Sample records for controls circadian clockwork

  1. Irradiation with X-rays phase-advances the molecular clockwork in liver, adrenal gland and pancreas.

    PubMed

    Müller, Mareike Hildegard; Rödel, Franz; Rüb, Udo; Korf, Horst-Werner

    2015-02-01

    The circadian clock of man and mammals shows a hierarchic organization. The master clock, located in the suprachiasmatic nuclei (SCN), controls peripheral oscillators distributed throughout the body. Rhythm generation depends on molecular clockworks based on transcriptional/translational interaction of clock genes. Numerous studies have shown that the clockwork in peripheral oscillators is capable to maintain circadian rhythms for several cycles in vitro, i.e. in the absence of signals from the SCN. The aim of the present study is to analyze the effects of irradiation with X-rays on the clockwork of liver, adrenal and pancreas. To this end organotypic slice cultures of liver (OLSC) and organotypic explant cultures of adrenal glands (OAEC) and pancreas (OPEC) were prepared from transgenic mPer2(luc) mice which express luciferase under the control of the promoter of an important clock gene, Per2, and allow to study the dynamics of the molecular clockwork by bioluminometry. The preparations were cultured in a membrane-based liquid-air interface culturing system and irradiated with X-rays at doses of 10 Gy and 50 Gy or left untreated. Bioluminometric real-time recordings show a stable oscillation of all OLSC, OAEC and OPEC for up to 12 days in vitro. Oscillations persist after irradiation with X-rays. However, a dose of 50 Gy caused a phase advance in the rhythm of the OLSC by 5 h, in the OPEC by 7 h and in the OAEC by 6 h. Our study shows that X-rays affect the molecular clockwork in liver, pancreas and adrenal leading to phase advances. Our results confirm and extend previous studies showing a phase-advancing effect of X-rays at the level of the whole animal and single cells.

  2. Post-transcriptional control of the mammalian circadian clock: implications for health and disease.

    PubMed

    Preußner, Marco; Heyd, Florian

    2016-06-01

    Many aspects of human physiology and behavior display rhythmicity with a period of approximately 24 h. Rhythmic changes are controlled by an endogenous time keeper, the circadian clock, and include sleep-wake cycles, physical and mental performance capability, blood pressure, and body temperature. Consequently, many diseases, such as metabolic, sleep, autoimmune and mental disorders and cancer, are connected to the circadian rhythm. The development of therapies that take circadian biology into account is thus a promising strategy to improve treatments of diverse disorders, ranging from allergic syndromes to cancer. Circadian alteration of body functions and behavior are, at the molecular level, controlled and mediated by widespread changes in gene expression that happen in anticipation of predictably changing requirements during the day. At the core of the molecular clockwork is a well-studied transcription-translation negative feedback loop. However, evidence is emerging that additional post-transcriptional, RNA-based mechanisms are required to maintain proper clock function. Here, we will discuss recent work implicating regulated mRNA stability, translation and alternative splicing in the control of the mammalian circadian clock, and its role in health and disease.

  3. The Comparison between Circadian Oscillators in Mouse Liver and Pituitary Gland Reveals Different Integration of Feeding and Light Schedules

    PubMed Central

    Bur, Isabelle M.; Zouaoui, Sonia; Fontanaud, Pierre; Coutry, Nathalie; Molino, François; Martin, Agnès O.; Mollard, Patrice; Bonnefont, Xavier

    2010-01-01

    The mammalian circadian system is composed of multiple peripheral clocks that are synchronized by a central pacemaker in the suprachiasmatic nuclei of the hypothalamus. This system keeps track of the external world rhythms through entrainment by various time cues, such as the light-dark cycle and the feeding schedule. Alterations of photoperiod and meal time modulate the phase coupling between central and peripheral oscillators. In this study, we used real-time quantitative PCR to assess circadian clock gene expression in the liver and pituitary gland from mice raised under various photoperiods, or under a temporal restricted feeding protocol. Our results revealed unexpected differences between both organs. Whereas the liver oscillator always tracked meal time, the pituitary circadian clockwork showed an intermediate response, in between entrainment by the light regimen and the feeding-fasting rhythm. The same composite response was also observed in the pituitary gland from adrenalectomized mice under daytime restricted feeding, suggesting that circulating glucocorticoids do not inhibit full entrainment of the pituitary clockwork by meal time. Altogether our results reveal further aspects in the complexity of phase entrainment in the circadian system, and suggest that the pituitary may host oscillators able to integrate multiple time cues. PMID:21179516

  4. Lithium Impacts on the Amplitude and Period of the Molecular Circadian Clockwork

    PubMed Central

    Li, Jian; Lu, Wei-Qun; Beesley, Stephen; Loudon, Andrew S. I.; Meng, Qing-Jun

    2012-01-01

    Lithium salt has been widely used in treatment of Bipolar Disorder, a mental disturbance associated with circadian rhythm disruptions. Lithium mildly but consistently lengthens circadian period of behavioural rhythms in multiple organisms. To systematically address the impacts of lithium on circadian pacemaking and the underlying mechanisms, we measured locomotor activity in mice in vivo following chronic lithium treatment, and also tracked clock protein dynamics (PER2::Luciferase) in vitro in lithium-treated tissue slices/cells. Lithium lengthens period of both the locomotor activity rhythms, as well as the molecular oscillations in the suprachiasmatic nucleus, lung tissues and fibroblast cells. In addition, we also identified significantly elevated PER2::LUC expression and oscillation amplitude in both central and peripheral pacemakers. Elevation of PER2::LUC by lithium was not associated with changes in protein stabilities of PER2, but instead with increased transcription of Per2 gene. Although lithium and GSK3 inhibition showed opposing effects on clock period, they acted in a similar fashion to up-regulate PER2 expression and oscillation amplitude. Collectively, our data have identified a novel amplitude-enhancing effect of lithium on the PER2 protein rhythms in the central and peripheral circadian clockwork, which may involve a GSK3-mediated signalling pathway. These findings may advance our understanding of the therapeutic actions of lithium in Bipolar Disorder or other psychiatric diseases that involve circadian rhythm disruptions. PMID:22428012

  5. Molecular and phylogenetic analyses reveal mammalian-like clockwork in the honey bee (Apis mellifera) and shed new light on the molecular evolution of the circadian clock.

    PubMed

    Rubin, Elad B; Shemesh, Yair; Cohen, Mira; Elgavish, Sharona; Robertson, Hugh M; Bloch, Guy

    2006-11-01

    The circadian clock of the honey bee is implicated in ecologically relevant complex behaviors. These include time sensing, time-compensated sun-compass navigation, and social behaviors such as coordination of activity, dance language communication, and division of labor. The molecular underpinnings of the bee circadian clock are largely unknown. We show that clock gene structure and expression pattern in the honey bee are more similar to the mouse than to Drosophila. The honey bee genome does not encode an ortholog of Drosophila Timeless (Tim1), has only the mammalian type Cryptochrome (Cry-m), and has a single ortholog for each of the other canonical "clock genes." In foragers that typically have strong circadian rhythms, brain mRNA levels of amCry, but not amTim as in Drosophila, consistently oscillate with strong amplitude and a phase similar to amPeriod (amPer) under both light-dark and constant darkness illumination regimes. In contrast to Drosophila, the honey bee amCYC protein contains a transactivation domain and its brain transcript levels oscillate at virtually an anti-phase to amPer, as it does in the mouse. Phylogenetic analyses indicate that the basal insect lineage had both the mammalian and Drosophila types of Cry and Tim. Our results suggest that during evolution, Drosophila diverged from the ancestral insect clock and specialized in using a set of clock gene orthologs that was lost by both mammals and bees, which in turn converged and specialized in the other set. These findings illustrate a previously unappreciated diversity of insect clockwork and raise critical questions concerning the evolution and functional significance of species-specific variation in molecular clockwork.

  6. Metabolic and reward feeding synchronises the rhythmic brain.

    PubMed

    Challet, Etienne; Mendoza, Jorge

    2010-07-01

    Daily brain rhythmicity, which controls the sleep-wake cycle and neuroendocrine functions, is generated by an endogenous circadian timing system. Within the multi-oscillatory circadian network, a master clock is located in the suprachiasmatic nuclei of the hypothalamus, whose main synchroniser (Zeitgeber) is light. In contrast, imposed meal times and temporally restricted feeding are potent synchronisers for secondary clocks in peripheral organs such as the liver and in brain regions, although not for the suprachiasmatic nuclei. Even when animals are exposed to a light-dark cycle, timed calorie restriction (i.e. when only a hypocaloric diet is given every day) is a synchroniser powerful enough to modify the suprachiasmatic clockwork and increase the synchronising effects of light. A daily chocolate snack in animals fed ad libitum with chow diet entrains the suprachiasmatic clockwork only under the conditions of constant darkness and decreases the synchronising effects of light. Secondary clocks in the brain outside the suprachiasmatic nuclei are differentially influenced by meal timing. Circadian oscillations can either be highly sensitive to food-related metabolic or reward cues (i.e. their phase is shifted according to the timed meal schedule) in some structures or hardly affected by meal timing (palatable or not) in others. Furthermore, animals will manifest food-anticipatory activity prior to their expected meal time. Anticipation of a palatable or regular meal may rely on a network of brain clocks, involving metabolic and reward systems and the cerebellum.

  7. Optimal Implementations for Reliable Circadian Clocks

    NASA Astrophysics Data System (ADS)

    Hasegawa, Yoshihiko; Arita, Masanori

    2014-09-01

    Circadian rhythms are acquired through evolution to increase the chances for survival through synchronizing with the daylight cycle. Reliable synchronization is realized through two trade-off properties: regularity to keep time precisely, and entrainability to synchronize the internal time with daylight. We find by using a phase model with multiple inputs that achieving the maximal limit of regularity and entrainability entails many inherent features of the circadian mechanism. At the molecular level, we demonstrate the role sharing of two light inputs, phase advance and delay, as is well observed in mammals. At the behavioral level, the optimal phase-response curve inevitably contains a dead zone, a time during which light pulses neither advance nor delay the clock. We reproduce the results of phase-controlling experiments entrained by two types of periodic light pulses. Our results indicate that circadian clocks are designed optimally for reliable clockwork through evolution.

  8. Fluorescence circadian imaging reveals a PDF-dependent transcriptional regulation of the Drosophila molecular clock.

    PubMed

    Sabado, Virginie; Vienne, Ludovic; Nunes, José Manuel; Rosbash, Michael; Nagoshi, Emi

    2017-01-30

    Circadian locomotor behaviour is controlled by a pacemaker circuit composed of clock-containing neurons. To interrogate the mechanistic relationship between the molecular clockwork and network communication critical to the operation of the Drosophila circadian pacemaker circuit, we established new fluorescent circadian reporters that permit single-cell recording of transcriptional and post-transcriptional rhythms in brain explants and cultured neurons. Live-imaging experiments combined with pharmacological and genetic manipulations demonstrate that the neuropeptide pigment-dispersing factor (PDF) amplifies the molecular rhythms via time-of-day- and activity-dependent upregulation of transcription from E-box-containing clock gene promoters within key pacemaker neurons. The effect of PDF on clock gene transcription and the known role of PDF in enhancing PER/TIM stability occur via independent pathways downstream of the PDF receptor, the former through a cAMP-independent mechanism and the latter through a cAMP-PKA dependent mechanism. These results confirm and extend the mechanistic understanding of the role of PDF in controlling the synchrony of the pacemaker neurons. More broadly, our results establish the utility of the new live-imaging tools for the study of molecular-neural interactions important for the operation of the circadian pacemaker circuit.

  9. Fluorescence circadian imaging reveals a PDF-dependent transcriptional regulation of the Drosophila molecular clock

    PubMed Central

    Sabado, Virginie; Vienne, Ludovic; Nunes, José Manuel; Rosbash, Michael; Nagoshi, Emi

    2017-01-01

    Circadian locomotor behaviour is controlled by a pacemaker circuit composed of clock-containing neurons. To interrogate the mechanistic relationship between the molecular clockwork and network communication critical to the operation of the Drosophila circadian pacemaker circuit, we established new fluorescent circadian reporters that permit single-cell recording of transcriptional and post-transcriptional rhythms in brain explants and cultured neurons. Live-imaging experiments combined with pharmacological and genetic manipulations demonstrate that the neuropeptide pigment-dispersing factor (PDF) amplifies the molecular rhythms via time-of-day- and activity-dependent upregulation of transcription from E-box-containing clock gene promoters within key pacemaker neurons. The effect of PDF on clock gene transcription and the known role of PDF in enhancing PER/TIM stability occur via independent pathways downstream of the PDF receptor, the former through a cAMP-independent mechanism and the latter through a cAMP-PKA dependent mechanism. These results confirm and extend the mechanistic understanding of the role of PDF in controlling the synchrony of the pacemaker neurons. More broadly, our results establish the utility of the new live-imaging tools for the study of molecular-neural interactions important for the operation of the circadian pacemaker circuit. PMID:28134281

  10. A chemical biology approach reveals period shortening of the mammalian circadian clock by specific inhibition of GSK-3beta.

    PubMed

    Hirota, Tsuyoshi; Lewis, Warren G; Liu, Andrew C; Lee, Jae Wook; Schultz, Peter G; Kay, Steve A

    2008-12-30

    The circadian clock controls daily oscillations of gene expression at the cellular level. We report the development of a high-throughput circadian functional assay system that consists of luminescent reporter cells, screening automation, and a data analysis pipeline. We applied this system to further dissect the molecular mechanisms underlying the mammalian circadian clock using a chemical biology approach. We analyzed the effect of 1,280 pharmacologically active compounds with diverse structures on the circadian period length that is indicative of the core clock mechanism. Our screening paradigm identified many compounds previously known to change the circadian period or phase, demonstrating the validity of the assay system. Furthermore, we found that small molecule inhibitors of glycogen synthase kinase 3 (GSK-3) consistently caused a strong short period phenotype in contrast to the well-known period lengthening by lithium, another presumed GSK-3 inhibitor. siRNA-mediated knockdown of GSK-3beta also caused a short period, confirming the phenotype obtained with the small molecule inhibitors. These results clarify the role of GSK-3beta in the period regulation of the mammalian clockworks and highlight the effectiveness of chemical biology in exploring unidentified mechanisms of the circadian clock.

  11. A Screening of UNF Targets Identifies Rnb, a Novel Regulator of Drosophila Circadian Rhythms.

    PubMed

    Kozlov, Anatoly; Jaumouillé, Edouard; Machado Almeida, Pedro; Koch, Rafael; Rodriguez, Joseph; Abruzzi, Katharine C; Nagoshi, Emi

    2017-07-12

    Behavioral circadian rhythms are controlled by multioscillator networks comprising functionally different subgroups of clock neurons. Studies have demonstrated that molecular clocks in the fruit fly Drosophila melanogaster are regulated differently in clock neuron subclasses to support their specific functions (Lee et al., 2016; Top et al., 2016). The nuclear receptor unfulfilled ( unf ) represents a regulatory node that provides the small ventral lateral neurons (s-LNvs) unique characteristics as the master pacemaker (Beuchle et al., 2012). We previously showed that UNF interacts with the s-LNv molecular clocks by regulating transcription of the core clock gene period ( per ) (Jaumouillé et al., 2015). To gain more insight into the mechanisms by which UNF contributes to the functioning of the circadian master pacemaker, we identified UNF target genes using chromatin immunoprecipitation. Our data demonstrate that a previously uncharacterized gene CG7837 , which we termed R and B ( Rnb ), acts downstream of UNF to regulate the function of the s-LNvs as the master circadian pacemaker. Mutations and LNv-targeted adult-restricted knockdown of Rnb impair locomotor rhythms. RNB localizes to the nucleus, and its loss-of-function blunts the molecular rhythms and output rhythms of the s-LNvs, particularly the circadian rhythms in PDF accumulation and axonal arbor remodeling. These results establish a second pathway by which UNF interacts with the molecular clocks in the s-LNvs and highlight the mechanistic differences in the molecular clockwork within the pacemaker circuit. SIGNIFICANCE STATEMENT Circadian behavior is generated by a pacemaker circuit comprising diverse classes of pacemaker neurons, each of which contains a molecular clock. In addition to the anatomical and functional diversity, recent studies have shown the mechanistic differences in the molecular clockwork among the pacemaker neurons in Drosophila Here, we identified the molecular characteristics distinguishing the s-LNvs, the master pacemaker of the locomotor rhythms, from other clock neuron subtypes. We demonstrated that a newly identified gene Rnb is an s-LNv-specific regulator of the molecular clock and essential for the generation of circadian locomotor behavior. Our results provide additional evidence to the emerging view that the differential regulation of the molecular clocks underlies the functional differences among the pacemaker neuron subgroups. Copyright © 2017 the authors 0270-6474/17/376673-13$15.00/0.

  12. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: A new mammalian circadian oscillator model including the cAMP module

    NASA Astrophysics Data System (ADS)

    Wang, Jun-Wei; Zhou, Tian-Shou

    2009-12-01

    In this paper, we develop a new mathematical model for the mammalian circadian clock, which incorporates both transcriptional/translational feedback loops (TTFLs) and a cAMP-mediated feedback loop. The model shows that TTFLs and cAMP signalling cooperatively drive the circadian rhythms. It reproduces typical experimental observations with qualitative similarities, e.g. circadian oscillations in constant darkness and entrainment to light-dark cycles. In addition, it can explain the phenotypes of cAMP-mutant and Rev-erbα-/--mutant mice, and help us make an experimentally-testable prediction: oscillations may be rescued when arrhythmic mice with constitutively low concentrations of cAMP are crossed with Rev-erbα-/- mutant mice. The model enhances our understanding of the mammalian circadian clockwork from the viewpoint of the entire cell.

  13. Cross‐talk between circadian clocks, sleep‐wake cycles, and metabolic networks: Dispelling the darkness

    PubMed Central

    Ray, Sandipan

    2016-01-01

    Integration of knowledge concerning circadian rhythms, metabolic networks, and sleep‐wake cycles is imperative for unraveling the mysteries of biological cycles and their underlying mechanisms. During the last decade, enormous progress in circadian biology research has provided a plethora of new insights into the molecular architecture of circadian clocks. However, the recent identification of autonomous redox oscillations in cells has expanded our view of the clockwork beyond conventional transcription/translation feedback loop models, which have been dominant since the first circadian period mutants were identified in fruit fly. Consequently, non‐transcriptional timekeeping mechanisms have been proposed, and the antioxidant peroxiredoxin proteins have been identified as conserved markers for 24‐hour rhythms. Here, we review recent advances in our understanding of interdependencies amongst circadian rhythms, sleep homeostasis, redox cycles, and other cellular metabolic networks. We speculate that systems‐level investigations implementing integrated multi‐omics approaches could provide novel mechanistic insights into the connectivity between daily cycles and metabolic systems. PMID:26866932

  14. Cross-talk between circadian clocks, sleep-wake cycles, and metabolic networks: Dispelling the darkness.

    PubMed

    Ray, Sandipan; Reddy, Akhilesh B

    2016-04-01

    Integration of knowledge concerning circadian rhythms, metabolic networks, and sleep-wake cycles is imperative for unraveling the mysteries of biological cycles and their underlying mechanisms. During the last decade, enormous progress in circadian biology research has provided a plethora of new insights into the molecular architecture of circadian clocks. However, the recent identification of autonomous redox oscillations in cells has expanded our view of the clockwork beyond conventional transcription/translation feedback loop models, which have been dominant since the first circadian period mutants were identified in fruit fly. Consequently, non-transcriptional timekeeping mechanisms have been proposed, and the antioxidant peroxiredoxin proteins have been identified as conserved markers for 24-hour rhythms. Here, we review recent advances in our understanding of interdependencies amongst circadian rhythms, sleep homeostasis, redox cycles, and other cellular metabolic networks. We speculate that systems-level investigations implementing integrated multi-omics approaches could provide novel mechanistic insights into the connectivity between daily cycles and metabolic systems. © 2016 The Authors. Bioessays published by WILEY Periodicals, Inc.

  15. Molecular bases of circadian rhythmicity in renal physiology and pathology

    PubMed Central

    Bonny, Olivier; Vinciguerra, Manlio; Gumz, Michelle L.; Mazzoccoli, Gianluigi

    2013-01-01

    The physiological processes that maintain body homeostasis oscillate during the day. Diurnal changes characterize kidney functions, comprising regulation of hydro-electrolytic and acid-base balance, reabsorption of small solutes and hormone production. Renal physiology is characterized by 24-h periodicity and contributes to circadian variability of blood pressure levels, related as well to nychthemeral changes of sodium sensitivity, physical activity, vascular tone, autonomic function and neurotransmitter release from sympathetic innervations. The circadian rhythmicity of body physiology is driven by central and peripheral biological clockworks and entrained by the geophysical light/dark cycle. Chronodisruption, defined as the mismatch between environmental–social cues and physiological–behavioral patterns, causes internal desynchronization of periodic functions, leading to pathophysiological mechanisms underlying degenerative, immune related, metabolic and neoplastic diseases. In this review we will address the genetic, molecular and anatomical elements that hardwire circadian rhythmicity in renal physiology and subtend disarray of time–dependent changes in renal pathology. PMID:23901050

  16. A fluorescence spotlight on the clockwork development and metabolism of bone.

    PubMed

    Iimura, Tadahiro; Nakane, Ayako; Sugiyama, Mayu; Sato, Hiroki; Makino, Yuji; Watanabe, Takashi; Takagi, Yuzo; Numano, Rika; Yamaguchi, Akira

    2012-05-01

    Biological phenomena that exhibit periodic activity are often referred as biorhythms or biological clocks. Among these, circadian rhythms, cyclic patterns reflecting a 24-h cycle, are the most obvious in many physiological activities including bone growth and metabolism. In the late 1990s, several clock genes were isolated and their primary structures and functions were identified. The feedback loop model of transcriptional factors was proposed to work as a circadian core oscillator not only in the suprachiasmatic nuclei of the anterior hypothalamus, which is recognized as the mammalian central clock, but also in various peripheral tissues including cartilage and bone. Looking back to embryonic development, the fundamental architecture of skeletal patterning is regulated by ultradian clocks that are defined as biorhythms that cycle more than once every 24 h. As post-genomic approaches, transcriptome analysis by micro-array and bioimaging assays to detect luminescent and fluorescent signals have been exploited to uncover a more comprehensive set of genes and spatio-temporal regulation of the clockwork machinery in animal models. In this review paper, we provide an overview of topics related to these molecular clocks in skeletal biology and medicine, and discuss how fluorescence imaging approaches can contribute to widening our views of this realm of biomedical science.

  17. The light-induced transcriptome of the zebrafish pineal gland reveals complex regulation of the circadian clockwork by light

    PubMed Central

    Ben-Moshe, Zohar; Alon, Shahar; Mracek, Philipp; Faigenbloom, Lior; Tovin, Adi; Vatine, Gad D.; Eisenberg, Eli; Foulkes, Nicholas S.; Gothilf, Yoav

    2014-01-01

    Light constitutes a primary signal whereby endogenous circadian clocks are synchronized (‘entrained’) with the day/night cycle. The molecular mechanisms underlying this vital process are known to require gene activation, yet are incompletely understood. Here, the light-induced transcriptome in the zebrafish central clock organ, the pineal gland, was characterized by messenger RNA (mRNA) sequencing (mRNA-seq) and microarray analyses, resulting in the identification of multiple light-induced mRNAs. Interestingly, a considerable portion of the molecular clock (14 genes) is light-induced in the pineal gland. Four of these genes, encoding the transcription factors dec1, reverbb1, e4bp4-5 and e4bp4-6, differentially affected clock- and light-regulated promoter activation, suggesting that light-input is conveyed to the core clock machinery via diverse mechanisms. Moreover, we show that dec1, as well as the core clock gene per2, is essential for light-entrainment of rhythmic locomotor activity in zebrafish larvae. Additionally, we used microRNA (miRNA) sequencing (miR-seq) and identified pineal-enhanced and light-induced miRNAs. One such miRNA, miR-183, is shown to downregulate e4bp4-6 mRNA through a 3′UTR target site, and importantly, to regulate the rhythmic mRNA levels of aanat2, the key enzyme in melatonin synthesis. Together, this genome-wide approach and functional characterization of light-induced factors indicate a multi-level regulation of the circadian clockwork by light. PMID:24423866

  18. Metabolism as an Integral Cog in the Mammalian Circadian Clockwork

    PubMed Central

    Gamble, Karen L.; Young, Martin E.

    2013-01-01

    Circadian rhythms are an integral part of life. These rhythms are apparent in virtually all biological processes studies to date, ranging from the individual cell (e.g., DNA synthesis) to the whole organism (e.g., behaviors such as physical activity). Oscillations in metabolism have been characterized extensively in various organisms, including mammals. These metabolic rhythms often parallel behaviors such as sleep/wake and fasting/feeding cycles that occur on a daily basis. What has become increasingly clear over the past several decades is that many metabolic oscillations are driven by cell autonomous circadian clocks, which orchestrate metabolic processes in a temporally appropriate manner. During the process of identifying the mechanisms by which clocks influence metabolism, molecular-based studies have revealed that metabolism should be considered an integral circadian clock component. The implications of such an interrelationship include the establishment of a vicious cycle during cardiometabolic disease states, wherein metabolism-induced perturbations in the circadian clock exacerbate metabolic dysfunction. The purpose of this review is therefore to highlight recent insights gained regarding links between cell autonomous circadian clocks and metabolism, and the implications of clock dysfunction in the pathogenesis of cardiometabolic diseases. PMID:23594144

  19. Metabolic molecular markers of the tidal clock in the marine crustacean Eurydice pulchra

    PubMed Central

    O’Neill, John Stuart; Lee, Kate D.; Zhang, Lin; Feeney, Kevin; Webster, Simon George; Blades, Matthew James; Kyriacou, Charalambos Panayiotis; Hastings, Michael Harvey; Wilcockson, David Charles

    2015-01-01

    Summary In contrast to the well mapped molecular orchestration of circadian timekeeping in terrestrial organisms, the mechanisms that direct tidal and lunar rhythms in marine species are entirely unknown. Using a combination of biochemical and molecular approaches we have identified a series of metabolic markers of the tidal clock of the intertidal isopod Eurydice pulchra. Specifically, we show that the overoxidation of peroxiredoxin (PRX), a conserved marker of circadian timekeeping in terrestrial eukaryotes [1], follows a circatidal (approximately 12.4 hours) pattern in E. pulchra, in register with the tidal pattern of swimming. In parallel, we show that mitochondrially encoded genes are expressed with a circatidal rhythm. Together, these findings demonstrate that PRX overoxidation rhythms are not intrinsically circadian; rather they appear to resonate with the dominant metabolic cycle of an organism, regardless of its frequency. Moreover, they provide the first molecular leads for dissecting the tidal clockwork. PMID:25898100

  20. Pacemaker-neuron–dependent disturbance of the molecular clockwork by a Drosophila CLOCK mutant homologous to the mouse Clock mutation

    PubMed Central

    Lee, Euna; Cho, Eunjoo; Kang, Doo Hyun; Jeong, Eun Hee; Chen, Zheng; Yoo, Seung-Hee; Kim, Eun Young

    2016-01-01

    Circadian clocks are composed of transcriptional/translational feedback loops (TTFLs) at the cellular level. In Drosophila TTFLs, the transcription factor dCLOCK (dCLK)/CYCLE (CYC) activates clock target gene expression, which is repressed by the physical interaction with PERIOD (PER). Here, we show that amino acids (AA) 657–707 of dCLK, a region that is homologous to the mouse Clock exon 19-encoded region, is crucial for PER binding and E-box–dependent transactivation in S2 cells. Consistently, in transgenic flies expressing dCLK with an AA657–707 deletion in the Clock (Clkout) genetic background (p{dClk-Δ};Clkout), oscillation of core clock genes’ mRNAs displayed diminished amplitude compared with control flies, and the highly abundant dCLKΔ657–707 showed significantly decreased binding to PER. Behaviorally, the p{dClk-Δ};Clkout flies exhibited arrhythmic locomotor behavior in the photic entrainment condition but showed anticipatory activities of temperature transition and improved free-running rhythms in the temperature entrainment condition. Surprisingly, p{dClk-Δ};Clkout flies showed pacemaker-neuron–dependent alterations in molecular rhythms; the abundance of dCLK target clock proteins was reduced in ventral lateral neurons (LNvs) but not in dorsal neurons (DNs) in both entrainment conditions. In p{dClk-Δ};Clkout flies, however, strong but delayed molecular oscillations in temperature cycle-sensitive pacemaker neurons, such as DN1s and DN2s, were correlated with delayed anticipatory activities of temperature transition. Taken together, our study reveals that the LNv molecular clockwork is more sensitive than the clockwork of DNs to dysregulation of dCLK by AA657–707 deletion. Therefore, we propose that the dCLK/CYC-controlled TTFL operates differently in subsets of pacemaker neurons, which may contribute to their specific functions. PMID:27489346

  1. The Catalytic and Non-catalytic Functions of the Brahma Chromatin-Remodeling Protein Collaborate to Fine-Tune Circadian Transcription in Drosophila

    PubMed Central

    Kwok, Rosanna S.; Li, Ying H.; Lei, Anna J.; Edery, Isaac; Chiu, Joanna C.

    2015-01-01

    Daily rhythms in gene expression play a critical role in the progression of circadian clocks, and are under regulation by transcription factor binding, histone modifications, RNA polymerase II (RNAPII) recruitment and elongation, and post-transcriptional mechanisms. Although previous studies have shown that clock-controlled genes exhibit rhythmic chromatin modifications, less is known about the functions performed by chromatin remodelers in animal clockwork. Here we have identified the Brahma (Brm) complex as a regulator of the Drosophila clock. In Drosophila, CLOCK (CLK) is the master transcriptional activator driving cyclical gene expression by participating in an auto-inhibitory feedback loop that involves stimulating the expression of the main negative regulators, period (per) and timeless (tim). BRM functions catalytically to increase nucleosome density at the promoters of per and tim, creating an overall restrictive chromatin landscape to limit transcriptional output during the active phase of cycling gene expression. In addition, the non-catalytic function of BRM regulates the level and binding of CLK to target promoters and maintains transient RNAPII stalling at the per promoter, likely by recruiting repressive and pausing factors. By disentangling its catalytic versus non-catalytic functions at the promoters of CLK target genes, we uncovered a multi-leveled mechanism in which BRM fine-tunes circadian transcription. PMID:26132408

  2. Circadian actin dynamics drive rhythmic fibroblast mobilisation during wound healing

    PubMed Central

    Hoyle, Nathaniel P.; Seinkmane, Estere; Putker, Marrit; Feeney, Kevin A.; Krogager, Toke P.; Chesham, Johanna E.; Bray, Liam K.; Thomas, Justyn M.; Dunn, Ken; Blaikley, John; O’Neill, John S.

    2017-01-01

    Fibroblasts are primary cellular protagonists of wound healing. They also exhibit circadian timekeeping which imparts a ~24-hour rhythm to their biological function. We interrogated the functional consequences of the cell-autonomous clockwork in fibroblasts using a proteome-wide screen for rhythmically expressed proteins. We observed temporal coordination of actin regulators that drives cell-intrinsic rhythms in actin dynamics. In consequence the cellular clock modulates the efficiency of actin-dependent processes such as cell migration and adhesion, which ultimately impact the efficacy of wound healing. Accordingly, skin wounds incurred during a mouse’s active phase exhibited increased fibroblast invasion in vivo and ex vivo, as well as in cultured fibroblasts and keratinocytes. Our experimental results correlate with the observation that the time of injury significantly affects healing after burns in humans, with daytime wounds healing ~60% faster than night-time wounds. We suggest that circadian regulation of the cytoskeleton influences wound healing efficacy from the cellular to the organismal scale. PMID:29118260

  3. Aging has the opposite effect on cAMP and cGMP circadian variations in rat Leydig cells.

    PubMed

    Baburski, Aleksandar Z; Sokanovic, Srdjan J; Andric, Silvana A; Kostic, Tatjana S

    2017-05-01

    The Leydig cell physiology displays a circadian rhythm driven by a complex interaction of the reproductive axis hormones and circadian system. The final output of this regulatory process is circadian pattern of steroidogenic genes expression and testosterone production. Aging gradually decreases robustness of rhythmic testosterone secretion without change in pattern of LH secretion. Here, we analyzed effect of aging on circadian variation of cAMP and cGMP signaling in Leydig cells. Results showed opposite effect of aging on cAMP and cGMP daily variation. Reduced amplitude of cAMP circadian oscillation was probably associated with changed expression of genes involved in cAMP production (increased circadian pattern of Adcy7, Adcy9, Adcy10 and decreased Adcy3); cAMP degradation (increased Pde4a, decreased Pde8b, canceled rhythm of Pde4d, completely reversed circadian pattern of Pde7b and Pde8a); and circadian expression of protein kinase A subunits (Prkac/PRKAC and Prkar2a). Aging stimulates expression of genes responsible for cGMP production (Nos2, Gucy1a3 and Gucy1b3/GUCYB3) and degradation (Pde5a, Pde6a and Pde6h) but the overall net effect is elevation of cGMP circadian oscillations in Leydig cells. In addition, the expression of cGMP-dependent kinase, Prkg1/PRKG1 is up-regulated. It seems that aging potentiate cGMP- and reduce cAMP-signaling in Leydig cells. Since both signaling pathways affect testosterone production and clockwork in the cells, further insights into these signaling pathways will help to unravel disorders linked to the circadian timing system, aging and reproduction.

  4. Neuronal oscillations on an ultra-slow timescale: daily rhythms in electrical activity and gene expression in the mammalian master circadian clockwork.

    PubMed

    Belle, Mino D C; Diekman, Casey O

    2018-02-03

    Neuronal oscillations of the brain, such as those observed in the cortices and hippocampi of behaving animals and humans, span across wide frequency bands, from slow delta waves (0.1 Hz) to ultra-fast ripples (600 Hz). Here, we focus on ultra-slow neuronal oscillators in the hypothalamic suprachiasmatic nuclei (SCN), the master daily clock that operates on interlocking transcription-translation feedback loops to produce circadian rhythms in clock gene expression with a period of near 24 h (< 0.001 Hz). This intracellular molecular clock interacts with the cell's membrane through poorly understood mechanisms to drive the daily pattern in the electrical excitability of SCN neurons, exhibiting an up-state during the day and a down-state at night. In turn, the membrane activity feeds back to regulate the oscillatory activity of clock gene programs. In this review, we emphasise the circadian processes that drive daily electrical oscillations in SCN neurons, and highlight how mathematical modelling contributes to our increasing understanding of circadian rhythm generation, synchronisation and communication within this hypothalamic region and across other brain circuits. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  5. Development of diabetes does not alter behavioral and molecular circadian rhythms in a transgenic rat model of type 2 diabetes mellitus.

    PubMed

    Qian, Jingyi; Thomas, Anthony P; Schroeder, Analyne M; Rakshit, Kuntol; Colwell, Christopher S; Matveyenko, Aleksey V

    2017-08-01

    Metabolic state and circadian clock function exhibit a complex bidirectional relationship. Circadian disruption increases propensity for metabolic dysfunction, whereas common metabolic disorders such as obesity and type 2 diabetes (T2DM) are associated with impaired circadian rhythms. Specifically, alterations in glucose availability and glucose metabolism have been shown to modulate clock gene expression and function in vitro; however, to date, it is unknown whether development of diabetes imparts deleterious effects on the suprachiasmatic nucleus (SCN) circadian clock and SCN-driven outputs in vivo. To address this question, we undertook studies in aged diabetic rats transgenic for human islet amyloid polypeptide, an established nonobese model of T2DM (HIP rat), which develops metabolic defects closely recapitulating those present in patients with T2DM. HIP rats were also cross-bred with a clock gene reporter rat model (Per1:luciferase transgenic rat) to permit assessment of the SCN and the peripheral molecular clock function ex vivo. Utilizing these animal models, we examined effects of diabetes on 1 ) behavioral circadian rhythms, 2 ) photic entrainment of circadian activity, 3 ) SCN and peripheral tissue molecular clock function, and 4 ) melatonin secretion. We report that circadian activity, light-induced entrainment, molecular clockwork, as well as melatonin secretion are preserved in the HIP rat model of T2DM. These results suggest that despite the well-characterized ability of glucose to modulate circadian clock gene expression acutely in vitro, SCN clock function and key behavioral and physiological outputs appear to be preserved under chronic diabetic conditions characteristic of nonobese T2DM. Copyright © 2017 the American Physiological Society.

  6. Circadian pacemaking in cells and circuits of the suprachiasmatic nucleus.

    PubMed

    Hastings, M H; Brancaccio, M; Maywood, E S

    2014-01-01

    The suprachiasmatic nucleus (SCN) of the hypothalamus is the principal circadian pacemaker of the brain. It co-ordinates the daily rhythms of sleep and wakefulness, as well as physiology and behaviour, that set the tempo to our lives. Disturbance of this daily pattern, most acutely with jet-lag but more insidiously with rotational shift-work, can have severely deleterious effects for mental function and long-term health. The present review considers recent developments in our understanding of the properties of the SCN that make it a robust circadian time-keeper. It first focuses on the intracellular transcriptional/ translational feedback loops (TTFL) that constitute the cellular clockwork of the SCN neurone. Daily timing by these loops pivots around the negative regulation of the Period (Per) and Cryptochrome (Cry) genes by their protein products. The period of the circadian cycle is set by the relative stability of Per and Cry proteins, and this can be controlled by both genetic and pharmacological interventions. It then considers the function of these feedback loops in the context of cytosolic signalling by cAMP and intracellular calcium ([Ca(2+) ]i ), which are both outputs from, and inputs to, the TTFL, as well as the critical role of vasoactive intestinal peptide (VIP) signalling in synchronising cellular clocks across the SCN. Synchronisation by VIP in the SCN is paracrine, operating over an unconventionally long time frame (i.e. 24 h) and wide spatial domain, mediated via the cytosolic pathways upstream of the TTFL. Finally, we show how intersectional pharmacogenetics can be used to control G-protein-coupled signalling in individual SCN neurones, and how manipulation of Gq/[Ca(2+) ]i -signalling in VIP neurones can re-programme the circuit-level encoding of circadian time. Circadian pacemaking in the SCN therefore provides an unrivalled context in which to understand how a complex, adaptive behaviour can be organised by the dynamic activity of a relatively few gene products, operating in a clearly defined neuronal circuit, with both cell-autonomous and emergent, circuit-level properties. © 2014 The Authors. Journal of Neuroendocrinology published by John Wiley & Sons Ltd on behalf of The British Society for Neuroendocrinology.

  7. Experimental implementation of optical clockwork without carrier-envelope phase control.

    PubMed

    Mücke, O D; Kuzucu, O; Wong, F N C; Ippen, E P; Kärtner, F X; Foreman, S M; Jones, D J; Ma, L S; Hall, J L; Ye, J

    2004-12-01

    We demonstrate optical clockwork without the need for carrier-envelope phase control by use of sum-frequency generation between a continuous-wave optical parametric oscillator at 3.39 microm and a femtosecond mode-locked Ti:sapphire laser with two strong spectral peaks at 834 and 670 nm, a spectral difference matched by the 3.39-microm radiation.

  8. Identification, Characterization, and Diel Pattern of Expression of Canonical Clock Genes in Nephrops norvegicus (Crustacea: Decapoda) Eyestalk

    PubMed Central

    Sbragaglia, Valerio; Lamanna, Francesco; M. Mat, Audrey; Rotllant, Guiomar; Joly, Silvia; Ketmaier, Valerio; de la Iglesia, Horacio O.; Aguzzi, Jacopo

    2015-01-01

    The Norway lobster, Nephrops norvegicus, is a burrowing decapod with a rhythmic burrow emergence (24 h) governed by the circadian system. It is an important resource for European fisheries and its behavior deeply affects its availability. The current knowledge of Nephrops circadian biology is phenomenological as it is currently the case for almost all crustaceans. In attempt to elucidate the putative molecular mechanisms underlying circadian gene regulation in Nephrops, we used a transcriptomics approach on cDNA extracted from the eyestalk, a structure playing a crucial role in controlling behavior of decapods. We studied 14 male lobsters under 12–12 light-darkness blue light cycle. We used the Hiseq 2000 Illumina platform to sequence two eyestalk libraries (under light and darkness conditions) obtaining about 90 millions 100-bp paired-end reads. Trinity was used for the de novo reconstruction of transcriptomes; the size at which half of all assembled bases reside in contigs (N50) was equal to 1796 (light) and 2055 (darkness). We found a list of candidate clock genes and focused our attention on canonical ones: timeless, period, clock and bmal1. The cloning of assembled fragments validated Trinity outputs. The putative Nephrops clock genes showed high levels of identity (blastx on NCBI) with known crustacean clock gene homologs such as Eurydice pulchra (period: 47%, timeless: 59%, bmal1: 79%) and Macrobrachium rosenbergii (clock: 100%). We also found a vertebrate-like cryptochrome 2. RT-qPCR showed that only timeless had a robust diel pattern of expression. Our data are in accordance with the current knowledge of the crustacean circadian clock, reinforcing the idea that the molecular clockwork of this group shows some differences with the established model in Drosophila melanogaster. PMID:26524198

  9. Behavioral Timing without Clockwork: Photoperiod-Dependent Trade-Off between Predation Hazard and Energy Balance in an Arctic Ungulate.

    PubMed

    Tyler, Nicholas J C; Gregorini, Pablo; Forchhammer, Mads C; Stokkan, Karl-Arne; van Oort, Bob E H; Hazlerigg, David G

    2016-10-01

    Occurrence of 24-h rhythms in species apparently lacking functional molecular clockwork indicates that strong circadian mechanisms are not essential prerequisites of robust timing, and that rhythmical patterns may arise instead as passive responses to periodically changing environmental stimuli. Thus, in a new synthesis of grazing in a ruminant (MINDY), crepuscular peaks of activity emerge from interactions between internal and external stimuli that influence motivation to feed, and the influence of the light/dark cycle is mediated through the effect of low nocturnal levels of food intake on gastric function. Drawing on risk allocation theory, we hypothesized that the timing of behavior in ruminants is influenced by the independent effects of light on motivation to feed and perceived risk of predation. We predicted that the antithetical relationship between these 2 drivers would vary with photoperiod, resulting in a systematic shift in the phase of activity relative to the solar cycle across the year. This prediction was formalized in a model in which phase of activity emerges from a photoperiod-dependent trade-off between food and safety. We tested this model using data on the temporal pattern of activity in reindeer/caribou Rangifer tarandus free-living at natural mountain pasture in sub-Arctic Norway. The resulting nonlinear relationship between the phasing of crepuscular activity and photoperiod, consistent with the model, suggests a mechanism for behavioral timing that is independent of the core circadian system. We anticipate that such timing depends on integration of metabolic feedback from the digestive system and the activity of the glucocorticoid axis which modulates the behavioral responses of the animal to environmental hazard. The hypothalamus is the obvious neural substrate to achieve this integration. © 2016 The Author(s).

  10. Regulation of molecular clock oscillations and phagocytic activity via muscarinic Ca2+ signaling in human retinal pigment epithelial cells

    PubMed Central

    Ikarashi, Rina; Akechi, Honami; Kanda, Yuzuki; Ahmad, Alsawaf; Takeuchi, Kouhei; Morioka, Eri; Sugiyama, Takashi; Ebisawa, Takashi; Ikeda, Masaaki; Ikeda, Masayuki

    2017-01-01

    Vertebrate eyes are known to contain circadian clocks, however, the intracellular mechanisms regulating the retinal clockwork remain largely unknown. To address this, we generated a cell line (hRPE-YC) from human retinal pigmental epithelium, which stably co-expressed reporters for molecular clock oscillations (Bmal1-luciferase) and intracellular Ca2+ concentrations (YC3.6). The hRPE-YC cells demonstrated circadian rhythms in Bmal1 transcription. Also, these cells represented circadian rhythms in Ca2+-spiking frequencies, which were canceled by dominant-negative Bmal1 transfections. The muscarinic agonist carbachol, but not photic stimulation, phase-shifted Bmal1 transcriptional rhythms with a type-1 phase response curve. This is consistent with significant M3 muscarinic receptor expression and little photo-sensor (Cry2 and Opn4) expression in these cells. Moreover, forskolin phase-shifted Bmal1 transcriptional rhythm with a type-0 phase response curve, in accordance with long-lasting CREB phosphorylation levels after forskolin exposure. Interestingly, the hRPE-YC cells demonstrated apparent circadian rhythms in phagocytic activities, which were abolished by carbachol or dominant-negative Bmal1 transfection. Because phagocytosis in RPE cells determines photoreceptor disc shedding, molecular clock oscillations and cytosolic Ca2+ signaling may be the driving forces for disc-shedding rhythms known in various vertebrates. In conclusion, the present study provides a cellular model to understand molecular and intracellular signaling mechanisms underlying human retinal circadian clocks. PMID:28276525

  11. A Clockwork Wikipedia: From a Broad Perspective to a Case Study.

    PubMed

    Benjakob, Omer; Aviram, Rona

    2018-06-01

    While research has shown that scientists use Wikipedia and that scientific content on Wikipedia ramifies back into scientific literature, many questions remain on how the two sides interact and through what paradigm this dynamic may be best understood. Using the circadian clock field as a case study, we discuss this scientific field's representation on Wikipedia. We traced the changes made to the articles for "Circadian clock" and "Circadian rhythm" and reviewed the debates that informed them over a span of a decade, using Wikipedia's native and third-party tools. Specifically, we focused on how groundbreaking research pertaining to the function of biological oscillators was integrated into the articles to reflect a wider paradigmatic shift within the field. We also identified the articles' main editors to detail the dynamic collective editorial process that took place during a time that saw the field undergo a fundamental change. We discuss the different concerns the academic community has with Wikipedia-specifically regarding its content and its contributors-to ask whether the online encyclopedia's open model is inherently at odds with scientific culture or whether the model could reflect science or even expand on its core values and practices such as peer review and the idea of communicating science.

  12. Disassembling the clockwork mechanism

    NASA Astrophysics Data System (ADS)

    Craig, Nathaniel; Garcia Garcia, Isabel; Sutherland, Dave

    2017-10-01

    The clockwork mechanism is a means of naturally generating exponential hierarchies in theories without significant hierarchies among fundamental parameters. We emphasize the role of interactions in the clockwork mechanism, demonstrating that clockwork is an intrinsically abelian phenomenon precluded in non-abelian theories such as Yang-Mills, non-linear sigma models, and gravity. We also show that clockwork is not realized in extra-dimensional theories through purely geometric effects, but may be generated by appropriate localization of zero modes.

  13. Clockwork seesaw mechanisms

    NASA Astrophysics Data System (ADS)

    Park, Seong Chan; Shin, Chang Sub

    2018-01-01

    We propose new mechanisms for small neutrino masses based on clockwork mechanism. The Standard Model neutrinos and lepton number violating operators communicate through the zero mode of clockwork gears, one of the two couplings of the zero mode is exponentially suppressed by clockwork mechanism. Including all known examples for the clockwork realization of the neutrino masses, different types of models are realized depending on the profile and chirality of the zero mode fermion. Each type of realization would have phenomenologically distinctive features with the accompanying heavy neutrinos.

  14. PDF and cAMP enhance PER stability in Drosophila clock neurons

    PubMed Central

    Li, Yue; Guo, Fang; Shen, James; Rosbash, Michael

    2014-01-01

    The neuropeptide PDF is important for Drosophila circadian rhythms: pdf01 (pdf-null) animals are mostly arrhythmic or short period in constant darkness and have an advanced activity peak in light–dark conditions. PDF contributes to the amplitude, synchrony, as well as the pace of circadian rhythms within clock neurons. PDF is known to increase cAMP levels in PDR receptor (PDFR)-containing neurons. However, there is no known connection of PDF or of cAMP with the Drosophila molecular clockworks. We discovered that the mutant period gene perS ameliorates the phenotypes of pdf-null flies. The period protein (PER) is a well-studied repressor of clock gene transcription, and the perS protein (PERS) has a markedly short half-life. The result therefore suggests that the PDF-mediated increase in cAMP might lengthen circadian period by directly enhancing PER stability. Indeed, increasing cAMP levels and cAMP-mediated protein kinase A (PKA) activity stabilizes PER, in S2 tissue culture cells and in fly circadian neurons. Adding PDF to fly brains in vitro has a similar effect. Consistent with these relationships, a light pulse causes more prominent PER degradation in pdf01 circadian neurons than in wild-type neurons. The results indicate that PDF contributes to clock neuron synchrony by increasing cAMP and PKA, which enhance PER stability and decrease clock speed in intrinsically fast-paced PDFR-containing clock neurons. We further suggest that the more rapid degradation of PERS bypasses PKA regulation and makes the pace of clock neurons more uniform, allowing them to avoid much of the asynchrony caused by the absence of PDF. PMID:24707054

  15. PDF and cAMP enhance PER stability in Drosophila clock neurons.

    PubMed

    Li, Yue; Guo, Fang; Shen, James; Rosbash, Michael

    2014-04-01

    The neuropeptide PDF is important for Drosophila circadian rhythms: pdf(01) (pdf-null) animals are mostly arrhythmic or short period in constant darkness and have an advanced activity peak in light-dark conditions. PDF contributes to the amplitude, synchrony, as well as the pace of circadian rhythms within clock neurons. PDF is known to increase cAMP levels in PDR receptor (PDFR)-containing neurons. However, there is no known connection of PDF or of cAMP with the Drosophila molecular clockworks. We discovered that the mutant period gene per(S) ameliorates the phenotypes of pdf-null flies. The period protein (PER) is a well-studied repressor of clock gene transcription, and the per(S) protein (PERS) has a markedly short half-life. The result therefore suggests that the PDF-mediated increase in cAMP might lengthen circadian period by directly enhancing PER stability. Indeed, increasing cAMP levels and cAMP-mediated protein kinase A (PKA) activity stabilizes PER, in S2 tissue culture cells and in fly circadian neurons. Adding PDF to fly brains in vitro has a similar effect. Consistent with these relationships, a light pulse causes more prominent PER degradation in pdf(01) circadian neurons than in wild-type neurons. The results indicate that PDF contributes to clock neuron synchrony by increasing cAMP and PKA, which enhance PER stability and decrease clock speed in intrinsically fast-paced PDFR-containing clock neurons. We further suggest that the more rapid degradation of PERS bypasses PKA regulation and makes the pace of clock neurons more uniform, allowing them to avoid much of the asynchrony caused by the absence of PDF.

  16. The clockwork supergravity

    NASA Astrophysics Data System (ADS)

    Kehagias, Alex; Riotto, Antonio

    2018-02-01

    We show that the minimal D = 5, N = 2 gauged supergravity set-up may encode naturally the recently proposed clockwork mechanism. The minimal embedding requires one vector multiplet in addition to the supergravity multiplet and the clockwork scalar is identified with the scalar in the vector multiplet. The scalar has a two-parameter potential and it can accommodate the clockwork, the Randall-Sundrum and a no-scale model with a flat potential, depending on the values of the parameters. The continuous clockwork background breaks half of the original supersymmetries, leaving a D = 4, N = 1 theory on the boundaries. We also show that the generated hierarchy by the clockwork is not exponential but rather power law. The reason is that four-dimensional Planck scale has a power-law dependence on the compactification radius, whereas the corresponding KK spectrum depends on the logarithm of the latter.

  17. Clockwork inflation

    NASA Astrophysics Data System (ADS)

    Kehagias, Alex; Riotto, Antonio

    2017-04-01

    We investigate the recently proposed clockwork mechanism delivering light degrees of freedom with suppressed interactions and show, with various examples, that it can be efficiently implemented in inflationary scenarios to generate flat inflaton potentials and small density perturbations without fine-tunings. We also study the clockwork graviton in de Sitter and, interestingly, we find that the corresponding clockwork charge is site-dependent. As a consequence, the amount of tensor modes is generically suppressed with respect to the standard cases where the clockwork set-up is not adopted. This point can be made a virtue in resurrecting models of inflation which were supposed to be ruled out because of the excessive amount of tensor modes from inflation.

  18. Prediction of the protein components of a putative Calanus finmarchicus (Crustacea, Copepoda) circadian signaling system using a de novo assembled transcriptome

    PubMed Central

    Christie, Andrew E.; Fontanilla, Tiana M.; Nesbit, Katherine T.; Lenz, Petra H.

    2013-01-01

    Diel vertical migration and seasonal diapause are critical life history events for the copepod Calanus finmarchicus. While much is known about these behaviors phenomenologically, little is known about their molecular underpinnings. Recent studies in insects suggest that some circadian genes/proteins also contribute to the establishment of seasonal diapause. Thus, it is possible that in Calanus these distinct timing regimes share some genetic components. To begin to address this possibility, we used the well-established Drosophila melanogaster circadian system as a reference for mining clock transcripts from a 200,000+ sequence Calanus transcriptome; the proteins encoded by the identified transcripts were also deduced and characterized. Sequences encoding homologs of the Drosophila core clock proteins CLOCK, CYCLE, PERIOD and TIMELESS were identified, as was one encoding CRYPTOCHROME 2, a core clock protein in ancestral insect systems, but absent in Drosophila. Calanus transcripts encoding proteins known to modulate the Drosophila core clock were also identified and characterized, e.g. CLOCKWORK ORANGE, DOUBLETIME, SHAGGY and VRILLE. Alignment and structural analyses of the deduced Calanus proteins with their Drosophila counterparts revealed extensive sequence conservation, particularly in functional domains. Interestingly, reverse BLAST analyses of these sequences against all arthropod proteins typically revealed non-Drosophila isoforms to be most similar to the Calanus queries. This, in combination with the presence of both CRYPTOCHROME 1 (a clock input pathway protein) and CRYPTOCHROME 2 in Calanus, suggests that the organization of the copepod circadian system is an ancestral one, more similar to that of insects like Danaus plexippus than to that of Drosophila. PMID:23727418

  19. Clockwork graviton contributions to muon g -2

    NASA Astrophysics Data System (ADS)

    Hong, Deog Ki; Kim, Du Hwan; Shin, Chang Sub

    2018-02-01

    The clockwork mechanism for gravity introduces a tower of massive graviton modes, clockwork gravitons, with a very compressed mass spectrum, whose interaction strengths are much stronger than those of massless gravitons. In this work, we compute the lowest order contributions of the clockwork gravitons to the anomalous magnetic moment, g -2 , of muon in the context of an extra dimensional model with a five-dimensional Planck mass, M5. We find that the total contributions are rather insensitive to the detailed model parameters and are determined mostly by the value of M5. To account for the current muon g -2 anomaly, M5 should be around 0.2 TeV, and the size of the extra dimension has to be quite large, l5≳10-7 m . For M5≳1 TeV , the clockwork graviton contributions are too small to explain the current muon g -2 anomaly. We also compare the clockwork graviton contributions with other extra dimensional models such as Randall-Sundrum models or large extra dimensional models. We find that the leading contributions in the small curvature limit are universal, but the cutoff-independent subleading contributions vary for different background geometries and the clockwork geometry gives the smallest subleading contributions.

  20. Clockwork for neutrino masses and lepton flavor violation

    NASA Astrophysics Data System (ADS)

    Ibarra, Alejandro; Kushwaha, Ashwani; Vempati, Sudhir K.

    2018-05-01

    We investigate the generation of small neutrino masses in a clockwork framework which includes Dirac mass terms as well as Majorana mass terms for the new fermions. We derive analytic formulas for the masses of the new particles and for their Yukawa couplings to the lepton doublets, in the scenario where the clockwork parameters are universal. When the universal Majorana mass vanishes, the zero mode of the clockwork sector forms a Dirac pair with the active neutrino, with a mass which is in agreement with oscillations experiments for a sufficiently large number of clockwork gears. On the other hand, when it does not vanish, neutrino masses are generated via the seesaw mechanism. In this case, and due to the fact that the effective Yukawa couplings of the higher modes can be sizable, neutrino masses can only be suppressed by postulating a large Majorana mass scale. Finally, we discuss the constraints on the mass scale of the clockwork fermions from the non-observation of the rare leptonic decay μ → eγ.

  1. Dynamical clockwork axions

    NASA Astrophysics Data System (ADS)

    Coy, Rupert; Frigerio, Michele; Ibe, Masahiro

    2017-10-01

    The clockwork mechanism is a novel method for generating a large separation between the dynamical scale and interaction scale of a theory. We demonstrate how the mechanism can arise from a sequence of strongly-coupled sectors. This framework avoids elementary scalar fields as well as ad hoc continuous global symmetries, both of which are subject to serious stability issues. The clockwork factor, q, is determined by the consistency of the strong dynamics. The preserved global U(1) of the clockwork appears as an accidental symmetry, resulting from discrete or U(1) gauge symmetries, and it is spontaneously broken by the chiral condensates. We apply such a dynamical clockwork to construct models with an effectively invisible QCD axion from TeV-scale strong dynamics. The axion couplings are determined by the localisation of the Standard Model interactions along the clockwork sequence. The TeV spectrum includes either coloured hadrons or vector-like quarks. Dark matter can be accounted for by the axion or the lightest neutral baryons, which are accidentally stable.

  2. A sense of time: how molecular clocks organize metabolism.

    PubMed

    Kohsaka, Akira; Bass, Joseph

    2007-01-01

    The discovery of an internal temporal clockwork that coordinates behavior and metabolism according to the rising and setting of the sun was first revealed in flies and plants. However, in the past decade, a molecular transcription-translation feedback loop with similar properties has also been identified in mammals. In mammals, this transcriptional oscillator programs 24-hour cycles in sleep, activity and feeding within the master pacemaker neurons of the suprachiasmatic nucleus of the hypothalamus. More recent studies have shown that the core transcription mechanism is also present in other locations within the brain, in addition to many peripheral tissues. Processes ranging from glucose transport to gluconeogenesis, lipolysis, adipogenesis and mitochondrial oxidative phosphorylation are controlled through overlapping transcription networks that are tied to the clock and are thus time sensitive. Because disruption of tissue timing occurs when food intake, activity and sleep are altered, understanding how these many tissue clocks are synchronized to tick at the same time each day, and determining how each tissue 'senses time' set by these molecular clocks might open new insight into human disease, including disorders of sleep, circadian disruption, diabetes and obesity.

  3. Education in the Clockwork Social Order.

    ERIC Educational Resources Information Center

    Briod, Marc

    1978-01-01

    Sebastian de Grazia's image of clockwork collectivism is contrasted with the views of Thomas Green concerning the relationship between leisure and the clock, and supplemented by Edward T. Hall's analysis of what is entailed in coping with clockwork culture. Synchronization learning is proposed as necessary to the effective functioning within the…

  4. General anesthesia alters time perception by phase shifting the circadian clock.

    PubMed

    Cheeseman, James F; Winnebeck, Eva C; Millar, Craig D; Kirkland, Lisa S; Sleigh, James; Goodwin, Mark; Pawley, Matt D M; Bloch, Guy; Lehmann, Konstantin; Menzel, Randolf; Warman, Guy R

    2012-05-01

    Following general anesthesia, people are often confused about the time of day and experience sleep disruption and fatigue. It has been hypothesized that these symptoms may be caused by general anesthesia affecting the circadian clock. The circadian clock is fundamental to our well-being because it regulates almost all aspects of our daily biochemistry, physiology, and behavior. Here, we investigated the effects of the most common general anesthetic, isoflurane, on time perception and the circadian clock using the honeybee (Apis mellifera) as a model. A 6-h daytime anesthetic systematically altered the time-compensated sun compass orientation of the bees, with a mean anticlockwise shift in vanishing bearing of 87° in the Southern Hemisphere and a clockwise shift in flight direction of 58° in the Northern Hemisphere. Using the same 6-h anesthetic treatment, time-trained bees showed a delay in the start of foraging of 3.3 h, and whole-hive locomotor-activity rhythms were delayed by an average of 4.3 h. We show that these effects are all attributable to a phase delay in the core molecular clockwork. mRNA oscillations of the central clock genes cryptochrome-m and period were delayed by 4.9 and 4.3 h, respectively. However, this effect is dependent on the time of day of administration, as is common for clock effects, and nighttime anesthesia did not shift the clock. Taken together, our results suggest that general anesthesia during the day causes a persistent and marked shift of the clock effectively inducing "jet lag" and causing impaired time perception. Managing this effect in humans is likely to help expedite postoperative recovery.

  5. Efficient targeted mutagenesis in the monarch butterfly using zinc-finger nucleases

    PubMed Central

    Merlin, Christine; Beaver, Lauren E.; Taylor, Orley R.; Wolfe, Scot A.; Reppert, Steven M.

    2013-01-01

    The development of reverse-genetic tools in “nonmodel” insect species with distinct biology is critical to establish them as viable model systems. The eastern North American monarch butterfly (Danaus plexippus), whose genome is sequenced, has emerged as a model to study animal clocks, navigational mechanisms, and the genetic basis of long-distance migration. Here, we developed a highly efficient gene-targeting approach in the monarch using zinc-finger nucleases (ZFNs), engineered nucleases that generate mutations at targeted genomic sequences. We focused our ZFN approach on targeting the type 2 vertebrate-like cryptochrome gene of the monarch (designated cry2), which encodes a putative transcriptional repressor of the monarch circadian clockwork. Co-injections of mRNAs encoding ZFNs targeting the second exon of monarch cry2 into “one nucleus” stage embryos led to high-frequency nonhomologous end-joining-mediated, mutagenic lesions in the germline (up to 50%). Heritable ZFN-induced lesions in two independent lines produced truncated, nonfunctional CRY2 proteins, resulting in the in vivo disruption of circadian behavior and the molecular clock mechanism. Our work genetically defines CRY2 as an essential transcriptional repressor of the monarch circadian clock and provides a proof of concept for the use of ZFNs for manipulating genes in the monarch butterfly genome. Importantly, this approach could be used in other lepidopterans and “nonmodel” insects, thus opening new avenues to decipher the molecular underpinnings of a variety of biological processes. PMID:23009861

  6. Healthy clocks, healthy body, healthy mind.

    PubMed

    Reddy, Akhilesh B; O'Neill, John S

    2010-01-01

    Circadian rhythms permeate mammalian biology. They are manifested in the temporal organisation of behavioural, physiological, cellular and neuronal processes. Whereas it has been shown recently that these approximately 24-hour cycles are intrinsic to the cell and persist in vitro, internal synchrony in mammals is largely governed by the hypothalamic suprachiasmatic nuclei that facilitate anticipation of, and adaptation to, the solar cycle. Our timekeeping mechanism is deeply embedded in cell function and is modelled as a network of transcriptional and/or post-translational feedback loops. Concurrent with this, we are beginning to understand how this ancient timekeeper interacts with myriad cell systems, including signal transduction cascades and the cell cycle, and thus impacts on disease. An exemplary area where this knowledge is rapidly expanding and contributing to novel therapies is cancer, where the Period genes have been identified as tumour suppressors. In more complex disorders, where aetiology remains controversial, interactions with the clockwork are only now starting to be appreciated.

  7. The in vitro maintenance of clock genes expression within the rat pineal gland under standard and norepinephrine-synchronized stimulation.

    PubMed

    Andrade-Silva, Jéssica; Cipolla-Neto, José; Peliciari-Garcia, Rodrigo A

    2014-01-01

    Although the norepinephrine (NE) synchronization protocol was proved to be an important procedure for further modulating in vitro pineal melatonin synthesis, the maintenance of clock genes under the same conditions remained to be investigated. The aim of this study was to investigate the maintenance of the clock genes expression in pineal gland cultures under standard and NE-synchronized stimulation. The glands were separated into three experimental groups: Control, Standard (acute NE-stimulation), and NE-synchronized. The expression of Bmal1, Per2, Cry2, Rev-erbα, the clock controlled gene Dbp and Arylalkylamine-N-acetyltransferase were investigated, as well as melatonin content. No oscillations were observed in the expression of the investigated genes from the control group. Under Standard NE stimulation, the clock genes did not exhibit a rhythmic pattern of expression. However, in the NE-synchronized condition, a rhythmic expression pattern was observed in all cases. An enhancement in pineal gland responsiveness to NE stimulation, reflected in an advanced synthesis of melatonin was also observed. Our results reinforce our previous hypothesis that NE synchronization of pineal gland culture mimics the natural rhythmic release of NE in the gland, increasing melatonin synthesis and keeping the pineal circadian clock synchronized, ensuring the fine adjustments that are relied in the clockwork machinery. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  8. Photoperiod regulates multiple gene expression in the suprachiasmatic nuclei and pars tuberalis of the Siberian hamster (Phodopus sungorus).

    PubMed

    Johnston, Jonathan D; Ebling, Francis J P; Hazlerigg, David G

    2005-06-01

    Photoperiod regulates the seasonal physiology of many mammals living in temperate latitudes. Photoperiodic information is decoded by the master circadian clock in the suprachiasmatic nuclei (SCN) of the hypothalamus and then transduced via pineal melatonin secretion. This neurochemical signal is interpreted by tissues expressing melatonin receptors (e.g. the pituitary pars tuberalis, PT) to drive physiological changes. In this study we analysed the photoperiodic regulation of the circadian clockwork in the SCN and PT of the Siberian hamster. Female hamsters were exposed to either long or short photoperiod for 8 weeks and sampled at 2-h intervals across the 24-h cycle. In the SCN, rhythmic expression of the clock genes Per1, Per2, Cry1, Rev-erbalpha, and the clock-controlled genes arginine vasopressin (AVP) and d-element binding protein (DBP) was modulated by photoperiod. All of these E-box-containing genes tracked dawn, with earlier peak mRNA expression in long, compared to short, photoperiod. This response occurred irrespective of the presence of additional regulatory cis-elements, suggesting photoperiodic regulation of SCN gene expression through a common E-box-related mechanism. In long photoperiod, expression of Cry1 and Per1 in the PT tracked the onset and offset of melatonin secretion, respectively. However, whereas Cry1 tracked melatonin onset in short period, Per1 expression was not detectably rhythmic. We therefore propose that, in the SCN, photoperiodic regulation of clock gene expression primarily occurs via E-boxes, whereas melatonin-driven signal transduction drives the phasing of a subset of clock genes in the PT, independently of the E-box.

  9. 76 FR 59162 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-National Center...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-23

    ... Lake, IL; Climax Portable Machine Tools, Inc., Newberg, OR; Clockwork Solutions, Inc. (CSI), Austin, TX..., MA; University of Texas Austin, Austin, TX; Vista Controls, Inc., dba Curtiss-Wright Controls... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and...

  10. Femtosecond Timekeeping: Slip-Free Clockwork for Optical Timescales

    NASA Astrophysics Data System (ADS)

    Herman, D.; Droste, S.; Baumann, E.; Roslund, J.; Churin, D.; Cingoz, A.; Deschênes, J.-D.; Khader, I. H.; Swann, W. C.; Nelson, C.; Newbury, N. R.; Coddington, I.

    2018-04-01

    The generation of true optical time standards will require the conversion of the highly stable optical-frequency output of an optical atomic clock to a high-fidelity time output. We demonstrate a comb-based clockwork that phase-coherently integrates ˜7 ×1020 optical cycles of an input optical frequency to create a coherent time output. We verify the underlying stability of the optical timing system by comparing two comb-based clockworks with a common input optical frequency and show <20 fs total time drift over the 37-day measurement period. Both clockworks also generate traditional timing signals including an optical pulse per second and a 10-MHz rf reference. The optical pulse-per-second time outputs remain synchronized to 240 attoseconds (240 as) at 1000 s. The phase-coherent 10-MHz rf outputs are stable to near a part in 1019 . Fault-free timekeeping from an optical clock to femtosecond level over months is an important step in replacing the current microwave time standard by an optical standard.

  11. The monarch butterfly genome yields insights into long-distance migration

    PubMed Central

    Zhan, Shuai; Merlin, Christine; Boore, Jeffrey L.; Reppert, Steven M.

    2011-01-01

    SUMMARY We present the draft 273 Mb genome of the migratory monarch butterfly (Danaus plexippus) and a set of 16, 866 protein-coding genes. Orthology properties suggest that the Lepidoptera are the fastest evolving insect order yet examined. Compared to the silkmoth Bombyx mori, the monarch genome shares prominent similarity in orthology content, microsynteny, and protein family sizes. The monarch genome reveals: a vertebrate-like opsin whose existence in insects is widespread; a full repertoire of molecular components for the monarch circadian clockwork; all members of the juvenile hormone biosynthetic pathway whose regulation shows unexpected sexual dimorphism; additional molecular signatures of oriented flight behavior; microRNAs that are differentially expressed between summer and migratory butterflies; monarch-specific expansions of chemoreceptors potentially important for long-distance migration; and a variant of the sodium/potassium pump that underlies a valuable chemical defense mechanism. The monarch genome enhances our ability to better understand the genetic and molecular basis of long-distance migration. PMID:22118469

  12. "Clockwork": Philip Pullman's Posthuman Fairy Tale

    ERIC Educational Resources Information Center

    Gooding, Richard

    2011-01-01

    This article examines the connections between posthumanism and narrative form in Philip Pullman's "Clockwork." Beginning with an account of Pullman's materialism, it argues that the novel represents consciousness and agency as emergent properties of matter, a position that manifests itself first in the tale's figurative language and later in the…

  13. The 360 Degree Fulldome Production "Clockwork Ocean"

    NASA Astrophysics Data System (ADS)

    Baschek, B.; Heinsohn, R.; Opitz, D.; Fischer, T.; Baschek, T.

    2016-02-01

    The investigation of submesoscale eddies and fronts is one of the leading oceanographic topics at the Ocean Sciences Meeting 2016. In order to observe these small and short-lived phenomena, planes equipped with high-resolution cameras and fast vessels were deployed during the Submesoscale Experiments (SubEx) leading to some of the first high-resolution observations of these eddies. In a future experiment, a zeppelin will be used the first time in marine sciences. The relevance of submesoscale processes for the oceans and the work of the eddy hunters is described in the fascinating 9-minute long 360 degree fulldome production Clockwork Ocean. The fully animated movie is introduced in this presentation taking the observer from the bioluminescence in the deep ocean to a view of our blue planet from space. The immersive media is used to combine fascination for a yet unknown environment with scientific education of a broad audience. Detailed background information is available at the parallax website www.clockwork-ocean.com. The Film is also available for Virtual Reality glasses and smartphones to reach a broader distribution. A unique Mobile Dome with an area of 70 m² and seats for 40 people is used for science education at events, festivals, for politicians and school classes. The spectators are also invited to participate in the experiments by presenting 360 degree footage of the measurements. The premiere of Clockwork Ocean was in July 2015 in Hamburg, Germany and will be worldwide available in English and German as of fall 2015. Clockwork Ocean is a film of the Helmholtz-Zentrum Geesthacht produced by Daniel Opitz and Ralph Heinsohn.

  14. Japanese Aircraft Cameras

    DTIC Science & Technology

    1946-09-01

    camera is supported on four rubber grummets to a metal base which is normally attached in tho aircraft by bolts. The pistol grip remote control...daylight loading (h) Supply • 24 volts 1.7 35 nun Cino Gun Pantra ( Tyre number unknown) ’ ." The oamora dsscribod below is a clockwork

  15. Identification of the Molecular Clockwork of the Oyster Crassostrea gigas

    PubMed Central

    Perrigault, Mickael; Tran, Damien

    2017-01-01

    Molecular clock system constitutes the origin of biological rhythms that allow organisms to anticipate cyclic environmental changes and adapt their behavior and physiology. Components of the molecular clock are largely conserved across a broad range of species but appreciable diversity in clock structure and function is also present especially in invertebrates. The present work aimed at identify and characterize molecular clockwork components in relationship with the monitoring of valve activity behavior in the oyster Crassostrea gigas. Results provided the characterization of most of canonical clock gene including clock, bmal/cycle, period, timeless, vertebrate-type cry, rev-erb, ror as well as other members of the cryptochrome/photolyase family (plant-like cry, 6–4 photolyase). Analyses of transcriptional variations of clock candidates in oysters exposed to light / dark regime and to constant darkness led to the generation of a putative and original clockwork model in C. gigas, intermediate of described systems in vertebrates and insects. This study is the first characterization of a mollusk clockwork. It constitutes essential bases to understand interactions of the different components of the molecular clock in C. gigas as well as the global mechanisms associated to the generation and the synchronization of biological rhythms in oysters. PMID:28072861

  16. Gauged U(1) clockwork theory

    NASA Astrophysics Data System (ADS)

    Lee, Hyun Min

    2018-03-01

    We consider the gauged U (1) clockwork theory with a product of multiple gauge groups and discuss the continuum limit of the theory to a massless gauged U (1) with linear dilaton background in five dimensions. The localization of the lightest state of gauge fields on a site in the theory space naturally leads to exponentially small effective couplings of external matter fields localized away from the site. We discuss the implications of our general discussion with some examples, such as mediators of dark matter interactions, flavor-changing B-meson decays as well as D-term SUSY breaking.

  17. Light-based Modeling and Control of Circadian Rhythm

    DTIC Science & Technology

    2016-08-29

    the foundation of the full research. 1. Circadian phase estimation and control: Demonstrate the applicability of the adaptive notch filter (ANF) to...the adaptive notch filter (ANF) to extract circadian phase from noisy Drosophila locomotive activity measurements and the efficacy of using the ANF...full research. 1. Circadian phase estimation and control: Demonstrate the applicability of the adaptive notch filter (ANF) to extract circadian

  18. Biochronometry; Proceedings of the Symposium, Friday Harbor, Wash., September 4-6, 1969.

    NASA Technical Reports Server (NTRS)

    Menaker, M.

    1971-01-01

    Topics discussed include circadian activity rhythms in birds and man, variation of circadian rhythms in monkeys, resetting of circadian eclosion rhythm in fruitflies, the effectiveness of mathematical models of circadian rhythms, the influence of ac electric fields on circadian rhythms in man, the relation between changes in the metabolic rate and circadian periodicity of the resistance of pocket mice to ionizing radiation, the relation between circadian organization and the photoperiodic time measurement in moths, the circadian rhythm of optic nerve potentials in the isolated eye of the sea hare, phasing of circadian temperature rhythms in the pocket mouse by specific spectral regions, the phase-shifting effect of light on circadian rhymicity in the fruifly, hormonal control of circadian rhythms in the fruitfly, metabolically controlled temperature compensation in the circadian rhythm of algae, and circadian rhythms in the chloroplasts of algae. Individual items are abstracted in this issue.

  19. Transcriptional Control of Antioxidant Defense by the Circadian Clock

    PubMed Central

    Patel, Sonal A.; Velingkaar, Nikkhil S.

    2014-01-01

    Abstract Significance: The circadian clock, an internal timekeeping system, is implicated in the regulation of metabolism and physiology, and circadian dysfunctions are associated with pathological changes in model organisms and increased risk of some diseases in humans. Recent Advances: Data obtained in different organisms, including humans, have established a tight connection between the clock and cellular redox signaling making it among the major candidates for a link between the circadian system and physiological processes. Critical Issues: In spite of the recent progress in understanding the importance of the circadian clock in the regulation of reactive oxygen species homeostasis, molecular mechanisms and key regulators are mostly unknown. Future Directions: Here we review, with an emphasis on transcriptional control, the circadian-clock-dependent control of oxidative stress response system as a potential mechanism in age-associated diseases. We will discuss the roles of the core clock components such as brain and muscle ARNT-like 1, Circadian Locomotor Output Cycles Kaput, the circadian-clock-controlled transcriptional factors such as nuclear factor erythroid-2-related factor, and peroxisome proliferator-activated receptor and circadian clock control chromatin modifying enzymes from sirtuin family in the regulation of cellular and organism antioxidant defense. Antioxid. Redox Signal. 20, 2997–3006. PMID:24111970

  20. Rethinking the Clockwork of Work: Why Schedule Control May Pay Off at Work and at Home.

    PubMed

    Kelly, Erin L; Moen, Phyllis

    2007-11-01

    Many employees face work-life conflicts and time deficits that negatively affect their health, well-being, effectiveness on the job, and organizational commitment. Many organizations have adopted flexible work arrangements but not all of them increase schedule control, that is, employees' control over when, where, and how much they work. This article describes some limitations of flexible work policies, proposes a conceptual model of how schedule control impacts work-life conflicts, and describes specific ways to increase employees' schedule control, including best practices for implementing common flexible work policies and Best Buy's innovative approach to creating a culture of schedule control.

  1. Natural changes in light interact with circadian regulation at promoters to control gene expression in cyanobacteria

    PubMed Central

    2017-01-01

    The circadian clock interacts with other regulatory pathways to tune physiology to predictable daily changes and unexpected environmental fluctuations. However, the complexity of circadian clocks in higher organisms has prevented a clear understanding of how natural environmental conditions affect circadian clocks and their physiological outputs. Here, we dissect the interaction between circadian regulation and responses to fluctuating light in the cyanobacterium Synechococcus elongatus. We demonstrate that natural changes in light intensity substantially affect the expression of hundreds of circadian-clock-controlled genes, many of which are involved in key steps of metabolism. These changes in expression arise from circadian and light-responsive control of RNA polymerase recruitment to promoters by a network of transcription factors including RpaA and RpaB. Using phenomenological modeling constrained by our data, we reveal simple principles that underlie the small number of stereotyped responses of dusk circadian genes to changes in light. PMID:29239721

  2. Misalignment with the external light environment drives metabolic and cardiac dysfunction.

    PubMed

    West, Alexander C; Smith, Laura; Ray, David W; Loudon, Andrew S I; Brown, Timothy M; Bechtold, David A

    2017-09-12

    Most organisms use internal biological clocks to match behavioural and physiological processes to specific phases of the day-night cycle. Central to this is the synchronisation of internal processes across multiple organ systems. Environmental desynchrony (e.g. shift work) profoundly impacts human health, increasing cardiovascular disease and diabetes risk, yet the underlying mechanisms remain unclear. Here, we characterise the impact of desynchrony between the internal clock and the external light-dark (LD) cycle on mammalian physiology. We reveal that even under stable LD environments, phase misalignment has a profound effect, with decreased metabolic efficiency and disrupted cardiac function including prolonged QT interval duration. Importantly, physiological dysfunction is not driven by disrupted core clock function, nor by an internal desynchrony between organs, but rather the altered phase relationship between the internal clockwork and the external environment. We suggest phase misalignment as a major driver of pathologies associated with shift work, chronotype and social jetlag.The misalignment between internal circadian rhythm and the day-night cycle can be caused by genetic, behavioural and environmental factors, and may have a profound impact on human physiology. Here West et al. show that desynchrony between the internal clock and the external environment alter metabolic parameters and cardiac function in mice.

  3. Circadian expression profiles of chromatin remodeling factor genes in Arabidopsis.

    PubMed

    Lee, Hong Gil; Lee, Kyounghee; Jang, Kiyoung; Seo, Pil Joon

    2015-01-01

    The circadian clock is a biological time keeper mechanism that regulates biological rhythms to a period of approximately 24 h. The circadian clock enables organisms to anticipate environmental cycles and coordinates internal cellular physiology with external environmental cues. In plants, correct matching of the clock with the environment confers fitness advantages to plant survival and reproduction. Therefore, circadian clock components are regulated at multiple layers to fine-tune the circadian oscillation. Epigenetic regulation provides an additional layer of circadian control. However, little is known about which chromatin remodeling factors are responsible for circadian control. In this work, we analyzed circadian expression of 109 chromatin remodeling factor genes and identified 17 genes that display circadian oscillation. In addition, we also found that a candidate interacts with a core clock component, supporting that clock activity is regulated in part by chromatin modification. As an initial attempt to elucidate the relationship between chromatin modification and circadian oscillation, we identified novel regulatory candidates that provide a platform for future investigations of chromatin regulation of the circadian clock.

  4. Rethinking the Clockwork of Work: Why Schedule Control May Pay Off at Work and at Home

    PubMed Central

    Kelly, Erin L.; Moen, Phyllis

    2014-01-01

    The problem and the solution Many employees face work–life conflicts and time deficits that negatively affect their health, well-being, effectiveness on the job, and organizational commitment. Many organizations have adopted flexible work arrangements but not all of them increase schedule control, that is, employees’ control over when, where, and how much they work. This article describes some limitations of flexible work policies, proposes a conceptual model of how schedule control impacts work–life conflicts, and describes specific ways to increase employees’ schedule control, including best practices for implementing common flexible work policies and Best Buy’s innovative approach to creating a culture of schedule control. PMID:25598711

  5. Chromatin landscape and circadian dynamics: Spatial and temporal organization of clock transcription

    PubMed Central

    Aguilar-Arnal, Lorena; Sassone-Corsi, Paolo

    2015-01-01

    Circadian rhythms drive the temporal organization of a wide variety of physiological and behavioral functions in ∼24-h cycles. This control is achieved through a complex program of gene expression. In mammals, the molecular clock machinery consists of interconnected transcriptional–translational feedback loops that ultimately ensure the proper oscillation of thousands of genes in a tissue-specific manner. To achieve circadian transcriptional control, chromatin remodelers serve the clock machinery by providing appropriate oscillations to the epigenome. Recent findings have revealed the presence of circadian interactomes, nuclear “hubs” of genome topology where coordinately expressed circadian genes physically interact in a spatial and temporal-specific manner. Thus, a circadian nuclear landscape seems to exist, whose interplay with metabolic pathways and clock regulators translates into specific transcriptional programs. Deciphering the molecular mechanisms that connect the circadian clock machinery with the nuclear landscape will reveal yet unexplored pathways that link cellular metabolism to epigenetic control. PMID:25378702

  6. A systems theoretic approach to analysis and control of mammalian circadian dynamics

    PubMed Central

    Abel, John H.; Doyle, Francis J.

    2016-01-01

    The mammalian circadian clock is a complex multi-scale, multivariable biological control system. In the past two decades, methods from systems engineering have led to numerous insights into the architecture and functionality of this system. In this review, we examine the mammalian circadian system through a process systems lens. We present a mathematical framework for examining the cellular circadian oscillator, and show recent extensions for understanding population-scale dynamics. We provide an overview of the routes by which the circadian system can be systemically manipulated, and present in silico proof of concept results for phase resetting of the clock via model predictive control. PMID:28496287

  7. Circadian Phase Resetting via Single and Multiple Control Targets

    PubMed Central

    Bagheri, Neda; Stelling, Jörg; Doyle, Francis J.

    2008-01-01

    Circadian entrainment is necessary for rhythmic physiological functions to be appropriately timed over the 24-hour day. Disruption of circadian rhythms has been associated with sleep and neuro-behavioral impairments as well as cancer. To date, light is widely accepted to be the most powerful circadian synchronizer, motivating its use as a key control input for phase resetting. Through sensitivity analysis, we identify additional control targets whose individual and simultaneous manipulation (via a model predictive control algorithm) out-perform the open-loop light-based phase recovery dynamics by nearly 3-fold. We further demonstrate the robustness of phase resetting by synchronizing short- and long-period mutant phenotypes to the 24-hour environment; the control algorithm is robust in the presence of model mismatch. These studies prove the efficacy and immediate application of model predictive control in experimental studies and medicine. In particular, maintaining proper circadian regulation may significantly decrease the chance of acquiring chronic illness. PMID:18795146

  8. Circadian rhythms of temperature and activity in obese and lean Zucker rats

    NASA Technical Reports Server (NTRS)

    Murakami, D. M.; Horwitz, B. A.; Fuller, C. A.

    1995-01-01

    The circadian timing system is important in the regulation of feeding and metabolism, both of which are aberrant in the obese Zucker rat. This study tested the hypothesis that these abnormalities involve a deficit in circadian regulation by examining the circadian rhythms of body temperature and activity in lean and obese Zucker rats exposed to normal light-dark cycles, constant light, and constant dark. Significant deficits in both daily mean and circadian amplitude of temperature and activity were found in obese Zucker female rats relative to lean controls in all lighting conditions. However, the circadian period of obese Zucker rats did not exhibit differences relative to lean controls in either of the constant lighting conditions. These results indicate that although the circadian regulation of temperature and activity in obese Zucker female rats is in fact depressed, obese rats do exhibit normal entrainment and pacemaker functions in the circadian timing system. The results suggest a deficit in the process that generates the amplitude of the circadian rhythm.

  9. Protein phosphatase PHLPP1 controls the light-induced resetting of the circadian clock

    PubMed Central

    Masubuchi, Satoru; Gao, Tianyan; O'Neill, Audrey; Eckel-Mahan, Kristin; Newton, Alexandra C.; Sassone-Corsi, Paolo

    2010-01-01

    The pleckstrin homology domain leucine-rich repeat protein phosphatase 1 (PHLPP1) differentially attenuates Akt, PKC, and ERK1/2 signaling, thereby controlling the duration and amplitude of responses evoked by these kinases. PHLPP1 is expressed in the mammalian central clock, the suprachiasmatic nucleus, where it oscillates in a circadian fashion. To explore the role of PHLPP1 in vivo, we have generated mice with a targeted deletion of the PHLPP1 gene. Here we show that PHLPP1-null mice, although displaying normal circadian rhythmicity, have a drastically impaired capacity to stabilize the circadian period after light-induced resetting, producing a large phase shift after light resetting. Our findings reveal that PHLPP1 exerts a previously unappreciated role in circadian control, governing the consolidation of circadian periodicity after resetting. PMID:20080691

  10. Circadian genes, the stress axis, and alcoholism.

    PubMed

    Sarkar, Dipak K

    2012-01-01

    The body's internal system to control the daily rhythm of the body's functions (i.e., the circadian system), the body's stress response, and the body's neurobiology are highly interconnected. Thus, the rhythm of the circadian system impacts alcohol use patterns; at the same time, alcohol drinking also can alter circadian functions. The sensitivity of the circadian system to alcohol may result from alcohol's effects on the expression of several of the clock genes that regulate circadian function. The stress response system involves the hypothalamus and pituitary gland in the brain and the adrenal glands, as well as the hormones they secrete, including corticotrophin-releasing hormone, adrenocorticotrophic hormone, and glucocorticoids. It is controlled by brain-signaling molecules, including endogenous opioids such as β-endorphin. Alcohol consumption influences the activity of this system and vice versa. Finally, interactions exist between the circadian system, the hypothalamic-pituitary-adrenal axis, and alcohol consumption. Thus, it seems that certain clock genes may control functions of the stress response system and that these interactions are affected by alcohol.

  11. Circadian systems biology in Metazoa.

    PubMed

    Lin, Li-Ling; Huang, Hsuan-Cheng; Juan, Hsueh-Fen

    2015-11-01

    Systems biology, which can be defined as integrative biology, comprises multistage processes that can be used to understand components of complex biological systems of living organisms and provides hierarchical information to decoding life. Using systems biology approaches such as genomics, transcriptomics and proteomics, it is now possible to delineate more complicated interactions between circadian control systems and diseases. The circadian rhythm is a multiscale phenomenon existing within the body that influences numerous physiological activities such as changes in gene expression, protein turnover, metabolism and human behavior. In this review, we describe the relationships between the circadian control system and its related genes or proteins, and circadian rhythm disorders in systems biology studies. To maintain and modulate circadian oscillation, cells possess elaborative feedback loops composed of circadian core proteins that regulate the expression of other genes through their transcriptional activities. The disruption of these rhythms has been reported to be associated with diseases such as arrhythmia, obesity, insulin resistance, carcinogenesis and disruptions in natural oscillations in the control of cell growth. This review demonstrates that lifestyle is considered as a fundamental factor that modifies circadian rhythm, and the development of dysfunctions and diseases could be regulated by an underlying expression network with multiple circadian-associated signals. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  12. Clk post-transcriptional control denoises circadian transcription both temporally and spatially.

