Social and behavior change communication in the fight against malaria in Mozambique.
Arroz, Jorge Alexandre Harrison
2017-03-23
Long-lasting insecticide-treated nets and/or indoor residual spraying, associated with case management, are key interventions in the control of malaria in Africa. The objective of this study is to comment on the role of social and behavior change communication as a potential key intervention in the control of malaria in Mozambique. RESUMO As redes mosquiteiras impregnadas com insecticidade de longa duração e/ou pulverização intra-domiciliária, associada ao manejo de casos são intervenções-chave no controlo da malária em África. O objetivo deste estudo foi comentar o papel da comunicação para a mudança social e de comportamento como intervenção potencialmente chave no controlo da malária em Moçambique.
Defense.gov Special Report: Travels With Hagel
Posture Agreement The new U.S.-Australia force posture agreement will advance America's ongoing strategic U.S.-Australia Force Posture Pact A New force posture agreement between the U.S. and Australia capture of Kerry and Australian official signing a pact. U.S., Australia Sign Landmark Agreement More
Atomic layer deposition of metal oxide by non-aqueous sol-gel chemistry =
NASA Astrophysics Data System (ADS)
Marichy, Catherine
O trabalho apresentado neste manuscrito foi desenvolvido no ambito do programa doutoral intitulado “Deposicao de Camadas Atomicas (ALD) de oxido de metais por sol-gel nao-aquoso”. O objectivo deste trabalho foi a preparacao de hetero-estruturas funcionais por ALD e a sua caracterizacao. Foi desenvolvido um novo processo de deposicao de oxido de estanho a temperatura baixa-moderada, utilizando um metodo ALD nao-aquoso, o qual foi aplicado com sucesso ao revestimento controlado das paredes internas e externas de nanotubos de carbono. Uma vez que a preparacao de nanomateriais funcionais requer uma elevada exatidao do processo de deposicao, foi demonstrada a deposicao precisa de filmes que se adaptem a forma do substrato ou de filmes nano-estruturados constituidos por particulas em varios substratos. Alem disso, foram depositados com grande exatidao varios oxidos de metal em nanotubos de carbono e demonstrou-se a possibilidade de ajustar o revestimento feito por ALD atraves do controlo da funcionalizacao da superficie do substrato nano-estruturado de carbono. As hetero-estruturas obtidas foram posteriormente aplicadas como sensores de gases. O melhoramento verificado na sensibilidade foi atribuido a formacao de heterojuncoes p-n entre o filme de oxido de metais e o suporte. O trabalho desenvolvido tendo como objetivo o controlo do revestimento por ALD atraves da funcionalizacao da superficie do suporte e certamente de interesse para o design de hetero-estruturas funcionais baseadas em substratos de carbono. De facto, durante o ultimo periodo do programa de doutoramento, este conceito foi alargado a funcionalizacao e revestimento com oxidos de metal de fibras de carbono preparadas por “electrospinning”, de forma a melhorar a estabilidade e a atividade eletrocatalitica de catalisadores a base de Pt. Este trabalho foi realizado maioritariamente na Universidade de Aveiro mas tambem na Universidade Nacional de Seul e beneficiou de varias colaboracoes internacionais devido a natureza multidisciplinar da area de investigacao em que esta inserido.
National Guard Bureau Posture Statement - The National Guard
ARNG Command Sergeant Major of the ARNG State Mission Sustainability Training ARNG Distributed Learning Program Training & Technology Battle Lab (T3BL) Civil Support Simulation Exercises Regional Training Site Maintenance Battle Focused Training Strategy Battle Staff Training Resources News Publications
Michigan field artillery's 'Blackjacks' training in Latvia > National Guard
Sustainability Training ARNG Distributed Learning Program Training & Technology Battle Lab (T3BL) Civil Support Simulation Exercises Regional Training Site Maintenance Battle Focused Training Strategy Battle Staff Training Resources News Publications Civic Leader's Guide ARNG Vision 2020 Posture Statement
Massachusetts Air National Guard dad deploys with his son for final time >
Mission Sustainability Training ARNG Distributed Learning Program Training & Technology Battle Lab (T3BL) Civil Support Simulation Exercises Regional Training Site Maintenance Battle Focused Training Strategy Battle Staff Training Resources News Publications Civic Leader's Guide ARNG Vision 2020 Posture
Vice Chief, National Guard Bureau - The National Guard
the ARNG Deputy Director of the ARNG Chief of Staff of the ARNG Command Chief Warrant Officer of the Civic Leader's Guide ARNG Vision 2020 Posture Statement Strategic Direction CNGB ARNG Financial Report -7 J-8 Personal Staff Inspector General Judge Advocate General Officer Management Public Affairs
Defense.gov Special Report: Travels With Work
Work Meets With Japanese Leaders Deputy Defense Secretary Bob Work met with Japanese leaders to discuss discuss bilateral efforts to enhance alliance force posture and capabilities. Story Twitter Feed News /Section 508 Join the Military Careers Web Policy Stay Connected Icon: Facebook Facebook Icon: Twitter
Coming Soon: More Cyber Careers?
exploring the possibility of creating a cyber career field for Army civilians," Lt. Gen. Edward C Programs and Posture," April 14. Establishing a cyber career management field for civilians may be working to implement a cyber career management field for enlisted personnel that will encompass accessions
U.S. Department of Defense Official Website
updated and may no longer be applicable as a result of changes in law, regulation and/or administration changes to the U.S. military's global posture. Rumsfeld and Joint Chiefs Chairman Air Force Gen. Richard B . Myers discussed the changes. Air Force Gen. Richard B. Myers, chairman, Joint Chiefs of Staff, answers
Electrically-induced muscle fatigue affects feedforward mechanisms of control.
Monjo, F; Forestier, N
2015-08-01
To investigate the effects of focal muscle fatigue induced by electromyostimulation (EMS) on Anticipatory Postural Adjustments (APAs) during arm flexions performed at maximal velocity. Fifteen healthy subjects performed self-paced arm flexions at maximal velocity before and after the completion of fatiguing electromyostimulation programs involving the medial and anterior deltoids and aiming to degrade movement peak acceleration. APA timing and magnitude were measured using surface electromyography. Following muscle fatigue, despite a lower mechanical disturbance evidenced by significant decreased peak accelerations (-12%, p<.001), APAs remained unchanged as compared to control trials (p>.11 for all analyses). The fatigue signals evoked by externally-generated contractions seem to be gated by the Central Nervous System and result in postural strategy changes which aim to increase the postural safety margin. EMS is widely used in rehabilitation and training programs for its neuromuscular function-related benefits. However and from a motor control viewpoint, the present results show that the use of EMS can lead to acute inaccuracies in predictive motor control. We propose that clinicians should investigate the chronic and global effects of EMS on motor control. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Evaluation of thermochemical biomass conversion in fluidized bed =
NASA Astrophysics Data System (ADS)
Neves, Daniel dos Santos Felix das
Dado o aumento acelerado dos precos dos combustiveis fosseis e as incertezas quanto a sua disponibilidade futura, tem surgido um novo interesse nas tecnologias da biomassa aplicadas a producao de calor, eletricidade ou combustiveis sinteticos. Nao obstante, para a conversao termoquimica de uma particula de biomassa solida concorrem fenomenos bastante complexos que levam, em primeiro lugar, a secagem do combustivel, depois a pirolise e finalmente a combustao ou gasificacao propriamente ditas. Uma descricao relativamente incompleta de alguns desses estagios de conversao constitui ainda um obstaculo ao desenvolvimento das tecnologias que importa ultrapassar. Em particular, a presenca de elevados conteudos de materia volatil na biomassa poe em evidencia o interesse pratico do estudo da pirolise. A importância da pirolise durante a combustao de biomassa foi evidenciada neste trabalho atraves de ensaios realizados num reator piloto de leito fluidizado borbulhante. Verificou-se que o processo ocorre em grande parte a superficie do leito com chamas de difusao devido a libertacao de volateis, o que dificulta o controlo da temperatura do reator acima do leito. No caso da gasificacao de biomassa a pirolise pode inclusivamente determinar a eficiencia quimica do processo. Isso foi mostrado neste trabalho durante ensaios de gasificacao num reator de leito fluidizado de 2MWth, onde um novo metodo de medicao permitiu fechar o balanco de massa ao gasificador e monitorizar o grau de conversao da biomassa. A partir destes resultados tornou-se clara a necessidade de descrever adequadamente a pirolise de biomassa com vista ao projeto e controlo dos processos. Em aplicacoes de engenharia ha particular interesse na estequiometria e propriedades dos principais produtos piroliticos. Neste trabalho procurou-se responder a esta necessidade, inicialmente atraves da estruturacao de dados bibliograficos sobre rendimentos de carbonizado, liquidos piroliticos e gases, assim como composicoes elementares e poderes calorificos. O resultado traduziu-se num conjunto de parâmetros empiricos de interesse pratico que permitiram elucidar o comportamento geral da pirolise de biomassa numa gama ampla de condicoes operatorias. Para alem disso, propos-se um modelo empirico para a composicao dos volateis que pode ser integrado em modelos compreensivos de reatores desde que os parâmetros usados sejam adequados ao combustivel ensaiado. Esta abordagem despoletou um conjunto de ensaios de pirolise com varias biomassas, lenhina e celulose, e temperaturas entre os 600 e 975ºC. Elevadas taxas de aquecimento do combustivel foram alcancadas em reatores laboratoriais de leito fluidizado borbulhante e leito fixo, ao passo que um sistema termo-gravimetrico permitiu estudar o efeito de taxas de aquecimento mais baixas. Os resultados mostram que, em condicoes tipicas de processos de combustao e gasificacao, a quantidade de volateis libertada da biomassa e pouco influenciada pela temperatura do reator mas varia bastante entre combustiveis. Uma analise mais aprofundada deste assunto permitiu mostrar que o rendimento de carbonizado esta intimamente relacionado com o racio O/C do combustivel original, sendo proposto um modelo simples para descrever esta relacao. Embora a quantidade total de volateis libertada seja estabelecida pela composicao da biomassa, a respetiva composicao quimica depende bastante da temperatura do reator. Rendimentos de especies condensaveis (agua e especies orgânicas), CO2 e hidrocarbonetos leves descrevem um maximo relativamente a temperatura para dar lugar a CO e H2 as temperaturas mais altas. Nao obstante, em certas gamas de temperatura, os rendimentos de algumas das principais especies gasosas (e.g. CO, H2, CH4) estao bem correlacionados entre si, o que permitiu desenvolver modelos empiricos que minimizam o efeito das condicoes operatorias e, ao mesmo tempo, realcam o efeito do combustivel na composicao do gas. Em suma, os ensaios de pirolise realizados neste trabalho permitiram constatar que a estequiometria da pirolise de biomassa se relaciona de varias formas com a composicao elementar do combustivel original o que levanta varias possibilidades para a avaliacao e projeto de processos de combustao e gasificacao de biomassa.
Advanced extravehicular protective systems study, volume 2
NASA Technical Reports Server (NTRS)
Sutton, J. G.; Heimlich, P. F.; Tepper, E. H.
1972-01-01
The results of the subsystem studies are presented. Initial identification and evaluation of candidate subsystem concepts in the area of thermal control, humidity control, CO2 control/O2 supply, contaminant control and power supply are discussed. The candidate concepts that were judged to be obviously noncompetitive were deleted from further consideration and the remaining candidate concepts were carried into the go/no go evaluation. A detailed parametric analysis of each of the thermal/humidity control and CO2 control/O2 supply subsystem concepts which passed the go/no go evaluation is described. Based upon the results of the parametric analyses, primary and secondary evaluations of the remaining candidate concepts were conducted. These results and the subsystem recommendations emanating from these results are discussed. In addition, the parametric analyses of the recommended subsystem concepts were updated to reflect the final AEPS specification requirements. A detailed discussion regarding the selection of the AEPS operating pressure level is presented.
Postural disorders in mouth breathing children: a systematic review.
Neiva, Patricia Dayrell; Kirkwood, Renata Noce; Mendes, Polyana Leite; Zabjek, Karl; Becker, Helena Gonçalves; Mathur, Sunita
Mouth breathing syndrome can cause sleep disturbances that compromise the performance of children in school. It might also cause postural abnormalities involving the head and cervical spine; however, the association between postural abnormalities and mouth breathing in children is unclear. To assess the methodological quality of studies and determine if there is an association between mouth breathing and postural disorders in children. Databases comprised MEDLINE, CINAHL, PEDro, LILACS, EMBASE and Cochrane Central Registrar of Controlled Trials. Searches were until March 2016 and included studies that evaluated postural disorders in children diagnosed with mouth breathing. The Downs and Black checklist was used to evaluate the quality of the evidences. Ten studies were included totaling 417 children from 5 to 14 years. Two studies used the New York State Postural Rating Scale, seven used photography and one used motion capture to measure posture. The methods used to analyze the data included the Postural Analysis Software (SAPO), Fisiometer, ALCimagem and routines in MATLAB program. Quality assessment resulted in low scores (<14) for all the studies. The main areas of weakness were a clear description of the participants, of the methods used to access posture, of the principal confounders and lack of power analysis. External and internal validity were also threatened by the lack of a representative sample and blinding of the participants and assessors, respectively. The review provides low evidence that mouth-breathing pattern in children between the ages 5-14 years is associated with postural deviations. Copyright © 2017 Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia. Publicado por Elsevier Editora Ltda. All rights reserved.
Microstructure design of titanate-based electroceramics =
NASA Astrophysics Data System (ADS)
Amaral, Luis Miguel de Almeida
Electrocerâmicos sao uma classe de materiais avancados com propriedades electricas valiosas para aplicacoes. Estas propriedades sao geralmente muito dependentes da microestrutura dos materiais. Portanto, o objectivo geral deste trabalho e investigar o desenho da resposta dielectrica de filmes espessos obtidos por Deposicao Electroforetica (EPD) e cerâmicos monoliticos, atraves do controlo da evolucao da microestrutura durante a sinterizacao de electrocerâmicos a base de titanatos. Aplicacoes sem fios na industria microelectronica e de comunicacoes, em rapido crescimento, tornaram-se um importante mercado para os fabricantes de semicondutores. Devido a constante necessidade de miniaturizacao, reducao de custos e maior funcionalidade e integracao, a tecnologia de filmes espessos esta a tornar-se uma abordagem de processamento de materiais funcionais cada vez mais importante. Uma tecnica adequada neste contexto e EPD. Os filmes espessos resultantes necessitam de um passo subsequente de sinterizacao que e afectada pelo substrato subjacente, tendo este um forte efeito sobre a evolucao da microestrutura. Relacionado com a miniaturizacao e a discriminacao do sinal, materiais dielectricos usados como componentes operando a frequencias das microondas em aplicacoes na industria microelectronica de comunicacoes devem apresentar baixas perdas dielectricas e elevadas permitividade dielectrica e estabilidade com a temperatura. Materiais do sistema BaO-Ln2O3- TiO2 (BLnT: Ln = La ou Nd), como BaLa4Ti4O15 (BLT) e Ba4.5Nd9Ti18O54 (BNT), cumprem esses requisitos e sao interessantes para aplicacoes, por exemplo, em estacoes de base para comunicacoes moveis ou em ressonadores para telefones moveis, onde a miniaturizacao dos dispositivos e muito importante. Por sua vez, o titanato de estroncio (SrTiO3, STO) e um ferroelectrico incipiente com constante dielectrica elevada e baixas perdas, que encontra aplicacao em, por exemplo, condensadores de camada interna, tirando partido de fronteiras de grao altamente resistivas. A dependencia da permitividade dielectrica do campo electrico aplicado torna este material muito interessante para aplicacoes em dispositivos de microondas sintonizaveis. Materiais a base de STO sao tambem interessantes para aplicacoes termoelectricas, que podem contribuir para a reducao da actual dependencia de combustiveis fosseis por meio da geracao de energia a partir de calor desaproveitado. No entanto, as mesmas fronteiras de grao resistivas sao um obstaculo relativamente a eficiencia do STO para aplicacoes termoelectricas. (Abstract shortened by ProQuest.).
Namdar, Nategh; Arazpour, Mokhtar; Ahmadi Bani, Monireh
2017-12-21
The effect of spinal orthoses, including the Spinomed ® and posture training support (PTS) in improving balance and reducing falls in older people has been previously evaluated. However, there is little evidence available regarding their effect on the walking ability of older individuals with thoracic hyperkyphosis. This study was therefore designed to compare the immediate effect of the Spinomed ® orthosis and PTS on specific gait parameters in this patient group. A total of 34 older volunteer subjects with thoracic hyperkyphosis participated in this study and were randomly allocated into two groups, to either walk with the Spinomed ® orthosis in situ or the PTS. The elderly mobility scale test (EMS), two-minute walk test (2-MWT), and 10-meter walk test (10-MWT) were used to evaluate their walking performance, the distance walked and their walking speed respectively. There were no significant differences in the mean age, body mass index (BMI), kyphosis angle, EMS, 2-MWT, and 10-MWT between the groups at baseline. All parameters were uniform amongst the two groups. The Spinomed ® orthosis and PTS both had a positive and significant effect on the EMS score, the 2-MWT, and the 10-MWT. No significant difference was detected between two the types of orthoses in terms of the EMS score, the 2-MWT, or the 10-MWT. The Spinomed ® and PTS were both effective in improving all the primary outcome measures, with similar improvements demonstrated by both orthoses. Implications for rehabilitations In this category, one of the approaches to treat the elderly with hyperkyphosis is the use of spinal orthoses such as Spinomed ® orthosis and posture training support (PTS). The results showed that the anti-kyphosis orthosis including Spinomed ® and PTS played effective roles in the elderly with hyperkyphosis to improve their walking function. According to the current study results, there was no significant difference between the efficacies of these orthoses in the mentioned parameters.
Bokaee, Fateme; Rezasoltani, Asghar; Manshadi, Farideh D; Naimi, Sedigheh S; Baghban, Alireza A; Azimi, Hadi
Forward head posture (FHP) is a forward positioning of the head relative to the trunk in the sagittal plane. This posture is one of the most prevalent poor postures in patients with head and neck pain. Rehabilitative Ultrasound Imaging (RUSI) is a reliable method to objectively evaluate muscle thickness and function. To compare thickness of cervical muscles that control both head and neck posture between asymptomatic women with and without FHP. Seventy asymptomatic women aged between 20 and 40 years, with and without FHP (35 in each group), participated in the study. The thickness of the cervical muscles (rectus capitis posterior - RCP, oblique capitis superior - OCS, semispinalis capitis - SSC, sternocleidomastoid - SCM, and longus coli - LCo) was measured using RUSI and the data was compared between the two groups. The comparison of cervical muscle thickness between women with and without FHP revealed significant difference only with regard to the muscle thickness of the SCM muscle (mean difference: 0.7mm, 95% confidence interval of the difference: 0.14, 1.26mm, p value: 0.014). The thickness of this muscle was greater in women with FHP. Tonic contraction of the SCM muscle can lead to greater thickness of this muscle in subjects with FHP. Copyright © 2017 Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia. Publicado por Elsevier Editora Ltda. All rights reserved.
Sá, Cristina Dos Santos Cardoso de; Boffino, Catarina Costa; Ramos, Renato Teodoro; Tanaka, Clarice
To evaluate the stability, postural adjustments and contributions of sensory information for postural control in children. 40 boys and 40 girls were equally divided into groups of 5, 7, 9 and 12 years (G5, G7, G9 and G12). All children were submitted to dynamic posturography using a modified sensory organization test, using four sensory conditions: combining stable or sway referencing platform with eyes opened, or closed. The area and displacements of the center of pressure were used to determine stability, while the adjustments were used to measure the speed of the center of pressure displacements. These measurements were compared between groups and test conditions. Stability tends to increase with age and to decrease with sensory manipulation with significant differences between G5 and G7 in different measures. G7 differed from G12 under the conditions of stable and sway platform with eyes open. G9 did not differ from G12. Similar behavior was observed for adjustments, especially in anterior-posterior directions. Postural stability and adjustments were associated with age and were influenced by sensory manipulation. The ability to perform anterior-posterior adjustments was more evident and sensory maturation occurred firstly on the visual system, then proprioceptive system, and finally, the vestibular system, reaching functional maturity at nine years of age. Seven-year-olds seem to go through a period of differentiated singularity in postural control. Copyright © 2017 Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia. Publicado por Elsevier Editora Ltda. All rights reserved.
106-17 Telemetry Standards Chapter 7 Packet Telemetry Downlink
2017-07-31
Acronyms IP Internet Protocol IPv4 Internet Protocol, Version 4 IPv6 Internet Protocol, Version 6 LLP low-latency PTDP MAC media access control...o 4’b0101: PT Internet Protocol (IP) Packet o 4’b0110: PT Chapter 24 TmNSMessage Packet o 4’b0111 – 4’b1111: Reserved • Fragment (bits 17 – 16...packet is defined as a free -running 12-bit counter. The PT test counter packet shall consist of one 12-bit word and shall be encoded as one 24-bit
Effect of sacroiliac manipulation on postural sway in quiet standing: a randomized controlled trial.
Farazdaghi, Mohammad Reza; Motealleh, Alireza; Abtahi, Forough; Panjan, Andrej; Šarabon, Nejc; Ghaffarinejad, Farahnaz
Sacroiliac joint manipulation can alter joint and muscle control mechanisms through local and remote effects. Postural balance is controlled by supraspinal (rambling) and spinal-peripheral (trembling) mechanisms. A manipulation may interfere with postural control in quiet standing. To evaluate the immediate effects of sacroiliac joint manipulation on postural control in patients with (1) sacroiliac dysfunction and (2) to determine whether rambling and trembling are affected by sacroiliac joint manipulation. 32 patients aged between 20 and 50 years old were selected by convenience after confirmation of sacroiliac joint dysfunction by clinical examination. These patients were randomly allocated either to manipulation or sham manipulation group. Displacement, velocity and frequency of the center of pressure, rambling and trembling in the anterior-posterior and medial-lateral directions were our primary outcomes and analyzed immediately before and after the intervention in quiet standing. The physical therapists who performed the physical, biomechanical and statistical examinations, were all blinded to the patients' grouping. No differences were found between the two groups but trembling velocity (0.14 and -0.11 for intervention and sham group, respectively) and frequency (0.17 and 0.11 for intervention and sham group respectively) increased after intervention in the treatment group in the anterior-posterior direction. Generally, sacroiliac joint manipulation had no superiority than sham treatment regarding postural control as measured by rambling-trembling analysis of center of pressure. Manipulation may increase muscle activation in the treatment group due to increased trembling parameters. Trial number: IRCT2014072715932N8 - http://www.irct.ir/searchresult.php?keyword=%D8%B3%D9%88%DB%8C%D9%87&id=15932&field=&number=8&prt=13&total=10&m=1. Copyright © 2017 Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia. Publicado por Elsevier Editora Ltda. All rights reserved.
Romero-Franco, Natalia; Párraga-Montilla, Juan Antonio; Molina-Flores, Enrique M; Jiménez-Reyes, Pedro
2018-06-01
Romero-Franco, N, Párraga-Montilla, JA, Molina-Flores, EM, and Jiménez-Reyes, P. Effects of combining running and practical duration stretching on proprioceptive skills of national sprinters. J Strength Cond Res XX(X): 000-000, 2018-Practical duration stretching after aerobic activities is a recommended component of the first part of warm-up because of its effects on performance. However, its effects on proprioceptive skills are unknown. This study aimed to analyze the effects of running and practical duration static stretching (SS) and dynamic stretching (DS) on postural balance and the joint position sense (JPS) of national sprinters. Thirty-two national sprinters were randomly classified into a SS group (n = 11), DS group (n = 11), or control group (n = 10). Static stretching performed 5 minutes of running and short-duration (20 seconds) static stretches; DS performed 5 minutes of running and short-duration dynamic (20 seconds) stretches; and the control group performed 5 minutes of running. Before and after the intervention, unipedal static postural balance and knee JPS were evaluated. Static stretching exhibited a more centralized center of pressure in the medial-lateral plane for unipedal static postural balance in right-leg support after stretching (p = 0.005, d = 1.24), whereas DS showed values further from the center after stretching for the same unipedal support compared with baseline (p = 0.042, d = 0.49), and the control group remained stable (p > 0.05). Joint position sense did not show significant differences in any group (p > 0.05). In conclusion, combining running and practical duration SS may be beneficial for right-leg postural stabilization, whereas DS may be partly and slightly deleterious. Both SS and DS combined with running and running alone have neutral effects on knee JPS. Sports professionals should consider running and practical duration SS as part of the warm-up of sprinters to partly improve unipedal static postural balance.
Advanced extravehicular protective systems for shuttle, space station, lunar base and Mars missions.
NASA Technical Reports Server (NTRS)
Heimlich, P. F.; Sutton, J. G.; Tepper, E. H.
1972-01-01
Advances in extravehicular life support system technology will directly influence future space mission reliability and maintainability considerations. To identify required new technology areas, an appraisal of advanced portable life support system and subsystem concepts was conducted. Emphasis was placed on thermal control and combined CO2 control/O2 supply subsystems for both primary and emergency systems. A description of study methodology, concept evaluation techniques, specification requirements, and selected subsystems and systems are presented. New technology recommendations encompassing thermal control, CO2 control and O2 supply subsystems are also contained herein.
Human-Inspired Eigenmovement Concept Provides Coupling-Free Sensorimotor Control in Humanoid Robot.
Alexandrov, Alexei V; Lippi, Vittorio; Mergner, Thomas; Frolov, Alexander A; Hettich, Georg; Husek, Dusan
2017-01-01
Control of a multi-body system in both robots and humans may face the problem of destabilizing dynamic coupling effects arising between linked body segments. The state of the art solutions in robotics are full state feedback controllers. For human hip-ankle coordination, a more parsimonious and theoretically stable alternative to the robotics solution has been suggested in terms of the Eigenmovement (EM) control. Eigenmovements are kinematic synergies designed to describe the multi DoF system, and its control, with a set of independent, and hence coupling-free , scalar equations. This paper investigates whether the EM alternative shows "real-world robustness" against noisy and inaccurate sensors, mechanical non-linearities such as dead zones, and human-like feedback time delays when controlling hip-ankle movements of a balancing humanoid robot. The EM concept and the EM controller are introduced, the robot's dynamics are identified using a biomechanical approach, and robot tests are performed in a human posture control laboratory. The tests show that the EM controller provides stable control of the robot with proactive ("voluntary") movements and reactive balancing of stance during support surface tilts and translations. Although a preliminary robot-human comparison reveals similarities and differences, we conclude (i) the Eigenmovement concept is a valid candidate when different concepts of human sensorimotor control are considered, and (ii) that human-inspired robot experiments may help to decide in future the choice among the candidates and to improve the design of humanoid robots and robotic rehabilitation devices.
Human-Inspired Eigenmovement Concept Provides Coupling-Free Sensorimotor Control in Humanoid Robot
Alexandrov, Alexei V.; Lippi, Vittorio; Mergner, Thomas; Frolov, Alexander A.; Hettich, Georg; Husek, Dusan
2017-01-01
Control of a multi-body system in both robots and humans may face the problem of destabilizing dynamic coupling effects arising between linked body segments. The state of the art solutions in robotics are full state feedback controllers. For human hip-ankle coordination, a more parsimonious and theoretically stable alternative to the robotics solution has been suggested in terms of the Eigenmovement (EM) control. Eigenmovements are kinematic synergies designed to describe the multi DoF system, and its control, with a set of independent, and hence coupling-free, scalar equations. This paper investigates whether the EM alternative shows “real-world robustness” against noisy and inaccurate sensors, mechanical non-linearities such as dead zones, and human-like feedback time delays when controlling hip-ankle movements of a balancing humanoid robot. The EM concept and the EM controller are introduced, the robot's dynamics are identified using a biomechanical approach, and robot tests are performed in a human posture control laboratory. The tests show that the EM controller provides stable control of the robot with proactive (“voluntary”) movements and reactive balancing of stance during support surface tilts and translations. Although a preliminary robot-human comparison reveals similarities and differences, we conclude (i) the Eigenmovement concept is a valid candidate when different concepts of human sensorimotor control are considered, and (ii) that human-inspired robot experiments may help to decide in future the choice among the candidates and to improve the design of humanoid robots and robotic rehabilitation devices. PMID:28487646
Kiers, Henri; van Dieën, Jaap; Dekkers, Henk; Wittink, Harriët; Vanhees, Luc
2013-11-01
In many sports, maintaining balance is necessary to compete at a high level. Also, in many health problems, balance is impaired. Postural sway (PS) is often used as an indicator of upright balance control, and physical activity (PA) might enhance balance control. However, the relationship between PS and PA has never been systematically reviewed. Our objective was to summarize the evidence regarding the relationship between PS in upright bipedal and unipedal standing and PA. We conducted a literature search in MEDLINE, EmBase, CINAHL, the Cochrane Database, and PEDro, up to March 2012, with no limit on the starting date. Characteristics and methodological aspects of each article were extracted by two reviewers. We used centre of pressure (CoP) velocity, and variables related to the CoP area, to compare studies. A total of 39 articles were reviewed from an initial yield of 2,058. Of these 39 studies, 37 used a comparative design, one was a cohort study, and one was a randomized controlled trial. The main conclusion was that in general, sport practitioners sway less than controls, and high-level athletes sway less than low-level athletes. Additionally, we identified specific effects dependent on the use of vision, sport-specific postures, and frequency and duration of the (sports) activity. PS in unperturbed bipedal stance appears to have limited sensitivity to detect subtle differences between groups of healthy people.
Pranav, P K; Patel, Thaneswer
2016-04-07
Manual orange harvesting is very laborious, time consuming and unsafe operation whereas neither mechanical harvesting nor mechanized hand harvesting is possible in north-east India due to its hilly terrains. The awkward postures and repetitive nature of work in orange harvesting, demands a comfortable and appropriate hand harvester for hilly region. The purpose of this study was to develop a manual orange harvester for hilly regions considering the ergonomic parameters, and compare the performance with the existing models of the manual harvester. In this study twenty healthy experienced orchard workers (10 male and 10 female) participated who did not have any previous functional musculoskeletal disorders. We developed a manual orange harvester by eliminating the problems associated with the existing harvesters. The developed model along with existing models was evaluated extensively in the field. During evaluations, heart rate of the subjects was measured and oxygen consumption was predicted to calculate the energy expenditure rate (EER) from the established relationship in the laboratory before the field experiments. Further, performance parameters of orange harvester i.e. plucking rate (PR), damaged quantity (DQ), plucking energy requirement (PER) and discomfort rating were also observed. The PR was 425, 300 and 287 pieces per hour for the developed model (DM), first existing model (EM1) and second existing model (EM2), respectively. The DM showed lower PER (2.14 kJ/piece) followed by EM2 (2.95 kJ/piece) and EM1 (4.02 kJ/piece) which is considered as overall performance as it includes energy per unit of plucking. Further, the body part discomfort score revealed that DM was more comfortable in use followed by EM2 and EM1. The performance of the DM was found better in terms of plucking rate, energy requirement and body part discomfort than the other existing models. Shoulders and neck are the most affected body parts where all subjects felt severe discomfort.
Evaluation of body posture in nursing students.
Andrade, Marília Fernandes; Chaves, Érika de Cássia Lopes; Miguel, Michele Rita Oliveira; Simão, Talita Prado; Nogueira, Denismar Alves; Iunes, Denise Hollanda
2017-08-28
To investigate the body posture of nursing students before and after clinical practice. The study was developed in two stages. Initially the body posture of students of the 2nd, 4th, 6th, and 8th periods were assessed through photogrammetry. All images were analyzed in a random and masked manner with CorporisPro® 3.1.3 software. Three evaluations were performed for each angle and then the mean value was calculated. Two years later, when the 4th period students had developed their clinical internships, their body posture was again evaluated. The total sample consisted of 112 students. Comparison of their posture with the normality pattern showed that all the angles presented significant differences (p< 0.00), except for the angle of the Thales triangle. Reassessment of these students evidenced significant differences in the angles of the acromioclavicular joint (p=0.03), knee flexion (p< 0.00) and in the tibiotarsal angle (p< 0.00). All the students presented alterations when compared to the normality values. The segments that presented significant differences between before and after practice were the acromioclavicular angle, knee flexion, and tibiotarsal angle; the latter two were in the rolling position. Investigar a postura dos estudantes de enfermagem antes e após a prática clínica. O estudo foi desenvolvido em duas etapas, inicialmente com estudantes (2º, 4°, 6° e 8º períodos) tiveram sua postural corporal avaliada por meio da fotogrametria. Todas as imagens foram analisadas, de maneira aleatória e mascarada, por meio do software CorporisPro® 3.1.3. Foram realizadas três avaliações para cada ângulo e calculada a média. Dois anos depois, quando os estudantes do 4º período desenvolveram os estágios clínicos, foram novamente avaliados quanto à postura corporal. A amostra total foi composta por 112 estudantes. Comparando-se os estudantes com o padrão de normalidade, todos os ângulos apresentaram diferença significativa (p< 0,00), com exceção do ângulo triângulo de Tales. Reavaliando os mesmos estudantes, houve diferença significativa nos ângulos da articulação acromioclavicular (p=0,03), da flexão de joelhos (p< 0,00) e no ângulo tibiotársico (p< 0,00). Todos os estudantes apresentaram alterações, comparadas aos valores de normalidade. Os segmentos com diferença significativa, comparando-se antes e após a prática, foram o ângulo acromioclavicular, flexo de joelho e ângulo tibiotársico, sendo os dois últimos na posição de rolamento.
Screening initial entry training trainees for postural faults and low back or hip pain.
Lane, John R
2014-01-01
The frequency of postural faults and postural awareness in military trainees has not been assessed. Five hundred Soldiers entering Advanced Individual Training were screened for standing posture and completed an anonymous questionnaire during inprocessing. Postural faults were identified in 202 subjects. Chi square analysis demonstrated a relationship between posture observed and posture reported: 87% of subjects with postural faults were unaware of postural faults; 12% with proper posture reported having poor posture. Subjects reported comparable frequencies of back pain and hip pain with postural faults (33.2%, 21.2%) and without faults (28.5%, 14.7%). Anonymous reporting was higher than formal reporting and requests for care during the same period (37% vs 3.4%).
Improving Dual-Task Control With a Posture-Second Strategy in Early-Stage Parkinson Disease.
Huang, Cheng-Ya; Chen, Yu-An; Hwang, Ing-Shiou; Wu, Ruey-Meei
2018-03-31
To examine the task prioritization effects on postural-suprapostural dual-task performance in patients with early-stage Parkinson disease (PD) without clinically observed postural symptoms. Cross-sectional study. Participants performed a force-matching task while standing on a mobile platform, and were instructed to focus their attention on either the postural task (posture-first strategy) or the force-matching task (posture-second strategy). University research laboratory. Individuals (N=16) with early-stage PD who had no clinically observed postural symptoms. Not applicable. Dual-task change (DTC; percent change between single-task and dual-task performance) of posture error, posture approximate entropy (ApEn), force error, and reaction time (RT). Positive DTC values indicate higher postural error, posture ApEn, force error, and force RT during dual-task conditions compared with single-task conditions. Compared with the posture-first strategy, the posture-second strategy was associated with smaller DTC of posture error and force error, and greater DTC of posture ApEn. In contrast, greater DTC of force RT was observed under the posture-second strategy. Contrary to typical recommendations, our results suggest that the posture-second strategy may be an effective dual-task strategy in patients with early-stage PD who have no clinically observed postural symptoms in order to reduce the negative effect of dual tasking on performance and facilitate postural automaticity. Copyright © 2018 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Vidal, Joao Vasco Silvestres
Este trabalho expoe um estudo teorico e experimental das propriedades anisotropicas magnetoeletricas (ME) em diferentes compositos contendo monocristais piezoeletricos (PE), maioritariamente sem chumbo na sua composicao, com vista a diversas aplicacoes multifuncionais. Uma descricao linear do efeito ME em termos de campos eletricos, magneticos e elasticos e constantes materiais e apresentada. Um modelo fenomenologico quasi-estatico e usado para ilustrar a relacao entre as constantes materiais, sua anisotropia e os coeficientes MEs transversais de tensao e carga. Subsequentemente, este modelo e empregue para estimar o maximo coeficiente ME direto de tensao expectavel numa serie de compositos tri-camadas de Metglas/Piezocristal/Metglas em funcao da orientacao do cristal PE. Demonstra-se assim como os efeitos MEs sao fortemente dependentes da orientacao cristalina, o que suporta a possibilidade de se gerarem coeficientes MEs de tensao elevados em compositos contendo monocristais PEs sem chumbo como o niobato de litio (LiNbO3; LNO), tantalato de litio (LiTaO3), ortofosfato de galio (GaPO4; GPO), quartzo (SiO2), langatato (La3Ga5.5Ta0.5O14) e langasite (La3Ga5SiO14) atraves da otimizacao da orientacao cristalina. Uma tecnica experimental dinâmica de lock-in para a medicao da impedância e efeito ME direto e exposta. O formalismo descritivo desta tecnica, assim como um arranjo experimental desenvolvido para o efeito sao apresentados. O esquema e caracteristicas deste, assim como diferentes formas de reduzir o ruido e a indesejavel inducao mutua sao exploradas. Um estudo comparativo do efeito ME direto em compositos tri-camadas de Metglas e monocristais de LNO e PMN-PT conectados de forma simples e exposto. Embora o PMN-PT possua piezocoeficientes de carga muito superiores aos do LNO, o coeficiente ME direto de tensao demonstrou-se comparavel entre ambos os compositos devido a uma muito menor permitividade dieletrica do LNO. Calculos teoricos indicam ainda que as propriedades MEs poderao ser significativamente melhoradas (ate 500 V/(cm.Oe)) atraves da otimizacao do ângulo de corte do LNO, espessura relativa entre camadas ferroeletrica/ferromagnetica e uma melhor colagem entre o Metglas e o LNO. Vantagens da utilizacao do material ferroeletrico LNO em compositos MEs sao discutidas. Num estudo subsequente, as propriedades dinâmicas anisotropicas de impedância e MEs em compositos tri-camadas de Metglas e monocristais PEs sem chumbo de LNO e GPO sao exploradas. Medicoes foram realizadas em funcao do corte de cristal, magnitude e orientacao do campo magnetico de polarizacao e frequencia do campo de modulacao. Coeficientes MEs altamente intensos em certos modos de ressonância sao explorados, e a sua relacao com as propriedades materiais dos cristais e geometria dos compositos e investigada. Um coeficiente ME de ate 249 V/(cm.Oe) foi aqui observado num composito com um cristal de LNO com corte 41ºY a 323.1 kHz. Mostramos assim que compositos multicamadas contendo cristais sem chumbo de LNO e GPO podem exibir efeitos MEs anisotropicos relativamente elevados. Demonstramos tambem que o controlo da orientacao dos cristais PEs pode em principio ser usado na obtencao de propriedades MEs anisotropicas desejaveis para qualquer aplicacao. Caracteristicas unicas como elevada estabilidade quimica, piezoeletricidade linear e robusteza termica abrem verdadeiras perspetivas para a utilizacao de compositos baseados no LNO e GPO em diversas aplicacoes. Eventualmente, compositos bi-camadas contendo lâminas PEs com bidominios de LNO com corte 127ºY foram estudados tanto teoricamente como experimentalmente. Estas lâminas de LNO possuem uma estrutura de bidominios com vetores de polarizacao espontânea opostos ao longo da direcao da sua espessura (i.e. uma estrutura de macrodominios ferroeletricos "head-to-head" ou "tail-to-tail") Medicoes de impedância, efeito ME e densidade de ruido magnetico equivalente foram realizadas nos compositos operando sob condicoes quasi-estaticas e de ressonância. Coeficientes MEs de ate 578 V/(cm.Oe) foram obtidos a ca. 30 kHz sob ressonâncias de dobramento usando cristais PEs com 0.5 mm de espessura. Medicoes de densidade de ruido magnetico equivalente demosntraram valores de ate 153 pT/Hz1/2 a 1 kHz (modo quasi-estatico) e 524 fT/Hz1/2 sob condicoes de ressonância. E de esperar que uma otimizacao adicional das tecnicas de fabrico, geometria dos compositos e circuitos de detencao possa permitir reduzir estes valores ate pelo menos 10 pT/Hz1/2 e 250 fT/Hz1/2, respetivamente, e a frequencia de ressonância em pelo menos duas ordens de grandeza. Estes sistemas poderao assim no futuro ser usados em sensores vetoriais de campo magnetico simples e sensiveis, passivos e estaveis e operaveis a elevadas temperaturas. None
Ciccarelli, Marina; Straker, Leon; Mathiassen, Svend Erik; Pollock, Clare
2014-01-01
Office workers perform tasks using different information and communication technologies (ICT) involving various postures. Adequate variation in postures and muscle activity is generally believed to protect against musculoskeletal complaints, but insufficient information exists regarding the effect on postural variation of using different ICT. Thus, this study among office workers aimed to determine and compare postures and postural variation associated with using distinct types of ICT. Upper arm, head and trunk postures of 24 office workers were measured with the Physiometer over a whole day in their natural work and away-from-work environments. Postural variation was quantified using two indices: APDF(90-10) and EVA(sd). Various ICT had different postural means and variation. Paper-based tasks had more non-neutral, yet also more variable postures. Electronics-based tasks had more neutral postures, with less postural variability. Tasks simultaneously using paper- and electronics-based ICT had least neutral and least variable postures. Tasks without ICT usually had the most posture variability. Interspersing tasks involving different ICT could increase overall exposure variation among office workers and may thus contribute to musculoskeletal risk reduction.
Kinematics of the human mandible for different head postures.
Visscher, C M; Huddleston Slater, J J; Lobbezoo, F; Naeije, M
2000-04-01
The influence of head posture on movement paths of the incisal point (IP) and of the mandibular condyles during free open-close movements was studied. Ten persons, without craniomandibular or cervical spine disorders, participated in the study. Open close mandibular movements were recorded with the head in five postures, viz., natural head posture, forward head posture, military posture, and lateroflexion to the right and to the left side, using the Oral Kinesiologic Analysis System (OKAS-3D). This study showed that in a military head posture, the opening movement path of the incisal point is shifted anteriorly relative to the path in a natural head posture. In a forward head posture, the movement path is shifted posteriorly whereas during lateroflexion, it deviates to the side the head has moved to. Moreover, the intra-articular distance in the temporomandibular joint during closing is smaller with the head in military posture and greater in forward head posture, as compared to the natural head posture. During lateroflexion, the intra-articular distance on the ipsilateral side is smaller. The influence of head posture upon the kinematics of the mandible is probably a manifestation of differences in mandibular loading in the different head postures.
Fonseca, Cíntia Detsch; Cardoso dos Santos, Antônio; Candotti, Cláudia Tarragô; Noll, Matias; Luz, Anna Maria Hecker; Corso, Carlos Otávio
2015-01-01
[Purpose] The aim of the present study was to assess the knowledge of the spine and posture among adolescent female students and to determine if they had access to postural education in or outside school. [Subjects and Methods] This was an epidemiological survey of a representative sample of 495 female students aged 14 to 18 years attending a regular secondary school in São Leopoldo, RS, Brazil. Data were collected through a questionnaire. [Results] The results showed that 16.8% of teens did not know what a spine was, 8.3% had no knowledge of posture, and 61% reported receiving no posture education. Posture awareness was associated only with posture while using a computer, while having postural education class was not associated with any postural behavior. [Conclusion] The results showed that, although most students are familiar with the spine and posture, a sizable group is not, and over half had no postural education. These findings suggest that inclusion of postural education programs in schools should be encouraged in order to promote health and prevent diseases related to the spine. PMID:26504322
Fonseca, Cíntia Detsch; Cardoso Dos Santos, Antônio; Candotti, Cláudia Tarragô; Noll, Matias; Luz, Anna Maria Hecker; Corso, Carlos Otávio
2015-09-01
[Purpose] The aim of the present study was to assess the knowledge of the spine and posture among adolescent female students and to determine if they had access to postural education in or outside school. [Subjects and Methods] This was an epidemiological survey of a representative sample of 495 female students aged 14 to 18 years attending a regular secondary school in São Leopoldo, RS, Brazil. Data were collected through a questionnaire. [Results] The results showed that 16.8% of teens did not know what a spine was, 8.3% had no knowledge of posture, and 61% reported receiving no posture education. Posture awareness was associated only with posture while using a computer, while having postural education class was not associated with any postural behavior. [Conclusion] The results showed that, although most students are familiar with the spine and posture, a sizable group is not, and over half had no postural education. These findings suggest that inclusion of postural education programs in schools should be encouraged in order to promote health and prevent diseases related to the spine.
Testing postural control among various osteoporotic patient groups: a literature review.
de Groot, Maartje H; van der Jagt-Willems, Hanna C; van Campen, Jos P C M; Lems, Willem F; Lamoth, Claudine J C
2012-10-01
Osteoporosis can cause vertebral fractures, which might lead to a flexed posture, impaired postural control and consequently increased fall risk. Therefore, the aim of the present review was to examine whether postural control of patients with osteoporosis, vertebral fractures, thoracic kyphosis and flexed posture is affected. Furthermore, instruments measuring postural control were evaluated and examined for sensitivity and easy clinical use. Until February 2011, electronic databases were systematically searched for cross-sectional studies. Methodological quality was assessed with a modified Downs & Black scale. Of the 518 found studies, 18 studies were included. Postural control was generally affected for patients with vertebral fractures, thoracic kyphosis and flexed posture. Patients with osteoporosis had impaired postural control when assessed with computerized instruments. Easy performance-based tests did not show any impairments. There is evidence for an impaired postural control in all patient groups included. Impaired postural control is an important risk factor for falls. Functional performance tests are not sensitive and specific enough to detect affected postural control in patients with osteoporosis. To detect impaired postural control among osteoporotic patients and to obtain more insight into the underlying mechanisms of postural control, computerized instruments are recommended, such as easy-to-use ambulant motion-sensing (accelerometry) technology. © 2012 Japan Geriatrics Society.
Voluntarily controlled but not merely observed visual feedback affects postural sway
Asai, Tomohisa; Hiromitsu, Kentaro; Imamizu, Hiroshi
2018-01-01
Online stabilization of human standing posture utilizes multisensory afferences (e.g., vision). Whereas visual feedback of spontaneous postural sway can stabilize postural control especially when observers concentrate on their body and intend to minimize postural sway, the effect of intentional control of visual feedback on postural sway itself remains unclear. This study assessed quiet standing posture in healthy adults voluntarily controlling or merely observing visual feedback. The visual feedback (moving square) had either low or high gain and was either horizontally flipped or not. Participants in the voluntary-control group were instructed to minimize their postural sway while voluntarily controlling visual feedback, whereas those in the observation group were instructed to minimize their postural sway while merely observing visual feedback. As a result, magnified and flipped visual feedback increased postural sway only in the voluntary-control group. Furthermore, regardless of the instructions and feedback manipulations, the experienced sense of control over visual feedback positively correlated with the magnitude of postural sway. We suggest that voluntarily controlled, but not merely observed, visual feedback is incorporated into the feedback control system for posture and begins to affect postural sway. PMID:29682421
Development of low postural tone compensatory patterns in children - theoretical basis.
Gogola, Anna; Saulicz, Edward; Kuszewski, Michał; Matyja, Małgorzata; Myśliwiec, Andrzej
2014-01-01
Neurological literature indicates the existence of children with low postural tone without association with central nervous system damage. This fact induces to think about mechanisms, which allow these children to maintain upright posture. There is a suspicion that compensatory mechanism included in this process, enables to achieve upright posture, but at expense of body posture quality. Observations of children's developmental stages caused determination of some postural tone area, which comprise both children with normotonia and with low postural tone without characteristics of central nervous system (CNS) damage. Set of specific qualities allows determination of two types of low postural tone: spastoidal and atetoidal type. Spastoidal type is characterized by deep trunk muscles (local) low postural tone compensated by excessive tension of superficial muscles (global). Atetoidal type includes children with low postural tone in both deep and superficial muscles. At inefficient active subsystem, verticalization proceeds at excessive use of passive subsystem qualities, that is meniscus, ligament, bone shape, and muscles passive features. From neurodevelopmental point of view compensatory mechanisms can be used in children with low postural tone in order to achieve upright posture, but at expense of body posture quality.
Wang, Zheng; Hallac, Rami R; Conroy, Kaitlin C; White, Stormi P; Kane, Alex A; Collinsworth, Amy L; Sweeney, John A; Mosconi, Matthew W
2016-01-01
Increased postural sway has been repeatedly documented in children with autism spectrum disorder (ASD). Characterizing the control processes underlying this deficit, including postural orientation and equilibrium, may provide key insights into neurophysiological mechanisms associated with ASD. Postural orientation refers to children's ability to actively align their trunk and head with respect to their base of support, while postural equilibrium is an active process whereby children coordinate ankle dorsi-/plantar-flexion and hip abduction/adduction movements to stabilize their upper body. Dynamic engagement of each of these control processes is important for maintaining postural stability, though neither postural orientation nor equilibrium has been studied in ASD. Twenty-two children with ASD and 21 age and performance IQ-matched typically developing (TD) controls completed three standing tests. During static stance, participants were instructed to stand as still as possible. During dynamic stances, participants swayed at a comfortable speed and magnitude in either anterior-posterior (AP) or mediolateral (ML) directions. The center of pressure (COP) standard deviation and trajectory length were examined to determine if children with ASD showed increased postural sway. Postural orientation was assessed using a novel virtual time-to-contact (VTC) approach that characterized spatiotemporal dimensions of children's postural sway (i.e., body alignment) relative to their postural limitation boundary, defined as the maximum extent to which each child could sway in each direction. Postural equilibrium was quantified by evaluating the amount of shared or mutual information of COP time series measured along the AP and ML directions. Consistent with prior studies, children with ASD showed increased postural sway during both static and dynamic stances relative to TD children. In regard to postural orientation processes, children with ASD demonstrated reduced spatial perception of their postural limitation boundary towards target directions and reduced time to correct this error during dynamic postural sways but not during static stance. Regarding postural equilibrium, they showed a compromised ability to decouple ankle dorsi-/plantar-flexion and hip abduction/adduction processes during dynamic stances. These results suggest that deficits in both postural orientation and equilibrium processes contribute to reduced postural stability in ASD. Specifically, increased postural sway in ASD appears to reflect patients' impaired perception of their body movement relative to their own postural limitation boundary as well as a reduced ability to decouple distinct ankle and hip movements to align their body during standing. Our findings that deficits in postural orientation and equilibrium are more pronounced during dynamic compared to static stances suggests that the increased demands of everyday activities in which children must dynamically shift their COP involve more severe postural control deficits in ASD relative to static stance conditions that often are studied. Systematic assessment of dynamic postural control processes in ASD may provide important insights into new treatment targets and neurodevelopmental mechanisms.
Domagalska-Szopa, Małgorzata; Szopa, Andrzej
2017-11-01
Standing postural alignment in children with cerebral palsy is usually altered by central postural control disorders. The primary aim of this study is to describe body alignment in a quiet standing position in ambulatory children with bilateral cerebral palsy compared with children with typical development. Fifty-eight children with bilateral cerebral palsy (aged 7-13years) and 45 age-matched children with typical development underwent a surface topography examination based on Moiré topography and were classified according to their sagittal postural profiles. The following eight grouping variables were extracted using a data reduction technique: angle of trunk inclination, pelvic tilt, and lordosis, the difference between kyphosis and lordosis, angle of vertebral lateral curvature, shoulder inclination, and shoulder and pelvic rotation. According to the cluster analysis results, 25% of the participants were classified into Cluster 1, 9% into Cluster 2, 49% in Cluster 3, and 17% in Cluster 4. Three different postural patterns emerged in accordance with the sagittal postural profiles in children with bilateral cerebral palsy and were defined as follows: 1) a lordotic postural pattern corresponding to forward-leaning posture; 2) a swayback postural pattern corresponding to backward-leaning posture; and 3) a balanced postural pattern corresponding to balanced posture. Copyright © 2017 Elsevier Ltd. All rights reserved.
Perceived body discomfort and trunk muscle activity in three prolonged sitting postures
Waongenngarm, Pooriput; Rajaratnam, Bala S.; Janwantanakul, Prawit
2015-01-01
[Purpose] This study aimed to investigate the perceived discomfort and trunk muscle activity in three different 1-hour sitting postures. [Subjects] A repeated-measures design study was conducted on 10 healthy subjects. [Methods] Each subject sat for an hour in three sitting postures (i.e., upright, slumped, and forward leaning sitting postures). Subjects rated perceived body discomfort using Borg’s CR-10 scale at the beginning and after 1 hour sitting. The electromyographic activity of the trunk muscle activity was recorded during the 1-hour period of sitting. [Results] The forward leaning sitting posture led to higher Borg scores in the low back than those in the upright (p = 0.002) and slumped sitting postures (p < 0.001). The forward leaning posture was significantly associated with increased iliocostalis lumborum pars thoracis (ICL) and superficial lumbar multifidus (MF) muscle activity compared with the upright and slumped sitting postures. The upright sitting posture was significantly associated with increased internal oblique (IO)/transversus abdominis (TrA) and ICL muscle activity compared with the slumped sitting posture. [Conclusion] The sitting posture with the highest low back discomfort after prolonged sitting was the forward leaning posture. Sitting in an upright posture is recommended because it increases IO/TrA muscle activation and induces only relatively moderate ICL and MF muscle activation. PMID:26311951
A comparison of three observational techniques for assessing postural loads in industry.
Kee, Dohyung; Karwowski, Waldemar
2007-01-01
This study aims to compare 3 observational techniques for assessing postural load, namely, OWAS, RULA, and REBA. The comparison was based on the evaluation results generated by the classification techniques using 301 working postures. All postures were sampled from the iron and steel, electronics, automotive, and chemical industries, and a general hospital. While only about 21% of the 301 postures were classified at the action category/level 3 or 4 by both OWAS and REBA, about 56% of the postures were classified into action level 3 or 4 by RULA. The inter-method reliability for postural load category between OWAS and RULA was just 29.2%, and the reliability between RULA and REBA was 48.2%. These results showed that compared to RULA, OWAS, and REBA generally underestimated postural loads for the analyzed postures, irrespective of industry, work type, and whether or not the body postures were in a balanced state.
Horak, Fay B
2006-09-01
Postural control is no longer considered simply a summation of static reflexes but, rather, a complex skill based on the interaction of dynamic sensorimotor processes. The two main functional goals of postural behaviour are postural orientation and postural equilibrium. Postural orientation involves the active alignment of the trunk and head with respect to gravity, support surfaces, the visual surround and internal references. Sensory information from somatosensory, vestibular and visual systems is integrated, and the relative weights placed on each of these inputs are dependent on the goals of the movement task and the environmental context. Postural equilibrium involves the coordination of movement strategies to stabilise the centre of body mass during both self-initiated and externally triggered disturbances of stability. The specific response strategy selected depends not only on the characteristics of the external postural displacement but also on the individual's expectations, goals and prior experience. Anticipatory postural adjustments, prior to voluntary limb movement, serve to maintain postural stability by compensating for destabilising forces associated with moving a limb. The amount of cognitive processing required for postural control depends both on the complexity of the postural task and on the capability of the subject's postural control system. The control of posture involves many different underlying physiological systems that can be affected by pathology or sub-clinical constraints. Damage to any of the underlying systems will result in different, context-specific instabilities. The effective rehabilitation of balance to improve mobility and to prevent falls requires a better understanding of the multiple mechanisms underlying postural control.
Effect of posture on oxygenation and respiratory muscle strength in convalescent infants
Dimitriou, G; Greenough, A; Pink, L; McGhee, A; Hickey, A; Rafferty, G
2002-01-01
Objective: To determine if differences in respiratory muscle strength could explain any posture related effects on oxygenation in convalescent neonates. Methods: Infants were examined in three postures: supine, supine with head up tilt of 45°, and prone. A subsequent study was performed to determine the influence of head position in the supine posture. In each posture/head position, oxygen saturation (SaO2) was determined and respiratory muscle strength assessed by measurement of the maximum inspiratory pressure (PIMAX). Patients: Twenty infants, median gestational age 34.5 weeks (range 25–43), and 10 infants, median gestational age 33 weeks (range 30–36), were entered into the first and second study respectively. Results: Oxygenation was higher in the prone and supine with 45° head up tilt postures than in the supine posture (p<0.001), whereas PIMAX was higher in the supine and supine with head up tilt of 45° postures than in the prone posture (p<0.001). Head position did not influence the effect of posture on PIMAX or oxygenation. Conclusion: Superior oxygenation in the prone posture in convalescent infants was not explained by greater respiratory muscle strength, as this was superior in the supine posture. PMID:11978742
Thermoregulatory postures limit antipredator responses in peafowl
Lam, Jennifer; Schultz, Rachel; Davis, Melissa
2018-01-01
ABSTRACT Many animals inhabit environments where they experience temperature fluctuations. One way in which animals can adjust to these temperature changes is through behavioral thermoregulation. However, we know little about the thermal benefits of postural changes and the costs they may incur. In this study, we examined the thermoregulatory role of two postures, the head-tuck and leg-tuck posture, in peafowl (Pavo cristatus) and evaluated whether the head-tuck posture imposes a predation cost. The heads and legs of peafowl are significantly warmer when the birds exhibit these postures, demonstrating that these postures serve an important thermoregulatory role. In addition, the birds are slower to respond to an approaching threat when they display the head-tuck posture, suggesting that a thermoregulatory posture can limit antipredator behavior. PMID:29305466
Thermoregulatory postures limit antipredator responses in peafowl.
Yorzinski, Jessica L; Lam, Jennifer; Schultz, Rachel; Davis, Melissa
2018-01-05
Many animals inhabit environments where they experience temperature fluctuations. One way in which animals can adjust to these temperature changes is through behavioral thermoregulation. However, we know little about the thermal benefits of postural changes and the costs they may incur. In this study, we examined the thermoregulatory role of two postures, the head-tuck and leg-tuck posture, in peafowl ( Pavo cristatus ) and evaluated whether the head-tuck posture imposes a predation cost. The heads and legs of peafowl are significantly warmer when the birds exhibit these postures, demonstrating that these postures serve an important thermoregulatory role. In addition, the birds are slower to respond to an approaching threat when they display the head-tuck posture, suggesting that a thermoregulatory posture can limit antipredator behavior. © 2018. Published by The Company of Biologists Ltd.
Body posture modulates action perception.
Zimmermann, Marius; Toni, Ivan; de Lange, Floris P
2013-04-03
Recent studies have highlighted cognitive and neural similarities between planning and perceiving actions. Given that action planning involves a simulation of potential action plans that depends on the actor's body posture, we reasoned that perceiving actions may also be influenced by one's body posture. Here, we test whether and how this influence occurs by measuring behavioral and cerebral (fMRI) responses in human participants predicting goals of observed actions, while manipulating postural congruency between their own body posture and postures of the observed agents. Behaviorally, predicting action goals is facilitated when the body posture of the observer matches the posture achieved by the observed agent at the end of his action (action's goal posture). Cerebrally, this perceptual postural congruency effect modulates activity in a portion of the left intraparietal sulcus that has previously been shown to be involved in updating neural representations of one's own limb posture during action planning. This intraparietal area showed stronger responses when the goal posture of the observed action did not match the current body posture of the observer. These results add two novel elements to the notion that perceiving actions relies on the same predictive mechanism as planning actions. First, the predictions implemented by this mechanism are based on the current physical configuration of the body. Second, during both action planning and action observation, these predictions pertain to the goal state of the action.
Hogan, Kathleen K; Powden, Cameron J; Hoch, Matthew C
2016-10-01
To investigate the effect of foot posture on postural control and dorsiflexion range of motion in individuals with chronic ankle instability. The study employed a cross-sectional, single-blinded design. Twenty-one individuals with self-reported chronic ankle instability (male=5; age=23.76(4.18)years; height=169.27(11.46)cm; weight=73.65(13.37)kg; number of past ankle sprains=4.71(4.10); episode of giving way=17.00(18.20); Cumberland Ankle Instability Score=18.24(4.52); Ankle Instability Index=5.86(1.39)) participated. The foot posture index was used to categorize subjects into pronated (n=8; Foot Posture Index=7.50(0.93)) and neutral (n=13; Foot Posture Index=3.08(1.93)) groups. The dependent variables of dorsiflexion ROM and dynamic and static postural control were collected for both groups at a single session. There were no significant differences in dorsiflexion range of motion between groups (p=0.22) or any of the eyes open time-to-boundary variables (p>0.13). The pronated group had significantly less dynamic postural control than the neutral group as assessed by the anterior direction of the Star Excursion Balance Test (p<0.04). However, the pronated group had significantly higher time-to-boundary values than the neutral group for all eyes closed time-to-boundary variables (p≤0.05), which indicates better eyes closed static postural control. Foot posture had a significant effect on dynamic postural control and eyes closed static postural control in individuals with chronic ankle instability. These findings suggest that foot posture may influence postural control in those with chronic ankle instability. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yiou, E; Heugas, A M; Mezaour, M; Le Bozec, S
2009-01-01
This study tested the effect of lower limb muscle fatigue induced by series of high-level isometric contractions (IC) on postural adjustments and maintenance of erect posture. Subjects (N=7) displaced a bar (grasp-bar) forward with both hands at maximal velocity towards a target ("bilateral forward-reach" task, BFR), before and after a procedure designed to induce fatigue in dorsal leg muscles. This procedure included IC at 60% of maximum. Postural joint and grasp-bar motion, along with electrical activity of postural and focal muscles were recorded. Integrated electromyographical (EMG) activity per 20 ms period ranging from 400 ms before BFR onset (t0) to 400 ms after t0 was compared before and after the fatiguing procedure. This time-window included "anticipatory", "on-line" and "corrective" postural adjustments, i.e. those postural adjustments occurring before (APAs), during (OPAs) and after (CPAs) BFR, respectively. In contrast to the literature, results showed that the fatiguing procedure had no effect on muscle excitation or timing in any of the recorded postural muscles, regardless of APA, OPA or CPA-related time-window. Therefore, the postural drive did not change with fatigue. Furthermore, the peak-to-peak motion at postural joints did not change. Postural maintenance was therefore not additionally challenged. These results are in line with the hypothesis that the effect of fatigue on postural adjustments is dependent on the adequacy between fatigued motor units (MUs) and MUs recruited during the postural adjustments. Increasing IC intensity during the fatiguing procedure might therefore not necessarily exacerbate the effect of fatigue on postural control highlighted during lower level IC.
The reliability and validity of the Saliba Postural Classification System
Collins, Cristiana Kahl; Johnson, Vicky Saliba; Godwin, Ellen M.; Pappas, Evangelos
2016-01-01
Objectives To determine the reliability and validity of the Saliba Postural Classification System (SPCS). Methods Two physical therapists classified pictures of 100 volunteer participants standing in their habitual posture for inter and intra-tester reliability. For validity, 54 participants stood on a force plate in a habitual and a corrected posture, while a vertical force was applied through the shoulders until the clinician felt a postural give. Data were extracted at the time the give was felt and at a time in the corrected posture that matched the peak vertical ground reaction force (VGRF) in the habitual posture. Results Inter-tester reliability demonstrated 75% agreement with a Kappa = 0.64 (95% CI = 0.524–0.756, SE = 0.059). Intra-tester reliability demonstrated 87% agreement with a Kappa = 0.8, (95% CI = 0.702–0.898, SE = 0.05) and 80% agreement with a Kappa = 0.706, (95% CI = 0.594–0818, SE = 0.057). The examiner applied a significantly higher (p < 0.001) peak vertical force in the corrected posture prior to a postural give when compared to the habitual posture. Within the corrected posture, the %VGRF was higher when the test was ongoing vs. when a postural give was felt (p < 0.001). The %VGRF was not different between the two postures when comparing the peaks (p = 0.214). Discussion The SPCS has substantial agreement for inter- and intra-tester reliability and is largely a valid postural classification system as determined by the larger vertical forces in the corrected postures. Further studies on the correlation between the SPCS and diagnostic classifications are indicated. PMID:27559288
The reliability and validity of the Saliba Postural Classification System.
Collins, Cristiana Kahl; Johnson, Vicky Saliba; Godwin, Ellen M; Pappas, Evangelos
2016-07-01
To determine the reliability and validity of the Saliba Postural Classification System (SPCS). Two physical therapists classified pictures of 100 volunteer participants standing in their habitual posture for inter and intra-tester reliability. For validity, 54 participants stood on a force plate in a habitual and a corrected posture, while a vertical force was applied through the shoulders until the clinician felt a postural give. Data were extracted at the time the give was felt and at a time in the corrected posture that matched the peak vertical ground reaction force (VGRF) in the habitual posture. Inter-tester reliability demonstrated 75% agreement with a Kappa = 0.64 (95% CI = 0.524-0.756, SE = 0.059). Intra-tester reliability demonstrated 87% agreement with a Kappa = 0.8, (95% CI = 0.702-0.898, SE = 0.05) and 80% agreement with a Kappa = 0.706, (95% CI = 0.594-0818, SE = 0.057). The examiner applied a significantly higher (p < 0.001) peak vertical force in the corrected posture prior to a postural give when compared to the habitual posture. Within the corrected posture, the %VGRF was higher when the test was ongoing vs. when a postural give was felt (p < 0.001). The %VGRF was not different between the two postures when comparing the peaks (p = 0.214). The SPCS has substantial agreement for inter- and intra-tester reliability and is largely a valid postural classification system as determined by the larger vertical forces in the corrected postures. Further studies on the correlation between the SPCS and diagnostic classifications are indicated.
Assessment of body posture in 12- and 13-year-olds attending primary schools in Pabianice.
Motylewski, Sławomir; Zientala, Aleksandra; Pawlicka-Lisowska, Agnieszka; Poziomska-Piątkowska, Elżbieta
2015-12-01
of study was to estimate the body posture in children finishing primary schools. This is the last moment to make any improvement in body posture needed, because after the end of the child's growth the correction of postural defects is practically impossible. The study was conducted on 236 pupils aged 12-13 years attending primary schools number 3, 5 and 17 in Pabianice. To evaluate body posture Kasperczyk's points method was used. It is a commonly applied method for screening purposes. Over 50% of studied children had poor body posture and just under 6% of pupils' posture was assessed as very good. In the study population of children finishing primary schools the occurrence of faulty posture was shown to be very high. The most common defect in body posture among pupils was an uneven alignment of shoulders and shoulder blades. The results obtained in this study indicate the need to undertake action reducing the occurrence of faulty posture among children in Pabianice. © 2015 MEDPRESS.
Gaffney, Brecca M; Maluf, Katrina S; Curran-Everett, Douglas; Davidson, Bradley S
2014-08-01
The first aim of this investigation was to quantify the distribution of trapezius muscle activity with different scapular postures while seated. The second aim of this investigation was to examine the association between changes in cervical and scapular posture when attempting to recruit different subdivisions of the trapezius muscle. Cervical posture, scapular posture, and trapezius muscle activity were recorded from 20 healthy participants during three directed shoulder postures. Planar angles formed by reflective markers placed on the acromion process, C7, and tragus were used to quantify cervical and scapular posture. Distribution of trapezius muscle activity was recorded using two high-density surface electromyography (HDsEMG) electrodes positioned over the upper, middle, and lower trapezius. Results validated the assumption that directed scapular postures preferentially activate different subdivisions of the trapezius muscle. In particular, scapular depression was associated with a more inferior location of trapezius muscle activity (r=0.53). Scapular elevation was coupled with scapular abduction (r=0.52). Scapular adduction was coupled with cervical extension (r=0.35); all other changes in cervical posture were independent of changes in scapular posture. This investigation provides empirical support for reductions in static loading of the upper trapezius and improvements in neck posture through verbal cueing of scapular posture. Copyright © 2014 Elsevier Ltd. All rights reserved.
Does increased postural threat lead to more conscious control of posture?
Huffman, J L; Horslen, B C; Carpenter, M G; Adkin, A L
2009-11-01
Although it is well established that postural threat modifies postural control, little is known regarding the underlying mechanism(s) responsible for these changes. It is possible that changes in postural control under conditions of elevated postural threat result from a shift to a more conscious control of posture. The purpose of this study was to determine the influence of elevated postural threat on conscious control of posture and to determine the relationship between conscious control and postural control measures. Forty-eight healthy young adults stood on a force plate at two different surface heights: ground level (LOW) and 3.2-m above ground level (HIGH). Centre of pressure measures calculated in the anterior-posterior (AP) direction were mean position (AP-MP), root mean square (AP-RMS) and mean power frequency (AP-MPF). A modified state-specific version of the Movement Specific Reinvestment Scale was used to measure conscious motor processing (CMP) and movement self-consciousness (MSC). Balance confidence, fear of falling, perceived stability, and perceived and actual anxiety indicators were also collected. A significant effect of postural threat was found for movement reinvestment as participants reported more conscious control and a greater concern about their posture at the HIGH height. Significant correlations between CMP and MSC with AP-MP were observed as participants who consciously controlled and were more concerned for their posture leaned further away from the platform edge. It is possible that changes in movement reinvestment can influence specific aspects of posture (leaning) but other aspects may be immune to these changes (amplitude and frequency).
Abnormal posturing - decorticate posture; Traumatic brain injury - decorticate posture ... Brain problem due to drugs, poisoning, or infection Traumatic brain injury Brain problem due to liver failure Increased pressure ...
... posture; Decorticate posture - decerebrate posture References Ball JW, Dains JE, Flynn JA, Solomon BS, Stewart RW. Neurologic system. In: Ball JW, Dains JE, Flynn JA, Solomon BS, Stewart RW, eds. ...
U.S. Overseas Military Posture: Relative Costs and Strategic Benefits
2013-01-01
C O R P O R A T I O N RESE ARCH BR IEF U.S. Overseas Military Posture Relative Costs and Strategic Benefits The United States is at an inflection...posture translates into benefits ; the risks that different poten- tial postures pose and the cost of maintaining these postures; how these benefits ...changes. Strategic Benefits of Overseas Posture Overseas presence contributes to contingency responsiveness, deterrence of adversaries and assurance of
The prevention of selected and imposed posture-caused injury.
Kemp, D
1977-09-01
It has been recognized for centuries that posture and health are interrelated. Poor health and injuries impose their own specific postures, and poor posture can contribute towards injury and poor health. The correlation between posture and health is not absolute. We can say that a certain posture will increase the probability of injury. Individual differences of age, sex, somatype, fitness, fatigue, load and frequency of posture adoption will dictate if injury will occur, or not, with any individual. There is no doubt that some postures are more stressful than others. The individual factors mentioned dictate whether the resulting strain is above or below the critical amount required for injury. Copyright © 1977 Australian Physiotherapy Association. Published by . All rights reserved.
Body-Earth Mover's Distance: A Matching-Based Approach for Sleep Posture Recognition.
Xu, Xiaowei; Lin, Feng; Wang, Aosen; Hu, Yu; Huang, Ming-Chun; Xu, Wenyao
2016-10-01
Sleep posture is a key component in sleep quality assessment and pressure ulcer prevention. Currently, body pressure analysis has been a popular method for sleep posture recognition. In this paper, a matching-based approach, Body-Earth Mover's Distance (BEMD), for sleep posture recognition is proposed. BEMD treats pressure images as weighted 2D shapes, and combines EMD and Euclidean distance for similarity measure. Compared with existing work, sleep posture recognition is achieved with posture similarity rather than multiple features for specific postures. A pilot study is performed with 14 persons for six different postures. The experimental results show that the proposed BEMD can achieve 91.21% accuracy, which outperforms the previous method with an improvement of 8.01%.
Posture and posturology, anatomical and physiological profiles: overview and current state of art.
Carini, Francesco; Mazzola, Margherita; Fici, Chiara; Palmeri, Salvatore; Messina, Massimo; Damiani, Provvidenza; Tomasello, Giovanni
2017-04-28
posture is the position of the body in the space, and is controlled by a set of anatomical structures. The maintenance and the control of posture are a set of interactions between muscle-skeletal, visual, vestibular, and skin system. Lately there are numerous studies that correlate the muscle-skeletal and the maintenance of posture. In particular, the correction of defects and obstruction of temporomandibular disorders, seem to have an impact on posture. The aim of this work is to collect information in literature on posture and the influence of the stomatognathic system on postural system. Comparison of the literature on posture and posturology by consulting books and scientific sites. the results obtained from the comparison of the literature show a discrepancy between the thesis. Some studies support the correlation between stomatognathic system and posture, while others deny such a correlation. further studies are necessary to be able to confirm one or the other argument.
Effects of the removal of vision on body sway during different postures in elite gymnasts.
Asseman, F; Caron, O; Crémieux, J
2005-03-01
The aim of this study was to analyse the effects of the removal of vision on postural performance and postural control in function of the difficulty and specificity of the posture. Twelve elite gymnasts were instructed to be as stable as possible with eyes open and eyes closed in three postures: bipedal, unipedal, and handstand ranked from the less difficult and less specific to the more difficult and more specific. The ratios eyes closed on eyes open, computed on CP surface and CP mean velocity, which respectively represents postural performance and postural control, were similar in the bipedal and handstand postures. They were highly increased in the unipedal one. The effect of the removal of vision and so the role of vision on body sway was not directly linked to the difficulty or specificity of the posture; other tasks' characteristics like the segments configuration also played a role.
Techniques and Methods for Testing the Postural Function in Healthy and Pathological Subjects
Paillard, Thierry; Noé, Frédéric
2015-01-01
The different techniques and methods employed as well as the different quantitative and qualitative variables measured in order to objectify postural control are often chosen without taking into account the population studied, the objective of the postural test, and the environmental conditions. For these reasons, the aim of this review was to present and justify the different testing techniques and methods with their different quantitative and qualitative variables to make it possible to precisely evaluate each sensory, central, and motor component of the postural function according to the experiment protocol under consideration. The main practical and technological methods and techniques used in evaluating postural control were explained and justified according to the experimental protocol defined. The main postural conditions (postural stance, visual condition, balance condition, and test duration) were also analyzed. Moreover, the mechanistic exploration of the postural function often requires implementing disturbing postural conditions by using motor disturbance (mechanical disturbance), sensory stimulation (sensory manipulation), and/or cognitive disturbance (cognitive task associated with maintaining postural balance) protocols. Each type of disturbance was tackled in order to facilitate understanding of subtle postural control mechanisms and the means to explore them. PMID:26640800
Techniques and Methods for Testing the Postural Function in Healthy and Pathological Subjects.
Paillard, Thierry; Noé, Frédéric
2015-01-01
The different techniques and methods employed as well as the different quantitative and qualitative variables measured in order to objectify postural control are often chosen without taking into account the population studied, the objective of the postural test, and the environmental conditions. For these reasons, the aim of this review was to present and justify the different testing techniques and methods with their different quantitative and qualitative variables to make it possible to precisely evaluate each sensory, central, and motor component of the postural function according to the experiment protocol under consideration. The main practical and technological methods and techniques used in evaluating postural control were explained and justified according to the experimental protocol defined. The main postural conditions (postural stance, visual condition, balance condition, and test duration) were also analyzed. Moreover, the mechanistic exploration of the postural function often requires implementing disturbing postural conditions by using motor disturbance (mechanical disturbance), sensory stimulation (sensory manipulation), and/or cognitive disturbance (cognitive task associated with maintaining postural balance) protocols. Each type of disturbance was tackled in order to facilitate understanding of subtle postural control mechanisms and the means to explore them.
[Self-evaluation of posture by elderly people with or without thoracic kyphosis].
Gasparotto, Lívia Pimenta Renó; Reis, Camila Costa Ibiapina; Ramos, Luiz Roberto; Santos, José Francisco Quirino Dos
2012-03-01
This article lists the differences between self-perception of body posture among the elderly suffering from postural alterations or not, in order to ascertain whether self-evaluation of posture can lead to preventive measures. Eighteen cases from the elderly population participated in the EPIDOSO project at UNIFESP and were subjected to postural evaluation. Postures were photographed and copies given to the participants and their subsequent comments were analyzed by the qualitative method. The narratives were taped and cataloguedusingthe technique of theoretical axial and selective coding from the perspective of symbolic interactionism. A passive attitude was identified among the elderly in relation to postural alterations. There is a distortion of body image by those with postural deviation. Participants with adequate spinal alignment were more conscious about body posture and the importance of this being assimilated in the phases prior to aging. The adoption of postural self-care seems to occur in the earlier stages of aging and preventive measures should be implemented at this stage. Lack of concern about posture is linked to the concept of the elderly regarding the notion that aging is, in itself, the accumulation of inevitably simultaneous or successive dysfunctions.
