Sample records for controls visual coding

  1. Color coding of control room displays: the psychocartography of visual layering effects.

    PubMed

    Van Laar, Darren; Deshe, Ofer

    2007-06-01

    To evaluate which of three color coding methods (monochrome, maximally discriminable, and visual layering) used to code four types of control room display format (bars, tables, trend, mimic) was superior in two classes of task (search, compare). It has recently been shown that color coding of visual layers, as used in cartography, may be used to color code any type of information display, but this has yet to be fully evaluated. Twenty-four people took part in a 2 (task) x 3 (coding method) x 4 (format) wholly repeated measures design. The dependent variables assessed were target location reaction time, error rates, workload, and subjective feedback. Overall, the visual layers coding method produced significantly faster reaction times than did the maximally discriminable and the monochrome methods for both the search and compare tasks. No significant difference in errors was observed between conditions for either task type. Significantly less perceived workload was experienced with the visual layers coding method, which was also rated more highly than the other coding methods on a 14-item visual display quality questionnaire. The visual layers coding method is superior to other color coding methods for control room displays when the method supports the user's task. The visual layers color coding method has wide applicability to the design of all complex information displays utilizing color coding, from the most maplike (e.g., air traffic control) to the most abstract (e.g., abstracted ecological display).

  2. Evaluation of a visual layering methodology for colour coding control room displays.

    PubMed

    Van Laar, Darren; Deshe, Ofer

    2002-07-01

    Eighteen people participated in an experiment in which they were asked to search for targets on control room like displays which had been produced using three different coding methods. The monochrome coding method displayed the information in black and white only, the maximally discriminable method contained colours chosen for their high perceptual discriminability, the visual layers method contained colours developed from psychological and cartographic principles which grouped information into a perceptual hierarchy. The visual layers method produced significantly faster search times than the other two coding methods which did not differ significantly from each other. Search time also differed significantly for presentation order and for the method x order interaction. There was no significant difference between the methods in the number of errors made. Participants clearly preferred the visual layers coding method. Proposals are made for the design of experiments to further test and develop the visual layers colour coding methodology.

  3. An electrocorticographic BCI using code-based VEP for control in video applications: a single-subject study

    PubMed Central

    Kapeller, Christoph; Kamada, Kyousuke; Ogawa, Hiroshi; Prueckl, Robert; Scharinger, Josef; Guger, Christoph

    2014-01-01

    A brain-computer-interface (BCI) allows the user to control a device or software with brain activity. Many BCIs rely on visual stimuli with constant stimulation cycles that elicit steady-state visual evoked potentials (SSVEP) in the electroencephalogram (EEG). This EEG response can be generated with a LED or a computer screen flashing at a constant frequency, and similar EEG activity can be elicited with pseudo-random stimulation sequences on a screen (code-based BCI). Using electrocorticography (ECoG) instead of EEG promises higher spatial and temporal resolution and leads to more dominant evoked potentials due to visual stimulation. This work is focused on BCIs based on visual evoked potentials (VEP) and its capability as a continuous control interface for augmentation of video applications. One 35 year old female subject with implanted subdural grids participated in the study. The task was to select one out of four visual targets, while each was flickering with a code sequence. After a calibration run including 200 code sequences, a linear classifier was used during an evaluation run to identify the selected visual target based on the generated code-based VEPs over 20 trials. Multiple ECoG buffer lengths were tested and the subject reached a mean online classification accuracy of 99.21% for a window length of 3.15 s. Finally, the subject performed an unsupervised free run in combination with visual feedback of the current selection. Additionally, an algorithm was implemented that allowed to suppress false positive selections and this allowed the subject to start and stop the BCI at any time. The code-based BCI system attained very high online accuracy, which makes this approach very promising for control applications where a continuous control signal is needed. PMID:25147509

  4. Coding visual features extracted from video sequences.

    PubMed

    Baroffio, Luca; Cesana, Matteo; Redondi, Alessandro; Tagliasacchi, Marco; Tubaro, Stefano

    2014-05-01

    Visual features are successfully exploited in several applications (e.g., visual search, object recognition and tracking, etc.) due to their ability to efficiently represent image content. Several visual analysis tasks require features to be transmitted over a bandwidth-limited network, thus calling for coding techniques to reduce the required bit budget, while attaining a target level of efficiency. In this paper, we propose, for the first time, a coding architecture designed for local features (e.g., SIFT, SURF) extracted from video sequences. To achieve high coding efficiency, we exploit both spatial and temporal redundancy by means of intraframe and interframe coding modes. In addition, we propose a coding mode decision based on rate-distortion optimization. The proposed coding scheme can be conveniently adopted to implement the analyze-then-compress (ATC) paradigm in the context of visual sensor networks. That is, sets of visual features are extracted from video frames, encoded at remote nodes, and finally transmitted to a central controller that performs visual analysis. This is in contrast to the traditional compress-then-analyze (CTA) paradigm, in which video sequences acquired at a node are compressed and then sent to a central unit for further processing. In this paper, we compare these coding paradigms using metrics that are routinely adopted to evaluate the suitability of visual features in the context of content-based retrieval, object recognition, and tracking. Experimental results demonstrate that, thanks to the significant coding gains achieved by the proposed coding scheme, ATC outperforms CTA with respect to all evaluation metrics.

  5. Reduced adaptability, but no fundamental disruption, of norm-based face coding following early visual deprivation from congenital cataracts.

    PubMed

    Rhodes, Gillian; Nishimura, Mayu; de Heering, Adelaide; Jeffery, Linda; Maurer, Daphne

    2017-05-01

    Faces are adaptively coded relative to visual norms that are updated by experience, and this adaptive coding is linked to face recognition ability. Here we investigated whether adaptive coding of faces is disrupted in individuals (adolescents and adults) who experience face recognition difficulties following visual deprivation from congenital cataracts in infancy. We measured adaptive coding using face identity aftereffects, where smaller aftereffects indicate less adaptive updating of face-coding mechanisms by experience. We also examined whether the aftereffects increase with adaptor identity strength, consistent with norm-based coding of identity, as in typical populations, or whether they show a different pattern indicating some more fundamental disruption of face-coding mechanisms. Cataract-reversal patients showed significantly smaller face identity aftereffects than did controls (Experiments 1 and 2). However, their aftereffects increased significantly with adaptor strength, consistent with norm-based coding (Experiment 2). Thus we found reduced adaptability but no fundamental disruption of norm-based face-coding mechanisms in cataract-reversal patients. Our results suggest that early visual experience is important for the normal development of adaptive face-coding mechanisms. © 2016 John Wiley & Sons Ltd.

  6. Air Traffic Controller Working Memory: Considerations in Air Traffic Control Tactical Operations

    DTIC Science & Technology

    1993-09-01

    INFORMATION PROCESSING SYSTEM 3 2. AIR TRAFFIC CONTROLLER MEMORY 5 2.1 MEMORY CODES 6 21.1 Visual Codes 7 2.1.2 Phonetic Codes 7 2.1.3 Semantic Codes 8...raise an awareness of the memory re- quirements of ATC tactical operations by presenting information on working memory processes that are relevant to...working v memory permeates every aspect of the controller’s ability to process air traffic information and control live traffic. The

  7. Coding the presence of visual objects in a recurrent neural network of visual cortex.

    PubMed

    Zwickel, Timm; Wachtler, Thomas; Eckhorn, Reinhard

    2007-01-01

    Before we can recognize a visual object, our visual system has to segregate it from its background. This requires a fast mechanism for establishing the presence and location of objects independently of their identity. Recently, border-ownership neurons were recorded in monkey visual cortex which might be involved in this task [Zhou, H., Friedmann, H., von der Heydt, R., 2000. Coding of border ownership in monkey visual cortex. J. Neurosci. 20 (17), 6594-6611]. In order to explain the basic mechanisms required for fast coding of object presence, we have developed a neural network model of visual cortex consisting of three stages. Feed-forward and lateral connections support coding of Gestalt properties, including similarity, good continuation, and convexity. Neurons of the highest area respond to the presence of an object and encode its position, invariant of its form. Feedback connections to the lowest area facilitate orientation detectors activated by contours belonging to potential objects, and thus generate the experimentally observed border-ownership property. This feedback control acts fast and significantly improves the figure-ground segregation required for the consecutive task of object recognition.

  8. Visual-Motor Transformations Within Frontal Eye Fields During Head-Unrestrained Gaze Shifts in the Monkey.

    PubMed

    Sajad, Amirsaman; Sadeh, Morteza; Keith, Gerald P; Yan, Xiaogang; Wang, Hongying; Crawford, John Douglas

    2015-10-01

    A fundamental question in sensorimotor control concerns the transformation of spatial signals from the retina into eye and head motor commands required for accurate gaze shifts. Here, we investigated these transformations by identifying the spatial codes embedded in visually evoked and movement-related responses in the frontal eye fields (FEFs) during head-unrestrained gaze shifts. Monkeys made delayed gaze shifts to the remembered location of briefly presented visual stimuli, with delay serving to dissociate visual and movement responses. A statistical analysis of nonparametric model fits to response field data from 57 neurons (38 with visual and 49 with movement activities) eliminated most effector-specific, head-fixed, and space-fixed models, but confirmed the dominance of eye-centered codes observed in head-restrained studies. More importantly, the visual response encoded target location, whereas the movement response mainly encoded the final position of the imminent gaze shift (including gaze errors). This spatiotemporal distinction between target and gaze coding was present not only at the population level, but even at the single-cell level. We propose that an imperfect visual-motor transformation occurs during the brief memory interval between perception and action, and further transformations from the FEF's eye-centered gaze motor code to effector-specific codes in motor frames occur downstream in the subcortical areas. © The Author 2014. Published by Oxford University Press.

  9. Coding Local and Global Binary Visual Features Extracted From Video Sequences.

    PubMed

    Baroffio, Luca; Canclini, Antonio; Cesana, Matteo; Redondi, Alessandro; Tagliasacchi, Marco; Tubaro, Stefano

    2015-11-01

    Binary local features represent an effective alternative to real-valued descriptors, leading to comparable results for many visual analysis tasks while being characterized by significantly lower computational complexity and memory requirements. When dealing with large collections, a more compact representation based on global features is often preferred, which can be obtained from local features by means of, e.g., the bag-of-visual word model. Several applications, including, for example, visual sensor networks and mobile augmented reality, require visual features to be transmitted over a bandwidth-limited network, thus calling for coding techniques that aim at reducing the required bit budget while attaining a target level of efficiency. In this paper, we investigate a coding scheme tailored to both local and global binary features, which aims at exploiting both spatial and temporal redundancy by means of intra- and inter-frame coding. In this respect, the proposed coding scheme can conveniently be adopted to support the analyze-then-compress (ATC) paradigm. That is, visual features are extracted from the acquired content, encoded at remote nodes, and finally transmitted to a central controller that performs the visual analysis. This is in contrast with the traditional approach, in which visual content is acquired at a node, compressed and then sent to a central unit for further processing, according to the compress-then-analyze (CTA) paradigm. In this paper, we experimentally compare the ATC and the CTA by means of rate-efficiency curves in the context of two different visual analysis tasks: 1) homography estimation and 2) content-based retrieval. Our results show that the novel ATC paradigm based on the proposed coding primitives can be competitive with the CTA, especially in bandwidth limited scenarios.

  10. Coding Local and Global Binary Visual Features Extracted From Video Sequences

    NASA Astrophysics Data System (ADS)

    Baroffio, Luca; Canclini, Antonio; Cesana, Matteo; Redondi, Alessandro; Tagliasacchi, Marco; Tubaro, Stefano

    2015-11-01

    Binary local features represent an effective alternative to real-valued descriptors, leading to comparable results for many visual analysis tasks, while being characterized by significantly lower computational complexity and memory requirements. When dealing with large collections, a more compact representation based on global features is often preferred, which can be obtained from local features by means of, e.g., the Bag-of-Visual-Word (BoVW) model. Several applications, including for example visual sensor networks and mobile augmented reality, require visual features to be transmitted over a bandwidth-limited network, thus calling for coding techniques that aim at reducing the required bit budget, while attaining a target level of efficiency. In this paper we investigate a coding scheme tailored to both local and global binary features, which aims at exploiting both spatial and temporal redundancy by means of intra- and inter-frame coding. In this respect, the proposed coding scheme can be conveniently adopted to support the Analyze-Then-Compress (ATC) paradigm. That is, visual features are extracted from the acquired content, encoded at remote nodes, and finally transmitted to a central controller that performs visual analysis. This is in contrast with the traditional approach, in which visual content is acquired at a node, compressed and then sent to a central unit for further processing, according to the Compress-Then-Analyze (CTA) paradigm. In this paper we experimentally compare ATC and CTA by means of rate-efficiency curves in the context of two different visual analysis tasks: homography estimation and content-based retrieval. Our results show that the novel ATC paradigm based on the proposed coding primitives can be competitive with CTA, especially in bandwidth limited scenarios.

  11. Neural Substrates of Visual Spatial Coding and Visual Feedback Control for Hand Movements in Allocentric and Target-Directed Tasks

    PubMed Central

    Thaler, Lore; Goodale, Melvyn A.

    2011-01-01

    Neuropsychological evidence suggests that different brain areas may be involved in movements that are directed at visual targets (e.g., pointing or reaching), and movements that are based on allocentric visual information (e.g., drawing or copying). Here we used fMRI to investigate the neural correlates of these two types of movements in healthy volunteers. Subjects (n = 14) performed right hand movements in either a target-directed task (moving a cursor to a target dot) or an allocentric task (moving a cursor to reproduce the distance and direction between two distal target dots) with or without visual feedback about their hand movement. Movements were monitored with an MR compatible touch panel. A whole brain analysis revealed that movements in allocentric conditions led to an increase in activity in the fundus of the left intra-parietal sulcus (IPS), in posterior IPS, in bilateral dorsal premotor cortex (PMd), and in the lateral occipital complex (LOC). Visual feedback in both target-directed and allocentric conditions led to an increase in activity in area MT+, superior parietal–occipital cortex (SPOC), and posterior IPS (all bilateral). In addition, we found that visual feedback affected brain activity differently in target-directed as compared to allocentric conditions, particularly in the pre-supplementary motor area, PMd, IPS, and parieto-occipital cortex. Our results, in combination with previous findings, suggest that the LOC is essential for allocentric visual coding and that SPOC is involved in visual feedback control. The differences in brain activity between target-directed and allocentric visual feedback conditions may be related to behavioral differences in visual feedback control. Our results advance the understanding of the visual coordinate frame used by the LOC. In addition, because of the nature of the allocentric task, our results have relevance for the understanding of neural substrates of magnitude estimation and vector coding of movements. PMID:21941474

  12. Visual Computing Environment

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles; Putt, Charles W.

