four types of separation techniques: two high-temperature membrane technologies, an intermediate-temperature membrane technology, and a separation technology based on the formation of CO{sub 2} hydrate compounds through reaction of CO{sub 2} with water at near freezing conditions. At Los Alamos, sequestration technologies are being developed along three principal areas: mineral sequestration of CO{sub 2}, the enhancement of natural sinks using biotechnology methods, and the conversion of CO{sub 2} to methanol using high-temperature photolysis.

  20. City-specific vehicle emission control strategies to achieve stringent emission reduction targets in China's Yangtze River Delta region.

    PubMed

    Zhang, Shaojun; Wu, Ye; Zhao, Bin; Wu, Xiaomeng; Shu, Jiawei; Hao, Jiming

    2017-01-01

    The Yangtze River Delta (YRD) region is one of the most prosperous and densely populated regions in China and is facing tremendous pressure to mitigate vehicle emissions and improve air quality. Our assessment has revealed that mitigating vehicle emissions of NOx would be more difficult than reducing the emissions of other major vehicular pollutants (e.g., CO, HC and PM2.5) in the YRD region. Even in Shanghai, where the emission control implemented are more stringent than in Jiangsu and Zhejiang, we observed little to no reduction in NOx emissions from 2000 to 2010. Emission-reduction targets for HC, NOx and PM2.5 are determined using a response surface modeling tool for better air quality. We design city-specific emission control strategies for three vehicle-populated cities in the YRD region: Shanghai and Nanjing and Wuxi in Jiangsu. Our results indicate that even if stringent emission control consisting of the Euro 6/VI standards, the limitation of vehicle population and usage, and the scrappage of older vehicles is applied, Nanjing and Wuxi will not be able to meet the NOx emissions target by 2020. Therefore, additional control measures are proposed for Nanjing and Wuxi to further mitigate NOx emissions from heavy-duty diesel vehicles.

  1. Spontaneous Swallowing during All-Night Sleep in Patients with Parkinson Disease in Comparison with Healthy Control Subjects

    PubMed Central

    Uludag, Irem Fatma; Tiftikcioglu, Bedile Irem; Ertekin, Cumhur

    2016-01-01

    Study Objectives: Spontaneous saliva swallows (SS) appear especially during sleep. The rate of SS was rarely investigated in all-night sleep in patients with Parkinson disease (PD). Dysphagia is a frequent symptom in PD, but the rate of SS was never studied with an all-night sleep electroencephalogram (EEG). Methods: A total of 21 patients with PD and 18 age-matched healthy controls were included in the study. Frequencies of SS and coughing were studied in all-night sleep recordings of patients with PD and controls. During all-night sleep, video-EEG 12-channel recording was used including the electromyography (EMG) of the swallowing muscles, nasal airflow, and recording of vertical laryngeal movement using a pair of EEG electrodes over the thyroid cartilage. Results: The total number of SS was increased while the mean duration of sleep was decreased in PD when compared to controls. Sialorrhea and clinical dysphagia, assessed by proper questionnaires, had no effect in any patient group. The new finding was the so-called salvo type of consecutive SS in one set of swallowing. The amount of coughing was significantly increased just after the salvo SS. Conclusions: In PD, the rate of SS was not sufficient to demonstrate the swallowing disorder, such as oropharyngeal dysphagia, but the salvo type of SS was quite frequent. This is a novel finding and may contribute to the understanding of swallowing problems in patients with dysphagic or nondysphagic PD. Citation: Uludag IF, Tiftikcioglu BI, Ertekin C. Spontaneous swallowing during all-night sleep in patients with Parkinson disease in comparison with healthy control subjects. SLEEP 2016;39(4):847–854. PMID:26943467

  2. Automated Boiler Combustion Controls for Emission Reduction and Efficiency Improvement

    SciTech Connect

    None, None

    1998-12-02

    In the late 1980s, then President Bush visited Krakow, Poland. The terrible air quality theremotivated him to initiate a USAID-funded program, managed by DOE, entitled "Krakow Clean Fossil Fuels and Energy Efficiency Program." The primary objective of this program was to encourage the formation of commercial ventures between U.S. and Polish firms to provide equipment and/or services to reduce pollution from low-emission sources in Krakow, Poland. This program led to the award of a number of cooperative agreements, including one to Control Techtronics International. The technical objective of CTI's cooperative agreement is to apply combustion controls to existing boiler plants in Krakow and transfer knowledge and technology through a joint U.S. and Polish commercial venture. CTI installed automatic combustion controls on five coal boilers for the district heating system in Krakow. Three of these were for domestic hot-water boilers, and two were for steam for industrial boilers. The following results have occurred due to the addition of CTI's combustion controls on these five existing boilers: ! 25% energy savings ! 85% reduction in particulate emissions The joint venture company CTI-Polska was then established. Eleven additional technical and costing proposals were initiated to upgrade other coal boilers in Krakow. To date, no co-financing has been made available on the Polish side. CTI-Polska continues in operation, serving customers in Russia and Ukraine. Should the market in Poland materialize, the joint venture company is established there to provide equipment and service.

  3. Active Control of Combustor Instability Shown to Help Lower Emissions

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Chang, Clarence T.

    2002-01-01

    In a quest to reduce the environmental impact of aerospace propulsion systems, extensive research is being done in the development of lean-burning (low fuel-to-air ratio) combustors that can reduce emissions throughout the mission cycle. However, these lean-burning combustors have an increased susceptibility to thermoacoustic instabilities, or high-pressure oscillations much like sound waves, that can cause severe high-frequency vibrations in the combustor. These pressure waves can fatigue the combustor components and even the downstream turbine blades. This can significantly decrease the safe operating life of the combustor and turbine. Thus, suppression of the thermoacoustic combustor instabilities is an enabling technology for lean, low-emissions combustors. Under the Aerospace Propulsion and Power Base Research and Technology Program, the NASA Glenn Research Center, in partnership with Pratt & Whitney and United Technologies Research Center, is developing technologies for the active control of combustion instabilities. With active combustion control, the fuel is pulsed to put pressure oscillations into the system. This cancels out the pressure oscillations being produced by the instabilities. Thus, the engine can have lower pollutant emissions and long life.The use of active combustion instability control to reduce thermo-acoustic-driven combustor pressure oscillations was demonstrated on a single-nozzle combustor rig at United Technologies. This rig has many of the complexities of a real engine combustor (i.e., an actual fuel nozzle and swirler, dilution cooling, etc.). Control was demonstrated through modeling, developing, and testing a fuel-delivery system able to the 280-Hz instability frequency. The preceding figure shows the capability of this system to provide high-frequency fuel modulations. Because of the high-shear contrarotating airflow in the fuel injector, there was some concern that the fuel pulses would be attenuated to the point where they would

  4. Greenhouse gas emission from covered windrow composting with controlled ventilation.

    PubMed

    Ermolaev, Evgheni; Pell, Mikael; Smårs, Sven; Sundberg, Cecilia; Jönsson, Håkan

    2012-02-01

    Data on greenhouse gas (GHG) emissions from full-scale composting of municipal solid waste, investigating the effects of process temperature and aeration combinations, is scarce. Oxygen availability affects the composition of gases emitted during composting. In the present study, two experiments with three covered windrows were set up, treating a mixture of source separated biodegradable municipal solid waste (MSW) fractions from Uppsala, Sweden, and structural amendment (woodchips, garden waste and re-used compost) in the volume proportion 1:2. The effects of different aeration and temperature settings on the emission of methane (CH(4)), nitrous oxide (N(2)O) and carbon dioxide (CO(2)) during windrow composting with forced aeration following three different control schemes were studied. For one windrow, the controller was set to keep the temperature below 40 °C until the pH increased, another windrow had minimal aeration at the beginning of the process and the third one had constant aeration. In the first experiment, CH(4) concentrations (CH(4):CO(2) ratio) increased, from around 0.1% initially to between 1 and 2% in all windrows. In the second experiment, the initial concentrations of CH(4) displayed similar patterns of increase between windrows until day 12, when concentration peaked at 3 and 6%, respectively, in two of the windrows. In general, the N(2)O fluxes remained low (0.46 ± 0.02 ppm) in the experiments and were two to three times the ambient concentrations. In conclusion, the emissions of CH(4) and N(2)O were low regardless of the amount of ventilation. The data indicates a need to perform longer experiments in order to observe further emission dynamics.

  5. PG2 for patients with acute spontaneous intracerebral hemorrhage: a double-blind, randomized, placebo-controlled study

    PubMed Central

    Chen, Chun-Chung; Chen, XianXiu; Li, Tsai-Chung; Lin, Hung-Lin; Chu, Yen-Tze; Lee, Han-Chung; Cheng, Yu-Kai; Chen, Der-Cherng; Tsai, Shiu-Chiu; Cho, Der-Yang; Hsieh, Ching-Liang

    2017-01-01

    PG2 is an infusible polysaccharide extracted from Astragalus membranaceus, which is a Chinese herb traditionally used for stroke treatment. We investigated the effect of PG2 on patients with spontaneous acute intracerebral hemorrhage (ICH). A total of 61 patients with acute spontaneous ICH were randomized to either the treatment group (TG, 30 patients), which received 3 doses of PG2 (500 mg, IV) per week for 2 weeks, or the control group (CG, 31 patients), which received PG2 placebo. At 84 days after PG2 administration, the percentage of patients with a good Glasgow outcome scale (GOS 4–5) score in the TG was similar to that in the CG (69.0% vs. 48.4%; p = 0.2). The percentage of good mRS scores (0–2) in the TG was similar to that in the CG (62.1% vs. 45.2%; p = 0.3). In addition, no significant differences were seen when comparing differences in the C-reactive protein, erythrocyte sedimentation rate, interleukin-6 (IL-6), IL-1β, tumor necrosis factor-α, and S100B levels between baseline and days 4, 7, and 14 after PG2 administration (all p > 0.05). The results are preliminary, necessitating a more thorough assessment. PMID:28361971

  6. Optical properties of the breast during spontaneous and birth control pill-mediated menstrual cycles.

    PubMed

    Stahel, Michèle C; Wolf, Martin; Baños, Ana; Hornung, R

    2009-11-01

    Mastodynia is correlated with the menstrual cycle. Using frequency-domain near-infrared spectroscopy (FD-NIRS), we investigated changes in breast perfusion in women who were or were not using hormonal contraception. Healthy volunteers, on or not on hormonal contraception, were examined. Optical properties were measured in all quadrants of both breasts, and physiological parameters were calculated. Measurements were repeated every other day during one complete menstrual cycle. Measurements were comparable in all quadrants. Data remained unchanged during the entire cycle in patients using hormonal contraception. However, a biphasic variation of deoxyhemoglobin, oxyhemoglobin, total hemoglobin (tHb), and water content (H(2)O) was observed in women not using contraception. tHb and H(2)O distinctly increased during the ovulation period and remained elevated throughout the luteal phase. It was concluded that FD-NIRS allows accurate measurement of optical properties of human breasts. As opposed to the menstrual cycles of persons using oral contraception, spontaneous menstrual cycles exhibit biphasic variations of tissue perfusion parameters. These findings are important for the investigation of mastodynia.

  7. Reflex control of locomotion as revealed by stimulation of cutaneous afferents in spontaneously walking premammillary cats.

    PubMed

    Duysens, J

    1977-07-01

    1. Stimulation of different hindlimb nerves in spontaneously walking premammillary cats was used in order to examine the effects of sensory input on the rhythmic motor output. 2. Stimulation of the tibial or sural nerve at low intensities caused the burst of activity in the triceps surae or semimembranosus to be prolonged if stimuli were given during the extension phase. When applied during the flexion phase, the same stimuli shortened the burst of activity in the pretibial flexors and induced an early onset of the extensor activity, except if stimuli were given at the very beginning of the flexion phase, when flexor burst prolongations or rebounds were observed instead. 3. These effects were related to activation of large cutaneous afferents in these nerves since the results could be duplicated by low-intensity stimulation of the tibial nerve at the ankle or by direct stimulation of the pad. 4. In contrast, activation of smaller afferents by high-intensity stimulation resulted prolongations of the flexor burst and/or shortenings of the extensor burst for stimuli applied before or during these bursts, respectively. 5. It was concluded that the large and small cutaneous afferents make, respectively, inhibitory and excitatory connections with the central structure involved in the generation of flexion during walking.

  8. Enhancement in the excitonic spontaneous emission rates for Si nanocrystal multi-layers covered with thin films of Au, Ag, and Al

    NASA Astrophysics Data System (ADS)

    Estrin, Y.; Rich, D. H.; Rozenfeld, N.; Arad-Vosk, N.; Ron, A.; Sa'ar, A.

    2015-10-01

    The enhancement in the spontaneous emission rate (SER) for Ag, Au, and Al films on multilayer Si nanocrystals (SiNCs) was probed with time-resolved cathodoluminescence (CL). The SiNCs were grown on Si(100) using plasma enhanced chemical vapor deposition. Electron-hole pairs were generated in the metal-covered SiNCs by injecting a pulsed high-energy electron beam through the thin metal films, which is found to be an ideal method of excitation for plasmonic quantum heterostructures and nanostructures that are opaque to laser or light excitation. Spatially, spectrally, and temporally resolved CL was used to measure the excitonic lifetime of the SiNCs in metal-covered and bare regions of the same samples. The observed enhancement in the SER for the metal-covered SiNCs, relative to the SER for the bare sample, is attributed to a coupling of the SiNC excitons with surface plasmon polaritons (SPPs) of the thin metal films. A maximum SER enhancement of ˜2.0, 1.4 and 1.2 was observed for the Ag, Au, and Al films, respectively, at a temperature of 55 K. The three chosen plasmonic metals of Ag, Au, and Al facilitate an interesting comparison of the exciton-SPP coupling for metal films that exhibit varying differences between the surface plasmon energy, ωsp, and the SiNC excitonic emission energy. A modeling of the temperature dependence of the Purcell enhancement factor, Fp, was performed and included the temperature dependence of the dielectric properties of the metals.