Sitting Posture Monitoring System Based on a Low-Cost Load Cell Using Machine Learning
Roh, Jongryun; Park, Hyeong-jun; Lee, Kwang Jin; Hyeong, Joonho; Kim, Sayup
2018-01-01
Sitting posture monitoring systems (SPMSs) help assess the posture of a seated person in real-time and improve sitting posture. To date, SPMS studies reported have required many sensors mounted on the backrest plate and seat plate of a chair. The present study, therefore, developed a system that measures a total of six sitting postures including the posture that applied a load to the backrest plate, with four load cells mounted only on the seat plate. Various machine learning algorithms were applied to the body weight ratio measured by the developed SPMS to identify the method that most accurately classified the actual sitting posture of the seated person. After classifying the sitting postures using several classifiers, average and maximum classification rates of 97.20% and 97.94%, respectively, were obtained from nine subjects with a support vector machine using the radial basis function kernel; the results obtained by this classifier showed a statistically significant difference from the results of multiple classifications using other classifiers. The proposed SPMS was able to classify six sitting postures including the posture with loading on the backrest and showed the possibility of classifying the sitting posture even though the number of sensors is reduced. PMID:29329261
Paillard, Thierry
2017-01-01
Although motor output of the postural function clearly influences postural performance in young and older subjects, no relationship has been formally established between them. However, the relationship between lower-extremity muscle strength/power and postural performance is often pointed out, especially in older subjects. In fact, the influence of motor output may vary according to the postural condition considered (e.g., static, dynamic, challenging, disturbing). In static postural condition, there may be a relationship between lower-extremity muscle strength and postural performance when the value of muscle strength is below a certain threshold in older subjects. Above this threshold of muscle strength, this relationship may disappear. In dynamic postural condition, lower-extremity muscle power could facilitate compensatory postural actions, limiting induced body imbalance likely to generate falls in older subjects. In young subjects, there could be a relationship between very early rapid torque of the leg extensor muscles and postural performance. In the case of postural reaction to (external) perturbations, a high percentage of type II muscle fibers could be associated with the ability to react quickly to postural perturbations in young subjects, while it may enable a reduction in the risk of falls in older subjects. In practice, in older subjects, muscle strength and/or power training contributes to reducing the risk of falls, as well as slowing down the involution of muscle typology regarding type II muscle fibers. PMID:28861000
Jonkers, Ilse; De Schutter, Joris; De Groote, Friedl
2016-01-01
Experimental studies have shown that a continuum of ankle and hip strategies is used to restore posture following an external perturbation. Postural responses can be modeled by feedback control with feedback gains that optimize a specific objective. On the one hand, feedback gains that minimize effort have been used to predict muscle activity during perturbed standing. On the other hand, hip and ankle strategies have been predicted by minimizing postural instability and deviation from upright posture. It remains unclear, however, whether and how effort minimization influences the selection of a specific postural response. We hypothesize that the relative importance of minimizing mechanical work vs. postural instability influences the strategy used to restore upright posture. This hypothesis was investigated based on experiments and predictive simulations of the postural response following a backward support surface translation. Peak hip flexion angle was significantly correlated with three experimentally determined measures of effort, i.e., mechanical work, mean muscle activity and metabolic energy. Furthermore, a continuum of ankle and hip strategies was predicted in simulation when changing the relative importance of minimizing mechanical work and postural instability, with increased weighting of mechanical work resulting in an ankle strategy. In conclusion, the combination of experimental measurements and predictive simulations of the postural response to a backward support surface translation showed that the trade-off between effort and postural instability minimization can explain the selection of a specific postural response in the continuum of potential ankle and hip strategies. PMID:27489362
Paillard, Thierry
2017-01-01
Although motor output of the postural function clearly influences postural performance in young and older subjects, no relationship has been formally established between them. However, the relationship between lower-extremity muscle strength/power and postural performance is often pointed out, especially in older subjects. In fact, the influence of motor output may vary according to the postural condition considered (e.g., static, dynamic, challenging, disturbing). In static postural condition, there may be a relationship between lower-extremity muscle strength and postural performance when the value of muscle strength is below a certain threshold in older subjects. Above this threshold of muscle strength, this relationship may disappear. In dynamic postural condition, lower-extremity muscle power could facilitate compensatory postural actions, limiting induced body imbalance likely to generate falls in older subjects. In young subjects, there could be a relationship between very early rapid torque of the leg extensor muscles and postural performance. In the case of postural reaction to (external) perturbations, a high percentage of type II muscle fibers could be associated with the ability to react quickly to postural perturbations in young subjects, while it may enable a reduction in the risk of falls in older subjects. In practice, in older subjects, muscle strength and/or power training contributes to reducing the risk of falls, as well as slowing down the involution of muscle typology regarding type II muscle fibers.
AbouHassan, J; Milosavljevic, S; Carman, A
2010-12-01
As stooped postures are known to increase kinematic and kinetic loading on the lumbar spine they can be problematic for people with low back pain and postural task modification is often recommended. For the Muslim with low back pain, the bowing postures during prayer can aggravate low back symptoms. The aims of this study were to describe lumbo-sacral and pelvic tilt kinematics and lumbo-sacral kinetics during the standard bowing postures of Islam and to compare these to kinematic and kinetic data gathered during a clinically recommended modified bowing posture. The study was a repeated measures within subject cross-over design with 33 healthy male Muslim participants. 3-D motion analysis data were gathered to calculate body joint angles during the two bowing postures. A 3-D biomechanical model was then used to calculate spinal loads. Paired t-test analyses showed that the use of the modified posture resulted in significantly less pelvic tilt range of motion and anterior shear force and compressive force L5/S1, at stages 1 and 5 of bowing. Although this study was conducted with healthy young Muslim males, the use of this modified bent knee posture is recommended for all Muslims with low back pain. Clinical trials are being considered to determine the clinical utility of this postural manoeuvre as an intervention. STATEMENT OF RELEVANCE: The presence of low back pain may hinder a Muslim's ability to use the traditional Islamic bowing posture. Muslims who have low back pain may benefit from adopting a modification to the traditional bowing posture, which has been found to reduce the loads and postural demands on the lower back.
Dusing, Stacey C; Izzo, Theresa; Thacker, Leroy R; Galloway, James Cole
2014-10-01
Perception-action theory suggests a cyclical relationship between movement and perceptual information. In this case series, changes in postural complexity were used to quantify an infant's action and perception during the development of early motor behaviors. Three infants born preterm with periventricular white matter injury were included. Longitudinal changes in postural complexity (approximate entropy of the center of pressure), head control, reaching, and global development, measured with the Test of Infant Motor Performance and the Bayley Scales of Infant and Toddler Development, were assessed every 0.5 to 3 months during the first year of life. All 3 infants demonstrated altered postural complexity and developmental delays. However, the timing of the altered postural complexity and the type of delays varied among the infants. For infant 1, reduced postural complexity or limited action while learning to control her head in the midline position may have contributed to her motor delay. However, her ability to adapt her postural complexity eventually may have supported her ability to learn from her environment, as reflected in her relative cognitive strength. For infant 2, limited early postural complexity may have negatively affected his learning through action, resulting in cognitive delay. For infant 3, an increase in postural complexity above typical levels was associated with declining neurological status. Postural complexity is proposed as a measure of perception and action in the postural control system during the development of early behaviors. An optimal, intermediate level of postural complexity supports the use of a variety of postural control strategies and enhances the perception-action cycle. Either excessive or reduced postural complexity may contribute to developmental delays in infants born preterm with white matter injury. © 2014 American Physical Therapy Association.
Computer users' postures and associations with workstation characteristics.
Gerr, F; Marcus, M; Ortiz, D; White, B; Jones, W; Cohen, S; Gentry, E; Edwards, A; Bauer, E
2000-01-01
This investigation tested the hypotheses that (1) physical workstation dimensions are important determinants of operator posture, (2) specific workstation characteristics systematically affect worker posture, and (3) computer operators assume "neutral" upper limb postures while keying. Operator head, neck, and upper extremity posture and selected workstation dimensions and characteristics were measured among 379 computer users. Operator postures were measured with manual goniometers, workstation characteristics were evaluated by observation, and workstation dimensions by direct measurement. Considerably greater variability in all postures was observed than was expected from application of basic geometric principles to measured workstation dimensions. Few strong correlations were observed between worker posture and workstation physical dimensions; findings suggest that preference is given to keyboard placement with respect to the eyes (r = 0.60 for association between keyboard height and seated elbow height) compared with monitor placement with respect to the eyes (r = 0.18 for association between monitor height and seated eye height). Wrist extension was weakly correlated with keyboard height (r = -0.24) and virtually not at all with keyboard thickness (r = 0.07). Use of a wrist rest was associated with decreased wrist flexion (21.9 versus 25.1 degrees, p < 0.01). Participants who had easily adjustable chairs had essentially the same neck and upper limb postures as did those with nonadjustable chairs. Sixty-one percent of computer operators were observed in nonneutral shoulder postures and 41% in nonneutral wrist postures. Findings suggest that (1) workstation dimensions are not strong determinants of at least several neck and upper extremity postures among computer operators, (2) only some workstation characteristics affect posture, and (3) contrary to common recommendations, a large proportion of computer users do not work in so-called neutral postures.
Regional differences in lumbar spinal posture and the influence of low back pain
Mitchell, Tim; O'Sullivan, Peter B; Burnett, Angus F; Straker, Leon; Smith, Anne
2008-01-01
Background Spinal posture is commonly a focus in the assessment and clinical management of low back pain (LBP) patients. However, the link between spinal posture and LBP is not fully understood. Recent evidence suggests that considering regional, rather than total lumbar spine posture is important. The purpose of this study was to determine; if there are regional differences in habitual lumbar spine posture and movement, and if these findings are influenced by LBP. Methods One hundred and seventy female undergraduate nursing students, with and without LBP, participated in this cross-sectional study. Lower lumbar (LLx), Upper lumbar (ULx) and total lumbar (TLx) spine angles were measured using an electromagnetic tracking system in static postures and across a range of functional tasks. Results Regional differences in lumbar posture and movement were found. Mean LLx posture did not correlate with ULx posture in sitting (r = 0.036, p = 0.638), but showed a moderate inverse correlation with ULx posture in usual standing (r = -0.505, p < 0.001). Regional differences in range of motion from reference postures in sitting and standing were evident. BMI accounted for regional differences found in all sitting and some standing measures. LBP was not associated with differences in regional lumbar spine angles or range of motion, with the exception of maximal backward bending range of motion (F = 5.18, p = 0.007). Conclusion This study supports the concept of regional differences within the lumbar spine during common postures and movements. Global lumbar spine kinematics do not reflect regional lumbar spine kinematics, which has implications for interpretation of measures of spinal posture, motion and loading. BMI influenced regional lumbar posture and movement, possibly representing adaptation due to load. PMID:19014712
Determining postural stability
NASA Technical Reports Server (NTRS)
Forth, Katharine E. (Inventor); Paloski, William H. (Inventor); Lieberman, Erez (Inventor)
2011-01-01
A method for determining postural stability of a person can include acquiring a plurality of pressure data points over a period of time from at least one pressure sensor. The method can also include the step of identifying a postural state for each pressure data point to generate a plurality of postural states. The method can include the step of determining a postural state of the person at a point in time based on at least the plurality of postural states.
Potentially risky postural behaviors during worksite keyboard use
Baker, Nancy A.; Redfern, Mark
2016-01-01
Objective This study describes the frequency and distribution of potentially risky postural behaviors of keyboard users. Method Forty-three subjects’ keyboard postural behaviors were rated with the Keyboard – Personal Computer Style instrument (K-PeCS) while they worked at their own workstations. The frequency and distribution of keyboard postural behaviors, and the associations and differences between the right and left sides were assessed. Results Generally, each static body posture had a single criterion that occurred most frequently, (e.g. elbow flexion posture 80 – 120 degrees), while dynamic postures of the wrists and hands were distributed throughout their criteria. Right and left side postural behaviors were significantly associated for shoulder flexion, elbow flexion, hand displacement, wrist extension, forearm rotation, isolated 5th digit, MCP hyperextension, and wrist support use, and significantly different for hand displacement, isolated thumb, number of digits used, and MCP hyperextension. Conclusion Potentially problematic keyboard postural behaviors are common among keyboard users. Our results suggest that occupational therapists must systematically assess body, arm, wrist, and hand postures on both the right and left sides to be able to develop the most effective intervention strategies. PMID:19708467
Development of Human Posture Simulation Method for Assessing Posture Angles and Spinal Loads
Lu, Ming-Lun; Waters, Thomas; Werren, Dwight
2015-01-01
Video-based posture analysis employing a biomechanical model is gaining a growing popularity for ergonomic assessments. A human posture simulation method of estimating multiple body postural angles and spinal loads from a video record was developed to expedite ergonomic assessments. The method was evaluated by a repeated measures study design with three trunk flexion levels, two lift asymmetry levels, three viewing angles and three trial repetitions as experimental factors. The study comprised two phases evaluating the accuracy of simulating self and other people’s lifting posture via a proxy of a computer-generated humanoid. The mean values of the accuracy of simulating self and humanoid postures were 12° and 15°, respectively. The repeatability of the method for the same lifting condition was excellent (~2°). The least simulation error was associated with side viewing angle. The estimated back compressive force and moment, calculated by a three dimensional biomechanical model, exhibited a range of 5% underestimation. The posture simulation method enables researchers to simultaneously quantify body posture angles and spinal loading variables with accuracy and precision comparable to on-screen posture matching methods. PMID:26361435
Interference between oculomotor and postural tasks in 7-8-year-old children and adults.
Legrand, Agathe; Doré Mazars, Karine; Lemoine, Christelle; Nougier, Vincent; Olivier, Isabelle
2016-06-01
Several studies in adults having observed the effect of eye movements on postural control provided contradictory results. In the present study, we explored the effect of various oculomotor tasks on postural control and the effect of different postural tasks on eye movements in eleven children (7.8 ± 0.5 years) and nine adults (30.4 ± 6.3 years). To vary the difficulty of the oculomotor task, three conditions were tested: fixation, prosaccades (reactive saccades made toward the target) and antisaccades (voluntary saccades made in the direction opposite to the visual target). To vary the difficulty of postural control, two postural tasks were tested: Standard Romberg (SR) and Tandem Romberg (TR). Postural difficulty did not affect oculomotor behavior, except by lengthening adults' latencies in the prosaccade task. For both groups, postural control was altered in the antisaccade task as compared to fixation and prosaccade tasks. Moreover, a ceiling effect was found in the more complex postural task. This study highlighted a cortical interference between oculomotor and postural control systems.
Postural Tremor and Ataxia Progression in Spinocerebellar Ataxias
Gan, Shi-Rui; Wang, Jie; Figueroa, Karla P.; Pulst, Stefan M.; Tomishon, Darya; Lee, Danielle; Perlman, Susan; Wilmot, George; Gomez, Christopher M.; Schmahmann, Jeremy; Paulson, Henry; Shakkottai, Vikram G.; Ying, Sarah H.; Zesiewicz, Theresa; Bushara, Khalaf; Geschwind, Michael D.; Xia, Guangbin; Subramony, S. H.; Ashizawa, Tetsuo; Kuo, Sheng-Han
2017-01-01
Background Postural tremor can sometimes occur in spinocerebellar ataxias (SCAs). However, the prevalence and clinical characteristics of postural tremor in SCAs are poorly understood, and whether SCA patients with postural tremor have different ataxia progression is not known. Methods We studied postural tremor in 315 patients with SCA1, 2, 3, and 6 recruited from the Clinical Research Consortium for Spinocerebellar Ataxias (CRC-SCA), which consists of 12 participating centers in the United States, and we evaluated ataxia progression in these patients from January 2010 to August 2012. Results Among 315 SCA patients, postural tremor was most common in SCA2 patients (SCA1, 5.8%; SCA2, 27.5%; SCA3, 12.4%; SCA6, 16.9%; p = 0.007). SCA3 patients with postural tremor had longer CAG repeat expansions than SCA3 patients without postural tremor (73.67 ± 3.12 vs. 70.42 ± 3.96, p = 0.003). Interestingly, SCA1 and SCA6 patients with postural tremor had a slower rate of ataxia progression (SCA1, β = –0.91, p < 0.001; SCA6, β = –1.28, p = 0.025), while SCA2 patients with postural tremor had a faster rate of ataxia progression (β = 1.54, p = 0.034). We also found that the presence of postural tremor in SCA2 patients could be influenced by repeat expansions of ATXN1 (β = –1.53, p = 0.037) and ATXN3 (β = 0.57, p = 0.018), whereas postural tremor in SCA3 was associated with repeat lengths in TBP (β = 0.63, p = 0.041) and PPP2R2B (β = –0.40, p = 0.032). Discussion Postural tremor could be a clinical feature of SCAs, and the presence of postural tremor could be associated with different rates of ataxia progression. Genetic interactions between ataxia genes might influence the brain circuitry and thus affect the clinical presentation of postural tremor. PMID:29057148
Postural Tremor and Ataxia Progression in Spinocerebellar Ataxias.
Gan, Shi-Rui; Wang, Jie; Figueroa, Karla P; Pulst, Stefan M; Tomishon, Darya; Lee, Danielle; Perlman, Susan; Wilmot, George; Gomez, Christopher M; Schmahmann, Jeremy; Paulson, Henry; Shakkottai, Vikram G; Ying, Sarah H; Zesiewicz, Theresa; Bushara, Khalaf; Geschwind, Michael D; Xia, Guangbin; Subramony, S H; Ashizawa, Tetsuo; Kuo, Sheng-Han
2017-01-01
Postural tremor can sometimes occur in spinocerebellar ataxias (SCAs). However, the prevalence and clinical characteristics of postural tremor in SCAs are poorly understood, and whether SCA patients with postural tremor have different ataxia progression is not known. We studied postural tremor in 315 patients with SCA1, 2, 3, and 6 recruited from the Clinical Research Consortium for Spinocerebellar Ataxias (CRC-SCA), which consists of 12 participating centers in the United States, and we evaluated ataxia progression in these patients from January 2010 to August 2012. Among 315 SCA patients, postural tremor was most common in SCA2 patients (SCA1, 5.8%; SCA2, 27.5%; SCA3, 12.4%; SCA6, 16.9%; p = 0.007). SCA3 patients with postural tremor had longer CAG repeat expansions than SCA3 patients without postural tremor (73.67 ± 3.12 vs. 70.42 ± 3.96, p = 0.003). Interestingly, SCA1 and SCA6 patients with postural tremor had a slower rate of ataxia progression (SCA1, β = -0.91, p < 0.001; SCA6, β = -1.28, p = 0.025), while SCA2 patients with postural tremor had a faster rate of ataxia progression (β = 1.54, p = 0.034). We also found that the presence of postural tremor in SCA2 patients could be influenced by repeat expansions of ATXN1 (β = -1.53, p = 0.037) and ATXN3 (β = 0.57, p = 0.018), whereas postural tremor in SCA3 was associated with repeat lengths in TBP (β = 0.63, p = 0.041) and PPP2R2B (β = -0.40, p = 0.032). Postural tremor could be a clinical feature of SCAs, and the presence of postural tremor could be associated with different rates of ataxia progression. Genetic interactions between ataxia genes might influence the brain circuitry and thus affect the clinical presentation of postural tremor.
[Head posture in orthodontics: physiopathology and clinical aspects 2].
Caltabiano, M; Verzi, P; Scire Scappuzzo, G
1989-01-01
The Authors review in orthodontic respects present knowledges about head posture involvement in craniofacial morphogenesis and pathology. Relationships between craniofacial morphology, craniocervical posture, craniomandibular posture, cervical spine curvature, hyoid bone position and posture of whole body in space are shown, in attempt to explain conditions such as "forward head posture", mouth breathing and some occlusal disorders. Main methods to evaluate craniocervical relations on lateral skull radiographs are analysed. Pathogenesis of pain syndromes associated with abnormal craniocervical and craniomandibular mechanics are also briefly treated.
Gait, posture and cognition in Parkinson's disease
Barbosa, Alessandra Ferreira; Chen, Janini; Freitag, Fernanda; Valente, Debora; Souza, Carolina de Oliveira; Voos, Mariana Callil; Chien, Hsin Fen
2016-01-01
Gait disorders and postural instability are the leading causes of falls and disability in Parkinson's disease (PD). Cognition plays an important role in postural control and may interfere with gait and posture assessment and treatment. It is important to recognize gait, posture and balance dysfunctions by choosing proper assessment tools for PD. Patients at higher risk of falling must be referred for rehabilitation as early as possible, because antiparkinsonian drugs and surgery do not improve gait and posture in PD. PMID:29213470
Mogk, Jeremy P M; Rogers, Lynn M; Murray, Wendy M; Perreault, Eric J; Stinear, James W
2014-10-01
We investigated how multi-joint changes in static upper limb posture impact the corticomotor excitability of the posterior deltoid (PD) and biceps brachii (BIC), and evaluated whether postural variations in excitability related directly to changes in target muscle length. The amplitude of individual motor evoked potentials (MEPs) was evaluated in each of thirteen different static postures. Four functional postures were investigated that varied in shoulder and elbow angle, while the forearm was positioned in each of three orientations. Posture-related changes in muscle lengths were assessed using a biomechanical arm model. Additionally, M-waves were evoked in the BIC in each of three forearm orientations to assess the impact of posture on recorded signal characteristics. BIC-MEP amplitudes were altered by shoulder and elbow posture, and demonstrated robust changes according to forearm orientation. Observed changes in BIC-MEP amplitudes exceeded those of the M-waves. PD-MEP amplitudes changed predominantly with shoulder posture, but were not completely independent of influence from forearm orientation. Results provide evidence that overall corticomotor excitability can be modulated according to multi-joint upper limb posture. The ability to alter motor pathway excitability using static limb posture suggests the importance of posture selection during rehabilitation aimed at retraining individual muscle recruitment and/or overall coordination patterns. Published by Elsevier Ireland Ltd.
The effects of feedback on computer workstation posture habits.
Epstein, Rhonda; Colford, Sean; Epstein, Ethan; Loye, Brandon; Walsh, Michael
2012-01-01
Repetitive stress injuries (RSI) and musculoskeletal disorders in the United States and worldwide are increasing at an alarming rate due to the advent of ubiquitous computer usage. Factors that lead to computer-related musculoskeletal disorders (MSD) include inadequately designed workstations, poor posture, and lack of knowledge about proper ergonomics and use habits. Studies have documented the negative impact of improper posture and the MSD seen in students and office workers due to frequent computer usage. Determine if the frequency (single vs. continuous reminder) and/or use of feedback affects posture at a computer workstation. Observations of posture habits were made in three local schools and one local company. Feedback effects were tested on the students (ages 10-15). Real time feedback was given in two studies. In one study, instructions and a verbal reminder were given to students and in a second study, a prototype 'Posture Pad' was developed to provide continuous feedback to the user. Verbal reminders to sit correctly led to transient improvement of posture. Use of the 'Posture Pad' resulted in significant improvement in posture with subjects exhibiting correct posture 98 ± 5% of the time. Real time feedback about how one is sitting is an effective mechanism for non-transient improvement of posture at computer workstations.
Neutral lumbar spine sitting posture in pain-free subjects.
O'Sullivan, Kieran; O'Dea, Patrick; Dankaerts, Wim; O'Sullivan, Peter; Clifford, Amanda; O'Sullivan, Leonard
2010-12-01
Sitting is a common aggravating factor in low back pain (LBP), and re-education of sitting posture is a common aspect of LBP management. However, there is debate regarding what is an optimal sitting posture. This pilot study had 2 aims; to investigate whether pain-free subjects can be reliably positioned in a neutral sitting posture (slight lumbar lordosis and relaxed thorax); and to compare perceptions of neutral sitting posture to habitual sitting posture (HSP). The lower lumbar spine HSP of seventeen pain-free subjects was initially recorded. Subjects then assumed their own subjectively perceived ideal posture (SPIP). Finally, 2 testers independently positioned the subjects into a tester perceived neutral posture (TPNP). The inter-tester reliability of positioning in TPNP was very good (intraclass correlation coefficient (ICC) = 0.91, mean difference = 3% of range of motion). A repeated measures ANOVA revealed that HSP was significantly more flexed than both SPIP and TPNP (p <0.05). There was no significant difference between SPIP and TPNP (p > 0.05). HSP was more kyphotic than all other postures. This study suggests that pain-free subjects can be reliably positioned in a neutral lumbar sitting posture. Further investigation into the role of neutral sitting posture in LBP subjects is warranted. Copyright © 2010 Elsevier Ltd. All rights reserved.
Birthing postures and birth canal lacerations.
Suzuki, Shunji
2017-05-01
This study was performed to assess the differences in the birth canal lacerations following the lateral and fours posture deliveries compared with those following the supine posture deliveries. We examined the birth canal lacerations of our "low risk" pregnant women under the midwife-led delivery care at Japanese Red Cross Katsushika Maternity Hospital between April 2006 and March 2015. There were 3826, 1754 and 719 women who delivered with supine, lateral and fours postures. The rate of no laceration in the women who delivered with lateral posture was significant lower than that in the women who delivered with supine posture (OR 0.630, 95% CI 0.56-0.71, p < 0.01); however, the incidence of perineal laceration in the women who delivered with lateral posture was significant lower than that in the women who delivered with supine posture (OR 0.856, 95% CI 0.76-0.90, p < 0.01). The incidence of perineal laceration of third- or fourth-degree in the women who delivered with fours posture was significant higher than that in the women who delivered with supine posture (OR 2.28, 95% CI 1.2-4.2, p < 0.01). The current results may be to help for self-determination of birthing postures in prenatal women.
Çelenay, Şeyda Toprak; Kaya, Derya Özer; Özüdoğru, Anıl
2015-01-01
Spinal posture and mobility are significant for protecting spine. The aim was to compare effects of different postural training interventions on spinal posture and mobility. Ninety-six university students (ages: 18–25 years) were allocated into Electrical Stimulation (ES) (n = 24), Exercise (n = 24), Biofeedback Posture Trainer (Backtone) (n = 24), and Postural Education (n = 24, Controls) groups. All the groups got postural education. The interventions were carried out 3 days a week for 8 weeks. Spinal Mouse device (Idiag, Fehraltorf, Switzerland) was used to detect thoracic and lumbar curvatures and mobility (degrees) in standing and sitting positions. Paired Student’s t-test, one-way ANOVA, and pairwise post-hoc tests were used. ES decreased thoracic curvature, the exercise decreased thoracic and lumbar curvature and increased thoracic mobility in standing position between pre-post training (p < 0.05). Exercise and Backtone improved thoracic curvature in sitting (p <0.05). In Exercise Group, thoracic curvature decreased compared to Backtone and Education Groups, and thoracic mobility increased compared to all groups (p < 0.05). The exercise was effective and superior in improving thoracic and lumbar curves, and mobility among university students. ES decreased thoracic curve. Biofeedback posture trainer improved sitting posture. A prospective randomized controlled trial, Level 1.
Stabilisation times after transitions to standing from different working postures.
DiDomenico, Angela; McGorry, Raymond W; Banks, Jacob J
2016-10-01
Transitioning to standing after maintaining working postures may result in imbalance and could elicit a fall. The objective of this study was to quantify the magnitude of imbalance using a stabilisation time metric. Forty-five male participants completed three replications of conditions created by one of four working postures (bent at waist, squat, forward kneel, reclined kneel) and three durations within posture. Participants transitioned to quiet standing at a self-selected pace. Stabilisation time, based on changes in centre of pressure velocity, was used to indicate the initiation of steady state while standing. Stabilisation time was significantly affected by static postures but not duration within posture. The largest stabilisation times resulted from transitions initiated from a bent at waist posture. The smallest were associated with the kneeling postures, which were not significantly different from each other. Findings may lead to recommendations for redesign of tasks, particularly in high-risk environments such as construction. Statement of Relevance: Task performance on the jobsite often requires individuals to maintain non-erect postures. This study suggests that working posture affects stabilisation during transition to a standing position. Bending at the waist and squatting resulted in longer stabilisation times, whereas both kneeling postures evaluated resulted in greater imbalance but for a shorter duration.
Sudhakar, S; Porcelvan, S; Francis, T.G. Tilak; Rathnamala, D; Radhakrishnan, R
2017-01-01
Introduction The postural adaptation is very common now a days in school going children, office desk oriented job, computer users and frequent mobile users, and in all major industrial workers. Several studies have documented a high incidence of postural abnormalities in a given population; however, methods of postural measurement were poorly defined. The implication of postural pro software to analyse the postural imbalance of upper body dysfunction is very rare and literature studies says that the kinematic changes in particular segment will produce pain/discomfort and thereby lesser productivity of subjects. Aim To evaluate the postural changes in subjects with upper body dysfunction after a corrective exercise strategy using postural analysis software and pectoralis minor muscle length testing. Materials and Methods After explaining the procedure and benefits, informed consent was taken from the participating subjects (age 25-55 years). Subjects with upper body dysfunction were randomly allocated into two groups (each group 30 subjects). The Group–A received the corrective exercise strategy and Group-B received the conventional exercise for eight weeks of study duration (15 reps each exercise, total duration of 40 min; four days/week. Pre and Post posture analysis were analysed using posture pro software along with flexibility of pectoralis minor was assessed using ruler scale method. Results After interpretation of data, both the group showed the postural alteration and pectoralis minor muscle length changes, p-value (p<0.01) of both group showed highly significant changes. But comparing the both groups, the subjects who received the corrective exercise strategy shown more percentage of improvement in posture alteration (56.25%), pectoralis minor muscle length changes (68.69%) than the conventional exercise received subjects in posture alteration (24.86%) and pectoralis minor muscle length changes (21.9%). Conclusion Altered postural changes and pectoralis minor muscle flexibility before and after the corrective exercise strategy evaluated by postural analysis software method shown to be a significant tool in clinical practice, which is easier and reproducible method. PMID:28893030
Ohnishi, K; Yamamoto, T; Takahashi, A; Tanaka, H; Koyama, M; Ohnishi, T
1999-08-01
The catfish (Synodontis nigriventris) has a unique habitat of keeping an upside-down posture under normal gravity. We examined its postural control under pseudomicrogravity generated artificially, and the effect of unilateral labyrinthectomy on the postural control. The stable swimming posture under pseudomicrogravity was observed in the upside-down swimming catfish but not in the catfish (Corydoras paleatus), which has normal swimming habitat. Furthermore, although S. nigriventris but not C. paleatus could keep the stable swimming posture under normal gravity condition after unilateral labyrinthectomy, the labyrinthectomized fishes could not keep it under pseudomicrogravity. Seven days after the operation, S. nigriventris alone partially recovered the ability to keep an upside-down swimming posture, and did completely, to the control level, 25 days after the operation. Furthermore, when S. nigriventris was under pseudomicrogravity in dark conditions, it showed disturbed swimming postures. These results suggest that the upside-down swimming catfish has superior ability of postural control depending on the labyrinth.
Posture recognition based on fuzzy logic for home monitoring of the elderly.
Brulin, Damien; Benezeth, Yannick; Courtial, Estelle
2012-09-01
We propose in this paper a computer vision-based posture recognition method for home monitoring of the elderly. The proposed system performs human detection prior to the posture analysis; posture recognition is performed only on a human silhouette. The human detection approach has been designed to be robust to different environmental stimuli. Thus, posture is analyzed with simple and efficient features that are not designed to manage constraints related to the environment but only designed to describe human silhouettes. The posture recognition method, based on fuzzy logic, identifies four static postures and is robust to variation in the distance between the camera and the person, and to the person's morphology. With an accuracy of 74.29% of satisfactory posture recognition, this approach can detect emergency situations such as a fall within a health smart home.
Chaves, Thaís C.; Turci, Aline M.; Pinheiro, Carina F.; Sousa, Letícia M.; Grossi, Débora B.
2014-01-01
BACKGROUND: The association between body postural changes and temporomandibular disorders (TMD) has been widely discussed in the literature, however, there is little evidence to support this association. OBJECTIVES: The aim of the present study was to conduct a systematic review to assess the evidence concerning the association between static body postural misalignment and TMD. METHOD: A search was conducted in the PubMed/Medline, Embase, Lilacs, Scielo, Cochrane, and Scopus databases including studies published in English between 1950 and March 2012. Cross-sectional, cohort, case control, and survey studies that assessed body posture in TMD patients were selected. Two reviewers performed each step independently. A methodological checklist was used to evaluate the quality of the selected articles. RESULTS: Twenty studies were analyzed for their methodological quality. Only one study was classified as a moderate quality study and two were classified as strong quality studies. Among all studies considered, only 12 included craniocervical postural assessment, 2 included assessment of craniocervical and shoulder postures,, and 6 included global assessment of body posture. CONCLUSION: There is strong evidence of craniocervical postural changes in myogenous TMD, moderate evidence of cervical postural misalignment in arthrogenous TMD, and no evidence of absence of craniocervical postural misalignment in mixed TMD patients or of global body postural misalignment in patients with TMD. It is important to note the poor methodological quality of the studies, particularly those regarding global body postural misalignment in TMD patients. PMID:25590441
Kim, Cheol Ki; Ryu, Ju Seok; Song, Sun Hong; Koo, Jung Hoi; Lee, Kyung Duck; Park, Hee Sun; Oh, Yoongul; Min, Kyunghoon
2015-06-01
To observe changes in pharyngeal pressure during the swallowing process according to postures in normal individuals using high-resolution manometry (HRM). Ten healthy volunteers drank 5 mL of water twice while sitting in a neutral posture. Thereafter, they drank the same amount of water twice in the head rotation and head tilting postures. The pressure and time during the deglutition process for each posture were measured with HRM. The data obtained for these two postures were compared with those obtained from the neutral posture. The maximum pressure, area, rise time, and duration in velopharynx (VP) and tongue base (TB) were not affected by changes in posture. In comparison, the maximum pressure and the pre-upper esophageal sphincter (UES) maximum pressure of the lower pharynx in the counter-catheter head rotation posture were lower than those in the neutral posture. The lower pharynx pressure in the catheter head tilting posture was higher than that in the counter-catheter head tilting. The changes in the VP peak and epiglottis, VP and TB peaks, and the VP onset and post-UES time intervals were significant in head tilting and head rotation toward the catheter postures, as compared with neutral posture. The pharyngeal pressure and time parameter analysis using HRM determined the availability of head rotation as a compensatory technique for safe swallowing. Tilting the head smoothes the progress of food by increasing the pressure in the pharynx.
Effects of Head Rotation and Head Tilt on Pharyngeal Pressure Events Using High Resolution Manometry
Kim, Cheol Ki; Song, Sun Hong; Koo, Jung Hoi; Lee, Kyung Duck; Park, Hee Sun; Oh, Yoongul; Min, Kyunghoon
2015-01-01
Objective To observe changes in pharyngeal pressure during the swallowing process according to postures in normal individuals using high-resolution manometry (HRM). Methods Ten healthy volunteers drank 5 mL of water twice while sitting in a neutral posture. Thereafter, they drank the same amount of water twice in the head rotation and head tilting postures. The pressure and time during the deglutition process for each posture were measured with HRM. The data obtained for these two postures were compared with those obtained from the neutral posture. Results The maximum pressure, area, rise time, and duration in velopharynx (VP) and tongue base (TB) were not affected by changes in posture. In comparison, the maximum pressure and the pre-upper esophageal sphincter (UES) maximum pressure of the lower pharynx in the counter-catheter head rotation posture were lower than those in the neutral posture. The lower pharynx pressure in the catheter head tilting posture was higher than that in the counter-catheter head tilting. The changes in the VP peak and epiglottis, VP and TB peaks, and the VP onset and post-UES time intervals were significant in head tilting and head rotation toward the catheter postures, as compared with neutral posture. Conclusion The pharyngeal pressure and time parameter analysis using HRM determined the availability of head rotation as a compensatory technique for safe swallowing. Tilting the head smoothes the progress of food by increasing the pressure in the pharynx. PMID:26161349
Survey of faulty postures and associated factors among Chinese adolescents.
Cho, Chiung-Yu
2008-03-01
This study investigates the prevalence of common faulty postures among adolescents and identify if significant relationships existed among the number of faulty postures, psychologic distress, and musculoskeletal symptoms. The Musculoskeletal Questionnaire and Chinese Health Questionnaire were randomly distributed to 300 high school students in the Tainan area. On-campus postural screening, which included digital photography, manual muscle tests, and flexibility tests, was also performed. Two hundred eighty-seven participants completed all of the evaluations. The most common faulty posture was uneven shoulder level (36%), followed by forward head posture (25%). There was a sex difference between groups. The incidence of forward head posture for the male students was higher than that of the female students (P < .0001). In addition, the high psychologic distress group tended to have a higher prevalence of uneven shoulder height than that of the low psychologic distress group (P < .0001). As for the correlation analysis, the researchers did not find a high correlation among the scores of the faulty posture, psychologic distress, and musculoskeletal symptoms. The results of this study show that the incidence of faulty posture was high for the adolescent group, especially for the uneven shoulder level. Subjects' awareness about being assessed might decrease the incidence for some faulty posture. However, the relationships among the number of faulty postures, psychologic distress, and musculoskeletal symptoms were low. We suggest that there are multiple factors that might contribute to musculoskeletal symptoms; faulty posture could be one important factor that causes symptoms.
Common postural defects among music students.
Blanco-Piñeiro, Patricia; Díaz-Pereira, M Pino; Martínez, Aurora
2015-07-01
Postural quality during musical performance affects both musculoskeletal health and the quality of the performance. In this study we examined the posture of 100 students at a Higher Conservatory of Music in Spain. By analysing video tapes and photographs of the students while performing, a panel of experts extracted values of 11 variables reflecting aspects of overall postural quality or the postural quality of various parts of the body. The most common postural defects were identified, together with the situations in which they occur. It is concluded that most students incur in unphysiological postures during performance. It is hoped that use of the results of this study will help correct these errors. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effect of Posture on Hip Angles and Moments during Gait
Lewis, Cara L.; Sahrmann, Shirley A.
2014-01-01
Anterior hip pain is common in young, active adults. Clinically, we have noted that patients with anterior hip pain often walk in a swayback posture, and that their pain is reduced when the posture is corrected. The purpose of this study was to investigate a potential mechanism for the reduction in pain by testing the effect of posture on movement patterns and internal moments during gait in healthy subjects. Fifteen subjects were instructed to walk while maintaining three postures: 1) natural, 2) swayback, and 3) forward flexed. Kinematic and force data were collected using a motion capture system and a force plate. Walking in the swayback posture resulted in a higher peak hip extension angle, hip flexor moment and hip flexion angular impulse compared to natural posture. In contrast, walking in a forward flexed posture resulted in a decreased hip extension angle and decreased hip flexion angular impulse. Based on these results, walking in a swayback posture may result in increased forces required of the anterior hip structures, potentially contributing to anterior hip pain. This study provides a potential biomechanical mechanism for clinical observations that posture correction in patients with hip pain is beneficial. PMID:25262565
Effect of posture on hip angles and moments during gait.
Lewis, Cara L; Sahrmann, Shirley A
2015-02-01
Anterior hip pain is common in young, active adults. Clinically, we have noted that patients with anterior hip pain often walk in a swayback posture, and that their pain is reduced when the posture is corrected. The purpose of this study was to investigate a potential mechanism for the reduction in pain by testing the effect of posture on movement patterns and internal moments during gait in healthy subjects. Fifteen subjects were instructed to walk while maintaining three postures: 1) natural, 2) swayback, and 3) forward flexed. Kinematic and force data were collected using a motion capture system and a force plate. Walking in the swayback posture resulted in a higher peak hip extension angle, hip flexor moment and hip flexion angular impulse compared to natural posture. In contrast, walking in a forward flexed posture resulted in a decreased hip extension angle and decreased hip flexion angular impulse. Based on these results, walking in a swayback posture may result in increased forces required of the anterior hip structures, potentially contributing to anterior hip pain. This study provides a potential biomechanical mechanism for clinical observations that posture correction in patients with hip pain is beneficial. Copyright © 2014 Elsevier Ltd. All rights reserved.
Changes in sitting posture induce multiplanar changes in chest wall shape and motion with breathing.
Lee, Linda-Joy; Chang, Angela T; Coppieters, Michel W; Hodges, Paul W
2010-03-31
This study examined the effect of sitting posture on regional chest wall shape in three dimensions, chest wall motion (measured with electromagnetic motion analysis system), and relative contributions of the ribcage and abdomen to tidal volume (%RC/V(t)) (measured with inductance plethysmography) in 7 healthy volunteers. In seven seated postures, increased dead space breathing automatically increased V(t) (to 1.5 V(t)) to match volume between conditions and study the effects of posture independent of volume changes. %RC/V(t) (p<0.05), chest wall shape (p<0.05) and motion during breathing differed between postures. Compared to a reference posture, movement at the 9th rib lateral diameter increased in the thoracolumbar extension posture (p<0.008). In slumped posture movement at the AP diameters at T1 and axilla increased (p<0.00001). Rotation postures decreased movement in the lateral diameter at the axilla (p<0.0007). The data show that single plane changes in sitting posture alter three-dimensional ribcage configuration and chest wall kinematics during breathing, while maintaining constant respiratory function. Copyright 2010 Elsevier B.V. All rights reserved.
Asseman, François B; Caron, Olivier; Crémieux, Jacques
2008-01-01
The first aim of this study was to analyse the effect of elite training, linked to expertise, in gymnastics on postural performance and control. For this purpose, body sway of expert gymnasts was compared to other sportsmen, non-experts and non-gymnasts, in two different postures: bipedal (easy and unspecific to gymnasts) and unipedal (difficult and fairly specific). The second aim was to compare the groups in the same tasks but in a visual condition for which they were not trained, i.e. with eyes closed. Postural performance was assessed by centre of gravity motion, which was computed from centre of pressure motion, estimating postural control. A significant difference between the two groups was observed for postural performance in the unipedal posture and with eyes open only. Regardless of their posture, the groups were similarly affected by removal of vision. Expertise in gymnastics seemed to improve postural performances only in situations for which their practise is related to, i.e. unipedal with eyes open. These reveal the importance of choosing a relevant postural configuration and visual condition according to the people's training or by extension experience.
Rajachandrakumar, Roshanth; Fraser, Julia E; Schinkel-Ivy, Alison; Inness, Elizabeth L; Biasin, Lou; Brunton, Karen; McIlroy, William E; Mansfield, Avril
2017-02-01
Anticipatory postural adjustments, executed prior to gait initiation, help preserve lateral stability when stepping. Atypical patterns of anticipatory activity prior to gait initiation may occur in individuals with unilateral impairment (e.g., stroke). This study aimed to determine the prevalence, correlates, and consequences of atypical anticipatory postural adjustment patterns prior to gait initiation in a sub-acute stroke population. Forty independently-ambulatory individuals with sub-acute stroke stood on two force plates and initiated gait at a self-selected speed. Medio-lateral centre of pressure displacement was calculated and used to define anticipatory postural adjustments (shift in medio-lateral centre of pressure >10mm from baseline). Stroke severity, motor recovery, and functional balance and mobility status were also obtained. Three patterns were identified: single (typical), absent (atypical), and multiple (atypical) anticipatory postural adjustments. Thirty-five percent of trials had atypical anticipatory postural adjustments (absent and multiple). Frequency of absent anticipatory postural adjustments was negatively correlated with walking speed. Multiple anticipatory postural adjustments were more prevalent when leading with the non-paretic than the paretic limb. Trials with multiple anticipatory postural adjustments had longer duration of anticipatory postural adjustment and time to foot-off, and shorter unloading time than trials with single anticipatory postural adjustments. A high prevalence of atypical anticipatory control prior to gait initiation was found in individuals with stroke. Temporal differences were identified with multiple anticipatory postural adjustments, indicating altered gait initiation. These findings provide insight into postural control during gait initiation in individuals with sub-acute stroke, and may inform interventions to improve ambulation in this population. Copyright © 2016 Elsevier B.V. All rights reserved.
Howard, Charla L; Perry, Bonnie; Chow, John W; Wallace, Chris; Stokic, Dobrivoje S
2017-11-01
Sensorimotor impairments after limb amputation impose a threat to stability. Commonly described strategies for maintaining stability are the posture first strategy (prioritization of balance) and posture second strategy (prioritization of concurrent tasks). The existence of these strategies was examined in 13 below-knee prosthesis users and 15 controls during dual-task standing under increasing postural and cognitive challenge by evaluating path length, 95% sway area, and anterior-posterior and medial-lateral amplitudes of the center of pressure. The subjects stood on two force platforms under usual (hard surface/eyes open) and difficult (soft surface/eyes closed) conditions, first alone and while performing a cognitive task without and then with instruction on cognitive prioritization. During standing alone, sway was not significantly different between groups. After adding the cognitive task without prioritization instruction, prosthesis users increased sway more under the dual-task than single-task standing (p ≤ 0.028) during both usual and difficult conditions, favoring the posture second strategy. Controls, however, reduced dual-task sway under a greater postural challenge (p ≤ 0.017), suggesting the posture first strategy. With prioritization of the cognitive task, sway was unchanged or reduced in prosthesis users, suggesting departure from the posture second strategy, whereas controls maintained the posture first strategy. Individual analysis of dual tasking revealed that greater postural demand in controls and greater cognitive challenge in prosthesis users led to both reduced sway and improved cognitive performance, suggesting cognitive-motor facilitation. Thus, activation of additional resources through increased alertness, rather than posture prioritization, may explain dual-task performance in both prosthesis users and controls under increasing postural and cognitive challenge.
McKeon, Patrick O; Hertel, Jay
2008-01-01
To answer the following clinical questions: (1) Is poor postural control associated with increased risk of a lateral ankle sprain? (2) Is postural control adversely affected after acute lateral ankle sprain? (3) Is postural control adversely affected in those with chronic ankle instability? PubMed and CINAHL entries from 1966 through October 2006 were searched using the terms ankle sprain, ankle instability, balance, chronic ankle instability, functional ankle instability, postural control, and postural sway. Only studies assessing postural control measures in participants on a stable force plate performing the modified Romberg test were included. To be included, a study had to address at least 1 of the 3 clinical questions stated above and provide adequate results for calculation of effect sizes or odds ratios where applicable. We calculated odds ratios with 95% confidence intervals for studies assessing postural control as a risk factor for lateral ankle sprains. Effect sizes were estimated with the Cohen d and associated 95% confidence intervals for comparisons of postural control performance between healthy and injured groups, or healthy and injured limbs, respectively. Poor postural control is most likely associated with an increased risk of sustaining an acute ankle sprain. Postural control is impaired after acute lateral ankle sprain, with deficits identified in both the injured and uninjured sides compared with controls. Although chronic ankle instability has been purported to be associated with altered postural control, these impairments have not been detected consistently with the use of traditional instrumented measures. Instrumented postural control testing on stable force plates is better at identifying deficits that are associated with an increased risk of ankle sprain and that occur after acute ankle sprains than at detecting deficits related to chronic ankle instability.
Huang, Cheng-Ya; Zhao, Chen-Guang; Hwang, Ing-Shiou
2014-11-01
Dual-task performance is strongly affected by the direction of attentional focus. This study investigated neural control of a postural-suprapostural procedure when postural focus strategy varied. Twelve adults concurrently conducted force-matching and maintained stabilometer stance with visual feedback on ankle movement (visual internal focus, VIF) and on stabilometer movement (visual external focus, VEF). Force-matching error, dynamics of ankle and stabilometer movements, and event-related potentials (ERPs) were registered. Postural control with VEF caused superior force-matching performance, more complex ankle movement, and stronger kinematic coupling between the ankle and stabilometer movements than postural control with VIF. The postural focus strategy also altered ERP temporal-spatial patterns. Postural control with VEF resulted in later N1 with less negativity around the bilateral fronto-central and contralateral sensorimotor areas, earlier P2 deflection with more positivity around the bilateral fronto-central and ipsilateral temporal areas, and late movement-related potential commencing in the left frontal-central area, as compared with postural control with VIF. The time-frequency distribution of the ERP principal component revealed phase-locked neural oscillations in the delta (1-4Hz), theta (4-7Hz), and beta (13-35Hz) rhythms. The delta and theta rhythms were more pronounced prior to the timing of P2 positive deflection, and beta rebound was greater after the completion of force-matching in VEF condition than VIF condition. This study is the first to reveal the neural correlation of postural focusing effect on a postural-suprapostural task. Postural control with VEF takes advantage of efficient task-switching to facilitate autonomous postural response, in agreement with the "constrained-action" hypothesis. Copyright © 2014 Elsevier B.V. All rights reserved.
Helmchen, Christoph; Kirchhoff, Jan-Birger; Göttlich, Martin; Sprenger, Andreas
2017-01-01
The cerebellum integrates proprioceptive, vestibular and visual signals for postural control. Cerebellar patients with downbeat nystagmus (DBN) complain of unsteadiness of stance and gait as well as blurred vision and oscillopsia. The aim of this study was to elucidate the differential role of visual input, gaze eccentricity, vestibular and proprioceptive input on the postural stability in a large cohort of cerebellar patients with DBN, in comparison to healthy age-matched control subjects. Oculomotor (nystagmus, smooth pursuit eye movements) and postural (postural sway speed) parameters were recorded and related to each other and volumetric changes of the cerebellum (voxel-based morphometry, SPM). Twenty-seven patients showed larger postural instability in all experimental conditions. Postural sway increased with nystagmus in the eyes closed condition but not with the eyes open. Romberg's ratio remained stable and was not different from healthy controls. Postural sway did not change with gaze position or graviceptive input. It increased with attenuated proprioceptive input and on tandem stance in both groups but Romberg's ratio also did not differ. Cerebellar atrophy (vermal lobule VI, VIII) correlated with the severity of impaired smooth pursuit eye movements of DBN patients. Postural ataxia of cerebellar patients with DBN cannot be explained by impaired visual feedback. Despite oscillopsia visual feedback control on cerebellar postural control seems to be preserved as postural sway was strongest on visual deprivation. The increase in postural ataxia is neither related to modulations of single components characterizing nystagmus nor to deprivation of single sensory (visual, proprioceptive) inputs usually stabilizing stance. Re-weighting of multisensory signals and/or inappropriate cerebellar motor commands might account for this postural ataxia.
Helmchen, Christoph; Kirchhoff, Jan-Birger; Göttlich, Martin; Sprenger, Andreas
2017-01-01
Background The cerebellum integrates proprioceptive, vestibular and visual signals for postural control. Cerebellar patients with downbeat nystagmus (DBN) complain of unsteadiness of stance and gait as well as blurred vision and oscillopsia. Objectives The aim of this study was to elucidate the differential role of visual input, gaze eccentricity, vestibular and proprioceptive input on the postural stability in a large cohort of cerebellar patients with DBN, in comparison to healthy age-matched control subjects. Methods Oculomotor (nystagmus, smooth pursuit eye movements) and postural (postural sway speed) parameters were recorded and related to each other and volumetric changes of the cerebellum (voxel-based morphometry, SPM). Results Twenty-seven patients showed larger postural instability in all experimental conditions. Postural sway increased with nystagmus in the eyes closed condition but not with the eyes open. Romberg’s ratio remained stable and was not different from healthy controls. Postural sway did not change with gaze position or graviceptive input. It increased with attenuated proprioceptive input and on tandem stance in both groups but Romberg’s ratio also did not differ. Cerebellar atrophy (vermal lobule VI, VIII) correlated with the severity of impaired smooth pursuit eye movements of DBN patients. Conclusions Postural ataxia of cerebellar patients with DBN cannot be explained by impaired visual feedback. Despite oscillopsia visual feedback control on cerebellar postural control seems to be preserved as postural sway was strongest on visual deprivation. The increase in postural ataxia is neither related to modulations of single components characterizing nystagmus nor to deprivation of single sensory (visual, proprioceptive) inputs usually stabilizing stance. Re-weighting of multisensory signals and/or inappropriate cerebellar motor commands might account for this postural ataxia. PMID:28056109
Paniccia, Melissa; Wilson, Katherine E; Hunt, Anne; Keightley, Michelle; Zabjek, Karl; Taha, Tim; Gagnon, Isabelle; Reed, Nick
Postural stability plays a key role in sport performance, especially after concussion. Specific to healthy child and youth athletes, little is known about the influence development and sex may have on postural stability while considering other subjective clinical measures used in baseline/preinjury concussion assessment. This study aims to describe age- and sex-based trends in postural stability in uninjured child and youth athletes at baseline while accounting for concussion-related factors. (1) Postural stability performance will improve with age, (2) females will display better postural stability compared to males, and (3) concussion-like symptoms will affect postural stability performance in healthy children and youth. Cross-sectional study. Level 3. This study comprised 889 healthy/uninjured child and youth athletes (54% female, 46% male) between the ages of 9 and 18 years old. Participants completed preseason baseline testing, which included demographic information (age, sex, concussion history), self-report of concussion-like symptoms (Post-Concussion Symptom Inventory [PCSI]-Child and PCSI-Youth), and measures of postural stability (BioSway; Biodex Medical Systems). Two versions of the PCSI were used (PCSI-C, 9- to 12-year-olds; PCSI-Y, 13- to 18-year-olds). Postural stability was assessed via sway index under 4 sway conditions of increasing difficulty by removing visual and proprioceptive cues. In children aged 9 to 12 years old, there were significant age- ( P < 0.05) and sex-based effects ( P < 0.05) on postural stability. Performance improved with age, and girls performed better than boys. For youth ages 13 to 18 years old, postural stability also improved with age ( P < 0.05). In both child and youth subgroups, postural stability worsened with increasing concussion-like symptoms ( P < 0.05). There are developmental and baseline symptom trends regarding postural stability performance. These findings provide a preliminary foundation for postconcussion comparisons and highlight the need for a multimodal approach in assessing and understanding physical measures such as postural stability.
Monjo, Florian; Forestier, Nicolas
2017-08-01
We investigated whether and how the movement initiation condition (IC) encountered during the early movements performed following focal muscle fatigue affects the postural control of discrete ballistic movements. For this purpose, subjects performed shoulder flexions in a standing posture at maximal velocity under two movement IC, i.e., in self-paced conditions and submitted to a Stroop-like task in which participants had to trigger fast shoulder flexions at the presentation of incongruent colors. Shoulder flexion kinematics, surface muscle activity of focal and postural muscles as well as center-of-pressure kinematics were recorded. The initial IC and the order in which subjects were submitted to these two conditions were varied within two separate experimental sessions. IC schedule was repeated before and after fatigue protocols involving shoulder flexors. The aim of this fatigue procedure was to affect acceleration-generating capacities of focal muscles. In such conditions, the postural muscle activity preceding and accompanying movement execution is expected to decrease. Following fatigue, when subjects initially moved in self-paced conditions, postural muscle activity decreased and scaled to the lower focal peak acceleration. This postural strategy then transferred to the Stroop-like task. In contrast, when subjects initially moved submitted to the Stroop-like task, postural muscle activity did not decrease and this transferred to self-paced movements. Regarding the center-of-pressure peak velocity, which is indicative of the efficiency of the postural actions generated in stabilizing posture, no difference appeared between the two sessions post-fatigue. This highlights an optimization of the postural actions when subjects first moved in self-paced conditions, smaller postural muscle activation levels resulting in similar postural consequences. In conclusion, the level of neuromuscular activity associated with the postural control is affected and can be optimized by the initial movement IC experienced post-fatigue. Beyond the fundamental contributions arising from these results, we point out potential applications for trainers and sports instructors. Copyright © 2017 Elsevier B.V. All rights reserved.
Postural awareness among dental students in Jizan, Saudi Arabia
Kanaparthy, Aruna; Kanaparthy, Rosaiah; Boreak, Nezar
2015-01-01
Objective: The study was conducted to assess the postural awareness of dental students in Jizan, Saudi Arabia. Materials and Methods: Close-ended, self-administered questionnaires were used for data collection in the survey. The questionnaire was prepared by observing the positions of students working in the clinics and the common mistakes they make with regard to their postures. The questionnaires were distributed among the dental students who were present and reported to work in the clinics. Levels of postural awareness and the relationship between postural awareness and the degree of musculoskeletal disorder (MSD) among the students was evaluated. This study was carried out in the College of Dental Sciences and Hospital, Jizan. Statistical Analysis: The level of knowledge of postural awareness was evaluated and correlated with the presence or absence of the MSDs. Categorical variables were compared using Chi-square test. P values of less than 0.05 were considered statistically significant. Results: A total of 162 dental students from the age group of 20–25 years were included in the survey, of which 134 dentists responded (83%). When their postural awareness was evaluated, results showed that 89% of the students had poor-to-medium levels of postural awareness. The relation between postural awareness and prevalence of MSDs indicated that 75% of the students with poor awareness, 49% of the students with average awareness, and 40% of the students with good awareness have MSDs. The results were statistically significant (0.002127, which is <0.005) stating that better awareness about proper postures while working helps to minimize the risk of MSDs. Conclusion: Evaluation of levels of postural awareness showed that 21% of the students had poor postural awareness, 67% had average awareness, and 11% had good postural awareness. The analysis of results showed that those students with low-to-average postural awareness had significantly greater prevalence of MSDs. PMID:26942113
Obesity Impact on the Attentional Cost for Controlling Posture
Mignardot, Jean-Baptiste; Olivier, Isabelle; Promayon, Emmanuel; Nougier, Vincent
2010-01-01
Background This study investigated the effects of obesity on attentional resources allocated to postural control in seating and unipedal standing. Methods Ten non obese adults (BMI = 22.4±1.3, age = 42.4±15.1) and 10 obese adult patients (BMI = 35.2±2.8, age = 46.2±19.6) maintained postural stability on a force platform in two postural tasks (seated and unipedal). The two postural tasks were performed (1) alone and (2) in a dual-task paradigm in combination with an auditory reaction time task (RT). Performing the RT task together with the postural one was supposed to require some attentional resources that allowed estimating the attentional cost of postural control. 4 trials were performed in each condition for a total of 16 trials. Findings (1) Whereas seated non obese and obese patients exhibited similar centre of foot pressure oscillations (CoP), in the unipedal stance only obese patients strongly increased their CoP sway in comparison to controls. (2) Whatever the postural task, the additional RT task did not affect postural stability. (3) Seated, RT did not differ between the two groups. (4) RT strongly increased between the two postural conditions in the obese patients only, suggesting that body schema and the use of internal models was altered with obesity. Interpretation Obese patients needed more attentional resources to control postural stability during unipedal stance than non obese participants. This was not the case in a more simple posture such as seating. To reduce the risk of fall as indicated by the critical values of CoP displacement, obese patients must dedicate a strong large part of their attentional resources to postural control, to the detriment of non-postural events. Obese patients were not able to easily perform multitasking as healthy adults do, reflecting weakened psycho-motor abilities. PMID:21187914
Tsukahara, Yuka; Iwamoto, Jun; Iwashita, Kosui; Shinjo, Takuma; Azuma, Koichiro; Matsumoto, Hideo
2016-01-01
Background Whole-body vibration (WBV) exercise is widely used for training and rehabilitation. However, the optimal posture for training both the upper and lower extremities simultaneously remains to be established. Objectives The objective of this study was to search for an effective posture to conduct vibration from the lower to the upper extremities while performing WBV exercises without any adverse effects. Methods Twelve healthy volunteers (age: 22–34 years) were enrolled in the study. To measure the magnitude of vibration, four accelerometers were attached to the upper arm, back, thigh, and calf of each subject. Vibrations were produced using a WBV platform (Galileo 900) with an amplitude of 4 mm at two frequencies, 15 and 30 Hz. The following three postures were examined: posture A, standing posture with the knees flexed at 30°; posture B, crouching position with no direct contact between the knees and elbows; and posture C, crouching position with direct contact between the knees and elbows. The ratio of the magnitude of vibration at the thigh, back, and upper arm relative to that at the calf was used as an index of vibration conduction. Results Posture B was associated with a greater magnitude of vibration to the calf than posture A at 15 Hz, and postures B and C were associated with greater magnitudes of vibration than posture A at 30 Hz. Posture C was associated with a vibration conduction to the upper arm that was 4.62 times and 8.26 times greater than that for posture A at 15 and 30 Hz, respectively. Conclusion This study revealed that a crouching position on a WBV platform with direct contact between the knees and elbows was effective for conducting vibration from the lower to the upper extremities. PMID:26793008
Milosavljevic, Stephan
2017-01-01
Introduction Low back pain (LBP) is the most common, costly and disabling musculoskeletal disorder worldwide, and is prevalent in healthcare workers. Posture is a modifiable risk factor for LBP shown to reduce the prevalence of LBP. Our feasibility research suggests that postural feedback might help healthcare workers avoid hazardous postures. The Effectiveness of Lumbopelvic Feedback (ELF) trial will investigate the extent to which postural monitor and feedback (PMF) can reduce exposure to hazardous posture associated with LBP. Methods This is a participant-blinded, randomised controlled trial with blocked cluster random allocation. Participants will include volunteer healthcare workers recruited from aged care institutions and hospitals. A postural monitoring and feedback device will monitor and record lumbopelvic forward bending posture, and provide audio feedback whenever the user sustains a lumbopelvic forward bending posture that exceeds predefined thresholds. The primary outcome measure will be postural behaviour (exceeding thresholds). Secondary outcome measures will be incidence of LBP, participant-reported disability and adherence. Following baseline assessment, we will randomly assign participants to 1 of 2 intervention arms: a feedback group and a no-feedback control group. We will compare between-group differences of changes in postural behaviour by using a repeated measures mixed-effect model analysis of covariance (ANCOVA) at 6 weeks. Postural behaviour baseline scores, work-related psychosocial factors and disability scores will be input as covariates into the statistical models. We will use logistic mixed model analysis and Cox's proportional hazards for assessing the effect of a PMF on LBP incidence between groups. Discussion Posture is a modifiable risk factor for low back disorders. Findings from the ELF trial will inform the design of future clinical trials assessing the effectiveness of wearable technology on minimising hazardous posture during daily living activities in patients with low back disorders. Trial registration number ACTRN12616000449437. PMID:28073798
Rabin, Ely; DiZio, Paul; Ventura, Joel; Lackner, James R
2008-02-01
Lightly touching a stable surface with one fingertip strongly stabilizes standing posture. The three main features of this phenomenon are fingertip contact forces maintained at levels too low to provide mechanical support, attenuation of postural sway relative to conditions without fingertip touch, and center of pressure (CP) lags changes in fingertip shear forces by approximately 250 ms. In the experiments presented here, we tested whether accurate arm proprioception and also whether the precision fingertip contact afforded by the arm's many degrees of freedom are necessary for postural stabilization by finger contact. In our first experiment, we perturbed arm proprioception and control with biceps brachii vibration (120-Hz, 2-mm amplitude). This degraded postural control, resulting in greater postural sway amplitudes. In a second study, we immobilized the touching arm with a splint. This prevented precision fingertip contact but had no effect on postural sway amplitude. In both experiments, the correlation and latency of fingertip contact forces to postural sway were unaffected. We conclude that postural control is executed based on information about arm orientation as well as tactile feedback from light touch, although precision fingertip contact is not essential. The consistent correlation and timing of CP movement and fingertip forces across conditions in which postural sway amplitude and fingertip contact are differentially disrupted suggests posture and the fingertip are controlled in parallel with feedback from the fingertip in this task.
Ergonomic strategies to improve radiographers' posture during mammography activities.
Cernean, Nicolai; Serranheira, Florentino; Gonçalves, Pedro; Sá Dos Reis, Cláudia
2017-08-01
To identify alternatives for radiographers' postures while performing mammography that can contribute to reduce the risk of work-related musculoskeletal disorders (WRMSDs). Radiographers' postures to positioning craniocaudal (CC) and mediolateral oblique (MLO) views were simulated without any intervention for three scenarios: radiographer/patient with similar statures, radiographer smaller than patient and radiographer taller than patient. Actions were taken to modify the postures: seated radiographer; patient on a step; seated patient; radiographer on a step. All the postures were analysed using kinovea 0.8.15 software and the angles were measured twice and classified according to European standard EN1005-4: 2005. The non-acceptable angles were measured mainly during MLO positioning when radiographer was taller than the patient: 139° and 120° for arm-flexion and abduction, 72° for trunk and -24° for head/neck-flexion. The introduction of alternative postures (radiographer seated), allowed improvements in posture (60° and 99° for arm flexion and abduction, 14° for trunk and 0° for head/neck flexion), being classified as acceptable. The alternative postures simulated have the potential to reduce the risk of developing WRMSDs when radiographers and patients have different statures. • Radiographers' postures in mammography can contribute to work-related musculoskeletal disorders • Non-acceptable posture was identified for MLO breast positioning (radiographer taller than patient) • Adapting posture to patient biotype reduces the WRMSD risk for radiographers.
Powerful postures versus powerful roles: which is the proximate correlate of thought and behavior?
Huang, Li; Galinsky, Adam D; Gruenfeld, Deborah H; Guillory, Lucia E
2011-01-01
Three experiments explored whether hierarchical role and body posture have independent or interactive effects on the main outcomes associated with power: action in behavior and abstraction in thought. Although past research has found that being in a powerful role and adopting an expansive body posture can each enhance a sense of power, two experiments showed that when individuals were placed in high- or low-power roles while adopting an expansive or constricted posture, only posture affected the implicit activation of power, the taking of action, and abstraction. However, even though role had a smaller effect on the downstream consequences of power, it had a stronger effect than posture on self-reported sense of power. A final experiment found that posture also had a larger effect on action than recalling an experience of high or low power. We discuss body postures as one of the most proximate correlates of the manifestations of power.
Specificity of learning: why infants fall over a veritable cliff.
Adolph, K E
2000-07-01
Nine-month-old infants were tested at the precipice of safe and risky gaps in the surface of support. Their reaching and avoidance responses were compared in two postures, an experienced sitting posture and a less familiar crawling posture. The babies avoided reaching over risky gaps in the sitting posture but fell into risky gaps while attempting to reach in the crawling posture. This dissociation between developmental changes in posture suggests that (a) each postural milestone represents a different, modularly organized control system and (b) infants' adaptive avoidance responses are based on information about their postural stability relative to the gap size. Moreover, the results belie previous accounts suggesting that avoidance of a disparity in depth of the ground surface depends on general knowledge such as fear of heights, associations between depth information and falling, or knowledge that the body cannot be supported in empty space.
Standridge, J. S.; Bhattacharya, Amit; Succop, Paul; Cox, Cyndy; Haynes, Erin
2009-01-01
OBJECTIVE The objective of this study was to determine the effect of non-occupational exposure to manganese on postural balance. METHODS Residents living near a ferromanganese refinery provided hair and blood samples after postural balance testing. The relationship between hair manganese and postural balance was analyzed with logistic regression. Following covariate adjustment, postural balance was compared with control data by analysis of covariance. RESULTS Mean hair manganese was 4.4 µg/g. A significantly positive association was found between hair manganese and sway area (EO, p=0.05; EC, p=0.04) and sway length (EO, p=0.05; EC, p=0.04). Postural balance of residents was significantly larger than controls in 5 out of 8 postural balance outcomes. CONCLUSION Preliminary findings suggest subclinical impairment in postural balance among residents chronically exposed to ambient Mn. A prospective study with a larger sample size is warranted. PMID:19092498
Ko, Min-Joo; Jung, Eun-Joo; Kim, Moon-Hwan; Oh, Jae-Seop
2018-01-01
[Purpose] This study was to investigate differences in the level of activity of the external oblique (EO), internal oblique (IO), and multifidus (MF) muscles with deep breathing in three sitting postures. [Subjects and Methods] Sixteen healthy women were recruited. The muscle activity (EO, IO, MF) of all subjects was measured in three sitting postures (slumped, thoracic upright, and lumbo-pelvic upright sitting postures) using surface electromyography. The activity of the same muscles was then remeasured in the three sitting postures during deep breathing. [Results] Deep breathing significantly increased activity in the EO, IO, and MF compared with normal breathing. Comparing postures, the activity of the MF and IO muscles was highest in the lumbo-pelvic upright sitting posture. [Conclusion] An lumbo-pelvic upright sitting posture with deep breathing could increase IO and MF muscle activity, thus improving lumbo-pelvic region stability. PMID:29706695
The effect of instructions on postural-suprapostural interactions in three working memory tasks.
Burcal, Christopher J; Drabik, Evan C; Wikstrom, Erik A
2014-06-01
Examining postural control while simultaneously performing a cognitive, or suprapostural task, has shown a fairly consistent trend of improving postural control in young healthy adults and provides insight into postural control mechanisms used in everyday life. However, the role of attention driven by explicit verbal instructions while dual-tasking is less understood. Therefore, the purpose of this investigation is to determine the effects of explicit verbal instructions on the postural-suprapostural interactions among various domains of working memory. A total of 22 healthy young adults with a heterogeneous history of ankle sprains volunteered to participate (age: 22.2±5.1 years; n=10 history of ankle sprains, n=12 no history). Participants were asked to perform single-limb balance trials while performing three suprapostural tasks: backwards counting, random number generation, and the manikin test. In addition, each suprapostural task was completed under three conditions of instruction: no instructions, focus on the postural control task, focus on the suprapostural task. The results indicate a significant effect of instructions on postural control outcomes, with postural performance improving in the presence of instructions across all three cognitive tasks which each stress different aspects of working memory. Further, postural-suprapostural interactions appear to be related to the direction or focus of an individual's attention as instructions to focus on the suprapostural task resulted in the greatest postural control improvements.Thus, attention driven by explicit verbal instructions influence postural-suprapostural interactions as measured by a temporal-spatial postural control outcome, time-to-boundary, regardless of the suprapostural task performed. Copyright © 2014 Elsevier B.V. All rights reserved.
Gonzalez, H E; Manns, A
1996-01-01
An extensive conceptual analysis to establish the primary role a forward head posture plays in the appearance of some craniomandibular dysfunctions and internal derangements of the temporomandibular joints, associated to craniocervical postural disturbances. The analysis is based on findings contributed by scientific investigations in the field of dentofacial orthopedics and dysfunction. Special emphasis has been put on the influence of forward head posture on the craniofacial growth as it can determine a morphoskeletal and neuromuscular pattern leading to a dysfunctional condition. A correlation is established between Class II Occlusion, forward head posture, and craniomandibular dysfunction. The concept of craniocervical postural position is defined, as well as its close relation to the mandibular postural position.
Park, Jangwoon; Ebert, Sheila M; Reed, Matthew P; Hallman, Jason J
2016-03-01
Previously published statistical models of driving posture have been effective for vehicle design but have not taken into account the effects of age. The present study developed new statistical models for predicting driving posture. Driving postures of 90 U.S. drivers with a wide range of age and body size were measured in laboratory mockup in nine package conditions. Posture-prediction models for female and male drivers were separately developed by employing a stepwise regression technique using age, body dimensions, vehicle package conditions, and two-way interactions, among other variables. Driving posture was significantly associated with age, and the effects of other variables depended on age. A set of posture-prediction models is presented for women and men. The results are compared with a previously developed model. The present study is the first study of driver posture to include a large cohort of older drivers and the first to report a significant effect of age. The posture-prediction models can be used to position computational human models or crash-test dummies for vehicle design and assessment. © 2015, Human Factors and Ergonomics Society.
The Relationship Between Postural and Movement Stability.
Feldman, Anatol G
2016-01-01
Postural stabilization is provided by stretch reflexes, intermuscular reflexes, and intrinsic muscle properties. Taken together, these posture-stabilizing mechanisms resist deflections from the posture at which balance of muscle and external forces is maintained. Empirical findings suggest that for each muscle, these mechanisms become functional at a specific, spatial threshold-the muscle length or respective joint angle at which motor units begin to be recruited. Empirical data suggest that spinal and supraspinal centers can shift the spatial thresholds for a group of muscles that stabilized the initial posture. As a consequence, the same stabilizing mechanisms, instead of resisting motion from the initial posture, drive the body to another stable posture. In other words by shifting spatial thresholds, the nervous system converts movement resisting to movement-producing mechanisms. It is illustrated that, contrary to conventional view, this control strategy allows the system to transfer body balance to produce locomotion and other actions without loosing stability at any point of them. It also helps orient posture and movement with the direction of gravity. It is concluded that postural and movement stability is provided by a common mechanism.
Plasticity of the postural function to sport and/or motor experience.
Paillard, Thierry
2017-01-01
This review addresses the possible structural and functional adaptations of the postural function to motor experience. Evidence suggests that postural performance and strategy evolve after training in inactive subjects. In trained subjects, postural adaptations could also occur, since elite athletes exhibit better postural performance than, and different postural strategy to sub-elite athletes. The postural adaptations induced are specific to the context in which the physical activity is practiced. They appear to be so specific that there would be no or only a very slight effect of transfer to non-experienced motor tasks (apart from in subjects presenting low initial levels of postural performance, such as aged subjects). Yet adaptations could occur as part of the interlimb relationship, particularly when the two legs do not display the same motor experience. Mechanistic explanations as well as conceptual models are proposed to explain how postural adaptations operate according to the nature of physical activities and the context in which they are practiced as well as the level of motor expertise of individuals. Copyright © 2016 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Shih, Ching-Hsiang; Shih, Ching-Tien; Chiang, Ming-Shan
2010-01-01
This study assessed whether two persons with multiple disabilities would be able to control environmental stimulation using body swing (changing standing posture) and a Wii Balance Board with a newly developed standing posture detection program (i.e. a new software program turns a Wii Balance Board into a precise standing posture detector). The…
Investigation of compensatory postures with videofluoromanometry in dysphagia patients
Solazzo, Antonio; Monaco, Luigi; Del Vecchio, Lucia; Tamburrini, Stefania; Iacobellis, Francesca; Berritto, Daniela; Pizza, Nunzia Luisa; Reginelli, Alfonso; Di Martino, Natale; Grassi, Roberto
2012-01-01
AIM: To investigate the effectiveness of head compensatory postures to ensure safe oropharyngeal transit. METHODS: A total of 321 dysphagia patients were enrolled and assessed with videofluoromanometry (VFM). The dysphagia patients were classified as follows: safe transit; penetration without aspiration; aspiration before, during or after swallowing; multiple aspirations and no transit. The patients with aspiration or no transit were tested with VFM to determine whether compensatory postures could correct their swallowing disorder. RESULTS: VFM revealed penetration without aspiration in 71 patients (22.1%); aspiration before swallowing in 17 patients (5.3%); aspiration during swallowing in 32 patients (10%); aspiration after swallowing in 21 patients (6.5%); multiple aspirations in six patients (1.9%); no transit in five patients (1.6%); and safe transit in 169 patients (52.6%). Compensatory postures guaranteed a safe transit in 66/75 (88%) patients with aspiration or no transit. A chin-down posture achieved a safe swallow in 42/75 (56%) patients, a head-turned posture in 19/75 (25.3%) and a hyperextended head posture in 5/75 (6.7%). The compensatory postures were not effective in 9/75 (12%) cases. CONCLUSION: VFM allows the speech-language the-rapist to choose the most effective compensatory posture without a trial-and-error process and check the effectiveness of the posture. PMID:22736921
Experience of handicap and anxiety in phobic postural vertigo.
Holmberg, Johan; Karlberg, Mikael; Harlacher, Uwe; Magnusson, Mans
2005-03-01
We found a difference in gender distribution in a population of phobic postural vertigo patients compared with dizzy patients seen in general neuro-otological practice. It appears as if women with phobic postural vertigo suffer more and are more handicapped by dizziness than both men with phobic postural vertigo and a population with dizziness. These differences may reflect other causes of phobic postural vertigo besides anxiety, such as gender-related coping behaviour and postural strategy. Anxiety influences the degree of suffering and handicap in dizzy patients. Experiences of anxiety and handicap were investigated among a population with phobic postural vertigo. Using the Dizziness Handicap Inventory, the Vertigo Symptom Scale and the Vertigo Handicap Questionnaire, 34 consecutive patients with phobic postural vertigo were compared with a population of 95 consecutive patients seen at a balance disorder clinic. Patients with phobic postural vertigo scored higher than the control subjects with respect to all parameters with the exception of the physical subscale of the Dizziness Handicap Inventory. Because there were significantly more women in the control group we performed a gender-specific analysis of the results. The higher test scores among patients with phobic postural vertigo can be explained by the higher scores among women in this group, while the test results for men were more similar to those of the control group.
Boisgontier, Matthieu P; Cheval, Boris; Chalavi, Sima; van Ruitenbeek, Peter; Leunissen, Inge; Levin, Oron; Nieuwboer, Alice; Swinnen, Stephan P
2017-02-01
It remains unclear which specific brain regions are the most critical for human postural control and balance, and whether they mediate the effect of age. Here, associations between postural performance and corticosubcortical brain regions were examined in young and older adults using multiple structural imaging and linear mixed models. Results showed that of the regions involved in posture, the brainstem was the strongest predictor of postural control and balance: lower brainstem volume predicted larger center of pressure deviation and higher odds of balance loss. Analyses of white and gray matter in the brainstem showed that the pedunculopontine nucleus area appeared to be critical for postural control in both young and older adults. In addition, the brainstem mediated the effect of age on postural control, underscoring the brainstem's fundamental role in aging. Conversely, lower basal ganglia volume predicted better postural performance, suggesting an association between greater neural resources in the basal ganglia and greater movement vigor, resulting in exaggerated postural adjustments. Finally, results showed that practice, shorter height and heavier weight (i.e., higher body mass index), higher total physical activity, and larger ankle active (but not passive) range of motion were predictive of more stable posture, irrespective of age. Copyright © 2016 Elsevier Inc. All rights reserved.
The addition of body armor diminishes dynamic postural stability in military soldiers.
Sell, Timothy C; Pederson, Jonathan J; Abt, John P; Nagai, Takashi; Deluzio, Jennifer; Wirt, Michael D; McCord, Larry J; Lephart, Scott M
2013-01-01
Poor postural stability has been identified as a risk factor for lower extremity musculoskeletal injury. The additional weight of body armor carried by Soldiers alters static postural stability and may predispose Soldiers to lower extremity musculoskeletal injuries. However, static postural stability tasks poorly replicate the dynamic military environment, which places considerable stress on the postural control system during tactical training and combat. Therefore, the purpose of this study was to examine the effects of body armor on dynamic postural stability during single-leg jump landings. Thirty-six 101st Airborne Division (Air Assault) Soldiers performed single-leg jump landings in the anterior direction with and without wearing body armor. The dynamic postural stability index and the individual stability indices (medial-lateral stability index, anterior-posterior stability index, and vertical stability index) were calculated for each condition. Paired sample t-tests were performed to determine differences between conditions. Significant differences existed for the medial-lateral stability index, anterior-posterior stability index, vertical stability index, and dynamic postural stability index (p < 0.05). The addition of body armor resulted in diminished dynamic postural stability, which may result in increased lower extremity injuries. Training programs should address the altered dynamic postural stability while wearing body armor in attempts to promote adaptations that will result in safer performance during dynamic tasks.
Martínez, David Leonardo Hurtado; Rodríguez, Wilfredo Ágredo
2012-01-01
In students with physical disabilities, the more energy and time required and invested into finding a good posture, the longer the learning process takes. For this reason, the objective of this study was to characterize the posture in the act of writing of wheelchair users in a classroom. Eight students, (three women) aged 18-40, of some of the main universities of the city of Santiago de Cali participated. An observational field study filming of approximately 10 minutes was done while they took notes in their classes. Posture of the head, trunk, and upper extremities was analyzed with respect to its axis and the type of movement in each joint. The postures were classified depending on the location of support surface finding five different postures in the eight students. In these five postures some biomechanical risk factors, usually present in wheelchair users, are increased when they are associated with those postures. Those associated risk factors are: possible disc spine deformation, muscular stress and causing of pressure ulcer. In conclusion, in four of these five postures a poor interaction among person, task and work desk was observed. Therefore, seven of the eight students in this study were found to have a posture that could be considered risky.
Acute Effects of Posture Shirts on Rounded-Shoulder and Forward-Head Posture in College Students.