    1997-01-01

    The Visual Computing Environment (VCE) is a NASA Lewis Research Center project to develop a framework for intercomponent and multidisciplinary computational simulations. Many current engineering analysis codes simulate various aspects of aircraft engine operation. For example, existing computational fluid dynamics (CFD) codes can model the airflow through individual engine components such as the inlet, compressor, combustor, turbine, or nozzle. Currently, these codes are run in isolation, making intercomponent and complete system simulations very difficult to perform. In addition, management and utilization of these engineering codes for coupled component simulations is a complex, laborious task, requiring substantial experience and effort. To facilitate multicomponent aircraft engine analysis, the CFD Research Corporation (CFDRC) is developing the VCE system. This system, which is part of NASA's Numerical Propulsion Simulation System (NPSS) program, can couple various engineering disciplines, such as CFD, structural analysis, and thermal analysis. The objectives of VCE are to (1) develop a visual computing environment for controlling the execution of individual simulation codes that are running in parallel and are distributed on heterogeneous host machines in a networked environment, (2) develop numerical coupling algorithms for interchanging boundary conditions between codes with arbitrary grid matching and different levels of dimensionality, (3) provide a graphical interface for simulation setup and control, and (4) provide tools for online visualization and plotting. VCE was designed to provide a distributed, object-oriented environment. Mechanisms are provided for creating and manipulating objects, such as grids, boundary conditions, and solution data. This environment includes parallel virtual machine (PVM) for distributed processing. Users can interactively select and couple any set of codes that have been modified to run in a parallel distributed fashion on a cluster of heterogeneous workstations. A scripting facility allows users to dictate the sequence of events that make up the particular simulation.

  13. Visual Neuroscience: Unique Neural System for Flight Stabilization in Hummingbirds.

    PubMed

    Ibbotson, M R

    2017-01-23

    The pretectal visual motion processing area in the hummingbird brain is unlike that in other birds: instead of emphasizing detection of horizontal movements, it codes for motion in all directions through 360°, possibly offering precise visual stability control during hovering. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Visual–Motor Transformations Within Frontal Eye Fields During Head-Unrestrained Gaze Shifts in the Monkey

    PubMed Central

    Sajad, Amirsaman; Sadeh, Morteza; Keith, Gerald P.; Yan, Xiaogang; Wang, Hongying; Crawford, John Douglas

    2015-01-01

    A fundamental question in sensorimotor control concerns the transformation of spatial signals from the retina into eye and head motor commands required for accurate gaze shifts. Here, we investigated these transformations by identifying the spatial codes embedded in visually evoked and movement-related responses in the frontal eye fields (FEFs) during head-unrestrained gaze shifts. Monkeys made delayed gaze shifts to the remembered location of briefly presented visual stimuli, with delay serving to dissociate visual and movement responses. A statistical analysis of nonparametric model fits to response field data from 57 neurons (38 with visual and 49 with movement activities) eliminated most effector-specific, head-fixed, and space-fixed models, but confirmed the dominance of eye-centered codes observed in head-restrained studies. More importantly, the visual response encoded target location, whereas the movement response mainly encoded the final position of the imminent gaze shift (including gaze errors). This spatiotemporal distinction between target and gaze coding was present not only at the population level, but even at the single-cell level. We propose that an imperfect visual–motor transformation occurs during the brief memory interval between perception and action, and further transformations from the FEF's eye-centered gaze motor code to effector-specific codes in motor frames occur downstream in the subcortical areas. PMID:25491118

  15. LSSGalPy: Interactive Visualization of the Large-scale Environment Around Galaxies

    NASA Astrophysics Data System (ADS)

    Argudo-Fernández, M.; Duarte Puertas, S.; Ruiz, J. E.; Sabater, J.; Verley, S.; Bergond, G.

    2017-05-01

    New tools are needed to handle the growth of data in astrophysics delivered by recent and upcoming surveys. We aim to build open-source, light, flexible, and interactive software designed to visualize extensive three-dimensional (3D) tabular data. Entirely written in the Python language, we have developed interactive tools to browse and visualize the positions of galaxies in the universe and their positions with respect to its large-scale structures (LSS). Motivated by a previous study, we created two codes using Mollweide projection and wedge diagram visualizations, where survey galaxies can be overplotted on the LSS of the universe. These are interactive representations where the visualizations can be controlled by widgets. We have released these open-source codes that have been designed to be easily re-used and customized by the scientific community to fulfill their needs. The codes are adaptable to other kinds of 3D tabular data and are robust enough to handle several millions of objects. .

  16. Computer-Based Learning of Spelling Skills in Children with and without Dyslexia

    ERIC Educational Resources Information Center

    Kast, Monika; Baschera, Gian-Marco; Gross, Markus; Jancke, Lutz; Meyer, Martin

    2011-01-01

    Our spelling training software recodes words into multisensory representations comprising visual and auditory codes. These codes represent information about letters and syllables of a word. An enhanced version, developed for this study, contains an additional phonological code and an improved word selection controller relying on a phoneme-based…

  17. Goal-directed reaching: the allocentric coding of target location renders an offline mode of control.

    PubMed

    Manzone, Joseph; Heath, Matthew

    2018-04-01

    Reaching to a veridical target permits an egocentric spatial code (i.e., absolute limb and target position) to effect fast and effective online trajectory corrections supported via the visuomotor networks of the dorsal visual pathway. In contrast, a response entailing decoupled spatial relations between stimulus and response is thought to be primarily mediated via an allocentric code (i.e., the position of a target relative to another external cue) laid down by the visuoperceptual networks of the ventral visual pathway. Because the ventral stream renders a temporally durable percept, it is thought that an allocentric code does not support a primarily online mode of control, but instead supports a mode wherein a response is evoked largely in advance of movement onset via central planning mechanisms (i.e., offline control). Here, we examined whether reaches defined via ego- and allocentric visual coordinates are supported via distinct control modes (i.e., online versus offline). Participants performed target-directed and allocentric reaches in limb visible and limb-occluded conditions. Notably, in the allocentric task, participants reached to a location that matched the position of a target stimulus relative to a reference stimulus, and to examine online trajectory amendments, we computed the proportion of variance explained (i.e., R 2 values) by the spatial position of the limb at 75% of movement time relative to a response's ultimate movement endpoint. Target-directed trials performed with limb vision showed more online corrections and greater endpoint precision than their limb-occluded counterparts, which in turn were associated with performance metrics comparable to allocentric trials performed with and without limb vision. Accordingly, we propose that the absence of ego-motion cues (i.e., limb vision) and/or the specification of a response via an allocentric code renders motor output served via the 'slow' visuoperceptual networks of the ventral visual pathway.

  18. mRNAs coding for neurotransmitter receptors and voltage-gated sodium channels in the adult rabbit visual cortex after monocular deafferentiation

    PubMed Central

    Nguyen, Quoc-Thang; Matute, Carlos; Miledi, Ricardo

    1998-01-01

    It has been postulated that, in the adult visual cortex, visual inputs modulate levels of mRNAs coding for neurotransmitter receptors in an activity-dependent manner. To investigate this possibility, we performed a monocular enucleation in adult rabbits and, 15 days later, collected their left and right visual cortices. Levels of mRNAs coding for voltage-activated sodium channels, and for receptors for kainate/α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA), N-methyl-d-aspartate (NMDA), γ-aminobutyric acid (GABA), and glycine were semiquantitatively estimated in the visual cortices ipsilateral and contralateral to the lesion by the Xenopus oocyte/voltage-clamp expression system. This technique also allowed us to study some of the pharmacological and physiological properties of the channels and receptors expressed in the oocytes. In cells injected with mRNA from left or right cortices of monocularly enucleated and control animals, the amplitudes of currents elicited by kainate or AMPA, which reflect the abundance of mRNAs coding for kainate and AMPA receptors, were similar. There was no difference in the sensitivity to kainate and in the voltage dependence of the kainate response. Responses mediated by NMDA, GABA, and glycine were unaffected by monocular enucleation. Sodium channel peak currents, activation, steady-state inactivation, and sensitivity to tetrodotoxin also remained unchanged after the enucleation. Our data show that mRNAs for major neurotransmitter receptors and ion channels in the adult rabbit visual cortex are not obviously modified by monocular deafferentiation. Thus, our results do not support the idea of a widespread dynamic modulation of mRNAs coding for receptors and ion channels by visual activity in the rabbit visual system. PMID:9501250

  19. Non-visual spatial tasks reveal increased interactions with stance postural control.

    PubMed

    Woollacott, Marjorie; Vander Velde, Timothy

    2008-05-07

    The current investigation aimed to contrast the level and quality of dual-task interactions resulting from the combined performance of a challenging primary postural task and three specific, yet categorically dissociated, secondary central executive tasks. Experiments determined the extent to which modality (visual vs. auditory) and code (non-spatial vs. spatial) specific cognitive resources contributed to postural interference in young adults (n=9) in a dual-task setting. We hypothesized that the different forms of executive n-back task processing employed (visual-object, auditory-object and auditory-spatial) would display contrasting levels of interactions with tandem Romberg stance postural control, and that interactions within the spatial domain would be revealed as most vulnerable to dual-task interactions. Across all cognitive tasks employed, including auditory-object (aOBJ), auditory-spatial (aSPA), and visual-object (vOBJ) tasks, increasing n-back task complexity produced correlated increases in verbal reaction time measures. Increasing cognitive task complexity also resulted in consistent decreases in judgment accuracy. Postural performance was significantly influenced by the type of cognitive loading delivered. At comparable levels of cognitive task difficulty (n-back demands and accuracy judgments) the performance of challenging auditory-spatial tasks produced significantly greater levels of postural sway than either the auditory-object or visual-object based tasks. These results suggest that it is the employment of limited non-visual spatially based coding resources that may underlie previously observed visual dual-task interference effects with stance postural control in healthy young adults.

  20. Perceiving groups: The people perception of diversity and hierarchy.

    PubMed

    Phillips, L Taylor; Slepian, Michael L; Hughes, Brent L

    2018-05-01

    The visual perception of individuals has received considerable attention (visual person perception), but little social psychological work has examined the processes underlying the visual perception of groups of people (visual people perception). Ensemble-coding is a visual mechanism that automatically extracts summary statistics (e.g., average size) of lower-level sets of stimuli (e.g., geometric figures), and also extends to the visual perception of groups of faces. Here, we consider whether ensemble-coding supports people perception, allowing individuals to form rapid, accurate impressions about groups of people. Across nine studies, we demonstrate that people visually extract high-level properties (e.g., diversity, hierarchy) that are unique to social groups, as opposed to individual persons. Observers rapidly and accurately perceived group diversity and hierarchy, or variance across race, gender, and dominance (Studies 1-3). Further, results persist when observers are given very short display times, backward pattern masks, color- and contrast-controlled stimuli, and absolute versus relative response options (Studies 4a-7b), suggesting robust effects supported specifically by ensemble-coding mechanisms. Together, we show that humans can rapidly and accurately perceive not only individual persons, but also emergent social information unique to groups of people. These people perception findings demonstrate the importance of visual processes for enabling people to perceive social groups and behave effectively in group-based social interactions. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  1. Simultaneous perception of a spoken and a signed language: The brain basis of ASL-English code-blends

    PubMed Central

    Weisberg, Jill; McCullough, Stephen; Emmorey, Karen

    2018-01-01

    Code-blends (simultaneous words and signs) are a unique characteristic of bimodal bilingual communication. Using fMRI, we investigated code-blend comprehension in hearing native ASL-English bilinguals who made a semantic decision (edible?) about signs, audiovisual words, and semantically equivalent code-blends. English and ASL recruited a similar fronto-temporal network with expected modality differences: stronger activation for English in auditory regions of bilateral superior temporal cortex, and stronger activation for ASL in bilateral occipitotemporal visual regions and left parietal cortex. Code-blend comprehension elicited activity in a combination of these regions, and no cognitive control regions were additionally recruited. Furthermore, code-blends elicited reduced activation relative to ASL presented alone in bilateral prefrontal and visual extrastriate cortices, and relative to English alone in auditory association cortex. Consistent with behavioral facilitation observed during semantic decisions, the findings suggest that redundant semantic content induces more efficient neural processing in language and sensory regions during bimodal language integration. PMID:26177161

  2. Exploring Modality Compatibility in the Response-Effect Compatibility Paradigm.

    PubMed

    Földes, Noémi; Philipp, Andrea M; Badets, Arnaud; Koch, Iring

    2017-01-01

    According to ideomotor theory , action planning is based on anticipatory perceptual representations of action-effects. This aspect of action control has been investigated in studies using the response-effect compatibility (REC) paradigm, in which responses have been shown to be facilitated if ensuing perceptual effects share codes with the response based on dimensional overlap (i.e., REC). Additionally, according to the notion of ideomotor compatibility, certain response-effect (R-E) mappings will be stronger than others because some response features resemble the anticipated sensory response effects more strongly than others (e.g., since vocal responses usually produce auditory effects, an auditory stimulus should be anticipated in a stronger manner following vocal responses rather than following manual responses). Yet, systematic research on this matter is lacking. In the present study, two REC experiments aimed to explore the influence of R-E modality mappings. In Experiment 1, vocal number word responses produced visual effects on the screen (digits vs. number words; i.e., visual-symbolic vs. visual-verbal effect codes). The REC effect was only marginally larger for visual-verbal than for visual-symbolic effects. Using verbal effect codes in Experiment 2, we found that the REC effect was larger with auditory-verbal R-E mapping than with visual-verbal R-E mapping. Overall, the findings support the hypothesis of a role of R-E modality mappings in REC effects, suggesting both further evidence for ideomotor accounts as well as code-specific and modality-specific contributions to effect anticipation.