    PubMed

    Lerner, Immanuel; Bartok, Osnat; Wolfson, Victoria; Menet, Jerome S; Weissbein, Uri; Afik, Shaked; Haimovich, Daniel; Gafni, Chen; Friedman, Nir; Rosbash, Michael; Kadener, Sebastian

    2015-05-08

    The transcription factor CLOCK (CLK) is essential for the development and maintenance of circadian rhythms in Drosophila. However, little is known about how CLK levels are controlled. Here we show that Clk mRNA is strongly regulated post-transcriptionally through its 3' UTR. Flies expressing Clk transgenes without normal 3' UTR exhibit variable CLK-driven transcription and circadian behaviour as well as ectopic expression of CLK-target genes in the brain. In these flies, the number of the key circadian neurons differs stochastically between individuals and within the two hemispheres of the same brain. Moreover, flies carrying Clk transgenes with deletions in the binding sites for the miRNA bantam have stochastic number of pacemaker neurons, suggesting that this miRNA mediates the deterministic expression of CLK. Overall our results demonstrate a key role of Clk post-transcriptional control in stabilizing circadian transcription, which is essential for proper development and maintenance of circadian rhythms in Drosophila.

  13. Circadian system and glucose metabolism: implications for physiology and disease

    PubMed Central

    Qian, Jingyi; Scheer, Frank AJL

    2016-01-01

    The circadian system serves one of the most fundamental properties present in nearly all organisms: it generates 24-hr rhythms in behavioral and physiological processes and enables anticipating and adapting to daily environmental changes. Recent studies indicate that the circadian system is important in regulating the daily rhythm in glucose metabolism. Disturbance of this circadian control or of its coordination relative to the environmental/behavioral cycle, such as in shift work, eating late or due to genetic changes, results in disturbed glucose control and increased type 2 diabetes risk. Therefore, an in-depth understanding of the mechanisms underlying glucose regulation by the circadian system and its disturbance may help in the development of therapeutic interventions against the deleterious health consequences of circadian disruption. PMID:27079518

  14. The circadian clock in cancer development and therapy

    USDA-ARS?s Scientific Manuscript database

    Most aspects of mammalian function display circadian rhythms driven by an endogenous clock. The circadian clock is operated by genes and comprises a central clock in the brain that responds to environmental cues and controls subordinate clocks in peripheral tissues via circadian output pathways. The...

  15. ROS signaling pathways and biological rhythms: perspectives in crustaceans.

    PubMed

    Fanjul-Moles, Maria Luisa

    2013-01-01

    This work reviews concepts regarding the endogenous circadian clock and the relationship between oxidative stress (OS), light and entrainment in different organisms including crustaceans, particularly crayfish. In the first section, the molecular control of circadian rhythms in invertebrates, particularly in Drosophila, is reviewed, and this model is contrasted with recent reports on the circadian genes and proteins in crayfish. Second, the redox mechanisms and signaling pathways that participate in the entrainment of the circadian clock in different organisms are reviewed. Finally, the light signals and transduction pathways involved in the entrainment of the circadian clock, specifically in relation to cryptochromes (CRYs) and their dual role in the circadian clock of different animal groups and their possible relationship to the circadian clock and redox mechanisms in crustaceans is discussed. The relationship between metabolism, ROS signals and transcription factors, such as HIF-1 alpha in crayfish, as well as the possibility that HIF-1 alpha participates in the regulation of circadian control genes (ccgs) in crustaceans is discussed.

  16. Intrinsic control of rhabdom size and rhodopsin content in the crab compound eye by a circadian biological clock.

    PubMed

    Arikawa, K; Morikawa, Y; Suzuki, T; Eguchi, E

    1988-03-15

    Under conditions of constant darkness, rhabdom volume and the amount of visual pigment chromophore show circadian changes in the compound eye of the crab Hemigrapsus sanguineus. The present results indicate that an intrinsic circadian biological clock is involved in the control of the changes.

  17. The Circadian Clock Coordinates Ribosome Biogenesis

    PubMed Central

    Symul, Laura; Martin, Eva; Atger, Florian; Naef, Felix; Gachon, Frédéric

    2013-01-01

    Biological rhythms play a fundamental role in the physiology and behavior of most living organisms. Rhythmic circadian expression of clock-controlled genes is orchestrated by a molecular clock that relies on interconnected negative feedback loops of transcription regulators. Here we show that the circadian clock exerts its function also through the regulation of mRNA translation. Namely, the circadian clock influences the temporal translation of a subset of mRNAs involved in ribosome biogenesis by controlling the transcription of translation initiation factors as well as the clock-dependent rhythmic activation of signaling pathways involved in their regulation. Moreover, the circadian oscillator directly regulates the transcription of ribosomal protein mRNAs and ribosomal RNAs. Thus the circadian clock exerts a major role in coordinating transcription and translation steps underlying ribosome biogenesis. PMID:23300384

  18. PFKFB3 Control of Cancer Growth by Responding to Circadian Clock Outputs

    PubMed Central

    Chen, Lili; Zhao, Jiajia; Tang, Qingming; Li, Honggui; Zhang, Chenguang; Yu, Ran; Zhao, Yan; Huo, Yuqing; Wu, Chaodong

    2016-01-01

    Circadian clock dysregulation promotes cancer growth. Here we show that PFKFB3, the gene that encodes for inducible 6-phosphofructo-2-kinase as an essential supporting enzyme of cancer cell survival through stimulating glycolysis, mediates circadian control of carcinogenesis. In patients with tongue cancers, PFKFB3 expression in both cancers and its surrounding tissues was increased significantly compared with that in the control, and was accompanied with dys-regulated expression of core circadian genes. In the in vitro systems, SCC9 tongue cancer cells displayed rhythmic expression of PFKFB3 and CLOCK that was distinct from control KC cells. Furthermore, PFKFB3 expression in SCC9 cells was stimulated by CLOCK through binding and enhancing the transcription activity of PFKFB3 promoter. Inhibition of PFKFB3 at zeitgeber time 7 (ZT7), but not at ZT19 caused significant decreases in lactate production and in cell proliferation. Consistently, PFKFB3 inhibition in mice at circadian time (CT) 7, but not CT19 significantly reduced the growth of implanted neoplasms. Taken together, these findings demonstrate PFKFB3 as a mediator of circadian control of cancer growth, thereby highlighting the importance of time-based PFKFB3 inhibition in cancer treatment. PMID:27079271

  19. Akt1 Controls the Timing and Amplitude of Vascular Circadian Gene Expression

    PubMed Central

    Luciano, Amelia K.; Santana, Jeans M.; Velazquez, Heino; Sessa, William C.

    2017-01-01

    The AKT signaling pathway is important for circadian rhythms in mammals and flies (Drosophila). However, AKT signaling in mammals is more complicated since there are 3 isoforms of AKT, each performing slightly different functions. Here we study the most ubiquitous AKT isoform, Akt1, and its role at the organismal level in the central and vascular peripheral clocks. Akt1−/− mice exhibit relatively normal behavioral rhythms with only minor differences in circadian gene expression in the liver and heart. However, circadian gene expression in the Akt1−/− aorta, compared with control aorta, follows a distinct pattern. In the Akt1−/− aorta, positive regulators of circadian transcription have lower amplitude rhythms and peak earlier in the day, and negative circadian regulators are expressed at higher amplitudes and peak later in the day. In endothelial cells, negative circadian regulators exhibit an increased amplitude of expression, while the positive circadian regulators are arrhythmic with a decreased amplitude of expression. This indicates that Akt1 conditions the normal circadian rhythm in the vasculature more so than in other peripheral tissues where other AKT isoforms or kinases might be important for daily rhythms. PMID:28452287

  20. Circadian clock and cardiac vulnerability: A time stamp on multi-scale neuroautonomic regulation

    NASA Astrophysics Data System (ADS)

    Ivanov, Plamen Ch.

    2005-03-01

    Cardiovascular vulnerability displays a 24-hour pattern with a peak between 9AM and 11AM. This daily pattern in cardiac risk is traditionally attributed to external factors including activity levels and sleep-wake cycles. However,influences from the endogenous circadian pacemaker independent from behaviors may also affect cardiac control. We investigate heartbeat dynamics in healthy subjects recorded throughout a 10-day protocol wherein the sleep/wake and behavior cycles are desynchronized from the endogenous circadian cycle,enabling assessment of circadian factors while controlling for behavior-related factors. We demonstrate that the scaling exponent characterizing temporal correlations in heartbeat dynamics over multiple time scales does exhibit a significant circadian rhythm with a sharp peak at the circadian phase corresponding to the period 9-11AM, and that this rhythm is independent from scheduled behaviors and mean heart rate. Our findings of strong circadian rhythms in the multi-scale heartbeat dynamics of healthy young subjects indicate that the underlying mechanism of cardiac regulation is strongly influenced by the endogenous circadian pacemaker. A similar circadian effect in vulnerable individuals with underlying cardiovascular disease would contribute to the morning peak of adverse cardiac events observed in epidemiological studies.

  1. Akt1 Controls the Timing and Amplitude of Vascular Circadian Gene Expression.

    PubMed

    Luciano, Amelia K; Santana, Jeans M; Velazquez, Heino; Sessa, William C

    2017-06-01

    The AKT signaling pathway is important for circadian rhythms in mammals and flies ( Drosophila). However, AKT signaling in mammals is more complicated since there are 3 isoforms of AKT, each performing slightly different functions. Here we study the most ubiquitous AKT isoform, Akt1, and its role at the organismal level in the central and vascular peripheral clocks. Akt1 -/- mice exhibit relatively normal behavioral rhythms with only minor differences in circadian gene expression in the liver and heart. However, circadian gene expression in the Akt1 -/- aorta, compared with control aorta, follows a distinct pattern. In the Akt1 -/- aorta, positive regulators of circadian transcription have lower amplitude rhythms and peak earlier in the day, and negative circadian regulators are expressed at higher amplitudes and peak later in the day. In endothelial cells, negative circadian regulators exhibit an increased amplitude of expression, while the positive circadian regulators are arrhythmic with a decreased amplitude of expression. This indicates that Akt1 conditions the normal circadian rhythm in the vasculature more so than in other peripheral tissues where other AKT isoforms or kinases might be important for daily rhythms.

  2. Circadian oscillations of cytosolic and chloroplastic free calcium in plants

    NASA Technical Reports Server (NTRS)

    Johnson, C. H.; Knight, M. R.; Kondo, T.; Masson, P.; Sedbrook, J.; Haley, A.; Trewavas, A.

    1995-01-01

    Tobacco and Arabidopsis plants, expressing a transgene for the calcium-sensitive luminescent protein apoaequorin, revealed circadian oscillations in free cytosolic calcium that can be phase-shifted by light-dark signals. When apoaequorin was targeted to the chloroplast, circadian chloroplast calcium rhythms were likewise observed after transfer of the seedlings to constant darkness. Circadian oscillations in free calcium concentrations can be expected to control many calcium-dependent enzymes and processes accounting for circadian outputs. Regulation of calcium flux is therefore fundamental to the organization of circadian systems.

  3. GW182 controls Drosophila circadian behavior and PDF-Receptor signaling

    PubMed Central

    Zhang, Yong; Emery, Patrick

    2013-01-01

    The neuropeptide PDF is crucial for Drosophila circadian behavior: it keeps circadian neurons synchronized. Here, we identify GW182 as a key regulator of PDF signaling. Indeed, GW182 downregulation results in phenotypes similar to those of Pdf and Pdf-receptor (Pdfr) mutants. gw182 genetically interacts with Pdfr and cAMP signaling, which is essential for PDFR function. GW182 mediates miRNA-dependent gene silencing through its interaction with AGO1. Consistently, GW182's AGO1 interaction domain is required for GW182's circadian function. Moreover, our results indicate that GW182 modulates PDFR signaling by silencing the expression of the cAMP phosphodiesterase DUNCE. Importantly, this repression is under photic control, and GW182 activity level - which is limiting in circadian neurons - influences the responses of the circadian neural network to light. We propose that GW182's gene silencing activity functions as a rheostat for PDFR signaling, and thus profoundly impacts the circadian neural network and its response to environmental inputs. PMID:23583112

  4. The Circadian System Contributes to Apnea Lengthening across the Night in Obstructive Sleep Apnea.

    PubMed

    Butler, Matthew P; Smales, Carolina; Wu, Huijuan; Hussain, Mohammad V; Mohamed, Yusef A; Morimoto, Miki; Shea, Steven A

    2015-11-01

    To test the hypothesis that respiratory event duration exhibits an endogenous circadian rhythm. Within-subject and between-subjects. Inpatient intensive physiologic monitoring unit at the Brigham and Women's Hospital. Seven subjects with moderate/severe sleep apnea and four controls, age 48 (SD = 12) years, 7 males. Subjects completed a 5-day inpatient protocol in dim light. Polysomnography was recorded during an initial control 8-h night scheduled at the usual sleep time, then through 10 recurrent cycles of 2 h 40 min sleep and 2 h 40 min wake evenly distributed across all circadian phases, and finally during another 8-h control sleep period. Event durations, desaturations, and apnea-hypopnea index for each sleep opportunity were assessed according to circadian phase (derived from salivary melatonin), time into sleep, and sleep stage. Average respiratory event durations in NREM sleep significantly lengthened across both control nights (21.9 to 28.2 sec and 23.7 to 30.2 sec, respectively). During the circadian protocol, event duration in NREM increased across the circadian phases that corresponded to the usual sleep period, accounting for > 50% of the increase across normal 8-h control nights. AHI and desaturations were also rhythmic: AHI was highest in the biological day while desaturations were greatest in the biological night. The endogenous circadian system plays an important role in the prolongation of respiratory events across the night, and might provide a novel therapeutic target for modulating sleep apnea. © 2015 Associated Professional Sleep Societies, LLC.

  5. Analysis of clock-regulated genes in Neurospora reveals widespread posttranscriptional control of metabolic potential

    PubMed Central

    Hurley, Jennifer M.; Dasgupta, Arko; Emerson, Jillian M.; Zhou, Xiaoying; Ringelberg, Carol S.; Knabe, Nicole; Lipzen, Anna M.; Lindquist, Erika A.; Daum, Christopher G.; Barry, Kerrie W.; Grigoriev, Igor V.; Smith, Kristina M.; Galagan, James E.; Bell-Pedersen, Deborah; Freitag, Michael; Cheng, Chao; Loros, Jennifer J.; Dunlap, Jay C.

    2014-01-01

    Neurospora crassa has been for decades a principal model for filamentous fungal genetics and physiology as well as for understanding the mechanism of circadian clocks. Eukaryotic fungal and animal clocks comprise transcription-translation–based feedback loops that control rhythmic transcription of a substantial fraction of these transcriptomes, yielding the changes in protein abundance that mediate circadian regulation of physiology and metabolism: Understanding circadian control of gene expression is key to understanding eukaryotic, including fungal, physiology. Indeed, the isolation of clock-controlled genes (ccgs) was pioneered in Neurospora where circadian output begins with binding of the core circadian transcription factor WCC to a subset of ccg promoters, including those of many transcription factors. High temporal resolution (2-h) sampling over 48 h using RNA sequencing (RNA-Seq) identified circadianly expressed genes in Neurospora, revealing that from ∼10% to as much 40% of the transcriptome can be expressed under circadian control. Functional classifications of these genes revealed strong enrichment in pathways involving metabolism, protein synthesis, and stress responses; in broad terms, daytime metabolic potential favors catabolism, energy production, and precursor assembly, whereas night activities favor biosynthesis of cellular components and growth. Discriminative regular expression motif elicitation (DREME) identified key promoter motifs highly correlated with the temporal regulation of ccgs. Correlations between ccg abundance from RNA-Seq, the degree of ccg-promoter activation as reported by ccg-promoter–luciferase fusions, and binding of WCC as measured by ChIP-Seq, are not strong. Therefore, although circadian activation is critical to ccg rhythmicity, posttranscriptional regulation plays a major role in determining rhythmicity at the mRNA level. PMID:25362047

  6. The Circadian System Contributes to Apnea Lengthening across the Night in Obstructive Sleep Apnea

    PubMed Central

    Butler, Matthew P.; Smales, Carolina; Wu, Huijuan; Hussain, Mohammad V.; Mohamed, Yusef A.; Morimoto, Miki; Shea, Steven A.

    2015-01-01

    Study Objective: To test the hypothesis that respiratory event duration exhibits an endogenous circadian rhythm. Design: Within-subject and between-subjects. Settings: Inpatient intensive physiologic monitoring unit at the Brigham and Women's Hospital. Participants: Seven subjects with moderate/severe sleep apnea and four controls, age 48 (SD = 12) years, 7 males. Interventions: Subjects completed a 5-day inpatient protocol in dim light. Polysomnography was recorded during an initial control 8-h night scheduled at the usual sleep time, then through 10 recurrent cycles of 2 h 40 min sleep and 2 h 40 min wake evenly distributed across all circadian phases, and finally during another 8-h control sleep period. Measurements and Results: Event durations, desaturations, and apnea-hypopnea index for each sleep opportunity were assessed according to circadian phase (derived from salivary melatonin), time into sleep, and sleep stage. Average respiratory event durations in NREM sleep significantly lengthened across both control nights (21.9 to 28.2 sec and 23.7 to 30.2 sec, respectively). During the circadian protocol, event duration in NREM increased across the circadian phases that corresponded to the usual sleep period, accounting for > 50% of the increase across normal 8-h control nights. AHI and desaturations were also rhythmic: AHI was highest in the biological day while desaturations were greatest in the biological night. Conclusions: The endogenous circadian system plays an important role in the prolongation of respiratory events across the night, and might provide a novel therapeutic target for modulating sleep apnea. Citation: Butler MP, Smales C, Wu H, Hussain MV, Mohamed YA, Morimoto M, Shea SA. The circadian system contributes to apnea lengthening across the night in obstructive sleep apnea. SLEEP 2015;38(11):1793–1801. PMID:26039970

  7. Circadian rhythms have significant effects on leaf-to-canopy scale gas exchange under field conditions.

    PubMed

    Resco de Dios, Víctor; Gessler, Arthur; Ferrio, Juan Pedro; Alday, Josu G; Bahn, Michael; Del Castillo, Jorge; Devidal, Sébastien; García-Muñoz, Sonia; Kayler, Zachary; Landais, Damien; Martín-Gómez, Paula; Milcu, Alexandru; Piel, Clément; Pirhofer-Walzl, Karin; Ravel, Olivier; Salekin, Serajis; Tissue, David T; Tjoelker, Mark G; Voltas, Jordi; Roy, Jacques

    2016-10-20

    Molecular clocks drive oscillations in leaf photosynthesis, stomatal conductance, and other cell and leaf-level processes over ~24 h under controlled laboratory conditions. The influence of such circadian regulation over whole-canopy fluxes remains uncertain; diurnal CO 2 and H 2 O vapor flux dynamics in the field are currently interpreted as resulting almost exclusively from direct physiological responses to variations in light, temperature and other environmental factors. We tested whether circadian regulation would affect plant and canopy gas exchange at the Montpellier European Ecotron. Canopy and leaf-level fluxes were constantly monitored under field-like environmental conditions, and under constant environmental conditions (no variation in temperature, radiation, or other environmental cues). We show direct experimental evidence at canopy scales of the circadian regulation of daytime gas exchange: 20-79 % of the daily variation range in CO 2 and H 2 O fluxes occurred under circadian entrainment in canopies of an annual herb (bean) and of a perennial shrub (cotton). We also observed that considering circadian regulation improved performance by 8-17 % in commonly used stomatal conductance models. Our results show that circadian controls affect diurnal CO 2 and H 2 O flux patterns in entire canopies in field-like conditions, and its consideration significantly improves model performance. Circadian controls act as a 'memory' of the past conditions experienced by the plant, which synchronizes metabolism across entire plant canopies.

  8. Epigenetic and Posttranslational Modifications in Light Signal Transduction and the Circadian Clock in Neurospora crassa

    PubMed Central

    Proietto, Marco; Bianchi, Michele Maria; Ballario, Paola; Brenna, Andrea

    2015-01-01

    Blue light, a key abiotic signal, regulates a wide variety of physiological processes in many organisms. One of these phenomena is the circadian rhythm presents in organisms sensitive to the phase-setting effects of blue light and under control of the daily alternation of light and dark. Circadian clocks consist of autoregulatory alternating negative and positive feedback loops intimately connected with the cellular metabolism and biochemical processes. Neurospora crassa provides an excellent model for studying the molecular mechanisms involved in these phenomena. The White Collar Complex (WCC), a blue-light receptor and transcription factor of the circadian oscillator, and Frequency (FRQ), the circadian clock pacemaker, are at the core of the Neurospora circadian system. The eukaryotic circadian clock relies on transcriptional/translational feedback loops: some proteins rhythmically repress their own synthesis by inhibiting the activity of their transcriptional factors, generating self-sustained oscillations over a period of about 24 h. One of the basic mechanisms that perpetuate self-sustained oscillations is post translation modification (PTM). The acronym PTM generically indicates the addition of acetyl, methyl, sumoyl, or phosphoric groups to various types of proteins. The protein can be regulatory or enzymatic or a component of the chromatin. PTMs influence protein stability, interaction, localization, activity, and chromatin packaging. Chromatin modification and PTMs have been implicated in regulating circadian clock function in Neurospora. Research into the epigenetic control of transcription factors such as WCC has yielded new insights into the temporal modulation of light-dependent gene transcription. Here we report on epigenetic and protein PTMs in the regulation of the Neurospora crassa circadian clock. We also present a model that illustrates the molecular mechanisms at the basis of the blue light control of the circadian clock. PMID:26198228

  9. Circadian rhythms of women with fibromyalgia

    NASA Technical Reports Server (NTRS)

    Klerman, E. B.; Goldenberg, D. L.; Brown, E. N.; Maliszewski, A. M.; Adler, G. K.

    2001-01-01

    Fibromyalgia syndrome is a chronic and debilitating disorder characterized by widespread nonarticular musculoskeletal pain whose etiology is unknown. Many of the symptoms of this syndrome, including difficulty sleeping, fatigue, malaise, myalgias, gastrointestinal complaints, and decreased cognitive function, are similar to those observed in individuals whose circadian pacemaker is abnormally aligned with their sleep-wake schedule or with local environmental time. Abnormalities in melatonin and cortisol, two hormones whose secretion is strongly influenced by the circadian pacemaker, have been reported in women with fibromyalgia. We studied the circadian rhythms of 10 women with fibromyalgia and 12 control healthy women. The protocol controlled factors known to affect markers of the circadian system, including light levels, posture, sleep-wake state, meals, and activity. The timing of the events in the protocol were calculated relative to the habitual sleep-wake schedule of each individual subject. Under these conditions, we found no significant difference between the women with fibromyalgia and control women in the circadian amplitude or phase of rhythms of melatonin, cortisol, and core body temperature. The average circadian phases expressed in hours posthabitual bedtime for women with and without fibromyalgia were 3:43 +/- 0:19 and 3:46 +/- 0:13, respectively, for melatonin; 10:13 +/- 0:23 and 10:32 +/- 0:20, respectively for cortisol; and 5:19 +/- 0:19 and 4:57 +/- 0:33, respectively, for core body temperature phases. Both groups of women had similar circadian rhythms in self-reported alertness. Although pain and stiffness were significantly increased in women with fibromyalgia compared with healthy women, there were no circadian rhythms in either parameter. We suggest that abnormalities in circadian rhythmicity are not a primary cause of fibromyalgia or its symptoms.

  10. FLOWERING LOCUS C Mediates Natural Variation in the High-Temperature Response of the Arabidopsis Circadian Clock[W

    PubMed Central

    Edwards, Kieron D.; Anderson, Paul E.; Hall, Anthony; Salathia, Neeraj S.; Locke, James C.W.; Lynn, James R.; Straume, Martin; Smith, James Q.; Millar, Andrew J.

    2006-01-01

    Temperature compensation contributes to the accuracy of biological timing by preventing circadian rhythms from running more quickly at high than at low temperatures. We previously identified quantitative trait loci (QTL) with temperature-specific effects on the circadian rhythm of leaf movement, including a QTL linked to the transcription factor FLOWERING LOCUS C (FLC). We have now analyzed FLC alleles in near-isogenic lines and induced mutants to eliminate other candidate genes. We showed that FLC lengthened the circadian period specifically at 27°C, contributing to temperature compensation of the circadian clock. Known upstream regulators of FLC expression in flowering time pathways similarly controlled its circadian effect. We sought to identify downstream targets of FLC regulation in the molecular mechanism of the circadian clock using genome-wide analysis to identify FLC-responsive genes and 3503 transcripts controlled by the circadian clock. A Bayesian clustering method based on Fourier coefficients allowed us to discriminate putative regulatory genes. Among rhythmic FLC-responsive genes, transcripts of the transcription factor LUX ARRHYTHMO (LUX) correlated in peak abundance with the circadian period in flc mutants. Mathematical modeling indicated that the modest change in peak LUX RNA abundance was sufficient to cause the period change due to FLC, providing a molecular target for the crosstalk between flowering time pathways and circadian regulation. PMID:16473970

  11. The Drosophila Circadian Clock Gates Sleep through Time-of-Day Dependent Modulation of Sleep-Promoting Neurons.

    PubMed

    Cavanaugh, Daniel J; Vigderman, Abigail S; Dean, Terry; Garbe, David S; Sehgal, Amita

    2016-02-01

    Sleep is under the control of homeostatic and circadian processes, which interact to determine sleep timing and duration, but the mechanisms through which the circadian system modulates sleep are largely unknown. We therefore used adult-specific, temporally controlled neuronal activation and inhibition to identify an interaction between the circadian clock and a novel population of sleep-promoting neurons in Drosophila. Transgenic flies expressed either dTRPA1, a neuronal activator, or Shibire(ts1), an inhibitor of synaptic release, in small subsets of neurons. Sleep, as determined by activity monitoring and video tracking, was assessed before and after temperature-induced activation or inhibition using these effector molecules. We compared the effect of these manipulations in control flies and in mutant flies that lacked components of the molecular circadian clock. Adult-specific activation or inhibition of a population of neurons that projects to the sleep-promoting dorsal Fan-Shaped Body resulted in bidirectional control over sleep. Interestingly, the magnitude of the sleep changes were time-of-day dependent. Activation of sleep-promoting neurons was maximally effective during the middle of the day and night, and was relatively ineffective during the day-to-night and night-to-day transitions. These time-ofday specific effects were absent in flies that lacked functional circadian clocks. We conclude that the circadian system functions to gate sleep through active inhibition at specific times of day. These data identify a mechanism through which the circadian system prevents premature sleep onset in the late evening, when homeostatic sleep drive is high. © 2016 Associated Professional Sleep Societies, LLC.

  12. [Effects of acupuncture on circadian rhythm of blood pressure in patients with essential hypertension].

    PubMed

    Lei, Yun; Jin, Jiu; Ban, Haipeng; Du, Yuzheng

    2017-11-12

    To observe the effects of acupuncture combined with medication on circadian rhythm of blood pressure in patients with essential hypertension. Sixty-four patients of essential hypertension were randomly divided into an observation group and a control group, 32 cases in each group. All the patients maintained original treatment (taking antihypertensive medication); the patients in the observation group were treated with acupuncture method of " Huoxue Sanfeng , Shugan Jianpi ", once a day, five times per week, for totally 6 weeks (30 times). The circadian rhythm of blood pressure and related dynamic parameters were observed before and after treatment in the two groups. (1) The differences of daytime average systolic blood pressure (dASBP), daytime average diastolic blood pressure (dADBP), nighttime average systolic blood pressure (nASBP) and circadian rhythm of systolic blood pressure before and after treatment were significant in the observation group (all P <0.05); the differences of circadian rhythm of blood pressure and related dynamic parameters before and after treatment were insignificant in the control group (all P >0.05). The nASBP and circadian rhythm of systolic blood pressure in the observation group were significantly different from those in the control group (all P <0.05). (2) After the treatment, the spoon-shaped rate of circadian rhythm of blood pressure in the observation group was higher than that in the control group ( P <0.05). The acupuncture combined with medication could effectively improve the circadian rhythm of blood pressure and related dynamic parameters in patients with essential hypertension.

  13. Crosstalk between the Circadian Clock and Innate Immunity in Arabidopsis

    PubMed Central

    Zhang, Chong; Xie, Qiguang; Anderson, Ryan G.; Ng, Gina; Seitz, Nicholas C.; Peterson, Thomas; McClung, C. Robertson; McDowell, John M.; Kong, Dongdong; Kwak, June M.; Lu, Hua

    2013-01-01

    The circadian clock integrates temporal information with environmental cues in regulating plant development and physiology. Recently, the circadian clock has been shown to affect plant responses to biotic cues. To further examine this role of the circadian clock, we tested disease resistance in mutants disrupted in CCA1 and LHY, which act synergistically to regulate clock activity. We found that cca1 and lhy mutants also synergistically affect basal and resistance gene-mediated defense against Pseudomonas syringae and Hyaloperonospora arabidopsidis. Disrupting the circadian clock caused by overexpression of CCA1 or LHY also resulted in severe susceptibility to P. syringae. We identified a downstream target of CCA1 and LHY, GRP7, a key constituent of a slave oscillator regulated by the circadian clock and previously shown to influence plant defense and stomatal activity. We show that the defense role of CCA1 and LHY against P. syringae is at least partially through circadian control of stomatal aperture but is independent of defense mediated by salicylic acid. Furthermore, we found defense activation by P. syringae infection and treatment with the elicitor flg22 can feedback-regulate clock activity. Together this data strongly supports a direct role of the circadian clock in defense control and reveal for the first time crosstalk between the circadian clock and plant innate immunity. PMID:23754942

  14. Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage.

    PubMed

    Dodd, Antony N; Salathia, Neeraj; Hall, Anthony; Kévei, Eva; Tóth, Réka; Nagy, Ferenc; Hibberd, Julian M; Millar, Andrew J; Webb, Alex A R

    2005-07-22

    Circadian clocks are believed to confer an advantage to plants, but the nature of that advantage has been unknown. We show that a substantial photosynthetic advantage is conferred by correct matching of the circadian clock period with that of the external light-dark cycle. In wild type and in long- and short-circadian period mutants of Arabidopsis thaliana, plants with a clock period matched to the environment contain more chlorophyll, fix more carbon, grow faster, and survive better than plants with circadian periods differing from their environment. This explains why plants gain advantage from circadian control.

  15. Maternal and Early-Life Circadian Disruption Have Long-Lasting Negative Consequences on Offspring Development and Adult Behavior in Mice.

    PubMed

    Smarr, Benjamin L; Grant, Azure D; Perez, Luz; Zucker, Irving; Kriegsfeld, Lance J

    2017-06-12

    Modern life involves chronic circadian disruption through artificial light and these disruptions are associated with numerous mental and physical health maladies. Because the developing nervous system is particularly vulnerable to perturbation, we hypothesized that early-life circadian disruption would negatively impact offspring development and adult function. Pregnant mice were subjected to chronic circadian disruption from the time of uterine implantation through weaning. To dissociate in utero from postnatal effects, a subset of litters was cross-fostered at birth from disrupted dams to control dams and vice versa. Postnatal circadian disruption was associated with reduced adult body mass, social avoidance, and hyperactivity. In utero disruption resulted in more pronounced social avoidance and hyperactivity, phenotypes not abrogated by cross-fostering to control mothers. To examine whether circadian disruption affects development by acting as an early life stressor, we examined birthweight, litter size, maternal cannibalism, and epigenetic modifications. None of these variables differed between control and disrupted dams, or resembled patterns seen following early-life stress. Our findings indicate that developmental chronic circadian disruption permanently affects somatic and behavioral development in a stage-of-life-dependent manner, independent of early life stress mechanisms, underscoring the importance of temporal structure during development, both in utero and early postnatal life.

  16. Pilot Investigation of the Circadian Plasma Melatonin Rhythm across the Menstrual Cycle in a Small Group of Women with Premenstrual Dysphoric Disorder

    PubMed Central

    Shechter, Ari; Lespérance, Paul; Ng Ying Kin, N. M. K.; Boivin, Diane B.

    2012-01-01

    Women with premenstrual dysphoric disorder (PMDD) experience mood deterioration and altered circadian rhythms during the luteal phase (LP) of their menstrual cycles. Disturbed circadian rhythms may be involved in the development of clinical mood states, though this relationship is not fully characterized in PMDD. We therefore conducted an extensive chronobiological characterization of the melatonin rhythm in a small group of PMDD women and female controls. In this pilot study, participants included five women with PMDD and five age-matched controls with no evidence of menstrual-related mood disorders. Participants underwent two 24-hour laboratory visits, during the follicular phase (FP) and LP of the menstrual cycle, consisting of intensive physiological monitoring under “unmasked”, time-isolation conditions. Measures included visual analogue scale for mood, ovarian hormones, and 24-hour plasma melatonin. Mood significantly (P≤.03) worsened during LP in PMDD compared to FP and controls. Progesterone was significantly (P = .025) increased during LP compared to FP, with no between-group differences. Compared to controls, PMDD women had significantly (P<.05) decreased melatonin at circadian phases spanning the biological night during both menstrual phases and reduced amplitude of its circadian rhythm during LP. PMDD women also had reduced area under the curve of melatonin during LP compared to FP. PMDD women showed affected circadian melatonin rhythms, with reduced nocturnal secretion and amplitude during the symptomatic phase compared to controls. Despite our small sample size, these pilot findings support a role for disturbed circadian rhythms in affective disorders. Possible associations with disrupted serotonergic transmission are proposed. PMID:23284821

  17. Circadian processes in the RNA life cycle.

    PubMed

    Torres, Manon; Becquet, Denis; Franc, Jean-Louis; François-Bellan, Anne-Marie

    2018-05-01

    The circadian clock drives daily rhythms of multiple physiological processes, allowing organisms to anticipate and adjust to periodic changes in environmental conditions. These physiological rhythms are associated with robust oscillations in the expression of at least 30% of expressed genes. While the ability for the endogenous timekeeping system to generate a 24-hr cycle is a cell-autonomous mechanism based on negative autoregulatory feedback loops of transcription and translation involving core-clock genes and their protein products, it is now increasingly evident that additional mechanisms also govern the circadian oscillations of clock-controlled genes. Such mechanisms can take place post-transcriptionally during the course of the RNA life cycle. It has been shown that many steps during RNA processing are regulated in a circadian manner, thus contributing to circadian gene expression. These steps include mRNA capping, alternative splicing, changes in splicing efficiency, and changes in RNA stability controlled by the tail length of polyadenylation or the use of alternative polyadenylation sites. RNA transport can also follow a circadian pattern, with a circadian nuclear retention driven by rhythmic expression within the nucleus of particular bodies (the paraspeckles) and circadian export to the cytoplasm driven by rhythmic proteins acting like cargo. Finally, RNA degradation may also follow a circadian pattern through the rhythmic involvement of miRNAs. In this review, we summarize the current knowledge of the post-transcriptional circadian mechanisms known to play a prominent role in shaping circadian gene expression in mammals. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing RNA Processing > RNA Editing and Modification RNA Export and Localization > Nuclear Export/Import. © 2018 Wiley Periodicals, Inc.

  18. GW182 controls Drosophila circadian behavior and PDF-receptor signaling.

    PubMed

    Zhang, Yong; Emery, Patrick

    2013-04-10

    The neuropeptide PDF is crucial for Drosophila circadian behavior: it keeps circadian neurons synchronized. Here, we identify GW182 as a key regulator of PDF signaling. Indeed, GW182 downregulation results in phenotypes similar to those of Pdf and Pdf-receptor (Pdfr) mutants. gw182 genetically interacts with Pdfr and cAMP signaling, which is essential for PDFR function. GW182 mediates miRNA-dependent gene silencing through its interaction with AGO1. Consistently, GW182's AGO1 interaction domain is required for GW182's circadian function. Moreover, our results indicate that GW182 modulates PDFR signaling by silencing the expression of the cAMP phosphodiesterase DUNCE. Importantly, this repression is under photic control, and GW182 activity level--which is limiting in circadian neurons--influences the responses of the circadian neural network to light. We propose that GW182's gene silencing activity functions as a rheostat for PDFR signaling and thus profoundly impacts the circadian neural network and its response to environmental inputs. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Circadian rhythms have significant effects on leaf-to-canopy scale gas exchange under field conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Resco de Dios, Víctor; Gessler, Arthur; Ferrio, Juan Pedro

    Background Molecular clocks drive oscillations in leaf photosynthesis, stomatal conductance, and other cell and leaf-level processes over ~24 h under controlled laboratory conditions. The influence of such circadian regulation over whole-canopy fluxes remains uncertain; diurnal CO 2 and H 2O vapor flux dynamics in the field are currently interpreted as resulting almost exclusively from direct physiological responses to variations in light, temperature and other environmental factors. We tested whether circadian regulation would affect plant and canopy gas exchange at the Montpellier European Ecotron. Canopy and leaf-level fluxes were constantly monitored under field-like environmental conditions, and under constant environmental conditions (nomore » variation in temperature, radiation, or other environmental cues). Results We show direct experimental evidence at canopy scales of the circadian regulation of daytime gas exchange: 20–79 % of the daily variation range in CO 2 and H 2O fluxes occurred under circadian entrainment in canopies of an annual herb (bean) and of a perennial shrub (cotton). We also observed that considering circadian regulation improved performance by 8–17 % in commonly used stomatal conductance models. Conclusions Our results show that circadian controls affect diurnal CO 2 and H 2O flux patterns in entire canopies in field-like conditions, and its consideration significantly improves model performance. Lastly, circadian controls act as a ‘memory’ of the past conditions experienced by the plant, which synchronizes metabolism across entire plant canopies.« less

  20. Circadian rhythms have significant effects on leaf-to-canopy scale gas exchange under field conditions

    DOE PAGES

    Resco de Dios, Víctor; Gessler, Arthur; Ferrio, Juan Pedro; ...

    2016-10-20

    Background Molecular clocks drive oscillations in leaf photosynthesis, stomatal conductance, and other cell and leaf-level processes over ~24 h under controlled laboratory conditions. The influence of such circadian regulation over whole-canopy fluxes remains uncertain; diurnal CO 2 and H 2O vapor flux dynamics in the field are currently interpreted as resulting almost exclusively from direct physiological responses to variations in light, temperature and other environmental factors. We tested whether circadian regulation would affect plant and canopy gas exchange at the Montpellier European Ecotron. Canopy and leaf-level fluxes were constantly monitored under field-like environmental conditions, and under constant environmental conditions (nomore » variation in temperature, radiation, or other environmental cues). Results We show direct experimental evidence at canopy scales of the circadian regulation of daytime gas exchange: 20–79 % of the daily variation range in CO 2 and H 2O fluxes occurred under circadian entrainment in canopies of an annual herb (bean) and of a perennial shrub (cotton). We also observed that considering circadian regulation improved performance by 8–17 % in commonly used stomatal conductance models. Conclusions Our results show that circadian controls affect diurnal CO 2 and H 2O flux patterns in entire canopies in field-like conditions, and its consideration significantly improves model performance. Lastly, circadian controls act as a ‘memory’ of the past conditions experienced by the plant, which synchronizes metabolism across entire plant canopies.« less

  1. Individual differences in circadian waveform of Siberian hamsters under multiple lighting conditions

    PubMed Central

    Evans, Jennifer A.; Elliott, Jeffrey A.; Gorman, Michael R.

    2013-01-01

    Because the circadian clock in the mammalian brain derives from a network of interacting cellular oscillators, characterizing the nature and bases of circadian coupling is fundamental to understanding how the pacemaker operates. Various phenomena involving plasticity in circadian waveform have been theorized to reflect changes in oscillator coupling; however, it remains unclear whether these different behavioral paradigms reference a unitary underlying process. To test if disparate coupling assays index a common mechanism, we examined whether there is co-variation among behavioral responses to various lighting conditions that produce changes in circadian waveform. Siberian hamsters, Phodopus sungorus, were transferred from long to short photoperiods to distinguish short photoperiod responders (SP-R) from non-responders (SP-NR). Short photoperiod chronotyped hamsters were subsequently transferred, along with unselected controls, to 24 h light:dark:light:dark cycles (LDLD) with dim nighttime illumination, a procedure that induces bifurcated entrainment. Under LDLD, SP-R hamsters were more likely to bifurcate their rhythms than SP-NR hamsters or unselected controls. After transfer from LDLD to constant dim light, SP-R hamsters were also more likely to become arrhythmic compared to SP-NR hamsters and unselected controls. In contrast, short photoperiod chronotype did not influence more transient changes in circadian waveform. The present data reveal a clear relationship in the plasticity of circadian waveform across three distinct lighting conditions, suggesting a common mechanism wherein individual differences reflect variation in circadian coupling. PMID:23010663

  2. Nutrigenetics and Nutrimiromics of the Circadian System: The Time for Human Health

    PubMed Central

    Micó, Víctor; Díez-Ricote, Laura; Daimiel, Lidia

    2016-01-01

    Even though the rhythmic oscillations of life have long been known, the precise molecular mechanisms of the biological clock are only recently being explored. Circadian rhythms are found in virtually all organisms and affect our lives. Thus, it is not surprising that the correct running of this clock is essential for cellular functions and health. The circadian system is composed of an intricate network of genes interwined in an intrincated transcriptional/translational feedback loop. The precise oscillation of this clock is controlled by the circadian genes that, in turn, regulate the circadian oscillations of many cellular pathways. Consequently, variations in these genes have been associated with human diseases and metabolic disorders. From a nutrigenetics point of view, some of these variations modify the individual response to the diet and interact with nutrients to modulate such response. This circadian feedback loop is also epigenetically modulated. Among the epigenetic mechanisms that control circadian rhythms, microRNAs are the least studied ones. In this paper, we review the variants of circadian-related genes associated to human disease and nutritional response and discuss the current knowledge about circadian microRNAs. Accumulated evidence on the genetics and epigenetics of the circadian system points to important implications of chronotherapy in the clinical practice, not only in terms of pharmacotherapy, but also for dietary interventions. However, interventional studies (especially nutritional trials) that include chronotherapy are scarce. Given the importance of chronobiology in human health such studies are warranted in the near future. PMID:26927084

  3. Nutrigenetics and Nutrimiromics of the Circadian System: The Time for Human Health.

    PubMed

    Micó, Víctor; Díez-Ricote, Laura; Daimiel, Lidia

    2016-02-26

    Even though the rhythmic oscillations of life have long been known, the precise molecular mechanisms of the biological clock are only recently being explored. Circadian rhythms are found in virtually all organisms and affect our lives. Thus, it is not surprising that the correct running of this clock is essential for cellular functions and health. The circadian system is composed of an intricate network of genes interwined in an intrincated transcriptional/translational feedback loop. The precise oscillation of this clock is controlled by the circadian genes that, in turn, regulate the circadian oscillations of many cellular pathways. Consequently, variations in these genes have been associated with human diseases and metabolic disorders. From a nutrigenetics point of view, some of these variations modify the individual response to the diet and interact with nutrients to modulate such response. This circadian feedback loop is also epigenetically modulated. Among the epigenetic mechanisms that control circadian rhythms, microRNAs are the least studied ones. In this paper, we review the variants of circadian-related genes associated to human disease and nutritional response and discuss the current knowledge about circadian microRNAs. Accumulated evidence on the genetics and epigenetics of the circadian system points to important implications of chronotherapy in the clinical practice, not only in terms of pharmacotherapy, but also for dietary interventions. However, interventional studies (especially nutritional trials) that include chronotherapy are scarce. Given the importance of chronobiology in human health such studies are warranted in the near future.

  4. Organization of the Drosophila circadian control circuit.

    PubMed

    Nitabach, Michael N; Taghert, Paul H

    2008-01-22

    Molecular genetics has revealed the identities of several components of the fundamental circadian molecular oscillator - an evolutionarily conserved molecular mechanism of transcription and translation that can operate in a cell-autonomous manner. Therefore, it was surprising when studies of circadian rhythmic behavior in the fruit fly Drosophila suggested that the normal operations of circadian clock cells, which house the molecular oscillator, in fact depend on non-cell-autonomous effects - interactions between the clock cells themselves. Here we review several genetic analyses that broadly extend that viewpoint. They support a model whereby the approximately 150 circadian clock cells in the brain of the fly are sub-divided into functionally discrete rhythmic centers. These centers alternatively cooperate or compete to control the different episodes of rhythmic behavior that define the fly's daily activity profile.

  5. Identification of human circadian genes based on time course gene expression profiles by using a deep learning method.

    PubMed

    Cui, Peng; Zhong, Tingyan; Wang, Zhuo; Wang, Tao; Zhao, Hongyu; Liu, Chenglin; Lu, Hui

    2018-06-01

    Circadian genes express periodically in an approximate 24-h period and the identification and study of these genes can provide deep understanding of the circadian control which plays significant roles in human health. Although many circadian gene identification algorithms have been developed, large numbers of false positives and low coverage are still major problems in this field. In this study we constructed a novel computational framework for circadian gene identification using deep neural networks (DNN) - a deep learning algorithm which can represent the raw form of data patterns without imposing assumptions on the expression distribution. Firstly, we transformed time-course gene expression data into categorical-state data to denote the changing trend of gene expression. Two distinct expression patterns emerged after clustering of the state data for circadian genes from our manually created learning dataset. DNN was then applied to discriminate the aperiodic genes and the two subtypes of periodic genes. In order to assess the performance of DNN, four commonly used machine learning methods including k-nearest neighbors, logistic regression, naïve Bayes, and support vector machines were used for comparison. The results show that the DNN model achieves the best balanced precision and recall. Next, we conducted large scale circadian gene detection using the trained DNN model for the remaining transcription profiles. Comparing with JTK_CYCLE and a study performed by Möller-Levet et al. (doi: https://doi.org/10.1073/pnas.1217154110), we identified 1132 novel periodic genes. Through the functional analysis of these novel circadian genes, we found that the GTPase superfamily exhibits distinct circadian expression patterns and may provide a molecular switch of circadian control of the functioning of the immune system in human blood. Our study provides novel insights into both the circadian gene identification field and the study of complex circadian-driven biological control. This article is part of a Special Issue entitled: Accelerating Precision Medicine through Genetic and Genomic Big Data Analysis edited by Yudong Cai & Tao Huang. Copyright © 2017. Published by Elsevier B.V.

  6. Regulation of the Rhythmic Emission of Plant Volatiles by the Circadian Clock.

    PubMed

    Zeng, Lanting; Wang, Xiaoqin; Kang, Ming; Dong, Fang; Yang, Ziyin

    2017-11-13

    Like other organisms, plants have endogenous biological clocks that enable them to organize their metabolic, physiological, and developmental processes. The representative biological clock is the circadian system that regulates daily (24-h) rhythms. Circadian-regulated changes in growth have been observed in numerous plants. Evidence from many recent studies indicates that the circadian clock regulates a multitude of factors that affect plant metabolites, especially emitted volatiles that have important ecological functions. Here, we review recent progress in research on plant volatiles showing rhythmic emission under the regulation of the circadian clock, and on how the circadian clock controls the rhythmic emission of plant volatiles. We also discuss the potential impact of other factors on the circadian rhythmic emission of plant volatiles.

  7. The effect of lens aging and cataract surgery on circadian rhythm.

    PubMed

    Yan, Shen-Shen; Wang, Wei

    2016-01-01

    Many organisms have evolved an approximately 24-hour circadian rhythm that allows them to achieve internal physiological homeostasis with external environment. Suprachiasmatic nucleus (SCN) is the central pacemaker of circadian rhythm, and its activity is entrained to the external light-dark cycle. The SCN controls circadian rhythm through regulating the synthesis of melatonin by pineal gland via a multisynaptic pathway. Light, especially short-wavelength blue light, is the most potent environmental time cue in circadian photoentrainment. Recently, the discovery of a novel type of retinal photoreceptors, intrinsically photosensitive retinal ganglion cells, sheds light on the mechanism of circadian photoentrainment and raises concerns about the effect of ocular diseases on circadian system. With age, light transmittance is significantly decreased due to the aging of crystalline lens, thus possibly resulting in progressive loss of circadian photoreception. In the current review, we summarize the circadian physiology, highlight the important role of light in circadian rhythm regulation, discuss about the correlation between age-related cataract and sleep disorders, and compare the effect of blue light- filtering intraocular lenses (IOLs) and ultraviolet only filtering IOLs on circadian rhythm.

  8. The effect of lens aging and cataract surgery on circadian rhythm

    PubMed Central

    Yan, Shen-Shen; Wang, Wei

    2016-01-01

    Many organisms have evolved an approximately 24-hour circadian rhythm that allows them to achieve internal physiological homeostasis with external environment. Suprachiasmatic nucleus (SCN) is the central pacemaker of circadian rhythm, and its activity is entrained to the external light-dark cycle. The SCN controls circadian rhythm through regulating the synthesis of melatonin by pineal gland via a multisynaptic pathway. Light, especially short-wavelength blue light, is the most potent environmental time cue in circadian photoentrainment. Recently, the discovery of a novel type of retinal photoreceptors, intrinsically photosensitive retinal ganglion cells, sheds light on the mechanism of circadian photoentrainment and raises concerns about the effect of ocular diseases on circadian system. With age, light transmittance is significantly decreased due to the aging of crystalline lens, thus possibly resulting in progressive loss of circadian photoreception. In the current review, we summarize the circadian physiology, highlight the important role of light in circadian rhythm regulation, discuss about the correlation between age-related cataract and sleep disorders, and compare the effect of blue light- filtering intraocular lenses (IOLs) and ultraviolet only filtering IOLs on circadian rhythm. PMID:27500118

  9. Circadian aspects of adipokine regulation in rodents.

    PubMed

    Challet, Etienne

    2017-12-01

    Most hormones display daily fluctuations of secretion during the 24-h cycle. This is also the case for adipokines, in particular the anorexigenic hormone, leptin. The temporal organization of the endocrine system is principally controlled by a network of circadian clocks. The circadian network comprises a master circadian clock, located in the suprachiasmatic nucleus of the hypothalamus, synchronized to the ambient light, and secondary circadian clocks found in various peripheral organs, such as the adipose tissues. Besides circadian clocks, other factors such as meals and metabolic status impact daily profiles of hormonal levels. In turn, the precise daily pattern of hormonal release provides temporal signaling information. This review will describe the reciprocal links between the circadian clocks and rhythmic secretion of leptin, and discuss the metabolic impact of circadian desynchronization and altered rhythmic leptin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. [Research advances in circadian rhythm of epileptic seizures].

    PubMed

    Yang, Wen-Qi; Li, Hong

    2017-01-01

    The time phase of epileptic seizures has attracted more and more attention. Epileptic seizures have their own circadian rhythm. The same type of epilepsy has different seizure frequencies in different time periods and states (such as sleeping/awakening state and natural day/night cycle). The circadian rhythm of epileptic seizures has complex molecular and endocrine mechanisms, and currently there are several hypotheses. Clarification of the circadian rhythm of epileptic seizures and prevention and administration according to such circadian rhythm can effectively control seizures and reduce the adverse effects of drugs. The research on the circadian rhythm of epileptic seizures provides a new idea for the treatment of epilepsy.

  11. Circadian clock: linking epigenetics to aging

    PubMed Central

    Orozco-Solis, Ricardo; Sassone-Corsi, Paolo

    2015-01-01

    Circadian rhythms are generated by an intrinsic cellular mechanism that controls a large array of physiological and metabolic processes. There is erosion in the robustness of circadian rhythms during aging, and disruption of the clock by genetic ablation of specific genes is associated with aging-related features. Importantly, environmental conditions are thought to modulate the aging process. For example, caloric restriction is a very strong environmental effector capable of delaying aging. Intracellular pathways implicating nutrient sensors, such as SIRTs and mTOR complexes, impinge on cellular and epigenetic mechanisms that control the aging process. Strikingly, accumulating evidences indicate that these pathways are involved in both the modulation of the aging process and the control of the clock. Hence, innovative therapeutic strategies focused at controlling the circadian clock and the nutrient sensing pathways might beneficially influence the negative effects of aging. PMID:25033025

  12. The clock is ticking. Ageing of the circadian system: From physiology to cell cycle.

    PubMed

    Terzibasi-Tozzini, Eva; Martinez-Nicolas, Antonio; Lucas-Sánchez, Alejandro

    2017-10-01

    The circadian system is the responsible to organise the internal temporal order in relation to the environment of every process of the organisms producing the circadian rhythms. These rhythms have a fixed phase relationship among them and with the environment in order to optimise the available energy and resources. From a cellular level, circadian rhythms are controlled by genetic positive and negative auto-regulated transcriptional and translational feedback loops, which generate 24h rhythms in mRNA and protein levels of the clock components. It has been described about 10% of the genome is controlled by clock genes, with special relevance, due to its implications, to the cell cycle. Ageing is a deleterious process which affects all the organisms' structures including circadian system. The circadian system's ageing may produce a disorganisation among the circadian rhythms, arrhythmicity and, even, disconnection from the environment, resulting in a detrimental situation to the organism. In addition, some environmental conditions can produce circadian disruption, also called chronodisruption, which may produce many pathologies including accelerated ageing. Finally, some strategies to prevent, palliate or counteract chronodisruption effects have been proposed to enhance the circadian system, also called chronoenhancement. This review tries to gather recent advances in the chronobiology of the ageing process, including cell cycle, neurogenesis process and physiology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. NAT1/DAP5/p97 and Atypical Translational Control in the Drosophila Circadian Oscillator

    PubMed Central

    Bradley, Sean; Narayanan, Siddhartha; Rosbash, Michael

    2012-01-01

    Circadian rhythms are driven by gene expression feedback loops in metazoans. Based on the success of genetic screens for circadian mutants in Drosophila melanogaster, we undertook a targeted RNAi screen to study the impact of translation control genes on circadian locomotor activity rhythms in flies. Knockdown of vital translation factors in timeless protein-positive circadian neurons caused a range of effects including lethality. Knockdown of the atypical translation factor NAT1 had the strongest effect and lengthened circadian period. It also dramatically reduced PER protein levels in pigment dispersing factor (PDF) neurons. BELLE (BEL) protein was also reduced by the NAT1 knockdown, presumably reflecting a role of NAT1 in belle mRNA translation. belle and NAT1 are also targets of the key circadian transcription factor Clock (CLK). Further evidence for a role of NAT1 is that inhibition of the target of rapamycin (TOR) kinase increased oscillator activity in cultured wings, which is absent under conditions of NAT1 knockdown. Moreover, the per 5′- and 3′-UTRs may function together to facilitate cap-independent translation under conditions of TOR inhibition. We suggest that NAT1 and cap-independent translation are important for per mRNA translation, which is also important for the circadian oscillator. A circadian translation program may be especially important in fly pacemaker cells. PMID:22904033

  14. Loss of circadian rhythm of circulating insulin concentration induced by high-fat diet intake is associated with disrupted rhythmic expression of circadian clock genes in the liver.

    PubMed

    Honma, Kazue; Hikosaka, Maki; Mochizuki, Kazuki; Goda, Toshinao

    2016-04-01

    Peripheral clock genes show a circadian rhythm is correlated with the timing of feeding in peripheral tissues. It was reported that these clock genes are strongly regulated by insulin action and that a high-fat diet (HFD) intake in C57BL/6J mice for 21days induced insulin secretion during the dark phase and reduced the circadian rhythm of clock genes. In this study, we examined the circadian expression patterns of these clock genes in insulin-resistant animal models with excess secretion of insulin during the day. We examined whether insulin resistance induced by a HFD intake for 80days altered blood parameters (glucose and insulin concentrations) and expression of mRNA and proteins encoded by clock and functional genes in the liver using male ICR mice. Serum insulin concentrations were continuously higher during the day in mice fed a HFD than control mice. Expression of lipogenesis-related genes (Fas and Accβ) and the transcription factor Chrebp peaked at zeitgeber time (ZT)24 in the liver of control mice. A HFD intake reduced the expression of these genes at ZT24 and disrupted the circadian rhythm. Expression of Bmal1 and Clock, transcription factors that compose the core feedback loop, showed circadian variation and were synchronously associated with Fas gene expression in control mice, but not in those fed a HFD. These results indicate that the disruption of the circadian rhythm of insulin secretion by HFD intake is closely associated with the disappearance of circadian expression of lipogenic and clock genes in the liver of mice. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Testing the circadian gene hypothesis in prostate cancer: a population-based case-control study

    PubMed Central

    Zhu, Yong; Stevens, Richard G.; Hoffman, Aaron E.; FitzGerald, Liesel M.; Kwon, Erika M.; Ostrander, Elaine A.; Davis, Scott; Zheng, Tongzhang; Stanford, Janet L.

    2010-01-01

    Circadian genes are responsible for maintaining the ancient adaptation of a 24-hour circadian rhythm and influence a variety of cancer-related biological pathways, including the regulation of sex hormone levels. However, few studies have been undertaken to investigate the role of circadian genes in the development of prostate cancer, the most common cancer type among men (excluding non-melanoma skin cancer). The current genetic association study tested the circadian gene hypothesis in relation to prostate cancer by genotyping a total of 41 tagging and amino acid altering SNPs in ten circadian-related genes in a population-based case-control study of Caucasian men (N=1,308 cases and 1,266 controls). Our results showed that at least one SNP in nine core circadian genes (rs885747 and rs2289591 in PER1, rs7602358 in PER2, rs1012477 in PER3, rs1534891 in CSNK1E, rs12315175 in CRY1, rs2292912 in CRY2, rs7950226 in ARNTL, rs11133373 in CLOCK, and rs1369481, rs895521, and rs17024926 in NPAS2) was significantly associated with susceptibility to prostate cancer (either overall risk or risk of aggressive disease), and the risk estimate for four SNPs in three genes (rs885747 and rs2289591 in PER1, rs1012477 in PER3 and rs11133373 in CLOCK) varied by disease aggressiveness. Further analyses of haplotypes were consistent with these genotyping results. Findings from this candidate gene association study support the hypothesis of a link between genetic variants in circadian genes and prostate cancer risk, warranting further confirmation and mechanistic investigation of circadian biomarkers in prostate tumorigenesis. PMID:19934327

  16. Autoreceptor control of peptide/neurotransmitter corelease from PDF neurons determines allocation of circadian activity in drosophila.

    PubMed

    Choi, Charles; Cao, Guan; Tanenhaus, Anne K; McCarthy, Ellena V; Jung, Misun; Schleyer, William; Shang, Yuhua; Rosbash, Michael; Yin, Jerry C P; Nitabach, Michael N

    2012-08-30

    Drosophila melanogaster flies concentrate behavioral activity around dawn and dusk. This organization of daily activity is controlled by central circadian clock neurons, including the lateral-ventral pacemaker neurons (LN(v)s) that secrete the neuropeptide PDF (pigment dispersing factor). Previous studies have demonstrated the requirement for PDF signaling to PDF receptor (PDFR)-expressing dorsal clock neurons in organizing circadian activity. Although LN(v)s also express functional PDFR, the role of these autoreceptors has remained enigmatic. Here, we show that (1) PDFR activation in LN(v)s shifts the balance of circadian activity from evening to morning, similar to behavioral responses to summer-like environmental conditions, and (2) this shift is mediated by stimulation of the Gα,s-cAMP pathway and a consequent change in PDF/neurotransmitter corelease from the LN(v)s. These results suggest another mechanism for environmental control of the allocation of circadian activity and provide new general insight into the role of neuropeptide autoreceptors in behavioral control circuits. Copyright © 2012 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Signals from the brainstem sleep/wake centers regulate behavioral timing via the circadian clock.

    PubMed

    Abbott, Sabra M; Arnold, Jennifer M; Chang, Qing; Miao, Hai; Ota, Nobutoshi; Cecala, Christine; Gold, Paul E; Sweedler, Jonathan V; Gillette, Martha U

    2013-01-01

    Sleep-wake cycling is controlled by the complex interplay between two brain systems, one which controls vigilance state, regulating the transition between sleep and wake, and the other circadian, which communicates time-of-day. Together, they align sleep appropriately with energetic need and the day-night cycle. Neural circuits connect brain stem sites that regulate vigilance state with the suprachiasmatic nucleus (SCN), the master circadian clock, but the function of these connections has been unknown. Coupling discrete stimulation of pontine nuclei controlling vigilance state with analytical chemical measurements of intra-SCN microdialysates in mouse, we found significant neurotransmitter release at the SCN and, concomitantly, resetting of behavioral circadian rhythms. Depending upon stimulus conditions and time-of-day, SCN acetylcholine and/or glutamate levels were augmented and generated shifts of behavioral rhythms. These results establish modes of neurochemical communication from brain regions controlling vigilance state to the central circadian clock, with behavioral consequences. They suggest a basis for dynamic integration across brain systems that regulate vigilance states, and a potential vulnerability to altered communication in sleep disorders.

  18. Regulation of alternative splicing by the circadian clock and food related cues

    PubMed Central

    2012-01-01

    Background The circadian clock orchestrates daily rhythms in metabolism, physiology and behaviour that allow organisms to anticipate regular changes in their environment, increasing their adaptation. Such circadian phenotypes are underpinned by daily rhythms in gene expression. Little is known, however, about the contribution of post-transcriptional processes, particularly alternative splicing. Results Using Affymetrix mouse exon-arrays, we identified exons with circadian alternative splicing in the liver. Validated circadian exons were regulated in a tissue-dependent manner and were present in genes with circadian transcript abundance. Furthermore, an analysis of circadian mutant Vipr2-/- mice revealed the existence of distinct physiological pathways controlling circadian alternative splicing and RNA binding protein expression, with contrasting dependence on Vipr2-mediated physiological signals. This view was corroborated by the analysis of the effect of fasting on circadian alternative splicing. Feeding is an important circadian stimulus, and we found that fasting both modulates hepatic circadian alternative splicing in an exon-dependent manner and changes the temporal relationship with transcript-level expression. Conclusions The circadian clock regulates alternative splicing in a manner that is both tissue-dependent and concurrent with circadian transcript abundance. This adds a novel temporal dimension to the regulation of mammalian alternative splicing. Moreover, our results demonstrate that circadian alternative splicing is regulated by the interaction between distinct physiological cues, and illustrates the capability of single genes to integrate circadian signals at different levels of regulation. PMID:22721557

  19. Pigment-Dispersing Factor Signaling and Circadian Rhythms in Insect Locomotor Activity

    PubMed Central

    Shafer, Orie T.; Yao, Zepeng

    2014-01-01

    Though expressed in relatively few neurons in insect nervous systems, pigment-dispersing factor (PDF) plays many roles in the control of behavior and physiology. PDF’s role in circadian timekeeping is its best-understood function and the focus of this review. Here we recount the isolation and characterization of insect PDFs, review the evidence that PDF acts as a circadian clock output factor, and discuss emerging models of how PDF functions within circadian clock neuron network of Drosophila, the species in which this peptide’s circadian roles are best understood. PMID:25386391

  20. Autoreceptor Modulation of Peptide/Neurotransmitter Co-release from PDF Neurons Determines Allocation of Circadian Activity in Drosophila

    PubMed Central

    Choi, Charles; Cao, Guan; Tanenhaus, Anne K.; McCarthy, Ellena v.; Jung, Misun; Schleyer, William; Shang, Yuhua; Rosbash, Michael; Yin, Jerry C.P.; Nitabach, Michael N.

    2012-01-01

    Drosophila melanogaster flies concentrate behavioral activity around dawn and dusk. This organization of daily activity is controlled by central circadian clock neurons, including the lateral ventral pacemaker neurons (LNvs) that secrete the neuropeptide PDF (Pigment Dispersing Factor). Previous studies have demonstrated the requirement for PDF signaling to PDF receptor (PDFR)-expressing dorsal clock neurons in organizing circadian activity. While LNvs also express functional PDFR, the role of these autoreceptors has remained enigmatic. Here we show that (1) PDFR activation in LNvs shifts the balance of circadian activity from evening to morning, similar to behavioral responses to summer-like environmental conditions and (2) this shift is mediated by stimulation of the Ga,s-cAMP pathway and a consequent change in PDF/neurotransmitter co-release from the LNvs. These results suggest a novel mechanism for environmental control of the allocation of circadian activity and provide new general insight into the role of neuropeptide autoreceptors in behavioral control circuits. PMID:22938867

  1. Common features in diverse insect clocks.

    PubMed

    Numata, Hideharu; Miyazaki, Yosuke; Ikeno, Tomoko

    2015-01-01

    This review describes common features among diverse biological clocks in insects, including circadian, circatidal, circalunar/circasemilunar, and circannual clocks. These clocks control various behaviors, physiological functions, and developmental events, enabling adaptation to periodic environmental changes. Circadian clocks also function in time-compensation for celestial navigation and in the measurement of day or night length for photoperiodism. Phase response curves for such clocks reported thus far exhibit close similarities; specifically, the circannual clock in Anthrenus verbasci shows striking similarity to circadian clocks in its phase response. It is suggested that diverse biological clocks share physiological properties in their phase responses irrespective of period length. Molecular and physiological mechanisms are best understood for the optic-lobe and mid-brain circadian clocks, although there is no direct evidence that these clocks are involved in rhythmic phenomena other than circadian rhythms in daily events. Circadian clocks have also been localized in peripheral tissues, and research on their role in various rhythmic phenomena has been started. Although clock genes have been identified as controllers of circadian rhythms in daily events, some of these genes have also been shown to be involved in photoperiodism and possibly in time-compensated celestial navigation. In contrast, there is no experimental evidence indicating that any known clock gene is involved in biological clocks other than circadian clocks.

  2. Clock-Work Trade-Off Relation for Coherence in Quantum Thermodynamics

    NASA Astrophysics Data System (ADS)

    Kwon, Hyukjoon; Jeong, Hyunseok; Jennings, David; Yadin, Benjamin; Kim, M. S.

    2018-04-01

    In thermodynamics, quantum coherences—superpositions between energy eigenstates—behave in distinctly nonclassical ways. Here we describe how thermodynamic coherence splits into two kinds—"internal" coherence that admits an energetic value in terms of thermodynamic work, and "external" coherence that does not have energetic value, but instead corresponds to the functioning of the system as a quantum clock. For the latter form of coherence, we provide dynamical constraints that relate to quantum metrology and macroscopicity, while for the former, we show that quantum states exist that have finite internal coherence yet with zero deterministic work value. Finally, under minimal thermodynamic assumptions, we establish a clock-work trade-off relation between these two types of coherences. This can be viewed as a form of time-energy conjugate relation within quantum thermodynamics that bounds the total maximum of clock and work resources for a given system.

  3. Circadian rhythms and obesity in mammals.

    PubMed

    Froy, Oren

    2012-01-01

    Obesity has become a serious public health problem and a major risk factor for the development of illnesses, such as insulin resistance and hypertension. Attempts to understand the causes of obesity and develop new therapeutic strategies have mostly focused on caloric intake and energy expenditure. Recent studies have shown that the circadian clock controls energy homeostasis by regulating the circadian expression and/or activity of enzymes, hormones, and transport systems involved in metabolism. Moreover, disruption of circadian rhythms leads to obesity and metabolic disorders. Therefore, it is plausible that resetting of the circadian clock can be used as a new approach to attenuate obesity. Feeding regimens, such as restricted feeding (RF), calorie restriction (CR), and intermittent fasting (IF), provide a time cue and reset the circadian clock and lead to better health. In contrast, high-fat (HF) diet leads to disrupted circadian expression of metabolic factors and obesity. This paper focuses on circadian rhythms and their link to obesity.

  4. Metabolism and the Circadian Clock Converge

    PubMed Central

    Eckel-Mahan, Kristin

    2013-01-01

    Circadian rhythms occur in almost all species and control vital aspects of our physiology, from sleeping and waking to neurotransmitter secretion and cellular metabolism. Epidemiological studies from recent decades have supported a unique role for circadian rhythm in metabolism. As evidenced by individuals working night or rotating shifts, but also by rodent models of circadian arrhythmia, disruption of the circadian cycle is strongly associated with metabolic imbalance. Some genetically engineered mouse models of circadian rhythmicity are obese and show hallmark signs of the metabolic syndrome. Whether these phenotypes are due to the loss of distinct circadian clock genes within a specific tissue versus the disruption of rhythmic physiological activities (such as eating and sleeping) remains a cynosure within the fields of chronobiology and metabolism. Becoming more apparent is that from metabolites to transcription factors, the circadian clock interfaces with metabolism in numerous ways that are essential for maintaining metabolic homeostasis. PMID:23303907

  5. Small heterodimer partner (NROB2) coordinates nutrient signaling and the circadian clock in mice

    USDA-ARS?s Scientific Manuscript database

    Circadian rhythm regulates multiple metabolic processes and in turn is readily entrained by feeding-fasting cycles. However, the molecular mechanisms by which the peripheral clock senses nutrition availability remain largely unknown. Bile acids are under circadian control and also increase postprand...

  6. Multiple layers of posttranslational regulation refine circadian clock activity in Arabidopsis.

    PubMed

    Seo, Pil Joon; Mas, Paloma

    2014-01-01

    The circadian clock is a cellular time-keeper mechanism that regulates biological rhythms with a period of ~24 h. The circadian rhythms in metabolism, physiology, and development are synchronized by environmental cues such as light and temperature. In plants, proper matching of the internal circadian time with the external environment confers fitness advantages on plant survival and propagation. Accordingly, plants have evolved elaborated regulatory mechanisms that precisely control the circadian oscillations. Transcriptional feedback regulation of several clock components has been well characterized over the past years. However, the importance of additional regulatory mechanisms such as chromatin remodeling, protein complexes, protein phosphorylation, and stability is only starting to emerge. The multiple layers of circadian regulation enable plants to properly synchronize with the environmental cycles and to fine-tune the circadian oscillations. This review focuses on the diverse posttranslational events that regulate circadian clock function. We discuss the mechanistic insights explaining how plants articulate a high degree of complexity in their regulatory networks to maintain circadian homeostasis and to generate highly precise waveforms of circadian expression and activity.

  7. A note on the WGC, effective field theory and clockwork within string theory

    NASA Astrophysics Data System (ADS)

    Ibáñez, Luis E.; Montero, Miguel

    2018-02-01

    It has been recently argued that Higgsing of theories with U(1) n gauge interactions consistent with the Weak Gravity Conjecture (WGC) may lead to effective field theories parametrically violating WGC constraints. The minimal examples typically involve Higgs scalars with a large charge with respect to a U(1) (e.g. charges ( Z, 1) in U(1)2 with Z ≫ 1). This type of Higgs multiplets play also a key role in clockwork U(1) theories. We study these issues in the context of heterotic string theory and find that, even if there is no new physics at the standard magnetic WGC scale Λ ˜ g IR M P , the string scale is just slightly above, at a scale ˜ √{k_{IR}}Λ. Here k IR is the level of the IR U(1) worldsheet current. We show that, unlike the standard magnetic cutoff, this bound is insensitive to subsequent Higgsing. One may argue that this constraint gives rise to no bound at the effective field theory level since k IR is model dependent and in general unknown. However there is an additional constraint to be taken into account, which is that the Higgsing scalars with large charge Z should be part of the string massless spectrum, which becomes an upper bound k IR ≤ k 0 2 , where k 0 is the level of the UV currents. Thus, for fixed k 0, Z cannot be made parametrically large. The upper bound on the charges Z leads to limitations on the size and structure of hierarchies in an iterated U(1) clockwork mechanism.

  8. Expression conservation within the circadian clock of a monocot: natural variation at barley Ppd-H1 affects circadian expression of flowering time genes, but not clock orthologs.

    PubMed

    Campoli, Chiara; Shtaya, Munqez; Davis, Seth J; von Korff, Maria

    2012-06-21

    The circadian clock is an endogenous mechanism that coordinates biological processes with daily changes in the environment. In plants, circadian rhythms contribute to both agricultural productivity and evolutionary fitness. In barley, the photoperiod response regulator and flowering-time gene Ppd-H1 is orthologous to the Arabidopsis core-clock gene PRR7. However, relatively little is known about the role of Ppd-H1 and other components of the circadian clock in temperate crop species. In this study, we identified barley clock orthologs and tested the effects of natural genetic variation at Ppd-H1 on diurnal and circadian expression of clock and output genes from the photoperiod-response pathway. Barley clock orthologs HvCCA1, HvGI, HvPRR1, HvPRR37 (Ppd-H1), HvPRR73, HvPRR59 and HvPRR95 showed a high level of sequence similarity and conservation of diurnal and circadian expression patterns, when compared to Arabidopsis. The natural mutation at Ppd-H1 did not affect diurnal or circadian cycling of barley clock genes. However, the Ppd-H1 mutant was found to be arrhythmic under free-running conditions for the photoperiod-response genes HvCO1, HvCO2, and the MADS-box transcription factor and vernalization responsive gene Vrn-H1. We suggest that the described eudicot clock is largely conserved in the monocot barley. However, genetic differentiation within gene families and differences in the function of Ppd-H1 suggest evolutionary modification in the angiosperm clock. Our data indicates that natural variation at Ppd-H1 does not affect the expression level of clock genes, but controls photoperiodic output genes. Circadian control of Vrn-H1 in barley suggests that this vernalization responsive gene is also controlled by the photoperiod-response pathway. Structural and functional characterization of the barley circadian clock will set the basis for future studies of the adaptive significance of the circadian clock in Triticeae species.

  9. Analysis of a Gene Regulatory Cascade Mediating Circadian Rhythm in Zebrafish

    PubMed Central

    Wang, Haifang; Du, Jiulin; Yan, Jun

    2013-01-01

    In the study of circadian rhythms, it has been a puzzle how a limited number of circadian clock genes can control diverse aspects of physiology. Here we investigate circadian gene expression genome-wide using larval zebrafish as a model system. We made use of a spatial gene expression atlas to investigate the expression of circadian genes in various tissues and cell types. Comparison of genome-wide circadian gene expression data between zebrafish and mouse revealed a nearly anti-phase relationship and allowed us to detect novel evolutionarily conserved circadian genes in vertebrates. We identified three groups of zebrafish genes with distinct responses to light entrainment: fast light-induced genes, slow light-induced genes, and dark-induced genes. Our computational analysis of the circadian gene regulatory network revealed several transcription factors (TFs) involved in diverse aspects of circadian physiology through transcriptional cascade. Of these, microphthalmia-associated transcription factor a (mitfa), a dark-induced TF, mediates a circadian rhythm of melanin synthesis, which may be involved in zebrafish's adaptation to daily light cycling. Our study describes a systematic method to discover previously unidentified TFs involved in circadian physiology in complex organisms. PMID:23468616

  10. Extent and character of circadian gene expression in Drosophila melanogaster: identification of twenty oscillating mRNAs in the fly head.

    PubMed

    Van Gelder, R N; Bae, H; Palazzolo, M J; Krasnow, M A

    1995-12-01

    Although mRNAs expressed with a circadian rhythm have been isolated from many species, the extent and character of circadianly regulated gene expression is unknown for any animal. In Drosophila melanogaster, only the period (per) gene, an essential component of the circadian pacemaker, is known to show rhythmic mRNA expression. Recent work suggests that the encoded Per protein controls its own transcription by an autoregulatory feedback loop. Per might also control the rhythmic expression of other genes to generate circadian behavior and physiology. The goals of this work were to evaluate the extent and character of circadian control of gene expression in Drosophila, and to identify genes dependent on per for circadian expression. A large collection of anonymous, independent cDNA clones was used to screen for transcripts that are rhythmically expressed in the fly head. 20 of the 261 clones tested detected mRNAs with a greater than two-fold daily change in abundance. Three mRNAs were maximally expressed in the morning, whereas 17 mRNAs were most abundant in the evening--when per mRNA is also maximally expressed (but when the flies are inactive). Further analysis of the three 'morning' cDNAs showed that each has a unique dependence on the presence of a light-dark cycle, on timed feeding, and on the function of the per gene for its oscillation. These dependencies were different from those determined for per and for a novel 'evening' gene. Sequence analysis indicated that all but one of the 20 cDNAs identified previously uncloned genes. Diurnal control of gene expression is a significant but limited phenomenon in the fly head, which involves many uncharacterized genes. Diurnal control is mediated by multiple endogenous and exogenous mechanisms, even at the level of individual genes. A subset of circadianly expressed genes are predominantly or exclusively dependent on per for their rhythmic expression. The per gene can therefore influence the expression of genes other than itself, but for many rhythmically expressed genes, per functions in conjunction with external inputs to control their daily expression patterns.

  11. Differential effects of the circadian system and circadian misalignment on insulin sensitivity and insulin secretion in humans.

    PubMed

    Qian, Jingyi; Dalla Man, Chiara; Morris, Christopher J; Cobelli, Claudio; Scheer, Frank Ajl

    2018-06-04

    Glucose tolerance is lower at night and higher in the morning. Shift workers, who often eat at night and experience circadian misalignment (i.e., misalignment between the central circadian pacemaker and the environmental/behavioral cycle), have an increased risk of type 2 diabetes. To determine the separate and relative impacts of the circadian system, behavioral/environmental cycles, and their interaction (i.e., circadian misalignment) on insulin sensitivity and β-cell function, we used the oral minimal model to quantitatively assess the major determinants of glucose control in 14 healthy adults, using a randomized, cross-over design with two 8-day laboratory protocols. Both protocols involved 3 baseline inpatient days with habitual sleep/wake cycle, followed by 4 inpatient days with same nocturnal bedtime (circadian alignment) or with 12-h inverted behavioral/environmental cycles (circadian misalignment). Our data showed that circadian phase and circadian misalignment affect glucose tolerance through different mechanisms. While the circadian system reduces glucose tolerance in the biological evening compared to the biological morning mainly by decreasing both dynamic and static β-cell responsivity, circadian misalignment reduced glucose tolerance mainly by lowering insulin sensitivity, not by affecting β-cell function. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Materials science: Clockwork at the atomic scale

    NASA Astrophysics Data System (ADS)

    Ležaić, Marjana

    2016-05-01

    Design rules for exotic materials known as polar metals have been put into practice in thin films. The findings will motivate studies of how a phenomenon called screening can be manipulated to generate new phases in metals. See Letter p.68

  13. Conservation and Divergence of Circadian Clock Operation in a Stress-Inducible Crassulacean Acid Metabolism Species Reveals Clock Compensation against Stress1

    PubMed Central

    Boxall, Susanna F.; Foster, Jonathan M.; Bohnert, Hans J.; Cushman, John C.; Nimmo, Hugh G.; Hartwell, James

    2005-01-01

    One of the best-characterized physiological rhythms in plants is the circadian rhythm of CO2 metabolism in Crassulacean acid metabolism (CAM) plants, which is the focus here. The central components of the plant circadian clock have been studied in detail only in Arabidopsis (Arabidopsis thaliana). Full-length cDNAs have been obtained encoding orthologs of CIRCADIAN CLOCK-ASSOCIATED1 (CCA1)/LATE ELONGATED HYPOCOTYL (LHY), TIMING OF CAB EXPRESSION1 (TOC1), EARLY FLOWERING4 (ELF4), ZEITLUPE (ZTL), FLAVIN-BINDING KELCH REPEAT F-BOX1 (FKF1), EARLY FLOWERING3 (ELF3), and a partial cDNA encoding GIGANTEA in the model stress-inducible CAM plant, Mesembryanthemum crystallinum (Common Ice Plant). TOC1 and LHY/CCA1 are under reciprocal circadian control in a manner similar to their regulation in Arabidopsis. ELF4, FKF1, ZTL, GIGANTEA, and ELF3 are under circadian control in C3 and CAM leaves. ELF4 transcripts peak in the evening and are unaffected by CAM induction. FKF1 shows an abrupt transcript peak 3 h before subjective dusk. ELF3 transcripts appear in the evening, consistent with their role in gating light input to the circadian clock. Intriguingly, ZTL transcripts do not oscillate in Arabidopsis, but do in M. crystallinum. The transcript abundance of the clock-associated genes in M. crystallinum is largely unaffected by development and salt stress, revealing compensation of the central circadian clock against development and abiotic stress in addition to the well-known temperature compensation. Importantly, the clock in M. crystallinum is very similar to that in Arabidopsis, indicating that such a clock could control CAM without requiring additional components of the central oscillator or a novel CAM oscillator. PMID:15734916

  14. Altered dynamics in the circadian oscillation of clock genes in dermal fibroblasts of patients suffering from idiopathic hypersomnia.

    PubMed

    Lippert, Julian; Halfter, Hartmut; Heidbreder, Anna; Röhr, Dominik; Gess, Burkhard; Boentert, Mathias; Osada, Nani; Young, Peter

    2014-01-01

    From single cell organisms to the most complex life forms, the 24-hour circadian rhythm is important for numerous aspects of physiology and behavior such as daily periodic fluctuations in body temperature and sleep-wake cycles. Influenced by environmental cues - mainly by light input -, the central pacemaker in the thalamic suprachiasmatic nuclei (SCN) controls and regulates the internal clock mechanisms which are present in peripheral tissues. In order to correlate modifications in the molecular mechanisms of circadian rhythm with the pathophysiology of idiopathic hypersomnia, this study aimed to investigate the dynamics of the expression of circadian clock genes in dermal fibroblasts of idiopathic hypersomniacs (IH) in comparison to those of healthy controls (HC). Ten clinically and polysomnographically proven IH patients were recruited from the department of sleep medicine of the University Hospital of Muenster. Clinical diagnosis was done by two consecutive polysomnographies (PSG) and Multiple Sleep Latency Test (MSLT). Fourteen clinical healthy volunteers served as control group. Dermal fibroblasts were obtained via punch biopsy and grown in cell culture. The expression of circadian clock genes was investigated by semiquantitative Reverse Transcriptase-PCR qRT-PCR analysis, confirming periodical oscillation of expression of the core circadian clock genes BMAL1, PER1/2 and CRY1/2. The amplitude of the rhythmically expressed BMAL1, PER1 and PER2 was significantly dampened in dermal fibroblasts of IH compared to HC over two circadian periods whereas the overall expression of only the key transcriptional factor BMAL1 was significantly reduced in IH. Our study suggests for the first time an aberrant dynamics in the circadian clock in IH. These findings may serve to better understand some clinical features of the pathophysiology in sleep - wake rhythms in IH.

  15. Altered Dynamics in the Circadian Oscillation of Clock Genes in Dermal Fibroblasts of Patients Suffering from Idiopathic Hypersomnia

    PubMed Central

    Lippert, Julian; Halfter, Hartmut; Heidbreder, Anna; Röhr, Dominik; Gess, Burkhard; Boentert, Mathias; Osada, Nani; Young, Peter

    2014-01-01

    From single cell organisms to the most complex life forms, the 24-hour circadian rhythm is important for numerous aspects of physiology and behavior such as daily periodic fluctuations in body temperature and sleep-wake cycles. Influenced by environmental cues – mainly by light input -, the central pacemaker in the thalamic suprachiasmatic nuclei (SCN) controls and regulates the internal clock mechanisms which are present in peripheral tissues. In order to correlate modifications in the molecular mechanisms of circadian rhythm with the pathophysiology of idiopathic hypersomnia, this study aimed to investigate the dynamics of the expression of circadian clock genes in dermal fibroblasts of idiopathic hypersomniacs (IH) in comparison to those of healthy controls (HC). Ten clinically and polysomnographically proven IH patients were recruited from the department of sleep medicine of the University Hospital of Muenster. Clinical diagnosis was done by two consecutive polysomnographies (PSG) and Multiple Sleep Latency Test (MSLT). Fourteen clinical healthy volunteers served as control group. Dermal fibroblasts were obtained via punch biopsy and grown in cell culture. The expression of circadian clock genes was investigated by semiquantitative Reverse Transcriptase-PCR qRT-PCR analysis, confirming periodical oscillation of expression of the core circadian clock genes BMAL1, PER1/2 and CRY1/2. The amplitude of the rhythmically expressed BMAL1, PER1 and PER2 was significantly dampened in dermal fibroblasts of IH compared to HC over two circadian periods whereas the overall expression of only the key transcriptional factor BMAL1 was significantly reduced in IH. Our study suggests for the first time an aberrant dynamics in the circadian clock in IH. These findings may serve to better understand some clinical features of the pathophysiology in sleep – wake rhythms in IH. PMID:24454829

  16. How does healthy aging impact on the circadian clock?

    PubMed

    Popa-Wagner, Aurel; Buga, Ana-Maria; Dumitrascu, Dinu Iuliu; Uzoni, Adriana; Thome, Johannes; Coogan, Andrew N

    2017-02-01

    Circadian rhythms are recurring patterns in a host of physiological and other parameters that recur with periods of near 24 h. These rhythms reflect the temporal organization of an organism's homeostatic control systems and as such are key processes in ensuring optimal physiological performance. Dysfunction of circadian processes is linked with adverse health conditions. In this review we highlight the evidence that normal, healthy aging is associated with changes in the circadian system; we examine the molecular mechanisms through which such changes may arise, discuss whether more robust circadian function is a predictor of longevity and highlight the role of circadian rhythms in age-related diseases. Overall, the literature shows that aging is associated with marked changes in circadian processes, both at the behavioral and molecular levels, and the molecular mechanisms through which such changes arise remain to be elucidated, but may involve inflammatory process, redox homeostasis and epigenetic modifications. Understanding the nature of age-related circadian dysfunction will allow for the design of chronotherapeutic intervention strategies to attenuate circadian dysfunction and thus improve health and quality of life.

  17. The after-hours circadian mutant has reduced phenotypic plasticity in behaviors at multiple timescales and in sleep homeostasis.

    PubMed

    Maggi, Silvia; Balzani, Edoardo; Lassi, Glenda; Garcia-Garcia, Celina; Plano, Andrea; Espinoza, Stefano; Mus, Liudmila; Tinarelli, Federico; Nolan, Patrick M; Gainetdinov, Raul R; Balci, Fuat; Nieus, Thierry; Tucci, Valter

    2017-12-19

    Circadian clock is known to adapt to environmental changes and can significantly influence cognitive and physiological functions. In this work, we report specific behavioral, cognitive, and sleep homeostatic defects in the after hours (Afh) circadian mouse mutant, which is characterized by lengthened circadian period. We found that the circadian timing irregularities in Afh mice resulted in higher interval timing uncertainty and suboptimal decisions due to incapability of processing probabilities. Our phenotypic observations further suggested that Afh mutants failed to exhibit the necessary phenotypic plasticity for adapting to temporal changes at multiple time scales (seconds-to-minutes to circadian). These behavioral effects of Afh mutation were complemented by the specific disruption of the Per/Cry circadian regulatory complex in brain regions that govern food anticipatory behaviors, sleep, and timing. We derive statistical predictions, which indicate that circadian clock and sleep are complementary processes in controlling behavioral/cognitive performance during 24 hrs. The results of this study have pivotal implications for understanding how the circadian clock modulates sleep and behavior.

  18. Circadian Rhythm Disruption Promotes Lung Tumorigenesis.

    PubMed

    Papagiannakopoulos, Thales; Bauer, Matthew R; Davidson, Shawn M; Heimann, Megan; Subbaraj, Lakshmipriya; Bhutkar, Arjun; Bartlebaugh, Jordan; Vander Heiden, Matthew G; Jacks, Tyler

    2016-08-09

    Circadian rhythms are 24-hr oscillations that control a variety of biological processes in living systems, including two hallmarks of cancer, cell division and metabolism. Circadian rhythm disruption by shift work is associated with greater risk for cancer development and poor prognosis, suggesting a putative tumor-suppressive role for circadian rhythm homeostasis. Using a genetically engineered mouse model of lung adenocarcinoma, we have characterized the effects of circadian rhythm disruption on lung tumorigenesis. We demonstrate that both physiologic perturbation (jet lag) and genetic mutation of the central circadian clock components decreased survival and promoted lung tumor growth and progression. The core circadian genes Per2 and Bmal1 were shown to have cell-autonomous tumor-suppressive roles in transformation and lung tumor progression. Loss of the central clock components led to increased c-Myc expression, enhanced proliferation, and metabolic dysregulation. Our findings demonstrate that both systemic and somatic disruption of circadian rhythms contribute to cancer progression. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. A New Perspective for Parkinson's Disease: Circadian Rhythm.