  9. Effects of inspiratory muscle training on exercise capacity and spontaneous physical activity in elderly subjects: a randomized controlled pilot trial.

    PubMed

    Aznar-Lain, S; Webster, A L; Cañete, S; San Juan, A F; López Mojares, L M; Pérez, M; Lucia, A; Chicharro, J L

    2007-12-01

    Inspiratory muscle training (IMT) has been shown to improve exercise capacity in diseased populations. We chose to examine the effects of eight weeks of IMT on exercise capacity and spontaneous physical activity in elderly individuals. Eighteen moderately active elderly subjects (68.1 +/- 6.8 years [mean +/- SD]; range 58 - 78 years) were randomly assigned to either an experimental group (n = 9) or a control group (n = 9) in a double-blind manner. All subjects underwent inspiratory muscle testing, treadmill exercise testing and a four-day measurement period of spontaneous physical activity (using accelerometry) both pre- and post-intervention. The experimental group underwent eight weeks of incremental IMT using a pressure threshold device, while the control group underwent sham training using identical devices. After IMT training, inspiratory muscle strength (mean + 21.5 cm H (2)O; 95 % CI: 9.3, 33.7; p = 0.002), V.O (2peak) (+ 2.8 ml x min (-1) x kg (-1); 95 % CI: 0.5, 5.2; p = 0.022), time to exhaustion during a fixed workload treadmill test (+ 7.1 min; 95 % CI: 1.8, 2.4; p = 0.013) and time engaged in moderate-to-vigorous physical activity (+ 59 min; 95 % CI: 15, 78; p = 0.008) improved. Except for a decline in moderate-to-vigorous physical activity, no significant changes were seen in the control group. Therefore, IMT may be a useful technique for positively influencing exercise capacity and physical activity in elderly individuals.

  10. 40 CFR 63.325 - Determination of equivalent emission control technology.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... control technology. 63.325 Section 63.325 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Determination of equivalent emission control technology. (a) Any person requesting that the use of certain... equivalent emission reductions: (1) Diagrams, as appropriate, illustrating the emission control...

  11. 40 CFR 63.325 - Determination of equivalent emission control technology.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... control technology. 63.325 Section 63.325 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Determination of equivalent emission control technology. (a) Any person requesting that the use of certain... equivalent emission reductions: (1) Diagrams, as appropriate, illustrating the emission control...

  12. 40 CFR 75.34 - Units with add-on emission controls.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Units with add-on emission controls... add-on emission controls. (a) The owner or operator of an affected unit equipped with add-on SO2 and... which the add-on emission controls are documented to be operating properly, as described in the...

  13. 40 CFR 75.34 - Units with add-on emission controls.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Units with add-on emission controls... add-on emission controls. (a) The owner or operator of an affected unit equipped with add-on SO2 and... which the add-on emission controls are documented to be operating properly, as described in the...

  14. 40 CFR 75.34 - Units with add-on emission controls.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Units with add-on emission controls... add-on emission controls. (a) The owner or operator of an affected unit equipped with add-on SO2 and... which the add-on emission controls are documented to be operating properly, as described in the...

  15. 40 CFR 75.34 - Units with add-on emission controls.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Units with add-on emission controls... add-on emission controls. (a) The owner or operator of an affected unit equipped with add-on SO2 and... which the add-on emission controls are documented to be operating properly, as described in the...

  16. 40 CFR 75.34 - Units with add-on emission controls.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Units with add-on emission controls... add-on emission controls. (a) The owner or operator of an affected unit equipped with add-on SO2 and... which the add-on emission controls are documented to be operating properly, as described in the...

  17. 40 CFR 63.325 - Determination of equivalent emission control technology.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... control technology. 63.325 Section 63.325 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Determination of equivalent emission control technology. (a) Any person requesting that the use of certain... equivalent emission reductions: (1) Diagrams, as appropriate, illustrating the emission control...

  18. Survey of Emissions Associated with Enclosed Combustor Emission Control Devices in the Denver-Julesburg Basin

    NASA Astrophysics Data System (ADS)

    Knighton, W. B.; Floerchinger, C. R.; Wormhoult, J.; Massoli, P.; Fortner, E.; Brooks, B.; Roscioli, J. R.; Bon, D.; Herndon, S. C.

    2014-12-01

    Volatile organic compounds (VOCs) play an important role in local and regional air quality. A large source of VOCs comes from the oil and gas industry and the Denver-Julesburg Basin (D-J Basin) has seen a sharp increase in production in recent years primarily due to advances in horizontal drilling techniques. To help curb emissions with extraction and production of natural gas and its associated oil, emission control devices are required for facilities emitting over 6 tons of hydrocarbons per year. Within the ozone non-attainment area, which encompasses Denver and much of the front range, enclosed combustion devices (enclosed flares) are required to reduce hydrocarbon emissions by at least 95%. While certification tests indicate that these enclosed combustor devices provide high destruction removal efficiencies, there is considerable interest in knowing how well they perform in the field. As part of Front Range Air Pollution and Photochemistry Experiment (FRAPPE) project conducted during the Summer of 2014, the Aerodyne Mobile Laboratory (AML) surveyed oil and gas operations within the Wattenberg gas field and the surrounding D-J Basin. The AML deployed a full suite of gas and particle phase instrumentation providing a comprehensive set of on-line, real-time measurements for the major natural gas components (methane and ethane) and their combustion products (CO2, CO, NOx) using a variety of spectroscopic techniques. Additional gas phase organic gas emissions were made using a proton transfer reaction mass spectrometer (PTR-MS). Particle number and composition were determined using a condensation particle counter and an Aerodyne Aerosol Mass Spectrometer (AMS). A summary of the number of enclosed combustor devices measured and their observed combustion efficiencies will be presented.

  19. Influence of deep breathing exercise on spontaneous respiratory rate and heart rate variability: a randomised controlled trial in healthy subjects.

    PubMed

    Tharion, Elizabeth; Samuel, Prasanna; Rajalakshmi, R; Gnanasenthil, G; Subramanian, Rajam Krishna

    2012-01-01

    Studies show that yogic type of breathing exercises reduces the spontaneous respiratory rate. However, there are no conclusive studies on the effects of breathing exercise on heart rate variability. We investigated the effects of non-yogic breathing exercise on respiratory rate and heart rate variability. Healthy subjects (21-33 years, both genders) were randomized into the intervention group (n=18), which performed daily deep breathing exercise at 6 breaths/min (0.1 Hz) for one month, and a control group (n=18) which did not perform any breathing exercise. Baseline respiratory rate and short-term heart rate variability indices were assessed in both groups. Reassessment was done after one month and the change in the parameters from baseline was computed for each group. Comparison of the absolute changes [median (inter-quartile ranges)] of the parameters between the intervention and control group showed a significant difference in the spontaneous respiratory rate [intervention group -2.50 (-4.00, -1.00), control group 0.00 (-1.00, 1.00), cycles/min, P<0.001], mean arterial pressure [intervention group -0.67 (-6.67, 1.33), control group 0.67 (0.00, 6.67), mmHg, (P<0.05)], high frequency power [intervention group 278.50 (17.00, 496.00), control group -1.00 (-341.00, 196.00), ms2 P<0.05] and sum of low and high frequency powers [intervention group 512.00 (-73.00, 999.00), control group 51.00 (-449.00, 324.00), ms2, P<0.05]. Neither the mean of the RR intervals nor the parameters reflecting sympatho-vagal balance were significantly different across the groups. In conclusion, the changes produced by simple deep slow breathing exercise in the respiratory rate and cardiac autonomic modulation of the intervention group were significant, when compared to the changes in the control group. Thus practice of deep slow breathing exercise improves heart rate variability in healthy subjects, without altering their cardiac autonomic balance. These findings have implications in the

  20. Self-assembly, highly modified spontaneous emission and energy transfer properties of LaPO4:Ce3+, Tb3+ inverse opals.

    PubMed

    Zhu, Yongsheng; Sun, Zhipeng; Yin, Ze; Song, Hongwei; Xu, Wen; Wang, Yunfeng; Zhang, Ligong; Zhang, Hanzhuang

    2013-06-14

    The modification of photonic crystals (PCs) on photoluminescence of rare earth (RE) ions has attracted considerable interest, however, the modification of PCs on energy transfer (ET) processes of two separate RE centers has not been investigated yet. In this paper, three-dimensional Ce(3+), Tb(3+)-codoped LaPO4 inverse opal PCs (IOPCs) were fabricated by the PMMA colloidal template method. The modification of the photonic stop band (PSB) on emission spectra and the dynamics of the 5d-4f transition of Ce(3+) and the 4f-4f transition of Tb(3+) ions were systematically studied. It is interesting to observe that the spontaneous decay rates (SDR) of (5)D4-(7)F5 in the IOPCs were suppressed as highly as 173% in contrast to the reference ground powder samples (REF) due to the modification of the effective refractive index (n(eff)). The energy transfer (ET) rate of Ce(3+) to Tb(3+) did not change in the IOPCs, however, the energy migration rate among Tb(3+) ions was largely restrained. It is also significant to observe that, in the IOPCs, the temperature quenching and radiation trapping of photoluminescence were greatly suppressed due to the periodic empty cavity structure of IOPCs, which is significant for high-power light sources and laser devices.

  1. Real-time monitoring and fault locating using amplified spontaneous emission noise reflection for tree-structured Ethernet passive optical networks

    NASA Astrophysics Data System (ADS)

    Naim, Nani Fadzlina; Ab-Rahman, Mohammad Syuhaimi; Kamaruddin, Nur Hasiba; Bakar, Ahmad Ashrif A.

    2013-09-01

    Nowadays, optical networks are becoming dense while detecting faulty branches in the tree-structured networks has become problematic. Conventional methods are inconvenient as they require an engineer to visit the failure site to check the optical fiber using an optical time-domain reflectometer. An innovative monitoring technique for tree-structured network topology in Ethernet passive optical networks (EPONs) by using the erbium-doped fiber amplifier to amplify the traffic signal is demonstrated, and in the meantime, a residual amplified spontaneous emission spectrum is used as the input signal to monitor the optical cable from the central office. Fiber Bragg gratings with distinct center wavelengths are employed to reflect the monitoring signals. Faulty branches of the tree-structured EPONs can be identified using a simple and low-cost receiver. We will show that this technique is capable of providing monitoring range up to 32 optical network units using a power meter with a sensitivity of -65 dBm while maintaining the bit error rate of 10-13.

  2. Air-Stable Surface-Passivated Perovskite Quantum Dots for Ultra-Robust, Single- and Two-Photon-Induced Amplified Spontaneous Emission.

    PubMed

    Pan, Jun; Sarmah, Smritakshi P; Murali, Banavoth; Dursun, Ibrahim; Peng, Wei; Parida, Manas R; Liu, Jiakai; Sinatra, Lutfan; Alyami, Noktan; Zhao, Chao; Alarousu, Erkki; Ng, Tien Khee; Ooi, Boon S; Bakr, Osman M; Mohammed, Omar F

    2015-12-17

    We demonstrate ultra-air- and photostable CsPbBr3 quantum dots (QDs) by using an inorganic-organic hybrid ion pair as the capping ligand. This passivation approach to perovskite QDs yields high photoluminescence quantum yield with unprecedented operational stability in ambient conditions (60 ± 5% lab humidity) and high pump fluences, thus overcoming one of the greatest challenges impeding the development of perovskite-based applications. Due to the robustness of passivated perovskite QDs, we were able to induce ultrastable amplified spontaneous emission (ASE) in solution processed QD films not only through one photon but also through two-photon absorption processes. The latter has not been observed before in the family of perovskite materials. More importantly, passivated perovskite QD films showed remarkable photostability under continuous pulsed laser excitation in ambient conditions for at least 34 h (corresponds to 1.2 × 10(8) laser shots), substantially exceeding the stability of other colloidal QD systems in which ASE has been observed.

  3. Optimizing the mix of strategies for control of vehicular emissions

    SciTech Connect

    Lejano, R.P.; Ayala, P.M.; Gonzales, E.A.

    1997-01-01

    A number of strategies for the control of vehicular emissions are being considered by the Philippine government to address Metropolitan Manila`s air quality problem. An analytical tool is needed for optimizing criteria pollutant reductions given the budgetary constraints. The simplest approach is to take costs and pollutant removals to be linear with each strategy`s scale of activity, and this is readily solved as a linear programming problem. Another approach is to use a dynamic system of weights which shift with progressive improvements in pollutant emissions. The two approaches yield somewhat different results, suggesting the sensitivity of the solution to the assumed weights. The study also illustrates the importance of a sound methodology for evaluating priorities given to different air quality goals. One such methodology may involve a polling of expert panels and the public to gain insight into the relative importance given to competing emissions reduction goals. An informal polling of resource agency staff was conducted and discussed in this paper. The authors take the position that proper planning involves tracing intermediate steps to the final outcome and not just focusing on the latter. 17 refs., 1 fig., 8 tabs.

  4. Mine planning and emission control strategies using geostatistics

    SciTech Connect

    Martino, F.; Kim, Y.C.

    1983-03-01

    This paper reviews the past four years' research efforts performed jointly by the University of Arizona and the Homer City Owners in which geostatistics were applied to solve various problems associated with coal characterization, mine planning, and development of emission control strategies. Because geostatistics is the only technique which can quantify the degree of confidence associated with a given estimate (or prediction), it played an important role throughout the research efforts. Through geostatistics, it was learned that there is an urgent need for closely spaced sample information, if short-term coal quality predictions are to be made for mine planning purposes.