  3. [Hybrid 3-D rendering of the thorax and surface-based virtual bronchoscopy in surgical and interventional therapy control].

    PubMed

    Seemann, M D; Gebicke, K; Luboldt, W; Albes, J M; Vollmar, J; Schäfer, J F; Beinert, T; Englmeier, K H; Bitzer, M; Claussen, C D

    2001-07-01

    The aim of this study was to demonstrate the possibilities of a hybrid rendering method, the combination of a color-coded surface and volume rendering method, with the feasibility of performing surface-based virtual endoscopy with different representation models in the operative and interventional therapy control of the chest. In 6 consecutive patients with partial lung resection (n = 2) and lung transplantation (n = 4) a thin-section spiral computed tomography of the chest was performed. The tracheobronchial system and the introduced metallic stents were visualized using a color-coded surface rendering method. The remaining thoracic structures were visualized using a volume rendering method. For virtual bronchoscopy, the tracheobronchial system was visualized using a triangle surface model, a shaded-surface model and a transparent shaded-surface model. The hybrid 3D visualization uses the advantages of both the color-coded surface and volume rendering methods and facilitates a clear representation of the tracheobronchial system and the complex topographical relationship of morphological and pathological changes without loss of diagnostic information. Performing virtual bronchoscopy with the transparent shaded-surface model facilitates a reasonable to optimal, simultaneous visualization and assessment of the surface structure of the tracheobronchial system and the surrounding mediastinal structures and lesions. Hybrid rendering relieve the morphological assessment of anatomical and pathological changes without the need for time-consuming detailed analysis and presentation of source images. Performing virtual bronchoscopy with a transparent shaded-surface model offers a promising alternative to flexible fiberoptic bronchoscopy.

  4. Visual communication with retinex coding.

    PubMed

    Huck, F O; Fales, C L; Davis, R E; Alter-Gartenberg, R

    2000-04-10

    Visual communication with retinex coding seeks to suppress the spatial variation of the irradiance (e.g., shadows) across natural scenes and preserve only the spatial detail and the reflectance (or the lightness) of the surface itself. The separation of reflectance from irradiance begins with nonlinear retinex coding that sharply and clearly enhances edges and preserves their contrast, and it ends with a Wiener filter that restores images from this edge and contrast information. An approximate small-signal model of image gathering with retinex coding is found to consist of the familiar difference-of-Gaussian bandpass filter and a locally adaptive automatic-gain control. A linear representation of this model is used to develop expressions within the small-signal constraint for the information rate and the theoretical minimum data rate of the retinex-coded signal and for the maximum-realizable fidelity of the images restored from this signal. Extensive computations and simulations demonstrate that predictions based on these figures of merit correlate closely with perceptual and measured performance. Hence these predictions can serve as a general guide for the design of visual communication channels that produce images with a visual quality that consistently approaches the best possible sharpness, clarity, and reflectance constancy, even for nonuniform irradiances. The suppression of shadows in the restored image is found to be constrained inherently more by the sharpness of their penumbra than by their depth.

  5. Visual Communication with Retinex Coding

    NASA Astrophysics Data System (ADS)

    Huck, Friedrich O.; Fales, Carl L.; Davis, Richard E.; Alter-Gartenberg, Rachel

    2000-04-01

    Visual communication with retinex coding seeks to suppress the spatial variation of the irradiance (e.g., shadows) across natural scenes and preserve only the spatial detail and the reflectance (or the lightness) of the surface itself. The separation of reflectance from irradiance begins with nonlinear retinex coding that sharply and clearly enhances edges and preserves their contrast, and it ends with a Wiener filter that restores images from this edge and contrast information. An approximate small-signal model of image gathering with retinex coding is found to consist of the familiar difference-of-Gaussian bandpass filter and a locally adaptive automatic-gain control. A linear representation of this model is used to develop expressions within the small-signal constraint for the information rate and the theoretical minimum data rate of the retinex-coded signal and for the maximum-realizable fidelity of the images restored from this signal. Extensive computations and simulations demonstrate that predictions based on these figures of merit correlate closely with perceptual and measured performance. Hence these predictions can serve as a general guide for the design of visual communication channels that produce images with a visual quality that consistently approaches the best possible sharpness, clarity, and reflectance constancy, even for nonuniform irradiances. The suppression of shadows in the restored image is found to be constrained inherently more by the sharpness of their penumbra than by their depth.

  6. Exclusively visual analysis of classroom group interactions

    NASA Astrophysics Data System (ADS)

    Tucker, Laura; Scherr, Rachel E.; Zickler, Todd; Mazur, Eric

    2016-12-01

    Large-scale audiovisual data that measure group learning are time consuming to collect and analyze. As an initial step towards scaling qualitative classroom observation, we qualitatively coded classroom video using an established coding scheme with and without its audio cues. We find that interrater reliability is as high when using visual data only—without audio—as when using both visual and audio data to code. Also, interrater reliability is high when comparing use of visual and audio data to visual-only data. We see a small bias to code interactions as group discussion when visual and audio data are used compared with video-only data. This work establishes that meaningful educational observation can be made through visual information alone. Further, it suggests that after initial work to create a coding scheme and validate it in each environment, computer-automated visual coding could drastically increase the breadth of qualitative studies and allow for meaningful educational analysis on a far greater scale.

  7. Visual pattern image sequence coding

    NASA Technical Reports Server (NTRS)

    Silsbee, Peter; Bovik, Alan C.; Chen, Dapang

    1990-01-01

    The visual pattern image coding (VPIC) configurable digital image-coding process is capable of coding with visual fidelity comparable to the best available techniques, at compressions which (at 30-40:1) exceed all other technologies. These capabilities are associated with unprecedented coding efficiencies; coding and decoding operations are entirely linear with respect to image size and entail a complexity that is 1-2 orders of magnitude faster than any previous high-compression technique. The visual pattern image sequence coding to which attention is presently given exploits all the advantages of the static VPIC in the reduction of information from an additional, temporal dimension, to achieve unprecedented image sequence coding performance.

  8. OpenControl: a free opensource software for video tracking and automated control of behavioral mazes.

    PubMed

    Aguiar, Paulo; Mendonça, Luís; Galhardo, Vasco

    2007-10-15

    Operant animal behavioral tests require the interaction of the subject with sensors and actuators distributed in the experimental environment of the arena. In order to provide user independent reliable results and versatile control of these devices it is vital to use an automated control system. Commercial systems for control of animal mazes are usually based in software implementations that restrict their application to the proprietary hardware of the vendor. In this paper we present OpenControl: an opensource Visual Basic software that permits a Windows-based computer to function as a system to run fully automated behavioral experiments. OpenControl integrates video-tracking of the animal, definition of zones from the video signal for real-time assignment of animal position in the maze, control of the maze actuators from either hardware sensors or from the online video tracking, and recording of experimental data. Bidirectional communication with the maze hardware is achieved through the parallel-port interface, without the need for expensive AD-DA cards, while video tracking is attained using an inexpensive Firewire digital camera. OpenControl Visual Basic code is structurally general and versatile allowing it to be easily modified or extended to fulfill specific experimental protocols and custom hardware configurations. The Visual Basic environment was chosen in order to allow experimenters to easily adapt the code and expand it at their own needs.

  9. A conflict-based model of color categorical perception: evidence from a priming study.

    PubMed

    Hu, Zhonghua; Hanley, J Richard; Zhang, Ruiling; Liu, Qiang; Roberson, Debi

    2014-10-01

    Categorical perception (CP) of color manifests as faster or more accurate discrimination of two shades of color that straddle a category boundary (e.g., one blue and one green) than of two shades from within the same category (e.g., two different shades of green), even when the differences between the pairs of colors are equated according to some objective metric. The results of two experiments provide new evidence for a conflict-based account of this effect, in which CP is caused by competition between visual and verbal/categorical codes on within-category trials. According to this view, conflict arises because the verbal code indicates that the two colors are the same, whereas the visual code indicates that they are different. In Experiment 1, two shades from the same color category were discriminated significantly faster when the previous trial also comprised a pair of within-category colors than when the previous trial comprised a pair from two different color categories. Under the former circumstances, the CP effect disappeared. According to the conflict-based model, response conflict between visual and categorical codes during discrimination of within-category pairs produced an adjustment of cognitive control that reduced the weight given to the categorical code relative to the visual code on the subsequent trial. Consequently, responses on within-category trials were facilitated, and CP effects were reduced. The effectiveness of this conflict-based account was evaluated in comparison with an alternative view that CP reflects temporary warping of perceptual space at the boundaries between color categories.

  10. Slow Feature Analysis on Retinal Waves Leads to V1 Complex Cells

    PubMed Central

    Dähne, Sven; Wilbert, Niko; Wiskott, Laurenz

    2014-01-01

    The developing visual system of many mammalian species is partially structured and organized even before the onset of vision. Spontaneous neural activity, which spreads in waves across the retina, has been suggested to play a major role in these prenatal structuring processes. Recently, it has been shown that when employing an efficient coding strategy, such as sparse coding, these retinal activity patterns lead to basis functions that resemble optimal stimuli of simple cells in primary visual cortex (V1). Here we present the results of applying a coding strategy that optimizes for temporal slowness, namely Slow Feature Analysis (SFA), to a biologically plausible model of retinal waves. Previously, SFA has been successfully applied to model parts of the visual system, most notably in reproducing a rich set of complex-cell features by training SFA with quasi-natural image sequences. In the present work, we obtain SFA units that share a number of properties with cortical complex-cells by training on simulated retinal waves. The emergence of two distinct properties of the SFA units (phase invariance and orientation tuning) is thoroughly investigated via control experiments and mathematical analysis of the input-output functions found by SFA. The results support the idea that retinal waves share relevant temporal and spatial properties with natural visual input. Hence, retinal waves seem suitable training stimuli to learn invariances and thereby shape the developing early visual system such that it is best prepared for coding input from the natural world. PMID:24810948

  11. Neural representation of objects in space: a dual coding account.

    PubMed Central

    Humphreys, G W

    1998-01-01

    I present evidence on the nature of object coding in the brain and discuss the implications of this coding for models of visual selective attention. Neuropsychological studies of task-based constraints on: (i) visual neglect; and (ii) reading and counting, reveal the existence of parallel forms of spatial representation for objects: within-object representations, where elements are coded as parts of objects, and between-object representations, where elements are coded as independent objects. Aside from these spatial codes for objects, however, the coding of visual space is limited. We are extremely poor at remembering small spatial displacements across eye movements, indicating (at best) impoverished coding of spatial position per se. Also, effects of element separation on spatial extinction can be eliminated by filling the space with an occluding object, indicating that spatial effects on visual selection are moderated by object coding. Overall, there are separate limits on visual processing reflecting: (i) the competition to code parts within objects; (ii) the small number of independent objects that can be coded in parallel; and (iii) task-based selection of whether within- or between-object codes determine behaviour. Between-object coding may be linked to the dorsal visual system while parallel coding of parts within objects takes place in the ventral system, although there may additionally be some dorsal involvement either when attention must be shifted within objects or when explicit spatial coding of parts is necessary for object identification. PMID:9770227

  12. Production code control system for hydrodynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slone, D.M.

    1997-08-18

    We describe how the Production Code Control System (pCCS), written in Perl, has been used to control and monitor the execution of a large hydrodynamics simulation code in a production environment. We have been able to integrate new, disparate, and often independent, applications into the PCCS framework without the need to modify any of our existing application codes. Both users and code developers see a consistent interface to the simulation code and associated applications regardless of the physical platform, whether an MPP, SMP, server, or desktop workstation. We will also describe our use of Perl to develop a configuration managementmore » system for the simulation code, as well as a code usage database and report generator. We used Perl to write a backplane that allows us plug in preprocessors, the hydrocode, postprocessors, visualization tools, persistent storage requests, and other codes. We need only teach PCCS a minimal amount about any new tool or code to essentially plug it in and make it usable to the hydrocode. PCCS has made it easier to link together disparate codes, since using Perl has removed the need to learn the idiosyncrasies of system or RPC programming. The text handling in Perl makes it easy to teach PCCS about new codes, or changes to existing codes.« less

  13. Visual Perception Based Rate Control Algorithm for HEVC

    NASA Astrophysics Data System (ADS)

    Feng, Zeqi; Liu, PengYu; Jia, Kebin

    2018-01-01

    For HEVC, rate control is an indispensably important video coding technology to alleviate the contradiction between video quality and the limited encoding resources during video communication. However, the rate control benchmark algorithm of HEVC ignores subjective visual perception. For key focus regions, bit allocation of LCU is not ideal and subjective quality is unsatisfied. In this paper, a visual perception based rate control algorithm for HEVC is proposed. First bit allocation weight of LCU level is optimized based on the visual perception of luminance and motion to ameliorate video subjective quality. Then λ and QP are adjusted in combination with the bit allocation weight to improve rate distortion performance. Experimental results show that the proposed algorithm reduces average 0.5% BD-BR and maximum 1.09% BD-BR at no cost in bitrate accuracy compared with HEVC (HM15.0). The proposed algorithm devotes to improving video subjective quality under various video applications.

  14. Verbal Short-Term Memory Deficits in Chinese Children with Dyslexia may not be a Problem with the Activation of Phonological Representations.

    PubMed

    Zhao, Jing; Yang, Yang; Song, Yao-Wu; Bi, Hong-Yan

    2015-11-01

    This study explored the underlying mechanism of the verbal short-term memory deficit in Chinese children with developmental dyslexia. Twenty-four children with dyslexia and 28 age-matched normal readers participated in the study. They were required to memorize a visually presented series of six Chinese characters and identify them from a list also including code-specific distracters and non-code-specific distracters. Error rates were recorded and were higher for code-specific distracters in all three conditions, revealing phonological, visual, and semantic similarity effects respectively. Group comparisons showed a stronger phonological similarity effect in dyslexic group, suggesting intact activation of phonological representations of target characters. Children with dyslexia also exhibited a greater semantic similarity effect, revealing stronger activation of semantic representations, while visual similarity effects were equivalent to controls. These results suggest that the verbal short-term memory deficit in Chinese dyslexics might not stem from insufficient activation of phonological information. Based the semantic activation of target characters in dyslexics is greater than in controls, it is possible that the memory deficit of dyslexia is related with deficient inhibition of target semantic representations in short-term memory. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Using Prosopagnosia to Test and Modify Visual Recognition Theory.