Manor, John; Hibberd, Elizabeth; Petschauer, Meredith; Myers, Joseph
2016-12-01
Rounded-shoulder and forward-head posture can be contributing factors to shoulder pain. Corrective techniques such as manual therapy and exercise have been shown to improve these altered postures, but there is little evidence that corrective garments such as posture shirts can alter posture. To determine the acute effects of corrective postureshirt use on rounded-shoulder and forward-head posture in asymptomatic college students. Repeated-measures intervention study with counterbalanced conditions. Research laboratory. 24 members of the general student body of a university, 18-25 y old, with a forward shoulder angle (FSA) >52° and no history of upper-extremity surgery, scoliosis, active shoulder pain, or shoulder pain in the previous 3 mo that restricted participation for 3 consecutive days. Photographic posture assessment under a control condition, under a sham or treatment condition (counterbalanced), under another control condition, and treatment or sham. FSA and forward head angle (FHA) calculated from a lateral photograph. FSA decreased relative to the control condition while participants wore the sham shirt (P = .029) but not the corrective posture shirt (P = 1.00). FHA was unchanged between groups (P = .371). Application of a corrective posture shirt did not acutely alter FSA or FHA, while application of a sham shirt may decrease FSA at rest.
Dusing, Stacey C; Izzo, Theresa A.; Thacker, Leroy R.; Galloway, James C
2014-01-01
Background and Aims Postural control differs between infants born preterm and full term at 1–3 weeks of age. It is unclear if differences persist or alter the development of early behaviors. The aim of this longitudinal study was to compare changes in postural control variability during development of head control and reaching in infants born preterm and full term. Methods Eighteen infants born preterm (mean gestational age 28.3±3.1 weeks) were included in this study and compared to existing data from 22 infants born full term. Postural variability was assessed longitudinally using root mean squared displacement and approximate entropy of the center of pressure displacement from birth to 6 months as measures of the magnitude of the variability and complexity of postural control. Behavioral coding was used to quantify development of head control and reaching. Results Group differences were identified in postural complexity during the development of head control and reaching. Infants born preterm used more repetitive and less adaptive postural control strategies than infants born full term. Both groups changed their postural complexity utilized during the development of head control and reaching. Discussion Early postural complexity was decreased in infants born preterm, compared to infants born full term. Commonly used clinical assessments did not identify these early differences in postural control. Altered postural control in infants born preterm influenced ongoing skill development in the first six months of life. PMID:24485170
Postural Coordination during Socio-motor Improvisation
Gueugnon, Mathieu; Salesse, Robin N.; Coste, Alexandre; Zhao, Zhong; Bardy, Benoît G.; Marin, Ludovic
2016-01-01
Human interaction often relies on socio-motor improvisation. Creating unprepared movements during social interaction is not a random process but relies on rules of synchronization. These situations do not only involve people to be coordinated, but also require the adjustment of their posture in order to maintain balance and support movements. The present study investigated posture in such a context. More precisely, we first evaluated the impact of amplitude and complexity of arm movements on posture in solo situation. Then, we assessed the impact of interpersonal coordination on posture using the mirror game in which dyads performed improvised and synchronized movements (i.e., duo situation). Posture was measured through ankle-hip coordination in medio-lateral and antero-posterior directions (ML and AP respectively). Our results revealed the spontaneous emergence of in-phase pattern in ML direction and antiphase pattern in AP direction for solo and duo situations. These two patterns respectively refer to the simultaneous flexion/extension of the ankles and the hips in the same or opposite direction. It suggests different functional roles of postural coordination patterns in each direction, with in-phase supporting task performance in ML (dynamical stability) and antiphase supporting postural control in AP (mechanical stability). Although amplitude of movement did not influence posture, movement complexity disturbed postural stability in both directions. Conversely, interpersonal coordination promoted postural stability in ML but not in AP direction. These results are discussed in terms of the difference in coupling strength between ankle-hip coordination and interpersonal coordination. PMID:27547193
Postural Coordination during Socio-motor Improvisation.
Gueugnon, Mathieu; Salesse, Robin N; Coste, Alexandre; Zhao, Zhong; Bardy, Benoît G; Marin, Ludovic
2016-01-01
Human interaction often relies on socio-motor improvisation. Creating unprepared movements during social interaction is not a random process but relies on rules of synchronization. These situations do not only involve people to be coordinated, but also require the adjustment of their posture in order to maintain balance and support movements. The present study investigated posture in such a context. More precisely, we first evaluated the impact of amplitude and complexity of arm movements on posture in solo situation. Then, we assessed the impact of interpersonal coordination on posture using the mirror game in which dyads performed improvised and synchronized movements (i.e., duo situation). Posture was measured through ankle-hip coordination in medio-lateral and antero-posterior directions (ML and AP respectively). Our results revealed the spontaneous emergence of in-phase pattern in ML direction and antiphase pattern in AP direction for solo and duo situations. These two patterns respectively refer to the simultaneous flexion/extension of the ankles and the hips in the same or opposite direction. It suggests different functional roles of postural coordination patterns in each direction, with in-phase supporting task performance in ML (dynamical stability) and antiphase supporting postural control in AP (mechanical stability). Although amplitude of movement did not influence posture, movement complexity disturbed postural stability in both directions. Conversely, interpersonal coordination promoted postural stability in ML but not in AP direction. These results are discussed in terms of the difference in coupling strength between ankle-hip coordination and interpersonal coordination.
The effects of brief swaying on postural control.
Pagé, Sara; Maheu, Maxime; Landry, Simon P; Champoux, François
2017-12-06
Postural control can be improved with balance training. However, the nature and duration of the training required to enhance posture remains unclear. We studied the effects of 5 min of a self-initiated balance exercise along a single axis on postural control in healthy individuals. Postural control was measured before and after a 5-min period where members of the experimental group were asked to lean their entire body forward and backward and members of the control group were asked to remain seated. A significant improvement for sway velocity, a postural control variable significantly associated with an increased risk of falls, was found in the experimental group following the body sway exercise. These data suggest that a basic exercise can rapidly improve postural control and reduce the risk of falls.
[Research on respiration course of human at different postures by electrical impedance tomography].
Chen, Xiaoyan; Wu, Jun; Wang, Huaxiang; Li, Da
2010-10-01
In this paper, the respiration courses of human at different postures are reconstructed by electrical impedance tomography (EIT). Conjugate gradient least squares (CGLS) algorithm is applied to reconstruct the resistivity distribution during respiration courses, and the EIT images taken from human at flat lying, left lying, right lying, sitting and prone postures are reconstructed and compared. The relative changes of the resistivity in region of interest (ROI) are analyzed to evidence the influences caused by different postures. Results show that the changes in postures are the most influential factors for the reconstructions, and the EIT images vary with the postures. In human at flat-lying posture, the left and right lungs have larger pulmonary ventilation volume simultaneously, and the EIT-measured data are of lower variability.
NASA Astrophysics Data System (ADS)
Winardi, A. M.; Wulansari, L. K.; Kusdhany, L. S.
2017-08-01
Osteoporosis must be detected early in order to prevent failures in denture treatment. To this end, tools such as the Posture-P questionnaire and the Quantitative Ultrasound (QUS) are widely used for osteoporosis screening. Posture-P. This study is a diagnostic test that analyzes the sensitivity and specificity of the Posture-P questionnaire towards QUS in assessing the bone density of postmenopausal women. Data was collected through interviews using the Posture-P questionnaire, and bone density was measured using the QUS. The results of this study show that both the sensitivity and specificity of the Posture-P questionnaire towards QUS are quite good, with respective values of 77.23% and 75%. Thus, the Posture-P questionnaire can replace the QUS in osteoporosis screening.
Contributions of visual and embodied expertise to body perception.
Reed, Catherine L; Nyberg, Andrew A; Grubb, Jefferson D
2012-01-01
Recent research has demonstrated that our perception of the human body differs from that of inanimate objects. This study investigated whether the visual perception of the human body differs from that of other animate bodies and, if so, whether that difference could be attributed to visual experience and/or embodied experience. To dissociate differential effects of these two types of expertise, inversion effects (recognition of inverted stimuli is slower and less accurate than recognition of upright stimuli) were compared for two types of bodies in postures that varied in typicality: humans in human postures (human-typical), humans in dog postures (human-atypical), dogs in dog postures (dog-typical), and dogs in human postures (dog-atypical). Inversion disrupts global configural processing. Relative changes in the size and presence of inversion effects reflect changes in visual processing. Both visual and embodiment expertise predict larger inversion effects for human over dog postures because we see humans more and we have experience producing human postures. However, our design that crosses body type and typicality leads to distinct predictions for visual and embodied experience. Visual expertise predicts an interaction between typicality and orientation: greater inversion effects should be found for typical over atypical postures regardless of body type. Alternatively, embodiment expertise predicts a body, typicality, and orientation interaction: larger inversion effects should be found for all human postures but only for atypical dog postures because humans can map their bodily experience onto these postures. Accuracy data supported embodiment expertise with the three-way interaction. However, response-time data supported contributions of visual expertise with larger inversion effects for typical over atypical postures. Thus, both types of expertise affect the visual perception of bodies.
Kuroda, H; Sawatari, H; Ando, S; Ohkusa, T; Rahmawati, A; Ono, J; Nishizaka, M; Hashiguchi, N; Matsuoka, F; Chishaki, A
2017-07-01
People with Down syndrome (DS) often have sleep-disordered breathing (SDB). Unusual sleep postures, such as leaning forward and sitting, are observed in people with DS. This study aimed to clarify the prevalence of unusual sleep postures and their relationships with SDB-related symptoms (SDB-RSs), such as snoring, witnessed apnoea, nocturnal awakening and excessive daytime sleepiness. A questionnaire, including demographic characteristics and the presence of unusual sleep postures, as well as SDB-RSs, was completed by 1149 parents of people with DS from Japan. Unusual sleep postures were recorded in 483 (42.0%) people with DS. These participants were significantly younger and had a history of low muscle tone more frequently than people without unusual sleep postures. In all ages, the leaning forward posture was more frequent than sitting. People with DS with unusual sleep postures suffered from SDB-RSs. Those who slept in the sitting posture had more frequent SDB-RSs than did those who slept with the leaning forward posture. Snoring, witnessed apnoea and nocturnal awakening were observed in 73.6, 27.2 and 58.2% of participants, respectively. Snoring increased with aging. Witnessed apnoea was more common in males and in those with hypothyroidism than in females and in those without hypothyroidism. Our study shows that there is a close relationship between unusual sleep postures and SDB-RSs. We recommend that all people with DS with unusual sleep postures should be checked for the presence of SDB. © 2017 MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd.
Prevalence of incorrect body posture in children and adolescents with overweight and obesity.
Maciałczyk-Paprocka, Katarzyna; Stawińska-Witoszyńska, Barbara; Kotwicki, Tomasz; Sowińska, Anna; Krzyżaniak, Alicja; Walkowiak, Jarosław; Krzywińska-Wiewiorowska, Małgorzata
2017-05-01
The ever increasing epidemics of overweight and obesity in school children may be one of the reasons of the growing numbers of children with incorrect body posture. The purpose of the study was the assessment of the prevalence of incorrect body posture in children and adolescents with overweight and obesity in Poznań, Poland. The population subject to study consisted of 2732 boys and girls aged 3-18 with obesity, overweight, and standard body mass. The assessment of body mass was performed based on BMI, adopting Cole's cutoff values. The evaluation of body posture was performed according to the postural error chart based on criteria complied by professor Dega. The prevalence rates of postural errors were significantly higher among children and adolescents with overweight and obesity than among the group with standard body mass. In the overweight group, it amounted to 69.2% and in the obese group to 78.6%. The most common postural deviations in obese children and adolescents were valgus knees and flat feet. Overweight and obesity in children and adolescents, predisposing to higher incidence of some types of postural errors, call for prevention programs addressing both health problems. What is Known: • The increase in the prevalence of overweight and obesity among children and adolescents has drawn attention to additional health complications which may occur in this population such as occurrence of incorrect body posture. What is New: • The modified chart of postural errors proved to be an effective tool in the assessment of incorrect body posture. • This chart may be used in the assessment of posture during screening tests and prevention actions at school.
Postural Stability in Older Adults With Alzheimer Disease.
Mesbah, Normala; Perry, Meredith; Hill, Keith D; Kaur, Mandeep; Hale, Leigh
2017-03-01
The prevalence of adults with Alzheimer disease (AD) aged >65 years is increasing and estimated to quadruple by 2051. The aim of this study was to investigate postural stability in people with mild to moderate AD and factors contributing to postural instability compared with healthy peers (controls). A computerized systematic search of databases and a hand search of reference lists for articles published from 1984 onward (English-language articles only) were conducted on June 2, 2015, using the main key words "postural stability" and "Alzheimer's disease." Sixty-seven studies were assessed for eligibility (a confirmed diagnosis of AD, comparison of measured postural stability between participants with AD and controls, measured factors potentially contributing to postural instability). Data were extracted, and Downs and Black criteria were applied to evaluate study quality. Eighteen articles were analyzed using qualitative synthesis and reported based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Strength of evidence was guided by the Grading of Recommendations Assessment, Development and Evaluation. Strong evidence was found that: (1) older adults with mild to moderate AD have reduced static and functional postural stability compared with healthy peers (controls) and (2) attentional demand during dual-task activity and loss of visual input were key factors contributing to postural instability. Deta-analysis was not possible due to heterogeneity of the data. Postural stability is impaired in older adults with mild to moderate AD. Decreasing visual input and concentrating on multiple tasks decrease postural stability. To reduce falls risk, more research discerning appropriate strategies for the early identification of impairment of postural stability is needed. Standardization of population description and consensus on outcome measures and the variables used to measure postural -instability and its contributing factors are necessary to ensure meaningful synthesis of data. © 2017 American Physical Therapy Association
2013-01-01
Background The current experiment investigated the impact of two potential confounding variables on the postural balance in young participants: the induced-experimental activity prior to the static postural measurements and the well-documented time-of-day effects. We mainly hypothesized that an exhaustive exercise and a high attention-demanding task should result in alterations of postural control. Methods Ten participants performed three experimental sessions (differentiated by the activity – none, cognitive or physical – prior of the assessment of postural stability), separated by one day at least. Each session included postural balance assessments around 8 a.m., 12.00 p.m. and 5 p.m. ± 30 min. The physical and cognitive activities were performed only before the 12 o’clock assessment. The postural tests consisted of four conditions of quiet stance: stance on a firm surface with eyes open; stance on a firm surface with eyes closed; stance on a foam surface with eyes open and stance on a foam surface with eyes closed. Postural performance was assessed by various center of pressure (COP) parameters. Results Overall, the COP findings indicated activity-related postural impairment, with an increase in body sway in the most difficult conditions (with foam surface), especially when postural measurements are recorded just after the running exercise (physical session) or the psychomotor vigilance test (cognitive session). Conclusions Even if no specific influence of time-of-day on static postural control is demonstrated, our results clearly suggest that the activities prior to balance tests could be a potential confounding variable to be taken into account and controlled when assessing clinical postural balance. PMID:23452958
Bloem, B R; Beckley, D J; van Dijk, J G
1999-02-01
Abnormal automatic postural responses are thought to contribute to balance impairment in Parkinson's disease. However, because postural responses are modifiable by stance, we have speculated that some postural abnormalities in patients with Parkinson's disease are secondary to their stooped stance. We have studied this assumption by assessing automatic postural responses in 30 healthy subjects who were instructed either to stand upright or to assume a typical parkinsonian posture. During both conditions, subjects received 20 serial 4 degrees 'toe-up' rotational perturbations from a supporting forceplate. We recorded short-latency (SL) and medium-latency (ML) responses from stretched gastrocnemius muscles and long-latency (LL) responses from shortened tibialis anterior muscles. We also assessed changes in the center of foot pressure (CFP) and the center of gravity (COG). The results were qualitatively compared to a previously described group of patients with Parkinson's disease who, under these circumstances, typically have large ML responses, small LL responses and insufficient voluntary postural corrections, accompanied by a slow rate of backward CFP displacement and an increased posterior COG displacement. The stooped posture resulted in unloading of medial gastrocnemius muscles and loading of tibialis anterior muscles. Onset latencies of stretch responses in gastrocnemius muscles were delayed in stooped subjects, but the onset of LL responses was markedly reduced. Amplitudes of both ML and LL responses were reduced in stooped subjects. Prestimulus COG and, to a lesser extent, CFP were shifted forwards in stooped subjects. Posterior COG displacement and the rate of backward CFP displacement were diminished in stooped subjects. Voluntary postural corrections were unchanged while standing stooped. These results indicate that some postural abnormalities of patients with Parkinson's disease (most notably the reduced LL responses) can be reproduced in healthy subjects mimicking a stooped parkinsonian posture. Other postural abnormalities (most notably the increased ML responses and insufficient voluntary responses) did not appear in stooped controls and may contribute to balance impairment in Parkinson's disease.
McKeon, Patrick O; Hertel, Jay
2008-01-01
Objective: To answer the following clinical questions: (1) Is poor postural control associated with increased risk of a lateral ankle sprain? (2) Is postural control adversely affected after acute lateral ankle sprain? (3) Is postural control adversely affected in those with chronic ankle instability? Data Sources: PubMed and CINAHL entries from 1966 through October 2006 were searched using the terms ankle sprain, ankle instability, balance, chronic ankle instability, functional ankle instability, postural control, and postural sway. Study Selection: Only studies assessing postural control measures in participants on a stable force plate performing the modified Romberg test were included. To be included, a study had to address at least 1 of the 3 clinical questions stated above and provide adequate results for calculation of effect sizes or odds ratios where applicable. Data Extraction: We calculated odds ratios with 95% confidence intervals for studies assessing postural control as a risk factor for lateral ankle sprains. Effect sizes were estimated with the Cohen d and associated 95% confidence intervals for comparisons of postural control performance between healthy and injured groups, or healthy and injured limbs, respectively. Data Synthesis: Poor postural control is most likely associated with an increased risk of sustaining an acute ankle sprain. Postural control is impaired after acute lateral ankle sprain, with deficits identified in both the injured and uninjured sides compared with controls. Although chronic ankle instability has been purported to be associated with altered postural control, these impairments have not been detected consistently with the use of traditional instrumented measures. Conclusions: Instrumented postural control testing on stable force plates is better at identifying deficits that are associated with an increased risk of ankle sprain and that occur after acute ankle sprains than at detecting deficits related to chronic ankle instability. PMID:18523566
Mendez-Gallardo, Valerie; Roberto, Megan E.; Kauer, Sierra D.; Brumley, Michele R.
2015-01-01
The development of postural control is considered an important factor for the expression of coordinated behavior such as locomotion. In the natural setting of the nest, newborn rat pups adapt their posture to perform behaviors of ecological relevance such as those related to suckling. The current study explores the role of posture in the expression of three behaviors in the newborn rat: spontaneous limb activity, locomotor-like stepping behavior, and the leg extension response (LER). One-day-old rat pups were tested in one of two postures – prone or supine – on each of these behavioral measures. Results showed that pups expressed more spontaneous activity while supine, more stepping while prone, and no differences in LER expression between the two postures. Together these findings show that posture affects the expression of newborn behavior patterns in different ways, and suggest that posture may act as a facilitator or a limiting factor in the expression of different behaviors during early development. PMID:26655784
Shih, Ching-Hsiang; Shih, Ching-Tien; Chu, Chiung-Ling
2010-01-01
The latest researches adopted software technology turning the Nintendo Wii Balance Board into a high performance change of standing posture (CSP) detector, and assessed whether two persons with multiple disabilities would be able to control environmental stimulation using body swing (changing standing posture). This study extends Wii Balance Board functionality for standing posture correction (i.e., actively adjust abnormal standing posture) to assessed whether two persons with multiple disabilities would be able to actively correct their standing posture by controlling their favorite stimulation on/off using a Wii Balance Board with a newly developed standing posture correcting program (SPCP). The study was performed according to an ABAB design, in which A represented baseline and B represented intervention phases. Data showed that both participants significantly increased time duration of maintaining correct standing posture (TDMCSP) to activate the control system to produce environmental stimulation during the intervention phases. Practical and developmental implications of the findings were discussed.
Matsuura, Yukako; Fujino, Haruo; Hashimoto, Ryota; Yasuda, Yuka; Yamamori, Hidenaga; Ohi, Kazutaka; Takeda, Masatoshi; Imura, Osamu
2015-03-01
The purpose of this study was to assess postural instability in patients with schizophrenia using a pressure-sensitive platform and to examine the effects of anxiety, psychiatric symptoms, and the use of neuroleptic medications on postural sway. Participants were 23 patients with schizophrenia and 23 healthy controls. We found that the patients showed greater overall postural instability than the controls. Furthermore, they demonstrated greater instability when the test was performed with the eyes closed than with the eyes open. However, removal of visual input had less impact on the indices of postural instability in the patients than in the controls, suggesting that schizophrenia is associated with difficulties in integrating visual information and proprioceptive signals. Furthermore, in contrast to the controls, anxiety exacerbated postural instability in the patients. There were significant associations between postural stability and psychiatric symptoms in the patients without extrapyramidal symptoms, whereas medication dose did not significantly correlate with postural stability. Copyright © 2015 Elsevier B.V. All rights reserved.
Characterization of posture and comfort in laptop users in non-desk settings.
Gold, J E; Driban, J B; Yingling, V R; Komaroff, E
2012-03-01
Laptop computers may be used in a variety of postures not coupled to the office workstation. Using passive motion analysis, this study examined mean joint angles during a short typing/editing task in college students (n=20), in up to seven positions. Comfort was assessed after task execution through a body map. For three required postures, joint angles in a prone posture were different than those while seated at a couch with feet either on floor or on ottoman. Specifically, the prone posture was characterized by comparatively non-neutral shoulders, elbows and wrists, and pronounced neck extension. Significantly greater intensity and more regions of discomfort were marked for the prone posture than for the seated postures. It is recommended that the prone posture only be assumed briefly during laptop use. Exposure to laptops outside of the office setting should be assessed in future epidemiologic studies of musculoskeletal complaints and computer use. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.
[Posture and aging. Current fundamental studies and management concepts].
Mourey, F; Camus, A; Pfitzenmeyer, P
2000-02-19
FUNDAMENTAL IMPORTANCE OF POSTURE: In the elderly subject, preservation of posture is fundamental to maintaining functional independence. In recent years, there has been much progress in our understanding of the mechanisms underlying strategies used to control equilibrium in the upright position. Physiological aging, associated with diverse disease states, dangerously alters the postural function, particularly anticipated adjustments which allow an adaptation of posture to movement. CLINICAL ASSESSMENT OF POSTURE: Several tests have been developed to assess posture in the elderly subject, particularly the time it takes to start walking. We selected certain tests which can be used in everyday practice to predict falls: the stance test, the improved Romberg test, the "timed get up and go test", measurement of walking cadence, assessment of balance reactions, sitting-standing and standing-sitting movements and capacity to get up off the floor. PATIENT CARE: Elderly patients with equilibrium disorders can benefit from specific personalized rehabilitation protocols. Different techniques have been developed for multiple afferential stimulation, reprogramming postural strategies, and correcting for deficient motor automatisms.
Back posture education in elementary schoolchildren: a 2-year follow-up study.
Geldhof, Elisabeth; Cardon, Greet; De Bourdeaudhuij, Ilse; De Clercq, Dirk
2007-06-01
Within the scope of primary prevention regarding back functioning in children, research on the stability of intervention effects is indispensable. Along this line, the transition from childhood to adolescence is an important phase to evaluate the potential stability of intervention effects because of the typically mechanical and psychological demands related to adolescence. The main aim of the current study was to investigate the effects of a back education program at 2-year follow-up, in youngsters aged 13-14 years, on back posture knowledge, fear-avoidance beliefs and self-reported pain. An additional purpose was to evaluate which aspects of postural behavior were integrated in youngsters' lifestyles. At 2-year follow-up, the study sample included 94 secondary schoolchildren in the intervention group (mean age 13.3 +/- 0.8 years) and 101 controls (mean age 13.2 +/- 0.7 years). The back posture program that had been implemented for two school years consisted of back education and the stimulation of postural dynamism in the class through support and environmental changes. A questionnaire was completed comparable to the pretest, posttest and follow-up evaluations. The current study demonstrated at 2-year follow-up stability of the improved general (F = 1.590, ns) and specific (F = 0.049, ns) back posture knowledge in children who had received early back posture education. Back posture education did not result in increased fear-avoidance beliefs (F = 1.163, ns) or mounting back and/or neck pain reports (F = 0.001, ns). Based on self-reports for postural behavior, youngsters who had received the back posture program in the elementary school curriculum integrated crucial sitting and lifting principles conform to biomechanical favorable postural behavior. The steady intervention effects 2-year post-intervention demonstrated that intensive back posture education through the elementary school curriculum is effective till adolescence. Future research on the impact of early school-based back posture promotion in relation to the integration of back posture principles according to a biomechanical favorable lifestyle and back pain prevalence later in life is essential.
Construct Validity and Reliability of the SARA Gait and Posture Sub-scale in Early Onset Ataxia
Lawerman, Tjitske F.; Brandsma, Rick; Verbeek, Renate J.; van der Hoeven, Johannes H.; Lunsing, Roelineke J.; Kremer, Hubertus P. H.; Sival, Deborah A.
2017-01-01
Aim: In children, gait and posture assessment provides a crucial marker for the early characterization, surveillance and treatment evaluation of early onset ataxia (EOA). For reliable data entry of studies targeting at gait and posture improvement, uniform quantitative biomarkers are necessary. Until now, the pediatric test construct of gait and posture scores of the Scale for Assessment and Rating of Ataxia sub-scale (SARA) is still unclear. In the present study, we aimed to validate the construct validity and reliability of the pediatric (SARAGAIT/POSTURE) sub-scale. Methods: We included 28 EOA patients [15.5 (6–34) years; median (range)]. For inter-observer reliability, we determined the ICC on EOA SARAGAIT/POSTURE sub-scores by three independent pediatric neurologists. For convergent validity, we associated SARAGAIT/POSTURE sub-scores with: (1) Ataxic gait Severity Measurement by Klockgether (ASMK; dynamic balance), (2) Pediatric Balance Scale (PBS; static balance), (3) Gross Motor Function Classification Scale -extended and revised version (GMFCS-E&R), (4) SARA-kinetic scores (SARAKINETIC; kinetic function of the upper and lower limbs), (5) Archimedes Spiral (AS; kinetic function of the upper limbs), and (6) total SARA scores (SARATOTAL; i.e., summed SARAGAIT/POSTURE, SARAKINETIC, and SARASPEECH sub-scores). For discriminant validity, we investigated whether EOA co-morbidity factors (myopathy and myoclonus) could influence SARAGAIT/POSTURE sub-scores. Results: The inter-observer agreement (ICC) on EOA SARAGAIT/POSTURE sub-scores was high (0.97). SARAGAIT/POSTURE was strongly correlated with the other ataxia and functional scales [ASMK (rs = -0.819; p < 0.001); PBS (rs = -0.943; p < 0.001); GMFCS-E&R (rs = -0.862; p < 0.001); SARAKINETIC (rs = 0.726; p < 0.001); AS (rs = 0.609; p = 0.002); and SARATOTAL (rs = 0.935; p < 0.001)]. Comorbid myopathy influenced SARAGAIT/POSTURE scores by concurrent muscle weakness, whereas comorbid myoclonus predominantly influenced SARAKINETIC scores. Conclusion: In young EOA patients, separate SARAGAIT/POSTURE parameters reveal a good inter-observer agreement and convergent validity, implicating the reliability of the scale. In perspective of incomplete discriminant validity, it is advisable to interpret SARAGAIT/POSTURE scores for comorbid muscle weakness. PMID:29326569
Photographic measurement of head and cervical posture when viewing mobile phone: a pilot study.
Guan, Xiaofei; Fan, Guoxin; Wu, Xinbo; Zeng, Ying; Su, Hang; Gu, Guangfei; Zhou, Qi; Gu, Xin; Zhang, Hailong; He, Shisheng
2015-12-01
With the dramatic growth of mobile phone usage, concerns have been raised with regard to the adverse health effects of mobile phone on spinal posture. The aim of this study was to determine the head and cervical postures by photogrammetry when viewing the mobile phone screen, compared with those in neutral standing posture. A total of 186 subjects (81 females and 105 males) aged from 17 to 31 years old participated in this study. Subjects were instructed to stand neutrally and using mobile phone as in daily life. Using a photographic method, the sagittal head and cervical postures were assessed by head tilt angle, neck tilt angle, forward head shift and gaze angle. The photographic method showed a high intra-rater and inter-rater reliability in measuring the sagittal posture of cervical spine and gaze angle (ICCs ranged from 0.80 to 0.99). When looking at mobile phone, the head tilt angle significantly increased (from 74.55° to 95.22°, p = 0.000) and the neck angle decreased (from 54.68° to 38.77°, p = 0.000). The forward head posture was also confirmed by the significantly increased head shift (from 10.90 to 13.85 cm, p = 0.000). The posture assumed in mobile phone use was significantly correlated with neutral posture (p < 0.05). Males displayed a more forward head posture than females (p < 0.05). The head tilt angle was positively correlated with the gaze angle (r = 0.616, p = 0.000), while the neck tilt angle was negatively correlated with the gaze angle (r = -0.628, p = 0.000). Photogrammetry is a reliable, quantitative method to evaluate the head and cervical posture during mobile phone use. Compared to neutral standing, subjects display a more forward head posture when viewing the mobile phone screen, which is correlated with neutral posture, gaze angle and gender. Future studies will be needed to investigate a dose-response relationship between mobile phone use and assumed posture.
Back posture education in elementary schoolchildren: a 2-year follow-up study
Geldhof, Elisabeth; De Bourdeaudhuij, Ilse; De Clercq, Dirk
2006-01-01
Within the scope of primary prevention regarding back functioning in children, research on the stability of intervention effects is indispensable. Along this line, the transition from childhood to adolescence is an important phase to evaluate the potential stability of intervention effects because of the typically mechanical and psychological demands related to adolescence. The main aim of the current study was to investigate the effects of a back education program at 2-year follow-up, in youngsters aged 13–14 years, on back posture knowledge, fear-avoidance beliefs and self-reported pain. An additional purpose was to evaluate which aspects of postural behavior were integrated in youngsters’ lifestyles. At 2-year follow-up, the study sample included 94 secondary schoolchildren in the intervention group (mean age 13.3 ± 0.8 years) and 101 controls (mean age 13.2 ± 0.7 years). The back posture program that had been implemented for two school years consisted of back education and the stimulation of postural dynamism in the class through support and environmental changes. A questionnaire was completed comparable to the pretest, posttest and follow-up evaluations. The current study demonstrated at 2-year follow-up stability of the improved general (F = 1.590, ns) and specific (F = 0.049, ns) back posture knowledge in children who had received early back posture education. Back posture education did not result in increased fear-avoidance beliefs (F = 1.163, ns) or mounting back and/or neck pain reports (F = 0.001, ns). Based on self-reports for postural behavior, youngsters who had received the back posture program in the elementary school curriculum integrated crucial sitting and lifting principles conform to biomechanical favorable postural behavior. The steady intervention effects 2-year post-intervention demonstrated that intensive back posture education through the elementary school curriculum is effective till adolescence. Future research on the impact of early school-based back posture promotion in relation to the integration of back posture principles according to a biomechanical favorable lifestyle and back pain prevalence later in life is essential. PMID:17013655
Test-retest reliability of posture measurements in adolescents with idiopathic scoliosis.
Heitz, Pierre-Henri; Aubin-Fournier, Jean-François; Parent, Éric; Fortin, Carole
2018-05-07
Posture changes are a major consequence of IS (IS). Posture changes can lead to psychosocial and physical impairments in adolescents with IS. Therefore, it is important to assess posture but the test-retest reliability of posture measurements still remains unknown in this population. The primary objective was to determine the test-retest reliability of 25 head and trunk posture indices using the Clinical Photographic Postural Assessment Tool (CPPAT) in adolescents with IS. The secondary objective was to determine the standard error of measurement and the minimal detectable change. This is a prospective test-retest reliability study carried out at two tertiary university hospital centers. Forty-one adolescents with IS, aged 10 to 16 years old with curves 10 to 45 o and treated non-operatively were recruited. Two posture assessments were done using the CPPAT five to 10 days apart following a standardized procedure. Photographs were analyzed with the CPPAT software by digitizing reference landmarks placed on the participant by a physiotherapist evaluator. Generalizability theory was used to obtain a coefficient of dependability, standard error of measurement and the minimal detectable change at the 90% confidence interval. This project was supported by the Canadian Pediatric Spine Society (CPSS: 10000$). There is no study-specific conflicts of interest-associated biases. Fourteen of 25 posture indices had a good reliability (ϕ ≥ 0.78), ten of 25 had moderate reliability (ϕ = 0.55 to 0.74) and one had poor reliability (ϕ = 0.45). The most reliable posture indices were waist angles asymmetry (ϕ = 0.93), right waist angle (ϕ = 0.91) and frontal trunk list (ϕ = 0.92). Right sagittal trunk list was the least reliable posture index (ϕ = 0.45). The MDC 90 values ranged from 2.6 to 10.3° for angular measurements and from 8.4 to 35.1 mm for linear measurements. This study demonstrates that most posture indices, especially the trunk posture indices, are reproducible in time among adolescents with IS and provides reference values. Clinicians and researchers can use these reference values in order to assess change in posture over time attributable to treatment effectiveness. Copyright © 2018. Published by Elsevier Inc.
Tominaga, Ryoji; Fukuma, Shingo; Yamazaki, Shin; Sekiguchi, Miho; Otani, Koji; Kikuchi, Shin-Ichi; Sasaki, Sho; Kobayashi, Susumu; Fukuhara, Shunichi; Konno, Shin-Ichi
2016-08-01
A cohort study using data from the Locomotive Syndrome and Health Outcome in Aizu Cohort Study, a population-based prospective cohort study of residents of the towns of Tadami and Minamiaizu in Fukushima Prefecture, Japan. The aim of this study was to clarify the association between kyphotic posture and falls, and to investigate the presence or absence of sex differences. In our literature review, we found no studies focusing on sex differences in the association between kyphotic posture and falls. We included subjects aged more than 40 years who participated in annual health check-ups from 2009 to 2010. We analyzed the effects of kyphotic posture, measured using the wall-occiput test (WOT), on falls, adjusting for potential confounders, such as age, body mass index, symptoms of depression, sedative medication, and other comorbidities. We enrolled a total of 1418 subjects into primary analyses (593 men, 825 women; mean [standard deviation] age, 68.1 [7.7] yrs). We then stratified subjects into the following groups according to the degree of kyphotic posture: nonkyphotic posture (n = 1138, 80.3%), mild kyphotic posture (n = 172, 12.1%), and severe kyphotic posture (n = 108, 7.6%). We observed no significant difference in the severity of kyphotic posture between men and women (P = 0.18). Overall, 284 subjects (20.0%) experienced at least one fall during the one-year period. After adjustment for potential confounders using a logistic regression model, we observed a significant association between severe kyphotic posture and falls for men [odds ratio (OR) 2.14 (1.01-4.57); P = 0.048]. In contrast, we observed no significant association for women [OR for severe kyphotic posture 0.80 (0.43-1.50), OR for mild kyphotic posture 0.91 (0.53-1.57)]. We identified a sex difference in the association between kyphotic posture and falls in community-dwelling adults. In particular, severe kyphotic posture might only increase the incidence of falls in men. 3.
[Stereovideographic evaluation of the postural geometry of healthy and scoliotic patients].
De la Huerta, F; Leroux, M A; Zabjek, K F; Coillard, C; Rivard, C H
1998-01-01
Idiopathic scoliosis principally characterised by a deformation of the vertebral column can also be associated to postural abnormalities. The validity and reliability of current quantitative postural evaluations has not been thoroughly documented, frequently limited by a two dimensional view of the patient, and do not include the whole posture of the patient. The purpose of this study is to 1) quantify within and between-session reliability of a stereovideographic Postural Geometry (PG) evaluation and 2) to investigate the sensitivity of this technique for the postural evaluation of scoliosis patients. The PG of 14 control subjects and 9 untreated scoliosis patients were evaluated with 5 repeat trials, on two occasions. Postural geometry parameters that describe the position and orientation of the pelvis, trunk, scapular girdle and head were calculated based on the 3-dimensional co-ordinates of anatomical landmarks. The mean between and within-session variability across all parameters were 12.5 mm, 2.8 degrees and 5.4 mm and 1.4 degrees respectively. The patient group was heterogeneous with some noted pathological characteristics. This global stereovideographic postural geometry evaluation appears to demonstrate sufficient reliability and sensitivity to follow-up on the posture of scoliosis patients.
Goble, Daniel J; Hearn, Mason C; Baweja, Harsimran S
2017-01-01
Atypically high postural sway measured by a force plate is a known risk factor for falls in older adults. Further, it has been shown that small, but significant, reductions in postural sway are possible with various balance exercise interventions. In the present study, a new low-cost force-plate technology called the Balance Tracking System (BTrackS) was utilized to assess postural sway of older adults before and after 90 days of a well-established exercise program called Geri-Fit. Results showed an overall reduction in postural sway across all participants from pre- to post-intervention. However, the magnitude of effects was significantly influenced by the amount of postural sway demonstrated by individuals prior to Geri-Fit training. Specifically, more participants with atypically high postural sway pre-intervention experienced an overall postural sway reduction. These reductions experienced were typically greater than the minimum detectable change statistic for the BTrackS Balance Test. Taken together, these findings suggest that BTrackS is an effective means of identifying older adults with elevated postural sway, who are likely to benefit from Geri-Fit training to mitigate fall risk. PMID:28228655
Goble, Daniel J; Hearn, Mason C; Baweja, Harsimran S
2017-01-01
Atypically high postural sway measured by a force plate is a known risk factor for falls in older adults. Further, it has been shown that small, but significant, reductions in postural sway are possible with various balance exercise interventions. In the present study, a new low-cost force-plate technology called the Balance Tracking System (BTrackS) was utilized to assess postural sway of older adults before and after 90 days of a well-established exercise program called Geri-Fit. Results showed an overall reduction in postural sway across all participants from pre- to post-intervention. However, the magnitude of effects was significantly influenced by the amount of postural sway demonstrated by individuals prior to Geri-Fit training. Specifically, more participants with atypically high postural sway pre-intervention experienced an overall postural sway reduction. These reductions experienced were typically greater than the minimum detectable change statistic for the BTrackS Balance Test. Taken together, these findings suggest that BTrackS is an effective means of identifying older adults with elevated postural sway, who are likely to benefit from Geri-Fit training to mitigate fall risk.
Toprak Çelenay, Şeyda; Özer Kaya, Derya
2017-04-18
To investigate the effects of an 8-week thoracic stabilization exercise program on back pain, spinal alignment, postural sway, and core endurance in university students. University students were randomly allocated into exercise (n: 28) and control (n: 25) groups. The exercise program was carried out 3 days a week for 8 weeks. Postural pain, spinal alignment, postural sway, and core endurance were assessed via visual analogue scale, Spinal Mouse, Biodex Balance System, and McGill's trunk muscle endurance tests at the baseline and after 8 weeks of training. Differences were observed for postural pain, thoracic and lumbar curvature, dynamic stability index (eyes closed), and core endurance scores in the exercise group between baseline and week 8 (P < 0.05) and all the parameters were significantly different when compared to those of the control group (P < 0.05). The program decreased postural pain, spinal curvatures, and postural sway, and increased core endurance in university students. The program can be effective in postural pain and misalignment of spine problems related to core weakness and balance disorders.
Cacciatore, Timothy W; Horak, Fay B; Henry, Sharon M
2005-06-01
The relationship between abnormal postural coordination and back pain is unclear. The Alexander Technique (AT) aims to improve postural coordination by using conscious processes to alter automatic postural coordination and ongoing muscular activity, and it has been reported to reduce low back pain. This case report describes the use of the AT with a client with low back pain and the observed changes in automatic postural responses and back pain. The client was a 49-year-old woman with a 25-year history of left-sided, idiopathic, lumbrosacral back pain. Automatic postural coordination was measured using a force plate during horizontal platform translations and one-legged standing. The client was tested monthly for 4 months before AT lessons and for 3 months after lessons. Before lessons, she consistently had laterally asymmetric automatic postural responses to translations. After AT lessons, the magnitude and asymmetry of her responses and balance improved and her low back pain decreased. Further research is warranted to study whether AT lessons improve low back pain-associated abnormalities in automatic postural coordination and whether improving automatic postural coordination helps to reduce low back pain.
Measurement of stressful postures during daily activities: An observational study with older people.
Seidel, David; Hjalmarson, Jenny; Freitag, Sonja; Larsson, Tore J; Brayne, Carol; Clarkson, P John
2011-07-01
This study measured the postures of older people during cooking and laundry. A sample of men and women aged 75+ years (n=27) was recruited and observed in a home-like environment. Postures were recorded with a measurement system in an objective and detailed manner. The participants were videotaped to be able to see where 'critical' postures occurred, as defined by a trunk inclination of ≥60°. Analysis of data was facilitated by specially developed software. Critical postures accounted for 3% of cooking and 10% of laundry, occurring primarily during retrieving from and putting in lower cabinets, the refrigerator, laundry basket or washing machine as well as disposing into the waste bin. These tasks involve a great variation in postural changes and pose a particular risk to older people. The results suggest that the use of stressful postures may decrease efficiency and increase fatigue, eventually leading to difficulties with daily activities. The specific tasks identified during which critical postures occurred should be targeted by designers in order to improve the activities. A few examples are given of how better design can reduce or eliminate some of the postural constraints. Copyright © 2011 Elsevier B.V. All rights reserved.
Postural time-to-contact as a precursor of visually induced motion sickness.
Li, Ruixuan; Walter, Hannah; Curry, Christopher; Rath, Ruth; Peterson, Nicolette; Stoffregen, Thomas A
2018-06-01
The postural instability theory of motion sickness predicts that subjective symptoms of motion sickness will be preceded by unstable control of posture. In previous studies, this prediction has been confirmed with measures of the spatial magnitude and the temporal dynamics of postural activity. In the present study, we examine whether precursors of visually induced motion sickness might exist in postural time-to-contact, a measure of postural activity that is related to the risk of falling. Standing participants were exposed to oscillating visual motion stimuli in a standard laboratory protocol. Both before and during exposure to visual motion stimuli, we monitored the kinematics of the body's center of pressure. We predicted that postural activity would differ between participants who reported motion sickness and those who did not, and that these differences would exist before participants experienced subjective symptoms of motion sickness. During exposure to visual motion stimuli, the multifractality of sway differed between the Well and Sick groups. Postural time-to-contact differed between the Well and Sick groups during exposure to visual motion stimuli, but also before exposure to any motion stimuli. The results provide a qualitatively new type of support for the postural instability theory of motion sickness.
Schild, A M; Fricke, J; Rüssmann, W; Neugebauer, A
2009-10-01
Kestenbaum surgery is performed for nystagmus-related abnormal head posture, and symmetrically changes the position of both eyes to shift the null point to the primary position. Most patients with infantile nystagmus have their null point zone in a lateral gaze position. Less frequently, surgery can be performed to reduce chin-up or chin-down head posture. We report indications for, and the results of eight consecutive interventions performed according to the Kestenbaum principle for the reduction of a chin-up or chin-down head posture. In a retrospective study, the clinical findings for eight patients who consecutively underwent treatment in the University Eye Hospital of Cologne between 2001 and 2007 were investigated. The patients were aged 6 to 16 years; median age was 6.5 years. For all patients, surgery was to correct a chin-up or chin-down head posture due to infantile nystagmus. Preoperatively, five patients showed a chin-down, three a chin-up head posture. All vertical rectus muscles were recessed or tucked between 6 and 7 mm; the resulting cyclodeviation was reduced by an intervention on the superior oblique muscles (6 to 8 mm tucking, in the case of chin-down, or recession in the case of chin-up head posture). Surgery was successful in seven of the eight patients, with a reduction of the vertical head posture to less than 10 degrees. In the cases of chin-down posture, head posture was reduced to between 0 degrees and a maximum of 20 degrees in one case postoperatively (before the operation 20 degrees to 35 degrees ); in the cases of chin-up posture, to less than 8 degrees (before the operation 25 degrees to 35 degrees). One case showed no postoperative improvement in chin-down posture but a head turn to the left of up to 20 degrees; another case had a remaining chin-up posture of 8 degrees with a right turn of 15 degrees . Binocular vision was better or the same in all cases after surgery. For nystagmus patients with chin-up or chin-down head posture, surgery for bilateral parallel shifting of the eyes can considerably improve the head posture. It is possible to compensate the induced cyclodeviation at the same time by bilateral surgery on the superior oblique muscles.
Postural Control in Children with Autism.
ERIC Educational Resources Information Center
Kohen-Raz, Reuven; And Others
1992-01-01
Postural control was evaluated in 91 autistic, 166 normal, and 18 mentally retarded children using a computerized posturographic procedure. In comparison to normal children, the autistic subjects were less likely to exhibit age-related changes in postural performance, and postures were more variable and less stable. (Author/JDD)
McFarland, Joshua C; Meyers, Ron A
2008-08-01
Birds utilize one of two hindlimb postures during flight: an extended posture (with the hip and knee joints flexed, while the ankle joint is extended caudally) or a flexed posture (with the hip, knee, and ankle joints flexed beneath the body). American Avocets (Recurvirostra americana) and Black-necked Stilts (Himantopus mexicanus) extend their legs caudally during flight and support them for extended periods. Slow tonic and slow twitch muscle fibers are typically found in muscles functioning in postural support due to the fatigue resistance of these fibers. We hypothesized that a set of small muscles composed of high percentages of slow fibers and thus dedicated to postural support would function in securing the legs in the extended posture during flight. This study examined the anatomy and histochemical profile of eleven hindlimb muscles to gain insight into their functional roles during flight. Contrary to our hypothesis, all muscles possessed both fast twitch and slow twitch or slow tonic fibers. We believe this finding is due to the versatility of dynamic and postural functions the leg muscles must facilitate, including standing, walking, running, swimming, and hindlimb support during flight. Whether birds use an extended or flexed hindlimb flight posture may be related to the aerodynamic effect of leg position or may reflect evolutionary history. (c) 2008 Wiley-Liss, Inc.
The dentist's operating posture - ergonomic aspects.
Pîrvu, C; Pătraşcu, I; Pîrvu, D; Ionescu, C
2014-06-15
The practice of dentistry involves laborious high finesse dental preparations, precision and control in executions that require a particular attention, concentration and patience of the dentist and finally the dentist's physical and mental resistance. The optimal therapeutic approach and the success of practice involve special working conditions for the dentist and his team in an ergonomic environment. The meaning of the posture in ergonomics is the manner in which different parts of the body are located and thus the reports are established between them in order to allow a special task execution. This article discusses the posture adopted by dentists when they work, beginning with the balanced posture and going to different variants of posture. The ideal posture of a dentist gives him, on the one hand the optimal working conditions (access, visibility and control in the mouth) and on the other hand, physical and psychological comfort throughout the execution of the clinical acts. Although the theme of dentist posture is treated with great care and often presented in the undergraduate courses and the continuing education courses on ergonomics in dentistry, many dentists do not know the subject well enough nor the theoretical issues and therefore nor the practical applicability. The risk and perspective of the musculoskeletal disorders related to unbalanced postures should determine the dentists take postural corrective actions and compensation measures in order to limit the negative effects of working in a bad posture.
Comparison of Biodynamic Responses in Standing and Seated Human Bodies
NASA Astrophysics Data System (ADS)
MATSUMOTO, Y.; GRIFFIN, M. J.
2000-12-01
The dynamic responses of the human body in a standing position and in a sitting position have been compared. The apparent mass and transmissibilities to the head, six locations along the spine, and the pelvis were measured with eight male subjects exposed to vertical whole-body vibration. In both postures, the principal resonance in the apparent mass occurred in the range 5-6 Hz, with slightly higher frequencies and lower apparent mass in the standing posture. There was greater transmission of vertical vibration to the pelvis and the lower spine and greater relative motion within the lower spine in the standing posture than in the sitting posture at the principal resonance and at higher frequencies. Transmissibilities from the supporting surface (floor or seat) to the thoracic region had similar magnitudes for both standing and sitting subjects. The lumbar spine has less lordosis and may be more compressed and less flexible in the sitting posture than in the standing posture. This may have reduced the relative motions between lumbar vertebrae and both the supporting vibrating surface and the other vertebrae in the sitting posture. The characteristics of the vibration transmitted to the pelvis may have differed in the two postures due to different transmission paths. Increased forward rotation of the pelvis in the standing posture may have caused the differences in responses of the pelvis and the lower spine that were observed between the two postures.
Analysis of postural load during tasks related to milking cows-a case study.
Groborz, Anna; Tokarski, Tomasz; Roman-Liu, Danuta
2011-01-01
The aim of this study was to analyse postural load during tasks related to milking cows of 2 farmers on 2 different farms (one with a manual milk transport system, the other with a fully automated milk transport system) as a case study. The participants were full-time farmers, they were both healthy and experienced in their job. The Ovako Working Posture Analyzing System (OWAS) was used to evaluate postural load and postural risk. Postural load was medium for the farmer on the farm with a manual milk transport system and high for the farmer working on the farm with a fully automated milk transport system. Thus, it can be concluded that a higher level of farm mechanization not always mean that the farmer's postural load is lower, but limitation of OWAS should be considered.
Postural dynamism during computer mouse and keyboard use: A pilot study.
Van Niekerk, S M; Fourie, S M; Louw, Q A
2015-09-01
Prolonged sedentary computer use is a risk factor for musculoskeletal pain. The aim of this study was to explore postural dynamism during two common computer tasks, namely mouse use and keyboard typing. Postural dynamism was described as the total number of postural changes that occurred during the data capture period. Twelve participants were recruited to perform a mouse and a typing task. The data of only eight participants could be analysed. A 3D motion analysis system measured the number of cervical and thoracic postural changes as well as, the range in which the postural changes occurred. The study findings illustrate that there is less postural dynamism of the cervical and thoracic spinal regions during computer mouse use, when compared to keyboard typing. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Postural steadiness and ankle force variability in peripheral neuropathy
Paxton, Roger J.; Feldman-Kothe, Caitlin; Trabert, Megan K.; Hitchcock, Leah N.; Reiser, Raoul F.; Tracy, Brian L.
2015-01-01
Introduction The purpose was to determine the effect of peripheral neuropathy (PN) on motor output variability for ankle muscles of older adults, and the relation between ankle motor variability and postural stability in PN patients. Methods Older adults with (O-PN) and without PN (O), and young adults (Y) underwent assessment of standing postural stability and ankle muscle force steadiness. Results O-PN displayed impaired ankle muscle force control and postural stability compared with O and Y groups. For O-PN, the amplitude of plantarflexor force fluctuations was moderately correlated with postural stability under no-vision conditions (r = 0.54, P = 0.01). Discussion The correlation of variations in ankle force with postural stability in PN suggests a contribution of ankle muscle dyscontrol to the postural instability that impacts physical function for older adults with PN. PMID:26284897
Villarrasa-Sapiña, Israel; Álvarez-Pitti, Julio; Cabeza-Ruiz, Ruth; Redón, Pau; Lurbe, Empar; García-Massó, Xavier
2018-02-01
Excess body weight during childhood causes reduced motor functionality and problems in postural control, a negative influence which has been reported in the literature. Nevertheless, no information regarding the effect of body composition on the postural control of overweight and obese children is available. The objective of this study was therefore to establish these relationships. A cross-sectional design was used to establish relationships between body composition and postural control variables obtained in bipedal eyes-open and eyes-closed conditions in twenty-two children. Centre of pressure signals were analysed in the temporal and frequency domains. Pearson correlations were applied to establish relationships between variables. Principal component analysis was applied to the body composition variables to avoid potential multicollinearity in the regression models. These principal components were used to perform a multiple linear regression analysis, from which regression models were obtained to predict postural control. Height and leg mass were the body composition variables that showed the highest correlation with postural control. Multiple regression models were also obtained and several of these models showed a higher correlation coefficient in predicting postural control than simple correlations. These models revealed that leg and trunk mass were good predictors of postural control. More equations were found in the eyes-open than eyes-closed condition. Body weight and height are negatively correlated with postural control. However, leg and trunk mass are better postural control predictors than arm or body mass. Finally, body composition variables are more useful in predicting postural control when the eyes are open. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lateral step initiation behavior in older adults.
Sparto, Patrick J; Jennings, J Richard; Furman, Joseph M; Redfern, Mark S
2014-02-01
Older adults have varied postural responses during induced and voluntary lateral stepping. The purpose of the research was to quantify the occurrence of different stepping strategies during lateral step initiation in older adults and to relate the stepping responses to retrospective history of falls. Seventy community-ambulating older adults (mean age 76 y, range 70-94 y) performed voluntary lateral steps as quickly as possible to the right or left in response to a visual cue, in a blocked design. Vertical ground reaction forces were measured using a forceplate, and the number and latency of postural adjustments were quantified. Subjects were assigned to groups based on their stepping strategy. The frequency of trials with one or two postural adjustments was compared with data from 20 younger adults (mean age 38 y, range 21-58 y). Logistic regression was used to relate presence of a fall in the previous year with the number and latency of postural adjustments. In comparison with younger adults, who almost always demonstrated one postural adjustment when stepping laterally, older adults constituted a continuous distribution in the percentage of step trials made with one postural adjustment (from 0% to 100% of trials). Latencies of the initial postural adjustment and foot liftoff varied depending on the number of postural adjustments made. A history of falls was associated a larger percentage of two postural adjustments, and a longer latency of foot liftoff. In conclusion, the number and latency of postural adjustments made during voluntary lateral stepping provides additional evidence that lateral control of posture may be a critical indicator of aging. Copyright © 2013 Elsevier B.V. All rights reserved.
Posture Detection Based on Smart Cushion for Wheelchair Users
Ma, Congcong; Li, Wenfeng; Gravina, Raffaele; Fortino, Giancarlo
2017-01-01
The postures of wheelchair users can reveal their sitting habit, mood, and even predict health risks such as pressure ulcers or lower back pain. Mining the hidden information of the postures can reveal their wellness and general health conditions. In this paper, a cushion-based posture recognition system is used to process pressure sensor signals for the detection of user’s posture in the wheelchair. The proposed posture detection method is composed of three main steps: data level classification for posture detection, backward selection of sensor configuration, and recognition results compared with previous literature. Five supervised classification techniques—Decision Tree (J48), Support Vector Machines (SVM), Multilayer Perceptron (MLP), Naive Bayes, and k-Nearest Neighbor (k-NN)—are compared in terms of classification accuracy, precision, recall, and F-measure. Results indicate that the J48 classifier provides the highest accuracy compared to other techniques. The backward selection method was used to determine the best sensor deployment configuration of the wheelchair. Several kinds of pressure sensor deployments are compared and our new method of deployment is shown to better detect postures of the wheelchair users. Performance analysis also took into account the Body Mass Index (BMI), useful for evaluating the robustness of the method across individual physical differences. Results show that our proposed sensor deployment is effective, achieving 99.47% posture recognition accuracy. Our proposed method is very competitive for posture recognition and robust in comparison with other former research. Accurate posture detection represents a fundamental basic block to develop several applications, including fatigue estimation and activity level assessment. PMID:28353684
Lateral step initiation behavior in older adults
Sparto, Patrick J; Jennings, J Richard; Furman, Joseph M; Redfern, Mark S
2013-01-01
Older adults have varied postural responses during induced and voluntary lateral stepping. The purpose of the research was to quantify the occurrence of different stepping strategies during lateral step initiation in older adults and to relate the stepping responses to retrospective history of falls. Seventy community-ambulating older adults (mean age 76 y, range 70–94 y) performed voluntary lateral steps as quickly as possible to the right or left in response to a visual cue, in a blocked design. Vertical ground reaction forces were measured using a forceplate, and the number and latency of postural adjustments were quantified. Subjects were assigned to groups based on their stepping strategy. The frequency of trials with one or two postural adjustments was compared with data from 20 younger adults (mean age 38 y, range 21–58 y). Logistic regression was used to relate presence of a fall in the previous year with the number and latency of postural adjustments. In comparison with younger adults, who almost always demonstrated one postural adjustment when stepping laterally, older adults constituted a continuous distribution in the percentage of step trials made with one postural adjustment (from 0% to 100% of trials). Latencies of the initial postural adjustment and foot liftoff varied depending on the number of postural adjustments made. A history of falls was associated a larger percentage of two postural adjustments, and a longer latency of foot liftoff. In conclusion, the number and latency of postural adjustments made during voluntary lateral stepping provides additional evidence that lateral control of posture may be a critical indicator of aging. PMID:24295896
Manfredini, D; Castroflorio, T; Perinetti, G; Guarda-Nardini, L
2012-06-01
The aim of this investigation was to perform a review of the literature dealing with the issue of relationships between dental occlusion, body posture and temporomandibular disorders (TMD). A search of the available literature was performed to determine what the current evidence is regarding: (i) The physiology of the dental occlusion-body posture relationship, (ii) The relationship of these two topics with TMD and (iii) The validity of the available clinical and instrumental devices (surface electromyography, kinesiography and postural platforms) to measure the dental occlusion-body posture-TMD relationship. The available posturographic techniques and devices have not consistently found any association between body posture and dental occlusion. This outcome is most likely due to the many compensation mechanisms occurring within the neuromuscular system regulating body balance. Furthermore, the literature shows that TMD are not often related to specific occlusal conditions, and they also do not have any detectable relationships with head and body posture. The use of clinical and instrumental approaches for assessing body posture is not supported by the wide majority of the literature, mainly because of wide variations in the measurable variables of posture. In conclusion, there is no evidence for the existence of a predictable relationship between occlusal and postural features, and it is clear that the presence of TMD pain is not related with the existence of measurable occluso-postural abnormalities. Therefore, the use instruments and techniques aiming to measure purported occlusal, electromyographic, kinesiographic or posturographic abnormalities cannot be justified in the evidence-based TMD practice. © 2012 Blackwell Publishing Ltd.
Autoimmune Basis for Postural Tachycardia Syndrome
2018-01-23
Postural Orthostatic Tachycardia Syndrome; Postural Tachycardia Syndrome; Tachycardia; Arrhythmias, Cardiac; Autonomic Nervous System Diseases; Orthostatic Intolerance; Cardiovascular Diseases; Primary Dysautonomias
Postural Control in Children: Implications for Pediatric Practice
ERIC Educational Resources Information Center
Westcott, Sarah L.; Burtner, Patricia
2004-01-01
Based on a systems theory of motor control, reactive postural control (RPA) and anticipatory postural control (APA) in children are reviewed from several perspectives in order to develop an evidence-based intervention strategy for improving postural control in children with limitations in motor function. Research on development of postural…
Age Related Decline in Postural Control Mechanisms.
ERIC Educational Resources Information Center
Stelmach, George E.; And Others
1989-01-01
Studied voluntary and reflexive mechanisms of postural control of young (N=8) and elderly (N=8) adults through measurement of reflexive reactions to large-fast and small-slow ankle rotation postural disturbances. Found reflexive mechanisms relatively intact for both groups although elderly appeared more disadvantaged when posture was under the…
Development of the Coordination between Posture and Manual Control
ERIC Educational Resources Information Center
Haddad, Jeffrey M.; Claxton, Laura J.; Keen, Rachel; Berthier, Neil E.; Riccio, Gary E.; Hamill, Joseph; Van Emmerik, Richard E. A.
2012-01-01
Studies have suggested that proper postural control is essential for the development of reaching. However, little research has examined the development of the coordination between posture and manual control throughout childhood. We investigated the coordination between posture and manual control in children (7- and 10-year-olds) and adults during…
Postural-Sway Response in Learning-Disabled Children: Pilot Data.
ERIC Educational Resources Information Center
Polatajko, H. J.
1987-01-01
The postural-sway response of five learning disabled (LD) and five nondisabled children was evaluated using a force platform. From statistical analysis of the two groups, the LD children appeared to use visual input to compensate for postural problems and had significant difficulty controlling posture with eyes closed. (SK)
Postural Stability is Altered by Blood Shift
NASA Astrophysics Data System (ADS)
Marais, M.; Denise, P.; Guincetre, J. Y.; Normand, H.
2008-06-01
Non-vestibular influences as shift in blood volume changed perception of body posture. Then, factors affecting blood shift may alter postural control. The purpose of our study was to investigate the effects of leg venous contention on postural stability. Twelve subjects were studied on a balance plate for 5 minutes with the eyes closed, in 3 conditions: with no leg venous contention or grade 1 and 3 support stockings. Standard deviation of x and y position was calculated before and after the closure of the eyes. Strong venous contention altered postural stability, after the eyes were closed, during the first 10 s of standing. As support stockings prevent blood shift induced by upright posture, this result is in line with the hypothesis that blood shifts influence the perception of body orientation and postural control among others factors as vision, vestibular inputs... This strong venous contention could induce an increase of fall.
Effect of different head-neck-jaw postures on cervicocephalic kinesthetic sense.
Zafar, H; Alghadir, A H; Iqbal, Z A
2017-12-01
To investigate the effect of different induced head-neck-jaw postures on head-neck relocation error among healthy subjects. 30 healthy adult male subjects participated in this study. Cervicocephalic kinesthetic sense was measured while standing, habitual sitting, habitual sitting with clenched jaw and habitual sitting with forward head posture during right rotation, left rotation, flexion and extension using kinesthetic sensibility test. Head-neck relocation error was least while standing, followed by habitual sitting, habitual sitting with forward head posture and habitual sitting with jaw clenched. However, there was no significant difference in error between different tested postures during all the movements. To the best of our knowledge, this is the first study to see the effect of different induced head-neck-jaw postures on head-neck position sense among healthy subjects. Assuming a posture for a short duration of time doesn't affect head-neck relocation error in normal healthy subjects.
Meyers, Ron A
1997-07-01
Spread-wing postures of birds often have been studied with respect to the function of behavior, but ignored with regard to the mechanism by which the birds accomplish posture. The double-crested cormorant, Phalacrocorax auritus, was used as a model for this study of spread-wing posture. Those muscles capable of positioning and maintaining the wing in extension and protraction were assayed histochemically for the presence of slow (postural) muscle fibers. Within the forelimb of Phalacrocorax, Mm. coracobrachialis cranialis, pectoralis thoracicus (cranial portion), deltoideus minor, triceps scapularis, and extensor metacarpi radialis pars dorsalis and ventralis were found to contain populations of slow-twitch or slow-tonic muscle fibers. These slow fibers in the above muscles are considered to function during spread-wing posture in this species. J Morphol 233:67-76, 1997. © 1997 Wiley-Liss, Inc. Copyright © 1997 Wiley-Liss, Inc.
Development of Postural Muscles and Their Innervation
IJkema-Paassen, J.; Gramsbergen, A.
2005-01-01
Control of posture is a prerequisite for efficient motor performance. Posture depends on muscles capable of enduring contractions, whereas movements often require quick, forceful muscle actions. To serve these different goals, muscles contain fibers that meet these different tasks. Muscles with strong postural functions mainly consist of slow muscle fibers with a great resistance against fatigue. Flexor muscles in the leg and arm muscles are mainly composed of fast muscle fibers producing relatively large forces that are rapidly fatigable. Development of the neuromuscular system continues after birth. We discuss in the human baby and in animal experiments changes in muscle fiber properties, regression from polyneural into mononeural innervation, and developmental changes in the motoneurons of postural muscles during that period. The regression of poly-neural innervation in postural muscles and the development of dendrite bundles of their motoneurons seem to be linked to the transition from the immature into the adult-like patterns of moving and postural control. PMID:16097482
Examining the effects of postural constraints on estimating reach.
Gabbard, Carl; Cordova, Alberto; Lee, Sunghan
2007-07-01
The tendency to overestimate has consistently been reported in studies of reachability estimation. According to one of the more prominent explanations, the postural stability hypothesis, the perceived reaching limit depends on the individual's perceived postural constraints. To test that proposition, the authors compared estimates of reachability of 38 adults (a) in the seated posture (P1) and (b) in the more demanding posture of standing on one foot and leaning forward (P2). Although there was no difference between conditions for total error, results for the distribution and direction of error indicated that participants overestimated in the P1 condition and underestimated in the P2 condition. It therefore appears that perceived postural constraints could be a factor in judgments of reachability. When participants in the present study perceived greater postural demands, they may have elected to program a more conservative strategy that resulted in underestimation.
Illusory visual motion stimulus elicits postural sway in migraine patients
Imaizumi, Shu; Honma, Motoyasu; Hibino, Haruo; Koyama, Shinichi
2015-01-01
Although the perception of visual motion modulates postural control, it is unknown whether illusory visual motion elicits postural sway. The present study examined the effect of illusory motion on postural sway in patients with migraine, who tend to be sensitive to it. We measured postural sway for both migraine patients and controls while they viewed static visual stimuli with and without illusory motion. The participants’ postural sway was measured when they closed their eyes either immediately after (Experiment 1), or 30 s after (Experiment 2), viewing the stimuli. The patients swayed more than the controls when they closed their eyes immediately after viewing the illusory motion (Experiment 1), and they swayed less than the controls when they closed their eyes 30 s after viewing it (Experiment 2). These results suggest that static visual stimuli with illusory motion can induce postural sway that may last for at least 30 s in patients with migraine. PMID:25972832
Noda, Wataru; Tanaka-Matsumi, Junko
2009-03-01
The present study evaluates the effect of a classroom-based behavioral intervention package to improve Japanese elementary school children's sitting posture in regular classrooms (N=68). This study uses a multiple-baseline design across two classrooms with a modified repeated reversal within each class. The article defines appropriate sitting posture as behavior composed of four components (feet, buttocks, back, and a whole body). The intervention package includes modeling, correspondence training, prompt, and reinforcement, among others. The authors counted the number of children with appropriate sitting posture in each classroom across all 28 sessions throughout the study. Interobserver agreement of appropriate sitting posture ranged from 80% to 100%. As a result of the intervention, the mean proportion of children with appropriate posture increased from approximately 20% to 90%. In addition, their academic writing productivity increased with the improved sitting posture. Teachers' acceptance of the intervention program proved to be excellent.
ERIC Educational Resources Information Center
Newell, Karl M.; Ko, Young G.; Sprague, Robert L.; Mahorney, Steven L.; Bodfish, James W.
2002-01-01
The effect of neuroleptic withdrawal on postural task performance of 20 adults with mental retardation was examined. Assessments were conducted at baseline and monthly intervals, extending to one year following complete medication withdrawal, when significant changes in amount of postural motion and sequential pattern of postural movement…
ERIC Educational Resources Information Center
Lim, Yi Huey; Partridge, Katie; Girdler, Sonya; Morris, Susan L.
2017-01-01
Impairments in postural control affect the development of motor and social skills in individuals with autism spectrum disorder (ASD). This review compared the effect of different sensory conditions on static standing postural control between ASD and neurotypical individuals. Results from 19 studies indicated a large difference in postural control…
Recovery of postural equilibrium control following spaceflight
NASA Technical Reports Server (NTRS)
Paloski, W. H.; Reschke, M. F.; Black, F. O.; Doxey, D. D.; Harm, D. L.
1992-01-01
Decreased postural stability is observed in most astronauts immediately following spaceflight. Because ataxia may present postflight operational hazards, it is important to determine the incidence of postural instability immediately following landing and the dynamics of recovery of normal postural equilibrium control. It is postulated that postflight postural instability results from in-flight adaptive changes in central nervous system (CNS) processing of sensory information from the visual, vestibular, and proprioceptive systems. The purpose of the present investigation was to determine the magnitude and time course of postflight recovery of postural equilibrium control and, hence, readaptation of CNS processing of sensory information. Thirteen crew members from six spaceflight missions were studied pre- and postflight using a modified commercial posturography system. Postural equilibrium control was found to be seriously disrupted immediately following spaceflight in all subjects. Readaptation to the terrestrial environment began immediately upon landing, proceeded rapidly for the first 10-12 hours, and then proceeded much more slowly for the subsequent 2-4 days until preflight stability levels were reachieved. It is concluded that the overall postflight recovery of postural stability follows a predictable time course.
Postural perturbations: new insights for treatment of balance disorders
NASA Technical Reports Server (NTRS)
Horak, F. B.; Henry, S. M.; Shumway-Cook, A.; Peterson, B. W. (Principal Investigator)
1997-01-01
This article reviews the neural control of posture as understood through studies of automatic responses to mechanical perturbations. Recent studies of responses to postural perturbations have provided a new view of how postural stability is controlled, and this view has profound implications for physical therapy practice. We discuss the implications for rehabilitation of balance disorders and demonstrate how an understanding of the specific systems underlying postural control can help to focus and enrich our therapeutic approaches. By understanding the basic systems underlying control of balance, such as strategy selection, rapid latencies, coordinated temporal spatial patterns, force control, and context-specific adaptations, therapists can focus their treatment on each patient's specific impairments. Research on postural responses to surface translations has shown that balance is not based on a fixed set of equilibrium reflexes but on a flexible, functional motor skill that can adapt with training and experience. More research is needed to determine the extent to which quantification of automatic postural responses has practical implications for predicting falls in patients with constraints in their postural control system.
Postural orientation in microgravity depends on straightening up movement performed
NASA Astrophysics Data System (ADS)
Vaugoyeau, Marianne; Assaiante, Christine
2009-08-01
Whether the vertical body orientation depends on the initial posture and/or the type of straightening up movement is the main question raised in this paper. Another objective was to specify the compensatory role of visual input while adopting an erected posture during microgravity. The final body orientation was analysed in microgravity during parabolic flights. After either (1) straightening up movement from a crouching or (2) a sitting posture, with and without vision. The main results are the following: (1) a vertical erected final posture is correctly achieved after sit to stand movement, whereas all subjects were tilted forward after straightening up from a crouching posture and (2) vision may contribute to correct final posture. These results suggest the existence of a re-weighting of the remaining sensory information, visual information, contact cutaneous cues and proprioceptive information under microgravity condition. We can put forward the alternative hypothesis that the control of body orientation under microgravity condition may also be achieved on the basis of a postural body scheme, that seems to be dependant on the type of movement and/ or the initial position of the whole body.
O'Brien, Megan K; Ahmed, Alaa A
2014-01-01
Physiological and emotional states can affect our decision-making processes, even when these states are seemingly insignificant to the decision at hand. We examined whether posture and postural threat affect decisions in a non-related economic domain. Healthy young adults made a series of choices between economic lotteries in various conditions, including changes in body posture (sitting vs. standing) and changes in elevation (ground level vs. atop a 0.8-meter-high platform). We compared three metrics between conditions to assess changes in risk-sensitivity: frequency of risky choices, and parameter fits of both utility and probability weighting parameters using cumulative prospect theory. We also measured skin conductance level to evaluate physiological response to the postural threat. Our results demonstrate that body posture does not significantly affect decision making. Secondly, despite increased skin conductance level, economic risk-sensitivity was unaffected by increased threat. Our findings indicate that economic choices are fairly robust to the physiological and emotional changes that result from posture or postural threat.
O’Brien, Megan K.
2014-01-01
Physiological and emotional states can affect our decision-making processes, even when these states are seemingly insignificant to the decision at hand. We examined whether posture and postural threat affect decisions in a non-related economic domain. Healthy young adults made a series of choices between economic lotteries in various conditions, including changes in body posture (sitting vs. standing) and changes in elevation (ground level vs. atop a 0.8-meter-high platform). We compared three metrics between conditions to assess changes in risk-sensitivity: frequency of risky choices, and parameter fits of both utility and probability weighting parameters using cumulative prospect theory. We also measured skin conductance level to evaluate physiological response to the postural threat. Our results demonstrate that body posture does not significantly affect decision making. Secondly, despite increased skin conductance level, economic risk-sensitivity was unaffected by increased threat. Our findings indicate that economic choices are fairly robust to the physiological and emotional changes that result from posture or postural threat. PMID:25083345
Nishiike, Suetaka; Okazaki, Suzuyo; Watanabe, Hiroshi; Akizuki, Hironori; Imai, Takao; Uno, Atsuhiko; Kitahara, Tadashi; Horii, Arata; Takeda, Noriaki; Inohara, Hidenori
2013-01-01
In this study, we examined the effects of sensory inputs of visual-vestibulosomatosensory conflict induced by virtual reality (VR) on subjective dizziness, posture stability and visual dependency on postural control in humans. Eleven healthy young volunteers were immersed in two different VR conditions. In the control condition, subjects walked voluntarily with the background images of interactive computer graphics proportionally synchronized to their walking pace. In the visual-vestibulosomatosensory conflict condition, subjects kept still, but the background images that subjects experienced in the control condition were presented. The scores of both Graybiel's and Hamilton's criteria, postural instability and Romberg ratio were measured before and after the two conditions. After immersion in the conflict condition, both subjective dizziness and objective postural instability were significantly increased, and Romberg ratio, an index of the visual dependency on postural control, was slightly decreased. These findings suggest that sensory inputs of visual-vestibulosomatosensory conflict induced by VR induced motion sickness, resulting in subjective dizziness and postural instability. They also suggest that adaptation to the conflict condition decreases the contribution of visual inputs to postural control with re-weighing of vestibulosomatosensory inputs. VR may be used as a rehabilitation tool for dizzy patients by its ability to induce sensory re-weighing of postural control.
de Azevedo, Alexandre Kretzer E Castro; Claudino, Renato; Conceição, Josilene Souza; Swarowsky, Alessandra; Santos, Márcio José Dos
2016-01-01
The purpose of this study was to investigate the anticipatory (APA) and compensatory (CPA) postural adjustments in individuals with Parkinson's disease (PD) during lateral instability of posture. Twenty-six subjects (13 individuals with PD and 13 healthy matched controls) were exposed to predictable lateral postural perturbations. The electromyographic (EMG) activity of the lateral muscles and the displacement of the center of pressure (COP) were recorded during four time intervals that are typical for postural adjustments, i.e., immediately before (APA1, APA2) and after (CPA1 and CPA2) the postural disturbances. The magnitude of the activity of the lateral muscles in the group with PD was lower only during the CPA time intervals and not during the anticipatory adjustments (APAs). Despite this finding, subjects with PD exhibit smaller COP excursions before and after the disturbance, probably due to lack of flexibility and proprioceptive impairments. The results of this study suggest that postural instability in subjects with PD can be partially explained by decreased postural sway, before and after perturbations, and reduced muscular activity after body disturbances. Our findings can motivate new studies to investigate therapeutic interventions that optimize the use of postural adjustment strategies in subjects with PD.
Madeleine, Pascal; Nielsen, Mogens; Arendt-Nielsen, Lars
2011-04-01
The ability to maintain balance is diminished in patients suffering from a whiplash injury. The aim of this study was to characterize the variability of postural control in patients with chronic whiplash injury. For this purpose, we analyzed static postural recordings from 11 whiplash patients and sex- and age-matched asymptomatic healthy volunteers. Static postural recordings were performed randomly with eyes open, eyes closed, and eyes open and speaking (dual task). Spatial-temporal changes of the center of pressure displacement were analyzed to assess the amplitude and structure of postural variability by computing, respectively, the standard deviation/coefficient of variation and sample entropy/fractal dimension of the time series. The amplitude of variability of the center of pressure was larger among whiplash patients compared with controls (P<0.001) while fractal dimension was lower (P<0.001). The sample entropy increased during both eyes closed and a simple dual task compared with eyes open (P<0.05). The analysis of postural control dynamics revealed increased amplitude of postural variability and decreased signal dimensionality related to the deficit in postural stability found in whiplash patients. Linear and nonlinear analyses can thus be helpful for the quantification of postural control in normal and pathological conditions. Copyright © 2010 Elsevier Ltd. All rights reserved.
Lee, Han Suk; Chung, Hyung Kuk; Park, Sun Wook
2015-01-01
Objective. To assess the correlation of abnormal trunk postures and reposition sense of subjects with forward head neck posture (FHP). Methods. In all, postures of 41 subjects were evaluated and the FHP and trunk posture including shoulder, scapular level, pelvic side, and anterior tilting degrees were analyzed. We used the head repositioning accuracy (HRA) test to evaluate neck position senses of neck flexion, neck extension, neck right and left side flexion, and neck right and left rotation and calculated the root mean square error in trials for each subject. Spearman's rank correlation coefficients and regression analysis were used to assess the degree of correlation between the trunk posture and HRA value, and a significance level of α = 0.05 was considered. Results. There were significant correlations between the HRA value of right side neck flexion and pelvic side tilt angle (p < 0.05). If pelvic side tilting angle increases by 1 degree, right side neck flexion increased by 0.76 degrees (p = 0.026). However, there were no significant correlations between other neck motions and trunk postures. Conclusion. Verifying pelvic postures should be prioritized when movement is limited due to the vitiation of the proprioceptive sense of neck caused by FHP. PMID:26583125
Brincks, John; Andersen, Elisabeth Due; Sørensen, Henrik; Dalgas, Ulrik
2017-01-01
It is relevant to understand the possible influence of impaired postural balance on walking performance in multiple sclerosis (MS) gait rehabilitation. We expected associations between impaired postural balance and complex walking performance in mildly disabled persons with MS, but not in healthy controls. Thirteen persons with MS (Expanded Disability Status Scale = 2.5) and 13 healthy controls' walking performance were measured at fast walking speed, Timed Up & Go and Timed 25 Feet Walking. Postural balance was measured by stabilometry, 95% confidence ellipse sway area and sway velocity. Except from sway velocity (p = 0.07), significant differences were found between persons with MS and healthy controls in postural balance and walking. Significant correlations were observed between sway area and Timed Up & Go (r = 0.67) and fastest safe walking speed (r = -0.63) in persons with MS but not in healthy controls (r = 0.52 and r = 0.24, respectively). No other significant correlations were observed between postural balance and walking performance in neither persons with MS nor healthy controls. Findings add to the understanding of postural balance and walking in persons with MS, as impaired postural balance was related to complex walking performance. Exercises addressing impaired postural balance are encouraged in early MS gait rehabilitation.
[A case with apraxia of tool use: selective inability to form a hand posture for a tool].