  5. Dynamic behavioural changes in the Spontaneously Hyperactive Rat: 2. Control by novelty.

    PubMed

    Williams, Jonathan; Sagvolden, Geir; Taylor, Eric; Sagvolden, Terje

    2009-03-17

    An important aspect of attention deficit hyperactivity disorder (ADHD) is its temporary amelioration by novelty and by stimulant medication. Extant learning-based accounts of ADHD are unable to account for the temporary amelioration effect. One possible mechanism is a drive for novelty. Computational simulations have previously shown that such a drive can result from a "dopamine appetite". Empirical demonstration of such a process requires, as a first step, the development of standard criteria for identifying drive-based, versus learning-based, changes in behaviour. Using a variable-interval reinforcement schedule, we looked over a range of timescales for behavioural changes showing putative characteristics of drives, namely: low information content, unidirectionality, saturability, spontaneous reversibility in less than a day, and cycle stability. SHR lacks normal down-regulation of responding when the schedule becomes sparser. SHR appears to be re-learning the schedule length during the days of each calendar week. SHR hyperactivity is specific to the operant and develops gradually over the first five minutes of each session. Empirical within-session results were replicated by a simple simulation containing two interacting reward systems, one for water and the other for stimulation (including novelty). To summarise, enhanced sensation-seeking (or a subtype of it, novelty-seeking) provides the best available account of changes in SHR activity within sessions, though not of changes over longer timecourses. Sensation-seeking appears to be associated with low anxiety in the SHR. SHR propensity to display multiple influences on their behaviour makes them ideal for further pharmacological, genetic, and behavioural investigation.

  6. Improved control over spontaneously formed GaN nanowires in molecular beam epitaxy using a two-step growth process.

    PubMed

    Zettler, J K; Corfdir, P; Geelhaar, L; Riechert, H; Brandt, O; Fernández-Garrido, S

    2015-11-06

    We investigate the influence of modified growth conditions during the spontaneous formation of GaN nanowires (NWs) on Si(111) in plasma-assisted molecular beam epitaxy. We find that a two-step growth approach, where the substrate temperature is increased during the nucleation stage, is an efficient method to gain control over the area coverage, average diameter, and coalescence degree of GaN NW ensembles. Furthermore, we also demonstrate that the growth conditions employed during the incubation time that precedes nanowire nucleation do not influence the properties of the final nanowire ensemble. Therefore, when growing GaN NWs at elevated temperatures or with low Ga/N ratios, the total growth time can be reduced significantly by using more favorable growth conditions for nanowire nucleation during the incubation time.

  7. Spontaneous Fission

    DOE R&D Accomplishments Database

    Segre, Emilio

    1950-11-22

    The first attempt to discover spontaneous fission in uranium was made by [Willard] Libby, who, however, failed to detect it on account of the smallness of effect. In 1940, [K. A.] Petrzhak and [G. N.] Flerov, using more sensitive methods, discovered spontaneous fission in uranium and gave some rough estimates of the spontaneous fission decay constant of this substance. Subsequently, extensive experimental work on the subject has been performed by several investigators and will be quoted in the various sections. [N.] Bohr and [A.] Wheeler have given a theory of the effect based on the usual ideas of penetration of potential barriers. On this project spontaneous fission has been studied for the past several years in an effort to obtain a complete picture of the phenomenon. For this purpose the spontaneous fission decay constants {lambda} have been measured for separated isotopes of the heavy elements wherever possible. Moreover, the number {nu} of neutrons emitted per fission has been measured wherever feasible, and other characteristics of the spontaneous fission process have been studied. This report summarizes the spontaneous fission work done at Los Alamos up to January 1, 1945. A chronological record of the work is contained in the Los Alamos monthly reports.

  8. Control over group velocity in a three-level closed Λ system via spontaneously generated coherence and dynamically induced coherence

    NASA Astrophysics Data System (ADS)

    Dutta, Sulagna; Dastidar, Krishna Rai

    2007-11-01

    The light propagation of a probe field in a three-level Λ system with incoherent pumping has been studied when both dynamically induced coherence (DIC) and spontaneously generated coherence (SGC) play a significant role. We have investigated the group velocity of probe field and hence the group index of a three-level Λ system with incoherent pumping when both DIC and SGC play a significant role. We have shown that by varying the probe field Rabi frequency one can control the interference between these two coherences which leads to different nonlinear response (amplification without inversion, electromagnetically induced transparency and electromagnetically induced absorption) leading to different (positive and negative) dispersion. Hence control over switching of group velocity from subluminal to superluminal and vice versa can be achieved. We have also shown that when the contributions from both the coherences are comparable, the dependence of group velocity of probe field in a three-level Λ system with incoherent pumping on phase difference between probe and coherent fields is different from that obtained under the weak probe field condition. Going beyond the weak probe field approximation we have derived analytical expressions for group velocity and hence the group index in the steady state limit (keeping all orders of system parameters) to generalize the analysis, and these expressions can be used for any set of system parameters without any restriction. The numerical values obtained by solving the density matrix equations agree well with these exact analytical values at a large time limit. We have proposed a scheme for experimental realization of EIT and hence subluminal light propagation in molecules by invoking spontaneously generated coherence.

  9. CONTROL OF TRACE METAL EMISSIONS DURING COAL COMBUSTION

    SciTech Connect

    THOMAS C. HO

    1998-02-18

    Emissions of toxic trace metals in the form of metal fumes or submicron particulates from a coal-fired combustion source have received greater environmental and regulatory concern over the past years. Current practice of controlling these emissions is to collect them at the cold-end of the process by air-pollution control devices (APCDs) such as electrostatic precipitators and baghouses. However, trace metal fumes may not always be effectively collected by these devices because the formed fumes are extremely small. The proposed research is to explore the opportunities for improved control of toxic trace metal emissions, alternatively, at the hot-end of the coal combustion process, i.e., in the combustion chamber. The technology proposed is to prevent the metal fumes from forming during the process, which would effectively eliminate the metal emission problems. Specifically, the technology is to employ suitable sorbents to (1) reduce the amount of metal volatilization during combustion and (2) capture volatilized metal vapors. The objectives of the project are to demonstrate the technology and to characterize the metal capture process during coal combustion in a fluidized bed combustor. This final technical report details the work performed, the conclusions obtained, and the accomplishments achieved over the project performance period from July 1, 1994 through December 31, 1997. Specifically, this report consists of the following five chapters: Chapter 1. Executive Summary; Chapter 2. Metal Capture by Various Sorbents; Chapter 3. Simultaneous Metal and Sulfur Capture; Chapter 4. Sorption and Desorption of Mercury on Sorbents; and Chapter 5. Project Conclusions. In summary, the metals involved in the project were arsenic, cadmium, chromium, lead, mercury and selenium and the sorbents tested included bauxite, zeolite and calcined limestone. The three sorbents have been found to have various degree of metal capture capability on arsenic, cadmium, chromium and lead

  10. Environmental factors controlling methane emissions for peatlands in Northern Minnesota

    SciTech Connect

    Dise, N.B.; Gorham, E.; Verry, E.S.

    1993-06-20

    Controls on methane emission from peatlands in northern Minnesota were investigated by correlation to environmental variables and by field manipulations. From September 1988 through September 1990, methane flux measurements were made at weekly to monthly intervals at six sites in the Marcell Experimental Forest, northern Minnesota (two open bog sites, two forested bog sites, a poor fen, and a fen lagg). Flux was related to water table position and peat temperature with simple correlations at individual sites and multiple regression on all sites together. The effect of water table was also investigated experimentally in {open_quotes}bog corrals{close_quotes} (open-ended metal enclosures set in the peat) in which water table was artificially raised to the surface in the driest peatland. Temperature largely controlled variation in flux within individual ecosystems at Marcell, but hydrology distinguished between-site variation. Water table position, peat temperature, and degree of peat humification explained 91% of the variance in log CH{sub 4} flux, predicted annual methane emission from individual wetlands successfully, and predicted the change in flux due to the water table manipulation. Raising the water table in the bog corrals by an average of 6 cm in autumn 1989 and 10 cm in summer 1990 increased emission by 2.5x and 2.2x, respectively. Just as expanding the scale of investigation from a single habitat in a wetland to several wetlands necessitates incorporation of additional variables to explain flux (water table, peat characteristics), modeling flux from several wetland regions, if possible, will require the addition of climate parameters. 30 refs., 8 figs., 21 tabs.

  11. N2O and NO2 Emissions from Heavy-Duty Diesel Trucks with Advanced Emission Controls

    NASA Astrophysics Data System (ADS)

    Preble, C.; Harley, R.; Kirchstetter, T.

    2014-12-01

    Diesel engines are the largest source of nitrogen oxides (NOx) emissions nationally, and also a major contributor to the black carbon (BC) fraction of fine particulate matter (PM). Recently, diesel particle filter (DPF) and selective catalytic reduction (SCR) emission control systems that target exhaust PM and NOx have become standard equipment on new heavy-duty diesel trucks. However, the deliberate catalytic oxidation of engine-out nitric oxide (NO) to nitrogen dioxide (NO2) in continuously regenerating DPFs leads to increased tailpipe emission of NO2. This is of potential concern due to the toxicity of NO2 and the resulting increases in atmospheric formation of other air pollutants such as ozone, nitric acid, and fine PM. While use of SCR reduces emissions of both NO and NO2, it may lead to increased emissions of nitrous oxide (N2O), a potent greenhouse gas. Here we report results from on-road measurements of heavy-duty diesel truck emissions conducted at the Port of Oakland and the Caldecott Tunnel in the San Francisco Bay Area. Emission factors (g pollutant per kg of diesel) were linked via recorded license plates to individual truck attributes, including engine model year and installed emission control equipment. Between 2009 and 2013, the fraction of DPF-equipped trucks at the Port of Oakland increased from 2 to 99%, and median engine age decreased from 11 to 6 years. Over the same period, fleet-average emission factors for black carbon and NOx decreased by 76 ± 22% and 53 ± 8%, respectively. However, direct emissions of NO2 increased, and consequently the NO2/NOx emission ratio increased from 0.03 ± 0.02 to 0.18 ± 0.03. Older trucks retrofitted with DPFs emitted approximately 3.5 times more NO2 than newer trucks equipped with both DPF and SCR. Preliminary data from summer 2014 measurements at the Caldecott Tunnel suggest that some older trucks have negative emission factors for N2O, and that for newer trucks, N2O emission factors have changed sign and

  12. Landfill aeration for emission control before and during landfill mining.

    PubMed

    Raga, Roberto; Cossu, Raffaello; Heerenklage, Joern; Pivato, Alberto; Ritzkowski, Marco

    2015-12-01

    The landfill of Modena, in northern Italy, is now crossed by the new high velocity railway line connecting Milan and Bologna. Waste was completely removed from a part of the landfill and a trench for the train line was built. With the aim of facilitating excavation and further disposal of the material extracted, suitable measures were defined. In order to prevent undesired emissions into the excavation area, the aerobic in situ stabilisation by means of the Airflow technology took place before and during the Landfill Mining. Specific project features involved the pneumatic leachate extraction from the aeration wells (to keep the leachate table low inside the landfill and increase the volume of waste available for air migration) and the controlled moisture addition into a limited zone, for a preliminary evaluation of the effects on process enhancement. Waste and leachate were periodically sampled in the landfill during the aeration before the excavation, for quality assessment over time; the evolution of biogas composition in the landfill body and in the extraction system for different plant set-ups during the project was monitored, with specific focus on uncontrolled migration into the excavation area. Waste biological stability significantly increased during the aeration (waste respiration index dropped to 33% of the initial value after six months). Leachate head decreased from 4 to 1.5m; leachate recirculation tests proved the beneficial effects of moisture addition on temperature control, without hampering waste aerobization. Proper management of the aeration plant enabled the minimization of uncontrolled biogas emissions into the excavation area.

  13. Controlling mercury emissions from coal-fired power plants

    SciTech Connect

    Chang, R.

    2009-07-15

    Increasingly stringent US federal and state limits on mercury emissions form coal-fired power plants demand optimal mercury control technologies. This article summarises the successful removal of mercury emissions achieved with activated carbon injection and boiler bromide addition, technologies nearing commercial readiness, as well as several novel control concepts currently under development. It also discusses some of the issues standing in the way of confident performance and cost predictions. In testing conducted on western coal-fired units with fabric filters or TOXECON to date, ACI has generally achieved mercury removal rates > 90%. At units with ESPs, similar performance requires brominated ACI. Alternatively, units firing western coals can use boiler bromide addition to increase flue gas mercury oxidation and downstream capture in a wet scrubber, or to enhance mercury removal by ACI. At eastern bituminous fired units with ESPs, ACI is not as effective, largely due to SO{sub 3} resulting from the high sulfur content of the coal or the use of SO{sub 3} flue gas conditioning to improve ESP performance. 7 refs., 3 figs.

  14. CO₂ laser emission modes to control enamel erosion.

    PubMed

    Scatolin, Renata Siqueira; Alonso-Filho, Fernando Luiz; Galo, Rodrigo; Rios, Daniela; Borsatto, Maria Cristina; Corona, Silmara Aparecida Milori

    2015-08-01

    Considering the importance and prevalence of dental erosion, the aim of this in vitro study was to evaluate the influence of different modes of pulse emission of CO2 laser associated or not to acidulated phosphate fluoride (APF) 1.23% gel, in controlling enamel erosion by profilometry. Ninety-six fragments of bovine enamel were flattened and polished, and the specimens were subjected to initial erosive challenge with hydrochloric acid (pH = 2). Specimens were randomly assigned according to surface treatment: APF 1.23% gel and gel without fluoride (control), and subdivided according to the modes of pulse CO2 laser irradiation: no irradiation (control), continuous, ultrapulse, and repeated pulse (n = 12). After surface treatment, further erosive challenges were performed for 5 days, 4 × 2 min/day. Enamel structure loss was quantitatively determined by a profilometer, after surface treatment and after 5 days of erosive challenges. Two-away ANOVA revealed a significant difference between the pulse emission mode of the CO2 laser and the presence of fluoride (P ≤ 0.05). The Duncan's test showed that CO2 laser irradiation in continuous mode and the specimens only received fluoride, promoted lower enamel loss than that other treatments. A lower dissolution of the enamel prisms was observed when it was irradiated with CO2 laser in continuous mode compared other groups. It can be concluded that CO2 laser irradiation in continuous mode was the most effective to control the enamel structure loss submitted to erosive challenges with hydrochloric acid.