    PubMed

    Li, Siyue; Wang, Yali; Wang, Fen; Hu, Li-Fang; Liu, Chun-Feng

    2017-02-01

    Circadian rhythm is manifested by the behavioral and physiological changes from day to night, which is controlled by the pacemaker and its regulator. The former is located at the suprachiasmatic nuclei (SCN) in the anterior hypothalamus, while the latter is composed of clock genes present in all tissues. Circadian desynchronization influences normal patterns of day-night rhythms such as sleep and alertness cycles, rest and activity cycles. Parkinson's disease (PD) exhibits diurnal fluctuations. Circadian dysfunction has been observed in PD patients and animal models, which may result in negative consequences to the homeostasis and even exacerbate the disease progression. Therefore, circadian therapies, including light stimulation, physical activity, dietary and social schedules, may be helpful for PD patients. However, the cellular and molecular mechanisms that underlie the circadian dysfunction in PD remain elusive. Further research on circadian patterns is needed. This article summarizes the existing research on the circadian rhythms in PD, focusing on the clinical symptom variations, molecular changes, as well as the available treatment options.

  20. Brown Norway and Zucker Lean Rats Demonstrate Circadian Variation in Ventilation and Sleep Apnea

    PubMed Central

    Fink, Anne M.; Topchiy, Irina; Ragozzino, Michael; Amodeo, Dionisio A.; Waxman, Jonathan A.; Radulovacki, Miodrag G.; Carley, David W.

    2014-01-01

    Study Objectives: Circadian rhythms influence many biological systems, but there is limited information about circadian and diurnal variation in sleep related breathing disorder. We examined circadian and diurnal patterns in sleep apnea and ventilatory patterns in two rat strains, one with high sleep apnea propensity (Brown Norway [BN]) and the other with low sleep apnea propensity (Zucker Lean [ZL]). Design/Setting: Chronically instrumented rats were randomized to breathe room air (control) or 100% oxygen (hyperoxia), and we performed 20-h polysomnography beginning at Zeitgeber time 4 (ZT 4; ZT 0 = lights on, ZT12 = lights off). We examined the effect of strain and inspired gas (twoway analysis of variance) and analyzed circadian and diurnal variability. Measurements and Results: Strain and inspired gas-dependent differences in apnea index (AI; apneas/h) were particularly prominent during the light phase. AI in BN rats (control, 16.9 ± 0.9; hyperoxia, 34.0 ± 5.8) was greater than in ZL rats (control, 8.5 ± 1.0; hyperoxia, 15.4 ± 1.1, [strain effect, P < 0.001; gas effect, P = 0.001]). Hyperoxia reduced respiratory frequency in both strains, and all respiratory pattern variables demonstrated circadian variability. BN rats exposed to hyperoxia demonstrated the largest circadian fluctuation in AI (amplitude = 17.9 ± 3.7 apneas/h [strain effect, P = 0.01; gas effect, P < 0.001; interaction, P = 0.02]; acrophase = 13.9 ± 0.7 h; r2 = 0.8 ± 1.4). Conclusions: Inherited, environmental, and circadian factors all are important elements of underlying sleep related breathing disorder. Our method to examine sleep related breathing disorder phenotypes in rats may have implications for understanding vulnerability for sleep related breathing disorder in humans. Citation: Fink AM; Topchiy I; Ragozzino M; Amodeo DA; Waxman JA; Radulovacki MG; Carley DW. Brown Norway and Zucker Lean rats demonstrate circadian variation in ventilation and sleep apnea. SLEEP 2014;37(4):715-721. PMID:24899760

  1. Disruption of Circadian Rhythms by Light During Day and Night.

    PubMed

    Figueiro, Mariana G

    2017-06-01

    This study aims to discuss possible reasons why research to date has not forged direct links between light at night, acute melatonin suppression or circadian disruption, and risks for disease. Data suggest that irregular light-dark patterns or light exposures at the wrong circadian time can lead to circadian disruption and disease risks. However, there remains an urgent need to: (1) specify light stimulus in terms of circadian rather than visual response; (2) when translating research from animals to humans, consider species-specific spectral and absolute sensitivities to light; (3) relate the characteristics of photometric measurement of light at night to the operational characteristics of the circadian system; and (4) examine how humans may be experiencing too little daytime light, not just too much light at night. To understand the health effects of light-induced circadian disruption, we need to measure and control light stimulus during the day and at night.

  2. Calcium Channel Genes Associated with Bipolar Disorder Modulate Lithium's Amplification of Circadian Rhythms

    PubMed Central

    McCarthy, Michael J.; LeRoux, Melissa; Wei, Heather; Beesley, Stephen; Kelsoe, John R.; Welsh, David K.

    2015-01-01

    Bipolar disorder (BD) is associated with mood episodes and low amplitude circadian rhythms. Previously, we demonstrated that fibroblasts grown from BD patients show weaker amplification of circadian rhythms by lithium compared to control cells. Since calcium signals impact upon the circadian clock, and L-type calcium channels (LTCC) have emerged as genetic risk factors for BD, we examined whether loss of function in LTCCs accounts for the attenuated response to lithium in BD cells. We used fluorescent dyes to measure Ca2+ changes in BD and control fibroblasts after lithium treatment, and bioluminescent reporters to measure Per2∷luc rhythms in fibroblasts from BD patients, human controls, and mice while pharmacologically or genetically manipulating calcium channels. Longitudinal expression of LTCC genes (CACNA1C, CACNA1D and CACNB3) was then measured over 12-24 hr in BD and control cells. Our results indicate that independently of LTCCs, lithium stimulated intracellular Ca2+ less effectively in BD vs. control fibroblasts. In longitudinal studies, pharmacological inhibition of LTCCs or knockdown of CACNA1A, CACNA1C, CACNA1D and CACNB3 altered circadian rhythm amplitude. Diltiazem and knockdown of CACNA1C or CACNA1D eliminated lithium's ability to amplify rhythms. Knockdown of CACNA1A or CACNB3 altered baseline rhythms, but did not affect rhythm amplification by lithium. In human fibroblasts, CACNA1C genotype predicted the amplitude response to lithium, and the expression profiles of CACNA1C, CACNA1D and CACNB3 were altered in BD vs. controls. We conclude that in cells from BD patients, calcium signaling is abnormal, and that LTCCs underlie the failure of lithium to amplify circadian rhythms. PMID:26476274

  3. Circadian Enhancers Coordinate Multiple Phases of Rhythmic Gene Transcription In Vivo

    PubMed Central

    Fang, Bin; Everett, Logan J.; Jager, Jennifer; Briggs, Erika; Armour, Sean M.; Feng, Dan; Roy, Ankur; Gerhart-Hines, Zachary; Sun, Zheng; Lazar, Mitchell A.

    2014-01-01

    SUMMARY Mammalian transcriptomes display complex circadian rhythms with multiple phases of gene expression that cannot be accounted for by current models of the molecular clock. We have determined the underlying mechanisms by measuring nascent RNA transcription around the clock in mouse liver. Unbiased examination of eRNAs that cluster in specific circadian phases identified functional enhancers driven by distinct transcription factors (TFs). We further identify on a global scale the components of the TF cistromes that function to orchestrate circadian gene expression. Integrated genomic analyses also revealed novel mechanisms by which a single circadian factor controls opposing transcriptional phases. These findings shed new light on the diversity and specificity of TF function in the generation of multiple phases of circadian gene transcription in a mammalian organ. PMID:25416951

  4. Circadian enhancers coordinate multiple phases of rhythmic gene transcription in vivo.

    PubMed

    Fang, Bin; Everett, Logan J; Jager, Jennifer; Briggs, Erika; Armour, Sean M; Feng, Dan; Roy, Ankur; Gerhart-Hines, Zachary; Sun, Zheng; Lazar, Mitchell A

    2014-11-20

    Mammalian transcriptomes display complex circadian rhythms with multiple phases of gene expression that cannot be accounted for by current models of the molecular clock. We have determined the underlying mechanisms by measuring nascent RNA transcription around the clock in mouse liver. Unbiased examination of enhancer RNAs (eRNAs) that cluster in specific circadian phases identified functional enhancers driven by distinct transcription factors (TFs). We further identify on a global scale the components of the TF cistromes that function to orchestrate circadian gene expression. Integrated genomic analyses also revealed mechanisms by which a single circadian factor controls opposing transcriptional phases. These findings shed light on the diversity and specificity of TF function in the generation of multiple phases of circadian gene transcription in a mammalian organ.

  5. Endogenous circadian rhythm in human motor activity uncoupled from circadian influences on cardiac dynamics

    PubMed Central

    Ivanov, Plamen Ch.; Hu, Kun; Hilton, Michael F.; Shea, Steven A.; Stanley, H. Eugene

    2007-01-01

    The endogenous circadian pacemaker influences key physiologic functions, such as body temperature and heart rate, and is normally synchronized with the sleep/wake cycle. Epidemiological studies demonstrate a 24-h pattern in adverse cardiovascular events with a peak at ≈10 a.m. It is unknown whether this pattern in cardiac risk is caused by a day/night pattern of behaviors, including activity level and/or influences from the internal circadian pacemaker. We recently found that a scaling index of cardiac vulnerability has an endogenous circadian peak at the circadian phase corresponding to ≈10 a.m., which conceivably could contribute to the morning peak in cardiac risk. Here, we test whether this endogenous circadian influence on cardiac dynamics is caused by circadian-mediated changes in motor activity or whether activity and heart rate dynamics are decoupled across the circadian cycle. We analyze high-frequency recordings of motion from young healthy subjects during two complementary protocols that decouple the sleep/wake cycle from the circadian cycle while controlling scheduled behaviors. We find that static activity properties (mean and standard deviation) exhibit significant circadian rhythms with a peak at the circadian phase corresponding to 5–9 p.m. (≈9 h later than the peak in the scale-invariant index of heartbeat fluctuations). In contrast, dynamic characteristics of the temporal scale-invariant organization of activity fluctuations (long-range correlations) do not exhibit a circadian rhythm. These findings suggest that endogenous circadian-mediated activity variations are not responsible for the endogenous circadian rhythm in the scale-invariant structure of heartbeat fluctuations and likely do not contribute to the increase in cardiac risk at ≈10 a.m. PMID:18093917

  6. Endogenous circadian rhythm in human motor activity uncoupled from circadian influences on cardiac dynamics.

    PubMed

    Ivanov, Plamen Ch; Hu, Kun; Hilton, Michael F; Shea, Steven A; Stanley, H Eugene

    2007-12-26

    The endogenous circadian pacemaker influences key physiologic functions, such as body temperature and heart rate, and is normally synchronized with the sleep/wake cycle. Epidemiological studies demonstrate a 24-h pattern in adverse cardiovascular events with a peak at approximately 10 a.m. It is unknown whether this pattern in cardiac risk is caused by a day/night pattern of behaviors, including activity level and/or influences from the internal circadian pacemaker. We recently found that a scaling index of cardiac vulnerability has an endogenous circadian peak at the circadian phase corresponding to approximately 10 a.m., which conceivably could contribute to the morning peak in cardiac risk. Here, we test whether this endogenous circadian influence on cardiac dynamics is caused by circadian-mediated changes in motor activity or whether activity and heart rate dynamics are decoupled across the circadian cycle. We analyze high-frequency recordings of motion from young healthy subjects during two complementary protocols that decouple the sleep/wake cycle from the circadian cycle while controlling scheduled behaviors. We find that static activity properties (mean and standard deviation) exhibit significant circadian rhythms with a peak at the circadian phase corresponding to 5-9 p.m. ( approximately 9 h later than the peak in the scale-invariant index of heartbeat fluctuations). In contrast, dynamic characteristics of the temporal scale-invariant organization of activity fluctuations (long-range correlations) do not exhibit a circadian rhythm. These findings suggest that endogenous circadian-mediated activity variations are not responsible for the endogenous circadian rhythm in the scale-invariant structure of heartbeat fluctuations and likely do not contribute to the increase in cardiac risk at approximately 10 a.m.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keith, Dove; Finlay, Liam; Butler, Judy

    Highlights: • 24 month old rats were supplemented with 0.2% lipoic acid in the diet for 2 weeks. • Lipoic acid shifts phase of core circadian clock proteins. • Lipoic acid corrects age-induced desynchronized lipid metabolism rhythms. - Abstract: It is well established that lipid metabolism is controlled, in part, by circadian clocks. However, circadian clocks lose temporal precision with age and correlates with elevated incidence in dyslipidemia and metabolic syndrome in older adults. Because our lab has shown that lipoic acid (LA) improves lipid homeostasis in aged animals, we hypothesized that LA affects the circadian clock to achieve thesemore » results. We fed 24 month old male F344 rats a diet supplemented with 0.2% (w/w) LA for 2 weeks prior to sacrifice and quantified hepatic circadian clock protein levels and clock-controlled lipid metabolic enzymes. LA treatment caused a significant phase-shift in the expression patterns of the circadian clock proteins Period (Per) 2, Brain and Muscle Arnt-Like1 (BMAL1), and Reverse Erythroblastosis virus (Rev-erb) β without altering the amplitude of protein levels during the light phase of the day. LA also significantly altered the oscillatory patterns of clock-controlled proteins associated with lipid metabolism. The level of peroxisome proliferator-activated receptor (PPAR) α was significantly increased and acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) were both significantly reduced, suggesting that the LA-supplemented aged animals are in a catabolic state. We conclude that LA remediates some of the dyslipidemic processes associated with advanced age, and this mechanism may be at least partially through entrainment of circadian clocks.« less

  8. Influence of gestational diabetes on circadian rhythms of children and their association with fetal adiposity.

    PubMed

    Zornoza-Moreno, Matilde; Fuentes-Hernández, Silvia; Prieto-Sánchez, María T; Blanco, José E; Pagán, Ana; Rol, María-Ángeles; Parrilla, Juan J; Madrid, Juan A; Sánchez-Solis, Manuel; Larqué, Elvira

    2013-09-01

    To analyse the circadian rhythm maturation of temperature, activity and sleep during the first year of life in offspring of diabetic mothers (ODM) and its relationship with obesity markers. A prospective analysis of the children of 63 pregnant women (23 controls, 21 gestational diabetes mellitus (GDM) controlled with diet and 19 GDM with insulin). Fetal abdominal circumference was evaluated ecographically during gestation. Skin temperature and rest-activity rhythms were monitored for 3 consecutive days in children at 15 days and 1, 3 and 6 months. Anthropometrical parameters of the children were evaluated during the first year of life. Children from the GDM groups tended to higher fetal abdominal circumference z-score than controls at the beginning of the last trimester (p = 0.077) and at delivery (p = 0.078). Mean skin temperature or activity was not different among the groups. The I < O sleep index pointed to increasing concordance with parental sleeping at 3 and 6 months but no significant GDM-dependent differences. However, some of the parameters that define temperature maturation and also the circadian function index from the temperature-activity variable were significantly lower at 6 months in the GDM + insulin group. Fetal abdominal circumference z-score, as a predictor of fetal adiposity, correlated negatively with parameters related to circadian rhythm maturation as the circadian/ultradian rhythm (P1 /Pult ratio). Fetal adiposity correlated with a worse circadian rhythm regulation in ODM. In addition, ODM insulin-treated showed a disturbed pattern of the circadian function index of temperature activity at 6 months of age. Copyright © 2013 John Wiley & Sons, Ltd.

  9. The effect of depression on sleep quality and the circadian rhythm of ambulatory blood pressure in older patients with hypertension.

    PubMed

    Ma, Lina; Li, Yun

    2017-05-01

    To explore the effect of depression on the sleep quality, and the circadian rhythm of ambulatory blood pressure in patients with essential hypertension. A total of 73 older patients with hypertension were screened for depression and divided into two groups. The Pittsburgh Sleep Quality Index (PSQI) and the circadian rhythm of ambulatory blood pressure were compared between the non-depressed (control) and depressed (case) group. In the case group, 24h ambulatory SBP and DBP, and nocturnal SBP and DBP were higher than in the control group, and the circadian rhythm of non-dipper was higher (67.22% vs 40.13%,P<0.01). There was a positive correlation between PSQI and depression (r=0.432, P<0.01). There was a significant correlation between sleep quality and depression in older patients with hypertension. Depression increases the circadian rhythm of non-dipper in older patients with hypertension. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Are circadian rhythms new pathways to understand Autism Spectrum Disorder?

    PubMed

    Geoffray, M-M; Nicolas, A; Speranza, M; Georgieff, N

    2016-11-01

    Autism Spectrum Disorder (ASD) is a frequent neurodevelopmental disorder. ASD is probably the result of intricate interactions between genes and environment altering progressively the development of brain structures and functions. Circadian rhythms are a complex intrinsic timing system composed of almost as many clocks as there are body cells. They regulate a variety of physiological and behavioral processes such as the sleep-wake rhythm. ASD is often associated with sleep disorders and low levels of melatonin. This first point raises the hypothesis that circadian rhythms could have an implication in ASD etiology. Moreover, circadian rhythms are generated by auto-regulatory genetic feedback loops, driven by transcription factors CLOCK and BMAL1, who drive transcription daily patterns of a wide number of clock-controlled genes (CCGs) in different cellular contexts across tissues. Among these, are some CCGs coding for synapses molecules associated to ASD susceptibility. Furthermore, evidence emerges about circadian rhythms control of time brain development processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Preterm infant thermal care: differing thermal environments produced by air versus skin servo-control incubators.

    PubMed

    Thomas, K A; Burr, R

    1999-06-01

    Incubator thermal environments produced by skin versus air servo-control were compared. Infant abdominal skin and incubator air temperatures were recorded from 18 infants in skin servo-control and 14 infants in air servo-control (26- to 29-week gestational age, 14 +/- 2 days postnatal age) for 24 hours. Differences in incubator and infant temperature, neutral thermal environment (NTE) maintenance, and infant and incubator circadian rhythm were examined using analysis of variance and scatterplots. Skin servo-control resulted in more variable air temperature, yet more stable infant temperature, and more time within the NTE. Circadian rhythm of both infant and incubator temperature differed by control mode and the relationship between incubator and infant temperature rhythms was a function of control mode. The differences between incubator control modes extend beyond temperature stability and maintenance of NTE. Circadian rhythm of incubator and infant temperatures is influenced by incubator control.

  12. Steampunk: Full Steam Ahead

    ERIC Educational Resources Information Center

    Campbell, Heather M.

    2010-01-01

    Steam-powered machines, anachronistic technology, clockwork automatons, gas-filled airships, tentacled monsters, fob watches, and top hats--these are all elements of steampunk. Steampunk is both speculative fiction that imagines technology evolved from steam-powered cogs and gears--instead of from electricity and computers--and a movement that…

  13. Glial Cells in the Genesis and Regulation of Circadian Rhythms

    PubMed Central

    Chi-Castañeda, Donají; Ortega, Arturo

    2018-01-01

    Circadian rhythms are biological oscillations with a period of ~24 h. These rhythms are orchestrated by a circadian timekeeper in the suprachiasmatic nucleus of the hypothalamus, the circadian “master clock,” which exactly adjusts clock outputs to solar time via photic synchronization. At the molecular level, circadian rhythms are generated by the interaction of positive and negative feedback loops of transcriptional and translational processes of the so-called “clock genes.” A large number of clock genes encode numerous proteins that regulate their own transcription and that of other genes, collectively known as “clock-controlled genes.” In addition to the sleep/wake cycle, many cellular processes are regulated by circadian rhythms, including synaptic plasticity in which an exquisite interplay between neurons and glial cells takes place. In particular, there is compelling evidence suggesting that glial cells participate in and regulate synaptic plasticity in a circadian fashion, possibly representing the missing cellular and physiological link between circadian rhythms with learning and cognition processes. Here we review recent studies in support of this hypothesis, focusing on the interplay between glial cells, synaptic plasticity, and circadian rhythmogenesis. PMID:29483880

  14. Circadian rhythms and fractal fluctuations in forearm motion

    NASA Astrophysics Data System (ADS)

    Hu, Kun; Hilton, Michael F.

    2005-03-01

    Recent studies have shown that the circadian pacemaker --- an internal body clock located in the brain which is normally synchronized with the sleep/wake behavioral cycles --- influences key physiologic functions such as the body temperature, hormone secretion and heart rate. Surprisingly, no previous studies have investigated whether the circadian pacemaker impacts human motor activity --- a fundamental physiologic function. We investigate high-frequency actigraph recordings of forearm motion from a group of young and healthy subjects during a forced desynchrony protocol which allows to decouple the sleep/wake cycles from the endogenous circadian cycle while controlling scheduled behaviors. We investigate both static properties (mean value, standard deviation), dynamical characteristics (long-range correlations), and nonlinear features (magnitude and Fourier-phase correlations) in the fluctuations of forearm acceleration across different circadian phases. We demonstrate that while the static properties exhibit significant circadian rhythms with a broad peak in the afternoon, the dynamical and nonlinear characteristics remain invariant with circadian phase. This finding suggests an intrinsic multi-scale dynamic regulation of forearm motion the mechanism of which is not influenced by the circadian pacemaker, thus suggesting that increased cardiac risk in the early morning hours is not related to circadian-mediated influences on motor activity.

  15. Epigenetic control and the circadian clock: linking metabolism to neuronal responses.

    PubMed

    Orozco-Solis, R; Sassone-Corsi, P

    2014-04-04

    Experimental and epidemiological evidence reveal the profound influence that industrialized modern society has imposed on human social habits and physiology during the past 50 years. This drastic change in life-style is thought to be one of the main causes of modern diseases including obesity, type 2 diabetes, mental illness such as depression, sleep disorders, and certain types of cancer. These disorders have been associated to disruption of the circadian clock, an intrinsic time-keeper molecular system present in virtually all cells and tissues. The circadian clock is a key element in homeostatic regulation by controlling a large array of genes implicated in cellular metabolism. Importantly, intimate links between epigenetic regulation and the circadian clock exist and are likely to prominently contribute to the plasticity of the response to the environment. In this review, we summarize some experimental and epidemiological evidence showing how environmental factors such as stress, drugs of abuse and changes in circadian habits, interact through different brain areas to modulate the endogenous clock. Furthermore we point out the pivotal role of the deacetylase silent mating-type information regulation 2 homolog 1 (SIRT1) as a molecular effector of the environment in shaping the circadian epigenetic landscape. Published by Elsevier Ltd.

  16. Molecular Mechanisms Regulating Temperature Compensation of the Circadian Clock.

    PubMed

    Narasimamurthy, Rajesh; Virshup, David M

    2017-01-01

    An approximately 24-h biological timekeeping mechanism called the circadian clock is present in virtually all light-sensitive organisms from cyanobacteria to humans. The clock system regulates our sleep-wake cycle, feeding-fasting, hormonal secretion, body temperature, and many other physiological functions. Signals from the master circadian oscillator entrain peripheral clocks using a variety of neural and hormonal signals. Even centrally controlled internal temperature fluctuations can entrain the peripheral circadian clocks. But, unlike other chemical reactions, the output of the clock system remains nearly constant with fluctuations in ambient temperature, a phenomenon known as temperature compensation. In this brief review, we focus on recent advances in our understanding of the posttranslational modifications, especially a phosphoswitch mechanism controlling the stability of PER2 and its implications for the regulation of temperature compensation.

  17. Congenital central hypoventilation syndrome (CCHS): Circadian temperature variation.

    PubMed

    Saiyed, Rehan; Rand, Casey M; Carroll, Michael S; Koliboski, Cynthia M; Stewart, Tracey M; Brogadir, Cindy D; Kenny, Anna S; Petersen, Emily K E; Carley, David W; Weese-Mayer, Debra E

    2016-03-01

    Congenital central hypoventilation syndrome (CCHS) is a rare neurocristopathy, which includes a control of breathing deficit and features of autonomic nervous system (ANS) dysregulation. In recognition of the fundamental role of the ANS in temperature regulation and rhythm and the lack of any prior characterization of circadian temperature rhythms in CCHS, we sought to explore peripheral and core temperatures and circadian patterning. We hypothesized that CCHS patients would exhibit lower peripheral skin temperatures (PST), variability, and circadian rhythmicity (vs. controls), as well as a disrupted relationship between core body temperature (CBT) and PST. PST was sampled every 3 min over four 24-hr periods in CCHS cases and similarly aged controls. CBT was sampled in a subset of these recordings. PST was recorded from 25 CCHS cases (110,664 measures/230 days) and 39 controls (78,772 measures/164 days). Simultaneous CBT measurements were made from 23 CCHS patients. In CCHS, mean PST was lower overall (P = 0.03) and at night (P = 0.02), and PST variability (interquartile range) was higher at night (P = 0.05) (vs. controls). PST circadian rhythm remained intact but the phase relationship of PST to CBT rhythm was extremely variable in CCHS. PST alterations in CCHS likely reflect altered autonomic control of peripheral vascular tone. These alterations represent a previously unreported manifestation of CCHS and may provide an opportunity for therapeutic intervention. The relationship between temperature dysregulation and CCHS may also offer insight into basic mechanisms underlying thermoregulation. © 2015 Wiley Periodicals, Inc.

  18. Body weight, metabolism and clock genes

    PubMed Central

    2010-01-01

    Biological rhythms are present in the lives of almost all organisms ranging from plants to more evolved creatures. These oscillations allow the anticipation of many physiological and behavioral mechanisms thus enabling coordination of rhythms in a timely manner, adaption to environmental changes and more efficient organization of the cellular processes responsible for survival of both the individual and the species. Many components of energy homeostasis exhibit circadian rhythms, which are regulated by central (suprachiasmatic nucleus) and peripheral (located in other tissues) circadian clocks. Adipocyte plays an important role in the regulation of energy homeostasis, the signaling of satiety and cellular differentiation and proliferation. Also, the adipocyte circadian clock is probably involved in the control of many of these functions. Thus, circadian clocks are implicated in the control of energy balance, feeding behavior and consequently in the regulation of body weight. In this regard, alterations in clock genes and rhythms can interfere with the complex mechanism of metabolic and hormonal anticipation, contributing to multifactorial diseases such as obesity and diabetes. The aim of this review was to define circadian clocks by describing their functioning and role in the whole body and in adipocyte metabolism, as well as their influence on body weight control and the development of obesity. PMID:20712885

  19. Design and Analysis of Temperature Preference Behavior and its Circadian Rhythm in Drosophila

    PubMed Central

    Goda, Tadahiro; Leslie, Jennifer R.; Hamada, Fumika N.

    2014-01-01

    The circadian clock regulates many aspects of life, including sleep, locomotor activity, and body temperature (BTR) rhythms1,2. We recently identified a novel Drosophila circadian output, called the temperature preference rhythm (TPR), in which the preferred temperature in flies rises during the day and falls during the night 3. Surprisingly, the TPR and locomotor activity are controlled through distinct circadian neurons3. Drosophila locomotor activity is a well known circadian behavioral output and has provided strong contributions to the discovery of many conserved mammalian circadian clock genes and mechanisms4. Therefore, understanding TPR will lead to the identification of hitherto unknown molecular and cellular circadian mechanisms. Here, we describe how to perform and analyze the TPR assay. This technique not only allows for dissecting the molecular and neural mechanisms of TPR, but also provides new insights into the fundamental mechanisms of the brain functions that integrate different environmental signals and regulate animal behaviors. Furthermore, our recently published data suggest that the fly TPR shares features with the mammalian BTR3. Drosophila are ectotherms, in which the body temperature is typically behaviorally regulated. Therefore, TPR is a strategy used to generate a rhythmic body temperature in these flies5-8. We believe that further exploration of Drosophila TPR will facilitate the characterization of the mechanisms underlying body temperature control in animals. PMID:24457268

  20. Arabidopsis response regulators ARR3 and ARR4 play cytokinin-independent roles in the control of circadian period.

    PubMed

    Salomé, Patrice A; To, Jennifer P C; Kieber, Joseph J; McClung, C Robertson

    2006-01-01

    Light and temperature are potent environmental signals used to synchronize the circadian oscillator with external time and photoperiod. Phytochrome and cryptochrome photoreceptors integrate light quantity and quality to modulate the pace and phase of the clock. PHYTOCHROME B (phyB) controls period length in red light as well as the phase of the clock in white light. phyB interacts with ARABIDOPSIS RESPONSE REGULATOR4 (ARR4) in a light-dependent manner. Accordingly, we tested ARR4 and other members of the type-A ARR family for roles in clock function and show that ARR4 and its closest relative, ARR3, act redundantly in the Arabidopsis thaliana circadian system. Loss of ARR3 and ARR4 lengthens the period of the clock even in the absence of light, demonstrating that they do so independently of active phyB. In addition, in white light, arr3,4 mutants show a leading phase similar to phyB mutants, suggesting that circadian light input is modulated by the interaction of phyB with ARR4. Although type-A ARRs are involved in cytokinin signaling, the circadian defects appear to be independent of cytokinin, as exogenous cytokinin affects the phase but not the period of the clock. Therefore, ARR3 and ARR4 are critical for proper circadian period and define an additional level of regulation of the circadian clock in Arabidopsis.

  1. Circadian Clock-Regulated Expression of Phytochrome and Cryptochrome Genes in Arabidopsis1

    PubMed Central

    Tóth, Réka; Kevei, Éva; Hall, Anthony; Millar, Andrew J.; Nagy, Ferenc; Kozma-Bognár, László

    2001-01-01

    Many physiological and biochemical processes in plants exhibit endogenous rhythms with a period of about 24 h. Endogenous oscillators called circadian clocks regulate these rhythms. The circadian clocks are synchronized to the periodic environmental changes (e.g. day/night cycles) by specific stimuli; among these, the most important is the light. Photoreceptors, phytochromes, and cryptochromes are involved in setting the clock by transducing the light signal to the central oscillator. In this work, we analyzed the spatial, temporal, and long-term light-regulated expression patterns of the Arabidopsis phytochrome (PHYA to PHYE) and cryptochrome (CRY1 and CRY2) promoters fused to the luciferase (LUC+) reporter gene. The results revealed new details of the tissue-specific expression and light regulation of the PHYC and CRY1 and 2 promoters. More importantly, the data obtained demonstrate that the activities of the promoter::LUC+ constructs, with the exception of PHYC::LUC+, display circadian oscillations under constant conditions. In addition, it is shown by measuring the mRNA abundance of PHY and CRY genes under constant light conditions that the circadian control is also maintained at the level of mRNA accumulation. These observations indicate that the plant circadian clock controls the expression of these photoreceptors, revealing the formation of a new regulatory loop that could modulate gating and resetting of the circadian clock. PMID:11743105

  2. The Circadian Clock in Cancer Development and Therapy

    PubMed Central

    Fu, Loning; Kettner, Nicole M.

    2014-01-01

    Most aspects of mammalian function display circadian rhythms driven by an endogenous clock. The circadian clock is operated by genes and comprises a central clock in the brain that responds to environmental cues and controls subordinate clocks in peripheral tissues via circadian output pathways. The central and peripheral clocks coordinately generate rhythmic gene expression in a tissue-specific manner in vivo to couple diverse physiological and behavioral processes to periodic changes in the environment. However, as the world industrialized, activities that disrupt endogenous homeostasis with external circadian cues have increased. This change in lifestyle has been linked to increased risk of diseases in all aspects of human health, including cancer. Studies in humans and animal models have revealed that cancer development in vivo is closely associated with the loss of circadian homeostasis in energy balance, immune function and aging that are supported by cellular functions important for tumor suppression including cell proliferation, senescence, metabolism and DNA damage response. The clock controls these cellular functions both locally in cells of peripheral tissues and at the organismal level via extracellular signaling. Thus, the hierarchical mammalian circadian clock provides a unique system to study carcinogenesis as a deregulated physiological process in vivo. The asynchrony between host and malignant tissues in cell proliferation and metabolism also provides new and exciting options for novel anti-cancer therapies. PMID:23899600

  3. IgE-dependent activation of human mast cells and fMLP-mediated activation of human eosinophils is controlled by the circadian clock.

    PubMed

    Baumann, Anja; Feilhauer, Katharina; Bischoff, Stephan C; Froy, Oren; Lorentz, Axel

    2015-03-01

    Symptoms of allergic attacks frequently exhibit diurnal variations. Accordingly, we could recently demonstrate that mast cells and eosinophils - known as major effector cells of allergic diseases - showed an intact circadian clock. Here, we analyzed the role of the circadian clock in the functionality of mast cells and eosinophils. Human intestinal mast cells (hiMC) were isolated from intestinal mucosa; human eosinophils were isolated from peripheral blood. HiMC and eosinophils were synchronized by dexamethasone before stimulation every 4h around the circadian cycle by FcɛRI crosslinking or fMLP, respectively. Signaling molecule activation was examined using Western blot, mRNA expression by real-time RT-PCR, and mediator release by multiplex analysis. CXCL8 and CCL2 were expressed and released in a circadian manner by both hiMC and eosinophils in response to activation. Moreover, phosphorylation of ERK1/2, known to be involved in activation of hiMC and eosinophils, showed circadian rhythms in both cell types. Interestingly, all clock genes hPer1, hPer2, hCry1, hBmal1, and hClock were expressed in a similar circadian pattern in activated and unstimulated cells indicating that the local clock controls hiMC and eosinophils and subsequently allergic reactions but not vice versa. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. An arousing, musically enhanced bird song stimulus mediates circadian rhythm phase advances in dim light.

    PubMed

    Goel, Namni

    2006-09-01

    A musically enhanced bird song stimulus presented in the early subjective night phase delays human circadian rhythms. This study determined the phase-shifting effects of the same stimulus in the early subjective day. Eleven subjects (ages 18-63 yr; mean +/- SD: 28.0 +/- 16.6 yr) completed two 4-day laboratory sessions in constant dim light (<20 lux). They received two consecutive presentations of either a 2-h musically enhanced bird song or control stimulus from 0600 to 0800 on the second and third mornings while awake. The 4-day sessions employing either the stimulus or control were counterbalanced. Core body temperature (CBT) was collected throughout the study, and salivary melatonin was obtained every 30 min from 1900 to 2330 on the baseline and poststimulus/postcontrol nights. Dim light melatonin onset and CBT minimum circadian phase before and after stimulus or control presentation was assessed. The musically enhanced bird song stimulus produced significantly larger phase advances of the circadian melatonin (mean +/- SD: 0.87 +/- 0.36 vs. 0.24 +/- 0.22 h) and CBT (1.08 +/- 0.50 vs. 0.43 +/- 0.37 h) rhythms than the control. The stimulus also decreased fatigue and total mood disturbance, suggesting arousing effects. This study shows that a musically enhanced bird song stimulus presented during the early subjective day phase advances circadian rhythms. However, it remains unclear whether the phase shifts are due directly to effects of the stimulus on the clock or are arousal- or dim light-mediated effects. This nonphotic stimulus mediates circadian resynchronization in either the phase advance or delay direction.

  5. The metabolic sensor AKIN10 modulates the Arabidopsis circadian clock in a light-dependent manner.

    PubMed

    Shin, Jieun; Sánchez-Villarreal, Alfredo; Davis, Amanda M; Du, Shen-Xiu; Berendzen, Kenneth W; Koncz, Csaba; Ding, Zhaojun; Li, Cuiling; Davis, Seth J

    2017-07-01

    Plants generate rhythmic metabolism during the repetitive day/night cycle. The circadian clock produces internal biological rhythms to synchronize numerous metabolic processes such that they occur at the required time of day. Metabolism conversely influences clock function by controlling circadian period and phase and the expression of core-clock genes. Here, we show that AKIN10, a catalytic subunit of the evolutionarily conserved key energy sensor sucrose non-fermenting 1 (Snf1)-related kinase 1 (SnRK1) complex, plays an important role in the circadian clock. Elevated AKIN10 expression led to delayed peak expression of the circadian clock evening-element GIGANTEA (GI) under diurnal conditions. Moreover, it lengthened clock period specifically under light conditions. Genetic analysis showed that the clock regulator TIME FOR COFFEE (TIC) is required for this effect of AKIN10. Taken together, we propose that AKIN10 conditionally works in a circadian clock input pathway to the circadian oscillator. © 2017 John Wiley & Sons Ltd.

  6. Entrainment of the Mammalian Cell Cycle by the Circadian Clock: Modeling Two Coupled Cellular Rhythms

    PubMed Central

    Gérard, Claude; Goldbeter, Albert

    2012-01-01

    The cell division cycle and the circadian clock represent two major cellular rhythms. These two periodic processes are coupled in multiple ways, given that several molecular components of the cell cycle network are controlled in a circadian manner. For example, in the network of cyclin-dependent kinases (Cdks) that governs progression along the successive phases of the cell cycle, the synthesis of the kinase Wee1, which inhibits the G2/M transition, is enhanced by the complex CLOCK-BMAL1 that plays a central role in the circadian clock network. Another component of the latter network, REV-ERBα, inhibits the synthesis of the Cdk inhibitor p21. Moreover, the synthesis of the oncogene c-Myc, which promotes G1 cyclin synthesis, is repressed by CLOCK-BMAL1. Using detailed computational models for the two networks we investigate the conditions in which the mammalian cell cycle can be entrained by the circadian clock. We show that the cell cycle can be brought to oscillate at a period of 24 h or 48 h when its autonomous period prior to coupling is in an appropriate range. The model indicates that the combination of multiple modes of coupling does not necessarily facilitate entrainment of the cell cycle by the circadian clock. Entrainment can also occur as a result of circadian variations in the level of a growth factor controlling entry into G1. Outside the range of entrainment, the coupling to the circadian clock may lead to disconnected oscillations in the cell cycle and the circadian system, or to complex oscillatory dynamics of the cell cycle in the form of endoreplication, complex periodic oscillations or chaos. The model predicts that the transition from entrainment to 24 h or 48 h might occur when the strength of coupling to the circadian clock or the level of growth factor decrease below critical values. PMID:22693436

  7. In Vitro Bioluminescence Assay to Characterize Circadian Rhythm in Mammary Epithelial Cells.

    PubMed

    Fang, Mingzhu; Kang, Hwan-Goo; Park, Youngil; Estrella, Brian; Zarbl, Helmut

    2017-09-28

    The circadian rhythm is a fundamental physiological process present in all organisms that regulates biological processes ranging from gene expression to sleep behavior. In vertebrates, circadian rhythm is controlled by a molecular oscillator that functions in both the suprachiasmatic nucleus (SCN; central pacemaker) and individual cells comprising most peripheral tissues. More importantly, disruption of circadian rhythm by exposure to light-at-night, environmental stressors and/or toxicants is associated with increased risk of chronic diseases and aging. The ability to identify agents that can disrupt central and/or peripheral biological clocks, and agents that can prevent or mitigate the effects of circadian disruption, has significant implications for prevention of chronic diseases. Although rodent models can be used to identify exposures and agents that induce or prevent/mitigate circadian disruption, these experiments require large numbers of animals. In vivo studies also require significant resources and infrastructure, and require researchers to work all night. Thus, there is an urgent need for a cell-type appropriate in vitro system to screen for environmental circadian disruptors and enhancers in cell types from different organs and disease states. We constructed a vector that drives transcription of the destabilized luciferase in eukaryotic cells under the control of the human PERIOD 2 gene promoter. This circadian reporter construct was stably transfected into human mammary epithelial cells, and circadian responsive reporter cells were selected to develop the in vitro bioluminescence assay. Here, we present a detailed protocol to establish and validate the assay. We further provide details for proof of concept experiments demonstrating the ability of our in vitro assay to recapitulate the in vivo effects of various chemicals on the cellular biological clock. The results indicate that the assay can be adapted to a variety of cell types to screen for both environmental disruptors and chemopreventive enhancers of circadian clocks.

  8. Characterization of locomotor activity circadian rhythms in athymic nude mice

    PubMed Central

    2013-01-01

    Background The relation between circadian dysregulation and cancer incidence and progression has become a topic of major interest over the last decade. Also, circadian timing has gained attention regarding the use of chronopharmacology-based therapeutics. Given its lack of functional T lymphocytes, due to a failure in thymus development, mice carrying the Foxn1(Δ/Δ) mutation (nude mice) have been traditionally used in studies including implantation of xenogeneic tumors. Since the immune system is able to modulate the circadian clock, we investigated if there were alterations in the circadian system of the athymic mutant mice. Methods General activity circadian rhythms in 2–4 month-old Foxn1(Δ/Δ) mice (from Swiss Webster background) and their corresponding wild type (WT) controls was recorded. The response of the circadian system to different manipulations (constant darkness, light pulses and shifts in the light–dark schedule) was analyzed. Results Free-running periods of athymic mice and their wild type counterpart were 23.86 ± 0.03 and 23.88 ± 0.05 hours, respectively. Both strains showed similar phase delays in response to 10 or 120 minutes light pulses applied in the early subjective night and did not differ in the number of c-Fos-expressing cells in the suprachiasmatic nuclei, after a light pulse at circadian time (CT) 15. Similarly, the two groups showed no significant difference in the time needed for resynchronization after 6-hour delays or advances in the light–dark schedule. The proportion of diurnal activity, phase-angle with the zeitgeber, subjective night duration and other activity patterns were similar between the groups. Conclusions Since athymic Foxn1(Δ/Δ) mice presented no differences with the WT controls in the response of the circadian system to the experimental manipulations performed in this work, we conclude that they represent a good model in studies that combine xenograft implants with either alteration of the circadian schedules or chronopharmacological approaches to therapeutics. PMID:23369611

  9. Purification and Characterization of the Danaus Plexippus Cryptochromes

    DTIC Science & Technology

    2006-01-01

    It was also recently discovered that Apis 13 mellifera (honey bee) possess only one mCry-like cryptochrome (28). Additional components of the honey...and phylogenetic analyses reveal mammalian-like clockwork in the honey bee ( Apis mellifera ) and shed new light on the molecular evolution of the

  10. Stanley Kubrick Directs. Expanded Edition.

    ERIC Educational Resources Information Center

    Walker, Alexander

    After reviewing Kubrick's career from his start as a photojournalist on "Look" the book presents a detailed analysis of all Kubrick's films, from "Killer's Kiss" to "A Clockwork Orange," looking at them from both technical and thematic aspects. The book is copiously illustrated with stills from the productions. (JK)

  11. Nocturnal polyuria is related to absent circadian rhythm of glomerular filtration rate.

    PubMed

    De Guchtenaere, A; Vande Walle, C; Van Sintjan, P; Raes, A; Donckerwolcke, R; Van Laecke, E; Hoebeke, P; Vande Walle, J

    2007-12-01

    Monosymptomatic nocturnal enuresis is frequently associated with nocturnal polyuria and low urinary osmolality during the night. Initial studies found decreased vasopressin levels associated with low urinary osmolality overnight. Together with the documented desmopressin response, this was suggestive of a primary role for vasopressin in the pathogenesis of enuresis in the absence of bladder dysfunction. Recent studies no longer confirm this primary role of vasopressin. Other pathogenetic factors such as disordered renal sodium handling, hypercalciuria, increased prostaglandins and/or osmotic excretion might have a role. So far, little attention has been given to abnormalities in the circadian rhythm of glomerular filtration rate. We evaluated the circadian rhythm of glomerular filtration rate and diuresis in children with desmopressin resistant monosymptomatic nocturnal enuresis and nocturnal polyuria. We evaluated 15 children (9 boys) 9 to 14 years old with monosymptomatic nocturnal enuresis and nocturnal polyuria resistant to desmopressin treatment. The control group consisted of 25 children (12 boys) 9 to 16 years old with monosymptomatic nocturnal enuresis without nocturnal polyuria. Compared to the control population, children with nocturnal polyuria lost their circadian rhythm not only for diuresis and sodium excretion but also for glomerular filtration rate. Patients with monosymptomatic nocturnal enuresis and nocturnal polyuria lack a normal circadian rhythm for diuresis and sodium excretion, and the circadian rhythm of glomerular filtration rate is absent. This absence of circadian rhythm of glomerular filtration rate and/or sodium handling cannot be explained by a primary role of vasopressin, but rather by a disorder in circadian rhythm of renal glomerular and/or tubular functions.

  12. Disruption of the circadian period of body temperature by the anesthetic propofol.

    PubMed

    Touitou, Yvan; Mauvieux, Benoit; Reinberg, Alain; Dispersyn, Garance

    2016-01-01

    The circadian time structure of an organism can be desynchronized in a large number of instances, including the intake of specific drugs. We have previously found that propofol, which is a general anesthetic, induces a desynchronization of the circadian time structure in rats, with a 60-80 min significant phase advance of body temperature circadian rhythm. We thus deemed it worthwhile to examine whether this phase shift of body temperature was related to a modification of the circadian period Tau. Propofol was administered at three different Zeitgeber Times (ZTs): ZT6 (middle of the rest period), ZT10 (2 h prior to the beginning of activity period), ZT16 (4 h after the beginning of the activity period), with ZT0 being the beginning of the rest period (light onset) and ZT12 being the beginning of the activity period (light offset). Control rats (n = 20) were injected at the same ZTs with 10% intralipid, which is a control lipidic solution. Whereas no modification of the circadian period of body temperature was observed in the control rats, propofol administration resulted in a significant shortening of the period by 96 and 180 min at ZT6 and ZT10, respectively. By contrast, the period was significantly lengthened by 90 min at ZT16. We also found differences in the time it took for the rats to readjust their body temperature to the original 24-h rhythm. At ZT16, the speed of readjustment was more rapid than at the two other ZTs that we investigated. This study hence shows (i) the disruptive effects of the anesthetic propofol on the body temperature circadian rhythm, and it points out that (ii) the period Tau for body temperature responds to this anesthetic drug according to a Tau-response curve. By sustaining postoperative sleep-wake disorders, the disruptive effects of propofol on circadian time structure might have important implications for the use of this drug in humans.

  13. Orexin Neurons Are Necessary for the Circadian Control of REM Sleep

    PubMed Central

    Kantor, Sandor; Mochizuki, Takatoshi; Janisiewicz, Agnieszka M.; Clark, Erika; Nishino, Seiji; Scammell, Thomas E.

    2009-01-01

    Study Objectives: The orexin-producing neurons are hypothesized to be essential for the circadian control of sleep/wake behavior, but it remains unknown whether these rhythms are mediated by the orexin peptides or by other signaling molecules released by these neurons such as glutamate or dynorphin. To determine the roles of these neurotransmitters, we examined the circadian rhythms of sleep/wake behavior in mice lacking the orexin neurons (ataxin-3 [Atx] mice) and mice lacking just the orexin neuropeptides (orexin knockout [KO] mice). Design: We instrumented mice for recordings of sleep-wake behavior, locomotor activity (LMA), and body temperature (Tb) and recorded behavior after 6 days in constant darkness. Results: The amplitude of the rapid eye movement (REM) sleep rhythm was substantially reduced in Atx mice but preserved in orexin KO mice. This blunted rhythm in Atx mice was caused by an increase in the amount of REM sleep during the subjective night (active period) due to more transitions into REM sleep and longer REM sleep episodes. In contrast, the circadian variations of Tb, LMA, Wake, non-REM sleep, and cataplexy were normal, suggesting that the circadian timekeeping system and other output pathways are intact in both Atx and KO mice. Conclusions: These results indicate that the orexin neurons are necessary for the circadian suppression of REM sleep. Blunting of the REM sleep rhythm in Atx mice but not in orexin KO mice suggests that other signaling molecules such as dynorphin or glutamate may act in concert with orexins to suppress REM sleep during the active period. Citation: Kantor S; Mochizuki T; Janisiewicz AM; Clark E; Nishino S; Scammell TE. Orexin neurons are necessary for the circadian control of REM sleep. SLEEP 2009;32(9):1127-1134. PMID:19750917

  14. Thermoregulation is impaired in an environment without circadian time cues

    NASA Technical Reports Server (NTRS)

    Fuller, C. A.; Sulzman, F. M.; Moore-Ede, M. C.

    1978-01-01

    Thirteen adult male squirrel monkeys were restrained to a metabolism chair for periods of two or more weeks within an isolation chamber having controlled environmental lighting and ambient temperature. The monkeys were subjected to mild 6-hour cold exposures at all circadian phases of the day. It was found that a prominent circadian rhythm in body temperature, regulated against mild cold exposure, was present in those monkeys synchronized in a 24-hour light-dark cycle. Cold exposures were found to produce decreased core body temperatures when the circadian rhythms were free running or when environmental time indicators were not present. It is concluded that the thermoregulating system depends on the internal synchronization of the circadian time-keeping system.

  15. Metabolic consequences of sleep and circadian disorders

    PubMed Central

    Depner, Christopher M.; Stothard, Ellen R.; Wright, Kenneth P.

    2014-01-01

    Sleep and circadian rhythms modulate or control daily physiological patterns with importance for normal metabolic health. Sleep deficiencies associated with insufficient sleep schedules, insomnia with short-sleep duration, sleep apnea, narcolepsy, circadian misalignment, shift work, night eating syndrome and sleep-related eating disorder may all contribute to metabolic dysregulation. Sleep deficiencies and circadian disruption associated with metabolic dysregulation may contribute to weight gain, obesity, and type 2 diabetes potentially by altering timing and amount of food intake, disrupting energy balance, inflammation, impairing glucose tolerance and insulin sensitivity. Given the rapidly increasing prevalence of metabolic diseases, it is important to recognize the role of sleep and circadian disruption in the development, progression, and morbidity of metabolic disease. Some findings indicate sleep treatments and countermeasures improve metabolic health, but future clinical research investigating prevention and treatment of chronic metabolic disorders through treatment of sleep and circadian disruption is needed. PMID:24816752

  16. Circadian Effects on Simple Components of Complex Task Performance

    NASA Technical Reports Server (NTRS)

    Clegg, Benjamin A.; Wickens, Christopher D.; Vieane, Alex Z.; Gutzwiller, Robert S.; Sebok, Angelia L.

    2015-01-01

    The goal of this study was to advance understanding and prediction of the impact of circadian rhythm on aspects of complex task performance during unexpected automation failures, and subsequent fault management. Participants trained on two tasks: a process control simulation, featuring automated support; and a multi-tasking platform. Participants then completed one task in a very early morning (circadian night) session, and the other during a late afternoon (circadian day) session. Small effects of time of day were seen on simple components of task performance, but impacts on more demanding components, such as those that occur following an automation failure, were muted relative to previous studies where circadian rhythm was compounded with sleep deprivation and fatigue. Circadian low participants engaged in compensatory strategies, rather than passively monitoring the automation. The findings and implications are discussed in the context of a model that includes the effects of sleep and fatigue factors.

  17. Metabolic consequences of sleep and circadian disorders.

    PubMed

    Depner, Christopher M; Stothard, Ellen R; Wright, Kenneth P

    2014-07-01

    Sleep and circadian rhythms modulate or control daily physiological patterns with importance for normal metabolic health. Sleep deficiencies associated with insufficient sleep schedules, insomnia with short-sleep duration, sleep apnea, narcolepsy, circadian misalignment, shift work, night eating syndrome, and sleep-related eating disorder may all contribute to metabolic dysregulation. Sleep deficiencies and circadian disruption associated with metabolic dysregulation may contribute to weight gain, obesity, and type 2 diabetes potentially by altering timing and amount of food intake, disrupting energy balance, inflammation, impairing glucose tolerance, and insulin sensitivity. Given the rapidly increasing prevalence of metabolic diseases, it is important to recognize the role of sleep and circadian disruption in the development, progression, and morbidity of metabolic disease. Some findings indicate sleep treatments and countermeasures improve metabolic health, but future clinical research investigating prevention and treatment of chronic metabolic disorders through treatment of sleep and circadian disruption is needed.

  18. Analysis of Circadian Leaf Movements.

    PubMed

    Müller, Niels A; Jiménez-Gómez, José M

    2016-01-01

    The circadian clock is a molecular timekeeper that controls a wide variety of biological processes. In plants, clock outputs range from the molecular level, with rhythmic gene expression and metabolite content, to physiological processes such as stomatal conductance or leaf movements. Any of these outputs can be used as markers to monitor the state of the circadian clock. In the model plant Arabidopsis thaliana, much of the current knowledge about the clock has been gained from time course experiments profiling expression of endogenous genes or reporter constructs regulated by the circadian clock. Since these methods require labor-intensive sample preparation or transformation, monitoring leaf movements is an interesting alternative, especially in non-model species and for natural variation studies. Technological improvements both in digital photography and image analysis allow cheap and easy monitoring of circadian leaf movements. In this chapter we present a protocol that uses an autonomous point and shoot camera and free software to monitor circadian leaf movements in tomato.

  19. Circadian pattern of blood pressure in normal pregnancy and preeclampsia.

    PubMed

    Gupta, Hem Prabha; Singh, R K; Singh, Urmila; Mehrotra, Seema; Verma, N S; Baranwal, Neelam

    2011-08-01

    AIMS #ENTITYSTARTX00026; To find out the circadian pattern of blood pressure in normotensive pregnant women and in women with preeclampsia. A cross-sectional prospective observational case control study. Blood pressure was sampled in thirty-five normotensive pregnant women (control) and thirty five preeclamptic women (study group) by using non-invasive automatic ambulatory blood pressure monitoring machine for 72 h. Blood pressure (BP) was not constant over 24 h period and it oscillated from time to time in control group. BP was maximum during early part of afternoon. However, in preeclampsia besides quantitative increase in BP, circadian BP oscillations were less pronounced and in around 50% subjects BP was maximum during evening and night hours. Both systolic and diastolic BP showed definite reproducible circadian pattern in both preeclamptic and normotensive pregnant women. This pattern both quantitatively and qualitatively was different in preeclamptic women. Standardized 24 h BP monitoring allows quantitative and qualitative evaluation of hypertensive status and is important for timing and dosing of antihypertensive medications.

  20. Sleep and circadian rhythm disturbance in bipolar disorder.

    PubMed

    Bradley, A J; Webb-Mitchell, R; Hazu, A; Slater, N; Middleton, B; Gallagher, P; McAllister-Williams, H; Anderson, K N

    2017-07-01

    Subjective reports of insomnia and hypersomnia are common in bipolar disorder (BD). It is unclear to what extent these relate to underlying circadian rhythm disturbance (CRD). In this study we aimed to objectively assess sleep and circadian rhythm in a cohort of patients with BD compared to matched controls. Forty-six patients with BD and 42 controls had comprehensive sleep/circadian rhythm assessment with respiratory sleep studies, prolonged accelerometry over 3 weeks, sleep questionnaires and diaries, melatonin levels, alongside mood, psychosocial functioning and quality of life (QoL) questionnaires. Twenty-three (50%) patients with BD had abnormal sleep, of whom 12 (52%) had CRD and 29% had obstructive sleep apnoea. Patients with abnormal sleep had lower 24-h melatonin secretion compared to controls and patients with normal sleep. Abnormal sleep/CRD in BD was associated with impaired functioning and worse QoL. BD is associated with high rates of abnormal sleep and CRD. The association between these disorders, mood and functioning, and the direction of causality, warrants further investigation.

  1. Circadian misalignment, reward-related brain function, and adolescent alcohol involvement.

    PubMed

    Hasler, Brant P; Clark, Duncan B

    2013-04-01

    Developmental changes in sleep and circadian rhythms that occur during adolescence may contribute to reward-related brain dysfunction, and consequently increase the risk of alcohol use disorders (AUDs). This review (i) describes marked changes in circadian rhythms, reward-related behavior and brain function, and alcohol involvement that occur during adolescence, (ii) offers evidence that these parallel developmental changes are associated, and (iii) posits a conceptual model by which misalignment between sleep-wake timing and endogenous circadian timing may increase the risk of adolescent AUDs by altering reward-related brain function. The timing of sleep shifts later throughout adolescence, in part due to developmental changes in endogenous circadian rhythms, which tend to become more delayed. This tendency for delayed sleep and circadian rhythms is at odds with early school start times during secondary education, leading to misalignment between many adolescents' sleep-wake schedules and their internal circadian timing. Circadian misalignment is associated with increased alcohol use and other risk-taking behaviors, as well as sleep loss and sleep disturbance. Growing evidence indicates that circadian rhythms modulate the reward system, suggesting that circadian misalignment may impact adolescent alcohol involvement by altering reward-related brain function. Neurocognitive function is also subject to sleep and circadian influence, and thus circadian misalignment may also impair inhibitory control and other cognitive processes relevant to alcohol use. Specifically, circadian misalignment may further exacerbate the cortical-subcortical imbalance within the reward circuit, an imbalance thought to explain increased risk-taking and sensation-seeking during adolescence. Adolescent alcohol use is highly contextualized, however, and thus studies testing this model will also need to consider factors that may influence both circadian misalignment and alcohol use. This review highlights growing evidence supporting a path by which circadian misalignment may disrupt reward mechanisms, which may in turn accelerate the transition from alcohol use to AUDs in vulnerable adolescents. Copyright © 2013 by the Research Society on Alcoholism.

  2. Circadian Rest-Activity Rhythm in Pediatric Type 1 Narcolepsy

    PubMed Central

    Filardi, Marco; Pizza, Fabio; Bruni, Oliviero; Natale, Vincenzo; Plazzi, Giuseppe

    2016-01-01

    Study Objectives: Pediatric type 1 narcolepsy is often challenging to diagnose and remains largely undiagnosed. Excessive daytime sleepiness, disrupted nocturnal sleep, and a peculiar phenotype of cataplexy are the prominent features. The knowledge available about the regulation of circadian rhythms in affected children is scarce. This study compared circadian rest-activity rhythm and actigraphic estimated sleep measures of children with type 1 narcolepsy versus healthy controls. Methods: Twenty-two drug-naïve type 1 narcolepsy children and 21 age- and sex- matched controls were monitored for seven days during the school week by actigraphy. Circadian activity rhythms were analyzed through functional linear modeling; nocturnal and diurnal sleep measures were estimated from activity using a validated algorithm. Results: Children with type 1 narcolepsy presented an altered rest-activity rhythm characterized by enhanced motor activity throughout the night and blunted activity in the first afternoon. No difference was found between children with type 1 narcolepsy and controls in the timing of the circadian phase. Actigraphic sleep measures showed good discriminant capabilities in assessing type 1 narcolepsy nycthemeral disruption. Conclusions: Actigraphy reliably renders the nycthemeral disruption typical of narcolepsy type 1 in drug-naïve children with recent disease onset, indicating the sensibility of actigraphic assessment in the diagnostic work-up of childhood narcolepsy type 1. Citation: Filardi M, Pizza F, Bruni O, Natale V, Plazzi G. Circadian rest-activity rhythm in pediatric type 1 narcolepsy. SLEEP 2016;39(6):1241–1247. PMID:27091539

  3. A Vision of Dystopia: Beehives and Mechanization.

    ERIC Educational Resources Information Center

    Dunn, Thomas P.; Erlich, Richard D.

    1981-01-01

    Uses the metaphor of the beehive as a well-ordered, each-in-his-own-niche society to represent the outcome of utopian thinking. Cites twentieth-century dystopia films and literature as explicit criticisms of overreliance on planning and technology. Examines "Star Wars,""Clockwork Orange," and the works of Huxley, Forster,…

  4. Moderate Changes in the Circadian System of Alzheimer's Disease Patients Detected in Their Home Environment.

    PubMed

    Weissová, Kamila; Bartoš, Aleš; Sládek, Martin; Nováková, Marta; Sumová, Alena

    2016-01-01

    Alzheimer's disease (AD) is a neurodegenerative disease often accompanied with disruption of sleep-wake cycle. The sleep-wake cycle is controlled by mechanisms involving internal timekeeping (circadian) regulation. The aim of our present pilot study was to assess the circadian system in patients with mild form of AD in their home environment. In the study, 13 elderly AD patients and 13 age-matched healthy control subjects (the patient's spouses) were enrolled. Sleep was recorded for 21 days by sleep diaries in all participants and checked by actigraphy in 4 of the AD patient/control couples. The samples of saliva and buccal mucosa were collected every 4 hours during the same 24 h-interval to detect melatonin and clock gene (PER1 and BMAL1) mRNA levels, respectively. The AD patients exhibited significantly longer inactivity interval during the 24 h and significantly higher number of daytime naps than controls. Daily profiles of melatonin levels exhibited circadian rhythms in both groups. Compared with controls, decline in amplitude of the melatonin rhythm in AD patients was not significant, however, in AD patients more melatonin profiles were dampened or had atypical waveforms. The clock genes PER1 and BMAL1 were expressed rhythmically with high amplitudes in both groups and no significant differences in phases between both groups were detected. Our results suggest moderate differences in functional state of the circadian system in patients with mild form of AD compared with healthy controls which are present in conditions of their home dwelling.

  5. Light and maternal influence in the entrainment of activity circadian rhythm in infants 4-12 weeks of age.

    PubMed

    Thomas, Karen A; Burr, Robert L; Spieker, Susan

    2016-07-01

    The influence of light and maternal activity on early infant activity rhythm were studied in 43 healthy, maternal-infant pairs. Aims included description of infant and maternal circadian rhythm of environmental light, assessing relations among of activity and light circadian rhythm parameters, and exploring the influence of light on infant activity independent of maternal activity. Three-day light and activity records were obtained using actigraphy monitors at infant ages 4, 8, and 12 weeks. Circadian rhythm timing, amplitude, 24-hour fit, rhythm center, and regularity were determined using cosinor and nonparametric circadian rhythm analyses (NPCRA). All maternal and infant circadian parameters for light were highly correlated. When maternal activity was controlled, the partial correlations between infant activity and light rhythm timing, amplitude, 24-hour fit, and rhythm center demonstrated significant relation (r = .338 to .662) at infant age 12 weeks, suggesting entrainment. In contrast, when maternal light was controlled there was significant relation between maternal and infant activity rhythm (r = 0.470, 0.500, and 0.638 at 4, 8 and 12 weeks, respectively) suggesting the influence of maternal-infant interaction independent of photo entrainment of cycle timing over the first 12 weeks of life. Both light and maternal activity may offer avenues for shaping infant activity rhythm during early infancy.

  6. Genetically Blocking the Zebrafish Pineal Clock Affects Circadian Behavior.

    PubMed

    Ben-Moshe Livne, Zohar; Alon, Shahar; Vallone, Daniela; Bayleyen, Yared; Tovin, Adi; Shainer, Inbal; Nisembaum, Laura G; Aviram, Idit; Smadja-Storz, Sima; Fuentes, Michael; Falcón, Jack; Eisenberg, Eli; Klein, David C; Burgess, Harold A; Foulkes, Nicholas S; Gothilf, Yoav

    2016-11-01

    The master circadian clock in fish has been considered to reside in the pineal gland. This dogma is challenged, however, by the finding that most zebrafish tissues contain molecular clocks that are directly reset by light. To further examine the role of the pineal gland oscillator in the zebrafish circadian system, we generated a transgenic line in which the molecular clock is selectively blocked in the melatonin-producing cells of the pineal gland by a dominant-negative strategy. As a result, clock-controlled rhythms of melatonin production in the adult pineal gland were disrupted. Moreover, transcriptome analysis revealed that the circadian expression pattern of the majority of clock-controlled genes in the adult pineal gland is abolished. Importantly, circadian rhythms of behavior in zebrafish larvae were affected: rhythms of place preference under constant darkness were eliminated, and rhythms of locomotor activity under constant dark and constant dim light conditions were markedly attenuated. On the other hand, global peripheral molecular oscillators, as measured in whole larvae, were unaffected in this model. In conclusion, characterization of this novel transgenic model provides evidence that the molecular clock in the melatonin-producing cells of the pineal gland plays a key role, possibly as part of a multiple pacemaker system, in modulating circadian rhythms of behavior.

  7. Genetically Blocking the Zebrafish Pineal Clock Affects Circadian Behavior

    PubMed Central

    Alon, Shahar; Vallone, Daniela; Tovin, Adi; Shainer, Inbal; Nisembaum, Laura G.; Aviram, Idit; Smadja-Storz, Sima; Fuentes, Michael; Falcón, Jack; Eisenberg, Eli; Klein, David C.; Burgess, Harold A.; Foulkes, Nicholas S.; Gothilf, Yoav

    2016-01-01

    The master circadian clock in fish has been considered to reside in the pineal gland. This dogma is challenged, however, by the finding that most zebrafish tissues contain molecular clocks that are directly reset by light. To further examine the role of the pineal gland oscillator in the zebrafish circadian system, we generated a transgenic line in which the molecular clock is selectively blocked in the melatonin-producing cells of the pineal gland by a dominant-negative strategy. As a result, clock-controlled rhythms of melatonin production in the adult pineal gland were disrupted. Moreover, transcriptome analysis revealed that the circadian expression pattern of the majority of clock-controlled genes in the adult pineal gland is abolished. Importantly, circadian rhythms of behavior in zebrafish larvae were affected: rhythms of place preference under constant darkness were eliminated, and rhythms of locomotor activity under constant dark and constant dim light conditions were markedly attenuated. On the other hand, global peripheral molecular oscillators, as measured in whole larvae, were unaffected in this model. In conclusion, characterization of this novel transgenic model provides evidence that the molecular clock in the melatonin-producing cells of the pineal gland plays a key role, possibly as part of a multiple pacemaker system, in modulating circadian rhythms of behavior. PMID:27870848

  8. HvLUX1 is a candidate gene underlying the early maturity 10 locus in barley: phylogeny, diversity, and interactions with the circadian clock and photoperiodic pathways

    PubMed Central

    Campoli, Chiara; Pankin, Artem; Drosse, Benedikt; Casao, Cristina M; Davis, Seth J; von Korff, Maria

    2013-01-01

    Photoperiodic flowering is a major factor determining crop performance and is controlled by interactions between environmental signals and the circadian clock. We proposed Hvlux1, an ortholog of the Arabidopsis circadian gene LUX ARRHYTHMO, as a candidate underlying the early maturity 10 (eam10) locus in barley (Hordeum vulgare L.). The link between eam10 and Hvlux1 was discovered using high-throughput sequencing of enriched libraries and segregation analysis. We conducted functional, phylogenetic, and diversity studies of eam10 and HvLUX1 to understand the genetic control of photoperiod response in barley and to characterize the evolution of LUX-like genes within barley and across monocots and eudicots. We demonstrate that eam10 causes circadian defects and interacts with the photoperiod response gene Ppd-H1 to accelerate flowering under long and short days. The results of phylogenetic and diversity analyses indicate that HvLUX1 was under purifying selection, duplicated at the base of the grass clade, and diverged independently of LUX-like genes in other plant lineages. Taken together, these findings contribute to improved understanding of the barley circadian clock, its interaction with the photoperiod pathway, and evolution of circadian systems in barley and across monocots and eudicots. PMID:23731278

  9. Correlations between Circadian Rhythms and Growth in Challenging Environments.

    PubMed

    Dakhiya, Yuri; Hussien, Duaa; Fridman, Eyal; Kiflawi, Moshe; Green, Rachel

    2017-03-01

    In plants, the circadian system controls a plethora of processes, many with agronomic importance, such as photosynthesis, photoprotection, stomatal opening, and photoperiodic development, as well as molecular processes, such as gene expression. It has been suggested that modifying circadian rhythms may be a means to manipulate crops to develop improved plants for agriculture. However, there is very little information on how the clock influences the performance of crop plants. We used a noninvasive, high-throughput technique, based on prompt chlorophyll fluorescence, to measure circadian rhythms and demonstrated that the technique works in a range of plants. Using fluorescence, we analyzed circadian rhythms in populations of wild barley ( Hordeum vulgare ssp. spontaneum ) from widely different ecogeographical locations in the Southern Levant part of the Fertile Crescent, an area with a high proportion of the total genetic variation of wild barley. Our results show that there is variability for circadian traits in the wild barley lines. We observed that circadian period lengths were correlated with temperature and aspect at the sites of origin of the plants, while the amplitudes of the rhythms were correlated with soil composition. Thus, different environmental parameters may exert selection on circadian rhythms. © 2017 American Society of Plant Biologists. All Rights Reserved.

  10. Suppressing the Neurospora crassa circadian clock while maintaining light responsiveness in continuous stirred tank reactors

    PubMed Central

    Cockrell, Allison L.; Pirlo, Russell K.; Babson, David M.; Cusick, Kathleen D.; Soto, Carissa M.; Petersen, Emily R.; Davis, Miah J.; Hong, Christian I.; Lee, Kwangwon; Fitzgerald, Lisa A.; Biffinger, Justin C.

    2015-01-01

    Neurospora crassa has been utilized as a model organism for studying biological, regulatory, and circadian rhythms for over 50 years. These circadian cycles are driven at the molecular level by gene transcription events to prepare for environmental changes. N. crassa is typically found on woody biomass and is commonly studied on agar-containing medium which mimics its natural environment. We report a novel method for disrupting circadian gene transcription while maintaining light responsiveness in N. crassa when held in a steady metabolic state using bioreactors. The arrhythmic transcription of core circadian genes and downstream clock-controlled genes was observed in constant darkness (DD) as determined by reverse transcription-quantitative PCR (RT-qPCR). Nearly all core circadian clock genes were up-regulated upon exposure to light during 11hr light/dark cycle experiments under identical conditions. Our results demonstrate that the natural timing of the robust circadian clock in N. crassa can be disrupted in the dark when maintained in a consistent metabolic state. Thus, these data lead to a path for the production of industrial scale enzymes in the model system, N. crassa, by removing the endogenous negative feedback regulation by the circadian oscillator. PMID:26031221

  11. The Influence of Red Light Exposure at Night on Circadian Metabolism and Physiology in Sprague–Dawley Rats

    PubMed Central

    Dauchy, Robert T; Wren, Melissa A; Dauchy, Erin M; Hoffman, Aaron E; Hanifin, John P; Warfield, Benjamin; Jablonski, Michael R; Brainard, George C; Hill, Steven M; Mao, Lulu; Dobek, Georgina L; Dupepe, Lynell M; Blask, David E

    2015-01-01

    Early studies on rodents showed that short-term exposure to high-intensity light (> 70 lx) above 600 nm (red-appearing) influences circadian neuroendocrine and metabolic physiology. Here we addressed the hypothesis that long-term, low-intensity red light exposure at night (rLEN) from a ‘safelight’ emitting no light below approximately 620 nm disrupts the nocturnal circadian melatonin signal as well as circadian rhythms in circulating metabolites, related regulatory hormones, and physiologic parameters. Male Sprague–Dawley rats (n = 12 per group) were maintained on control 12:12-h light:dark (300 lx; lights on, 0600) or experimental 12:12 rLEN (8.1 lx) lighting regimens. After 1 wk, rats underwent 6 low-volume blood draws via cardiocentesis (0400, 0800, 1200, 1600, 2000, and 2400) over a 4-wk period to assess arterial plasma melatonin, total fatty acid, glucose, lactic acid, pO2, pCO2, insulin, leptin and corticosterone concentrations. Results revealed plasma melatonin levels (mean ± 1 SD) were high in the dark phase (197.5 ± 4.6 pg/mL) and low in the light phase (2.6 ± 1.2 pg/mL) of control conditions and significantly lower than controls under experimental conditions throughout the 24-h period (P < 0.001). Prominent circadian rhythms of plasma levels of total fatty acid, glucose, lactic acid, pO2, pCO2, insulin, leptin, and corticosterone were significantly (P < 0.05) disrupted under experimental conditions as compared with the corresponding entrained rhythms under control conditions. Therefore, chronic use of low-intensity rLEN from a common safelight disrupts the circadian organization of neuroendocrine, metabolic, and physiologic parameters indicative of animal health and wellbeing. PMID:25651090

  12. The discoveries of molecular mechanisms for the circadian rhythm: The 2017 Nobel Prize in Physiology or Medicine.

    PubMed

    Huang, Rong-Chi

    2018-02-01

    Circadian clocks evolved to allow plants and animals to adapt their behaviors to the 24-hr change in the external environment due to the Earth's rotation. While the first scientific observation of circadian rhythm in the plant leaf movement may be dated back to the early 18th century, it took 200 years to realize that the leaf movement is controlled by an endogenous circadian clock. The cloning and characterization of the first Drosophila clock gene period in the early 1980s, independently by Jeffery C. Hall and Michael Rosbash at Brandeis University and Michael Young at Rockefeller University, paved the way for their further discoveries of additional genes and proteins, culminating in establishing the so-called transcriptional translational feedback loop (TTFL) model for the generation of autonomous oscillator with a period of ∼24 h. The 2017 Nobel Prize in Physiology or Medicine was awarded to honor their discoveries of molecular mechanisms controlling the circadian rhythm. Copyright © 2018 Chang Gung University. Published by Elsevier B.V. All rights reserved.

  13. Evidence for an Overlapping Role of CLOCK and NPAS2 Transcription Factors in Liver Circadian Oscillators▿

    PubMed Central

    Bertolucci, Cristiano; Cavallari, Nicola; Colognesi, Ilaria; Aguzzi, Jacopo; Chen, Zheng; Caruso, Pierpaolo; Foá, Augusto; Tosini, Gianluca; Bernardi, Francesco; Pinotti, Mirko

    2008-01-01

    The mechanisms underlying the circadian control of gene expression in peripheral tissues and influencing many biological pathways are poorly defined. Factor VII (FVII), the protease triggering blood coagulation, represents a valuable model to address this issue in liver since its plasma levels oscillate in a circadian manner and its promoter contains E-boxes, which are putative DNA-binding sites for CLOCK-BMAL1 and NPAS2-BMAL1 heterodimers and hallmarks of circadian regulation. The peaks of FVII mRNA levels in livers of wild-type mice preceded those in plasma, indicating a transcriptional regulation, and were abolished in Clock−/−; Npas2−/− mice, thus demonstrating a role for CLOCK and NPAS2 circadian transcription factors. The investigation of Npas2−/− and ClockΔ19/Δ19 mice, which express functionally defective heterodimers, revealed robust rhythms of FVII expression in both animal models, suggesting a redundant role for NPAS2 and CLOCK. The molecular bases of these observations were established through reporter gene assays. FVII transactivation activities of the NPAS2-BMAL1 and CLOCK-BMAL1 heterodimers were (i) comparable (a fourfold increase), (ii) dampened by the negative circadian regulators PER2 and CRY1, and (iii) abolished upon E-box mutagenesis. Our data provide the first evidence in peripheral oscillators for an overlapping role of CLOCK and NPAS2 in the regulation of circadianly controlled genes. PMID:18316400

  14. Systems Chronotherapeutics

    PubMed Central

    Innominato, Pasquale F.; Dallmann, Robert; Rand, David A.; Lévi, Francis A.

    2017-01-01

    Chronotherapeutics aim at treating illnesses according to the endogenous biologic rhythms, which moderate xenobiotic metabolism and cellular drug response. The molecular clocks present in individual cells involve approximately fifteen clock genes interconnected in regulatory feedback loops. They are coordinated by the suprachiasmatic nuclei, a hypothalamic pacemaker, which also adjusts the circadian rhythms to environmental cycles. As a result, many mechanisms of diseases and drug effects are controlled by the circadian timing system. Thus, the tolerability of nearly 500 medications varies by up to fivefold according to circadian scheduling, both in experimental models and/or patients. Moreover, treatment itself disrupted, maintained, or improved the circadian timing system as a function of drug timing. Improved patient outcomes on circadian-based treatments (chronotherapy) have been demonstrated in randomized clinical trials, especially for cancer and inflammatory diseases. However, recent technological advances have highlighted large interpatient differences in circadian functions resulting in significant variability in chronotherapy response. Such findings advocate for the advancement of personalized chronotherapeutics through interdisciplinary systems approaches. Thus, the combination of mathematical, statistical, technological, experimental, and clinical expertise is now shaping the development of dedicated devices and diagnostic and delivery algorithms enabling treatment individualization. In particular, multiscale systems chronopharmacology approaches currently combine mathematical modeling based on cellular and whole-body physiology to preclinical and clinical investigations toward the design of patient-tailored chronotherapies. We review recent systems research works aiming to the individualization of disease treatment, with emphasis on both cancer management and circadian timing system–resetting strategies for improving chronic disease control and patient outcomes. PMID:28351863

  15. Sleep inertia, sleep homeostatic, and circadian influences on higher-order cognitive functions

    PubMed Central

    Ronda, Joseph M.; Czeisler, Charles A.; Wright, Kenneth P.

    2016-01-01

    Summary Sleep inertia, sleep homeostatic, and circadian processes modulate cognition, including reaction time, memory, mood, and alertness. How these processes influence higher-order cognitive functions is not well known. Six participants completed a 73-daylong study that included two 14-daylong 28h forced desynchrony protocols, to examine separate and interacting influences of sleep inertia, sleep homeostasis, and circadian phase on higher-order cognitive functions of inhibitory control and selective visual attention. Cognitive performance for most measures was impaired immediately after scheduled awakening and improved over the first ~2-4h of wakefulness (sleep inertia); worsened thereafter until scheduled bedtime (sleep homeostasis); and was worst at ~60° and best at ~240° (circadian modulation, with worst and best phases corresponding to ~9AM and ~9PM respectively, in individuals with a habitual waketime of 7AM). The relative influences of sleep inertia, sleep homeostasis, and circadian phase depended on the specific higher-order cognitive function task examined. Inhibitory control appeared to be modulated most strongly by circadian phase, whereas selective visual attention for a spatial-configuration search task was modulated most strongly by sleep inertia. These findings demonstrate that some higher-order cognitive processes are differentially sensitive to different sleep-wake regulatory processes. Differential modulation of cognitive functions by different sleep-wake regulatory processes has important implications for understanding mechanisms contributing to performance impairments during adverse circadian phases, sleep deprivation, and/or upon awakening from sleep. PMID:25773686

  16. Systems Chronotherapeutics.

    PubMed

    Ballesta, Annabelle; Innominato, Pasquale F; Dallmann, Robert; Rand, David A; Lévi, Francis A

    2017-04-01

    Chronotherapeutics aim at treating illnesses according to the endogenous biologic rhythms, which moderate xenobiotic metabolism and cellular drug response. The molecular clocks present in individual cells involve approximately fifteen clock genes interconnected in regulatory feedback loops. They are coordinated by the suprachiasmatic nuclei, a hypothalamic pacemaker, which also adjusts the circadian rhythms to environmental cycles. As a result, many mechanisms of diseases and drug effects are controlled by the circadian timing system. Thus, the tolerability of nearly 500 medications varies by up to fivefold according to circadian scheduling, both in experimental models and/or patients. Moreover, treatment itself disrupted, maintained, or improved the circadian timing system as a function of drug timing. Improved patient outcomes on circadian-based treatments (chronotherapy) have been demonstrated in randomized clinical trials, especially for cancer and inflammatory diseases. However, recent technological advances have highlighted large interpatient differences in circadian functions resulting in significant variability in chronotherapy response. Such findings advocate for the advancement of personalized chronotherapeutics through interdisciplinary systems approaches. Thus, the combination of mathematical, statistical, technological, experimental, and clinical expertise is now shaping the development of dedicated devices and diagnostic and delivery algorithms enabling treatment individualization. In particular, multiscale systems chronopharmacology approaches currently combine mathematical modeling based on cellular and whole-body physiology to preclinical and clinical investigations toward the design of patient-tailored chronotherapies. We review recent systems research works aiming to the individualization of disease treatment, with emphasis on both cancer management and circadian timing system-resetting strategies for improving chronic disease control and patient outcomes. Copyright © 2017 by The Author(s).

  17. Circadian rhythm disruption as a link between Attention-Deficit/Hyperactivity Disorder and obesity?

    PubMed

    Vogel, Suzan W N; Bijlenga, Denise; Tanke, Marjolein; Bron, Tannetje I; van der Heijden, Kristiaan B; Swaab, Hanna; Beekman, Aartjan T F; Kooij, J J Sandra

    2015-11-01

    Patients with Attention-Deficit/Hyperactivity Disorder (ADHD) have a high prevalence of obesity. This is the first study to investigate whether circadian rhythm disruption is a mechanism linking ADHD symptoms to obesity. ADHD symptoms and two manifestations of circadian rhythm disruption: sleep problems and an unstable eating pattern (skipping breakfast and binge eating later in the day) were assessed in participants with obesity (n= 114), controls (n= 154), and adult ADHD patients (n= 202). Participants with obesity had a higher prevalence of ADHD symptoms and short sleep on free days as compared to controls, but a lower prevalence of ADHD symptoms, short sleep on free days, and an unstable eating pattern as compared to ADHD patients.We found that participants with obesity had a similar prevalence rate of an unstable eating pattern when compared to controls. Moreover, mediation analyses showed that both sleep duration and an unstable eating pattern mediated the association between ADHD symptoms and body mass index (BMI). Our study supports the hypothesis that circadian rhythm disruption is a mechanism linking ADHD symptoms to obesity. Further research is needed to determine if treatment of ADHD and circadian rhythm disruption is effective in the prevention and treatment of obesity in patients with obesity and/or ADHD. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Circadian Rest-Activity Rhythm in Pediatric Type 1 Narcolepsy.

    PubMed

    Filardi, Marco; Pizza, Fabio; Bruni, Oliviero; Natale, Vincenzo; Plazzi, Giuseppe

    2016-06-01

    Pediatric type 1 narcolepsy is often challenging to diagnose and remains largely undiagnosed. Excessive daytime sleepiness, disrupted nocturnal sleep, and a peculiar phenotype of cataplexy are the prominent features. The knowledge available about the regulation of circadian rhythms in affected children is scarce. This study compared circadian rest-activity rhythm and actigraphic estimated sleep measures of children with type 1 narcolepsy versus healthy controls. Twenty-two drug-naïve type 1 narcolepsy children and 21 age- and sex- matched controls were monitored for seven days during the school week by actigraphy. Circadian activity rhythms were analyzed through functional linear modeling; nocturnal and diurnal sleep measures were estimated from activity using a validated algorithm. Children with type 1 narcolepsy presented an altered rest-activity rhythm characterized by enhanced motor activity throughout the night and blunted activity in the first afternoon. No difference was found between children with type 1 narcolepsy and controls in the timing of the circadian phase. Actigraphic sleep measures showed good discriminant capabilities in assessing type 1 narcolepsy nycthemeral disruption. Actigraphy reliably renders the nycthemeral disruption typical of narcolepsy type 1 in drug-naïve children with recent disease onset, indicating the sensibility of actigraphic assessment in the diagnostic work-up of childhood narcolepsy type 1. © 2016 Associated Professional Sleep Societies, LLC.

  19. Associations of pineal volume, chronotype and symptom severity in adults with attention deficit hyperactivity disorder and healthy controls.

    PubMed

    Bumb, Jan Malte; Mier, Daniela; Noelte, Ingo; Schredl, Michael; Kirsch, Peter; Hennig, Oliver; Liebrich, Luisa; Fenske, Sabrina; Alm, Barbara; Sauer, Carina; Leweke, Franz Markus; Sobanski, Esther

    2016-07-01

    The pineal gland, as part of the human epithalamus, is the main production site of peripheral melatonin, which promotes the modulation of sleep patterns, circadian rhythms and circadian preferences (morningness vs. eveningness). The present study analyses the pineal gland volume (PGV) and its association with circadian preferences and symptom severity in adult ADHD patients compared to healthy controls. PGV was determined manually using high-resolution 3T MRI (T1-magnetization prepared rapid gradient echo) in medication free adult ADHD patients (N=74) compared to healthy controls (N=86). Moreover, the Morningness-Eveningness Questionnaire (MEQ), the ADHD Diagnostic Checklist and the Wender-Utah Rating Scale were conducted. PGV differed between both groups (patients: 59.9±33.8mm(3); healthy controls: 71.4±27.2mm(3), P=0.04). In ADHD patients, more eveningness types were revealed (patients: 29%; healthy controls: 17%; P=0.05) and sum scores of the MEQ were lower (patients: 45.8±11.5; healthy controls 67.2±10.1; P<0.001). Multiple regression analyses indicated a positive correlation of PGV and MEQ scores in ADHD (β=0.856, P=0.003) but not in healthy controls (β=0.054, P=0.688). Patients' MEQ scores (β=-0.473, P=0.003) were negatively correlated to ADHD symptoms. The present results suggest a linkage between the PGV and circadian preference in adults with ADHD and an association of the circadian preference to symptom severity. This may facilitate the development of new chronobiological treatment approaches for the add-on treatment in ADHD. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  20. Evolution of circadian rhythms in Drosophila melanogaster populations reared in constant light and dark regimes for over 330 generations.

    PubMed

    Shindey, Radhika; Varma, Vishwanath; Nikhil, K L; Sharma, Vijay Kumar

    2017-01-01

    Organisms are believed to have evolved circadian clocks as adaptations to deal with cyclic environmental changes, and therefore it has been hypothesized that evolution in constant environments would lead to regression of such clocks. However, previous studies have yielded mixed results, and evolution of circadian clocks under constant conditions has remained an unsettled topic of debate in circadian biology. In continuation of our previous studies, which reported persistence of circadian rhythms in Drosophila melanogaster populations evolving under constant light, here we intended to examine whether circadian clocks and the associated properties evolve differently under constant light and constant darkness. In this regard, we assayed activity-rest, adult emergence and oviposition rhythms of D. melanogaster populations which have been maintained for over 19 years (~330 generations) under three different light regimes - constant light (LL), light-dark cycles of 12:12 h (LD) and constant darkness (DD). We observed that while circadian rhythms in all the three behaviors persist in both LL and DD stocks with no differences in circadian period, they differed in certain aspects of the entrained rhythms when compared to controls reared in rhythmic environment (LD). Interestingly, we also observed that DD stocks have evolved significantly higher robustness or power of free-running activity-rest and adult emergence rhythms compared to LL stocks. Thus, our study, in addition to corroborating previous results of circadian clock evolution in constant light, also highlights that, contrary to the expected regression of circadian clocks, rearing in constant darkness leads to the evolution of more robust circadian clocks which may be attributed to an intrinsic adaptive advantage of circadian clocks and/or pleiotropic functions of clock genes in other traits.

  1. Differential Sensitivity to Ethanol-Induced Circadian Rhythm Disruption in Adolescent and Adult Mice

    PubMed Central

    Ruby, Christina L.; Palmer, Kaitlyn N.; Zhang, Jiawen; Risinger, Megan O.; Butkowski, Melissa A.; Swartzwelder, H. Scott

    2016-01-01

    Background Growing evidence supports a central role for the circadian system in alcohol use disorders, but few studies have examined this relationship during adolescence. In mammals, circadian rhythms are regulated by the suprachiasmatic nucleus (SCN), a biological clock whose timing is synchronized (reset) to the environment primarily by light (photic) input. Alcohol (ethanol) disrupts circadian timing in part by attenuating photic phase-resetting responses in adult rodents. However, circadian rhythms change throughout life and it is not yet known whether ethanol has similar effects on circadian regulation during adolescence. Methods General circadian locomotor activity was monitored in male C57BL6/J mice beginning in adolescence (P27) or adulthood (P61) in a 12 h light, 12 h dark photocycle for ~2 weeks to establish baseline circadian activity measures. On the day of the experiment, mice received an acute injection of ethanol (1.5 g/kg, i.p.) or equal volume saline 15 min prior to a 30-min light pulse at Zeitgeber Time 14 (2 h into the dark phase), then were released into constant darkness (DD) for ~2 weeks to assess phase-resetting responses. Control mice of each age group received injections but no light pulse prior to DD. Results While adults showed the expected decrease in photic phase-delays induced by acute ethanol, this effect was absent in adolescent mice. Adolescents also showed baseline differences in circadian rhythmicity compared to adults, including advanced photocycle entrainment, larger photic phase-delays, a shorter free-running (endogenous) circadian period, and greater circadian rhythm amplitude. Conclusions Collectively, our results indicate that adolescent mice are less sensitive to the effect of ethanol on circadian photic phase-resetting and that their daily activity rhythms are markedly different than those of adults. PMID:27997028

  2. Speed control: cogs and gears that drive the circadian clock.

    PubMed

    Zheng, Xiangzhong; Sehgal, Amita

    2012-09-01

    In most organisms, an intrinsic circadian (~24-h) timekeeping system drives rhythms of physiology and behavior. Within cells that contain a circadian clock, specific transcriptional activators and repressors reciprocally regulate each other to generate a basic molecular oscillator. A mismatch of the period generated by this oscillator with the external environment creates circadian disruption, which can have adverse effects on neural function. Although several clock genes have been extensively characterized, a fundamental question remains: how do these genes work together to generate a ~24-h period? Period-altering mutations in clock genes can affect any of multiple regulated steps in the molecular oscillator. In this review, we examine the regulatory mechanisms that contribute to setting the pace of the circadian oscillator. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Cancer Clocks Out for Lunch: Disruption of Circadian Rhythm and Metabolic Oscillation in Cancer.