    PubMed

    O'Brien, Alexander M

    2018-02-01

    Biederman's contemporary theory of basic visual object recognition (Recognition-by-Components) is based on structural descriptions of objects and presumes 36 visual primitives (geons) people can discriminate, but there has been no empirical test of the actual use of these 36 geons to visually distinguish objects. In this study, we tested for the actual use of these geons in basic visual discrimination by comparing object discrimination performance patterns (when distinguishing varied stimuli) of an acquired prosopagnosia patient (LB) and healthy control participants. LB's prosopagnosia left her heavily reliant on structural descriptions or categorical object differences in visual discrimination tasks versus the control participants' additional ability to use face recognition or coordinate systems (Coordinate Relations Hypothesis). Thus, when LB performed comparably to control participants with a given stimulus, her restricted reliance on basic or categorical discriminations meant that the stimuli must be distinguishable on the basis of a geon feature. By varying stimuli in eight separate experiments and presenting all 36 geons, we discerned that LB coded only 12 (vs. 36) distinct visual primitives (geons), apparently reflective of human visual systems generally.

  16. Short-term memory coding in children with intellectual disabilities.

    PubMed

    Henry, Lucy

    2008-05-01

    To examine visual and verbal coding strategies, I asked children with intellectual disabilities and peers matched for MA and CA to perform picture memory span tasks with phonologically similar, visually similar, long, or nonsimilar named items. The CA group showed effects consistent with advanced verbal memory coding (phonological similarity and word length effects). Neither the intellectual disabilities nor MA groups showed evidence for memory coding strategies. However, children in these groups with MAs above 6 years showed significant visual similarity and word length effects, broadly consistent with an intermediate stage of dual visual and verbal coding. These results suggest that developmental progressions in memory coding strategies are independent of intellectual disabilities status and consistent with MA.

  17. Constructing graph models for software system development and analysis

    NASA Astrophysics Data System (ADS)

    Pogrebnoy, Andrey V.

    2017-01-01

    We propose a concept for creating the instrumentation for functional and structural decisions rationale during the software system (SS) development. We propose to develop SS simultaneously on two models - functional (FM) and structural (SM). FM is a source code of the SS. Adequate representation of the FM in the form of a graph model (GM) is made automatically and called SM. The problem of creating and visualizing GM is considered from the point of applying it as a uniform platform for the adequate representation of the SS source code. We propose three levels of GM detailing: GM1 - for visual analysis of the source code and for SS version control, GM2 - for resources optimization and analysis of connections between SS components, GM3 - for analysis of the SS functioning in dynamics. The paper includes examples of constructing all levels of GM.

  18. Illusory Motion Reproduced by Deep Neural Networks Trained for Prediction

    PubMed Central

    Watanabe, Eiji; Kitaoka, Akiyoshi; Sakamoto, Kiwako; Yasugi, Masaki; Tanaka, Kenta

    2018-01-01

    The cerebral cortex predicts visual motion to adapt human behavior to surrounding objects moving in real time. Although the underlying mechanisms are still unknown, predictive coding is one of the leading theories. Predictive coding assumes that the brain's internal models (which are acquired through learning) predict the visual world at all times and that errors between the prediction and the actual sensory input further refine the internal models. In the past year, deep neural networks based on predictive coding were reported for a video prediction machine called PredNet. If the theory substantially reproduces the visual information processing of the cerebral cortex, then PredNet can be expected to represent the human visual perception of motion. In this study, PredNet was trained with natural scene videos of the self-motion of the viewer, and the motion prediction ability of the obtained computer model was verified using unlearned videos. We found that the computer model accurately predicted the magnitude and direction of motion of a rotating propeller in unlearned videos. Surprisingly, it also represented the rotational motion for illusion images that were not moving physically, much like human visual perception. While the trained network accurately reproduced the direction of illusory rotation, it did not detect motion components in negative control pictures wherein people do not perceive illusory motion. This research supports the exciting idea that the mechanism assumed by the predictive coding theory is one of basis of motion illusion generation. Using sensory illusions as indicators of human perception, deep neural networks are expected to contribute significantly to the development of brain research. PMID:29599739

  19. Illusory Motion Reproduced by Deep Neural Networks Trained for Prediction.

    PubMed

    Watanabe, Eiji; Kitaoka, Akiyoshi; Sakamoto, Kiwako; Yasugi, Masaki; Tanaka, Kenta

    2018-01-01

    The cerebral cortex predicts visual motion to adapt human behavior to surrounding objects moving in real time. Although the underlying mechanisms are still unknown, predictive coding is one of the leading theories. Predictive coding assumes that the brain's internal models (which are acquired through learning) predict the visual world at all times and that errors between the prediction and the actual sensory input further refine the internal models. In the past year, deep neural networks based on predictive coding were reported for a video prediction machine called PredNet. If the theory substantially reproduces the visual information processing of the cerebral cortex, then PredNet can be expected to represent the human visual perception of motion. In this study, PredNet was trained with natural scene videos of the self-motion of the viewer, and the motion prediction ability of the obtained computer model was verified using unlearned videos. We found that the computer model accurately predicted the magnitude and direction of motion of a rotating propeller in unlearned videos. Surprisingly, it also represented the rotational motion for illusion images that were not moving physically, much like human visual perception. While the trained network accurately reproduced the direction of illusory rotation, it did not detect motion components in negative control pictures wherein people do not perceive illusory motion. This research supports the exciting idea that the mechanism assumed by the predictive coding theory is one of basis of motion illusion generation. Using sensory illusions as indicators of human perception, deep neural networks are expected to contribute significantly to the development of brain research.

  20. Visual Form Detection in 3-Dimensional Space.

    DTIC Science & Technology

    1982-10-01

    RR04209 Ann Arbor, Michigan 48109 RR0429002; NR 197-070 - II CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE Engineering Psychology Group ( Code...93940 Pasadena, CA 91106 Dean of Research Administration Office of Naval Research Naval Postgraduate School Scientific Liaison Group Monterey, CA...Eisenhower Avenue Dr. Gloria Chisum Alexandria, VA 22333 Sciences Research Group Code 6003 Naval Air Development Center Warminste.’, PA 18974 -4- Department

  1. Multisensory Control of Stabilization Reflexes

    DTIC Science & Technology

    2012-08-22

    Dr Simon Schultz (Neural Coding), Dr Manos Drakakis (Low-power VLSI technology), and Dr Reiko Tanaka (Compound Control). To study the functional...Krapp H.G., and Schultz S.R.: Spike-triggered independent component analysis: application to a fly motion-sensitive neuron. Visual Neuroscience, 8...Tanaka, RI.: Characterization of insect gaze control systems. 18th World Congress of International Federation of Automated Control (IFAC), Milan

  2. [Trial of eye drops recognizer for visually disabled persons].

    PubMed

    Okamoto, Norio; Suzuki, Katsuhiko; Mimura, Osamu

    2009-01-01

    The development of a device to enable the visually disabled to differentiate eye drops and their dose. The new instrument is composed of a voice generator and a two-dimensional bar-code reader (LS9208). We designed voice outputs for the visually disabled to state when (number of times) and where (right, left, or both) to administer eye drops. We then determined the minimum bar-code size that can be recognized. After attaching bar-codes of the appropriate size to the lateral or bottom surface of the eye drops container, the readability of the bar-codes was compared. The minimum discrimination bar-code size was 6 mm high x 8.5 mm long. Bar-codes on the bottom surface could be more easily recognized than bar-codes on the side. Our newly-developed device using bar-codes enables visually disabled persons to differentiate eye drops and their doses.

  3. Awareness Becomes Necessary Between Adaptive Pattern Coding of Open and Closed Curvatures

    PubMed Central

    Sweeny, Timothy D.; Grabowecky, Marcia; Suzuki, Satoru

    2012-01-01

    Visual pattern processing becomes increasingly complex along the ventral pathway, from the low-level coding of local orientation in the primary visual cortex to the high-level coding of face identity in temporal visual areas. Previous research using pattern aftereffects as a psychophysical tool to measure activation of adaptive feature coding has suggested that awareness is relatively unimportant for the coding of orientation, but awareness is crucial for the coding of face identity. We investigated where along the ventral visual pathway awareness becomes crucial for pattern coding. Monoptic masking, which interferes with neural spiking activity in low-level processing while preserving awareness of the adaptor, eliminated open-curvature aftereffects but preserved closed-curvature aftereffects. In contrast, dichoptic masking, which spares spiking activity in low-level processing while wiping out awareness, preserved open-curvature aftereffects but eliminated closed-curvature aftereffects. This double dissociation suggests that adaptive coding of open and closed curvatures straddles the divide between weakly and strongly awareness-dependent pattern coding. PMID:21690314

  4. Four types of ensemble coding in data visualizations.

    PubMed

    Szafir, Danielle Albers; Haroz, Steve; Gleicher, Michael; Franconeri, Steven

    2016-01-01

    Ensemble coding supports rapid extraction of visual statistics about distributed visual information. Researchers typically study this ability with the goal of drawing conclusions about how such coding extracts information from natural scenes. Here we argue that a second domain can serve as another strong inspiration for understanding ensemble coding: graphs, maps, and other visual presentations of data. Data visualizations allow observers to leverage their ability to perform visual ensemble statistics on distributions of spatial or featural visual information to estimate actual statistics on data. We survey the types of visual statistical tasks that occur within data visualizations across everyday examples, such as scatterplots, and more specialized images, such as weather maps or depictions of patterns in text. We divide these tasks into four categories: identification of sets of values, summarization across those values, segmentation of collections, and estimation of structure. We point to unanswered questions for each category and give examples of such cross-pollination in the current literature. Increased collaboration between the data visualization and perceptual psychology research communities can inspire new solutions to challenges in visualization while simultaneously exposing unsolved problems in perception research.

  5. Synchronization trigger control system for flow visualization

    NASA Technical Reports Server (NTRS)

    Chun, K. S.

    1987-01-01

    The use of cinematography or holographic interferometry for dynamic flow visualization in an internal combustion engine requires a control device that globally synchronizes camera and light source timing at a predefined shaft encoder angle. The device is capable of 0.35 deg resolution for rotational speeds of up to 73 240 rpm. This was achieved by implementing the shaft encoder signal addressed look-up table (LUT) and appropriate latches. The developed digital signal processing technique achieves 25 nsec of high speed triggering angle detection by using direct parallel bit comparison of the shaft encoder digital code with a simulated angle reference code, instead of using angle value comparison which involves more complicated computation steps. In order to establish synchronization to an AC reference signal whose magnitude is variant with the rotating speed, a dynamic peak followup synchronization technique has been devised. This method scrutinizes the reference signal and provides the right timing within 40 nsec. Two application examples are described.

  6. Enhanced dimension-specific visual working memory in grapheme–color synesthesia☆

    PubMed Central

    Terhune, Devin Blair; Wudarczyk, Olga Anna; Kochuparampil, Priya; Cohen Kadosh, Roi

    2013-01-01

    There is emerging evidence that the encoding of visual information and the maintenance of this information in a temporarily accessible state in working memory rely on the same neural mechanisms. A consequence of this overlap is that atypical forms of perception should influence working memory. We examined this by investigating whether having grapheme–color synesthesia, a condition characterized by the involuntary experience of color photisms when reading or representing graphemes, would confer benefits on working memory. Two competing hypotheses propose that superior memory in synesthesia results from information being coded in two information channels (dual-coding) or from superior dimension-specific visual processing (enhanced processing). We discriminated between these hypotheses in three n-back experiments in which controls and synesthetes viewed inducer and non-inducer graphemes and maintained color or grapheme information in working memory. Synesthetes displayed superior color working memory than controls for both grapheme types, whereas the two groups did not differ in grapheme working memory. Further analyses excluded the possibilities of enhanced working memory among synesthetes being due to greater color discrimination, stimulus color familiarity, or bidirectionality. These results reveal enhanced dimension-specific visual working memory in this population and supply further evidence for a close relationship between sensory processing and the maintenance of sensory information in working memory. PMID:23892185

  7. Coding of navigational affordances in the human visual system

    PubMed Central

    Epstein, Russell A.

    2017-01-01

    A central component of spatial navigation is determining where one can and cannot go in the immediate environment. We used fMRI to test the hypothesis that the human visual system solves this problem by automatically identifying the navigational affordances of the local scene. Multivoxel pattern analyses showed that a scene-selective region of dorsal occipitoparietal cortex, known as the occipital place area, represents pathways for movement in scenes in a manner that is tolerant to variability in other visual features. These effects were found in two experiments: One using tightly controlled artificial environments as stimuli, the other using a diverse set of complex, natural scenes. A reconstruction analysis demonstrated that the population codes of the occipital place area could be used to predict the affordances of novel scenes. Taken together, these results reveal a previously unknown mechanism for perceiving the affordance structure of navigable space. PMID:28416669

  8. Digital Semaphore: Tactical Implications of QR Code Optical Signaling for Fleet Communications

    DTIC Science & Technology

    2013-06-01

    Emissions Control (EMCON) and Hazards of Electromagnetic Radiation to Ordnance (HERO) restrict the ability for Naval Vessels to communicate using...importance of visual communications methods is brought to light by discussing emissions control, hazards of electromagnetic radiation to ordnance , and...overview of emissions restrictions including Emissions Control (EMCON) and Hazards of Electromagnetic Radiation to Ordnance (HERO). Chapter VII is

  9. Childhood blindness: a new form for recording causes of visual loss in children.

    PubMed Central

    Gilbert, C.; Foster, A.; Négrel, A. D.; Thylefors, B.