  15. Implementing Strategies for Drying and Pressing Wood Without Emissions Controls

    SciTech Connect

    Sujit Banerjee; Terrance Conners

    2007-09-07

    Drying and pressing wood for the manufacture of lumber, particleboard, oriented strand board (OSB), veneer and medium density fiberboard (MDF) release volatile organic compounds (VOCs) into the atmosphere. These emissions require control equipment that are capital-intensive and consume significant quantities of natural gas and electricity. The objective of our work was to understand the mechanisms through which volatile organic compounds are generated and released and to develop simple control strategies. Of the several strategies developed, two have been implemented for OSB manufacture over the course of this study. First, it was found that increasing final wood moisture by about 2-4 percentage points reduced the dryer emissions of hazardous air pollutants by over 70%. As wood dries, the escaping water evaporatively cools the wood. This cooling tapers off wood when the wood is nearly dry and the wood temperature rises. Thermal breakdown of the wood tissue occurs and VOCs are released. Raising the final wood moisture by only a few percentage points minimizes the temperature rise and reduces emissions. Evaporative cooling also impacts has implications for VOC release from wood fines. Flaking wood for OSB manufacture inevitable generates fines. Fines dry out rapidly because of their high surface area and evaporative cooling is lost more rapidly than for flakes. As a result, fines emit a disproportionate quantity of VOCs. Fines can be reduced in two ways: through screening of the green furnish and through reducing their generation during flaking. The second approach is preferable because it also increased wood yield. A procedure to do this by matching the sharpness angle of the flaker knife to the ambient temperature was also developed. Other findings of practical interests are as follows: Dielectric heating of wood under low-headspace conditions removes terpenes and other extractives from softwood; The monoterpene content in trees depend upon temperature and seasonal

  16. LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL

    SciTech Connect

    Don Augenstein; Ramin Yazdani; Rick Moore; Michelle Byars; Jeff Kieffer; Professor Morton Barlaz; Rinav Mehta

    2000-02-26

    Controlled landfilling is an approach to manage solid waste landfills, so as to rapidly complete methane generation, while maximizing gas capture and minimizing the usual emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated to more rapid and earlier completion to full potential by improving conditions (principally moisture, but also temperature) to optimize biological processes occurring within the landfill. Gas is contained through use of surface membrane cover. Gas is captured via porous layers, under the cover, operated at slight vacuum. A field demonstration project has been ongoing under NETL sponsorship for the past several years near Davis, CA. Results have been extremely encouraging. Two major benefits of the technology are reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times, more predictably, than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role both in reduction of US greenhouse gas emissions and in US renewable energy. The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional

  17. 40 CFR 1060.104 - What running loss emission control requirements apply?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false What running loss emission control... STATIONARY EQUIPMENT Emission Standards and Related Requirements § 1060.104 What running loss emission control requirements apply? (a) Engines and equipment must meet running loss requirements as follows:...

  18. 40 CFR 1060.104 - What running loss emission control requirements apply?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false What running loss emission control... STATIONARY EQUIPMENT Emission Standards and Related Requirements § 1060.104 What running loss emission control requirements apply? (a) Engines and equipment must meet running loss requirements as follows:...

  19. 40 CFR 1060.104 - What running loss emission control requirements apply?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false What running loss emission control... STATIONARY EQUIPMENT Emission Standards and Related Requirements § 1060.104 What running loss emission control requirements apply? (a) Engines and equipment must meet running loss requirements as follows:...

  20. 40 CFR 1060.104 - What running loss emission control requirements apply?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false What running loss emission control... STATIONARY EQUIPMENT Emission Standards and Related Requirements § 1060.104 What running loss emission control requirements apply? (a) Engines and equipment must meet running loss requirements as follows:...

  1. Spontaneous pre-stimulus fluctuations in the activity of right fronto-parietal areas influence inhibitory control performance

    PubMed Central

    Chavan, Camille F.; Manuel, Aurelie L.; Mouthon, Michael; Spierer, Lucas

    2013-01-01

    Inhibitory control refers to the ability to suppress planned or ongoing cognitive or motor processes. Electrophysiological indices of inhibitory control failure have been found to manifest even before the presentation of the stimuli triggering the inhibition, suggesting that pre-stimulus brain-states modulate inhibition performance. However, previous electrophysiological investigations on the state-dependency of inhibitory control were based on averaged event-related potentials (ERPs), a method eliminating the variability in the ongoing brain activity not time-locked to the event of interest. These studies thus left unresolved whether spontaneous variations in the brain-state immediately preceding unpredictable inhibition-triggering stimuli also influence inhibitory control performance. To address this question, we applied single-trial EEG topographic analyses on the time interval immediately preceding NoGo stimuli in conditions where the responses to NoGo trials were correctly inhibited [correct rejection (CR)] vs. committed [false alarms (FAs)] during an auditory spatial Go/NoGo task. We found a specific configuration of the EEG voltage field manifesting more frequently before correctly inhibited responses to NoGo stimuli than before FAs. There was no evidence for an EEG topography occurring more frequently before FAs than before CR. The visualization of distributed electrical source estimations of the EEG topography preceding successful response inhibition suggested that it resulted from the activity of a right fronto-parietal brain network. Our results suggest that the fluctuations in the ongoing brain activity immediately preceding stimulus presentation contribute to the behavioral outcomes during an inhibitory control task. Our results further suggest that the state-dependency of sensory-cognitive processing might not only concern perceptual processes, but also high-order, top-down inhibitory control mechanisms. PMID:23761747

  2. Portable air pollution control equipment for the control of toxic particulate emissions

    SciTech Connect

    Chaurushia, A.; Odabashian, S.; Busch, E.

    1997-12-31

    Chromium VI (Cr VI) has been identified by the environmental regulatory agencies as a potent carcinogen among eleven heavy metals. A threshold level of 0.0001 lb/year for Cr VI emissions has been established by the California Air Resources Board for reporting under Assembly Bill 2588. A need for an innovative control technology to reduce fugitive emissions of Cr VI was identified during the Air Toxic Emissions Reduction Program at Northrop Grumman Military Aircraft Systems Division (NGMASD). NGMASD operates an aircraft assembly facility in El Segundo, CA. Nearly all of the aircraft components are coated with a protective coating (primer) prior to assembly. The primer has Cr VI as a component for its excellent corrosion resistance property. The complex assembly process requires fasteners which also need primer coating. Therefore, NGMASD utilizes High Volume Low Pressure (HVLP) guns for the touch-up spray coating operations. During the touch-up spray coating operations, Cr VI particles are atomized and transferred to the aircraft surface. The South Coast Air Quality Management District (SCAQMD) has determined that the HVLP gun transfers 65% of the paint particles onto the substrate and the remaining 35% are emitted as an overspray if air pollution controls are not applied. NGMASD has developed the Portable Air Pollution Control Equipment (PAPCE) to capture and control the overspray in order to reduce fugitive Cr VI emissions from the touch-up spray coating operations. A source test was performed per SCAQMD guidelines and the final report has been approved by the SCAQMD.

  3. Nonlinear theory of a two-photon correlated-spontaneous-emission laser: A coherently pumped two-level--two-photon laser

    SciTech Connect

    Lu, N.; Zhao, F.; Bergou, J.

    1989-05-15

    We develop a nonlinear theory of a two-photon correlated-spontaneous-emission laser (CEL) by using an effective interaction Hamiltonian for a two-level system coupled by a two-photon transition. Assuming that the active atoms are prepared initially in a coherent superposition of two atomic levels involved in the two-photon transition, we derive a master equation for the field-density operator by using our quantum theory for coherently pumped lasers. The steady-state properties of the two-photon CEL are studied by converting the field master equation into a Fokker-Planck equation for the antinormal-ordering Q representation of the field-density operator. Because of the injected atomic coherence, the drift and diffusion coefficients become phase sensitive. This leads to laser phase locking and an extra two-photon CEL gain. The laser field can build up from a vacuum in the no-population-inversion region, in contrast to an ordinary two-photon laser for which triggering is needed. We find an approximate steady-state solution of the Q representation for the laser field, which consists of two identical peaks of elliptical type. We calculate the phase variance and, for any given mean photon number, obtain the minimum variance in the phase quadrature as a function of the initial atomic variables. Squeezing of the quantum noise in the phase quadrature is found and it exhibits the following features: (1) it is possible only when the laser intensity is smaller than a certain value; (2) it becomes most significant for small mean photon number, which is achievable in the no-population-inversion region; and (3) a maximum of 50% squeezing can be asymptotically approached in the small laser intensity limit.

  4. Catalytic destruction vs. adsorption in controlling dioxin emission.

    PubMed

    Hsu, Wei Ting; Hung, Pao Chen; Chang, Moo Been

    2015-12-01

    This study investigates the removal efficiencies of PCDD/Fs achieved with a catalytic filter (CF) and with activated carbon injection followed by bag filter (ACI+BF) as applied in an industrial waste incinerator (IWI) and a hazardous waste incinerator (HWI), respectively. Catalytic filtration has been successfully applied to remove PCDD/Fs from gas streams. Comparing the CF to the ACI+BF system, it appears that the PCDD/F removal efficiency achieved with a CF is higher than that of an ACI+BF system. The PCDD/F emissions from both incinerators are well controlled to meet the regulatory limit of 0.1 ng I-TEQ/Nm(3). Additionally, the PCDD/F concentration in BF ash is higher than the regulation limit of Taiwan (1.0 ng I-TEQ/g). In contrast, the PCDD/F concentration in CF ash is only 0.274 ng I-TEQ/g. The difference is attributed to the fact that the ACI+BF system just transfers PCDD/Fs from gas phase to solid phase and further increases the PCDD/F concentration in fly ash, while CF technology effectively destroys the gas-phase PCDD/Fs. Therefore, the disposal of the fly ash discharged from CF would be less expensive compared with the fly ash discharged from the ACI+BF system. In this study, the PCDD/F emission factors of both incinerators are also established.

  5. Methane emissions from process equipment at natural gas production sites in the United States: pneumatic controllers.

    PubMed

    Allen, David T; Pacsi, Adam P; Sullivan, David W; Zavala-Araiza, Daniel; Harrison, Matthew; Keen, Kindal; Fraser, Matthew P; Daniel Hill, A; Sawyer, Robert F; Seinfeld, John H

    2015-01-06

    Emissions from 377 gas actuated (pneumatic) controllers were measured at natural gas production sites and a small number of oil production sites, throughout the United States. A small subset of the devices (19%), with whole gas emission rates in excess of 6 standard cubic feet per hour (scf/h), accounted for 95% of emissions. More than half of the controllers recorded emissions of 0.001 scf/h or less during 15 min of measurement. Pneumatic controllers in level control applications on separators and in compressor applications had higher emission rates than controllers in other types of applications. Regional differences in emissions were observed, with the lowest emissions measured in the Rocky Mountains and the highest emissions in the Gulf Coast. Average methane emissions per controller reported in this work are 17% higher than the average emissions per controller in the 2012 EPA greenhouse gas national emission inventory (2012 GHG NEI, released in 2014); the average of 2.7 controllers per well observed in this work is higher than the 1.0 controllers per well reported in the 2012 GHG NEI.

  6. Spontaneous and electric field–controlled front–rear polarization of human keratinocytes

    PubMed Central

    Saltukoglu, Deniz; Grünewald, Julian; Strohmeyer, Nico; Bensch, Robert; Ulbrich, Maximilian H.; Ronneberger, Olaf; Simons, Matias

    2015-01-01

    It has long been known that electrical fields (EFs) are able to influence the direction of migrating cells, a process commonly referred to as electrotaxis or galvanotaxis. Most studies have focused on migrating cells equipped with an existing polarity before EF application, making it difficult to delineate EF-specific pathways. Here we study the initial events in front–rear organization of spreading keratinocytes to dissect the molecular requirements for random and EF-controlled polarization. We find that Arp2/3-dependent protrusive forces and Rac1/Cdc42 activity were generally required for both forms of polarization but were dispensable for controlling the direction of EF-controlled polarization. By contrast, we found a crucial role for extracellular pH as well as G protein coupled–receptor (GPCR) or purinergic signaling in the control of directionality. The normal direction of polarization toward the cathode was reverted by lowering extracellular pH. Polarization toward the anode was also seen at neutral pH when GPCR or purinergic signaling was inhibited. However, the stepwise increase of extracellular pH in this scenario led to restoration of cathodal polarization. Overall our work puts forward a model in which the EF uses distinct polarization pathways. The cathodal pathway involves GPCR/purinergic signaling and is dominant over the anodal pathway at neutral pH. PMID:26424799

  7. Failing to Forget: Prospective Memory Commission Errors Can Result from Spontaneous Retrieval and Impaired Executive Control

    ERIC Educational Resources Information Center

    Scullin, Michael K.; Bugg, Julie M.

    2013-01-01

    Prospective memory (PM) research typically examines the ability to remember to execute delayed intentions but often ignores the ability to forget finished intentions. We had participants perform (or not perform; control group) a PM task and then instructed them that the PM task was finished. We later (re)presented the PM cue. Approximately 25% of…

  8. Hydrodynamics of dip-coated thin films in the presence of evaporation, and, Surfactant structures controlling spontaneous dewetting

    NASA Astrophysics Data System (ADS)

    Qu, Dan

    In this dissertation, we discuss the investigation of two problems in dynamic wetting: the hydrodynamics of dip-coated, finite-length films of evaporative fluids and the surfactant structures controlling the spontaneous dewetting of a surfactant solution. While films pulled from non-volatile fluids on a vertical substrate are essentially infinite in length, films pulled from volatile fluids have a finite length. We examine such finite films using three well-controlled oligomer liquids as well as surfactant solutions. We find that the finite length of the film is controlled by a global balance between mass lost by evaporation and mass input by viscous forces. While the attendant thermally driven Marangoni flows have small impact on the mass balance, they do alter the velocity field in the film in the direction parallel to the substrate. Using measured film profiles, wit have developed a novel method to determine the combined effects of evaporation and Marangoni flow on velocity and pressure fields in the film. This method is independent of any specific model of the evaporation process. In preliminary studies with surfactant solutions, we observed strong effects of solutal Marangoni flows on dip-coated films. For the second problem, we examine the structures of self-assemblies left on a solid as a contact line spontaneously retreats across a surface during an autophobing event. We find that surfactants of a continuous structural gradient are deposited: from molecules lying down on the surface with low packing densities in a region never touched by the solution, to molecules standing up with higher packing densities in a region where the contact line has moved slowly. Despite significant free volumes within the self-assemblies, we see no evidence of clustering of molecules. We see a clear correlation between contact line speed and the surfactant structures. We show that the dynamics during at least a later period of the autophobing event is dominated by the time

  9. Application of microturbines to control emissions from associated gas

    DOEpatents

    Schmidt, Darren D.