    PubMed

    Altman, Brian J

    2016-01-01

    Circadian rhythms are 24-h oscillations present in most eukaryotes and many prokaryotes that synchronize activity to the day-night cycle. They are an essential feature of organismal and cell physiology that coordinate many of the metabolic, biosynthetic, and signal transduction pathways studied in biology. The molecular mechanism of circadian rhythm is controlled both by signal transduction and gene transcription as well as by metabolic feedback. The role of circadian rhythm in cancer cell development and survival is still not well understood, but as will be discussed in this Review, accumulated research suggests that circadian rhythm may be altered or disrupted in many human cancers downstream of common oncogenic alterations. Thus, a complete understanding of the genetic and metabolic alterations in cancer must take potential circadian rhythm perturbations into account, as this disruption itself will influence how gene expression and metabolism are altered in the cancer cell compared to its non-transformed neighbor. It will be important to better understand these circadian changes in both normal and cancer cell physiology to potentially design treatment modalities to exploit this insight.

  4. Cancer Clocks Out for Lunch: Disruption of Circadian Rhythm and Metabolic Oscillation in Cancer

    PubMed Central

    Altman, Brian J.

    2016-01-01

    Circadian rhythms are 24-h oscillations present in most eukaryotes and many prokaryotes that synchronize activity to the day-night cycle. They are an essential feature of organismal and cell physiology that coordinate many of the metabolic, biosynthetic, and signal transduction pathways studied in biology. The molecular mechanism of circadian rhythm is controlled both by signal transduction and gene transcription as well as by metabolic feedback. The role of circadian rhythm in cancer cell development and survival is still not well understood, but as will be discussed in this Review, accumulated research suggests that circadian rhythm may be altered or disrupted in many human cancers downstream of common oncogenic alterations. Thus, a complete understanding of the genetic and metabolic alterations in cancer must take potential circadian rhythm perturbations into account, as this disruption itself will influence how gene expression and metabolism are altered in the cancer cell compared to its non-transformed neighbor. It will be important to better understand these circadian changes in both normal and cancer cell physiology to potentially design treatment modalities to exploit this insight. PMID:27500134

  5. Sleep and circadian rhythm disruption in schizophrenia†

    PubMed Central

    Wulff, Katharina; Dijk, Derk-Jan; Middleton, Benita; Foster, Russell G.; Joyce, Eileen M.

    2012-01-01

    Background Sleep disturbances comparable with insomnia occur in up to 80% of people with schizophrenia, but very little is known about the contribution of circadian coordination to these prevalent disruptions. Aims A systematic exploration of circadian time patterns in individuals with schizophrenia with recurrent sleep disruption. Method We examined the relationship between sleep-wake activity, recorded actigraphically over 6 weeks, along with ambient light exposure and simultaneous circadian clock timing, by collecting weekly 48 h profiles of a urinary metabolite of melatonin in 20 out-patients with schizophrenia and 21 healthy control individuals matched for age, gender and being unemployed. Results Significant sleep/circadian disruption occurred in all the participants with schizophrenia. Half these individuals showed severe circadian misalignment ranging from phase-advance/delay to non-24 h periods in sleep-wake and melatonin cycles, and the other half showed patterns from excessive sleep to highly irregular and fragmented sleep epochs but with normally timed melatonin production. Conclusions Severe circadian sleep/wake disruptions exist despite stability in mood, mental state and newer antipsychotic treatment. They cannot be explained by the individuals' level of everyday function. PMID:22194182

  6. A developmental cycle masks output from the circadian oscillator under conditions of choline deficiency in Neurospora.

    PubMed

    Shi, Mi; Larrondo, Luis F; Loros, Jennifer J; Dunlap, Jay C

    2007-12-11

    In Neurospora, metabolic oscillators coexist with the circadian transcriptional/translational feedback loop governed by the FRQ (Frequency) and WC (White Collar) proteins. One of these, a choline deficiency oscillator (CDO) observed in chol-1 mutants grown under choline starvation, drives an uncompensated long-period developmental cycle ( approximately 60-120 h). To assess possible contributions of this metabolic oscillator to the circadian system, molecular and physiological rhythms were followed in liquid culture under choline starvation, but these only confirmed that an oscillator with a normal circadian period length can run under choline starvation. This finding suggested that long-period developmental cycles elicited by nutritional stress could be masking output from the circadian system, although a caveat was that the CDO sometimes requires several days to become consolidated. To circumvent this and observe both oscillators simultaneously, we used an assay using a codon-optimized luciferase to follow the circadian oscillator. Under conditions where the long-period, uncompensated, CDO-driven developmental rhythm was expressed for weeks in growth tubes, the luciferase rhythm in the same cultures continued in a typical compensated manner with a circadian period length dependent on the allelic state of frq. Periodograms revealed no influence of the CDO on the circadian oscillator. Instead, the CDO appears as a cryptic metabolic oscillator that can, under appropriate conditions, assume control of growth and development, thereby masking output from the circadian system. frq-driven luciferase as a reporter of the circadian oscillator may in this way provide a means for assessing prospective role(s) of metabolic and/or ancillary oscillators within cellular circadian systems.

  7. The circadian clock controls toll-like receptor 9-mediated innate and adaptive immunity

    PubMed Central

    Silver, Adam C.; Arjona, Alvaro; Walker, Wendy E.; Fikrig, Erol

    2012-01-01

    Circadian rhythms refer to biologic processes that oscillate with a period of approximately 24 hours. These rhythms are sustained by a molecular clock and provide a temporal matrix that ensures the coordination of homeostatic processes with the periodicity of environmental challenges. We demonstrate the circadian molecular clock controls the expression and function of toll like receptor 9 (TLR9). In a vaccination model using TLR9 ligand as adjuvant, mice immunized at the time of enhanced TLR9 responsiveness presented weeks later with an improved adaptive immune response. In a TLR9-dependent mouse model of sepsis, we found that disease severity was dependent on the timing of sepsis induction, coinciding with the daily changes in TLR9 expression and function. These findings unveil a direct molecular link between the circadian and innate immune systems with important implications for immunoprophylaxis and immunotherapy. PMID:22342842

  8. Conditioned stimulus control in the rat circadian system depends on clock resetting during conditioning.

    PubMed

    Arvanitogiannis, A; Amir, S

    1999-12-01

    The authors examined the ability of a conditioned stimulus (CS; mild air disturbance) previously paired with an entraining light pulse to reset the circadian pacemaker in rats. Rats were entrained to a single 30-min light stimulus delivered every 25 hr or 24 hr (T cycle). Each daily light presentation was paired with the CS. After at least 20 days of stable entrainment to each of the T cycles, the rats were allowed to free run and were then presented with the CS at circadian time 15. CS-induced phase shifts in wheel-running activity rhythms were taken as evidence for conditioning. For the most part, conditioning occurred after CS-light pairings on the 25-hr but not 24-hr T cycle. The results suggest that CS control of the circadian clock phase depends on the effect that the entraining light pulse has on the clock during conditioning.

  9. Early- and late-onset preeclampsia and the DNA methylation of circadian clock and clock-controlled genes in placental and newborn tissues.

    PubMed

    van den Berg, C B; Chaves, I; Herzog, E M; Willemsen, S P; van der Horst, G T J; Steegers-Theunissen, R P M

    2017-01-01

    The placenta is important in providing a healthy environment for the fetus and plays a central role in the pathophysiology of preeclampsia (PE). Fetal and placental developments are influenced by epigenetic programming. There is some evidence that PE is controlled to an altered circadian homeostasis. In a nested case-control study embedded in the Rotterdam Periconceptional Cohort, we obtained placental tissue, umbilical cord leukocytes (UCL), and human umbilical venous endothelial cells of 13 early-onset PE, 16 late-onset PE and 83 controls comprising 36 uncomplicated and 47 complicated pregnancies, i.e. 27 fetal growth restricted and 20 spontaneous preterm birth. To investigate the associations between PE and the epigenetics of circadian clock and clock-controlled genes in placental and newborn tissues, genome-wide DNA methylation analysis was performed using the Illumina HumanMethylation450K BeadChip and a candidate-gene approach using ANCOVA was applied on 939 CpGs of 39 circadian clock and clock-controlled genes. DNA methylation significantly differed in early-onset PE compared with spontaneous preterm birth at 6 CpGs in placental tissue (3.73 E-5 ≤ p ≤ 0.016) and at 21 CpGs in UCL (1.09 E-5 ≤ p ≤ 0.024). In early-onset PE compared with fetal growth restriction 2 CpGs in placental tissue (p < 0.05) and 8 CpGs in uncomplicated controls (4.78 E-5 ≤ p ≤ 0.049) were significantly different. Moreover, significantly different DNA methylation in early-onset PE compared with uncomplicated controls was shown at 6 CpGs in placental tissue (1.36 E-4 ≤ p ≤ 0.045) and 11 CpGs in uncomplicated controls (2.52 E-6 ≤ p ≤ 0.009). No significant associations were shown with late-onset PE between study groups or tissues. The most differentially methylated CpGs showed hypomethylation in placental tissue and hypermethylation in uncomplicated controls. In conclusion, DNA methylation of circadian clock and clock-controlled genes demonstrated most differences in UCL of early-onset PE compared with spontaneous preterm birth. Implications of the tissue-specific variations in epigenetic programming for circadian performance and long-term health need further investigation.

  10. Evaluation of circadian phenotypes utilizing fibroblasts from patients with circadian rhythm sleep disorders.

    PubMed

    Hida, A; Ohsawa, Y; Kitamura, S; Nakazaki, K; Ayabe, N; Motomura, Y; Matsui, K; Kobayashi, M; Usui, A; Inoue, Y; Kusanagi, H; Kamei, Y; Mishima, K

    2017-04-25

    We evaluated the circadian phenotypes of patients with delayed sleep-wake phase disorder (DSWPD) and non-24-hour sleep-wake rhythm disorder (N24SWD), two different circadian rhythm sleep disorders (CRSDs) by measuring clock gene expression rhythms in fibroblast cells derived from individual patients. Bmal1-luciferase (Bmal1-luc) expression rhythms were measured in the primary fibroblast cells derived from skin biopsy samples of patients with DSWPD and N24SWD, as well as control subjects. The period length of the Bmal1-luc rhythm (in vitro period) was distributed normally and was 22.80±0.47 (mean±s.d.) h in control-derived fibroblasts. The in vitro periods in DSWPD-derived fibroblasts and N24SWD-derived fibroblasts were 22.67±0.67 h and 23.18±0.70 h, respectively. The N24SWD group showed a significantly longer in vitro period than did the control or DSWPD group. Furthermore, in vitro period was associated with response to chronotherapy in the N24SWD group. Longer in vitro periods were observed in the non-responders (mean±s.d.: 23.59±0.89 h) compared with the responders (mean±s.d.: 22.97±0.47 h) in the N24SWD group. Our results indicate that prolonged circadian periods contribute to the onset and poor treatment outcome of N24SWD. In vitro rhythm assays could be useful for predicting circadian phenotypes and clinical prognosis in patients with CRSDs.

  11. Chronobiology --2017 Nobel Prize in Physiology or Medicine.

    PubMed

    Yuan, Li; Li, Yi-Rou; Xu, Xiao-Dong

    2018-01-20

    Chronobiology is a field of biology that examines the generation of biological rhythms in various creatures and in many parts of body, and their adaptive fitness to solar- and lunar-related periodic phenomena. The synchronization of internal circadian clocks with external timing signals confers accurate phase response and tissue homeostasis. Herein we state a series of studies on circadian rhythms and introduce the brief history of chronobiology. We also present a detailed timeline of the discoveries on molecular mechanisms controlling circadian rhythm in Drosophila, which was awarded the 2017 Nobel Prize in Physiology or Medicine. The latest findings and new perspectives are further summarized to indicate the significance of circadian research.

  12. Physiological effects of light on the human circadian pacemaker

    NASA Technical Reports Server (NTRS)

    Shanahan, T. L.; Czeisler, C. A.

    2000-01-01

    The physiology of the human circadian pacemaker and its influence and on the daily organization of sleep, endocrine and behavioral processes is an emerging interest in science and medicine. Understanding the development, organization and fundamental properties underlying the circadian timing system may provide insight for the application of circadian principles to the practice of clinical medicine, both diagnostically (interpretation of certain clinical tests are dependent on time of day) and therapeutically (certain pharmacological responses vary with the time of day). The light-dark cycle is the most powerful external influence acting upon the human circadian pacemaker. It has been shown that timed exposure to light can both synchronize and reset the phase of the circadian pacemaker in a predictable manner. The emergence of detectable circadian rhythmicity in the neonatal period is under investigation (as described elsewhere in this issue). Therefore, the pattern of light exposure provided in the neonatal intensive care setting has implications. One recent study identified differences in both amount of sleep time and weight gain in infants maintained in a neonatal intensive care environment that controlled the light-dark cycle. Unfortunately, neither circadian phase nor the time of day has been considered in most clinical investigations. Further studies with knowledge of principles characterizing the human circadian timing system, which governs a wide array of physiological processes, are required to integrate these findings with the practice of clinical medicine.

  13. Circadian expression of clock and putative clock-controlled genes in skeletal muscle of the zebrafish.

    PubMed

    Amaral, Ian P G; Johnston, Ian A

    2012-01-01

    To identify circadian patterns of gene expression in skeletal muscle, adult male zebrafish were acclimated for 2 wk to a 12:12-h light-dark photoperiod and then exposed to continuous darkness for 86 h with ad libitum feeding. The increase in gut food content associated with the subjective light period was much diminished by the third cycle, enabling feeding and circadian rhythms to be distinguished. Expression of zebrafish paralogs of mammalian transcriptional activators of the circadian mechanism (bmal1, clock1, and rora) followed a rhythmic pattern with a ∼24-h periodicity. Peak expression of rora paralogs occurred at the beginning of the subjective light period [Zeitgeber time (ZT)07 and ZT02 for roraa and rorab], whereas the highest expression of bmal1 and clock paralogs occurred 12 h later (ZT13-15 and ZT16 for bmal and clock paralogs). Expression of the transcriptional repressors cry1a, per1a/1b, per2, per3, nr1d2a/2b, and nr1d1 also followed a circadian pattern with peak expression at ZT0-02. Expression of the two paralogs of cry2 occurred in phase with clock1a/1b. Duplicated genes had a high correlation of expression except for paralogs of clock1, nr1d2, and per1, with cry1b showing no circadian pattern. The highest expression difference was 9.2-fold for the activator bmal1b and 51.7-fold for the repressor per1a. Out of 32 candidate clock-controlled genes, only myf6, igfbp3, igfbp5b, and hsf2 showed circadian expression patterns. Igfbp3, igfbp5b, and myf6 were expressed in phase with clock1a/1b and had an average of twofold change in expression from peak to trough, whereas hsf2 transcripts were expressed in phase with cry1a and had a 7.2-fold-change in expression. The changes in expression of clock and clock-controlled genes observed during continuous darkness were also observed at similar ZTs in fish exposed to a normal photoperiod in a separate control experiment. The role of circadian clocks in regulating muscle maintenance and growth are discussed.

  14. Activity/inactivity circadian rhythm shows high similarities between young obesity-induced rats and old rats.

    PubMed

    Bravo Santos, R; Delgado, J; Cubero, J; Franco, L; Ruiz-Moyano, S; Mesa, M; Rodríguez, A B; Uguz, C; Barriga, C

    2016-03-01

    The objective of the present study was to compare differences between elderly rats and young obesity-induced rats in their activity/inactivity circadian rhythm. The investigation was motivated by the differences reported previously for the circadian rhythms of both obese and elderly humans (and other animals), and those of healthy, young or mature individuals. Three groups of rats were formed: a young control group which was fed a standard chow for rodents; a young obesity-induced group which was fed a high-fat diet for four months; and an elderly control group with rats aged 2.5 years that was fed a standard chow for rodents. Activity/inactivity data were registered through actimetry using infrared actimeter systems in each cage to detect activity. Data were logged on a computer and chronobiological analysis were performed. The results showed diurnal activity (sleep time), nocturnal activity (awake time), amplitude, acrophase, and interdaily stability to be similar between the young obesity-induced group and the elderly control group, but different in the young control group. We have concluded that obesity leads to a chronodisruption status in the body similar to the circadian rhythm degradation observed in the elderly.

  15. The melatonin-sensitive circadian clock of the enteric bacterium Enterobacter aerogenes.

    PubMed

    Paulose, Jiffin K; Cassone, Vincent M

    2016-09-02

    Circadian clocks are fundamental properties of all eukaryotic organisms and at least some prokaryotic organisms. Recent studies in our laboratory have shown that the gastrointestinal system contains a circadian clock that controls many, if not all, aspects of gastrointestinal function. We now report that at least one species of intestinal bacteria, Enterobacter aerogenes, responds to the pineal and gastrointestinal hormone melatonin by an increase in swarming activity. This swarming behavior is expressed rhythmically, with a period of approximately 24 hrs. Transformation of E. aerogenes to express luciferase with a MotA promoter reveals circadian patterns of bioluminescence that are synchronized by melatonin and whose periods are temperature compensated from 26°C to 40°C. Bioinformatics suggest similarities between the E. aerogenes and cyanobacterial clocks, suggesting the circadian clock may have evolved very early in the evolution of life. They also point to a coordination of host circadian clocks with those residing in the microbiota themselves.

  16. 78 FR 14838 - Notice Pursuant to the National Cooperative Research and Production Act Of 1993-National Center...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-07

    ...; Clockwork Solutions, Inc., Austin, TX; Diamond Nets Inc., Everson, WA; Eastern Michigan University... of Texas-Austin, Austin, TX; and Wend Associates, Inc., Marine City, MI. No other changes have been... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and...

  17. CloudStackProjectsNContributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nielsen, Roy

    2017-07-12

    Collection of applications and cloud templates. Project currently based on www.packer.io for automation, www.github.com/boxcutter templates and the www.github.com/csd-dev-tools/ClockworkVMs application for wrapping both of the above for easy creation of virtual systems. Will in future also contain cloud templates tuned for various services, applications and purposes.

  18. Time and Time Again

    ERIC Educational Resources Information Center

    Pass, Lynn DiCamillo

    2004-01-01

    This article describes one classroom's experience engaging in a lesson that challenged introductory art students to design a functional ceramic clock in an art-historical style of their choice. The clocks were sculpted in low-relief so that the hands of the clockworks could move freely around the face of the clock. Students were given an…

  19. Circadian melatonin rhythm and excessive daytime sleepiness in Parkinson disease.

    PubMed

    Videnovic, Aleksandar; Noble, Charleston; Reid, Kathryn J; Peng, Jie; Turek, Fred W; Marconi, Angelica; Rademaker, Alfred W; Simuni, Tanya; Zadikoff, Cindy; Zee, Phyllis C

    2014-04-01

    Diurnal fluctuations of motor and nonmotor symptoms and a high prevalence of sleep-wake disturbances in Parkinson disease (PD) suggest a role of the circadian system in the modulation of these symptoms. However, surprisingly little is known regarding circadian function in PD and whether circadian dysfunction is involved in the development of sleep-wake disturbances in PD. To determine the relationship between the timing and amplitude of the 24-hour melatonin rhythm, a marker of endogenous circadian rhythmicity, with self-reported sleep quality, the severity of daytime sleepiness, and disease metrics. A cross-sectional study from January 1, 2009, through December 31, 2012, of 20 patients with PD receiving stable dopaminergic therapy and 15 age-matched control participants. Both groups underwent blood sampling for the measurement of serum melatonin levels at 30-minute intervals for 24 hours under modified constant routine conditions at the Parkinson's Disease and Movement Disorders Center of Northwestern University. Twenty-four hour monitoring of serum melatonin secretion. Clinical and demographic data, self-reported measures of sleep quality (Pittsburgh Sleep Quality Index) and daytime sleepiness (Epworth Sleepiness Scale), and circadian markers of the melatonin rhythm, including the amplitude, area under the curve (AUC), and phase of the 24-hour rhythm. Patients with PD had blunted circadian rhythms of melatonin secretion compared with controls; the amplitude of the melatonin rhythm and the 24-hour AUC for circulating melatonin levels were significantly lower in PD patients (P < .001). Markers of the circadian phase were not significantly different between the 2 groups. Compared with PD patients without excessive daytime sleepiness, patients with excessive daytime sleepiness (Epworth Sleepiness Scale score ≥10) had a significantly lower amplitude of the melatonin rhythm and 24-hour melatonin AUC (P = .001). Disease duration, Unified Parkinson's Disease Rating Scale scores, levodopa equivalent dose, and global Pittsburgh Sleep Quality Index score in the PD group were not significantly related to measures of the melatonin circadian rhythm. Circadian dysfunction may underlie excessive sleepiness in PD. The nature of this association needs to be explored further in longitudinal studies. Approaches aimed to strengthen circadian function, such as timed exposure to bright light and exercise, might serve as complementary therapies for the nonmotor manifestations of PD.

  20. Controlled patterns of daytime light exposure improve circadian adjustment in simulated night work.

    PubMed

    Dumont, Marie; Blais, Hélène; Roy, Joanie; Paquet, Jean

    2009-10-01

    Circadian misalignment between the endogenous circadian signal and the imposed rest-activity cycle is one of the main sources of sleep and health troubles in night shift workers. Timed bright light exposure during night work can reduce circadian misalignment in night workers, but this approach is limited by difficulties in incorporating bright light treatment into most workplaces. Controlled light and dark exposure during the daytime also has a significant impact on circadian phase and could be easier to implement in real-life situations. The authors previously described distinctive light exposure patterns in night nurses with and without circadian adaptation. In the present study, the main features of these patterns were used to design daytime light exposure profiles. Profiles were then tested in a laboratory simulation of night work to evaluate their efficacy in reducing circadian misalignment in night workers. The simulation included 2 day shifts followed by 4 consecutive night shifts (2400-0800 h). Healthy subjects (15 men and 23 women; 20-35 years old) were divided into 3 groups to test 3 daytime light exposure profiles designed to produce respectively a phase delay (delay group, n=12), a phase advance (advance group, n=13), or an unchanged circadian phase (stable group, n=13). In all 3 groups, light intensity was set at 50 lux during the nights of simulated night work. Salivary dim light melatonin onset (DLMO) showed a significant phase advance of 2.3 h (+/-1.3 h) in the advance group and a significant phase delay of 4.1 h (+/-1.3 h) in the delay group. The stable group showed a smaller but significant phase delay of 1.7 h (+/-1.6 h). Urinary 6-sulfatoxymelatonin (aMT6s) acrophases were highly correlated to salivary DLMOs. Urinary aMT6s acrophases were used to track daily phase shifts. They showed that phase shifts occurred rapidly and differed between the 3 groups by the 3rd night of simulated night work. These results show that significant phase shifts can be achieved in night workers by controlling daytime light exposure, with no nighttime intervention.

  1. Shift work: health, performance and safety problems, traditional countermeasures, and innovative management strategies to reduce circadian misalignment

    PubMed Central

    Smith, Mark R; Eastman, Charmane I

    2012-01-01

    There are three mechanisms that may contribute to the health, performance, and safety problems associated with night-shift work: (1) circadian misalignment between the internal circadian clock and activities such as work, sleep, and eating, (2) chronic, partial sleep deprivation, and (3) melatonin suppression by light at night. The typical countermeasures, such as caffeine, naps, and melatonin (for its sleep-promoting effect), along with education about sleep and circadian rhythms, are the components of most fatigue risk-management plans. We contend that these, while better than nothing, are not enough because they do not address the underlying cause of the problems, which is circadian misalignment. We explain how to reset (phase-shift) the circadian clock to partially align with the night-work, day-sleep schedule, and thus reduce circadian misalignment while preserving sleep and functioning on days off. This involves controlling light and dark using outdoor light exposure, sunglasses, sleep in the dark, and a little bright light during night work. We present a diagram of a sleep-and-light schedule to reduce circadian misalignment in permanent night work, or a rotation between evenings and nights, and give practical advice on how to implement this type of plan. PMID:23620685

  2. Punctual Transcriptional Regulation by the Rice Circadian Clock under Fluctuating Field Conditions[OPEN

    PubMed Central

    Matsuzaki, Jun; Kawahara, Yoshihiro; Izawa, Takeshi

    2015-01-01

    Plant circadian clocks that oscillate autonomously with a roughly 24-h period are entrained by fluctuating light and temperature and globally regulate downstream genes in the field. However, it remains unknown how punctual internal time produced by the circadian clock in the field is and how it is affected by environmental fluctuations due to weather or daylength. Using hundreds of samples of field-grown rice (Oryza sativa) leaves, we developed a statistical model for the expression of circadian clock-related genes integrating diurnally entrained circadian clock with phase setting by light, both responses to light and temperature gated by the circadian clock. We show that expression of individual genes was strongly affected by temperature. However, internal time estimated from expression of multiple genes, which may reflect transcriptional regulation of downstream genes, is punctual to 22 min and not affected by weather, daylength, or plant developmental age in the field. We also revealed perturbed progression of internal time under controlled environment or in a mutant of the circadian clock gene GIGANTEA. Thus, we demonstrated that the circadian clock is a regulatory network of multiple genes that retains accurate physical time of day by integrating the perturbations on individual genes under fluctuating environments in the field. PMID:25757473

  3. Usual normalization strategies for gene expression studies impair the detection and analysis of circadian patterns.

    PubMed

    Figueredo, Diego de Siqueira; Barbosa, Mayara Rodrigues; Coimbra, Daniel Gomes; Dos Santos, José Luiz Araújo; Costa, Ellyda Fernanda Lopes; Koike, Bruna Del Vechio; Alexandre Moreira, Magna Suzana; de Andrade, Tiago Gomes

    2018-03-01

    Recent studies have shown that transcriptomes from different tissues present circadian oscillations. Therefore, the endogenous variation of total RNA should be considered as a potential bias in circadian studies of gene expression. However, normalization strategies generally include the equalization of total RNA concentration between samples prior to cDNA synthesis. Moreover, endogenous housekeeping genes (HKGs) frequently used for data normalization may exhibit circadian variation and distort experimental results if not detected or considered. In this study, we controlled experimental conditions from the amount of initial brain tissue samples through extraction steps, cDNA synthesis, and quantitative real time PCR (qPCR) to demonstrate a circadian oscillation of total RNA concentration. We also identified that the normalization of the RNA's yield affected the rhythmic profiles of different genes, including Per1-2 and Bmal1. Five widely used HKGs (Actb, Eif2a, Gapdh, Hprt1, and B2m) also presented rhythmic variations not detected by geNorm algorithm. In addition, the analysis of exogenous microRNAs (Cel-miR-54 and Cel-miR-39) spiked during RNA extraction suggests that the yield was affected by total RNA concentration, which may impact circadian studies of small RNAs. The results indicate that the approach of tissue normalization without total RNA equalization prior to cDNA synthesis can avoid bias from endogenous broad variations in transcript levels. Also, the circadian analysis of 2 -Cycle threshold (Ct) data, without HKGs, may be an alternative for chronobiological studies under controlled experimental conditions.

  4. Sleep inertia, sleep homeostatic and circadian influences on higher-order cognitive functions.

    PubMed

    Burke, Tina M; Scheer, Frank A J L; Ronda, Joseph M; Czeisler, Charles A; Wright, Kenneth P

    2015-08-01

    Sleep inertia, sleep homeostatic and circadian processes modulate cognition, including reaction time, memory, mood and alertness. How these processes influence higher-order cognitive functions is not well known. Six participants completed a 73-day-long study that included two 14-day-long 28-h forced desynchrony protocols to examine separate and interacting influences of sleep inertia, sleep homeostasis and circadian phase on higher-order cognitive functions of inhibitory control and selective visual attention. Cognitive performance for most measures was impaired immediately after scheduled awakening and improved during the first ~2-4 h of wakefulness (decreasing sleep inertia); worsened thereafter until scheduled bedtime (increasing sleep homeostasis); and was worst at ~60° and best at ~240° (circadian modulation, with worst and best phases corresponding to ~09:00 and ~21:00 hours, respectively, in individuals with a habitual wake time of 07:00 hours). The relative influences of sleep inertia, sleep homeostasis and circadian phase depended on the specific higher-order cognitive function task examined. Inhibitory control appeared to be modulated most strongly by circadian phase, whereas selective visual attention for a spatial-configuration search task was modulated most strongly by sleep inertia. These findings demonstrate that some higher-order cognitive processes are differentially sensitive to different sleep-wake regulatory processes. Differential modulation of cognitive functions by different sleep-wake regulatory processes has important implications for understanding mechanisms contributing to performance impairments during adverse circadian phases, sleep deprivation and/or upon awakening from sleep. © 2015 European Sleep Research Society.

  5. Melanopsin resets circadian rhythms in cells by inducing clock gene Period1

    NASA Astrophysics Data System (ADS)

    Yamashita, Shuhei; Uehara, Tomoe; Matsuo, Minako; Kikuchi, Yo; Numano, Rika

    2014-02-01

    The biochemical, physiological and behavioral processes are under the control of internal clocks with the period of approximately 24 hr, circadian rhythms. The expression of clock gene Period1 (Per1) oscillates autonomously in cells and is induced immediately after a light pulse. Per1 is an indispensable member of the central clock system to maintain the autonomous oscillator and synchronize environmental light cycle. Per1 expression could be detected by Per1∷luc and Per1∷GFP plasmid DNA in which firefly luciferase and Green Fluorescence Protein were rhythmically expressed under the control of the mouse Per1 promoter in order to monitor mammalian circadian rhythms. Membrane protein, MELANOPSIN is activated by blue light in the morning on the retina and lead to signals transduction to induce Per1 expression and to reset the phase of circadian rhythms. In this report Per1 induction was measured by reporter signal assay in Per1∷luc and Per1∷GFP fibroblast cell at the input process of circadian rhythms. To the result all process to reset the rhythms by Melanopsin is completed in single cell like in the retina projected to the central clock in the brain. Moreover, the phase of circadian rhythm in Per1∷luc cells is synchronized by photo-activated Melanopsin, because the definite peak of luciferase activity in one dish was found one day after light illumination. That is an available means that physiological circadian rhythms could be real-time monitor as calculable reporter (bioluminescent and fluorescent) chronological signal in both single and groups of cells.

  6. Gut microbiota directs PPARγ-driven reprogramming of the liver circadian clock by nutritional challenge.

    PubMed

    Murakami, Mari; Tognini, Paola; Liu, Yu; Eckel-Mahan, Kristin L; Baldi, Pierre; Sassone-Corsi, Paolo

    2016-09-01

    The liver circadian clock is reprogrammed by nutritional challenge through the rewiring of specific transcriptional pathways. As the gut microbiota is tightly connected to host metabolism, whose coordination is governed by the circadian clock, we explored whether gut microbes influence circadian homeostasis and how they distally control the peripheral clock in the liver. Using fecal transplant procedures we reveal that, in response to high-fat diet, the gut microbiota drives PPARγ-mediated activation of newly oscillatory transcriptional programs in the liver. Moreover, antibiotics treatment prevents PPARγ-driven transcription in the liver, underscoring the essential role of gut microbes in clock reprogramming and hepatic circadian homeostasis. Thus, a specific molecular signature characterizes the influence of the gut microbiome in the liver, leading to the transcriptional rewiring of hepatic metabolism. © 2016 The Authors.

  7. Fetal alcohol exposure disrupts metabolic signaling in hypothalamic proopiomelanocortin neurons via a circadian mechanism in male mice.

    PubMed

    Agapito, Maria A; Zhang, Changqing; Murugan, Sengottuvelan; Sarkar, Dipak K

    2014-07-01

    Early-life ethanol feeding (ELAF) alters the metabolic function of proopiomelanocortin (POMC)-producing neurons and the circadian expression of clock regulatory genes in the hypothalamus. We investigated whether the circadian mechanisms control the action of ELAF on metabolic signaling genes in POMC neurons. Gene expression measurements of Pomc and a selected group of metabolic signaling genes, Stat3, Sirt1, Pgc1-α, and Asb4 in laser-captured microdissected POMC neurons in the hypothalamus of POMC-enhanced green fluorescent protein mice showed circadian oscillations under light/dark and constant darkness conditions. Ethanol programmed these neurons such that the adult expression of Pomc, Stat3, Sirt, and Asb4 gene transcripts became arrhythmic. In addition, ELAF dampened the circadian peak of gene expression of Bmal1, Per1, and Per2 in POMC neurons. We crossed Per2 mutant mice with transgenic POMC-enhanced green fluorescent protein mice to determine the role of circadian mechanism in ELAF-altered metabolic signaling in POMC neurons. We found that ELAF failed to alter arrhythmic expression of most circadian genes, with the exception of the Bmal1 gene and metabolic signaling regulating genes in Per2 mutant mice. Comparison of the ELAF effects on the circadian blood glucose in wild-type and Per2 mutant mice revealed that ELAF dampened the circadian peak of glucose, whereas the Per2 mutation shifted the circadian cycle and prevented the ELAF dampening of the glucose peak. These data suggest the possibility that the Per2 gene mutation may regulate the ethanol actions on Pomc and the metabolic signaling genes in POMC neurons in the hypothalamus by blocking circadian mechanisms.

  8. Neonatal Alcohol Exposure Permanently Disrupts the Circadian Properties and Photic Entrainment of the Activity Rhythm in Adult Rats

    PubMed Central

    Allen, Gregg C.; West, James R.; Chen, Wei-Jung A.; Earnest, David J.

    2009-01-01

    Background Alcohol exposure during the period of rapid brain development produces structural damage in different brain regions, including the suprachiasmatic nucleus (SCN), that may have permanent neurobehavioral consequences. Thus, this study examined the long-term effects of neonatal alcohol exposure on circadian behavioral activity in adult rats. Methods Artificially reared Sprague-Dawley rat pups were exposed to alcohol (EtOH; 4.5 g/kg/day) or isocaloric milk formula (gastrostomy control; GC) on postnatal days 4–9. At 2 months of age, rats from the EtOH, GC, and suckle control (SC) groups were housed individually, and properties of the circadian rhythm in wheel-running behavior were continuously analyzed during exposure to a 12-hr light:12-hr dark photoperiod (LD 12:12) or constant darkness (DD). Results Neonatal alcohol exposure had distinctive effects on the rhythmic properties and quantitative parameters of adult wheel-running behavior. EtOH-treated animals were distinguished by unstable and altered entrainment to LD 12:12 such that their daily onsets of activity were highly variable and occurred at earlier times relative to control animals. In DD, circadian regulation of wheel-running behavior was altered by neonatal alcohol exposure such that the free-running period of the activity rhythm was shorter in EtOH-exposed rats than in control animals. Total amount of daily wheel-running activity in EtOH-treated rats was greater than that observed in the SC group. In addition, the circadian activity patterns of EtOH-exposed rats were fragmented such that the duration of the active phase and the number of activity bouts per day were increased. Conclusions These data indicate that neonatal alcohol exposure produces permanent changes in the circadian regulation of the rat activity rhythm and its entrainment to LD cycles. These long-term alterations in circadian behavior, along with the developmental alcohol-induced changes in SCN endogenous rhythmicity, may have important implications in clinical sleep-wake disturbances observed in neonates, children, and adults exposed to alcohol in utero. PMID:16269914

  9. Cryptochromes regulate IGF-1 production and signaling through control of JAK2-dependent STAT5B phosphorylation

    PubMed Central

    Chaudhari, Amol; Gupta, Richa; Patel, Sonal; Velingkaar, Nikkhil; Kondratov, Roman

    2017-01-01

    Insulin-like growth factor (IGF) signaling plays an important role in cell growth and proliferation and is implicated in regulation of cancer, metabolism, and aging. Here we report that IGF-1 level in blood and IGF-1 signaling demonstrates circadian rhythms. Circadian control occurs through cryptochromes (CRYs)—transcriptional repressors and components of the circadian clock. IGF-1 rhythms are disrupted in Cry-deficient mice, and IGF-1 level is reduced by 80% in these mice, which leads to reduced IGF signaling. In agreement, Cry-deficient mice have reduced body (∼30% reduction) and organ size. Down-regulation of IGF-1 upon Cry deficiency correlates with reduced Igf-1 mRNA expression in the liver and skeletal muscles. Igf-1 transcription is regulated through growth hormone–induced, JAK2 kinase–mediated phosphorylation of transcriptional factor STAT5B. The phosphorylation of STAT5B on the JAK2-dependent Y699 site is significantly reduced in the liver and skeletal muscles of Cry-deficient mice. At the same time, phosphorylation of JAK2 kinase was not reduced upon Cry deficiency, which places CRY activity downstream from JAK2. Thus CRYs link the circadian clock and JAK-STAT signaling through control of STAT5B phosphorylation, which provides the mechanism for circadian rhythms in IGF signaling in vivo. PMID:28100634

  10. Regulatory principles and experimental approaches to the circadian control of starch turnover

    PubMed Central

    Seaton, Daniel D.; Ebenhöh, Oliver; Millar, Andrew J.; Pokhilko, Alexandra

    2014-01-01

    In many plants, starch is synthesized during the day and degraded during the night to avoid carbohydrate starvation in darkness. The circadian clock participates in a dynamic adjustment of starch turnover to changing environmental condition through unknown mechanisms. We used mathematical modelling to explore the possible scenarios for the control of starch turnover by the molecular components of the plant circadian clock. Several classes of plausible models were capable of describing the starch dynamics observed in a range of clock mutant plants and light conditions, including discriminating circadian protocols. Three example models of these classes are studied in detail, differing in several important ways. First, the clock components directly responsible for regulating starch degradation are different in each model. Second, the intermediate species in the pathway may play either an activating or inhibiting role on starch degradation. Third, the system may include a light-dependent interaction between the clock and downstream processes. Finally, the clock may be involved in the regulation of starch synthesis. We discuss the differences among the models’ predictions for diel starch profiles and the properties of the circadian regulators. These suggest additional experiments to elucidate the pathway structure, avoid confounding results and identify the molecular components involved. PMID:24335560

  11. Neonatal monosodium glutamate treatment counteracts circadian arrhythmicity induced by phase shifts of the light-dark cycle in female and male Siberian hamsters

    PubMed Central

    Prendergast, Brian J.; Onishi, Kenneth G.; Zucker, Irving

    2013-01-01

    Studies of rats and voles suggest that distinct pathways emanating from the anterior hypothalamic-retrochiasmatic area and the mediobasal hypothalamic arcuate nucleus independently generate ultradian rhythms (URs) in hormone secretion and behavior. We evaluated the hypothesis that destruction of arcuate nucleus (ARC) neurons, in concert with dampening of suprachiasmatic nucleus (SCN) circadian rhythmicity, would compromise the generation of ultradian rhythms (URs) of locomotor activity. Siberian hamsters of both sexes treated neonatally with monosodium glutamate (MSG) that destroys ARC neurons were subjected in adulthood to a circadian disrupting phase-shift protocol (DPS) that produces SCN arrhythmia. MSG treatments induced hypogonadism and obesity, and markedly reduced the size of the optic chiasm and primary optic tracts. MSG-treated hamsters exhibited normal entrainment to the light-dark cycle, but MSG treatment counteracted the circadian arrhythmicity induced by the DPS protocol: only 6% of MSG-treated hamsters exhibited circadian arrhythmia, whereas 50% of control hamsters were circadian disrupted. In MSG-treated hamsters that retained circadian rhythmicity after DPS treatment, quantitative parameters of URs appeared normal, but in the 2 MSG-treated hamsters that became circadian arrhythmic after DPS, both dark-phase and light-phase URs were abolished. Although preliminary, these data are consistent with reports in voles suggesting that the combined disruption of SCN and ARC function impairs the expression of behavioral URs. The data also suggest that light thresholds for entrainment of circadian rhythms may be lower than those required to disrupt circadian organization. PMID:23701725

  12. Characterisation of circadian rhythms of various duckweeds.

    PubMed

    Muranaka, T; Okada, M; Yomo, J; Kubota, S; Oyama, T

    2015-01-01

    The plant circadian clock controls various physiological phenomena that are important for adaptation to natural day-night cycles. Many components of the circadian clock have been identified in Arabidopsis thaliana, the model plant for molecular genetic studies. Recent studies revealed evolutionary conservation of clock components in green plants. Homologues of clock-related genes have been isolated from Lemna gibba and Lemna aequinoctialis, and it has been demonstrated that these homologues function in the clock system in a manner similar to their functioning in Arabidopsis. While clock components are widely conserved, circadian phenomena display diversity even within the Lemna genus. In order to survey the full extent of diversity in circadian rhythms among duckweed plants, we characterised the circadian rhythms of duckweed by employing a semi-transient bioluminescent reporter system. Using a particle bombardment method, circadian bioluminescent reporters were introduced into nine strains representing five duckweed species: Spirodela polyrhiza, Landoltia punctata, Lemna gibba, L. aequinoctialis and Wolffia columbiana. We then monitored luciferase (luc+) reporter activities driven by AtCCA1, ZmUBQ1 or CaMV35S promoters under entrainment and free-running conditions. Under entrainment, AtCCA1::luc+ showed similar diurnal rhythms in all strains. This suggests that the mechanism of biological timing under day-night cycles is conserved throughout the evolution of duckweeds. Under free-running conditions, we observed circadian rhythms of AtCCA1::luc+, ZmUBQ1::luc+ and CaMV35S::luc+. These circadian rhythms showed diversity in period length and sustainability, suggesting that circadian clock mechanisms are somewhat diversified among duckweeds. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  13. Homeobox genes and melatonin synthesis: regulatory roles of the cone-rod homeobox transcription factor in the rodent pineal gland.

    PubMed

    Rohde, Kristian; Møller, Morten; Rath, Martin Fredensborg

    2014-01-01

    Nocturnal synthesis of melatonin in the pineal gland is controlled by a circadian rhythm in arylalkylamine N-acetyltransferase (AANAT) enzyme activity. In the rodent, Aanat gene expression displays a marked circadian rhythm; release of norepinephrine in the gland at night causes a cAMP-based induction of Aanat transcription. However, additional transcriptional control mechanisms exist. Homeobox genes, which are generally known to encode transcription factors controlling developmental processes, are also expressed in the mature rodent pineal gland. Among these, the cone-rod homeobox (CRX) transcription factor is believed to control pineal-specific Aanat expression. Based on recent advances in our understanding of Crx in the rodent pineal gland, we here suggest that homeobox genes play a role in adult pineal physiology both by ensuring pineal-specific Aanat expression and by facilitating cAMP response element-based circadian melatonin production.

  14. Homeobox Genes and Melatonin Synthesis: Regulatory Roles of the Cone-Rod Homeobox Transcription Factor in the Rodent Pineal Gland

    PubMed Central

    Rath, Martin Fredensborg

    2014-01-01

    Nocturnal synthesis of melatonin in the pineal gland is controlled by a circadian rhythm in arylalkylamine N-acetyltransferase (AANAT) enzyme activity. In the rodent, Aanat gene expression displays a marked circadian rhythm; release of norepinephrine in the gland at night causes a cAMP-based induction of Aanat transcription. However, additional transcriptional control mechanisms exist. Homeobox genes, which are generally known to encode transcription factors controlling developmental processes, are also expressed in the mature rodent pineal gland. Among these, the cone-rod homeobox (CRX) transcription factor is believed to control pineal-specific Aanat expression. Based on recent advances in our understanding of Crx in the rodent pineal gland, we here suggest that homeobox genes play a role in adult pineal physiology both by ensuring pineal-specific Aanat expression and by facilitating cAMP response element-based circadian melatonin production. PMID:24877149

  15. Effect of circadian phase on memory acquisition and recall: operant conditioning vs. classical conditioning.

    PubMed

    Garren, Madeleine V; Sexauer, Stephen B; Page, Terry L

    2013-01-01

    There have been several studies on the role of circadian clocks in the regulation of associative learning and memory processes in both vertebrate and invertebrate species. The results have been quite variable and at present it is unclear to what extent the variability observed reflects species differences or differences in methodology. Previous results have shown that following differential classical conditioning in the cockroach, Rhyparobia maderae, in an olfactory discrimination task, formation of the short-term and long-term memory is under strict circadian control. In contrast, there appeared to be no circadian regulation of the ability to recall established memories. In the present study, we show that following operant conditioning of the same species in a very similar olfactory discrimination task, there is no impact of the circadian system on either short-term or long-term memory formation. On the other hand, ability to recall established memories is strongly tied to the circadian phase of training. On the basis of these data and those previously reported for phylogenetically diverse species, it is suggested that there may be fundamental differences in the way the circadian system regulates learning and memory in classical and operant conditioning.

  16. Effect of spaceflight on the circadian rhythm, lifespan and gene expression of Drosophila melanogaster.

    PubMed

    Ma, Lingling; Ma, Jun; Xu, Kanyan

    2015-01-01

    Space travelers are reported to experience circadian rhythm disruption during spaceflight. However, how the space environment affects circadian rhythm is yet to be determined. The major focus of this study was to investigate the effect of spaceflight on the Drosophila circadian clock at both the behavioral and molecular level. We used China's Shenzhou-9 spaceship to carry Drosophila. After 13 days of spaceflight, behavior tests showed that the flies maintained normal locomotor activity rhythm and sleep pattern. The expression level and rhythm of major clock genes were also unaffected. However, expression profiling showed differentially regulated output genes of the circadian clock system between space flown and control flies, suggesting that spaceflight affected the circadian output pathway. We also investigated other physiological effects of spaceflight such as lipid metabolism and lifespan, and searched genes significantly affected by spaceflight using microarray analysis. These results provide new information on the effects of spaceflight on circadian rhythm, lipid metabolism and lifespan. Furthermore, we showed that studying the effect of spaceflight on gene expression using samples collected at different Zeitgeber time could obtain different results, suggesting the importance of appropriate sampling procedures in studies on the effects of spaceflight.

  17. Effect of Circadian Phase on Memory Acquisition and Recall: Operant Conditioning vs. Classical Conditioning

    PubMed Central

    Garren, Madeleine V.; Sexauer, Stephen B.; Page, Terry L.

    2013-01-01

    There have been several studies on the role of circadian clocks in the regulation of associative learning and memory processes in both vertebrate and invertebrate species. The results have been quite variable and at present it is unclear to what extent the variability observed reflects species differences or differences in methodology. Previous results have shown that following differential classical conditioning in the cockroach, Rhyparobia maderae, in an olfactory discrimination task, formation of the short-term and long-term memory is under strict circadian control. In contrast, there appeared to be no circadian regulation of the ability to recall established memories. In the present study, we show that following operant conditioning of the same species in a very similar olfactory discrimination task, there is no impact of the circadian system on either short-term or long-term memory formation. On the other hand, ability to recall established memories is strongly tied to the circadian phase of training. On the basis of these data and those previously reported for phylogenetically diverse species, it is suggested that there may be fundamental differences in the way the circadian system regulates learning and memory in classical and operant conditioning. PMID:23533587

  18. Circadian and feeding cues integrate to drive rhythms of physiology in Drosophila insulin-producing cells.

    PubMed

    Barber, Annika F; Erion, Renske; Holmes, Todd C; Sehgal, Amita

    2016-12-01

    Circadian clocks regulate much of behavior and physiology, but the mechanisms by which they do so remain poorly understood. While cyclic gene expression is thought to underlie metabolic rhythms, little is known about cycles in cellular physiology. We found that Drosophila insulin-producing cells (IPCs), which are located in the pars intercerebralis and lack an autonomous circadian clock, are functionally connected to the central circadian clock circuit via DN1 neurons. Insulin mediates circadian output by regulating the rhythmic expression of a metabolic gene (sxe2) in the fat body. Patch clamp electrophysiology reveals that IPCs display circadian clock-regulated daily rhythms in firing event frequency and bursting proportion under light:dark conditions. The activity of IPCs and the rhythmic expression of sxe2 are additionally regulated by feeding, as demonstrated by night feeding-induced changes in IPC firing characteristics and sxe2 levels in the fat body. These findings indicate circuit-level regulation of metabolism by clock cells in Drosophila and support a role for the pars intercerebralis in integrating circadian control of behavior and physiology. © 2016 Barber et al.; Published by Cold Spring Harbor Laboratory Press.

  19. Altered Stra13 and Dec2 circadian gene expression in hypoxic cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guillaumond, Fabienne; Lacoche, Samuel; Dulong, Sandrine

    2008-05-16

    The circadian system regulates rhythmically most of the mammalian physiology in synchrony with the environmental light/dark cycle. Alteration of circadian clock gene expression has been associated with tumour progression but the molecular links between the two mechanisms remain poorly defined. Here we show that Stra13 and Dec2, two circadian transcriptional regulators which play a crucial role in cell proliferation and apoptosis are overexpressed and no longer rhythmic in serum shocked fibroblasts treated with CoCl{sub 2,} a substitute of hypoxia. This effect is associated with a loss of circadian expression of the clock genes Rev-erb{alpha} and Bmal1, and the clock-controlled genemore » Dbp. Consistently, cotransfection assays demonstrate that STRA13 and DEC2 both antagonize CLOCK:BMAL1 dependent transactivation of the Rev-erb{alpha} and Dbp promoters. Using a transplantable osteosarcoma tumour model, we show that hypoxia is associated with altered circadian expression of Stra13, Dec2, Rev-erb{alpha}, Bmal1 and Dbp in vivo. These observations collectively support the notion that overexpression of Stra13 and Dec2 links hypoxia signalling to altered circadian clock gene expression.« less

  20. Effect of Spaceflight on the Circadian Rhythm, Lifespan and Gene Expression of Drosophila melanogaster

    PubMed Central

    Xu, Kanyan

    2015-01-01

    Space travelers are reported to experience circadian rhythm disruption during spaceflight. However, how the space environment affects circadian rhythm is yet to be determined. The major focus of this study was to investigate the effect of spaceflight on the Drosophila circadian clock at both the behavioral and molecular level. We used China’s Shenzhou-9 spaceship to carry Drosophila. After 13 days of spaceflight, behavior tests showed that the flies maintained normal locomotor activity rhythm and sleep pattern. The expression level and rhythm of major clock genes were also unaffected. However, expression profiling showed differentially regulated output genes of the circadian clock system between space flown and control flies, suggesting that spaceflight affected the circadian output pathway. We also investigated other physiological effects of spaceflight such as lipid metabolism and lifespan, and searched genes significantly affected by spaceflight using microarray analysis. These results provide new information on the effects of spaceflight on circadian rhythm, lipid metabolism and lifespan. Furthermore, we showed that studying the effect of spaceflight on gene expression using samples collected at different Zeitgeber time could obtain different results, suggesting the importance of appropriate sampling procedures in studies on the effects of spaceflight. PMID:25798821

  1. Clock Genes and Altered Sleep–Wake Rhythms: Their Role in the Development of Psychiatric Disorders

    PubMed Central

    Charrier, Annaëlle; Olliac, Bertrand; Roubertoux, Pierre; Tordjman, Sylvie

    2017-01-01

    In mammals, the circadian clocks network (central and peripheral oscillators) controls circadian rhythms and orchestrates the expression of a range of downstream genes, allowing the organism to anticipate and adapt to environmental changes. Beyond their role in circadian rhythms, several studies have highlighted that circadian clock genes may have a more widespread physiological effect on cognition, mood, and reward-related behaviors. Furthermore, single nucleotide polymorphisms in core circadian clock genes have been associated with psychiatric disorders (such as autism spectrum disorder, schizophrenia, anxiety disorders, major depressive disorder, bipolar disorder, and attention deficit hyperactivity disorder). However, the underlying mechanisms of these associations remain to be ascertained and the cause–effect relationships are not clearly established. The objective of this article is to clarify the role of clock genes and altered sleep–wake rhythms in the development of psychiatric disorders (sleep problems are often observed at early onset of psychiatric disorders). First, the molecular mechanisms of circadian rhythms are described. Then, the relationships between disrupted circadian rhythms, including sleep–wake rhythms, and psychiatric disorders are discussed. Further research may open interesting perspectives with promising avenues for early detection and therapeutic intervention in psychiatric disorders. PMID:28468274

  2. Clock Genes and Altered Sleep-Wake Rhythms: Their Role in the Development of Psychiatric Disorders.

    PubMed

    Charrier, Annaëlle; Olliac, Bertrand; Roubertoux, Pierre; Tordjman, Sylvie

    2017-04-29

    In mammals, the circadian clocks network (central and peripheral oscillators) controls circadian rhythms and orchestrates the expression of a range of downstream genes, allowing the organism to anticipate and adapt to environmental changes. Beyond their role in circadian rhythms, several studies have highlighted that circadian clock genes may have a more widespread physiological effect on cognition, mood, and reward-related behaviors. Furthermore, single nucleotide polymorphisms in core circadian clock genes have been associated with psychiatric disorders (such as autism spectrum disorder, schizophrenia, anxiety disorders, major depressive disorder, bipolar disorder, and attention deficit hyperactivity disorder). However, the underlying mechanisms of these associations remain to be ascertained and the cause-effect relationships are not clearly established. The objective of this article is to clarify the role of clock genes and altered sleep-wake rhythms in the development of psychiatric disorders (sleep problems are often observed at early onset of psychiatric disorders). First, the molecular mechanisms of circadian rhythms are described. Then, the relationships between disrupted circadian rhythms, including sleep-wake rhythms, and psychiatric disorders are discussed. Further research may open interesting perspectives with promising avenues for early detection and therapeutic intervention in psychiatric disorders.

  3. Uncovering the mystery of opposite circadian rhythms between mouse and human leukocytes in humanized mice.

    PubMed

    Zhao, Yue; Liu, Min; Chan, Xue Ying; Tan, Sue Yee; Subramaniam, Sharrada; Fan, Yong; Loh, Eva; Chang, Kenneth Tou En; Tan, Thiam Chye; Chen, Qingfeng

    2017-11-02

    Many immune parameters show circadian rhythms during the 24-hour day in mammals. The most striking circadian oscillation is the number of circulating immune cells that display an opposite rhythm between humans and mice. The physiological roles and mechanisms of circadian variations in mouse leukocytes are well studied, whereas for humans they remain unclear because of the lack of a proper model. In this study, we found that consistent with their natural host species, mouse and human circulating leukocytes exhibited opposite circadian oscillations in humanized mice. This cyclic pattern of trafficking correlated well with the diurnal expression levels of C-X-C chemokine receptor 4, which were controlled by the intracellular hypoxia-inducible factor 1α/aryl hydrocarbon receptor nuclear translocator-like heterodimer. Furthermore, we also discovered that p38 mitogen-activated protein kinases/mitogen-activated 2 had opposite effects between mice and humans in generating intracellular reactive oxygen species, which subsequently regulated HIF-1α expression. In conclusion, we propose humanized mice as a robust model for human circadian studies and reveal insights on a novel molecular clock network in the human circadian rhythm. © 2017 by The American Society of Hematology.

  4. Circadian redox signaling in plant immunity and abiotic stress.

    PubMed

    Spoel, Steven H; van Ooijen, Gerben

    2014-06-20

    Plant crops are critically important to provide quality food and bio-energy to sustain a growing human population. Circadian clocks have been shown to deliver an adaptive advantage to plants, vastly increasing biomass production by efficient anticipation to the solar cycle. Plant stress, on the other hand, whether biotic or abiotic, prevents crops from reaching maximum productivity. Stress is associated with fluctuations in cellular redox and increased phytohormone signaling. Recently, direct links between circadian timekeeping, redox fluctuations, and hormone signaling have been identified. A direct implication is that circadian control of cellular redox homeostasis influences how plants negate stress to ensure growth and reproduction. Complex cellular biochemistry leads from perception of stress via hormone signals and formation of reactive oxygen intermediates to a physiological response. Circadian clocks and metabolic pathways intertwine to form a confusing biochemical labyrinth. Here, we aim to find order in this complex matter by reviewing current advances in our understanding of the interface between these networks. Although the link is now clearly defined, at present a key question remains as to what extent the circadian clock modulates redox, and vice versa. Furthermore, the mechanistic basis by which the circadian clock gates redox- and hormone-mediated stress responses remains largely elusive.

  5. ChIP-seq and RNA-seq methods to study circadian control of transcription in mammals

    PubMed Central

    Takahashi, Joseph S.; Kumar, Vivek; Nakashe, Prachi; Koike, Nobuya; Huang, Hung-Chung; Green, Carla B.; Kim, Tae-Kyung

    2015-01-01

    Genome-wide analyses have revolutionized our ability to study the transcriptional regulation of circadian rhythms. The advent of next-generation sequencing methods has facilitated the use of two such technologies, ChIP-seq and RNA-seq. In this chapter, we describe detailed methods and protocols for these two techniques, with emphasis on their usage in circadian rhythm experiments in the mouse liver, a major target organ of the circadian clock system. Critical factors for these methods are highlighted and issues arising with time series samples for ChIP-seq and RNA-seq are discussed. Finally detailed protocols for library preparation suitable for Illumina sequencing platforms are presented. PMID:25662462

  6. System identification of the Arabidopsis plant circadian system

    NASA Astrophysics Data System (ADS)

    Foo, Mathias; Somers, David E.; Kim, Pan-Jun

    2015-02-01

    The circadian system generates an endogenous oscillatory rhythm that governs the daily activities of organisms in nature. It offers adaptive advantages to organisms through a coordination of their biological functions with the optimal time of day. In this paper, a model of the circadian system in the plant Arabidopsis (species thaliana) is built by using system identification techniques. Prior knowledge about the physical interactions of the genes and the proteins in the plant circadian system is incorporated in the model building exercise. The model is built by using primarily experimentally-verified direct interactions between the genes and the proteins with the available data on mRNA and protein abundances from the circadian system. Our analysis reveals a great performance of the model in predicting the dynamics of the plant circadian system through the effect of diverse internal and external perturbations (gene knockouts and day-length changes). Furthermore, we found that the circadian oscillatory rhythm is robust and does not vary much with the biochemical parameters except those of a light-sensitive protein P and a transcription factor TOC1. In other words, the circadian rhythmic profile is largely a consequence of the network's architecture rather than its particular parameters. Our work suggests that the current experimental knowledge of the gene-to-protein interactions in the plant Arabidopsis, without considering any additional hypothetical interactions, seems to suffice for system-level modeling of the circadian system of this plant and to present an exemplary platform for the control of network dynamics in complex living organisms.

  7. Circadian rhythm in melatonin release as a mechanism to reinforce the temporal organization of the circadian system in crayfish.

    PubMed

    Mendoza-Vargas, Leonor; Báez-Saldaña, Armida; Alvarado, Ramón; Fuentes-Pardo, Beatriz; Flores-Soto, Edgar; Solís-Chagoyán, Héctor

    2017-06-01

    Melatonin (MEL) is a conserved molecule with respect to its synthesis pathway and functions. In crayfish, MEL content in eyestalks (Ey) increases at night under the photoperiod, and this indoleamine synchronizes the circadian rhythm of electroretinogram amplitude, which is expressed by retinas and controlled by the cerebroid ganglion (CG). The aim of this study was to determine whether MEL content in eyestalks and CG or circulating MEL in hemolymph (He) follows a circadian rhythm under a free-running condition; in addition, it was tested whether MEL might directly influence the spontaneous electrical activity of the CG. Crayfish were maintained under constant darkness and temperature, a condition suitable for studying the intrinsic properties of circadian systems. MEL was quantified in samples obtained from He, Ey, and CG by means of an enzyme-linked immunosorbent assay, and the effect of exogenous MEL on CG spontaneous activity was evaluated by electrophysiological recording. Variation of MEL content in He, Ey, and CG followed a circadian rhythm that peaked at the same circadian time (CT). In addition, a single dose of MEL injected into the crayfish at different CTs reduced the level of spontaneous electrical activity in the CG. Results suggest that the circadian increase in MEL content directly affects the CG, reducing its spontaneous electrical activity, and that MEL might act as a periodical signal to reinforce the organization of the circadian system in crayfish.

  8. Circadian phase-dependent effect of nitric oxide on L-type voltage-gated calcium channels in avian cone photoreceptors

    PubMed Central

    Ko, Michael L.; Shi, Liheng; Huang, Cathy Chia-Yu; Grushin, Kirill; Park, So-Young; Ko, Gladys Y.-P.

    2014-01-01

    Nitric oxide (NO) plays an important role in phase-shifting of circadian neuronal activities in the suprachiasmatic nucleus and circadian behavior activity rhythms. In the retina, NO production is increased in a light-dependent manner. While endogenous circadian oscillators in retinal photoreceptors regulate their physiological states, it is not clear whether NO also participates in the circadian regulation of photoreceptors. In the present study, we demonstrate that NO is involved in the circadian phase-dependent regulation of L-type voltage-gated calcium channels (L-VGCCs). In chick cone photoreceptors, the L-VGCCα1 subunit expression and the maximal L-VGCC currents are higher at night, and both Ras-MAPK (mitogen-activated protein kinase)-Erk (extracellular-signal-regulated kinase) and Ras-phosphatidylinositol 3 kinase (PI3K)-protein kinase B (Akt) are part of the circadian output pathways regulating L-VGCCs. The NO-cGMP-protein kinase G (PKG) pathway decreases L-VGCCα1 subunit expression and L-VGCC currents at night, but not during the day, and exogenous NO donor or cGMP decreases the phosphorylation of Erk and Akt at night. The protein expression of neural NO synthase (nNOS) is also under circadian control, with both nNOS and NO production being higher during the day. Taken together, NO/cGMP/PKG signaling is involved as part of the circadian output pathway to regulate L-VGCCs in cone photoreceptors. PMID:23895452

  9. Circadian Rhythm Phase Locking for Traveling Special Forces Operators: Using Light Exposure to Maintain Time Zone Entrainment

    DTIC Science & Technology

    a circadian phase through the use of controlled light exposures. Eleven male subjects from active duty SOF commands were flown from Guam (UTC 10:00...to Troy, NY (UTC -05:00; 9 hours) while wearing blue- light goggles and blue-blocking, orange-tinted glasses in a carefully-prescribed schedule...designed to maintain entrainment to the desired circadian time (UTC 10:00). Biochemical indices (dim- light melatonin onset) showed that no change in

  10. Molecular Mechanisms of Circadian Regulation During Spaceflight

    NASA Technical Reports Server (NTRS)

    Zanello, S. B.; Boyle, R.

    2012-01-01

    The physiology of both vertebrates and invertebrates follows internal rhythms coordinated in phase with the 24-hour daily light cycle. This circadian clock is governed by a central pacemaker, the suprachiasmatic nucleus (SCN) in the brain. However, peripheral circadian clocks or oscillators have been identified in most tissues. How the central and peripheral oscillators are synchronized is still being elucidated. Light is the main environmental cue that entrains the circadian clock. Under the absence of a light stimulus, the clock continues its oscillation in a free-running condition. In general, three functional compartments of the circadian clock are defined. The vertebrate retina contains endogenous clocks that control many aspects of retinal physiology, including retinal sensitivity to light, neurohormone synthesis (melatonin and dopamine), rod disk shedding, signalling pathways and gene expression. Neurons with putative local circadian rhythm generation are found among all the major neuron populations in the mammalian retina. In the mouse, clock genes and function are more localized to the inner retinal and ganglion cell layers. The photoreceptor, however, secrete melatonin which may still serve a an important circadian signal. The reception and transmission of the non-visual photic stimulus resides in a small subpopulation (1-3%) or retinal ganglion cells (RGC) that express the pigment melanopsin (Opn4) and are called intrisically photoreceptive RGC (ipRGC). Melanopsin peak absorption is at 420 nm and all the axons of the ipRGC reach the SCN. A common countermeasure for circadian re-entrainment utilizes blue-green light to entrain the circadian clock and mitigate the risk of fatigue and health and performance decrement due to circadian rhythm disruption. However, an effective countermeasure targeting the photoreceptor system requires that the basic circadian molecular machinery remains intact during spaceflight. We hypothesize that spaceflight may affect ipRGC and melanopsin expression, which may be a contributing cause of circadian disruption during spaceflight.

  11. Reduced Tolerance to Night Shift in Chronic Shift Workers: Insight From Fractal Regulation.

    PubMed

    Li, Peng; Morris, Christopher J; Patxot, Melissa; Yugay, Tatiana; Mistretta, Joseph; Purvis, Taylor E; Scheer, Frank A J L; Hu, Kun

    2017-07-01

    Healthy physiology is characterized by fractal regulation (FR) that generates similar structures in the fluctuations of physiological outputs at different time scales. Perturbed FR is associated with aging and age-related pathological conditions. Shift work, involving repeated and chronic exposure to misaligned environmental and behavioral cycles, disrupts circadian coordination. We tested whether night shifts perturb FR in motor activity and whether night shifts affect FR in chronic shift workers and non-shift workers differently. We studied 13 chronic shift workers and 14 non-shift workers as controls using both field and in-laboratory experiments. In the in-laboratory study, simulated night shifts were used to induce a misalignment between the endogenous circadian pacemaker and the sleep-wake cycles (ie, circadian misalignment) while environmental conditions and food intake were controlled. In the field study, we found that FR was robust in controls but broke down in shift workers during night shifts, leading to more random activity fluctuations as observed in patients with dementia. The night shift effect was present even 2 days after ending night shifts. The in-laboratory study confirmed that night shifts perturbed FR in chronic shift workers and showed that FR in controls was more resilience to the circadian misalignment. Moreover, FR during real and simulated night shifts was more perturbed in those who started shift work at older ages. Chronic shift work causes night shift intolerance, which is probably linked to the degraded plasticity of the circadian control system. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  12. Stability, precision, and near-24-hour period of the human circadian pacemaker

    NASA Technical Reports Server (NTRS)

    Czeisler, C. A.; Duffy, J. F.; Shanahan, T. L.; Brown, E. N.; Mitchell, J. F.; Rimmer, D. W.; Ronda, J. M.; Silva, E. J.; Allan, J. S.; Emens, J. S.; hide

    1999-01-01

    Regulation of circadian period in humans was thought to differ from that of other species, with the period of the activity rhythm reported to range from 13 to 65 hours (median 25.2 hours) and the period of the body temperature rhythm reported to average 25 hours in adulthood, and to shorten with age. However, those observations were based on studies of humans exposed to light levels sufficient to confound circadian period estimation. Precise estimation of the periods of the endogenous circadian rhythms of melatonin, core body temperature, and cortisol in healthy young and older individuals living in carefully controlled lighting conditions has now revealed that the intrinsic period of the human circadian pacemaker averages 24.18 hours in both age groups, with a tight distribution consistent with other species. These findings have important implications for understanding the pathophysiology of disrupted sleep in older people.

  13. Drosophila GPCR Han is a receptor for the circadian clock neuropeptide PDF.

    PubMed

    Hyun, Seogang; Lee, Youngseok; Hong, Sung-Tae; Bang, Sunhoe; Paik, Donggi; Kang, Jongkyun; Shin, Jinwhan; Lee, Jaejung; Jeon, Keunhye; Hwang, Seungyoon; Bae, Eunkyung; Kim, Jaeseob

    2005-10-20

    The pigment-dispersing factor (PDF) is a neuropeptide controlling circadian behavioral rhythms in Drosophila, but its receptor is not yet known. From a large-scale temperature preference behavior screen in Drosophila, we isolated a P insertion mutant that preferred different temperatures during the day and night. This mutation, which we named han, reduced the transcript level of CG13758. We found that Han was expressed specifically in 13 pairs of circadian clock neurons in the adult brain. han null flies showed arrhythmic circadian behavior in constant darkness. The behavioral characteristics of han null mutants were similar to those of pdf null mutants. We also found that PDF binds specifically to S2 cells expressing Han, which results in the elevation of cAMP synthesis. Therefore, we herein propose that Han is a PDF receptor regulating circadian behavioral rhythm through coordination of activities of clock neurons.

  14. Central and peripheral regulation of feeding and nutrition by the mammalian circadian clock: implications for nutrition during manned space flight

    NASA Technical Reports Server (NTRS)

    Cassone, Vincent M.; Stephan, Friedrich K.

    2002-01-01

    Circadian clocks have evolved to predict and coordinate physiologic processes with the rhythmic environment on Earth. Space studies in non-human primates and humans have suggested that this clock persists in its rhythmicity in space but that its function is altered significantly in long-term space flight. Under normal circumstances, the clock is synchronized by the light-dark cycle via the retinohypothalamic tract and the suprachiasmatic nucleus. It is also entrained by restricted feeding regimes via a suprachiasmatic nucleus-independent circadian oscillator. The site of this suboscillator (or oscillators) is not known, but new evidence has suggested that peripheral tissues in the liver and viscera may express circadian clock function when forced to do so by restricted feeding schedules or other homeostatic disruptions. New research on the role of the circadian clock in the control of feeding on Earth and in space is warranted.

  15. Modeling the role of mid-wavelength cones in circadian responses to light

    PubMed Central

    Dkhissi-Benyahya, Ouria; Gronfier, Claude; De Vanssay, Wena; Flamant, Frédéric; Cooper, Howard M.

    2007-01-01

    Summary Non-visual responses to light, such as photic entrainment of the circadian clock, involve intrinsically light sensitive melanopsin-expressing ganglion cells as well as rod and cone photoreceptors. However, previous studies have been unable to demonstrate a specific contribution of cones in the photic control of circadian responses to light. Using a mouse model that specifically lacks mid-wavelength (MW) cones we show that these photoreceptors play a significant role in light entrainment and in phase shifting of the circadian oscillator. The contribution of MW cones is mainly observed for light exposures of short duration and towards the longer wavelength region of the spectrum, consistent with the known properties of this opsin. Modelling the contributions of the various photoreceptors stresses the importance of considering the particular spectral, temporal and irradiance response domains of the photopigments when assessing their role and contribution in circadian responses to light. PMID:17329208

  16. Circadian rhythms and risk for substance use disorders in adolescence

    PubMed Central

    Hasler, Brant P.; Soehner, Adriane M.; Clark, Duncan B.

    2014-01-01

    Purpose of the review This article explores recent research in adolescent circadian rhythms, neurobiological changes influencing affective regulation and reward responding, and the emergence of substance use and related problems. Recent findings Recent findings have confirmed that adolescents with drug and alcohol problems are also beset by sleep problems, and have advanced our understanding of the relationship between sleep problems and substance involvement in this developmental period. During adolescence, a shift to later preferred sleep times interacts with early school start times to cause sleep loss and circadian misalignment. Sleep loss and circadian misalignment may disrupt reward-related brain function and impair inhibitory control. Deficits or delays in mature reward and inhibitory functions may contribute to adolescent alcohol use and other substance involvement. Summary An integration of the available research literature suggests that changes in sleep and circadian rhythms during adolescence may contribute to accelerated substance use and related problems. PMID:25247459

  17. Lung Adenocarcinoma Distally Rewires Hepatic Circadian Homeostasis

    PubMed Central

    Masri, Selma; Papagiannakopoulos, Thales; Kinouchi, Kenichiro; Liu, Yu; Cervantes, Marlene; Baldi, Pierre; Jacks, Tyler; Sassone-Corsi, Paolo

    2016-01-01

    SUMMARY The circadian clock controls metabolic and physiological processes through finely tuned molecular mechanisms. The clock is remarkably plastic and adapts to exogenous zeitgebers, such as light and nutrition. How a pathological condition in a given tissue influences systemic circadian homeostasis in other tissues remains an unanswered question of conceptual and biomedical importance. Here we show that lung adenocarcinoma operates as an endogenous reorganizer of circadian metabolism. High-throughput transcriptomics and metabolomics revealed unique signatures of transcripts and metabolites cycling exclusively in livers of tumor-bearing mice. Remarkably, lung cancer has no effect on the core clock, but rather reprograms hepatic metabolism through altered pro-inflammatory response via the STAT3-Socs3 pathway. This results in disruption of AKT, AMPK and SREBP signaling, leading to altered insulin, glucose and lipid metabolism. Thus, lung adenocarcinoma functions as a potent endogenous circadian organizer (ECO), which rewires the pathophysiological dimension of a distal tissue such as the liver. PMID:27153497

  18. The Drosophila Circadian Pacemaker Circuit: Pas de Deux or Tarantella?

    PubMed Central

    Sheeba, Vasu; Kaneko, Maki; Sharma, Vijay Kumar; Holmes, Todd C.

    2008-01-01

    Molecular genetic analysis of the fruit fly Drosophila melanogaster has revolutionized our understanding of the transcription/translation loop mechanisms underlying the circadian molecular oscillator. More recently, Drosophila has been used to understand how different neuronal groups within the circadian pacemaker circuit interact to regulate the overall behavior of the fly in response to daily cyclic environmental cues as well as seasonal changes. Our present understanding of circadian timekeeping at the molecular and circuit level is discussed with a critical evaluation of the strengths and weaknesses of present models. Two models for circadian neural circuits are compared: one that posits that two anatomically distinct oscillators control the synchronization to the two major daily morning and evening transitions, versus a distributed network model that posits that many cell-autonomous oscillators are coordinated in a complex fashion and respond via plastic mechanisms to changes in environmental cues. PMID:18307108

  19. Pre-adaptation to shiftwork in space

    NASA Astrophysics Data System (ADS)

    Samel, A.; Wegmann, H. M.; Vejvoda, M.

    Astronauts are often required to work in shift schedules. To test pre-mission adaptation strategies and effects on the circadian system, a study was performed using microgravity simulation by head-down bedrest. Eight male subjects were studied over 4 control days, and 7 days each for pre-mission adaptation, bedrest, and readjustment. The circadian system was assessed by monitoring ECG and temperature, and by collecting urine for determination of hormones and electrolytes. Rhythms did not achieve complete adjustment within the adaptation period when the sleep-wake cycle was shortened by 1h/day, but resynchronization continued during bedrest. After the bedrest period when the time shift was reversed by a 7-h delay within 2 days, resynchronization was achieved satisfactorily only within 7 days. From the results it is concluded that a sleep-wake cycle advance as used in this study is insufficient to keep the circadian system in pace. Under operational conditions the circadian system of astronauts may become longer and more destabilized than under controlled laboratory conditions.

  20. Abiotic stress and the plant circadian clock

    PubMed Central

    Sanchez, Alfredo; Shin, Jieun

    2011-01-01

    In this review, we focus on the interaction between the circadian clock of higher plants to that of metabolic and physiological processes that coordinate growth and performance under a predictable, albeit changing environment. In this, the phytochrome and cryptochrome photoreceptors have shown to be important, but not essential for oscillator control under diurnal cycles of light and dark. From this foundation, we will examine how emerging findings have firmly linked the circadian clock, as a central mediator in the coordination of metabolism, to maintain homeostasis. This occurs by oscillator synchronization of global transcription, which leads to a dynamic control of a host of physiological processes. These include the determination of the levels of primary and secondary metabolites, and the anticipation of future environmental stresses, such as mid-day drought and midnight coldness. Interestingly, metabolic and stress cues themselves appear to feedback on oscillator function. In such a way, the circadian clock of plants and abiotic-stress tolerance appear to be firmly interconnected processes. PMID:21325898

  1. Pre-adaptation to shiftwork in space.

    PubMed

    Samel, A; Wegmann, H M; Vejvoda, M

    1993-08-01

    Astronauts are often required to work in shift schedules. To test pre-mission adaptation strategies and effects on the circadian system, a study was performed using microgravity simulation by head-down bedrest. Eight male subjects were studied over 4 control days, and 7 days each for pre-mission adaptation, bedrest, and readjustment. The circadian system was assessed by monitoring ECG and temperature, and by collecting urine for determination of hormones and electrolytes. Rhythms did not achieve complete adjustment within the adaptation period when the sleep-wake cycle was shortened by 1 h/day, but resynchronization continued during bedrest. After the bedrest period when the time shift was reversed by a 7-h delay within 2 days, resynchronization was achieved satisfactorily only within 7 days. From the results it is concluded that a sleep-wake cycle advance as used in this study is insufficient to keep the circadian system in pace. Under operational conditions the circadian system of astronauts may become longer and more destabilized than under controlled laboratory conditions.

  2. FAD Regulates CRYPTOCHROME Protein Stability and Circadian Clock in Mice.

    PubMed

    Hirano, Arisa; Braas, Daniel; Fu, Ying-Hui; Ptáček, Louis J

    2017-04-11

    The circadian clock generates biological rhythms of metabolic and physiological processes, including the sleep-wake cycle. We previously identified a missense mutation in the flavin adenine dinucleotide (FAD) binding pocket of CRYPTOCHROME2 (CRY2), a clock protein that causes human advanced sleep phase. This prompted us to examine the role of FAD as a mediator of the clock and metabolism. FAD stabilized CRY proteins, leading to increased protein levels. In contrast, knockdown of Riboflavin kinase (Rfk), an FAD biosynthetic enzyme, enhanced CRY degradation. RFK protein levels and FAD concentrations oscillate in the nucleus, suggesting that they are subject to circadian control. Knockdown of Rfk combined with a riboflavin-deficient diet altered the CRY levels in mouse liver and the expression profiles of clock and clock-controlled genes (especially those related to metabolism including glucose homeostasis). We conclude that light-independent mechanisms of FAD regulate CRY and contribute to proper circadian oscillation of metabolic genes in mammals. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  3. Equality and Illusion: Gender and Tenure in Art History Careers

    ERIC Educational Resources Information Center

    Rudd, Elizabeth; Morrison, Emory; Sadrozinski, Renate; Nerad, Maresi; Cerny, Joseph

    2008-01-01

    Using a national survey of 508 art history Ph.D.s including data on graduate school performance and careers 10-15 years post-Ph.D., this study investigates gender, family, and academic tenure in art history, the humanities field with the highest proportion of women. Alternative hypotheses derived from three perspectives--termed here "clockwork,"…

  4. Creatively Exploring the Future. Proceedings of the Annual National Research Conference on Human Resource Development (2nd, College Station, Texas, March 25-26, 1994).

    ERIC Educational Resources Information Center

    Texas A and M Univ., College Station. Dept. of Educational Human Resource Development.

    This document contains 21 papers: "Benchmarking Training--The Road to Continuous Improvement" (Bolin); "Systematic Mentoring: A Crucial Addition to Leadership Development" [abstract only] (Brennan, Pevoto); "Monkey Wrenches in the Team Clockwork" (Daman); "Multiculturalism: Curriculum and Practice" (Dean et al.); "Personal Computer Training…

  5. A Clockwork War: Rhetorics of Time in a Time of Terror

    ERIC Educational Resources Information Center

    Stahl, Roger

    2008-01-01

    Expressions of time have increasingly infused the rhetorical experience of post-industrial war, especially since 9/11. This essay demonstrates how these "signs of time" operate as one of three tropes: deadline/countdown, infinite/infinitesimal war, and the ticking clock. The persistence of such signs of time in public discourse can be seen as an…

  6. Mid-Career Women Student Affairs Administrators with Young Children: Negotiating Life, Like Clockwork

    ERIC Educational Resources Information Center

    Fochtman, Monica Marcelis

    2010-01-01

    In the existing student affairs literature about career development and work-life balance, women administrators of all professional levels and women with children of all ages have been studied together. As a result, little is known about the unique rewards and challenges that result from simultaneously negotiating the different stages of…

  7. The transcription factor DBP affects circadian sleep consolidation and rhythmic EEG activity.

    PubMed

    Franken, P; Lopez-Molina, L; Marcacci, L; Schibler, U; Tafti, M

    2000-01-15

    Albumin D-binding protein (DBP) is a PAR leucine zipper transcription factor that is expressed according to a robust circadian rhythm in the suprachiasmatic nuclei, harboring the circadian master clock, and in most peripheral tissues. Mice lacking DBP display a shorter circadian period in locomotor activity and are less active. Thus, although DBP is not essential for circadian rhythm generation, it does modulate important clock outputs. We studied the role of DBP in the circadian and homeostatic aspects of sleep regulation by comparing DBP deficient mice (dbp-/-) with their isogenic controls (dbp+/+) under light-dark (LD) and constant-dark (DD) baseline conditions, as well as after sleep loss. Whereas total sleep duration was similar in both genotypes, the amplitude of the circadian modulation of sleep time, as well as the consolidation of sleep episodes, was reduced in dbp-/- under both LD and DD conditions. Quantitative EEG analysis demonstrated a marked reduction in the amplitude of the sleep-wake-dependent changes in slow-wave sleep delta power and an increase in hippocampal theta peak frequency in dbp-/- mice. The sleep deprivation-induced compensatory rebound of EEG delta power was similar in both genotypes. In contrast, the rebound in paradoxical sleep was significant in dbp+/+ mice only. It is concluded that the transcriptional regulatory protein DBP modulates circadian and homeostatic aspects of sleep regulation.

  8. Effects of insufficient sleep on circadian rhythmicity and expression amplitude of the human blood transcriptome.

    PubMed

    Möller-Levet, Carla S; Archer, Simon N; Bucca, Giselda; Laing, Emma E; Slak, Ana; Kabiljo, Renata; Lo, June C Y; Santhi, Nayantara; von Schantz, Malcolm; Smith, Colin P; Dijk, Derk-Jan

    2013-03-19

    Insufficient sleep and circadian rhythm disruption are associated with negative health outcomes, including obesity, cardiovascular disease, and cognitive impairment, but the mechanisms involved remain largely unexplored. Twenty-six participants were exposed to 1 wk of insufficient sleep (sleep-restriction condition 5.70 h, SEM = 0.03 sleep per 24 h) and 1 wk of sufficient sleep (control condition 8.50 h sleep, SEM = 0.11). Immediately following each condition, 10 whole-blood RNA samples were collected from each participant, while controlling for the effects of light, activity, and food, during a period of total sleep deprivation. Transcriptome analysis revealed that 711 genes were up- or down-regulated by insufficient sleep. Insufficient sleep also reduced the number of genes with a circadian expression profile from 1,855 to 1,481, reduced the circadian amplitude of these genes, and led to an increase in the number of genes that responded to subsequent total sleep deprivation from 122 to 856. Genes affected by insufficient sleep were associated with circadian rhythms (PER1, PER2, PER3, CRY2, CLOCK, NR1D1, NR1D2, RORA, DEC1, CSNK1E), sleep homeostasis (IL6, STAT3, KCNV2, CAMK2D), oxidative stress (PRDX2, PRDX5), and metabolism (SLC2A3, SLC2A5, GHRL, ABCA1). Biological processes affected included chromatin modification, gene-expression regulation, macromolecular metabolism, and inflammatory, immune and stress responses. Thus, insufficient sleep affects the human blood transcriptome, disrupts its circadian regulation, and intensifies the effects of acute total sleep deprivation. The identified biological processes may be involved with the negative effects of sleep loss on health, and highlight the interrelatedness of sleep homeostasis, circadian rhythmicity, and metabolism.

  9. Sleep-wake profiles and circadian rhythms of core temperature and melatonin in young people with affective disorders.

    PubMed

    Carpenter, Joanne S; Robillard, Rébecca; Hermens, Daniel F; Naismith, Sharon L; Gordon, Christopher; Scott, Elizabeth M; Hickie, Ian B

    2017-11-01

    While disturbances of the sleep-wake cycle are common in people with affective disorders, the characteristics of these disturbances differ greatly between individuals. This heterogeneity is likely to reflect multiple underlying pathophysiologies, with different perturbations in circadian systems contributing to the variation in sleep-wake cycle disturbances. Such disturbances may be particularly relevant in adolescents and young adults with affective disorders as circadian rhythms undergo considerable change during this key developmental period. This study aimed to identify profiles of sleep-wake disturbance in young people with affective disorders and investigate associations with biological circadian rhythms. Fifty young people with affective disorders and 19 control participants (aged 16-31 years) underwent actigraphy monitoring for approximately two weeks to derive sleep-wake cycle parameters, and completed an in-laboratory assessment including evening dim-light saliva collection for melatonin assay and overnight continuous core body temperature measurement. Cluster analysis based on sleep-wake cycle parameters identified three distinct patient groups, characterised by 'delayed sleep-wake', 'disrupted sleep', and 'long sleep' respectively. The 'delayed sleep-wake' group had both delayed melatonin onset and core temperature nadir; whereas the other two cluster groups did not differ from controls on these circadian markers. The three groups did not differ on clinical characteristics. These results provide evidence that only some types of sleep-wake disturbance in young people with affective disorders are associated with fundamental circadian perturbations. Consequently, interventions targeting endogenous circadian rhythms to promote a phase shift may be particularly relevant in youth with affective disorders presenting with delayed sleep-wake cycles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Melatonin secretion is impaired in women with preeclampsia and an abnormal circadian blood pressure rhythm.

    PubMed

    Bouchlariotou, Sofia; Liakopoulos, Vassilios; Giannopoulou, Myrto; Arampatzis, Spyridon; Eleftheriadis, Theodoros; Mertens, Peter R; Zintzaras, Elias; Messinis, Ioannis E; Stefanidis, Ioannis

    2014-08-01

    Non-dipping circadian blood pressure (BP) is a common finding in preeclampsia, accompanied by adverse outcomes. Melatonin plays pivotal role in biological circadian rhythms. This study investigated the relationship between melatonin secretion and circadian BP rhythm in preeclampsia. Cases were women with preeclampsia treated between January 2006 and June 2007 in the University Hospital of Larissa. Volunteers with normal pregnancy, matched for chronological and gestational age, served as controls. Twenty-four hour ambulatory BP monitoring was applied. Serum melatonin and urine 6-sulfatoxymelatonin levels were determined in day and night time samples by enzyme-linked immunoassays. Measurements were repeated 2 months after delivery. Thirty-one women with preeclampsia and 20 controls were included. Twenty-one of the 31 women with preeclampsia were non-dippers. Compared to normal pregnancy, in preeclampsia there were significantly lower night time melatonin (48.4 ± 24.7 vs. 85.4 ± 26.9 pg/mL, p<0.001) levels. Adjustment for circadian BP rhythm status ascribed this finding exclusively to non-dippers (p<0.01). Two months after delivery, in 11 of the 21 non-dippers both circadian BP and melatonin secretion rhythm reappeared. In contrast, in cases with retained non-dipping status (n=10) melatonin secretion rhythm remained impaired: daytime versus night time melatonin (33.5 ± 13.0 vs. 28.0 ± 13.8 pg/mL, p=0.386). Urinary 6-sulfatoxymelatonin levels were, overall, similar to serum melatonin. Circadian BP and melatonin secretion rhythm follow parallel course in preeclampsia, both during pregnancy and, at least 2 months after delivery. Our findings may be not sufficient to implicate a putative therapeutic effect of melatonin, however, they clearly emphasize that its involvement in the pathogenesis of a non-dipping BP in preeclampsia needs intensive further investigation.