    1993-01-01

    The new standardized form for recording the causes of visual loss in children is accompanied by coding instructions and by a database for statistical analysis. The aim is to record the causes of childhood visual loss, with an emphasis on preventable and treatable causes, so that appropriate control measures can be planned. With this standardized methodology, it will be possible to monitor the changing patterns of childhood blindness over a period of time in response to changes in health care services, specific interventions, and socioeconomic development. PMID:8261552

  10. Realization of ActiveX control based on ATL in VC 2008

    NASA Astrophysics Data System (ADS)

    Li, Shuhua; Tie, Yong

    2011-10-01

    ActiveX has a key role in web development, this paper realizes the classical program Polygon in the newest Visual C++ environment 2008 and tests each function of control in ActiveX Control Test Container. After that web code is created rapidly via ActiveX Control Pad and it is checked in HTML. Development process and key point attention are summarized systematically which can guide the related developers.

  11. Generalizing the extensibility of a dynamic geometry software

    NASA Astrophysics Data System (ADS)

    Herceg, Đorđe; Radaković, Davorka; Herceg, Dejana

    2012-09-01

    Plug-and-play visual components in a Dynamic Geometry Software (DGS) enable development of visually attractive, rich and highly interactive dynamic drawings. We are developing SLGeometry, a DGS that contains a custom programming language, a computer algebra system (CAS engine) and a graphics subsystem. The basic extensibility framework on SLGeometry supports dynamic addition of new functions from attribute annotated classes that implement runtime metadata registration in code. We present a general plug-in framework for dynamic importing of arbitrary Silverlight user interface (UI) controls into SLGeometry at runtime. The CAS engine maintains a metadata storage that describes each imported visual component and enables two-way communication between the expressions stored in the engine and the UI controls on the screen.

  12. Phonological, visual, and semantic coding strategies and children's short-term picture memory span.

    PubMed

    Henry, Lucy A; Messer, David; Luger-Klein, Scarlett; Crane, Laura

    2012-01-01

    Three experiments addressed controversies in the previous literature on the development of phonological and other forms of short-term memory coding in children, using assessments of picture memory span that ruled out potentially confounding effects of verbal input and output. Picture materials were varied in terms of phonological similarity, visual similarity, semantic similarity, and word length. Older children (6/8-year-olds), but not younger children (4/5-year-olds), demonstrated robust and consistent phonological similarity and word length effects, indicating that they were using phonological coding strategies. This confirmed findings initially reported by Conrad (1971), but subsequently questioned by other authors. However, in contrast to some previous research, little evidence was found for a distinct visual coding stage at 4 years, casting doubt on assumptions that this is a developmental stage that consistently precedes phonological coding. There was some evidence for a dual visual and phonological coding stage prior to exclusive use of phonological coding at around 5-6 years. Evidence for semantic similarity effects was limited, suggesting that semantic coding is not a key method by which young children recall lists of pictures.

  13. Visual search asymmetries within color-coded and intensity-coded displays.

    PubMed

    Yamani, Yusuke; McCarley, Jason S

    2010-06-01

    Color and intensity coding provide perceptual cues to segregate categories of objects within a visual display, allowing operators to search more efficiently for needed information. Even within a perceptually distinct subset of display elements, however, it may often be useful to prioritize items representing urgent or task-critical information. The design of symbology to produce search asymmetries (Treisman & Souther, 1985) offers a potential technique for doing this, but it is not obvious from existing models of search that an asymmetry observed in the absence of extraneous visual stimuli will persist within a complex color- or intensity-coded display. To address this issue, in the current study we measured the strength of a visual search asymmetry within displays containing color- or intensity-coded extraneous items. The asymmetry persisted strongly in the presence of extraneous items that were drawn in a different color (Experiment 1) or a lower contrast (Experiment 2) than the search-relevant items, with the targets favored by the search asymmetry producing highly efficient search. The asymmetry was attenuated but not eliminated when extraneous items were drawn in a higher contrast than search-relevant items (Experiment 3). Results imply that the coding of symbology to exploit visual search asymmetries can facilitate visual search for high-priority items even within color- or intensity-coded displays. PsycINFO Database Record (c) 2010 APA, all rights reserved.

  14. Guidelines for the Use of Color in ATC Displays

    DOT National Transportation Integrated Search

    1999-06-01

    Color is probably the most effective, compelling, and attractive method available for coding visual information on a display. However, caution must be used in the application of color to displays for air traffic control (ATC), because it is easy to d...

  15. An object-oriented framework for medical image registration, fusion, and visualization.

    PubMed

    Zhu, Yang-Ming; Cochoff, Steven M

    2006-06-01

    An object-oriented framework for image registration, fusion, and visualization was developed based on the classic model-view-controller paradigm. The framework employs many design patterns to facilitate legacy code reuse, manage software complexity, and enhance the maintainability and portability of the framework. Three sample applications built a-top of this framework are illustrated to show the effectiveness of this framework: the first one is for volume image grouping and re-sampling, the second one is for 2D registration and fusion, and the last one is for visualization of single images as well as registered volume images.

  16. Enhanced dimension-specific visual working memory in grapheme-color synesthesia.

    PubMed

    Terhune, Devin Blair; Wudarczyk, Olga Anna; Kochuparampil, Priya; Cohen Kadosh, Roi

    2013-10-01

    There is emerging evidence that the encoding of visual information and the maintenance of this information in a temporarily accessible state in working memory rely on the same neural mechanisms. A consequence of this overlap is that atypical forms of perception should influence working memory. We examined this by investigating whether having grapheme-color synesthesia, a condition characterized by the involuntary experience of color photisms when reading or representing graphemes, would confer benefits on working memory. Two competing hypotheses propose that superior memory in synesthesia results from information being coded in two information channels (dual-coding) or from superior dimension-specific visual processing (enhanced processing). We discriminated between these hypotheses in three n-back experiments in which controls and synesthetes viewed inducer and non-inducer graphemes and maintained color or grapheme information in working memory. Synesthetes displayed superior color working memory than controls for both grapheme types, whereas the two groups did not differ in grapheme working memory. Further analyses excluded the possibilities of enhanced working memory among synesthetes being due to greater color discrimination, stimulus color familiarity, or bidirectionality. These results reveal enhanced dimension-specific visual working memory in this population and supply further evidence for a close relationship between sensory processing and the maintenance of sensory information in working memory. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Overview of ICE Project: Integration of Computational Fluid Dynamics and Experiments

    NASA Technical Reports Server (NTRS)

    Stegeman, James D.; Blech, Richard A.; Babrauckas, Theresa L.; Jones, William H.

    2001-01-01

    Researchers at the NASA Glenn Research Center have developed a prototype integrated environment for interactively exploring, analyzing, and validating information from computational fluid dynamics (CFD) computations and experiments. The Integrated CFD and Experiments (ICE) project is a first attempt at providing a researcher with a common user interface for control, manipulation, analysis, and data storage for both experiments and simulation. ICE can be used as a live, on-tine system that displays and archives data as they are gathered; as a postprocessing system for dataset manipulation and analysis; and as a control interface or "steering mechanism" for simulation codes while visualizing the results. Although the full capabilities of ICE have not been completely demonstrated, this report documents the current system. Various applications of ICE are discussed: a low-speed compressor, a supersonic inlet, real-time data visualization, and a parallel-processing simulation code interface. A detailed data model for the compressor application is included in the appendix.

  18. A measure of short-term visual memory based on the WISC-R coding subtest.

    PubMed

    Collaer, M L; Evans, J R

    1982-07-01

    Adapted the Coding subtest of the WISC-R to provide a measure of visual memory. Three hundred and five children, aged 8 through 12, were administered the Coding test using standard directions. A few seconds after completion the key was taken away, and each was given a paper with only the digits and asked to write the appropriate matching symbol below each. This was termed "Coding Recall." To provide validity data, a subgroup of 50 Ss also was administered the Attention Span for Letters subtest from the Detroit Tests of Learning Aptitude (as a test of visual memory for sequences of letters) and a Bender Gestalt recall test (as a measure of visual memory for geometric forms). Coding Recall means and standard deviations are reported separately by sex and age level. Implications for clinicans are discussed. Reservations about clinical use of the data are given in view of the possible lack of representativeness of the sample used and the limited reliability and validity of Coding Recall.

  19. Visual Coding of Human Bodies: Perceptual Aftereffects Reveal Norm-Based, Opponent Coding of Body Identity

    ERIC Educational Resources Information Center

    Rhodes, Gillian; Jeffery, Linda; Boeing, Alexandra; Calder, Andrew J.

    2013-01-01

    Despite the discovery of body-selective neural areas in occipitotemporal cortex, little is known about how bodies are visually coded. We used perceptual adaptation to determine how body identity is coded. Brief exposure to a body (e.g., anti-Rose) biased perception toward an identity with opposite properties (Rose). Moreover, the size of this…

  20. Real-time software-based end-to-end wireless visual communications simulation platform

    NASA Astrophysics Data System (ADS)

    Chen, Ting-Chung; Chang, Li-Fung; Wong, Andria H.; Sun, Ming-Ting; Hsing, T. Russell

    1995-04-01

    Wireless channel impairments pose many challenges to real-time visual communications. In this paper, we describe a real-time software based wireless visual communications simulation platform which can be used for performance evaluation in real-time. This simulation platform consists of two personal computers serving as hosts. Major components of each PC host include a real-time programmable video code, a wireless channel simulator, and a network interface for data transport between the two hosts. The three major components are interfaced in real-time to show the interaction of various wireless channels and video coding algorithms. The programmable features in the above components allow users to do performance evaluation of user-controlled wireless channel effects without physically carrying out these experiments which are limited in scope, time-consuming, and costly. Using this simulation platform as a testbed, we have experimented with several wireless channel effects including Rayleigh fading, antenna diversity, channel filtering, symbol timing, modulation, and packet loss.

  1. Ensemble coding remains accurate under object and spatial visual working memory load.

    PubMed

    Epstein, Michael L; Emmanouil, Tatiana A

    2017-10-01

    A number of studies have provided evidence that the visual system statistically summarizes large amounts of information that would exceed the limitations of attention and working memory (ensemble coding). However the necessity of working memory resources for ensemble coding has not yet been tested directly. In the current study, we used a dual task design to test the effect of object and spatial visual working memory load on size averaging accuracy. In Experiment 1, we tested participants' accuracy in comparing the mean size of two sets under various levels of object visual working memory load. Although the accuracy of average size judgments depended on the difference in mean size between the two sets, we found no effect of working memory load. In Experiment 2, we tested the same average size judgment while participants were under spatial visual working memory load, again finding no effect of load on averaging accuracy. Overall our results reveal that ensemble coding can proceed unimpeded and highly accurately under both object and spatial visual working memory load, providing further evidence that ensemble coding reflects a basic perceptual process distinct from that of individual object processing.

  2. Polarized skylight navigation in insects: model and electrophysiology of e-vector coding by neurons in the central complex.

    PubMed

    Sakura, Midori; Lambrinos, Dimitrios; Labhart, Thomas

    2008-02-01

    Many insects exploit skylight polarization for visual compass orientation or course control. As found in crickets, the peripheral visual system (optic lobe) contains three types of polarization-sensitive neurons (POL neurons), which are tuned to different ( approximately 60 degrees diverging) e-vector orientations. Thus each e-vector orientation elicits a specific combination of activities among the POL neurons coding any e-vector orientation by just three neural signals. In this study, we hypothesize that in the presumed orientation center of the brain (central complex) e-vector orientation is population-coded by a set of "compass neurons." Using computer modeling, we present a neural network model transforming the signal triplet provided by the POL neurons to compass neuron activities coding e-vector orientation by a population code. Using intracellular electrophysiology and cell marking, we present evidence that neurons with the response profile of the presumed compass neurons do indeed exist in the insect brain: each of these compass neuron-like (CNL) cells is activated by a specific e-vector orientation only and otherwise remains silent. Morphologically, CNL cells are tangential neurons extending from the lateral accessory lobe to the lower division of the central body. Surpassing the modeled compass neurons in performance, CNL cells are insensitive to the degree of polarization of the stimulus between 99% and at least down to 18% polarization and thus largely disregard variations of skylight polarization due to changing solar elevations or atmospheric conditions. This suggests that the polarization vision system includes a gain control circuit keeping the output activity at a constant level.

  3. CTViz: A tool for the visualization of transport in nanocomposites.

    PubMed

    Beach, Benjamin; Brown, Joshua; Tarlton, Taylor; Derosa, Pedro A

    2016-05-01

    A visualization tool (CTViz) for charge transport processes in 3-D hybrid materials (nanocomposites) was developed, inspired by the need for a graphical application to assist in code debugging and data presentation of an existing in-house code. As the simulation code grew, troubleshooting problems grew increasingly difficult without an effective way to visualize 3-D samples and charge transport in those samples. CTViz is able to produce publication and presentation quality visuals of the simulation box, as well as static and animated visuals of the paths of individual carriers through the sample. CTViz was designed to provide a high degree of flexibility in the visualization of the data. A feature that characterizes this tool is the use of shade and transparency levels to highlight important details in the morphology or in the transport paths by hiding or dimming elements of little relevance to the current view. This is fundamental for the visualization of 3-D systems with complex structures. The code presented here provides these required capabilities, but has gone beyond the original design and could be used as is or easily adapted for the visualization of other particulate transport where transport occurs on discrete paths. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Does a colour-coded blood pressure diary improve blood pressure control for patients in general practice: the CoCo trial.

    PubMed

    Steurer-Stey, Claudia; Zoller, Marco; Chmiel Moshinsky, Corinne; Senn, Oliver; Rosemann, Thomas

    2010-04-14

    Insufficient blood pressure control is a frequent problem despite the existence of effective treatment. Insufficient adherence to self-monitoring as well as to therapy is a common reason. Blood pressure self-measurement at home (Home Blood Pressure Measurement, HBPM) has positive effects on treatment adherence and is helpful in achieving the target blood pressure. Only a few studies have investigated whether adherence to HBPM can be improved through simple measures resulting also in better blood pressure control. Improvement of self-monitoring and improved blood pressure control by using a new colour-coded blood pressure diary. Change in systolic and/or diastolic blood pressure 6 months after using the new colour-coded blood pressure diary.Secondary outcome: Adherence to blood pressure self-measurement (number of measurements/entries). Randomised controlled study. 138 adult patients in primary care with uncontrolled hypertension despite therapy. The control group uses a conventional blood pressure diary; the intervention group uses the new colour-coded blood pressure diary (green, yellow, red according a traffic light system). EXPECTED RESULTS/CONCLUSION: The visual separation and entries in three colour-coded areas reflecting risk (green: blood pressure in the target range 140/>90 mmHg, red: blood pressure in danger zone > 180 mmHg/>110 mmHg) lead to better self-monitoring compared with the conventional (non-colour-coded) blood pressure booklet. The colour-coded, visualised information supports improved perception (awareness and interpretation) of blood pressure and triggers correct behaviour, in the means of improved adherence to the recommended treatment as well as better communication between patients and doctors resulting in improved blood pressure control. ClinicalTrials.gov ID NCT01013467.