    2013-04-16

    A system for controlling the emission of associated gas produced from a reservoir. In an embodiment, the system comprises a gas compressor including a gas inlet in fluid communication with an associated gas source and a gas outlet. The gas compressor adjusts the pressure of the associated gas to produce a pressure-regulated associated gas. In addition, the system comprises a gas cleaner including a gas inlet in fluid communication with the outlet of the gas compressor, a fuel gas outlet, and a waste product outlet. The gas cleaner separates at least a portion of the sulfur and the water from the associated gas to produce a fuel gas. Further, the system comprises a gas turbine including a fuel gas inlet in fluid communication with the fuel gas outlet of the gas cleaner and an air inlet. Still further, the system comprises a choke in fluid communication with the air inlet.

  10. Condensing economizers for thermal efficiency improvements and emissions control

    SciTech Connect

    Heaphy, J.P.; Carbonara, J.; Litzke, W.; Butcher, T.A.

    1993-12-31

    Flue gas condensing economizers improve the thermal efficiency of boilers by recovering sensible heat and water vapor latent heat from flue gas exhaust. In addition to improving thermal efficiency, condensing economizers also have the potential to act as control devices for emissions of particulates, SO{sub x}, and air toxics. Both Consolidated Edison of New York and Brookhaven National LaborAtory are currently working on condensing economizer technology with an emphasis on developing their potential for emissions control. Con Edison is currently conducting a condensing economizer demonstration at their oil-fired 74th Street Station in New York. Since installing this equipment in February of 1992 a heat rate improvement of 800 Btu/kWh has been seen. At another location, Ravenswood Station, a two stage condensing economizer has been installed in a pilot test. In this advanced configuration -the ``Integrated Flue Gas Treatment or IFGT system- two heat exchanger sections are installed and sprays of water with and without SO{sub 2} sorbents are included. Detailed studies of the removal of particulates, SO{sub 2}, SO{sub 3}, and selected air toxics have been done for a variety of operating conditions. Removal efficiencies for SO{sub 2} have been over 98% and for SO{sub 3} over 65%. Brookhaven National Laboratory`s studies involve predicting and enhancing particulate capture in condensing economizers with an emphasis on small, coal-fired applications. This work is funded by the Pittsburgh Energy Technology Center of the Department of Energy. Flyash capture efficiencies as high as 97% have been achieved to date with a single stage economizer.

  11. The evolution of shipping emissions and the costs of recent and forthcoming emission regulations in the northern European emission control area

    NASA Astrophysics Data System (ADS)

    Johansson, L.; Jalkanen, J.-P.; Kalli, J.; Kukkonen, J.

    2013-06-01

    An extensive inventory of marine exhaust emissions is presented in the northern European emission control area (ECA) in 2009 and 2011. The emissions of SOx, NOx, CO2, CO and PM2.5 were evaluated using the Ship Traffic Emission Assessment Model (STEAM). We have combined the information on individual vessel characteristics and position reports generated by the Automatic Identification System (AIS). The emission limitations from 2009 to 2011 have had a significant impact on reducing the emissions of both SOx and PM2.5. The predicted emissions of SOx originated from IMO-registered marine traffic have been reduced by 33%, from 322 ktons to 217 ktons, in the ECA from 2009 to 2011. The corresponding predicted reduction of PM2.5 emissions was 20%, from 74 ktons to 59 ktons. The highest CO2 and PM2.5 emissions in 2011 were located in the vicinity of the coast of the Netherlands, in the English Channel, near the South-Eastern UK and along the busiest shipping lines in the Danish Straits and the Baltic Sea. The changes of emissions and the financial costs caused by various regulative actions since 2005 were also evaluated, based on the increased direct fuel costs. We also simulated the effects and direct costs associated with the forthcoming switch to low-sulfur distillate fuels in 2015. According to the projections for the future, there will be a reduction of 85% in SOx emissions and a~reduction of 50% in PM2.5 emissions in 2015, compared with the corresponding shipping emissions in 2011 in the ECA. The corresponding relative increase in fuel costs for all shipping varied between 10% and 63%, depending on the development of the prices of fuels and the use of the sulfur scrubber equipment.

  12. Mercury Emission Control Technologies for PPL Montana-Colstrip Testing

    SciTech Connect

    John P. Kay; Michael L. Jones; Steven A. Benson

    2007-04-01

    The Energy & Environmental Research Center (EERC) was asked by PPL Montana LLC (PPL) to provide assistance and develop an approach to identify cost-effective options for mercury control at its coal-fired power plants. The work conducted focused on baseline mercury level and speciation measurement, short-term parametric testing, and week long testing of mercury control technology at Colstrip Unit 3. Three techniques and various combinations of these techniques were identified as viable options for mercury control. The options included oxidizing agents or sorbent enhancement additives (SEAs) such as chlorine-based SEA1 and an EERC proprietary SEA2 with and without activated carbon injection. Baseline mercury emissions from Colstrip Unit 3 are comparatively low relative to other Powder River Basin (PRB) coal-fired systems and were found to range from 5 to 6.5 g/Nm3 (2.9 to 3.8 lb/TBtu), with a rough value of approximately 80% being elemental upstream of the scrubber and higher than 95% being elemental at the outlet. Levels in the stack were also greater than 95% elemental. Baseline mercury removal across the scrubber is fairly variable but generally tends to be about 5% to 10%. Parametric results of carbon injection alone yielded minimal reduction in Hg emissions. SEA1 injection resulted in 20% additional reduction over baseline with the maximum rate of 400 ppm (3 gal/min). Week long testing was conducted with the combination of SEA2 and carbon, with injection rates of 75 ppm (10.3 lb/hr) and 1.5 lb/MMacf (40 lb/hr), respectively. Reduction was found to be an additional 30% and, overall during the testing period, was measured to be 38% across the scrubber. The novel additive injection method, known as novel SEA2, is several orders of magnitude safer and less expensive than current SEA2 injection methods. However, used in conjunction with this plant configuration, the technology did not demonstrate a significant level of mercury reduction. Near-future use of this

  13. Quantification and Controls of Wetland Greenhouse Gas Emissions

    SciTech Connect

    McNicol, Gavin

    2016-05-10

    Wetlands cover only a small fraction of the Earth’s land surface, but have a disproportionately large influence on global climate. Low oxygen conditions in wetland soils slows down decomposition, leading to net carbon dioxide sequestration over long timescales, while also favoring the production of redox sensitive gases such as nitrous oxide and methane. Freshwater marshes in particular sustain large exchanges of greenhouse gases under temperate or tropical climates and favorable nutrient regimes, yet have rarely been studied, leading to poor constraints on the magnitude of marsh gas sources, and the biogeochemical drivers of flux variability. The Sacramento-San Joaquin Delta in California was once a great expanse of tidal and freshwater marshes but underwent drainage for agriculture during the last two centuries. The resulting landscape is unsustainable with extreme rates of land subsidence and oxidation of peat soils lowering the surface elevation of much of the Delta below sea level. Wetland restoration has been proposed as a means to slow further subsidence and rebuild peat however the balance of greenhouse gas exchange in these novel ecosystems is still poorly described. In this dissertation I first explore oxygen availability as a control on the composition and magnitude of greenhouse gas emissions from drained wetland soils. In two separate experiments I quantify both the temporal dynamics of greenhouse gas emission and the kinetic sensitivity of gas production to a wide range of oxygen concentrations. This work demonstrated the very high sensitivity of carbon dioxide, methane, and nitrous oxide production to oxygen availability, in carbon rich wetland soils. I also found the temporal dynamics of gas production to follow a sequence predicted by thermodynamics and observed spatially in other soil or sediment systems. In the latter part of my dissertation I conduct two field studies to quantify greenhouse gas exchange and understand the carbon sources for

  14. Optical sensors for process control and emissions monitoring in industry

    SciTech Connect

    S. W. Allendorf; D. K. Ottesen; D. W. Hahn; T. J. Kulp; U. B. Goers

    1998-11-02

    Sandia National Laboratories has a number of ongoing projects developing optical sensors for industrial environments. Laser-based sensors can be attractive for relatively harsh environments where extractive sampling is difficult, inaccurate, or impractical. Tools developed primarily for laboratory research can often be adapted for the real world and applied to problems far from their original uses. Spectroscopic techniques, appropriately selected, have the potential to impact the bottom of line of a number of industries and industrial processes. In this paper the authors discuss three such applications: a laser-based instrument for process control in steelmaking, a laser-induced breakdown method for hazardous metal detection in process streams, and a laser-based imaging sensor for evaluating surface cleanliness. Each has the potential to provide critical, process-related information in a real-time, continuous manner. These sensor techniques encompass process control applications and emissions monitoring for pollution prevention. They also span the range from a field-tested pre-commercial prototype to laboratory instrumentation. Finally, these sensors employ a wide range of sophistication in both the laser source and associated analytical spectroscopy. In the ultimate applications, however, many attributes of the sensors are in common, such as the need for robust operation and hardening for harsh industrial environments.

  15. Humidity control of particle emissions in aeolian systems

    NASA Astrophysics Data System (ADS)

    McKenna Neuman, Cheryl; Sanderson, Steven

    2008-06-01

    Humidity is an important control of the wind speed required to entrain particles into an air flow and is well known to vary on a global scale, as do dust emissions. This paper reports on wind tunnel experiments which quantify this control through placing a polymer capacitance sensor immediately at the bed surface. The sensor measured changes in the humidity (RH) of the pore air in real time. RH was varied between 15% and 80% and the critical wind speed determined for the release of particles to the air stream. The results strongly support earlier suggestions that fine particles are most affected in relatively dry atmospheres, particularly those which are tightly packed. An analytical model is proposed to describe this relationship which depends on determination of the matric potential from the Kelvin equation. The total contact area between particle asperities adjoined by pendular rings is represented as a power function of the number of layers of adsorbed water. The value of the exponent appears to be governed by the surface roughness of the particles and their packing arrangement. Parallel developments in colloid interface science and atomic force microscopy, relevant to industrial and pharmaceutical applications, support these conclusions in principle and will likely have an important bearing on future progress in parameterization of the proposed model.

  16. Optical sensors for process control and emissions monitoring in industry

    SciTech Connect

    S. W. Alendorf; D. K. Ottensen; D. W. Hahn; T. J. Kulp; U. B. Goers

    1999-01-01

    Sandia National Laboratories has a number of ongoing projects developing optical sensors for industrial environments. Laser-based sensors can be attractive for relatively harsh environments where extractive sampling is difficult, inaccurate, or impractical. Tools developed primarily for laboratory research can often be adapted for the real world and applied to problems far from their original uses. Spectroscopic techniques, appropriately selected, have the potential to impact the bottom line of a number of industries and industrial processes. In this paper the authors discuss three such applications: a laser-based instrument for process control in steelmaking, a laser-induced breakdown method for hazardous metal detection in process streams, and a laser-based imaging sensor for evaluating surface cleanliness. Each has the potential to provide critical, process-related information in a real-time, continuous manner. These sensor techniques encompass process control applications and emissions monitoring for pollution prevention. They also span the range from a field-tested pre-commercial prototype to laboratory instrumentation. Finally, these sensors employ a wide range of sophistication in both the laser source and associated analytical spectroscopy. In the ultimate applications, however, many attributes of the sensors are in common, such as the need for robust operation and hardening for harsh industrial environments.

  17. Three-Dimensional Composite Nanostructures for Lean NOx Emission Control

    SciTech Connect

    Gao, Pu-Xian

    2013-07-31

    This final report to the Department of Energy (DOE) and National Energy Technology Laboratory (NETL) for DE-EE0000210 covers the period from October 1, 2009 to July 31, 2013. Under this project, DOE awarded UConn about $1,248,242 to conduct the research and development on a new class of 3D composite nanostructure based catalysts for lean NOx emission control. Much of the material presented here has already been submitted to DOE/NETL in quarterly technical reports. In this project, through a scalable solution process, we have successfully fabricated a new class of catalytic reactors, i.e., the composite nanostructure array (nano-array) based catalytic converters. These nanocatalysts, distinct from traditional powder washcoat based catalytic converters, directly integrate monolithic substrates together with nanostructures with well-defined size and shape during the scalable hydrothermal process. The new monolithic nanocatalysts are demonstrated to be able to save raw materials including Pt-group metals and support metal oxides by an order of magnitude, while perform well at various oxidation (e.g., CO oxidation and NO oxidation) and reduction reactions (H{sub 2} reduction of NOx) involved in the lean NOx emissions. The size, shape and arrangement of the composite nanostructures within the monolithic substrates are found to be the key in enabling the drastically reduced materials usage while maintaining the good catalytic reactivity in the enabled devices. The further understanding of the reaction kinetics associated with the unique mass transport and surface chemistry behind is needed for further optimizing the design and fabrication of good nanostructure array based catalytic converters. On the other hand, the high temperature stability, hydrothermal aging stability, as well as S-poisoning resistance have been investigated in this project on the nanocatalysts, which revealed promising results toward good chemical and mechanical robustness, as well as S

  18. Spontaneous acromegaly: a retrospective case control study in German shepherd dogs.

    PubMed

    Fracassi, F; Zagnoli, L; Rosenberg, D; Furlanello, T; Caldin, M

    2014-10-01

    Acromegaly results from the overproduction of growth hormone in adulthood and is characterised by overgrowth of soft tissue and/or bone as well as insulin resistance. There are few data indicating the risk factors associated with this disease in dogs or its clinicopathological features and sequelae. The objective of this retrospective study was to catalogue and assess these aspects of the disease in German shepherd dogs (GSDs) which were found to be over-represented among acromegalic dogs attending two veterinary referral clinics over a period of 7 years. Each acromegalic dog (AD) was compared with two breed/age/sex matched controls. Clinical signs of acromegaly included panting, polyuria/polydipsia, widened interdental spaces, weakness, inspiratory stridor, macroglossia, weight gain, redundant skin folds, thick coat, exophthalmos and mammary masses. Serum alkaline phosphatase, creatine-kinase, glucose, triglyceride, phosphate ion, and 'calcium per phosphate product' concentrations were significantly higher in acromegalic animals while haemoglobin concentration, blood urea nitrogen, sodium and chloride ion concentrations, and urinary specific gravity, osmolality and fractional excretion of phosphate were significantly lower. Although, in the majority of cases clinicopathological abnormalities resolved following ovariohysterectomy, in one dog, acromegalic signs abated and insulin-like growth factor-1 concentrations normalised only following the surgical excision of mammary tumours carried out 2 months after ovariohysterectomy. The findings of this study indicate that GSDs are predisposed to the development of acromegaly with a suspected inherited susceptibility.