  11. Common Genetic Variation in Circadian Rhythm Genes and Risk of Epithelial Ovarian Cancer (EOC)

    PubMed Central

    Jim, Heather S.L.; Lin, Hui-Yi; Tyrer, Jonathan P.; Lawrenson, Kate; Dennis, Joe; Chornokur, Ganna; Chen, Zhihua; Chen, Ann Y.; Permuth-Wey, Jennifer; Aben, Katja KH.; Anton-Culver, Hoda; Antonenkova, Natalia; Bruinsma, Fiona; Bandera, Elisa V.; Bean, Yukie T.; Beckmann, Matthias W.; Bisogna, Maria; Bjorge, Line; Bogdanova, Natalia; Brinton, Louise A.; Brooks-Wilson, Angela; Bunker, Clareann H.; Butzow, Ralf; Campbell, Ian G.; Carty, Karen; Chang-Claude, Jenny; Cook, Linda S.; Cramer, Daniel W.; Cunningham, Julie M.; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; du Bois, Andreas; Despierre, Evelyn; Sieh, Weiva; Doherty, Jennifer A.; Dörk, Thilo; Dürst, Matthias; Easton, Douglas F.; Eccles, Diana M.; Edwards, Robert P.; Ekici, Arif B.; Fasching, Peter A.; Fridley, Brooke L.; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G.; Glasspool, Rosalind; Goodman, Marc T.; Gronwald, Jacek; Harter, Philipp; Hasmad, Hanis N.; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A.T.; Hillemanns, Peter; Hogdall, Claus K.; Hogdall, Estrid; Hosono, Satoyo; Iversen, Edwin S.; Jakubowska, Anna; Jensen, Allan; Ji, Bu-Tian; Karlan, Beth Y.; Kellar, Melissa; Kiemeney, Lambertus A.; Krakstad, Camilla; Kjaer, Susanne K.; Kupryjanczyk, Jolanta; Vierkant, Robert A.; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D.; Lee, Alice W.; Lele, Shashi; Leminen, Arto; Lester, Jenny; Levine, Douglas A.; Liang, Dong; Lim, Boon Kiong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon F.A.G.; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R.; McNeish, Ian; Menon, Usha; Milne, Roger L.; Modugno, Francesmary; Thomsen, Lotte; Moysich, Kirsten B.; Ness, Roberta B.; Nevanlinna, Heli; Eilber, Ursula; Odunsi, Kunle; Olson, Sara H.; Orlow, Irene; Orsulic, Sandra; Palmieri Weber, Rachel; Paul, James; Pearce, Celeste L.; Pejovic, Tanja; Pelttari, Liisa M.; Pike, Malcolm C.; Poole, Elizabeth M.; Schernhammer, Eva; Risch, Harvey A.; Rosen, Barry; Rossing, Mary Anne; Rothstein, Joseph H.; Rudolph, Anja; Runnebaum, Ingo B.; Rzepecka, Iwona K.; Salvesen, Helga B.; Schwaab, Ira; Shu, Xiao-Ou; Shvetsov, Yurii B.; Siddiqui, Nadeem; Song, Honglin; Southey, Melissa C.; Spiewankiewicz, Beata; Sucheston-Campbell, Lara; Teo, Soo-Hwang; Terry, Kathryn L.; Thompson, Pamela J.; Tangen, Ingvild L.; Tworoger, Shelley S.; van Altena, Anne M.; Vergote, Ignace; Walsh, Christine S.; Wang-Gohrke, Shan; Wentzensen, Nicolas; Whittemore, Alice S.; Wicklund, Kristine G.; Wilkens, Lynne R.; Wu, Anna H.; Wu, Xifeng; Woo, Yin-Ling; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Amankwah, Ernest; Berchuck, Andrew; Schildkraut, Joellen M.; Kelemen, Linda E.; Ramus, Susan J.; Monteiro, Alvaro N.A.; Goode, Ellen L.; Narod, Steven A.; Gayther, Simon A.; Pharoah, Paul D. P.; Sellers, Thomas A.; Phelan, Catherine M.

    2016-01-01

    Disruption in circadian gene expression, whether due to genetic variation or environmental factors (e.g., light at night, shiftwork), is associated with increased incidence of breast, prostate, gastrointestinal and hematologic cancers and gliomas. Circadian genes are highly expressed in the ovaries where they regulate ovulation; circadian disruption is associated with several ovarian cancer risk factors (e.g., endometriosis). However, no studies have examined variation in germline circadian genes as predictors of ovarian cancer risk and invasiveness. The goal of the current study was to examine single nucleotide polymorphisms (SNPs) in circadian genes BMAL1, CRY2, CSNK1E, NPAS2, PER3, REV1 and TIMELESS and downstream transcription factors KLF10 and SENP3 as predictors of risk of epithelial ovarian cancer (EOC) and histopathologic subtypes. The study included a test set of 3,761 EOC cases and 2,722 controls and a validation set of 44,308 samples including 18,174 (10,316 serous) cases and 26,134 controls from 43 studies participating in the Ovarian Cancer Association Consortium (OCAC). Analysis of genotype data from 36 genotyped SNPs and 4600 imputed SNPs indicated that the most significant association was rs117104877 in BMAL1 (OR = 0.79, 95% CI = 0.68–0.90, p = 5.59 × 10−4]. Functional analysis revealed a significant down regulation of BMAL1 expression following cMYC overexpression and increasing transformation in ovarian surface epithelial (OSE) cells as well as alternative splicing of BMAL1 exons in ovarian and granulosa cells. These results suggest that variation in circadian genes, and specifically BMAL1, may be associated with risk of ovarian cancer, likely through disruption of hormonal pathways. PMID:26807442

  12. Common Genetic Variation in Circadian Rhythm Genes and Risk of Epithelial Ovarian Cancer (EOC).

    PubMed

    Jim, Heather S L; Lin, Hui-Yi; Tyrer, Jonathan P; Lawrenson, Kate; Dennis, Joe; Chornokur, Ganna; Chen, Zhihua; Chen, Ann Y; Permuth-Wey, Jennifer; Aben, Katja Kh; Anton-Culver, Hoda; Antonenkova, Natalia; Bruinsma, Fiona; Bandera, Elisa V; Bean, Yukie T; Beckmann, Matthias W; Bisogna, Maria; Bjorge, Line; Bogdanova, Natalia; Brinton, Louise A; Brooks-Wilson, Angela; Bunker, Clareann H; Butzow, Ralf; Campbell, Ian G; Carty, Karen; Chang-Claude, Jenny; Cook, Linda S; Cramer, Daniel W; Cunningham, Julie M; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; du Bois, Andreas; Despierre, Evelyn; Sieh, Weiva; Doherty, Jennifer A; Dörk, Thilo; Dürst, Matthias; Easton, Douglas F; Eccles, Diana M; Edwards, Robert P; Ekici, Arif B; Fasching, Peter A; Fridley, Brooke L; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G; Glasspool, Rosalind; Goodman, Marc T; Gronwald, Jacek; Harter, Philipp; Hasmad, Hanis N; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A T; Hillemanns, Peter; Hogdall, Claus K; Hogdall, Estrid; Hosono, Satoyo; Iversen, Edwin S; Jakubowska, Anna; Jensen, Allan; Ji, Bu-Tian; Karlan, Beth Y; Kellar, Melissa; Kiemeney, Lambertus A; Krakstad, Camilla; Kjaer, Susanne K; Kupryjanczyk, Jolanta; Vierkant, Robert A; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D; Lee, Alice W; Lele, Shashi; Leminen, Arto; Lester, Jenny; Levine, Douglas A; Liang, Dong; Lim, Boon Kiong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon F A G; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R; McNeish, Ian; Menon, Usha; Milne, Roger L; Modugno, Francesmary; Thomsen, Lotte; Moysich, Kirsten B; Ness, Roberta B; Nevanlinna, Heli; Eilber, Ursula; Odunsi, Kunle; Olson, Sara H; Orlow, Irene; Orsulic, Sandra; Palmieri Weber, Rachel; Paul, James; Pearce, Celeste L; Pejovic, Tanja; Pelttari, Liisa M; Pike, Malcolm C; Poole, Elizabeth M; Schernhammer, Eva; Risch, Harvey A; Rosen, Barry; Rossing, Mary Anne; Rothstein, Joseph H; Rudolph, Anja; Runnebaum, Ingo B; Rzepecka, Iwona K; Salvesen, Helga B; Schwaab, Ira; Shu, Xiao-Ou; Shvetsov, Yurii B; Siddiqui, Nadeem; Song, Honglin; Southey, Melissa C; Spiewankiewicz, Beata; Sucheston-Campbell, Lara; Teo, Soo-Hwang; Terry, Kathryn L; Thompson, Pamela J; Tangen, Ingvild L; Tworoger, Shelley S; van Altena, Anne M; Vergote, Ignace; Walsh, Christine S; Wang-Gohrke, Shan; Wentzensen, Nicolas; Whittemore, Alice S; Wicklund, Kristine G; Wilkens, Lynne R; Wu, Anna H; Wu, Xifeng; Woo, Yin-Ling; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Amankwah, Ernest; Berchuck, Andrew; Schildkraut, Joellen M; Kelemen, Linda E; Ramus, Susan J; Monteiro, Alvaro N A; Goode, Ellen L; Narod, Steven A; Gayther, Simon A; Pharoah, Paul D P; Sellers, Thomas A; Phelan, Catherine M

    Disruption in circadian gene expression, whether due to genetic variation or environmental factors (e.g., light at night, shiftwork), is associated with increased incidence of breast, prostate, gastrointestinal and hematologic cancers and gliomas. Circadian genes are highly expressed in the ovaries where they regulate ovulation; circadian disruption is associated with several ovarian cancer risk factors (e.g., endometriosis). However, no studies have examined variation in germline circadian genes as predictors of ovarian cancer risk and invasiveness. The goal of the current study was to examine single nucleotide polymorphisms (SNPs) in circadian genes BMAL1, CRY2, CSNK1E, NPAS2, PER3, REV1 and TIMELESS and downstream transcription factors KLF10 and SENP3 as predictors of risk of epithelial ovarian cancer (EOC) and histopathologic subtypes. The study included a test set of 3,761 EOC cases and 2,722 controls and a validation set of 44,308 samples including 18,174 (10,316 serous) cases and 26,134 controls from 43 studies participating in the Ovarian Cancer Association Consortium (OCAC). Analysis of genotype data from 36 genotyped SNPs and 4600 imputed SNPs indicated that the most significant association was rs117104877 in BMAL1 (OR = 0.79, 95% CI = 0.68-0.90, p = 5.59 × 10 -4 ]. Functional analysis revealed a significant down regulation of BMAL1 expression following cMYC overexpression and increasing transformation in ovarian surface epithelial (OSE) cells as well as alternative splicing of BMAL1 exons in ovarian and granulosa cells. These results suggest that variation in circadian genes, and specifically BMAL1 , may be associated with risk of ovarian cancer, likely through disruption of hormonal pathways.

  13. Overexpression of the human VPAC2 receptor in the suprachiasmatic nucleus alters the circadian phenotype of mice

    PubMed Central

    Shen, Sanbing; Spratt, Christopher; Sheward, W. John; Kallo, Imre; West, Katrine; Morrison, Christine F.; Coen, Clive W.; Marston, Hugh M.; Harmar, Anthony J.

    2000-01-01

    The neuropeptides vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) belong to a superfamily of structurally related peptide hormones that includes glucagon, glucagon-like peptides, secretin, and growth hormone-releasing hormone. Microinjection of VIP or PACAP into the rodent suprachiasmatic nucleus (SCN) phase shifts the circadian pacemaker and VIP antagonists, and antisense oligodeoxynucleotides have been shown to disrupt circadian function. VIP and PACAP have equal potency as agonists of the VPAC2 receptor (VPAC2R), which is expressed abundantly in the SCN, in a circadian manner. To determine whether manipulating the level of expression of the VPAC2R can influence the control of the circadian clock, we have created transgenic mice overexpressing the human VPAC2R gene from a yeast artificial chromosome (YAC) construct. The YAC was modified by a strategy using homologous recombination to introduce (i) the HA epitope tag sequence (from influenza virus hemagglutinin) at the carboxyl terminus of the VPAC2R protein, (ii) the lacZ reporter gene, and (iii) a conditional centromere, enabling YAC DNA to be amplified in culture in the presence of galactose. High levels of lacZ expression were detected in the SCN, habenula, pancreas, and testis of the transgenic mice, with lower levels in the olfactory bulb and various hypothalamic areas. Transgenic mice resynchronized more quickly than wild-type controls to an advance of 8 h in the light-dark (LD) cycle and exhibited a significantly shorter circadian period in constant darkness (DD). These data suggest that the VPAC2R can influence the rhythmicity and photic entrainment of the circadian clock. PMID:11027354

  14. Can Circadian Dysregulation Exacerbate Migraines?

    PubMed

    Ong, Jason C; Taylor, Hannah L; Park, Margaret; Burgess, Helen J; Fox, Rina S; Snyder, Sarah; Rains, Jeanetta C; Espie, Colin A; Wyatt, James K

    2018-05-04

    This observational pilot study examined objective circadian phase and sleep timing in chronic migraine (CM) and healthy controls (HC) and the impact of circadian factors on migraine frequency and severity. Sleep disturbance has been identified as a risk factor in the development and maintenance of CM but the biological mechanisms linking sleep and migraine remain largely theoretical. Twenty women with CM and 20 age-matched HC completed a protocol that included a 7 day sleep assessment at home using wrist actigraphy followed by a circadian phase assessment using salivary melatonin. We compared CM vs HC on sleep parameters and circadian factors. Subsequently, we examined associations between dim-light melatonin onset (DLMO), the midpoint of the sleep episode, and the phase angle (time from DLMO to sleep midpoint) with the number of migraine days per month and the migraine disability assessment scale (MIDAS). CM and HC did not differ on measures of sleep or circadian phase. Within the CM group, more frequent migraine days per month was significantly correlated with DLMO (r = .49, P = .039) and later sleep episode (r = .47, P = .037). In addition, a greater phase angle (ie, circadian misalignment) was significantly correlated with more severe migraine-related disability (r = .48, P = .042). These relationships remained significant after adjusting for total sleep time. This pilot study revealed that circadian misalignment and delayed sleep timing are associated with higher migraine frequency and severity, which was not better accounted for by the amount of sleep. These findings support the plausibility and need for further investigation of a circadian pathway in the development and maintenance of chronic headaches. Specifically, circadian misalignment and delayed sleep timing could serve as an exacerbating factor in chronic migraines when combined with biological predispositions or environmental factors. © 2018 American Headache Society.

  15. Adolescents at clinical-high risk for psychosis: Circadian rhythm disturbances predict worsened prognosis at 1-year follow-up.

    PubMed

    Lunsford-Avery, Jessica R; Gonçalves, Bruno da Silva Brandão; Brietzke, Elisa; Bressan, Rodrigo A; Gadelha, Ary; Auerbach, Randy P; Mittal, Vijay A

    2017-11-01

    Individuals with psychotic disorders experience disruptions to both the sleep and circadian components of the sleep/wake cycle. Recent evidence has supported a role of sleep disturbances in emerging psychosis. However, less is known about how circadian rhythm disruptions may relate to psychosis symptoms and prognosis for adolescents with clinical high-risk (CHR) syndromes. The present study examines circadian rest/activity rhythms in CHR and healthy control (HC) youth to clarify the relationships among circadian rhythm disturbance, psychosis symptoms, psychosocial functioning, and the longitudinal course of illness. Thirty-four CHR and 32 HC participants were administered a baseline evaluation, which included clinical interviews, 5days of actigraphy, and a sleep/activity diary. CHR (n=29) participants were re-administered clinical interviews at a 1-year follow-up assessment. Relative to HC, CHR youth exhibited more fragmented circadian rhythms and later onset of nocturnal rest. Circadian disturbances (fragmented rhythms, low daily activity) were associated with increased psychotic symptom severity among CHR participants at baseline. Circadian disruptions (lower daily activity, rhythms that were more fragmented and/or desynchronized with the light/dark cycle) also predicted severity of psychosis symptoms and psychosocial impairment at 1-year follow-up among CHR youth. Circadian rhythm disturbances may represent a potential vulnerability marker for emergence of psychosis, and thus, rest/activity rhythm stabilization has promise to inform early-identification and prevention/intervention strategies for CHR youth. Future studies with longer study designs are necessary to further examine circadian rhythms in the prodromal period and rates of conversion to psychosis among CHR teens. Copyright © 2017. Published by Elsevier B.V.

  16. Sleepiness and Cognitive Performance among Younger and Older Adolescents across a 28-Hour Forced Desynchrony Protocol.

    PubMed

    Wu, Lora J; Acebo, Christine; Seifer, Ronald; Carskadon, Mary A

    2015-12-01

    Quantify the homeostatic and circadian effects on sleepiness and performance of adolescents. Examine age-related changes in homeostatic and circadian regulation of sleepiness and performance by comparing younger and older adolescent groups. Three-week laboratory study including 12 cycles of a 28-h forced desynchrony protocol. Controlled laboratory environment with individual sleep and performance testing rooms and shared common areas. Twenty-seven healthy adolescents including 16 females. Ages ranged from 9.6-15.2 years and participants were split into younger (n = 14 ages 9-12) and older (n = 13 ages 13-15) groups based on median age split of 13.0 years. N/A. Testing occurred every 2 h during scheduled wake periods. Measures included sleep latency during repeated nap opportunities and scores from a computerized neurobehavioral assessment battery including a 10-min psychomotor vigilance task, a digit symbol substitution task, and the Karolinska Sleepiness Scale. Significant main effects of circadian and homeostatic factors were observed, as well as several circadian and homeostatic interaction effects. Age group did not have a significant main effect on sleep and performance data. A significant interaction of circadian phase and age group was found for sleep latency, with younger adolescents showing greater circadian modulation than older teens during the circadian night. Adolescents demonstrated a similar pattern of response to forced desynchrony as reported for adults. Sleepiness and performance were affected by homeostatic and circadian factors, and age group did not interact with homoeostatic and circadian factors for subjective sleepiness and most performance metrics. Younger adolescents had a shorter latency to sleep onset than older during the circadian bin spanning 4 to 8 h after the onset of melatonin secretion. © 2015 Associated Professional Sleep Societies, LLC.

  17. Predicted Role of NAD Utilization in the Control of Circadian Rhythms during DNA Damage Response

    PubMed Central

    Luna, Augustin; McFadden, Geoffrey B.; Aladjem, Mirit I.; Kohn, Kurt W.

    2015-01-01

    The circadian clock is a set of regulatory steps that oscillate with a period of approximately 24 hours influencing many biological processes. These oscillations are robust to external stresses, and in the case of genotoxic stress (i.e. DNA damage), the circadian clock responds through phase shifting with primarily phase advancements. The effect of DNA damage on the circadian clock and the mechanism through which this effect operates remains to be thoroughly investigated. Here we build an in silico model to examine damage-induced circadian phase shifts by investigating a possible mechanism linking circadian rhythms to metabolism. The proposed model involves two DNA damage response proteins, SIRT1 and PARP1, that are each consumers of nicotinamide adenine dinucleotide (NAD), a metabolite involved in oxidation-reduction reactions and in ATP synthesis. This model builds on two key findings: 1) that SIRT1 (a protein deacetylase) is involved in both the positive (i.e. transcriptional activation) and negative (i.e. transcriptional repression) arms of the circadian regulation and 2) that PARP1 is a major consumer of NAD during the DNA damage response. In our simulations, we observe that increased PARP1 activity may be able to trigger SIRT1-induced circadian phase advancements by decreasing SIRT1 activity through competition for NAD supplies. We show how this competitive inhibition may operate through protein acetylation in conjunction with phosphorylation, consistent with reported observations. These findings suggest a possible mechanism through which multiple perturbations, each dominant during different points of the circadian cycle, may result in the phase advancement of the circadian clock seen during DNA damage. PMID:26020938

  18. Assembly of a Comprehensive Regulatory Network for the Mammalian Circadian Clock: A Bioinformatics Approach

    PubMed Central

    Lehmann, Robert; Abreu, Monica; Fuhr, Luise; Herzel, Hanspeter; Leser, Ulf; Relógio, Angela

    2015-01-01

    By regulating the timing of cellular processes, the circadian clock provides a way to adapt physiology and behaviour to the geophysical time. In mammals, a light-entrainable master clock located in the suprachiasmatic nucleus (SCN) controls peripheral clocks that are present in virtually every body cell. Defective circadian timing is associated with several pathologies such as cancer and metabolic and sleep disorders. To better understand the circadian regulation of cellular processes, we developed a bioinformatics pipeline encompassing the analysis of high-throughput data sets and the exploitation of published knowledge by text-mining. We identified 118 novel potential clock-regulated genes and integrated them into an existing high-quality circadian network, generating the to-date most comprehensive network of circadian regulated genes (NCRG). To validate particular elements in our network, we assessed publicly available ChIP-seq data for BMAL1, REV-ERBα/β and RORα/γ proteins and found strong evidence for circadian regulation of Elavl1, Nme1, Dhx6, Med1 and Rbbp7 all of which are involved in the regulation of tumourigenesis. Furthermore, we identified Ncl and Ddx6, as targets of RORγ and REV-ERBα, β, respectively. Most interestingly, these genes were also reported to be involved in miRNA regulation; in particular, NCL regulates several miRNAs, all involved in cancer aggressiveness. Thus, NCL represents a novel potential link via which the circadian clock, and specifically RORγ, regulates the expression of miRNAs, with particular consequences in breast cancer progression. Our findings bring us one step forward towards a mechanistic understanding of mammalian circadian regulation, and provide further evidence of the influence of circadian deregulation in cancer. PMID:25945798

  19. Combination of light and melatonin time cues for phase advancing the human circadian clock.

    PubMed

    Burke, Tina M; Markwald, Rachel R; Chinoy, Evan D; Snider, Jesse A; Bessman, Sara C; Jung, Christopher M; Wright, Kenneth P

    2013-11-01

    Photic and non-photic stimuli have been shown to shift the phase of the human circadian clock. We examined how photic and non-photic time cues may be combined by the human circadian system by assessing the phase advancing effects of one evening dose of exogenous melatonin, alone and in combination with one session of morning bright light exposure. Randomized placebo-controlled double-blind circadian protocol. The effects of four conditions, dim light (∼1.9 lux, ∼0.6 Watts/m(2))-placebo, dim light-melatonin (5 mg), bright light (∼3000 lux, ∼7 Watts/m(2))-placebo, and bright light-melatonin on circadian phase was assessed by the change in the salivary dim light melatonin onset (DLMO) prior to and following treatment under constant routine conditions. Melatonin or placebo was administered 5.75 h prior to habitual bedtime and 3 h of bright light exposure started 1 h prior to habitual wake time. Sleep and chronobiology laboratory environment free of time cues. Thirty-six healthy participants (18 females) aged 22 ± 4 y (mean ± SD). Morning bright light combined with early evening exogenous melatonin induced a greater phase advance of the DLMO than either treatment alone. Bright light alone and melatonin alone induced similar phase advances. Information from light and melatonin appear to be combined by the human circadian clock. The ability to combine circadian time cues has important implications for understanding fundamental physiological principles of the human circadian timing system. Knowledge of such principles is important for designing effective countermeasures for phase-shifting the human circadian clock to adapt to jet lag, shift work, and for designing effective treatments for circadian sleep-wakefulness disorders.

  20. Constant light disrupts the circadian rhythm of steroidogenic proteins in the rat adrenal gland.

    PubMed

    Park, Shin Y; Walker, Jamie J; Johnson, Nicholas W; Zhao, Zidong; Lightman, Stafford L; Spiga, Francesca

    2013-05-22

    The circadian rhythm of corticosterone (CORT) secretion from the adrenal cortex is regulated by the suprachiasmatic nucleus (SCN), which is entrained to the light-dark cycle. Since the circadian CORT rhythm is associated with circadian expression of the steroidogenic acute regulatory (StAR) protein, we investigated the 24h pattern of hormonal secretion (ACTH and CORT), steroidogenic gene expression (StAR, SF-1, DAX1 and Nurr77) and the expression of genes involved in ACTH signalling (MC2R and MRAP) in rats entrained to a normal light-dark cycle. We found that circadian changes in ACTH and CORT were associated with the circadian expression of all gene targets; with SF-1, Nurr77 and MRAP peaking in the evening, and DAX1 and MC2R peaking in the morning. Since disruption of normal SCN activity by exposure to constant light abolishes the circadian rhythm of CORT in the rat, we also investigated whether the AM-PM variation of our target genes was also disrupted in rats exposed to constant light conditions for 5weeks. We found that the disruption of the AM-PM variation of ACTH and CORT secretion in rats exposed to constant light was accompanied by a loss of AM-PM variation in StAR, SF-1 and DAX1, and a reversed AM-PM variation in Nurr77, MC2R and MRAP. Our data suggest that circadian expression of StAR is regulated by the circadian expression of nuclear receptors and proteins involved in both ACTH signalling and StAR transcription. We propose that ACTH regulates the secretion of CORT via the circadian control of steroidogenic gene pathways that become dysregulated under the influence of constant light. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  1. Circadian Role in Daily Pattern of Cardiovascular Risk

    NASA Astrophysics Data System (ADS)

    Ivanov, Plamen Ch.; Hu, Kun; Chen, Zhi; Hilton, Michael F.; Stanley, H. Eugene; Shea, Steven A.

    2004-03-01

    Numerous epidemiological studies demonstrate that sudden cardiac death, pulmonary embolism, myocardial infarction, and stroke have a 24-hour daily pattern with a broad peak between 9-11am. Such a daily pattern in cardiovascular risk could be attributable to external factors, such as the daily behavior patterns, including sleep-wake cycles and activity levels, or internal factors, such as the endogenous circadian pacemaker. Findings of significant alternations in the temporal organization and nonlinear properties of heartbeat fluctuations with disease and with sleep-wake transitions raise the intriguing possibility that changes in the mechanism of control associated with behavioral sleep-wake transition may be responsible for the increased cardiac instability observed in particular circadian phases. Alternatively, we hypothesize that there is a circadian clock, independent of the sleep-wake cycle, which affects the cardiac dynamics leading to increased cardiovascular risk. We analyzed continuous recordings from healthy subjects during 7 cycles of forced desynchrony routine wherein subjects' sleep-wake cycles are adjusted to 28 hours so that their behaviors occur across all circadian phases. Heartbeat data were divided into one-hour segments. For each segment, we estimated the correlations and the nonlinear properties of the heartbeat fluctuations at the corresponding circadian phase. Since the sleep and wake contributions are equally weighted in our experiment, a change of the properties of the heartbeat dynamics with circadian phase suggest a circadian rhythm. We show significant circadian-mediated alterations in the correlation and nonlinear properties of the heartbeat resembling those observed in patients with heart failure. Remarkably, these dynamical alterations are centered at 60 degrees circadian phase, coinciding with the 9-11am window of cardiac risk.

  2. Circadian Clock Dysfunction and Psychiatric Disease: Could Fruit Flies have a Say?

    PubMed Central

    Zordan, Mauro Agostino; Sandrelli, Federica

    2015-01-01

    There is evidence of a link between the circadian system and psychiatric diseases. Studies in humans and mammals suggest that environmental and/or genetic disruption of the circadian system leads to an increased liability to psychiatric disease. Disruption of clock genes and/or the clock network might be related to the etiology of these pathologies; also, some genes, known for their circadian clock functions, might be associated to mental illnesses through clock-independent pleiotropy. Here, we examine the features which we believe make Drosophila melanogaster a model apt to study the role of the circadian clock in psychiatric disease. Despite differences in the organization of the clock system, the molecular architecture of the Drosophila and mammalian circadian oscillators are comparable and many components are evolutionarily related. In addition, Drosophila has a rather complex nervous system, which shares much at the cell and neurobiological level with humans, i.e., a tripartite brain, the main neurotransmitter systems, and behavioral traits: circadian behavior, learning and memory, motivation, addiction, social behavior. There is evidence that the Drosophila brain shares some homologies with the vertebrate cerebellum, basal ganglia, and hypothalamus-pituitary-adrenal axis, the dysfunctions of which have been tied to mental illness. We discuss Drosophila in comparison to mammals with reference to the: organization of the brain and neurotransmitter systems; architecture of the circadian clock; clock-controlled behaviors. We sum up current knowledge on behavioral endophenotypes, which are amenable to modeling in flies, such as defects involving sleep, cognition, or social interactions, and discuss the relationship of the circadian system to these traits. Finally, we consider if Drosophila could be a valuable asset to understand the relationship between circadian clock malfunction and psychiatric disease. PMID:25941512

  3. Functional Development of the Circadian Clock in the Zebrafish Pineal Gland

    PubMed Central

    Ben-Moshe, Zohar; Foulkes, Nicholas S.

    2014-01-01

    The zebrafish constitutes a powerful model organism with unique advantages for investigating the vertebrate circadian timing system and its regulation by light. In particular, the remarkably early and rapid development of the zebrafish circadian system has facilitated exploring the factors that control the onset of circadian clock function during embryogenesis. Here, we review our understanding of the molecular basis underlying functional development of the central clock in the zebrafish pineal gland. Furthermore, we examine how the directly light-entrainable clocks in zebrafish cell lines have facilitated unravelling the general mechanisms underlying light-induced clock gene expression. Finally, we summarize how analysis of the light-induced transcriptome and miRNome of the zebrafish pineal gland has provided insight into the regulation of the circadian system by light, including the involvement of microRNAs in shaping the kinetics of light- and clock-regulated mRNA expression. The relative contributions of the pineal gland central clock and the distributed peripheral oscillators to the synchronization of circadian rhythms at the whole animal level are a crucial question that still remains to be elucidated in the zebrafish model. PMID:24839600

  4. A role for clock genes in sleep homeostasis.

    PubMed

    Franken, Paul

    2013-10-01

    The timing and quality of both sleep and wakefulness are thought to be regulated by the interaction of two processes. One of these two processes keeps track of the prior sleep-wake history and controls the homeostatic need for sleep while the other sets the time-of-day that sleep preferably occurs. The molecular pathways underlying the latter, circadian process have been studied in detail and their key role in physiological time-keeping has been well established. Analyses of sleep in mice and flies lacking core circadian clock gene proteins have demonstrated, however, that besides disrupting circadian rhythms, also sleep homeostatic processes were affected. Subsequent studies revealed that sleep loss alters both the mRNA levels and the specific DNA-binding of the key circadian transcriptional regulators to their target sequences in the mouse brain. The fact that sleep loss impinges on the very core of the molecular circadian circuitry might explain why both inadequate sleep and disrupted circadian rhythms can similarly lead to metabolic pathology. The evidence for a role for clock genes in sleep homeostasis will be reviewed here. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Circadian clock regulation of the cell cycle in the zebrafish intestine.

    PubMed

    Peyric, Elodie; Moore, Helen A; Whitmore, David

    2013-01-01

    The circadian clock controls cell proliferation in a number of healthy tissues where cell renewal and regeneration are critical for normal physiological function. The intestine is an organ that typically undergoes regular cycles of cell division, differentiation and apoptosis as part of its role in digestion and nutrient absorption. The aim of this study was to explore circadian clock regulation of cell proliferation and cell cycle gene expression in the zebrafish intestine. Here we show that the zebrafish gut contains a directly light-entrainable circadian pacemaker, which regulates the daily timing of mitosis. Furthermore, this intestinal clock controls the expression of key cell cycle regulators, such as cdc2, wee1, p21, PCNA and cdk2, but only weakly influences cyclin B1, cyclin B2 and cyclin E1 expression. Interestingly, food deprivation has little impact on circadian clock function in the gut, but dramatically reduces cell proliferation, as well as cell cycle gene expression in this tissue. Timed feeding under constant dark conditions is able to drive rhythmic expression not only of circadian clock genes, but also of several cell cycle genes, suggesting that food can entrain the clock, as well as the cell cycle in the intestine. Rather surprisingly, we found that timed feeding is critical for high amplitude rhythms in cell cycle gene expression, even when zebrafish are maintained on a light-dark cycle. Together these results suggest that the intestinal clock integrates multiple rhythmic cues, including light and food, to function optimally.

  6. Circadian Clock Regulation of the Cell Cycle in the Zebrafish Intestine

    PubMed Central

    Peyric, Elodie; Moore, Helen A.; Whitmore, David

    2013-01-01

    The circadian clock controls cell proliferation in a number of healthy tissues where cell renewal and regeneration are critical for normal physiological function. The intestine is an organ that typically undergoes regular cycles of cell division, differentiation and apoptosis as part of its role in digestion and nutrient absorption. The aim of this study was to explore circadian clock regulation of cell proliferation and cell cycle gene expression in the zebrafish intestine. Here we show that the zebrafish gut contains a directly light-entrainable circadian pacemaker, which regulates the daily timing of mitosis. Furthermore, this intestinal clock controls the expression of key cell cycle regulators, such as cdc2, wee1, p21, PCNA and cdk2, but only weakly influences cyclin B1, cyclin B2 and cyclin E1 expression. Interestingly, food deprivation has little impact on circadian clock function in the gut, but dramatically reduces cell proliferation, as well as cell cycle gene expression in this tissue. Timed feeding under constant dark conditions is able to drive rhythmic expression not only of circadian clock genes, but also of several cell cycle genes, suggesting that food can entrain the clock, as well as the cell cycle in the intestine. Rather surprisingly, we found that timed feeding is critical for high amplitude rhythms in cell cycle gene expression, even when zebrafish are maintained on a light-dark cycle. Together these results suggest that the intestinal clock integrates multiple rhythmic cues, including light and food, to function optimally. PMID:24013905

  7. Dorsomedial SCN neuronal subpopulations subserve different functions in human dementia.

    PubMed

    Harper, David G; Stopa, Edward G; Kuo-Leblanc, Victoria; McKee, Ann C; Asayama, Kentaro; Volicer, Ladislav; Kowall, Neil; Satlin, Andrew

    2008-06-01

    The suprachiasmatic nuclei (SCN) are necessary and sufficient for the maintenance of circadian rhythms in primate and other mammalian species. The human dorsomedial SCN contains populations of non-species-specific vasopressin and species-specific neurotensin neurons. We made time-series recordings of core body temperature and locomotor activity in 19 elderly, male, end-stage dementia patients and 8 normal elderly controls. Following the death of the dementia patients, neuropathological diagnostic information and tissue samples from the hypothalamus were obtained. Hypothalamic tissue was also obtained from eight normal control cases that had not had activity or core temperature recordings previously. Core temperature was analysed for parametric, circadian features, and activity was analysed for non-parametric and parametric circadian features. These indices were then correlated with the degree of degeneration seen in the SCN (glia/neuron ratio) and neuronal counts from the dorsomedial SCN (vasopressin, neurotensin). Specific loss of SCN neurotensin neurons was associated with loss of activity and temperature amplitude without increase in activity fragmentation. Loss of SCN vasopressin neurons was associated with increased activity fragmentation but not loss of amplitude. Evidence for a circadian rhythm of vasopressinergic activity was seen in the dementia cases but no evidence was seen for a circadian rhythm in neurotensinergic activity. These results provide evidence that the SCN is necessary for the maintenance of the circadian rhythm in humans, information on the role of neuronal subpopulations in subserving this function and the utility of dementia in elaborating brain-behaviour relationships in the human.

  8. Reciprocal Control of the Circadian Clock and Cellular Redox State - a Critical Appraisal.

    PubMed

    Putker, Marrit; O'Neill, John Stuart

    2016-01-01

    Redox signalling comprises the biology of molecular signal transduction mediated by reactive oxygen (or nitrogen) species. By specific and reversible oxidation of redox-sensitive cysteines, many biological processes sense and respond to signals from the intracellular redox environment. Redox signals are therefore important regulators of cellular homeostasis. Recently, it has become apparent that the cellular redox state oscillates in vivo and in vitro, with a period of about one day (circadian). Circadian time-keeping allows cells and organisms to adapt their biology to resonate with the 24-hour cycle of day/night. The importance of this innate biological time-keeping is illustrated by the association of clock disruption with the early onset of several diseases (e.g. type II diabetes, stroke and several forms of cancer). Circadian regulation of cellular redox balance suggests potentially two distinct roles for redox signalling in relation to the cellular clock: one where it is regulated by the clock, and one where it regulates the clock. Here, we introduce the concepts of redox signalling and cellular timekeeping, and then critically appraise the evidence for the reciprocal regulation between cellular redox state and the circadian clock. We conclude there is a substantial body of evidence supporting circadian regulation of cellular redox state, but that it would be premature to conclude that the converse is also true. We therefore propose some approaches that might yield more insight into redox control of cellular timekeeping.

  9. Orexin neurons are necessary for the circadian control of REM sleep.

    PubMed

    Kantor, Sandor; Mochizuki, Takatoshi; Janisiewicz, Agnieszka M; Clark, Erika; Nishino, Seiji; Scammell, Thomas E

    2009-09-01

    The orexin-producing neurons are hypothesized to be essential for the circadian control of sleep/wake behavior, but it remains unknown whether these rhythms are mediated by the orexin peptides or by other signaling molecules released by these neurons such as glutamate or dynorphin. To determine the roles of these neurotransmitters, we examined the circadian rhythms of sleep/wake behavior in mice lacking the orexin neurons (ataxin-3 [Atx] mice) and mice lacking just the orexin neuropeptides (orexin knockout [KO] mice). We instrumented mice for recordings of sleep-wake behavior, locomotor activity (LMA), and body temperature (Tb) and recorded behavior after 6 days in constant darkness. The amplitude of the rapid eye movement (REM) sleep rhythm was substantially reduced in Atx mice but preserved in orexin KO mice. This blunted rhythm in Atx mice was caused by an increase in the amount of REM sleep during the subjective night (active period) due to more transitions into REM sleep and longer REM sleep episodes. In contrast, the circadian variations of Tb, LMA, Wake, non-REM sleep, and cataplexy were normal, suggesting that the circadian timekeeping system and other output pathways are intact in both Atx and KO mice. These results indicate that the orexin neurons are necessary for the circadian suppression of REM sleep. Blunting of the REM sleep rhythm in Atx mice but not in orexin KO mice suggests that other signaling molecules such as dynorphin or glutamate may act in concert with orexins to suppress REM sleep during the active period.

  10. Evolution of temporal order in living organisms

    PubMed Central

    Paranjpe, Dhanashree A; Sharma, Vijay Kumar

    2005-01-01

    Circadian clocks are believed to have evolved in parallel with the geological history of the earth, and have since been fine-tuned under selection pressures imposed by cyclic factors in the environment. These clocks regulate a wide variety of behavioral and metabolic processes in many life forms. They enhance the fitness of organisms by improving their ability to efficiently anticipate periodic events in their external environments, especially periodic changes in light, temperature and humidity. Circadian clocks provide fitness advantage even to organisms living under constant conditions, such as those prevailing in the depth of oceans or in subterranean caves, perhaps by coordinating several metabolic processes in the internal milieu. Although the issue of adaptive significance of circadian rhythms has always remained central to circadian biology research, it has never been subjected to systematic and rigorous empirical validation. A few studies carried out on free-living animals under field conditions and simulated periodic and aperiodic conditions of the laboratory suggest that circadian rhythms are of adaptive value to their owners. However, most of these studies suffer from a number of drawbacks such as lack of population-level replication, lack of true controls and lack of adequate control on the genetic composition of the populations, which in many ways limits the potential insights gained from the studies. The present review is an effort to critically discuss studies that directly or indirectly touch upon the issue of adaptive significance of circadian rhythms and highlight some shortcomings that should be avoided while designing future experiments. PMID:15869714

  11. Periodic variation in bile acids controls circadian changes in uric acid via regulation of xanthine oxidase by the orphan nuclear receptor PPARα.

    PubMed

    Kanemitsu, Takumi; Tsurudome, Yuya; Kusunose, Naoki; Oda, Masayuki; Matsunaga, Naoya; Koyanagi, Satoru; Ohdo, Shigehiro

    2017-12-29

    Xanthine oxidase (XOD), also known as xanthine dehydrogenase, is a rate-limiting enzyme in purine nucleotide degradation, which produces uric acid. Uric acid concentrations in the blood and liver exhibit circadian oscillations in both humans and rodents; however, the underlying mechanisms remain unclear. Here, we demonstrate that XOD expression and enzymatic activity exhibit circadian oscillations in the mouse liver. We found that the orphan nuclear receptor peroxisome proliferator-activated receptor-α (PPARα) transcriptionally activated the mouse XOD gene and that bile acids suppressed XOD transactivation. The synthesis of bile acids is known to be under the control of the circadian clock, and we observed that the time-dependent accumulation of bile acids in hepatic cells interfered with the recruitment of the co-transcriptional activator p300 to PPARα, thereby repressing XOD expression. This time-dependent suppression of PPARα-mediated transactivation by bile acids caused an oscillation in the hepatic expression of XOD, which, in turn, led to circadian alterations in uric acid production. Finally, we also demonstrated that the anti-hyperuricemic effect of the XOD inhibitor febuxostat was enhanced by administering it at the time of day before hepatic XOD activity increased. These results suggest an underlying mechanism for the circadian alterations in uric acid production and also underscore the importance of selecting an appropriate time of day for administering XOD inhibitors. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Reciprocal Control of the Circadian Clock and Cellular Redox State - a Critical Appraisal

    PubMed Central

    Putker, Marrit; O’Neill, John Stuart

    2016-01-01

    Redox signalling comprises the biology of molecular signal transduction mediated by reactive oxygen (or nitrogen) species. By specific and reversible oxidation of redox-sensitive cysteines, many biological processes sense and respond to signals from the intracellular redox environment. Redox signals are therefore important regulators of cellular homeostasis. Recently, it has become apparent that the cellular redox state oscillates in vivo and in vitro, with a period of about one day (circadian). Circadian time-keeping allows cells and organisms to adapt their biology to resonate with the 24-hour cycle of day/night. The importance of this innate biological time-keeping is illustrated by the association of clock disruption with the early onset of several diseases (e.g. type II diabetes, stroke and several forms of cancer). Circadian regulation of cellular redox balance suggests potentially two distinct roles for redox signalling in relation to the cellular clock: one where it is regulated by the clock, and one where it regulates the clock. Here, we introduce the concepts of redox signalling and cellular timekeeping, and then critically appraise the evidence for the reciprocal regulation between cellular redox state and the circadian clock. We conclude there is a substantial body of evidence supporting circadian regulation of cellular redox state, but that it would be premature to conclude that the converse is also true. We therefore propose some approaches that might yield more insight into redox control of cellular timekeeping. PMID:26810072

  13. Circadian phase, dynamics of subjective sleepiness and sensitivity to blue light in young adults complaining of a delayed sleep schedule.

    PubMed

    Moderie, Christophe; Van der Maren, Solenne; Dumont, Marie

    2017-06-01

    To assess factors that might contribute to a delayed sleep schedule in young adults with sub-clinical features of delayed sleep phase disorder. Two groups of 14 young adults (eight women) were compared: one group complaining of a delayed sleep schedule and a control group with an earlier bedtime and no complaint. For one week, each subject maintained a target bedtime reflecting their habitual sleep schedule. Subjects were then admitted to the laboratory for the assessment of circadian phase (dim light melatonin onset), subjective sleepiness, and non-visual light sensitivity. All measures were timed relative to each participant's target bedtime. Non-visual light sensitivity was evaluated using subjective sleepiness and salivary melatonin during 1.5-h exposure to blue light, starting one hour after target bedtime. Compared to control subjects, delayed subjects had a later circadian phase and a slower increase of subjective sleepiness in the late evening. There was no group difference in non-visual sensitivity to blue light, but we found a positive correlation between melatonin suppression and circadian phase within the delayed group. Our results suggest that a late circadian phase, a slow build-up of sleep need, and an increased circadian sensitivity to blue light contribute to the complaint of a delayed sleep schedule. These findings provide targets for strategies aiming to decreasing the severity of a sleep delay and the negative consequences on daytime functioning and health. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. The circadian modulation of leptin-controlled bone formation

    USDA-ARS?s Scientific Manuscript database

    Mice with circadian gene Period and Cryptochrome mutations develop high bone mass early in life. Such a phenotype is accompanied by an increase in osteoblast numbers in mutant bone and cannot be corrected by leptin intracerebroventricular infusion. Thus, the molecular clock plays a key role in lepti...

  15. Synchrony and entrainment properties of robust circadian oscillators

    PubMed Central

    Bagheri, Neda; Taylor, Stephanie R.; Meeker, Kirsten; Petzold, Linda R.; Doyle, Francis J.

    2008-01-01

    Systems theoretic tools (i.e. mathematical modelling, control, and feedback design) advance the understanding of robust performance in complex biological networks. We highlight phase entrainment as a key performance measure used to investigate dynamics of a single deterministic circadian oscillator for the purpose of generating insight into the behaviour of a population of (synchronized) oscillators. More specifically, the analysis of phase characteristics may facilitate the identification of appropriate coupling mechanisms for the ensemble of noisy (stochastic) circadian clocks. Phase also serves as a critical control objective to correct mismatch between the biological clock and its environment. Thus, we introduce methods of investigating synchrony and entrainment in both stochastic and deterministic frameworks, and as a property of a single oscillator or population of coupled oscillators. PMID:18426774

  16. [Chrono-nutrition and chrono-exercise].

    PubMed

    Shibata, Shigenobu; Sasaki, Hiroyuki; Ikeda, Yuko

    2013-12-01

    The circadian rhythm controls many physiological functions, such as feeding, motor activity, endocrine secretion and autonomic nerve. Regular feeding pattern can entrain the peripheral circadian clock, whereas peripheral clock systems can control the absorption distribution, metabolism and excretion of nutrients, suggesting mutual interactions between circadian clocks and nutrition/food. The interactions were so-called by "chrono-nutrition", and bigger meals for breakfast were good for entrainment of peripheral clock and protection of obesity. Similar to chrono-nutrition the timing of exercise ("chrono-exercise") is important for both entrainment signals and energy expenditure. Evening exercise and/or feeding then exercise was good timing exercise for protection of obesity. Taken all, it is suggested that timing of feeding and exercise is now one of key factors for metabolic syndrome.

  17. Calcitonin control of calcium metabolism during weightlessness

    NASA Technical Reports Server (NTRS)

    Soliman, Karam F. A.

    1993-01-01

    The main objective of this proposal is to elucidate calcitonin role in calcium homeostasis during weightlessness. In this investigation our objectives are to study: the effect of weightlessness on thyroid and serum calcitonin, the effect of weightlessness on the circadian variation of calcitonin in serum and the thyroid gland, the role of light as zeitgeber for calcitonin circadian rhythm, the circadian pattern of thyroid sensitivity to release calcitonin in response to calcium load, and the role of serotonin and norepinephrine in the control of calcitonin release. The main objective of this research/proposal is to establish the role of calcitonin in calcium metabolism during weightlessness condition. Understanding the mechanism of these abnormalities will help in developing therapeutic means to counter calcium imbalance in spaceflights.

  18. Interactions of Circadian Rhythmicity, Stress and Orexigenic Neuropeptide Systems: Implications for Food Intake Control.

    PubMed

    Blasiak, Anna; Gundlach, Andrew L; Hess, Grzegorz; Lewandowski, Marian H

    2017-01-01

    Many physiological processes fluctuate throughout the day/night and daily fluctuations are observed in brain and peripheral levels of several hormones, neuropeptides and transmitters. In turn, mediators under the "control" of the "master biological clock" reciprocally influence its function. Dysregulation in the rhythmicity of hormone release as well as hormone receptor sensitivity and availability in different tissues, is a common risk-factor for multiple clinical conditions, including psychiatric and metabolic disorders. At the same time circadian rhythms remain in a strong, reciprocal interaction with the hypothalamic-pituitary-adrenal (HPA) axis. Recent findings point to a role of circadian disturbances and excessive stress in the development of obesity and related food consumption and metabolism abnormalities, which constitute a major health problem worldwide. Appetite, food intake and energy balance are under the influence of several brain neuropeptides, including the orexigenic agouti-related peptide, neuropeptide Y, orexin, melanin-concentrating hormone and relaxin-3. Importantly, orexigenic neuropeptide neurons remain under the control of the circadian timing system and are highly sensitive to various stressors, therefore the potential neuronal mechanisms through which disturbances in the daily rhythmicity and stress-related mediator levels contribute to food intake abnormalities rely on reciprocal interactions between these elements.

  19. Molecular approaches towards the isolation of sleep-related genes.

    PubMed

    Schibler, U; Tafti, M

    1999-06-01

    Behavioural genetics is one of the most enticing fields in modern biology. Owing to straightforward and semiautomated techniques that can be used to measure locomotor activity, circadian rhythmicity is perhaps the best studied behaviour in animals. Thus, during the past decade, five essential circadian clock genes have been isolated in Drosophila, and homologous counterparts for all of these genes have also been found in mammals. As the sleep-wake cycle is under the control of the circadian clock, these circadian master genes are expected to influence sleeping behaviour. However, different vigilance states are regulated by additional mechanisms that also have a genetic basis. In this article we discuss molecular approaches that may prove useful in the search for sleep-related genes.

  20. Interdependence of nutrient metabolism and the circadian clock system: Importance for metabolic health.

    PubMed

    Ribas-Latre, Aleix; Eckel-Mahan, Kristin

    2016-03-01

    While additional research is needed, a number of large epidemiological studies show an association between circadian disruption and metabolic disorders. Specifically, obesity, insulin resistance, cardiovascular disease, and other signs of metabolic syndrome all have been linked to circadian disruption in humans. Studies in other species support this association and generally reveal that feeding that is not in phase with the external light/dark cycle, as often occurs with night or rotating shift workers, is disadvantageous in terms of energy balance. As food is a strong driver of circadian rhythms in the periphery, understanding how nutrient metabolism drives clocks across the body is important for dissecting out why circadian misalignment may produce such metabolic effects. A number of circadian clock proteins as well as their accessory proteins (such as nuclear receptors) are highly sensitive to nutrient metabolism. Macronutrients and micronutrients can function as zeitgebers for the clock in a tissue-specific way and can thus impair synchrony between clocks across the body, or potentially restore synchrony in the case of circadian misalignment. Circadian nuclear receptors are particularly sensitive to nutrient metabolism and can alter tissue-specific rhythms in response to changes in the diet. Finally, SNPs in human clock genes appear to be correlated with diet-specific responses and along with chronotype eventually may provide valuable information from a clinical perspective on how to use diet and nutrition to treat metabolic disorders. This article presents a background of the circadian clock components and their interrelated metabolic and transcriptional feedback loops, followed by a review of some recent studies in humans and rodents that address the effects of nutrient metabolism on the circadian clock and vice versa. We focus on studies in which results suggest that nutrients provide an opportunity to restore or, alternatively, can destroy synchrony between peripheral clocks and the central pacemaker in the brain as well as between peripheral clocks themselves. In addition, we review several studies looking at clock gene SNPs in humans and the metabolic phenotypes or tendencies associated with particular clock gene mutations. Targeted use of specific nutrients based on chronotype has the potential for immense clinical utility in the future. Macronutrients and micronutrients have the ability to function as zeitgebers for the clock by activating or modulating specific clock proteins or accessory proteins (such as nuclear receptors). Circadian clock control by nutrients can be tissue-specific. With a better understanding of the mechanisms that support nutrient-induced circadian control in specific tissues, human chronotype and SNP information might eventually be used to tailor nutritional regimens for metabolic disease treatment and thus be an important part of personalized medicine's future.

  1. Chronobiology and obesity: Interactions between circadian rhythms and energy regulation.

    PubMed

    Summa, Keith C; Turek, Fred W

    2014-05-01

    Recent advances in the understanding of the molecular, genetic, neural, and physiologic basis for the generation and organization of circadian clocks in mammals have revealed profound bidirectional interactions between the circadian clock system and pathways critical for the regulation of metabolism and energy balance. The discovery that mice harboring a mutation in the core circadian gene circadian locomotor output cycles kaput (Clock) develop obesity and evidence of the metabolic syndrome represented a seminal moment for the field, clearly establishing a link between circadian rhythms, energy balance, and metabolism at the genetic level. Subsequent studies have characterized in great detail the depth and magnitude of the circadian clock's crucial role in regulating body weight and other metabolic processes. Dietary nutrients have been shown to influence circadian rhythms at both molecular and behavioral levels; and many nuclear hormone receptors, which bind nutrients as well as other circulating ligands, have been observed to exhibit robust circadian rhythms of expression in peripheral metabolic tissues. Furthermore, the daily timing of food intake has itself been shown to affect body weight regulation in mammals, likely through, at least in part, regulation of the temporal expression patterns of metabolic genes. Taken together, these and other related findings have transformed our understanding of the important role of time, on a 24-h scale, in the complex physiologic processes of energy balance and coordinated regulation of metabolism. This research has implications for human metabolic disease and may provide unique and novel insights into the development of new therapeutic strategies to control and combat the epidemic of obesity. © 2014 American Society for Nutrition.

  2. Circadian Rhythms Regulate Amelogenesis

    PubMed Central

    Zheng, Li; Seon, Yoon Ji; Mourão, Marcio A.; Schnell, Santiago; Kim, Doohak; Harada, Hidemitsu; Papagerakis, Silvana; Papagerakis, Petros

    2013-01-01

    Ameloblasts, the cells responsible for making enamel, modify their morphological features in response to specialized functions necessary for synchronized ameloblast differentiation and enamel formation. Secretory and maturation ameloblasts are characterized by the expression of stage-specific genes which follows strictly controlled repetitive patterns. Circadian rhythms are recognized as key regulators of development and diseases of many tissues including bone. Our aim was to gain novel insights on the role of clock genes in enamel formation and to explore the potential links between circadian rhythms and amelogenesis. Our data shows definitive evidence that the main clock genes (Bmal1, Clock, Per1 and Per2) oscillate in ameloblasts at regular circadian (24h) intervals both at RNA and protein levels. This study also reveals that two markers of ameloblast differentiation i.e. amelogenin (Amelx; a marker of secretory ameloblasts) and kallikrein-related peptidase 4 (Klk4, a marker of maturation ameloblasts) are downstream targets of clock genes. Both, Amelx and Klk4 show 24h oscillatory expression patterns and their expression levels are up-regulated after Bmal1 over-expression in HAT-7 ameloblast cells. Taken together, these data suggest that both the secretory and the maturation stage of amelogenesis might be under circadian control. Changes in clock genes expression patterns might result in significant alterations of enamel apposition and mineralization. PMID:23486183

  3. CREBH Maintains Circadian Glucose Homeostasis by Regulating Hepatic Glycogenolysis and Gluconeogenesis.

    PubMed

    Kim, Hyunbae; Zheng, Ze; Walker, Paul D; Kapatos, Gregory; Zhang, Kezhong

    2017-07-15

    Cyclic AMP-responsive element binding protein, hepatocyte specific (CREBH), is a liver-enriched, endoplasmic reticulum-tethered transcription factor known to regulate the hepatic acute-phase response and lipid homeostasis. In this study, we demonstrate that CREBH functions as a circadian transcriptional regulator that plays major roles in maintaining glucose homeostasis. The proteolytic cleavage and posttranslational acetylation modification of CREBH are regulated by the circadian clock. Functionally, CREBH is required in order to maintain circadian homeostasis of hepatic glycogen storage and blood glucose levels. CREBH regulates the rhythmic expression of the genes encoding the rate-limiting enzymes for glycogenolysis and gluconeogenesis, including liver glycogen phosphorylase (PYGL), phosphoenolpyruvate carboxykinase 1 (PCK1), and the glucose-6-phosphatase catalytic subunit (G6PC). CREBH interacts with peroxisome proliferator-activated receptor α (PPARα) to synergize its transcriptional activities in hepatic gluconeogenesis. The acetylation of CREBH at lysine residue 294 controls CREBH-PPARα interaction and synergy in regulating hepatic glucose metabolism in mice. CREBH deficiency leads to reduced blood glucose levels but increases hepatic glycogen levels during the daytime or upon fasting. In summary, our studies revealed that CREBH functions as a key metabolic regulator that controls glucose homeostasis across the circadian cycle or under metabolic stress. Copyright © 2017 American Society for Microbiology.

  4. CREBH Maintains Circadian Glucose Homeostasis by Regulating Hepatic Glycogenolysis and Gluconeogenesis

    PubMed Central

    Kim, Hyunbae; Zheng, Ze; Walker, Paul D.; Kapatos, Gregory

    2017-01-01

    ABSTRACT Cyclic AMP-responsive element binding protein, hepatocyte specific (CREBH), is a liver-enriched, endoplasmic reticulum-tethered transcription factor known to regulate the hepatic acute-phase response and lipid homeostasis. In this study, we demonstrate that CREBH functions as a circadian transcriptional regulator that plays major roles in maintaining glucose homeostasis. The proteolytic cleavage and posttranslational acetylation modification of CREBH are regulated by the circadian clock. Functionally, CREBH is required in order to maintain circadian homeostasis of hepatic glycogen storage and blood glucose levels. CREBH regulates the rhythmic expression of the genes encoding the rate-limiting enzymes for glycogenolysis and gluconeogenesis, including liver glycogen phosphorylase (PYGL), phosphoenolpyruvate carboxykinase 1 (PCK1), and the glucose-6-phosphatase catalytic subunit (G6PC). CREBH interacts with peroxisome proliferator-activated receptor α (PPARα) to synergize its transcriptional activities in hepatic gluconeogenesis. The acetylation of CREBH at lysine residue 294 controls CREBH-PPARα interaction and synergy in regulating hepatic glucose metabolism in mice. CREBH deficiency leads to reduced blood glucose levels but increases hepatic glycogen levels during the daytime or upon fasting. In summary, our studies revealed that CREBH functions as a key metabolic regulator that controls glucose homeostasis across the circadian cycle or under metabolic stress. PMID:28461393

  5. The role of the circadian system in fractal neurophysiological control

    PubMed Central

    Pittman-Polletta, Benjamin R.; Scheer, Frank A.J.L.; Butler, Matthew P.; Shea, Steven A.; Hu, Kun

    2013-01-01

    Many neurophysiological variables such as heart rate, motor activity, and neural activity are known to exhibit intrinsic fractal fluctuations - similar temporal fluctuation patterns at different time scales. These fractal patterns contain information about health, as many pathological conditions are accompanied by their alteration or absence. In physical systems, such fluctuations are characteristic of critical states on the border between randomness and order, frequently arising from nonlinear feedback interactions between mechanisms operating on multiple scales. Thus, the existence of fractal fluctuations in physiology challenges traditional conceptions of health and disease, suggesting that high levels of integrity and adaptability are marked by complex variability, not constancy, and are properties of a neurophysiological network, not individual components. Despite the subject's theoretical and clinical interest, the neurophysiological mechanisms underlying fractal regulation remain largely unknown. The recent discovery that the circadian pacemaker (suprachiasmatic nucleus) plays a crucial role in generating fractal patterns in motor activity and heart rate sheds an entirely new light on both fractal control networks and the function of this master circadian clock, and builds a bridge between the fields of circadian biology and fractal physiology. In this review, we sketch the emerging picture of the developing interdisciplinary field of fractal neurophysiology by examining the circadian system’s role in fractal regulation. PMID:23573942

  6. Acute exposure to 2G phase shifts the rat circadian timing system

    NASA Technical Reports Server (NTRS)

    Hoban-Higgins, T. M.; Murakami, D. M.; Tandon, T.; Fuller, C. A.

    1995-01-01

    The circadian timing system (CTS) provides internal and external temporal coordination of an animal's physiology and behavior. In mammals, the generation and coordination of these circadian rhythms is controlled by a neural pacemaker, the suprachiasmatic nucleus (SCN), located within the hypothalamus. The pacemaker is synchronized to the 24 hour day by time cures (zeitgebers) such as the light/dark cycle. When an animal is exposed to an environment without time cues, the circadian rhythms maintain internal temporal coordination, but exhibit a 'free-running' condition in which the period length is determined by the internal pacemaker. Maintenance of internal and external temporal coordination are critical for normal physiological and psychological function in human and non-human primates. Exposure to altered gravitational environments has been shown to affect the amplitude, mean, and timing of circadian rhythms in species ranging from unicellular organisms to man. However, it has not been determined whether altered gravitational fields have a direct effect on the neural pacemaker, or affect peripheral parameters. In previous studies, the ability of a stimulus to phase shift circadian rhythms was used to determine whether a stimulus has a direct effect on the neural pacemaker. The present experiment was performed in order to determine whether acute exposure to a hyperdynamic field could phase shift circadian rhythms.

  7. PPARalpha is a potential therapeutic target of drugs to treat circadian rhythm sleep disorders.

    PubMed

    Shirai, Hidenori; Oishi, Katsutaka; Kudo, Takashi; Shibata, Shigenobu; Ishida, Norio

    2007-06-08

    Recent progress at the molecular level has revealed that nuclear receptors play an important role in the generation of mammalian circadian rhythms. To examine whether peroxisome proliferator-activated receptor alpha (PPARalpha) is involved in the regulation of circadian behavioral rhythms in mammals, we evaluated the locomotor activity of mice administered with the hypolipidemic PPARalpha ligand, bezafibrate. Circadian locomotor activity was phase-advanced about 3h in mice given bezafibrate under light-dark (LD) conditions. Transfer from LD to constant darkness did not change the onset of activity in these mice, suggesting that bezafibrate advanced the phase of the endogenous clock. Surprisingly, bezafibrate also advanced the phase in mice with lesions of the suprachiasmatic nucleus (SCN; the central clock in mammals). The circadian expression of clock genes such as period2, BMAL1, and Rev-erbalpha was also phase-advanced in various tissues (cortex, liver, and fat) without affecting the SCN. Bezafibrate also phase-advanced the activity phase that is delayed in model mice with delayed sleep phase syndrome (DSPS) due to a Clock gene mutation. Our results indicated that PPARalpha is involved in circadian clock control independently of the SCN and that PPARalpha could be a potent target of drugs to treat circadian rhythm sleep disorders including DSPS.

  8. Parallel Measurement of Circadian Clock Gene Expression and Hormone Secretion in Human Primary Cell Cultures.

    PubMed

    Petrenko, Volodymyr; Saini, Camille; Perrin, Laurent; Dibner, Charna

    2016-11-11

    Circadian clocks are functional in all light-sensitive organisms, allowing for an adaptation to the external world by anticipating daily environmental changes. Considerable progress in our understanding of the tight connection between the circadian clock and most aspects of physiology has been made in the field over the last decade. However, unraveling the molecular basis that underlies the function of the circadian oscillator in humans stays of highest technical challenge. Here, we provide a detailed description of an experimental approach for long-term (2-5 days) bioluminescence recording and outflow medium collection in cultured human primary cells. For this purpose, we have transduced primary cells with a lentiviral luciferase reporter that is under control of a core clock gene promoter, which allows for the parallel assessment of hormone secretion and circadian bioluminescence. Furthermore, we describe the conditions for disrupting the circadian clock in primary human cells by transfecting siRNA targeting CLOCK. Our results on the circadian regulation of insulin secretion by human pancreatic islets, and myokine secretion by human skeletal muscle cells, are presented here to illustrate the application of this methodology. These settings can be used to study the molecular makeup of human peripheral clocks and to analyze their functional impact on primary cells under physiological or pathophysiological conditions.

  9. Combination of Light and Melatonin Time Cues for Phase Advancing the Human Circadian Clock

    PubMed Central

    Burke, Tina M.; Markwald, Rachel R.; Chinoy, Evan D.; Snider, Jesse A.; Bessman, Sara C.; Jung, Christopher M.; Wright, Kenneth P.

    2013-01-01

    Study Objectives: Photic and non-photic stimuli have been shown to shift the phase of the human circadian clock. We examined how photic and non-photic time cues may be combined by the human circadian system by assessing the phase advancing effects of one evening dose of exogenous melatonin, alone and in combination with one session of morning bright light exposure. Design: Randomized placebo-controlled double-blind circadian protocol. The effects of four conditions, dim light (∼1.9 lux, ∼0.6 Watts/m2)-placebo, dim light-melatonin (5 mg), bright light (∼3000 lux, ∼7 Watts/m2)-placebo, and bright light-melatonin on circadian phase was assessed by the change in the salivary dim light melatonin onset (DLMO) prior to and following treatment under constant routine conditions. Melatonin or placebo was administered 5.75 h prior to habitual bedtime and 3 h of bright light exposure started 1 h prior to habitual wake time. Setting: Sleep and chronobiology laboratory environment free of time cues. Participants: Thirty-six healthy participants (18 females) aged 22 ± 4 y (mean ± SD). Results: Morning bright light combined with early evening exogenous melatonin induced a greater phase advance of the DLMO than either treatment alone. Bright light alone and melatonin alone induced similar phase advances. Conclusion: Information from light and melatonin appear to be combined by the human circadian clock. The ability to combine circadian time cues has important implications for understanding fundamental physiological principles of the human circadian timing system. Knowledge of such principles is important for designing effective countermeasures for phase-shifting the human circadian clock to adapt to jet lag, shift work, and for designing effective treatments for circadian sleep-wakefulness disorders. Citation: Burke TM; Markwald RR; Chinoy ED; Snider JA; Bessman SC; Jung CM; Wright Jr KP. Combination of light and melatonin time cues for phase advancing the human circadian clock. SLEEP 2013;36(11):1617-1624. PMID:24179293

  10. BMAL1-dependent regulation of the mTOR signaling pathway delays aging

    PubMed Central

    Khapre, Rohini V.; Kondratova, Anna A.; Patel, Sonal; Dubrovsky, Yuliya; Wrobel, Michelle; Antoch, Marina P.; Kondratov, Roman V.

    2014-01-01

    The circadian clock, an internal time-keeping system, has been linked with control of aging, but molecular mechanisms of regulation are not known. BMAL1 is a transcriptional factor and core component of the circadian clock; BMAL1 deficiency is associated with premature aging and reduced lifespan. Here we report that activity of mammalian Target of Rapamycin Complex 1 (mTORC1) is increased upon BMAL1 deficiency both in vivo and in cell culture. Increased mTOR signaling is associated with accelerated aging; in accordance with that, treatment with the mTORC1 inhibitor rapamycin increased lifespan of Bmal1−/− mice by 50%. Our data suggest that BMAL1 is a negative regulator of mTORC1 signaling. We propose that the circadian clock controls the activity of the mTOR pathway through BMAL1-dependent mechanisms and this regulation is important for control of aging and metabolism. PMID:24481314

  11. BMAL1-dependent regulation of the mTOR signaling pathway delays aging.

    PubMed

    Khapre, Rohini V; Kondratova, Anna A; Patel, Sonal; Dubrovsky, Yuliya; Wrobel, Michelle; Antoch, Marina P; Kondratov, Roman V

    2014-01-01

    The circadian clock, an internal time-keeping system, has been linked with control of aging, but molecular mechanisms of regulation are not known. BMAL1 is a transcriptional factor and core component of the circadian clock; BMAL1 deficiency is associated with premature aging and reduced lifespan. Here we report that activity of mammalian Target of Rapamycin Complex 1 (mTORC1) is increased upon BMAL1 deficiency both in vivo and in cell culture. Increased mTOR signaling is associated with accelerated aging; in accordance with that, treatment with the mTORC1 inhibitor rapamycin increased lifespan of Bmal1-/- mice by 50%. Our data suggest that BMAL1 is a negative regulator of mTORC1 signaling. We propose that the circadian clock controls the activity of the mTOR pathway through BMAL1-dependent mechanisms and this regulation is important for control of aging and metabolism.

  12. Chronic food restriction and the circadian rhythms of pituitary-adrenal hormones, growth hormone and thyroid-stimulating hormone.

    PubMed

    Armario, A; Montero, J L; Jolin, T

    1987-01-01

    Adult male Sprague-Dawley rats were subjected to food restriction so that they ate 65% of food ingested by control rats. While control rats had free access to food over the 24-hour period, food-restricted rats were provided with food daily at 10 a.m. The experimental period lasted for 34 days. On day 35, rats from both experimental groups were killed at 08.00, 11.00, 14.00, 24.00 and 02.00 h. Food restriction modified the circadian rhythms of ACTH and corticosterone. In addition, total circulating corticosterone throughout the day was higher in food-restricted than in control rats. In contrast, food restriction resulted in depressed secretion of thyroid-stimulating hormone and growth hormone. The results indicate that time of food availability entrained circadian corticosterone rhythm but not thyroid-stimulating hormone and growth hormone rhythms.

  13. Scheduled Evening Sleep and Enhanced Lighting Improve Adaptation to Night Shift Work in Older Adults

    PubMed Central

    Chinoy, Evan D.; Harris, Michael P.; Kim, Min Ju; Wang, Wei; Duffy, Jeanne F.

    2017-01-01

    Objectives We tested whether a sleep and circadian-based treatment shown to improve circadian adaptation to night shifts and attenuate negative effects on alertness, performance, and sleep in young adults would also be effective in older adults. Methods We assessed subjective alertness, sustained attention (psychomotor vigilance task, PVT), sleep duration (actigraphy), and circadian timing (salivary dim-light melatonin onset, DLMO) in eighteen older adults (57.2±3.8 y; mean±SD) in a simulated shift work protocol. Four day shifts were followed by three night shifts in the laboratory. Participants slept at home and were randomized to either the Treatment Group (scheduled evening sleep and enhanced lighting during the latter half of night shifts), or Control Group (ad lib sleep and typical lighting during night shifts). Results Compared to day shifts, alertness and sustained attention declined on the first night shift in both groups, and was worse in the latter half of the night shifts. Alertness and attention improved on nights 2 and 3 for the Treatment Group but remained lower for the Control Group. Sleep duration in the Treatment Group remained similar to baseline (6–7 h) following night shifts, but was shorter (3–5 h) following night shifts in the Control Group. Treatment Group circadian timing advanced by 169.3±16.1 min (mean±SEM) but did not shift (−9.7±9.9 min) in the Control Group. Conclusions The combined treatment of scheduled evening sleep and enhanced lighting increased sleep duration and partially aligned circadian phase with sleep and work timing, resulting in improved night shift alertness and performance. PMID:27566781

  14. The internal circadian clock increases hunger and appetite in the evening independent of food intake and other behaviors.

    PubMed

    Scheer, Frank A J L; Morris, Christopher J; Shea, Steven A

    2013-03-01

    Despite the extended overnight fast, paradoxically, people are typically not ravenous in the morning and breakfast is typically the smallest meal of the day. We assessed whether this paradox could be explained by an endogenous circadian influence on appetite with a morning trough, while controlling for sleep/wake and fasting/feeding effects. Twelve healthy non-obese adults (six males; age, 20-42 years) were studied throughout a 13-day laboratory protocol that balanced all behaviors, including eucaloric meals and sleep periods, evenly across the endogenous circadian cycle. Participants rated their appetite and food preferences by visual analog scales. There was a large endogenous circadian rhythm in hunger, with the trough in the biological morning (8 AM) and peak in the biological evening (8 PM; peak-to-trough amplitude = 17%; P = 0.004). Similarly-phased significant endogenous circadian rhythms were present in appetites for sweet, salty and starchy foods, fruits, meats/poultry, food overall, and for estimates of how much food participants could eat (amplitudes 14-25%; all P < 0.05). In people who sleep at night, the intrinsic circadian evening peak in appetite may promote larger meals before the fasting period necessitated by sleep, whereas the circadian morning trough would theoretically facilitate the extended overnight fast. Furthermore, the circadian decline in hunger across the night would theoretically counteract the fasting-induced hunger increase that could otherwise disrupt sleep. Copyright © 2013 The Obesity Society.

  15. Clockwork blue: on the evolution of non-image-forming retinal photoreceptors in marine and terrestrial vertebrates.

    PubMed

    Erren, T C; Erren, M; Lerchl, A; Meyer-Rochow, V B

    2008-04-01

    This paper presents a hypothesis that could explain why blue light appears to dominate non-image-forming (NIF) ocular photoreception in marine as well as terrestrial vertebrates. Indeed, there is more and more evidence suggesting that 'novel' retinal photoreceptors, which are sensitive to blue light and were only discovered in the 1990s, could be a feature shared by all vertebrates. In our view, blue light photoreception evolved and persisted as NIF photoreception because it has been useful in the colonisation of extensive photo-dependent oceanic habitats and facilitated the move of vertebrates from an aquatic to a terrestrial environment. Because the available scattered evidence is compatible with the validity of our hypothesis, we hope that our rationale will be followed up. Indeed, it (1) involves testable predictions, (2) provides plausible explanations for previous observations, (3) unites phenomena not previously considered related to one another and (4) suggests tests that have not been carried out before. Overall, our approach not only embraces cross-disciplinary links; it, moreover, serves as a reminder of an all-embracing evolutionary history, especially with regard to a ubiquitous photoreceptive 'clockwork-blue' in marine and terrestrial vertebrates.

  16. Various Regulatory Modes for Circadian Rhythmicity and Sexual Dimorphism in the Non-Neuronal Cardiac Cholinergic System.

    PubMed

    Oikawa, Shino; Kai, Yuko; Mano, Asuka; Ohata, Hisayuki; Nemoto, Takahiro; Kakinuma, Yoshihiko

    2017-08-01

    Cardiomyocytes possess a non-neuronal cardiac cholinergic system (NNCCS) regulated by a positive feedback system; however, its other regulatory mechanisms remain to be elucidated, which include the epigenetic control or regulation by the female sex steroid, estrogen. Here, the NNCCS was shown to possess a circadian rhythm; its activity was upregulated in the light-off phase via histone acetyltransferase (HAT) activity and downregulated in the light-on phase. Disrupting the circadian rhythm altered the physiological choline acetyltransferase (ChAT) expression pattern. The NNCCS circadian rhythm may be regulated by miR-345, independently of HAT, causing decreased cardiac ChAT expression. Murine cardiac ChAT expression and ACh contents were increased more in female hearts than in male hearts. This upregulation was downregulated by treatment with the estrogen receptor antagonist tamoxifen, and in contrast, estrogen reciprocally regulated cardiac miR-345 expression. These results suggest that the NNCCS is regulated by the circadian rhythm and is affected by sexual dimorphism.

  17. RNA-seq analysis of Drosophila clock and non-clock neurons reveals neuron-specific cycling and novel candidate neuropeptides.

    PubMed

    Abruzzi, Katharine C; Zadina, Abigail; Luo, Weifei; Wiyanto, Evelyn; Rahman, Reazur; Guo, Fang; Shafer, Orie; Rosbash, Michael

    2017-02-01

    Locomotor activity rhythms are controlled by a network of ~150 circadian neurons within the adult Drosophila brain. They are subdivided based on their anatomical locations and properties. We profiled transcripts "around the clock" from three key groups of circadian neurons with different functions. We also profiled a non-circadian outgroup, dopaminergic (TH) neurons. They have cycling transcripts but fewer than clock neurons as well as low expression and poor cycling of clock gene transcripts. This suggests that TH neurons do not have a canonical circadian clock and that their gene expression cycling is driven by brain systemic cues. The three circadian groups are surprisingly diverse in their cycling transcripts and overall gene expression patterns, which include known and putative novel neuropeptides. Even the overall phase distributions of cycling transcripts are distinct, indicating that different regulatory principles govern transcript oscillations. This surprising cell-type diversity parallels the functional heterogeneity of the different neurons.

  18. Multimodal Regulation of Circadian Glucocorticoid Rhythm by Central and Adrenal Clocks.

    PubMed

    Son, Gi Hoon; Cha, Hyo Kyeong; Chung, Sooyoung; Kim, Kyungjin

    2018-05-01

    Adrenal glucocorticoids (GCs) control a wide range of physiological processes, including metabolism, cardiovascular and pulmonary activities, immune and inflammatory responses, and various brain functions. During stress responses, GCs are secreted through activation of the hypothalamic-pituitary-adrenal axis, whereas circulating GC levels in unstressed states follow a robust circadian oscillation with a peak around the onset of the active period of a day. A recent advance in chronobiological research has revealed that multiple regulatory mechanisms, along with classical neuroendocrine regulation, underlie this GC circadian rhythm. The hierarchically organized circadian system, with a central pacemaker in the suprachiasmatic nucleus of the hypothalamus and local oscillators in peripheral tissues, including the adrenal gland, mediates periodicities in physiological processes in mammals. In this review, we primarily focus on our understanding of the circadian regulation of adrenal GC rhythm, with particular attention to the cooperative actions of the suprachiasmatic nucleus central and adrenal local clocks, and the clinical implications of this rhythm in human diseases.

  19. Multimodal Regulation of Circadian Glucocorticoid Rhythm by Central and Adrenal Clocks

    PubMed Central

    Son, Gi Hoon; Cha, Hyo Kyeong; Chung, Sooyoung; Kim, Kyungjin

    2018-01-01

    Abstract Adrenal glucocorticoids (GCs) control a wide range of physiological processes, including metabolism, cardiovascular and pulmonary activities, immune and inflammatory responses, and various brain functions. During stress responses, GCs are secreted through activation of the hypothalamic–pituitary–adrenal axis, whereas circulating GC levels in unstressed states follow a robust circadian oscillation with a peak around the onset of the active period of a day. A recent advance in chronobiological research has revealed that multiple regulatory mechanisms, along with classical neuroendocrine regulation, underlie this GC circadian rhythm. The hierarchically organized circadian system, with a central pacemaker in the suprachiasmatic nucleus of the hypothalamus and local oscillators in peripheral tissues, including the adrenal gland, mediates periodicities in physiological processes in mammals. In this review, we primarily focus on our understanding of the circadian regulation of adrenal GC rhythm, with particular attention to the cooperative actions of the suprachiasmatic nucleus central and adrenal local clocks, and the clinical implications of this rhythm in human diseases. PMID:29713692

  20. Circadian Rhythms in Fear Conditioning: An Overview of Behavioral, Brain System, and Molecular Interactions

    PubMed Central

    Stork, Oliver

    2017-01-01

    The formation of fear memories is a powerful and highly evolutionary conserved mechanism that serves the behavioral adaptation to environmental threats. Accordingly, classical fear conditioning paradigms have been employed to investigate fundamental molecular processes of memory formation. Evidence suggests that a circadian regulation mechanism allows for a timestamping of such fear memories and controlling memory salience during both their acquisition and their modification after retrieval. These mechanisms include an expression of molecular clocks in neurons of the amygdala, hippocampus, and medial prefrontal cortex and their tight interaction with the intracellular signaling pathways that mediate neural plasticity and information storage. The cellular activities are coordinated across different brain regions and neural circuits through the release of glucocorticoids and neuromodulators such as acetylcholine, which integrate circadian and memory-related activation. Disturbance of this interplay by circadian phase shifts or traumatic experience appears to be an important factor in the development of stress-related psychopathology, considering these circadian components are of critical importance for optimizing therapeutic approaches to these disorders. PMID:28698810

  1. Distal muscle activity alterations during the stance phase of gait in restless leg syndrome (RLS) patients.

    PubMed

    Dafkin, Chloe; Green, Andrew; Olivier, Benita; McKinon, Warrick; Kerr, Samantha

    2018-05-01

    To assess if there is a circadian variation in electromyographical (EMG) muscle activity during gait in restless legs syndrome (RLS) patients and healthy control participants. Gait assessment was done in 14 RLS patients and 13 healthy control participants in the evening (PM) and the morning (AM). Muscle activity was recorded bilaterally from the tibialis anterior (TA), lateral gastrocnemius (GL), rectus femoris (RF) and biceps femoris (BF) muscles. A circadian variation during the stance phase in only TA (PM > AM, p < 0.005) and BF (PM < AM, p = 0.008) activity was observed in control participants. Conversely no circadian variation was seen in any muscles in the RLS patients. RLS patients had an increased TA and GL activity (RLS > Controls, p < 0.05) during early stance and decreased GL activity (RLS < Controls, p < 0.01) during terminal stance in comparison to control participants in the evening. No other significant differences were noted between RLS patients and control participants. Activation of GL during the swing phase was noted in 79% of RLS patients and in 23% of control participants in the morning compared to 71% and 38% in the evening, respectively. EMG muscle activity shows no circadian variation in RLS patients. Evening differences in gait muscle activation patterns between RLS patients and control participants are evident. These results extend our knowledge about alterations in spinal processing during gait in RLS. A possible explanation for these findings is central pattern generator sensitization caused by increased sensitivity in cutaneous afferents in RLS patients. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. The relationship between sleep-wake cycle and cognitive functioning in young people with affective disorders.

    PubMed

    Carpenter, Joanne S; Robillard, Rébecca; Lee, Rico S C; Hermens, Daniel F; Naismith, Sharon L; White, Django; Whitwell, Bradley; Scott, Elizabeth M; Hickie, Ian B

    2015-01-01

    Although early-stage affective disorders are associated with both cognitive dysfunction and sleep-wake disruptions, relationships between these factors have not been specifically examined in young adults. Sleep and circadian rhythm disturbances in those with affective disorders are considerably heterogeneous, and may not relate to cognitive dysfunction in a simple linear fashion. This study aimed to characterise profiles of sleep and circadian disturbance in young people with affective disorders and examine associations between these profiles and cognitive performance. Actigraphy monitoring was completed in 152 young people (16-30 years; 66% female) with primary diagnoses of affective disorders, and 69 healthy controls (18-30 years; 57% female). Patients also underwent detailed neuropsychological assessment. Actigraphy data were processed to estimate both sleep and circadian parameters. Overall neuropsychological performance in patients was poor on tasks relating to mental flexibility and visual memory. Two hierarchical cluster analyses identified three distinct patient groups based on sleep variables and three based on circadian variables. Sleep clusters included a 'long sleep' cluster, a 'disrupted sleep' cluster, and a 'delayed and disrupted sleep' cluster. Circadian clusters included a 'strong circadian' cluster, a 'weak circadian' cluster, and a 'delayed circadian' cluster. Medication use differed between clusters. The 'long sleep' cluster displayed significantly worse visual memory performance compared to the 'disrupted sleep' cluster. No other cognitive functions differed between clusters. These results highlight the heterogeneity of sleep and circadian profiles in young people with affective disorders, and provide preliminary evidence in support of a relationship between sleep and visual memory, which may be mediated by use of antipsychotic medication. These findings have implications for the personalisation of treatments and improvement of functioning in young adults early in the course of affective illness.

  3. Melatonin promotes circadian rhythm-induced proliferation through Clock/histone deacetylase 3/c-Myc interaction in mouse adipose tissue.

    PubMed

    Liu, Zhenjiang; Gan, Lu; Luo, Dan; Sun, Chao

    2017-05-01

    Melatonin is synthesized in the pineal gland and controls circadian rhythm of peripheral adipose tissue, resulting in changes in body weight. Although core regulatory components of clock rhythmicity have been defined, insight into the mechanisms of circadian rhythm-mediated proliferation in adipose tissue is still limited. Here, we showed that melatonin (20 mg/kg/d) promoted circadian and proliferation processes in white adipose tissue. The circadian amplitudes of brain and muscle aryl hydrocarbon receptor nuclear translocator-like 1 (Bmal1, P<.05) and circadian locomotor output cycles kaput (Clock, P<.05), period 2 (Per2, P<.05), cyclin E (P<.05), and c-Myc (P<.05) were directly increased by melatonin in adipose tissue. Melatonin also promoted cell cycle and increased cell numbers (P<.05), which was correlated with the Clock expression (P<.05). Further analysis demonstrated that Clock bound to the E-box elements in the promoter region of c-Myc and then directly stimulated c-Myc transcription. Moreover, Clock physically interacted with histone deacetylase 3 (HDAC3) and formed a complex with c-Myc to promote adipocyte proliferation. Melatonin also attenuated circadian disruption and promoted adipocyte proliferation in chronic jet-lagged mice and obese mice. Thus, our study found that melatonin promoted adipocyte proliferation by forming a Clock/HDAC3/c-Myc complex and subsequently driving the circadian amplitudes of proliferation genes. Our data reveal a novel mechanism that links circadian rhythm to cell proliferation in adipose tissue. These findings also identify a new potential means for melatonin to prevent and treat sleep deprivation-caused obesity. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Differential effects of omega-3 fatty acid docosahexaenoic acid and palmitate on the circadian transcriptional profile of clock genes in immortalized hypothalamic neurons.

    PubMed

    Greco, James A; Oosterman, Johanneke E; Belsham, Denise D

    2014-10-15

    Diets high in saturated fatty acids (SFAs) are associated with the development of circadian dysregulation, obesity, and Type 2 diabetes mellitus. Conversely, polyunsaturated fatty acids (PUFAs) have recently been identified to improve insulin sensitivity, reduce weight gain, and relieve obesity-induced inflammation. While saturated fatty acids, such as the prevalent dietary fatty acid palmitate, have been implicated in circadian disruption, there is a paucity of studies regarding the effects of PUFAs on circadian parameters. Therefore, the immortalized murine neuronal model, mHypoE-37, was utilized to examine the effects of the SFA palmitate and omega-3 PUFA docosahexaenoic acid (DHA) on circadian rhythms. The mHypoE-37 neurons express the core clock genes, Bmal1, Per2, and Rev-erbα, in a circadian manner. 25 μM of palmitate significantly increased the transcriptional expression of Bmal1, without altering the expression of inflammatory markers TLR4, IκBα, and IL-6, nor the orexigenic neuropeptide AgRP, suggesting that the observed disruption of the molecular clock is the result of a mechanism distinct from that of hypothalamic cellular inflammation. Furthermore, treatment with the PUFA DHA resulted in alterations in the circadian expression profile of Bmal1, although differentially from the effects of palmitate. In the presence of DHA, the disruptive effects of palmitate on Bmal1 were less pronounced, suggesting a protective effect of DHA. These studies are the first to identify the potential for omega-3 PUFAs to protect against palmitate-mediated dysregulation of circadian parameters and will ultimately improve the understanding of circadian control mechanisms. Copyright © 2014 the American Physiological Society.

  5. Modeling the emergence of circadian rhythms in a clock neuron network.

    PubMed

    Diambra, Luis; Malta, Coraci P

    2012-01-01

    Circadian rhythms in pacemaker cells persist for weeks in constant darkness, while in other types of cells the molecular oscillations that underlie circadian rhythms damp rapidly under the same conditions. Although much progress has been made in understanding the biochemical and cellular basis of circadian rhythms, the mechanisms leading to damped or self-sustained oscillations remain largely unknown. There exist many mathematical models that reproduce the circadian rhythms in the case of a single cell of the Drosophila fly. However, not much is known about the mechanisms leading to coherent circadian oscillation in clock neuron networks. In this work we have implemented a model for a network of interacting clock neurons to describe the emergence (or damping) of circadian rhythms in Drosophila fly, in the absence of zeitgebers. Our model consists of an array of pacemakers that interact through the modulation of some parameters by a network feedback. The individual pacemakers are described by a well-known biochemical model for circadian oscillation, to which we have added degradation of PER protein by light and multiplicative noise. The network feedback is the PER protein level averaged over the whole network. In particular, we have investigated the effect of modulation of the parameters associated with (i) the control of net entrance of PER into the nucleus and (ii) the non-photic degradation of PER. Our results indicate that the modulation of PER entrance into the nucleus allows the synchronization of clock neurons, leading to coherent circadian oscillations under constant dark condition. On the other hand, the modulation of non-photic degradation cannot reset the phases of individual clocks subjected to intrinsic biochemical noise.

  6. The circadian clock stops ticking during deep hibernation in the European hamster

    PubMed Central

    Revel, Florent G.; Herwig, Annika; Garidou, Marie-Laure; Dardente, Hugues; Menet, Jérôme S.; Masson-Pévet, Mireille; Simonneaux, Valérie; Saboureau, Michel; Pévet, Paul

    2007-01-01

    Hibernation is a fascinating, yet enigmatic, physiological phenomenon during which body temperature and metabolism are reduced to save energy. During the harsh season, this strategy allows substantial energy saving by reducing body temperature and metabolism. Accordingly, biological processes are considerably slowed down and reduced to a minimum. However, the persistence of a temperature-compensated, functional biological clock in hibernating mammals has long been debated. Here, we show that the master circadian clock no longer displays 24-h molecular oscillations in hibernating European hamsters. The clock genes Per1, Per2, and Bmal1 and the clock-controlled gene arginine vasopressin were constantly expressed in the suprachiasmatic nucleus during deep torpor, as assessed by radioactive in situ hybridization. Finally, the melatonin rhythm-generating enzyme, arylalkylamine N-acetyltransferase, whose rhythmic expression in the pineal gland is controlled by the master circadian clock, no longer exhibits day/night changes of expression but constantly elevated mRNA levels over 24 h. Overall, these data provide strong evidence that in the European hamster the molecular circadian clock is arrested during hibernation and stops delivering rhythmic output signals. PMID:17715068

  7. Circadian-Related Heteromerization of Adrenergic and Dopamine D4 Receptors Modulates Melatonin Synthesis and Release in the Pineal Gland

    PubMed Central

    González, Sergio; Moreno-Delgado, David; Moreno, Estefanía; Pérez-Capote, Kamil; Franco, Rafael; Mallol, Josefa; Cortés, Antoni; Casadó, Vicent; Lluís, Carme; Ortiz, Jordi

    2012-01-01

    The role of the pineal gland is to translate the rhythmic cycles of night and day encoded by the retina into hormonal signals that are transmitted to the rest of the neuronal system in the form of serotonin and melatonin synthesis and release. Here we describe that the production of both melatonin and serotonin by the pineal gland is regulated by a circadian-related heteromerization of adrenergic and dopamine D4 receptors. Through α1 B-D4 and β1-D4 receptor heteromers dopamine inhibits adrenergic receptor signaling and blocks the synthesis of melatonin induced by adrenergic receptor ligands. This inhibition was not observed at hours of the day when D4 was not expressed. These data provide a new perspective on dopamine function and constitute the first example of a circadian-controlled receptor heteromer. The unanticipated heteromerization between adrenergic and dopamine D4 receptors provides a feedback mechanism for the neuronal hormone system in the form of dopamine to control circadian inputs. PMID:22723743

  8. Circadian Rhythms in Cyanobacteria

    PubMed Central

    Golden, Susan S.