  5. Application of total distributed control system in car-body inspection

    NASA Astrophysics Data System (ADS)

    Yang, Xueyou; Ren, Dahai; Wang, Zhong; Ye, Shenghua; Lu, Hongbo; Duan, Jilin

    1996-08-01

    An application of distributed control system in Autocar-body Visual Inspection Station is presented in the paper, a distributed control system using PC as the host processor and single-chip microcomputer as the slave controller is proposed. In this paper, the physical interface of the control network and the relevant hardware are introduced. Meanwhile, a minute research on data communication is performed, relevant protocols on data framing, instruction codes and channel access methods have been laid down and part of related software is presented.

  6. Comparison of Mars Science Laboratory Reaction Control System Jet Computations With Flow Visualization and Velocimetry

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Danehy, Paul M.; Johansen, Craig T.; Ashcraft, Scott W.; Novak, Luke A.

    2013-01-01

    Numerical predictions of the Mars Science Laboratory reaction control system jets interacting with a Mach 10 hypersonic flow are compared to experimental nitric oxide planar laser-induced fluorescence data. The steady Reynolds Averaged Navier Stokes equations using the Baldwin-Barth one-equation turbulence model were solved using the OVERFLOW code. The experimental fluorescence data used for comparison consists of qualitative two-dimensional visualization images, qualitative reconstructed three-dimensional flow structures, and quantitative two-dimensional distributions of streamwise velocity. Through modeling of the fluorescence signal equation, computational flow images were produced and directly compared to the qualitative fluorescence data.

  7. Processing of Visual--Action Codes by Deaf and Hearing Children: Coding Orientation or "M"-Capacity?

    ERIC Educational Resources Information Center

    Todman, John; Cowdy, Natascha

    1993-01-01

    Results from a study in which 25 deaf children and 25 hearing children completed a vocabulary test and a compound stimulus visual information task support the hypothesis that performance on cognitive tasks is dependent on compatibility of task demands with a coding orientation. (SLD)

  8. Short-Term Memory Coding in Children with Intellectual Disabilities

    ERIC Educational Resources Information Center

    Henry, Lucy

    2008-01-01

    To examine visual and verbal coding strategies, I asked children with intellectual disabilities and peers matched for MA and CA to perform picture memory span tasks with phonologically similar, visually similar, long, or nonsimilar named items. The CA group showed effects consistent with advanced verbal memory coding (phonological similarity and…

  9. Using Embedded Visual Coding to Support Contextualization of Historical Texts

    ERIC Educational Resources Information Center

    Baron, Christine

    2016-01-01

    This mixed-method study examines the think-aloud protocols of 48 randomly assigned undergraduate students to understand what effect embedding a visual coding system, based on reliable visual cues for establishing historical time period, would have on novice history students' ability to contextualize historic documents. Results indicate that using…

  10. Dual Coding in Children.

    ERIC Educational Resources Information Center

    Burton, John K.; Wildman, Terry M.

    The purpose of this study was to test the applicability of the dual coding hypothesis to children's recall performance. The hypothesis predicts that visual interference will have a small effect on the recall of visually presented words or pictures, but that acoustic interference will cause a decline in recall of visually presented words and…

  11. Verbal-spatial and visuospatial coding of power-space interactions.

    PubMed

    Dai, Qiang; Zhu, Lei

    2018-05-10

    A power-space interaction, which denotes the phenomenon that people responded faster to powerful words when they are placed higher in a visual field and faster to powerless words when they are placed lower in a visual field, has been repeatedly found. The dominant explanation of this power-space interaction is that it results from a tight correspondence between the representation of power and visual space (i.e., a visuospatial coding account). In the present study, we demonstrated that the interaction between power and space could be also based on a verbal-spatial coding in absence of any vertical spatial information. Additionally, the verbal-spatial coding was dominant in driving the power-space interaction when verbal space was contrasted with the visual space. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Frequency spectrum might act as communication code between retina and visual cortex I

    PubMed Central

    Yang, Xu; Gong, Bo; Lu, Jian-Wei

    2015-01-01

    AIM To explore changes and possible communication relationship of local potential signals recorded simultaneously from retina and visual cortex I (V1). METHODS Fourteen C57BL/6J mice were measured with pattern electroretinogram (PERG) and pattern visually evoked potential (PVEP) and fast Fourier transform has been used to analyze the frequency components of those signals. RESULTS The amplitude of PERG and PVEP was measured at about 36.7 µV and 112.5 µV respectively and the dominant frequency of PERG and PVEP, however, stay unchanged and both signals do not have second, or otherwise, harmonic generation. CONCLUSION The results suggested that retina encodes visual information in the way of frequency spectrum and then transfers it to primary visual cortex. The primary visual cortex accepts and deciphers the input visual information coded from retina. Frequency spectrum may act as communication code between retina and V1. PMID:26682156

  13. Frequency spectrum might act as communication code between retina and visual cortex I.

    PubMed

    Yang, Xu; Gong, Bo; Lu, Jian-Wei

    2015-01-01

    To explore changes and possible communication relationship of local potential signals recorded simultaneously from retina and visual cortex I (V1). Fourteen C57BL/6J mice were measured with pattern electroretinogram (PERG) and pattern visually evoked potential (PVEP) and fast Fourier transform has been used to analyze the frequency components of those signals. The amplitude of PERG and PVEP was measured at about 36.7 µV and 112.5 µV respectively and the dominant frequency of PERG and PVEP, however, stay unchanged and both signals do not have second, or otherwise, harmonic generation. The results suggested that retina encodes visual information in the way of frequency spectrum and then transfers it to primary visual cortex. The primary visual cortex accepts and deciphers the input visual information coded from retina. Frequency spectrum may act as communication code between retina and V1.

  14. ChromaStarPy: A Stellar Atmosphere and Spectrum Modeling and Visualization Lab in Python

    NASA Astrophysics Data System (ADS)

    Short, C. Ian; Bayer, Jason H. T.; Burns, Lindsey M.

    2018-02-01

    We announce ChromaStarPy, an integrated general stellar atmospheric modeling and spectrum synthesis code written entirely in python V. 3. ChromaStarPy is a direct port of the ChromaStarServer (CSServ) Java modeling code described in earlier papers in this series, and many of the associated JavaScript (JS) post-processing procedures have been ported and incorporated into CSPy so that students have access to ready-made data products. A python integrated development environment (IDE) allows a student in a more advanced course to experiment with the code and to graphically visualize intermediate and final results, ad hoc, as they are running it. CSPy allows students and researchers to compare modeled to observed spectra in the same IDE in which they are processing observational data, while having complete control over the stellar parameters affecting the synthetic spectra. We also take the opportunity to describe improvements that have been made to the related codes, ChromaStar (CS), CSServ, and ChromaStarDB (CSDB), that, where relevant, have also been incorporated into CSPy. The application may be found at the home page of the OpenStars project: http://www.ap.smu.ca/OpenStars/.

  15. Epitaxial Growth of Hetero-Ln-MOF Hierarchical Single Crystals for Domain- and Orientation-Controlled Multicolor Luminescence 3D Coding Capability.

    PubMed

    Pan, Mei; Zhu, Yi-Xuan; Wu, Kai; Chen, Ling; Hou, Ya-Jun; Yin, Shao-Yun; Wang, Hai-Ping; Fan, Ya-Nan; Su, Cheng-Yong

    2017-11-13

    Core-shell or striped heteroatomic lanthanide metal-organic framework hierarchical single crystals were obtained by liquid-phase anisotropic epitaxial growth, maintaining identical periodic organization while simultaneously exhibiting spatially segregated structure. Different types of domain and orientation-controlled multicolor photophysical models are presented, which show either visually distinguishable or visible/near infrared (NIR) emissive colors. This provides a new bottom-up strategy toward the design of hierarchical molecular systems, offering high-throughput and multiplexed luminescence color tunability and readability. The unique capability of combining spectroscopic coding with 3D (three-dimensional) microscale spatial coding is established, providing potential applications in anti-counterfeiting, color barcoding, and other types of integrated and miniaturized optoelectronic materials and devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Software-codec-based full motion video conferencing on the PC using visual pattern image sequence coding

    NASA Astrophysics Data System (ADS)

    Barnett, Barry S.; Bovik, Alan C.

    1995-04-01

    This paper presents a real time full motion video conferencing system based on the Visual Pattern Image Sequence Coding (VPISC) software codec. The prototype system hardware is comprised of two personal computers, two camcorders, two frame grabbers, and an ethernet connection. The prototype system software has a simple structure. It runs under the Disk Operating System, and includes a user interface, a video I/O interface, an event driven network interface, and a free running or frame synchronous video codec that also acts as the controller for the video and network interfaces. Two video coders have been tested in this system. Simple implementations of Visual Pattern Image Coding and VPISC have both proven to support full motion video conferencing with good visual quality. Future work will concentrate on expanding this prototype to support the motion compensated version of VPISC, as well as encompassing point-to-point modem I/O and multiple network protocols. The application will be ported to multiple hardware platforms and operating systems. The motivation for developing this prototype system is to demonstrate the practicality of software based real time video codecs. Furthermore, software video codecs are not only cheaper, but are more flexible system solutions because they enable different computer platforms to exchange encoded video information without requiring on-board protocol compatible video codex hardware. Software based solutions enable true low cost video conferencing that fits the `open systems' model of interoperability that is so important for building portable hardware and software applications.

  17. Attention enhances multi-voxel representation of novel objects in frontal, parietal and visual cortices.

    PubMed

    Woolgar, Alexandra; Williams, Mark A; Rich, Anina N

    2015-04-01

    Selective attention is fundamental for human activity, but the details of its neural implementation remain elusive. One influential theory, the adaptive coding hypothesis (Duncan, 2001, An adaptive coding model of neural function in prefrontal cortex, Nature Reviews Neuroscience 2:820-829), proposes that single neurons in certain frontal and parietal regions dynamically adjust their responses to selectively encode relevant information. This selective representation may in turn support selective processing in more specialized brain regions such as the visual cortices. Here, we use multi-voxel decoding of functional magnetic resonance images to demonstrate selective representation of attended--and not distractor--objects in frontal, parietal, and visual cortices. In addition, we highlight a critical role for task demands in determining which brain regions exhibit selective coding. Strikingly, representation of attended objects in frontoparietal cortex was highest under conditions of high perceptual demand, when stimuli were hard to perceive and coding in early visual cortex was weak. Coding in early visual cortex varied as a function of attention and perceptual demand, while coding in higher visual areas was sensitive to the allocation of attention but robust to changes in perceptual difficulty. Consistent with high-profile reports, peripherally presented objects could also be decoded from activity at the occipital pole, a region which corresponds to the fovea. Our results emphasize the flexibility of frontoparietal and visual systems. They support the hypothesis that attention enhances the multi-voxel representation of information in the brain, and suggest that the engagement of this attentional mechanism depends critically on current task demands. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Visual Search Asymmetries within Color-Coded and Intensity-Coded Displays

    ERIC Educational Resources Information Center

    Yamani, Yusuke; McCarley, Jason S.

    2010-01-01

    Color and intensity coding provide perceptual cues to segregate categories of objects within a visual display, allowing operators to search more efficiently for needed information. Even within a perceptually distinct subset of display elements, however, it may often be useful to prioritize items representing urgent or task-critical information.…

  19. A Survey on Multimedia-Based Cross-Layer Optimization in Visual Sensor Networks

    PubMed Central

    Costa, Daniel G.; Guedes, Luiz Affonso

    2011-01-01

    Visual sensor networks (VSNs) comprised of battery-operated electronic devices endowed with low-resolution cameras have expanded the applicability of a series of monitoring applications. Those types of sensors are interconnected by ad hoc error-prone wireless links, imposing stringent restrictions on available bandwidth, end-to-end delay and packet error rates. In such context, multimedia coding is required for data compression and error-resilience, also ensuring energy preservation over the path(s) toward the sink and improving the end-to-end perceptual quality of the received media. Cross-layer optimization may enhance the expected efficiency of VSNs applications, disrupting the conventional information flow of the protocol layers. When the inner characteristics of the multimedia coding techniques are exploited by cross-layer protocols and architectures, higher efficiency may be obtained in visual sensor networks. This paper surveys recent research on multimedia-based cross-layer optimization, presenting the proposed strategies and mechanisms for transmission rate adjustment, congestion control, multipath selection, energy preservation and error recovery. We note that many multimedia-based cross-layer optimization solutions have been proposed in recent years, each one bringing a wealth of contributions to visual sensor networks. PMID:22163908

  20. Distributed control system in a car-body inspection station

    NASA Astrophysics Data System (ADS)

    Yang, Xueyou; Ren, Dahai; Ye, Shenghua; Lu, Hongbo; Duan, Jilin

    1997-06-01

    In this paper, a distributed control network in autocar-body visual inspection station is presented in which PC is used as the host processor and single-chip microcomputers are employed as slave controllers. The physical interface of the control network and the relevant hardware are introduced in this paper. Meanwhile, a minute research on data communication is performed, relevant protocols on data framing, instruction codes and channel access methods have been laid down and part of related software is presented.

  1. Alteration of the microsaccadic velocity-amplitude main sequence relationship after visual transients: implications for models of saccade control

    PubMed Central

    Chen, Chih-Yang; Tian, Xiaoguang; Idrees, Saad; Münch, Thomas A.