  19. Automated UV process analyzers/distributed control boost emission control process efficiency

    SciTech Connect

    Fabre, M.C.

    1987-10-01

    The Marathon Petroleum Company refinery in Garyville, LA, refines more than 200,000 bbl/day of crude oil. Waste process gases-H/sub 2/S and NH/sub 3/-are handled by a single system. Emission control efficiency and reliability needed to be improve in the H/sub 2/S and NH/sub 3/ acid gas conversion process. To maintain the EPA emission maximum of only 10 ppm H/sub 2/S, the process required almost continuous manual inspection. The need for frequent optical measurements, the susceptibility of process upset due to human error or steam variances, and stream overloading problems combined to make the process unreliable. In its ongoing effort to ensure maximum emission control efficiency, Marathathon retrofit the process to an automated self-diagnostic treatment and monitoring system in 1986. The multistep treatment process controls and treats Marathon;s acid gas-by-product through two existing Claus process units and SO/sub 2/-to-H/sub 2/S converters, a desuperheater, an amine scrubber and a thermal oxidizer. Critical to maintaining both the stack emission control and the efficiency of the process are a pair of automated UV-photometric analyzers. The instruments were incorporated to monitor the gas streams and to fine-tune the process equipment (through the plant's existing distributed control system) to meet variably operating conditions. Since the retrofitted and monitoring system became operational, Marathon has eliminated the compliance reporting problems that had formerly plaqued the plant. Stack efficiency (measuring stream content of SO/sub 2/) has been consistently maintained at levels of 50% or less of the allowable EPA maximum. By automating the analysis procedures, little hands-on-or visual maintenance, sample testing, calibration, and report preparation time are required, saving an estimated 60% in yearly operations and maintenance costs.

  20. Hyperthermia treatment of spontaneously occurring oral cavity tumors using a computer-controlled Nd:YAG laser system

    NASA Astrophysics Data System (ADS)

    Panjehpour, Masoud; Overholt, Bergein F.; Frazier, Donita L.; Klebanow, Edward R.

    1991-05-01

    Conventional hyperthermia treatment of superficial tumors in the oral cavity is difficult due to inability in accessing the lesion. A new hyperthermia technique employing near infrared Nd:YAG irradiation delivered through an optical fiber is introduced for heating oral and nasal tumors in animals. This system consisted of an Nd:YAG laser, a He-Ne laser, a computer controlled optical shutter, an interstitial thermometer, computer and a printer. The tumors were heated via surface illumination of the lesion. A thermocouple implanted in the base of the tumor provided temperature feedback for laser energy regulation. Three spontaneously occurring canine (two squamous cell carcinoma on the gum, one pigmented melanoma on the hard palate) and one feline tumor (squamous cell carcinoma on the nose) have been treated with the Nd:YAG laser-induced hyperthermia delivered following radiation therapy. The tumor temperature was maintained between 43.2-43.5 degree(s)C for one hour. Nd:YAG hyperthermia allowed efficient delivery of heat to veterinary oral and nasal lesions otherwise impossible to treat with conventional heating techniques.

  1. Spontaneous Gac Mutants of Pseudomonas Biological Control Strains: Cheaters or Mutualists? ▿

    PubMed Central

    Driscoll, William W.; Pepper, John W.; Pierson, Leland S.; Pierson, Elizabeth A.

    2011-01-01

    Bacteria rely on a range of extracellular metabolites to suppress competitors, gain access to resources, and exploit plant or animal hosts. The GacS/GacA two-component regulatory system positively controls the expression of many of these beneficial external products in pseudomonad bacteria. Natural populations often contain variants with defective Gac systems that do not produce most external products. These mutants benefit from a decreased metabolic load but do not appear to displace the wild type in nature. How could natural selection maintain the wild type in the presence of a mutant with enhanced growth? One hypothesis is that Gac mutants are “cheaters” that do not contribute to the public good, favored within groups but selected against between groups, as groups containing more mutants lose access to ecologically important external products. An alternative hypothesis is that Gac mutants have a mutualistic interaction with the wild type, so that each variant benefits by the presence of the other. In the biocontrol bacterium Pseudomonas chlororaphis strain 30-84, Gac mutants do not produce phenazines, which suppress competitor growth and are critical for biofilm formation. Here, we test the predictions of these alternative hypotheses by quantifying interactions between the wild type and the phenazine- and biofilm-deficient Gac mutant within growing biofilms. We find evidence that the wild type and Gac mutants interact mutualistically in the biofilm context, whereas a phenazine-defective structural mutant does not. Our results suggest that the persistence of alternative Gac phenotypes may be due to the stabilizing role of local mutualistic interactions. PMID:21873476

  2. Estimation of automobile emissions and control strategies in India.

    PubMed

    Nesamani, K S

    2010-03-15

    Rapid, but unplanned urban development and the consequent urban sprawl coupled with economic growth have aggravated auto dependency in India over the last two decades. This has resulted in congestion and pollution in cities. The central and state governments have taken many ameliorative measures to reduce vehicular emissions. However, evolution of scientific methods for emission inventory is crucial. Therefore, an attempt has been made to estimate the emissions (running and start) from on-road vehicles in Chennai using IVE model in this paper. GPS was used to collect driving patterns. The estimated emissions from motor vehicles in Chennai in 2005 were 431, 119, 46, 7, 4575, 29, and 0.41 tons/days respectively for CO, VOC, NO(x), PM, CO(2,) CH(4) and N(2)O. It is observed from the results that air quality in Chennai has degraded. The estimation revealed that two and three-wheelers emitted about 64% of the total CO emissions and heavy-duty vehicles accounted for more than 60% and 36% of the NO(x) and PM emissions respectively. About 19% of total emissions were that of start emissions. It is also estimated that on-road transport contributes about 6637 tons/day CO(2) equivalent in Chennai. This paper has further examined various mitigation options to reduce vehicular emissions. The study has concluded that advanced vehicular technology and augmentation of public transit would have significant impact on reducing vehicular emissions.

  3. 78 FR 5303 - Approval and Promulgation of Implementation Plans; State of Missouri; Control of Sulfur Emissions...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-25

    ... Sulfur Emissions From Stationary Boilers AGENCY: Environmental Protection Agency (EPA). ACTION: Direct... ) emissions (a precursor pollutant to PM 2.5 ), from industrial boilers. EPA is approving this revision... 10 CSR 10- 5.570 Control of Sulfur Emissions from Stationary Boilers to the SIP. This rule...

  4. Geomorphic and hydrologic controls of dust emissions during drought from Yellow Lake playa, West Texas, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research on the factors that control dust emissions from playas has revealed a number of complex geomorphic and hydrologic factors, yet there are few measurements of dust emissions from playas during drought or low-emission seasons. Deflation of Yellow Lake, a saline playa in West Texas, produces sa...

  5. Fine particle (2.5 microns) emissions: regulations, measurement, and control

    SciTech Connect

    John D. McKenna; James H. Turner; James P. McKenna, Jr.

    2008-09-15

    Contents: Introduction; Health effects; Air monitoring; Emission control methods - fabric filter/baghouses, electrostatic precipitators, wet scrubbers; Environmental technology verification and baghouse filtration products; Cost considerations; and Nanoparticulates.

  6. Effects of a T-type calcium channel blocker, ABT-639, on spontaneous activity in C-nociceptors in patients with painful diabetic neuropathy: a randomized controlled trial.

    PubMed

    Serra, Jordi; Duan, W Rachel; Locke, Charles; Solà, Romà; Liu, Wei; Nothaft, Wolfram

    2015-11-01

    T-type calcium channels are a potential novel target for treatment of neuropathic pain such as painful diabetic neuropathy. ABT-639 is a peripherally acting highly selective T-type Ca(v)3.2 calcium channel blocker that has demonstrated analgesic efficacy in preclinical models and may have the potential to reduce spontaneous fiber activity. Microneurography is a unique technique that directly assesses the function of peripheral sensory afferents and measures abnormal spontaneous activity in single peripheral nociceptive C fibers. Abnormal spontaneous activity in C-nociceptors functions as a marker for spontaneous pain, as reduction of this activity could indicate analgesic efficacy. This randomized, double-blind controlled study evaluated the effects of a single 100-mg oral dose of ABT-639, compared with placebo, on abnormal spontaneous activity in peripheral C-nociceptors, measured for the first time by microneurography in adult patients with painful diabetic neuropathy. Lidocaine was included in this study and compared with placebo. Pharmacokinetics and safety of ABT-639 were evaluated. Thirty-nine patients were randomized, and a total of 56 analyzable C-nociceptors with spontaneous activity were identified in 34 patients. There were no significant differences in C-nociceptor activities after ABT-639 treatment vs placebo. Similar findings were observed for lidocaine vs placebo. There were no clinically significant findings in the safety of ABT-639. Further research of T-type Ca(v)3.2 calcium channels as potential treatment targets for painful diabetic neuropathy is warranted. The utilization of microneurography as a means to measure abnormal activity in C-nociceptors in human clinical studies opens new possibilities for future studies of compounds targeting peripheral nerve hyperexcitability. ClinicalTrials.gov identifier: NCT01589432.

  7. Theoretical Calculation of System Performance of Fiber Optic Network with Chromatic Dispersion, Polarization Mode Dispersion, Polarization Dependent Loss, and Amplifier Spontaneous Emission Noise

    NASA Astrophysics Data System (ADS)

    Abuzariba, Suad Mohamed

    This thesis includes a theoretical study of the performance of an optical network system with linear impairments: chromatic dispersion (CD), polarization mode dispersion (PMD), polarization dependent loss (PDL), and amplified spontaneous emission (ASE) noise. Both the a-factor and bit error rate (BER) were used as performance parameters in this study. First, an analytical optical eye diagram evaluation for a system of highly mode coupled PMD/PDL fiber and lumped sections (up to fifteen sections) have been presented in this study. Based on this evaluation we found that with PDL considered as well as PMD, the a-factor of the output becomes higher than that of a Maxwellian fiber having the same total root mean-squared PMD and PDL values, when the mean-square PDL element of the lumped sections makes up the major portion of the total mean-square of the whole system. Whereas without considering PDL, the a-factor becomes higher as the mean-square PMD element of the Maxwellian fiber takes the major portion of the total mean-square PMD element of the whole system. Also the worst case for the a-factor occurred when the lumped sections were in the middle between two equivalent Maxwellian fibers, rether than if the lumped sections were followed by Maxwellian fiber or the Maxwellian fiber is followed by the lumped sections. We also note that two equivalent Maxwellian fibers connected in series will not give the same a-factor as a Maxwellian fiber equivalent calculated by concatenation rules unless they have the same values of PMD, PDL, and polarization direction correlation elements. Second, considering ASE-noise besides CD, PMD, and PDL, improved values of bit error rate (BER) were gotten using the moment generation function for the optical system in cases of ON-OFF modulation format and DPSK modulation format. We found that, even when considering the noise only without the signal, the probability density function of the output current was dependent on the output state of

  8. FUEL FORMULATION EFFECTS ON DIESEL FUEL INJECTION, COMBUSTION, EMISSIONS AND EMISSION CONTROL

    SciTech Connect

    Boehman, A; Alam, M; Song, J; Acharya, R; Szybist, J; Zello, V; Miller, K

    2003-08-24

    This paper describes work under a U.S. DOE sponsored Ultra Clean Fuels project entitled ''Ultra Clean Fuels from Natural Gas,'' Cooperative Agreement No. DE-FC26-01NT41098. In this study we have examined the incremental benefits of moving from low sulfur diesel fuel and ultra low sulfur diesel fuel to an ultra clean fuel, Fischer-Tropsch diesel fuel produced from natural gas. Blending with biodiesel, B100, was also considered. The impact of fuel formulation on fuel injection timing, bulk modulus of compressibility, in-cylinder combustion processes, gaseous and particulate emissions, DPF regeneration temperature and urea-SCR NOx control has been examined. The primary test engine is a 5.9L Cummins ISB, which has been instrumented for in-cylinder combustion analysis and in-cylinder visualization with an engine videoscope. A single-cylinder engine has also been used to examine in detail the impacts of fuel formulation on injection timing in a pump-line-nozzle fueling system, to assist in the interpretation of results from the ISB engine.

  9. COST EFFECTIVE VOC EMISSION CONTROL STARTEGIES FOR MILITARY, AEROSPACE,AND INDUSTRIAL PAINT SPRAY BOOTH OPERATIONS: COMBINING IMPROVED VENTILATION SYSTEMS WITH INNOVATIVE, LOW COST EMISSION CONTROL TECHNOLOGIES

    EPA Science Inventory

    The paper describes a full-scale demonstration program in which several paint booths were modified for recirculation ventilation; the booth exhaust streams are vented to an innovative volatile organic compound (VOC) emission control system having extremely low operating costs. ...