    2015-01-01

    SUMMARY Life on earth is subject to daily and predictable fluctuations in light intensity, temperature, and humidity created by rotation of the earth. Circadian rhythms, generated by a circadian clock, control temporal programs of cellular physiology to facilitate adaptation to daily environmental changes. Circadian rhythms are nearly ubiquitous and are found in both prokaryotic and eukaryotic organisms. Here we introduce the molecular mechanism of the circadian clock in the model cyanobacterium Synechococcus elongatus PCC 7942. We review the current understanding of the cyanobacterial clock, emphasizing recent work that has generated a more comprehensive understanding of how the circadian oscillator becomes synchronized with the external environment and how information from the oscillator is transmitted to generate rhythms of biological activity. These results have changed how we think about the clock, shifting away from a linear model to one in which the clock is viewed as an interactive network of multifunctional components that are integrated into the context of the cell in order to pace and reset the oscillator. We conclude with a discussion of how this basic timekeeping mechanism differs in other cyanobacterial species and how information gleaned from work in cyanobacteria can be translated to understanding rhythmic phenomena in other prokaryotic systems. PMID:26335718

  9. Setting the main circadian clock of a diurnal mammal by hypocaloric feeding

    PubMed Central

    Mendoza, Jorge; Gourmelen, Sylviane; Dumont, Stephanie; Sage-Ciocca, Dominique; Pévet, Paul; Challet, Etienne

    2012-01-01

    Caloric restriction attenuates the onset of a number of pathologies related to ageing. In mammals, circadian rhythms, controlled by the hypothalamic suprachiasmatic (SCN) clock, are altered with ageing. Although light is the main synchronizer for the clock, a daily hypocaloric feeding (HF) may also modulate the SCN activity in nocturnal rodents. Here we report that a HF also affects behavioural, physiological and molecular circadian rhythms of the diurnal rodent Arvicanthis ansorgei. Under constant darkness HF, but not normocaloric feeding (NF), entrains circadian behaviour. Under a light–dark cycle, HF at midnight led to phase delays of the rhythms of locomotor activity and plasma corticosterone. Furthermore, Per2 and vasopressin gene oscillations in the SCN were phase delayed in HF Arvicanthis compared with animals fed ad libitum. Moreover, light-induced expression of Per genes in the SCN was modified in HF Arvicanthis, despite a non-significant effect on light-induced behavioural phase delays. Together, our data show that HF affects the circadian system of the diurnal rodent Arvicanthis ansorgei differentially from nocturnal rodents. The Arvicanthis model has relevance for the potential use of HF to manipulate circadian rhythms in diurnal species including humans. PMID:22570380

  10. Analysis of circadian properties and healthy levels of blue light from smartphones at night.

    PubMed

    Oh, Ji Hye; Yoo, Heeyeon; Park, Hoo Keun; Do, Young Rag

    2015-06-18

    This study proposes representative figures of merit for circadian and vision performance for healthy and efficient use of smartphone displays. The recently developed figures of merit for circadian luminous efficacy of radiation (CER) and circadian illuminance (CIL) related to human health and circadian rhythm were measured to compare three kinds of commercial smartphone displays. The CIL values for social network service (SNS) messenger screens from all three displays were higher than 41.3 biolux (blx) in a dark room at night, and the highest CIL value reached 50.9 blx. These CIL values corresponded to melatonin suppression values (MSVs) of 7.3% and 11.4%, respectively. Moreover, smartphone use in a bright room at night had much higher CIL and MSV values (58.7 ~ 105.2 blx and 15.4 ~ 36.1%, respectively). This study also analyzed the nonvisual and visual optical properties of the three smartphone displays while varying the distance between the screen and eye and controlling the brightness setting. Finally, a method to possibly attenuate the unhealthy effects of smartphone displays was proposed and investigated by decreasing the emitting wavelength of blue LEDs in a smartphone LCD backlight and subsequently reducing the circadian effect of the display.

  11. Two-dimensional high-performance liquid chromatographic determination of day-night variation of D-alanine in mammals and factors controlling the circadian changes.

    PubMed

    Karakawa, Sachise; Miyoshi, Yurika; Konno, Ryuichi; Koyanagi, Satoru; Mita, Masashi; Ohdo, Shigehiro; Hamase, Kenji

    2013-10-01

    D-Alanine (D-Ala) is one of the naturally occurring D-amino acids in mammals, and its amount is known to have characteristic circadian changes. It is a candidate for a novel physiologically active substance and/or a biomarker, and the regulation mechanisms of the intrinsic amounts of D-Ala are expected to be clarified. In the present study, the effects of the possible factors controlling the D-Ala amounts, e.g., diet, D-amino acid oxidase (DAO) and intestinal bacteria, on the day-night changes in the intrinsic D-Ala amounts have been investigated using a highly sensitive and selective two-dimensional high-performance liquid chromatographic system combining a reversed-phase column and an enantioselective column. The circadian rhythm was not changed under fasting conditions. In the mice lacking D-amino acid oxidase activity (ddY/DAO(-) mice), clear day-night changes were still observed, suggesting that the factors controlling the D-Ala rhythm were not their food and DAO activity. On the other hand, in the germ-free mice, quite low amounts of D-Ala were detected compared with those in the control mice, indicating that the main origin of D-Ala in the mice is intestinal bacteria. Because the D-Ala amounts in the digesta containing intestinal bacteria did not show the day-night changes, the controlling factor of the circadian changes of the D-Ala amount was suggested to be the intestinal absorption.

  12. Circadian preference is associated with emotional and affective temperaments.

    PubMed

    Ottoni, Gustavo L; Antoniolli, Eduardo; Lara, Diogo R

    2012-07-01

    Chronotype has long been associated with mental disorders and temperamental features. This study aims to investigate the association of circadian preference with a new model for emotional and affective temperament. In this Web survey, 6436 subjects (27.2% males) answered the Affective and Emotional Composite Temperament Scale (AFECTS), the Circadian Energy Scale (CIRENS), and questions on subjective sleep parameters for a sleep-based chronotype measure. Temperament was more strongly correlated with daily energy score than with chronotype. For emotional dimensions, Volition, Coping, and Control positively correlated with high and stable daily energy, contrary to Sensitivity. Evening types showed a less adaptive emotional profile than morning and intermediate types, who showed a relatively similar emotional pattern. Focus and order (facets of Control), energy (facet of Volition), caution (facet of Inhibition), and problem facing (facet of Coping) were distinctive for the three circadian types, being particularly low in evening types and high in morning types. Differences between affective temperaments were more pronounced for morning and afternoon than for evening scores. Cyclothymic and euphoric temperaments, which relate to bipolar disorders, and apathetic, volatile, and disinhibited temperaments, which relate to attention-deficit/hyperactivity disorder (ADHD), showed the latest chronotype (i.e., evening preference). In conclusion, temperament was more associated with absolute energy levels than with chronotype. Evening types had less emotional control, coping, volition, and caution, and more affective instability and externalization. The circadian daily energy profile can be very informative about human temperament and vice versa, and their combined assessment may be useful in the evaluation of psychiatric patients.

  13. Alteration of Daily and Circadian Rhythms following Dopamine Depletion in MPTP Treated Non-Human Primates

    PubMed Central

    Fifel, Karim; Vezoli, Julien; Dzahini, Kwamivi; Claustrat, Bruno; Leviel, Vincent; Kennedy, Henry; Procyk, Emmanuel; Dkhissi-Benyahya, Ouria; Gronfier, Claude; Cooper, Howard M.

    2014-01-01

    Disturbances of the daily sleep/wake cycle are common non-motor symptoms of Parkinson's disease (PD). However, the impact of dopamine (DA) depletion on circadian rhythms in PD patients or non-human primate (NHP) models of the disorder have not been investigated. We evaluated alterations of circadian rhythms in NHP following MPTP lesion of the dopaminergic nigro-striatal system. DA degeneration was assessed by in vivo PET ([11C]-PE2I) and post-mortem TH and DAT quantification. In a light∶dark cycle, control and MPTP-treated NHP both exhibit rest-wake locomotor rhythms, although DA-depleted NHP show reduced amplitude, decreased stability and increased fragmentation. In all animals, 6-sulphatoxymelatonin peaks at night and cortisol in early morning. When the circadian system is challenged by exposure to constant light, controls retain locomotor rest-wake and hormonal rhythms that free-run with stable phase relationships whereas in the DA-depleted NHP, locomotor rhythms are severely disturbed or completely abolished. The amplitude and phase relations of hormonal rhythms nevertheless remain unaltered. Use of a light-dark masking paradigm shows that expression of daily rest-wake activity in MPTP monkeys requires the stimulatory and inhibitory effects of light and darkness. These results suggest that following DA lesion, the central clock in the SCN remains intact but, in the absence of environmental timing cues, is unable to drive downstream rhythmic processes of striatal clock gene and dopaminergic functions that control locomotor output. These findings suggest that the circadian component of the sleep-wake disturbances in PD is more profoundly affected than previously assumed. PMID:24465981

  14. Effects of continuous white light and 12h white-12h blue light-cycles on the expression of clock genes in diencephalon, liver, and skeletal muscle in chicks.

    PubMed

    Honda, Kazuhisa; Kondo, Makoto; Hiramoto, Daichi; Saneyasu, Takaoki; Kamisoyama, Hiroshi

    2017-05-01

    The core circadian clock mechanism relies on a feedback loop comprised of clock genes, such as the brain and muscle Arnt-like 1 (Bmal1), chriptochrome 1 (Cry1), and period 3 (Per3). Exposure to the light-dark cycle synchronizes the master circadian clock in the brain, and which then synchronizes circadian clocks in peripheral tissues. Birds have long been used as a model for the investigation of circadian rhythm in human neurobiology. In the present study, we examined the effects of continuous light and the combination of white and blue light on the expression of clock genes (Bmal1, Cry1, and Per3) in the central and peripheral tissues in chicks. Seventy two day-old male chicks were weighed, allocated to three groups and maintained under three light schedules: 12h white light-12h dark-cycles group (control); 24h white light group (WW group); 12h white light-12h blue light-cycles group (WB group). The mRNA levels of clock genes in the diencephalon were significantly different between the control and WW groups. On the other hand, the alteration in the mRNA levels of clock genes was similar between the control and WB groups. Similar phenomena were observed in the liver and skeletal muscle (biceps femoris). These results suggest that 12h white-12h blue light-cycles did not disrupt the circadian rhythm of clock gene expression in chicks. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Daily Profiles of Light Exposure and Evening Use of Light-emitting Devices in Young Adults Complaining of a Delayed Sleep Schedule.

    PubMed

    Van der Maren, Solenne; Moderie, Christophe; Duclos, Catherine; Paquet, Jean; Daneault, Véronique; Dumont, Marie

    2018-04-01

    A number of factors can contribute to a delayed sleep schedule. An important factor could be a daily profile of light exposure favoring a later circadian phase. This study aimed to compare light exposure between 14 young adults complaining of a delayed sleep schedule and 14 matched controls and to identify possible associations between habitual light exposure and circadian phase. Exposure to white and blue light was recorded with ambulatory monitors for 7 consecutive days. Participants also noted their daily use of light-emitting devices before bedtime. Endogenous circadian phase was estimated with the dim light melatonin onset (DLMO) in the laboratory. The amplitude of the light-dark cycle to which the subjects were exposed was smaller in delayed than in control subjects, and smaller amplitude was associated with a later DLMO. Smaller amplitude was due to both decreased exposure in the daytime and increased exposure at night. Total exposure to blue light, but not to white light, was lower in delayed subjects, possibly due to lower exposure to blue-rich outdoor light. Lower daily exposure to blue light was associated with a later DLMO. Timing of relative increases and decreases of light exposure in relation to endogenous circadian phase was also compared between the 2 groups. In delayed subjects, there was a relatively higher exposure to white and blue light 2 h after DLMO, a circadian time with maximal phase-delaying effect. Delayed participants also had higher exposure to light 8 to 10 h after DLMO, which occurred mostly during their sleep episode but may have some phase-advancing effects. Self-reported use of light-emitting devices before bedtime was higher in delayed than in control subjects and was associated with a later DLMO. This study suggests that individuals complaining of a delayed sleep schedule engage in light-related behaviors favoring a later circadian phase and a later bedtime.

  16. PPAR{alpha} is a potential therapeutic target of drugs to treat circadian rhythm sleep disorders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirai, Hidenori; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8502; Oishi, Katsutaka

    Recent progress at the molecular level has revealed that nuclear receptors play an important role in the generation of mammalian circadian rhythms. To examine whether peroxisome proliferator-activated receptor alpha (PPAR{alpha}) is involved in the regulation of circadian behavioral rhythms in mammals, we evaluated the locomotor activity of mice administered with the hypolipidemic PPAR{alpha} ligand, bezafibrate. Circadian locomotor activity was phase-advanced about 3 h in mice given bezafibrate under light-dark (LD) conditions. Transfer from LD to constant darkness did not change the onset of activity in these mice, suggesting that bezafibrate advanced the phase of the endogenous clock. Surprisingly, bezafibrate alsomore » advanced the phase in mice with lesions of the suprachiasmatic nucleus (SCN; the central clock in mammals). The circadian expression of clock genes such as period2, BMAL1, and Rev-erb{alpha} was also phase-advanced in various tissues (cortex, liver, and fat) without affecting the SCN. Bezafibrate also phase-advanced the activity phase that is delayed in model mice with delayed sleep phase syndrome (DSPS) due to a Clock gene mutation. Our results indicated that PPAR{alpha} is involved in circadian clock control independently of the SCN and that PPAR{alpha} could be a potent target of drugs to treat circadian rhythm sleep disorders including DSPS.« less

  17. The Relative Impact of Sleep and Circadian Drive on Motor Skill Acquisition and Memory Consolidation.

    PubMed

    Tucker, Matthew A; Morris, Christopher J; Morgan, Alexandra; Yang, Jessica; Myers, Samantha; Pierce, Joanna Garcia; Stickgold, Robert; Scheer, Frank A J L

    2017-04-01

    Sleep during the biological night facilitates memory consolidation. Here we determined the impact of sleep and wake on motor skill learning (acquisition) and subsequent off-line skill improvement (memory consolidation), independent of circadian phase, and compared this to the impact of the endogenous circadian system, independent of whether sleep occurred during the biological night or day. Participants completed two 8-day sleep laboratory visits, adhering on one visit to a circadian aligned ("normal") sleep schedule for the full duration of the protocol, and on the other to a circadian misaligned (12-hour inverted) schedule, with alignment during the first 3 days, a 12-hour 'slam shift' on Day 4, followed by circadian misalignment during the last 4 days of the protocol. Participants were repeatedly trained and tested on different versions of the finger-tapping motor sequence task across each visit. Sleep facilitated offline memory consolidation regardless of whether it occurred during the biological day or night, while circadian phase had no significant impact. These sleep-related benefits remained after accounting for general motor speed, measured in the absence of learning. In addition, motor skill acquisition was facilitated when the training session followed shortly after sleep, without significant impact of circadian phase (biological morning vs. evening). This effect was largely driven by heightened acquisition in participants who slept during the day and were trained shortly thereafter, that is, when acquisition occurred during the biological evening. These benefits were also retained after controlling for general motor speed. Sleep benefits both the acquisition and consolidation of motor skill regardless of whether they occur during the biological day or night. After controlling for general motor speed, a critical adjustment that few studies perform, these sleep benefits remain intact. Our findings have clear implications for night shift workers who obtain their sleep during the day. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  18. Impaired clock output by altered connectivity in the circadian network.

    PubMed

    Fernández, María de la Paz; Chu, Jessie; Villella, Adriana; Atkinson, Nigel; Kay, Steve A; Ceriani, María Fernanda

    2007-03-27

    Substantial progress has been made in elucidating the molecular processes that impart a temporal control to physiology and behavior in most eukaryotes. In Drosophila, dorsal and ventral neuronal networks act in concert to convey rhythmicity. Recently, the hierarchical organization among the different circadian clusters has been addressed, but how molecular oscillations translate into rhythmic behavior remains unclear. The small ventral lateral neurons can synchronize certain dorsal oscillators likely through the release of pigment dispersing factor (PDF), a neuropeptide central to the control of rhythmic rest-activity cycles. In the present study, we have taken advantage of flies exhibiting a distinctive arrhythmic phenotype due to mutation of the potassium channel slowpoke (slo) to examine the relevance of specific neuronal populations involved in the circadian control of behavior. We show that altered neuronal function associated with the null mutation specifically impaired PDF accumulation in the dorsal protocerebrum and, in turn, desynchronized molecular oscillations in the dorsal clusters. However, molecular oscillations in the small ventral lateral neurons are properly running in the null mutant, indicating that slo is acting downstream of these core pacemaker cells, most likely in the output pathway. Surprisingly, disrupted PDF signaling by slo dysfunction directly affects the structure of the underlying circuit. Our observations demonstrate that subtle structural changes within the circadian network are responsible for behavioral arrhythmicity.

  19. Development of salivary cortisol circadian rhythm in preterm infants.

    PubMed

    Ivars, Katrin; Nelson, Nina; Theodorsson, Annette; Theodorsson, Elvar; Ström, Jakob O; Mörelius, Evalotte

    2017-01-01

    To investigate at what age preterm infants develop a salivary cortisol circadian rhythm and identify whether it is dependent on gestational age and/or postnatal age. To evaluate whether salivary cortisol circadian rhythm development is related to behavioral regularity. To elucidate salivary cortisol levels in preterm infants during the first year of life. This prospective, longitudinal study included 51 preterm infants. 130 healthy full-term infants served as controls. Monthly salivary cortisol levels were obtained in the morning (07:30-09:30), at noon (10:00-12:00), and in the evening (19:30-21:30), beginning at gestational age week 28-32 and continuing until twelve months corrected age. Behavioral regularity was studied using the Baby Behavior Questionnaire. A salivary cortisol circadian rhythm was established by one month corrected age and persisted throughout the first year. The preterm infants showed a cortisol pattern increasingly more alike the full-term infants as the first year progressed. The preterm infants increase in behavioral regularity with age but no correlation was found between the development of salivary cortisol circadian rhythm and the development of behavior regularity. The time to establish salivary cortisol circadian rhythm differed between preterm and full-term infants according to postnatal age (p = 0.001) and was dependent on gestational age. Monthly salivary cortisol levels for preterm infants from birth until twelve months are presented. Additional findings were that topical corticosteroid medication was associated with higher concentrations of salivary cortisol (p = 0.02) and establishment of salivary cortisol circadian rhythm occurred later in infants treated with topical corticosteroid medication (p = 0.02). Salivary cortisol circadian rhythm is established by one month corrected age in preterm infants. Establishment of salivary cortisol circadian rhythm is related to gestational age rather than to postnatal age. Salivary cortisol circadian rhythm development is not related to behavioral regularity.

  20. The effects of chronic marijuana use on circadian entrainment.

    PubMed

    Whitehurst, Lauren N; Fogler, Kethera; Hall, Kate; Hartmann, Matthew; Dyche, Jeff

    2015-05-01

    Animal literature suggests a connection between marijuana use and altered circadian rhythms. However, the effect has not yet been demonstrated in humans. The present study examined the effect of chronic marijuana use on human circadian function. Participants consisted of current users who reported smoking marijuana daily for at least a year and non-marijuana user controls. Participants took a neurocognitive assessment, wore actigraphs and maintained sleep diaries for three weeks. While no significant cognitive changes were found between groups, data revealed that chronic marijuana use may act as an additional zeitgeber and lead to increased entrainment in human users.

  1. Impact of sleep behavior on glycemic control in type 1 diabetes: the role of social jetlag.

    PubMed

    Larcher, Sandra; Gauchez, Anne-Sophie; Lablanche, Sandrine; Pépin, Jean-Louis; Benhamou, Pierre-Yves; Borel, Anne-Laure

    2016-11-01

    Sleep behavior is changing toward shorter sleep duration and a later chronotype. It results in a sleep debt that is acquitted on work-free days, inducing a small but recurrent sleep misalignment each week, referred to as "social jetlag". These sleep habits could affect health through misalignment with circadian rhythms. The primary objective is to address the impact of sleep behavior on glycemic control, assessed by HbA1c, in patients with type 1 diabetes, independently of other lifestyle or sleep-related factors. The secondary objective is to address whether circadian phase affects glycemic control. In total, 80 adult patients with type 1 diabetes (46% female) were included in a clinical cohort study. Sleep behavior was addressed objectively by a 7-day actimetry, lifestyle by questionnaires, sleep breathing disorders by nocturnal oximetry and circadian phase by dim light melatonin onset (DLMO). Univariate analyses showed that chronotype (r = 0.23, P = 0.042) and social jetlag (r = 0.30, P = 0.008) were significantly associated with HbA1c. In multivariable analysis, social jetlag was the only sleep habit independently associated with HbA1c (β = 0.012 (0.006; 0.017), P < 0.001). HbA1c was lower in patients with a social jetlag below versus above the median (7.7% (7.1-8.7) and 8.7% (7.6-9.8), P = 0.011). DLMO was not associated with HbA1c. However, the later the DLMO, the worse the sleep efficiency (r = -0.41, P < 0.001) and fragmentation index (r = 0.35, P = 0.005). Social jetlag, a small but recurrent circadian misalignment, is associated with worse glycemic control in type 1 diabetes, whereas circadian phase is not. Further intervention studies should address the potential improvement of glycemic control by correcting social jetlag. © 2016 European Society of Endocrinology.

  2. Circadian rhythms regulate amelogenesis.

    PubMed

    Zheng, Li; Seon, Yoon Ji; Mourão, Marcio A; Schnell, Santiago; Kim, Doohak; Harada, Hidemitsu; Papagerakis, Silvana; Papagerakis, Petros

    2013-07-01

    Ameloblasts, the cells responsible for making enamel, modify their morphological features in response to specialized functions necessary for synchronized ameloblast differentiation and enamel formation. Secretory and maturation ameloblasts are characterized by the expression of stage-specific genes which follows strictly controlled repetitive patterns. Circadian rhythms are recognized as key regulators of the development and diseases of many tissues including bone. Our aim was to gain novel insights on the role of clock genes in enamel formation and to explore the potential links between circadian rhythms and amelogenesis. Our data shows definitive evidence that the main clock genes (Bmal1, Clock, Per1 and Per2) oscillate in ameloblasts at regular circadian (24 h) intervals both at RNA and protein levels. This study also reveals that the two markers of ameloblast differentiation i.e. amelogenin (Amelx; a marker of secretory stage ameloblasts) and kallikrein-related peptidase 4 (Klk4, a marker of maturation stage ameloblasts) are downstream targets of clock genes. Both, Amelx and Klk4 show 24h oscillatory expression patterns and their expression levels are up-regulated after Bmal1 over-expression in HAT-7 ameloblast cells. Taken together, these data suggest that both the secretory and the maturation stages of amelogenesis might be under circadian control. Changes in clock gene expression patterns might result in significant alterations of enamel apposition and mineralization. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Development of the Circadian Timing System in Rat Pups Exposed to Microgravity during Gestation

    NASA Technical Reports Server (NTRS)

    Fuller, Charles A.

    2000-01-01

    Ten pregnant Sprague Dawley rat dams were exposed to spaceflight aboard the Space Shuttle (STS-70) for gestational days 11-20 (G 11-20; FILT group). Control dams were maintained in either a flight-like (FIDS group) or vivarium cage environment (VIV group) on earth. All dams had ad lib access to food and water and were exposed to a light-dark cycle consisting of 12 hours of light (- 30 lux) followed by 12 hours of darkness. The dams were closely monitored from G 22 until parturition. All pups were cross-fostered at birth; each foster dam had a litter of 10 pups. Pups remained with their foster dam until post-natal day 21 (PN 21). Pup body mass was measured twice weekly. At PN14 FILT pups had a smaller body mass than did the VIV pups (p < 0.01). Circadian rhythms of body temperature and activity of pups from two FILT dams (n = 8), two FIDS dams (n = 9) and two VIV dams (n = 7) were studied starting from age PN 21. All pups had circadian rhythms of temperature and activity at this age. There were no significant differences in rhythms between groups that could be attributed to microgravity exposure. We also examined the development of neural structures involved in circadian rhythmicity: the retina, the intergeniculate leaflet (IGL) and the circadian pacemaker, the suprachiasmatic nucleus (SCN). There were small differences between the flight and control groups at very early stages of development (G 20 and PN3) which indicated that the development of both the SCN and the IGL. These results indicate that exposure to the microgravity environment of spaceflight during this embryonic development period does not affect the development of the circadian rhythms of body temperature and activity, but may affect the early development of the neural structures involved in circadian timing.

  4. Long term rebaudioside A treatment does not alter circadian activity rhythms, adiposity, or insulin action in male mice

    PubMed Central

    Reynolds, Thomas H.; Soriano, Rachelle A.; Obadi, Obadi A.; Murkland, Stanley; Possidente, Bernard

    2017-01-01

    Obesity is a major public health problem that is highly associated with insulin resistance and type 2 diabetes, two conditions associated with circadian disruption. To date, dieting is one of the only interventions that result in substantial weight loss, but restricting caloric intake is difficult to maintain long-term. The use of artificial sweeteners, particularly in individuals that consume sugar sweetened beverages (energy drinks, soda), can reduce caloric intake and possibly facilitate weight loss. The purpose of the present study was to examine the effects of the artificial sweetener, rebaudioside A (Reb-A), on circadian rhythms, in vivo insulin action, and the susceptibility to diet-induced obesity. Six month old male C57BL/6 mice were assigned to a control or Reb-A (0.1% Reb-A supplemented drinking water) group for six months. Circadian wheel running rhythms, body weight, caloric intake, insulin action, and susceptibility to diet-induced obesity were assessed. Time of peak physical activity under a 12:12 light-dark (LD) cycle, mean activity levels, and circadian period in constant dark were not significantly different in mice that consumed Reb-A supplemented water compared to normal drinking water, indicating that circadian rhythms and biological clock function were unaltered. Although wheel running significantly reduced body weight in both Reb-A and control mice (P = 0.0001), consuming Reb-A supplemented water did not alter the changes in body weight following wheel running (P = 0.916). In vivo insulin action, as assessed by glucose, insulin, and pyruvate tolerance tests, was not different between mice that consumed Reb-A treated water compared to normal drinking water. Finally, Reb-A does not appear to change the susceptibility to diet-induced obesity as both groups of mice gained similar amounts of body weight when placed on a high fat diet. Our results indicate that consuming Reb-A supplemented water does not promote circadian disruption, insulin resistance, or obesity. PMID:28475596

  5. Long term rebaudioside A treatment does not alter circadian activity rhythms, adiposity, or insulin action in male mice.

    PubMed

    Reynolds, Thomas H; Soriano, Rachelle A; Obadi, Obadi A; Murkland, Stanley; Possidente, Bernard

    2017-01-01

    Obesity is a major public health problem that is highly associated with insulin resistance and type 2 diabetes, two conditions associated with circadian disruption. To date, dieting is one of the only interventions that result in substantial weight loss, but restricting caloric intake is difficult to maintain long-term. The use of artificial sweeteners, particularly in individuals that consume sugar sweetened beverages (energy drinks, soda), can reduce caloric intake and possibly facilitate weight loss. The purpose of the present study was to examine the effects of the artificial sweetener, rebaudioside A (Reb-A), on circadian rhythms, in vivo insulin action, and the susceptibility to diet-induced obesity. Six month old male C57BL/6 mice were assigned to a control or Reb-A (0.1% Reb-A supplemented drinking water) group for six months. Circadian wheel running rhythms, body weight, caloric intake, insulin action, and susceptibility to diet-induced obesity were assessed. Time of peak physical activity under a 12:12 light-dark (LD) cycle, mean activity levels, and circadian period in constant dark were not significantly different in mice that consumed Reb-A supplemented water compared to normal drinking water, indicating that circadian rhythms and biological clock function were unaltered. Although wheel running significantly reduced body weight in both Reb-A and control mice (P = 0.0001), consuming Reb-A supplemented water did not alter the changes in body weight following wheel running (P = 0.916). In vivo insulin action, as assessed by glucose, insulin, and pyruvate tolerance tests, was not different between mice that consumed Reb-A treated water compared to normal drinking water. Finally, Reb-A does not appear to change the susceptibility to diet-induced obesity as both groups of mice gained similar amounts of body weight when placed on a high fat diet. Our results indicate that consuming Reb-A supplemented water does not promote circadian disruption, insulin resistance, or obesity.

  6. The efficacy of objective and subjective predictors of driving performance during sleep restriction and circadian misalignment.

    PubMed

    Kosmadopoulos, Anastasi; Sargent, Charli; Zhou, Xuan; Darwent, David; Matthews, Raymond W; Dawson, Drew; Roach, Gregory D

    2017-02-01

    Fatigue is a significant contributor to motor-vehicle accidents and fatalities. Shift workers are particularly susceptible to fatigue-related risks as they are often sleep-restricted and required to commute around the clock. Simple assays of performance could provide useful indications of risk in fatigue management, but their effectiveness may be influenced by changes in their sensitivity to sleep loss across the day. The aim of this study was to evaluate the sensitivity of several neurobehavioral and subjective tasks to sleep restriction (SR) at different circadian phases and their efficacy as predictors of performance during a simulated driving task. Thirty-two volunteers (M±SD; 22.8±2.9 years) were time-isolated for 13-days and participated in one of two 14-h forced desynchrony protocols with sleep opportunities equivalent to 8h/24h (control) or 4h/24h (SR). At regular intervals during wake periods, participants completed a simulated driving task, several neurobehavioral tasks, including the psychomotor vigilance task (PVT), and subjective ratings, including a self-assessment measure of ability to perform. Scores transformed into standardized units relative to baseline were folded into circadian phase bins based on core body temperature. Sleep dose and circadian phase effect sizes were derived via mixed models analyses. Predictors of driving were identified with regressions. Performance was most sensitive to sleep restriction around the circadian nadir. The effects of sleep restriction around the circadian nadir were larger for simulated driving and neurobehavioral tasks than for subjective ratings. Tasks did not significantly predict driving performance during the control condition or around the acrophase during the SR condition. The PVT and self-assessed ability were the best predictors of simulated driving across circadian phases during SR. These results show that simple performance measures and self-monitoring explain a large proportion of the variance in driving when fatigue-risk is high. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. period -1 encodes an ATP-dependent RNA helicase that influences nutritional compensation of the Neurospora circadian clock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emerson, Jillian M.; Bartholomai, Bradley M.; Ringelberg, Carol S.

    Mutants in the period-1 (prd-1) gene, characterized by a recessive allele, display a reduced growth rate and period lengthening of the developmental cycle controlled by the circadian clock. We refined the genetic location of prd-1 and used whole genome sequencing to find the mutation defining it, confirming the identity of prd-1 by rescuing the mutant circadian phenotype via transformation. PRD-1 is an RNA helicase whose orthologs, DDX5 and DDX17 in humans and Dbp2p in yeast, are implicated in various processes including transcriptional regulation, elongation, and termination, 23 ribosome biogenesis, and RNA decay. Although prdi-1smutantssiois an ATP-dependent RNA helicase, member ofmore » a sub-family display a long period (~25 hrs) circadian developmental cycle, they interestingly display a wild type period when the core circadian oscillator is tracked using a frq-luciferase transcriptional fusion under conditions of limiting nutritional carbon; the core oscillator runs with a long period under glucose-sufficient conditions. Thus PRD-1 clearly impacts the circadian oscillator and is not only part of a metabolic oscillator ancillary to the core clock. PRD-1 is an essential protein and its expression is neither light-regulated nor clock-regulated. However, it is transiently induced by glucose; in the presence of sufficient glucose PRD-1 is in the nucleus until glucose runs out which elicits its disappearance from the nucleus. Because circadian period length is carbon concentration-dependent, prd­-1 may be formally viewed as clock mutant with defective nutritional compensation of circadian period length.« less

  8. period -1 encodes an ATP-dependent RNA helicase that influences nutritional compensation of the Neurospora circadian clock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emerson, Jillian M.; Bartholomai, Bradley M.; Ringelberg, Carol S.

    2015-12-08

    Mutants in the period-1 (prd-1) gene, characterized by a recessive allele, display a reduced growth rate and period lengthening of the developmental cycle controlled by the circadian clock. We refined the genetic location of prd-1 and used whole genome sequencing to find the mutation defining it, confirming the identity of prd-1 by rescuing the mutant circadian phenotype via transformation. PRD-1 is an RNA helicase whose orthologs, DDX5 and DDX17 in humans and Dbp2p in yeast, are implicated in various processes including transcriptional regulation, elongation, and termination, 23 ribosome biogenesis, and RNA decay. Although prdi-1smutantssiois an ATP-dependent RNA helicase, member ofmore » a sub-family display a long period (~25 hrs) circadian developmental cycle, they interestingly display a wild type period when the core circadian oscillator is tracked using a frq-luciferase transcriptional fusion under conditions of limiting nutritional carbon; the core oscillator runs with a long period under glucose-sufficient conditions. Thus PRD-1 clearly impacts the circadian oscillator and is not only part of a metabolic oscillator ancillary to the core clock. PRD-1 is an essential protein and its expression is neither light-regulated nor clock-regulated. However, it is transiently induced by glucose; in the presence of sufficient glucose PRD-1 is in the nucleus until glucose runs out which elicits its disappearance from the nucleus. Because circadian period length is carbon concentration-dependent, prd­-1 may be formally viewed as clock mutant with defective nutritional compensation of circadian period length.« less

  9. Chronobiology and obesity.

    PubMed

    Garaulet, Marta; Gómez-Abellán, Purificación

    2013-09-01

    Chronobiology is a word derived from three Greek stems: kronos for time, bios for life and logos for study. From microarrays studies, now it is accepted that 10-30% of the human genome is under the control of circadian molecular clocks. This implies that most behavioral, physiological and biochemical variables display circadian rhythms in their expression. In its simplest form, circadian clocks are composed of a set of proteins that generate self-sustained circadian oscillations. The molecular clock comprises two transcription factors, CLOCK and BMAL1, whereas PERs and CRYs are responsible for the negative limb. One of the most important questions related to the circadian system and obesity, was to elucidate if adipose tissue displayed circadian rhythmicity or whether it had an internal peripheral clock. Our group of research has provided an overall view of the internal temporal order of circadian rhythms in human adipose tissue. A new concept related to illness is Chronodisruption (CD). It is defined as a relevant disturbance of the internal temporal order of physiological and behavioral circadian rhythms. In our modern society, CD may be common in several conditions such as jet lag, shift work, light at night, or social jet lag. In addition clock gene polymorphisms and aging may have also chronodisruptive effects. Our group has also demonstrated that Obesity and CD are also highly interconnected. With the help of chronobiology we can reach a new view of obesity considering not only "what" are the factors involved in obesity, but also "when" these factors are produced. Copyright © AULA MEDICA EDICIONES 2013. Published by AULA MEDICA. All rights reserved.

  10. Resetting of circadian melatonin and cortisol rhythms in humans by ordinary room light

    NASA Technical Reports Server (NTRS)

    Boivin, D. B.; Czeisler, C. A.

    1998-01-01

    The present study was designed to investigate whether a weak photic stimulus can reset the endogenous circadian rhythms of plasma melatonin and plasma cortisol in human subjects. A stimulus consisting of three cycles of 5 h exposures to ordinary room light (approximately 180 lux), centered 1.5 h after the endogenous temperature nadir, significantly phase-advanced the plasma melatonin rhythm in eight healthy young men compared with the phase delays observed in eight control subjects who underwent the same protocol but were exposed to darkness (p < or = 0.003). After light-induced phase advances, the circadian rhythms of plasma melatonin and plasma cortisol maintained stable temporal relationships with the endogenous core body temperature cycle, consistent with the conclusion that exposure to ordinary indoor room light had shifted a master circadian pacemaker.

  11. Maternal obesity and post-natal high fat diet disrupt hepatic circadian rhythm in rat offspring

    USDA-ARS?s Scientific Manuscript database

    Offspring of obese (Ob) rat dams gain greater body wt and fat mass when fed high-fat diet (HFD) as compared to controls. Alterations of diurnal circadian rhythm are known to detrimentally impact metabolically active tissues such as liver. We sought to determine if maternal obesity (MOb) leads to p...

  12. Functional characterization of a putative glycine max ELF4 transgenic aradopsis and its role during flowering control

    USDA-ARS?s Scientific Manuscript database

    Flowering is an important trait in major crops like soybean due to its direct relation to grain production. The circadian clock mediates the perception of seasonal changes in day length and temperature to modulate flowering time. The circadian clock gene EARLY FLOWERING 4 (ELF4) was identified in Ar...

  13. Melatonin, The Pineal Gland and Circadian Rhythms

    DTIC Science & Technology

    1992-04-30

    physiological rhythms including locomotion, sleep/wake, thermoregulation , car- diovascular function and many endocrine processes. Among the rhythms under SCN...control of a wide array of behavioral and physiological rhythms including locomotion, sleep/wake, thermoregulation , cardiovascular function and many... reptiles and birds, overt rhythmicity results from the integration of multiple circadian oscillators within the pineal gland, eyes and the presumed

  14. Multidimensional Circadian Monitoring by Wearable Biosensors in Parkinson’s Disease

    PubMed Central

    Madrid-Navarro, Carlos J.; Escamilla-Sevilla, Francisco; Mínguez-Castellanos, Adolfo; Campos, Manuel; Ruiz-Abellán, Fernando; Madrid, Juan A.; Rol, M. A.

    2018-01-01

    Parkinson’s disease (PD) is associated with several non-motor symptoms that may precede the diagnosis and constitute a major source of frailty in this population. The digital era in health care has open up new prospects to move forward from the qualitative and subjective scoring for PD with the use of new wearable biosensors that enable frequent quantitative, reliable, repeatable, and multidimensional measurements to be made with minimal discomfort and inconvenience for patients. A cross-sectional study was conducted to test a wrist-worn device combined with machine-learning processing to detect circadian rhythms of sleep, motor, and autonomic disruption, which can be suitable for the objective and non-invasive evaluation of PD patients. Wrist skin temperature, motor acceleration, time in movement, hand position, light exposure, and sleep rhythms were continuously measured in 12 PD patients and 12 age-matched healthy controls for seven consecutive days using an ambulatory circadian monitoring device (ACM). Our study demonstrates that a multichannel ACM device collects reliable and complementary information from motor (acceleration and time in movement) and common non-motor (sleep and skin temperature rhythms) features frequently disrupted in PD. Acceleration during the daytime (as indicative of motor impairment), time in movement during sleep (representative of fragmented sleep) and their ratio (A/T) are the best indexes to objectively characterize the most common symptoms of PD, allowing for a reliable and easy scoring method to evaluate patients. Chronodisruption score, measured by the integrative algorithm known as the circadian function index is directly linked to a low A/T score. Our work attempts to implement innovative technologies based on wearable, multisensor, objective, and easy-to-use devices, to quantify PD circadian rhythms in huge populations over extended periods of time, while controlling at the same time exposure to exogenous circadian synchronizers. PMID:29632508

  15. Disinhibition of the extracellular-signal-regulated kinase restores the amplification of circadian rhythms by lithium in cells from bipolar disorder patients.

    PubMed

    McCarthy, Michael J; Wei, Heather; Landgraf, Dominic; Le Roux, Melissa J; Welsh, David K

    2016-08-01

    Bipolar disorder (BD) is characterized by depression, mania, and circadian rhythm abnormalities. Lithium, a treatment for BD stabilizes mood and increases circadian rhythm amplitude. However, in fibroblasts grown from BD patients, lithium has weak effects on rhythm amplitude compared to healthy controls. To understand the mechanism by which lithium differentially affects rhythm amplitude in BD cells, we investigated the extracellular-signal-regulated kinase (ERK) and related signaling molecules linked to BD and circadian rhythms. In fibroblasts from BD patients, controls and mice, we assessed the contribution of the ERK pathway to lithium-induced circadian rhythm amplification. Protein analyses revealed low phospho-ERK1/2 (p-ERK) content in fibroblasts from BD patients vs. Pharmacological inhibition of ERK1/2 by PD98059 attenuated the rhythm amplification effect of lithium, while inhibition of two related kinases, c-Jun N-terminal kinase (JNK), and P38 did not. Knockdown of the transcription factors CREB and EGR-1, downstream effectors of ERK1/2, reduced baseline rhythm amplitude, but did not alter rhythm amplification by lithium. In contrast, ELK-1 knockdown amplified rhythms, an effect that was not increased further by the addition of lithium, suggesting this transcription factor may regulate the effect of lithium on amplitude. Augmentation of ERK1/2 signaling through DUSP6 knockdown sensitized NIH3T3 cells to rhythm amplification by lithium. In BD fibroblasts, DUSP6 knockdown reversed the BD rhythm phenotype, restoring the ability of lithium to increase amplitude in these cells. We conclude that the inability of lithium to regulate circadian rhythms in BD may reflect reduced ERK activity, and signaling through ELK-1. Published by Elsevier B.V.

  16. Circadian clock-related genetic risk scores and risk of placental abruption.

    PubMed

    Qiu, Chunfang; Gelaye, Bizu; Denis, Marie; Tadesse, Mahlet G; Luque Fernandez, Miguel Angel; Enquobahrie, Daniel A; Ananth, Cande V; Sanchez, Sixto E; Williams, Michelle A

    2015-12-01

    The circadian clock plays an important role in several aspects of female reproductive biology. Evidence linking circadian clock-related genes to pregnancy outcomes has been inconsistent. We sought to examine whether variations in single nucleotide polymorphisms (SNPs) of circadian clock genes are associated with PA risk. Maternal blood samples were collected from 470 PA case and 473 controls. Genotyping was performed using the Illumina Cardio-MetaboChip platform. We examined 119 SNPs in 13 candidate genes known to control circadian rhythms (e.g., CRY2, ARNTL, and RORA). Univariate and penalized logistic regression models were fit to estimate odds ratios (ORs); and the combined effect of multiple SNPs on PA risk was estimated using a weighted genetic risk score (wGRS). A common SNP in the RORA gene (rs2899663) was associated with a 21% reduced odds of PA (P < 0.05). The odds of PA increased with increasing wGRS (Ptrend < 0.001). The corresponding ORs were 1.00, 1.83, 2.81 and 5.13 across wGRS quartiles. Participants in the highest wGRS quartile had a 5.13-fold (95% confidence interval: 3.21-8.21) higher odds of PA compared to those in the lowest quartile. Although the test for interaction was not significant, the odds of PA was substantially elevated for preeclamptics with the highest wGRS quartile (OR = 14.44, 95%CI: 6.62-31.53) compared to normotensive women in the lowest wGRS quartile. Genetic variants in circadian rhythm genes may be associated with PA risk. Larger studies are needed to corroborate these findings and to further elucidate the pathogenesis of this important obstetrical complication. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Influence of Per3 genotypes on circadian rhythmicity in flight cadets after militarized management.

    PubMed

    An, Huai-Jie; Zhou, Chang-Xi; Geng, Peiliang; Xu, Hong-Tao; Shi, Chenghe; Zhao, Xiao-Hang; Qian, Yang-Ming

    2014-01-01

    The purpose of this study was to explore the effect of PERIOD3 (PER3) genotypes on circadian rhythmicity in flight cadets after militarized management. We performed a preliminary study in 146 newly enrolled male flight cadets. Venous blood samples were collected, and genotyping of PER3 (4/5) was determined by using PCR. The morningness-eveningness questionnaire (MEQ) survey was given to flight cadets upon enrollment and after militarized management for 24 months respectively. Comparison of frequency distribution of PER3 genotypes between cases and controls (120 well-matched civilians) was performed using the X(2) test. We also compared the circadian rhythmicity upon enrollment and 24 months after enrollment in flight cadets, and analyzed the connection of changes in circadian clock with PER3 genotypes. The frequency distribution of PER3 genotypes in flight cadets was not significantly different from that in controls subjects. MEQ survey results showed chronotype within flight cadet group varied widely at the two time-points: the moderately morning type (50%) and the neither type (41.1%) upon enrollment; the neither type (76.7%) and the moderately morning type (21.2%) 24 months after enrollment. The circadian rhythm of individuals with the PER3 (5/5) genotype showed no significant difference before and after 24 months of militarized management, whereas notable changes were found in individuals with the PER3 (4/4) genotype (n=116, X(2) =37.26, P < 0.001). In conclusion, we provide some evidence that circadian rhythm of flight cadets with the PER3 (5) allele are less likely to be affected compared to those with the PER3 (4) allele.

  18. Do adolescents who are night owls have a higher risk of dental caries? - a case-control study.

    PubMed

    Lundgren, A-M; Öhrn, K; Jönsson, B

    2016-08-01

    The aim was to evaluate the association between circadian rhythm and the risk of caries in adolescents, as well as their dietary and toothbrushing habits. A group of 196 adolescents (15 and 16 years old) were divided into two equal groups based on caries risk (case = high risk; and control = low risk). Before their dental examinations, they were asked to complete a questionnaire. The questionnaire included questions on circadian rhythm, dietary and oral self-care habits, and demographic variables. The participants were divided into three circadian types: evening types who are alert in the evening and tired in the morning; morning types who are the opposite; and neutral types who are neither particularly alert in the evening nor extremely tired in the morning. The most common sleep-cycle group type was neutral (50%). After this came evening types (37%) and finally morning types (13%). Morning and neutral types reported more frequently than evening types that they had breakfast every morning and brushed their teeth twice a day. More evening types were categorized as at high risk of caries. Circadian rhythm, breakfast habits and toothbrushing frequency were associated with a high risk of caries. The predicted probability of being at high risk of caries was almost four times higher for evening types than for morning types (OR 3.8; 95% CI 1.3-10.9). Adolescents who belonged to the evening circadian rhythm group brushed their teeth more seldom, ate breakfast less regularly and had a higher risk of caries than morning types. A patient's circadian rhythm should be considered when planning oral health education for adolescents with a high risk of caries. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Isoform switching facilitates period control in the Neurospora crassa circadian clock.

    PubMed

    Akman, Ozgur E; Locke, James C W; Tang, Sanyi; Carré, Isabelle; Millar, Andrew J; Rand, David A

    2008-01-01

    A striking and defining feature of circadian clocks is the small variation in period over a physiological range of temperatures. This is referred to as temperature compensation, although recent work has suggested that the variation observed is a specific, adaptive control of period. Moreover, given that many biological rate constants have a Q(10) of around 2, it is remarkable that such clocks remain rhythmic under significant temperature changes. We introduce a new mathematical model for the Neurospora crassa circadian network incorporating experimental work showing that temperature alters the balance of translation between a short and long form of the FREQUENCY (FRQ) protein. This is used to discuss period control and functionality for the Neurospora system. The model reproduces a broad range of key experimental data on temperature dependence and rhythmicity, both in wild-type and mutant strains. We present a simple mechanism utilising the presence of the FRQ isoforms (isoform switching) by which period control could have evolved, and argue that this regulatory structure may also increase the temperature range where the clock is robustly rhythmic.

  20. Circadian rhythms and reproduction.

    PubMed

    Boden, Michael J; Kennaway, David J

    2006-09-01

    There is a growing recognition that the circadian timing system, in particular recently discovered clock genes, plays a major role in a wide range of physiological systems. Microarray studies, for example, have shown that the expression of hundreds of genes changes many fold in the suprachiasmatic nucleus, liver heart and kidney. In this review, we discuss the role of circadian rhythmicity in the control of reproductive function in animals and humans. Circadian rhythms and clock genes appear to be involved in optimal reproductive performance, but there are sufficient redundancies in their function that many of the knockout mice produced do not show overt reproductive failure. Furthermore, important strain differences have emerged from the studies especially between the various Clock (Circadian Locomotor Output Cycle Kaput) mutant strains. Nevertheless, there is emerging evidence that the primary clock genes, Clock and Bmal1 (Brain and Muscle ARNT-like protein 1, also known as Mop3), strongly influence reproductive competency. The extent to which the circadian timing system affects human reproductive performance is not known, in part, because many of the appropriate studies have not been done. With the role of Clock and Bmal1 in fertility becoming clearer, it may be time to pursue the effect of polymorphisms in these genes in relation to the various types of infertility in humans.

  1. Circadian regulation of reproduction: from gamete to offspring.

    PubMed

    Boden, M J; Varcoe, T J; Kennaway, D J

    2013-12-01

    Few challenges are more critical to the survival of a species than reproduction. To ensure reproductive success, myriad aspects of physiology and behaviour need to be tightly orchestrated within the animal, as well as timed appropriately with the external environment. This is accomplished through an endogenous circadian timing system generated at the cellular level through a series of interlocked transcription/translation feedback loops, leading to the overt expression of circadian rhythms. These expression patterns are found throughout the body, and are intimately interwoven with both the timing and function of the reproductive process. In this review we highlight the many aspects of reproductive physiology in which circadian rhythms are known to play a role, including regulation of the estrus cycle, the LH surge and ovulation, the production and maturation of sperm and the timing of insemination and fertilisation. We will also describe roles for circadian rhythms in support of the preimplantation embryo in the oviduct, implantation/placentation, as well as the control of parturition and early postnatal life. There are several key differences in physiology between humans and the model systems used for the study of circadian disruption, and these challenges to interpretation will be discussed as part of this review. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Analysis of circadian properties and healthy levels of blue light from smartphones at night

    PubMed Central

    Oh, Ji Hye; Yoo, Heeyeon; Park, Hoo Keun; Do, Young Rag

    2015-01-01

    This study proposes representative figures of merit for circadian and vision performance for healthy and efficient use of smartphone displays. The recently developed figures of merit for circadian luminous efficacy of radiation (CER) and circadian illuminance (CIL) related to human health and circadian rhythm were measured to compare three kinds of commercial smartphone displays. The CIL values for social network service (SNS) messenger screens from all three displays were higher than 41.3 biolux (blx) in a dark room at night, and the highest CIL value reached 50.9 blx. These CIL values corresponded to melatonin suppression values (MSVs) of 7.3% and 11.4%, respectively. Moreover, smartphone use in a bright room at night had much higher CIL and MSV values (58.7 ~ 105.2 blx and 15.4 ~ 36.1%, respectively). This study also analyzed the nonvisual and visual optical properties of the three smartphone displays while varying the distance between the screen and eye and controlling the brightness setting. Finally, a method to possibly attenuate the unhealthy effects of smartphone displays was proposed and investigated by decreasing the emitting wavelength of blue LEDs in a smartphone LCD backlight and subsequently reducing the circadian effect of the display. PMID:26085126

  3. Gap junctions between accessory medulla neurons appear to synchronize circadian clock cells of the cockroach Leucophaea maderae.

    PubMed

    Schneider, Nils-Lasse; Stengl, Monika

    2006-03-01

    The temporal organization of physiological and behavioral states is controlled by circadian clocks in apparently all eukaryotic organisms. In the cockroach Leucophaea maderae lesion and transplantation studies located the circadian pacemaker in the accessory medulla (AMe). The AMe is densely innervated by gamma-aminobutyric acid (GABA)-immunoreactive and peptidergic neurons, among them the pigment-dispersing factor immunoreactive circadian pacemaker candidates. The large majority of cells of the cockroach AMe spike regularly and synchronously in the gamma frequency range of 25-70 Hz as a result of synaptic and nonsynaptic coupling. Although GABAergic coupling forms assemblies of phase-locked cells, in the absence of synaptic release the cells remain synchronized but fire now at a stable phase difference. To determine whether these coupling mechanisms of AMe neurons, which are independent of synaptic release, are based on electrical synapses between the circadian pacemaker cells the gap-junction blockers halothane, octanol, and carbenoxolone were used in the presence and absence of synaptic transmission. Here, we show that different populations of AMe neurons appear to be coupled by gap junctions to maintain synchrony at a stable phase difference. This synchronization by gap junctions is a prerequisite to phase-locked assembly formation by synaptic interactions and to synchronous gamma-type action potential oscillations within the circadian clock.

  4. Analysis of circadian properties and healthy levels of blue light from smartphones at night

    NASA Astrophysics Data System (ADS)

    Oh, Ji Hye; Yoo, Heeyeon; Park, Hoo Keun; Do, Young Rag

    2015-06-01

    This study proposes representative figures of merit for circadian and vision performance for healthy and efficient use of smartphone displays. The recently developed figures of merit for circadian luminous efficacy of radiation (CER) and circadian illuminance (CIL) related to human health and circadian rhythm were measured to compare three kinds of commercial smartphone displays. The CIL values for social network service (SNS) messenger screens from all three displays were higher than 41.3 biolux (blx) in a dark room at night, and the highest CIL value reached 50.9 blx. These CIL values corresponded to melatonin suppression values (MSVs) of 7.3% and 11.4%, respectively. Moreover, smartphone use in a bright room at night had much higher CIL and MSV values (58.7 ~ 105.2 blx and 15.4 ~ 36.1%, respectively). This study also analyzed the nonvisual and visual optical properties of the three smartphone displays while varying the distance between the screen and eye and controlling the brightness setting. Finally, a method to possibly attenuate the unhealthy effects of smartphone displays was proposed and investigated by decreasing the emitting wavelength of blue LEDs in a smartphone LCD backlight and subsequently reducing the circadian effect of the display.

  5. Crosstalk of clock gene expression and autophagy in aging

    PubMed Central

    Kalfalah, Faiza; Janke, Linda; Schiavi, Alfonso; Tigges, Julia; Ix, Alexander; Ventura, Natascia; Boege, Fritz; Reinke, Hans

    2016-01-01

    Autophagy and the circadian clock counteract tissue degeneration and support longevity in many organisms. Accumulating evidence indicates that aging compromises both the circadian clock and autophagy but the mechanisms involved are unknown. Here we show that the expression levels of transcriptional repressor components of the circadian oscillator, most prominently the human Period homologue PER2, are strongly reduced in primary dermal fibroblasts from aged humans, while raising the expression of PER2 in the same cells partially restores diminished autophagy levels. The link between clock gene expression and autophagy is corroborated by the finding that the circadian clock drives cell-autonomous, rhythmic autophagy levels in immortalized murine fibroblasts, and that siRNA-mediated downregulation of PER2 decreases autophagy levels while leaving core clock oscillations intact. Moreover, the Period homologue lin-42 regulates autophagy and life span in the nematode Caenorhabditis elegans, suggesting an evolutionarily conserved role for Period proteins in autophagy control and aging. Taken together, this study identifies circadian clock proteins as set-point regulators of autophagy and puts forward a model, in which age-related changes of clock gene expression promote declining autophagy levels. PMID:27574892

  6. Mmp1 processing of the PDF neuropeptide regulates circadian structural plasticity of pacemaker neurons.

    PubMed

    Depetris-Chauvin, Ana; Fernández-Gamba, Agata; Gorostiza, E Axel; Herrero, Anastasia; Castaño, Eduardo M; Ceriani, M Fernanda

    2014-10-01

    In the Drosophila brain, the neuropeptide PIGMENT DISPERSING FACTOR (PDF) is expressed in the small and large Lateral ventral neurons (LNvs) and regulates circadian locomotor behavior. Interestingly, PDF immunoreactivity at the dorsal terminals changes across the day as synaptic contacts do as a result of a remarkable remodeling of sLNv projections. Despite the relevance of this phenomenon to circuit plasticity and behavior, the underlying mechanisms remain poorly understood. In this work we provide evidence that PDF along with matrix metalloproteinases (Mmp1 and 2) are key in the control of circadian structural remodeling. Adult-specific downregulation of PDF levels per se hampers circadian axonal remodeling, as it does altering Mmp1 or Mmp2 levels within PDF neurons post-developmentally. However, only Mmp1 affects PDF immunoreactivity at the dorsal terminals and exerts a clear effect on overt behavior. In vitro analysis demonstrated that PDF is hydrolyzed by Mmp1, thereby suggesting that Mmp1 could directly terminate its biological activity. These data demonstrate that Mmp1 modulates PDF processing, which leads to daily structural remodeling and circadian behavior.

  7. Mmp1 Processing of the PDF Neuropeptide Regulates Circadian Structural Plasticity of Pacemaker Neurons

    PubMed Central

    Depetris-Chauvin, Ana; Fernández-Gamba, Ágata; Gorostiza, E. Axel; Herrero, Anastasia; Castaño, Eduardo M.; Ceriani, M. Fernanda

    2014-01-01

    In the Drosophila brain, the neuropeptide PIGMENT DISPERSING FACTOR (PDF) is expressed in the small and large Lateral ventral neurons (LNvs) and regulates circadian locomotor behavior. Interestingly, PDF immunoreactivity at the dorsal terminals changes across the day as synaptic contacts do as a result of a remarkable remodeling of sLNv projections. Despite the relevance of this phenomenon to circuit plasticity and behavior, the underlying mechanisms remain poorly understood. In this work we provide evidence that PDF along with matrix metalloproteinases (Mmp1 and 2) are key in the control of circadian structural remodeling. Adult-specific downregulation of PDF levels per se hampers circadian axonal remodeling, as it does altering Mmp1 or Mmp2 levels within PDF neurons post-developmentally. However, only Mmp1 affects PDF immunoreactivity at the dorsal terminals and exerts a clear effect on overt behavior. In vitro analysis demonstrated that PDF is hydrolyzed by Mmp1, thereby suggesting that Mmp1 could directly terminate its biological activity. These data demonstrate that Mmp1 modulates PDF processing, which leads to daily structural remodeling and circadian behavior. PMID:25356918

  8. Crosstalk of clock gene expression and autophagy in aging.

    PubMed

    Kalfalah, Faiza; Janke, Linda; Schiavi, Alfonso; Tigges, Julia; Ix, Alexander; Ventura, Natascia; Boege, Fritz; Reinke, Hans

    2016-08-28

    Autophagy and the circadian clock counteract tissue degeneration and support longevity in many organisms. Accumulating evidence indicates that aging compromises both the circadian clock and autophagy but the mechanisms involved are unknown. Here we show that the expression levels of transcriptional repressor components of the circadian oscillator, most prominently the human Period homologue PER2 , are strongly reduced in primary dermal fibroblasts from aged humans, while raising the expression of PER2 in the same cells partially restores diminished autophagy levels. The link between clock gene expression and autophagy is corroborated by the finding that the circadian clock drives cell-autonomous, rhythmic autophagy levels in immortalized murine fibroblasts, and that siRNA-mediated downregulation of PER2 decreases autophagy levels while leaving core clock oscillations intact. Moreover, the Period homologue lin-42 regulates autophagy and life span in the nematode Caenorhabditis elegans , suggesting an evolutionarily conserved role for Period proteins in autophagy control and aging. Taken together, this study identifies circadian clock proteins as set-point regulators of autophagy and puts forward a model, in which age-related changes of clock gene expression promote declining autophagy levels.

  9. The mammalian retina as a clock

    NASA Technical Reports Server (NTRS)

    Tosini, Gianluca; Fukuhara, Chiaki

    2002-01-01

    Many physiological, cellular, and biochemical parameters in the retina of vertebrates show daily rhythms that, in many cases, also persist under constant conditions. This demonstrates that they are driven by a circadian pacemaker. The presence of an autonomous circadian clock in the retina of vertebrates was first demonstrated in Xenopus laevis and then, several years later, in mammals. In X. laevis and in chicken, the retinal circadian pacemaker has been localized in the photoreceptor layer, whereas in mammals, such information is not yet available. Recent advances in molecular techniques have led to the identification of a group of genes that are believed to constitute the molecular core of the circadian clock. These genes are expressed in the retina, although with a slightly different 24-h profile from that observed in the central circadian pacemaker. This result suggests that some difference (at the molecular level) may exist between the retinal clock and the clock located in the suprachiasmatic nuclei of hypothalamus. The present review will focus on the current knowledge of the retinal rhythmicity and the mechanisms responsible for its control.

  10. Knockout-Rescue Embryonic Stem Cell-Derived Mouse Reveals Circadian-Period Control by Quality and Quantity of CRY1.

    PubMed

    Ode, Koji L; Ukai, Hideki; Susaki, Etsuo A; Narumi, Ryohei; Matsumoto, Katsuhiko; Hara, Junko; Koide, Naoshi; Abe, Takaya; Kanemaki, Masato T; Kiyonari, Hiroshi; Ueda, Hiroki R

    2017-01-05

    To conduct comprehensive characterization of molecular properties in organisms, we established an efficient method to produce knockout (KO)-rescue mice within a single generation. We applied this method to produce 20 strains of almost completely embryonic stem cell (ESC)-derived mice ("ES mice") rescued with wild-type and mutant Cry1 gene under a Cry1 -/- :Cry2 -/- background. A series of both phosphorylation-mimetic and non-phosphorylation-mimetic CRY1 mutants revealed that multisite phosphorylation of CRY1 can serve as a cumulative timer in the mammalian circadian clock. KO-rescue ES mice also revealed that CRY1-PER2 interaction confers a robust circadian rhythmicity in mice. Surprisingly, in contrast to theoretical predictions from canonical transcription/translation feedback loops, the residues surrounding the flexible P loop and C-lid domains of CRY1 determine circadian period without changing the degradation rate of CRY1. These results suggest that CRY1 determines circadian period through both its degradation-dependent and -independent pathways. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. The influence of intermittent fasting on the circadian pattern of melatonin while controlling for caloric intake, energy expenditure, light exposure, and sleep schedules: A preliminary report.

    PubMed

    Almeneessier, Aljohara S; Bahammam, Ahmed S; Sharif, Munir M; Bahammam, Salman A; Nashwan, Samar Z; Pandi Perumal, Seithikurippu R; Cardinali, Daniel P; Alzoghaibi, Mohammad

    2017-01-01

    We hypothesized that if we control for food composition, caloric intake, light exposure, sleep schedule, and exercise, intermittent fasting would not influence the circadian pattern of melatonin. Therefore, we designed this study to assess the effect of intermittent fasting on the circadian pattern of melatonin. Eight healthy volunteers with a mean age of 26.6 ± 4.9 years and body mass index of 23.7 ± 3.5 kg/m 2 reported to the Sleep Disorders Center (the laboratory) on four occasions: (1) adaptation, (2) 4 weeks before Ramadan while performing Islamic intermittent fasting for 1 week (fasting outside Ramadan [FOR]), (3) 1 week before Ramadan (nonfasting baseline [BL]), and (4) during the 2 nd week of Ramadan while fasting ( Ramadan ). The plasma levels of melatonin were measured using enzyme-linked immunoassays at 22:00, 02:00, 04:00, 06:00, and 11:00 h. The light exposure, meal composition, energy expenditure, and sleep schedules remained the same while the participants stayed at the laboratory. The melatonin levels followed the same circadian pattern during the three monitoring periods (BL, FOR, and Ramadan ). The peak melatonin level was at 02:00 h and the trough level was at 11:00 h in all studied periods. Lower melatonin levels at 22:00 h were found during fasting compared to BL. Cosinor analysis revealed no significant changes in the acrophase of melatonin levels. In this preliminary report, under controlled conditions of light exposure, meal composition, energy expenditure, and sleep-wake schedules, intermittent fasting has no significant influence on the circadian pattern of melatonin.

  12. The influence of intermittent fasting on the circadian pattern of melatonin while controlling for caloric intake, energy expenditure, light exposure, and sleep schedules: A preliminary report

    PubMed Central

    Almeneessier, Aljohara S.; Bahammam, Ahmed S.; Sharif, Munir M.; Bahammam, Salman A.; Nashwan, Samar Z.; Pandi Perumal, Seithikurippu R.; Cardinali, Daniel P.; Alzoghaibi, Mohammad

    2017-01-01

    AIMS: We hypothesized that if we control for food composition, caloric intake, light exposure, sleep schedule, and exercise, intermittent fasting would not influence the circadian pattern of melatonin. Therefore, we designed this study to assess the effect of intermittent fasting on the circadian pattern of melatonin. METHODS: Eight healthy volunteers with a mean age of 26.6 ± 4.9 years and body mass index of 23.7 ± 3.5 kg/m2 reported to the Sleep Disorders Center (the laboratory) on four occasions: (1) adaptation, (2) 4 weeks before Ramadan while performing Islamic intermittent fasting for 1 week (fasting outside Ramadan [FOR]), (3) 1 week before Ramadan (nonfasting baseline [BL]), and (4) during the 2nd week of Ramadan while fasting (Ramadan). The plasma levels of melatonin were measured using enzyme-linked immunoassays at 22:00, 02:00, 04:00, 06:00, and 11:00 h. The light exposure, meal composition, energy expenditure, and sleep schedules remained the same while the participants stayed at the laboratory. RESULTS: The melatonin levels followed the same circadian pattern during the three monitoring periods (BL, FOR, and Ramadan). The peak melatonin level was at 02:00 h and the trough level was at 11:00 h in all studied periods. Lower melatonin levels at 22:00 h were found during fasting compared to BL. Cosinor analysis revealed no significant changes in the acrophase of melatonin levels. CONCLUSIONS: In this preliminary report, under controlled conditions of light exposure, meal composition, energy expenditure, and sleep-wake schedules, intermittent fasting has no significant influence on the circadian pattern of melatonin. PMID:28808490

  13. Nephron-Specific Deletion of Circadian Clock Gene Bmal1 Alters the Plasma and Renal Metabolome and Impairs Drug Disposition.

    PubMed

    Nikolaeva, Svetlana; Ansermet, Camille; Centeno, Gabriel; Pradervand, Sylvain; Bize, Vincent; Mordasini, David; Henry, Hugues; Koesters, Robert; Maillard, Marc; Bonny, Olivier; Tokonami, Natsuko; Firsov, Dmitri

    2016-10-01

    The circadian clock controls a wide variety of metabolic and homeostatic processes in a number of tissues, including the kidney. However, the role of the renal circadian clocks remains largely unknown. To address this question, we performed a combined functional, transcriptomic, and metabolomic analysis in mice with inducible conditional knockout (cKO) of BMAL1, which is critically involved in the circadian clock system, in renal tubular cells (Bmal1 lox/lox /Pax8-rtTA/LC1 mice). Induction of cKO in adult mice did not produce obvious abnormalities in renal sodium, potassium, or water handling. Deep sequencing of the renal transcriptome revealed significant changes in the expression of genes related to metabolic pathways and organic anion transport in cKO mice compared with control littermates. Furthermore, kidneys from cKO mice exhibited a significant decrease in the NAD + -to-NADH ratio, which reflects the oxidative phosphorylation-to-glycolysis ratio and/or the status of mitochondrial function. Metabolome profiling showed significant changes in plasma levels of amino acids, biogenic amines, acylcarnitines, and lipids. In-depth analysis of two selected pathways revealed a significant increase in plasma urea level correlating with increased renal Arginase II activity, hyperargininemia, and increased kidney arginine content as well as a significant increase in plasma creatinine concentration and a reduced capacity of the kidney to secrete anionic drugs (furosemide) paralleled by an approximate 80% decrease in the expression level of organic anion transporter 3 (SLC22a8). Collectively, these results indicate that the renal circadian clocks control a variety of metabolic/homeostatic processes at the intrarenal and systemic levels and are involved in drug disposition. Copyright © 2016 by the American Society of Nephrology.

  14. The treatment of early-morning awakening insomnia with 2 evenings of bright light.

    PubMed

    Lack, Leon; Wright, Helen; Kemp, Kristyn; Gibbon, Samantha

    2005-05-01

    To assess the effectiveness of brief bright-light therapy for the treatment of early-morning awakening insomnia. Twenty-four healthy adults with early-morning awakening insomnia were assigned to either the bright-light condition (2,500-lux white light) or the control (dim red light) condition. The circadian phase of rectal temperature and urinary melatonin rhythms were assessed with 26-hour constant routines before and after 2 evenings of light therapy. Sleep and daytime functioning were monitored using sleep diaries, activity monitors, and mood scales before light therapy and for 4 weeks during the follow-up period. While there were no significant circadian phase changes in the dim-light control group, the bright-light group had significant 2-hour phase delays of circadian temperature and melatonin rhythm. Compared to pretreatment measures, over the 4-week follow-up period, the bright-light group had a greater reduction of time awake after sleep onset, showed a trend toward waking later, and had a greater increase of total sleep time. Participants in the bright-light condition also tended to report greater reductions of negative daytime symptoms, including significantly fewer days of feeling depressed at the 4-week follow-up, as compared with the control group. Two evenings of bright-light exposure phase delayed the circadian rhythms of early-morning awakening insomniacs. It also improved diary and actigraphy sleep measures and improved some indexes of daytime functioning for up to 1 month after light exposure. The study suggests that a brief course of evening bright-light therapy can be an effective treatment for early-morning awakening insomniacs who have relatively phase advanced circadian rhythms.

  15. Participation of the Olfactory Bulb in Circadian Organization during Early Postnatal Life in Rabbits

    PubMed Central

    Navarrete, Erika; Ortega-Bernal, Juan Roberto; Trejo-Muñoz, Lucero; Díaz, Georgina; Montúfar-Chaveznava, Rodrigo; Caldelas, Ivette

    2016-01-01

    Experimental evidence indicates that during pre-visual stages of development in mammals, circadian regulation is still not under the control of the light-entrainable hypothalamic pacemaker, raising the possibility that the circadian rhythmicity that occurs during postnatal development is under the control of peripheral oscillators, such as the main olfactory bulb (MOB). We evaluated the outcome of olfactory bulbectomy on the temporal pattern of core body temperature and gross locomotor activity in newborn rabbits. From postnatal day 1 (P1), pups were randomly assigned to one of the following conditions: intact pups (INT), intact pups fed by enteral gavage (INT+ENT), sham operated pups (SHAM), pups with unilateral lesions of the olfactory bulb (OBx-UNI), and pups with bilateral lesions of the olfactory bulb (OBx-BI). At the beginning of the experiment, from P1-8, the animals in all groups were fed at 11:00, from P9-13 the feeding schedule was delayed 6 h (17:00), and finally, from P14-15 the animals were subjected to fasting conditions. The rabbit pups of the INT, INT+ENT, SHAM and OBx-UNI groups exhibited a clear circadian rhythmicity in body temperature and locomotor activity, with a conspicuous anticipatory rise hours prior to the nursing or feeding schedule, which persisted even during fasting conditions. In addition, phase delays in the nursing or feeding schedule induced a clear phase shift in both parameters. In contrast, the OBx-BI group exhibited atypical rhythmicity in both parameters under entrained conditions that altered the anticipatory component, as well as deficient phase control of both rhythms. The present results demonstrate that the expression of circadian rhythmicity at behavioral and physiological levels during early stages of rabbit development largely depends on the integrity of the main olfactory bulb. PMID:27305041

  16. Associations of polymorphisms in circadian genes with abdominal obesity in Chinese adult population.

    PubMed

    Ye, Ding; Cai, Shaofang; Jiang, Xiyi; Ding, Ye; Chen, Kun; Fan, Chunhong; Jin, Mingjuan

    2016-09-01

    Circadian rhythm, which is controlled by circadian genes, regulates metabolic balance including the circulating levels of glucose, fatty acids, triglycerides, various hormones and so on. The study aimed to investigate the impact of potential polymorphisms in circadian genes on abdominal obesity among Chinese Han adults. A total of 260 cases with abdominal obesity and 260 controls were recruited by individual matching. Demographic characteristics and lifestyle information were collected by a validated questionnaire, and anthropometric parameters was measured by physical examination. Twenty-three single nucleotide polymorphisms (SNPs) in three circadian genes, CLOCK, CRY1 and CRY2, were genotyped by MassArray technique. Five SNPs significantly deviated from Hardy-Weinberg equilibrium (HWE) among controls, so eighteen SNPs were taken into logistic regression analysis. Independently, CLOCK rs10002541 (CC genotype vs. TT genotype: OR: 0.45, 95% CI: 0.23-0.86), CLOCK rs6850524 (CC genotype vs. GG genotype: OR: 0.50, 95% CI: 0.25-0.99) and CRY1 rs10861688 (TT genotype vs. CC genotype: OR: 0.50, 95% CI: 0.25-0.97) were negatively associated with the risk of abdominal obesity. Haplotype analysis showed that the haplotypes of CG and TG for CLOCK rs10002541 and rs4864546 had significant associations with abdominal obesity. Compared with the carriers of TA, those of CG were observed to have a lower risk (OR: 0.74, 95% CI: 0.56-0.99) of abdominal obesity, and those of TG presented a higher risk (OR: 1.70, 95% CI: 1.03-2.81). Our findings suggest that CLOCK and CRY1 polymorphisms might be involved in individual susceptibility to abdominal obesity in Chinese Han population. Copyright © 2016 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  17. The circadian clock regulates cisplatin-induced toxicity and tumor regression in melanoma mouse and human models

    PubMed Central

    Dakup, Panshak P.; Porter, Kenneth I.; Little, Alexander A.; Gajula, Rajendra P.; Zhang, Hui; Skornyakov, Elena; Kemp, Michael G.; Van Dongen, Hans P.A; Gaddameedhi, Shobhan

    2018-01-01

    Cisplatin is one of the most commonly used chemotherapeutic drugs; however, toxicity and tumor resistance limit its use. Studies using murine models and human subjects have shown that the time of day of cisplatin treatment influences renal and blood toxicities. We hypothesized that the mechanisms responsible for these outcomes are driven by the circadian clock. We conducted experiments using wild-type and circadian disrupted Per1/2−/− mice treated with cisplatin at selected morning (AM) and evening (PM) times. Wild-type mice treated in the evening showed an enhanced rate of removal of cisplatin-DNA adducts and less toxicity than the morning-treated mice. This temporal variation in toxicity was lost in the Per1/2−/− clock-disrupted mice, suggesting that the time-of-day effect is linked to the circadian clock. Observations in blood cells from humans subjected to simulated day and night shift schedules corroborated this view. Per1/2−/− mice also exhibited a more robust immune response and slower tumor growth rate, indicating that the circadian clock also influences the immune response to melanoma tumors. Our findings indicate that cisplatin chronopharmacology involves the circadian clock control of DNA repair as well as immune responses, and thus affects both cisplatin toxicity and tumor growth. This has important implications for chronochemotherapy in cancer patients, and also suggests that influencing the circadian clock (e.g., through bright light treatment) may be explored as a tool to improve patient outcomes. PMID:29581861

  18. Circadian pathway genetic variation and cancer risk: evidence from genome-wide association studies.

    PubMed

    Mocellin, Simone; Tropea, Saveria; Benna, Clara; Rossi, Carlo Riccardo

    2018-02-19

    Dysfunction of the circadian clock and single polymorphisms of some circadian genes have been linked to cancer susceptibility, although data are scarce and findings inconsistent. We aimed to investigate the association between circadian pathway genetic variation and risk of developing common cancers based on the findings of genome-wide association studies (GWASs). Single nucleotide polymorphisms (SNPs) of 17 circadian genes reported by three GWAS meta-analyses dedicated to breast (Discovery, Biology, and Risk of Inherited Variants in Breast Cancer (DRIVE) Consortium; cases, n = 15,748; controls, n = 18,084), prostate (Elucidating Loci Involved in Prostate Cancer Susceptibility (ELLIPSE) Consortium; cases, n = 14,160; controls, n = 12,724) and lung carcinoma (Transdisciplinary Research In Cancer of the Lung (TRICL) Consortium; cases, n = 12,160; controls, n = 16,838) in patients of European ancestry were utilized to perform pathway analysis by means of the adaptive rank truncated product (ARTP) method. Data were also available for the following subgroups: estrogen receptor negative breast cancer, aggressive prostate cancer, squamous lung carcinoma and lung adenocarcinoma. We found a highly significant statistical association between circadian pathway genetic variation and the risk of breast (pathway P value = 1.9 × 10 -6 ; top gene RORA, gene P value = 0.0003), prostate (pathway P value = 4.1 × 10 -6 ; top gene ARNTL, gene P value = 0.0002) and lung cancer (pathway P value = 6.9 × 10 -7 ; top gene RORA, gene P value = 2.0 × 10 -6 ), as well as all their subgroups. Out of 17 genes investigated, 15 were found to be significantly associated with the risk of cancer: four genes were shared by all three malignancies (ARNTL, CLOCK, RORA and RORB), two by breast and lung cancer (CRY1 and CRY2) and three by prostate and lung cancer (NPAS2, NR1D1 and PER3), whereas four genes were specific for lung cancer (ARNTL2, CSNK1E, NR1D2 and PER2) and two for breast cancer (PER1, RORC). Our findings, based on the largest series ever utilized for ARTP-based gene and pathway analysis, support the hypothesis that circadian pathway genetic variation is involved in cancer predisposition.

  19. period -1 encodes an ATP-dependent RNA helicase that influences nutritional compensation of the Neurospora circadian clock

    DOE PAGES

    Emerson, Jillian M.; Bartholomai, Bradley M.; Ringelberg, Carol S.; ...

    2015-12-08

    Mutants in the period-1 ( prd­-1) gene, characterized by a recessive allele, display a reduced growth rate and period lengthening of the developmental cycle controlled by the circadian clock. We refined the genetic location of prd­-1 and used whole genome sequencing to find the mutation defining it, confirming the identity of prd­-1 by rescuing the mutant circadian phenotype via transformation. PRD-1 is an RNA helicase whose orthologs, DDX5 and DDX17 in humans and Dbp2p in yeast, are implicated in various processes including transcriptional regulation, elongation, and termination, 23 ribosome biogenesis, and RNA decay. Although prd­-1smutantssiois an ATP-dependent RNA helicase, membermore » of a sub-family display a long period (~25 hrs) circadian developmental cycle, they interestingly display a wild type period when the core circadian oscillator is tracked using a frq-luciferase transcriptional fusion under conditions of limiting nutritional carbon; the core oscillator runs with a long period under glucose-sufficient conditions. Furthermore PRD-1 clearly impacts the circadian oscillator and is not only part of a metabolic oscillator ancillary to the core clock. PRD-1 is an essential protein and its expression is neither light-regulated nor clock-regulated. However, it is transiently induced by glucose; in the presence of sufficient glucose PRD-1 is in the nucleus until glucose runs out which elicits its disappearance from the nucleus. Because circadian period length is carbon concentration-dependent, prd­-1 may be formally viewed as clock mutant with defective nutritional compensation of circadian period length.« less

  20. Role of Chronobiology as a Transdisciplinary Field of Research: Its Applications in Treating Mood Disorders.

    PubMed

    Çalıyurt, Okan

    2017-12-01

    Chronobiology is a field that studies the effects of time on biological systems. Periodicity is of particular interest. The master biological clock in the suprachiasmatic nucleus controls daily rhythms of core body temperature, rest-activity cycle, physiological and behavioral functions, psychomotor functions and mood in humans. The clock genes are involved in the generation of the circadian rhythms and the biological clock is synchronized to solar day by direct photic inputs. Various circadian rhythm abnormalities have been demonstrated in mood disorders such as unipolar depression, bipolar depression and seasonal affective disorder. Hypotheses involving circadian rhythm abnormalities related to the etiology of mood disorders have been raised. The resulting circadian rhythm changes can be measured and evaluated that these techniques can be used to identify subtypes of mood disorders associated with circadian rhythm changes. The data obtained from chronobiological studies reveal methods that manipulate circadian rhythms. The effects of light and melatonin on circadian rhythms are determined by these studies. Chronobiological research has been applied to the psychiatric clinic and light therapy has been used as a chronotherapeutic in the treatment of mood disorders. On the other hand, chronotherapeutic approaches with effects on circadian rhythms such as sleep deprivation therapy have been used in the treatment of mood disorders too. As a good example of translational psychiatry, chronobiological studies have been projected in the psychiatry clinic. It may be possible, the data obtained from the basic sciences are used in the diagnosis of mood disorders and in the treatment of psychiatric disorders as chronotherapeutic techniques. Developments in the field of chronobiology and data obtained from chronotherapeutics may enable the development of evidence-based diagnosis and treatment in psychiatry.

  1. Circadian time structure of circulating plasma lipid peroxides, antioxidant enzymes and other small molecules in peptic ulcers.

    PubMed

    Singh, Ranjana; Singh, Rajesh Kumar; Masood, Tariq; Tripathi, Anil Kumar; Mahdi, Abbas Ali; Singh, Raj Kumar; Schwartzkopff, Othild; Cornelissen, Germaine

    2015-12-07

    The circadian rhythm, as part of a broad time structure (chronome) of lipid peroxides and antioxidant defense mechanisms may relate to prevention, efficacy and management of preventive and curative chronotherapy. Fifty newly diagnosed patients with peptic ulcers, 30-45 years of age, and 60 age-matched clinically healthy volunteers were synchronized for one week with diurnal activity from about 06:00 to about 22:00 and nocturnal rest. Breakfast was served around 08:30, lunch around 13:30 and dinner around 20:30. Drugs known to affect the free-radical systems were not taken. Blood samples were collected at 6-hour intervals for 24h under standardized, presumably 24-hour synchronized conditions. Plasma lipid peroxides, in the form of malondialdehyde (MDA), blood superoxide dismutase (SOD), glutathione peroxide (GPx), glutathione reductase (GR), catalase (CAT) activities, and serum total protein, albumin, ascorbic acid, total serum cholesterol, and HDL-cholesterol concentrations were determined. By population-mean cosinor analysis, a marked circadian variation was demonstrated for all variables in healthy subjects and in ulcer patients (p<0.001). As compared to controls, patients had a lower MESOR of MDA, SOD, GPx, GR, ascorbic acid, and HDL-C. They also had smaller circadian amplitude of SOD, CAT, GPx, GR, ascorbic acid, T-C, and HDL-C, but larger circadian amplitude of MDA and albumin. As compared to healthy subjects, the circadian acrophase of ulcer patients occurred later for MDA and GR and earlier for GPx. Mapping circadian rhythms, important chronome components that include trends with age and extra-circadian components characterizing antioxidants and pro-oxidants, is needed for exploring their putative role as markers in the treatment and management of peptic ulcers. Copyright © 2015. Published by Elsevier B.V.

  2. Masking of a circadian behavior in larval zebrafish involves the thalamo-habenula pathway.

    PubMed

    Lin, Qian; Jesuthasan, Suresh

    2017-06-22

    Changes in illumination can rapidly influence behavior that is normally controlled by the circadian clock. This effect is termed masking. In mice, masking requires melanopsin-expressing retinal ganglion cells that detect blue light and project to the thalamus. It is not known whether masking is wavelength-dependent in other vertebrates, nor is it known whether the thalamus is also involved or how it influences masking. Here, we address these questions in zebrafish. We find that diel vertical migration, a circadian behavior in larval zebrafish, is effectively triggered by blue, but not by red light. Two-photon calcium imaging reveals that a thalamic nucleus and a downstream structure, the habenula, have a sustained response to blue but not to red light. Lesioning the habenula reduces light-evoked climbing. These data suggest that the thalamo-habenula pathway is involved in the ability of blue light to influence a circadian behavior.

  3. Impaired light detection of the circadian clock in a zebrafish melanoma model

    PubMed Central

    Hamilton, Noémie; Diaz-de-Cerio, Natalia; Whitmore, David

    2015-01-01

    The circadian clock controls the timing of the cell cycle in healthy tissues and clock disruption is known to increase tumourigenesis. Melanoma is one of the most rapidly increasing forms of cancer and the precise molecular circadian changes that occur in a melanoma tumor are unknown. Using a melanoma zebrafish model, we have explored the molecular changes that occur to the circadian clock within tumors. We have found disruptions in melanoma clock gene expression due to a major impairment to the light input pathway, with a parallel loss of light-dependent activation of DNA repair genes. Furthermore, the timing of mitosis in tumors is perturbed, as well as the regulation of certain key cell cycle regulators, such that cells divide arhythmically. The inability to co-ordinate DNA damage repair and cell division is likely to promote further tumourigenesis and accelerate melanoma development. PMID:25832911

  4. Impaired light detection of the circadian clock in a zebrafish melanoma model.

    PubMed

    Hamilton, Noémie; Diaz-de-Cerio, Natalia; Whitmore, David

    2015-01-01

    The circadian clock controls the timing of the cell cycle in healthy tissues and clock disruption is known to increase tumourigenesis. Melanoma is one of the most rapidly increasing forms of cancer and the precise molecular circadian changes that occur in a melanoma tumor are unknown. Using a melanoma zebrafish model, we have explored the molecular changes that occur to the circadian clock within tumors. We have found disruptions in melanoma clock gene expression due to a major impairment to the light input pathway, with a parallel loss of light-dependent activation of DNA repair genes. Furthermore, the timing of mitosis in tumors is perturbed, as well as the regulation of certain key cell cycle regulators, such that cells divide arhythmically. The inability to co-ordinate DNA damage repair and cell division is likely to promote further tumourigenesis and accelerate melanoma development.

  5. Masking of the circadian rhythms of heart rate and core temperature by the rest-activity cycle in man

    NASA Technical Reports Server (NTRS)

    Gander, Philippa H.; Connell, Linda J.; Graeber, R. Curtis

    1986-01-01

    Experiments were conducted to estimate the magnitude of the masking effect produced in humans by alternate periods of physical activity and rest or sleep on the circadian rhythms of heart rate and core temperature. The heart rate, rectal temperature, and nondominant wrist activity were monitored in 12 male subjects during 6 days of normal routine at home and during 6 days of controlled bed-rest regimen. The comparisons of averaged waveforms for the activity, heart rate, and temperature indicated that about 45 percent of the range of the circadian heart rate rhythm during normal routine and about 14 percent of the range of the circadian temperature rhythm were attributable to the effects of activity. The smaller effect of activity on the temperature rhythm may be partially attributable to the fact that core temperature is being more rigorously conserved than heart rate, at least during moderate exercise.

  6. The dynamics of GABA signaling: Revelations from the circadian pacemaker in the suprachiasmatic nucleus

    PubMed Central

    Albers, H. Elliott; Walton, James C.; Gamble, Karen L.; McNeill, John K.; Hummer, Daniel L.

    2016-01-01

    Virtually every neuron within the suprachiasmatic nucleus (SCN) communicates via GABAergic signaling. The extracellular levels of GABA within the SCN are determined by a complex interaction of synthesis and transport, as well as synaptic and non-synaptic release. The response to GABA is mediated by GABAA receptors that respond to both phasic and tonic GABA release and that can produce excitatory as well as inhibitory cellular responses. GABA also influences circadian control through the exclusively inhibitory effects of GABAB receptors. Both GABA and neuropeptide signaling occur within the SCN, although the functional consequences of the interactions of these signals are not well understood. This review considers the role of GABA in the circadian pacemaker, in the mechanisms responsible for the generation of circadian rhythms, in the ability of non-photic stimuli to reset the phase of the pacemaker, and in the ability of the day-night cycle to entrain the pacemaker. PMID:27894927

  7. An exploration of the utility of mathematical modeling predicting fatigue from sleep/wake history and circadian phase applied in accident analysis and prevention: the crash of Comair Flight 5191.