    2017-01-01

    Microsaccades occur during gaze fixation to correct for miniscule foveal motor errors. The mechanisms governing such fine oculomotor control are still not fully understood. In this study, we explored microsaccade control by analyzing the impacts of transient visual stimuli on these movements’ kinematics. We found that such kinematics can be altered in systematic ways depending on the timing and spatial geometry of visual transients relative to the movement goals. In two male rhesus macaques, we presented peripheral or foveal visual transients during an otherwise stable period of fixation. Such transients resulted in well-known reductions in microsaccade frequency, and our goal was to investigate whether microsaccade kinematics would additionally be altered. We found that both microsaccade timing and amplitude were modulated by the visual transients, and in predictable manners by these transients’ timing and geometry. Interestingly, modulations in the peak velocity of the same movements were not proportional to the observed amplitude modulations, suggesting a violation of the well-known “main sequence” relationship between microsaccade amplitude and peak velocity. We hypothesize that visual stimulation during movement preparation affects not only the saccadic “Go” system driving eye movements but also a “Pause” system inhibiting them. If the Pause system happens to be already turned off despite the new visual input, movement kinematics can be altered by the readout of additional visually evoked spikes in the Go system coding for the flash location. Our results demonstrate precise control over individual microscopic saccades and provide testable hypotheses for mechanisms of saccade control in general. NEW & NOTEWORTHY Microsaccadic eye movements play an important role in several aspects of visual perception and cognition. However, the mechanisms for microsaccade control are still not fully understood. We found that microsaccade kinematics can be altered in a systematic manner by visual transients, revealing a previously unappreciated and exquisite level of control by the oculomotor system of even the smallest saccades. Our results suggest precise temporal interaction between visual, motor, and inhibitory signals in microsaccade control. PMID:28202573

  2. Visual-area coding technique (VACT): optical parallel implementation of fuzzy logic and its visualization with the digital-halftoning process

    NASA Astrophysics Data System (ADS)

    Konishi, Tsuyoshi; Tanida, Jun; Ichioka, Yoshiki

    1995-06-01

    A novel technique, the visual-area coding technique (VACT), for the optical implementation of fuzzy logic with the capability of visualization of the results is presented. This technique is based on the microfont method and is considered to be an instance of digitized analog optical computing. Huge amounts of data can be processed in fuzzy logic with the VACT. In addition, real-time visualization of the processed result can be accomplished.

  3. National Fusion Collaboratory: Grid Computing for Simulations and Experiments

    NASA Astrophysics Data System (ADS)

    Greenwald, Martin

    2004-05-01

    The National Fusion Collaboratory Project is creating a computational grid designed to advance scientific understanding and innovation in magnetic fusion research by facilitating collaborations, enabling more effective integration of experiments, theory and modeling and allowing more efficient use of experimental facilities. The philosophy of FusionGrid is that data, codes, analysis routines, visualization tools, and communication tools should be thought of as network available services, easily used by the fusion scientist. In such an environment, access to services is stressed rather than portability. By building on a foundation of established computer science toolkits, deployment time can be minimized. These services all share the same basic infrastructure that allows for secure authentication and resource authorization which allows stakeholders to control their own resources such as computers, data and experiments. Code developers can control intellectual property, and fair use of shared resources can be demonstrated and controlled. A key goal is to shield scientific users from the implementation details such that transparency and ease-of-use are maximized. The first FusionGrid service deployed was the TRANSP code, a widely used tool for transport analysis. Tools for run preparation, submission, monitoring and management have been developed and shared among a wide user base. This approach saves user sites from the laborious effort of maintaining such a large and complex code while at the same time reducing the burden on the development team by avoiding the need to support a large number of heterogeneous installations. Shared visualization and A/V tools are being developed and deployed to enhance long-distance collaborations. These include desktop versions of the Access Grid, a highly capable multi-point remote conferencing tool and capabilities for sharing displays and analysis tools over local and wide-area networks.

  4. Message Into Medium: An Extension of the Dual Coding Hypothesis.

    ERIC Educational Resources Information Center

    Simpson, Timothy J.

    This paper examines the dual coding hypothesis, a model of the coding of visual and textual information, from the perspective of a mass media professional, such as a teacher, interested in accurately presenting both visual and textual material to a mass audience (i.e., students). It offers an extension to the theory, based upon the various skill…

  5. Spatial Coding of Individuals with Visual Impairments

    ERIC Educational Resources Information Center

    Papadopoulos, Konstantinos; Koustriava, Eleni; Kartasidou, Lefkothea

    2012-01-01

    The aim of this study is to examine the ability of children and adolescents with visual impairments to code and represent near space. Moreover, it examines the impact of the strategies they use and individual differences in their performance. A total of 30 individuals with visual impairments up to the age of 18 were given eight different object…

  6. Integrative and distinctive coding of visual and conceptual object features in the ventral visual stream

    PubMed Central

    Douglas, Danielle; Newsome, Rachel N; Man, Louisa LY

    2018-01-01

    A significant body of research in cognitive neuroscience is aimed at understanding how object concepts are represented in the human brain. However, it remains unknown whether and where the visual and abstract conceptual features that define an object concept are integrated. We addressed this issue by comparing the neural pattern similarities among object-evoked fMRI responses with behavior-based models that independently captured the visual and conceptual similarities among these stimuli. Our results revealed evidence for distinctive coding of visual features in lateral occipital cortex, and conceptual features in the temporal pole and parahippocampal cortex. By contrast, we found evidence for integrative coding of visual and conceptual object features in perirhinal cortex. The neuroanatomical specificity of this effect was highlighted by results from a searchlight analysis. Taken together, our findings suggest that perirhinal cortex uniquely supports the representation of fully specified object concepts through the integration of their visual and conceptual features. PMID:29393853

  7. Redesigning the Human-Machine Interface for Computer-Mediated Visual Technologies.

    ERIC Educational Resources Information Center

    Acker, Stephen R.

    1986-01-01

    This study examined an application of a human machine interface which relies on the use of optical bar codes incorporated in a computer-based module to teach radio production. The sequencing procedure used establishes the user rather than the computer as the locus of control for the mediated instruction. (Author/MBR)

  8. Acquired Codes of Meaning in Data Visualization and Infographics: Beyond Perceptual Primitives.

    PubMed

    Byrne, Lydia; Angus, Daniel; Wiles, Janet

    2016-01-01

    While information visualization frameworks and heuristics have traditionally been reluctant to include acquired codes of meaning, designers are making use of them in a wide variety of ways. Acquired codes leverage a user's experience to understand the meaning of a visualization. They range from figurative visualizations which rely on the reader's recognition of shapes, to conventional arrangements of graphic elements which represent particular subjects. In this study, we used content analysis to codify acquired meaning in visualization. We applied the content analysis to a set of infographics and data visualizations which are exemplars of innovative and effective design. 88% of the infographics and 71% of data visualizations in the sample contain at least one use of figurative visualization. Conventions on the arrangement of graphics are also widespread in the sample. In particular, a comparison of representations of time and other quantitative data showed that conventions can be specific to a subject. These results suggest that there is a need for information visualization research to expand its scope beyond perceptual channels, to include social and culturally constructed meaning. Our paper demonstrates a viable method for identifying figurative techniques and graphic conventions and integrating them into heuristics for visualization design.

  9. Hybrid 3D visualization of the chest and virtual endoscopy of the tracheobronchial system: possibilities and limitations of clinical application.

    PubMed

    Seemann, M D; Claussen, C D

    2001-06-01

    A hybrid rendering method which combines a color-coded surface rendering method and a volume rendering method is described, which enables virtual endoscopic examinations using different representation models. 14 patients with malignancies of the lung and mediastinum (n=11) and lung transplantation (n=3) underwent thin-section spiral computed tomography. The tracheobronchial system and anatomical and pathological features of the chest were segmented using an interactive threshold interval volume-growing segmentation algorithm and visualized with a color-coded surface rendering method. The structures of interest were then superimposed on a volume rendering of the other thoracic structures. For the virtual endoscopy of the tracheobronchial system, a shaded-surface model without color coding, a transparent color-coded shaded-surface model and a triangle-surface model were tested and compared. The hybrid rendering technique exploit the advantages of both rendering methods, provides an excellent overview of the tracheobronchial system and allows a clear depiction of the complex spatial relationships of anatomical and pathological features. Virtual bronchoscopy with a transparent color-coded shaded-surface model allows both a simultaneous visualization of an airway, an airway lesion and mediastinal structures and a quantitative assessment of the spatial relationship between these structures, thus improving confidence in the diagnosis of endotracheal and endobronchial diseases. Hybrid rendering and virtual endoscopy obviate the need for time consuming detailed analysis and presentation of axial source images. Virtual bronchoscopy with a transparent color-coded shaded-surface model offers a practical alternative to fiberoptic bronchoscopy and is particularly promising for patients in whom fiberoptic bronchoscopy is not feasible, contraindicated or refused. Furthermore, it can be used as a complementary procedure to fiberoptic bronchoscopy in evaluating airway stenosis and guiding bronchoscopic biopsy, surgical intervention and palliative therapy and is likely to be increasingly accepted as a screening method for people with suspected endobronchial malignancy and as control examination in the aftercare of patients with malignant diseases.

  10. Multisensory guidance of orienting behavior.

    PubMed

    Maier, Joost X; Groh, Jennifer M

    2009-12-01

    We use both vision and audition when localizing objects and events in our environment. However, these sensory systems receive spatial information in different coordinate systems: sounds are localized using inter-aural and spectral cues, yielding a head-centered representation of space, whereas the visual system uses an eye-centered representation of space, based on the site of activation on the retina. In addition, the visual system employs a place-coded, retinotopic map of space, whereas the auditory system's representational format is characterized by broad spatial tuning and a lack of topographical organization. A common view is that the brain needs to reconcile these differences in order to control behavior, such as orienting gaze to the location of a sound source. To accomplish this, it seems that either auditory spatial information must be transformed from a head-centered rate code to an eye-centered map to match the frame of reference used by the visual system, or vice versa. Here, we review a number of studies that have focused on the neural basis underlying such transformations in the primate auditory system. Although, these studies have found some evidence for such transformations, many differences in the way the auditory and visual system encode space exist throughout the auditory pathway. We will review these differences at the neural level, and will discuss them in relation to differences in the way auditory and visual information is used in guiding orienting movements.

  11. Sports Stars: Analyzing the Performance of Astronomers at Visualization-based Discovery

    NASA Astrophysics Data System (ADS)

    Fluke, C. J.; Parrington, L.; Hegarty, S.; MacMahon, C.; Morgan, S.; Hassan, A. H.; Kilborn, V. A.

    2017-05-01

    In this data-rich era of astronomy, there is a growing reliance on automated techniques to discover new knowledge. The role of the astronomer may change from being a discoverer to being a confirmer. But what do astronomers actually look at when they distinguish between “sources” and “noise?” What are the differences between novice and expert astronomers when it comes to visual-based discovery? Can we identify elite talent or coach astronomers to maximize their potential for discovery? By looking to the field of sports performance analysis, we consider an established, domain-wide approach, where the expertise of the viewer (i.e., a member of the coaching team) plays a crucial role in identifying and determining the subtle features of gameplay that provide a winning advantage. As an initial case study, we investigate whether the SportsCode performance analysis software can be used to understand and document how an experienced Hi astronomer makes discoveries in spectral data cubes. We find that the process of timeline-based coding can be applied to spectral cube data by mapping spectral channels to frames within a movie. SportsCode provides a range of easy to use methods for annotation, including feature-based codes and labels, text annotations associated with codes, and image-based drawing. The outputs, including instance movies that are uniquely associated with coded events, provide the basis for a training program or team-based analysis that could be used in unison with discipline specific analysis software. In this coordinated approach to visualization and analysis, SportsCode can act as a visual notebook, recording the insight and decisions in partnership with established analysis methods. Alternatively, in situ annotation and coding of features would be a valuable addition to existing and future visualization and analysis packages.

  12. Adaptive Control of Visually Guided Grasping in Neural Networks

    DTIC Science & Technology

    1990-03-12

    D.P. Shankweiler, M. Studdert-Kennedy (1967) Perception of the speech code, Psychol. Rev. 74, 43 1. J. Piaget ( 1952 ), The Origins of Intelligence in...Coordination, IEEE Control Systems Magazine.V9:3 p.25-30 Piaget , J. ( 1952 ), The Origins of Intelligence in Children, translated by M.Cook, (International...University Press, New York. Piaget , J. (1954) The Construction of Reality in the Child, Translated by M. Cook , Ballentine Books, New York - 24-

  13. Distributed Coding/Decoding Complexity in Video Sensor Networks

    PubMed Central

    Cordeiro, Paulo J.; Assunção, Pedro

    2012-01-01

    Video Sensor Networks (VSNs) are recent communication infrastructures used to capture and transmit dense visual information from an application context. In such large scale environments which include video coding, transmission and display/storage, there are several open problems to overcome in practical implementations. This paper addresses the most relevant challenges posed by VSNs, namely stringent bandwidth usage and processing time/power constraints. In particular, the paper proposes a novel VSN architecture where large sets of visual sensors with embedded processors are used for compression and transmission of coded streams to gateways, which in turn transrate the incoming streams and adapt them to the variable complexity requirements of both the sensor encoders and end-user decoder terminals. Such gateways provide real-time transcoding functionalities for bandwidth adaptation and coding/decoding complexity distribution by transferring the most complex video encoding/decoding tasks to the transcoding gateway at the expense of a limited increase in bit rate. Then, a method to reduce the decoding complexity, suitable for system-on-chip implementation, is proposed to operate at the transcoding gateway whenever decoders with constrained resources are targeted. The results show that the proposed method achieves good performance and its inclusion into the VSN infrastructure provides an additional level of complexity control functionality. PMID:22736972

  14. Distributed coding/decoding complexity in video sensor networks.

    PubMed

    Cordeiro, Paulo J; Assunção, Pedro

    2012-01-01

    Video Sensor Networks (VSNs) are recent communication infrastructures used to capture and transmit dense visual information from an application context. In such large scale environments which include video coding, transmission and display/storage, there are several open problems to overcome in practical implementations. This paper addresses the most relevant challenges posed by VSNs, namely stringent bandwidth usage and processing time/power constraints. In particular, the paper proposes a novel VSN architecture where large sets of visual sensors with embedded processors are used for compression and transmission of coded streams to gateways, which in turn transrate the incoming streams and adapt them to the variable complexity requirements of both the sensor encoders and end-user decoder terminals. Such gateways provide real-time transcoding functionalities for bandwidth adaptation and coding/decoding complexity distribution by transferring the most complex video encoding/decoding tasks to the transcoding gateway at the expense of a limited increase in bit rate. Then, a method to reduce the decoding complexity, suitable for system-on-chip implementation, is proposed to operate at the transcoding gateway whenever decoders with constrained resources are targeted. The results show that the proposed method achieves good performance and its inclusion into the VSN infrastructure provides an additional level of complexity control functionality.