Hayakawa, Yuko; Fujii, Toshikatsu; Yamadori, Atsushi; Meguro, Kenichi; Suzuki, Kyoko
2015-03-01
Impaired tool use is recognized as a symptom of ideational apraxia. While many studies have focused on difficulties in producing gestures as a whole, using tools involves several steps; these include forming hand postures appropriate for the use of certain tool, selecting objects or body parts to act on, and producing gestures. In previously reported cases, both producing and recognizing hand postures were impaired. Here we report the first case showing a selective impairment of forming hand postures appropriate for tools with preserved recognition of the required hand postures. A 24-year-old, right-handed man was admitted to hospital because of sensory impairment of the right side of the body, mild aphasia, and impaired tool use due to left parietal subcortical hemorrhage. His ability to make symbolic gestures, copy finger postures, and orient his hand to pass a slit was well preserved. Semantic knowledge for tools and hand postures was also intact. He could flawlessly select the correct hand postures in recognition tasks. He only demonstrated difficulties in forming a hand posture appropriate for a tool. Once he properly grasped a tool by trial and error, he could use it without hesitation. These observations suggest that each step of tool use should be thoroughly examined in patients with ideational apraxia.
Do children perceive postural constraints when estimating reach or action planning?
Gabbard, Carl; Cordova, Alberto; Lee, Sunghan
2009-03-01
Estimation of whether an object is reachable from a specific body position constitutes an important aspect in effective motor planning. Researchers who estimate reachability by way of motor imagery with adults consistently report the tendency to overestimate, with some evidence of a postural effect (postural stability hypothesis). This idea suggests that perceived reaching limits depend on an individual's perceived postural constraints. Based on previous work with adults, the authors expected a significant postural effect with the Reach 2 condition, as evidenced by reduced overestimation. Furthermore, the authors hypothesized that the postural effect would be greater in younger children. They then tested these propositions among children aged 7, 9, and 11 years by asking them to estimate reach while seated (Reach 1) and in the more demanding posture of standing on 1 foot and leaning forward (Reach 2). Results indicated no age or condition difference, therefore providing no support for a postural effect. When the authors compared these data to a published report of adults, a developmental difference emerged. That is, adults recognize the perceived postural constraint of the standing position resulting in under- rather than overestimation, as displayed in the seated condition. Although preliminary, these observations suggest that estimates of reach (action planning) continue to be refined between late childhood and young adulthood.
Perrochon, A; Holtzer, R; Laidet, M; Armand, S; Assal, F; Lalive, P H; Allali, G
2017-04-01
Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease affecting various neurological domains, such as postural control, cognition, fear of falling, depression-anxiety, and fatigue. This study examined the associations of cognitive functions, fear of falling, depression-anxiety, and fatigue with postural control in patients with MS. Postural control (sway velocity) of 63 patients with MS (age 39.0 ± 8.9 years; %female 57%; Expanded Disability Status Scale score median (interquartile range) 2.0 (1.5)) was recorded on two platforms at stable and unstable conditions. Cognition, fear of falling, depression-anxiety, and fatigue were evaluated by a comprehensive neuropsychological assessment. The associations between these domains and postural control have been measured by multivariable linear regression (adjusted for age, gender, disability, and education). In stable condition, only working memory was associated with postural control (p < 0.05). In unstable condition, working memory, executive functions, attention/processing speed, and fear of falling were associated with postural control (p < 0.05). Specific cognitive domains and fear of falling were associated with postural control in MS patients, particularly in unstable condition. These findings highlight the association of cognitive functions and fear of falling with postural control in MS.
Iyengar, Y R; Vijayakumar, K; Abraham, J M; Misri, Z K; Suresh, B V; Unnikrishnan, B
2014-01-01
This study was executed to find out correlation between postural alignment in sitting measured through photogrammetry and postural control in sitting following stroke. A cross-sectional study with convenient sampling consisting of 45 subjects with acute and sub-acute stroke. Postural alignment in sitting was measured through photogrammetry and relevant angles were obtained through software MB Ruler (version 5.0). Seated postural control was measured through Function in Sitting Test (FIST). Correlation was obtained using Spearman's Rank Correlation co-efficient in SPSS software (version 17.0). Moderate positive correlation (r = 0.385; p < 0.01) was found between angle of lordosis and angle between acromion, lateral epicondyle and point between radius and ulna. Strong negative correlation (r = -0.435; p < 0.01) was found between cranio-vertebral angle and kyphosis. FIST showed moderate positive correlation (r = 0.3446; p < 0.05) with cranio-vertebral angle and strong positive correlation (r = 0.4336; p < 0.01) with Brunnstrom's stage of recovery in upper extremity. Degree of forward head posture in sitting correlates directly with seated postural control and inversely with degree of kyphosis in sitting post-stroke. Postural control in sitting post-stroke is directly related with Brunnstrom's stage of recovery in affected upper extremity in sitting.
Çınar-Medeni, Özge; Elbasan, Bulent; Duzgun, Irem
2017-01-01
Work-related musculoskeletal system diseases are commonly observed among nurses, physiotherapists, dentists, and dieticians. To assess working postures of nurses, physiotherapists, dentists and dieticians, to identify whether low back pain (LBP) is present, and to put forth the correlation between LBP, working posture, and other factors. Twenty seven physiotherapists, 34 nurses, 30 dentists, and 16 dieticians were included. Impairment ratings of cases with LBP were analysed with Quebec Back Pain Disability Scale (Quebec). Working postures were analysed with Owako Working Posture Analysis System. LBP was observed in 70.09% of healthcare professionals. Of the individuals suffering from LBP, 57.2% were working with a risky posture. 40.63% of individuals without LBP were using risky working postures. Trunk and head posture distribution of individuals with and without LBP was found as different from each other (p < 0.05). LBP prevalence of dentists and nurses were higher compared to other groups (p < 0.05). Quebec scores of professionals with LBP were not different among occupations (p > 0.05). Quebec scores were observed as correlated with various factors in various occupation groups. Considering that head-neck and trunk postures are changeable factors that are among the factors affecting LBP, correcting the working posture gains importance.
Postural responses to unexpected perturbations of balance during reaching
Trivedi, Hari; Leonard, Julia A.; Ting, Lena H.; Stapley, Paul J.
2014-01-01
To study the interaction between feedforward and feedback modes of postural control, we investigated postural responses during unexpected perturbations of the support surface that occurred during forward reaching in a standing position. We examined postural responses in lower limb muscles of 9 human subjects. Baseline measures were obtained when subjects executed reaching movements to a target placed in front of them (R condition) and during postural responses to forward and backward support-surface perturbations (no reaching, P condition) during quiet stance. Perturbations were also given at different delays after the onset of reaching movements (RP conditions) as well as with the arm extended in the direction of the target, but not reaching (P/AE condition). Results showed that during perturbations to reaching (RP), the initial automatic postural response, occurring around 100 ms after the onset of perturbations, was relatively unchanged in latency or amplitude compared to control conditions (P and P/AE). However, longer latency postural responses were modulated to aid in the reaching movements during forward perturbations but not during backward perturbations. Our results suggest that the nervous system prioritizes the maintenance of a stable postural base during reaching, and that later components of the postural responses can be modulated to ensure the performance of the voluntary task. PMID:20035321
Atilgan, Esra; Tarakci, Devrim; Mutluay, Fatma
2017-01-01
This study aimed to evaluate postural awareness and changes in posture and flexibility of students who took Clinical Pilates class as an elective course at the undergraduate level. The study conducted from 2013-2016 included 98 students who took Clinical Pilates class at the Department of Physical Therapy and Rehabilitation, School of Health Sciences, Istanbul Medipol University, Turkey. The flexibility levels of the study participants were measured before and after the Clinical Pilates education using finger-to-floor test and modified Schober's test. Observational posture analysis and postural awareness were recorded using the scale prepared by the researchers. The post-education evaluations showed that postural distortions were fixed, and a significant increase in the postural awareness of the students was observed compared with the pre-education period. The results of both modified Schober's test and finger-to-floor test, which were used to measure the flexibility levels, showed a statistically significant increase in post-education scores compared with those of the pre-education period. This study showed that the Clinical Pilates course increased postural awareness and flexibility of physical therapy students and fixed postural distortions. Thus, the inclusion of Clinical Pilates class in the undergraduate education is considered to be important.
Atilgan, Esra; Tarakci, Devrim; Mutluay, Fatma
2017-01-01
Objective: This study aimed to evaluate postural awareness and changes in posture and flexibility of students who took Clinical Pilates class as an elective course at the undergraduate level. Methods: The study conducted from 2013-2016 included 98 students who took Clinical Pilates class at the Department of Physical Therapy and Rehabilitation, School of Health Sciences, Istanbul Medipol University, Turkey. The flexibility levels of the study participants were measured before and after the Clinical Pilates education using finger-to-floor test and modified Schober’s test. Observational posture analysis and postural awareness were recorded using the scale prepared by the researchers. Results: The post-education evaluations showed that postural distortions were fixed, and a significant increase in the postural awareness of the students was observed compared with the pre-education period. The results of both modified Schober’s test and finger-to-floor test, which were used to measure the flexibility levels, showed a statistically significant increase in post-education scores compared with those of the pre-education period. Conclusion: This study showed that the Clinical Pilates course increased postural awareness and flexibility of physical therapy students and fixed postural distortions. Thus, the inclusion of Clinical Pilates class in the undergraduate education is considered to be important. PMID:28811786
Cranio-cervical posture: a factor in the development and function of the dentofacial structures.
Solow, Beni; Sandham, Andrew
2002-10-01
Many practitioners will recognize that subjects with a large mandibular plane inclination are characterized by an extended head posture and a forward inclined cervical column, i.e. an extended cranio-cervical posture. It is also typical that subjects with a short-face morphology often carry their heads somewhat lowered, and have a markedly backward-curved upper cervical spine, i.e. cervical lordosis. The aim of the paper is to link together the findings of a series of studies that attempt to clarify this relationship, and bring into focus cranio-cervical posture, which is a functional factor that seems to be involved in many clinical orthodontic problems. To provide a background for the article, the concept of standardized posture of the head and the cervical column is developed, and procedures for recording this posture, as well as categories of cephalometric variables that express the different postural relationships, are described. Findings that relate cranio-cervical posture to upper airway obstruction, to craniofacial morphology, and to malocclusion are surveyed, and a post-natal developmental mechanism that explains the findings and leads to further questions is discussed. Recent findings of a relationship between extended cranio-cervical posture and signs and symptoms of temporomandibular disorders further emphasize the biological importance of this functional parameter.
Eye Movements Affect Postural Control in Young and Older Females
Thomas, Neil M.; Bampouras, Theodoros M.; Donovan, Tim; Dewhurst, Susan
2016-01-01
Visual information is used for postural stabilization in humans. However, little is known about how eye movements prevalent in everyday life interact with the postural control system in older individuals. Therefore, the present study assessed the effects of stationary gaze fixations, smooth pursuits, and saccadic eye movements, with combinations of absent, fixed and oscillating large-field visual backgrounds to generate different forms of retinal flow, on postural control in healthy young and older females. Participants were presented with computer generated visual stimuli, whilst postural sway and gaze fixations were simultaneously assessed with a force platform and eye tracking equipment, respectively. The results showed that fixed backgrounds and stationary gaze fixations attenuated postural sway. In contrast, oscillating backgrounds and smooth pursuits increased postural sway. There were no differences regarding saccades. There were also no differences in postural sway or gaze errors between age groups in any visual condition. The stabilizing effect of the fixed visual stimuli show how retinal flow and extraocular factors guide postural adjustments. The destabilizing effect of oscillating visual backgrounds and smooth pursuits may be related to more challenging conditions for determining body shifts from retinal flow, and more complex extraocular signals, respectively. Because the older participants matched the young group's performance in all conditions, decreases of posture and gaze control during stance may not be a direct consequence of healthy aging. Further research examining extraocular and retinal mechanisms of balance control and the effects of eye movements, during locomotion, is needed to better inform fall prevention interventions. PMID:27695412
Eye Movements Affect Postural Control in Young and Older Females.
Thomas, Neil M; Bampouras, Theodoros M; Donovan, Tim; Dewhurst, Susan
2016-01-01
Visual information is used for postural stabilization in humans. However, little is known about how eye movements prevalent in everyday life interact with the postural control system in older individuals. Therefore, the present study assessed the effects of stationary gaze fixations, smooth pursuits, and saccadic eye movements, with combinations of absent, fixed and oscillating large-field visual backgrounds to generate different forms of retinal flow, on postural control in healthy young and older females. Participants were presented with computer generated visual stimuli, whilst postural sway and gaze fixations were simultaneously assessed with a force platform and eye tracking equipment, respectively. The results showed that fixed backgrounds and stationary gaze fixations attenuated postural sway. In contrast, oscillating backgrounds and smooth pursuits increased postural sway. There were no differences regarding saccades. There were also no differences in postural sway or gaze errors between age groups in any visual condition. The stabilizing effect of the fixed visual stimuli show how retinal flow and extraocular factors guide postural adjustments. The destabilizing effect of oscillating visual backgrounds and smooth pursuits may be related to more challenging conditions for determining body shifts from retinal flow, and more complex extraocular signals, respectively. Because the older participants matched the young group's performance in all conditions, decreases of posture and gaze control during stance may not be a direct consequence of healthy aging. Further research examining extraocular and retinal mechanisms of balance control and the effects of eye movements, during locomotion, is needed to better inform fall prevention interventions.
Reddy, Pramod P; Reddy, Trisha P; Roig-Francoli, Jennifer; Cone, Lois; Sivan, Bezalel; DeFoor, W Robert; Gaitonde, Krishnanath; Noh, Paul H
2011-10-01
One of the main ergonomic challenges during surgical procedures is surgeon posture. There have been reports of a high number of work related injuries in laparoscopic surgeons. The Alexander technique is a process of psychophysical reeducation of the body to improve postural balance and coordination, permitting movement with minimal strain and maximum ease. We evaluated the efficacy of the Alexander technique in improving posture and surgical ergonomics during minimally invasive surgery. We performed a prospective cohort study in which subjects served as their own controls. Informed consent was obtained. Before Alexander technique instruction/intervention subjects underwent assessment of postural coordination and basic laparoscopic skills. All subjects were educated about the Alexander technique and underwent post-instruction/intervention assessment of posture and laparoscopic skills. Subjective and objective data obtained before and after instruction/intervention were tabulated and analyzed for statistical significance. All 7 subjects completed the study. Subjects showed improved ergonomics and improved ability to complete FLS™ as well as subjective improvement in overall posture. The Alexander technique training program resulted in a significant improvement in posture. Improved surgical ergonomics, endurance and posture decrease surgical fatigue and the incidence of repetitive stress injuries to laparoscopic surgeons. Further studies of the influence of the Alexander technique on surgical posture, minimally invasive surgery ergonomics and open surgical techniques are warranted to explore and validate the benefits for surgeons. Copyright © 2011 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Denommé, Luke T; Mandalfino, Patricia; Cinelli, Michael E
2014-06-01
A major presenting symptom in 'individuals with multiple sclerosis with mild balance disability' (IwMS) is poor postural control, resulting from slowed spinal somatosensory conduction. Postural control deficits in IwMS are most apparent when vision is removed and the base of support is reduced such is the case during tandem and single support stances. The current study used center of pressure (COP) measurements to determine whether postural control differences exist between IwMS and either 'healthy age-matched individuals' (HAMI) or 'community-dwelling older adults' (OA). Postural control was evaluated using a Romberg standing task, which required participants to stand with their feet together and hands by their sides for 45 s with either their eyes open or closed. Results revealed that COP velocity root mean square was greater in IwMS and their COP position was closer to their self-selected maximum stability limits (e.g., greater Standing Index proportion) when vision was removed compared to HAMI. Conversely, IwMS displayed similar postural control characteristics to OA. The current study highlights two novel findings: (1) the utility of novel COP measurements to assess differences in the level of postural control in IwMS; and (2) the benefit of assessing postural control levels in IwMS to not only a population with a fully intact and functional postural control system (HAMI) but also to another population that is thought to experience postural control deficits (OA).
Evaluation of Work-Related Musculoskeletal Disorders and Postural Stress of Female "Jari" Workers.
Pal, Amitava; Dhara, Prakash C
2017-01-01
The present investigation was aimed to assess the postural stress and the prevalence of musculoskeletal disorders (MSDs) of the "Jari" (golden thread) workers. This cross-sectional study was carried out on 156 female workers in different areas of the Purba Medinipur, Paschim Medinipur, and Howrah districts of West Bengal, India. The MSDs of the workers were evaluated by modified Nordic questionnaire method. The postural pattern during work was assessed by direct observation method. The posture of Jari workers has been analyzed by OWAS, REBA, and RULA methods. The joint angle in normal and working posture was observed. The prevalence of MSDs was very high among the workers. The major locations of body pains in Jari workers were lower back, upper back, neck, wrist, thigh, and shoulder. The occurrence of MSDs was higher in lower and higher age group than that of the middle age group. The total work shift of the workers was approximately 13 h including rest pause. The dominant postures adopted by the workers were sitting on the floor with stretched legs, sitting on the floor with folded knees, and kneeling posture. From the results of the postural analysis, the postures of the Jari workers had been categorized as stressful. There were a significant deviation between normal standing angles and working angles. From the overall study, it may be concluded that adoption of stressful postures for longer duration might be the cause of MSDs in different body parts of the Jari workers.
The Contribution of Pre-impact Spine Posture on Human Body Model Response in Whole-body Side Impact.
Poulard, David; Subit, Damien; Donlon, John-Paul; Lessley, David J; Kim, Taewung; Park, Gwansik; Kent, Richard W
2014-11-01
The objective of the study was to analyze independently the contribution of pre-impact spine posture on impact response by subjecting a finite element human body model (HBM) to whole-body, lateral impacts. Seven postured models were created from the original HBM: one matching the standard driving posture and six matching pre-impact posture measured for each of six subjects tested in previously published experiments. The same measurements as those obtained during the experiments were calculated from the simulations, and biofidelity metrics based on signals correlation were established to compare the response of HBM to that of the cadavers. HBM responses showed good correlation with the subject response for the reaction forces, the rib strain (correlation score=0.8) and the overall kinematics. The pre-impact posture was found to greatly alter the reaction forces, deflections and the strain time histories mainly in terms of time delay. By modifying only the posture of HBM, the variability in the impact response was found to be equivalent to that observed in the experiments performed with cadavers with different anthropometries. The patterns observed in the responses of the postured HBM indicate that the inclination of the spine in the frontal plane plays a major role. The postured HBM sustained from 2 to 5 bone fractures, including the scapula in some cases, confirming that the pre-impact posture influences the injury outcome predicted by the simulation.
Impaired perception of surface tilt in progressive supranuclear palsy
Dale, Marian L.; Horak, Fay B.; Wright, W. Geoffrey; Schoneburg, Bernadette M.; Nutt, John G.; Mancini, Martina
2017-01-01
Introduction Progressive supranuclear palsy (PSP) is characterized by early postural instability and backward falls. The mechanisms underlying backward postural instability in PSP are not understood. The aim of this study was to test the hypothesis that postural instability in PSP is a result of dysfunction in the perception of postural verticality. Methods We gathered posturography data on 12 subjects with PSP to compare with 12 subjects with idiopathic Parkinson’s Disease (PD) and 12 healthy subjects. Objective tests of postural impairment included: dynamic sensory perception tests of gravity and of surface oscillations, postural responses to surface perturbations, the sensory organization test of postural sway under altered sensory conditions and limits of stability in stance. Results Perception of toes up (but not toes down) surface tilt was reduced in subjects with PSP compared to both control subjects (p≤0.001 standing, p≤0.007 seated) and subjects with PD (p≤0.03 standing, p≤0.04 seated). Subjects with PSP, PD and normal controls accurately perceived the direction of gravity when standing on a tilting surface. Unlike PD and control subjects, subjects with PSP exerted less postural corrective torque in response to toes up surface tilts. Discussion Difficulty perceiving backward tilt of the surface or body may account for backward falls and postural impairments in patients with PSP. These observations suggest that abnormal central integration of sensory inputs for perception of body and surface orientation contributes to the pathophysiology of postural instability in PSP. PMID:28267762
The dentist’s operating posture – ergonomic aspects
Pîrvu, C; Pătraşcu, I; Pîrvu, D; Ionescu, C
2014-01-01
Abstract The practice of dentistry involves laborious high finesse dental preparations, precision and control in executions that require a particular attention, concentration and patience of the dentist and finally the dentist’s physical and mental resistance. The optimal therapeutic approach and the success of practice involve special working conditions for the dentist and his team in an ergonomic environment. The meaning of the posture in ergonomics is the manner in which different parts of the body are located and thus the reports are established between them in order to allow a special task execution. This article discusses the posture adopted by dentists when they work, beginning with the balanced posture and going to different variants of posture. The ideal posture of a dentist gives him, on the one hand the optimal working conditions (access, visibility and control in the mouth) and on the other hand, physical and psychological comfort throughout the execution of the clinical acts. Although the theme of dentist posture is treated with great care and often presented in the undergraduate courses and the continuing education courses on ergonomics in dentistry, many dentists do not know the subject well enough nor the theoretical issues and therefore nor the practical applicability. The risk and perspective of the musculoskeletal disorders related to unbalanced postures should determine the dentists take postural corrective actions and compensation measures in order to limit the negative effects of working in a bad posture. PMID:25184007
Postural strategies assessed with inertial sensors in healthy and parkinsonian subjects
Baston, Chiara; Mancini, Martina; Schoneburg, Bernadette; Horak, Fay; Rocchi, Laura
2015-01-01
The present study introduces a novel instrumented method to characterize postural movement strategies to maintain balance during stance (ankle and hip strategy), by means of inertial sensors, positioned on the legs and on the trunk. We evaluated postural strategies in subjects with2 types of parkinsonism: idiopathic Parkinson's disease (PD) and Progressive Supranuclear Palsy (PSP),and inage-matched control subjects standing under perturbed conditions implementedby the Sensory Organization Test (SOT).Coordination between the upper and lower segments of the body during postural sway was measured using a covariance index over time, by a sliding-window algorithm. Afterwards, a postural strategy index was computed. We also measuredthe amount of postural sway, as adjunctive information to characterize balance, by the root mean square of the horizontal trunk acceleration signal (RMS). Results showed that control subjects were able to change their postural strategy, whilst PSP and PD subjects persisted in use of an ankle strategy in all conditions.PD subjects had RMS values similar to control subjects even without changing postural strategy appropriately, whereas PSP subjects showed much larger RMS values than controls, resulting in several falls during the most challenging SOT conditions (5 and 6). Results are in accordance with the corresponding clinical literature describing postural behavior in the same kind of subjects. The proposed strategy index, based on the use ofinertial sensors on the upper and lower body segments, isa promising and unobtrusive toolto characterize postural strategies performed to attain balance. PMID:24656713
Postural control system influences intrinsic alerting state.
Barra, Julien; Auclair, Laurent; Charvillat, Agnès; Vidal, Manuel; Pérennou, Dominic
2015-03-01
Numerous studies using dual-task paradigms (postural and cognitive) have shown that postural control requires cognitive resources. However, the influence of postural control on attention components has never been directly addressed. Using the attention network test (ANT), which assesses specifically each of the 3 components of attention-alertness, orientation, and executive control-within a single paradigm, we investigated the effect of postural balance demand on these 3 components. Forty-two participants completed the ANT in 3 postural conditions: (a) supine, a very stable position; (b) sitting on a chair, an intermediate position; and (c) standing with feet lined up heel to toe, a very instable position known as the Romberg position. Our results revealed that the difficulty of postural control does modulate alerting in such a way that it improves with the level of instability of the position. Regarding the orienting and executive control components of attention, performance was not different when participants were standing upright or seated, whereas in the supine position, performance dropped. The strong and specific interaction between postural control and the alerting system suggests that these mechanisms may share parts of the underlying neural circuits. We discuss the possible implication of the locus coeruleus, known to be involved in both postural balance and alerting. Also, our findings concerning orienting and executive control systems suggest that supine posture could have a specific effect on cognitive activities. These effects are discussed in terms of particularities resulting from the supine position. PsycINFO Database Record (c) 2015 APA, all rights reserved.
Jazaeri, Seyede Zohreh; Azad, Akram; Mehdizadeh, Hajar; Habibi, Seyed Amirhassan; Mandehgary Najafabadi, Mahbubeh; Saberi, Zakieh Sadat; Rahimzadegan, Hawre; Moradi, Saeed; Behzadipour, Saeed; Parnianpour, Mohamad; Khalaf, Kinda
2018-01-01
Background Although anxiety is a common non-motor outcome of Parkinson's disease (PD) affecting 40% of patients, little attention has been paid so far to its effects on balance impairment and postural control. Improvement of postural control through focusing on the environment (i.e. external focus) has been reported, but the role of anxiety, as a confounding variable, remains unclear. Objectives This study aimed to investigate the influence of anxiety and attentional focus instruction on the standing postural control of PD patients. Methods Thirty-four patients with PD (17 with high anxiety (HA-PD) and 17 with low anxiety (LA-PD)), as well as 17 gender- and age-matched healthy control subjects (HC) participated in the study. Postural control was evaluated using a combination of two levels of postural difficulty (standing on a rigid force plate surface with open eyes (RO) and standing on a foam surface with open eyes (FO)), as well as three attentional focus instructions (internal, external and no focus). Results Only the HA-PD group demonstrated significant postural control impairment as compared to the control, as indicated by significantly greater postural sway measures. Moreover, external focus significantly reduced postural sway in all participants especially during the FO condition. Conclusion The results of the current study provide evidence that anxiety influences balance control and postural stability in patients with PD, particularly those with high levels of anxiety. The results also confirmed that external focus is a potential strategy that significantly improves the postural control of these patients. Further investigation of clinical applicability is warranted towards developing effective therapeutic and rehabilitative treatment plans. PMID:29390029
Paillard, Thierry; Noé, Frédéric; Rivière, Terence; Marion, Vincent; Montoya, Richard; Dupui, Philippe
2006-01-01
Context: Sport training enhances the ability to use somatosensory and otolithic information, which improves postural capabilities. Postural changes are different according to the sport practiced, but few authors have analyzed subjects' postural performances to discriminate the expertise level among highly skilled athletes within a specific discipline. Objective: To compare the postural performance and the postural strategy between soccer players at different levels of competition (national and regional). Design: Repeated measures with 1 between-groups factor (level of competition: national or regional) and 1 within-groups factor (vision: eyes open or eyes closed). Dependent variables were center-of-pressure surface area and velocity; total spectral energy; and percentage of low-, medium-, and high-frequency band. Setting: Sports performance laboratory. Patients or Other Participants: Fifteen national male soccer players (age = 24 ± 3 years, height = 179 ± 5 cm, mass = 72 ± 3 kg) and 15 regional male soccer players (age = 23 ± 3 years, height = 174 ± 4 cm, mass = 68 ± 5 kg) participated in the study. Intervention(s): The subjects performed posturographic tests with eyes open and closed. Main Outcome Measure(s): While subjects performed static and dynamic posturographic tests, we measured the center of foot pressure on a force platform. Spatiotemporal center-of-pressure measurements were used to evaluate the postural performance, and a frequency analysis of the center-of-pressure excursions (fast Fourier transform) was conducted to estimate the postural strategy. Results: Within a laboratory task, national soccer players produced better postural performances than regional players and had a different postural strategy. The national players were more stable than the regional players and used proprioception and vision information differently. Conclusions: In the test conditions specific to playing soccer, level of playing experience influenced postural control performance measures and strategies. PMID:16791302
Paillard, Thierry; Noé, Frédéric; Rivière, Terence; Marion, Vincent; Montoya, Richard; Dupui, Philippe
2006-01-01
Sport training enhances the ability to use somatosensory and otolithic information, which improves postural capabilities. Postural changes are different according to the sport practiced, but few authors have analyzed subjects' postural performances to discriminate the expertise level among highly skilled athletes within a specific discipline. To compare the postural performance and the postural strategy between soccer players at different levels of competition (national and regional). Repeated measures with 1 between-groups factor (level of competition: national or regional) and 1 within-groups factor (vision: eyes open or eyes closed). Dependent variables were center-of-pressure surface area and velocity; total spectral energy; and percentage of low-, medium-, and high-frequency band. Sports performance laboratory. Fifteen national male soccer players (age = 24 +/- 3 years, height = 179 +/- 5 cm, mass = 72 +/- 3 kg) and 15 regional male soccer players (age = 23 +/- 3 years, height = 174 +/- 4 cm, mass = 68 +/- 5 kg) participated in the study. The subjects performed posturographic tests with eyes open and closed. While subjects performed static and dynamic posturographic tests, we measured the center of foot pressure on a force platform. Spatiotemporal center-of-pressure measurements were used to evaluate the postural performance, and a frequency analysis of the center-of-pressure excursions (fast Fourier transform) was conducted to estimate the postural strategy. Within a laboratory task, national soccer players produced better postural performances than regional players and had a different postural strategy. The national players were more stable than the regional players and used proprioception and vision information differently. In the test conditions specific to playing soccer, level of playing experience influenced postural control performance measures and strategies.
Colnat-Coulbois, S; Gauchard, G C; Maillard, L; Barroche, G; Vespignani, H; Auque, J; Perrin, P P
2011-10-13
Parkinson's disease (PD) is known to affect postural control, especially in situations needing a change in balance strategy or when a concurrent task is simultaneously performed. However, few studies assessing postural control in patients with PD included homogeneous population in late stage of the disease. Thus, this study aimed to analyse postural control and strategies in a homogeneous population of patients with idiopathic advanced (late-stage) PD, and to determine the contribution of peripheral inputs in simple and more complex postural tasks, such as sensory conflicting and dynamic tasks. Twenty-four subjects with advanced PD (duration: median (M)=11.0 years, interquartile range (IQR)=4.3 years; Unified Parkinson's Disease Rating Scale (UPDRS): M "on-dopa"=13.5, IQR=7.8; UPDRS: M "off-dopa"=48.5, IQR=16.8; Hoehn and Yahr stage IV in all patients) and 48 age-matched healthy controls underwent static (SPT) and dynamic posturographic (DPT) tests and a sensory organization test (SOT). In SPT, patients with PD showed reduced postural control precision with increased oscillations in both anterior-posterior and medial-lateral planes. In SOT, patients with PD displayed reduced postural performances especially in situations in which visual and vestibular cues became predominant to organize balance control, as was the ability to manage balance in situations for which visual or proprioceptive inputs are disrupted. In DPT, postural restabilization strategies were often inefficient to maintain equilibrium resulting in falls. Postural strategies were often precarious, postural regulation involving more hip joint than ankle joint in patients with advanced PD than in controls. Difficulties in managing complex postural situations, such as sensory conflicting and dynamic situations might reflect an inadequate sensory organization suggesting impairment in central information processing. Copyright © 2011. Published by Elsevier Ltd.
Sławińska, Urszula; Majczyński, Henryk; Dai, Yue; Jordan, Larry M
2012-04-01
Recent studies on the restoration of locomotion after spinal cord injury have employed robotic means of positioning rats above a treadmill such that the animals are held in an upright posture and engage in bipedal locomotor activity. However, the impact of the upright posture alone, which alters hindlimb loading, an important variable in locomotor control, has not been examined. Here we compared the locomotor capabilities of chronic spinal rats when placed in the horizontal and upright postures. Hindlimb locomotor movements induced by exteroceptive stimulation (tail pinching) were monitored with video and EMG recordings. We found that the upright posture alone significantly improved plantar stepping. Locomotor trials using anaesthesia of the paws and air stepping demonstrated that the cutaneous receptors of the paws are responsible for the improved plantar stepping observed when the animals are placed in the upright posture.We also tested the effectiveness of serotonergic drugs that facilitate locomotor activity in spinal rats in both the horizontal and upright postures. Quipazine and (±)-8-hydroxy-2-(dipropylamino)tetralin hydrobromide (8-OH-DPAT) improved locomotion in the horizontal posture but in the upright posture either interfered with or had no effect on plantar walking. Combined treatment with quipazine and 8-OH-DPAT at lower doses dramatically improved locomotor activity in both postures and mitigated the need to activate the locomotor CPG with exteroceptive stimulation. Our results suggest that afferent input from the paw facilitates the spinal CPG for locomotion. These potent effects of afferent input from the paw should be taken into account when interpreting the results obtained with rats in an upright posture and when designing interventions for restoration of locomotion after spinal cord injury.
Sławińska, Urszula; Majczyński, Henryk; Dai, Yue; Jordan, Larry M
2012-01-01
Recent studies on the restoration of locomotion after spinal cord injury have employed robotic means of positioning rats above a treadmill such that the animals are held in an upright posture and engage in bipedal locomotor activity. However, the impact of the upright posture alone, which alters hindlimb loading, an important variable in locomotor control, has not been examined. Here we compared the locomotor capabilities of chronic spinal rats when placed in the horizontal and upright postures. Hindlimb locomotor movements induced by exteroceptive stimulation (tail pinching) were monitored with video and EMG recordings. We found that the upright posture alone significantly improved plantar stepping. Locomotor trials using anaesthesia of the paws and air stepping demonstrated that the cutaneous receptors of the paws are responsible for the improved plantar stepping observed when the animals are placed in the upright posture. We also tested the effectiveness of serotonergic drugs that facilitate locomotor activity in spinal rats in both the horizontal and upright postures. Quipazine and (±)-8-hydroxy-2-(dipropylamino)tetralin hydrobromide (8-OH-DPAT) improved locomotion in the horizontal posture but in the upright posture either interfered with or had no effect on plantar walking. Combined treatment with quipazine and 8-OH-DPAT at lower doses dramatically improved locomotor activity in both postures and mitigated the need to activate the locomotor CPG with exteroceptive stimulation. Our results suggest that afferent input from the paw facilitates the spinal CPG for locomotion. These potent effects of afferent input from the paw should be taken into account when interpreting the results obtained with rats in an upright posture and when designing interventions for restoration of locomotion after spinal cord injury. PMID:22351637
Evaluation of Neutral Body Posture on Shuttle Mission STS-57 (SPACEHAB-1). Revision
NASA Technical Reports Server (NTRS)
Mount, Frances E.; Whitmore, Mihriban; Stealey, Sheryl L.
2003-01-01
Research has shown that the space environment induces physiological changes in the human body, such as fluid shifts in the upper body and chest cavity, spinal lengthening, muscular atrophy, space motion sickness, cardiopulmonary deconditioning, and bone mass loss, as well as some changes in visual perception. These require a period of adaptation and can substantially affect both crew member performance and posture. These physiological effects, when work activities are conducted, have been known to impact the body's center of gravity, reach, flexibility, and dexterity. All these aspects of posture must be considered to safely and efficiently design space systems and hardware. NASA has documented its microgravity body posture in the Man-Systems Integration Standards (MSIS); the space community uses the MSIS posture to design workstations and tools for space application. However, the microgravity body posture should be further investigated for several reasons, including small sample size in previous studies, possible imprecision, and lack of detail. JSC undertook this study to investigate human body posture exhibited under microgravity conditions. STS-57 crew members were instructed to assume a relaxed posture that was not oriented to any work area or task. Crew members were asked to don shorts and tank tops and to be blindfolded while data were recorded. Video data were acquired once during the mission from each of the six crew members. No one crew member exhibited the typical NBP called out in the MSIS; one composite posture is not adequate. A range of postures may be more constructive for design purposes. Future evaluations should define precise posture requirements for workstation, glove box, maintenance, foot-restraint, and handhold activities.
de Oliveira, Gerson; Tavares, Maria da Consolação Cunha Gomes Fernandes; de Faria Oliveira, Jane Domingues; Rodrigues, Marcos Rojo; Santaella, Danilo Forghieri
2016-01-01
There is a little evidence about the influence of yoga as a complementary therapy for postural balance and its influence on activities of daily living in multiple sclerosis (MS) patients. To evaluate the influence of a six-month yoga program on postural balance and subjective impact of postural balance impairment on activities of daily living in people with MS. Randomized controlled pilot study. Protocol developed at the Adaptive Physical Activity Study Department, College of Physical Education, State University of Campinas, Brazil. A total of 12 (11 women) yoga naive people with MS randomly divided into two groups as follows: Control (C-waiting list, n = 6) and Yoga (Y-Yoga training, n = 6). Yoga group practiced postures, breathing exercises, meditation, and relaxation on weekly 60-min classes for a six-month period. The following evaluations were performed at study entry (baseline), and after six months (six months): Berg Balance Scale (BBS), Expanded Disability Status Scale (EDSS), and self-reported postural balance quality and influence of postural balance on activities of daily living. There was a significant improvement in BBS score from baseline to six months only in the Yoga group, especially in subjects with higher EDSS score, with increased quality of self-reported postural balance, and decreased influence of postural balance impairment on activities of daily living. In conclusion, a six-month yoga training is beneficial for people with MS, since it improves postural balance and decreases the influence of postural balance impairment on activities of daily living. A greater sample size is necessary to increase generalization, but it seems that yoga could be included as a feasible complementary therapy for people with MS. Copyright © 2016 Elsevier Inc. All rights reserved.
Postural abnormalities and contraversive pushing following right hemisphere brain damage.
Lafosse, C; Kerckhofs, E; Vereeck, L; Troch, M; Van Hoydonck, G; Moeremans, M; Sneyers, C; Broeckx, J; Dereymaeker, L
2007-06-01
We investigated the presence of postural abnormalities in a consecutive sample of stroke patients, with either left or right brain damage, in relation to their perceived body position in space. The presence or absence of posture-related symptoms was judged by two trained therapists and subsequently analysed by hierarchical classes analysis (HICLAS). The subject classes resulting from the HICLAS model were further validated with respect to posture-related measurements, such as centre of gravity position and head position, as well as measurements related to the postural body scheme, such as the perception of postural and visual verticality. The results of the classification analysis clearly demonstrated a relation between the presence of right brain damage and abnormalities in body geometry. The HICLAS model revealed three classes of subjects: The first class contained almost all the patients without neglect and without any signs of contraversive pushing. They were mainly characterised by a normal body axis in any position. The second class were all neglect patients but predominantly without any contraversive pushing. The third class contained right brain damaged patients, all showing neglect and mostly exhibiting contraversive pushing. The patients in the third class showed a clear resistance to bringing the weight over to the ipsilesional side when the therapist attempted to make the subject achieve a vertical posture across the midline. The clear correspondence between abnormalities of the observed body geometry and the tilt of the subjective postural and visual vertical suggests that a patient's postural body geometry is characterised by leaning towards the side of space where he/she feels aligned with an altered postural body scheme. The presence of contraversive pushing after right brain damage points in to a spatial higher-order processing deficit underlying the higher frequency and severity of the axial postural abnormalities found after right brain lesions.
Improving posture-motor dual-task with a supraposture-focus strategy in young and elderly adults
Yu, Shu-Han
2017-01-01
In a postural-suprapostural task, appropriate prioritization is necessary to achieve task goals and maintain postural stability. A “posture-first” principle is typically favored by elderly people in order to secure stance stability, but this comes at the cost of reduced suprapostural performance. Using a postural-suprapostural task with a motor suprapostural goal, this study investigated differences between young and older adults in dual-task cost across varying task prioritization paradigms. Eighteen healthy young (mean age: 24.8 ± 5.2 years) and 18 older (mean age: 68.8 ± 3.7 years) adults executed a designated force-matching task from a stabilometer board using either a stabilometer stance (posture-focus strategy) or force-matching (supraposture-focus strategy) as the primary task. The dual-task effect (DTE: % change in dual-task condition; positive value: dual-task benefit, negative value: dual-task cost) of force-matching error and reaction time (RT), posture error, and approximate entropy (ApEn) of stabilometer movement were measured. When using the supraposture-focus strategy, young adults exhibited larger DTE values in each behavioral parameter than when using the posture-focus strategy. The older adults using the supraposture-focus strategy also attained larger DTE values for posture error, stabilometer movement ApEn, and force-matching error than when using the posture-focus strategy. These results suggest that the supraposture-focus strategy exerted an increased dual-task benefit for posture-motor dual-tasking in both healthy young and elderly adults. The present findings imply that the older adults should make use of the supraposture-focus strategy for fall prevention during dual-task execution. PMID:28151943
Improving posture-motor dual-task with a supraposture-focus strategy in young and elderly adults.
Yu, Shu-Han; Huang, Cheng-Ya
2017-01-01
In a postural-suprapostural task, appropriate prioritization is necessary to achieve task goals and maintain postural stability. A "posture-first" principle is typically favored by elderly people in order to secure stance stability, but this comes at the cost of reduced suprapostural performance. Using a postural-suprapostural task with a motor suprapostural goal, this study investigated differences between young and older adults in dual-task cost across varying task prioritization paradigms. Eighteen healthy young (mean age: 24.8 ± 5.2 years) and 18 older (mean age: 68.8 ± 3.7 years) adults executed a designated force-matching task from a stabilometer board using either a stabilometer stance (posture-focus strategy) or force-matching (supraposture-focus strategy) as the primary task. The dual-task effect (DTE: % change in dual-task condition; positive value: dual-task benefit, negative value: dual-task cost) of force-matching error and reaction time (RT), posture error, and approximate entropy (ApEn) of stabilometer movement were measured. When using the supraposture-focus strategy, young adults exhibited larger DTE values in each behavioral parameter than when using the posture-focus strategy. The older adults using the supraposture-focus strategy also attained larger DTE values for posture error, stabilometer movement ApEn, and force-matching error than when using the posture-focus strategy. These results suggest that the supraposture-focus strategy exerted an increased dual-task benefit for posture-motor dual-tasking in both healthy young and elderly adults. The present findings imply that the older adults should make use of the supraposture-focus strategy for fall prevention during dual-task execution.
Yilmaz Yelvar, Gul Deniz; Çirak, Yasemin; Dalkilinç, Murat; Demir, Yasemin Parlak; Baltaci, Gul; Kömürcü, Mahmut; Yelvar, Gul Deniz Yilmaz
2016-06-30
Postural control allows performance of daily and sports activities. The previous studies show that postural sway inceases in orthopaedic injuries such as osteoarthritis and total knee arthroplasty. To compare postural sway, risk of falling and function between individuals with and without patellofemoral pain syndrome (PFS). This study included 22 subjects with patellofemoral pain syndrome, age-matched pain-free 22 females serving as a control group. Visual anolog scale and Kujala were used to evaluate the pain. Posturographic assesment was performed by Tetrax posturographic device. Biering Modified Sorenson test for extensor endurance and sit-up test for flexor endurance were used for the evaluation of trunk endurance. Timed get-up and go test was used for lower extremity function. The Student's t Test was used to compare variables between the groups. The Pearson correlation coefficients were calculated to examine correlation between the quantitative variables. Postural sway included eyes open without pillow, eyes open on pillow, eyes closed on pillow, risk of falling, function and postural stabilization included flexor endurance, extansor endurance are impared in patient with patellofemoral pain syndrome when compare to controls. In subjects with PFPS increased postural sway significantly associated with body mass index (r= 0.52), pain duration (r= 0.43), postural control (extansor endurance) (r= -0.50) and risk of falling (r= 0.62) on pillow with open eyes. In addition we found function significantly related with postural control (extansor endurance and flexor endurance) (r= -0.59 and r= -0.59) and risk of falling (r= 0.77)CONCLUSIONS: Decreased neuromuscular control of the trunk core and increased postural sway and falling risk were found in patients with PFPS. Patients may be evaluated for deficits in postural control and falling risk before treatment.
Cole, Ashley K; McGrath, Melanie L; Harrington, Shana E; Padua, Darin A; Rucinski, Terri J; Prentice, William E
2013-01-01
Context Overhead athletes commonly have poor posture. Commercial braces are used to improve posture and function, but few researchers have examined the effects of shoulder or scapular bracing on posture and scapular muscle activity. Objective To examine whether a scapular stabilization brace acutely alters posture and scapular muscle activity in healthy overhead athletes with forward-head, rounded-shoulder posture (FHRSP). Design Randomized controlled clinical trial. Setting Applied biomechanics laboratory. Patients or Other Participants Thirty-eight healthy overhead athletes with FHRSP. Intervention(s) Participants were assigned randomly to 2 groups: compression shirt with no strap tension (S) and compression shirt with the straps fully tensioned (S + T). Posture was measured using lateral-view photography with retroreflective markers. Electromyography (EMG) of the upper trapezius (UT), middle trapezius (MT), lower trapezius (LT), and serratus anterior (SA) in the dominant upper extremity was measured during 4 exercises (scapular punches, W's, Y's, T's) and 2 glenohumeral motions (forward flexion, shoulder extension). Posture and exercise EMG measurements were taken with and without the brace applied. Main Outcome Measure(s) Head and shoulder angles were measured from lateral-view digital photographs. Normalized surface EMG was used to assess mean muscle activation of the UT, MT, LT, and SA. Results Application of the brace decreased forward shoulder angle in the S + T condition. Brace application also caused a small increase in LT EMG during forward flexion and Y's and a small decrease in UT and MT EMG during shoulder extension. Brace application in the S + T group decreased UT EMG during W's, whereas UT EMG increased during W's in the S group. Conclusions Application of the scapular brace improved shoulder posture and scapular muscle activity, but EMG changes were highly variable. Use of a scapular brace might improve shoulder posture and muscle activity in overhead athletes with poor posture. PMID:23672321
Huang, Cheng-Ya; Chang, Gwo-Ching; Tsai, Yi-Ying; Hwang, Ing-Shiou
2016-01-01
Increase in postural-demand resources does not necessarily degrade a concurrent motor task, according to the adaptive resource-sharing hypothesis of postural-suprapostural dual-tasking. This study investigated how brain networks are organized to optimize a suprapostural motor task when the postural load increases and shifts postural control into a less automatic process. Fourteen volunteers executed a designated force-matching task from a level surface (a relative automatic process in posture) and from a stabilometer board while maintaining balance at a target angle (a relatively controlled process in posture). Task performance of the postural and suprapostural tasks, synchronization likelihood (SL) of scalp EEG, and graph-theoretical metrics were assessed. Behavioral results showed that the accuracy and reaction time of force-matching from a stabilometer board were not affected, despite a significant increase in postural sway. However, force-matching in the stabilometer condition showed greater local and global efficiencies of the brain networks than force-matching in the level-surface condition. Force-matching from a stabilometer board was also associated with greater frontal cluster coefficients, greater mean SL of the frontal and sensorimotor areas, and smaller mean SL of the parietal-occipital cortex than force-matching from a level surface. The contrast of supra-threshold links in the upper alpha and beta bands between the two stance conditions validated load-induced facilitation of inter-regional connections between the frontal and sensorimotor areas, but that contrast also indicated connection suppression between the right frontal-temporal and the parietal-occipital areas for the stabilometer stance condition. In conclusion, an increase in stance difficulty alters the neurocognitive processes in executing a postural-suprapostural task. Suprapostural performance is not degraded by increase in postural load, due to (1) increased effectiveness of information transfer, (2) an anterior shift of processing resources toward frontal executive function, and (3) cortical dissociation of control hubs in the parietal-occipital cortex for neural economy. PMID:27594830
Porter, D; Michael, S; Kirkwood, C
2010-09-01
A pattern of postural deformity was observed in a previous study that included an association between direction of spinal curvature and direction of windsweeping with more windswept deformities occurring to the right and lateral spinal curvatures occurring convex to the left. The direction of this pattern was found to be associated with preferred lying posture in early life. The aim of this study was to test the association between foetal position and both the preferred lying posture after birth, and the direction of subsequent postural deformity in non-ambulant children with cerebral palsy (CP). A retrospective cohort study was carried out involving 60 participants at level five on the gross motor function classification for CP. Foetal position during the last month of pregnancy was taken from antenatal records and parents were interviewed to identify preferred lying posture in the first year of life. At the time of the physical assessment ages ranged from 1 year and 1 month to 19 years with a median age of 13 years and 1 month. Foetal presentation was found to be associated with the preferred lying posture with participants carried in a left occipito-anterior/lateral position more likely to adopt a supine head right lying posture, and vice versa. An association was also observed between the foetal position and asymmetrical postural deformity occurring later in life with participants carried in a left occipito-anterior/lateral presentation more likely to have a convex left spinal curve, a lower left pelvic obliquity, and a windswept hip pattern to the right. Clinicians should be aware of the association between foetal presentation, asymmetrical lying posture, and the direction of subsequent postural deformity for severely disabled children. A hypothesis is described that might help to explain these findings.
Ax, M; Sanchez-Crespo, A; Lindahl, S G E; Mure, M; Petersson, J
2017-06-01
Previous studies in humans have shown that gravity has little influence on the distribution of lung blood flow while changing posture from supine to prone. This study aimed to evaluate the maximal influence of posture by comparison of regional lung blood flow in the upright and head-down posture in 8 healthy volunteers, using a tilt table. Regional lung blood flow was marked by intravenous injection of macroaggregates of human albumin labeled with 99m Tc or 113m In, in the upright and head-down posture, respectively, during tidal breathing. Both radiotracers remain fixed in the lung after administration. The distribution of radioactivity was mapped using quantitative single photon emission computed tomography (SPECT) corrected for attenuation and scatter. All images were obtained supine during tidal breathing. A shift from upright to the head-down posture caused a clear redistribution of blood flow from basal to apical regions. We conclude that posture plays a role for the distribution of lung blood flow in upright humans, and that the influence of posture, and thereby gravity, is much greater in the upright and head-down posture than in horizontal postures. However, the results of the study demonstrate that lung structure is the main determinant of regional blood flow and gravity is a secondary contributor to the distribution of lung blood flow in the upright and head-down positions. NEW & NOTEWORTHY Using a dual-isotope quantitative SPECT method, we demonstrated that although a shift in posture redistributes blood flow in the direction of gravity, the results are also consistent with lung structure being a greater determinant of regional blood flow than gravity. To our knowledge, this is the first study to use modern imaging methods to quantify the shift in regional lung blood flow in humans at a change between the upright and head-down postures. Copyright © 2017 the American Physiological Society.
Bergström, Ilias; Kilteni, Konstantina; Slater, Mel
2016-01-01
In immersive virtual reality (IVR) it is possible to replace a person’s real body by a life-sized virtual body that is seen from first person perspective to visually substitute their own. Multisensory feedback from the virtual to the real body (such as the correspondence of touch and also movement) can also be present. Under these conditions participants typically experience a subjective body ownership illusion (BOI) over the virtual body, even though they know that it is not their real one. In most studies and applications the posture of the real and virtual bodies are as similar as possible. Here we were interested in whether the BOI is diminished when there are gross discrepancies between the real and virtual body postures. We also explored whether a comfortable or uncomfortable virtual body posture would induce feelings and physiological responses commensurate with the posture. We carried out an experiment with 31 participants in IVR realized with a wide field-of-view head-mounted display. All participants were comfortably seated. Sixteen of them were embodied in a virtual body designed to be in a comfortable posture, and the remainder in an uncomfortable posture. The results suggest that the uncomfortable body posture led to lesser subjective BOI than the comfortable one, but that participants in the uncomfortable posture experienced greater awareness of their autonomic physiological responses. Moreover their heart rate, heart rate variability, and the number of mistakes in a cognitive task were associated with the strength of their BOI in the uncomfortable posture: greater heart rate, lower heart rate variability and more mistakes were associated with higher levels of the BOI. These findings point in a consistent direction—that the BOI over a body that is in an uncomfortable posture can lead to subjective, physiological and cognitive effects consistent with discomfort that do not occur with the BOI over a body in a comfortable posture. PMID:26828365
Voglar, Matej; Sarabon, Nejc
2014-09-01
Therapeutic Kinesio Taping method is used for treatment of various musculo-skeletal conditions. Kinesio Taping might have some small clinically important beneficial effects on range of motion and strength but findings about the effects on proprioception and muscle activation are inconsistent. The aim of this study was to test if Kinesio Taping influences anticipatory postural adjustments and postural reflex reactions. To test the hypothesis twelve healthy young participants were recruited in randomized, participants blinded, placebo controlled cross-over study. In the experimental condition the tape was applied over the paravertebral muscles and in placebo condition sham application of the tape was done transversally over the lumbar region. Timing of anticipatory postural adjustments to fast voluntary arms movement and postural reflex reactions to sudden loading over the hands were measured by means of superficial electromyography before and one hour after each tape application. Results showed no significant differences between Kinesio Taping and placebo taping conditions for any of the analyzed muscles in anticipatory postural adaptations (F1,11 < 0.23, p > 0.64, η2 < 0.04) or postural reflex reactions (F1,11 < 4.16, p > 0.07, η(2) < 0.49). Anticipatory postural adjustments of erector spinae and multifidus muscles were initiated significantly earlier after application of taping (regardless of technique) compared to pre-taping (F1,11 = 5.02, p = 0.046, η(2) = 0.31 and F1,11 = 6.18, p = 0.030, η(2) = 0.36 for erector spinae and multifidus, respectively). Taping application over lumbar region has potential beneficial effects on timing of anticipatory postural adjustments regardless of application technique but no effect on postural reflex reactions in young pain free participants. Further research in patients with low back pain would be encouraged. Key PointsApplication of Kinesio Taping does not affect postural reflex reactions in young healthy population.Earlier anticipatory postural adjustments were observed under both Kinesio Taping and placebo conditions.There were no significant differences between Kinesio Taping and placebo condition.
Yaguchi, Chie; Fujiwara, Katsuo; Kiyota, Naoe
2017-12-22
Activation timings of postural muscles of lower legs and prediction of postural disturbance were investigated in young and older adults during bilateral arm flexion in a self-timing task and an oddball task with different probabilities of target presentation. Arm flexion was started from a standing posture with hands suspended 10 cm below the horizontal level in front of the body, in which postural control focused on the ankles is important. Fourteen young and 14 older adults raised the arms in response to the target sound signal. Three task conditions were used: 15 and 45% probabilities of the target in the oddball task and self-timing. Analysis items were activation timing of postural muscles (erector spinae, biceps femoris, and gastrocnemius) with respect to the anterior deltoid (AD), and latency and amplitude of the P300 component of event-related brain potential. For young adults, all postural muscles were activated significantly earlier than AD under each condition, and time of preceding gastrocnemius activation was significantly longer in the order of the self-timing, 45 and 15% conditions. P300 latency was significantly shorter, and P300 amplitude was significantly smaller under the 45% condition than under the 15% condition. For older adults, although all postural muscles, including gastrocnemius, were activated significantly earlier than AD in the self-timing condition, only activation timing of gastrocnemius was not significantly earlier than that of AD in oddball tasks, regardless of target probability. No significant differences were found between 15 and 45% conditions in onset times of all postural muscles, and latency and amplitude of P300. These results suggest that during arm movement, young adults can achieve sufficient postural preparation in proportion to the probability of target presentation in the oddball task. Older adults can achieve postural control using ankle joints in the self-timing task. However, in the oddball task, older adults experience difficulty predicting the timing of target presentation, which could be related to deteriorated cognitive function, resulting in reduced use of the ankle joints for postural control.
Bernard-Demanze, Laurence; Léonard, Jacques; Dumitrescu, Michel; Meller, Renaud; Magnan, Jacques; Lacour, Michel
2014-01-01
Posture control is based on central integration of multisensory inputs, and on internal representation of body orientation in space. This multisensory feedback regulates posture control and continuously updates the internal model of body's position which in turn forwards motor commands adapted to the environmental context and constraints. The peripheral localization of the vestibular system, close to the cochlea, makes vestibular damage possible following cochlear implant (CI) surgery. Impaired vestibular function in CI patients, if any, may have a strong impact on posture stability. The simple postural task of quiet standing is generally paired with cognitive activity in most day life conditions, leading therefore to competition for attentional resources in dual-tasking, and increased risk of fall particularly in patients with impaired vestibular function. This study was aimed at evaluating the effects of postlingual cochlear implantation on posture control in adult deaf patients. Possible impairment of vestibular function was assessed by comparing the postural performance of patients to that of age-matched healthy subjects during a simple postural task performed in static (stable platform) and dynamic (platform in translation) conditions, and during dual-tasking with a visual or auditory memory task. Postural tests were done in eyes open (EO) and eyes closed (EC) conditions, with the CI activated (ON) or not (OFF). Results showed that the postural performance of the CI patients strongly differed from the controls, mainly in the EC condition. The CI patients showed significantly reduced limits of stability and increased postural instability in static conditions. In dynamic conditions, they spent considerably more energy to maintain equilibrium, and their head was stabilized neither in space nor on trunk: they behaved dynamically without vision like an inverted pendulum while the controls showed a whole body rigidification strategy. Hearing (prosthesis on) as well as dual-tasking did not really improve the dynamic postural performance of the CI patients. We conclude that CI patients become strongly visual dependent mainly in challenging postural conditions, a result they have to be awarded of particularly when getting older. PMID:24474907
Bernard-Demanze, Laurence; Léonard, Jacques; Dumitrescu, Michel; Meller, Renaud; Magnan, Jacques; Lacour, Michel
2013-01-01
Posture control is based on central integration of multisensory inputs, and on internal representation of body orientation in space. This multisensory feedback regulates posture control and continuously updates the internal model of body's position which in turn forwards motor commands adapted to the environmental context and constraints. The peripheral localization of the vestibular system, close to the cochlea, makes vestibular damage possible following cochlear implant (CI) surgery. Impaired vestibular function in CI patients, if any, may have a strong impact on posture stability. The simple postural task of quiet standing is generally paired with cognitive activity in most day life conditions, leading therefore to competition for attentional resources in dual-tasking, and increased risk of fall particularly in patients with impaired vestibular function. This study was aimed at evaluating the effects of postlingual cochlear implantation on posture control in adult deaf patients. Possible impairment of vestibular function was assessed by comparing the postural performance of patients to that of age-matched healthy subjects during a simple postural task performed in static (stable platform) and dynamic (platform in translation) conditions, and during dual-tasking with a visual or auditory memory task. Postural tests were done in eyes open (EO) and eyes closed (EC) conditions, with the CI activated (ON) or not (OFF). Results showed that the postural performance of the CI patients strongly differed from the controls, mainly in the EC condition. The CI patients showed significantly reduced limits of stability and increased postural instability in static conditions. In dynamic conditions, they spent considerably more energy to maintain equilibrium, and their head was stabilized neither in space nor on trunk: they behaved dynamically without vision like an inverted pendulum while the controls showed a whole body rigidification strategy. Hearing (prosthesis on) as well as dual-tasking did not really improve the dynamic postural performance of the CI patients. We conclude that CI patients become strongly visual dependent mainly in challenging postural conditions, a result they have to be awarded of particularly when getting older.
Qin, D L; Jin, X N; Wang, S J; Wang, J J; Mamat, N; Wang, F J; Wang, Y; Shen, Z A; Sheng, L G; Forsman, M; Yang, L Y; Wang, S; Zhang, Z B; He, L H
2018-06-18
To form a new assessment method to evaluate postural workload comprehensively analyzing the dynamic and static postural workload for workers during their work process to analyze the reliability and validity, and to study the relation between workers' postural workload and work-related musculoskeletal disorders (WMSDs). In the study, 844 workers from electronic and railway vehicle manufacturing factories were selected as subjects investigated by using the China Musculoskeletal Questionnaire (CMQ) to form the postural workload comprehensive assessment method. The Cronbach's α, cluster analysis and factor analysis were used to assess the reliability and validity of the new assessment method. Non-conditional Logistic regression was used to analyze the relation between workers' postural workload and WMSDs. Reliability of the assessment method for postural workload: internal consistency analysis results showed that Cronbach's α was 0.934 and the results of split-half reliability indicated that Spearman-Brown coefficient was 0.881 and the correlation coefficient between the first part and the second was 0.787. Validity of the assessment method for postural workload: the results of cluster analysis indicated that square Euclidean distance between dynamic and static postural workload assessment in the same part or work posture was the shortest. The results of factor analysis showed that 2 components were extracted and the cumulative percentage of variance achieved 65.604%. The postural workload score of the different occupational workers showed significant difference (P<0.05) by covariance analysis. The results of nonconditional Logistic regression indicated that alcohol intake (OR=2.141, 95%CI 1.337-3.428) and obesity (OR=3.408, 95%CI 1.629-7.130) were risk factors for WMSDs. The risk for WMSDs would rise as workers' postural workload rose (OR=1.035, 95%CI 1.022-1.048). There was significant different risk for WMSDs in the different groups of workers distinguished by work type, gender and age. Female workers exhibited a higher prevalence for WMSDs (OR=2.626, 95%CI 1.414-4.879) and workers between 30-40 years of age (OR=1.909, 95%CI 1.237-2.946) as compared with those under 30. This method for comprehensively assessing postural workload is reliable and effective when used in assembling workers, and there is certain relation between the postural workload and WMSDs.
The internal representation of head orientation differs for conscious perception and balance control
Dalton, Brian H.; Rasman, Brandon G.; Inglis, J. Timothy
2017-01-01
Key points We tested perceived head‐on‐feet orientation and the direction of vestibular‐evoked balance responses in passively and actively held head‐turned postures.The direction of vestibular‐evoked balance responses was not aligned with perceived head‐on‐feet orientation while maintaining prolonged passively held head‐turned postures. Furthermore, static visual cues of head‐on‐feet orientation did not update the estimate of head posture for the balance controller.A prolonged actively held head‐turned posture did not elicit a rotation in the direction of the vestibular‐evoked balance response despite a significant rotation in perceived angular head posture.It is proposed that conscious perception of head posture and the transformation of vestibular signals for standing balance relying on this head posture are not dependent on the same internal representation. Rather, the balance system may operate under its own sensorimotor principles, which are partly independent from perception. Abstract Vestibular signals used for balance control must be integrated with other sensorimotor cues to allow transformation of descending signals according to an internal representation of body configuration. We explored two alternative models of sensorimotor integration that propose (1) a single internal representation of head‐on‐feet orientation is responsible for perceived postural orientation and standing balance or (2) conscious perception and balance control are driven by separate internal representations. During three experiments, participants stood quietly while passively or actively maintaining a prolonged head‐turned posture (>10 min). Throughout the trials, participants intermittently reported their perceived head angular position, and subsequently electrical vestibular stimuli were delivered to elicit whole‐body balance responses. Visual recalibration of head‐on‐feet posture was used to determine whether static visual cues are used to update the internal representation of body configuration for perceived orientation and standing balance. All three experiments involved situations in which the vestibular‐evoked balance response was not orthogonal to perceived head‐on‐feet orientation, regardless of the visual information provided. For prolonged head‐turned postures, balance responses consistent with actual head‐on‐feet posture occurred only during the active condition. Our results indicate that conscious perception of head‐on‐feet posture and vestibular control of balance do not rely on the same internal representation, but instead treat sensorimotor cues in parallel and may arrive at different conclusions regarding head‐on‐feet posture. The balance system appears to bypass static visual cues of postural orientation and mainly use other sensorimotor signals of head‐on‐feet position to transform vestibular signals of head motion, a mechanism appropriate for most daily activities. PMID:28035656
Bazzini, G; Capodaglio, E; Panigazzi, M; Prestifilippo, E; Vercesi, C
2010-01-01
For posture we mean the position of the body in the space and the relationship with its segments. The correct posture is determined by neurophysiological, biomechanical, emotional, psychological and relation factors, enabling us to perform daily and working activities with the lowest energy expenditure. When possible we suggest during posture variation, a preventive measure where there are prolonged fixed activities.
Assessment of Postural Control in Children with Cerebral Palsy: A Review
ERIC Educational Resources Information Center
Pavao, Silvia Leticia; dos Santos, Adriana Neves; Woollacott, Marjorie Hines; Rocha, Nelci Adriana Cicuto Ferreira
2013-01-01
This paper aimed to review studies that assessed postural control (PC) in children with cerebral palsy (CP) and describe the methods used to investigate postural control in this population. It also intended to describe the performance of children with CP in postural control. An extensive database search was performed using the keywords: postural…
The Control of Posture in Newly Standing Infants is Task Dependent
ERIC Educational Resources Information Center
Claxton, Laura J.; Melzer, Dawn K.; Ryu, Joong Hyun; Haddad, Jeffrey M.
2012-01-01
The postural sway patterns of newly standing infants were compared under two conditions: standing while holding a toy and standing while not holding a toy. Infants exhibited a lower magnitude of postural sway and more complex sway patterns when holding the toy. These changes suggest that infants adapt postural sway in a manner that facilitates…
The Role of Postural Support in Young Adults' Control of Stationary Kicking
ERIC Educational Resources Information Center
Sidaway, Ben; Bouchard, Matthew; Chasse, Julie; Dunn, Jonathan; Govoni, Andrea; McPherson, Breanne; Roy, Katherine; Anderson, David I.
2017-01-01
Purpose: The requirement for postural stability during the performance of motor skills has been clearly demonstrated in infants, but the necessity for such a postural substrate is not well documented in adults. The present study investigated the role of postural stability during a ballistic ball-kicking task in adults by providing varying degrees…
Physical activity limits the effects of age and Alzheimer's disease on postural control.
Debove, Lola; Bru, Noelle; Couderc, Martine; Noé, Frederic; Paillard, Thierry
2017-09-01
The aim was to study the possible influence of physical activity on the postural performance of subjects with Alzheimer's disease (AD). The postural performance (i.e. surface area of the center of foot pressure displacement) of 3 groups was compared: Alzheimer active group (AA), Alzheimer non-active group (ANA) and healthy non-active group (HNA). The AA group's postural performance was superior to that of the ANA and HNA groups. AD disturbed postural performance but participation in regular physical activity made it possible to limit the disturbing effects of AD to a surprising extent, since the postural performance of active AD subjects was also superior to that of healthy subjects. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Nafati, Gilel; Vuillerme, Nicolas
2011-12-01
This experiment was designed to investigate whether and how decreasing the amount of attentional focus invested in postural control could affect bipedal postural control. Twelve participants were asked to stand upright as immobile as possible on a force platform in one control condition and one cognitive condition. In the latter condition, they performed a short-term digit-span memory task. Decreased center-of-gravity displacements and decreased center-of-foot-pressure displacements minus center-of-gravity displacements were observed in the cognitive condition relative to the control condition. These results suggest that shifting the attentional focus away from postural control by executing a concurrent attention-demanding task could increase postural performance and postural efficiency.
Contribution of supraspinal systems to generation of automatic postural responses
Deliagina, Tatiana G.; Beloozerova, Irina N.; Orlovsky, Grigori N.; Zelenin, Pavel V.
2014-01-01
Different species maintain a particular body orientation in space due to activity of the closed-loop postural control system. In this review we discuss the role of neurons of descending pathways in operation of this system as revealed in animal models of differing complexity: lower vertebrate (lamprey) and higher vertebrates (rabbit and cat). In the lamprey and quadruped mammals, the role of spinal and supraspinal mechanisms in the control of posture is different. In the lamprey, the system contains one closed-loop mechanism consisting of supraspino-spinal networks. Reticulospinal (RS) neurons play a key role in generation of postural corrections. Due to vestibular input, any deviation from the stabilized body orientation leads to activation of a specific population of RS neurons. Each of the neurons activates a specific motor synergy. Collectively, these neurons evoke the motor output necessary for the postural correction. In contrast to lampreys, postural corrections in quadrupeds are primarily based not on the vestibular input but on the somatosensory input from limb mechanoreceptors. The system contains two closed-loop mechanisms – spinal and spino-supraspinal networks, which supplement each other. Spinal networks receive somatosensory input from the limb signaling postural perturbations, and generate spinal postural limb reflexes. These reflexes are relatively weak, but in intact animals they are enhanced due to both tonic supraspinal drive and phasic supraspinal commands. Recent studies of these supraspinal influences are considered in this review. A hypothesis suggesting common principles of operation of the postural systems stabilizing body orientation in a particular plane in the lamprey and quadrupeds, that is interaction of antagonistic postural reflexes, is discussed. PMID:25324741
Pelosin, Elisa; Bisio, Ambra; Pozzo, Thierry; Lagravinese, Giovanna; Crisafulli, Oscar; Marchese, Roberta; Abbruzzese, Giovanni; Avanzino, Laura
2018-01-01
Postural reactions can be influenced by concomitant tasks or different contexts and are modulated by a higher order motor control. Recent studies investigated postural changes determined by motor contagion induced by action observation (chameleon effect) showing that observing a model in postural disequilibrium induces an increase in healthy subjects’ body sway. Parkinson’s disease (PD) is associated with postural instability and impairments in cognitively controlled balance tasks. However, no studies investigated if viewing postural imbalance might influence postural stability in PD and if patients are able to inhibit a visual postural perturbation. In this study, an action observation paradigm for assessing postural reaction to motor contagion in PD subjects and healthy older adults was used. Postural stability changes were measured during the observation of a static stimulus (control condition) and during a point-light display of a gymnast balancing on a rope (biological stimulus). Our results showed that, during the observation of the biological stimulus, sway area and antero-posterior and medio-lateral displacements of center of pressure significantly increased only in PD participants, whereas correct stabilization reactions were present in elderly subjects. These results demonstrate that PD leads to a decreased capacity to control automatic imitative tendencies induced by motor contagion. This behavior could be the consequence either of an inability to inhibit automatic imitative tendencies or of the cognitive load requested by the task. Whatever the case, the issue about the ability to inhibit automatic imitative tendencies could be crucial for PD patients since it might increase falls risk and injuries. PMID:29545771
DeShaw, Jonathan; Rahmatalla, Salam
2014-08-01
The aim of this study was to develop a predictive discomfort model in single-axis, 3-D, and 6-D combined-axis whole-body vibrations of seated occupants considering different postures. Non-neutral postures in seated whole-body vibration play a significant role in the resulting level of perceived discomfort and potential long-term injury. The current international standards address contact points but not postures. The proposed model computes discomfort on the basis of static deviation of human joints from their neutral positions and how fast humans rotate their joints under vibration. Four seated postures were investigated. For practical implications, the coefficients of the predictive discomfort model were changed into the Borg scale with psychophysical data from 12 volunteers in different vibration conditions (single-axis random fore-aft, lateral, and vertical and two magnitudes of 3-D). The model was tested under two magnitudes of 6-D vibration. Significant correlations (R = .93) were found between the predictive discomfort model and the reported discomfort with different postures and vibrations. The ISO 2631-1 correlated very well with discomfort (R2 = .89) but was not able to predict the effect of posture. Human discomfort in seated whole-body vibration with different non-neutral postures can be closely predicted by a combination of static posture and the angular velocities of the joint. The predictive discomfort model can assist ergonomists and human factors researchers design safer environments for seated operators under vibration. The model can be integrated with advanced computer biomechanical models to investigate the complex interaction between posture and vibration.
Inadequate interaction between open- and closed-loop postural control in phobic postural vertigo.
Wuehr, M; Pradhan, C; Novozhilov, S; Krafczyk, S; Brandt, T; Jahn, K; Schniepp, R
2013-05-01
Phobic postural vertigo (PPV) is characterized by a subjective dizziness and postural imbalance. Changes in postural control strategy may cause the disturbed postural performance in PPV. A better understanding of the mechanisms behind this change in strategy is required to improve the diagnostic tools and therapeutic options for this prevalent disorder. Here we apply stabilogram diffusion analysis (SDA) to examine the characteristics and modes of interaction of open- and closed-loop processes that make up the postural control scheme in PPV. Twenty patients with PPV and 20 age-matched healthy controls were recorded on a stabilometer platform with eyes open and with eyes closed. Spatio-temporal changes of the center of pressure (CoP) displacement were analyzed by means of SDA and complementary CoP amplitude measures. (1) Open-loop control mechanisms in PPV were disturbed because of a higher diffusion activity (p < 0.001). (2) The interaction of open- and closed-loop processes was altered in that the sensory feedback threshold of the system was lowered (p = 0.010). These two changes were comparable to those observed in healthy subjects during more demanding balance conditions such as standing with eyes closed. These data indicate that subjective imbalance in PPV is associated with characteristic changes in the coordination of open- and closed-loop mechanisms of postural control. Patients with PPV use sensory feedback inadequately during undisturbed stance, and this impairs postural performance. These changes are compatible with higher levels of anti-gravity muscle activity and co-contraction during the conscious concentration on control of postural stability.
Postural asymmetries in young adults with cerebral palsy.
Rodby-Bousquet, Elisabet; Czuba, Tomasz; Hägglund, Gunnar; Westbom, Lena
2013-11-01
The purpose was to describe posture, ability to change position, and association between posture and contractures, hip dislocation, scoliosis, and pain in young adults with cerebral palsy (CP). Cross-sectional data of 102 people (63 males, 39 females; age range 19-23 y, median 21 y) out of a total population with CP was analysed in relation to Gross Motor Function Classification System (GMFCS) levels I (n=38), II (n=21), III (n=13), IV (n=10), and V (n=20). The CP subtypes were unilateral spastic (n=26), bilateral spastic (n=45), ataxic (n=12), and dyskinetic CP (n=19). The Postural Ability Scale was used to assess posture. The relationship between posture and joint range of motion, hip dislocation, scoliosis, and pain was analysed using logistic regression and Spearman's correlation. At GMFCS levels I to II, head and trunk asymmetries were most common; at GMFCS levels III to V postural asymmetries varied with position. The odds ratios (OR) for severe postural asymmetries were significantly higher for those with scoliosis (OR=33 sitting), limited hip extension (OR=39 supine), or limited knee extension (OR=37 standing). Postural asymmetries correlated to hip dislocations: supine (r(s) =0.48), sitting (r(s) =0.40), standing (r(s) =0.41), and inability to change position: supine (r(s) =0.60), sitting (r(s) =0.73), and standing (r(s) =0.64). Postural asymmetries were associated with scoliosis, hip dislocations, hip and knee contractures, and inability to change position. © 2013 The Authors. Developmental Medicine & Child Neurology published by John Wiley & Sons Ltd on behalf of Mac Keith Press.
Postural asymmetries in young adults with cerebral palsy
Rodby-Bousquet, Elisabet; Czuba, Tomasz; Hägglund, Gunnar; Westbom, Lena
2013-01-01
Aim The purpose was to describe posture, ability to change position, and association between posture and contractures, hip dislocation, scoliosis, and pain in young adults with cerebral palsy (CP). Methods Cross-sectional data of 102 people (63 males, 39 females; age range 19–23y, median 21y) out of a total population with CP was analysed in relation to Gross Motor Function Classification System (GMFCS) levels I (n=38), II (n=21), III (n=13), IV (n=10), and V (n=20). The CP subtypes were unilateral spastic (n=26), bilateral spastic (n=45), ataxic (n=12), and dyskinetic CP (n=19). The Postural Ability Scale was used to assess posture. The relationship between posture and joint range of motion, hip dislocation, scoliosis, and pain was analysed using logistic regression and Spearman’s correlation. Results At GMFCS levels I to II, head and trunk asymmetries were most common; at GMFCS levels III to V postural asymmetries varied with position. The odds ratios (OR) for severe postural asymmetries were significantly higher for those with scoliosis (OR=33 sitting), limited hip extension (OR=39 supine), or limited knee extension (OR=37 standing). Postural asymmetries correlated to hip dislocations: supine (rs=0.48), sitting (rs=0.40), standing (rs=0.41), and inability to change position: supine (rs=0.60), sitting (rs=0.73), and standing (rs=0.64). Conclusions Postural asymmetries were associated with scoliosis, hip dislocations, hip and knee contractures, and inability to change position. This article is commented on by Novak on page 974 of this issue. PMID:23834239
Trial-to-trial adaptation in control of arm reaching and standing posture
Pienciak-Siewert, Alison; Horan, Dylan P.
2016-01-01
Classical theories of motor learning hypothesize that adaptation is driven by sensorimotor error; this is supported by studies of arm and eye movements that have shown that trial-to-trial adaptation increases with error. Studies of postural control have shown that anticipatory postural adjustments increase with the magnitude of a perturbation. However, differences in adaptation have been observed between the two modalities, possibly due to either the inherent instability or sensory uncertainty in standing posture. Therefore, we hypothesized that trial-to-trial adaptation in posture should be driven by error, similar to what is observed in arm reaching, but the nature of the relationship between error and adaptation may differ. Here we investigated trial-to-trial adaptation of arm reaching and postural control concurrently; subjects made reaching movements in a novel dynamic environment of varying strengths, while standing and holding the handle of a force-generating robotic arm. We found that error and adaptation increased with perturbation strength in both arm and posture. Furthermore, in both modalities, adaptation showed a significant correlation with error magnitude. Our results indicate that adaptation scales proportionally with error in the arm and near proportionally in posture. In posture only, adaptation was not sensitive to small error sizes, which were similar in size to errors experienced in unperturbed baseline movements due to inherent variability. This finding may be explained as an effect of uncertainty about the source of small errors. Our findings suggest that in rehabilitation, postural error size should be considered relative to the magnitude of inherent movement variability. PMID:27683888
Trial-to-trial adaptation in control of arm reaching and standing posture.
Pienciak-Siewert, Alison; Horan, Dylan P; Ahmed, Alaa A
2016-12-01
Classical theories of motor learning hypothesize that adaptation is driven by sensorimotor error; this is supported by studies of arm and eye movements that have shown that trial-to-trial adaptation increases with error. Studies of postural control have shown that anticipatory postural adjustments increase with the magnitude of a perturbation. However, differences in adaptation have been observed between the two modalities, possibly due to either the inherent instability or sensory uncertainty in standing posture. Therefore, we hypothesized that trial-to-trial adaptation in posture should be driven by error, similar to what is observed in arm reaching, but the nature of the relationship between error and adaptation may differ. Here we investigated trial-to-trial adaptation of arm reaching and postural control concurrently; subjects made reaching movements in a novel dynamic environment of varying strengths, while standing and holding the handle of a force-generating robotic arm. We found that error and adaptation increased with perturbation strength in both arm and posture. Furthermore, in both modalities, adaptation showed a significant correlation with error magnitude. Our results indicate that adaptation scales proportionally with error in the arm and near proportionally in posture. In posture only, adaptation was not sensitive to small error sizes, which were similar in size to errors experienced in unperturbed baseline movements due to inherent variability. This finding may be explained as an effect of uncertainty about the source of small errors. Our findings suggest that in rehabilitation, postural error size should be considered relative to the magnitude of inherent movement variability. Copyright © 2016 the American Physiological Society.
Evaluation of Work-Related Musculoskeletal Disorders and Postural Stress of Female “Jari” Workers
Pal, Amitava; Dhara, Prakash C.