    PubMed

    Pruchnicki, Shawn A; Wu, Lora J; Belenky, Gregory

    2011-05-01

    On 27 August 2006 at 0606 eastern daylight time (EDT) at Bluegrass Airport in Lexington, KY (LEX), the flight crew of Comair Flight 5191 inadvertently attempted to take off from a general aviation runway too short for their aircraft. The aircraft crashed killing 49 of the 50 people on board. To better understand this accident and to aid in preventing similar accidents, we applied mathematical modeling predicting fatigue-related degradation in performance for the Air Traffic Controller on-duty at the time of the crash. To provide the necessary input to the model, we attempted to estimate circadian phase and sleep/wake histories for the Captain, First Officer, and Air Traffic Controller. We were able to estimate with confidence the circadian phase for each. We were able to estimate with confidence the sleep/wake history for the Air Traffic Controller, but unable to do this for the Captain and First Officer. Using the sleep/wake history estimates for the Air Traffic Controller as input, the mathematical modeling predicted moderate fatigue-related performance degradation at the time of the crash. This prediction was supported by the presence of what appeared to be fatigue-related behaviors in the Air Traffic Controller during the 30 min prior to and in the minutes after the crash. Our modeling results do not definitively establish fatigue in the Air Traffic Controller as a cause of the accident, rather they suggest that had he been less fatigued he might have detected Comair Flight 5191's lining up on the wrong runway. We were not able to perform a similar analysis for the Captain and First Officer because we were not able to estimate with confidence their sleep/wake histories. Our estimates of sleep/wake history and circadian rhythm phase for the Air Traffic Controller might generalize to other air traffic controllers and to flight crew operating in the early morning hours at LEX. Relative to other times of day, the modeling results suggest an elevated risk of fatigue-related error, incident, or accident in the early morning due to truncated sleep from the early start and adverse circadian phase from the time of day. This in turn suggests that fatigue mitigation targeted to early morning starts might reduce fatigue risk. In summary, this study suggests that mathematical models predicting performance from sleep/wake history and circadian phase are (1) useful in retrospective accident analysis provided reliable sleep/wake histories are available for the accident personnel and, (2) useful in prospective fatigue-risk identification, mitigation, and accident prevention. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Circadian melatonin concentration rhythm is lost in pregnant women with altered blood pressure rhythm.

    PubMed

    Tranquilli, A L; Turi, A; Giannubilo, S R; Garbati, E

    2004-03-01

    We assessed the correlation between the rhythm of melatonin concentration and circadian blood pressure patterns in normal and hypertensive pregnancy. Ambulatory 24-h blood pressure and blood samples every 4 h were monitored in 16 primigravidae who had shown an abnormal circadian blood pressure pattern (eight pre-eclamptic and eight normotensive) in pregnancy and 6-12 months after pregnancy. The circadian rhythm was analyzed by chronobiological measures. Eight normotensive women with maintained blood pressure rhythm served as controls. During pregnancy, melatonin concentration was significantly higher in pre-eclamptic than in normotensive women (pre-eclampsia, 29.4 +/- 1.9 pg/ml, normotensin, altered rhythm, 15.6 +/- 2.1; controls, 22.7 +/- 1.8; p < 0.001). This difference faded after pregnancy, owing to the fall observed in pre-eclampsia (11.8 +/- 3.2 pg/ml, 9.8 +/- 2.1, and 11.1 +/- 2.0, respectively; NS). The rhythm of melatonin concentration was lost in all pregnant women with loss of blood pressure rhythm. After pregnancy, normotensive women showed a reappearance of both melatonin and blood pressure rhythm, whereas pre-eclamptic women showed a reappearance of blood pressure but not melatonin rhythm. The loss of blood pressure rhythm in pregnancy is consistent with the loss of melatonin concentration rhythm. In pre-eclamptic women, the normalization of blood pressure rhythm, while melatonin rhythm remained altered, suggests a temporal or causal priority of circadian concentration of melatonin in the determination of blood pressure trend.

  9. Dopaminergic Regulation of Circadian Food Anticipatory Activity Rhythms in the Rat

    PubMed Central

    Smit, Andrea N.; Patton, Danica F.; Michalik, Mateusz; Opiol, Hanna; Mistlberger, Ralph E.

    2013-01-01

    Circadian activity rhythms are jointly controlled by a master pacemaker in the hypothalamic suprachiasmatic nuclei (SCN) and by food-entrainable circadian oscillators (FEOs) located elsewhere. The SCN mediates synchrony to daily light-dark cycles, whereas FEOs generate activity rhythms synchronized with regular daily mealtimes. The location of FEOs generating food anticipation rhythms, and the pathways that entrain these FEOs, remain to be clarified. To gain insight into entrainment pathways, we developed a protocol for measuring phase shifts of anticipatory activity rhythms in response to pharmacological probes. We used this protocol to examine a role for dopamine signaling in the timing of circadian food anticipation. To generate a stable food anticipation rhythm, rats were fed 3h/day beginning 6-h after lights-on or in constant light for at least 3 weeks. Rats then received the D2 agonist quinpirole (1 mg/kg IP) alone or after pretreatment with the dopamine synthesis inhibitor α-methylparatyrosine (AMPT). By comparison with vehicle injections, quinpirole administered 1-h before lights-off (19h before mealtime) induced a phase delay of activity onset prior to the next meal. Delay shifts were larger in rats pretreated with AMPT, and smaller following quinpirole administered 4-h after lights-on. A significant shift was not observed in response to the D1 agonist SKF81297. These results provide evidence that signaling at D2 receptors is involved in phase control of FEOs responsible for circadian food anticipatory rhythms in rats. PMID:24312417

  10. The role of melatonin and cortisol circadian rhythms in the pathogenesis of infantile colic.

    PubMed

    İnce, Tolga; Akman, Hakkı; Çimrin, Dilek; Aydın, Adem

    2018-03-05

    Despite the high prevalence of infantile colic, the pathogenesis remains incompletely understood. Cortisol and melatonin hormones affect gastrointestinal system development in several ways, and interestingly, both cortisol and melatonin's circadian rhythms begin around the 3rd month in which infantile colic symptoms start to decrease. We hypothesized that infantile colic might associate with desynchronization of normal circadian rhythms of these hormones. In this study, we aimed to investigate the role of melatonin and cortisol in the pathogenesis of infantile colic. Patients who were diagnosed as infantile colic according to Wessel's "rule of three" were enrolled in the colic group. We measured the saliva melatonin and cortisol levels of colic group and control group infants. In both groups, the saliva samples were taken in mornings and at evenings, at the time of diagnosis and 6th month. Fifty-five infants finished the study. Melatonin circadian rhythm developed earlier in the control group than the infantile colic group in our study. We found no significant difference between the daily mean cortisol levels. However, infants with colic had flatter daily cortisol slope than controls which pointed out the probability that they had a less clearly defined cortisol rhythm than infants without colic. We found an association between melatonin levels and infantile colic. However, more research is needed to fully understand the role of hypothalamic-pituitary-adrenal axis and hormone's role on infantile colic physiopathology.

  11. The Circadian Clock Modulates Global Daily Cycles of mRNA Ribosome Loading[OPEN

    PubMed Central

    Missra, Anamika; Ernest, Ben; Jia, Qidong; Ke, Kenneth

    2015-01-01

    Circadian control of gene expression is well characterized at the transcriptional level, but little is known about diel or circadian control of translation. Genome-wide translation state profiling of mRNAs in Arabidopsis thaliana seedlings grown in long day was performed to estimate ribosome loading per mRNA. The experiments revealed extensive translational regulation of key biological processes. Notably, translation of mRNAs for ribosomal proteins and mitochondrial respiration peaked at night. Central clock mRNAs are among those subject to fluctuations in ribosome loading. There was no consistent phase relationship between peak translation states and peak transcript levels. The overlay of distinct transcriptional and translational cycles can be expected to alter the waveform of the protein synthesis rate. Plants that constitutively overexpress the clock gene CCA1 showed phase shifts in peak translation, with a 6-h delay from midnight to dawn or from noon to evening being particularly common. Moreover, cycles of ribosome loading that were detected under continuous light in the wild type collapsed in the CCA1 overexpressor. Finally, at the transcript level, the CCA1-ox strain adopted a global pattern of transcript abundance that was broadly correlated with the light-dark environment. Altogether, these data demonstrate that gene-specific diel cycles of ribosome loading are controlled in part by the circadian clock. PMID:26392078

  12. Actigraph measures discriminate pediatric bipolar disorder from attention-deficit/hyperactivity disorder and typically developing controls.

    PubMed

    Faedda, Gianni L; Ohashi, Kyoko; Hernandez, Mariely; McGreenery, Cynthia E; Grant, Marie C; Baroni, Argelinda; Polcari, Ann; Teicher, Martin H

    2016-06-01

    Distinguishing pediatric bipolar disorder (BD) from attention-deficit hyperactivity disorder (ADHD) can be challenging. Hyperactivity is a core feature of both disorders, but severely disturbed sleep and circadian dysregulation are more characteristic of BD, at least in adults. We tested the hypothesis that objective measures of activity, sleep, and circadian rhythms would help differentiate pediatric subjects with BD from ADHD and typically developing controls. Unmedicated youths (N = 155, 97 males, age 5-18) were diagnosed using DSM-IV criteria with Kiddie-SADS PL/E. BD youths (n = 48) were compared to typically developing controls (n = 42) and children with ADHD (n = 44) or ADHD plus comorbid depressive disorders (n = 21). Three-to-five days of minute-to-minute belt-worn actigraph data (Ambulatory Monitoring Inc.), collected during the school week, were processed to yield 28 metrics per subject, and assessed for group differences with analysis of covariance. Cross-validated machine learning algorithms were used to determine the predictive accuracy of a four-parameter model, with measures reflecting sleep, hyperactivity, and circadian dysregulation, plus Indic's bipolar vulnerability index (VI). There were prominent group differences in several activity measures, notably mean 5 lowest hours of activity, skewness of diurnal activity, relative circadian amplitude, and VI. A predictive support vector machine model discriminated bipolar from non-bipolar with mean accuracy of 83.1 ± 5.4%, ROC area of 0.781 ± 0.071, kappa of 0.587 ± 0.136, specificity of 91.7 ± 5.3%, and sensitivity of 64.4 ± 13.6%. Objective measures of sleep, circadian rhythmicity, and hyperactivity were abnormal in BD. Wearable sensor technology may provide bio-behavioral markers that can help differentiate children with BD from ADHD and healthy controls. © 2016 Association for Child and Adolescent Mental Health.

  13. Scheduled evening sleep and enhanced lighting improve adaptation to night shift work in older adults.

    PubMed

    Chinoy, Evan D; Harris, Michael P; Kim, Min Ju; Wang, Wei; Duffy, Jeanne F

    2016-12-01

    We tested whether a sleep and circadian-based treatment shown to improve circadian adaptation to night shifts and attenuate negative effects on alertness, performance and sleep in young adults would also be effective in older adults. We assessed subjective alertness, sustained attention (psychomotor vigilance task, PVT), sleep duration (actigraphy) and circadian timing (salivary dim-light melatonin onset, DLMO) in 18 older adults (57.2±3.8 years; mean±SD) in a simulated shift work protocol. 4 day shifts were followed by 3 night shifts in the laboratory. Participants slept at home and were randomised to either the treatment group (scheduled evening sleep and enhanced lighting during the latter half of night shifts) or control group (ad-lib sleep and typical lighting during night shifts). Compared with day shifts, alertness and sustained attention declined on the first night shift in both groups, and was worse in the latter half of the night shifts. Alertness and attention improved on nights 2 and 3 for the treatment group but remained lower for the control group. Sleep duration in the treatment group remained similar to baseline (6-7 hours) following night shifts, but was shorter (3-5 hours) following night shifts in the control group. Treatment group circadian timing advanced by 169.3±16.1 min (mean±SEM) but did not shift (-9.7±9.9 min) in the control group. The combined treatment of scheduled evening sleep and enhanced lighting increased sleep duration and partially aligned circadian phase with sleep and work timing, resulting in improved night shift alertness and performance. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  14. A Circadian Clock in Antarctic Krill: An Endogenous Timing System Governs Metabolic Output Rhythms in the Euphausid Species Euphausia superba

    PubMed Central

    Teschke, Mathias; Wendt, Sabrina; Kawaguchi, So; Kramer, Achim; Meyer, Bettina

    2011-01-01

    Antarctic krill, Euphausia superba, shapes the structure of the Southern Ocean ecosystem. Its central position in the food web, the ongoing environmental changes due to climatic warming, and increasing commercial interest on this species emphasize the urgency of understanding the adaptability of krill to its environment. Krill has evolved rhythmic physiological and behavioral functions which are synchronized with the daily and seasonal cycles of the complex Southern Ocean ecosystem. The mechanisms, however, leading to these rhythms are essentially unknown. Here, we show that krill possesses an endogenous circadian clock that governs metabolic and physiological output rhythms. We found that expression of the canonical clock gene cry2 was highly rhythmic both in a light-dark cycle and in constant darkness. We detected a remarkable short circadian period, which we interpret as a special feature of the krill's circadian clock that helps to entrain the circadian system to the extreme range of photoperiods krill is exposed to throughout the year. Furthermore, we found that important key metabolic enzymes of krill showed bimodal circadian oscillations (∼9–12 h period) in transcript abundance and enzymatic activity. Oxygen consumption of krill showed ∼9–12 h oscillations that correlated with the temporal activity profile of key enzymes of aerobic energy metabolism. Our results demonstrate the first report of an endogenous circadian timing system in Antarctic krill and its likely link to metabolic key processes. Krill's circadian clock may not only be critical for synchronization to the solar day but also for the control of seasonal events. This study provides a powerful basis for the investigation into the mechanisms of temporal synchronization in this marine key species and will also lead to the first comprehensive analyses of the circadian clock of a polar marine organism through the entire photoperiodic cycle. PMID:22022521

  15. Moving to the Rhythm with Clock (Circadian) Genes, Autophagy, mTOR, and SIRT1 in Degenerative Disease and Cancer.

    PubMed

    Maiese, Kenneth

    2017-01-01

    The mammalian circadian clock and its associated clock genes are increasingly been recognized as critical components for a number of physiological and disease processes that extend beyond hormone release, thermal regulation, and sleep-wake cycles. New evidence suggests that clinical behavior disruptions that involve prolonged shift work and even space travel may negatively impact circadian rhythm and lead to multi-system disease. In light of the significant role circadian rhythm can hold over the body's normal physiology as well as disease processes, we examined and discussed the impact circadian rhythm and clock genes hold over lifespan, neurodegenerative disorders, and tumorigenesis. In experimental models, lifespan is significantly reduced with the introduction of arrhythmic mutants and leads to an increase in oxidative stress exposure. Interestingly, patients with Alzheimer's disease and Parkinson's disease may suffer disease onset or progression as a result of alterations in the DNA methylation of clock genes as well as prolonged pharmacological treatment for these disorders that may lead to impairment of circadian rhythm function. Tumorigenesis also can occur with the loss of a maintained circadian rhythm and lead to an increased risk for nasopharyngeal carcinoma, breast cancer, and metastatic colorectal cancer. Interestingly, the circadian clock system relies upon the regulation of the critical pathways of autophagy, the mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), and silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1) as well as proliferative mechanisms that involve the wingless pathway of Wnt/β-catenin pathway to foster cell survival during injury and block tumor cell growth. Future targeting of the pathways of autophagy, mTOR, SIRT1, and Wnt that control mammalian circadian rhythm may hold the key for the development of novel and effective therapies against aging- related disorders, neurodegenerative disease, and tumorigenesis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. A circadian clock in Antarctic krill: an endogenous timing system governs metabolic output rhythms in the euphausid species Euphausia superba.

    PubMed

    Teschke, Mathias; Wendt, Sabrina; Kawaguchi, So; Kramer, Achim; Meyer, Bettina

    2011-01-01

    Antarctic krill, Euphausia superba, shapes the structure of the Southern Ocean ecosystem. Its central position in the food web, the ongoing environmental changes due to climatic warming, and increasing commercial interest on this species emphasize the urgency of understanding the adaptability of krill to its environment. Krill has evolved rhythmic physiological and behavioral functions which are synchronized with the daily and seasonal cycles of the complex Southern Ocean ecosystem. The mechanisms, however, leading to these rhythms are essentially unknown. Here, we show that krill possesses an endogenous circadian clock that governs metabolic and physiological output rhythms. We found that expression of the canonical clock gene cry2 was highly rhythmic both in a light-dark cycle and in constant darkness. We detected a remarkable short circadian period, which we interpret as a special feature of the krill's circadian clock that helps to entrain the circadian system to the extreme range of photoperiods krill is exposed to throughout the year. Furthermore, we found that important key metabolic enzymes of krill showed bimodal circadian oscillations (∼9-12 h period) in transcript abundance and enzymatic activity. Oxygen consumption of krill showed ∼9-12 h oscillations that correlated with the temporal activity profile of key enzymes of aerobic energy metabolism. Our results demonstrate the first report of an endogenous circadian timing system in Antarctic krill and its likely link to metabolic key processes. Krill's circadian clock may not only be critical for synchronization to the solar day but also for the control of seasonal events. This study provides a powerful basis for the investigation into the mechanisms of temporal synchronization in this marine key species and will also lead to the first comprehensive analyses of the circadian clock of a polar marine organism through the entire photoperiodic cycle.

  17. Control mechanisms of circadian rhythms in body composition: Implications for manned spaceflight

    NASA Technical Reports Server (NTRS)

    Ede, M. C. M.

    1975-01-01

    The mechanisms that underlie the circadian variations in electrolyte content in body fluid compartments were investigated, and the mechanisms that control the oscillations were studied in order to investigate what effects internal desynchronization in such a system would have during manned space flight. The studies were performed using volunteer human subjects and squirrel monkeys. The intercompartmental distribution of potassium was examined when dietary intake, activity, and posture are held constant throughout each 24-hour day. A net flux of potassium was observed out of the body cell mass during the day and a reverse flux from the extracellular fluid into the body cell mass during the night, counterbalanced by changes in urinary potassium excretion. Experiments with monkeys provided evidence for the synchronization of renal potassium excretion by the rhythm of cortisol secretion with the light-dark cycle. Three models of the circadian timing system were formalized.

  18. Astrocyte deletion of Bmal1 alters daily locomotor activity and cognitive functions via GABA signalling

    PubMed Central

    Barca-Mayo, Olga; Pons-Espinal, Meritxell; Follert, Philipp; Armirotti, Andrea; Berdondini, Luca; De Pietri Tonelli, Davide

    2017-01-01

    Circadian rhythms are controlled by a network of clock neurons in the central pacemaker, the suprachiasmatic nucleus (SCN). Core clock genes, such as Bmal1, are expressed in SCN neurons and in other brain cells, such as astrocytes. However, the role of astrocytic clock genes in controlling rhythmic behaviour is unknown. Here we show that ablation of Bmal1 in GLAST-positive astrocytes alters circadian locomotor behaviour and cognition in mice. Specifically, deletion of astrocytic Bmal1 has an impact on the neuronal clock through GABA signalling. Importantly, pharmacological modulation of GABAA-receptor signalling completely rescues the behavioural phenotypes. Our results reveal a crucial role of astrocytic Bmal1 for the coordination of neuronal clocks and propose a new cellular target, astrocytes, for neuropharmacology of transient or chronic perturbation of circadian rhythms, where alteration of astrocytic clock genes might contribute to the impairment of the neurobehavioural outputs such as cognition. PMID:28186121

  19. Epidemiology and clinical features of toxicity following recreational use of synthetic cannabinoid receptor agonists: a report from the United Kingdom National Poisons Information Service.

    PubMed

    Waugh, Jennifer; Najafi, Javad; Hawkins, Leonard; Hill, Simon L; Eddleston, Michael; Vale, J Allister; Thompson, John P; Thomas, Simon H L

    2016-07-01

    Toxicity from the use of synthetic cannabinoid receptor agonists (SCRAs) has been encountered increasingly frequent in many countries. To characterise presentation rates, demographic profiles and reported clinical features for users of SCRAs referred by health professionals in the United Kingdom to the National Poisons Information Service (NPIS), to compare reported toxicity between commonly used branded products, and to examine the impact of legal control measures on enquiry numbers. NPIS telephone enquiry records were searched for SCRA-related terms for the 8-year period 1st January 2007 to 31st December 2014, consolidating multiple enquiries about the same case into a single record. Demographic data, reported exposure details, clinical features and poisoning severity were analysed, excluding cases where SCRA exposure was unlikely. Enquiries to the NPIS were made concerning 510 individuals relating to probable SCRA use, with annual numbers increasing year on year. Most patients were male (80.8%) and <25 years old (65.1%). Common clinical features reported in the 433 (84.9%) patients reporting SCRA use without other substances included tachycardia (n = 73, 16.9%), reduced level of consciousness (n = 70, 16.2%), agitation or aggression (n = 45, 10.4%), vomiting (n = 30, 6.9%), dizziness (n = 26, 6.0%), confusion (n= 21, 4.8%), mydriasis (n = 20, 4.6%) and hallucinations (n = 20, 4.6%). The Maximum Poisoning Severity Score (PSS) indicated severe toxicity in 36 cases (8.3%). Legal control of "second generation" SCRAs did not affect the rate of growth in enquiry numbers or the proportion with severe toxicity. The three most commonly reported products were "Black Mamba" (n= 88, 20.3%), "Pandora's Box" (n= 65, 15.0%) and "Clockwork Orange" (n= 27, 6.2%). Neurological and general features were recorded more often with "Clockwork Orange" than for "Black Mamba" and "Pandora's Box", but moderate or severe toxicity was significantly less common after reported use of this product. Enquiries about SCRA-related toxicity have become increasingly frequent in the UK in spite of legal controls and commonly involve younger males. Differences in the patterns of toxicity associated with different branded preparations may occur, although further work with larger patient numbers is needed to confirm this.

  20. [Study of prevention and control of delirium in ventilated patients by simulating blockage of circadian rhythm with sedative in intensive care unit].

    PubMed

    Li, Junyan; Dong, Chenming; Zhang, Hong; Zhang, Hongsong; Song, Ruixia; Yang, Zhaohui; Feng, Fang; Qi, Yan; Yang, Jing

    2016-01-01

    To explore the effect of giving sedatives according to the circadian rhythm in prevention of occurrence of delirium and the prognosis of patients undergoing mechanical ventilation in intensive care unit (ICU). A prospective double-blinded randomized controlled trial (RCT) was conducted. The patients admitted to Department of Critical Care Medicine of the Second Hospital of Lanzhou University from July 2014 to February 2015, undergoing invasive mechanical ventilation over 12 hours were enrolled. All the patients were given fentanyl for analgesia, and they were randomly divided into simulated circadian clock group (study group, n = 35) and non-simulated circadian clock group (control group, n = 35). The patients in each group were subdivided into three subgroups according to the kinds of sedative drugs, namely dexmedetomidine group (n = 8), propofol group (n = 14), and dexmedetomidine combined with propofol group (combination group, n = 13). Visual analogue scale (VAS) standard and Richmond agitation-sedation scale (RASS) were used to control the analgesic and to quantify the depth of sedation by titrating the dose of sedative drugs, the simulated circadian clock was set to control the RASS score at 0-1 during the day, and -1 to -2 at night in study group. The RASS score in the control group was set at -1 to -2 day and night. The urine 6-hydroxy acid melatonin (aMT6s) levels at different time points in the first diurnal rhythm (06:00, 12:00, 18:00, 24:00) were determined by enzyme linked immunosorbent assay (ELISA). The incidence of delirium, severe hypotension, severe bradycardia and other adverse reactions, duration of mechanical ventilation and the time of extubation, length of ICU stay, amount of sedative and analgesic drugs used were recorded. The correlation between delirium and other indexes was analyzed by using Spearman correlation analysis. (1) There were no significant differences in gender, age, acute physiology and chronic health evaluation II (APACHEII) score among groups. (2) Urine aMT6s levels did not show circadian rhythm in both groups, aMT6s level at 06:00 in study group showed an increasing tendency as compared with the control group, but the difference was not statistically significant. (3) Compared with the control group, the incidence of delirium was significantly lowered in the study group (14.3% vs. 37.1%, P = 0.029), but no significant differences were found in the incidence of severe hypotension or severe bradycardia (20.0% vs. 25.7%, 11.4% vs. 20.0%, both P > 0.05). In simulated circadian clock group, the incidence of delirium in dexmedetomidine group was significantly lower than that of the propofol group (6.3% vs. 32.1%, P < 0.05). (4) Compared with control group with the same sedative, the duration of mechanical ventilation, extubation time, length of ICU stay were significantly shortened, and the dosage of sedative drugs used was reduced in study group (all P < 0.05). In simulated circadian clock group, the duration of mechanical ventilation in dexmedetomidine group was significantly shorter than that of propofol group and combination group (hours: 75.75±26.78 vs. 102.00±26.31 and 100.31±25.38, both P < 0.05), and the length of ICU stay was significantly shorter than that of propofol group (days: 5.75±1.04 vs. 7.00±1.52, P < 0.05). (5) The occurrence of delirium was positively correlated with duration of mechanical ventilation (r = 0.705), extubation time (r = 0.704), length of ICU stay (r = 0.666, all P = 0.000), and no correlation was found between the occurrence of delirium and aMT6s level at 06:00, 12:00, 18:00, and 24:00 (r = -0.135, r = 0.163, r = 0.269, r = -0.077, all P > 0.05). Administration of sedatives according to simulating circadian time could decrease the duration of mechanical ventilation, extubation time, and the length of ICU stay, decrease the dosage of sedative drugs, and reduce the incidence of delirium. Dexmedetomidine could reduce the incidence of delirium, and improve the prognosis of patients.

  1. Effects of microgravity on circadian rhythms in insects

    NASA Technical Reports Server (NTRS)

    Alpatov, A. M.; Hoban-Higgins, T. M.; Fuller, C. A.; Lazarev, A. O.; Rietveld, W. J.; Tschernyshev, V. B.; Tumurova, E. G.; Wassmer, G.; Zotov, V. A.

    1998-01-01

    The desert beetle Trigonoscelis gigas Reitt. was used as a biological model in studies that examined the effects of space flight on the circadian timing system. Results from studies aboard the Bion-10, Bion-11, and Photon-11 missions are reported. The control study is an ongoing Mir experiment. The studies indicate that the free-running period in beetles may be longer during space flight.

  2. Comparative Analysis of Vertebrate Diurnal/Circadian Transcriptomes

    PubMed Central

    Boyle, Greg; Richter, Kerstin; Priest, Henry D.; Traver, David; Mockler, Todd C.; Chang, Jeffrey T.; Kay, Steve A.

    2017-01-01

    From photosynthetic bacteria to mammals, the circadian clock evolved to track diurnal rhythms and enable organisms to anticipate daily recurring changes such as temperature and light. It orchestrates a broad spectrum of physiology such as the sleep/wake and eating/fasting cycles. While we have made tremendous advances in our understanding of the molecular details of the circadian clock mechanism and how it is synchronized with the environment, we still have rudimentary knowledge regarding its connection to help regulate diurnal physiology. One potential reason is the sheer size of the output network. Diurnal/circadian transcriptomic studies are reporting that around 10% of the expressed genome is rhythmically controlled. Zebrafish is an important model system for the study of the core circadian mechanism in vertebrate. As Zebrafish share more than 70% of its genes with human, it could also be an additional model in addition to rodent for exploring the diurnal/circadian output with potential for translational relevance. Here we performed comparative diurnal/circadian transcriptome analysis with established mouse liver and other tissue datasets. First, by combining liver tissue sampling in a 48h time series, transcription profiling using oligonucleotide arrays and bioinformatics analysis, we profiled rhythmic transcripts and identified 2609 rhythmic genes. The comparative analysis revealed interesting features of the output network regarding number of rhythmic genes, proportion of tissue specific genes and the extent of transcription factor family expression. Undoubtedly, the Zebrafish model system will help identify new vertebrate outputs and their regulators and provides leads for further characterization of the diurnal cis-regulatory network. PMID:28076377

  3. Suprachiasmatic astrocytes modulate the circadian clock in response to TNF-α1

    PubMed Central

    Duhart, José M.; Leone, María Juliana; Paladino, Natalia; Evans, Jennifer A.; Castanon-Cervantes, Oscar; Davidson, Alec J.; Golombek, Diego A.

    2013-01-01

    The immune and the circadian systems interact in a bidirectional fashion. The master circadian oscillator, located in the suprachiasmatic nuclei of the hypothalamus (SCN), responds to peripheral and local immune stimuli, such as proinflammatory cytokines and bacterial endotoxin. Astrocytes exert several immune functions in the central nervous system and there is growing evidence that points towards a role of these cells in the regulation of circadian rhythms. The aim of this work was to assess the response of SCN astrocytes to immune stimuli, particularly to the proinflammatory cytokine TNF-α. TNF-α applied to cultures of SCN astrocytes from Per2luc knock in mice altered both the phase and amplitude of PER2 expression rhythms, in a phase dependent manner. Furthermore, conditioned media from SCN astrocytes cultures transiently challenged with TNF-α induced an increase in Per1 expression in NIH 3T3 cells, that was blocked by TNF-α antagonism. In addition, these conditioned media could induce phase shifts in SCN PER2 rhythms and, when administered intracerebroventricularly, induced phase delays in behavioral circadian rhythms and SCN activation in control mice, but not in TNF-Receptor-1 mutants. In summary, our results show that TNF-α modulates the molecular clock of SCN astrocytes in vitro and also that, in response to this molecule, SCN astrocytes can modulate clock gene expression in other cells and tissues, and induce phase shifts in a circadian behavioral output in vivo. These findings suggest a role for astroglial cells in the alteration of circadian timing by immune activation. PMID:24062487

  4. Circadian rhythm of blood pressure and the renin-angiotensin system in the kidney.

    PubMed

    Ohashi, Naro; Isobe, Shinsuke; Ishigaki, Sayaka; Yasuda, Hideo

    2017-05-01

    Activation of the intrarenal renin-angiotensin system (RAS) has a critical role in the pathophysiology of the circadian rhythm of blood pressure (BP) and renal injury, independent of circulating RAS. Although it is clear that the circulating RAS has a circadian rhythm, reports of a circadian rhythm in tissue-specific RAS are limited. Clinical studies evaluating intrarenal RAS activity by urinary angiotensinogen (AGT) levels have indicated that urinary AGT levels were equally low during both the daytime and nighttime in individuals without chronic kidney disease (CKD) and that urinary AGT levels were higher during the daytime than at nighttime in patients with CKD. Moreover, urinary AGT levels of the night-to-day (N/D) ratio of urinary AGT were positively correlated with the levels of N/D of urinary protein, albumin excretion and BP. In addition, animal studies have demonstrated that the expression of intrarenal RAS components, such as AGT, angiotensin II (AngII) and AngII type 1 receptor proteins, increased and peaked at the same time as BP and urinary protein excretion during the resting phase, and the amplitude of the oscillations of these proteins was augmented in a chronic progressive nephritis animal compared with a control. Thus, the circadian rhythm of intrarenal RAS activation may lead to renal damage and hypertension, which both are associated with diurnal variations in BP. It is possible that augmented glomerular permeability increases AGT excretion levels into the tubular lumen and that circadian fluctuation of glomerular permeability influences the circadian rhythm of the intrarenal RAS.

  5. Circadian polymorphisms in night owls, in bipolars, and in non-24-hour sleep cycles.

    PubMed

    Kripke, Daniel F; Klimecki, Walter T; Nievergelt, Caroline M; Rex, Katharine M; Murray, Sarah S; Shekhtman, Tatyana; Tranah, Gregory J; Loving, Richard T; Lee, Heon-Jeong; Rhee, Min Kyu; Shadan, Farhad F; Poceta, J Steven; Jamil, Shazia M; Kline, Lawrence E; Kelsoe, John R

    2014-10-01

    People called night owls habitually have late bedtimes and late times of arising, sometimes suffering a heritable circadian disturbance called delayed sleep phase syndrome (DSPS). Those with DSPS, those with more severe progressively-late non-24-hour sleep-wake cycles, and those with bipolar disorder may share genetic tendencies for slowed or delayed circadian cycles. We searched for polymorphisms associated with DSPS in a case-control study of DSPS research participants and a separate study of Sleep Center patients undergoing polysomnography. In 45 participants, we resequenced portions of 15 circadian genes to identify unknown polymorphisms that might be associated with DSPS, non-24-hour rhythms, or bipolar comorbidities. We then genotyped single nucleotide polymorphisms (SNPs) in both larger samples, using Illumina Golden Gate assays. Associations of SNPs with the DSPS phenotype and with the morningness-eveningness parametric phenotype were computed for both samples, then combined for meta-analyses. Delayed sleep and "eveningness" were inversely associated with loci in circadian genes NFIL3 (rs2482705) and RORC (rs3828057). A group of haplotypes overlapping BHLHE40 was associated with non-24-hour sleep-wake cycles, and less robustly, with delayed sleep and bipolar disorder (e.g., rs34883305, rs34870629, rs74439275, and rs3750275 were associated with n=37, p=4.58E-09, Bonferroni p=2.95E-06). Bright light and melatonin can palliate circadian disorders, and genetics may clarify the underlying circadian photoperiodic mechanisms. After further replication and identification of the causal polymorphisms, these findings may point to future treatments for DSPS, non-24-hour rhythms, and possibly bipolar disorder or depression.

  6. Human responses to bright light of different durations.

    PubMed

    Chang, Anne-Marie; Santhi, Nayantara; St Hilaire, Melissa; Gronfier, Claude; Bradstreet, Dayna S; Duffy, Jeanne F; Lockley, Steven W; Kronauer, Richard E; Czeisler, Charles A

    2012-07-01

    Light exposure in the early night induces phase delays of the circadian rhythm in melatonin in humans. Previous studies have investigated the effect of timing, intensity, wavelength, history and pattern of light stimuli on the human circadian timing system. We present results from a study of the duration–response relationship to phase-delaying bright light. Thirty-nine young healthy participants (16 female; 22.18±3.62 years) completed a 9-day inpatient study. Following three baseline days, participants underwent an initial circadian phase assessment procedure in dim light (<3 lux), and were then randomized for exposure to a bright light pulse (∼10,000 lux) of 0.2 h, 1.0 h, 2.5 h or 4.0 h duration during a 4.5 h controlled-posture episode centred in a 16 h wake episode. After another 8 h sleep episode, participants completed a second circadian phase assessment. Phase shifts were calculated from the difference in the clock time of the dim light melatonin onset (DLMO) between the initial and final phase assessments. Exposure to varying durations of bright light reset the circadian pacemaker in a dose-dependent, non-linear manner. Per minute of exposure, the 0.2 h duration was over 5 times more effective at phase delaying the circadian pacemaker (1.07±0.36 h) as compared with the 4.0 h duration (2.65±0.24 h). Acute melatonin suppression and subjective sleepiness also had a dose-dependent response to light exposure duration. These results provide strong evidence for a non-linear resetting response of the human circadian pacemaker to light duration.

  7. Chronic Maternal Low-Protein Diet in Mice Affects Anxiety, Night-Time Energy Expenditure and Sleep Patterns, but Not Circadian Rhythm in Male Offspring

    PubMed Central

    Mahadevan, Sangeetha K.; Fiorotto, Marta L.; Van den Veyver, Ignatia B.

    2017-01-01

    Offspring of murine dams chronically fed a protein-restricted diet have an increased risk for metabolic and neurobehavioral disorders. Previously we showed that adult offspring, developmentally exposed to a chronic maternal low-protein (MLP) diet, had lower body and hind-leg muscle weights and decreased liver enzyme serum levels. We conducted energy expenditure, neurobehavioral and circadian rhythm assays in male offspring to examine mechanisms for the body-weight phenotype and assess neurodevelopmental implications of MLP exposure. C57BL/6J dams were fed a protein restricted (8%protein, MLP) or a control protein (20% protein, C) diet from four weeks before mating until weaning of offspring. Male offspring were weaned to standard rodent diet (20% protein) and single-housed until 8–12 weeks of age. We examined body composition, food intake, energy expenditure, spontaneous rearing activity and sleep patterns and performed behavioral assays for anxiety (open field activity, elevated plus maze [EPM], light/dark exploration), depression (tail suspension and forced swim test), sociability (three-chamber), repetitive (marble burying), learning and memory (fear conditioning), and circadian behavior (wheel-running activity during light-dark and constant dark cycles). We also measured circadian gene expression in hypothalamus and liver at different Zeitgeber times (ZT). Male offspring from separate MLP exposed dams had significantly greater body fat (P = 0.03), less energy expenditure (P = 0.004), less rearing activity (P = 0.04) and a greater number of night-time rest/sleep bouts (P = 0.03) compared to control. MLP offspring displayed greater anxiety-like behavior in the EPM (P<0.01) but had no learning and memory deficit in fear-conditioning assay (P = 0.02). There was an effect of time on Per1, Per 2 and Clock circadian gene expression in the hypothalamus but not on circadian behavior. Thus, transplacental and early developmental exposure of dams to chronic MLP reduces food intake and energy expenditure, increases anxiety like behavior and disturbs sleep patterns but not circadian rhythm in adult male offspring. PMID:28099477

  8. Circadian Clearance of a Fungal Pathogen from the Lung Is Not Based on Cell-intrinsic Macrophage Rhythms.

    PubMed

    Chen, Shan; Fuller, Kevin K; Dunlap, Jay C; Loros, Jennifer J

    2018-02-01

    Circadian rhythms govern immune cell function, giving rise to time-of-day variation in the recognition and clearance of bacterial or viral pathogens; to date, however, no such regulation of the host-fungal interaction has been described. In this report, we use murine models to explore circadian control of either fungal-macrophage interactions in vitro or pathogen clearance from the lung in vivo. First, we show that expression of the important fungal pattern recognition receptor Dectin-1 ( clec7a), from either bone marrow-derived or peritoneum-derived macrophages, is not under circadian regulation at either the level of transcript or cell surface protein expression. Consistent with this finding, the phagocytic activity of macrophages in culture against spores of the pathogen Aspergillus fumigatus also did not vary over time. To account for the multiple cell types and processes that may be coordinated in a circadian fashion in vivo, we examined the clearance of A. fumigatus from the lungs of immunocompetent mice. Interestingly, animals inoculated at night demonstrated a 2-fold enhancement in clearance compared with animals inoculated in the morning. Taken together, our data suggest that while molecular recognition of fungi by immune cells may not be circadian, other processes in vivo may still allow for time-of-day differences in fungal clearance from the lung.

  9. Model-based investigation of the circadian clock and cell cycle coupling in mouse embryonic fibroblasts: Prediction of RevErb-α up-regulation during mitosis.

    PubMed

    Traynard, Pauline; Feillet, Céline; Soliman, Sylvain; Delaunay, Franck; Fages, François

    2016-11-01

    Experimental observations have put in evidence autonomous self-sustained circadian oscillators in most mammalian cells, and proved the existence of molecular links between the circadian clock and the cell cycle. Some mathematical models have also been built to assess conditions of control of the cell cycle by the circadian clock. However, recent studies in individual NIH3T3 fibroblasts have shown an unexpected acceleration of the circadian clock together with the cell cycle when the culture medium is enriched with growth factors, and the absence of such acceleration in confluent cells. In order to explain these observations, we study a possible entrainment of the circadian clock by the cell cycle through a regulation of clock genes around the mitosis phase. We develop a computational model and a formal specification of the observed behavior to investigate the conditions of entrainment in period and phase. We show that either the selective activation of RevErb-α or the selective inhibition of Bmal1 transcription during the mitosis phase, allow us to fit the experimental data on both period and phase, while a uniform inhibition of transcription during mitosis seems incompatible with the phase data. We conclude on the arguments favoring the RevErb-α up-regulation hypothesis and on some further predictions of the model. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Circadian and ultradian components of hunger in human non-homeostatic meal-to-meal eating.

    PubMed

    Wuorinen, Elizabeth C; Borer, Katarina T

    2013-10-02

    A unifying physiological explanation of the urge to initiate eating is still not available as human hunger in meal-to-meal eating may not be under homeostatic control. We hypothesized that a central circadian and a gastrointestinal ultradian timing mechanism coordinate non-deprivation meal-to-meal eating. We examined hunger as a function of time of day, inter-meal (IM) energy expenditure (EE), and concentrations of proposed hunger-controlling hormones ghrelin, leptin, and insulin. In two crossover studies, 10 postmenopausal women, BMI 23-26 kg/m(2) engaged in exercise (EX) and sedentary (SED) trials. Weight maintenance meals were provided at 6h intervals with an ad libitum meal at 13 h in study 1 and 21 h snack in study 2. EE during IM intervals was measured by indirect calorimetry and included EX EE of 801 kcal in study 1, and 766-1,051 kcal in study 2. Hunger was assessed with a visual analog scale and blood was collected for hormonal determination. Hunger displayed a circadian variation with acrophase at 13 and 19 h and was unrelated to preceding EE. Hunger was suppressed by EX between 10 and 16 h and bore no relationship to either EE during preceding IM intervals or changes in leptin, insulin, and ghrelin; however leptin reflected IM energy changes and ghrelin and insulin, prandial events. During non-deprivation meal-to-meal eating, hunger appears to be under non-homeostatic central circadian control as it is unrelated to EE preceding meals or concentrations of proposed appetite-controlling hormones. Gastrointestinal meal processing appears to intermittently suppress this control and entrain an ultradian hunger pattern. © 2013 Elsevier Inc. All rights reserved.

  11. Role of the melatonin system in the control of sleep: therapeutic implications.

    PubMed

    Pandi-Perumal, Seithikurippu R; Srinivasan, Venkatramanujan; Spence, D Warren; Cardinali, Daniel P

    2007-01-01

    The circadian rhythm of pineal melatonin secretion, which is controlled by the suprachiasmatic nucleus (SCN), is reflective of mechanisms that are involved in the control of the sleep/wake cycle. Melatonin can influence sleep-promoting and sleep/wake rhythm-regulating actions through the specific activation of MT(1) (melatonin 1a) and MT(2) (melatonin 1b) receptors, the two major melatonin receptor subtypes found in mammals. Both receptors are highly concentrated in the SCN. In diurnal animals, exogenous melatonin induces sleep over a wide range of doses. In healthy humans, melatonin also induces sleep, although its maximum hypnotic effectiveness, as shown by studies of the timing of dose administration, is influenced by the circadian phase. In both young and elderly individuals with primary insomnia, nocturnal plasma melatonin levels tend to be lower than those in healthy controls. There are data indicating that, in affected individuals, melatonin therapy may be beneficial for ameliorating insomnia symptoms. Melatonin has been successfully used to treat insomnia in children with attention-deficit hyperactivity disorder or autism, as well as in other neurodevelopmental disorders in which sleep disturbance is commonly reported. In circadian rhythm sleep disorders, such as delayed sleep-phase syndrome, melatonin can significantly advance the phase of the sleep/wake rhythm. Similarly, among shift workers or individuals experiencing jet lag, melatonin is beneficial for promoting adjustment to work schedules and improving sleep quality. The hypnotic and rhythm-regulating properties of melatonin and its agonists (ramelteon, agomelatine) make them an important addition to the armamentarium of drugs for treating primary and secondary insomnia and circadian rhythm sleep disorders.

  12. CULLIN-3 Controls TIMELESS Oscillations in the Drosophila Circadian Clock

    PubMed Central

    Lamouroux, Annie; Chélot, Elisabeth; Rouyer, François

    2012-01-01

    Eukaryotic circadian clocks rely on transcriptional feedback loops. In Drosophila, the PERIOD (PER) and TIMELESS (TIM) proteins accumulate during the night, inhibit the activity of the CLOCK (CLK)/CYCLE (CYC) transcriptional complex, and are degraded in the early morning. The control of PER and TIM oscillations largely depends on post-translational mechanisms. They involve both light-dependent and light-independent pathways that rely on the phosphorylation, ubiquitination, and proteasomal degradation of the clock proteins. SLMB, which is part of a CULLIN-1-based E3 ubiquitin ligase complex, is required for the circadian degradation of phosphorylated PER. We show here that CULLIN-3 (CUL-3) is required for the circadian control of PER and TIM oscillations. Expression of either Cul-3 RNAi or dominant negative forms of CUL-3 in the clock neurons alters locomotor behavior and dampens PER and TIM oscillations in light-dark cycles. In constant conditions, CUL-3 deregulation induces behavioral arrhythmicity and rapidly abolishes TIM cycling, with slower effects on PER. CUL-3 affects TIM accumulation more strongly in the absence of PER and forms protein complexes with hypo-phosphorylated TIM. In contrast, SLMB affects TIM more strongly in the presence of PER and preferentially associates with phosphorylated TIM. CUL-3 and SLMB show additive effects on TIM and PER, suggesting different roles for the two ubiquitination complexes on PER and TIM cycling. This work thus shows that CUL-3 is a new component of the Drosophila clock, which plays an important role in the control of TIM oscillations. PMID:22879814

  13. TIME FOR COFFEE Represses Accumulation of the MYC2 Transcription Factor to Provide Time-of-Day Regulation of Jasmonate Signaling in Arabidopsis[C][W][OA

    PubMed Central

    Shin, Jieun; Heidrich, Katharina; Sanchez-Villarreal, Alfredo; Parker, Jane E.; Davis, Seth J.

    2012-01-01

    Plants are confronted with predictable daily biotic and abiotic stresses that result from the day–night cycle. The circadian clock provides an anticipation mechanism to respond to these daily stress signals to increase fitness. Jasmonate (JA) is a phytohormone that mediates various growth and stress responses. Here, we found that the circadian-clock component TIME FOR COFFEE (TIC) acts as a negative factor in the JA-signaling pathway. We showed that the tic mutant is hypersensitive to growth-repressive effects of JA and displays altered JA-regulated gene expression. TIC was found to interact with MYC2, a key transcription factor of JA signaling. From this, we discovered that the circadian clock rhythmically regulates JA signaling. TIC is a key determinant in this circadian-gated process, and as a result, the tic mutant is defective in rhythmic JA responses to pathogen infection. TIC acts here by inhibiting MYC2 protein accumulation and by controlling the transcriptional repression of CORONATINE INSENSITIVE1 in an evening-phase–specific manner. Taken together, we propose that TIC acts as an output component of the circadian oscillator to influence JA signaling directly. PMID:22693280

  14. Localization and expression of putative circadian clock transcripts in the brain of the nudibranch Melibe leonina.

    PubMed

    Duback, Victoria E; Sabrina Pankey, M; Thomas, Rachel I; Huyck, Taylor L; Mbarani, Izhar M; Bernier, Kyle R; Cook, Geoffrey M; O'Dowd, Colleen A; Newcomb, James M; Watson, Winsor H

    2018-09-01

    The nudibranch, Melibe leonina, expresses a circadian rhythm of locomotion, and we recently determined the sequences of multiple circadian clock transcripts that may play a role in controlling these daily patterns of behavior. In this study, we used these genomic data to help us: 1) identify putative clock neurons using fluorescent in situ hybridization (FISH); and 2) determine if there is a daily rhythm of expression of clock transcripts in the M. leonina brain, using quantitative PCR. FISH indicated the presence of the clock-related transcripts clock, period, and photoreceptive and non-photoreceptive cryptochrome (pcry and npcry, respectively) in two bilateral neurons in each cerebropleural ganglion and a group of <10 neurons in the anterolateral region of each pedal ganglion. Double-label experiments confirmed colocalization of all four clock transcripts with each other. Quantitative PCR demonstrated that the genes clock, period, pcry and npcry exhibited significant differences in expression levels over 24 h. These data suggest that the putative circadian clock network in M. leonina consists of a small number of identifiable neurons that express circadian genes with a daily rhythm. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Sleep, rhythms, and the endocrine brain: influence of sex and gonadal hormones.

    PubMed

    Mong, Jessica A; Baker, Fiona C; Mahoney, Megan M; Paul, Ketema N; Schwartz, Michael D; Semba, Kazue; Silver, Rae

    2011-11-09

    While much is known about the mechanisms that underlie sleep and circadian rhythms, the investigation into sex differences and gonadal steroid modulation of sleep and biological rhythms is in its infancy. There is a growing recognition of sex disparities in sleep and rhythm disorders. Understanding how neuroendocrine mediators and sex differences influence sleep and biological rhythms is central to advancing our understanding of sleep-related disorders. While it is known that ovarian steroids affect circadian rhythms in rodents, the role of androgen is less understood. Surprising findings that androgens, acting via androgen receptors in the master "circadian clock" within the suprachiasmatic nucleus, modulate photic effects on activity in males point to novel mechanisms of circadian control. Work in aromatase-deficient mice suggests that some sex differences in photic responsiveness are independent of gonadal hormone effects during development. In parallel, aspects of sex differences in sleep are also reported to be independent of gonadal steroids and may involve sex chromosome complement. This a summary of recent work illustrating how sex differences and gonadal hormones influence sleep and circadian rhythms that was presented at a Mini-Symposium at the 2011 annual meeting of the Society for Neuroscience.

  16. Sleep, Rhythms, and the Endocrine Brain: Influence of Sex and Gonadal Hormones

    PubMed Central

    Mong, Jessica A.; Baker, Fiona C.; Mahoney, Megan M.; Paul, Ketema N.; Schwartz, Michael D.; Semba, Kazue; Silver, Rae

    2011-01-01

    While much is known about the mechanisms that underlie sleep and circadian rhythms, the investigation into sex differences and gonadal steroid modulation of sleep and biological rhythms is in its infancy. There is a growing recognition of sex disparities in sleep and rhythm disorders. Understanding how neuroendocrine mediators and sex differences influence sleep and biological rhythms is central to advancing our understanding of sleep-related disorders. While it is known that ovarian steroids affect circadian rhythms in rodents, the role of androgen is less understood. Surprising findings that androgens, acting via androgen receptors in the master “circadian clock” within the suprachiasmatic nucleus (SCN), modulate photic effects on activity in males points to novel mechanisms of circadian control. Work in aromatase deficient (ArKO) mice suggests that some sex differences in photic responsiveness are independent of gonadal hormone effects during development. In parallel, aspects of sex differences in sleep are also reported to be independent of gonadal steroids and may involve sex chromosome complement. This a summary of recent work illustrating how sex differences and gonadal hormones influence sleep and circadian rhythms that was presented at a mini-symposium at the 2011 annual meeting of the Society for Neuroscience. PMID:22072663

  17. Altered Circadian Timing System-Mediated Non-Dipping Pattern of Blood Pressure and Associated Cardiovascular Disorders in Metabolic and Kidney Diseases

    PubMed Central

    Nishiyama, Akira

    2018-01-01

    The morning surge in blood pressure (BP) coincides with increased cardiovascular (CV) events. This strongly suggests that an altered circadian rhythm of BP plays a crucial role in the development of CV disease (CVD). A disrupted circadian rhythm of BP, such as the non-dipping type of hypertension (i.e., absence of nocturnal BP decline), is frequently observed in metabolic disorders and chronic kidney disease (CKD). The circadian timing system, controlled by the central clock in the suprachiasmatic nucleus of the hypothalamus and/or by peripheral clocks in the heart, vasculature, and kidneys, modulates the 24 h oscillation of BP. However, little information is available regarding the molecular and cellular mechanisms of an altered circadian timing system-mediated disrupted dipping pattern of BP in metabolic disorders and CKD that can lead to the development of CV events. A more thorough understanding of this pathogenesis could provide novel therapeutic strategies for the management of CVD. This short review will address our and others’ recent findings on the molecular mechanisms that may affect the dipping pattern of BP in metabolic dysfunction and kidney disease and its association with CV disorders. PMID:29385702

  18. Circadian Metabolism in the Light of Evolution

    PubMed Central

    2015-01-01

    Circadian rhythm, or daily oscillation, of behaviors and biological processes is a fundamental feature of mammalian physiology that has developed over hundreds of thousands of years under the continuous evolutionary pressure of energy conservation and efficiency. Evolution has fine-tuned the body's clock to anticipate and respond to numerous environmental cues in order to maintain homeostatic balance and promote survival. However, we now live in a society in which these classic circadian entrainment stimuli have been dramatically altered from the conditions under which the clock machinery was originally set. A bombardment of artificial lighting, heating, and cooling systems that maintain constant ambient temperature; sedentary lifestyle; and the availability of inexpensive, high-calorie foods has threatened even the most powerful and ancient circadian programming mechanisms. Such environmental changes have contributed to the recent staggering elevation in lifestyle-influenced pathologies, including cancer, cardiovascular disease, depression, obesity, and diabetes. This review scrutinizes the role of the body's internal clocks in the hard-wiring of circadian networks that have evolved to achieve energetic balance and adaptability, and it discusses potential therapeutic strategies to reset clock metabolic control to modern time for the benefit of human health. PMID:25927923

  19. Comparative Circadian Metabolomics Reveal Differential Effects of Nutritional Challenge in the Serum and Liver.

    PubMed

    Abbondante, Serena; Eckel-Mahan, Kristin L; Ceglia, Nicholas J; Baldi, Pierre; Sassone-Corsi, Paolo

    2016-02-05

    Diagnosis and therapeutic interventions in pathological conditions rely upon clinical monitoring of key metabolites in the serum. Recent studies show that a wide range of metabolic pathways are controlled by circadian rhythms whose oscillation is affected by nutritional challenges, underscoring the importance of assessing a temporal window for clinical testing and thereby questioning the accuracy of the reading of critical pathological markers in circulation. We have been interested in studying the communication between peripheral tissues under metabolic homeostasis perturbation. Here we present a comparative circadian metabolomic analysis on serum and liver in mice under high fat diet. Our data reveal that the nutritional challenge induces a loss of serum metabolite rhythmicity compared with liver, indicating a circadian misalignment between the tissues analyzed. Importantly, our results show that the levels of serum metabolites do not reflect the circadian liver metabolic signature or the effect of nutritional challenge. This notion reveals the possibility that misleading reads of metabolites in circulation may result in misdiagnosis and improper treatments. Our findings also demonstrate a tissue-specific and time-dependent disruption of metabolic homeostasis in response to altered nutrition. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Chronobiology of crickets: a review.

    PubMed

    Tomioka, Kenji

    2014-10-01

    Crickets provide a good model for the study of mechanisms underlying circadian rhythms and photoperiodic responses. They show clear circadian rhythms in their overt behavior and the sensitivity of the visual system. Classical neurobiological studies revealed that a pair of optic lobes is the locus of the circadian clock controlling these rhythms and that the compound eye is the major photoreceptor necessary for synchronization to environmental light cycles. The two optic lobe clocks are mutually coupled through a neural pathway and the coupling regulates an output circadian waveform and a free-running period. Recent molecular studies revealed that the cricket's clock consists of cyclic expression of so-called clock genes and that the clock mechanism is featured by both Drosophila-like and mammalian-like traits. Molecular oscillation is also observed in some extra-optic lobe tissues and depends on the optic lobe clock in a tissue dependent manner. Interestingly, the clock is also involved in adaptation to seasonally changing environment. It fits its waveform to a given photoperiod and may be an indispensable part of a photoperiodic time-measurement mechanism. With adoption of modern molecular technologies, the cricket becomes a much more important and promising model animal for the study of circadian and photoperiodic biology.

  1. Repeatability of circadian behavioural variation revealed in free-ranging marine fish.

    PubMed

    Alós, Josep; Martorell-Barceló, Martina; Campos-Candela, Andrea

    2017-02-01

    Repeatable between-individual differences in the behavioural manifestation of underlying circadian rhythms determine chronotypes in humans and terrestrial animals. Here, we have repeatedly measured three circadian behaviours, awakening time, rest onset and rest duration, in the free-ranging pearly razorfish, Xyrithchys novacula , facilitated by acoustic tracking technology and hidden Markov models. In addition, daily travelled distance, a standard measure of daily activity as fish personality trait, was repeatedly assessed using a State-Space Model. We have decomposed the variance of these four behavioural traits using linear mixed models and estimated repeatability scores ( R ) while controlling for environmental co-variates: year of experimentation, spatial location of the activity, fish size and gender and their interactions. Between- and within-individual variance decomposition revealed significant R s in all traits suggesting high predictability of individual circadian behavioural variation and the existence of chronotypes. The decomposition of the correlations among chronotypes and the personality trait studied here into between- and within-individual correlations did not reveal any significant correlation at between-individual level. We therefore propose circadian behavioural variation as an independent axis of the fish personality, and the study of chronotypes and their consequences as a novel dimension in understanding within-species fish behavioural diversity.

  2. Optimal glucocorticoid therapy.

    PubMed

    Debono, Miguel; Ross, Richard J

    2011-01-01

    The rhythmic regulation of human physiology and behaviour is controlled by a central endogenous clock located in the suprachiasmatic nucleus. Most tissues have peripheral clocks that oscillate in time with this central clock. How the central time keeper controls peripheral clocks is not established, however there is evidence to suggest that the cortisol rhythm is one important secondary messenger. Loss of the endogenous cortisol rhythm is associated with sleep disturbance, depression, and metabolic abnormalities. In adrenal insufficiency, current glucocorticoid replacement regimens cannot replace the normal circadian rhythm of cortisol, and patients have an increased mortality and impaired quality of life. We propose that reproducing circadian cortisol levels may improve quality of life in patients with adrenal insufficiency and we have been investigating the impact of circadian hydrocortisone replacement. Using Chronocort, a modified release preparation of hydrocortisone, we have demonstrated that it is possible to simulate the overnight rise in cortisol release and, in preliminary studies in patients with congenital adrenal hyperplasia, control morning androgen levels. Future studies are now required to determine whether Chronocort can improve quality of life in patients with adrenal insufficiency. Copyright © 2011 S. Karger AG, Basel.

  3. Computers in Libraries 2004 Ponders Past and Future: Unforeseen Privacy Issues, Aggregation, Digital Storage, and "Dissing" Google among the Hot Topics at Annual Show

    ERIC Educational Resources Information Center

    Friedman, Stan, Sr.

    2004-01-01

    This article describes the results of the 19th annual Computers in Libraries Conference in Washington, DC on March 10-12, 2004. The conference peered into the future, drew lessons from the past, and ran like clockwork. Program chair Jane Dysart and her organizing committee are by now old hands, bringing together three keynote addresses, 100…

  4. Two Ck1δ transcripts regulated by m6A methylation code for two antagonistic kinases in the control of the circadian clock

    PubMed Central

    Fustin, Jean-Michel; Kojima, Rika; Itoh, Kakeru; Chang, Hsin-Yi; Shiqi, Ye; Zhuang, Bowen; Oji, Asami; Gibo, Shingo; Narasimamurthy, Rajesh; Kurosawa, Gen; Doi, Masao; Manabe, Ichiro; Ishihama, Yasushi; Okamura, Hitoshi

    2018-01-01

    The N6-methylation of internal adenosines (m6A) in mRNA has been quantified and localized throughout the transcriptome. However, the physiological significance of m6A in most highly methylated mRNAs is unknown. It was demonstrated previously that the circadian clock, based on transcription-translation negative feedback loops, is sensitive to the general inhibition of m6A. Here, we show that the Casein Kinase 1 Delta mRNA (Ck1δ), coding for a critical kinase in the control of circadian rhythms, cellular growth, and survival, is negatively regulated by m6A. Inhibition of Ck1δ mRNA methylation leads to increased translation of two alternatively spliced CK1δ isoforms, CK1δ1 and CK1δ2, uncharacterized until now. The expression ratio between these isoforms is tissue-specific, CK1δ1 and CK1δ2 have different kinase activities, and they cooperate in the phosphorylation of the circadian clock protein PER2. While CK1δ1 accelerates the circadian clock by promoting the decay of PER2 proteins, CK1δ2 slows it down by stabilizing PER2 via increased phosphorylation at a key residue on PER2 protein. These observations challenge the previously established model of PER2 phosphorylation and, given the multiple functions and targets of CK1δ, the existence of two isoforms calls for a re-evaluation of past research when CK1δ1 and CK1δ2 were simply CK1δ. PMID:29784786

  5. A direct repeat of E-box-like elements is required for cell-autonomous circadian rhythm of clock genes

    PubMed Central

    Nakahata, Yasukazu; Yoshida, Mayumi; Takano, Atsuko; Soma, Haruhiko; Yamamoto, Takuro; Yasuda, Akio; Nakatsu, Toru; Takumi, Toru

    2008-01-01

    Background The circadian expression of the mammalian clock genes is based on transcriptional feedback loops. Two basic helix-loop-helix (bHLH) PAS (for Period-Arnt-Sim) domain-containing transcriptional activators, CLOCK and BMAL1, are known to regulate gene expression by interacting with a promoter element termed the E-box (CACGTG). The non-canonical E-boxes or E-box-like sequences have also been reported to be necessary for circadian oscillation. Results We report a new cis-element required for cell-autonomous circadian transcription of clock genes. This new element consists of a canonical E-box or a non-canonical E-box and an E-box-like sequence in tandem with the latter with a short interval, 6 base pairs, between them. We demonstrate that both E-box or E-box-like sequences are needed to generate cell-autonomous oscillation. We also verify that the spacing nucleotides with constant length between these 2 E-elements are crucial for robust oscillation. Furthermore, by in silico analysis we conclude that several clock and clock-controlled genes possess a direct repeat of the E-box-like elements in their promoter region. Conclusion We propose a novel possible mechanism regulated by double E-box-like elements, not to a single E-box, for circadian transcriptional oscillation. The direct repeat of the E-box-like elements identified in this study is the minimal required element for the generation of cell-autonomous transcriptional oscillation of clock and clock-controlled genes. PMID:18177499

  6. The circadian clock controls sunburn apoptosis and erythema in mouse skin.

    PubMed

    Gaddameedhi, Shobhan; Selby, Christopher P; Kemp, Michael G; Ye, Rui; Sancar, Aziz

    2015-04-01

    Epidemiological studies of humans and experimental studies with mouse models suggest that sunburn resulting from exposure to excessive UV light and damage to DNA confers an increased risk for melanoma and non-melanoma skin cancer. Previous reports have shown that both nucleotide excision repair, which is the sole pathway in humans for removing UV photoproducts, and DNA replication are regulated by the circadian clock in mouse skin. Furthermore, the timing of UV exposure during the circadian cycle has been shown to affect skin carcinogenesis in mice. Because sunburn and skin cancer are causally related, we investigated UV-induced sunburn apoptosis and erythema in mouse skin as a function of circadian time. Interestingly, we observed that sunburn apoptosis, inflammatory cytokine induction, and erythema were maximal following an acute early-morning exposure to UV and minimal following an afternoon exposure. Early-morning exposure to UV also produced maximal activation of ataxia telangiectasia mutated and Rad3-related (Atr)-mediated DNA damage checkpoint signaling, including activation of the tumor suppressor p53, which is known to control the process of sunburn apoptosis. These data provide early evidence that the circadian clock has an important role in the erythemal response in UV-irradiated skin. The early morning is when DNA repair is at a minimum, and thus the acute responses likely are associated with unrepaired DNA damage. The prior report that mice are more susceptible to skin cancer induction following chronic irradiation in the AM, when p53 levels are maximally induced, is discussed in terms of the mutational inactivation of p53 during chronic irradiation.

  7. The Circadian Clock Controls Sunburn Apoptosis and Erythema in Mouse Skin

    PubMed Central

    Gaddameedhi, Shobhan; Selby, Christopher P.; Kemp, Michael G.; Ye, Rui; Sancar, Aziz

    2014-01-01

    Epidemiological studies of humans and experimental studies with mouse models suggest that sunburn resulting from exposure to excessive UV light and damage to DNA confers an increased risk for melanoma and non-melanoma skin cancer. Previous reports have shown that both nucleotide excision repair, which is the sole pathway in humans for removing UV photoproducts, and DNA replication, are regulated by the circadian clock in mouse skin. Furthermore, the timing of UV exposure during the circadian cycle has been shown to affect skin carcinogenesis in mice. Because sunburn and skin cancer are causally related, we investigated UV-induced sunburn apoptosis and erythema in mouse skin as a function of circadian time. Interestingly, we observed that sunburn apoptosis, inflammatory cytokine induction, and erythema were maximal following an acute early morning exposure to UV and minimal following an afternoon exposure. Early morning exposure to UV also produced maximal activation of Atr-mediated DNA damage checkpoint signaling including activation of the tumor suppressor p53, which is known to control the process of sunburn apoptosis. To our knowledge these data provide the first evidence that the circadian clock plays an important role in the erythemal response in UV-irradiated skin. The early morning is when DNA repair is at a minimum, thus the acute responses likely are associated with unrepaired DNA damage. The prior report that mice are more susceptible to skin cancer induction following chronic irradiation in the AM, when p53 levels are maximally induced, is discussed in terms of the mutational inactivation of p53 during chronic irradiation. PMID:25431853

  8. miR-132 Couples the Circadian Clock to Daily Rhythms of Neuronal Plasticity and Cognition

    ERIC Educational Resources Information Center

    Aten, Sydney; Hansen, Katelin F.; Snider, Kaitlin; Wheaton, Kelin; Kalidindi, Anisha; Garcia, Ashley; Alzate-Correa, Diego; Hoyt, Kari R.; Obrietan, Karl

    2018-01-01

    The microRNA miR-132 serves as a key regulator of a wide range of plasticity-associated processes in the central nervous system. Interestingly, miR-132 expression has also been shown to be under the control of the circadian timing system. This finding, coupled with work showing that miR-132 is expressed in the hippocampus, where it influences…

  9. Body weight gain in rats by a high-fat diet produces chronodisruption in activity/inactivity circadian rhythm.

    PubMed

    Bravo, Rafael; Cubero, Javier; Franco, Lourdes; Mesa, Mónica; Galán, Carmen; Rodríguez, Ana Beatriz; Jarne, Carlos; Barriga, Carmen

    2014-04-01

    In the last few decades, obesity has become one of the most important public health problems. Adipose tissue is an active endocrine tissue which follows a rhythmic pattern in its functions and may produce alterations in certain circadian rhythms. Our aim was to evaluate whether the locomotor activity circadian rhythm could be modified by a hypercaloric diet in rodents. Two groups were considered in the experiment: 16 rats were used as a control group and were fed standard chow; the other group comprised 16 rats fed a high-fat diet (35.8% fat, 35% glucides). The trial lasted 16 weeks. Body weight was measured every week, and a blood sample was extracted every two weeks to quantify triglyceride levels. The activity/inactivity circadian rhythm was logged through actimetry throughout the trial, and analysed using the DAS 24© software package. At the end of the experiment, the high-fat fed rats had obese-like body weights and high plasma triglyceride levels, and, compared with the control group, increased diurnal activity, decreased nocturnal activity, reductions in amplitude, midline estimating statistic of rhythm, acrophase and interdaily stability, and increases in intradaily variability of their activity rhythms. The results thus show how obesity can lead to symptoms of chronodisruption in the body similar to those of ageing.

  10. Lack of short-wavelength light during the school day delays dim light melatonin onset (DLMO) in middle school students.

    PubMed

    Figueiro, Mariana G; Rea, Mark S

    2010-01-01

    Circadian timing affects sleep onset. Delayed sleep onset can reduce sleep duration in adolescents required to awake early for a fixed school schedule. The absence of short-wavelength ("blue") morning light, which helps entrain the circadian system, can hypothetically delay sleep onset and decrease sleep duration in adolescents. The goal of this study was to investigate whether removal of short-wavelength light during the morning hours delayed the onset of melatonin in young adults. Dim light melatonin onset (DLMO) was measured in eleven 8th-grade students before and after wearing orange glasses, which removed short-wavelength light, for a five-day school week. DLMO was significantly delayed (30 minutes) after the five-day intervention, demonstrating that short-wavelength light exposure during the day can be important for advancing circadian rhythms in students. Lack of short-wavelength light in the morning has been shown to delay the circadian clock in controlled laboratory conditions. The results presented here are the first to show, outside laboratory conditions, that removal of short-wavelength light in the morning hours can delay DLMO in 8th-grade students. These field data, consistent with results from controlled laboratory studies, are directly relevant to lighting practice in schools.

  11. Clock-Talk: Interactions between Central and Peripheral Circadian Oscillators in Mammals.

    PubMed

    Schibler, Ueli; Gotic, Ivana; Saini, Camille; Gos, Pascal; Curie, Thomas; Emmenegger, Yann; Sinturel, Flore; Gosselin, Pauline; Gerber, Alan; Fleury-Olela, Fabienne; Rando, Gianpaolo; Demarque, Maud; Franken, Paul

    2015-01-01

    In mammals, including humans, nearly all physiological processes are subject to daily oscillations that are governed by a circadian timing system with a complex hierarchical structure. The central pacemaker, residing in the suprachiasmatic nucleus (SCN) of the ventral hypothalamus, is synchronized daily by photic cues transmitted from the retina to SCN neurons via the retinohypothalamic tract. In turn, the SCN must establish phase coherence between self-sustained and cell-autonomous oscillators present in most peripheral cell types. The synchronization signals (Zeitgebers) can be controlled more or less directly by the SCN. In mice and rats, feeding-fasting rhythms, which are driven by the SCN through rest-activity cycles, are the most potent Zeitgebers for the circadian oscillators of peripheral organs. Signaling through the glucocorticoid receptor and the serum response factor also participate in the phase entrainment of peripheral clocks, and these two pathways are controlled by the SCN independently of feeding-fasting rhythms. Body temperature rhythms, governed by the SCN directly and indirectly through rest-activity cycles, are perhaps the most surprising cues for peripheral oscillators. Although the molecular makeup of circadian oscillators is nearly identical in all cells, these oscillators are used for different purposes in the SCN and in peripheral organs. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.

  12. Circadian Clock Control of Endocrine Factors

    PubMed Central

    Gamble, Karen L.; Berry, Ryan; Frank, Stuart J.; Young, Martin E.

    2015-01-01

    Organisms experience dramatic fluctuations in demands/stresses over the course of the day. In order to maintain biological processes within physiologic boundaries, it is imperative that mechanisms have evolved for anticipation of, and adaptation to, these daily fluctuations. Endocrine factors undoubtedly play an integral role in homeostasis. Not only do circulating levels of various endocrine factors oscillate over the 24 period, but so too does responsiveness of target tissues to these signals/stimuli. Emerging evidence suggests that these daily oscillations do not occur solely in response to behavioral fluctuations associated with sleep/wake and feeding/fasting cycles, but are orchestrated in part by an intrinsic timekeeping mechanism known as the circadian clock. Disruption of circadian clocks, through genetic and/or environmental means, appears to precipitate numerous common disorders, including cardiometabolic diseases and cancer. Collectively, these observations, which are reviewed within the current article, have led to suggestion that strategies designed to realign normal circadian rhythmicities hold a therapeutic potential for the treatment of various endocrine-related disorders. PMID:24863387

  13. A Slow Conformational Switch in the BMAL1 Transactivation Domain Modulates Circadian Rhythms.

    PubMed

    Gustafson, Chelsea L; Parsley, Nicole C; Asimgil, Hande; Lee, Hsiau-Wei; Ahlbach, Christopher; Michael, Alicia K; Xu, Haiyan; Williams, Owen L; Davis, Tara L; Liu, Andrew C; Partch, Carrie L

    2017-05-18

    The C-terminal transactivation domain (TAD) of BMAL1 (brain and muscle ARNT-like 1) is a regulatory hub for transcriptional coactivators and repressors that compete for binding and, consequently, contributes to period determination of the mammalian circadian clock. Here, we report the discovery of two distinct conformational states that slowly exchange within the dynamic TAD to control timing. This binary switch results from cis/trans isomerization about a highly conserved Trp-Pro imide bond in a region of the TAD that is required for normal circadian timekeeping. Both cis and trans isomers interact with transcriptional regulators, suggesting that isomerization could serve a role in assembling regulatory complexes in vivo. Toward this end, we show that locking the switch into the trans isomer leads to shortened circadian periods. Furthermore, isomerization is regulated by the cyclophilin family of peptidyl-prolyl isomerases, highlighting the potential for regulation of BMAL1 protein dynamics in period determination. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Direct Midbrain Dopamine Input to the Suprachiasmatic Nucleus Accelerates Circadian Entrainment.

    PubMed

    Grippo, Ryan M; Purohit, Aarti M; Zhang, Qi; Zweifel, Larry S; Güler, Ali D

    2017-08-21

    Dopamine (DA) neurotransmission controls behaviors important for survival, including voluntary movement, reward processing, and detection of salient events, such as food or mate availability. Dopaminergic tone also influences circadian physiology and behavior. Although the evolutionary significance of this input is appreciated, its precise neurophysiological architecture remains unknown. Here, we identify a novel, direct connection between the DA neurons of the ventral tegmental area (VTA) and the suprachiasmatic nucleus (SCN). We demonstrate that D1 dopamine receptor (Drd1) signaling within the SCN is necessary for properly timed resynchronization of activity rhythms to phase-shifted light:dark cycles and that elevation of DA tone through selective activation of VTA DA neurons accelerates photoentrainment. Our findings demonstrate a previously unappreciated role for direct DA input to the master circadian clock and highlight the importance of an evolutionarily significant relationship between the circadian system and the neuromodulatory circuits that govern motivational behaviors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. A hypothalamic circuit for the circadian control of aggression.

    PubMed

    Todd, William D; Fenselau, Henning; Wang, Joshua L; Zhang, Rong; Machado, Natalia L; Venner, Anne; Broadhurst, Rebecca Y; Kaur, Satvinder; Lynagh, Timothy; Olson, David P; Lowell, Bradford B; Fuller, Patrick M; Saper, Clifford B

    2018-05-01

    'Sundowning' in dementia and Alzheimer's disease is characterized by early-evening agitation and aggression. While such periodicity suggests a circadian origin, whether the circadian clock directly regulates aggressive behavior is unknown. We demonstrate that a daily rhythm in aggression propensity in male mice is gated by GABAergic subparaventricular zone (SPZ GABA ) neurons, the major postsynaptic targets of the central circadian clock, the suprachiasmatic nucleus. Optogenetic mapping revealed that SPZ GABA neurons receive input from vasoactive intestinal polypeptide suprachiasmatic nucleus neurons and innervate neurons in the ventrolateral part of the ventromedial hypothalamus (VMH), which is known to regulate aggression. Additionally, VMH-projecting dorsal SPZ neurons are more active during early day than early night, and acute chemogenetic inhibition of SPZ GABA transmission phase-dependently increases aggression. Finally, SPZ GABA -recipient central VMH neurons directly innervate ventrolateral VMH neurons, and activation of this intra-VMH circuit drove attack behavior. Altogether, we reveal a functional polysynaptic circuit by which the suprachiasmatic nucleus clock regulates aggression.

  16. Relationship between alertness, performance, and body temperature in humans.

    PubMed

    Wright, Kenneth P; Hull, Joseph T; Czeisler, Charles A

    2002-12-01

    Body temperature has been reported to influence human performance. Performance is reported to be better when body temperature is high/near its circadian peak and worse when body temperature is low/near its circadian minimum. We assessed whether this relationship between performance and body temperature reflects the regulation of both the internal biological timekeeping system and/or the influence of body temperature on performance independent of circadian phase. Fourteen subjects participated in a forced desynchrony protocol allowing assessment of the relationship between body temperature and performance while controlling for circadian phase and hours awake. Most neurobehavioral measures varied as a function of internal biological time and duration of wakefulness. A number of performance measures were better when body temperature was elevated, including working memory, subjective alertness, visual attention, and the slowest 10% of reaction times. These findings demonstrate that an increased body temperature, associated with and independent of internal biological time, is correlated with improved performance and alertness. These results support the hypothesis that body temperature modulates neurobehavioral function in humans.

  17. Relationship between alertness, performance, and body temperature in humans

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth P Jr; Hull, Joseph T.; Czeisler, Charles A.

    2002-01-01

    Body temperature has been reported to influence human performance. Performance is reported to be better when body temperature is high/near its circadian peak and worse when body temperature is low/near its circadian minimum. We assessed whether this relationship between performance and body temperature reflects the regulation of both the internal biological timekeeping system and/or the influence of body temperature on performance independent of circadian phase. Fourteen subjects participated in a forced desynchrony protocol allowing assessment of the relationship between body temperature and performance while controlling for circadian phase and hours awake. Most neurobehavioral measures varied as a function of internal biological time and duration of wakefulness. A number of performance measures were better when body temperature was elevated, including working memory, subjective alertness, visual attention, and the slowest 10% of reaction times. These findings demonstrate that an increased body temperature, associated with and independent of internal biological time, is correlated with improved performance and alertness. These results support the hypothesis that body temperature modulates neurobehavioral function in humans.

  18. The imprinted gene Magel2 regulates normal circadian output.

    PubMed

    Kozlov, Serguei V; Bogenpohl, James W; Howell, Maureen P; Wevrick, Rachel; Panda, Satchin; Hogenesch, John B; Muglia, Louis J; Van Gelder, Russell N; Herzog, Erik D; Stewart, Colin L

    2007-10-01

    Mammalian circadian rhythms of activity are generated within the suprachiasmatic nucleus (SCN). Transcripts from the imprinted, paternally expressed Magel2 gene, which maps to the chromosomal region associated with Prader-Willi Syndrome (PWS), are highly enriched in the SCN. The Magel2 message is circadianly expressed and peaks during the subjective day. Mice deficient in Magel2 expression entrain to light cycles and express normal running-wheel rhythms, but with markedly reduced amplitude of activity and increased daytime activity. These changes are associated with reductions in food intake and male fertility. Orexin levels and orexin-positive neurons in the lateral hypothalamus are substantially reduced, suggesting that some of the consequences of Magel2 loss are mediated through changes in orexin signaling. The robust rhythmicity of Magel2 expression in the SCN and the altered behavioral rhythmicity of null mice reveal Magel2 to be a clock-controlled circadian output gene whose disruption results in some of the phenotypes characteristic of PWS.

  19. Circadian oscillatory transcriptional programs in grapevine ripening fruits

    PubMed Central

    2014-01-01

    Background Temperature and solar radiation influence Vitis vinifera L. berry ripening. Both environmental conditions fluctuate cyclically on a daily period basis and the strength of this fluctuation affects grape ripening too. Additionally, a molecular circadian clock regulates daily cyclic expression in a large proportion of the plant transcriptome modulating multiple developmental processes in diverse plant organs and developmental phases. Circadian cycling of fruit transcriptomes has not been characterized in detail despite their putative relevance in the final composition of the fruit. Thus, in this study, gene expression throughout 24 h periods in pre-ripe berries of Tempranillo and Verdejo grapevine cultivars was followed to determine whether different ripening transcriptional programs are activated during certain times of day in different grape tissues and genotypes. Results Microarray analyses identified oscillatory transcriptional profiles following circadian variations in the photocycle and the thermocycle. A higher number of expression oscillating transcripts were detected in samples carrying exocarp tissue including biotic stress-responsive transcripts activated around dawn. Thermotolerance-like responses and regulation of circadian clock-related genes were observed in all studied samples. Indeed, homologs of core clock genes were identified in the grapevine genome and, among them, VvREVEILLE1 (VvRVE1), showed a consistent circadian expression rhythm in every grape berry tissue analysed. Light signalling components and terpenoid biosynthetic transcripts were specifically induced during the daytime in Verdejo, a cultivar bearing white-skinned and aromatic berries, whereas transcripts involved in phenylpropanoid biosynthesis were more prominently regulated in Tempranillo, a cultivar bearing black-skinned berries. Conclusions The transcriptome of ripening fruits varies in response to daily environmental changes, which might partially be under the control of circadian clock components. Certain cultivar and berry tissue features could rely on specific circadian oscillatory expression profiles. These findings may help to a better understanding of the progress of berry ripening in short term time scales. PMID:24666982

  20. Sleep interruption associated with house staff work schedules alters circadian gene expression.

    PubMed

    Fang, Ming Zhu; Ohman-Strickland, Pamela; Kelly-McNeil, Kathie; Kipen, Howard; Crabtree, Benjamin F; Lew, Jenny Pan; Zarbl, Helmut

    2015-11-01

    Epidemiological studies indicate that disruption of circadian rhythm by shift work increases the risk of breast and prostate cancer. Our studies demonstrated that carcinogens disrupt the circadian expression of circadian genes (CGs) and circadian-controlled genes (CCGs) during the early stages of rat mammary carcinogenesis. A chemopreventive regimen of methylselenocysteine (MSC) restored the circadian expression of CGs and CCGs, including PERIOD 2 (PER2) and estrogen receptor β (ERS2), to normal. The present study evaluated whether changes in CG and CCG expression in whole blood can serve as indicators of circadian disruption in shift workers. Fifteen shift workers were recruited to a crossover study. Blood samples were drawn before (6 PM) and after (8 AM) completing a night shift after at least seven days on floating night-shift rotation, and before (8 AM), during (1 PM), and after (6 PM) completing seven days on day shift. The plasma melatonin level and messenger RNA (mRNA) expression of PER2, nuclear receptor subfamily 1, group d, member 1 (NR1D1), and ERS2 were measured, and the changes in levels of melatonin and gene expression were evaluated with statistical analyses. The mRNA expression of PER2 was affected by shift (p = 0.0079); the levels were higher in the evening for the night shift, but higher in the morning for the day shift. Increased PER2 expression (p = 0.034) was observed in the evening on the night versus day shifts. The melatonin level was higher in the morning for both day shifts (p = 0.013) and night shifts (p <0.0001). Changes in the level of PER2 gene expression can serve as a biomarker of disrupted circadian rhythm in blood cells. Therefore, they can be a useful intermediate indicator of efficacy in future MSC-mediated chemoprevention studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. The circadian clock in skin: implications for adult stem cells, tissue regeneration, cancer, aging, and immunity

    PubMed Central

    Plikus, Maksim V.; Van Spyk, Elyse Noelani; Pham, Kim; Geyfman, Mikhail; Kumar, Vivek; Takahashi, Joseph S.; Andersen, Bogi

    2015-01-01

    Historically work on peripheral circadian clocks has been focused on organs and tissues that have prominent metabolic functions, such as liver, fat and muscle. In recent years, skin is emerging as a model for studying circadian clock regulation of cell proliferation, stem cell functions, tissue regeneration, aging and carcinogenesis. Morphologically skin is complex, containing multiple cell types and structures, and there is evidence for a functional circadian clock in most, if not all, of its cell types. Despite the complexity, skin stem cell populations are well defined, experimentally tractable and exhibit prominent daily cell proliferation cycles. Hair follicle stem cells also participate in recurrent, long-lasting cycles of regeneration -- the hair growth cycles. Among other advantages of skin is a broad repertoire of available genetic tools enabling the creation of cell-type specific circadian mutants. Also, due to the accessibility of the skin, in vivo imaging techniques can be readily applied to study the circadian clock and its outputs in real time, even at the single-cell level. Skin provides the first line of defense against many environmental and stress factors that exhibit dramatic diurnal variations such as solar UV radiation and temperature. Studies have already linked the circadian clock to the control of UVB-induced DNA damage and skin cancers. Due to the important role that skin plays in the defense against microorganisms, it represents a promising model system to further explore the role of the clock in the regulation of the body's immune functions. To that end, recent studies have already linked the circadian clock to psoriasis, one of the most common immune-mediated skin disorders. The skin also provides opportunities to interrogate clock regulation of tissue metabolism in the context of stem cells and regeneration. Furthermore, many animal species feature prominent seasonal hair molt cycles, offering an attractive model for investigating the role of clock in seasonal organismal behaviors. PMID:25589491

  2. Toward a complex system understanding of bipolar disorder: A chaotic model of abnormal circadian activity rhythms in euthymic bipolar disorder.

    PubMed

    Hadaeghi, Fatemeh; Hashemi Golpayegani, Mohammad Reza; Jafari, Sajad; Murray, Greg

    2016-08-01

    In the absence of a comprehensive neural model to explain the underlying mechanisms of disturbed circadian function in bipolar disorder, mathematical modeling is a helpful tool. Here, circadian activity as a response to exogenous daily cycles is proposed to be the product of interactions between neuronal networks in cortical (cognitive processing) and subcortical (pacemaker) areas of the brain. To investigate the dynamical aspects of the link between disturbed circadian activity rhythms and abnormalities of neurotransmitter functioning in frontal areas of the brain, we developed a novel mathematical model of a chaotic system which represents fluctuations in circadian activity in bipolar disorder as changes in the model's parameters. A novel map-based chaotic system was developed to capture disturbances in circadian activity across the two extreme mood states of bipolar disorder. The model uses chaos theory to characterize interplay between neurotransmitter functions and rhythm generation; it aims to illuminate key activity phenomenology in bipolar disorder, including prolonged sleep intervals, decreased total activity and attenuated amplitude of the diurnal activity rhythm. To test our new cortical-circadian mathematical model of bipolar disorder, we utilized previously collected locomotor activity data recorded from normal subjects and bipolar patients by wrist-worn actigraphs. All control parameters in the proposed model have an important role in replicating the different aspects of circadian activity rhythm generation in the brain. The model can successfully replicate deviations in sleep/wake time intervals corresponding to manic and depressive episodes of bipolar disorder, in which one of the excitatory or inhibitory pathways is abnormally dominant. Although neuroimaging research has strongly implicated a reciprocal interaction between cortical and subcortical regions as pathogenic in bipolar disorder, this is the first model to mathematically represent this multilevel explanation of the phenomena of bipolar disorder. © The Royal Australian and New Zealand College of Psychiatrists 2016.

  3. Circadian Rhythm Sleep-Wake Disorders.

    PubMed

    Pavlova, Milena

    2017-08-01

    The endogenous circadian rhythms are one of the cardinal processes that control sleep. They are self-sustaining biological rhythms with a periodicity of approximately 24 hours that may be entrained by external zeitgebers (German for time givers), such as light, exercise, and meal times. This article discusses the physiology of the circadian rhythms, their relationship to neurologic disease, and the presentation and treatment of circadian rhythm sleep-wake disorders. Classic examples of circadian rhythms include cortisol and melatonin secretion, body temperature, and urine volume. More recently, the impact of circadian rhythm on several neurologic disorders has been investigated, such as the timing of occurrence of epileptic seizures as well as neurobehavioral functioning in dementia. Further updates include a more in-depth understanding of the symptoms, consequences, and treatment of circadian sleep-wake disorders, which may occur because of extrinsic misalignment with clock time or because of intrinsic dysfunction of the brain. An example of extrinsic misalignment occurs with jet lag during transmeridian travel or with intrinsic circadian rhythm sleep-wake disorders such as advanced or delayed sleep-wake phase disorders. In advanced sleep-wake phase disorder, which is most common in elderly individuals, sleep onset and morning arousal are undesirably early, leading to impaired evening function with excessive sleepiness and sleep-maintenance insomnia with early morning awakening. By contrast, delayed sleep-wake phase disorder is characterized by an inability to initiate sleep before the early morning hours, with subsequent delayed rise time, leading to clinical symptoms of severe sleep-onset insomnia coupled with excessive daytime sleepiness in the morning hours, as patients are unable to "sleep in" to attain sufficient sleep quantity. Irregular sleep-wake rhythm disorder is misentrainment with patches of brief sleep and wakefulness spread throughout the day, leading to unstable sleep and waking behavioral patterns and an entirely idiosyncratic sleep-wake schedule. Familiarity with these major circadian rhythm sleep-wake disorder phenotypes and their overlap with other neurologic disorders is essential for the neurologist so that clinicians may intervene and improve patient functioning and quality of life.