  10. The effect of spontaneously generated coherence on the Goos-Hänchen shifts behavior

    NASA Astrophysics Data System (ADS)

    Rezaei, Mojtaba; Sahrai, Mostafa

    2014-12-01

    The behavior of the Goos-Hänchen (GH) shifts of a probe beam reflected from or transmitted through a cavity with a fixed geometrical configuration is theoretically investigated. It is shown that in the absence of coherent control fields and just by quantum interference of spontaneous emission, the behavior of GH shift can be controlled.

  11. [Study on feasible emission control level of air pollutions for cement industry ].

    PubMed

    Ren, Chun; Jiang, Mei; Zou, Lan; Li, Xiao-qian; Wei, Yu-xia; Zhao, Guo-hua; Zhang, Guo-ning

    2014-09-01

    The revised National Emission Standard of Air Pollutions for Cement Industry has been issued, which will be effective for the new enterprises and the existing enterprises on Mar. 1st, 2014 and July 1st, 2015, respectively. In the process of revision, the key technical issues on determination of standard limits was how to determine the feasible emission control level of air pollutions. Feasible emission control requirements were put forward, according to air pollutants emission, technologies, environmental management requirements and foreign standards, etc. The main contents of the revised standard include expanding the scope of application, increasing the pollutants, improving the particulate and NO emissions control level, and increasing special emission limits applied to key areas of air pollutants. The standard will become the gripper of pollution prevention, total emission reduction, structural adjustment and optimization of the layout, and will promote scientific and technical progression for the cement industry.

  12. Off-cycle exhaust emissions from modern passenger cars with properly-functioning emissions controls

    SciTech Connect

    Goodwin, R.W.; Ross, M.H.

    1996-09-01

    Real-world tailpipe emissions from properly-functioning, model year 1991--94 conventional gasoline-fueled cars associated with vehicle operations not emphasized in the FTP are analyzed. Tailpipe emissions are expressed as the product of three factors: fuel rate, engine-out emissions index, and catalyst pass fraction, which are modeled using empirical data from the FTP-Revision Project and applied to in-use driving survey data to estimate real-world emissions. Average tailpipe emissions due to fuel enrichment in warmed-up vehicles are estimated to be 8 g/mile for CO, and 0.3 g/mile for HC. For NO{sub x}, the contribution due to incremental loads on the engine (i.e. air conditioner, grade, high acceleration, and high speed) that are not accounted for in the FTP but are encountered in real-world driving are estimated to be roughly 0.3 g/mile.

  13. Energy, Carbon-emission and Financial Savings from Thermostat Control

    SciTech Connect

    Blasing, T J; Schroeder, Dana

    2013-08-01

    Among the easiest approaches to energy, and cost, savings for most people is the adjustment of thermostats to save energy. Here we estimate savings of energy, carbon, and money in the United States of America (USA) that would result from adjusting thermostats in residential and commercial buildings by about half a degree Celsius downward during the heating season and upward during the cooling season. To obtain as small a unit as possible, and therefore the least likely to be noticeable by most people, we selected an adjustment of one degree Fahrenheit (0.56 degree Celsius) which is the gradation used almost exclusively on thermostats in the USA and is the smallest unit of temperature that has been used historically. Heating and/or cooling of interior building space for personal comfort is sometimes referred to as space conditioning, a term we will use for convenience throughout this work without consideration of humidity. Thermostat adjustment, as we use the term here, applies to thermostats that control the indoor temperature, and not to other thermostats such as those on water heaters. We track emissions of carbon only, rather than of carbon dioxide, because carbon atoms change atomic partners as they move through the carbon cycle, from atmosphere to biosphere or ocean and, on longer time scales, through the rock cycle. To convert a mass of carbon to an equivalent mass of carbon dioxide (thereby including the mass of the 2 oxygen atoms in each molecule) simply multiply by 3.67.

  14. 40 CFR 63.985 - Nonflare control devices used to control emissions from storage vessels and low throughput...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... vapors, the type of condenser, and the design flow rate of the emission stream. (ii) Performance test. A... control device as described in paragraph (b)(1)(i) of this section if a performance test will be performed... Compliance Status whenever emissions of regulated material are routed to the control device except...

  15. Controlling satellite communication system unwanted emissions in congested RF spectrum

    NASA Astrophysics Data System (ADS)

    Olsen, Donald; Heymann, Roger

    2007-09-01

    The International Telecommunication Union (ITU), a United Nations (UN) agency, is the agency that, under an international treaty, sets radio spectrum usage regulations among member nations. Within the United States of America (USA), the organization that sets regulations, coordinates an application for use, and provides authorization for federal government/agency use of the radio frequency (RF) spectrum is the National Telecommunications and Information Administration (NTIA). In this regard, the NTIA defines which RF spectrum is available for federal government use in the USA, and how it is to be used. The NTIA is a component of the United States (U.S.) Department of Commerce of the federal government. The significance of ITU regulations is that ITU approval is required for U.S. federal government/agency permission to use the RF spectrum outside of U.S. boundaries. All member nations have signed a treaty to do so. U.S. federal regulations for federal use of the RF spectrum are found in the Manual of Regulations and Procedures for Federal Radio Frequency Management, and extracts of the manual are found in what is known as the Table of Frequency Allocations. Nonfederal government and private sector use of the RF spectrum within the U.S. is regulated by the Federal Communications Commission (FCC). There is a need to control "unwanted emissions" (defined to include out-of-band emissions, which are those immediately adjacent to the necessary and allocated bandwidth, plus spurious emissions) to preclude interference to all other authorized users. This paper discusses the causes, effects, and mitigation of unwanted RF emissions to systems in adjacent spectra. Digital modulations are widely used in today's satellite communications. Commercial communications sector standards are covered for the most part worldwide by Digital Video Broadcast - Satellite (DVB-S) and digital satellite news gathering (DSNG) evolutions and the second generation of DVB-S (DVB-S2) standard

  16. COMBUSTION CONTROL OF ORGANIC EMISSIONS FROM MUNICIPAL WASTE COMBUSTORS

    EPA Science Inventory

    More than two decades ago, researchers identified benzo(a)pyrene and other organic species in the emissions from incineration of solid waste. Chlorinated dibenzo-p-dioxins and-furans (CDD/CDF) were first detected in municipal waste combustor (MWC) emissions in 1977. Since then, C...

  17. Control of odour emission in wastewater treatment plants by direct and undirected measurement of odour emission capacity.

    PubMed

    Zarra, T; Giuliani, S; Naddeo, V; Belgiorno, V

    2012-01-01

    Odour emissions from wastewater treatment plants (WWTPs) are considered to be the main causes of disturbance noticed by the exposed population and have relevant impacts on both tourism economy and land costs. Odour impact from WWTPs is generated by primary and secondary odour emissions. Primary odour emissions are related especially to the wastewater type and variability discharged into the sewer and directed to the WWTP, and to the wastewater collection and sewage system. Secondary odours are related to the treatment units of the plant. Several studies describe the key role of primary odour emissions and how they are strongly related to odour impacts of WWTPs. In this way, a opportune characterization of the emission capacity of primary odour could be an effective way to control odour emission in the WWTPs. In this study the odour emission capacity (OEC) of different domestic sewers was described and investigated; a correlation between the OEC and the main physical-chemical parameters of wastewater quality was also carried out. Results of this study identify the optimum conditions for sampling and measuring OEC in wastewaters and define its dependence by wastewater quality. These results can contribute to setting the standards for the maximum odourant content of wastewater that are discharged into the publicly owned sewage system.

  18. Estimates of increased black carbon emissions from electrostatic precipitators during powdered activated carbon injection for mercury emissions control.

    PubMed

    Clack, Herek L

    2012-07-03

    The behavior of mercury sorbents within electrostatic precipitators (ESPs) is not well-understood, despite a decade or more of full-scale testing. Recent laboratory results suggest that powdered activated carbon exhibits somewhat different collection behavior than fly ash in an ESP and particulate filters located at the outlet of ESPs have shown evidence of powdered activated carbon penetration during full-scale tests of sorbent injection for mercury emissions control. The present analysis considers a range of assumed differential ESP collection efficiencies for powdered activated carbon as compared to fly ash. Estimated emission rates of submicrometer powdered activated carbon are compared to estimated emission rates of particulate carbon on submicrometer fly ash, each corresponding to its respective collection efficiency. To the extent that any emitted powdered activated carbon exhibits size and optical characteristics similar to black carbon, such emissions could effectively constitute an increase in black carbon emissions from coal-based stationary power generation. The results reveal that even for the low injection rates associated with chemically impregnated carbons, submicrometer particulate carbon emissions can easily double if the submicrometer fraction of the native fly ash has a low carbon content. Increasing sorbent injection rates, larger collection efficiency differentials as compared to fly ash, and decreasing sorbent particle size all lead to increases in the estimated submicrometer particulate carbon emissions.

  19. Vehicular Diesel control emissions benefit assessment in Mexico City

    NASA Astrophysics Data System (ADS)

    Garcia-Reynoso, J.; Jazcilevich, A. D.; Ruiz-Suarez, L.; Cruz-Nuñez, X.; Rojas, A. R.; Tripp, M. R.

    2013-12-01

    Diesel vehicles contribute in an important proportion to the particle and black carbon (BC) ambient concentrations in urban areas. These pollutants can effect the climate and health. The average age of the Diesel fleet in Mexico is 15 year-old. An introduction of new technologies and retrofit systems can reduce emissions from this type of vehicles. A set of policies were selected and applied in order to identify their economic benefits in health. An air quality model was used to obtain ambient concentrations from the emissions and specific methodology for emissions inventory adjustment was developed for this project. Preliminary results show an important benefit due to the improvement of the emissions reduction from the Diesel fleet. PM2.5 differences for reduction scenario case 1 and base case. Output from WRF-chem using 2005 Naional Emissions Inventory Reductions obtained using data from the initial fleet, fleet temporal variation and substitution policies.

  20. How light, temperature, and measurement and growth [CO2] interactively control isoprene emission in hybrid aspen

    PubMed Central

    Niinemets, Ülo; Sun, Zhihong

    2015-01-01

    Plant isoprene emissions have been modelled assuming independent controls by light, temperature and atmospheric [CO2]. However, the isoprene emission rate is ultimately controlled by the pool size of its immediate substrate, dimethylallyl diphosphate (DMADP), and isoprene synthase activity, implying that the environmental controls might interact. In addition, acclimation to growth [CO2] can shift the share of the control by DMADP pool size and isoprene synthase activity, and thereby alter the environmental sensitivity. Environmental controls of isoprene emission were studied in hybrid aspen (Populus tremula × Populus tremuloides) saplings acclimated either to ambient [CO2] of 380 μmol mol–1 or elevated [CO2] of 780 μmol mol–1. The data demonstrated strong interactive effects of environmental drivers and growth [CO2] on isoprene emissions. Light enhancement of isoprene emission was the greatest at intermediate temperatures and was greater in elevated-[CO2]-grown plants, indicating greater enhancement of the DMADP supply. The optimum temperature for isoprene emission was higher at lower light, suggesting activation of alternative DMADP sinks at higher light. In addition, [CO2] inhibition of isoprene emission was lost at a higher temperature with particularly strong effects in elevated-[CO2]-grown plants. Nevertheless, DMADP pool size was still predicted to more strongly control isoprene emission at higher temperatures in elevated-[CO2]-grown plants. We argue that interactive environmental controls and acclimation to growth [CO2] should be incorporated in future isoprene emission models at the level of DMADP pool size. PMID:25399006

  1. OVERVIEW OF ADVANCED PETROLEUM-BASED FUELS-DIESEL EMISSIONS CONTROL PROGRAM (APBF-DEC)

    SciTech Connect

    Sverdrup, George M.

    2000-08-20

    The Advanced Petroleum-Based Fuels-Diesel Emissions Control Program (APBF-DEC) began in February 2000 and is supported by government agencies and industry. The purpose of the APBF-DEC program is to identify and evaluate the optimal combinations of fuels, lubricants, diesel engines, and emission control systems to meet the projected emission standards for the 2000 to 2010 time period. APBF-DEC is an outgrowth of the earlier Diesel Emission Control-Sulfur Effects Program (DECSE), whose objective is to determine the impact of the sulfur levels in fuel on emission control systems that could lower the emissions of NOx and particulate matter (PM) from diesel powered vehicles in the 2002 to 2004 period. Results from the DECSE studies of two emission control technologies-diesel particle filter (DPF) and NOx adsorber-will be used in the APBF-DEC program. These data are expected to provide initial information on emission control technology options and the effects of fuel properties (including additives) on the performance of emission control systems.

  2. Central command does not suppress baroreflex control of cardiac sympathetic nerve activity at the onset of spontaneous motor activity in the decerebrate cat.

    PubMed

    Matsukawa, Kanji; Ishii, Kei; Asahara, Ryota; Idesako, Mitsuhiro

    2016-10-01

    Our laboratory has reported that central command blunts the sensitivity of the aortic baroreceptor-heart rate (HR) reflex at the onset of voluntary static exercise in animals. We have examined whether baroreflex control of cardiac sympathetic nerve activity (CSNA) and/or cardiovagal baroreflex sensitivity are altered at the onset of spontaneously occurring motor behavior, which was monitored with tibial nerve activity in paralyzed, decerebrate cats. CSNA exhibited a peak increase (126 ± 17%) immediately after exercise onset, followed by increases in HR and mean arterial pressure (MAP). With development of the pressor response, CSNA and HR decreased near baseline, although spontaneous motor activity was not terminated. Atropine methyl nitrate (0.1-0.2 mg/kg iv) with little central influence delayed the initial increase in HR but did not alter the response magnitudes of HR and CSNA, while atropine augmented the pressor response. The baroreflex-induced decreases in CSNA and HR elicited by brief occlusion of the abdominal aorta were challenged at the onset of spontaneous motor activity. Spontaneous motor activity blunted the baroreflex reduction in HR by aortic occlusion but did not alter the baroreflex inhibition of CSNA. Similarly, atropine abolished the baroreflex reduction in HR but did not influence the baroreflex inhibition of CSNA. Thus it is likely that central command increases CSNA and decreases cardiac vagal outflow at the onset of spontaneous motor activity while preserving baroreflex control of CSNA. Accordingly, central command must attenuate cardiovagal baroreflex sensitivity against an excess rise in MAP as estimated from the effect of muscarinic blockade.