2017-01-01
Aims: The present investigation was aimed to assess the postural stress and the prevalence of musculoskeletal disorders (MSDs) of the “Jari” (golden thread) workers. Settings and Design: This cross-sectional study was carried out on 156 female workers in different areas of the Purba Medinipur, Paschim Medinipur, and Howrah districts of West Bengal, India. Materials and Methods: The MSDs of the workers were evaluated by modified Nordic questionnaire method. The postural pattern during work was assessed by direct observation method. The posture of Jari workers has been analyzed by OWAS, REBA, and RULA methods. The joint angle in normal and working posture was observed. Results and Conclusions: The prevalence of MSDs was very high among the workers. The major locations of body pains in Jari workers were lower back, upper back, neck, wrist, thigh, and shoulder. The occurrence of MSDs was higher in lower and higher age group than that of the middle age group. The total work shift of the workers was approximately 13 h including rest pause. The dominant postures adopted by the workers were sitting on the floor with stretched legs, sitting on the floor with folded knees, and kneeling posture. From the results of the postural analysis, the postures of the Jari workers had been categorized as stressful. There were a significant deviation between normal standing angles and working angles. From the overall study, it may be concluded that adoption of stressful postures for longer duration might be the cause of MSDs in different body parts of the Jari workers. PMID:29618913
Postural disorders and spatial neglect in stroke patients: a strong association.
Pérennou, Dominic
2006-01-01
In this paper we analyse the arguments for a strong association between spatial neglect and postural disorders and attempt to better understand the mechanisms which underlie that. We first provide a general overview of the available tools for a rational assessment of postural control in a clinical context. We then analyse the arguments in favour of a close relationship, although not necessarily causal, between spatial neglect and: 1) body orientation with respect to gravity (including verticality perception i.e. the visual vertical, the haptic vertical, and the postural vertical); 2) body stabilisation with respect to the base of support; 3) posturographic features of stroke patients; 4) and finally their postural disability in daily life. This second part of the paper is based both on the literature review and on results of our current research. Neglect patients show a dramatic postural disability, due both to problems in body orientation with respect to gravity and to problems in body stabilisation. It might be that these problems are partly caused by a neglect phenomenon bearing on graviceptive (somaesthetic > vestibular) and visual information serving postural control. This could correspond to a kind of postural neglect involving both the bodily and nonbodily domains of spatial neglect. The existence of distorsion(s) in the body scheme are also probably involved, especially to explain the weight-bearing asymmetry in standing, and probably an impaired multisegmental postural coordination leading to an impaired body stabilisation. The present paper explains why neglect patients show longer/worse recovery of postural-walking autonomy than other stroke patients.
Postural strategies assessed with inertial sensors in healthy and parkinsonian subjects.
Baston, Chiara; Mancini, Martina; Schoneburg, Bernadette; Horak, Fay; Rocchi, Laura
2014-01-01
The present study introduces a novel instrumented method to characterize postural movement strategies to maintain balance during stance (ankle and hip strategy), by means of inertial sensors, positioned on the legs and on the trunk. We evaluated postural strategies in subjects with 2 types of Parkinsonism: idiopathic Parkinson's disease (PD) and Progressive Supranuclear Palsy (PSP), and in age-matched control subjects standing under perturbed conditions implemented by the Sensory Organization Test (SOT). Coordination between the upper and lower segments of the body during postural sway was measured using a covariance index over time, by a sliding-window algorithm. Afterwards, a postural strategy index was computed. We also measured the amount of postural sway, as adjunctive information to characterize balance, by the root mean square of the horizontal trunk acceleration signal (RMS). showed that control subjects were able to change their postural strategy, whilst PSP and PD subjects persisted in use of an ankle strategy in all conditions. PD subjects had RMS values similar to control subjects even without changing postural strategy appropriately, whereas PSP subjects showed much larger RMS values than controls, resulting in several falls during the most challenging SOT conditions (5 and 6). Results are in accordance with the corresponding clinical literature describing postural behavior in the same kind of subjects. The proposed strategy index, based on the use of inertial sensors on the upper and lower body segments, is a promising and unobtrusive tool to characterize postural strategies performed to attain balance. Copyright © 2014 Elsevier B.V. All rights reserved.
Laboissière, Rafael; Letievant, Jean-Charles; Ionescu, Eugen; Barraud, Pierre-Alain; Mazzuca, Michel; Cian, Corinne
2015-01-01
Motion sickness (MS) usually occurs for a narrow band of frequencies of the imposed oscillation. It happens that this frequency band is close to that which are spontaneously produced by postural sway during natural stance. This study examined the relationship between reported susceptibility to motion sickness and postural control. The hypothesis is that the level of MS can be inferred from the shape of the Power Spectral Density (PSD) profile of spontaneous sway, as measured by the displacement of the center of mass during stationary, upright stance. In Experiment 1, postural fluctuations while standing quietly were related to MS history for inertial motion. In Experiment 2, postural stability measures registered before the onset of a visual roll movement were related to MS symptoms following the visual stimulation. Study of spectral characteristics in postural control showed differences in the distribution of energy along the power spectrum of the antero-posterior sway signal. Participants with MS history provoked by exposure to inertial motion showed a stronger contribution of the high frequency components of the sway signal. When MS was visually triggered, sick participants showed more postural sway in the low frequency range. The results suggest that subject-specific PSD details may be a predictor of the MS level. Furthermore, the analysis of the sway frequency spectrum provided insight into the intersubject differences in the use of postural control subsystems. The relationship observed between MS susceptibility and spontaneous posture is discussed in terms of postural sensory weighting and in relation to the nature of the provocative stimulus.
Honarvar, Mohammad Hadi; Nakashima, Motomu
2013-10-01
This research addresses the question: what is the risk of fall initiation at a certain human posture? There are postures from which no one is able to keep their balance and a fall will surely initiate (risk=1), and others from which everyone may regain their stability (risk=0). In other postures, only a portion of people can control their stability. One may interpret risk to chance of a fall to be initiated, and based on the portion of fallers assign a risk value to a given human posture (postural risk). Human posture can be mapped to a point in a 2-dimensional space: the x-v plane, the axes of which are horizontal components of the position and velocity of the center of mass of the body. For every pair of (x, v), the outcome of the balance recovery problem defines whether a person with a given strength level is able to regain their stability when released from a posture corresponding to that point. Using strength distribution data, we estimated the portion of the population who will initiate a fall if starting at a certain posture. A fast calculation approach is also introduced to replace the time-consuming method of solving the recovery problem many times. Postural risk of fall initiation for situations expressed by (x, v) pairs for the entire x-v plane is calculated and shown in a color-map. Copyright © 2013 Elsevier B.V. All rights reserved.
Disruption of postural readaptation by inertial stimuli following space flight
NASA Technical Reports Server (NTRS)
Black, F. O.; Paloski, W. H.; Reschke, M. F.; Igarashi, M.; Guedry, F.; Anderson, D. J.
1999-01-01
Postural instability (relative to pre-flight) has been observed in all shuttle astronauts studied upon return from orbital missions. Postural stability was more closely examined in four shuttle astronaut subjects before and after an 8 day orbital mission. Results of the pre- and post-flight postural stability studies were compared with a larger (n = 34) study of astronauts returning from shuttle missions of similar duration. Results from both studies indicated that inadequate vestibular feedback was the most significant sensory deficit contributing to the postural instability observed post flight. For two of the four IML-1 astronauts, post-flight postural instability and rate of recovery toward their earth-normal performance matched the performance of the larger sample. However, post-flight postural control in one returning astronaut was substantially below mean performance. This individual, who was within normal limits with respect to postural control before the mission, indicated that recovery to pre-flight postural stability was also interrupted by a post-flight pitch plane rotation test. A similar, though less extreme departure from the mean recovery trajectory was present in another astronaut following the same post-flight rotation test. The pitch plane rotation stimuli included otolith stimuli in the form of both transient tangential and constant centripetal linear acceleration components. We inferred from these findings that adaptation on orbit and re-adaptation on earth involved a change in sensorimotor integration of vestibular signals most likely from the otolith organs.
NASA Astrophysics Data System (ADS)
Goto, Akifumi; Ishida, Mizuri; Sagawa, Koichi
2010-01-01
The purpose of this study is to derive quantitative assessment indicators of the human postural control ability. An inverted pendulum is applied to standing human body and is controlled by ankle joint torque according to PD control method in sagittal plane. Torque control parameters (KP: proportional gain, KD: derivative gain) and pole placements of postural control system are estimated with time from inclination angle variation using fixed trace method as recursive least square method. Eight young healthy volunteers are participated in the experiment, in which volunteers are asked to incline forward as far as and as fast as possible 10 times over 10 [s] stationary intervals with their neck joint, hip joint and knee joint fixed, and then return to initial upright posture. The inclination angle is measured by an optical motion capture system. Three conditions are introduced to simulate unstable standing posture; 1) eyes-opened posture for healthy condition, 2) eyes-closed posture for visual impaired and 3) one-legged posture for lower-extremity muscle weakness. The estimated parameters Kp, KD and pole placements are applied to multiple comparison test among all stability conditions. The test results indicate that Kp, KD and real pole reflect effect of lower-extremity muscle weakness and KD also represents effect of visual impairment. It is suggested that the proposed method is valid for quantitative assessment of standing postural control ability.
Raffler, Nastaran; Rissler, Jörg; Ellegast, Rolf; Schikowsky, Christian; Kraus, Thomas; Ochsmann, Elke
2017-11-01
Multifactorial workloads such as whole-body vibration (WBV), awkward posture and heavy lifting are potential predictors for low back pain (LBP). In this study, we investigate the association between LBP and these exposures among 102 professional drivers. The combined exposures of WBV and posture are measured at different workplaces. Health and personal data as well as information about lifting tasks are collected by a questionnaire. The daily vibration exposure value (odds ratio 1.69) and an index for awkward posture (odds ratio 1.63) show significant association with the occurence of LBP. Awkward posture and heavy lifting appear to be more strongly associated with sick leave than WBV exposure. Furthermore, a combination of the measurement results of WBV and awkward posture into one quantity also shows significant correlation to LBP. The combined exposure of WBV and awkward posture can be described in terms of the daily vibration exposure and the index for awkward posture. This facilitates work place assessments and future research in this area. Practitioner Summary: For the first time, quantitative measures combining whole-body vibration and awkward posture exposures have shown to correlate with the occurrence of low back pain significantly. This validates the proposed quantities and measurement methods, which facilitate workplace assessments and assist in the design of further studies which are necessary to establish a causal exposure-response relationship.
A statistical model including age to predict passenger postures in the rear seats of automobiles.
Park, Jangwoon; Ebert, Sheila M; Reed, Matthew P; Hallman, Jason J
2016-06-01
Few statistical models of rear seat passenger posture have been published, and none has taken into account the effects of occupant age. This study developed new statistical models for predicting passenger postures in the rear seats of automobiles. Postures of 89 adults with a wide range of age and body size were measured in a laboratory mock-up in seven seat configurations. Posture-prediction models for female and male passengers were separately developed by stepwise regression using age, body dimensions, seat configurations and two-way interactions as potential predictors. Passenger posture was significantly associated with age and the effects of other two-way interaction variables depended on age. A set of posture-prediction models are presented for women and men, and the prediction results are compared with previously published models. This study is the first study of passenger posture to include a large cohort of older passengers and the first to report a significant effect of age for adults. The presented models can be used to position computational and physical human models for vehicle design and assessment. Practitioner Summary: The significant effects of age, body dimensions and seat configuration on rear seat passenger posture were identified. The models can be used to accurately position computational human models or crash test dummies for older passengers in known rear seat configurations.
Forte, Roberta; Boreham, Colin A G; De Vito, Giuseppe; Ditroilo, Massimiliano; Pesce, Caterina
2014-12-01
Age-related reductions in strength and power are considered to negatively impact balance control, but the existence of a direct association is still an issue of debate. This is possibly due to the fact that balance assessment is complex, reflects different underlying physiologic mechanisms and involves quantitative measurements of postural sway or timing of performance during balance tasks. The present study evaluated the moderator effect of static postural control on the association of power and strength with dynamic balance tasks. Fifty-seven healthy 65-75 year old individuals performed tests of dynamic functional balance (walking speed under different conditions) and of strength, power and static postural control. Dynamic balance performance (walking speed) was associated with lower limb strength and power, as well as postural control under conditions requiring postural adjustments (narrow surface walking r(2) = 0.31, p < 0.001). An interaction effect between strength and static postural control was found with narrow surface walking and talking while walking (change of β 0.980, p < 0.001 in strength for 1 SD improvements in static postural control for narrow walking, and [Formula: see text] -0.730, p < 0.01 in talking while walking). These results indicate that good static postural control facilitates the utilisation of lower limb strength to better perform complex, dynamic functional balance tasks. Practical implications for assessment and training are discussed.
Functional Neuroanatomy for Posture and Gait Control
Takakusaki, Kaoru
2017-01-01
Here we argue functional neuroanatomy for posture-gait control. Multi-sensory information such as somatosensory, visual and vestibular sensation act on various areas of the brain so that adaptable posture-gait control can be achieved. Automatic process of gait, which is steady-state stepping movements associating with postural reflexes including headeye coordination accompanied by appropriate alignment of body segments and optimal level of postural muscle tone, is mediated by the descending pathways from the brainstem to the spinal cord. Particularly, reticulospinal pathways arising from the lateral part of the mesopontine tegmentum and spinal locomotor network contribute to this process. On the other hand, walking in unfamiliar circumstance requires cognitive process of postural control, which depends on knowledges of self-body, such as body schema and body motion in space. The cognitive information is produced at the temporoparietal association cortex, and is fundamental to sustention of vertical posture and construction of motor programs. The programs in the motor cortical areas run to execute anticipatory postural adjustment that is optimal for achievement of goal-directed movements. The basal ganglia and cerebellum may affect both the automatic and cognitive processes of posturegait control through reciprocal connections with the brainstem and cerebral cortex, respectively. Consequently, impairments in cognitive function by damages in the cerebral cortex, basal ganglia and cerebellum may disturb posture-gait control, resulting in falling. PMID:28122432
Nonlinear Variability of Body Sway in Patients with Phobic Postural Vertigo
Schniepp, Roman; Wuehr, Max; Pradhan, Cauchy; Novozhilov, Sergej; Krafczyk, Siegbert; Brandt, Thomas; Jahn, Klaus
2013-01-01
Background: Subjective postural imbalance is a key symptom in the somatoform phobic postural vertigo (PPV). It has been assumed that more attentional control of body posture and / or co-contraction of leg muscles during standing is used to minimize the physiological body sway in PPV. Here we analyze nonlinear variability of body sway in patients with PPV in order to disclose changes in postural control strategy associated with PPV. Methods: Twenty patients with PPV and 20 age-matched healthy subjects (HS) were recorded on a stabilometer platform with eyes open (EO), eyes closed (EC), and while standing on a foam rubber with eyes closed (ECF). Spatio-temporal changes of the center of pressure (CoP) displacement were analyzed to assess the structure of postural variability by computing the scaling exponent α and the sample entropy (SEn) of the time series. Results: With EO on firm ground α and SEn of CoP displacement were significantly lower in patients (p < 0.001). For more difficult conditions (EC, ECF) postural variability in PPV assimilated to that of HS. Conclusion: Postural control in PPV patients differs from HS under normal stance condition. It is characterized by a reduced scaling behavior and higher regularity. These changes in the structure of postural variability might suggest an inappropriate attentional involvement with stabilizing strategies, which are used by HS only for more demanding balance tasks. PMID:23966974
Leadership Development: A Senior Leader Case Study
2014-10-01
LIFE model Element Investigative Question Strategy How does (development program) posture (or fail to posture ) leaders to meet organizational...Management How does (development program) adequately posture (or fail to posture ) officer talent capable of filling talent gaps within the...LIFE model in figure 1 stems from conceptualizing and integrat- ing elements of leadership development in the work of Stephen Co- hen , Lisa Gabel
ERIC Educational Resources Information Center
Culig, Kathryn M.; Dickinson, Alyce M.; Lindstrom-Hazel, Debra; Austin, John
2008-01-01
The effects of workstation changes and a performance management (PM) package on seven typing postures were examined for seven office workers. Workstation adjustments were implemented first. Two participants increased five safe postures by 50% or more. The effects of a PM package on postures that did not improve by 50% were then examined using a…
ERIC Educational Resources Information Center
Memari, Amir Hossein; Ghanouni, Parisa; Gharibzadeh, Shahriar; Eghlidi, Jandark; Ziaee, Vahid; Moshayedi, Pouria
2013-01-01
Postural control is a fundamental building block of each child's daily activities. The aim of this study was to compare patterns of postural sway in children with autism spectrum disorder (ASD) with typically developing children (TD). We recruited 21 schoolchildren diagnosed with ASD aged 9-14 and 30 TD pupils aged 8-15. Postural sway parameters…
Freund, Jane E; Stetts, Deborah M; Vallabhajosula, Srikant
2016-06-30
Multiple sclerosis (MS) is a chronic progressive disease of the central nervous system. Compared to healthy individuals, persons with multiple sclerosis (PwMS) have increased postural sway in quiet stance, decreased gait speed and increased fall incidence. Trunk performance has been implicated in postural control, gait dysfunction, and fall prevention in older adults. However, the relationship of trunk performance to postural control and gait has not been adequately studied in PwMS. To compare trunk muscle structure and performance in PwMS to healthy age and gendered-matched controls (HC); to determine the effects of isometric trunk endurance testing on postural control in both populations; and to determine the relationship of trunk performance with postural control, gait and step activity in PwMS. Fifteen PwMS and HC completed ultrasound imaging of trunk muscles, 10 m walk test, isometric trunk endurance tests, and postural sway test. Participants wore a step activity monitor for 7 days. PwMS had worse isometric trunk endurance compared to HC. PwMS trunk flexion endurance negatively correlated to several postural control measures and positively correlated to gait speed and step activity. Clinicians should consider evaluation and interventions directed at impaired trunk endurance in PwMS.
Baker, Nancy A; Moehling, Krissy
2013-01-01
Awkward postures during computer use are assumed to be related to the fit between the worker and the workstation configuration, with greater mismatches leading to higher levels of musculoskeletal symptoms (MSS). The objective of this study was to examine if chronic MSS of the neck/shoulder, back, and wrist/hands was associated with 1) discrepancies between workstation setups and worker anthropometrics and 2) workers' postures. Secondary analysis on data collected from a randomized controlled cross-over design trial (N=74). Subjects' workstation configurations, baseline levels of MSS, working postures, and anthropometrics were measured. Correlations were completed to determine the association between postures and discrepancies between the worker anthropometrics and workstation configuration. Associations were examined between postures, workstation discrepancies and worker MSS. There were only 3 significant associations between worker posture and MSS, and 3 significant associations between discrepancies in worker/workstation set-up and MSS. The relationship between chronic MSS and the workers computer workstation configuration is multifactorial. While postures and the fit between the worker and workstation may be associated with MSS, other variables need to be explored to better understand the phenomenon.
Sirois-Leclerc, Geneviève; Remaud, Anthony
2017-01-01
Postural control is not a fully automatic process, but requires a certain level of attention, particularly as the difficulty of the postural task increases. This study aimed at testing whether experienced contemporary dancers, because of their specialized training involving the control of posture/balance, would present with a dual-task performance suggesting lesser attentional demands associated with dynamic postural control compared with non-dancers. Twenty dancers and 16 non-dancers performed a dynamic postural tracking task in both antero-posterior and side-to-side directions, while standing on a force platform. The postural task was performed, in turn, 1) as a stand-alone task, and concurrently with both 2) a simple reaction time task and 3) a choice reaction time task. Postural control performance was estimated through variables calculated from centre of pressure movements. Although no overall group difference was found in reaction time values, we found a better ability to control the side to side movements of the centre of pressure during the tracking task in dancers compared with non-dancers, which was dependent on the secondary task. This suggests that such increased ability is influenced by available attentional resources. PMID:28323843
Sirois-Leclerc, Geneviève; Remaud, Anthony; Bilodeau, Martin
2017-01-01
Postural control is not a fully automatic process, but requires a certain level of attention, particularly as the difficulty of the postural task increases. This study aimed at testing whether experienced contemporary dancers, because of their specialized training involving the control of posture/balance, would present with a dual-task performance suggesting lesser attentional demands associated with dynamic postural control compared with non-dancers. Twenty dancers and 16 non-dancers performed a dynamic postural tracking task in both antero-posterior and side-to-side directions, while standing on a force platform. The postural task was performed, in turn, 1) as a stand-alone task, and concurrently with both 2) a simple reaction time task and 3) a choice reaction time task. Postural control performance was estimated through variables calculated from centre of pressure movements. Although no overall group difference was found in reaction time values, we found a better ability to control the side to side movements of the centre of pressure during the tracking task in dancers compared with non-dancers, which was dependent on the secondary task. This suggests that such increased ability is influenced by available attentional resources.
Rocha, T; Castro, M A; Guarda-Nardini, L; Manfredini, D
2017-02-01
The presence of body posture changes among patients with temporomandibular disorders (TMD) has been a controversial topic in dentistry. Based on that, the aim of this study was to assess postural features of pain-free subjects with internal derangement of the temporomandibular joint (TMJ), viz. disc displacement, when compared to subjects with normal disc position. A total of 21 subjects with unilateral, pain-free TMJ disc displacement (DD) and 21 subjects without any TMD signs of symptoms were assessed for body posture changes by means of posturographic evaluation of several body segments and postural balance reactions through the centre of mass during jaw movements using a balance platform. Posturographic measurements showed the absence of any significant differences between the two groups in any of the outcome parameters. Similarly, all balance platform responses to mandibular movements were not different between groups. There are no significant differences in body posture between subjects with and without unilateral disc displacement in the temporomandibular joint. Such observations, indicating a well-preserved postural balance in the presence of TMJ internal derangement, put into serious question the potential influence of TMJ disorders on whole body posture and viceversa. © 2016 John Wiley & Sons Ltd.
Head posture measurements among work vehicle drivers and implications for work and workplace design.
Eklund, J; Odenrick, P; Zettergren, S; Johansson, H
1994-04-01
An increased risk of musculoskeletal disorders, e.g. from the neck region, has been found among professional drivers of work vehicles. The purpose of this study was to identify causes of postural load and implications for vehicle design and work tasks. A second purpose was to develop the methods for measurement and analysis of head postures. Field measurements of head postures for drivers of fork lift trucks, forestry machines, and cranes were carried out. The equipment used was an electric goniometer measurement system, containing a mechanical transmission between the head and the upper trunk. Methods for data presentation and quantification were developed. The results showed that rotatable and movable driver cabins improved head postures and viewing angles substantially. Narrow window frame structures and large, optimally-placed windows were also advantageous. The steering wheel, controls, and a high backrest restricted shoulder rotation, which increased head rotation in unfavourable viewing angles. Improved workspace layouts and work organization factors such as job enlargement decreased the influence of strenuous postures. The results also showed that head postures should be analysed in two or three dimensions simultaneously, otherwise the postures taken will be underestimated in relation to the maximal voluntary movement.
Foot Disorders, Foot Posture, and Foot Function: The Framingham Foot Study
Hagedorn, Thomas J.; Dufour, Alyssa B.; Riskowski, Jody L.; Hillstrom, Howard J.; Menz, Hylton B.; Casey, Virginia A.; Hannan, Marian T.
2013-01-01
Introduction Foot disorders are common among older adults and may lead to outcomes such as falls and functional limitation. However, the associations of foot posture and foot function to specific foot disorders at the population level remain poorly understood. The purpose of this study was to assess the relation between specific foot disorders, foot posture, and foot function. Methods Participants were from the population-based Framingham Foot Study. Quintiles of the modified arch index and center of pressure excursion index from plantar pressure scans were used to create foot posture and function subgroups. Adjusted odds ratios of having each specific disorder were calculated for foot posture and function subgroups relative to a referent 3 quintiles. Results Pes planus foot posture was associated with increased odds of hammer toes and overlapping toes. Cavus foot posture was not associated with the foot disorders evaluated. Odds of having hallux valgus and overlapping toes were significantly increased in those with pronated foot function, while odds of hallux valgus and hallux rigidus were significantly decreased in those with supinated function. Conclusions Foot posture and foot function were associated with the presence of specific foot disorders. PMID:24040231
Bartnicka, Joanna; Zietkiewicz, Agnieszka A; Kowalski, Grzegorz J
2018-03-19
With reference to four different minimally invasive surgery (MIS) cholecystectomy the aims were: to recognize the factors influencing dominant wrist postures manifested by the surgeon; to detect risk factors involved in maintaining deviated wrist postures; to compare the wrist postures of surgeons while using laparoscopic tools. Video films were recorded during live surgeries. The films were synchronized with wrist joint angles obtained from wireless electrogoniometers placed on the surgeon's hand. The analysis was conducted for five different laparoscopic tools used during all surgical techniques. The most common wrist posture was extension. In the case of one laparoscopic tool, the mean values defining extended wrist posture were distinct in all four surgical techniques. For one type of surgical technique, considered to be the most beneficial for patients, more extreme postures were noticed regarding all laparoscopic tools. We recognized a new factor, apart from the tool's handle design, that influences extreme and deviated wrist postures. It involves three areas of task specification including the type of action, type of motion patterns and motion dynamism. The outcomes proved that the surgical technique which is most beneficial for the patient imposes the greatest strain on the surgeon's wrist.
The posture of adolescent male handball players: A two-year study.
Grabara, Małgorzata
2018-02-06
Young athletes at the stage of growth acceleration tend to exhibit increased susceptibility to postural abnormalities, especially in the trunk region. The aim of this study was to assess and compare the posture in male adolescent handball players over two years of regular training sessions. The study group comprised 21 handball players. At the start of the study 15 participants were aged 14 and 6 participants were aged 15 (mean 14.25 ± 0.58). The measurements were repeated three times. Posture was assessed with a photogrammetric method based on the moiré phenomenon. The analysis of posture relative to symmetry in the frontal and transverse planes did not reveal any significant differences between posture indicators obtained during the successive measurements. Sagittal plane posture indicators revealed significant changes in torso forward inclination angle and the shape of anteroposterior spinal curvatures. The latter consisted of significant deepening of the upper thoracic curve (angle α) and flattening of the lumbosacral curve (angle γ). A two-year period of handball training did not result in posture asymmetries in young male handball players. The observed changes in the shape of anteroposterior spinal curvatures might be related both to sports training and somatic parameters.
Postural Balance Following Aerobic Fatigue Tests: A Longitudinal Study Among Young Athletes.
Steinberg, Nili; Eliakim, Alon; Zaav, Aviva; Pantanowitz, Michal; Halumi, Monder; Eisenstein, Tamir; Meckel, Yoav; Nemet, Dan
2016-01-01
General fatigue can cause aggravation of postural balance, with increased risk for injuries. The present longitudinal study aimed to evaluate the postural balance of young athletes following field aerobic tests throughout 1 year of training. Thirty children from a sports center in Nazareth, participating in a 3 times/week training program (specific to basketball, soccer, or athletic training), were assessed. Postural balance parameters were taken before, immediately after, and 10 min after a 20 m shuttle-run aerobic test, at 3 time points during 1 training year (Start/Y, Mid/Y, and End/Y). Fitness improved at the Mid/Y and End/Y compared to Start/Y. Postural balance significantly deteriorated immediately after the aerobic test and improved significantly in the 10-min testing in all 3 time points, with significant deterioration in the End/Y compared with the Start/Y. In conclusions, postural balance deteriorates immediately after aerobic exercises, and at the end of the year. To better practice drills related to postural balance and possibly to prevent injuries, it is best for young athletes to properly rest immediately following aerobic exercises and to practice postural balance mainly at the beginning and at the middle of the training year.
Do dental students have a neutral working posture?
Movahhed, Taraneh; Dehghani, Mahboobe; Arghami, Shirazeh; Arghami, Afarin
2016-11-21
Dentists are susceptible to Musculoskeletal Disorders (MSDs) due to prolonged static postures. To prevent MSDs, working postures of dental students should be assessed and corrected in early career life. This study estimated the risk of developing musculoskeletal disorders in dental students using Rapid Upper Limb Assessment (RULA) tool. A number of 103 undergraduate dental students from fourth and fifth academic years participated. Postures of these students were assessed using RULA tool while working in the dental clinic. They also answered a questionnaire regarding their knowledge about postural dental ergonomic principles. The majority of the students (66%) were at intermediate and high risk levels to develop MSDs and their postures needed to be corrected. There was no significant correlation between RULA score and gender, academic year and different wards of dental clinics. There was no significant correlation between knowledge and RULA scores. Dental students did not have favorable working postures. They were at an intermediate to high risk for developing MSDs which calls for a change in their working postures. Therefore students should be trained with ergonomic principles and to achieve the best results, ergonomic lessons should be accompanied by practice and periodical evaluations.
Posture in dentists: Sitting vs. standing positions during dentistry work--An EMG study.
Pejcić, Natasa; Jovicić, Milica Đurić; Miljković, Nadica; Popović, Dejan B; Petrović, Vanja
2016-01-01
Adequate working posture is important for overall health. Inappropriate posture may increase fatigue, decrease efficiency, and eventually lead to injuries. The purpose was to examine posture positions used during dentistry work. In order to quantify different posture positions, we recorded muscle activity and positions of body segments. The position (inclination) data of the back was used to assess two postures: sitting and standing during standard dental interventions. During standard interventions, whether sitting or standing, a tilt of less than 20 degrees was most prevalent in the forward and lateral flexion directions. Amplitude of electromyography signals corresponding to the level of muscle activity were higher in sitting compared with the electromyography in standing position for all muscle groups on the left and right side of the body. Significant difference between muscle activity in two working postures was evident in splenius capitis muscle on the left (p = 0.032), on the right side of the body (p = 0.049) and in muscle activity of mastoid muscle on the left side (p = 0.029). These findings show that risk for increased fatigue and possible injures can be reduced by combining the sitting and standing occupational postures.
Chen, Fu-Chen; Chen, Hsin-Lin; Tu, Jui-Hung; Tsai, Chia-Liang
2015-09-01
People often multi-task in their daily life. However, the mechanisms for the interaction between simultaneous postural and non-postural tasks have been controversial over the years. The present study investigated the effects of light digital touch on both postural sway and visual search accuracy for the purpose of assessing two hypotheses (functional integration and resource competition), which may explain the interaction between postural sway and the performance of a non-postural task. Participants (n=42, 20 male and 22 female) were asked to inspect a blank sheet of paper or visually search for target letters in a text block while a fingertip was in light contact with a stable surface (light touch, LT), or with both arms hanging at the sides of the body (no touch, NT). The results showed significant main effects of LT on reducing the magnitude of postural sway as well as enhancing visual search accuracy compared with the NT condition. The findings support the hypothesis of function integration, demonstrating that the modulation of postural sway can be modulated to improve the performance of a visual search task. Copyright © 2015 Elsevier B.V. All rights reserved.
Escamilla-Martínez, Elena; Martínez-Nova, Alfonso; Gómez-Martín, Beatriz; Sánchez-Rodríguez, Raquel; Fernández-Seguín, Lourdes María
2013-01-01
Fatigue due to running has been shown to contribute to changes in plantar pressure distribution. However, little is known about changes in foot posture after running. We sought to compare the foot posture index before and after moderate exercise and to relate any changes to plantar pressure patterns. A baropodometric evaluation was made, using the FootScan platform (RSscan International, Olen, Belgium), of 30 men who were regular runners and their foot posture was examined using the Foot Posture Index before and after a 60-min continuous run at a moderate pace (3.3 m/sec). Foot posture showed a tendency toward pronation after the 60-min run, gaining 2 points in the foot posture index. The total support and medial heel contact areas increased, as did pressures under the second metatarsal head and medial heel. Continuous running at a moderate speed (3.3 m/sec) induced changes in heel strike related to enhanced pronation posture, indicative of greater stress on that zone after physical activity. This observation may help us understand the functioning of the foot, prevent injuries, and design effective plantar orthoses in sport.
Niekerk, Sjan-Mari van; Louw, Quinette Abigail; Grimmer-Sommers, Karen
2014-01-01
Dynamic movement whilst sitting is advocated as a way to reduce musculoskeletal symptoms from seated activities. Conventionally, in ergonomics research, only a 'snapshot' of static sitting posture is captured, which does not provide information on the number or type of movements over a period of time. A novel approach to analyse the number of postural changes whist sitting was employed in order to describe the sitting behaviour of adolescents whilst undertaking computing activities. A repeated-measures observational study was conducted. A total of 12 high school students were randomly selected from a conveniently selected school. Fifteen minutes of 3D posture measurements were recorded to determine the number of postural changes whilst using computers. Data of 11 students were able to be analysed. Large intra-subject variation of the median and IQR was observed, indicating frequent postural changes whilst sitting. Better understanding of usual dynamic postural movements whilst sitting will provide new insights into causes of musculoskeletal symptoms experienced by computer users.
Managing children's postural risk when using mobile technology at home: Challenges and strategies.
Ciccarelli, Marina; Chen, Janice D; Vaz, Sharmila; Cordier, Reinie; Falkmer, Torbjörn
2015-11-01
Maintaining the musculoskeletal health of children using mobile information and communication technologies (ICT) at home presents a challenge. The physical environment influences postures during ICT use and can contribute to musculoskeletal complaints. Few studies have assessed postures of children using ICT in home environments. The present study investigated the Rapid Upper Limb Assessment (RULA) scores determined by 16 novice and 16 experienced raters. Each rater viewed 11 videotaped scenarios of a child using two types of mobile ICT at home. The Grand Scores and Action Levels determined by study participants were compared to those of an ergonomist experienced in postural assessment. All postures assessed were rated with an Action Level of 2 or above; representing a postural risk that required further investigation and/or intervention. The sensitivity of RULA to assess some of the unconventional postures adopted by children in the home is questioned. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Clinical Implications From an Exploratory Study of Postural Management of Breech Presentation
Founds, Sandra A.
2013-01-01
The results from an exploratory study of the effectiveness of maternal knee-chest posture for producing cephalic version of breech presentation are shown. Methods are briefly described and clinical implications are presented. Among 25 women, fewer who performed the maternal knee-chest postural intervention experienced fetal cephalic version than women in the control group who did nothing to influence breech presentation. Despite limitations of the underpowered findings, trends in the data may indicate that parity and gestational age were potentially relevant covariates of version. Postural management is not an evidence-based practice. This exploratory study indicates that maternal knee-chest posture may work opposite to the expected direction, but the small sample size precludes generalizations about efficacy of knee-chest postural management. At least one adequately powered trial that controls for parity and gestational age is needed to determine whether knee-chest postural management results in no effect, a small, or small to moderate clinically significant effect. PMID:16814225
Effect of different head-neck-jaw postures on cervicocephalic kinesthetic sense
Zafar, Hamayun; Alghadir, Ahmad H.; Iqbal, Zaheen A.
2017-01-01
Objectives: To investigate the effect of different induced head-neck-jaw postures on head-neck relocation error among healthy subjects. Methods: 30 healthy adult male subjects participated in this study. Cervicocephalic kinesthetic sense was measured while standing, habitual sitting, habitual sitting with clenched jaw and habitual sitting with forward head posture during right rotation, left rotation, flexion and extension using kinesthetic sensibility test. Results: Head-neck relocation error was least while standing, followed by habitual sitting, habitual sitting with forward head posture and habitual sitting with jaw clenched. However, there was no significant difference in error between different tested postures during all the movements. Conclusions: To the best of our knowledge, this is the first study to see the effect of different induced head-neck-jaw postures on head-neck position sense among healthy subjects. Assuming a posture for a short duration of time doesn’t affect head-neck relocation error in normal healthy subjects. PMID:29199196
Pociask, Fredrick D; DiZazzo-Miller, Rosanne; Goldberg, Allon; Adamo, Diane E
2016-01-01
Postural control requires the integration of sensorimotor information to maintain balance and to properly position and orient the body in response to external stimuli. Age-related declines in peripheral and central sensory and motor function contribute to postural instability and falls. This study investigated the contribution of head position, standing surface, and vision on postural sway in 26 community-dwelling older adults. Participants were asked to maintain a stable posture under conditions that varied standing surface, head position, and the availability of visual information. Significant main and interaction effects were found for all three factors. Findings from this study suggest that postural sway responses require the integration of available sources of sensory information. These results have important implications for fall risks in older adults and suggest that when standing with the head extended and eyes closed, older adults may place themselves at risk for postural disequilibrium and loss of balance. Copyright © 2016 by the American Occupational Therapy Association, Inc.
Cybersickness without the wobble: Experimental results speak against postural instability theory.
Dennison, Mark Stephen; D'Zmura, Michael
2017-01-01
It has been suggested that postural instability is necessary for cybersickness to occur. Seated and standing subjects used a head-mounted display to view a virtual tunnel that rotated about their line of sight. We found that the offset direction of perceived vertical settings matched the direction of the tunnel's rotation, so replicating earlier findings. Increasing rotation speed caused cybersickness to increase, but had no significant impact on perceived vertical settings. Postural sway during rotation was similar to postural sway during rest. While a minority of subjects exhibited postural sway in response to the onset of tunnel rotation, the majority did not. Furthermore, cybersickness increased with rotation speed similarly for the seated and standing conditions. Finally, subjects with greater levels of cybersickness exhibited less variation in postural sway. These results lead us to conclude that the link between postural instability and cybersickness is a weak one in the present experiment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Do older adults perceive postural constraints for reach estimation?
Cordova, Alberto; Gabbard, Carl
2014-01-01
BACKGROUND/STUDY CONTEXT: Recent evidence indicates that older persons have difficulty mentally representing intended movements. Furthermore, in an estimation of reach paradigm using motor imagery, a form of mental representation, older persons significantly overestimated their ability compared with young adults. The authors tested the notion that older adults may also have difficulty perceiving the postural constraints associated with reach estimation. The authors compared young (Mage = 22 years) and older (Mage = 67) adults on reach estimation while seated and in a more postural demanding standing and leaning forward position. The expectation was a significant postural effect with the standing condition, as evidenced by reduced overestimation. Whereas there was no difference between groups in the seated condition (both overestimated), older adults underestimated whereas the younger group once again overestimated in the standing condition. From one perspective, these results show that older adults do perceive postural constraints in light of their own physical capabilities. That is, that group perceived greater postural demands with the standing posture and elected to program a more conservative strategy, resulting in underestimation.
Fortin, Carole; Ehrmann Feldman, Debbie; Cheriet, Farida; Labelle, Hubert
2013-08-01
The objective of this study was to explore whether differences in standing and sitting postures of youth with idiopathic scoliosis could be detected from quantitative analysis of digital photographs. Standing and sitting postures of 50 participants aged 10-20-years-old with idiopathic scoliosis (Cobb angle: 15° to 60°) were assessed from digital photographs using a posture evaluation software program. Based on the XY coordinates of markers, 13 angular and linear posture indices were calculated in both positions. Paired t-tests were used to compare values of standing and sitting posture indices. Significant differences between standing and sitting positions (p < 0.05) were found for head protraction, shoulder elevation, scapula asymmetry, trunk list, scoliosis angle, waist angles, and frontal and sagittal plane pelvic tilt. Quantitative analysis of digital photographs is a clinically feasible method to measure standing and sitting postures among youth with scoliosis and to assist in decisions on therapeutic interventions.
Lajoie, Y; Richer, N; Jehu, D A; Polskaia, N; Saunders, D
2016-05-01
In the examination of postural control, instructions to stand as still as possible are common and promote a relatively unnatural sway pattern. The validity of the stability requirement is discussed in the present commentary in response to the discussion initiated by Cedrick T. Bonnet. The advantages of using the stability requirement include: evaluating unbiased postural control, reducing variability in postural sway, manipulating focus of attention, examining the ability to maintain an upright stance, and ecological validity of testing. The disadvantages include: constraining natural postural sway, increasing the complexity of the control condition, promoting an internal focus of attention, and reducing the ability to detect exploratory behaviour. After evaluating the aforementioned advantages and disadvantages, the present commentary suggests that researchers should strive to provide specific instructions to maintain feet, arm and eye position without specifically requiring participants to reduce their postural sway. Copyright © 2015 Elsevier B.V. All rights reserved.
Postural control and perceptive configuration: influence of expertise in gymnastics.
Gautier, Geoffroy; Thouvarecq, Régis; Vuillerme, Nicolas
2008-07-01
The purpose of the present experiment was to investigate how postural adaptations to the perceptive configuration are modified by specific gymnastics experience. Two groups, one expert in gymnastics and the other non-expert, had to maintain the erected posture while optical flow was imposed as follows: 20s motionless, 30s approaching motion, and 20s motionless. The centre of pressure and head displacements were analysed. The postural adaptations were characterised by the variability of movements for the flow conditions and by the postural latencies for the flow transitions. The results showed that the gymnasts tended to minimise their body movements and were more stationary (head) but not more stable (COP) than the non-gymnasts. These results suggest that gymnastics experience develops a specific postural adaptability relative to the perceptive configuration. We conclude that a specific postural experience could be considered as an intrinsic constraint, which leads to modification in the patterns of functional adaptation in the perceptive motor space.
Otolith and Vertical Canal Contributions to Dynamic Postural Control
NASA Technical Reports Server (NTRS)
Black, F. Owen
1999-01-01
The objective of this project is to determine: 1) how do normal subjects adjust postural movements in response to changing or altered otolith input, for example, due to aging? and 2) how do patients adapt postural control after altered unilateral or bilateral vestibular sensory inputs such as ablative inner ear surgery or ototoxicity, respectively? The following hypotheses are under investigation: 1) selective alteration of otolith input or abnormalities of otolith receptor function will result in distinctive spatial, frequency, and temporal patterns of head movements and body postural sway dynamics. 2) subjects with reduced, altered, or absent vertical semicircular canal receptor sensitivity but normal otolith receptor function or vice versa, should show predictable alterations of body and head movement strategies essential for the control of postural sway and movement. The effect of altered postural movement control upon compensation and/or adaptation will be determined. These experiments provide data for the development of computational models of postural control in normals, vestibular deficient subjects and normal humans exposed to unusual force environments, including orbital space flight.
Barnacle geese achieve significant energetic savings by changing posture.
Tickle, Peter G; Nudds, Robert L; Codd, Jonathan R
2012-01-01
Here we report the resting metabolic rate in barnacle geese (Branta leucopsis) and provide evidence for the significant energetic effect of posture. Under laboratory conditions flow-through respirometry together with synchronous recording of behaviour enabled a calculation of how metabolic rate varies with posture. Our principal finding is that standing bipedally incurs a 25% increase in metabolic rate compared to birds sitting on the ground. In addition to the expected decrease in energy consumption of hindlimb postural muscles when sitting, we hypothesise that a change in breathing mechanics represents one potential mechanism for at least part of the observed difference in energetic cost. Due to the significant effect of posture, future studies of resting metabolic rates need to take into account and/or report differences in posture.
Use of a design challenge to develop postural support devices for intermediate wheelchair users
Tanuku, Deepti; Moller, Nathaniel C.
2017-01-01
The provision of an appropriate wheelchair, one that provides proper fit and postural support, promotes wheelchair users’ physical health and quality of life. Many wheelchair users have postural difficulties, requiring supplemental postural support devices for added trunk support. However, in many low- and middle-income settings, postural support devices are inaccessible, inappropriate or unaffordable. This article describes the use of the design challenge model, informed by a design thinking approach, to catalyse the development of an affordable, simple and robust postural support device for low- and middle-income countries. The article also illustrates how not-for-profit organisations can utilise design thinking and, in particular, the design challenge model to successfully support the development of innovative solutions to product or process challenges. PMID:28936418
Postural Control and Emotion in Children with Autism Spectrum Disorders
Gouleme, Nathalie; Scheid, Isabelle; Peyre, Hugo; Seassau, Magali; Maruani, Anna; Clarke, Julia; Delorme, Richard; Bucci, Maria Pia
2017-01-01
Abstract Autism Spectrum Disorders subjects (ASD) are well known to have deficits in social interaction. We recorded simultaneously eye movements and postural sway during exploration of emotional faces in children with ASD and typically developing children (TD). We analyzed several postural and ocular parameters. The results showed that all postural parameters were significantly greater in children with ASD; ASD made significantly fewer saccades and had shorter fixation time than TD, particularly in the eyes, and especially for unpleasant emotions. These results suggest that poor postural control of ASD and their impaired visual strategies could be due to a lack of interest in social cognition, causing a delay in the development of the cortical areas, and thus could have an effect on their postural control. PMID:29177103
Barnacle Geese Achieve Significant Energetic Savings by Changing Posture
Tickle, Peter G.; Nudds, Robert L.; Codd, Jonathan R.
2012-01-01
Here we report the resting metabolic rate in barnacle geese (Branta leucopsis) and provide evidence for the significant energetic effect of posture. Under laboratory conditions flow-through respirometry together with synchronous recording of behaviour enabled a calculation of how metabolic rate varies with posture. Our principal finding is that standing bipedally incurs a 25% increase in metabolic rate compared to birds sitting on the ground. In addition to the expected decrease in energy consumption of hindlimb postural muscles when sitting, we hypothesise that a change in breathing mechanics represents one potential mechanism for at least part of the observed difference in energetic cost. Due to the significant effect of posture, future studies of resting metabolic rates need to take into account and/or report differences in posture. PMID:23071672
Dalton, Brian H; Rasman, Brandon G; Inglis, J Timothy; Blouin, Jean-Sébastien
2017-04-15
We tested perceived head-on-feet orientation and the direction of vestibular-evoked balance responses in passively and actively held head-turned postures. The direction of vestibular-evoked balance responses was not aligned with perceived head-on-feet orientation while maintaining prolonged passively held head-turned postures. Furthermore, static visual cues of head-on-feet orientation did not update the estimate of head posture for the balance controller. A prolonged actively held head-turned posture did not elicit a rotation in the direction of the vestibular-evoked balance response despite a significant rotation in perceived angular head posture. It is proposed that conscious perception of head posture and the transformation of vestibular signals for standing balance relying on this head posture are not dependent on the same internal representation. Rather, the balance system may operate under its own sensorimotor principles, which are partly independent from perception. Vestibular signals used for balance control must be integrated with other sensorimotor cues to allow transformation of descending signals according to an internal representation of body configuration. We explored two alternative models of sensorimotor integration that propose (1) a single internal representation of head-on-feet orientation is responsible for perceived postural orientation and standing balance or (2) conscious perception and balance control are driven by separate internal representations. During three experiments, participants stood quietly while passively or actively maintaining a prolonged head-turned posture (>10 min). Throughout the trials, participants intermittently reported their perceived head angular position, and subsequently electrical vestibular stimuli were delivered to elicit whole-body balance responses. Visual recalibration of head-on-feet posture was used to determine whether static visual cues are used to update the internal representation of body configuration for perceived orientation and standing balance. All three experiments involved situations in which the vestibular-evoked balance response was not orthogonal to perceived head-on-feet orientation, regardless of the visual information provided. For prolonged head-turned postures, balance responses consistent with actual head-on-feet posture occurred only during the active condition. Our results indicate that conscious perception of head-on-feet posture and vestibular control of balance do not rely on the same internal representation, but instead treat sensorimotor cues in parallel and may arrive at different conclusions regarding head-on-feet posture. The balance system appears to bypass static visual cues of postural orientation and mainly use other sensorimotor signals of head-on-feet position to transform vestibular signals of head motion, a mechanism appropriate for most daily activities. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Baumberger, Bernard; Isableu, Brice; Flückiger, Michelangelo
2004-11-01
The aim of this research was to analyse the development of postural reactions to approaching (AOF) and receding (ROF) ground rectilinear optical flows. Optical flows were shaped by a pattern of circular spots of light projected on the ground surface by a texture flow generator. The geometrical structure of the projected scenes corresponded to the spatial organisation of visual flows encountered in open outdoor settings. Postural readjustments of 56 children, ranging from 7 to 11 years old, and 12 adults were recorded by the changes of the centre of foot pressure (CoP) on a force platform during 44-s exposures to the moving texture. Before and after the optical flows exposure, a 24-s motionless texture served as a reference condition. Effect of ground rectilinear optical flows on postural control development was assessed by analysing sway latencies (SL), stability performances and postural orientation. The main results that emerge from this experiment show that postural responses are directionally specific to optical flow pattern and that they vary as a function of the motion onset and offset. Results showed that greater developmental changes in postural control occurred in an AOF (both at the onset and offset of the optical flow) than in an ROF. Onset of an approaching flow induced postural instability, canonical shifts in postural orientation and long latencies in children which were stronger than in the receding flow. This pattern of responses evolved with age towards an improvement in stability performances and shorter SL. The backward decreasing shift of the CoP in children evolved in adults towards forward postural tilt, i.show $132#e. in the opposite direction of the texture's motion. Offset of an AOF motion induced very short SL in children (which became longer in adult subjects), strong postural instability, but weaker shift of orientation compared to the receding one. Postural stability improved and orientation shift evolved to forward inclinations with age. SL remained almost constant across age at both onset and offset of the receding flow. Critical developmental periods seem to occur by the age of 8 and 10 years, as suggested by the transient 'neglect' of the children to optical flows. Linear vection was felt by 90% of the 7 year olds and decreased with age to reach 55% in adult subjects. The mature sensorimotor coordination subserving the postural organisation shown in adult subjects is an example aiming at reducing the postural effects induced by optical flows. The data are discussed in relation to the perceptual importance of mobile visual references on a ground support.
A Novel Posture for Better Differentiation Between Parkinson's Tremor and Essential Tremor
Zhang, Bin; Huang, Feifei; Liu, Jun; Zhang, Dingguo
2018-01-01
Due to a lack of reliable non-invasive bio-markers, misdiagnosis between Parkinson's disease and essential tremor is common. Although some assistive engineering approaches have been proposed, little acceptance has been obtained for these methods lack well-studied mechanisms and involve operator-dependent procedures. Aiming at a better differentiation between the two tremor causes, we present a novel posture, termed arm-rested posture, to ameliorate the quality of recorded tremor sequences. To investigate its efficacy, the posture was compared with another common posture, called arm-stretching posture, in fundamental aspects of tremor intensity and dominant frequency. A tremor-affected cohort comprising 50 subjects (PD = 26, ET = 24) with inhomogeneous tremor manifestation were recruited. From each subject, acceleration data of 5 min in terms of each posture were recorded. In the overall process, no operator-dependent procedures, such as data screening, was employed. The differentiation performance of the two postures were assessed by the index of discrimination coefficient and a receiver operating characteristic analysis based on binary logistic regression. The results of the differentiation assessment consistently demonstrate a better performance with the arm-rested posture than with the arm-stretching posture. As a by-product, factors of disease stage (incipient, progressed stage), spectrum estimate (PSD, bispectrum) and recording length (5–300s) were investigated. The significant effect of disease stage was only found in PD in terms of tremor intensity [F(1, 516) = 7.781, P < 0.05]. The bispectrum estimate was found to have better performance than the PSD estimate in extracting dominant frequency in terms of the discrimination coefficient. By extending the recording length, we noticed an increase in the performance of dominant frequency. The best result of the arm-rested posture was obtained with the maximum recording length of 300 s (area under the curve: 0.944, sensitivity: 92%, 1-specificity: 0%, accuracy: 96%), which is better than that of the arm-stretching posture in the same condition (area under the curve: 0.734, sensitivity: 54%, 1-specificity: 12%, accuracy: 72%). Thus, we conclude that the arm-rested posture can assist in improving tremor differentiation between Parkinson's disease and essential tremor and may act as a universal tool to analyze tremor for both clinical and research purpose. PMID:29867328
Trunk posture monitoring with inertial sensors
Wong, Man Sang
2008-01-01
Measurement of human posture and movement is an important area of research in the bioengineering and rehabilitation fields. Various attempts have been initiated for different clinical application goals, such as diagnosis of pathological posture and movements, assessment of pre- and post-treatment efficacy and comparison of different treatment protocols. Image-based methods for measurements of human posture and movements have been developed, such as the radiography, photogrammetry, optoelectric technique and video analysis. However, it is found that these methods are complicated to set up, time-consuming to operate and could only be applied in laboratory environments. This study introduced a method of using a posture monitoring system in estimating the spinal curvature changes during trunk movements on the sagittal and coronal planes and providing trunk posture monitoring during daily activities. The system consisted of three sensor modules, each with one tri-axial accelerometer and three uni-axial gyroscopes orthogonally aligned, and a digital data acquisition and feedback system. The accuracy of this system was tested with a motion analysis system (Vicon 370) in calibration with experimental setup and in trunk posture measurement with nine human subjects, and the performance of the posture monitoring system during daily activities with two human subjects was reported. The averaged root mean squared differences between the measurements of the system and motion analysis system were found to be <1.5° in dynamic calibration, and <3.1° for the sagittal plane and ≤2.1° for the coronal plane in estimation of the trunk posture change during trunk movements. The measurements of the system and the motion analysis system was highly correlated (>0.999 for dynamic calibration and >0.829 for estimation of spinal curvature change in domain planes of movement during flexion and lateral bending). With the sensing modules located on the upper trunk, mid-trunk and the pelvic levels, the inclination of trunk segment and the change of spinal curvature in trunk movements could be estimated. The posture information of five subjects was recorded at 30 s intervals during daily activity over a period of 3 days and 2 h a day. The preliminary results demonstrated that the subjects could improve their posture when feedback signals were provided. The posture monitoring system could be used for the purpose of posture monitoring during daily activity. PMID:18196296
Trunk posture monitoring with inertial sensors.
Wong, Wai Yin; Wong, Man Sang
2008-05-01
Measurement of human posture and movement is an important area of research in the bioengineering and rehabilitation fields. Various attempts have been initiated for different clinical application goals, such as diagnosis of pathological posture and movements, assessment of pre- and post-treatment efficacy and comparison of different treatment protocols. Image-based methods for measurements of human posture and movements have been developed, such as the radiography, photogrammetry, optoelectric technique and video analysis. However, it is found that these methods are complicated to set up, time-consuming to operate and could only be applied in laboratory environments. This study introduced a method of using a posture monitoring system in estimating the spinal curvature changes during trunk movements on the sagittal and coronal planes and providing trunk posture monitoring during daily activities. The system consisted of three sensor modules, each with one tri-axial accelerometer and three uni-axial gyroscopes orthogonally aligned, and a digital data acquisition and feedback system. The accuracy of this system was tested with a motion analysis system (Vicon 370) in calibration with experimental setup and in trunk posture measurement with nine human subjects, and the performance of the posture monitoring system during daily activities with two human subjects was reported. The averaged root mean squared differences between the measurements of the system and motion analysis system were found to be < 1.5 degrees in dynamic calibration, and < 3.1 degrees for the sagittal plane and < or = 2.1 degrees for the coronal plane in estimation of the trunk posture change during trunk movements. The measurements of the system and the motion analysis system was highly correlated (> 0.999 for dynamic calibration and > 0.829 for estimation of spinal curvature change in domain planes of movement during flexion and lateral bending). With the sensing modules located on the upper trunk, mid-trunk and the pelvic levels, the inclination of trunk segment and the change of spinal curvature in trunk movements could be estimated. The posture information of five subjects was recorded at 30 s intervals during daily activity over a period of 3 days and 2 h a day. The preliminary results demonstrated that the subjects could improve their posture when feedback signals were provided. The posture monitoring system could be used for the purpose of posture monitoring during daily activity.
Grasso, R; Zago, M; Lacquaniti, F
2000-01-01
Human erect locomotion is unique among living primates. Evolution selected specific biomechanical features that make human locomotion mechanically efficient. These features are matched by the motor patterns generated in the CNS. What happens when humans walk with bent postures? Are normal motor patterns of erect locomotion maintained or completely reorganized? Five healthy volunteers walked straight and forward at different speeds in three different postures (regular, knee-flexed, and knee- and trunk-flexed) while their motion, ground reaction forces, and electromyographic (EMG) activity were recorded. The three postures imply large differences in the position of the center of body mass relative to the body segments. The elevation angles of the trunk, pelvis, and lower limb segments relative to the vertical in the sagittal plane, the ground reaction forces and the rectified EMGs were analyzed over the gait cycle. The waveforms of the elevation angles along the gait cycle remained essentially unchanged irrespective of the adopted postures. The first two harmonics of these kinematic waveforms explain >95% of their variance. The phase shift but not the amplitude ratio between the first harmonic of the elevation angle waveforms of adjacent pairs was affected systematically by changes in posture. Thigh, shank, and foot angles covaried close to a plane in all conditions, but the plane orientation was systematically different in bent versus erect locomotion. This was explained by the changes in the temporal coupling among the three segments. For walking speeds >1 m s(-1), the plane orientation of bent locomotion indicates a much lower mechanical efficiency relative to erect locomotion. Ground reaction forces differed prominently in bent versus erect posture displaying characteristics intermediate between those typical of walking and those of running. Mean EMG activity was greater in bent postures for all recorded muscles independent of the functional role. The waveforms of the muscle activities and muscle synergies also were affected by the adopted posture. We conclude that maintaining bent postures does not interfere either with the generation of segmental kinematic waveforms or with the planar constraint of intersegmental covariation. These characteristics are maintained at the expense of adjustments in kinetic parameters, muscle synergies and the temporal coupling among the oscillating body segments. We argue that an integrated control of gait and posture is made possible because these two motor functions share some common principles of spatial organization.
Assessment of postural balance function.
Kostiukow, Anna; Rostkowska, Elzbieta; Samborski, Włodzimierz
2009-01-01
Postural balance is defined as the ability to stand unassisted without falling. Examination of the patient's postural balance function is a difficult diagnostic task. Most of the balance tests used in medicine provide incomplete information on this coordination ability of the human body. The aim of this study was to review methods of assessment of the patient's postural balance function, including various tests used in medical diagnostics centers.
Azadinia, Fatemeh; Ebrahimi-Takamjani, Ismail; Kamyab, Mojtaba; Parnianpour, Mohamad; Asgari, Morteza
2017-01-01
Background: Poor balance performance and impaired postural control have been frequently reported in patients with low back pain. However, postural control is rarely monitored during the course of treatment even though poor postural control may contribute to chronicity and recurrence of symptoms. Therefore, the present study aimed at investigating the effect of a nonextensible lumbosacral orthosis (LSO) versus routine physical therapy on postural stability of patients with nonspecific chronic low back pain. Methods: This was a randomized controlled trial conducted between November 2015 and May 2016 at the outpatient physical therapy clinic of the School of Rehabilitation Sciences. Patients with nonspecific chronic low back pain aged 20 to 55 years were randomly allocated to the intervention and control groups. Both groups received 8 sessions of physical therapy twice weekly for 4 weeks. The intervention group received nonextensible LSO in addition to routine physical therapy. Pain intensity, functional disability, fear of movement/ (re)injury, and postural stability in 3 levels of postural difficulty were measured before and after 4 weeks of intervention. A 2×2×3 mixed model of analysis of variance (ANOVA) was used to determine the main and interactive effects of the 3 factors including group, time, and postural difficulty conditions for each variable of postural stability. Results: The LSO and control groups displayed significant improvement in postural stability at the most difficult postural task conditions (P-value for 95% area ellipse was 0.003; and for phase plane, the mean total velocity and standard deviation of velocity was <0.001). Both groups exhibited a decrease in pain intensity, Oswestry Disability Index, and Tampa Scale of Kinesiophobia after 4 weeks of intervention. A significant difference between groups was found only for functional disability, with greater improvement in the orthosis group (t = 3.60, P<0.001). Conclusion: Both routine physical therapy and LSO significantly improved clinical and postural stability outcomes immediately after 4 weeks of intervention. The orthosis group did not display superior outcomes, except for functional disability.
Azadinia, Fatemeh; Ebrahimi-Takamjani, Ismail; Kamyab, Mojtaba; Parnianpour, Mohamad; Asgari, Morteza
2017-01-01
Background: Poor balance performance and impaired postural control have been frequently reported in patients with low back pain. However, postural control is rarely monitored during the course of treatment even though poor postural control may contribute to chronicity and recurrence of symptoms. Therefore, the present study aimed at investigating the effect of a nonextensible lumbosacral orthosis (LSO) versus routine physical therapy on postural stability of patients with nonspecific chronic low back pain. Methods: This was a randomized controlled trial conducted between November 2015 and May 2016 at the outpatient physical therapy clinic of the School of Rehabilitation Sciences. Patients with nonspecific chronic low back pain aged 20 to 55 years were randomly allocated to the intervention and control groups. Both groups received 8 sessions of physical therapy twice weekly for 4 weeks. The intervention group received nonextensible LSO in addition to routine physical therapy. Pain intensity, functional disability, fear of movement/ (re)injury, and postural stability in 3 levels of postural difficulty were measured before and after 4 weeks of intervention. A 2×2×3 mixed model of analysis of variance (ANOVA) was used to determine the main and interactive effects of the 3 factors including group, time, and postural difficulty conditions for each variable of postural stability. Results: The LSO and control groups displayed significant improvement in postural stability at the most difficult postural task conditions (P-value for 95% area ellipse was 0.003; and for phase plane, the mean total velocity and standard deviation of velocity was <0.001). Both groups exhibited a decrease in pain intensity, Oswestry Disability Index, and Tampa Scale of Kinesiophobia after 4 weeks of intervention. A significant difference between groups was found only for functional disability, with greater improvement in the orthosis group (t = 3.60, P<0.001). Conclusion: Both routine physical therapy and LSO significantly improved clinical and postural stability outcomes immediately after 4 weeks of intervention. The orthosis group did not display superior outcomes, except for functional disability. PMID:29445655
Hackenberg, Lars; Hierholzer, Eberhard; Bullmann, Viola; Liljenqvist, Ulf; Götze, Christian
2006-07-01
The forward bending test according to Adams and rib hump quantification by scoliometer are common clinical examination techniques in idiopathic scoliosis, although precise data about the change of axial surface rotation in forward bending posture are not available. In a pilot study the influence of leg length inequalities on the back shape of five normal subjects was clarified. Then 91 patients with idiopathic scoliosis with Cobb-angles between 20 degrees and 82 degrees were examined by rasterstereography, a 3D back surface analysis system. The axial back surface rotation in standing posture was compared with that in forward bending posture and additionally with a scoliometer measurement in forward bending posture. The changes of back shape in forward bending posture were correlated with the Cobb-angle, the level of the apex of the scoliotic primary curve and the age of the patient. Averaged over all patients, the back surface rotation amplitude increased from 23.1 degrees in standing to 26.3 degrees in forward bending posture. The standard deviation of this difference was high (6.1 degrees ). The correlation of back surface rotation amplitude in standing with that in forward bending posture was poor (R (2)=0.41) as was the correlation of back surface rotation in standing posture with the scoliometer in forward bending posture measured rotation (R (2)=0.35). No significant correlation could be found between the change of back shape in forward bending and the degree of deformity (R (2)=0.07), likewise no correlation with the height of the apex of the scoliosis (R (2)=0.005) and the age of the patient (R (2)=0.001). Before forward bending test leg length inequalities have to be compensated accurately. Compared to the standing posture, forward bending changes back surface rotation. However, this change varies greatly between patients, and is independent of the type and degree of scoliosis. Furthermore remarkable differences were found between scoliometer measurement of the rib hump and rasterstereographic measurement of the vertebral rotation. Therefore the forward bending test and the identification of idiopathic scoliosis rotation by scoliometer can be markedly different compared to rasterstereographic surface measurement in the standing posture.
Reliability and validity of the Microsoft Kinect for evaluating static foot posture
2013-01-01
Background The evaluation of foot posture in a clinical setting is useful to screen for potential injury, however disagreement remains as to which method has the greatest clinical utility. An inexpensive and widely available imaging system, the Microsoft Kinect™, may possess the characteristics to objectively evaluate static foot posture in a clinical setting with high accuracy. The aim of this study was to assess the intra-rater reliability and validity of this system for assessing static foot posture. Methods Three measures were used to assess static foot posture; traditional visual observation using the Foot Posture Index (FPI), a 3D motion analysis (3DMA) system and software designed to collect and analyse image and depth data from the Kinect. Spearman’s rho was used to assess intra-rater reliability and concurrent validity of the Kinect to evaluate foot posture, and a linear regression was used to examine the ability of the Kinect to predict total visual FPI score. Results The Kinect demonstrated moderate to good intra-rater reliability for four FPI items of foot posture (ρ = 0.62 to 0.78) and moderate to good correlations with the 3DMA system for four items of foot posture (ρ = 0.51 to 0.85). In contrast, intra-rater reliability of visual FPI items was poor to moderate (ρ = 0.17 to 0.63), and correlations with the Kinect and 3DMA systems were poor (absolute ρ = 0.01 to 0.44). Kinect FPI items with moderate to good reliability predicted 61% of the variance in total visual FPI score. Conclusions The majority of the foot posture items derived using the Kinect were more reliable than the traditional visual assessment of FPI, and were valid when compared to a 3DMA system. Individual foot posture items recorded using the Kinect were also shown to predict a moderate degree of variance in the total visual FPI score. Combined, these results support the future potential of the Kinect to accurately evaluate static foot posture in a clinical setting. PMID:23566934
Difference in postural control between patients with functional and mechanical ankle instability.
Chen, Henry; Li, Hong-Yun; Zhang, Jian; Hua, Ying-Hui; Chen, Shi-Yi
2014-10-01
Lateral ankle sprain is one of the most common injuries. Since the structural and pathological differences in mechanical ankle instability (MAI) and functional ankle instability (FAI) may not be the same, it may be better to treat these as separate groups. The purpose of this study was to compare the difference in postural sway between MAI and FAI in patients with chronic ankle instability (CAI). Twenty-six patients with CAI and 14 healthy control participants were included in the study. The CAI patients were subdivided into MAI (15 patients) and FAI (11 patients) groups. Patients who were diagnosed with lateral ankle ligaments rupture by magnetic resonance imaging and ultrasonography were assigned to the MAI group. All participants performed single-limb postural sway tests 3 times on each leg with eyes closed and open. The average distances from the mean center of pressure position in the mediolateral and anteroposterior directions were recorded and compared among the 3 groups. The unstable ankles in the MAI group showed significantly greater postural sway in the anterior, posterior, and medial directions compared with those in the control group with eyes closed. With eyes open, significantly greater postural sway was found in the anterior direction. In the FAI group, no difference was found in postural sway compared with those in the control group. The MAI group showed significantly greater postural sway in the anterior direction compared with the FAI group with eyes closed and open. No significant difference in postural sway was found between the unstable and stable ankles in the MAI or FAI groups, with or without vision. Patients with MAI have deficits in postural control, especially in anterior-posterior directions. However, no difference was found in postural sway in patients with FAI compared with healthy people. As MAI patients suffer from deficits in postural control, balance training should be applied in those patients. In addition, special training should also include the contralateral side after a unilateral ankle ligament injured. © The Author(s) 2014.
NASA Technical Reports Server (NTRS)
Collins, J. J.; De Luca, C. J.; Pavlik, A. E.; Roy, S. H.; Emley, M. S.; Young, L. R. (Principal Investigator)
1995-01-01
Stabilogram-diffusion analysis was used to examine how prolonged periods in microgravity affect the open-loop and closed-loop postural control mechanisms. It was hypothesized that following spaceflight: (1) the effective stochastic activity of the open-loop postural control schemes in astronauts is increased; (2) the effective stochastic activity and uncorrelated behavior, respectively, of the closed-loop postural control mechanisms in astronauts are increased; and (3) astronauts utilized open-loop postural controls schemes for shorter time intervals and smaller displacements. Four crew members and two alternates from the 14-day Spacelab Life Sciences 2 Mission were included in the study. Each subject was tested under eyes-open, quiet-standing conditions on multiple preflight and postflight days. The subjects' center-of-pressure trajectories were measured with a force platform and analyzed according to stabilogram-diffusion analysis. It was found that the effective stochastic activity of the open-loop postural control schemes in three of the four crew members was increased following spaceflight. This result is interpreted as an indication that there may be in-flight adaptations to higher-level descending postural control pathways, e.g., a postflight increase in the tonic activation of postural muscles. This change may also be the consequence of a compensatory (e.g., "stiffening") postural control strategy that is adopted by astronauts to account for general feeling of postflight unsteadiness. The crew members, as a group, did not exhibit any consistent preflight/postflight differences in the steady-state behavior of their closed-loop postural control mechanisms or in the functional interaction of their open-loop and closed-loop postural control mechanisms. These results are interpreted as indications that although there may be in-flight adaptations to the vestibular system and/or proprioceptive system, input from the visual system can compensate for such changes during undisturbed stance.
Karimi, D; Henry, J; Mann, D D
2012-10-01
Tractor operators are prone to neck and back discomfort and disorders. It is well known that awkward posture is a major contributor to this problem. Previous studies have investigated the prevalence of awkward posture and the resulting discomfort and disorders among tractor operators. They have also suggested various ways to mitigate this problem. With the introduction of new autosteer guidance systems, the tractor operator is relieved from the task of steering the tractor for most of the time during field work. Therefore, it is expected that the operator's posture will change. The goal of this study was to investigate the changes in the eye-glance behavior and posture of tractor operators as a result of using autosteer guidance systems. An eye-tracking system and a camcorder were used to record the eye-glance behavior and posture of 13 tractor operators as they performed seeding operations. The experiment with each operator consisted of two sessions. In one session, the operator used an autosteer system, while in the other session the operator steered the tractor manually. Analysis of the data showed that the eye-glance behavior and posture of the operators were significantly different between the autosteer and manual steering sessions. With the autosteer system, the operators spent less time in an awkward posture, and they changed their posture less frequently. However, even with the autosteer system, the operators spent 1/3 of their time in an awkward posture. Subjective feedback from the operators indicated that more than half of them experienced back or neck/shoulder discomfort during or after seeding. It is essential that the recommendations of the previous studies, such as using large rear-view mirrors or a rotating tractor seat, be evaluated when the operator is using an autosteer system. Other tools, such as video cameras that show the attached equipment, should also be tested to evaluate their effectiveness in reducing the operator's exposure to awkward postures.
Functional analyses of the primate upper cervical vertebral column.
Nalley, Thierra K; Grider-Potter, Neysa
2017-06-01
Recent work has highlighted functional correlations between direct measures of head and neck posture and primate cervical bony morphology. Primates with more horizontal necks exhibit middle and lower cervical vertebral features that indicate increased mechanical advantage for deep nuchal musculature and mechanisms for column curvature formation and maintenance. How features of the C1 and C2 reflect quantified measures of posture have yet to be examined. This study incorporates bony morphology from the upper cervical levels from 20 extant primate species in order to investigate further how posture correlates with cervical vertebrae morphology. Results from phylogenetic generalized least-squares analyses indicate that few vertebral features exhibit a significant relationship with posture when accounting for differences in size. When size-adjusted traits were correlated with posture, vertebral variation had a stronger relationship with neck posture than head posture variables. Two C1 traits-relative posterior arch length and superior facet curvature-were correlated with neck posture variables. Relative posterior arch length exhibits a positive relationship with neck posture, while superior articular facet curvature demonstrates a negative relationship, such that as the neck becomes more horizontal, the greater the facet curvature. Four C2 features were also correlated with neck posture: relative pedicle and lamina lengths, relative superior facet orientation, and dens orientation. Relative pedicle and lamina lengths become craniocaudally longer as the neck becomes more horizontal. Relative C2 superior facet orientation and dens orientation exhibit negative correlations with posture, such that as the neck becomes more horizontal, the superior facet becomes more caudally inclined and the dens more dorsally inclined. These results produce a similar functional signal observed in the middle and lower cervical spine. Modeling the cervical vertebrae of more pronograde taxa within a sigmoidal spinal column model is further discussed and may prove useful in refining and testing future hypotheses of primate cervical mechanics. Copyright © 2017 Elsevier Ltd. All rights reserved.
Teng, Ya-Ling; Chen, Chiung-Ling; Lou, Shu-Zon; Wang, Wei-Tsan; Wu, Jui-Yen; Ma, Hui-Ing; Chen, Vincent Chin-Hung
2016-01-01
Postural dysfunctions are prevalent in patients with schizophrenia and affect their daily life and ability to work. In addition, sensory functions and sensory integration that are crucial for postural control are also compromised. This study intended to examine how patients with schizophrenia coordinate multiple sensory systems to maintain postural stability in dynamic sensory conditions. Twenty-nine patients with schizophrenia and 32 control subjects were recruited. Postural stability of the participants was examined in six sensory conditions of different level of congruency of multiple sensory information, which was based on combinations of correct, removed, or conflicting sensory inputs from visual, somatosensory, and vestibular systems. The excursion of the center of pressure was measured by posturography. Equilibrium scores were derived to indicate the range of anterior-posterior (AP) postural sway, and sensory ratios were calculated to explore ability to use sensory information to maintain balance. The overall AP postural sway was significantly larger for patients with schizophrenia compared to the controls [patients (69.62±8.99); controls (76.53±7.47); t1,59 = -3.28, p<0.001]. The results of mixed-model ANOVAs showed a significant interaction between the group and sensory conditions [F5,295 = 5.55, p<0.001]. Further analysis indicated that AP postural sway was significantly larger for patients compared to the controls in conditions containing unreliable somatosensory information either with visual deprivation or with conflicting visual information. Sensory ratios were not significantly different between groups, although small and non-significant difference in inefficiency to utilize vestibular information was also noted. No significant correlations were found between postural stability and clinical characteristics. To sum up, patients with schizophrenia showed increased postural sway and a higher rate of falls during challenging sensory conditions, which was independent of clinical characteristics. Patients further demonstrated similar pattern and level of utilizing sensory information to maintain balance compared to the controls.
The association between infantile postural asymmetry and unsettled behaviour in babies.
Ellwood, Julie; Ford, Michael; Nicholson, Alf
2017-12-01
Unsettled infant behaviour is a common problem of infancy without known aetiology or clearly effective management. Some manual therapists propose that musculoskeletal dysfunction contributes to unsettled infant behaviour, yet reported improvement following treatment is anecdotal. The infantile postural asymmetry measurement scale is a tool which measures infantile asymmetry, a form of musculoskeletal dysfunction. The first part of the study aimed to investigate its reliability and validity for measuring infantile postural asymmetry. This study also aimed to investigate whether there was an association between infantile postural asymmetry and unsettled infant behaviour and whether an association was mediated by, or confounded with, the demographic variables of age, sex, parity, birth weight and weight gain in 12- to 16-week-old infants. Fifty-eight infants were recruited and a quantitative cross-sectional observational design was used. An association between unsettled behaviour and infantile postural asymmetry was not found. A significant difference between high and low cervical rotation deficit groups for surgency was detected in female babies and needs further examination. Questions remain regarding the construct validity of the infantile postural asymmetry scale. No association between unsettled infant behaviour and infantile postural asymmetry was found in 12- to 16-week-old infants. The influence of sex on the interaction between infantile postural asymmetry and infant behaviour needs further examination. An association between unsettled infant behaviour and infantile postural asymmetry is still unproven. What is known: • Unsettled infant behaviour has a considerable impact on many family situations. • Identifying a definitive cause has been a source of much examination and research. Many different hypotheses have been suggested yet much is still unknown. What is new: • The association between unsettled infant behaviour and infantile postural asymmetry is still unproven. • The need to validate a reliable tool to measure infantile postural asymmetry, with particular focus on cervical spine rotation deficit, is indicated.
Zhang, Di; Sessa, Salvatore; Kong, Weisheng; Cosentino, Sarah; Magistro, Daniele; Ishii, Hiroyuki; Zecca, Massimiliano; Takanishi, Atsuo
2015-11-01
Current training for laparoscopy focuses only on the enhancement of manual skill and does not give advice on improving trainees' posture. However, a poor posture can result in increased static muscle loading, faster fatigue, and impaired psychomotor task performance. In this paper, the authors propose a method, named subliminal persuasion, which gives the trainee real-time advice for correcting the upper limb posture during laparoscopic training like the expert but leads to a lower increment in the workload. A 9-axis inertial measurement unit was used to compute the upper limb posture, and a Detection Reaction Time device was developed and used to measure the workload. A monitor displayed not only images from laparoscope, but also a visual stimulus, a transparent red cross superimposed to the laparoscopic images, when the trainee had incorrect upper limb posture. One group was exposed, when their posture was not correct during training, to a short (about 33 ms) subliminal visual stimulus. The control group instead was exposed to longer (about 660 ms) supraliminal visual stimuli. We found that subliminal visual stimulation is a valid method to improve trainees' upper limb posture during laparoscopic training. Moreover, the additional workload required for subconscious processing of subliminal visual stimuli is less than the one required for supraliminal visual stimuli, which is processed instead at the conscious level. We propose subliminal persuasion as a method to give subconscious real-time stimuli to improve upper limb posture during laparoscopic training. Its effectiveness and efficiency were confirmed against supraliminal stimuli transmitted at the conscious level: Subliminal persuasion improved upper limb posture of trainees, with a smaller increase on the overall workload.
Evaluation of posture and pain in persons with benign joint hypermobility syndrome.
Booshanam, Divya S; Cherian, Binu; Joseph, Charles Premkumar A R; Mathew, John; Thomas, Raji
2011-12-01
The objective of the present study is to compare and quantify the postural differences and joint pain distribution between subjects with benign joint hypermobility syndrome (BJHS) and the normal population. This observational, non-randomized, and controlled study was conducted at Rheumatology and Physical Medicine and Rehabilitation Medicine Departments of a tertiary care teaching hospital. Subjects comprise 35 persons with diagnosis of BJHS, and the control group was matched for age and sex. Reedco's Posture score (RPS) and visual analogue scale (VAS) were the outcome measures. The subjects were assessed for pain in ten major joints and rated on a VAS. A standard posture assessment was conducted using the Reedco's Posture score. The same procedure was executed for an age- and sex-matched control group. Mean RPS for the BJHS group was 55.29 ± 8.15 and for the normal group it was 67 ± 11.94. The most common postural deviances in subjects with BJHS were identified in the following areas of head, hip (Sagittal plane), upper back, trunk, and lower back (Coronal plane). Intensity of pain was found to be more in BJHS persons than that of the normal persons, and the knee joints were the most affected. The present study compared and quantified the postural abnormalities and the pain in BJHS persons. The need for postural re-education and specific assessment and training for the most affected joints are discussed. There is a significant difference in posture between subjects with BJHS and the normal population. BJHS persons need special attention to their posture re-education during physiotherapy sessions to reduce long-term detrimental effects on the musculoskeletal system.
Postural trials: expertise in rhythmic gymnastics increases control in lateral directions.