  4. Circadian Rhythm of Glomerular Filtration and Solute Handling Related to Nocturnal Enuresis.

    PubMed

    Dossche, L; Raes, A; Hoebeke, P; De Bruyne, P; Vande Walle, J

    2016-01-01

    Although nocturnal polyuria in patients with monosymptomatic enuresis can largely be explained by the decreased nocturnal vasopressin secretion hypothesis, other circadian rhythms in the kidney also seem to have a role. We recently documented an absent day/night rhythm in a subgroup of desmopressin refractory cases. We explore the importance of abnormal circadian rhythm of glomerular filtration and tubular (sodium, potassium) parameters in patients with monosymptomatic enuresis. In this retrospective study of a tertiary enuresis population we collected data subsequent to a standardized screening (International Children's Continence Society questionnaire), 14-day diary for nocturnal enuresis and diuresis, and 24-hour concentration profile. The study population consisted of 139 children with nocturnal enuresis who were 5 years or older. Children with nonmonosymptomatic nocturnal enuresis were used as controls. There was a maintained circadian rhythm of glomerular filtration, sodium, osmotic excretion and diuresis rate in children with monosymptomatic and nonmonosymptomatic nocturnal enuresis, and there was no difference between the 2 groups. Secondary analysis revealed that in patients with nocturnal polyuria (with monosymptomatic or nonmonosymptomatic nocturnal enuresis) circadian rhythm of glomerular filtration, sodium and osmotic excretion, and diuresis rate was diminished in contrast to those without nocturnal polyuria (p <0.001). Circadian rhythm of the kidney does not differ between patients with nonmonosymptomatic and monosymptomatic enuresis. However, the subgroup with enuresis and nocturnal polyuria has a diminished circadian rhythm of nocturnal diuresis, sodium excretion and glomerular filtration in contrast to children without nocturnal polyuria. This observation cannot be explained by the vasopressin theory alone. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  5. A single dose of alcohol does not meaningfully alter circadian phase advances and phase delays to light in humans

    PubMed Central

    Rizvydeen, Muneer; Fogg, Louis F.; Keshavarzian, Ali

    2016-01-01

    Central circadian timing influences mental and physical health. Research in nocturnal rodents has demonstrated that when alcohol is consumed, it reaches the central hypothalamic circadian pacemaker (suprachiasmatic nuclei) and can directly alter circadian phase shifts to light. In two separate studies, we examined, for the first time, the effects of a single dose of alcohol on circadian phase advances and phase delays to light in humans. Two 23-day within-subjects placebo-controlled counterbalanced design studies were conducted. Both studies consisted of 6 days of fixed baseline sleep to stabilize circadian timing, a 2-day laboratory session, a 6-day break, and a repeat of 6 days of fixed sleep and a 2-day laboratory session. In the phase advance study (n = 10 light drinkers, 24–45 yr), the laboratory sessions consisted of a baseline dim light phase assessment, sleep episode, alcohol (0.6 g/kg) or placebo, 2-h morning bright light pulse, and final phase assessment. In the phase-delay study (n = 14 light drinkers, 22–44 yr), the laboratory sessions consisted of a baseline phase assessment, alcohol (0.8 g/kg) or placebo, 2-h late night bright light pulse, sleep episode, and final phase assessment. In both studies, alcohol either increased or decreased the observed phase shifts to light (interaction P ≥ 0.46), but the effect of alcohol vs. placebo on phase shifts to light was always on average smaller than 30 min. Thus, no meaningful effects of a single dose of alcohol vs. placebo on circadian phase shifts to light in humans were observed. PMID:26936778

  6. A single dose of alcohol does not meaningfully alter circadian phase advances and phase delays to light in humans.

    PubMed

    Burgess, Helen J; Rizvydeen, Muneer; Fogg, Louis F; Keshavarzian, Ali

    2016-04-15

    Central circadian timing influences mental and physical health. Research in nocturnal rodents has demonstrated that when alcohol is consumed, it reaches the central hypothalamic circadian pacemaker (suprachiasmatic nuclei) and can directly alter circadian phase shifts to light. In two separate studies, we examined, for the first time, the effects of a single dose of alcohol on circadian phase advances and phase delays to light in humans. Two 23-day within-subjects placebo-controlled counterbalanced design studies were conducted. Both studies consisted of 6 days of fixed baseline sleep to stabilize circadian timing, a 2-day laboratory session, a 6-day break, and a repeat of 6 days of fixed sleep and a 2-day laboratory session. In the phase advance study (n= 10 light drinkers, 24-45 yr), the laboratory sessions consisted of a baseline dim light phase assessment, sleep episode, alcohol (0.6 g/kg) or placebo, 2-h morning bright light pulse, and final phase assessment. In the phase-delay study (n= 14 light drinkers, 22-44 yr), the laboratory sessions consisted of a baseline phase assessment, alcohol (0.8 g/kg) or placebo, 2-h late night bright light pulse, sleep episode, and final phase assessment. In both studies, alcohol either increased or decreased the observed phase shifts to light (interaction P≥ 0.46), but the effect of alcohol vs. placebo on phase shifts to light was always on average smaller than 30 min. Thus, no meaningful effects of a single dose of alcohol vs. placebo on circadian phase shifts to light in humans were observed. Copyright © 2016 the American Physiological Society.

  7. Melanopsin retinal ganglion cell loss in Alzheimer disease

    PubMed Central

    Ross‐Cisneros, Fred N.; Koronyo, Yosef; Hannibal, Jens; Gallassi, Roberto; Cantalupo, Gaetano; Sambati, Luisa; Pan, Billy X.; Tozer, Kevin R.; Barboni, Piero; Provini, Federica; Avanzini, Pietro; Carbonelli, Michele; Pelosi, Annalisa; Chui, Helena; Liguori, Rocco; Baruzzi, Agostino; Koronyo‐Hamaoui, Maya; Sadun, Alfredo A.; Carelli, Valerio

    2015-01-01

    Objective Melanopsin retinal ganglion cells (mRGCs) are photoreceptors driving circadian photoentrainment, and circadian dysfunction characterizes Alzheimer disease (AD). We investigated mRGCs in AD, hypothesizing that they contribute to circadian dysfunction. Methods We assessed retinal nerve fiber layer (RNFL) thickness by optical coherence tomography (OCT) in 21 mild‐moderate AD patients, and in a subgroup of 16 we evaluated rest–activity circadian rhythm by actigraphy. We studied postmortem mRGCs by immunohistochemistry in retinas, and axons in optic nerve cross‐sections of 14 neuropathologically confirmed AD patients. We coimmunostained for retinal amyloid β (Aβ) deposition and melanopsin to locate mRGCs. All AD cohorts were compared with age‐matched controls. Results We demonstrated an age‐related optic neuropathy in AD by OCT, with a significant reduction of RNFL thickness (p = 0.038), more evident in the superior quadrant (p = 0.006). Axonal loss was confirmed in postmortem AD optic nerves. Abnormal circadian function characterized only a subgroup of AD patients. Sleep efficiency was significantly reduced in AD patients (p = 0.001). We also found a significant loss of mRGCs in postmortem AD retinal specimens (p = 0.003) across all ages and abnormal mRGC dendritic morphology and size (p = 0.003). In flat‐mounted AD retinas, Aβ accumulation was remarkably evident inside and around mRGCs. Interpretation We show variable degrees of rest–activity circadian dysfunction in AD patients. We also demonstrate age‐related loss of optic nerve axons and specifically mRGC loss and pathology in postmortem AD retinal specimens, associated with Aβ deposition. These results all support the concept that mRGC degeneration is a contributor to circadian rhythm dysfunction in AD. ANN NEUROL 2016;79:90–109 PMID:26505992

  8. Multiple PAR and E4BP4 bZIP transcription factors in zebrafish: diverse spatial and temporal expression patterns.

    PubMed

    Ben-Moshe, Zohar; Vatine, Gad; Alon, Shahar; Tovin, Adi; Mracek, Philipp; Foulkes, Nicholas S; Gothilf, Yoav

    2010-09-01

    Circadian rhythms of physiology and behavior are generated by an autonomous circadian oscillator that is synchronized daily with the environment, mainly by light input. The PAR subfamily of transcriptional activators and the related E4BP4 repressor belonging to the basic leucine zipper (bZIP) family are clock-controlled genes that are suggested to mediate downstream circadian clock processes and to feedback onto the core oscillator. Here, the authors report the characterization of these genes in the zebrafish, an increasingly important model in the field of chronobiology. Five novel PAR and six novel e4bp4 zebrafish homolog genes were identified using bioinformatic tools and their coding sequences were cloned. Based on their evolutionary relationships, these genes were annotated as ztef2, zhlf1 and zhlf2, zdbp1 and zdbp2, and ze4bp4-1 to -6. The spatial and temporal mRNA expression pattern of each of these factors was characterized in zebrafish embryos in the context of a functional circadian clock and regulation by light. Nine of the factors exhibited augmented and rhythmic expression in the pineal gland, a central clock organ in zebrafish. Moreover, these genes were found to be regulated, to variable extents, by the circadian clock and/or by light. Differential expression patterns of multiple paralogs in zebrafish suggest multiple roles for these factors within the vertebrate circadian clock. This study, in the genetically accessible zebrafish model, lays the foundation for further research regarding the involvement and specific roles of PAR and E4BP4 transcription factors in the vertebrate circadian clock mechanism.

  9. Molecular Mechanisms of Circadian Regulation During Spaceflight

    NASA Technical Reports Server (NTRS)

    Zanello, Susana; Boyle, Richard

    2011-01-01

    Disruption of the regular environmental circadian cues in addition to stringent and demanding operational schedules are two main factors that undoubtedly impact sleep patterns and vigilant performance in the astronaut crews during spaceflight. Most research is focused on the behavioral aspects of the risk of circadian desynchronization, characterized by fatigue and health and performance decrement. A common countermeasure for circadian re-entrainment utilizes blue-green light to entrain the circadian clock and mitigate this risk. However, an effective countermeasure targeting the photoreceptor system requires that the basic circadian molecular machinery remains intact during spaceflight. The molecular clock consists of sets of proteins that perform different functions within the clock machinery: circadian oscillators (genes whose expression levels cycle during the day, keep the pass of cellular time and regulate downstream effector genes), the effector or output genes (those which impact the physiology of the tissue or organism), and the input genes (responsible for sensing the environmental cues that allow circadian entrainment). The main environmental cue is light. As opposed to the known photoreceptors (rods and cones), the non-visual light stimulus is received by a subset of the population of retinal ganglion cells called intrinsically photosensitive retinal ganglion cells (ipRGC) that express melanopsin (opsin 4 -Opn4-) as the photoreceptor. We hypothesize that spaceflight may affect ipRGC and melanopsin expression, which may be a contributing cause of circadian disruption during spaceflight. To answer this question, eyes from albino Balb/cJ mice aboard STS-133 were collected for histological analysis and gene expression profiling of the retina at 1 and 7 days after landing. Both vivarium and AEM (animal enclosure module) mice were used as ground controls. Opn4 expression was analyzed by real time RT/qPCR and retinal sections were stained for Opn4 immunofluorescence. Opn4 was decreased (abrogated in one case) in retinas that concurrently showed higher evidence of oxidative stress. We propose that oxidative stress can lead to a decrease in melanopsin expression, likely via ipRGC loss or impairment, and thus, it can be a contributing factor to circadian disruption during spaceflight. Countermeasures contemplating the use of light should therefore be complemented with melanopsin expression maintenance and/or reduction in oxidative stress.

  10. An Endogenous Circadian Rhythm in Sleep Inertia Results in Greatest Cognitive Impairment upon Awakening during the Biological Night

    PubMed Central

    Scheer, Frank A. J. L.; Shea, Thomas J.; Hilton, Michael F.; Shea, Steven A.

    2011-01-01

    Sleep inertia is the impaired cognitive performance immediately upon awakening, which decays over tens of minutes. This phenomenon has relevance to people who need to make important decisions soon after awakening, such as on-call emergency workers. Such awakenings can occur at varied times of day or night, so the objective of the study was to determine whether or not the magnitude of sleep inertia varies according to the phase of the endogenous circadian cycle. Twelve adults (mean, 24 years; 7 men) with no medical disorders other than mild asthma were studied. Following 2 baseline days and nights, subjects underwent a forced desynchrony protocol composed of seven 28-h sleep/wake cycles, while maintaining a sleep/wakefulness ratio of 1:2 throughout. Subjects were awakened by a standardized auditory stimulus 3 times each sleep period for sleep inertia assessments. The magnitude of sleep inertia was quantified as the change in cognitive performance (number of correct additions in a 2-min serial addition test) across the first 20 min of wakefulness. Circadian phase was estimated from core body temperature (fitted temperature minimum assigned 0°). Data were segregated according to: (1) circadian phase (60° bins); (2) sleep stage; and (3) 3rd of the night after which awakenings occurred (i.e., tertiary 1, 2, or 3). To control for any effect of sleep stage, the circadian rhythm of sleep inertia was initially assessed following awakenings from Stage 2 (62% of awakening occurred from this stage; n = 110). This revealed a significant circadian rhythm in the sleep inertia of cognitive performance (p = 0.007), which was 3.6 times larger during the biological night (circadian bin 300°, ~2300–0300 h in these subjects) than during the biological day (bin 180°, ~1500–1900 h). The circadian rhythm in sleep inertia was still present when awakenings from all sleep stages were included (p = 0.004), and this rhythm could not be explained by changes in underlying sleep drive prior to awakening (changes in sleep efficiency across circadian phase or across the tertiaries), or by the proportion of the varied sleep stages prior to awakenings. This robust endogenous circadian rhythm in sleep inertia may have important implications for people who need to be alert soon after awakening. PMID:18663242

  11. An endogenous circadian rhythm in sleep inertia results in greatest cognitive impairment upon awakening during the biological night.

    PubMed

    Scheer, Frank A J L; Shea, Thomas J; Hilton, Michael F; Shea, Steven A

    2008-08-01

    Sleep inertia is the impaired cognitive performance immediately upon awakening, which decays over tens of minutes. This phenomenon has relevance to people who need to make important decisions soon after awakening, such as on-call emergency workers. Such awakenings can occur at varied times of day or night, so the objective of the study was to determine whether or not the magnitude of sleep inertia varies according to the phase of the endogenous circadian cycle. Twelve adults (mean, 24 years; 7 men) with no medical disorders other than mild asthma were studied. Following 2 baseline days and nights, subjects underwent a forced desynchrony protocol composed of seven 28-h sleep/wake cycles, while maintaining a sleep/wakefulness ratio of 1:2 throughout. Subjects were awakened by a standardized auditory stimulus 3 times each sleep period for sleep inertia assessments. The magnitude of sleep inertia was quantified as the change in cognitive performance (number of correct additions in a 2-min serial addition test) across the first 20 min of wakefulness. Circadian phase was estimated from core body temperature (fitted temperature minimum assigned 0 degrees ). Data were segregated according to: (1) circadian phase (60 degrees bins); (2) sleep stage; and (3) 3rd of the night after which awakenings occurred (i.e., tertiary 1, 2, or 3). To control for any effect of sleep stage, the circadian rhythm of sleep inertia was initially assessed following awakenings from Stage 2 (62% of awakening occurred from this stage; n = 110). This revealed a significant circadian rhythm in the sleep inertia of cognitive performance (p = 0.007), which was 3.6 times larger during the biological night (circadian bin 300 degrees , approximately 2300-0300 h in these subjects) than during the biological day (bin 180 degrees , approximately 1500-1900 h). The circadian rhythm in sleep inertia was still present when awakenings from all sleep stages were included (p = 0.004), and this rhythm could not be explained by changes in underlying sleep drive prior to awakening (changes in sleep efficiency across circadian phase or across the tertiaries), or by the proportion of the varied sleep stages prior to awakenings. This robust endogenous circadian rhythm in sleep inertia may have important implications for people who need to be alert soon after awakening.

  12. Transcriptional oscillation of canonical clock genes in mouse peripheral tissues

    PubMed Central

    Yamamoto, Takuro; Nakahata, Yasukazu; Soma, Haruhiko; Akashi, Makoto; Mamine, Takayoshi; Takumi, Toru

    2004-01-01

    Background The circadian rhythm of about 24 hours is a fundamental physiological function observed in almost all organisms from prokaryotes to humans. Identification of clock genes has allowed us to study the molecular bases for circadian behaviors and temporal physiological processes such as hormonal secretion, and has prompted the idea that molecular clocks reside not only in a central pacemaker, the suprachiasmatic nuclei (SCN) of hypothalamus in mammals, but also in peripheral tissues, even in immortalized cells. Furthermore, previous molecular dissection revealed that the mechanism of circadian oscillation at a molecular level is based on transcriptional regulation of clock and clock-controlled genes. Results We systematically analyzed the mRNA expression of clock and clock-controlled genes in mouse peripheral tissues. Eight genes (mBmal1, mNpas2, mRev-erbα, mDbp, mRev-erbβ, mPer3, mPer1 and mPer2; given in the temporal order of the rhythm peak) showed robust circadian expressions of mRNAs in all tissues except testis, suggesting that these genes are core molecules of the molecular biological clock. The bioinformatics analysis revealed that these genes have one or a combination of 3 transcriptional elements (RORE, DBPE, and E-box), which are conserved among human, mouse, and rat genome sequences, and indicated that these 3 elements may be responsible for the biological timing of expression of canonical clock genes. Conclusions The observation of oscillatory profiles of canonical clock genes is not only useful for physiological and pathological examination of the circadian clock in various organs but also important for systematic understanding of transcriptional regulation on a genome-wide basis. Our finding of the oscillatory expression of canonical clock genes with a temporal order provides us an interesting hypothesis, that cyclic timing of all clock and clock-controlled genes may be dependent on several transcriptional elements including 3 known elements, E-box, RORE, and DBPE. PMID:15473909

  13. The promoter activities of sucrose phosphate synthase genes in rice, OsSPS1 and OsSPS11, are controlled by light and circadian clock, but not by sucrose.

    PubMed

    Yonekura, Madoka; Aoki, Naohiro; Hirose, Tatsuro; Onai, Kiyoshi; Ishiura, Masahiro; Okamura, Masaki; Ohsugi, Ryu; Ohto, Chikara

    2013-01-01

    Although sucrose plays a role in sugar sensing and its signaling pathway, little is known about the regulatory mechanisms of the expressions of plant sucrose-related genes. Our previous study on the expression of the sucrose phosphate synthase gene family in rice (OsSPSs) suggested the involvement of sucrose sensing and/or circadian rhythm in the transcriptional regulation of OsSPS. To examine whether the promoters of OsSPSs can be controlled by sugars and circadian clock, we produced transgenic rice plants harboring a promoter-luciferase construct for OsSPS1 or OsSPS11 and analyzed the changes in the promoter activities by monitoring bioluminescence from intact transgenic plants in real-time. Transgenic plants fed sucrose, glucose, or mannitol under continuous light conditions showed no changes in bioluminescence intensity; meanwhile, the addition of sucrose increased the concentration of sucrose in the plants, and the mRNA levels of OsSPS remained constant. These results suggest that these OsSPS promoters may not be regulated by sucrose levels in the tissues. Next, we investigated the changes in the promoter activities under 12-h light/12-h dark cycles and continuous light conditions. Under the light-dark cycle, both OsSPS1 and OsSPS11 promoter activities were low in the dark and increased rapidly after the beginning of the light period. When the transgenic rice plants were moved to the continuous light condition, both P OsSPS1 ::LUC and P OsSPS11 ::LUC reporter plants exhibited circadian bioluminescence rhythms; bioluminescence peaked during the subjective day with a 27-h period: in the early morning as for OsSPS1 promoter and midday for OsSPS11 promoter. These results indicate that these OsSPS promoters are controlled by both light illumination and circadian clock and that the regulatory mechanism of promoter activity differs between the two OsSPS genes.

  14. Circadian clock proteins and immunity.

    PubMed

    Curtis, Anne M; Bellet, Marina M; Sassone-Corsi, Paolo; O'Neill, Luke A J

    2014-02-20

    Immune parameters change with time of day and disruption of circadian rhythms has been linked to inflammatory pathologies. A circadian-clock-controlled immune system might allow an organism to anticipate daily changes in activity and feeding and the associated risk of infection or tissue damage to the host. Responses to bacteria have been shown to vary depending on time of infection, with mice being more at risk of sepsis when challenged ahead of their activity phase. Studies highlight the extent to which the molecular clock, most notably the core clock proteins BMAL1, CLOCK, and REV-ERBα, control fundamental aspects of the immune response. Examples include the BMAL1:CLOCK heterodimer regulating toll-like receptor 9 (TLR9) expression and repressing expression of the inflammatory monocyte chemokine ligand (CCL2) as well as REV-ERBα suppressing the induction of interleukin-6. Understanding the daily rhythm of the immune system could have implications for vaccinations and how we manage infectious and inflammatory diseases. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Comparison of circadian rhythms in male and female humans

    NASA Technical Reports Server (NTRS)

    Winget, C. M.; Deroshia, C. W.; Vernikos-Danellis, J.; Rosenblatt, W. S.; Hetherington, N. W.

    1977-01-01

    Heart rate (HR) and rectal temperature (RT) data were obtained from 12 female and 27 male subjects. The subjects were housed in a facility where the environment was controlled. Human male and female RT and HR exhibit a circadian rhythm with an excursion of about 1.2 C and 30 beats/min, respectively. The acrophases, amplitudes, and level crossings are only slightly different between the sexes. The male HR and RT circadian wave forms are more stable than those of the females. However, the actual RT and HR of males were always lower than that of females at all time points around the clock. The HR during sleep in females is 15 per cent below the daily mean heart rate and in males, 22 per cent.

  16. Control mechanisms of circadian rhythms in body composition: Implications for manned spaceflight

    NASA Technical Reports Server (NTRS)

    Moore-Ede, M. C.

    1976-01-01

    The mechanisms underlying the internal synchronization of the circadian variations in electrolyte content in body compartments were investigated, and the significance of these oscillations for manned spaceflight were examined. The experiments were performed with a chair-acclimatized squirrel monkey system, in which the animal sits in a chair, restrained only around the waist. The following information was given: (1) experimental methodology description, (2) summary of results obtained during the first contract year, and (3) discussion of the research performed during the second contract year. This included the following topics: physiological mechanisms promoting normal circadian internal synchronization, factors precipitating internal desynchronization, pathophysiological consequences of internal desynchronization of particular relevance to spaceflight, and validation of a chair-acclimatized system.

  17. The Cosmology of William Herschel

    NASA Astrophysics Data System (ADS)

    Hoskin, M.

    2009-08-01

    William Herschel was an amateur astronomer for half his life, until his discovery of Uranus earned him a royal pension. He then set himself to study "the construction of the heavens" with great reflectors, and discovered over 2,500 nebulae and star clusters. Clusters had clearly formed by the action of gravity, and so scattered clusters would in time become ever more compressed: scattered clusters were young, compressed clusters old. This marked the end of the 'clockwork' universe of Newton and Leibniz.

  18. Pawukon: from incest, calendar, to horoscope

    NASA Astrophysics Data System (ADS)

    Gunawan Admiranto, Agustinus

    2016-11-01

    Javanese calendar has several cycles, i.e. 5 days (pasaran), 6 days (paringkelan), 7 days (week), 8 days (padangon and padewan), 30 days (month), and 365 days (year). There is another 210- day cycle caled pawukon which divided into 30 part caled wuku. This cycle originated from an incest tale about a king named Prabu Watugunung which married his mother named Dewi Sinta and his aunt named Dewi Landep. In this marriage they had 27 sons and all of them are called wukus. In this tale it was told that this incestuous relationship caused some havoc in the world and the gods decided to kill this family. After some struggle, all of them are killed and then the gods brought them up to paradise one by one starting from Dewi Sinta and ended with Prabu Watugunung. This ascencion needs 30 weeks (210 days) because to be ascended one wuku had to wait for 7 days, and after one cycle is finished the cycle starts all over again. The establishment of a cycle of pawukon is regarded as an effort to create a cosmos out of chaos (incestuous relationship), and furthermore pawukon is used as a kind of horoscope to determine one"s fate in the future. It is because the cosmos is regarded as a clockwork in which each element of this clockwork works in a predetermined fashion.

  19. A class of circadian long non-coding RNAs mark enhancers modulating long-range circadian gene regulation

    PubMed Central

    Fan, Zenghua; Zhao, Meng; Joshi, Parth D.; Li, Ping; Zhang, Yan; Guo, Weimin; Xu, Yichi; Wang, Haifang; Zhao, Zhihu

    2017-01-01

    Abstract Circadian rhythm exerts its influence on animal physiology and behavior by regulating gene expression at various levels. Here we systematically explored circadian long non-coding RNAs (lncRNAs) in mouse liver and examined their circadian regulation. We found that a significant proportion of circadian lncRNAs are expressed at enhancer regions, mostly bound by two key circadian transcription factors, BMAL1 and REV-ERBα. These circadian lncRNAs showed similar circadian phases with their nearby genes. The extent of their nuclear localization is higher than protein coding genes but less than enhancer RNAs. The association between enhancer and circadian lncRNAs is also observed in tissues other than liver. Comparative analysis between mouse and rat circadian liver transcriptomes showed that circadian transcription at lncRNA loci tends to be conserved despite of low sequence conservation of lncRNAs. One such circadian lncRNA termed lnc-Crot led us to identify a super-enhancer region interacting with a cluster of genes involved in circadian regulation of metabolism through long-range interactions. Further experiments showed that lnc-Crot locus has enhancer function independent of lnc-Crot's transcription. Our results suggest that the enhancer-associated circadian lncRNAs mark the genomic loci modulating long-range circadian gene regulation and shed new lights on the evolutionary origin of lncRNAs. PMID:28335007

  20. Temperature-dependent resetting of the molecular circadian oscillator in Drosophila

    PubMed Central

    Goda, Tadahiro; Sharp, Brandi; Wijnen, Herman

    2014-01-01

    Circadian clocks responsible for daily time keeping in a wide range of organisms synchronize to daily temperature cycles via pathways that remain poorly understood. To address this problem from the perspective of the molecular oscillator, we monitored temperature-dependent resetting of four of its core components in the fruitfly Drosophila melanogaster: the transcripts and proteins for the clock genes period (per) and timeless (tim). The molecular circadian cycle in adult heads exhibited parallel responses to temperature-mediated resetting at the levels of per transcript, tim transcript and TIM protein. Early phase adjustment specific to per transcript rhythms was explained by clock-independent temperature-driven transcription of per. The cold-induced expression of Drosophila per contrasts with the previously reported heat-induced regulation of mammalian Period 2. An altered and more readily re-entrainable temperature-synchronized circadian oscillator that featured temperature-driven per transcript rhythms and phase-shifted TIM and PER protein rhythms was found for flies of the ‘Tim 4’ genotype, which lacked daily tim transcript oscillations but maintained post-transcriptional temperature entrainment of tim expression. The accelerated molecular and behavioural temperature entrainment observed for Tim 4 flies indicates that clock-controlled tim expression constrains the rate of temperature cycle-mediated circadian resetting. PMID:25165772

  1. Aging alters circadian regulation of redox in Drosophila

    PubMed Central

    Klichko, Vladimir I.; Chow, Eileen S.; Kotwica-Rolinska, Joanna; Orr, William C.; Giebultowicz, Jadwiga M.; Radyuk, Svetlana N.

    2015-01-01

    Circadian coordination of metabolism, physiology, and neural functions contributes to healthy aging and disease prevention. Clock genes govern the daily rhythmic expression of target genes whose activities underlie such broad physiological parameters as maintenance of redox homeostasis. Previously, we reported that glutathione (GSH) biosynthesis is controlled by the circadian system via effects of the clock genes on expression of the catalytic (Gclc) and modulatory (Gclm) subunits comprising the glutamate cysteine ligase (GCL) holoenzyme. The objective of this study was to determine whether and how aging, which leads to weakened circadian oscillations, affects the daily profiles of redox-active biomolecules. We found that fly aging is associated with altered profiles of Gclc and Gclm expression at both the mRNA and protein levels. Analysis of free aminothiols and GCL activity revealed that aging abolishes daily oscillations in GSH levels and alters the activity of glutathione biosynthetic pathways. Unlike GSH, its precursors and products of catabolism, methionine, cysteine and cysteinyl-glycine, were not rhythmic in young or old flies, while rhythms of the glutathione oxidation product, GSSG, were detectable. We conclude that the temporal regulation of GSH biosynthesis is altered in the aging organism and that age-related loss of circadian modulation of pathways involved in glutathione production is likely to impair temporal redox homeostasis. PMID:25806044

  2. Detection of Diurnal Variation of Tomato Transcriptome through the Molecular Timetable Method in a Sunlight-Type Plant Factory.

    PubMed

    Higashi, Takanobu; Tanigaki, Yusuke; Takayama, Kotaro; Nagano, Atsushi J; Honjo, Mie N; Fukuda, Hirokazu

    2016-01-01

    The timing of measurement during plant growth is important because many genes are expressed periodically and orchestrate physiological events. Their periodicity is generated by environmental fluctuations as external factors and the circadian clock as the internal factor. The circadian clock orchestrates physiological events such as photosynthesis or flowering and it enables enhanced growth and herbivory resistance. These characteristics have possible applications for agriculture. In this study, we demonstrated the diurnal variation of the transcriptome in tomato (Solanum lycopersicum) leaves through molecular timetable method in a sunlight-type plant factory. Molecular timetable methods have been developed to detect periodic genes and estimate individual internal body time from these expression profiles in mammals. We sampled tomato leaves every 2 h for 2 days and acquired time-course transcriptome data by RNA-Seq. Many genes were expressed periodically and these expressions were stable across the 1st and 2nd days of measurement. We selected 143 time-indicating genes whose expression indicated periodically, and estimated internal time in the plant from these expression profiles. The estimated internal time was generally the same as the external environment time; however, there was a difference of more than 1 h between the two for some sampling points. Furthermore, the stress-responsive genes also showed weakly periodic expression, implying that they were usually expressed periodically, regulated by light-dark cycles as an external factor or the circadian clock as the internal factor, and could be particularly expressed when the plant experiences some specific stress under agricultural situations. This study suggests that circadian clock mediate the optimization for fluctuating environments in the field and it has possibilities to enhance resistibility to stress and floral induction by controlling circadian clock through light supplement and temperature control.

  3. Detection of Diurnal Variation of Tomato Transcriptome through the Molecular Timetable Method in a Sunlight-Type Plant Factory

    PubMed Central

    Higashi, Takanobu; Tanigaki, Yusuke; Takayama, Kotaro; Nagano, Atsushi J.; Honjo, Mie N.; Fukuda, Hirokazu

    2016-01-01

    The timing of measurement during plant growth is important because many genes are expressed periodically and orchestrate physiological events. Their periodicity is generated by environmental fluctuations as external factors and the circadian clock as the internal factor. The circadian clock orchestrates physiological events such as photosynthesis or flowering and it enables enhanced growth and herbivory resistance. These characteristics have possible applications for agriculture. In this study, we demonstrated the diurnal variation of the transcriptome in tomato (Solanum lycopersicum) leaves through molecular timetable method in a sunlight-type plant factory. Molecular timetable methods have been developed to detect periodic genes and estimate individual internal body time from these expression profiles in mammals. We sampled tomato leaves every 2 h for 2 days and acquired time-course transcriptome data by RNA-Seq. Many genes were expressed periodically and these expressions were stable across the 1st and 2nd days of measurement. We selected 143 time-indicating genes whose expression indicated periodically, and estimated internal time in the plant from these expression profiles. The estimated internal time was generally the same as the external environment time; however, there was a difference of more than 1 h between the two for some sampling points. Furthermore, the stress-responsive genes also showed weakly periodic expression, implying that they were usually expressed periodically, regulated by light–dark cycles as an external factor or the circadian clock as the internal factor, and could be particularly expressed when the plant experiences some specific stress under agricultural situations. This study suggests that circadian clock mediate the optimization for fluctuating environments in the field and it has possibilities to enhance resistibility to stress and floral induction by controlling circadian clock through light supplement and temperature control. PMID:26904059

  4. Mechanisms of Breast Cancer in Shift Workers: DNA Methylation in Five Core Circadian Genes in Nurses Working Night Shifts.

    PubMed

    Samulin Erdem, Johanna; Skare, Øivind; Petersen-Øverleir, Marte; Notø, Heidi Ødegaard; Lie, Jenny-Anne S; Reszka, Edyta; Pepłońska, Beata; Zienolddiny, Shanbeh

    2017-01-01

    Shift work has been suggested to be associated with breast cancer risk, and circadian disruption in shift workers is hypothesized as one of the mechanisms of increased cancer risk. There is, however, insufficient molecular evidence supporting this hypothesis. Using the quantitative methodology of pyrosequencing, epigenetic changes in 5-methyl cytosine (5mC) in five circadian genes CLOCK , BMAL1 , CRY1, PER1 and PER2 in female nurses working night shift work (278 breast cancer cases, 280 controls) were analyzed. In breast cancer cases, a medium exposure to night work was associated with increased methylation levels of the CLOCK (p=0.050), BMAL1 (p=0.001) and CRY1 (p=0.040) genes, compared with controls. Within the cases, analysis of the effects of shift work on the methylation patterns showed that methylation of CRY1 was lower in those who had worked night shift and had a high exposure (p=0.006) compared with cases that had worked only days. For cases with a medium exposure to night work, an increase in BMAL1 (p=0.003) and PER1 (p=0.035) methylation was observed compared with day working (unexposed) cases. The methylation levels of the five core circadian genes were also analyzed in relation to the estrogen and progesterone receptors status of the tumors in the cases, and no correlations were observed. Furthermore, nineteen polymorphisms in the five circadian genes were assessed for their effects on the methylation levels of the respective genes, but no associations were found. In summary, our data suggest that epigenetic regulation of CLOCK , BMAL1, CRY1 and PER1 may contribute to breast cancer in shift workers.

  5. Physical exercise accelerates reentrainment of human sleep-wake cycle but not of plasma melatonin rhythm to 8-h phase-advanced sleep schedule.

    PubMed

    Yamanaka, Yujiro; Hashimoto, Satoko; Tanahashi, Yusuke; Nishide, Shin-Ya; Honma, Sato; Honma, Ken-Ichi

    2010-03-01

    Effects of timed physical exercise were examined on the reentrainment of sleep-wake cycle and circadian rhythms to an 8-h phase-advanced sleep schedule. Seventeen male adults spent 12 days in a temporal isolation facility with dim light conditions (<10 lux). The sleep schedule was phase-advanced by 8 h from their habitual sleep times for 4 days, which was followed by a free-run session for 6 days, during which the subjects were deprived of time cues. During the shift schedule, the exercise group (n = 9) performed physical exercise with a bicycle ergometer in the early and middle waking period for 2 h each. The control group (n = 8) sat on a chair at those times. Their sleep-wake cycles were monitored every day by polysomnography and/or weight sensor equipped with a bed. The circadian rhythm in plasma melatonin was measured on the baseline day before phase shift: on the 4th day of shift schedule and the 5th day of free-run. As a result, the sleep-onset on the first day of free-run in the exercise group was significantly phase-advanced from that in the control and from the baseline. On the other hand, the circadian melatonin rhythm was significantly phase-delayed in the both groups, showing internal desynchronization of the circadian rhythms. The sleep-wake cycle resynchronized to the melatonin rhythm by either phase-advance or phase-delay shifts in the free-run session. These findings indicate that the reentrainment of the sleep-wake cycle to a phase-advanced schedule occurs independent of the circadian pacemaker and is accelerated by timed physical exercise.

  6. Mechanisms of Breast Cancer in Shift Workers: DNA Methylation in Five Core Circadian Genes in Nurses Working Night Shifts

    PubMed Central

    Samulin Erdem, Johanna; Skare, Øivind; Petersen-Øverleir, Marte; Notø, Heidi Ødegaard; Lie, Jenny-Anne S.; Reszka, Edyta; Pepłońska, Beata; Zienolddiny, Shanbeh

    2017-01-01

    Shift work has been suggested to be associated with breast cancer risk, and circadian disruption in shift workers is hypothesized as one of the mechanisms of increased cancer risk. There is, however, insufficient molecular evidence supporting this hypothesis. Using the quantitative methodology of pyrosequencing, epigenetic changes in 5-methyl cytosine (5mC) in five circadian genes CLOCK, BMAL1, CRY1, PER1 and PER2 in female nurses working night shift work (278 breast cancer cases, 280 controls) were analyzed. In breast cancer cases, a medium exposure to night work was associated with increased methylation levels of the CLOCK (p=0.050), BMAL1 (p=0.001) and CRY1 (p=0.040) genes, compared with controls. Within the cases, analysis of the effects of shift work on the methylation patterns showed that methylation of CRY1 was lower in those who had worked night shift and had a high exposure (p=0.006) compared with cases that had worked only days. For cases with a medium exposure to night work, an increase in BMAL1 (p=0.003) and PER1 (p=0.035) methylation was observed compared with day working (unexposed) cases. The methylation levels of the five core circadian genes were also analyzed in relation to the estrogen and progesterone receptors status of the tumors in the cases, and no correlations were observed. Furthermore, nineteen polymorphisms in the five circadian genes were assessed for their effects on the methylation levels of the respective genes, but no associations were found. In summary, our data suggest that epigenetic regulation of CLOCK, BMAL1, CRY1 and PER1 may contribute to breast cancer in shift workers. PMID:28928877

  7. The 3111 Clock gene polymorphism is not associated with sleep and circadian rhythmicity in phenotypically characterized human subjects.

    PubMed

    Robilliard, Donna L; Archer, Simon N; Arendt, Josephine; Lockley, Steven W; Hack, Lisa M; English, Judie; Leger, Damien; Smits, Marcel G; Williams, Adrian; Skene, Debra J; Von Schantz, Malcolm

    2002-12-01

    Mutations in clock genes are associated with abnormal circadian parameters, including sleep. An association has been reported previously between a polymorphism (3111C), situated in the 3'-untranslated region (3'-UTR) of the circadian gene Clock and evening preference. In the present study, this polymorphism was assessed in: (1) 105 control subjects with defined diurnal preference, (2) 26 blind subjects with free-running circadian rhythms and characterized with regard to circadian period (tau) and (3) 16 delayed sleep phase syndrome patients. The control group was chosen from a larger population (n = 484) by Horne-Ostberg questionnaire analysis, from which three subgroups were selected (evening, intermediate and morning preference). Data from sleep diaries completed by 90% of these subjects showed a strong correlation between preferred and estimated timings of sleep and wake. The mean timings of activities for the evening group were at least 2 h later than the morning group. Genetic analysis showed that, in contrast with the previously published finding, there was no association between 3111C and eveningness. Neither was there an association between 3111C and tau, nor a significant difference in 3111C frequency between the normal and delayed sleep phase syndrome groups. To assess the effect of this polymorphism on messenger RNA (mRNA) translatability, luciferase reporter gene constructs containing the two Clock polymorphic variants in their 3'-UTR were transfected into COS-1 cells and luciferase activity measured. No significant difference was observed between the two variants. These results do not support Clock 3111C as a marker for diurnal preference, tau, or delayed sleep phase syndrome in humans.

  8. Chronobiology in mammalian health.

    PubMed

    Liu, Zhihua; Chu, Guiyan

    2013-03-01

    Circadian rhythms are daily cycles of physiology and behavior that are driven by an endogenous oscillator with a period of approximately one day. In mammals, the hypothalamic suprachiasmatic nuclei are our principal circadian oscillators which influences peripheral tissue clocks via endocrine, autonomic and behavioral cues, and other brain regions and most peripheral tissues contain circadian clocks as well. The circadian molecular machinery comprises a group of circadian genes, namely Clock, Bmal1, Per1, Per2, Per3, Cry1 and Cry2. These circadian genes drive endogenous oscillations which promote rhythmically expression of downstream genes and thereby physiological and behavioral processes. Disruptions in circadian homeostasis have pronounced impact on physiological functioning, overall health and disease susceptibility. This review introduces the general profile of circadian gene expression and tissue-specific circadian regulation, highlights the connection between the circadian rhythms and physiological processes, and discusses the role of circadian rhythms in human disease.

  9. Circadian-Related Sleep Disorders and Sleep Medication Use in the New Zealand Blind Population: An Observational Prevalence Survey

    PubMed Central

    Warman, Guy R.; Pawley, Matthew D. M.; Bolton, Catherine; Cheeseman, James F.; Fernando, Antonio T.; Arendt, Josephine; Wirz-Justice, Anna

    2011-01-01

    Study Objectives To determine the prevalence of self-reported circadian-related sleep disorders, sleep medication and melatonin use in the New Zealand blind population. Design A telephone survey incorporating 62 questions on sleep habits and medication together with validated questionnaires on sleep quality, chronotype and seasonality. Participants Participants were grouped into: (i) 157 with reduced conscious perception of light (RLP); (ii) 156 visually impaired with no reduction in light perception (LP) matched for age, sex and socioeconomic status, and (iii) 156 matched fully-sighted controls (FS). Sleep Habits and Disturbances The incidence of sleep disorders, daytime somnolence, insomnia and sleep timing problems was significantly higher in RLP and LP compared to the FS controls (p<0.001). The RLP group had the highest incidence (55%) of sleep timing problems, and 26% showed drifting sleep patterns (vs. 4% FS). Odds ratios for unconventional sleep timing were 2.41 (RLP) and 1.63 (LP) compared to FS controls. For drifting sleep patterns, they were 7.3 (RLP) and 6.0 (LP). Medication Use Zopiclone was the most frequently prescribed sleep medication. Melatonin was used by only 4% in the RLP group and 2% in the LP group. Conclusions Extrapolations from the current study suggest that 3,000 blind and visually impaired New Zealanders may suffer from circadian-related sleep problems, and that of these, fewer than 15% have been prescribed melatonin. This may represent a therapeutic gap in the treatment of circadian-related sleep disorders in New Zealand, findings that may generalize to other countries. PMID:21789214

  10. Fos-like immunoreactivity in the circadian timing system of calorie-restricted rats fed at dawn: daily rhythms and light pulse-induced changes.

    PubMed

    Challet, E; Jacob, N; Vuillez, P; Pévet, P; Malan, A

    1997-10-03

    Daily rhythms of pineal melatonin, body temperature, and locomotor activity are synchronized to the light-dark cycle (LD) via a circadian clock located in the suprachiasmatic nuclei (SCN). A timed caloric restriction in rats fed at dawn induces phase-advances and further phase-stabilization of these rhythms, suggesting that the circadian clock can integrate conflicting daily photic and non-photic cues. The present study investigated the daily expression of Fos-like immunoreactivity (Fos-ir) and light pulse-induced Fos-ir in the SCN, the intergeniculate leaflet (IGL) and the paraventricular thalamic nucleus (PVT) in calorie-restricted rats fed 2 h after the onset of light and in controls fed ad libitum. A daily rhythm of Fos-ir in the SCN was confirmed in control rats, with a peak approximately 2 h after lights on. At this time point (i.e. just prior to the feeding time), the level of SCN Fos-ir was lowered in calorie-restricted rats. Concomitantly, IGL Fos-ir was higher in calorie-restricted vs. control rats. In response to a light pulse during darkness, Fos-ir induction was found to be specifically (i.e. phase-dependently) lowered in the SCN and IGL of calorie-restricted rats. Observed changes of Fos-ir in the PVT were possibly related to the wake state of the animals. This study shows that repetitive non-photic cues presented in addition to a LD cycle affect the Fos expression in the circadian timing system.

  11. Sleep quality, morningness-eveningness preference, mood profile, and levels of serum melatonin in migraine patients: a case-control study.

    PubMed

    Kozak, Hasan Hüseyin; Boysan, Murat; Uca, Ali Ulvi; Aydın, Adem; Kılınç, İbrahim; Genç, Emine; Altaş, Mustafa; Güngör, Dilara Cari; Turgut, Keziban; Özer, Nejla

    2017-03-01

    The melatonin as the pineal gland's secretory product is implicated in the pathophysiology of migraine. Melatonin has critical functions in human physiology, and research underscores the importance of melatonin in circadian rhythm, sleep, and mood regulation. Clinical observations have indicated that migraine attacks have a seasonal, menstrual, and circadian timing, suggesting that chronobiological mechanisms and their alterations may causally involve in the etiology of the disease. However, the topic has received relatively little attention in the migraine literature. Associations between melatonin, circadian preference, sleep, and mood states were investigated in the current study. Fifty-five patients (47 females and 8 males) were compared to 57 gender and age-matched control subjects (40 females and 17 males). A socio-demographical questionnaire, the Beck Depression Inventory, Beck Anxiety Inventory (BAI), Pittsburgh Sleep Quality Index (PSQI), Profile of Mood States (POMS), and Morningness-Eveningness Questionnaire were administered to volunteers. Blood samples were taken from all participants at about 1:00 AM in an unlit room not to hamper melatonin secretion, and blood melatonin levels were measured using quantitative ELISA test. In comparison with controls, melatonin levels were significantly lower among migraine patients. Migraineurs reported significantly greater scores on the BAI, confusion-bewilderment subscale of the POMS, and total and sleep latency subscale of the PSQI. Migraine patients who had nausea during the migraine attacks and who reported bouts relevant to certain food consumption, such as cheese or chocolate, had significantly lower levels of melatonin. Contrarily, groups did not reveal statistically substantial difference in circadian preferences.

  12. Further evidence for Clock△19 mice as a model for bipolar disorder mania using cross-species tests of exploration and sensorimotor gating

    PubMed Central

    van Enkhuizen, Jordy; Minassian, Arpi; Young, Jared W.

    2013-01-01

    Bipolar disorder (BD) is a pervasive neuropsychiatric disorder characterized by episodes of mania and depression. The switch between mania and depression may reflect seasonal changes and certainly can be affected by alterations in sleep and circadian control. The circadian locomotor output cycles kaput (CLOCK) protein is a key component of the cellular circadian clock. Mutation of the Clock gene encoding this protein in Clock△19 mutant mice leads to behavioral abnormalities reminiscent of BD mania. To date, however, these mice have not been assessed in behavioral paradigms that have cross-species translational validity. In the present studies of Clock△19 and wildtype (WT) littermate mice, we quantified exploratory behavior and sensorimotor gating, which are abnormal in BD manic patients. We also examined the saccharin preference of these mice and their circadian control in different photoperiods. Clock△19 mice exhibited behavioral alterations that are consistent with BD manic patients tested in comparable tasks, including hyperactivity, increased specific exploration, and reduced sensorimotor gating. Moreover, compared to WT mice, Clock△19 mice exhibited a greater preference for sweetened solutions and greater sensitivity to altered photoperiod. In contrast with BD manic patients however, Clock△19 mice exhibited more circumscribed movements during exploration. Future studies will extend the characterization of these mice in measures with cross-species translational relevance to human testing. PMID:23623885

  13. Integration of light and circadian signals that regulate chloroplast transcription by a nuclear-encoded sigma factor.

    PubMed

    Belbin, Fiona E; Noordally, Zeenat B; Wetherill, Sarah J; Atkins, Kelly A; Franklin, Keara A; Dodd, Antony N

    2017-01-01

    We investigated the signalling pathways that regulate chloroplast transcription in response to environmental signals. One mechanism controlling plastid transcription involves nuclear-encoded sigma subunits of plastid-encoded plastid RNA polymerase. Transcripts encoding the sigma factor SIG5 are regulated by light and the circadian clock. However, the extent to which a chloroplast target of SIG5 is regulated by light-induced changes in SIG5 expression is unknown. Moreover, the photoreceptor signalling pathways underlying the circadian regulation of chloroplast transcription by SIG5 are unidentified. We monitored the regulation of chloroplast transcription in photoreceptor and sigma factor mutants under controlled light regimes in Arabidopsis thaliana. We established that a chloroplast transcriptional response to light intensity was mediated by SIG5; a chloroplast transcriptional response to the relative proportions of red and far red light was regulated by SIG5 through phytochrome and photosynthetic signals; and the circadian regulation of chloroplast transcription by SIG5 was predominantly dependent on blue light and cryptochrome. Our experiments reveal the extensive integration of signals concerning the light environment by a single sigma factor to regulate chloroplast transcription. This may originate from an evolutionarily ancient mechanism that protects photosynthetic bacteria from high light stress, which subsequently became integrated with higher plant phototransduction networks. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  14. The effect of intermittent fasting during Ramadan on sleep, sleepiness, cognitive function, and circadian rhythm.

    PubMed

    Qasrawi, Shaden O; Pandi-Perumal, Seithikurippu R; BaHammam, Ahmed S

    2017-09-01

    Studies have shown that experimental fasting can affect cognitive function, sleep, and wakefulness patterns. However, the effects of experimental fasting cannot be generalized to fasting during Ramadan due to its unique characteristics. Therefore, there has been increased interest in studying the effects of fasting during Ramadan on sleep patterns, daytime sleepiness, cognitive function, sleep architecture, and circadian rhythm. In this review, we critically discuss the current research findings in those areas during the month of Ramadan. Available data that controlled for sleep/wake schedule, sleep duration, light exposure, and energy expenditure do not support the notion that Ramadan intermittent fasting increases daytime sleepiness and alters cognitive function. Additionally, recent well-designed studies showed no effect of fasting on circadian rhythms. However, in non-constrained environments that do not control for lifestyle changes, studies have demonstrated sudden and significant delays in bedtime and wake time. Studies that controlled for environmental factors and sleep/wake schedule reported no significant disturbances in sleep architecture. Nevertheless, several studies have consistently reported that the main change in sleep architecture during fasting is a reduction in the proportion of REM sleep.

  15. A Role for Timely Nuclear Translocation of Clock Repressor Proteins in Setting Circadian Clock Speed

    PubMed Central

    Lee, Euna

    2014-01-01

    By means of a circadian clock system, all the living organisms on earth including human beings can anticipate the environmental rhythmic changes such as light/dark and warm/cold periods in a daily as well as in a yearly manner. Anticipating such environmental changes provide organisms with survival benefits via manifesting behavior and physiology at an advantageous time of the day and year. Cell-autonomous circadian oscillators, governed by transcriptional feedback loop composed of positive and negative elements, are organized into a hierarchical system throughout the organisms and generate an oscillatory expression of a clock gene by itself as well as clock controlled genes (ccgs) with a 24 hr periodicity. In the feedback loop, hetero-dimeric transcription factor complex induces the expression of negative regulatory proteins, which in turn represses the activity of transcription factors to inhibit their own transcription. Thus, for robust oscillatory rhythms of the expression of clock genes as well as ccgs, the precise control of subcellular localization and/or timely translocation of core clock protein are crucial. Here, we discuss how sub-cellular localization and nuclear translocation are controlled in a time-specific manner focusing on the negative regulatory clock proteins. PMID:25258565

  16. Short-term influence of cataract surgery on circadian biological rhythm and related health outcomes (CLOCK-IOL trial): study protocol for a randomized controlled trial.

    PubMed

    Saeki, Keigo; Obayashi, Kenji; Nishi, Tomo; Miyata, Kimie; Maruoka, Shinji; Ueda, Tetsuo; Okamoto, Masahiro; Hasegawa, Taiji; Matsuura, Toyoaki; Tone, Nobuhiro; Ogata, Nahoko; Kurumatani, Norio

    2014-12-29

    Light information is the most important cue of circadian rhythm which synchronizes biological rhythm with external environment. Circadian misalignment of biological rhythm and external environment is associated with increased risk of depression, insomnia, obesity, diabetes, cardiovascular disease, and cancer. Increased light transmission by cataract surgery may improve circadian misalignment and related health outcomes. Although some observational studies have shown improvement of depression and insomnia after cataract surgery, randomized controlled trials are lacking. We will conduct a parallel-group, assessor-blinded, simple randomized controlled study comparing a cataract surgery group at three months after surgery with a control group to determine whether cataract surgery improves depressive symptoms, sleep quality, body mass regulation, and glucose and lipid metabolism. We will recruit patients who are aged 60 years and over, scheduled to receive their first cataract surgery, and have grade 2 or higher nuclear opacification as defined by the lens opacities classification system III. Exclusion criteria will be patients with major depression, severe corneal opacity, severe glaucoma, vitreous haemorrhage, proliferative diabetic retinopathy, macular oedema, age-related macular degeneration, and patients needing immediate or combined cataract surgery. After baseline participants will be randomized to two groups. Outcomes will be measured at three months after surgery among the intervention group, and three months after baseline among the control group. We will assess depressive symptoms as a primary outcome, using the short version geriatric depression scale (GDS-15). Secondary outcomes will be subjective and actigraph-measured sleep quality, sleepiness, glycated haemoglobin, fasting plasma glucose and triglyceride, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, body mass index, abdominal circumference, circadian rhythms of physical activity and wrist skin temperature, and urinary melatonin metabolite. Chronotype and visual function will be assessed using the 'morningness-eveningness' questionnaire, the Munich chronotype questionnaire, and the National Eye Institute Visual Function Questionnaire. Although there are potential limitations due to the difference in duration from baseline survey to outcome measurements between two groups, any seasonal effect on the outcome measurement will be balanced as a result of continuous inclusion of participants through the year, and outcomes will be adjusted for day length at outcome measurements at analysis. UMIN000014559, UMIN Clinical Trials Registry, registered on 15 July 2014.

  17. Abnormality of circadian rhythm accompanied by an increase in frontal cortex serotonin in animal model of autism.

    PubMed

    Tsujino, Naohisa; Nakatani, Yasushi; Seki, Yoshinari; Nakasato, Akane; Nakamura, Michiko; Sugawara, Michiya; Arita, Hideho

    2007-02-01

    Several clinical reports have indicated that autistic patients often show disturbance of the circadian rhythm, which may be related to dysfunction of the serotonergic system in the brain. Using rats exposed prenatally to valproic acid (VPA) as an animal model of autism, we examined locomotor activity and feeding under a reversed 12-h light/dark cycle, and found disturbance of the circadian rhythm characterized by frequent arousal during the light/sleep phase. In addition, measurement of brain serotonin (5-HT) level using in vivo microdialysis showed that the brain 5-HT level in VPA-exposed rats was significantly higher than that in control rats. These results suggest that a higher brain 5-HT level might be responsible for the irregular sleep/awake rhythm in autism.

  18. Shift Work in Rats Results in Increased Inflammatory Response after Lipopolysaccharide Administration: A Role for Food Consumption.

    PubMed

    Guerrero-Vargas, Natalí N; Guzmán-Ruiz, Mara; Fuentes, Rebeca; García, Joselyn; Salgado-Delgado, Roberto; Basualdo, María del Carmen; Escobar, Carolina; Markus, Regina P; Buijs, Ruud M

    2015-08-01

    The suprachiasmatic nucleus (SCN) drives circadian rhythms in behavioral and physiological variables, including the inflammatory response. Shift work is known to disturb circadian rhythms and is associated with increased susceptibility to develop disease. In rodents, circadian disruption due to shifted light schedules (jet lag) induced increased innate immune responses. To gain more insight into the influence of circadian disruption on the immune response, we characterized the inflammatory response in a model of rodent shift work and demonstrated that circadian disruption affected the inflammatory response to lipopolysaccharide (LPS) both in vivo and in vitro. Since food consumption is a main disturbing element in the shift work schedule, we also evaluated the inflammatory response to LPS in a group of rats that had no access to food during their working hours. Our results demonstrated that the shift work schedule decreased basal TNF-α levels in the liver but not in the circulation. Despite this, we observed that shift work induced increased cytokine response after LPS stimulation in comparison to control rats. Also, Kupffer cells (liver macrophages) isolated from shift work rats produced more TNF-α in response to in vitro LPS stimulation, suggesting important effects of circadian desynchronization on the functionality of this cell type. Importantly, the effects of shift work on the inflammatory response to LPS were prevented when food was not available during the working schedule. Together, these results show that dissociating behavior and food intake from the synchronizing drive of the SCN severely disturbs the immune response. © 2015 The Author(s).

  19. A mathematical model of communication between groups of circadian neurons in Drosophila melanogaster.

    PubMed

    Risau-Gusman, Sebastián; Gleiser, Pablo M

    2014-12-01

    In the fruit fly, circadian behavior is controlled by a small number of specialized neurons, whose molecular clocks are relatively well known. However, much less is known about how these neurons communicate among themselves. In particular, only 1 circadian neuropeptide, pigment-dispersing factor (PDF), has been identified, and most aspects of its interaction with the molecular clock remain to be elucidated. Furthermore, it is speculated that many other peptides should contribute to circadian communication. We have developed a relatively detailed model of the 2 main groups of circadian pacemaker neurons (sLNvs and LNds) to investigate these issues. We have proposed many possible mechanisms for the interaction between the synchronization factors and the molecular clock, and we have compared the outputs with the experimental results reported in the literature both for the wild-type and PDF-null mutant. We have studied how different the properties of each neuron should be to account for the observations reported for the sLNvs in the mutant. We have found that only a few mechanisms, mostly related to the slowing down of nuclear entry of a circadian protein, can synchronize neurons that present these differences. Detailed immunofluorescent recordings have suggested that, whereas in the mutant, LNd neurons are synchronized, in the wild-type, a subset of the LNds oscillate faster than the rest. With our model, we find that a more likely explanation for the same observations is that this subset is being driven outside its synchronization range and displays therefore a complex pattern of oscillation.

  20. Bidirectional interactions between circadian entrainment and cognitive performance

    PubMed Central

    Gritton, Howard J.; Kantorowski, Ana; Sarter, Martin; Lee, Theresa M.

    2012-01-01

    Circadian rhythms influence a variety of physiological and behavioral processes; however, little is known about how circadian rhythms interact with the organisms' ability to acquire and retain information about their environment. These experiments tested whether rats trained outside their endogenous active period demonstrate the same rate of acquisition, daily performance, and remote memory ability as their nocturnally trained counterparts in tasks of sustained attention and spatial memory. Furthermore, we explored how daily task training influenced circadian patterns of activity. We found that rats demonstrate better acquisition and performance on an operant task requiring attentional effort when trained during the dark-phase. Time of day did not affect acquisition or performance on the Morris water maze; however, when animals were retested 2 wk after their last day of training, they showed better remote memory if training originally occurred during the dark-phase. Finally, attentional, but not spatial, task performance during the light-phase promotes a shift toward diurnality and the synchronization of activity to the time of daily training; this shift was most robust when the demands on the cognitive control of attention were highest. Our findings support a theory of bidirectional interactions between cognitive performance and circadian processes and are consistent with the view that the circadian abnormalities associated with shift-work, aging, and neuropsychiatric illnesses may contribute to the deleterious effects on cognition often present in these populations. Furthermore, these findings suggest that time of day should be an important consideration for a variety of cognitive tasks principally used in psychological and neuroscience research. PMID:22383380

  1. Temporal dynamics of the circadian heart rate following low and high volume exercise training in sedentary male subjects.

    PubMed

    Jelinek, Herbert F; Karmakar, C; Kiviniemi, A M; Hautala, A J; Tulppo, M P; Mäkikallio, T H; Huikuri, H V; Khandoker, A H; Palaniswami, M

    2015-10-01

    Increased risk of arrhythmic events occurs at certain times during the circadian cycle with the highest risk being in the second and fourth quarter of the day. Exercise improves treatment outcome in individuals with cardiovascular disease. How different exercise protocols affect the circadian rhythm and the associated decrease in adverse cardiovascular risk over the circadian cycle has not been shown. Fifty sedentary male participants were randomized into an 8-week high volume and moderate volume training and a control group. Heart rate was recorded using Polar Electronics and investigated with Cosinor analysis and by Poincaré plot derived features of SD1, SD2 and the complex correlation measure (CCM) at 1-h intervals over the 24-h period. Moderate exercise significantly increased vagal modulation and the temporal dynamics of the heart rate in the second quarter of the circadian cycle (p = 0.004 and p = 0.007 respectively). High volume exercise had a similar effect on vagal output (p = 0.003) and temporal dynamics (p = 0.003). Cosinor analysis confirms that the circadian heart rate displays a shift in the acrophage following moderate and high volume exercise from before waking (1st quarter) to after waking (2nd quarter of day). Our results suggest that exercise shifts vagal influence and increases temporal dynamics of the heart rate to the 2nd quarter of the day and suggest that this may be the underlying physiological change leading to a decrease in adverse arrhythmic events during this otherwise high-risk period.

  2. Chaotic Motion in the Solar System and Beyond

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    The motion of planetary bodies is the archetypal clockwork system. Indeed, clocks and calendars were developed to keep track of the relative motions of the Earth, the Sun and the Moon. However, studies over the past few decades imply that this predictable regularity does not extend to small bodies, nor does it apply to the precise trajectories of the planets themselves over long timescale.s. Various examples of chaotic motion within our Solar System and, extrasolar planetary systems will be discussed.

  3. Synchrony and desynchrony in circadian clocks: impacts on learning and memory

    PubMed Central

    Krishnan, Harini C.

    2015-01-01

    Circadian clocks evolved under conditions of environmental variation, primarily alternating light dark cycles, to enable organisms to anticipate daily environmental events and coordinate metabolic, physiological, and behavioral activities. However, modern lifestyle and advances in technology have increased the percentage of individuals working in phases misaligned with natural circadian activity rhythms. Endogenous circadian oscillators modulate alertness, the acquisition of learning, memory formation, and the recall of memory with examples of circadian modulation of memory observed across phyla from invertebrates to humans. Cognitive performance and memory are significantly diminished when occurring out of phase with natural circadian rhythms. Disruptions in circadian regulation can lead to impairment in the formation of memories and manifestation of other cognitive deficits. This review explores the types of interactions through which the circadian clock modulates cognition, highlights recent progress in identifying mechanistic interactions between the circadian system and the processes involved in memory formation, and outlines methods used to remediate circadian perturbations and reinforce circadian adaptation. PMID:26286653

  4. Circadian rhythm abnormalities and autonomic dysfunction in patients with Chronic Fatigue Syndrome/Myalgic Encephalomyelitis

    PubMed Central

    Díez-Noguera, Antoni

    2018-01-01

    Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME) patients frequently show autonomic symptoms which may be associated with a hypothalamic dysfunction. This study aimed to explore circadian rhythm patterns in rest and activity and distal skin temperature (DST) and their association with self-reported outcome measures, in CFS/ME patients and healthy controls at two different times of year. Ten women who met both the 1994 CDC/Fukuda definition and 2003 Canadian criteria for CFS/ME were included in the study, along with ten healthy controls matched for age, sex and body mass index. Self-reported measures were used to assess fatigue, sleep quality, anxiety and depression, autonomic function and health-related quality of life. The ActTrust actigraph was used to record activity, DST and light intensity, with data intervals of one minute over seven consecutive days. Sleep variables were obtained through actigraphic analysis and from subjective sleep diary. The circadian variables and the spectral analysis of the rhythms were calculated. Linear regression analysis was used to evaluate the relationship between the rhythmic variables and clinical features. Recordings were taken in the same subjects in winter and summer. Results showed no differences in rhythm stability, sleep latency or number of awakenings between groups as measured with the actigraph. However, daily activity, the relative amplitude and the stability of the activity rhythm were lower in CFS/ME patients than in controls. DST was sensitive to environmental temperature and showed lower nocturnal values in CFS/ME patients than controls only in winter. A spectral analysis showed no differences in phase or amplitude of the 24h rhythm, but the power of the second harmonic (12h), revealed differences between groups (controls showed a post-lunch dip in activity and peak in DST, while CFS/ME patients did not) and correlated with clinical features. These findings suggest that circadian regulation and skin vasodilator responses may play a role in CFS/ME. PMID:29874259

  5. Transcription factors involved in retinogenesis are co-opted by the circadian clock following photoreceptor differentiation

    PubMed Central

    Laranjeiro, Ricardo; Whitmore, David

    2014-01-01

    The circadian clock is known to regulate a wide range of physiological and cellular processes, yet remarkably little is known about its role during embryo development. Zebrafish offer a unique opportunity to explore this issue, not only because a great deal is known about key developmental events in this species, but also because the clock starts on the very first day of development. In this study, we identified numerous rhythmic genes in zebrafish larvae, including the key transcriptional regulators neurod and cdx1b, which are involved in neuronal and intestinal differentiation, respectively. Rhythmic expression of neurod and several additional transcription factors was only observed in the developing retina. Surprisingly, these rhythms in expression commenced at a stage of development after these transcription factors are known to have played their essential role in photoreceptor differentiation. Furthermore, this circadian regulation was maintained in adult retina. Thus, once mature photoreceptors are formed, multiple retinal transcription factors fall under circadian clock control, at which point they appear to play a new and important role in regulating rhythmic elements in the phototransduction pathway. PMID:24924194

  6. Computational modeling of the cell-autonomous mammalian circadian oscillator.

    PubMed

    Podkolodnaya, Olga A; Tverdokhleb, Natalya N; Podkolodnyy, Nikolay L

    2017-02-24

    This review summarizes various mathematical models of cell-autonomous mammalian circadian clock. We present the basics necessary for understanding of the cell-autonomous mammalian circadian oscillator, modern experimental data essential for its reconstruction and some special problems related to the validation of mathematical circadian oscillator models. This work compares existing mathematical models of circadian oscillator and the results of the computational studies of the oscillating systems. Finally, we discuss applications of the mathematical models of mammalian circadian oscillator for solving specific problems in circadian rhythm biology.

  7. Autonomic control of ultradian and circadian rhythms of blood pressure, heart rate, and baroreflex sensitivity in spontaneously hypertensive rats.

    PubMed

    Oosting, J; Struijker-Boudier, H A; Janssen, B J

    1997-04-01

    To examine the influence of the autonomic nervous system on ultradian and circadian rhythms of blood pressure, heart rate and baroreflex sensitivity of heart rate (BRS) in spontaneously hypertensive rats (SHR). Spontaneous fluctuations in blood pressure, heart rate and BRS in SHR were recorded continuously for 24 h using a computerized system and compared with those in Wistar-Kyoto (WKY) rats. Furthermore, 24 h recordings were performed in SHR during cardiac autonomic blockade by metoprolol and methyl-atropine, vascular autonomic blockade by prazosin, ganglionic blockade by hexamethonium and vagal stimulation by a low dose of scopolamine. The magnitudes of the ultradian fluctuations in blood pressure, heart rate and BRS were assessed by wide-band spectral analysis techniques. The BRS was lower in SHR than it was in WKY rats throughout the 24 h cycle. In both strains high values were found during the light, resting period, whereas low values were found during the first hours of the dark, active period. The circadian rhythmicity of the blood pressure in SHR was abolished completely during the infusions of prazosin and hexamethonium. In contrast, the circadian rhythmicities of the blood pressure and heart rate were not altered by infusions of metoprolol, methyl-atropine and the low dose of scopolamine. Power spectra of the blood pressure and heart rate lacked predominant peaks at ultradian frequencies and showed 1/f characteristics. In the absence of autonomic tone, the ultradian fluctuations in heart rate, but not in blood pressure, were decreased. The ultradian BRS spectra had no 1/f shape, but showed a major peak at approximately equal to 20 min for 71% of the WKY rats and 42% of the SHR. The influence of the autonomic nervous system on the blood pressure and heart rats in SHR is frequency-dependent. The circadian, but not ultradian, blood pressure rhythmicity is controlled by vascular autonomic activity. Conversely, the circadian, but not ultradian, heart rate rhythmicity is independent of autonomic tone. In rats, just as in humans, the trough in baroreflex sensitivity occurred after the sleeping period, when locomotor activity is resumed.

  8. Role of cardiomyocyte circadian clock in myocardial metabolic adaptation

    USDA-ARS?s Scientific Manuscript database

    Marked circadian rhythmicities in cardiovascular physiology and pathophysiology exist. The cardiomyocyte circadian clock has recently been linked to circadian rhythms in myocardial gene expression, metabolism, and contractile function. For instance, the cardiomyocyte circadian clock is essential f...

  9. Prevalence of Circadian Misalignment and Its Association With Depressive Symptoms in Delayed Sleep Phase Disorder.

    PubMed

    Murray, Jade M; Sletten, Tracey L; Magee, Michelle; Gordon, Christopher; Lovato, Nicole; Bartlett, Delwyn J; Kennaway, David J; Lack, Leon C; Grunstein, Ronald R; Lockley, Steven W; Rajaratnam, Shantha M W

    2017-01-01

    To examine the prevalence of circadian misalignment in clinically diagnosed delayed sleep phase disorder (DSPD) and to compare mood and daytime functioning in those with and without a circadian basis for the disorder. One hundred and eighty-two DSPD patients aged 16-64 years, engaged in regular employment or school, underwent sleep-wake monitoring in the home, followed by a sleep laboratory visit for assessment of salivary dim light melatonin onset (DLMO). Based on the DLMO assessments, patients were classified into two groups: circadian DSPD, defined as DLMO occurring at or after desired bedtime (DBT), or non-circadian DSPD, defined as DLMO occurring before DBT. One hundred and three patients (57%) were classified as circadian DSPD and 79 (43%) as non-circadian DSPD. DLMO occurred 1.66 hours later in circadian DSPD compared to non-circadian DSPD (p < .001). Moderate-severe depressive symptoms (Beck Depression Inventory-II) were more prevalent in circadian DSPD (14.0%) than in non-circadian DSPD (3.8%; p < .05). Relative to non-circadian DSPD patients, circadian DSPD patients had 4.31 times increased odds of at least mild depressive symptoms (95% CI 1.75 to 10.64; p < .01). No group differences were found for daytime sleepiness or function, but DSPD symptoms were rated by clinicians to be more severe in those with circadian DSPD. Almost half of patients clinically diagnosed with DSPD did not show misalignment between the circadian pacemaker and the DBT, suggesting that the reported difficulties initiating sleep at the DBT are unlikely to be explained by the (mis)timing of the circadian rhythm of sleep propensity. Circadian misalignment in DSPD is associated with increased depressive symptoms and DSPD symptom severity. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  10. Agomelatine, an innovative pharmacological response to unmet needs.

    PubMed

    Le Strat, Y; Gorwood, P

    2008-09-01

    Most of the available antidepressants, with different pharmacological profiles, such as inhibitors of serotonin reuptake (SSRIs) or norepinephrine reuptake (NRIs) or both (SNRIs), have limitations leading some patients to drop out of treatment. Another direction of research has therefore been undertaken, based initially on the fact that affective disorders are most often characterized by abnormal patterns of circadian rhythms. This consideration has led to the synthesis of agomelatine, a novel antidepressant combining melatonergic MT(1) and MT(2) agonism and serotonergic 5-HT(2C) antagonism. The antidepressant effects of agomelatine have been investigated in different animal models, including chronic mild stress, forced swimming, learned helplessness and psychosocial stress. All studies reported an antidepressant-like effect of agomelatine. A resynchronizing activity of agomelatine was seen in animal models for delayed sleep phase syndrome and in several original models of circadian disturbance, such as rodents infected by trypanosome or old hamsters. This activity of agomelatine on circadian rhythms was further confirmed in humans. Furthermore, several randomized, double-blind, placebo-controlled and comparator-controlled studies of agomelatine in the treatment of major depressive disorder indicate that agomelatine is effective and well tolerated.

  11. Circadian Modulation of 8-Oxoguanine DNA Damage Repair

    PubMed Central

    Manzella, Nicola; Bracci, Massimo; Strafella, Elisabetta; Staffolani, Sara; Ciarapica, Veronica; Copertaro, Alfredo; Rapisarda, Venerando; Ledda, Caterina; Amati, Monica; Valentino, Matteo; Tomasetti, Marco; Stevens, Richard G.; Santarelli, Lory

    2015-01-01

    The DNA base excision repair pathway is the main system involved in the removal of oxidative damage to DNA such as 8-Oxoguanine (8-oxoG) primarily via the 8-Oxoguanine DNA glycosylase (OGG1). Our goal was to investigate whether the repair of 8-oxoG DNA damage follow a circadian rhythm. In a group of 15 healthy volunteers, we found a daily variation of Ogg1 expression and activity with higher levels in the morning compared to the evening hours. Consistent with this, we also found lower levels of 8-oxoG in morning hours compared to those in the evening hours. Lymphocytes exposed to oxidative damage to DNA at 8:00 AM display lower accumulation of 8-oxoG than lymphocytes exposed at 8:00 PM. Furthermore, altered levels of Ogg1 expression were also observed in a group of shift workers experiencing a deregulation of circadian clock genes compared to a control group. Moreover, BMAL1 knockdown fibroblasts with a deregulated molecular clock showed an abolishment of circadian variation of Ogg1 expression and an increase of OGG1 activity. Our results suggest that the circadian modulation of 8-oxoG DNA damage repair, according to a variation of Ogg1 expression, could render humans less susceptible to accumulate 8-oxoG DNA damage in the morning hours. PMID:26337123

  12. Chronic Ethanol Intake Alters Circadian Phase Shifting and Free-Running Period in Mice

    PubMed Central

    Seggio, Joseph A.; Fixaris, Michael C.; Reed, Jeffrey D.; Logan, Ryan W.; Rosenwasser, Alan M.

    2011-01-01

    Chronic alcohol intake is associated with widespread disruptions in sleep and circadian rhythms in both human alcoholics and in experimental animals. Recent studies have demonstrated that chronic and acute ethanol treatments alter fundamental properties of the circadian pacemaker—including free-running period and responsiveness to photic and nonphotic phase-shifting stimuli—in rats and hamsters. In the present work, the authors extend these observations to the C57BL/6J mouse, an inbred strain characterized by very high levels of voluntary ethanol intake and by reliable and stable free-running circadian activity rhythms. Mice were housed individually in running-wheel cages under conditions of either voluntary or forced ethanol intake, whereas controls were maintained on plain water. Forced ethanol intake significantly attenuated photic phase delays (but not phase advances) and shortened free-running period in constant darkness, but voluntary ethanol intake failed to affect either of these parameters. Thus, high levels of chronic ethanol intake, beyond those normally achieved under voluntary drinking conditions, are required to alter fundamental circadian pacemaker properties in C57BL/6J mice. These observations may be related to the relative ethanol insensitivity displayed by this strain in several other phenotypic domains, including ethanol-induced sedation, ataxia, and withdrawal. Additional experiments will investigate chronobiological sensitivity to ethanol in a range of inbred strains showing diverse ethanol-related phenotypes. PMID:19625732

  13. Circadian clocks in symbiotic corals: the duet between Symbiodinium algae and their coral host.

    PubMed

    Sorek, Michal; Díaz-Almeyda, Erika M; Medina, Mónica; Levy, Oren

    2014-04-01

    To date, the association and synchronization between two organismal circadian clocks ticking in parallel as part of a meta-organism (termed a symbiotic association), have rarely been investigated. Reef-building corals exhibit complex rhythmic responses to diurnal, lunar, and annual changes. Understanding circadian, circatidal, and annual regulation in reef-building corals is complicated by the presence of photosynthetic endosymbionts, which have a profound physiochemical influence on the intracellular environment. How corals tune their animal-based clock machinery to respond to external cues while simultaneously responding to internal physiological changes imposed by the symbiont, is not clear. There is insufficient molecular or physiological evidence of the existence of a circadian pacemaker that controls the metabolism, photosynthesis, synchronized mass spawning, and calcification processes in symbiotic corals. In this review, we present current knowledge regarding the animal pacemaker and the symbiotic-algal pacemaker. We examine the evidence from behavioral, physiological, molecular, and evolutionary perspectives. We explain why symbiotic corals are an interesting model with which to study the complexities and evolution of the metazoan circadian clock. We also provide evidence of why the chronobiology of corals is fundamental and extremely important for explaining the biology, physiology, and metabolism of coral reefs. A deeper understanding of these complex issues can help explain coral mass spawning, one of the earth's greatest and most mysterious behavioral phenomena. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. The Histone H3 Lysine 9 Methyltransferase DIM-5 Modifies Chromatin at frequency and Represses Light-Activated Gene Expression

    PubMed Central

    Ruesch, Catherine E.; Ramakrishnan, Mukund; Park, Jinhee; Li, Na; Chong, Hin S.; Zaman, Riasat; Joska, Tammy M.; Belden, William J.

    2014-01-01

    The transcriptional program controlling the circadian rhythm requires coordinated regulation of chromatin. Characterization of the chromodomain helicase DNA-binding enzyme CHD1 revealed DNA methylation in the promoter of the central clock gene frequency (frq) in Neurospora crassa. In this report, we show that the DNA methylation at frq is not only dependent on the DNA methyltransferase DIM-2 but also on the H3K9 methyltransferase DIM-5 and HP1. Histone H3 lysine 9 trimethylation (H3K9me3) occurs at frq and is most prominent 30 min after light-activated expression. Strains lacking dim-5 have an increase in light-induced transcription, and more White Collar-2 is found associated with the frq promoter. Consistent with the notion that DNA methylation assists in establishing the proper circadian phase, loss of H3K9 methylation results in a phase advance suggesting it delays the onset of frq expression. The dim-5 deletion strain displays an increase in circadian-regulated conidia formation on race tubes and there is a synthetic genetic interaction between dim-5 and ras-1bd. These results indicate DIM-5 has a regulatory role in muting circadian output. Overall, the data support a model where facultative heterochromatic at frq serves to establish the appropriate phase, mute the light response, and repress circadian output. PMID:25429045

  15. Chronic ethanol intake alters circadian phase shifting and free-running period in mice.

    PubMed

    Seggio, Joseph A; Fixaris, Michael C; Reed, Jeffrey D; Logan, Ryan W; Rosenwasser, Alan M

    2009-08-01

    Chronic alcohol intake is associated with widespread disruptions in sleep and circadian rhythms in both human alcoholics and in experimental animals. Recent studies have demonstrated that chronic and acute ethanol treatments alter fundamental properties of the circadian pacemaker--including free-running period and responsiveness to photic and nonphotic phase-shifting stimuli--in rats and hamsters. In the present work, the authors extend these observations to the C57BL/6J mouse, an inbred strain characterized by very high levels of voluntary ethanol intake and by reliable and stable free-running circadian activity rhythms. Mice were housed individually in running-wheel cages under conditions of either voluntary or forced ethanol intake, whereas controls were maintained on plain water. Forced ethanol intake significantly attenuated photic phase delays (but not phase advances) and shortened free-running period in constant darkness, but voluntary ethanol intake failed to affect either of these parameters. Thus, high levels of chronic ethanol intake, beyond those normally achieved under voluntary drinking conditions, are required to alter fundamental circadian pacemaker properties in C57BL/6J mice. These observations may be related to the relative ethanol insensitivity displayed by this strain in several other phenotypic domains, including ethanol-induced sedation, ataxia, and withdrawal. Additional experiments will investigate chronobiological sensitivity to ethanol in a range of inbred strains showing diverse ethanol-related phenotypes.

  16. Involvement of circadian clock in crowing of red jungle fowls (Gallus gallus).

    PubMed

    Ito, Shuichi; Hori, Shuho; Hirose, Makiko; Iwahara, Mari; Yatsushiro, Azusa; Matsumoto, Atsushi; Tanaka, Masayuki; Okamoto, Chinobu; Yayou, Ken-Ichi; Shimmura, Tsuyoshi

    2017-04-01

    The rhythmic locomotor behavior of flies and mice provides a phenotype for the identification of clock genes, and the underlying molecular mechanism is well studied. However, interestingly, when examining locomotor rhythm in the wild, several key laboratory-based assumptions on circadian behavior are not supported in natural conditions. The rooster crowing 'cock-a-doodle-doo' is a symbol of the break of dawn in many countries. Previously, we used domestic inbred roosters and showed that the timing of roosters' crowing is regulated by the circadian clock under laboratory conditions. However, it is still unknown whether the regulation of crowing by circadian clock is observed under natural conditions. Therefore, here we used red jungle fowls and first confirmed that similar crowing rhythms with domesticated chickens are observed in red jungle fowls under the laboratory conditions. Red jungle fowls show predawn crowing before light onset under 12:12 light : dim light conditions and the free-running rhythm of crowing under total dim light conditions. We next examined the crowing rhythms under semi-wild conditions. Although the crowing of red jungle fowls changed seasonally under semi-wild conditions, predawn crowing was observed before sunrise in all seasons. This evidence suggests that seasonally changed crowing of red jungle fowls is under the control of a circadian clock. © 2016 Japanese Society of Animal Science.

  17. The chondrocyte clock gene Bmal1 controls cartilage homeostasis and integrity.

    PubMed

    Dudek, Michal; Gossan, Nicole; Yang, Nan; Im, Hee-Jeong; Ruckshanthi, Jayalath P D; Yoshitane, Hikari; Li, Xin; Jin, Ding; Wang, Ping; Boudiffa, Maya; Bellantuono, Ilaria; Fukada, Yoshitaka; Boot-Handford, Ray P; Meng, Qing-Jun

    2016-01-01

    Osteoarthritis (OA) is the most prevalent and debilitating joint disease, and there are currently no effective disease-modifying treatments available. Multiple risk factors for OA, such as aging, result in progressive damage and loss of articular cartilage. Autonomous circadian clocks have been identified in mouse cartilage, and environmental disruption of circadian rhythms in mice predisposes animals to OA-like damage. However, the contribution of the cartilage clock mechanisms to the maintenance of tissue homeostasis is still unclear. Here, we have shown that expression of the core clock transcription factor BMAL1 is disrupted in human OA cartilage and in aged mouse cartilage. Furthermore, targeted Bmal1 ablation in mouse chondrocytes abolished their circadian rhythm and caused progressive degeneration of articular cartilage. We determined that BMAL1 directs the circadian expression of many genes implicated in cartilage homeostasis, including those involved in catabolic, anabolic, and apoptotic pathways. Loss of BMAL1 reduced the levels of phosphorylated SMAD2/3 (p-SMAD2/3) and NFATC2 and decreased expression of the major matrix-related genes Sox9, Acan, and Col2a1, but increased p-SMAD1/5 levels. Together, these results define a regulatory mechanism that links chondrocyte BMAL1 to the maintenance and repair of cartilage and suggest that circadian rhythm disruption is a risk factor for joint diseases such as OA.

  18. The chondrocyte clock gene Bmal1 controls cartilage homeostasis and integrity

    PubMed Central

    Dudek, Michal; Gossan, Nicole; Yang, Nan; Im, Hee-Jeong; Ruckshanthi, Jayalath P.D.; Yoshitane, Hikari; Li, Xin; Jin, Ding; Wang, Ping; Boudiffa, Maya; Bellantuono, Ilaria; Fukada, Yoshitaka; Boot-Handford, Ray P.; Meng, Qing-Jun

    2015-01-01

    Osteoarthritis (OA) is the most prevalent and debilitating joint disease, and there are currently no effective disease-modifying treatments available. Multiple risk factors for OA, such as aging, result in progressive damage and loss of articular cartilage. Autonomous circadian clocks have been identified in mouse cartilage, and environmental disruption of circadian rhythms in mice predisposes animals to OA-like damage. However, the contribution of the cartilage clock mechanisms to the maintenance of tissue homeostasis is still unclear. Here, we have shown that expression of the core clock transcription factor BMAL1 is disrupted in human OA cartilage and in aged mouse cartilage. Furthermore, targeted Bmal1 ablation in mouse chondrocytes abolished their circadian rhythm and caused progressive degeneration of articular cartilage. We determined that BMAL1 directs the circadian expression of many genes implicated in cartilage homeostasis, including those involved in catabolic, anabolic, and apoptotic pathways. Loss of BMAL1 reduced the levels of phosphorylated SMAD2/3 (p-SMAD2/3) and NFATC2 and decreased expression of the major matrix-related genes Sox9, Acan, and Col2a1, but increased p-SMAD1/5 levels. Together, these results define a regulatory mechanism that links chondrocyte BMAL1 to the maintenance and repair of cartilage and suggest that circadian rhythm disruption is a risk factor for joint diseases such as OA. PMID:26657859

  19. Light-Induced Changes of the Circadian Clock of Humans: Increasing Duration is More Effective than Increasing Light Intensity

    PubMed Central

    Dewan, Karuna; Benloucif, Susan; Reid, Kathryn; Wolfe, Lisa F.; Zee, Phyllis C.

    2011-01-01

    Study Objectives: To evaluate the effect of increasing the intensity and/or duration of exposure on light-induced changes in the timing of the circadian clock of humans. Design: Multifactorial randomized controlled trial, between and within subject design Setting: General Clinical Research Center (GCRC) of an academic medical center Participants: 56 healthy young subjects (20-40 years of age) Interventions: Research subjects were admitted for 2 independent stays of 4 nights/3 days for treatment with bright or dim-light (randomized order) at a time known to induce phase delays in circadian timing. The intensity and duration of the bright light were determined by random assignment to one of 9 treatment conditions (duration of 1, 2, or 3 hours at 2000, 4000, or 8000 lux). Measurements and Results: Treatment-induced changes in the dim light melatonin onset (DLMO) and dim light melatonin offset (DLMOff) were measured from blood samples collected every 20-30 min throughout baseline and post-treatment nights. Comparison by multi-factor analysis of variance (ANOVA) of light-induced changes in the time of the circadian melatonin rhythm for the 9 conditions revealed that changing the duration of the light exposure from 1 to 3 h increased the magnitude of light-induced delays. In contrast, increasing from moderate (2,000 lux) to high (8,000 lux) intensity light did not alter the magnitude of phase delays of the circadian melatonin rhythm. Conclusions: Results from the present study suggest that for phototherapy of circadian rhythm sleep disorders in humans, a longer period of moderate intensity light may be more effective than a shorter exposure period of high intensity light. Citation: Dewan K; Benloucif S; Reid K; Wolfe LF; Zee PC. Light-induced changes of the circadian clock of humans: increasing duration is more effective than increasing light intensity. SLEEP 2011;34(5):593-599. PMID:21532952

  20. Inherited variation in circadian rhythm genes and risks of prostate cancer and three other cancer sites in combined cancer consortia.

    PubMed

    Gu, Fangyi; Zhang, Han; Hyland, Paula L; Berndt, Sonja; Gapstur, Susan M; Wheeler, William; Ellipse Consortium, The; Amos, Christopher I; Bezieau, Stephane; Bickeböller, Heike; Brenner, Hermann; Brennan, Paul; Chang-Claude, Jenny; Conti, David V; Doherty, Jennifer Anne; Gruber, Stephen B; Harrison, Tabitha A; Hayes, Richard B; Hoffmeister, Michael; Houlston, Richard S; Hung, Rayjean J; Jenkins, Mark A; Kraft, Peter; Lawrenson, Kate; McKay, James; Markt, Sarah; Mucci, Lorelei; Phelan, Catherine M; Qu, Conghui; Risch, Angela; Rossing, Mary Anne; Wichmann, H-Erich; Shi, Jianxin; Schernhammer, Eva; Yu, Kai; Landi, Maria Teresa; Caporaso, Neil E

    2017-11-01

    Circadian disruption has been linked to carcinogenesis in animal models, but the evidence in humans is inconclusive. Genetic variation in circadian rhythm genes provides a tool to investigate such associations. We examined associations of genetic variation in nine core circadian rhythm genes and six melatonin pathway genes with risk of colorectal, lung, ovarian and prostate cancers using data from the Genetic Associations and Mechanisms in Oncology (GAME-ON) network. The major results for prostate cancer were replicated in the Prostate, Lung, Colorectal and Ovarian (PLCO) cancer screening trial, and for colorectal cancer in the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO). The total number of cancer cases and controls was 15,838/18,159 for colorectal, 14,818/14,227 for prostate, 12,537/17,285 for lung and 4,369/9,123 for ovary. For each cancer site, we conducted gene-based and pathway-based analyses by applying the summary-based Adaptive Rank Truncated Product method (sARTP) on the summary association statistics for each SNP within the candidate gene regions. Aggregate genetic variation in circadian rhythm and melatonin pathways were significantly associated with the risk of prostate cancer in data combining GAME-ON and PLCO, after Bonferroni correction (p pathway  < 0.00625). The two most significant genes were NPAS2 (p gene  = 0.0062) and AANAT (p gene  = 0.00078); the latter being significant after Bonferroni correction. For colorectal cancer, we observed a suggestive association with the circadian rhythm pathway in GAME-ON (p pathway  = 0.021); this association was not confirmed in GECCO (p pathway  = 0.76) or the combined data (p pathway  = 0.17). No significant association was observed for ovarian and lung cancer. These findings support a potential role for circadian rhythm and melatonin pathways in prostate carcinogenesis. Further functional studies are needed to better understand the underlying biologic mechanisms. © 2017 UICC.

Top