  3. Emissions of Transport Refrigeration Units with CARB Diesel, Gas-to-Liquid Diesel, and Emissions Control Devices

    SciTech Connect

    Barnitt, R. A.; Chernich, D.; Burnitzki, M.; Oshinuga, A.; Miyasato, M.; Lucht, E.; van der Merwe, D.; Schaberg, P.

    2010-05-01

    A novel in situ method was used to measure emissions and fuel consumption of transport refrigeration units (TRUs). The test matrix included two fuels, two exhaust configurations, and two TRU engine operating speeds. Test fuels were California ultra low sulfur diesel and gas-to-liquid (GTL) diesel. Exhaust configurations were a stock muffler and a Thermo King pDPF diesel particulate filter. The TRU engine operating speeds were high and low, controlled by the TRU user interface. Results indicate that GTL diesel fuel reduces all regulated emissions at high and low engine speeds. Application of a Thermo King pDPF reduced regulated emissions, sometimes almost entirely. The application of both GTL diesel and a Thermo King pDPF reduced regulated emissions at high engine speed, but showed an increase in oxides of nitrogen at low engine speed.

  4. Increased Spontaneous Central Bleeding and Cognition Impairment in APP/PS1 Mice with Poorly Controlled Diabetes Mellitus.

    PubMed

    Ramos-Rodriguez, Juan José; Infante-Garcia, Carmen; Galindo-Gonzalez, Lucia; Garcia-Molina, Yaiza; Lechuga-Sancho, Alfonso; Garcia-Alloza, Mónica

    2016-05-01

    Alzheimer's disease (AD) and vascular dementia (VaD) are the most common causes of dementia, and borderlines are blurred in many cases. Aging remains the main risk factor to suffer dementia; however, epidemiological studies reveal that diabetes may also predispose to suffer AD. In order to further study this relationship, we have induced hypoinsulinemic diabetes to APPswe/PS1dE9 (APP/PS1) mice, a classical model of AD. APP/PS1 mice received streptozotocin (STZ) ip at 18 weeks of age, when AD pathology is not yet established in this animal model. Cognition was evaluated at 26 weeks of age in the Morris water maze and the new object discrimination tests. We observed that STZ-induced episodic and working memory impairment was significantly worsened in APP/PS1 mice. Postmortem assessment included brain atrophy, amyloid-beta and tau pathology, spontaneous bleeding, and increased central inflammation. Interestingly, in APP/PS1-STZ diabetic mice, we detected a shift in Aβ soluble/insoluble levels, towards more toxic soluble species. Phospho-tau levels were also increased in APP/PS1-STZ mice, accompanied by an exacerbated inflammatory process, both in the close proximity to senile plaque (SP) and in SP-free areas. The presence of hemorrhages was significantly higher in APP/PS1-STZ mice, and although pericytes and endothelium were only partially affected, it remains possible that blood-brain barrier alterations underlie observed pathological features. Our data support the implication of the diabetic process in AD and VaD, and it is feasible that improving metabolic control could delay observed central pathology.

  5. Environmental Consequences of Invasive Species: Greenhouse Gas Emissions of Insecticide Use and the Role of Biological Control in Reducing Emissions

    PubMed Central

    Heimpel, George E.; Yang, Yi; Hill, Jason D.; Ragsdale, David W.

    2013-01-01

    Greenhouse gas emissions associated with pesticide applications against invasive species constitute an environmental cost of species invasions that has remained largely unrecognized. Here we calculate greenhouse gas emissions associated with the invasion of an agricultural pest from Asia to North America. The soybean aphid, Aphis glycines, was first discovered in North America in 2000, and has led to a substantial increase in insecticide use in soybeans. We estimate that the manufacture, transport, and application of insecticides against soybean aphid results in approximately 10.6 kg of carbon dioxide (CO2) equivalent greenhouse gasses being emitted per hectare of soybeans treated. Given the acreage sprayed, this has led to annual emissions of between 6 and 40 million kg of CO2 equivalent greenhouse gasses in the United States since the invasion of soybean aphid, depending on pest population size. Emissions would be higher were it not for the development of a threshold aphid density below which farmers are advised not to spray. Without a threshold, farmers tend to spray preemptively and the threshold allows farmers to take advantage of naturally occurring biological control of the soybean aphid, which can be substantial. We find that adoption of the soybean aphid economic threshold can lead to emission reductions of approximately 300 million kg of CO2 equivalent greenhouse gases per year in the United States. Previous studies have documented that biological control agents such as lady beetles are capable of suppressing aphid densities below this threshold in over half of the soybean acreage in the U.S. Given the acreages involved this suggests that biological control results in annual emission reductions of over 200 million kg of CO2 equivalents. These analyses show how interactions between invasive species and organisms that suppress them can interact to affect greenhouse gas emissions. PMID:23977273

  6. Environmental consequences of invasive species: greenhouse gas emissions of insecticide use and the role of biological control in reducing emissions.

    PubMed

    Heimpel, George E; Yang, Yi; Hill, Jason D; Ragsdale, David W

    2013-01-01

    Greenhouse gas emissions associated with pesticide applications against invasive species constitute an environmental cost of species invasions that has remained largely unrecognized. Here we calculate greenhouse gas emissions associated with the invasion of an agricultural pest from Asia to North America. The soybean aphid, Aphis glycines, was first discovered in North America in 2000, and has led to a substantial increase in insecticide use in soybeans. We estimate that the manufacture, transport, and application of insecticides against soybean aphid results in approximately 10.6 kg of carbon dioxide (CO2) equivalent greenhouse gasses being emitted per hectare of soybeans treated. Given the acreage sprayed, this has led to annual emissions of between 6 and 40 million kg of CO2 equivalent greenhouse gasses in the United States since the invasion of soybean aphid, depending on pest population size. Emissions would be higher were it not for the development of a threshold aphid density below which farmers are advised not to spray. Without a threshold, farmers tend to spray preemptively and the threshold allows farmers to take advantage of naturally occurring biological control of the soybean aphid, which can be substantial. We find that adoption of the soybean aphid economic threshold can lead to emission reductions of approximately 300 million kg of CO2 equivalent greenhouse gases per year in the United States. Previous studies have documented that biological control agents such as lady beetles are capable of suppressing aphid densities below this threshold in over half of the soybean acreage in the U.S. Given the acreages involved this suggests that biological control results in annual emission reductions of over 200 million kg of CO2 equivalents. These analyses show how interactions between invasive species and organisms that suppress them can interact to affect greenhouse gas emissions.

  7. Engine Tune-up Service. Unit 6: Emission Control Systems. Student Guide. Automotive Mechanics Curriculum.

    ERIC Educational Resources Information Center

    Bacon, E. Miles

    This student guide is for Unit 6, Emission Control Systems, in the Engine Tune-Up Service portion of the Automotive Mechanics Curriculum. It deals with inspecting, testing, and servicing an emission control system. A companion review exercise book and posttests are available separately as CE 031 221-222. An introduction tells how this unit fits…

  8. STRUCTURAL TRANSFORMATIONS IN CA-BASED SORBENTS USED FOR SO2 EMISSION CONTROL

    EPA Science Inventory

    The paper discusses structural transformations in Ca-based sorbents used for SO2 emission control. conomizer temperature injection of Ca-based sorbents is an option for dry control of SO2 emissions from coal-fired boilers. heir reactivity with SO2 was found to be a function of th...

  9. Preface: Special Issue on Catalytic Control of Lean-Burn Engine Exhaust Emissions

    SciTech Connect

    Yezerets, Aleksey; Peden, Charles HF; Szanyi, Janos; Nova, Isabella; Epling, Bill

    2012-04-30

    This issue of Catalysis Today includes original research articles based on select presentations from the Mobile Emissions Control Symposium at the 22nd North American Catalysis Society (NACS) Meeting held in Detroit in June 2011, with a particular focus on catalyzed diesel emissions control. The Symposium was dedicated to the memory of Dr. Haren Gandhi, a visionary technology leader and a passionate environmental advocate.

  10. Engine Tune-up Service. Unit 6: Emission Control Systems. Posttests. Automotive Mechanics Curriculum.

    ERIC Educational Resources Information Center

    Morse, David T.; May, Theodore R.

    This book of posttests is designed to accompany the Engine Tune-Up Service Student Guide for Unit 6, Emission Control Systems, available separately as CE 031 220. Focus of the posttests is inspecting, testing, and servicing emission control systems. One multiple choice posttest is provided that covers the seven performance objectives contained in…

  11. Engine Tune-up Service. Unit 6: Emission Control Systems. Review Exercise Book. Automotive Mechanics Curriculum.

    ERIC Educational Resources Information Center

    Bacon, E. Miles

    This book of pretests and review exercises is designed to accompany the Engine Tune-Up Service Student Guide for Unit 6, Emission Control Systems, available separately as CE 031 220. Focus of the exercises and pretests is inspecting, testing, and servicing emission control systems. Pretests and performance checklists are provided for each of the…

  12. 40 CFR 270.315 - What air emissions control information must I keep at my facility?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAM RCRA Standardized Permits for Storage and Treatment Units Information That Must Be Kept at Your Facility § 270.315 What air emissions control information must I keep at my facility? If you have air... 40 Protection of Environment 26 2010-07-01 2010-07-01 false What air emissions control...

  13. 40 CFR 270.315 - What air emissions control information must I keep at my facility?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROGRAM RCRA Standardized Permits for Storage and Treatment Units Information That Must Be Kept at Your Facility § 270.315 What air emissions control information must I keep at my facility? If you have air... 40 Protection of Environment 27 2011-07-01 2011-07-01 false What air emissions control...

  14. 24 CFR 3280.308 - Formaldehyde emission controls for certain wood products.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Formaldehyde emission controls for certain wood products. 3280.308 Section 3280.308 Housing and Urban Development Regulations Relating to... Body and Frame Construction Requirements § 3280.308 Formaldehyde emission controls for certain...

  15. 24 CFR 3280.308 - Formaldehyde emission controls for certain wood products.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Formaldehyde emission controls for certain wood products. 3280.308 Section 3280.308 Housing and Urban Development Regulations Relating to... Body and Frame Construction Requirements § 3280.308 Formaldehyde emission controls for certain...

  16. 24 CFR 3280.308 - Formaldehyde emission controls for certain wood products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Formaldehyde emission controls for certain wood products. 3280.308 Section 3280.308 Housing and Urban Development Regulations Relating to... Body and Frame Construction Requirements § 3280.308 Formaldehyde emission controls for certain...

  17. Engine Performance (Section C: Emission Control Systems). Auto Mechanics Curriculum Guide. Module 3. Instructor's Guide.

    ERIC Educational Resources Information Center

    Rains, Larry

    This engine performance (emission control systems) module is one of a series of competency-based modules in the Missouri Auto Mechanics Curriculum Guide. Topics of this module's five units are: positive crankcase ventilation (PCV) and evaporative emission control systems; exhaust gas recirculation (EGR); air injection and catalytic converters;…

  18. 40 CFR 63.3555 - How do I determine the outlet THC emissions and add-on control device emission destruction or...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true How do I determine the outlet THC.../outlet Concentration Option § 63.3555 How do I determine the outlet THC emissions and add-on control... section to determine either the outlet THC emissions or add-on control device emission destruction...

  19. On-road vehicle emission control in Beijing: past, present, and future.

    PubMed

    Wu, Ye; Wang, Renjie; Zhou, Yu; Lin, Bohong; Fu, Lixin; He, Kebin; Hao, Jiming

    2011-01-01

    Beijing, the capital of China, has experienced rapid motorization since 1990; a trend that is likely to continue. The growth in vehicles and the corresponding emissions create challenges to improving the urban air quality. In an effort to reduce the impact of vehicle emissions on urban air quality, Beijing has adopted a number of vehicle emission control strategies and policies since the mid 1990 s. These are classified into seven categories: (1) emission control on new vehicles; (2) emission control on in-use vehicles; (3) fuel quality improvements; (4) alternative-fuel and advanced vehicles; (5) economic policies; (6) public transport; and (7) temporal traffic control measures. Many have proven to be successful, such as the Euro emission standards, unleaded gasoline and low sulfur fuel, temporal traffic control measures during the Beijing Olympic Games, etc. Some, however, have been failures, such as the gasoline-to-LPG taxi retrofit program. Thanks to the emission standards for new vehicles as well as other controls, the fleet-average emission rates of CO, HC, NO(X), and PM(10) by each major vehicle category are decreasing over time. For example, gasoline cars decreased fleet-average emission factors by 12.5% for CO, 10.0% for HC, 5.8% for NO(X), and 13.0% for PM(10) annually since 1995, and such a trend is likely to continue. Total emissions for Beijing's vehicle fleet increased from 1995 to 1998. However, they show a clear and steady decrease between 1999 and 2009. In 2009, total emissions of CO, HC, NO(X), and PM(10) were 845,000 t, 121,000 t, 84,000 t, and 3700 t, respectively; with reductions of 47%, 49%, 47%, and 42%, relative to 1998. Beijing has been considered a pioneer in controlling vehicle emissions within China, similar to the role of California to the U.S. The continued rapid growth of vehicles, however, is challenging Beijing's policy-makers.

  20. Control of NOx Emissions from Stationary Combustion Sources

    EPA Science Inventory

    In general, NOx control technologies are categorized as being either primary control technologies or secondary control technologies. Primary control technologies reduce the formation of NOx in the primary combustion zone. In contrast, secondary control technologies destroy the NO...