Calavalle, A R; Sisti, D; Rocchi, M B L; Panebianco, R; Del Sal, M; Stocchi, V
2008-11-01
The first aim of this paper was to investigate if expertise in rhythmic gymnastics influences postural performance even in an easy non-specific task such as bipedal posture. Rhythmic gymnastics is a unique female sport which encompasses aspects of both artistic gymnastics and ballet and includes the use of a small apparatus (rope, hoop, ball, clubs and ribbon). Most previous studies have shown that expertise achieved by artistic gymnasts and dancers improves postural steadiness only in the situations for which those athletes are trained. Literature has not yet compared rhythmic gymnasts to other athletes in terms of their postural strategies. Hence, the study presented herein tested a group of high level rhythmic gymnasts and a group of female university students, trained in other sports, in the bipedal posture under eyes open and closed conditions. A force platform was used to record body sway. (1) Distance from the centre of sway, (2) lateral and (3) antero-posterior displacements were analyzed in time and frequency domains. Comparing the two groups, it was found that rhythmic gymnasts had better strategies than students in simple postural tasks, especially in lateral directions and in the period from 0.05 to 2 s. The most interesting finding in this study is that rhythmic gymnastics training seems to have a direct effect on the ability to maintain bipedal posture, which may confirm the "transfer" hypothesis of rhythmic gymnastics expertise to bipedal postural sway, especially in medio-lateral displacements. This finding has never been reported in previous studies on artistic gymnasts and ballet dancers. Furthermore, the present study confirmed the visual dependence of all the athletes, irrespective of their disciplines, in their postural trials.
Agmon, Maayan; Lavie, Limor; Doumas, Michail
2017-06-01
Degraded hearing in older adults has been associated with reduced postural control and higher risk of falls. Both hearing loss (HL) and falls have dramatic effects on older persons' quality of life (QoL). A large body of research explored the comorbidity between the two domains. The aim of the current review is to describe the comorbidity between HL and objective measures of postural control, to offer potential mechanisms underlying this relationship, and to discuss the clinical implications of this comorbidity. PubMed and Google Scholar were systematically searched for articles published in English up until October 15, 2015, using combinations of the following strings and search words: for hearing: Hearing loss, "Hearing loss," hearing, presbycusis; for postural control: postural control, gait, postural balance, fall, walking; and for age: elderly, older adults. Of 211 screened articles, 7 were included in the systematic review. A significant, positive association between HL and several objective measures of postural control was found in all seven studies, even after controlling for major covariates. Severity of hearing impairment was connected to higher prevalence of difficulties in walking and falls. Physiological, cognitive, and behavioral processes that may influence auditory system and postural control were suggested as potential explanations for the association between HL and postural control. There is evidence for the independent relationship between HL and objective measures of postural control in the elderly. However, a more comprehensive understanding of the mechanisms underlying this relationship is yet to be elucidated. Concurrent diagnosis, treatment, and rehabilitation of these two modalities may reduce falls and increase QoL in older adults. American Academy of Audiology
Siegler, Sorin; Caravaggi, Paolo; Tangorra, James; Milone, Mary; Namani, Ramya; Marchetto, Paul A
2015-10-15
The posture of the head and neck is critical for predicting and assessing the risk of injury during high accelerations, such as those arising during motor accidents or in collision sports. Current knowledge suggests that the head's range-of-motion (ROM) and the torque-generating capability of neck muscles are both dependent and affected by head posture. A deeper understanding of the relationship between head posture, ROM and maximum torque-generating capability of neck muscles may help assess the risk of injury and develop means to reduce such risks. The aim of this study was to use a previously-validated device, known as Neck Flexibility Tester, to quantify the effects of head's posture on the available ROM and torque-generating capability of neck muscles. Ten young asymptomatic volunteers were enrolled in the study. The tri-axial orientation of the subjects' head was controlled via the Neck Flexibility Tester device. The head ROM was measured for each flexed, extended, axially rotated, and laterally bent head's orientation and compared to that in unconstrained neutral posture. Similarly, the torque applied about the three anatomical axes during Isometric Maximum Voluntary Contraction (IMVC) of the neck muscles was measured in six head's postures and compared to that in fully-constrained neutral posture. The further from neutral the neck posture was the larger the decrease in ROM and IMVC. Head extension and combined two-plane rotations postures, such as extension with lateral bending, produced the largest decreases in ROM and IMVC, thus suggesting that these postures pose the highest potential risk for injury. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kang, Hyun Gu; Quach, Lien; Li, Wenjun; Lipsitz, Lewis A
2013-09-01
Outdoor fallers differ from indoor fallers substantially in demographics, lifestyle, health condition and physical function. Biomechanical predictors of outdoor falls have not been well characterized. Current validated measures of postural deficits, which describe only the overall postural behavior, are predictive of indoor falls but not outdoor falls. We hypothesized that a model-based description of postural muscle tone and reflexes, particularly during dual tasking, would predict outdoor falls. We tested whether postural stiffness and damping from an inverted pendulum model were predictive of future indoor and outdoor falls among older adults from the MOBILIZE Boston Study. The center of pressure data during standing were obtained from 717 participants aged 77.9±5.3 years. Participants stood barefoot with eyes open for 30s per trial, in two sets of five standing trials. One set included a serial subtractions task. Postural stiffness and damping values were determined from the postural sway data. After the postural measurements, falls were monitored prospectively using a monthly mail-in calendar over 6-36 months. Associations of postural measures with fall rates were determined using negative binomial regressions. After covariate adjustments, postural stiffness (p=0.02-0.05) and damping (p=0.007-0.1) were associated with lower outdoor falls risk, but not with indoor falls. Results were invariant by direction (anteroposterior versus mediolateral) or by condition (quiet standing versus dual task). Outdoor fall risk may be tied to postural control more so than indoor falls. Dual tasking is likely related to fall risk among older and sicker older adults, but not those relatively healthy. Copyright © 2013 Elsevier B.V. All rights reserved.
Postural stability and ankle sprain history in athletes compared to uninjured controls.
Huurnink, Arnold; Fransz, Duncan P; Kingma, Idsart; Verhagen, Evert A L M; van Dieën, Jaap H
2014-02-01
Diminished postural stability is a risk factor for ankle sprain occurrence and ankle sprains result in impaired postural stability. To date, ankle sprain history has not been taken into account as a determinant of postural stability, while it could possibly specify subgroups of interest. Postural stability was compared between 18 field hockey athletes who had recovered from an ankle sprain (mean (SD); 3.6 (1.5) months post-injury), and 16 uninjured controls. Force plate and kinematics parameters were calculated during single-leg standing: mean center of pressure speed, mean absolute horizontal ground reaction force, mean absolute ankle angular velocity, and mean absolute hip angular velocity. Additionally, cluster analysis was applied to the 'injured' participants, and the cluster with diminished postural stability was compared to the other participants with respect to ankle sprain history. MANCOVA showed no significant difference between groups in postural stability (P = 0.68). A self-reported history of an (partial) ankle ligament rupture was typically present in the cluster with diminished postural stability. Subsequently, a 'preceding rupture' was added as a factor in the MANCOVA, which showed a significant association between diminished postural stability and a 'preceding rupture' (P = 0.01), for all four individual parameters (P: 0.001-0.029; Cohen's d: 0.96-2.23). Diminished postural stability is not apparent in all previously injured athletes. However, our analysis suggests that an (mild) ankle sprain with a preceding severe ankle sprain is associated with impaired balance ability. Therefore, sensorimotor training may be emphasized in this particular group and caution is warranted in return to play decisions. Copyright © 2013 Elsevier Ltd. All rights reserved.
Light and heavy touch reduces postural sway and modifies axial tone in Parkinson’s disease
Franzén, Erika; Paquette, Caroline; Gurfinkel, Victor; Horak, Fay
2014-01-01
Background Light touch with a stable object reduces postural sway by increasing axial postural tone in healthy subjects. However, it is unknown whether subjects with Parkinson’s disease (PD), who have more postural sway and higher axial postural tone than healthy subjects, can benefit from haptic touch. Objective To investigate the effect of light and heavy touch on postural stability and hip tone in subjects with PD. Methods Fourteen subjects with mid-stage PD, and 14 healthy control subjects were evaluated during quiet standing with eyes closed with their arms: 1) crossed, 2) lightly touching a fixed rigid bar in front of them and 3) firmly gripping the bar. Postural sway was measured with a forceplate and axial hip tone was quantified using a unique device that measures the resistance of the hips to yaw rotation while maintaining active stance. Results Subjects with PD significantly decreased their postural sway with light or heavy touch (p<0.001 vs. arms crossed), similarly as control subjects. Without touch, hip tone was larger in PD subjects. With touch, however, tone values were similar in both groups. This change in hip tone with touch was highly correlated with the initial amount of tone (PD: r=− 0.72 to −0.95 and controls: r=−0.74 to−0.85). Conclusions We showed, for the first time, that subjects with PD benefit from touch similarly to control subjects and that despite higher axial postural tone, PD subjects are able to modulate their tone with touch. Future studies should investigate the complex relationship between touch and postural tone. PMID:22415944
The spinal posture of computing adolescents in a real-life setting
2014-01-01
Background It is assumed that good postural alignment is associated with the less likelihood of musculoskeletal pain symptoms. Encouraging good sitting postures have not reported consequent musculoskeletal pain reduction in school-based populations, possibly due to a lack of clear understanding of good posture. Therefore this paper describes the variability of postural angles in a cohort of asymptomatic high-school students whilst working on desk-top computers in a school computer classroom and to report on the relationship between the postural angles and age, gender, height, weight and computer use. Methods The baseline data from a 12 month longitudinal study is reported. The study was conducted in South African school computer classrooms. 194 Grade 10 high-school students, from randomly selected high-schools, aged 15–17 years, enrolled in Computer Application Technology for the first time, asymptomatic during the preceding month, and from whom written informed consent were obtained, participated in the study. The 3D Posture Analysis Tool captured five postural angles (head flexion, neck flexion, cranio-cervical angle, trunk flexion and head lateral bend) while the students were working on desk-top computers. Height, weight and computer use were also measured. Individual and combinations of postural angles were analysed. Results 944 Students were screened for eligibility of which the data of 194 students are reported. Trunk flexion was the most variable angle. Increased neck flexion and the combination of increased head flexion, neck flexion and trunk flexion were significantly associated with increased weight and BMI (p = 0.0001). Conclusions High-school students sit with greater ranges of trunk flexion (leaning forward or reclining) when using the classroom computer. Increased weight is significantly associated with increased sagittal plane postural angles. PMID:24950887
Kang, Hyun Gu; Quach, Lien; Li, Wenjun; Lipsitz, Lewis A.
2013-01-01
Outdoor fallers differ from indoor fallers substantially in demographics, lifestyle, health condition and physical function. Biomechanical predictors of outdoor falls have not been well characterized. Current validated measures of postural deficits, which describe only the overall postural behavior, are predictive of indoor falls but not outdoor falls. We hypothesized that a model-based description of postural muscle tone and reflexes, particularly during dual tasking, would predict outdoor falls. We tested whether postural stiffness and damping from an inverted pendulum model were predictive of future indoor and outdoor falls among older adults from the MOBILIZE Boston Study. The center of pressure data during standing were obtained from 717 participants aged 77.9±5.3 years. Participants stood barefoot with eyes open for 30 seconds per trial, in two sets of five standing trials. One set included a serial subtractions task. Postural stiffness and damping values were determined from the postural sway data. After the postural measurements, falls were monitored prospectively using a monthly mail-in calendar over 6-36 months. Associations of postural measures with fall rates were determined using negative binomial regressions. After covariate adjustments, postural stiffness (p=0.02-0.05) and damping (p=0.007-0.1) were associated with lower outdoor falls risk, but not with indoor falls. Results were invariant by direction (anteroposterior versus mediolateral) or by condition (quiet standing versus dual task). Outdoor fall risk may be tied to postural control more so than indoor falls. Dual tasking is likely related to fall risk among older and sicker older adults, but not those relatively healthy. PMID:23623606
Should Ballet Dancers Vary Postures and Underfoot Surfaces When Practicing Postural Balance?
Steinberg, Nili; Waddington, Gordon; Adams, Roger; Karin, Janet; Tirosh, Oren
2018-01-01
Postural balance (PB) is an important component skill for professional dancers. However, the effects of different types of postures and different underfoot surfaces on PB have not adequately been addressed. The main aim of this study was to investigate the effect of different conditions of footwear, surfaces, and standing positions on static and dynamic PB ability of young ballet dancers. A total of 36 male and female young professional ballet dancers (aged 14-19 years) completed static and dynamic balance testing, measured by head and lumbar accelerometers, while standing on one leg in the turnout position, under six different conditions: (1) "relaxed" posture; (2) "ballet" posture; (3) barefoot; (4) ballet shoes with textured insoles; (5) barefoot on a textured mat; and (6) barefoot on a spiky mat. A condition effect was found for static and dynamic PB. Static PB was reduced when dancers stood in the ballet posture compared with standing in the relaxed posture and when standing on a textured mat and on a spiky mat (p < .05), and static PB in the relaxed posture was significantly better than PB in all the other five conditions tested. Dynamic PB was significantly better while standing in ballet shoes with textured insoles and when standing on a spiky mat compared with all other conditions (p < .05). The practical implications derived from this study are that both male and female dancers should try to be relaxed in their postural muscles when practicing a ballet aligned position, including dance practice on different types of floors and on different types of textured/spiky materials may result in skill transfer to practice on normal floor surfaces, and both static and dynamic PB exercises should be assessed and generalized into practical dance routines.
Memari, Amir Hossein; Ghanouni, Parisa; Shayestehfar, Monir; Ghaheri, Banafsheh
2014-01-01
Context: Motor impairments in individuals with autism spectrum disorder (ASD) have been frequently reported. In this review, we narrow our focus on postural control impairments to summarize current literature for patterns, underlying mechanisms, and determinants of posture in this population. Evidence Acquisition: A literature search was conducted through Medline, ISI web of Knowledge, Scopus and Google Scholar to include studies between 1992 and February 2013. Results: Individuals with ASD have problems in maintaining postural control in infancy that well persists into later years. However, the patterns and underlying mechanisms are still unclear. Conclusions: Examining postural control as an endophenotype or early diagnostic marker of autism is a conceptual premise which should be considered in future investigations. At the end of the review, methodological recommendations on the assessment of postural control have also been provided. PMID:25520765
Sinaki, Mehrsheed; Lynn, Susan G
2002-04-01
To assess the effect of a proprioceptive dynamic posture training program on balance in osteoporotic women with kyphotic posture. Subjects were randomly assigned to either a proprioceptive dynamic posture training program or exercise only group. Anthropometric measurements, muscle strength, level of physical activity, computerized dynamic posturography, and spine radiography were performed at baseline and 1 mo. At the 1-mo follow-up, three groups were formed on the basis of the baseline computerized dynamic posturography results. In general, groups 1 and 2 had no significant change at 1 mo, whereas group 3 improved balance significantly at 1 mo. The subjects who had abnormal balance and used the proprioceptive dynamic posture training program had the most significant improvement in balance. Improved balance could reduce the risk of falls.
Chiropractic biophysics technique: a linear algebra approach to posture in chiropractic.
Harrison, D D; Janik, T J; Harrison, G R; Troyanovich, S; Harrison, D E; Harrison, S O
1996-10-01
This paper discusses linear algebra as applied to human posture in chiropractic, specifically chiropractic biophysics technique (CBP). Rotations, reflections and translations are geometric functions studied in vector spaces in linear algebra. These mathematical functions are termed rigid body transformations and are applied to segmental spinal movement in the literature. Review of the literature indicates that these linear algebra concepts have been used to describe vertebral motion. However, these rigid body movers are presented here as applying to the global postural movements of the head, thoracic cage and pelvis. The unique inverse functions of rotations, reflections and translations provide a theoretical basis for making postural corrections in neutral static resting posture. Chiropractic biophysics technique (CBP) uses these concepts in examination procedures, manual spinal manipulation, instrument assisted spinal manipulation, postural exercises, extension traction and clinical outcome measures.
Tomita, Hiroyuki; Takagi, Yukihiro; Saji, Shigetoyo; Kimura, Atushi; Imai, Hisashi; Sumi, Yasuhiko
2006-05-01
Splenic injuries are often caused when snowboarders thrust their abdomens with their own left elbows after falling and hitting the ground. We report 10 snowboarders who suffered a splenic injury by accidentally thrusting their own elbow against their abdomen upon falling to the ground. Clinical presentation, postural analysis, and treatment are described. In an attempt to break the force while falling, snowboarders assumed 1 of 2 defensive postures that subsequently induced splenic injury: falling with an outstretched hand or falling with folded arms placed closely to the chest, that is, the fetal tuck posture. Snowboarders who fell in the outstretched hand posture developed more severe symptoms than those who fell in the fetal tuck posture. Herein, we discuss the mechanisms of such snowboarding-related splenic injury in detail and provide a review of the literature.
Gallea, Cecile; Ewenczyk, Claire; Degos, Bertrand; Welter, Marie-Laure; Grabli, David; Leu-Semenescu, Smaranda; Valabregue, Romain; Berroir, Pierre; Yahia-Cherif, Lydia; Bertasi, Eric; Fernandez-Vidal, Sara; Bardinet, Eric; Roze, Emmanuel; Benali, Habib; Poupon, Cyril; François, Chantal; Arnulf, Isabelle; Lehéricy, Stéphane; Vidailhet, Marie
2017-05-01
The objective of this study was to investigate pedunculopontine nucleus network dysfunctions that mediate impaired postural control and sleep disorder in Parkinson's disease. We examined (1) Parkinson's disease patients with impaired postural control and rapid eye movement sleep behavior disorder (further abbreviated as sleep disorder), (2) Parkinson's disease patients with sleep disorder only, (3) Parkinson's disease patients with neither impaired postural control nor sleep disorder, and (4) healthy volunteers. We assessed postural control with clinical scores and biomechanical recordings during gait initiation. Participants had video polysomnography, daytime sleepiness self-evaluation, and resting-state functional MRIs. Patients with impaired postural control and sleep disorder had longer duration of anticipatory postural adjustments during gait initiation and decreased functional connectivity between the pedunculopontine nucleus and the supplementary motor area in the locomotor network that correlated negatively with the duration of anticipatory postural adjustments. Both groups of patients with sleep disorder had decreased functional connectivity between the pedunculopontine nucleus and the anterior cingulate cortex in the arousal network that correlated with daytime sleepiness. The degree of dysfunction in the arousal network was related to the degree of connectivity in the locomotor network in all patients with sleep disorder, but not in patients without sleep disorder or healthy volunteers. These results shed light on the functional neuroanatomy of pedunculopontine nucleus networks supporting the clinical manifestation and the interdependence between sleep and postural control impairments in Parkinson's disease. © 2016 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.
Characterization of postural control impairment in women with fibromyalgia
Sempere-Rubio, Núria; López-Pascual, Juan; Aguilar-Rodríguez, Marta; Cortés-Amador, Sara; Espí-López, Gemma; Villarrasa-Sapiña, Israel
2018-01-01
The main goal of this cross-sectional study was to detect whether women with fibromyalgia syndrome (FMS) have altered postural control and to study the sensory contribution to postural control. We also explored the possibility that self-induced anxiety and lower limb strength may be related to postural control. For this purpose, 129 women within an age range of 40 to 70 years were enrolled. Eighty of the enrolled women had FMS. Postural control variables, such as Ellipse, Root mean square (RMS) and Sample entropy (SampEn), in both directions (i.e. mediolateral and anteroposterior), were calculated under five different conditions. A force plate was used to register the center of pressure shifts. Furthermore, isometric lower limb strength was recorded with a portable dynamometer and normalized by lean body mass. The results showed that women with FMS have impaired postural control compared with healthy people, as they presented a significant increase in Ellipse and RMS values (p<0.05) and a significant decrease in SampEn in both directions (p<0.05). Postural control also worsens with the gradual alteration of sensory inputs in this population (p<0.05). Performing a stressor dual task only impacts Ellipse in women with FMS (p>0.05). There were no significant correlations between postural control and lower limb strength (p>0.05). Therefore, women with FMS have impaired postural control that is worse when sensory inputs are altered but is not correlated with their lower limb strength. PMID:29723223
Neuromechanical tuning of nonlinear postural control dynamics
NASA Astrophysics Data System (ADS)
Ting, Lena H.; van Antwerp, Keith W.; Scrivens, Jevin E.; McKay, J. Lucas; Welch, Torrence D. J.; Bingham, Jeffrey T.; DeWeerth, Stephen P.
2009-06-01
Postural control may be an ideal physiological motor task for elucidating general questions about the organization, diversity, flexibility, and variability of biological motor behaviors using nonlinear dynamical analysis techniques. Rather than presenting "problems" to the nervous system, the redundancy of biological systems and variability in their behaviors may actually be exploited to allow for the flexible achievement of multiple and concurrent task-level goals associated with movement. Such variability may reflect the constant "tuning" of neuromechanical elements and their interactions for movement control. The problem faced by researchers is that there is no one-to-one mapping between the task goal and the coordination of the underlying elements. We review recent and ongoing research in postural control with the goal of identifying common mechanisms underlying variability in postural control, coordination of multiple postural strategies, and transitions between them. We present a delayed-feedback model used to characterize the variability observed in muscle coordination patterns during postural responses to perturbation. We emphasize the significance of delays in physiological postural systems, requiring the modulation and coordination of both the instantaneous, "passive" response to perturbations as well as the delayed, "active" responses to perturbations. The challenge for future research lies in understanding the mechanisms and principles underlying neuromechanical tuning of and transitions between the diversity of postural behaviors. Here we describe some of our recent and ongoing studies aimed at understanding variability in postural control using physical robotic systems, human experiments, dimensional analysis, and computational models that could be enhanced from a nonlinear dynamics approach.
Cerebellar transcranial direct current stimulation improves adaptive postural control.
Poortvliet, Peter; Hsieh, Billie; Cresswell, Andrew; Au, Jacky; Meinzer, Marcus
2018-01-01
Rehabilitation interventions contribute to recovery of impaired postural control, but it remains a priority to optimize their effectiveness. A promising strategy may involve transcranial direct current stimulation (tDCS) of brain areas involved in fine-tuning of motor adaptation. This study explored the effects of cerebellar tDCS (ctDCS) on postural recovery from disturbance by Achilles tendon vibration. Twenty-eight healthy volunteers participated in this sham-ctDCS controlled study. Standing blindfolded on a force platform, four trials were completed: 60 s quiet standing followed by 20 min active (anodal-tDCS, 1 mA, 20 min, N = 14) or sham-ctDCS (40 s, N = 14) tDCS; three quiet standing trials with 15 s of Achilles tendon vibration and 25 s of postural recovery. Postural steadiness was quantified as displacement, standard deviation and path derived from the center of pressure (COP). Baseline demographics and quiet standing postural steadiness, and backwards displacement during vibration were comparable between groups. However, active-tDCS significantly improved postural steadiness during vibration and reduced forward displacement and variability in COP derivatives during recovery. We demonstrate that ctDCS results in short-term improvement of postural adaptation in healthy individuals. Future studies need to investigate if multisession ctDCS combined with training or rehabilitation interventions can induce prolonged improvement of postural balance. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Adaptive changes in anticipatory postural adjustments with novel and familiar postural supports.
Hall, Leanne M; Brauer, Sandra; Horak, Fay; Hodges, Paul W
2010-02-01
Anticipatory postural adjustments (APAs) serve to stabilize posture prior to initiation of voluntary movement. This study examined the effects of changes in postural support on APAs using novel and familiar support paradigms. We also investigated whether postural strategies were refined with practice and how the CNS responded when multiple supports were available. Twelve healthy subjects stood on dual force platforms and performed 20 randomized left and right rapid leg-lift tasks in response to a visual cue under four conditions: unsupported, bilateral handgrip, bite plate, and a combined handgrip and bite plate condition. Vertical ground reaction forces, electromyography of limb, trunk and jaw muscles, and forces exerted on the support apparatus were recorded. Shift in center-of-pressure amplitude and duration were reduced with increased support. Muscles were recruited in advance of the focal movement when able to contribute to stability, and activity was modulated based on the amount of support available. The CNS adapted anticipatory postural strategies immediately with changes in condition regardless of familiarity with the support; however, adaptation was only complete at the first repetition in conditions that involved familiar support strategies. Tasks that involved a novel bite strategy continued to adapt with practice. In the multiple support condition, both hand and bite strategies were immediately incorporated; however, the contribution of each was not identical to conditions where supports were provided individually. This study emphasizes the flexibility of the CNS to organize postural strategies to meet the demands of postural stability in both familiar and novel situations.
Dusing, Stacey C; Thacker, Leroy R; Galloway, James C
2016-08-01
Infants born preterm are at increased risk of developmental disabilities, that may be attributed to their early experiences and ability to learn. The purpose of this paper was to evaluate the ability of infants born preterm to adapt their postural control to changing task demands. This study included 18 infants born at 32 weeks of gestation or less whose posture was compared in supine under 2 conditions, with and without a visual stimulus presented. The postural variability, measured with root mean squared displacement of the center of pressure, and postural complexity, measured with the approximate entropy of the center of pressure displacement were measured longitudinally from 2.5 to 5 months of age. The infants looked at the toys in midline for several months prior to adapting their postural variability in a manner similar to full term infants. Only after postural variability was reduced in both the caudal cephalic and medial lateral direction in the toy condition did the infants learn to reach for the toy. Postural complexity did not vary between conditions. These findings suggest that infants used a variety of strategies to control their posture. In contrast to research with infants born full term, the infants born preterm in this study did not identify the successful strategy of reducing movement of the center of pressure until months after showing interest in the toy. This delayed adaptation may impact the infants ability to learn over time. Copyright © 2016 Elsevier Inc. All rights reserved.
The relationship between foot posture and lower limb kinematics during walking: A systematic review.
Buldt, Andrew K; Murley, George S; Butterworth, Paul; Levinger, Pazit; Menz, Hylton B; Landorf, Karl B
2013-07-01
Variations in foot posture, such as pes planus (low-arched foot) or pes cavus (high-arched foot), are thought to be an intrinsic risk factor for injury due to altered motion of the lower extremity. Hence, the aim of this systematic review was to investigate the relationship between foot posture and lower limb kinematics during walking. A systematic database search of MEDLINE, CINAHL, SPORTDiscus, Embase and Inspec was undertaken in March 2012. Two independent reviewers applied predetermined inclusion criteria to selected articles for review and selected articles were assessed for quality. Articles were then grouped into two broad categories: (i) those comparing mean kinematic parameters between different foot postures, and (ii) those examining associations between foot posture and kinematics using correlation analysis. A final selection of 12 articles was reviewed. Meta-analysis was not conducted due to heterogeneity between studies. Selected articles primarily focused on comparing planus and normal foot postures. Five articles compared kinematic parameters between different foot postures - there was some evidence for increased motion in planus feet, but this was limited by small effect sizes. Seven articles investigated associations between foot posture and kinematics - there was evidence that increasing planus foot posture was positively associated with increased frontal plane motion of the rearfoot. The body of literature provides some evidence of a relationship between pes planus and increased lower limb motion during gait, however this was not conclusive due to heterogeneity between studies and small effect sizes. Copyright © 2013 Elsevier B.V. All rights reserved.
Imbalance in Multiple Sclerosis: A Result of Slowed Spinal Somatosensory Conduction
Cameron, Michelle H.; Horak, Fay B.; Herndon, Robert R.; Bourdette, Dennis
2009-01-01
Balance problems and falls are common in people with multiple sclerosis (MS) but their cause and nature are not well understood. It is known that MS affects many areas of the central nervous system that can impact postural responses to maintain balance, including the cerebellum and the spinal cord. Cerebellar balance disorders are associated with normal latencies but reduced scaling of postural responses. We therefore examined the latency and scaling of automatic postural responses, and their relationship to somatosensory evoked potentials (SSEPs), in 10 people with MS and imbalance and 10 age-, sex-matched, healthy controls. The latency and scaling of postural responses to backward surface translations of 5 different velocities and amplitudes, and the latency of spinal and supraspinal somatosensory conduction, were examined. Subjects with MS had large, but very delayed automatic postural response latencies compared to controls (161ms ± 31 vs 102 ± 21, p < 0.01) and these postural response latencies correlated with the latencies of their spinal SSEPs (r=0.73, p< 0.01). Subjects with MS also had normal or excessive scaling of postural response amplitude to perturbation velocity and amplitude. Longer latency postural responses were associated with less velocity scaling and more amplitude scaling. Balance deficits in people with MS appear to be caused by slowed spinal somatosensory conduction and not by cerebellar involvement. People with MS appear to compensate for their slowed spinal somatosensory conduction by increasing the amplitude scaling and the magnitude of their postural responses. PMID:18570015
O'Sullivan, Peter B; Mitchell, Tim; Bulich, Paul; Waller, Rob; Holte, Johan
2006-11-01
This preliminary cross-sectional study was undertaken to determine if there were measurable relationships between posture, back muscle endurance and low back pain (LBP) in industrial workers with a reported history of flexion strain injury and flexion pain provocation. Clinical reports state that subjects with flexion pain disorders of the lumbar spine commonly adopt passive flexed postures such as slump sitting and present with associated dysfunction of the spinal postural stabilising musculature. However, to date there is little empirical evidence to support that patients with back pain, posture their spines differently than pain-free subjects. Subjects included 21 healthy industrial workers and 24 industrial workers with flexion-provoked LBP. Lifestyle information, lumbo-pelvic posture in sitting, standing and lifting, and back muscle endurance were measured. LBP subjects had significantly reduced back muscle endurance (P < 0.01). LBP subjects sat with less hip flexion, (P = 0.05), suggesting increased posterior pelvic tilt in sitting. LBP subjects postured their spines significantly closer to their end of range lumbar flexion in 'usual' sitting than the healthy controls (P < 0.05). Correlations between increased time spent sitting, physical inactivity and poorer back muscle endurance were also identified. There were no significant differences found between the groups for the standing and lifting posture measures. These preliminary results support that a relationship may exist between flexed spinal postures, reduced back muscle endurance, physical inactivity and LBP in subjects with a history of flexion injury and pain.
Classification of postural profiles among mouth-breathing children by learning vector quantization.
Mancini, F; Sousa, F S; Hummel, A D; Falcão, A E J; Yi, L C; Ortolani, C F; Sigulem, D; Pisa, I T
2011-01-01
Mouth breathing is a chronic syndrome that may bring about postural changes. Finding characteristic patterns of changes occurring in the complex musculoskeletal system of mouth-breathing children has been a challenge. Learning vector quantization (LVQ) is an artificial neural network model that can be applied for this purpose. The aim of the present study was to apply LVQ to determine the characteristic postural profiles shown by mouth-breathing children, in order to further understand abnormal posture among mouth breathers. Postural training data on 52 children (30 mouth breathers and 22 nose breathers) and postural validation data on 32 children (22 mouth breathers and 10 nose breathers) were used. The performance of LVQ and other classification models was compared in relation to self-organizing maps, back-propagation applied to multilayer perceptrons, Bayesian networks, naive Bayes, J48 decision trees, k, and k-nearest-neighbor classifiers. Classifier accuracy was assessed by means of leave-one-out cross-validation, area under ROC curve (AUC), and inter-rater agreement (Kappa statistics). By using the LVQ model, five postural profiles for mouth-breathing children could be determined. LVQ showed satisfactory results for mouth-breathing and nose-breathing classification: sensitivity and specificity rates of 0.90 and 0.95, respectively, when using the training dataset, and 0.95 and 0.90, respectively, when using the validation dataset. The five postural profiles for mouth-breathing children suggested by LVQ were incorporated into application software for classifying the severity of mouth breathers' abnormal posture.
Zhou, Junhong; Habtemariam, Daniel; Iloputaife, Ikechukwu; Lipsitz, Lewis A; Manor, Brad
2017-06-07
Standing postural control is complex, meaning that it is dependent upon numerous inputs interacting across multiple temporal-spatial scales. Diminished physiologic complexity of postural sway has been linked to reduced ability to adapt to stressors. We hypothesized that older adults with lower postural sway complexity would experience more falls in the future. 738 adults aged ≥70 years completed the Short Physical Performance Battery test (SPPB) test and assessments of single and dual-task standing postural control. Postural sway complexity was quantified using multiscale entropy. Falls were subsequently tracked for 48 months. Negative binomial regression demonstrated that older adults with lower postural sway complexity in both single and dual-task conditions had higher future fall rate (incident rate ratio (IRR) = 0.98, p = 0.02, 95% Confidence Limits (CL) = 0.96-0.99). Notably, participants in the lowest quintile of complexity during dual-task standing suffered 48% more falls during the four-year follow-up as compared to those in the highest quintile (IRR = 1.48, p = 0.01, 95% CL = 1.09-1.99). Conversely, traditional postural sway metrics or SPPB performance did not associate with future falls. As compared to traditional metrics, the degree of multi-scale complexity contained within standing postural sway-particularly during dual task conditions- appears to be a better predictor of future falls in older adults.
Huisinga, Jessie M.; St. George, Rebecca J.; Spain, Rebecca; Overs, Shannon; Horak, Fay B.
2015-01-01
Objective To understand examined the relationship between postural response latencies obtained during postural perturbations and representative measures of balance during standing (sway variables) and during walking (trunk motion). Design Cross-sectional Setting University medical center balance disorders laboratory Participants Forty persons with MS were compared with 20 similar aged control subjects. Twenty subjects with MS had normal walking velocity group and 20 had slow walking velocity based on the 25-foot walk time greater than 5 seconds. Interventions None Main Outcome Measures Postural response latency, sway variables, trunk motion variables Results: We found that subjects with MS with either slow or normal walking velocities had significantly longer postural response latencies than the healthy control group. Postural response latency was not correlated with the 25-ft walk time. Postural response latency was significantly correlated with center of pressure sway variables during quiet standing: root mean square (ρ = 0.334, p=0.040), range (ρ=0.385, p=0.017), mean velocity (ρ=0.337, p=0.038), and total sway area (ρ=0.393, p=0.015). Postural response latency was also significantly correlated with motion of the trunk during walking: sagittal plane range of motion (ρ=0.316, p=0.050) and standard deviation of transverse plane range of motion (ρ=-0.430, p=0.006). Conclusions These findings clearly indicate that slow postural responses to external perturbations in patients with MS contribute to disturbances in balance control, both during standing and walking. PMID:24445088
Madeleine, Pascal; Prietzel, Hanne; Svarrer, Heine; Arendt-Nielsen, Lars
2004-03-01
To quantify neck mobility and posture with and without various postural perturbations. A multivariable 2-group study with repeated measures and treatments. A human performance laboratory. Eleven patients with chronic whiplash injury (mean age, 33.3+/-6.7 y; weight, 73.4+/-11.4 kg; height, 173.3+/-7.2 cm) with a sex- and age-matched control group (mean age, 33.1+/-6.8 y; weight, 68+/-12.5 kg; height, 171.5+/-6.3 cm). Neck mobility and the effects of postural perturbations affecting the visual, vestibular, cutaneous, proprioceptive, and nociceptive systems were measured. Active range of motion, neck position sense, and postural activity. We found significantly reduced neck mobility and increased postural activity in the patient group compared with the control group. In patients, there was significantly greater postural activity with eyes closed, eyes open and speaking, and eyes closed with Achilles' tendons vibrations compared with eyes open with no vibrations. In the controls, there was no significant effect of experimental muscle pain on postural activity. Patients with chronic whiplash injury had a protective response to neck movement and different tuning, sequencing, and execution of the postural synergies probably because of excessive reliance on visual input despite a possible deficit and altered vestibular and/or proprioceptive activity. In healthy volunteers, the pain induced by a single bolus injection of hypertonic saline was probably too limited in intensity and spreading to decrease postural stability.
Dable, Rajani A; Wasnik, Pradnya B; Yeshwante, Babita J; Musani, Smita I; Patil, Ashishkumar K; Nagmode, Sunilkumar N
2014-12-01
Dental students using conventional chairs need immediate change in their posture. Implementing an ergonomic posture is necessary as they are at high risk for developing musculoskeletal disorders. This study recommends the use of an ergonomic seat and magnification system to enhance the visibility and the posture of an operator. The aim of this study is to make a foray into the hazards caused by inappropriate posture of dental students while working. It also aims at creating a cognizance about the related health implications among the dental fraternity at large, and to understand the significance of adopting an ergonomic posture since the beginning of the professional course. In the present study, postures have been assessed by using rapid upper limb assessment (RULA). This method uses diagrams of body postures and three scoring tables to evaluate ones exposure to risk factors. Ninety students from II BDS (preclinical students in the second year of dental school) were assessed in three groups using three different seats with and without magnification system. The results recorded significantly higher RULA scores for the conventional seats without using the magnification system compared to the SSC (Salli Saddle Chair-an ergonomic seat) with the use of magnification system. A poor ergonomic posture can make the dental students get habituated to the wrong working style which might lead to MSDs (Musculoskeletal diseases). It is advisable to acclimatize to good habits at the inception of the course, to prevent MSDs later in life.
Nejati, Parisa; Lotfian, Sara; Moezy, Azar; Moezy, Azar; Nejati, Mina
2014-01-01
Background Office workers spend a long period of time behind a computer during working hours. The relation between the posture of sitting during work with computer and neck pain is still debatable. Even though some researchers claim a significant difference in head posture between patients with neck pain and pain-free participants, the FHP (forward head posture) has not always been associated with neck pain in literature. So, the purpose of this study was to discover the relationship between neck pain and improper posture in the head, cervicothoracic spine and shoulders. This was a cross-sectional study to explore the relationships between neck pains, sagittal postures of cervical and thoracic spine and shoulders among office workers in two positions, straight looking forward and working position. 46 subjects without neck pain and 55 subjects with neck pain were evaluated using a photographic method. Thoracic and cervical postures were measured by the HT (High Thoracic), CV (Craniovertebral) angles respectively. Shoulder's posture was evaluated in the sagittal plane by the acromion protrusion. HT and CV angles were positively correlated with the presence of neck pain only in working position (p< 0.05). In straight looking forward position there was no significant difference between the two groups statistically (p>0.05). The difference of shoulder protrusion between symptomatic and asymptomatic groups was not significant. FHP and thoracic kyphosis were accompanied with neck pain. But shoulder posture was not correlated with neck pain.
Donker, Stella F.; Roerdink, Melvyn; Greven, An J.
2007-01-01
The influence of attention on the dynamical structure of postural sway was examined in 30 healthy young adults by manipulating the focus of attention. In line with the proposed direct relation between the amount of attention invested in postural control and regularity of center-of-pressure (COP) time series, we hypothesized that: (1) increasing cognitive involvement in postural control (i.e., creating an internal focus by increasing task difficulty through visual deprivation) increases COP regularity, and (2) withdrawing attention from postural control (i.e., creating an external focus by performing a cognitive dual task) decreases COP regularity. We quantified COP dynamics in terms of sample entropy (regularity), standard deviation (variability), sway-path length of the normalized posturogram (curviness), largest Lyapunov exponent (local stability), correlation dimension (dimensionality) and scaling exponent (scaling behavior). Consistent with hypothesis 1, standing with eyes closed significantly increased COP regularity. Furthermore, variability increased and local stability decreased, implying ineffective postural control. Conversely, and in line with hypothesis 2, performing a cognitive dual task while standing with eyes closed led to greater irregularity and smaller variability, suggesting an increase in the “efficiency, or “automaticity” of postural control”. In conclusion, these findings not only indicate that regularity of COP trajectories is positively related to the amount of attention invested in postural control, but also substantiate that in certain situations an increased internal focus may in fact be detrimental to postural control. PMID:17401553
Spatial and temporal analysis of postural control in dyslexic children.
Gouleme, Nathalie; Gerard, Christophe Loic; Bui-Quoc, Emmanuel; Bucci, Maria Pia
2015-07-01
The aim of this study is to examine postural control of dyslexic children using both spatial and temporal analysis. Thirty dyslexic (mean age 9.7±0.3years) and thirty non-dyslexic age-matched children participated in the study. Postural stability was evaluated using Multitest Equilibre from Framiral®. Posture was recorded in the following conditions: eyes open fixating a target (EO) and eyes closed (EC) on stable (-S-) and unstable (-U-) platforms. The findings of this study showed poor postural stability in dyslexic children with respect to the non-dyslexic children group, as demonstrated by both spatial and temporal analysis. In both groups of children postural control depends on the condition, and improves when the eyes are open on a stable platform. Dyslexic children have spectral power indices that are higher than in non-dyslexic children and they showed a shorter cancelling time. Poor postural control in dyslexic children could be due to a deficit in using sensory information most likely caused by impairment in cerebellar activity. The reliability of brain activation patterns, namely in using sensory input and cerebellar activity may explain the deficit in postural control in dyslexic children. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Hägg, Mary; Tibbling, Lita
2016-07-01
Conclusion All patients with dysphagia after stroke have impaired postural control. IQoro® screen (IQS) training gives a significant and lasting improvement of postural control running parallel with significant improvement of oropharyngeal motor dysfunction (OPMD). Objectives The present investigation aimed at studying the frequency of impaired postural control in patients with stroke-related dysphagia and if IQS training has any effect on impaired postural control in parallel with effect on OPMD. Method A prospective clinical study was carried out with 26 adult patients with stroke-related dysphagia. The training effect was compared between patients consecutively investigated at two different time periods, the first period with 15 patients included in the study more than half a year after stroke, the second period with 11 patients included within 1 month after stroke. Postural control tests and different oropharyngeal motor tests were performed before and after 3 months of oropharyngeal sensorimotor training with an IQS, and at a late follow-up (median 59 weeks after end of training). Result All patients had impaired postural control at baseline. Significant improvement in postural control and OPMD was observed after the completion of IQS training in both intervention groups. The improvements were still present at the late follow-up.
Rater reliability and construct validity of a mobile application for posture analysis
Szucs, Kimberly A.; Brown, Elena V. Donoso
2018-01-01
[Purpose] Measurement of posture is important for those with a clinical diagnosis as well as researchers aiming to understand the impact of faulty postures on the development of musculoskeletal disorders. A reliable, cost-effective and low tech posture measure may be beneficial for research and clinical applications. The purpose of this study was to determine rater reliability and construct validity of a posture screening mobile application in healthy young adults. [Subjects and Methods] Pictures of subjects were taken in three standing positions. Two raters independently digitized the static standing posture image twice. The app calculated posture variables, including sagittal and coronal plane translations and angulations. Intra- and inter-rater reliability were calculated using the appropriate ICC models for complete agreement. Construct validity was determined through comparison of known groups using repeated measures ANOVA. [Results] Intra-rater reliability ranged from 0.71 to 0.99. Inter-rater reliability was good to excellent for all translations. ICCs were stronger for translations versus angulations. The construct validity analysis found that the app was able to detect the change in the four variables selected. [Conclusion] The posture mobile application has demonstrated strong rater reliability and preliminary evidence of construct validity. This application may have utility in clinical and research settings. PMID:29410561
Kanekar, Neeta; Aruin, Alexander S
2015-04-01
Humans use anticipatory and compensatory postural strategies to maintain and restore balance when perturbed. Inefficient generation and utilization of anticipatory postural adjustments (APAs) is one of the reasons for postural instability. The aim of the study was to investigate the role of training in improvement of APAs and its effect on subsequent control of posture. Thirteen healthy young adults were exposed to predictable external perturbations before and after a single training session consisting of catches of a medicine ball thrown at the shoulder level. 3-D body kinematics, EMG activity of thirteen trunk and lower limb muscles, and ground reaction forces were recorded before and immediately after a single training session. Muscle onsets, EMG integrals, center of pressure (COP), and center of mass (COM) displacements were analyzed during the anticipatory and compensatory phases of postural control. The effect of a single training session was seen as significantly early muscle onsets and larger anticipatory COP displacements. As a result, significantly smaller peak COM displacements were observed after the perturbation indicating greater postural stability. The outcome of this study provides a background for examining the role of training in improvement of APAs and its effect on postural stability in individuals in need. Copyright © 2014 Elsevier Ltd. All rights reserved.
Postural Instability Induced by Visual Motion Stimuli in Patients With Vestibular Migraine
Lim, Yong-Hyun; Kim, Ji-Soo; Lee, Ho-Won; Kim, Sung-Hee
2018-01-01
Patients with vestibular migraine are susceptible to motion sickness. This study aimed to determine whether the severity of posture instability is related to the susceptibility to motion sickness. We used a visual motion paradigm with two conditions of the stimulated retinal field and the head posture to quantify postural stability while maintaining a static stance in 18 patients with vestibular migraine and in 13 age-matched healthy subjects. Three parameters of postural stability showed differences between VM patients and controls: RMS velocity (0.34 ± 0.02 cm/s vs. 0.28 ± 0.02 cm/s), RMS acceleration (8.94 ± 0.74 cm/s2 vs. 6.69 ± 0.87 cm/s2), and sway area (1.77 ± 0.22 cm2 vs. 1.04 ± 0.25 cm2). Patients with vestibular migraine showed marked postural instability of the head and neck when visual stimuli were presented in the retinal periphery. The pseudo-Coriolis effect induced by head roll tilt was not responsible for the main differences in postural instability between patients and controls. Patients with vestibular migraine showed a higher visual dependency and low stability of the postural control system when maintaining quiet standing, which may be related to susceptibility to motion sickness. PMID:29930534
Postural Instability Induced by Visual Motion Stimuli in Patients With Vestibular Migraine.
Lim, Yong-Hyun; Kim, Ji-Soo; Lee, Ho-Won; Kim, Sung-Hee
2018-01-01
Patients with vestibular migraine are susceptible to motion sickness. This study aimed to determine whether the severity of posture instability is related to the susceptibility to motion sickness. We used a visual motion paradigm with two conditions of the stimulated retinal field and the head posture to quantify postural stability while maintaining a static stance in 18 patients with vestibular migraine and in 13 age-matched healthy subjects. Three parameters of postural stability showed differences between VM patients and controls: RMS velocity (0.34 ± 0.02 cm/s vs. 0.28 ± 0.02 cm/s), RMS acceleration (8.94 ± 0.74 cm/s 2 vs. 6.69 ± 0.87 cm/s 2 ), and sway area (1.77 ± 0.22 cm 2 vs. 1.04 ± 0.25 cm 2 ). Patients with vestibular migraine showed marked postural instability of the head and neck when visual stimuli were presented in the retinal periphery. The pseudo-Coriolis effect induced by head roll tilt was not responsible for the main differences in postural instability between patients and controls. Patients with vestibular migraine showed a higher visual dependency and low stability of the postural control system when maintaining quiet standing, which may be related to susceptibility to motion sickness.
NASA Technical Reports Server (NTRS)
Sayenko D.; Miller, T.; Sayenko. I.; Kozlovskaya, I.; Reschke, M.
2004-01-01
Posture disorders are an inevitable consequence of exposure to microgravity . However, the role of different sensorimotor and sensory factors on postural function at different stages of the exposure to microgravity still remains unknown. The results obtained in a 6 hr dry immersion (DI) study where chest pushes served as a pre- and post-immersion perturbation, and DI was used as an analog of microgravity suggest that in addition to vestibular contributions, postural control may be related to a reduction of support loading and consequent decline of the tone of anti-gravitational muscles. Analysis of postural video data in response to chest pushes obtained before and after DI indicate that the structure of corrective responses was modified so that postural perturbations from threshold to moderate pushes showed a significant rise in the amplitude of ankle and knee angular displacement. With push intensity near the submaximal level, equilibrium was maintained by the elimination of excessive degrees of freedom; as manifested by the restriction of the hip joints mobility when coupled with a reduction of the knee and ankle displacement. These results suggest that DI increases the sensitivity of the posture control system by making posture control more rigid reflecting a change of the weight bearing receptors.
Three-dimensional evaluation of postural stability in Parkinson's disease with mobile technology.
Ozinga, Sarah J; Koop, Mandy Miller; Linder, Susan M; Machado, Andre G; Dey, Tanujit; Alberts, Jay L
2017-01-01
Postural instability is a hallmark of Parkinson's disease. Objective metrics to characterize postural stability are necessary for the development of treatment algorithms to aid in the clinical setting. The aim of this project was to validate a mobile device platform and resultant three-dimensional balance metric that characterizes postural stability. A mobile Application was developed, in which biomechanical data from inertial sensors within a mobile device were processed to characterize movement of center of mass in the medial-lateral, anterior-posterior and trunk rotation directions. Twenty-seven individuals with Parkinson's disease and 27 age-matched controls completed various balance tasks. A postural stability metric quantifying the amplitude (peak-to-peak) of sway acceleration in each movement direction was compared between groups. The peak-to-peak value in each direction for each individual with Parkinson's disease across all trials was expressed as a normalized value of the control data to identify individuals with severe postural instability, termed Cleveland Clinic-Postural Stability Index. In all conditions, the balance metric for peak-to-peak was significantly greater in Parkinson's disease compared to controls (p < 0.01 for all tests). The balance metric, in conjunction with mobile device sensors, provides a rapid and systematic metric for quantifying postural stability in Parkinson's disease.
Branson, B G; Abnos, R M; Simmer-Beck, M L; King, G W; Siddicky, S F
2018-01-01
Motion analysis has great potential for quantitatively evaluating dental operator posture and the impact of interventions such as magnification loupes on posture and subsequent development of musculoskeletal disorders. This study sought to determine the feasibility of motion capture technology for measurement of dental operator posture and examine the impact that different styles of magnification loupes had on dental operator posture. Forward and lateral head flexion were measured for two different operators while completing a periodontal probing procedure. Each was measured while wearing magnification loupes (flip up-FL and through the lens-TTL) and basic safety lenses. Operators both exhibited reduced forward flexion range of motion (ROM) when using loupes (TTL or FL) compared to a baseline lens (BL). In contrast to forward flexion, no consistent trends were observed for lateral flexion between subjects. The researchers can report that it is possible to measure dental operator posture using motion capture technology. More study is needed to determine which type of magnification loupes (FL or TTL) are superior in improving dental operator posture. Some evidence was found supporting that the quality of operator posture may more likely be related to the use of magnification loupes, rather than the specific type of lenses worn.
Postural Control and Gait Performance in the Diabetic Peripheral Neuropathy: A Systematic Review.
Mustapa, Amirah; Justine, Maria; Mohd Mustafah, Nadia; Jamil, Nursuriati; Manaf, Haidzir
2016-01-01
Purpose. The aim of this paper is to review the published studies on the characteristics of impairments in the postural control and gait performance in diabetic peripheral neuropathy (DPN). Methods. A review was performed by obtaining publication of all papers reporting on the postural control and gait performance in DPN from Google Scholar, Ovid, SAGE, Springerlink, Science Direct (SD), EBSCO Discovery Service, and Web of Science databases. The keywords used for searching were "postural control," "balance," "gait performance," "diabetes mellitus," and "diabetic peripheral neuropathy." Results. Total of 4,337 studies were hit in the search. 1,524 studies were screened on their titles and citations. Then, 79 studies were screened on their abstract. Only 38 studies were eligible to be selected: 17 studies on postural control and 21 studies on the gait performance. Most previous researches were found to have strong evidence of postural control impairments and noticeable gait deficits in DPN. Deterioration of somatosensory, visual, and vestibular systems with the pathologic condition of diabetes on cognitive impairment causes further instability of postural and gait performance in DPN. Conclusions. Postural instability and gait imbalance in DPN may contribute to high risk of fall incidence, especially in the geriatric population. Thus, further works are crucial to highlight this fact in the hospital based and community adults.
Emotional and movement-related body postures modulate visual processing
Borhani, Khatereh; Làdavas, Elisabetta; Maier, Martin E.; Avenanti, Alessio
2015-01-01
Human body postures convey useful information for understanding others’ emotions and intentions. To investigate at which stage of visual processing emotional and movement-related information conveyed by bodies is discriminated, we examined event-related potentials elicited by laterally presented images of bodies with static postures and implied-motion body images with neutral, fearful or happy expressions. At the early stage of visual structural encoding (N190), we found a difference in the sensitivity of the two hemispheres to observed body postures. Specifically, the right hemisphere showed a N190 modulation both for the motion content (i.e. all the observed postures implying body movements elicited greater N190 amplitudes compared with static postures) and for the emotional content (i.e. fearful postures elicited the largest N190 amplitude), while the left hemisphere showed a modulation only for the motion content. In contrast, at a later stage of perceptual representation, reflecting selective attention to salient stimuli, an increased early posterior negativity was observed for fearful stimuli in both hemispheres, suggesting an enhanced processing of motivationally relevant stimuli. The observed modulations, both at the early stage of structural encoding and at the later processing stage, suggest the existence of a specialized perceptual mechanism tuned to emotion- and action-related information conveyed by human body postures. PMID:25556213
Postural Stability in Young Adults with Down Syndrome in Challenging Conditions
Bieć, Ewa; Zima, Joanna; Wójtowicz, Dorota; Wojciechowska-Maszkowska, Bożena; Kręcisz, Krzysztof; Kuczyński, Michał
2014-01-01
To evaluate postural control and performance in subjects with Down syndrome (SwDS), we measured postural sway (COP) in quiet stance in four 20-second tests: with eyes open or closed and on hard or foam surface. Ten SwDS and eleven healthy subjects participated, aged 29.8 (4.8) and 28.4 (3.9), respectively. The time-series recorded with the sampling rate of 100 Hz were used to evaluate postural performance (COP amplitude and mean velocity) and strategies (COP frequency, fractal dimension and entropy). There were no intergroup differences in the amplitude except the stance on foam pad with eyes open when SwDS had larger sway. The COP velocity and frequency were larger in SwDS than controls in all trials on foam pad. During stances on the foam pad SwDS increased fractal dimension showing higher complexity of their equilibrium system, while controls decreased sample entropy exhibiting more conscious control of posture in comparison to the stances on hard support surface. This indicated that each group used entirely different adjustments of postural strategies to the somatosensory challenge. It is proposed that the inferior postural control of SwDS results mainly from insufficient experience in dealing with unpredictable postural stimuli and deficit in motor learning. PMID:24728178
MODIFIED PATH METHODOLOGY FOR OBTAINING INTERVAL-SCALED POSTURAL ASSESSMENTS OF FARMWORKERS.
Garrison, Emma B; Dropkin, Jonathan; Russell, Rebecca; Jenkins, Paul
2018-01-29
Agricultural workers perform tasks that frequently require awkward and extreme postures that are associated with musculoskeletal disorders (MSDs). The PATH (Posture, Activity, Tools, Handling) system currently provides a sound methodology for quantifying workers' exposure to these awkward postures on an ordinal scale of measurement, which places restrictions on the choice of analytic methods. This study reports a modification of the PATH methodology that instead captures these postures as degrees of flexion, an interval-scaled measurement. Rather than making live observations in the field, as in PATH, the postural assessments were performed on photographs using ImageJ photo analysis software. Capturing the postures in photographs permitted more careful measurement of the degrees of flexion. The current PATH methodology requires that the observer in the field be trained in the use of PATH, whereas the single photographer used in this modification requires only sufficient training to maintain the proper camera angle. Ultimately, these interval-scale measurements could be combined with other quantitative measures, such as those produced by electromyograms (EMGs), to provide more sophisticated estimates of future risk for MSDs. Further, these data can provide a baseline from which the effects of interventions designed to reduce hazardous postures can be calculated with greater precision. Copyright© by the American Society of Agricultural Engineers.
Bertolaccini, Guilherme da Silva; Nakajima, Rafael Kendi; Filho, Idinei Francisco Pires de Carvalho; Paschoarelli, Luis Carlos; Medola, Fausto Orsi
2016-01-01
[Purpose] This study was aimed at investigating the influence of seat height and body posture on the activity of the superior trapezius and longissimus muscles. [Subjects and Methods] Twenty two healthy subjects were instructed to perform a total of eight different body postures, varying according three main factors: seat height (low and high seat); trunk inclination (upright and leaning forward at 45°); and the hips in abduction and adduction. Electromyography of the superior trapezius and longissimus was collected bilaterally, and the average values were obtained and compared across all the postures. [Results] The activity of the superior trapezius and longissimus significantly changes according to the seat height and trunk inclination. For both seat heights, sitting with trunk leaning forward resulted in a significant increase in the activity of both muscles. When sitting in a high seat and the trunk leaning forward, the superior trapezius activity was significantly reduced when compared to the same posture in a low seat. [Conclusion] This study contributes to the knowledge on the influence of the body posture and seat configuration on the activity of postural muscles. Reducing the biomechanical loads on the postural muscles must be targeted in order to improve users’ comfort and safety. PMID:27313381
Tekin, Fatih; Kavlak, Erdogan; Cavlak, Ugur; Altug, Filiz
2018-01-01
The aim of this study was to show the effects of an 8-week Neurodevelopmental Treatment based posture and balance training on postural control and balance in diparetic and hemiparetic Cerebral Palsied children (CPC). Fifteen CPC (aged 5-15 yrs) were recruited from Denizli Yağmur Çocukları Rehabilitation Centre. Gross Motor Function Classification System, Gross Motor Function Measure, 1-Min Walking Test, Modified Timed Up and Go Test, Paediatric Balance Scale, Functional Independence Measure for Children and Seated Postural Control Measure were used for assessment before and after treatment. An 8-week NDT based posture and balance training was applied to the CPC in one session (60-min) 2 days in a week. After the treatment program, all participants showed statistically significant improvements in terms of gross motor function (p< 0.05). They also showed statistically significant improvements about balance abilities and independence in terms of daily living activities (p< 0.05). Seated Postural Control Measure scores increased after the treatment program (p< 0.05). The results of this study indicate that an 8-week Neurodevelopmental Treatment based posture and balance training is an effective approach in order to improve functional motor level and functional independency by improving postural control and balance in diparetic and hemiparetic CPC.
Rater reliability and construct validity of a mobile application for posture analysis.
Szucs, Kimberly A; Brown, Elena V Donoso
2018-01-01
[Purpose] Measurement of posture is important for those with a clinical diagnosis as well as researchers aiming to understand the impact of faulty postures on the development of musculoskeletal disorders. A reliable, cost-effective and low tech posture measure may be beneficial for research and clinical applications. The purpose of this study was to determine rater reliability and construct validity of a posture screening mobile application in healthy young adults. [Subjects and Methods] Pictures of subjects were taken in three standing positions. Two raters independently digitized the static standing posture image twice. The app calculated posture variables, including sagittal and coronal plane translations and angulations. Intra- and inter-rater reliability were calculated using the appropriate ICC models for complete agreement. Construct validity was determined through comparison of known groups using repeated measures ANOVA. [Results] Intra-rater reliability ranged from 0.71 to 0.99. Inter-rater reliability was good to excellent for all translations. ICCs were stronger for translations versus angulations. The construct validity analysis found that the app was able to detect the change in the four variables selected. [Conclusion] The posture mobile application has demonstrated strong rater reliability and preliminary evidence of construct validity. This application may have utility in clinical and research settings.
Assessment of postural instability in patients with Parkinson's disease.
Błaszczyk, J W; Orawiec, R; Duda-Kłodowska, D; Opala, G
2007-10-01
Postural instability is one of the most disabling features of idiopathic Parkinson's disease (PD). In this study, we focused on postural instability as the main factor predisposing parkinsonians to falls. For this purpose, changes in sway characteristics during quiet stance due to visual feedback exclusion were studied. We searched for postural sway measures that could be potential discriminators for an increased fall risk. A group of 110 subjects: 55 parkinsonians (Hoehn and Yahr: 1-3), and 55 age-matched healthy volunteers participated in the experiment. Their spontaneous sway characteristics while standing quiet with eyes open and eyes closed were analyzed. We found that an increased mediolateral sway and sway area while standing with eyes closed are characteristic of parkinsonian postural instability and may serve to quantify well a tendency to fall. These sway indices significantly correlated with disease severity rated both by the Hoehn and Yahr scale as well as by the Motor Section of the UPDRS. A forward shift of a mean COP position in parkinsonians which reflects their flexed posture was also significantly greater to compare with the elderly subjects and exhibited a high sensitivity to visual conditions. Both groups of postural sway abnormalities identified here may be used as accessible and reliable measures which allow for quantitative assessment of postural instability in Parkinson's disease.
Postural effects on the noninvasive baselines of ventricular performance
NASA Technical Reports Server (NTRS)
Lance, V. Q.; Spodick, D. H.
1977-01-01
The effects of posture on time-based noninvasive measurements were determined utilizing the sequence supine-sitting-standing in a formal protocol in which observer biases were eliminated by blinding the measurement and calculation phases. Compared to the supine posture, the sitting and standing postures produced significant increases in heart rate, isovolumic contraction time, pre-ejection period and pre-ejection period/left-ventricular ejection time and significant decreases in ejection time and ejection time index. The response patterns are consistent with the hemodynamic correlates cited in the literature which show increased adrenergic activity and decreased venous return in the sitting and standing postures, the effect on venous return being dominant.
Postural stability of sitting women.
Nag, Pranab K; Vyas, Heer; Nag, Anjali; Pal, Swati
2013-01-01
The study examined the utility of stabilometric dimensions and explored whether the changes in sitting postures were manifested in functional measures of postural control. Eleven women participated in the study, which used 11 chair sitting postures: arms on laps or arms right angled; armrest at a height of 17, 20 and 23 cm; with or without backrest; slouch or straight back; legs right angled at knees or crossed legs. The backrest and armrest shifted 16.3% of body weight from a seat pan. The characteristics of stabilometric dimensions evaluated the influence of seat components and sitting behaviour on postural balance. The study attempted to evaluate stability and its application in human-seat interface design.
Significance of vestibular and proprioceptive afferentation in the regulation of human posture
NASA Technical Reports Server (NTRS)
Gurfinkel, V. S.
1980-01-01
Viewpoints on the vertical human posture and the relation between postural adaptation during voluntary movements and the guarantee of stable locomotor movements are examined. Various complex sensory systems are discussed.
NASA Technical Reports Server (NTRS)
Kenyon, R. V.; Young, L. R.
1986-01-01
The four science crewmembers of Spacelab-1 were tested for postural control before and after a 10 day mission in weightlessness. Previous reports have shown changes in astronaut postural behavior following a return to earth's 1-g field. This study was designed to identify changes in EMG latency and amplitudes that might explain the instabilities observed post-flight. Erect posture was tested having the subject stand on a pneumatically driven posture platform which pitched rapidly and unexpectedly about the ankles causing dorsi- and plantarflexion. Electromyographic (EMG) activity from the tibialis anterior and the gastrocnemius-soleus muscles was measured during eyes open and eyes closed trials. The early (pre 500 ms) EMG response characteristics (latency, amplitude) in response to a disturbance in the posture of the subject were apparently unchanged by the 10 days of weightlessness. However, the late (post 500 ms) response showed higher amplitudes than was found pre-flight. General postural control was quantitatively measured pre- and post-flight by a 'sharpened Romberg Rails test'. This test showed decrements in standing stability with eyes closed for several days post-flight.
Gabriner, Michael L; Braun, Brittany A; Houston, Megan N; Hoch, Matthew C
2015-02-01
Chronic ankle instability (CAI) is a condition commonly experienced by physically active individuals. It has been suggested that foot orthotics may increase a CAI patient's postural control. For patients with CAI, is there evidence to suggest that an orthotic intervention will help improve postural control? The literature was searched for studies of level 2 evidence or higher that investigated the effects of foot orthotics on postural control in patients with CAI. The search of the literature produced 5 possible studies for inclusion; 2 studies met the inclusion criteria and were included. One randomized controlled trial and 1 outcomes study were included. Foot orthotics appear to be effective at improving postural control in patients with CAI. There is moderate evidence to support the use of foot orthotics in the treatment of CAI to help improve postural control. There is grade B evidence that foot orthotics help improve postural control in people with CAI. The Centre of Evidence Based Medicine recommends a grade of B for level 2 evidence with consistent findings.
Wong, Kelvin C H; Lee, Raymond Y W; Yeung, Simon S
2009-04-29
The present study aims to determine the time spent in different static trunk postures during a typical working day of workers in a special school for the severe handicaps. Eighteen workers with low back pain (LBP) and fifteen asymptomatic workers were recruited. A cross-sectional design was employed to study the time spent in different static trunk postures which was recorded by a biaxial accelerometer attached to the T12 level of the back of the subjects. The results of ANCOVA revealed that subjects with LBP spent significantly longer percentage of time in static trunk posture when compared to normal (p < 0.05). It was also shown that they spent significantly longer time in trunk flexion for more than 10 degrees (p < 0.0125). An innovative method has been developed for continuous tracking of spinal posture, and this has potential for widespread applications in the workplace. The findings of the present investigation suggest that teachers in special schools are at increased risk of getting LBP. In order to minimise such risk, frequent postural change and awareness of work posture are recommended.
Min, Seung-Nam; Kim, Jung-Yong; Parnianpour, Mohamad
2012-05-01
Work performed on scaffolds carries the risk of falling that disproportionately threatens the safety and health of novice construction workers. Hence, objective measures of the postural stability, cardiovascular stress, and subjective difficulty in maintaining postural balance were evaluated for four expert and four novice construction workers performing a manual task in a standing posture on a scaffold with and without safety handrails at two different elevation heights. Based on a multivariate analysis of variance, the experience, scaffold height, and presence of a handrail were found to significantly affect measures of the postural stability and cardiovascular stress. At a lower level of worker experience, a higher scaffold height, and in the absence of a handrail (which may correspond to higher risk of a fall), postural stability was significantly reduced, while cardiovascular stress and subjective difficulties in maintaining postural balance increased. We emphasize the importance of training and handrails for fall prevention at construction sites. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Children's catching performance when the demands on the postural system is altered.
Angelakopoulos, Georgios T; Tsorbatzoudis, Haralambos; Grouios, George
2014-07-01
In many dynamic interceptive actions performers need to integrate activity of manual and postural subsystems for successful performance. Groups of different skill level (poor and good catchers), (mean age = 9.1 and 9.4 respectively) were required to perform one-handed catches under different postural constraints: standing; standing in contact with a postural support aid by their side (PSAS) or to the left of their trunk (PSAF); Tandem; and sitting (control). Results revealed that, for poor catchers, the number of successful catches increased and grasp errors decreased significantly when sitting and with both postural aids in comparison with standing alone and Tandem conditions. Kinematic analyses showed that the postural aid devices reduced head sway in the anterior-posterior direction, while the PSAF reduced lateral head sway. The poor catchers' performance benefited from an enlarged support surface, and reduction of lateral sway. Good catchers performed successfully under all task constraints, signifying the existence of a functional relationship between postural and grasping subsystems during performance. The results are discussed in the frame of Bernstein's (1967) and Newell's (1986) theory.
Kinect-Based Virtual Game for the Elderly that Detects Incorrect Body Postures in Real Time
Saenz-de-Urturi, Zelai; Garcia-Zapirain Soto, Begonya
2016-01-01
Poor posture can result in loss of physical function, which is necessary to preserving independence in later life. Its decline is often the determining factor for loss of independence in the elderly. To avoid this, a system to correct poor posture in the elderly, designed for Kinect-based indoor applications, is proposed in this paper. Due to the importance of maintaining a healthy life style in senior citizens, the system has been integrated into a game which focuses on their physical stimulation. The game encourages users to perform physical activities while the posture correction system helps them to adopt proper posture. The system captures limb node data received from the Kinect sensor in order to detect posture variations in real time. The DTW algorithm compares the original posture with the current one to detect any deviation from the original correct position. The system was tested and achieved a successful detection percentage of 95.20%. Experimental tests performed in a nursing home with different users show the effectiveness of the proposed solution. PMID:27196903
Postural control under clinorotation in upside-down catfish, Synodontis nigriventris.
Ohnishi, K; Takahashi, A; Koyama, M; Ohnishi, T
1996-12-01
The upside-down catfish Synodontis nigriventris has a unique habit of swimming and resting upside-down in free water. This behavior leads to the assumption that the catfish has a specific gravity information processing system. We examined the postural control behaviors in the catfish under clinorotation which is usually used for producing pseudo-microgravity. Synodontis nigriventris kept its body posture at a stable area of the rotated flask in which the catfish was kept, when it was clinorotated at the rate of 60 rpm. In contrast to Synodontis nigriventris, a related species, Corydoras paleatus, did not show such steady postural control. When the flask was rotated at a lower rate of 30 rpm or a higher rate of 100 rpm, Synodontis nigriventris as well as Corydoras paleatus showed a considerable disturbed control of body posture. In this condition, they were frequently rotated with the flask. These findings suggest that Synodontis nigriventris has a high ability to keep upside-down posture and the gravity sensation in this catfish is likely to contribute to its different postural control from that of many other fishes.
Static postural control among school-aged youth with Down syndrome: A systematic review.
Maïano, Christophe; Hue, Olivier; Tracey, Danielle; Lepage, Geneviève; Morin, Alexandre J S; Moullec, Grégory
2018-05-01
Youth with Down syndrome are characterized by motor delays when compared to typically developing (TD) youth, which may be explained by a lower postural control or reduced postural tone. In the present article, we summarize research comparing the static postural control, assessed by posturography, between youth with Down syndrome and TD youth. A systematic literature search was performed in 10 databases and seven studies, published between 2001 and 2017, met our inclusion criteria. Based on the present reviewed findings, it is impossible to conclude that children with Down syndrome present significantly lower static postural control compared to TD children. In contrast, findings showed that adolescents with Down syndrome tended to present significantly lower static postural control compared to TD adolescents when visual and plantar cutaneous inputs were disturbed separately or simultaneously. The present findings should be interpreted with caution given the limitations of the small number of reviewed studies. Therefore, the static postural control among youth with Down syndrome should be further investigated in future rigorous studies examining the contribution of a range of sensory information. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Magnusson, M. L.; Pope, M. H.
1998-08-01
Many vibrational environments also subject the worker to awkward, asymmetric and prolonged postures. This paper reviews the epidemiological, biomechanical and physiological factors involved in working postures which could lead to musculoskeletal problems. Too little or too much sitting leads to low back pain. Sedentary postures, including driving, also lead to a higher risk of a herniated disc. In sitting the pelvis rotates and higher pressures exist in the disk. A backrest inclined to 110° or more and with a lumbar support will reduce the disk pressure. Jobs involving excessive force application will be more apt to cause muscular and ligamentous damage. However, these excessive demands can occur in whole body vibration environments too. Neck, shoulder and arm problems are usually related to posture but can occur in WBV environments. Knee problems, in the standing worker, may be due to a flexed knee posture in an attempt to attenuate vibrations. Excessive postural demands on the neck, shoulder and arm will lead to higher muscle forces and higher joint forces. Recommendations are given to reduce risk of disability.
Onety, Geraldo Celso da Silva; Leonel, Daniel Vilela; Saquy, Paulo César; Silva, Gabriel Pádua da; Ferreira, Bruno; Varise, Tiago Gilioli; Sousa, Luiz Gustavo de; Verri, Edson Donizetti; Siéssere, Selma; Semprini, Marisa; Nepomuceno, Victor Rodrigues; Regalo, Simone Cecilio Hallak
2014-01-01
The postural risk factors for dentists include the ease of vision in the workplace, cold, vibration and mechanical pressure in tissues, incorrect posture, functional fixity, cognitive requirements and work-related organizational and psychosocial factors. The objective was to analyze the posture of endodontists at the workplace. Eighteen right-handed endodontists aged 25 to 60 years (34±3) participated in the study. Electromyography, kinemetry, ergonomic scales (RULA and Couto's checklist) and biophotogrammetry were used to analyze the posture of endodontists during root canal treatment of the maxillary right first and second molars using rotary and manual instrumentation. The variations observed in the electromyographic activities during the performance of rotary and manual techniques suggest that the fibers of the longissimus region, anterior and medium deltoid, medium trapezium, biceps, triceps brachii, brachioradialis and short thumb abductor muscles underwent adaptations to provide more accurate functional movements. Computerized kinemetry and biophotogrammetry showed that, as far as posture is concerned, rotary technique was more demanding than the manual technique. In conclusion, the group of endodontists evaluated in this study exhibited posture disorders regardless of whether the rotary or manual technique was used.
The Relationship Between the Stomatognathic System and Body Posture
Cuccia, Antonino; Caradonna, Carola
2009-01-01
In recent years, many researchers have investigated the various factors that can influence body posture: mood states, anxiety, head and neck positions, oral functions (respiration, swallowing), oculomotor and visual systems, and the inner ear. Recent studies indicate a role for trigeminal afferents on body posture, but this has not yet been demonstrated conclusively. The present study aims to review the papers that have shown a relationship between the stomatognathic system and body posture. These studies suggest that tension in the stomatognathic system can contribute to impaired neural control of posture. Numerous anatomical connections between the stomatognathic system’s proprioceptive inputs and nervous structures are implicated in posture (cerebellum, vestibular and oculomotor nuclei, superior colliculus). If the proprioceptive information of the stomatognathic system is inaccurate, then head control and body position may be affected. In addition, the present review discusses the role the myofascial system plays in posture. If confirmed by further research, these considerations can improve our understanding and treatment of muscular-skeletal disorders that are associated with temporomandibular joint disorders, occlusal changes, and tooth loss. PMID:19142553
Human posture experiments under water: ways of applying the findings to microgravity
NASA Astrophysics Data System (ADS)
Dirlich, Thomas
For the design and layout human spacecraft interiors the Neutral Body Posture (NBP) in micro-gravity is of great importance. The NBP has been defined as the stable, replicable and nearly constant posture the body "automatically" assumes when a human relaxes in microgravity. Furthermore the NBP, as published, suggests that there is one standard neutral posture for all individuals. Published experiments from space, parabolic flights and under water on the other hand show strong inter-individual variations of neutral (relaxed) postures. This might originate from the quite small sample sizes of subjects analyzed or the different experiment conditions, e. g. space and under water. Since 2008 a collaborative research project focussing on human postures and motions in microgravity has been ongoing at the Technische Univer-sitüt München (TUM). This collaborative effort is undertaken by the Institute of Astronautics a (LRT) and the Institute of Ergonomics (LfE). Several test campaigns have been conducted in simulated microgravity under water using a specially designed standardized experiment setup. Stereo-metric HD video footage and anthropometric data from over 50 subjects (female and male) has been gathered in over 80 experiments. The video data is analyzed using PCMAN software, developed by the LfE, resulting in a 3D volumetric CAD-based model of each subject and posture. Preliminary and ongoing analysis of the data offer evidence for the existence of intra-individually constant neutral postures, as well as continuously recurring relaxation strate-gies. But as with the data published prior the TUM experiments show quite a large variation of inter-individual postures. These variation might be induced or influenced by the special environmental conditions in the underwater experiment. Thus in present paper ways of stan-dardizing data and applying the findings gathered under water to real microgravity are being discussed. The following influences stemming from the differences between underwater and real microgravity environment were analyzed in greater detail: external forces (buoyancy and grav-ity), required fixation, postural changes by breathing and subject orientation to gravitational vector. Goal of this analysis was to understand the respective effects of each environmental influence on subjects posture observed. Each of the different influences was then quantified and the postural change induced by it calculated. These were then combined using a specially programmed multi-body-simulation tool, making it possible to recompute 3D posture data dy-namically to the environmental influences. The simulation is based on the volumetric 3D model of each subject, specific anthropometric data, such as body-fat or muscle ratio, combined with external forces such as gravity and buoyancy. The recomputed data can then be compared independent from the environmental influences. The recomputed 3D posture data can then be re-evaluated focussing again on possible inter-personal neutral posture archetypes in the subject group. Some examples of recomputed data and inter-personal findings will be given.
Sunwook, Kim; Nussbaum, Maury A; Quandt, Sara A; Laurienti, Paul J; Arcury, Thomas A
2016-02-01
The aim of the study was to assess potential chronic effects of pesticide exposure on postural control, by examining postural balance of farmworkers and non-farmworkers diverse self-reported lifetime exposures. Balance was assessed during quiet upright stance under four experimental conditions (2 visual × 2 cognitive difficulty). Significant differences in baseline balance performance (eyes open without cognitive task) between occupational groups were apparent in postural sway complexity. When adding a cognitive task to the eyes open condition, the influence of lifetime exposure on complexity ratios appeared different between occupational groups. Removing visual information revealed a negative association of lifetime exposure with complexity ratios. Farmworkers and non-farmworkers may use different postural control strategies even when controlling for the level of lifetime pesticide exposure. Long-term exposure can affect somatosensory/vestibular sensory systems and the central processing of sensory information for postural control.
Sunwook, Kim; Nussbaum, Maury A.; Quandt, Sara A.; Laurienti, Paul J.; Arcury, Thomas A.
2015-01-01
Objective Assess potential chronic effects of pesticide exposure on postural control, by examining postural balance of farmworkers and non-farmworkers diverse self-reported lifetime exposures. Methods Balance was assessed during quiet upright stance under four experimental conditions (2 visual × 2 cognitive difficulty). Results Significant differences in baseline balance performance (eyes open without cognitive task) between occupational groups were apparent in postural sway complexity. When adding a cognitive task to the eyes open condition, the influence of lifetime exposure on complexity ratios appeared different between occupational groups. Removing visual information revealed a negative association of lifetime exposure with complexity ratios. Conclusions Farmworkers and non-farmworkers may use different postural control strategies even when controlling for the level of lifetime pesticide exposure. Long-term exposure can affect somatosensory/vestibular sensory systems and the central processing of sensory information for postural control. PMID:26849257
Chung, Jun Sub; Park, Seol; Kim, JiYoung; Park, Ji Won
2015-07-01
[Purpose] The purpose of this study was to assess the effects of flexi-bar exercises and non-flexi-bar exercises on trunk muscle activity in different postures in healthy adults. [Subjects] Twenty healthy right-hand dominant adults (10 males and 10 females) were selected for this study. None of the participants had experienced any orthopedic problems in the spine or in the upper and lower extremities in the previous six months. [Methods] The subjects were instructed to adopt three exercise postures: posture 1, quadruped; posture 2, side-bridge; and posture 3, standing. Surface electromyography of selected trunk muscles was normalized to maximum voluntary isometric contraction. [Results] The external oblique, internal oblique, and erector spinae muscle activity showed significant differences between flexi-bar exercises and non-flexi-bar exercises. [Conclusion] The results of this study suggest that flexi-bar exercises are useful in the activation of trunk muscles.
Modification of postural response caused by footwear conditions.
Maejima, H; Kamoda, C; Takayanagi, K; Hosoda, M; Kobayashi, R; Minematsu, A; Sasaki, H; Matsuda, Y; Tanaka, Y; Matsuo, A; Kanemura, N; Ueda, T; Yoshimura, O
2000-01-01
The purpose of this study was to clarify the effect of changing footwear conditions on postural response against postural perturbation. Twenty-three healthy subjects participated in this study. Postural response was induced by moving a platform forward, hereafter referred to as forward-perturbation of a platform. The center of pressure (COP) from the force plate and the electromyograms (EMG) of the tibialis anterior (TA) and quadriceps femoris (QUAD), which are both agonists of the response, were measured. The effect of plantar material and shape of footwear on postural response was examined as footwear condition. Changing plantar materials had an effect on integrated EMG of the agonists (IEMG) but not on the response pattern. On the other hand, the shape of footwear had an effect on the response pattern but not on IEMG. It was supposed from this result that changes in somatosensory input, caused by coupling of plantar material and shape of footwear, modifies postural response variously.
Evaluation of work posture and quantification of fatigue by Rapid Entire Body Assessment (REBA)
NASA Astrophysics Data System (ADS)
Rizkya, I.; Syahputri, K.; Sari, R. M.; Anizar; Siregar, I.
2018-02-01
Work related musculoskeletal disorders (MSDs), poor body postures, and low back injuries are the most common problems occurring in many industries including small-medium industries. This study presents assessment and evaluation of ergonomic postures of material handling worker. That evaluation was carried out using REBA (Rapid Entire Body Assessment). REBA is a technique to quantize the fatigue experienced by the worker while manually lifting loads. Fatigue due to abnormal work posture leads to complaints of labor-perceived pain. REBA methods were used to an assessment of working postures for the existing process by a procedural analysis of body postures involved. This study shows that parts of the body have a high risk of work are the back, neck, and upper arms with REBA score 9, so action should be taken as soon as possible. Controlling actions were implemented to those process with high risk then substantial risk reduction was achieved.
Posture and performance: sitting vs. standing for security screening.
Drury, C G; Hsiao, Y L; Joseph, C; Joshi, S; Lapp, J; Pennathur, P R
2008-03-01
A classification of the literature on the effects of workplace posture on performance of different mental tasks showed few consistent patterns. A parallel classification of the complementary effect of performance on postural variables gave similar results. Because of a lack of data for signal detection tasks, an experiment was performed using 12 experienced security operators performing an X-ray baggage-screening task with three different workplace arrangements. The current workplace, sitting on a high chair viewing a screen placed on top of the X-ray machine, was compared to a standing workplace and a conventional desk-sitting workplace. No performance effects of workplace posture were found, although the experiment was able to measure performance effects of learning and body part discomfort effects of workplace posture. There are implications for the classification of posture and performance and for the justification of ergonomics improvements based on performance increases.
Chang, Chun-Ju; Lin, Na-Ling; Lee, Mel S; Chern, Jen-Suh
2015-01-01
To understand the progression of recovery in postural stability and physical functioning after patients received the minimally invasive total hip arthroplasty (MTHA), we monitor the pain level, functional capacity, and postural stability before and after operation within one year. In total of 23 subjects in our study, we found out that MTHA was effective in relieving pain in first 2 weeks and restoring the hip joint integrity, but the postural stability was influenced especially in tandem stand in both anterior-posterior and medial-lateral directions. The recovery of postural stability and functional capacity in one year duration fluctuated and no consistent improvement tendency was found. We suggested clinicians designing postsurgery rehabilitation program for consistent and progressive long-term recovery of postural stability and fall prevention to optimize surgical results and prevent undesired postoperative consequences.
Huisinga, Jessie M; Filipi, Mary L; Stergiou, Nicholas
2012-01-01
Postural disturbances are one of the first reported symptoms in patients with Multiple Sclerosis (MS). The purpose of this study was to investigate the effect of supervised resistance training on postural control in MS patients. Postural control was assessed using amount of sway variability [Root Mean Square (RMS)] and temporal structure of sway variability [Lyapunov Exponent (LyE)] from 15 MS patients. Posture was evaluated before and after completion of three months of resistance training. There were significant differences between MS patients pretraining and healthy controls for both LyE (p = .000) and RMS (p = .002), but no differences between groups after training. There was a significant decrease in RMS (p = .025) and a significant increase in LyE (p = .049) for MS patients pre- to posttraining. The findings suggested that postural control of MS patients could be affected by a supervised resistance training intervention.
Grasp posture alters visual processing biases near the hands
Thomas, Laura E.
2015-01-01
Observers experience biases in visual processing for objects within easy reach of their hands that may assist them in evaluating items that are candidates for action. I investigated the hypothesis that hand postures affording different types of actions differentially bias vision. Across three experiments, participants performed global motion detection and global form perception tasks while their hands were positioned a) near the display in a posture affording a power grasp, b) near the display in a posture affording a precision grasp, or c) in their laps. Although the power grasp posture facilitated performance on the motion task, the precision grasp posture instead facilitated performance on the form task. These results suggest that the visual system weights processing based on an observer’s current affordances for specific actions: fast and forceful power grasps enhance temporal sensitivity, while detail-oriented precision grasps enhance spatial sensitivity. PMID:25862545
Jahanimoghadam, Fatemeh; Horri, Azadeh; Hasheminejad, Naimeh; Hashemi Nejad, Naser; Baneshi, Mohammad Reza
2018-01-01
Statement of the Problem: In dentistry, incorrect working posture is the most important cause of musculoskeletal disorders. Purpose: The aim of this research was to evaluate the work postures of general dentists and specialists using rapid entire body assessment (REBA) method. Materials and Method: In this cross-sectional study, work postures were assessed in 90 dentists by employing REBA method. Stratified sampling method was used. Data were analyzed by analysis of variance (ANOVA), Independent t-test and Pearson’s correlation test in SPSS 19. Results: The results showed that work postures of 90% of dentists were at moderate- to high-risk levels. Among the specialists, periodontists, pedodontists and oral and maxillofacial surgeons had the worst body postures. Conclusion: In general, dentists’ working postures need improvement and consequently, a more comprehensive ergonomic training and promotion is required in dentistry curriculum at Universities. PMID:29854890
Evaluation of body posture in individuals with internal temporomandibular joint derangement.
Munhoz, Wagner Cesar; Marques, Amélia Pasqual; de Siqueira, José Tadeu Tesseroli
2005-10-01
Temporomandibular dysfunctions (TMD) comprise a great number of disruptions that may affect the temporomandibular joint (TMJ), the masticatory muscles, or both. TMJ internal derangement is a specific type of TMD, of which the etiology and physiopathology are broadly unknown, but have been suggested to be linked to head, neck, and body posture factors. This study aimed at verifying possible relationships between body posture and TMJ internal derangements (TMJ-id), by comparing 30 subjects presenting typical TMJ-id signs to 20 healthy subjects. Subjects' clinical evaluations included anamnesis, stomatognatic system evaluation, and plotting analysis on body posture photographs. No statistically significant differences were found between the groups. Results do not support the assertion that body posture plays a role in causing or enhancing TMD; however, these results should be cautiously considered because of the small number of subjects evaluated and the many posture variables submitted to statistical procedures that lead to high standard deviations.
Ergonomic intervention for improving work postures during notebook computer operation.
Jamjumrus, Nuchrawee; Nanthavanij, Suebsak
2008-06-01
This paper discusses the application of analytical algorithms to determine necessary adjustments for operating notebook computers (NBCs) and workstations so that NBC users can assume correct work postures during NBC operation. Twenty-two NBC users (eleven males and eleven females) were asked to operate their NBCs according to their normal work practice. Photographs of their work postures were taken and analyzed using the Rapid Upper Limb Assessment (RULA) technique. The algorithms were then employed to determine recommended adjustments for their NBCs and workstations. After implementing the necessary adjustments, the NBC users were then re-seated at their workstations, and photographs of their work postures were re-taken, to perform the posture analysis. The results show that the NBC users' work postures are improved when their NBCs and workstations are adjusted according to the recommendations. The effectiveness of ergonomic intervention is verified both visually and objectively.
Hsieh, Ru-Lan; Lee, Wen-Chung; Lo, Min-Tzu; Liao, Wei-Cheng
2013-02-01
To assess the differences in postural stability between patients with knee osteoarthritis and controls without knee osteoarthritis, and to evaluate possible relations between postural stability scores and International Classification of Functioning, Disability and Health (ICF) components. An age-matched, case-controlled trial with a cross-sectional design. A teaching hospital. Patients with knee osteoarthritis (n=73) and age-matched controls (n=60). Data on patients' postural stability and additional health-related variables were collected using various instruments. These included the Hospital Anxiety and Depression Scale, the Multidimensional Fatigue Inventory, the World Health Organization Quality of Life Brief Version, the physical function test (chair-rising time), the Chinese version of the Western Ontario and McMaster Universities Osteoarthritis Index, the Chinese version of the Knee Injury and Osteoarthritis Outcome Score, and the Biodex Stability System. A comparison of postural stability in patients with knee osteoarthritis versus that of controls was performed. The relation between postural stability scores for patients with knee osteoarthritis and ICF components was evaluated. Pearson correlation tests were used to determine the variables that correlated with postural stability among these patients. Patients with knee osteoarthritis displayed lower overall postural stability than controls (scores of 0.7 vs. 0.5, P=.006) and scored lower on the environmental domain of the World Health Organization Quality of Life Brief Version (62.2 vs 66.8, P=.014). For patients with knee osteoarthritis, postural stability was weakly associated with the ICF components of body functions and structures, including pain (r=.33-.34, P=.004), physical fatigue (r=.28, P=.016), and reduced motivation (r=.30, P=.011). Weak to moderate associations between postural stability and the ICF components of activities and participation were found; the relevant ICF variables included reduced activity (r=.38, P=.001), physical domain and function (r=.34-.48, P=.001 to P<.004), activities of daily living (r=.51, P<.001), and sports and recreation (r=.35, P=.003). A moderate association between postural stability and the ICF components of personal and environmental factors was observed, including age (r=.52, P<.001) and quality of life (r=0.4, P=.001). Patients with knee osteoarthritis displayed lower postural stability and achieved lower scores in the environmental domain of quality-of-life measures than did controls. The postural stability of patients with knee osteoarthritis was weakly to moderately associated with the following ICF components: body functions and structures, activities and participation, and personal and environmental factors. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Aftanas, Lyubomir I; Bazanova, Olga M; Novozhilova, Nataliya V
2018-01-01
Background: Recent studies have demonstrated that the assessment of postural performance may be a potentially reliable and objective marker of the psychomotor retardation (PMR) in the major depressive disorder (MDD). One of the important facets of MDD-related PMR is reflected in disrupted central mechanisms of psychomotor control, heavily influenced by compelling maladaptive depressive rumination. In view of this we designed a research paradigm that included sequential execution of simple single-posture task followed by more challenging divided attention posture tasks, involving concurring motor and ideomotor workloads. Another difficulty dimension assumed executing of all the tasks with eyes open (EO) (easy) and closed (EC) (difficult) conditions. We aimed at investigating the interplay between the severity of MDD, depressive rumination, and efficiency of postural performance. Methods: Compared with 24 age- and body mass index-matched healthy controls (HCs), 26 patients with MDD sequentially executed three experimental tasks: (1) single-posture task of maintaining a quiet stance (ST), (2) actual posture-motor dual task (AMT); and (3) mental/imaginary posture-motor dual task (MMT). All the tasks were performed in the EO and the EC conditions. The primary dependent variable was the amount of kinetic energy ( E ) expended for the center of pressure deviations (CoPDs), whereas the absolute divided attention cost index showed energy cost to the dual-tasking vs. the single-posture task according to the formula: Δ E = ( E Dual-task - E Single-task ). Results: The signs of PMR in the MDD group were objectively indexed by deficient posture control in the EC condition along with overall slowness of fine motor and ideomotor activity. Another important and probably more challenging feature of the findings was that the posture deficit manifested in the ST condition was substantially and significantly attenuated in the MMT and AMT performance dual-tasking activity. A multiple linear regression analysis evidenced further that the dual-tasking energy cost (i.e., Δ E ) significantly predicted clinical scores of severity of MDD and depressive rumination. Conclusion: The findings allow to suggest that execution of concurrent actual or imaginary fine motor task with closed visual input deallocates attentional resources from compelling maladaptive depressive rumination thereby attenuating severity of absolute dual-tasking energy costs for balance maintenance in patients with MDD. Significance: Quantitative assessment of PMR through measures of the postural performance in dual-tasking may be useful to capture the negative impact of past depressive episodes, optimize the personalized treatment selection, and improve the understanding of the pathophysiological mechanisms underlying MDD.
Agmon, Maayan; Belza, Basia; Nguyen, Huong Q; Logsdon, Rebecca G; Kelly, Valerie E
2014-01-01
Injury due to falls is a major problem among older adults. Decrements in dual-task postural control performance (simultaneously performing two tasks, at least one of which requires postural control) have been associated with an increased risk of falling. Evidence-based interventions that can be used in clinical or community settings to improve dual-task postural control may help to reduce this risk. THE AIMS OF THIS SYSTEMATIC REVIEW ARE: 1) to identify clinical or community-based interventions that improved dual-task postural control among older adults; and 2) to identify the key elements of those interventions. Studies were obtained from a search conducted through October 2013 of the following electronic databases: PubMed, CINAHL, PsycINFO, and Web of Science. Randomized and nonrandomized controlled studies examining the effects of interventions aimed at improving dual-task postural control among community-dwelling older adults were selected. All studies were evaluated based on methodological quality. Intervention characteristics including study purpose, study design, and sample size were identified, and effects of dual-task interventions on various postural control and cognitive outcomes were noted. Twenty-two studies fulfilled the selection criteria and were summarized in this review to identify characteristics of successful interventions. The ability to synthesize data was limited by the heterogeneity in participant characteristics, study designs, and outcome measures. Dual-task postural control can be modified by specific training. There was little evidence that single-task training transferred to dual-task postural control performance. Further investigation of dual-task training using standardized outcome measurements is needed.
The Role of Neuromuscular Changes in Aging and Knee Osteoarthritis on Dynamic Postural Control
Takacs, Judit; Carpenter, Mark G.; Garland, S. Jayne; Hunt, Michael A.
2013-01-01
Knee osteoarthritis (OA) is a chronic joint condition, with 30% of those over the age of 75 exhibiting severe radiographic disease. Nearly 50% of those with knee OA have experienced a fall in the past year. Falls are a considerable public health concern, with a high risk of serious injury and a significant socioeconomic impact. The ability to defend against a fall relies on adequate dynamic postural control, and alterations in dynamic postural control are seen with normal aging. Neuromuscular changes associated with aging may be responsible for some of these alterations in dynamic postural control. Even greater neuromuscular deficits, which may impact dynamic postural control and the ability to defend against a fall, are seen in people with knee OA. There is little evidence to date on how knee OA affects the ability to respond to and defend against falls and the neuromuscular changes that contribute to balance deficits. As a result, this review will: summarize the key characteristics of postural responses to an external perturbation, highlight the changes in dynamic postural control seen with normal aging, review the neuromuscular changes associated with aging that have known and possible effects on dynamic postural control, and summarize the neuromuscular changes and balance problems in knee OA. Future research to better understand the role of neuromuscular changes in knee OA and their effect on dynamic postural control will be suggested. Such an understanding is critical to the successful creation and implementation of fall prevention and treatment programs, in order to reduce the excessive risk of falling in knee OA. PMID:23696951
Drijkoningen, David; Leunissen, Inge; Caeyenberghs, Karen; Hoogkamer, Wouter; Sunaert, Stefan; Duysens, Jacques; Swinnen, Stephan P
2015-12-01
Many patients with traumatic brain injury (TBI) suffer from postural control impairments that can profoundly affect daily life. The cerebellum and brain stem are crucial for the neural control of posture and have been shown to be vulnerable to primary and secondary structural consequences of TBI. The aim of this study was to investigate whether morphometric differences in the brain stem and cerebellum can account for impairments in static and dynamic postural control in TBI. TBI patients (n = 18) and healthy controls (n = 30) completed three challenging postural control tasks on the EquiTest® system (Neurocom). Infratentorial grey matter (GM) and white matter (WM) volumes were analyzed with cerebellum-optimized voxel-based morphometry using the spatially unbiased infratentorial toolbox. Volume loss in TBI patients was revealed in global cerebellar GM, global infratentorial WM, middle cerebellar peduncles, pons and midbrain. In the TBI group and across both groups, lower postural control performance was associated with reduced GM volume in the vermal/paravermal regions of lobules I-IV, V and VI. Moreover, across all participants, worse postural control performance was associated with lower WM volume in the pons, medulla, midbrain, superior and middle cerebellar peduncles and cerebellum. This is the first study in TBI patients to demonstrate an association between postural impairments and reduced volume in specific infratentorial brain areas. Volumetric measures of the brain stem and cerebellum may be valuable prognostic markers of the chronic neural pathology, which complicates rehabilitation of postural control in TBI. © 2015 Wiley Periodicals, Inc.
Ciccarelli, Marina; Straker, Leon; Mathiassen, Svend Erik; Pollock, Clare
2011-01-01
There are concerns that insufficient variation in postural and muscle activity associated with use of modern information and communication technology (ICT) presents a risk for musculoskeletal ill-health among school children. However, scientific knowledge on physical exposure variation in this group is limited. The purpose of this study was to quantify postures and muscle activity of school children using different types of ICT. Postures of the head, upper back and upper arm, and muscle activity of the right and left upper trapezius and right forearm extensors were measured over 10-12 hours in nine school children using different types of ICT at school and away-from-school. Variation in postures and muscle activity was quantified using two indices, EVA{sd} and APDF₉₀-₁₀. Paper-based (Old) ICT tasks produced postures that were less neutral but more variable than electronics-based (New ICT) and Non-ICT tasks. Non-ICT tasks involved mean postures similar to New ICT tasks, but with greater variation. Variation of muscle activity was similar between ICT types in the right and left upper trapezius muscles. Non-ICT tasks produced more muscle activity variation in the right forearm extensor group compared to New and Old ICT tasks. Different ICT tasks produce different degrees of variation in posture and muscle activity. Combining tasks that use different ICT may increase overall exposure variation. More research is needed to determine what degree of postural and muscle activity variation is associated with reduced risk of musculoskeletal ill-health.
Assessing Somatosensory Utilization during Unipedal Postural Control.
Goel, Rahul; De Dios, Yiri E; Gadd, Nichole E; Caldwell, Erin E; Peters, Brian T; Reschke, Millard F; Bloomberg, Jacob J; Oddsson, Lars I E; Mulavara, Ajitkumar P
2017-01-01
Multisensory-visual, vestibular and somatosensory information is integrated for appropriate postural control. The primary goal of this study was to assess somatosensory utilization during a functional motor task of unipedal postural control, in normal healthy adults. Assessing individual bias in the utilization of individual sensory contributions during postural control may help customization of rehabilitation protocols. In this study, a test paradigm of unipedal stance control in supine orientation with and without vision was assessed. Postural control in this test paradigm was hypothesized to utilize predominantly contributions of somatosensory information from the feet and ankle joint, with minimal vestibular input. Fourteen healthy subjects "stood" supine on their dominant leg while strapped to a backpack frame that was freely moving on air-bearings, to remove available otolith tilt cues with respect to gravity that influences postural control when standing upright. The backpack was attached through a cable to a pneumatic cylinder that provided a gravity-like load. Subjects performed three trials each with Eyes-open (EO) and Eyes-closed (EC) while loaded with 60% body weight. There was no difference in unipedal stance time (UST) across the two conditions with EC condition challenging the postural control system greater than the EO condition. Stabilogram-diffusion analysis (SDA) indicated that the critical mean square displacement was significantly different between the two conditions. Vestibular cues, both in terms of magnitude and the duration for which relevant information was available for postural control in this test paradigm, were minimized. These results support our hypothesis that maintaining unipedal stance in supine orientation without vision, minimizes vestibular contribution and thus predominantly utilizes somatosensory information for postural control.
Real-time posture reconstruction for Microsoft Kinect.
Shum, Hubert P H; Ho, Edmond S L; Jiang, Yang; Takagi, Shu
2013-10-01
The recent advancement of motion recognition using Microsoft Kinect stimulates many new ideas in motion capture and virtual reality applications. Utilizing a pattern recognition algorithm, Kinect can determine the positions of different body parts from the user. However, due to the use of a single-depth camera, recognition accuracy drops significantly when the parts are occluded. This hugely limits the usability of applications that involve interaction with external objects, such as sport training or exercising systems. The problem becomes more critical when Kinect incorrectly perceives body parts. This is because applications have limited information about the recognition correctness, and using those parts to synthesize body postures would result in serious visual artifacts. In this paper, we propose a new method to reconstruct valid movement from incomplete and noisy postures captured by Kinect. We first design a set of measurements that objectively evaluates the degree of reliability on each tracked body part. By incorporating the reliability estimation into a motion database query during run time, we obtain a set of similar postures that are kinematically valid. These postures are used to construct a latent space, which is known as the natural posture space in our system, with local principle component analysis. We finally apply frame-based optimization in the space to synthesize a new posture that closely resembles the true user posture while satisfying kinematic constraints. Experimental results show that our method can significantly improve the quality of the recognized posture under severely occluded environments, such as a person exercising with a basketball or moving in a small room.
Effects of posture on shear rates in human brachial and superficial femoral arteries
Newcomer, S. C.; Sauder, C. L.; Kuipers, N. T.; Laughlin, M. H.; Ray, C. A.
2012-01-01
Shear rate is significantly lower in the superficial femoral compared with the brachial artery in the supine posture. The relative shear rates in these arteries of subjects in the upright posture (seated and/or standing) are unknown. The purpose of this investigation was to test the hypothesis that upright posture (seated and/or standing) would produce greater shear rates in the superficial femoral compared with the brachial artery. To test this hypothesis, Doppler ultrasound was used to measure mean blood velocity (MBV) and diameter in the brachial and superficial femoral arteries of 21 healthy subjects after being in the supine, seated, and standing postures for 10 min. MBV was significantly higher in the brachial compared with the superficial femoral artery during upright postures. Superficial femoral artery diameter was significantly larger than brachial artery diameter. However, posture had no significant effect on either brachial or superficial femoral artery diameter. The calculated shear rate was significantly greater in the brachial (73 ± 5, 91 ± 11, and 97 ± 13 s−1) compared with the superficial femoral (53 ± 4, 39 ± 77, and 44 ± 5 s−1) artery in the supine, seated, and standing postures, respectively. Contrary to our hypothesis, our current findings indicate that mean shear rate is lower in the superficial femoral compared with the brachial artery in the supine, seated, and standing postures. These findings of lower shear rates in the superficial femoral artery may be one mechanism for the higher propensity for atherosclerosis in the arteries of the leg than of the arm. PMID:18245564
Meyer, Georg F.; Shao, Fei; White, Mark D.; Hopkins, Carl; Robotham, Antony J.
2013-01-01
Externally generated visual motion signals can cause the illusion of self-motion in space (vection) and corresponding visually evoked postural responses (VEPR). These VEPRs are not simple responses to optokinetic stimulation, but are modulated by the configuration of the environment. The aim of this paper is to explore what factors modulate VEPRs in a high quality virtual reality (VR) environment where real and virtual foreground objects served as static visual, auditory and haptic reference points. Data from four experiments on visually evoked postural responses show that: 1) visually evoked postural sway in the lateral direction is modulated by the presence of static anchor points that can be haptic, visual and auditory reference signals; 2) real objects and their matching virtual reality representations as visual anchors have different effects on postural sway; 3) visual motion in the anterior-posterior plane induces robust postural responses that are not modulated by the presence of reference signals or the reality of objects that can serve as visual anchors in the scene. We conclude that automatic postural responses for laterally moving visual stimuli are strongly influenced by the configuration and interpretation of the environment and draw on multisensory representations. Different postural responses were observed for real and virtual visual reference objects. On the basis that automatic visually evoked postural responses in high fidelity virtual environments should mimic those seen in real situations we propose to use the observed effect as a robust objective test for presence and fidelity in VR. PMID:23840760
Fuhrman, Susan I.; Redfern, Mark S.; Jennings, J. Richard; Perera, Subashan; Nebes, Robert D.; Furman, Joseph M.
2013-01-01
Postural dual-task studies have demonstrated effects of various executive function components on gait and postural control in older adults. The purpose of the study was to explore the role of inhibition during lateral step initiation. Forty older adults participated (range 70–94 yr). Subjects stepped to the left or right in response to congruous and incongruous visual cues that consisted of left and right arrows appearing on left or right sides of a monitor. The timing of postural adjustments was identified by inflection points in the vertical ground reaction forces (VGRF) measured separately under each foot. Step responses could be classified into preferred and nonpreferred step behavior based on the number of postural adjustments that were made. Delays in onset of the first postural adjustment (PA1) and liftoff (LO) of the step leg during preferred steps progressively increased among the simple, choice, congruous, and incongruous tasks, indicating interference in processing the relevant visuospatial cue. Incongruous cues induced subjects to make more postural adjustments than they typically would (i.e., nonpreferred steps), representing errors in selection of the appropriate motor program. During these nonpreferred steps, the onset of the PA1 was earlier than during the preferred steps, indicating a failure to inhibit an inappropriate initial postural adjustment. The functional consequence of the additional postural adjustments was a delay in the LO compared with steps in which they did not make an error. These results suggest that deficits in inhibitory function may detrimentally affect step decision processing, by delaying voluntary step responses. PMID:23114211
Hwang, Hae-Yun; Choi, Jun-Seon; Kim, Hee-Eun
2018-05-28
To evaluate whether masticatory efficiency is associated with dynamic postural balance. Masticatory dysfunction can cause deterioration of general health due to nutritional imbalances, thereby negatively affecting postural balance. However, few studies have investigated the association between masticatory efficiency and postural balance. The masticatory efficiency of 74 participants was evaluated by calculating mixing ability index (MAI) using a wax cube. The timed up and go test (TUGT) was used to measure dynamic balance. Participants with an MAI above or below the median value of 1.05 were defined as having high or low masticatory efficiency, respectively. An independent samples t-test was used to identify significant differences in TUGT, according to masticatory efficiency. Analysis of covariance was performed to adjust for confounding factors. Logistic regression analysis was used to assess the correlation between masticatory efficiency and postural balance. The high masticatory efficiency group could complete the TUGT exercise approximately 1.67 seconds faster while maintaining the postural balance, compared to the low masticatory efficiency group (P = .005). Furthermore, the postural imbalance odds of the group with high mastication efficiency decreased by 0.14-fold, relative to the group with low mastication efficiency (95% confidence interval: 0.04-0.46). With some reservations about statistical power, the association found between masticatory efficiency and postural balance justifies further investigations to confirm the strength of the associations, and possibly to identify causal relationships between mastication and posture in old age. © 2018 John Wiley & Sons A/S and The Gerodontology Association. Published by John Wiley & Sons Ltd.
Geometric morphometrics as a tool for improving the comparative study of behavioural postures
NASA Astrophysics Data System (ADS)
Fureix, Carole; Hausberger, Martine; Seneque, Emilie; Morisset, Stéphane; Baylac, Michel; Cornette, Raphaël; Biquand, Véronique; Deleporte, Pierre
2011-07-01
Describing postures has always been a central concern when studying behaviour. However, attempts to compare postures objectively at phylogenetical, populational, inter- or intra-individual levels generally either rely upon a few key elements or remain highly subjective. Here, we propose a novel approach, based on well-established geometric morphometrics, to describe and to analyse postures globally (i.e. considering the animal's body posture in its entirety rather than focusing only on a few salient elements, such as head or tail position). Geometric morphometrics is concerned with describing and comparing variation and changes in the form (size and shape) of organisms using the coordinates of a series of homologous landmarks (i.e. positioned in relation to skeletal or muscular cues that are the same for different species for every variety of form and function and that have derived from a common ancestor, i.e. they have a common evolutionary ancestry, e.g. neck, wings, flipper/hand). We applied this approach to horses, using global postures (1) to characterise behaviours that correspond to different arousal levels, (2) to test potential impact of environmental changes on postures. Our application of geometric morphometrics to horse postures showed that this method can be used to characterise behavioural categories, to evaluate the impact of environmental factors (here human actions) and to compare individuals and groups. Beyond its application to horses, this promising approach could be applied to all questions involving the analysis of postures (evolution of displays, expression of emotions, stress and welfare, behavioural repertoires…) and could lead to a whole new line of research.
Vertical Heterophoria and Postural Control in Nonspecific Chronic Low Back Pain
Matheron, Eric; Kapoula, Zoï
2011-01-01
The purpose of this study was to test postural control during quiet standing in nonspecific chronic low back pain (LBP) subjects with vertical heterophoria (VH) before and after cancellation of VH; also to compare with healthy subjects with, and without VH. Fourteen subjects with LBP took part in this study. The postural performance was measured through the center of pressure displacements with a force platform while the subjects fixated on a target placed at either 40 or 200 cm, before and after VH cancellation with an appropriate prism. Their postural performance was compared to that of 14 healthy subjects with VH and 12 without VH (i.e. vertical orthophoria) studied previously in similar conditions. For LBP subjects, cancellation of VH with a prism improved postural performance. With respect to control subjects (with or without VH), the variance of speed of the center of pressure was higher, suggesting more energy was needed to stabilize their posture in quiet upright stance. Similarly to controls, LBP subjects showed higher postural sway when they were looking at a target at a far distance than at a close distance. The most important finding is that LBP subjects with VH can improve their performance after prism-cancellation of their VH. We suggest that VH reflects mild conflict between sensory and motor inputs involved in postural control i.e. a non optimal integration of the various signals. This could affect the performance of postural control and perhaps lead to pain. Nonspecific chronic back pain may results from such prolonged conflict. PMID:21479210
Association between temporomandibular disorders and abnormal head postures.
Faulin, Evandro Francisco; Guedes, Carlos Gramani; Feltrin, Pedro Paulo; Joffiley, Cláudia Maria Mithie Suda Costa
2015-01-01
This study examines the possible correlation between the prevalence of temporomandibular disorders (TMD) and different head postures in the frontal and sagittal planes using photographs of undergraduate students in the School of Dentistry at the Universidade de Brasília - UnB, Brazil. In this nonrandomized, cross-sectional study, the diagnoses of TMD were made with the Research Diagnostic Criteria (RDC)/TMD axis I. The craniovertebral angle was used to evaluate forward head posture in the sagittal plane, and the interpupillary line was used to measure head tilt in the frontal plane. The measurements to evaluate head posture were made using the Software for the Assessment of Posture (SAPO). Students were divided into two study groups, based on the presence or absence of TMD. The study group comprised 46 students and the control group comprised 80 students. Data about head posture and TMD were analyzed with the Statistical Package for the Social Sciences, version 13. Most cases of TMD were classified as degenerative processes (group III), followed by disk displacement (group II) and muscle disorders (group I). There was no sex predominance for the type of disorder. No association was found between prevalence rates for head postures in the frontal plane and the occurrence of TMD. The same result was found for the association of TMD diagnosis with craniovertebral angle among men and women, and the group that contained both men and women. Abnormal head postures were common among individuals both with and without TMD. No association was found between head posture evaluated in the frontal and sagittal planes and TMD diagnosis with the use of RDC/TMD.
Advantages and disadvantages of stiffness instructions when studying postural control.
Bonnet, Cédrick T
2016-05-01
To understand the maintenance of upright stance, researchers try to discover the fundamental mechanisms and attentional resources devoted to postural control and eventually to the performance of other tasks (e.g., counting in the head). During their studies, some researchers require participants to stand as steady as possible and other simply ask participants to stand naturally. Surprisingly, a clear and direct explanation of the usefulness of the steadiness requirement seems to be lacking, both in experimental and methodological discussions. Hence, the objective of the present note was to provide advantages and disadvantages of this steadiness requirement in studies of postural control. The advantages may be to study fundamental postural control, to eliminate useless postural variability, to control spurious body motions and to control the participants' thoughts. As disadvantages, this steadiness requirement only leads to study postural control in unnatural upright stance, it changes the focus of attention (internal vs. external) and the nature of postural control (unconscious vs. conscious), it increases the difficulty of a supposedly easy control task and it eliminates or reduces the opportunity to record exploratory behaviors. When looking carefully at the four advantages of the steadiness requirement, one can believe that they are, in fact, more disadvantageous than advantageous. Overall therefore, this requirement seems illegitimate and it is proposed that researchers should not use it in the study of postural control. They may use this requirement only if they search to know the limit until which participants can consciously reduce their postural sway. Copyright © 2015 Elsevier B.V. All rights reserved.
Assessing Somatosensory Utilization during Unipedal Postural Control
Goel, Rahul; De Dios, Yiri E.; Gadd, Nichole E.; Caldwell, Erin E.; Peters, Brian T.; Reschke, Millard F.; Bloomberg, Jacob J.; Oddsson, Lars I. E.; Mulavara, Ajitkumar P.
2017-01-01
Multisensory—visual, vestibular and somatosensory information is integrated for appropriate postural control. The primary goal of this study was to assess somatosensory utilization during a functional motor task of unipedal postural control, in normal healthy adults. Assessing individual bias in the utilization of individual sensory contributions during postural control may help customization of rehabilitation protocols. In this study, a test paradigm of unipedal stance control in supine orientation with and without vision was assessed. Postural control in this test paradigm was hypothesized to utilize predominantly contributions of somatosensory information from the feet and ankle joint, with minimal vestibular input. Fourteen healthy subjects “stood” supine on their dominant leg while strapped to a backpack frame that was freely moving on air-bearings, to remove available otolith tilt cues with respect to gravity that influences postural control when standing upright. The backpack was attached through a cable to a pneumatic cylinder that provided a gravity-like load. Subjects performed three trials each with Eyes-open (EO) and Eyes-closed (EC) while loaded with 60% body weight. There was no difference in unipedal stance time (UST) across the two conditions with EC condition challenging the postural control system greater than the EO condition. Stabilogram-diffusion analysis (SDA) indicated that the critical mean square displacement was significantly different between the two conditions. Vestibular cues, both in terms of magnitude and the duration for which relevant information was available for postural control in this test paradigm, were minimized. These results support our hypothesis that maintaining unipedal stance in supine orientation without vision, minimizes vestibular contribution and thus predominantly utilizes somatosensory information for postural control. PMID:28443004
Hayes, Ashley R; Gayzik, F Scott; Moreno, Daniel P; Martin, R Shayn; Stitzel, Joel D
The purpose of this study was to use data from a multi-modality image set of males and females representing the 5(th), 50(th), and 95(th) percentile (n=6) to examine abdominal organ location, morphology, and rib coverage variations between supine and seated postures. Medical images were acquired from volunteers in three image modalities including Computed Tomography (CT), Magnetic Resonance Imaging (MRI), and upright MRI (uMRI). A manual and semi-automated segmentation method was used to acquire data and a registration technique was employed to conduct a comparative analysis between abdominal organs (liver, spleen, and kidneys) in both postures. Location of abdominal organs, defined by center of gravity movement, varied between postures and was found to be significant (p=0.002 to p=0.04) in multiple directions for each organ. In addition, morphology changes, including compression and expansion, were seen in each organ as a result of postural changes. Rib coverage, defined as the projected area of the ribs onto the abdominal organs, was measured in frontal, lateral, and posterior projections, and also varied between postures. A significant change in rib coverage between postures was measured for the spleen and right kidney (p=0.03 and p=0.02). The results indicate that posture affects the location, morphology and rib coverage area of abdominal organs and these implications should be noted in computational modeling efforts focused on a seated posture.
... Affect how well your joints move Affect your balance and increase your risk of falling Make it harder to digest your food Make it harder to breathe How can I improve my posture in general? Be mindful of your posture during everyday activities, ...
Elbasan, Bulent; Akaya, Kamile Uzun; Akyuz, Mufit; Oskay, Deran
2018-02-06
Neurodevelopmental treatment (NDT), neuromuscular electrical stimulation (NMES), and Kinesio Taping (KT) applications are separately used to improve postural control and sitting balance in children with cerebral palsy (CP). The aim of this study is to examine the combined effect of NDT, NMES and KT applications on postural control and sitting balance in children with CP. Forty five children, in 3 groups, between the ages 5-12 years were included in the study. Group 1 received NDT; group 2 received NDT + NMES; and the group 3 received NDT + NMES + KT for 6 weeks. Sitting function evaluated by the sitting section of the gross motor function measure (GMFM), and postural control assessed with the seated postural control measurement (SPCM). Seating section of GMFM was improved significantly in all the groups; however, increases in the group 3 were higher than groups 1 and 2 (p= 0.001). While significant differences were observed in all groups in the SPCM posture (p< 0.001), function (p< 0.001), and the total scores (p< 0.001); the change in the third group was higher according to the comparison of the three groups within each other. Implementation of the NMES, and KT additionally to NDT improve the sitting posture, postural control, seating function, and gross motor function in children with CP.
Effects of a two-school-year multifactorial back education program in elementary schoolchildren.
Geldhof, Elisabeth; Cardon, Greet; De Bourdeaudhuij, Ilse; De Clercq, Dirk
2006-08-01
A quasi-experimental pre/post design. To investigate effects of a 2-school-year multifactorial back education program on back posture knowledge and postural behavior in elementary schoolchildren. Additionally, self-reported back or neck pain and fear-avoidance beliefs were evaluated. Epidemiologic studies report mounting nonspecific back pain prevalence among youngsters, characterized by multifactorial risk factors. Study findings of school-based interventions are promising. Furthermore, biomechanical discomfort is found in the school environment. The study sample included 193 intervention children and 172 controls (baseline, 9-to-11-year-olds). The multifactorial intervention consisted of a back education program and the stimulation of postural dynamism in the class through support and environmental changes. Evaluation consisted of a questionnaire, an observation of postural behavior in the classroom, and an observation of material handling during a movement session. The intervention resulted in increased back posture knowledge (P < 0.001), improved postural behavior during material handling (P < 0.001), and decreased duration of trunk flexion (P < 0.05) and neck torsion (P < 0.05) during lesson time. The intervention did not change fear-avoidance beliefs. There was a trend for decreased pain reports in boys of the intervention group (P < 0.09). The intervention resulted in improved postural aspects related to spinal loading. The long-term effect of improved postural behavior at young age on back pain prevalence later in life is of interest for future research.
Embodying animals: Body-part compatibility in mammalian, reptile and aves classes.
Pacione, Sandra M; Welsh, Timothy N
2015-09-01
The purpose of the present study was to determine how humans code homologous body parts of nonhuman mammal, reptilian, and aves animals with respect to the representation of the human body. To this end, participants completed body-part compatibility tasks in which responses were executed to colored targets that were superimposed over the upper limbs, lower limbs or head of different animals in different postures. In Experiment 1, the images were of meekats and lizards in bipedal and quadrupedal postures. In Experiment 2, the images were of a human, a penguin, and an owl in a bipedal posture with upper limbs stretched out. Overall, the results revealed that the limbs of nonhuman mammals (meerkat and human) were consistently mapped onto the homologous human body parts only when the mammals were in a bipedal posture. Specifically, body-part compatibility effects emerged for the human and the meerkat in a bipedal posture, but not the meerkat in the quadrupedal posture. Further, consistent body-part compatibility effects were not observed for the lizard in the quadrupedal posture or for the lizard, penguin, or owl in a bipedal posture. The pattern of results suggests that the human bipedal body representation may distinguish taxonomical classes and is most highly engaged when viewing homologous body parts of mammalian animals. Copyright © 2015 Elsevier B.V. All rights reserved.
Pilot randomised controlled trial of face-down positioning following macular hole surgery.
Lange, C A K; Membrey, L; Ahmad, N; Wickham, L; Maclaren, R E; Solebo, L; Xing, W; Bunce, C; Ezra, E; Charteris, D; Aylward, B; Yorston, D; Gregor, Z; Zambarakji, H; Bainbridge, J W
2012-02-01
This was a pilot randomised controlled trial (RCT) to investigate the effect of post-operative face-down positioning on the outcome of macular hole surgery and to inform the design of a larger definitive study. In all, 30 phakic eyes of 30 subjects with idiopathic full-thickness macular holes underwent vitrectomy with dye-assisted peeling of the ILM and 14% perfluoropropane gas. Subjects were randomly allocated to posture face down for 10 days (posturing group) or to avoid a face-up position only (non-posturing group). The primary outcome was anatomical hole closure. Macular holes closed in 14 of 15 eyes (93.3%; 95% confidence interval (CI) 68-100%) in the posturing group and in 9 of 15 (60%; 95% CI 32-84%) in the non-posturing group. In a subgroup analysis of outcome according to macular hole size, all holes smaller than 400 μm closed regardless of posturing (100%). In contrast, holes larger than 400 μm closed in 10 of 11 eyes (91%; 95% CI 58-99%) in the posturing group and in only 4 of 10 eyes (40%; 95% CI 12-74%) in the non-posturing group (Fisher's exact test P=0.02). Post-operative face-down positioning may improve the likelihood of macular hole closure, particularly for holes larger than 400 μm. These results support the case for a RCT.
Alves, M C; Galeano, D C; Santos, W S; Lee, Choonsik; Bolch, Wesley E; Hunt, John G; da Silva, A X; Carvalho, A B
2016-12-01
Aircraft crew members are occupationally exposed to considerable levels of cosmic radiation at flight altitudes. Since aircrew (pilots and passengers) are in the sitting posture for most of the time during flight, and up to now there has been no data on the effective dose rate calculated for aircrew dosimetry in flight altitude using a sitting phantom, we therefore calculated the effective dose rate using a phantom in the sitting and standing postures in order to compare the influence of the posture on the radiation protection of aircrew members. We found that although the better description of the posture in which the aircrews are exposed, the results of the effective dose rate calculated with the phantom in the sitting posture were very similar to the results of the phantom in the standing posture. In fact we observed only a 1% difference. These findings indicate the adequacy of the use of dose conversion coefficients for the phantom in the standing posture in aircrew dosimetry. We also validated our results comparing the effective dose rate obtained using the standing phantom with values reported in the literature. It was observed that the results presented in this study are in good agreement with other authors (the differences are below 30%) who have measured and calculated effective dose rates using different phantoms.
Postural Control and Gait Performance in the Diabetic Peripheral Neuropathy: A Systematic Review
Mustapa, Amirah; Mohd Mustafah, Nadia; Jamil, Nursuriati
2016-01-01
Purpose. The aim of this paper is to review the published studies on the characteristics of impairments in the postural control and gait performance in diabetic peripheral neuropathy (DPN). Methods. A review was performed by obtaining publication of all papers reporting on the postural control and gait performance in DPN from Google Scholar, Ovid, SAGE, Springerlink, Science Direct (SD), EBSCO Discovery Service, and Web of Science databases. The keywords used for searching were “postural control,” “balance,” “gait performance,” “diabetes mellitus,” and “diabetic peripheral neuropathy.” Results. Total of 4,337 studies were hit in the search. 1,524 studies were screened on their titles and citations. Then, 79 studies were screened on their abstract. Only 38 studies were eligible to be selected: 17 studies on postural control and 21 studies on the gait performance. Most previous researches were found to have strong evidence of postural control impairments and noticeable gait deficits in DPN. Deterioration of somatosensory, visual, and vestibular systems with the pathologic condition of diabetes on cognitive impairment causes further instability of postural and gait performance in DPN. Conclusions. Postural instability and gait imbalance in DPN may contribute to high risk of fall incidence, especially in the geriatric population. Thus, further works are crucial to highlight this fact in the hospital based and community adults. PMID:27525281
Macedo Ribeiro, Ana Freire; Bergmann, Anke; Lemos, Thiago; Pacheco, Antônio Guilherme; Mello Russo, Maitê; Santos de Oliveira, Laura Alice; de Carvalho Rodrigues, Erika
The main objective of this study was to review the literature to identify reference values for angles and distances of body segments related to upright posture in healthy adult women with the Postural Assessment Software (PAS/SAPO). Electronic databases (BVS, PubMed, SciELO and Scopus) were assessed using the following descriptors: evaluation, posture, photogrammetry, physical therapy, postural alignment, postural assessment, and physiotherapy. Studies that performed postural evaluation in healthy adult women with PAS/SAPO and were published in English, Portuguese and Spanish, between the years 2005 and 2014 were included. Four studies met the inclusion criteria. Data from the included studies were grouped to establish the statistical descriptors (mean, variance, and standard deviation) of the body angles and distances. A total of 29 variables were assessed (10 in the anterior views, 16 in the lateral right and left views, and 3 in the posterior views), and its respective mean and standard deviation were calculated. Reference values for the anterior and posterior views showed no symmetry between the right and left sides of the body in the frontal plane. There were also small differences in the calculated reference values for the lateral view. The proposed reference values for quantitative evaluation of the upright posture in healthy adult women estimated in the present study using PAS/SAPO could guide future studies and help clinical practice. Copyright © 2017. Published by Elsevier Inc.
Terré, R; Mearin, F
2012-05-01
The chin-down posture is generally recommended in patients with neurogenic dysphagia to prevent tracheal aspiration; however, its effectiveness has not been demonstrated. To videofluoroscopically (VDF) assess the effectiveness of chin-down posture to prevent aspiration in patients with neurogenic dysphagia secondary to acquired brain injury. Randomized, alternating, cross-over study (with and without the chin-down posture) in 47 patients with a VDF diagnosis of aspiration [31 stroke, 16 traumatic brain injury (TBI)] and 25 controls without aspiration (14 stroke, 11 TBI). During the chin-down posture, 55% of patients avoided aspiration (40% preswallow aspiration and 60% aspiration during swallow). The percentage was similar in both etiologies (58% stroke and 50% TBI). Fifty-one percent of patients had silent aspiration; of these, 48% persisted with aspiration while in the chin-down posture. A statistically significant relationship was found between the existence of pharyngeal residue, cricopharyngeal dysfunction, pharyngeal delay time and bolus volume with the persistence of aspiration. The chin-down posture did not change swallow biomechanics in patients without aspiration. Only half the patients with acquired brain injury avoided aspiration during cervical flexion; 48% of silent aspirators continued to aspire during the maneuver. Several videofluoroscopic parameters were related to inefficiency of the maneuver. Therefore, the indication for chin-down posture should be evaluated by videofluoroscopic examination. © 2012 Blackwell Publishing Ltd.
Fernández, Ramón Fuentes; Carter, Pablo; Muñoz, Sergio; Silva, Héctor; Venegas, Gonzalo Hernán Oporto; Cantin, Mario; Ottone, Nicolás Ernesto
2016-01-01
INTRODUCTION Temporomandibular joint disorders (TMJDs) are caused by several factors such as anatomical, neuromuscular and psychological alterations. A relationship has been established between TMJDs and postural alterations, a type of anatomical alteration. An anterior position of the head requires hyperactivity of the posterior neck region and shoulder muscles to prevent the head from falling forward. This compensatory muscular function may cause fatigue, discomfort and trigger point activation. To our knowledge, a method for assessing human postural attitude in more than one plane has not been reported. Thus, the aim of this study was to design a methodology to measure the external human postural attitude in frontal and sagittal planes, with proper validity and reliability analyses. METHODS The variable postures of 78 subjects (36 men, 42 women; age 18–24 years) were evaluated. The postural attitudes of the subjects were measured in the frontal and sagittal planes, using an acromiopelvimeter, grid panel and Fox plane. RESULTS The method we designed for measuring postural attitudes had adequate reliability and validity, both qualitatively and quantitatively, based on Cohen’s Kappa coefficient (> 0.87) and Pearson’s correlation coefficient (r = 0.824, > 80%). CONCLUSION This method exhibits adequate metrical properties and can therefore be used in further research on the association of human body posture with skeletal types and TMJDs. PMID:26768173
Fuentes Fernández, Ramón; Carter, Pablo; Muñoz, Sergio; Silva, Héctor; Oporto Venegas, Gonzalo Hernán; Cantin, Mario; Ottone, Nicolás Ernesto
2016-04-01
Temporomandibular joint disorders (TMJDs) are caused by several factors such as anatomical, neuromuscular and psychological alterations. A relationship has been established between TMJDs and postural alterations, a type of anatomical alteration. An anterior position of the head requires hyperactivity of the posterior neck region and shoulder muscles to prevent the head from falling forward. This compensatory muscular function may cause fatigue, discomfort and trigger point activation. To our knowledge, a method for assessing human postural attitude in more than one plane has not been reported. Thus, the aim of this study was to design a methodology to measure the external human postural attitude in frontal and sagittal planes, with proper validity and reliability analyses. The variable postures of 78 subjects (36 men, 42 women; age 18-24 years) were evaluated. The postural attitudes of the subjects were measured in the frontal and sagittal planes, using an acromiopelvimeter, grid panel and Fox plane. The method we designed for measuring postural attitudes had adequate reliability and validity, both qualitatively and quantitatively, based on Cohen's Kappa coefficient (> 0.87) and Pearson's correlation coefficient (r = 0.824, > 80%). This method exhibits adequate metrical properties and can therefore be used in further research on the association of human body posture with skeletal types and TMJDs. Copyright © Singapore Medical Association.
The effect of body posture on cognitive performance: a question of sleep quality
Muehlhan, Markus; Marxen, Michael; Landsiedel, Julia; Malberg, Hagen; Zaunseder, Sebastian
2014-01-01
Nearly all functional magnetic resonance imaging (fMRI) studies are conducted in the supine body posture, which has been discussed as a potential confounder of such examinations. The literature suggests that cognitive functions, such as problem solving or perception, differ between supine and upright postures. However, the effect of posture on many cognitive functions is still unknown. Therefore, the aim of the present study was to investigate the effects of body posture (supine vs. sitting) on one of the most frequently used paradigms in the cognitive sciences: the N-back working memory paradigm. Twenty-two subjects were investigated in a randomized within-subject design. Subjects performed the N-back task on two consecutive days in either the supine or the upright posture. Subjective sleep quality and chronic stress were recorded as covariates. Furthermore, changes in mood dimensions and heart rate variability (HRV) were assessed during the experiment. Results indicate that the quality of sleep strongly affects reaction times when subjects performed a working memory task in a supine posture. These effects, however, could not be observed in the sitting position. The findings can be explained by HRV parameters that indicated differences in autonomic regulation in the upright vs. the supine posture. The finding is of particular relevance for fMRI group comparisons when group differences in sleep quality cannot be ruled out. PMID:24723874
Sprenger, Andreas; Wojak, Jann F; Jandl, Nico M; Helmchen, Christoph
2017-01-01
Patients with bilateral vestibular failure (BVF) suffer from postural and gait unsteadiness with an increased risk of falls. The aim of this study was to elucidate the differential role of otolith, semicircular canal (SSC), visual, proprioceptive, and cognitive influences on the postural stability of BVF patients. Center-of-pressure displacements were recorded by posturography under six conditions: target visibility; tonic head positions in the pitch plane; horizontal head shaking; sensory deprivation; dual task; and tandem stance. Between-group analysis revealed larger postural sway in BVF patients on eye closure; but with the eyes open, BVF did not differ from healthy controls (HCs). Head tilts and horizontal head shaking increased sway but did not differ between groups. In the dual task condition, BVF patients maintained posture indistinguishable from controls. On foam and tandem stance, postural sway was larger in BVF, even with the eyes open. The best predictor for the severity of bilateral vestibulopathy was standing on foam with eyes closed. Postural control of our BVF was indistinguishable from HCs once visual and proprioceptive feedback is provided. This distinguishes them from patients with vestibulo-cerebellar disorders or functional dizziness. It confirms previous reports and explains that postural unsteadiness of BVF patients can be missed easily if not examined by conditions of visual and/or proprioceptive deprivation. In fact, the best predictor for vestibular hypofunction (VOR gain) was examining patients standing on foam with the eyes closed. Postural sway in that condition increased with the severity of vestibular impairment but not with disease duration. In the absence of visual control, impaired otolith input destabilizes BVF with head retroflexion. Stimulating deficient SSC does not distinguish patients from controls possibly reflecting a shift of intersensory weighing toward proprioceptive-guided postural control. Accordingly, proprioceptive deprivation heavily destabilizes BVF, even when visual control is provided.
Sprenger, Andreas; Wojak, Jann F.; Jandl, Nico M.; Helmchen, Christoph
2017-01-01
Patients with bilateral vestibular failure (BVF) suffer from postural and gait unsteadiness with an increased risk of falls. The aim of this study was to elucidate the differential role of otolith, semicircular canal (SSC), visual, proprioceptive, and cognitive influences on the postural stability of BVF patients. Center-of-pressure displacements were recorded by posturography under six conditions: target visibility; tonic head positions in the pitch plane; horizontal head shaking; sensory deprivation; dual task; and tandem stance. Between-group analysis revealed larger postural sway in BVF patients on eye closure; but with the eyes open, BVF did not differ from healthy controls (HCs). Head tilts and horizontal head shaking increased sway but did not differ between groups. In the dual task condition, BVF patients maintained posture indistinguishable from controls. On foam and tandem stance, postural sway was larger in BVF, even with the eyes open. The best predictor for the severity of bilateral vestibulopathy was standing on foam with eyes closed. Postural control of our BVF was indistinguishable from HCs once visual and proprioceptive feedback is provided. This distinguishes them from patients with vestibulo-cerebellar disorders or functional dizziness. It confirms previous reports and explains that postural unsteadiness of BVF patients can be missed easily if not examined by conditions of visual and/or proprioceptive deprivation. In fact, the best predictor for vestibular hypofunction (VOR gain) was examining patients standing on foam with the eyes closed. Postural sway in that condition increased with the severity of vestibular impairment but not with disease duration. In the absence of visual control, impaired otolith input destabilizes BVF with head retroflexion. Stimulating deficient SSC does not distinguish patients from controls possibly reflecting a shift of intersensory weighing toward proprioceptive-guided postural control. Accordingly, proprioceptive deprivation heavily destabilizes BVF, even when visual control is provided. PMID:28919878
Postural control in chronic obstructive pulmonary disease: a systematic review.
Porto, E F; Castro, A A M; Schmidt, V G S; Rabelo, H M; Kümpel, C; Nascimento, O A; Jardim, J R
2015-01-01
Patients with chronic obstructive pulmonary disease (COPD) fall frequently, although the risk of falls may seem less important than the respiratory consequences of the disease. Nevertheless, falls are associated to increased mortality, decreased independence and physical activity levels, and worsening of quality of life. The aims of this systematic review was to evaluate information in the literature with regard to whether impaired postural control is more prevalent in COPD patients than in healthy age-matched subjects, and to assess the main characteristics these patients present that contribute to impaired postural control. Five databases were searched with no dates or language limits. The MEDLINE, PubMed, EMBASE, Web of Science, and PEDro databases were searched using "balance", "postural control", and "COPD" as keywords. The search strategies were oriented and guided by a health science librarian and were performed on March 27, 2014. The studies included were those that evaluated postural control in COPD patients as their main outcome and scored more than five points on the PEDro scale. Studies supplied by the database search strategy were assessed independently by two blinded researchers. A total of 484 manuscripts were found using the "balance in COPD or postural control in COPD" keywords. Forty-three manuscripts appeared more than once, and 397 did not evaluate postural control in COPD patients as the primary outcome. Thus, only 14 studies had postural control as their primary outcome. Our study examiners found only seven studies that had a PEDro score higher than five points. The examiners' interrater agreement was 76.4%. Six of those studies were accomplished with a control group and one study used their patients as their own controls. The studies were published between 2004 and 2013. Patients with COPD present postural control impairment when compared with age-matched healthy controls. Associated factors contributing to impaired postural control were muscle weakness, physical inactivity, elderly age, need for supplemental oxygen, and limited mobility.
Leach, Julia M.; Mancini, Martina; Kaye, Jeffrey A.; Hayes, Tamara L.; Horak, Fay B.
2018-01-01
Introduction: Increased variability in motor function has been observed during the initial stages of cognitive decline. However, the natural variability of postural control, as well as its association with cognitive status and decline, remains unknown. The objective of this pilot study was to characterize the day-to-day variability in postural sway in non-demented older adults. We hypothesized that older adults with a lower cognitive status would have higher day-to-day variability in postural sway. Materials and Methods: A Nintendo Wii balance board (WBB) was used to quantify postural sway in the home twice daily for 30 days in 20 non-demented, community-dwelling older adults: once under a single-task condition and once under a dual-task condition (using a daily word search task administered via a Nook tablet). Mean sway distance, velocity, area, centroidal frequency and frequency dispersion were derived from the center of pressure data acquired from the WBB. Results: Linear relationships were observed between the day-to-day variability in postural sway and cognitive status (indexed by cognitive global z-scores). More variability in time-domain postural sway (sway distance and area) and less variability in frequency-domain postural sway (centroidal sway frequency) were associated with a lower cognitive status under both the single- and dual-task conditions. Additionally, lower cognitive performance rates on the daily word search task were related to a lower cognitive status. Discussion: This small pilot study conducted on a short time scale motivates large-scale implementations over more extended time periods. Tracking longitudinal changes in postural sway may further our understanding of early-stage postural decline and its association with cognitive decline and, in turn, may aid in the early detection of dementia during preclinical stages when the utility of disease-modifying therapies would be greatest. PMID:29780319
Barbieri, Fabio A; Polastri, Paula F; Baptista, André M; Lirani-Silva, Ellen; Simieli, Lucas; Orcioli-Silva, Diego; Beretta, Victor S; Gobbi, Lilian T B
2016-04-01
The aim of this study was to investigate the effects of disease severity and medication state on postural control asymmetry during challenging tasks in individuals with Parkinson's disease (PD). Nineteen people with PD and 11 neurologically healthy individuals performed three standing task conditions: bipedal standing, tandem and unipedal adapted standing; the individuals with PD performed the tasks in ON and OFF medication state. The participants with PD were distributed into 2 groups according to disease severity: unilateral group (n=8) and bilateral group (n=11). The two PD groups performed the evaluations both under and without the medication. Two force plates were used to analyze the posture. The symmetric index was calculated for various of center of pressure. ANOVA one-way (groups) and two-way (PD groups×medication), with repeated measures for medication, were calculated. For main effects of group, the bilateral group was more asymmetric than CG. For main effects of medication, only unipedal adapted standing presented effects of PD medication. There was PD groups×medication interaction. Under the effects of medication, the unilateral group presented lower asymmetry of RMS in anterior-posterior direction and area than the bilateral group in unipedal adapted standing. In addition, the unilateral group presented lower asymmetry of mean velocity, RMS in anterior-posterior direction and area in unipedal standing and area in tandem adapted standing after a medication dose. Postural control asymmetry during challenging postural tasks was dependent on disease severity and medication state in people with PD. The bilateral group presented higher postural control asymmetry than the control and unilateral groups in challenging postural tasks. Finally, the medication dose was able to reduce postural control asymmetry in the unilateral group during challenging postural tasks. Copyright © 2015 Elsevier B.V. All rights reserved.
McCaskey, Michael A; Wirth, Brigitte; Schuster-Amft, Corina; de Bruin, Eling D
2018-01-01
Reduced postural control is thought to contribute to the development and persistence of chronic non-specific low back pain (CNLBP). It is therefore frequently assessed in affected patients and commonly reported as the average amount of postural sway while standing upright under a variety of sensory conditions. These averaged linear outcomes, such as mean centre of pressure (CP) displacement or mean CP surface areas, may not reflect the true postural status. Adding nonlinear outcomes and multi-segmental kinematic analysis has been reported to better reflect the complexity of postural control and may detect subtler postural differences. In this cross-sectional study, a combination of linear and nonlinear postural parameters were assessed in patients with CNLBP (n = 24, 24-75 years, 9 females) and compared to symptom-free controls (CG, n = 34, 22-67 years, 11 females). Primary outcome was postural control measured by variance of joint configurations (uncontrolled manifold index, UI), confidence ellipse surface areas (CEA) and approximate entropy (ApEn) of CP dispersion during the response phase of a perturbed postural control task on a swaying platform. Secondary outcomes were segment excursions and clinical outcome correlates for pain and function. Non-parametric tests for group comparison with P-adjustment for multiple comparisons were conducted. Principal component analysis was applied to identify patterns of segmental contribution in both groups. CNLBP and CG performed similarly with respect to the primary outcomes. Comparison of joint kinematics revealed significant differences of hip (P < .001) and neck (P < .025) angular excursion, representing medium to large group effects (r's = .36 - .51). Significant (P's < .05), but moderate correlations of ApEn (r = -.42) and UI (r = -.46) with the health-related outcomes were observed. These findings lend further support to the notion that averaged linear outcomes do not suffice to describe subtle postural differences in CNLBP patients with low to moderate pain status.
2013-01-01
Background In therapeutic settings, patients with shoulder pain often exhibit deficient coordinative abilities in their trunk and lower extremities. The aim of the study was to investigate 1) if there is a connection between shoulder pain and deficits in balance ability and postural stability, 2) if pain intensity is related to balance ability and postural stability, and 3) if there is a connection between body mass index (BMI) and balance ability and postural stability. Methods In this case–control study, patients (n = 40) with pathological shoulder pain (> 4 months) were matched with a healthy controls (n = 40) and were compared with regard to their balance ability and postural stability. Outcome parameters were postural stability, balance ability and symmetry index which were measured using the S3-Check system. In addition, the influence of shoulder pain intensity and BMI on the outcome parameters was analysed. Results Patients with shoulder pain showed significantly worse results in measurements of postural stability right/left (p < 0.01) and front/back (p < 0.01) as well as balance ability right/left (p = 0.01) and front/back (p < 0.01) compared to healthy controls. There were no significant group differences with regard to symmetry index. However, there was a significant (p < 0.01) symmetry shift towards the affected side within the shoulder pain group. There was no correlation between pain intensity and measurements of balance ability or postural stability. Likewise, no correlation between BMI and deficiencies in balance ability and postural stability was established. Conclusions Patients with pathological shoulder pain (> 4 months) have deficiencies in balance ability and postural stability; however the underlying mechanisms for this remain unclear. Neither pain intensity nor BMI influenced the outcome parameters. Patients with shoulder pain shift their weight to the affected side. Further research is needed to determine if balance training can improve rehabilitation results in patients with shoulder pathologies. PMID:24088342
Variations in cerebral organization as a function of handedness, hand posture in writing, and sex.
Levy, J; Reid, M
1978-06-01
During the past century, it has become increasingly apparent that there is a great deal of variation in the direction and degree of cerebral lateralization, a plurality of people having language and related functions strongly specialized to the left hemisphere and visuospatial functions strongly specialized to the right, with substantial minorities manifesting various deviations from this pattern. In particular, in 35%-50% of sinistrals and 1%-10% of dextrals, the right hemisphere is specialized for linguistic skills, and in some unknown fraction of the two handedness groups, verbal and/or spatial abilities are, to varying extents, bilateralized. Levy (1973) suggested that the hand posture adopted during writing might be an index of the lateral relationship between the dominant writing hand and the language hemisphere, a normal posture indicating contralateral language specialization, and an inverted posture indicating ipsilateral language specialization. In the present investigation, two tachistoscopic tests of cerebral lateralization, one measuring spatial functions and one measuring verbal function, were administered to 73 subjects classified by handedness, hand posture during writing, and sex. Among both dextral and sinistral subjects with a normal writing posture, language and spatial functions were specialized to the contralateral and ipsilateral hemispheres, respectively, and lateral differentiation of the brain was strong. The reverse was seen in subjects having an inverted writing posture. In all groups, females were less laterally differentiated than males. In 70 out of 73 subjects, the direction of cerebral laterization was accurately predicted by handedness and hand posture. The 3 subjects (2 females and 1 male) who failed to manifest the predicted relations were all left-handers having an inverted hand posture . In this group, lateral differentiation was so weak that the reliability of the tachistoscopic tests was reduced, and we attribute these three predictive failures to this cause. Thus, almost all of the variation in the lateral organization of the brain was accounted for by handedness, hand posture, and sex.
Comparison of anti-siphon devices-how do they affect CSF dynamics in supine and upright posture?
Gehlen, Manuel; Eklund, Anders; Kurtcuoglu, Vartan; Malm, Jan; Schmid Daners, Marianne
2017-08-01
Three different types of anti-siphon devices (ASDs) have been developed to counteract siphoning-induced overdrainage in upright posture. However, it is not known how the different ASDs affect CSF dynamics under the complex pressure environment seen in clinic due to postural changes. We investigated which ASDs can avoid overdrainage in upright posture best without leading to CSF accumulation. Three shunts each of the types Codman Hakim with SiphonGuard (flow-regulated), Miethke miniNAV with proSA (gravitational), and Medtronic Delta (membrane controlled) were tested. The shunts were compared on a novel in vitro setup that actively emulates the physiology of a shunted patient. This testing method allows determining the CSF drainage rates, resulting CSF volume, and intracranial pressure in the supine, sitting, and standing posture. The flow-regulated ASDs avoided increased drainage by closing their primary flow path when drainage exceeded 1.39 ± 0.42 mL/min. However, with intraperitoneal pressure increased in standing posture, we observed reopening of the ASD in 3 out of 18 experiment repetitions. The adjustable gravitational ASDs allow independent opening pressures in horizontal and vertical orientation, but they did not provide constant drainage in upright posture (0.37 ± 0.03 mL/min and 0.26 ± 0.03 mL/min in sitting and standing posture, respectively). Consequently, adaptation to the individual patient is critical. The membrane-controlled ASDs stopped drainage in upright posture. This eliminates the risk of overdrainage, but leads to CSF accumulation up to the volume observed without shunting when the patient is upright. While all tested ASDs reduced overdrainage, their actual performance will depend on a patient's specific needs because of the large variation in the way the ASDs influence CSF dynamics: while the flow-regulated shunts provide continuous drainage in upright posture, the gravitational ASDs allow and require additional adaptation, and the membrane-controlled ASDs show robust siphon prevention by a total stop of drainage.
Nazari, Jalil; Pope, Malcolm H; Graveling, Richard A
2015-05-01
Opportunities to evaluate spinal loading in vivo are limited and a large majority of studies on the mechanical functions of the spine have been in vitro cadaveric studies and/or models based on many assumptions that are difficult to validate. The purpose of this study was to investigate the feasibility of magnetic resonance imaging (MRI) in obtaining nucleus pulposus (NP) water content measurements with changing postures. MRI studies were conducted on 25 healthy males with no history of low back pain (age 20-38). The L1 to S1 intradiscal levels were imaged in supine, sitting and standing postures using an upright 0.6 Tesla magnet, where a set of H2O: D2O7 phantoms were mounted on the back of the subjects. A calibration curve, provided from these phantoms, was applied to the absolute proton density image, yielding a pixel-by-pixel map of the water content of the NP. The NP at all levels showed a highly significant water loss (p<0.001) in sitting and standing postures compared with the supine posture. A trend towards higher levels of water was observed at all levels in the standing posture relative to sitting postures, however statistically significant differences were found only at L4-L5 and L5-S1 levels. This study demonstrates that variations in water content of the NP in different postures are in agreement with those determined from published invasive disc pressure measurements. The result of study demonstrates the feasibility of using MRI to determine the water content of the NP with changing postures and to use these data to evaluate spinal loading in these postures. This measurement method of water content by quantitative MR imaging could become a powerful tool for both clinical and ergonomic applications. The proposed methodology does not require invasive pressure measurement techniques. Copyright © 2015 Elsevier Inc. All rights reserved.
Influence of neck postural changes on cervical spine motion and angle during swallowing
Kim, Jun Young; Hong, Jae Taek; Oh, Joo Seon; Jain, Ashish; Kim, Il Sup; Lim, Seong Hoon; Kim, Jun Sung
2017-01-01
Abstract Occipitocervical (OC) fixation in a neck retraction position could be dangerous due to the risk of postoperative dysphagia. No previous study has demonstrated an association between the cervical posture change and cervical spine motion/angle during swallowing. So, we aimed to analyze the influence of neck posture on the cervical spine motion and angle change during swallowing. Thirty-seven asymptomatic volunteers were recruited for participation this study. A videoflurographic swallowing study was performed in the neutral and retracted neck posture. We analyzed the images of the oral and pharyngeal phases of swallowing and compared the angle and the position changes of each cervical segment. In the neutral posture, C1 and C2 were flexed, while C5, C6, and C7 were extended. C3, C4, C5, C6, and C7 moved posteriorly. All cervical levels, except for C5, moved superiorly. In the retraction posture, C0 and C1 were flexed, while C6 was extended during swallowing. All cervical levels moved posteriorly. C1, C2, C3, and C4 moved superiorly. The comparison between 2 postures shows that angle change is significantly different between C0, C2, and C5. Posterior translation change is significantly different in the upper cervical spine (C0, C1, and C2) and C7. Superior movement is significantly different in C0. C0 segment is most significantly different between neutral and retraction posture in terms of angle and position change. These data suggest that C0 segment could be a critical level of compensation that allows swallowing even in the retraction neck posture regarding motion and angle change. So, it is important not to do OC fixation in retraction posture. Also, sparing C0 segment could provide some degree of freedom for the compensatory movement and angle change to avoid dysphagia after OC fixation. PMID:29137075
Neck pain and postural balance among workers with high postural demands - a cross-sectional study
2011-01-01
Background Neck pain is related to impaired postural balance among patients and is highly prevalent among workers with high postural demands, for example, cleaners. We therefore hypothesised, that cleaners with neck pain suffer from postural dysfunction. This cross-sectional study tested if cleaners with neck pain have an impaired postural balance compared with cleaners without neck pain. Methods Postural balance of 194 cleaners with (n = 85) and without (N = 109) neck pain was studied using three different tests. Success or failure to maintain the standing position for 30 s in unilateral stance was recorded. Participants were asked to stand on a force platform for 30 s in the Romberg position with eyes open and closed. The centre of pressure of the sway was calculated, and separated into a slow (rambling) and fast (trembling) component. Subsequently, the 95% confidence ellipse area (CEA) was calculated. Furthermore a perturbation test was performed. Results More cleaners with neck pain (81%) failed the unilateral stance compared with cleaners without neck pain (61%) (p < 0.01). However, the risk of failure in unilateral stance was statistically elevated in cleaners with concurrent neck/low back pain compared to cleaners without neck/low back pain (p < 0.01), whereas pain at only neck or only low back did not increase the risk. Impaired postural balance, measured as CEA (p < 0.01), rambling (p < 0.05) and trembling (p < 0.05) was observed among cleaners with neck pain in comparison with cleaners without neck pain in the Romberg position with eyes closed, but not with eyes open. Conclusions Postural balance is impaired among cleaners with neck pain and the current study suggests a particular role of the slow component of postural sway. Furthermore, the unilateral stance test is a simple test to illustrate functional impairment among cleaners with concurrent neck and low back pain. Trial registration ISRCTN96241850 PMID:21806796
Leach, Julia M; Mancini, Martina; Kaye, Jeffrey A; Hayes, Tamara L; Horak, Fay B
2018-01-01
Introduction : Increased variability in motor function has been observed during the initial stages of cognitive decline. However, the natural variability of postural control, as well as its association with cognitive status and decline, remains unknown. The objective of this pilot study was to characterize the day-to-day variability in postural sway in non-demented older adults. We hypothesized that older adults with a lower cognitive status would have higher day-to-day variability in postural sway. Materials and Methods : A Nintendo Wii balance board (WBB) was used to quantify postural sway in the home twice daily for 30 days in 20 non-demented, community-dwelling older adults: once under a single-task condition and once under a dual-task condition (using a daily word search task administered via a Nook tablet). Mean sway distance, velocity, area, centroidal frequency and frequency dispersion were derived from the center of pressure data acquired from the WBB. Results : Linear relationships were observed between the day-to-day variability in postural sway and cognitive status (indexed by cognitive global z-scores). More variability in time-domain postural sway (sway distance and area) and less variability in frequency-domain postural sway (centroidal sway frequency) were associated with a lower cognitive status under both the single- and dual-task conditions. Additionally, lower cognitive performance rates on the daily word search task were related to a lower cognitive status. Discussion : This small pilot study conducted on a short time scale motivates large-scale implementations over more extended time periods. Tracking longitudinal changes in postural sway may further our understanding of early-stage postural decline and its association with cognitive decline and, in turn, may aid in the early detection of dementia during preclinical stages when the utility of disease-modifying therapies would be greatest.
NASA Astrophysics Data System (ADS)
Kirchner, M.; Schubert, P.; Schmidtbleicher, D.; Haas, C. T.
2012-10-01
The analysis of postural control has a long history. Traditionally, the amount of body sway is solely used as an index of postural stability. Although this leads to some extent to an effective evaluation of balance performance, the control mechanisms involved have not yet been fully understood. The concept of nonlinear dynamics suggests that variability in the motor output is not randomness but structure, providing the stimulus to reveal the functionality of postural sway. The present work evaluates sway dynamics by means of COP excursions in a quiet standing task versus a dual-task condition in three different test times (30, 60, 300 s). Besides the application of traditional methods-which estimate the overall size of sway-the temporal pattern of body sway was quantified via wavelet transform, multiscale entropy and fractal analysis. We found higher sensitivity of the structural parameters to modulations of postural control strategies and partly an improved evaluation of sway dynamics in longer recordings. It could be shown that postural control modifications take place on different timescales corresponding to the interplay of the sensory systems. A continued application of nonlinear analysis can help to better understand postural control mechanisms.
Postural control assessment in students with normal hearing and sensorineural hearing loss.
Melo, Renato de Souza; Lemos, Andrea; Macky, Carla Fabiana da Silva Toscano; Raposo, Maria Cristina Falcão; Ferraz, Karla Mônica
2015-01-01
Children with sensorineural hearing loss can present with instabilities in postural control, possibly as a consequence of hypoactivity of their vestibular system due to internal ear injury. To assess postural control stability in students with normal hearing (i.e., listeners) and with sensorineural hearing loss, and to compare data between groups, considering gender and age. This cross-sectional study evaluated the postural control of 96 students, 48 listeners and 48 with sensorineural hearing loss, aged between 7 and 18 years, of both genders, through the Balance Error Scoring Systems scale. This tool assesses postural control in two sensory conditions: stable surface and unstable surface. For statistical data analysis between groups, the Wilcoxon test for paired samples was used. Students with hearing loss showed more instability in postural control than those with normal hearing, with significant differences between groups (stable surface, unstable surface) (p<0.001). Students with sensorineural hearing loss showed greater instability in the postural control compared to normal hearing students of the same gender and age. Copyright © 2014 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Wearable Devices for Classification of Inadequate Posture at Work Using Neural Networks
Barkallah, Eya; Freulard, Johan; Otis, Martin J. -D.; Ngomo, Suzy; Ayena, Johannes C.; Desrosiers, Christian
2017-01-01
Inadequate postures adopted by an operator at work are among the most important risk factors in Work-related Musculoskeletal Disorders (WMSDs). Although several studies have focused on inadequate posture, there is limited information on its identification in a work context. The aim of this study is to automatically differentiate between adequate and inadequate postures using two wearable devices (helmet and instrumented insole) with an inertial measurement unit (IMU) and force sensors. From the force sensors located inside the insole, the center of pressure (COP) is computed since it is considered an important parameter in the analysis of posture. In a first step, a set of 60 features is computed with a direct approach, and later reduced to eight via a hybrid feature selection. A neural network is then employed to classify the current posture of a worker, yielding a recognition rate of 90%. In a second step, an innovative graphic approach is proposed to extract three additional features for the classification. This approach represents the main contribution of this study. Combining both approaches improves the recognition rate to 95%. Our results suggest that neural network could be applied successfully for the classification of adequate and inadequate posture. PMID:28862665
Biomechanical investigation of prolonged driving in an ergonomically designed truck seat prototype.
Cardoso, Michelle; McKinnon, Colin; Viggiani, Dan; Johnson, Michel J; Callaghan, Jack P; Albert, Wayne J
2018-03-01
A postural evaluation during a prolonged driving task was conducted to determine the ergonomic validity of a new freely adjustable truck seat prototype. Twenty participants were recruited to perform two 2-h simulated driving sessions. Postures were assessed using motion capture, accelerometers and pressure pads. Subjective discomfort was also monitored in 15-min increments using ratings of perceived discomfort (RPD) and the Automotive Seating Discomfort Questionnaire. Participants had a more neutral spine posture during the first hour of the drive and reported lower RPDs while sitting in the prototype. Pairing the gluteal backrest panel with the adjustable seat pan helped reduce the average sitting pressure. The industry-standard truck seat may lead to the development of poor whole body posture, and the proposed ergonomic redesign of a new truck seat helped improve sitting posture and reduce perceived discomfort. Practitioner Summary: A new freely adjustable truck seat prototype was compared to an Industry standard seat to assess hypothesised improvements to sitting posture and discomfort for long haul driving. It was found that the adjustable panels in the prototype helped promote spine posture, reduce sitting pressure and improved discomfort ratings.
Use of Video Analysis System for Working Posture Evaluations
NASA Technical Reports Server (NTRS)
McKay, Timothy D.; Whitmore, Mihriban
1994-01-01
In a work environment, it is important to identify and quantify the relationship among work activities, working posture, and workplace design. Working posture may impact the physical comfort and well-being of individuals, as well as performance. The Posture Video Analysis Tool (PVAT) is an interactive menu and button driven software prototype written in Supercard (trademark). Human Factors analysts are provided with a predefined set of options typically associated with postural assessments and human performance issues. Once options have been selected, the program is used to evaluate working posture and dynamic tasks from video footage. PVAT has been used to evaluate postures from Orbiter missions, as well as from experimental testing of prototype glove box designs. PVAT can be used for video analysis in a number of industries, with little or no modification. It can contribute to various aspects of workplace design such as training, task allocations, procedural analyses, and hardware usability evaluations. The major advantage of the video analysis approach is the ability to gather data, non-intrusively, in restricted-access environments, such as emergency and operation rooms, contaminated areas, and control rooms. Video analysis also provides the opportunity to conduct preliminary evaluations of existing work areas.
Adaptability of anticipatory postural adjustments associated with voluntary movement
Yiou, Eric; Caderby, Teddy; Hussein, Tarek
2012-01-01
The control of balance is crucial for efficiently performing most of our daily motor tasks, such as those involving goal-directed arm movements or whole body displacement. The purpose of this article is twofold. Firstly, it is to recall how balance can be maintained despite the different sources of postural perturbation arising during voluntary movement. The importance of the so-called “anticipatory postural adjustments” (APA), taken as a “line of defence” against the destabilizing effect induced by a predicted perturbation, is emphasized. Secondly, it is to report the results of recent studies that questioned the adaptability of APA to various constraints imposed on the postural system. The postural constraints envisaged here are classified into biomechanical (postural stability, superimposition of motor tasks), (neuro) physiological (fatigue), temporal (time pressure) and psychological (fear of falling, emotion). Overall, the results of these studies point out the capacity of the central nervous system (CNS) to adapt the spatio-temporal features of APA to each of these constraints. However, it seems that, depending on the constraint, the “priority” of the CNS was focused on postural stability maintenance, on body protection and/or on maintenance of focal movement performance. PMID:22720267
Sarkar, Krishnendu; Dev, Samrat; Das, Tamal; Chakrabarty, Sabarni; Gangopadhyay, Somnath
2016-04-01
Manual material handling (MMH) activities require workers to adopt various awkward postures leading to the development of musculoskeletal disorders (MSD). To investigate the postures adopted during heavy load handling and the frequency of MSDs among MMH workers in Calcutta, India. We conducted a cross-sectional study with 100 MMH workers. MSD frequency was assessed via the Standardized Nordic Questionnaire. The Ovako Working Posture Assessment System (OWAS) was used to analyze working posture. We used logistic regression to predict MSD risk factors. Ninety five percent of workers reported a MSD in at least one body part in the past 12 months. According to OWAS results, 83% of the analysed work postures require immediate corrective measures for worker safety. The most harmful posture was carrying a heavy load overhead. Carrying more than 120 kg increased the odds of low back and neck pain by 4.527 and 4.555, respectively. This sample had a high frequency of reported MSDs, likely attributed to physiologically strenuous occupational activities repeated on average of 30-40 times daily. Ergonomic interventions, such as the use of handcarts, and occupational training are urgently needed.
Barczyk-Pawelec, Katarzyna; Sipko, Tomasz
2017-10-01
Evidence is limited regarding the regional changes in spinal posture after self-correction. The aim of the present study was to evaluate whether active self-correction improved standing and sitting spinal posture. Photogrammetry was used to assess regional spinal curvatures and vertical global spine orientation (GSO) in 42 asymptotic women aged 20-24 years. Upper thoracic spine angle and GSO increased in response to self-correction, while the thoracolumbar and lumbosacral angles decreased. Self-correction in the standing position resulted in decreased inclination of the upper thoracic and thoracolumbar spinal angles. Correction of sitting posture reduced the angle of the upper thoracic spine and GSO. The effects of active self-correction on spinal curvature and GSO were different for the standing versus sitting position; the greatest effects of active correction were noted in the thoracic spine. Balanced and lordotic postures were most prevalent in the habitual and actively self-corrected standing positions, whereas the kyphotic posture was most prevalent in the habitual sitting position, indicative that self-correction back posture in the standing position could be an important health-related daily activity, especially during prolonged sitting.
Ruffieux, Jan; Mouthon, Audrey; Keller, Martin; Mouthon, Michaël; Annoni, Jean-Marie; Taube, Wolfgang
2018-01-01
Aging is associated with a shift from an automatic to a more cortical postural control strategy, which goes along with deteriorations in postural stability. Although balance training has been shown to effectively counteract these behavioral deteriorations, little is known about the effect of balance training on brain activity during postural tasks in older adults. We, therefore, assessed postural stability and brain activity using fMRI during motor imagery alone (MI) and in combination with action observation (AO; i.e., AO+MI) of a challenging balance task in older adults before and after 5 weeks of balance training. Results showed a nonsignificant trend toward improvements in postural stability after balance training, accompanied by reductions in brain activity during AO+MI of the balance task in areas relevant for postural control, which have been shown to be over-activated in older adults during (simulation of) motor performance, including motor, premotor, and multisensory vestibular areas. This suggests that balance training may reverse the age-related cortical over-activations and lead to changes in the control of upright posture toward the one observed in young adults. PMID:29472847
The effect of leg preference on postural stability in healthy athletes.
Huurnink, Arnold; Fransz, Duncan P; Kingma, Idsart; Hupperets, Maarten D W; van Dieën, Jaap H
2014-01-03
In research regarding postural stability, leg preference is often tested and controlled for. However, leg preference may vary between tasks. As athletes are a group of interest for postural stability testing, we evaluated the effect of five leg preference tasks categorization (step up, hop, ball kick, balance, pick up) on single-leg postural stability of 16 field hockey athletes. The 'center of pressure speed' was calculated as the primary outcome variable of single-leg postural stability. Secondary variables were 'mean length of the GRF vector in the horizontal plane', 'mean length of the ankle angular velocity vector', and 'mean length of the hip angular velocity vector', as well as the separate outcomes per degree of freedom. Results showed that leg preference was inconsistent between leg preference tasks. Moreover, the primary and secondary variables yielded no significant difference between the preferred and non-preferred legs, regardless of the applied leg preference task categorization (p>0.05). The present findings do not support the usability of leg preference tasks in controlling for bias of postural stability. In conclusion, none of the applied leg preference tasks revealed a significant effect on postural stability in healthy field hockey athletes. © 2013 Published by Elsevier Ltd.
Relationship between static foot posture and foot mobility
2011-01-01
Background It is not uncommon for a person's foot posture and/or mobility to be assessed during a clinical examination. The exact relationship, however, between static posture and mobility is not known. Objective The purpose of this study was to determine the degree of association between static foot posture and mobility. Method The static foot posture and foot mobility of 203 healthy individuals was assessed and then analyzed to determine if low arched or "pronated" feet are more mobile than high arched or "supinated" feet. Results The study demonstrated that those individuals with a lower standing dorsal arch height and/or a wider standing midfoot width had greater mobility in their foot. In addition, those individuals with higher Foot Posture Index (FPI) values demonstrated greater mobility and those with lower FPI values demonstrated less mobility. Finally, the amount of foot mobility that an individual has can be predicted reasonably well using either a 3 or 4 variable linear regression model. Conclusions Because of the relationship between static foot posture and mobility, it is recommended that both be assessed as part of a comprehensive evaluation of a individual with foot problems. PMID:21244705
Postural correction reduces hip pain in adult with acetabular dysplasia: A case report.
Lewis, Cara L; Khuu, Anne; Marinko, Lee N
2015-06-01
Developmental dysplasia of the hip is often diagnosed in infancy, but less severe cases of acetabular dysplasia are being detected in young active adults. The purpose of this case report is to present a non-surgical intervention for a 31-year-old female with mild acetabular dysplasia and an anterior acetabular labral tear. The patient presented with right anterior hip and groin pain, and she stood with the trunk swayed posterior to the pelvis (swayback posture). The hip pain was reproduced with the anterior impingement test. During gait, the patient maintained the swayback posture and reported 6/10 hip pain. Following correction of the patient's posture, the patient's pain rating was reduced to a 2/10 while walking. The patient was instructed to maintain the improved posture. At the 1 year follow-up, she demonstrated significantly improved posture in standing and walking. She had returned to recreational running and was generally pain-free. The patient demonstrated improvement on self-reported questionnaires for pain, function, and activity. These findings suggest that alteration of posture can have an immediate and lasting effect on hip pain in persons with structural abnormality and labral pathology. Copyright © 2015 Elsevier Ltd. All rights reserved.
Postural correction reduces hip pain in adult with acetabular dysplasia: a case report
Lewis, Cara L.; Khuu, Anne; Marinko, Lee
2015-01-01
Developmental dysplasia of the hip is often diagnosed in infancy, but less severe cases of acetabular dysplasia are being detected in young active adults. The purpose of this case report is to present a non-surgical intervention for a 31-year-old female with mild acetabular dysplasia and an anterior acetabular labral tear. The patient presented with right anterior hip and groin pain, and she stood with the trunk swayed posterior to the pelvis (swayback posture). The hip pain was reproduced with the anterior impingement test. During gait, the patient maintained the swayback posture and reported 6/10 hip pain. Following correction of the patient’s posture, the patient’s pain rating was reduced to a 2/10 while walking. The patient was instructed to maintain the improved posture. At the 1 year follow-up, she demonstrated significantly improved posture in standing and walking. She had returned to recreational running and was generally pain-free. The patient demonstrated improvement on self-reported questionnaires for pain, function and activity. These findings suggest that alteration of posture can have an immediate and lasting effect on hip pain in persons with structural abnormality and labral pathology. PMID:25731688
Spatial Cues Provided by Sound Improve Postural Stabilization: Evidence of a Spatial Auditory Map?
Gandemer, Lennie; Parseihian, Gaetan; Kronland-Martinet, Richard; Bourdin, Christophe
2017-01-01
It has long been suggested that sound plays a role in the postural control process. Few studies however have explored sound and posture interactions. The present paper focuses on the specific impact of audition on posture, seeking to determine the attributes of sound that may be useful for postural purposes. We investigated the postural sway of young, healthy blindfolded subjects in two experiments involving different static auditory environments. In the first experiment, we compared effect on sway in a simple environment built from three static sound sources in two different rooms: a normal vs. an anechoic room. In the second experiment, the same auditory environment was enriched in various ways, including the ambisonics synthesis of a immersive environment, and subjects stood on two different surfaces: a foam vs. a normal surface. The results of both experiments suggest that the spatial cues provided by sound can be used to improve postural stability. The richer the auditory environment, the better this stabilization. We interpret these results by invoking the “spatial hearing map” theory: listeners build their own mental representation of their surrounding environment, which provides them with spatial landmarks that help them to better stabilize. PMID:28694770
Choi, Jung-Hyun; Jung, Min-Ho; Yoo, Kyung-Tae
2016-05-01
[Purpose] The purpose of this study was to identify changes in the activity and fatigue of the splenius capitis and upper trapezius muscles, which are agonists to the muscles supporting the head, under the three postures most frequently adopted while using a smartphone. [Subjects and Methods] The subjects were 15 college students in their 20s. They formed a single group and had to adopt three different postures (maximum bending, middle bending, and neutral). While the 15 subjects maintained the postures, muscle activity and fatigue were measured using surface electromyography. [Results] Comparison of the muscle fatigue caused by each posture showed statistically significant differences for the right splenius capitis, left splenius capitis, and left upper trapezius muscles. In addition, maintaining the maximum bending posture while using a smartphone resulted in higher levels of fatigue in the right splenius capitis, left splenius capitis, and left upper trapezius muscles compared with those for the middle bending posture. [Conclusion] Therefore, this study suggests that individuals should bend their neck slightly when using a smartphone, rather than bending it too much, or keep their neck straight to reduce fatigue of the cervical erector muscles.
Effect of 3,4-diaminopyridine on the postural control in patients with downbeat nystagmus.
Sprenger, Andreas; Zils, Elisabeth; Rambold, Holger; Sander, Thurid; Helmchen, Christoph
2005-04-01
Downbeat nystagmus (DBN) is a common, usually persistent ocular motor sign in vestibulocerebellar midline lesions. Postural imbalance in DBN may increase on lateral gaze when downbeat nystagmus increases. 3,4-Diaminopyridine (3,4-DAP) has been shown to suppress the slow-phase velocity component of downbeat nystagmus and its gravity-dependent component with concomitant improvement of oscillopsia. Because the pharmacological effect is thought to be caused by improvement of the vestibulocerebellar Purkinje cell activity, the effect of 3,4-DAP on the postural control of patients with downbeat nystagmus syndrome was examined. Eye movements were recorded with the video-based Eyelink II system. Postural sway and pathway were assessed by posturography in lateral gaze in the light and on eye closure. Two out of four patients showed an improvement of the area of postural sway by 57% of control (baseline) on eye closure. In contrast, downbeat nystagmus in gaze straight ahead and on lateral gaze did not benefit in these two patients, implying a specific influence of 3,4-DAP on the vestibulocerebellar control of posture. It was concluded that 3,4-DAP may particularly influence the postural performance in patients with downbeat nystagmus.
Parkinson, R J; Bezaire, M; Callaghan, J P
2011-07-01
This study examined errors introduced by a posture matching approach (3DMatch) relative to dynamic three-dimensional rigid link and EMG-assisted models. Eighty-eight lifting trials of various combinations of heights (floor, 0.67, 1.2 m), asymmetry (left, right and center) and mass (7.6 and 9.7 kg) were videotaped while spine postures, ground reaction forces, segment orientations and muscle activations were documented and used to estimate joint moments and forces (L5/S1). Posture matching over predicted peak and cumulative extension moment (p < 0.0001 for all variables). There was no difference between peak compression estimates obtained with posture matching or EMG-assisted approaches (p = 0.7987). Posture matching over predicted cumulative (p < 0.0001) compressive loading due to a bias in standing, however, individualized bias correction eliminated the differences. Therefore, posture matching provides a method to analyze industrial lifting exposures that will predict kinetic values similar to those of more sophisticated models, provided necessary corrections are applied. Copyright © 2010 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Postural compensation for vestibular loss and implications for rehabilitation.
Horak, Fay B
2010-01-01
This chapter summarizes the role of the vestibular system in postural control so that specific and effective rehabilitation can be designed that facilitates compensation for loss of vestibular function. Patients with bilateral or unilateral loss of peripheral vestibular function are exposed to surface perturbations to quantify automatic postural responses. Studies also evaluated the effects of audio- and vibrotactile-biofeedback to improve stability in stance and gait. The most important role of vestibular information for postural control is to control orientation of the head and trunk in space with respect to gravitoinertial forces, particularly when balancing on unstable surfaces. Vestibular sensory references are particularly important for postural control at high frequencies and velocities of self-motion, to reduce trunk drift and variability, to provide an external reference frame for the trunk and head in space; and to uncouple coordination of the trunk from the legs and the head-in-space from the body CoM. The goal of balance rehabilitation for patients with vestibular loss is to help patients 1) use remaining vestibular function, 2) depend upon surface somatosensory information as their primary postural sensory system, 3) learn to use stable visual references, and 4) identify efficient and effective postural movement strategies.
Ziaei, Mansour; Ziaei, Hojjat; Hosseini, Seyed Younes; Gharagozlou, Faramarz; Keikhamoghaddam, Ali Akbar; Laybidi, Marzieh Izadi; Moradinazar, Mehdi
2017-06-01
Manual handling of bags which imposes frequent forces and stresses on body parts is a common task that many workers have to perform every day. The present study aimed to assess the postural risk and imposed forces due to manual handling and loading of sugar bags. This study was conducted on male warehouse workers of a sugar manufacturing plant. Rapid upper limb assessment (RULA) was used to assess the risks of awkward postures and computer-aided three-dimensional interactive application to estimate the forces and moments. RULA final scores were estimated to be 7 and 3 before and after the virtual redesign, respectively. Postures B and E obtained the highest compression forces and moments. The compression forces were higher than the action limit (AL) in all postures before the redesign and exceeded the maximum permissible limit (MPL) in posture E. After the redesign, these forces were reduced below the AL and MPL. Moreover, the shearing forces were lower than the AL and MPL in all postures. The main risk factors were heavy weight and poor control of sugar bags. Virtual redesign can diminish bending and twisting postures, and, therefore, some resulting forces and moments.
Tommasino, Paolo; Campolo, Domenico
2017-01-01
A major challenge in robotics and computational neuroscience is relative to the posture/movement problem in presence of kinematic redundancy. We recently addressed this issue using a principled approach which, in conjunction with nonlinear inverse optimization, allowed capturing postural strategies such as Donders' law. In this work, after presenting this general model specifying it as an extension of the Passive Motion Paradigm, we show how, once fitted to capture experimental postural strategies, the model is actually able to also predict movements. More specifically, the passive motion paradigm embeds two main intrinsic components: joint damping and joint stiffness. In previous work we showed that joint stiffness is responsible for static postures and, in this sense, its parameters are regressed to fit to experimental postural strategies. Here, we show how joint damping, in particular its anisotropy, directly affects task-space movements. Rather than using damping parameters to fit a posteriori task-space motions, we make the a priori hypothesis that damping is proportional to stiffness. This remarkably allows a postural-fitted model to also capture dynamic performance such as curvature and hysteresis of task-space trajectories during wrist pointing tasks, confirming and extending previous findings in literature. PMID:29249954
Postural control in man: the phylogenetic perspective.
Gramsbergen, Albert
2005-01-01
Erect posture in man is a recent affordance from an evolutionary perspective. About eight million years ago, the stock from which modern humans derived split off from the ape family, and from around sixty-thousand years ago, modern man developed. Upright gait and manipulations while standing pose intricate cybernetic problems for postural control. The trunk, having an older evolutionary history than the extremities, is innervated by medially descending motor systems and extremity muscles by the more recent, laterally descending systems. Movements obviously require concerted actions from both systems. Research in rats has demonstrated the interdependencies between postural control and the development of fluent walking. Only 15 days after birth, adult-like fluent locomotion emerges and is critically dependent upon postural development. Vesttibular deprivation induces a retardation in postural development and, consequently, a retarded development of adult-like locomotion. The cerebellum obviously has an important role in mutual adjustments in postural control and extremity movements, or, in coupling the phylogenetic older and newer structures. In the human, the cerebellum develops partly after birth and therefore is vulnerable to adverse perinatal influences. Such vulnerability seems to justify focusing our scientific research efforts onto the development of this structure.
Shiravi, Zeinab; Shadmehr, Azadeh; Moghadam, Saeed Talebian; Moghadam, Behrouz Attarbashi
2017-01-01
Many ankle injuries occur while participating in sports that require jumping and landing such as basketball, volleyball and soccer. Most recent studies have investigated dynamic postural stability of patients with chronic ankle instability after landing from a forward jump. The present study aimed to investigate the dynamic postural stability of the athletes who suffer from chronic ankle sprain while landing from a lateral jump. Twelve athletes with self-reported unilateral chronic ankle instability (4 females and 8 males) and 12 matched controls (3 females and 9 males) voluntarily participated in the study. Dynamic postural stability index and its directional indices were measured while performing lateral jump landing test. No differences were found between athletes with and without chronic ankle instability during our landing protocol by means of the dynamic postural stability index and its directional indices. Findings showed that in each group, medial/lateral stability index is significantly higher than anterior/posterior and vertical stability indexes. Findings showed that dynamic postural stability was not significantly different between the two groups. Future studies should examine chronic ankle instability patients with more severe disabilities and expose them to more challenging dynamic balance conditions to further explore postural stability. IIIa.
van der Spek, Jaap H; Veltink, Peter H; Hermens, Hermie J; Koopman, Bart F J M; Boom, Herman B K
2003-12-01
The prerequisites for stable crutch supported standing were analyzed in this paper. For this purpose, a biomechanical model of crutch supported paraplegic stance was developed assuming the patient was standing with extended knees. When using crutches during stance, the crutches will put a position constraint on the shoulder, thus reducing the number of degrees of freedom. Additional hip-joint stiffness was applied to stabilize the hip joint and, therefore, to stabilize stance. The required hip-joint stiffness for changing crutch placement and hip-joint offset angle was studied under static and dynamic conditions. Modeling results indicate that, by using additional hip-joint stiffness, stable crutch supported paraplegic standing can be achieved, both under static as well as dynamic situations. The static equilibrium postures and the stability under perturbations were calculated to be dependent on crutch placement and stiffness applied. However, postures in which the hip joint was in extension (C postures) appeared to the most stable postures. Applying at least 60 N x m/rad hip-joint stiffness gave stable equilibrium postures in all cases. Choosing appropriate hip-joint offset angles, the static equilibrium postures changed to more erect postures, without causing instability or excessive arm forces to occur.
Ruffieux, Jan; Mouthon, Audrey; Keller, Martin; Mouthon, Michaël; Annoni, Jean-Marie; Taube, Wolfgang
2018-01-01
Aging is associated with a shift from an automatic to a more cortical postural control strategy, which goes along with deteriorations in postural stability. Although balance training has been shown to effectively counteract these behavioral deteriorations, little is known about the effect of balance training on brain activity during postural tasks in older adults. We, therefore, assessed postural stability and brain activity using fMRI during motor imagery alone (MI) and in combination with action observation (AO; i.e., AO+MI) of a challenging balance task in older adults before and after 5 weeks of balance training. Results showed a nonsignificant trend toward improvements in postural stability after balance training, accompanied by reductions in brain activity during AO+MI of the balance task in areas relevant for postural control, which have been shown to be over-activated in older adults during (simulation of) motor performance, including motor, premotor, and multisensory vestibular areas. This suggests that balance training may reverse the age-related cortical over-activations and lead to changes in the control of upright posture toward the one observed in young adults.
Relationship between craniomandibular disorders and poor posture.
Nicolakis, P; Nicolakis, M; Piehslinger, E; Ebenbichler, G; Vachuda, M; Kirtley, C; Fialka-Moser, V
2000-04-01
The purpose of this research was to show that a relationship between craniomandibular disorders (CMD) and postural abnormalities has been repeatedly postulated, but still remains unproven. This study was intended to test this hypothesis. Twenty-five CMD patients (mean age 28.2 years) were compared with 25 gender and age matched controls (mean age 28.3 years) in a controlled, investigator-blinded trial. Twelve postural and ten muscle function parameters were examined. Measurements were separated into three subgroups, consisting of those variables associated with the cervical region, the trunk in the frontal plane, and the trunk in the sagittal plane. Within these subgroups, there was significantly more dysfunction in the patients, compared to control subjects (Mann-Whitney U test p < 0.001, p < 0.05, p < 0.01). Postural and muscle function abnormalities appeared to be more common in the CMD group. Since there is evidence of the mutual influence of posture and the craniomandibular system, control of body posture in CMD patients is recommended, especially if they do not respond to splint therapy. Whether poor posture is the reason or the result of CMD cannot be distinguished by the data presented here.
"Stand up straight": notes toward a history of posture.
Gilman, Sander L
2014-03-01
The essay presents a set of interlinked claims about posture in modern culture. Over the past two centuries it has come to define a wide range of assumptions in the West from what makes human beings human (from Lamarck to Darwin and beyond) to the efficacy of the body in warfare (from Dutch drill manuals in the 17th century to German military medical studies of soldiers in the 19th century). Dance and sport both are forms of posture training in terms of their own claims. Posture separates 'primitive' from 'advanced' peoples and the 'ill' from the 'healthy.' Indeed an entire medical sub-specialty developed in which gymnastics defined and recuperated the body. But all of these claims were also part of a Western attempt to use posture (and the means of altering it) as the litmus test for the healthy modern body of the perfect citizen. Focusing on the centrality of posture in two oddly linked moments of modern thought--modern Zionist thought and Nationalism in early 20th century China--in terms of bodily reform, we show how "posture" brings all of the earlier debates together to reform the body.
9 CFR 3.80 - Primary enclosures.
Code of Federal Regulations, 2010 CFR
2010-01-01
... injuring themselves; and (xi) Provide sufficient space for the nonhuman primates to make normal postural... maintained so as to provide sufficient space to allow each nonhuman primate to make normal postural... postural adjustments and movements within the primary enclosure. Different species of prosimians vary in...
Hsia, C C; Liou, K J; Aung, A P W; Foo, V; Huang, W; Biswas, J
2009-01-01
Pressure ulcers are common problems for bedridden patients. Caregivers need to reposition the sleeping posture of a patient every two hours in order to reduce the risk of getting ulcers. This study presents the use of Kurtosis and skewness estimation, principal component analysis (PCA) and support vector machines (SVMs) for sleeping posture classification using cost-effective pressure sensitive mattress that can help caregivers to make correct sleeping posture changes for the prevention of pressure ulcers.
Automatic recognition of postural allocations.
Sazonov, Edward; Krishnamurthy, Vidya; Makeyev, Oleksandr; Browning, Ray; Schutz, Yves; Hill, James
2007-01-01
A significant part of daily energy expenditure may be attributed to non-exercise activity thermogenesis and exercise activity thermogenesis. Automatic recognition of postural allocations such as standing or sitting can be used in behavioral modification programs aimed at minimizing static postures. In this paper we propose a shoe-based device and related pattern recognition methodology for recognition of postural allocations. Inexpensive technology allows implementation of this methodology as a part of footwear. The experimental results suggest high efficiency and reliability of the proposed approach.
Influence of dental occlusion on postural control and plantar pressure distribution.
Scharnweber, Benjamin; Adjami, Frederic; Schuster, Gabriele; Kopp, Stefan; Natrup, Jörg; Erbe, Christina; Ohlendorf, Daniela
2017-11-01
The number of studies investigating correlations between the temporomandibular system and body posture, postural control or plantar pressure distribution is continuously increasing. If a connection can be found, it is often of minor influence or for only a single parameter. However, small subject groups are critical. This study was conducted to define correlations between dental parameters, postural control and plantar pressure distribution in healthy males. In this study, 87 male subjects with an average age of 25.23 ± 3.5 years (ranging from 18 to 35 years) were examined. Dental casts of the subjects were analyzed. Postural control and plantar pressure distribution were recorded by a force platform. Possible orthodontic and orthopedic factors of influence were determined by either an anamnesis or a questionnaire. All tests performed were randomized and repeated three times each for intercuspal position (ICP) and blocked occlusion (BO). For a statistical analysis of the results, non-parametric tests (Wilcoxon-Matched-Pairs-Test, Kruskall-Wallis-Test) were used. A revision of the results via Bonferroni-Holm correction was considered. ICP increases body sway in the frontal (p ≤ 0.01) and sagittal planes (p ≤ 0.03) compared to BO, whereas all other 29 correlations were independent of the occlusion position. For both of the ICP or BO cases, Angle-class, midline-displacement, crossbite, or orthodontic therapy were found to have no influence on postural control or plantar pressure distribution (p > 0.05). However, the contact time of the left foot decreased (p ≤ 0.001) while detecting the plantar pressure distribution in each position. Persistent dental parameters have no effect on postural sway. In addition, postural control and plantar pressure distribution have been found to be independent postural criteria.
Tai Chi training reduced coupling between respiration and postural control
Holmes, Matthew L; Manor, Brad; Hsieh, Wan-hsin; Hu, Kun; Lipsitz, Lewis A; Li, Li
2015-01-01
In order to maintain stable upright stance, the postural control system must account for the continuous perturbations to the body’s center-of-mass including those caused by spontaneous respiration. Both aging and disease increase “posturo-respiratory synchronization;” which reflects the degree to which respiration affects postural sway fluctuations over time. Tai Chi training emphasizes the coordination of respiration and bodily movements and may therefore optimize the functional interaction between these two systems. The purpose of the project was to examine the effect of Tai Chi training on the interaction between respiration and postural control in older adults. We hypothesized that Tai Chi training would improve the ability of the postural control system to compensate for respiratory perturbations and thus, reduce posturo-respiratory synchronization. Participants were recruited from supportive housing facilities and randomized to a 12-week Tai Chi intervention (n=28; 86±5yrs) or educational-control program (n=34, 85±6yrs). Standing postural sway and respiration were simultaneously recorded with a force plate and respiratory belt under eyes-open and eyes-closed conditions. Posturo-respiratory synchronization was determined by quantifying the variation of the phase relationship between the dominant oscillatory mode of respiration and corresponding oscillations within postural sway. Groups were similar in age, gender distribution, height, body mass, and intervention compliance. Neither intervention altered average sway speed, sway magnitude or respiratory rate. As compared to the education-control group, however, Tai Chi training reduced posturo-respiratory synchronization when standing with eyes open or closed (p<0.001). Tai Chi training did not affect traditional parameters of standing postural control or respiration, yet reduced the coupling between respiration and postural control. The beneficial effects of Tai Chi training may therefore stem in part from optimization of this multi-system interaction. PMID:26518241
Hadadi, Mohammad; Ebrahimi, Ismaeil; Mousavi, Mohammad Ebrahim; Aminian, Gholamreza; Esteki, Ali; Rahgozar, Mehdi
2017-02-01
Chronic ankle instability is associated with neuromechanical changes and poor postural stability. Despite variety of mechanisms of foot and ankle orthoses, almost none apply comprehensive mechanisms to improve postural control in all subgroups of chronic ankle instability patients. The purpose of this study was to investigate the effect of an ankle support implementing combined mechanisms to improve postural control in chronic ankle instability patients. Cross-sectional study. An ankle support with combined mechanism was designed based on most effective action mechanisms of foot and ankle orthoses. The effect of this orthosis on postural control was evaluated in 20 participants with chronic ankle instability and 20 matched healthy participants. The single-limb stance balance test was measured in both groups with and without the new orthosis using a force platform. The results showed that application of combined mechanism ankle support significantly improved all postural sway parameters in chronic ankle instability patients. There were no differences in means of investigated parameters with and without the orthosis in the healthy group. No statistically significant differences were found in postural sway between chronic ankle instability patients and healthy participants after applying the combined mechanism ankle support. The combined mechanism ankle support is effective in improving static postural control of chronic ankle instability patients to close to the postural sway of healthy individual. the orthosis had no adverse effects on balance performance of healthy individuals. Clinical relevance Application of the combined mechanism ankle support for patients with chronic ankle instability is effective in improving static balance. This may be helpful in reduction of recurrence of ankle sprain although further research about dynamic conditions is needed.
Rugless, Fedoria; Bhattacharya, Amit; Succop, Paul; Dietrich, Kim N.; Cox, Cyndy; Alden, Jody; Kuhnell, Pierce; Barnas, Mary; Wright, Robert; Parsons, Patrick J.; Praamsma, Meredith L.; Palmer, Christopher D.; Beidler, Caroline; Wittberg, Richard; Haynes, Erin N.
2014-01-01
Airborne manganese (Mn) exposure can result in neurotoxicity and postural instability in occupationally exposed workers, yet few studies have explored the association ambient exposure to Mn in children and postural stability. The goal of this study was to determine the association between Mn and lead (Pb) exposure, as measured by blood Pb, blood and hair Mn and time weighted distance (TWD) from a ferromanganese refinery, and postural stability in children. A subset of children ages 7–9 years enrolled in the Marietta Community Actively Researching Exposure Study (CARES) were invited to participate. Postural balance was conducted on 55 children residing in Marietta, Ohio and the surrounding area. Samples of blood were collected and analyzed for Mn and Pb, and samples of hair were analyzed for Mn. Neuromotor performance was assessed using postural balance testing with a computer force platform system. Pearson correlations were calculated to identify key covariates. Associations between postural balance testing conditions and Mn and Pb exposure were estimated with linear regression analyses adjusting for gender, age, parent IQ, parent age. Mean blood Mn was 10 μg/L (SEM=0.36), mean blood Pb was 0.85 μg/dL (SEM=0.05), and mean hair Mn was 0.76 μg/g (SEM=0.16). Mean residential distance from the refinery was 11.5 km (SEM=0.46). All three measures of Mn exposure were significantly associated with poor postural balance. In addition, low-level blood Pb was also negatively associated with balance outcomes. We conclude that Mn exposure and low-level blood Pb are significantly associated with poor postural balance. PMID:24370548
NASA Astrophysics Data System (ADS)
Galeano, D. C.; Santos, W. S.; Alves, M. C.; Souza, D. N.; Carvalho, A. B.
2016-04-01
The aim of this work was to modify the standing posture of the anthropomorphic reference phantoms of ICRP publication 110, AM (Adult Male) and AF (Adult Female), to the sitting posture. The change of posture was performed using the Visual Monte Carlo software (VMC) to rotate the thigh region of the phantoms and position it between the region of the leg and trunk. Scion Image software was used to reconstruct and smooth the knee and hip contours of the phantoms in a sitting posture. For 3D visualization of phantoms, the VolView software was used. In the change of postures, the organ and tissue masses were preserved. The MCNPX was used to calculate the equivalent and effective dose conversion coefficients (CCs) per fluence for photons for six irradiation geometries suggested by ICRP publication 110 (AP, PA, RLAT, LLAT, ROT and ISO) and energy range 0.010-10 MeV. The results were compared between the standing and sitting postures, for both sexes, in order to evaluate the differences of scattering and absorption of radiation for different postures. Significant differences in the CCs for equivalent dose were observed in the gonads, colon, prostate, urinary bladder and uterus, which are present in the pelvic region, and in organs distributed throughout the body, such as the lymphatic nodes, muscle, skeleton and skin, for the phantoms of both sexes. CCs for effective dose showed significant differences of up to 16% in the AP irradiation geometry, 27% in the PA irradiation geometry and 13% in the ROT irradiation geometry. These results demonstrate the importance of using phantoms in different postures in order to obtain more precise conversion coefficients for a given exposure scenario.
Feigenbaum, Luis A; Roach, Kathryn E; Kaplan, Lee D; Lesniak, Bryson; Cunningham, Sean
2013-11-01
Case-control. The specific aim of this study was to examine the association between abnormal foot arch postures and a history of shoulder or elbow surgery in baseball pitchers. Pitching a baseball generates forces throughout the musculoskeletal structures of the upper and lower limbs. Structures such as the longitudinal arch of the foot are adaptable to stresses over time. Repeated pitching-related stresses may contribute to acquiring abnormal foot arch postures. Inversely, congenitally abnormal foot arch posture may lead to altered stresses of the upper limb during pitching. A convenience sample of 77 pitchers was recruited from a Division I university team and a professional baseball franchise. Subjects who had a history of shoulder or elbow surgery to the pitching arm were classified as cases. Subjects who met the criteria for classification of pes planus or pes cavus based on longitudinal arch angle were classified as having abnormal foot arch posture. Odds ratios were calculated to examine the association between abnormal foot arch posture and pitching-arm injury requiring surgery. Twenty-three subjects were classified as cases. The odds of being a case were 3.4 (95% confidence interval: 1.2, 9.6; P = .02) times greater for subjects with abnormal foot arch posture and 2.9 (95% confidence interval: 1.0, 8.1; P = .04) times greater for subjects with abnormal foot posture on the lunge leg. Abnormal foot arch posture and a surgical history in the pitching shoulder or elbow may be associated. Because the foot and its arches are adaptable and change over time, the pathomechanics of this association should be further explored.
Increased dynamic regulation of postural tone through Alexander Technique training
Cacciatore, TW; Gurfinkel, VS; Horak, FB; Cordo, PJ; Ames, KE
2010-01-01
Gurfinkel and colleagues (2006) recently found that healthy adults dynamically modulate postural muscle tone in the body axis during anti-gravity postural maintenance and that this modulation is inversely correlated with axial stiffness. Our objective in the present study was to investigate whether dynamic modulation of axial postural tone can change through training. We examined whether teachers of the Alexander Technique (AT), who undergo “long-term” (3-year) training, have greater modulation of axial postural tone than matched control subjects. In addition, we performed a longitudinal study on the effect of “short-term” (10-week) AT training on the axial postural tone of individuals with low back pain (LBP), since short term AT training has previously been shown to reduce LBP. Axial postural tone was quantified by measuring the resistance of the neck, trunk and hips to small (±10°), slow (1°/s) torsional rotation during stance. Modulation of tone was determined by the torsional resistance to rotation (peak-to-peak, phase-advance, and variability of torque) and axial muscle activity (EMG). Peak-to-peak torque was lower (~50%), while phase-advance and cycle-to-cycle variability were enhanced for AT teachers compared to matched control subjects at all levels of the axis. In addition, LBP subjects decreased trunk and hip stiffness following short-term AT training compared to a control intervention. While changes in static levels of postural tone may have contributed to the reduced stiffness observed with the AT, our results suggest that dynamic modulation of postural tone can be enhanced through long-term training in the AT, which may constitute an important direction for therapeutic intervention. PMID:21185100
Increased dynamic regulation of postural tone through Alexander Technique training.
Cacciatore, T W; Gurfinkel, V S; Horak, F B; Cordo, P J; Ames, K E
2011-02-01
Gurfinkel and colleagues (2006) recently found that healthy adults dynamically modulate postural muscle tone in the body axis during anti-gravity postural maintenance and that this modulation is inversely correlated with axial stiffness. Our objective in the present study was to investigate whether dynamic modulation of axial postural tone can change through training. We examined whether teachers of the Alexander Technique (AT), who undergo "long-term" (3-year) training, have greater modulation of axial postural tone than matched control subjects. In addition, we performed a longitudinal study on the effect of "short-term" (10-week) AT training on the axial postural tone of individuals with low back pain (LBP), since short term AT training has previously been shown to reduce LBP. Axial postural tone was quantified by measuring the resistance of the neck, trunk and hips to small (±10°), slow (1°/s) torsional rotation during stance. Modulation of tone was determined by the torsional resistance to rotation (peak-to-peak, phase-advance, and variability of torque) and axial muscle activity (EMG). Peak-to-peak torque was lower (∼50%), while phase-advance and cycle-to-cycle variability were enhanced for AT teachers compared to matched control subjects at all levels of the axis. In addition, LBP subjects decreased trunk and hip stiffness following short-term AT training compared to a control intervention. While changes in static levels of postural tone may have contributed to the reduced stiffness observed with the AT, our results suggest that dynamic modulation of postural tone can be enhanced through long-term training in the AT, which may constitute an important direction for therapeutic intervention. Copyright © 2010 Elsevier B.V. All rights reserved.
Balance ability and posture in postmenopausal women with chronic pelvic pain.
Fuentes-Márquez, Pedro; Rodríguez-Torres, Janet R; Valenza, Marie C; Ortíz-Rubio, Araceli; Ariza-Mateos, María J; Cabrera-Martos, Irene
2018-04-09
The aim of the present study was to analyze balance ability and posture in postmenopausal women with chronic pelvic pain (CPP). This study includes a sample of 48 women with CPP recruited from the Gynecology Service of Virgen de las Nieves and San Cecilio Hospitals in Granada (Spain) and 48 healthy control women matched with respect to age and anthropometric characteristics. Outcome variables collected included: balance ability (Mini-Balance Evaluation Systems Test and Timed Up an Go Test) and posture (photogrammetry and Spinal Mouse). Significant differences were found in all Mini Best Test subscales: total (P < 0.001), anticipatory (P = 0.002), reactive postural control (P < 0.001), sensory orientation (P < 0.001), and dynamic gait (P < 0.001), and all Timed Up and Go test subscales: alone (P < 0.001), with manual (P = 0.002) and cognitive task (P = 0.030). Significant differences were also found on spinal cervical angles with a forward head posture in women with CPP; global spine alignment exhibited more deviation in the women with CPP (P < 0.001); and a higher percentage of women with CPP (58%) presented with increased thoracic kyphosis and lumbar lordosis. Cohen's d was used to calculate the effect size. Some subscales of balance and posture tests showed a large effect size (d ≥0.8), indicating a more consistent result. Women with CPP presented poor balance including anticipatory, reactive postural control, sensory orientation, dynamic gait, and dual task-related conditions. Posture showed higher values on the dorsal angle and lower sacral inclination, less spine alignment, and a more prevalent posture with increased kyphosis and lumbar lordosis.
Weaver, Tyler B; Glinka, Michal N; Laing, Andrew C
2014-11-07
Currently, it is unknown whether the inverted pendulum model is applicable to stooping or crouching postures. Therefore, the aim of this study was to determine the degree of applicability of the inverted pendulum model to these postures, via examination of the relationship between the centre of mass (COM) acceleration and centre of pressure (COP)-COM difference. Ten young adults held static standing, stooping and crouching postures, each for 20s. For both the anterior-posterior (AP) and medio-lateral (ML) directions, the time-varying COM acceleration and the COP-COM were computed, and the relationship between these two variables was determined using Pearson's correlation coefficients. Additionally, in both directions, the average absolute COM acceleration, average absolute COP-COM signal, and the inertial component (i.e., -I/Wh) were compared across postures. Pearson correlation coefficients revealed a significant negative relationship between the COM acceleration and COP-COM signal for all comparisons, regardless of the direction (p<0.001). While no effect of posture was observed in the AP direction (p=0.463), in the ML direction, the correlation coefficients for stooping were different (i.e., stronger) than standing (p=0.008). Regardless of direction, the average absolute COM acceleration for both the stooping and crouching postures was greater than standing (p<0.002). The high correlations indicate that the inverted pendulum model is applicable to stooping and crouching postures. Due to their importance in completing activities of daily living, there is merit in determining what type of motor strategies are used to control such postures and whether these strategies change with age. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
Return of Postural Control to Baseline After Anaerobic and Aerobic Exercise Protocols
Fox, Zachary G; Mihalik, Jason P; Blackburn, J Troy; Battaglini, Claudio L; Guskiewicz, Kevin M
2008-01-01
Context: With regard to sideline concussion testing, the effect of fatigue associated with different types of exercise on postural control is unknown. Objective: To evaluate the effects of fatigue on postural control in healthy college-aged athletes performing anaerobic and aerobic exercise protocols and to establish an immediate recovery time course from each exercise protocol for postural control measures to return to baseline status. Design: Counterbalanced, repeated measures. Setting: Research laboratory. Patients Or Other Participants: Thirty-six collegiate athletes (18 males, 18 females; age = 19.00 ± 1.01 years, height = 172.44 ± 10.47 cm, mass = 69.72 ± 12.84 kg). Intervention(s): Participants completed 2 counterbalanced sessions within 7 days. Each session consisted of 1 exercise protocol followed by postexercise measures of postural control taken at 3-, 8-, 13-, and 18-minute time intervals. Baseline measures were established during the first session, before the specified exertion protocol was performed. Main Outcome Measure(s): Balance Error Scoring System (BESS) results, sway velocity, and elliptical sway area. Results: We found a decrease in postural control after each exercise protocol for all dependent measures. An interaction was noted between exercise protocol and time for total BESS score (P = .002). For both exercise protocols, all measures of postural control returned to baseline within 13 minutes. Conclusions: Postural control was negatively affected after anaerobic and aerobic exercise protocols as measured by total BESS score, elliptical sway area, and sway velocity. The effect of exertion lasted up to 13 minutes after each exercise was completed. Certified athletic trainers and clinicians should be aware of these effects and their recovery time course when determining an appropriate time to administer sideline assessments of postural control after a suspected mild traumatic brain injury. PMID:18833307
Return of postural control to baseline after anaerobic and aerobic exercise protocols.
Fox, Zachary G; Mihalik, Jason P; Blackburn, J Troy; Battaglini, Claudio L; Guskiewicz, Kevin M
2008-01-01
With regard to sideline concussion testing, the effect of fatigue associated with different types of exercise on postural control is unknown. To evaluate the effects of fatigue on postural control in healthy college-aged athletes performing anaerobic and aerobic exercise protocols and to establish an immediate recovery time course from each exercise protocol for postural control measures to return to baseline status. Counterbalanced, repeated measures. Research laboratory. Thirty-six collegiate athletes (18 males, 18 females; age = 19.00 +/- 1.01 years, height = 172.44 +/- 10.47 cm, mass = 69.72 +/- 12.84 kg). Participants completed 2 counterbalanced sessions within 7 days. Each session consisted of 1 exercise protocol followed by postexercise measures of postural control taken at 3-, 8-, 13-, and 18-minute time intervals. Baseline measures were established during the first session, before the specified exertion protocol was performed. Balance Error Scoring System (BESS) results, sway velocity, and elliptical sway area. We found a decrease in postural control after each exercise protocol for all dependent measures. An interaction was noted between exercise protocol and time for total BESS score (P = .002). For both exercise protocols, all measures of postural control returned to baseline within 13 minutes. Postural control was negatively affected after anaerobic and aerobic exercise protocols as measured by total BESS score, elliptical sway area, and sway velocity. The effect of exertion lasted up to 13 minutes after each exercise was completed. Certified athletic trainers and clinicians should be aware of these effects and their recovery time course when determining an appropriate time to administer sideline assessments of postural control after a suspected mild traumatic brain injury.
Postural control and balance self-efficacy in women with fibromyalgia: are there differences?
Muto, L H A; Sauer, J F; Yuan, S L K; Sousa, A; Mango, P C; Marques, A P
2015-04-01
Fibromyalgia (FM) is a rheumatic disease characterized by chronic widespread pain and symptoms such as fatigue, sleep disturbances, cognitive difficulties, and depression. Postural instability is a debilitating disorder increasingly recognized as part of FM. To assess and compare postural control and balance self-efficacy in women with and without FM and verify the association of these variables with pain, symptom severity, and strength. Case-control study Physiotherapeutic Clinical Research and Electromyography Laboratory Department of Physical Therapy, Speech Therapy, and Occupational Therapy, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil. Case-control study of 117 women ranging from age 35 to 60 years. Of these, 67 had FM. Posture control was assessed with the modified clinical test of sensory interaction on balance with patients in forceplates, balance self-efficacy with the Activities-specific Balance Confidence Scale, pain severity with the Visual Analog Scale, tender point pain threshold with digital algometry, symptom severity with the fibromyalgia impact questionnaire, and lower limb strength with a dynamometer. Individuals with FM had impaired postural control showing increased speed of oscillation of the center of gravity (P=0.004) and decreased balance self-efficacy (P<0.001). They had moderate to excellent correlations of balance self-efficacy with pain (r=0.7, P<0.01), muscle strength (r=0.52, P<0.01), and symptom severity (r=0.78, P<0.10) compared with the control group. Correlation of postural control with the same variables was weak. Patients with FM have impaired postural control and low balance self-efficacy that are associated with pain, muscle strength, and symptom severity. Postural control and balance self-efficacy needs to be assessed in patients with FM and the treatment goals should be the improvement of postural control and balance self-efficacy.
Wikstrom, Erik A; Song, Kyeongtak; Lea, Ashley; Brown, Nastassia
2017-07-01
One of the major concerns after an acute lateral ankle sprain is the potential for development of chronic ankle instability (CAI). The existing research has determined that clinician-delivered plantar massage improves postural control in those with CAI. However, the effectiveness of self-administered treatments and the underlying cause of any improvements remain unclear. To determine (1) the effectiveness of a self-administered plantar-massage treatment in those with CAI and (2) whether the postural-control improvements were due to the stimulation of the plantar cutaneous receptors. Crossover study. University setting. A total of 20 physically active individuals (6 men and 14 women) with self-reported CAI. All participants completed 3 test sessions involving 3 treatments: a clinician-delivered manual plantar massage, a patient-delivered self-massage with a ball, and a clinician-delivered sensory brush massage. Postural control was assessed using single-legged balance with eyes open and the Star Excursion Balance Test. Static postural control improved (P ≤ .014) after each of the interventions. However, no changes in dynamic postural control after any of the interventions were observed (P > .05). No differences were observed between a clinician-delivered manual plantar massage and either a patient-delivered self-massage with a ball or a clinician-delivered sensory brush massage in any postural-control outcome. In those with CAI, single 5-minute sessions of traditional plantar massage, self-administered massage, and sensory brush massage each resulted in comparable static postural-control improvements. The results also provide empirical evidence suggesting that the mechanism for the postural-control improvements is the stimulation of the plantar cutaneous receptors.
Agmon, Maayan; Belza, Basia; Nguyen, Huong Q; Logsdon, Rebecca G; Kelly, Valerie E
2014-01-01
Background Injury due to falls is a major problem among older adults. Decrements in dual-task postural control performance (simultaneously performing two tasks, at least one of which requires postural control) have been associated with an increased risk of falling. Evidence-based interventions that can be used in clinical or community settings to improve dual-task postural control may help to reduce this risk. Purpose The aims of this systematic review are: 1) to identify clinical or community-based interventions that improved dual-task postural control among older adults; and 2) to identify the key elements of those interventions. Data sources Studies were obtained from a search conducted through October 2013 of the following electronic databases: PubMed, CINAHL, PsycINFO, and Web of Science. Study selection Randomized and nonrandomized controlled studies examining the effects of interventions aimed at improving dual-task postural control among community-dwelling older adults were selected. Data extraction All studies were evaluated based on methodological quality. Intervention characteristics including study purpose, study design, and sample size were identified, and effects of dual-task interventions on various postural control and cognitive outcomes were noted. Data synthesis Twenty-two studies fulfilled the selection criteria and were summarized in this review to identify characteristics of successful interventions. Limitations The ability to synthesize data was limited by the heterogeneity in participant characteristics, study designs, and outcome measures. Conclusion Dual-task postural control can be modified by specific training. There was little evidence that single-task training transferred to dual-task postural control performance. Further investigation of dual-task training using standardized outcome measurements is needed. PMID:24741296
Visser, R; van der Palen, J; de Jongh, F H C; Thio, B J
2015-04-01
Pulmonary medication is mostly delivered in the form of medical aerosols to minimize systemic side effects. A major drawback of inhaled medication is that the majority of inhaled particles impacts in the oropharynx at the sharp bend of the airway. Stretching the airway by a forward leaning body posture with the neck extended ("sniffing position") may improve pulmonary deposition and clinical effects. 41 asthmatic children who were planned for standard reversibility testing at the pulmonary function lab, alternately inhaled 200 μgr salbutamol with an Autohaler(®) in the standard or in the forward leaning body posture. Forced Expiratory Volume in 1 s (FEV1), Forced Vital Capacity (FVC), Peak Expiratory Flow (PEF), Mean Expiratory Flow at 25% of vital capacity (MEF25) and Mean Expiratory Flow at 75% of vital capacity (MEF75) were analysed. The children in the forward leaning body posture group showed a significantly higher mean FEV1 reversibility than the control group after inhalation of 200 μgr salbutamol (10.2% versus 4.1%, p = 0.019). Additionally, mean MEF75 was significantly more reversible in the forward leaning body posture group versus the standard body posture group (32.2% resp. 8.9%, p = 0.013). This pilot study showed a higher reversibility of FEV1 and MEF75 after inhaling salbutamol in a forward leaning body posture compared to the standard body posture in asthmatic children. This suggests that pulmonary effects of salbutamol can be improved by inhaling in a forward leaning body posture with the neck extended. This effect is possibly due to a higher pulmonary deposition of salbutamol and should be confirmed in a randomized controlled trial. Copyright © 2015 Elsevier Ltd. All rights reserved.
Development of anticipatory postural adjustments during locomotion in children.
Hirschfeld, H; Forssberg, H
1992-08-01
1. Anticipatory postural adjustments were studied in children (6-14 yr of age) walking on a treadmill while pulling a handle. Electromyographs (EMGs) and movements were recorded from the left arm and leg. 2. Postural activity in the leg muscles preceded voluntary arm muscle activity in all age groups, including the youngest children (6 yr of age). The latency to both leg and arm muscle activity, from a triggering audio signal, decreased with age. 3. In older children the latency to both voluntary and postural activity was influenced by the phase of the step cycle. The shortest latency to the first activated postural muscle occurred during single support phase in combination with a long latency to arm muscle activity. 4. In the youngest children, there was no phase-dependent modulation of the latency to the activation of the postural muscles. The voluntary activity was delayed during the beginning of the support phase resulting in a long delay between leg and arm muscle activity. 5. The postural muscle activation pattern was modified in a phase-dependent manner in all children. Lateral gastrocnemius (LG) and hamstring muscles (HAM) were activated during the early support phase, whereas tibialis anterior (TA) and quadriceps (Q) muscles were activated during the late support phase and during the swing phase. However, in the 6-yr-old children, LG was also activated in the swing phase. LG was activated before the HAM activity in the youngest children but after HAM in 14-yr-old children and adults. 6. The occurrence of LG activity in postural responses before heel strike suggests an immature (nonplantigrade) gating of postural activity.(ABSTRACT TRUNCATED AT 250 WORDS)
Contributions of foot muscles and plantar fascia morphology to foot posture.
Angin, Salih; Mickle, Karen J; Nester, Christopher J
2018-03-01
The plantar foot muscles and plantar fascia differ between different foot postures. However, how each individual plantar structure contribute to foot posture has not been explored. The purpose of this study was to investigate the associations between static foot posture and morphology of plantar foot muscles and plantar fascia and thus the contributions of these structures to static foot posture. A total of 111 participants were recruited, 43 were classified as having pes planus and 68 as having normal foot posture using Foot Posture Index assessment tool. Images from the flexor digitorum longus (FDL), flexor hallucis longus (FHL), peroneus longus and brevis (PER), flexor hallucis brevis (FHB), flexor digitorum brevis (FDB) and abductor hallucis (AbH) muscles, and the calcaneal (PF1), middle (PF2) and metatarsal (PF3) regions of the plantar fascia were obtained using a Venue 40 ultrasound system with a 5-13 MHz transducer. In order of decreasing contribution, PF3 > FHB > FHL > PER > FDB were all associated with FPI and able to explain 69% of the change in FPI scores. PF3 was the highest contributor explaining 52% of increases in FPI score. Decreased thickness was associated with increased FPI score. Smaller cross sectional area (CSA) in FHB and PER muscles explained 20% and 8% of increase in FPI score. Larger CSA of FDB and FHL muscles explained 4% and 14% increase in FPI score respectively. The medial plantar structures and the plantar fascia appear to be the major contributors to static foot posture. Elucidating the individual contribution of multiple muscles of the foot could provide insight about their role in the foot posture. Copyright © 2018. Published by Elsevier B.V.
Hwang, Ing-Shiou; Huang, Cheng-Ya
2016-01-01
With appropriate reallocation of central resources, the ability to maintain an erect posture is not necessarily degraded by a concurrent motor task. This study investigated the neural control of a particular postural-suprapostural procedure involving brain mechanisms to solve crosstalk between posture and motor subtasks. Participants completed a single posture task and a dual-task while concurrently conducting force-matching and maintaining a tilted stabilometer stance at a target angle. Stabilometer movements and event-related potentials (ERPs) were recorded. The added force-matching task increased the irregularity of postural response rather than the size of postural response prior to force-matching. In addition, the added force-matching task during stabilometer stance led to marked topographic ERP modulation, with greater P2 positivity in the frontal and sensorimotor-parietal areas of the N1-P2 transitional phase and in the sensorimotor-parietal area of the late P2 phase. The time-frequency distribution of the ERP primary principal component revealed that the dual-task condition manifested more pronounced delta (1–4 Hz) and beta (13–35 Hz) synchronizations but suppressed theta activity (4–8 Hz) before force-matching. The dual-task condition also manifested coherent fronto-parietal delta activity in the P2 period. In addition to a decrease in postural regularity, this study reveals spatio-temporal and temporal-spectral reorganizations of ERPs in the fronto-sensorimotor-parietal network due to the added suprapostural motor task. For a particular set of postural-suprapostural task, the behavior and neural data suggest a facilitatory role of autonomous postural response and central resource expansion with increasing interregional interactions for task-shift and planning the motor-suprapostural task. PMID:27010634
Static Postural Control in Youth With Osteogenesis Imperfecta Type I.
Pouliot-Laforte, Annie; Lemay, Martin; Rauch, Frank; Veilleux, Louis-Nicolas
2017-10-01
To assess static postural control in eyes-open and eyes-closed conditions in individuals with osteogenesis imperfecta (OI) type I as compared with typically developing (TD) individuals and to explore the relation between postural control and lower limb muscle function. Cross-sectional study. Outpatient department of a pediatric orthopedic hospital. A convenience sample (N=38) of individuals with OI type I (n=22; mean age, 13.1y; range, 6-21y) and TD individuals (n=16; mean age, 13.1y; range, 6-20y) was selected. Participants were eligible if they were between 6 and 21 years and if they did not have any fracture or surgery in the lower limb in the 12 months before testing. Not applicable. Postural control was assessed through static balance tests and muscle function through mechanographic tests on a force platform. Selected postural parameters were path length, velocity, 90% confidence ellipse area, and the ellipse's length of the mediolateral and anteroposterior axes. Mechanographic parameters were peak force and peak power as measured using the multiple two-legged hopping and the single two-legged jump test, respectively. Individuals with OI type I had poorer postural control than did TD individuals as indicated by longer and faster displacements and a larger ellipse area. Muscle function was unrelated to postural control in the OI group. Removing visual information resulted in a larger increase in postural control parameters in the OI group than in the TD group. A proprioceptive deficit could explain poorer postural control in individuals with OI type I. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Pain relief is associated with decreasing postural sway in patients with non-specific low back pain.
Ruhe, Alexander; Fejer, René; Walker, Bruce
2012-03-21
Increased postural sway is well documented in patients suffering from non-specific low back pain, whereby a linear relationship between higher pain intensities and increasing postural sway has been described. No investigation has been conducted to evaluate whether this relationship is maintained if pain levels change in adults with non-specific low back pain. Thirty-eight patients with non-specific low back pain and a matching number of healthy controls were enrolled. Postural sway was measured by three identical static bipedal standing tasks of 90 sec duration with eyes closed in narrow stance on a firm surface. The perceived pain intensity was assessed by a numeric rating scale (NRS-11). The patients received three manual interventions (e.g. manipulation, mobilization or soft tissue techniques) at 3-4 day intervals, postural sway measures were obtained at each occasion. A clinically relevant decrease of four NRS scores in associated with manual interventions correlated with a significant decrease in postural sway. In contrast, if no clinically relevant change in intensity occurred (≤ 1 level), postural sway remained similar compared to baseline. The postural sway measures obtained at follow-up sessions 2 and 3 associated with specific NRS level showed no significant differences compared to reference values for the same pain score. Alterations in self-reported pain intensities are closely related to changes in postural sway. The previously reported linear relationship between the two variables is maintained as pain levels change. Pain interference appears responsible for the altered sway in pain sufferers. This underlines the clinical use of sway measures as an objective monitoring tool during treatment or rehabilitation.
An investigation of rugby scrimmaging posture and individual maximum pushing force.
Wu, Wen-Lan; Chang, Jyh-Jong; Wu, Jia-Hroung; Guo, Lan-Yuen
2007-02-01
Although rugby is a popular contact sport and the isokinetic muscle torque assessment has recently found widespread application in the field of sports medicine, little research has examined the factors associated with the performance of game-specific skills directly by using the isokinetic-type rugby scrimmaging machine. This study is designed to (a) measure and observe the differences in the maximum individual pushing forward force produced by scrimmaging in different body postures (3 body heights x 2 foot positions) with a self-developed rugby scrimmaging machine and (b) observe the variations in hip, knee, and ankle angles at different body postures and explore the relationship between these angle values and the individual maximum pushing force. Ten national rugby players were invited to participate in the examination. The experimental equipment included a self-developed rugby scrimmaging machine and a 3-dimensional motion analysis system. Our results showed that the foot positions (parallel and nonparallel foot positions) do not affect the maximum pushing force; however, the maximum pushing force was significantly lower in posture I (36% body height) than in posture II (38%) and posture III (40%). The maximum forward force in posture III (40% body height) was also slightly greater than for the scrum in posture II (38% body height). In addition, it was determined that hip, knee, and ankle angles under parallel feet positioning are factors that are closely negatively related in terms of affecting maximum pushing force in scrimmaging. In cross-feet postures, there was a positive correlation between individual forward force and hip angle of the rear leg. From our results, we can conclude that if the player stands in an appropriate starting position at the early stage of scrimmaging, it will benefit the forward force production.
Sparrey, Carolyn J; Bailey, Jeannie F; Safaee, Michael; Clark, Aaron J; Lafage, Virginie; Schwab, Frank; Smith, Justin S; Ames, Christopher P
2014-05-01
The goal of this review is to discuss the mechanisms of postural degeneration, particularly the loss of lumbar lordosis commonly observed in the elderly in the context of evolution, mechanical, and biological studies of the human spine and to synthesize recent research findings to clinical management of postural malalignment. Lumbar lordosis is unique to the human spine and is necessary to facilitate our upright posture. However, decreased lumbar lordosis and increased thoracic kyphosis are hallmarks of an aging human spinal column. The unique upright posture and lordotic lumbar curvature of the human spine suggest that an understanding of the evolution of the human spinal column, and the unique anatomical features that support lumbar lordosis may provide insight into spine health and degeneration. Considering evolution of the skeleton in isolation from other scientific studies provides a limited picture for clinicians. The evolution and development of human lumbar lordosis highlight the interdependence of pelvic structure and lumbar lordosis. Studies of fossils of human lineage demonstrate a convergence on the degree of lumbar lordosis and the number of lumbar vertebrae in modern Homo sapiens. Evolution and spine mechanics research show that lumbar lordosis is dictated by pelvic incidence, spinal musculature, vertebral wedging, and disc health. The evolution, mechanics, and biology research all point to the importance of spinal posture and flexibility in supporting optimal health. However, surgical management of postural deformity has focused on restoring posture at the expense of flexibility. It is possible that the need for complex and costly spinal fixation can be eliminated by developing tools for early identification of patients at risk for postural deformities through patient history (genetics, mechanics, and environmental exposure) and tracking postural changes over time.
Correlates Between Force and Postural Tremor in Older Individuals with Essential Tremor.
Kavanagh, Justin J; Keogh, Justin W L
2016-12-01
Essential tremor (ET) is commonly associated with kinetic tremor. However, other forms of tremor, such as force and postural tremor, may occur in ET with less severity. This study objectively assessed force and postural tremor characteristics in ET with the purpose of identifying the relationships between these tremors. Ten individuals with ET (age 71 ± 5 years) and ten healthy controls (age 70 ± 5 years) participated in the study. Force tremor was quantified as fluctuations in index finger abduction force during isometric contractions at 10 % maximum voluntary contraction (MVC) and 60 % MVC. Postural tremor was quantified as index finger acceleration when the subjects held their entire arm unsupported, and when their arm was supported so that only the index finger could move. Time- and frequency-domain parameters were extracted from tremor data, and then correlations within, and between, tremor subtypes were examined. ET force tremor was dependent on contraction intensity whereas postural tremor was unaffected by the level of limb support. Significant correlations existed between frequency components of postural tremor and force tremor amplitude. Force tremor amplitude normalised to the level of contraction intensity correlated to the proportion of power for postural tremor. These correlations were observed for both contraction intensities and both levels of postural support. The proportion of power represents the output of central oscillators in ET patients and therefore correlated well to force tremor. Given that significant relationships existed between spectral features of postural tremor and the overall force tremor amplitude, it is clear that these tremor modalities are not completely independent in older adults with ET.
Postural Stability in Cigarette Smokers and During Abstinence from Alcohol
Schmidt, Thomas Paul; Pennington, David Louis; Durazzo, Timothy Craig; Meyerhoff, Dieter Johannes
2014-01-01
Background Static postural instability is common in alcohol dependent individuals (ALC). Chronic alcohol consumption has deleterious effects on the neural and perceptual systems subserving postural stability. However, little is known about the effects of chronic cigarette smoking on postural stability and its changes during abstinence from alcohol. Methods A modified Fregly ataxia battery was administered to a total of 115 smoking (sALC) and non-smoking ALC (nsALC) and to 74 smoking (sCON) and non-smoking light/non-drinking controls (nsCON). Subgroups of abstinent ALC were assessed at 3 time points (approximately 1 week, 5 weeks, 34 weeks of abstinence from alcohol); a subset of nsCON was re-tested at 40 weeks. We tested if cigarette smoking affects postural stability in CON and in ALC during extended abstinence from alcohol, and we used linear mixed effects modeling to measure change across time points within ALC. Results Chronic smoking was associated with reduced performance on the Sharpened Romberg eyes-closed task in abstinent ALC at all three time points and in CON. The test performance of nsALC increased significantly between 1 and 32 weeks of abstinence, whereas the corresponding increases for sALC between 1 and 35 weeks was non-significant. With long-term abstinence from alcohol, nsALC recovered into the range of nsCON and sALC recovered into the range of sCON. Static postural stability decreased with age and correlated with smoking variables but not with drinking measures. Conclusions Chronic smoking was associated with reduced static postural stability with eyes closed and with lower increases of postural stability during abstinence from alcohol. Smoking cessation in alcohol dependence treatment may facilitate recovery from static postural instability during abstinence. PMID:24721012
Postural stability in cigarette smokers and during abstinence from alcohol.
Schmidt, Thomas P; Pennington, David L; Durazzo, Timothy C; Meyerhoff, Dieter J
2014-06-01
Static postural instability is common in alcohol-dependent individuals (ALC). Chronic alcohol consumption has deleterious effects on the neural and perceptual systems subserving postural stability. However, little is known about the effects of chronic cigarette smoking on postural stability and its changes during abstinence from alcohol. A modified Fregly ataxia battery was administered to a total of 115 smoking (sALC) and nonsmoking ALC (nsALC) and to 71 smoking (sCON) and nonsmoking light/nondrinking controls (nsCON). Subgroups of abstinent ALC were assessed at 3 time points (TPs; approximately 1, 5, 34 weeks of abstinence from alcohol); a subset of nsCON was retested at 40 weeks. We tested whether cigarette smoking affects postural stability in CON and in ALC during extended abstinence from alcohol, and we used linear mixed effects modeling to measure change across TPs within ALC. Chronic smoking was associated with reduced performance on the Sharpened Romberg eyes-closed task in abstinent ALC at all 3 TPs and in CON. The test performance of nsALC increased significantly between 1 and 32 weeks of abstinence, whereas the corresponding increases for sALC between 1 and 35 weeks were nonsignificant. With long-term abstinence from alcohol, nsALC recovered into the range of nsCON and sALC recovered into the range of sCON. Static postural stability decreased with age and correlated with smoking variables but not with drinking measures. Chronic smoking was associated with reduced static postural stability with eyes closed and with lower increases of postural stability during abstinence from alcohol. Smoking cessation in alcohol dependence treatment may facilitate recovery from static postural instability during abstinence. Copyright © 2014 by the Research Society on Alcoholism.
Maćkowiak, Zuzanna; Osiński, Wieslaw; Salamon, Artur
2015-01-01
Previous studies indicated that blind and visually impaired people are a group with greater risk of falls. Postmenopausal changes significantly decrease physical efficiency and impair the body's mechanisms for maintaining postural stability. In addition, the frequency of falls among women is much higher than in men. The aim of this study was to analyze the effect of sensorimotor exercise on changes in postural stability of visually impaired women over 50 years of age. Visually impaired women from group E showed a lower level of postural stability measured with EO compared to the healthy women. After completing the exercise, a more pronounced improvement in the level of postural stability was observed in group E.
Shih, Ching-Hsiang; Shih, Ching-Tien; Chiang, Ming-Shan
2010-01-01
This study assessed whether two persons with multiple disabilities would be able to control environmental stimulation using body swing (changing standing posture) and a Wii Balance Board with a newly developed standing posture detection program (i.e. a new software program turns a Wii Balance Board into a precise standing posture detector). The study was performed according to an ABAB design, in which A represented baseline and B represented intervention phases. Both participants significantly increased their target response (body swing) to activate the control system to produce environmental stimulation during the intervention phases. Practical and developmental implications of the findings were discussed.
Human Energy Expenditure and Postural Coordination on the Mechanical Horse.
Baillet, Héloïse; Thouvarecq, Régis; Vérin, Eric; Tourny, Claire; Benguigui, Nicolas; Komar, John; Leroy, David
2017-01-01
The authors investigated and compared the energy expenditure and postural coordination of two groups of healthy subjects on a mechanical horse at 4 increasing oscillation frequencies. Energy expenditure was assessed from the oxygen consumption, respiratory quotient, and heart rate values, and postural coordination was characterized by relative phase computations between subjects (elbow, head, trunk) and horse. The results showed that the postural coordination of the riders was better adapted (i.e., maintenance of in-phase and antiphase) than that of the nonriders, but the energy expenditure remains the same. Likewise, we observed an energy system shifting only for nonriders (from aerobic to lactic anaerobic mode). Finally, cross-correlations showed a link between energy expenditure and postural coordination in the riders (i.e., effectiveness).
Saadat, Z; Rojhani-Shirazi, Z; Abbasi, L
2017-12-01
peripheral neuropathy is the most common problem of diabetes. Neuropathy leads to lower extremity somatosensory deficits and postural instability in these patients. However, there are not sufficient evidences for improving postural control in these patients. To investigate the effects of transcutaneous electrical nerve stimulation (TENS) on postural control in patients with diabetic neuropathy. Twenty eighth patients with diabetic neuropathy (40-55 Y/O) participated in this RCT study. Fourteen patients in case group received TENS and sham TENS was used for control group. Force plate platform was used to extract sway velocity and COP displacement parameters for postural control evaluation. The mean sway velocity and center of pressure displacement along the mediolateral and anteroposterior axes were not significantly different between two groups after TENS application (p>0.05). Application of 5min high frequency TENS on the knee joint could not improve postural control in patients with diabetic neuropathy. Copyright © 2017. Published by Elsevier Ltd.
Uhm, Yo-Han; Yang, Dae-Jung
2017-11-01
[Purpose] The purpose of this study was to examine the effect of biofeedback postural control training using whole body vibration in acute stroke patients on balance and gait ability. [Subjects and Methods] Thirty stroke patients participated in this study and were divided into a group of 10, a group for biofeedback postural control training combined with a whole body vibration, one for biofeedback postural control training combined with an aero-step, and one for biofeedback postural control training. Biorescue was used to measure the limits of stability, balance ability, and Lukotronic was used to measure step length, gait ability. [Results] In the comparison of balance ability and gait ability between the groups for before and after intervention, Group I showed a significant difference in balance ability and gait ability compared to Groups II and III. [Conclusion] This study showed that biofeedback postural control training using whole body vibration is effective for improving balance ability and gait ability in stroke patients.
Claudino, Renato; Dos Santos, Marcio José; Mazo, Giovana Zarpellon
2017-10-01
The goal of this study was to investigate the timing of compensatory postural adjustments in older adults during body perturbations in the mediolateral direction, circumstances that increase their risk of falls. The latencies of leg and trunk muscle activation to body perturbations at the shoulder level and variables of center of pressure excursion, which characterize postural stability, were analyzed in 40 older adults (nonfallers and fallers evenly split) and in 20 young participants. The older adults exhibited longer latencies of muscular activation in eight out of 15 postural muscles as compared with young participants; for three muscles, the latencies were longer for the older fallers than nonfallers. Simultaneously, the time for the center of pressure displacement reached its peak after the perturbation was significant longer in both groups of older adults. The observed delays in compensatory postural adjustments may affect the older adults' ability to prompt control body balance after postural disturbances and predispose them to falls.
NASA Astrophysics Data System (ADS)
Singh, Neeraj Kumar; Snoussi, Hichem; Hewson, David; Duchêne, Jacques
The aim of this study was to develop a method to detecting the critical point interval (CPI) when sensory feedback is used as part of a closed-loop postural control strategy. Postural balance was evaluated using centre of pressure (COP) displacements from a force plate for 17 control and 10 elderly subjects under eyes open, eyes closed, and vibration conditions. A modified local-maximum-modulus wavelet transform analysis using the power spectrum of COP signals was used to calculate CPI. Lower CPI values indicate increased closed-loop postural control with a quicker response to sensory input. Such a strategy requires greater energy expenditure due to the repeated muscular interventions to remain stable. The CPI for elderly occurred significantly quicker than for controls, indicating tighter control of posture. Similar results were observed for eyes closed and vibration conditions. The CPI parameter can be used to detect differences in postural control due to ageing.
A comparison of different postures for scaffold end-frame disassembly.
Cutlip, R; Hsiao, H; Garcia, R; Becker, E; Mayeux, B
2000-10-01
Overexertion and fall injuries comprise the largest category of nonfatal injuries among scaffold workers. This study was conducted to identify the most favourable scaffold end-frame disassembly techniques and evaluate the associated slip potential by measuring whole-body isometric strength capability and required coefficient of friction (RCOF) to reduce the incidence of injury. Forty-six male construction workers were used to study seven typical postures associated with scaffold end-frame disassembly. An analysis of variance (ANOVA) showed that the isometric forces (334.4-676.3 N) resulting from the seven postures were significantly different (p < 0.05). Three of the disassembly postures resulted in considerable biomechanical stress to workers. The symmetric front-lift method with hand locations at knuckle height would be the most favourable posture; at least 93% of the male construction worker population could handle the end frame with minimum overexertion risk. The static RCOF value resulting from this posture during the disassembly phase was less than 0.2, thus the likelihood of a slip should be low.
Scariot, Vanessa; Rios, Jaqueline L; Claudino, Renato; Dos Santos, Eloá C; Angulski, Hanna B B; Dos Santos, Marcio J
2016-01-01
The main objective of this study was to analyze the role of balance exercises on anticipatory (APA) and compensatory (CPA) postural adjustments in different conditions of postural stability. Sixteen subjects were required to catch a ball while standing on rigid floor, trampoline and foam cushion surfaces. Electromyographic activities (EMG) of postural muscles were analyzed during time windows typical for APAs and CPAs. Overall there were a reciprocal activation of the muscles around the ankle and co-activations between ventral and dorsal muscles of the thigh and trunk during the catching a ball task. Compared to the rigid floor, the tibialis anterior activation was greater during the trampoline condition (CPA: p = 0.006) and the soleus muscle inhibition was higher during foam cushion condition (APA: p = 0.001; CPA: p = 0.007). Thigh and trunk muscle activities were similar across the conditions. These results advance the knowledge in postural control during body perturbations standing on unstable surfaces. Published by Elsevier Ltd.
Representation of grasp postures and anticipatory motor planning in children.
Stöckel, Tino; Hughes, Charmayne M L; Schack, Thomas
2012-11-01
In this study, we investigated anticipatory motor planning and the development of cognitive representation of grasp postures in children aged 7, 8, and 9 years. Overall, 9-year-old children were more likely to plan their movements to end in comfortable postures, and have distinct representational structures of certain grasp postures, compared to the 7- and 8-year old children. Additionally, the sensitivity toward comfortable end-states (end-state comfort) was related to the mental representation of certain grasp postures. Children with grasp comfort related and functionally well-structured representations were more likely to have satisfied end-state comfort in both the simple and the advanced planning condition. In contrast, end-state comfort satisfaction for the advanced planning condition was much lower for children whose cognitive representations were not structured by grasp comfort. The results of the present study support the notion that cognitive action representation plays an important role in the planning and control of grasp postures.
Relationship between antigravity control and postural control in young children.
Sellers, J S
1988-04-01
The purposes of this study were 1) to determine the relationship between antigravity control (supine flexion and prone extension) and postural control (static and dynamic balance), 2) to determine the quality of antigravity and postural control, and 3) to determine whether sex and ethnic group differences correlate with differences in antigravity control and postural control in young children. I tested 107 black, Hispanic, and Caucasian children in a Head Start program, with a mean age of 61 months. The study results showed significant relationships between antigravity control and postural control. Subjects' supine flexion performance was significantly related to the quantity and quality of their static and dynamic balance performance, whereas prone extension performance was related only to the quality of dynamic balance performance. Quality scale measurements (r = .90) indicated that the children in this study had not yet developed full antigravity or postural control. The study results revealed differences between sexes in the quality of static balance and prone extension performance and ethnic differences in static balance, dynamic balance, and prone extension performance.
Measurement of Flexed Posture for Flexible Mono-Tread Mobile Track
NASA Astrophysics Data System (ADS)
Kinugasa, Tetsuya; Akagi, Tetsuya; Ishii, Kuniaki; Haji, Takafumi; Yoshida, Koji; Amano, Hisanori; Hayashi, Ryota; Tokuda, Kenichi; Iribe, Masatsugu; Osuka, Koichi
We have proposed Flexible Mono-tread mobile Track (FMT) as a mobile mechanism on rough terrain for rescue activity, environmental investigation and planetary explorer, etc. Generally speaking, one has to teleoperate robots under invisible condition. In order to operate the robots skillfully, it is necessary to detect not only condition around the robots and its position but also posture of the robots at any time. Since flexed posture of FMT decides turning radius and direction, it is important to know its posture. FMT has vertebral structure composed of vertebrae as rigid body and intervertebral disks made by flexible devices such as rubber cylinder and spring. Since the intervertebral disks flex in three dimension, traditional sensors such as potentiometers, rotary encoders and range finders can hardly use for measurement of its deformation. The purpose of the paper, therefore, is to measure flexed posture of FMT using a novel flexible displacement sensor. We prove that the flexed posture of FMT with five intervertebral disks can be detected through experiment.
[The glider. Postural kinetic behavior during the pre-locomotor period in infants].
Auzias, M; de Ajuriaguerra, J
1980-01-01
Soaring movements-in an opisthotonic posture-which appear between 3 and 10 months when the infant is in a prone position, have been observed with cinematographic recordings. This is a postural and kinetic activity which takes place during the first year's development; i is a transitional stage leading to intentional propulsive movements. This activity may become a repetitive one for some children, especially between 4 and 7 months; at this peak period, it takes on an unusual aspect, not only because of the "aerial" attitude but also because of the rhythmicity of the postural changes which characterize it. This behavior has been studied in its evolutionary forms, its individual characteristics, and its emotional expressions. Hovering movements are localized in the neuro-psychological evolution of the infant (tonico-postural evolution, acquisition of balance in a prone position, alternating postures, propulsive movements). The conditions which set off and quieten this activity explain the dynamics of its functioning between movements to which the baby is submitted and deliberate ones, between constraint and pleasure.
Choobineh, Alireza; Lahmi, Mohammadali; Hosseini, Mostafa; Shahnavaz, Houshang; Jazani, Reza Khani
2004-01-01
Carpet weavers suffer from musculoskeletal problems mainly attributed to poor working postures. Their posture is mostly constrained by the design of workstations. This study was conducted to investigate the effects of 2 design parameters (weaving height and seat type) on postural variables and subjective experience, and to develop guidelines for workstation adjustments. At an experimental workstation, 30 professional weavers worked in 9 different conditions. Working posture and weavers' perceptions were measured. It was shown that head, neck and shoulder postures were influenced by weaving height. Both design parameters influenced trunk and elbows postures. The determinant factor for weavers' perception on the neck, shoulders and elbows was found to be weaving height, and on the back and knees it was seat type. Based on the results, the following guidelines were developed: (a) weaving height should be adjusted to 20 cm above elbow height; (b) a 10 degrees forward-sloping high seat is to be used at weaving workstations.
Dressing up posture: The interactive effects of posture and clothing on competency judgements.
Gurney, Daniel J; Howlett, Neil; Pine, Karen; Tracey, Megan; Moggridge, Rachel
2017-05-01
Individuals often receive judgements from others based on their clothing and their posture. While both of these factors have been found to influence judgements of competency independently, their relative importance in impression formation is yet to be investigated. We address this by examining interactive effects of posture and clothing on four competency measures: confidence, professionalism, approachability, and likeliness of a high salary. Participants rated photographs of both male and female models pictured in different postures (strong, neutral, weak) in smart clothing (a suit for males; both a trouser suit and skirt suit for females) and casual clothing. We confirm that posture manipulations affected judgements of individuals differently according to the clothing they were pictured in. The nature of these interactions varied by gender and, for women, competency judgements differed according to attire type (trouser or skirt suit). The implications of these findings in relation to impression formation are discussed. © 2016 The British Psychological Society.