  15. The Visualization Toolkit (VTK): Rewriting the rendering code for modern graphics cards

    NASA Astrophysics Data System (ADS)

    Hanwell, Marcus D.; Martin, Kenneth M.; Chaudhary, Aashish; Avila, Lisa S.

    2015-09-01

    The Visualization Toolkit (VTK) is an open source, permissively licensed, cross-platform toolkit for scientific data processing, visualization, and data analysis. It is over two decades old, originally developed for a very different graphics card architecture. Modern graphics cards feature fully programmable, highly parallelized architectures with large core counts. VTK's rendering code was rewritten to take advantage of modern graphics cards, maintaining most of the toolkit's programming interfaces. This offers the opportunity to compare the performance of old and new rendering code on the same systems/cards. Significant improvements in rendering speeds and memory footprints mean that scientific data can be visualized in greater detail than ever before. The widespread use of VTK means that these improvements will reap significant benefits.

  16. Visual Dysfunction Following Blast-Related Traumatic Brain Injury from the Battlefield

    DTIC Science & Technology

    2010-10-27

    sequelae follow- ing a TBI [12, 13]. The occurrence of TBI-related ocular and visual disorders is varied, depending on the diagnostic criteria...measure, ocular/visual disor- der, was indicated by the ICD-9-CM diagnostic codes for ‘disorders of the eye and adnexa’ (360.0– 379.9) obtained from...II. Number and percentage of US service members in each ocular/visual disorder diagnostic category by TBI status. ICD-9-CM code and categorya TBI (n

  17. Influence of audio triggered emotional attention on video perception

    NASA Astrophysics Data System (ADS)

    Torres, Freddy; Kalva, Hari

    2014-02-01

    Perceptual video coding methods attempt to improve compression efficiency by discarding visual information not perceived by end users. Most of the current approaches for perceptual video coding only use visual features ignoring the auditory component. Many psychophysical studies have demonstrated that auditory stimuli affects our visual perception. In this paper we present our study of audio triggered emotional attention and it's applicability to perceptual video coding. Experiments with movie clips show that the reaction time to detect video compression artifacts was longer when video was presented with the audio information. The results reported are statistically significant with p=0.024.

  18. Preparation in and Use of the Nemeth Braille Code for Mathematics by Teachers of Students with Visual Impairments

    ERIC Educational Resources Information Center

    Rosenblum, L. Penny; Amato, Sheila

    2004-01-01

    This study examined the preparation in and use of the Nemeth braille code by 135 teachers of students with visual impairments. Almost all the teachers had taken at least one course in the Nemeth code as part of their university preparation. In their current jobs, they prepared a variety of materials, primarily basic operations, word problems,…

  19. Different Strokes for Different Folks: Visual Presentation Design between Disciplines

    PubMed Central

    Gomez, Steven R.; Jianu, Radu; Ziemkiewicz, Caroline; Guo, Hua; Laidlaw, David H.

    2015-01-01

    We present an ethnographic study of design differences in visual presentations between academic disciplines. Characterizing design conventions between users and data domains is an important step in developing hypotheses, tools, and design guidelines for information visualization. In this paper, disciplines are compared at a coarse scale between four groups of fields: social, natural, and formal sciences; and the humanities. Two commonplace presentation types were analyzed: electronic slideshows and whiteboard “chalk talks”. We found design differences in slideshows using two methods – coding and comparing manually-selected features, like charts and diagrams, and an image-based analysis using PCA called eigenslides. In whiteboard talks with controlled topics, we observed design behaviors, including using representations and formalisms from a participant’s own discipline, that suggest authors might benefit from novel assistive tools for designing presentations. Based on these findings, we discuss opportunities for visualization ethnography and human-centered authoring tools for visual information. PMID:26357149

  20. Different Strokes for Different Folks: Visual Presentation Design between Disciplines.

    PubMed

    Gomez, S R; Jianu, R; Ziemkiewicz, C; Guo, Hua; Laidlaw, D H

    2012-12-01

    We present an ethnographic study of design differences in visual presentations between academic disciplines. Characterizing design conventions between users and data domains is an important step in developing hypotheses, tools, and design guidelines for information visualization. In this paper, disciplines are compared at a coarse scale between four groups of fields: social, natural, and formal sciences; and the humanities. Two commonplace presentation types were analyzed: electronic slideshows and whiteboard "chalk talks". We found design differences in slideshows using two methods - coding and comparing manually-selected features, like charts and diagrams, and an image-based analysis using PCA called eigenslides. In whiteboard talks with controlled topics, we observed design behaviors, including using representations and formalisms from a participant's own discipline, that suggest authors might benefit from novel assistive tools for designing presentations. Based on these findings, we discuss opportunities for visualization ethnography and human-centered authoring tools for visual information.

  1. Experience with code-switching modulates the use of grammatical gender during sentence processing

    PubMed Central

    Valdés Kroff, Jorge R.; Dussias, Paola E.; Gerfen, Chip; Perrotti, Lauren; Bajo, M. Teresa

    2016-01-01

    Using code-switching as a tool to illustrate how language experience modulates comprehension, the visual world paradigm was employed to examine the extent to which gender-marked Spanish determiners facilitate upcoming target nouns in a group of Spanish-English bilingual code-switchers. The first experiment tested target Spanish nouns embedded in a carrier phrase (Experiment 1b) and included a control Spanish monolingual group (Experiment 1a). The second set of experiments included critical trials in which participants heard code-switches from Spanish determiners into English nouns (e.g., la house) either in a fixed carrier phrase (Experiment 2a) or in variable and complex sentences (Experiment 2b). Across the experiments, bilinguals revealed an asymmetric gender effect in processing, showing facilitation only for feminine target items. These results reflect the asymmetric use of gender in the production of code-switched speech. The extension of the asymmetric effect into Spanish (Experiment 1b) underscores the permeability between language modes in bilingual code-switchers. PMID:28663771

  2. Robot Task Commander with Extensible Programming Environment

    NASA Technical Reports Server (NTRS)

    Hart, Stephen W (Inventor); Wightman, Brian J (Inventor); Dinh, Duy Paul (Inventor); Yamokoski, John D. (Inventor); Gooding, Dustin R (Inventor)

    2014-01-01

    A system for developing distributed robot application-level software includes a robot having an associated control module which controls motion of the robot in response to a commanded task, and a robot task commander (RTC) in networked communication with the control module over a network transport layer (NTL). The RTC includes a script engine(s) and a GUI, with a processor and a centralized library of library blocks constructed from an interpretive computer programming code and having input and output connections. The GUI provides access to a Visual Programming Language (VPL) environment and a text editor. In executing a method, the VPL is opened, a task for the robot is built from the code library blocks, and data is assigned to input and output connections identifying input and output data for each block. A task sequence(s) is sent to the control module(s) over the NTL to command execution of the task.

  3. Transposed Letter Priming with Horizontal and Vertical Text in Japanese and English Readers

    ERIC Educational Resources Information Center

    Witzel, Naoko; Qiao, Xiaomei; Forster, Kenneth

    2011-01-01

    It is well established that in masked priming, a target word (e.g., "JUDGE") is primed more effectively by a transposed letter (TL) prime (e.g., "jugde") than by an orthographic control prime (e.g., "junpe"). This is inconsistent with the slot coding schemes used in many models of visual word recognition. Several…

  4. Control of humanoid robot via motion-onset visual evoked potentials

    PubMed Central

    Li, Wei; Li, Mengfan; Zhao, Jing

    2015-01-01

    This paper investigates controlling humanoid robot behavior via motion-onset specific N200 potentials. In this study, N200 potentials are induced by moving a blue bar through robot images intuitively representing robot behaviors to be controlled with mind. We present the individual impact of each subject on N200 potentials and discuss how to deal with individuality to obtain a high accuracy. The study results document the off-line average accuracy of 93% for hitting targets across over five subjects, so we use this major component of the motion-onset visual evoked potential (mVEP) to code people's mental activities and to perform two types of on-line operation tasks: navigating a humanoid robot in an office environment with an obstacle and picking-up an object. We discuss the factors that affect the on-line control success rate and the total time for completing an on-line operation task. PMID:25620918

  5. Novel Integration of Frame Rate Up Conversion and HEVC Coding Based on Rate-Distortion Optimization.

    PubMed

    Guo Lu; Xiaoyun Zhang; Li Chen; Zhiyong Gao

    2018-02-01

    Frame rate up conversion (FRUC) can improve the visual quality by interpolating new intermediate frames. However, high frame rate videos by FRUC are confronted with more bitrate consumption or annoying artifacts of interpolated frames. In this paper, a novel integration framework of FRUC and high efficiency video coding (HEVC) is proposed based on rate-distortion optimization, and the interpolated frames can be reconstructed at encoder side with low bitrate cost and high visual quality. First, joint motion estimation (JME) algorithm is proposed to obtain robust motion vectors, which are shared between FRUC and video coding. What's more, JME is embedded into the coding loop and employs the original motion search strategy in HEVC coding. Then, the frame interpolation is formulated as a rate-distortion optimization problem, where both the coding bitrate consumption and visual quality are taken into account. Due to the absence of original frames, the distortion model for interpolated frames is established according to the motion vector reliability and coding quantization error. Experimental results demonstrate that the proposed framework can achieve 21% ~ 42% reduction in BDBR, when compared with the traditional methods of FRUC cascaded with coding.

  6. Impaired letter-string processing in developmental dyslexia: what visual-to-phonology code mapping disorder?

    PubMed

    Valdois, Sylviane; Lassus-Sangosse, Delphine; Lobier, Muriel

    2012-05-01

    Poor parallel letter-string processing in developmental dyslexia was taken as evidence of poor visual attention (VA) span, that is, a limitation of visual attentional resources that affects multi-character processing. However, the use of letter stimuli in oral report tasks was challenged on its capacity to highlight a VA span disorder. In particular, report of poor letter/digit-string processing but preserved symbol-string processing was viewed as evidence of poor visual-to-phonology code mapping, in line with the phonological theory of developmental dyslexia. We assessed here the visual-to-phonological-code mapping disorder hypothesis. In Experiment 1, letter-string, digit-string and colour-string processing was assessed to disentangle a phonological versus visual familiarity account of the letter/digit versus symbol dissociation. Against a visual-to-phonological-code mapping disorder but in support of a familiarity account, results showed poor letter/digit-string processing but preserved colour-string processing in dyslexic children. In Experiment 2, two tasks of letter-string report were used, one of which was performed simultaneously to a high-taxing phonological task. Results show that dyslexic children are similarly impaired in letter-string report whether a concurrent phonological task is simultaneously performed or not. Taken together, these results provide strong evidence against a phonological account of poor letter-string processing in developmental dyslexia. Copyright © 2012 John Wiley & Sons, Ltd.

  7. A Cloud Based Framework For Monitoring And Predicting Subsurface System Behaviour

    NASA Astrophysics Data System (ADS)

    Versteeg, R. J.; Rodzianko, A.; Johnson, D. V.; Soltanian, M. R.; Dwivedi, D.; Dafflon, B.; Tran, A. P.; Versteeg, O. J.

    2015-12-01

    Subsurface system behavior is driven and controlled by the interplay of physical, chemical, and biological processes which occur at multiple temporal and spatial scales. Capabilities to monitor, understand and predict this behavior in an effective and timely manner are needed for both scientific purposes and for effective subsurface system management. Such capabilities require three elements: Models, Data and an enabling cyberinfrastructure, which allow users to use these models and data in an effective manner. Under a DOE Office of Science funded STTR award Subsurface Insights and LBNL have designed and implemented a cloud based predictive assimilation framework (PAF) which automatically ingests, controls quality and stores heterogeneous physical and chemical subsurface data and processes these data using different inversion and modeling codes to provide information on the current state and evolution of subsurface systems. PAF is implemented as a modular cloud based software application with five components: (1) data acquisition, (2) data management, (3) data assimilation and processing, (4) visualization and result delivery and (5) orchestration. Serverside PAF uses ZF2 (a PHP web application framework) and Python and both open source (ODM2) and in house developed data models. Clientside PAF uses CSS and JS to allow for interactive data visualization and analysis. Client side modularity (which allows for a responsive interface) of the system is achieved by implementing each core capability of PAF (such as data visualization, user configuration and control, electrical geophysical monitoring and email/SMS alerts on data streams) as a SPA (Single Page Application). One of the recent enhancements is the full integration of a number of flow and mass transport and parameter estimation codes (e.g., MODFLOW, MT3DMS, PHT3D, TOUGH, PFLOTRAN) in this framework. This integration allows for autonomous and user controlled modeling of hydrological and geochemical processes. In our presentation we will discuss our software architecture and present the results of using these codes and the overall developed performance of our framework using hydrological, geochemical and geophysical data from the LBNL SFA2 Rifle field site.

  8. Evaluation of tactual displays for flight control

    NASA Technical Reports Server (NTRS)

    Levison, W. H.; Tanner, R. B.; Triggs, T. J.

    1973-01-01

    Manual tracking experiments were conducted to determine the suitability of tactual displays for presenting flight-control information in multitask situations. Although tracking error scores are considerably greater than scores obtained with a continuous visual display, preliminary results indicate that inter-task interference effects are substantially less with the tactual display in situations that impose high visual scanning workloads. The single-task performance degradation found with the tactual display appears to be a result of the coding scheme rather than the use of the tactual sensory mode per se. Analysis with the state-variable pilot/vehicle model shows that reliable predictions of tracking errors can be obtained for wide-band tracking systems once the pilot-related model parameters have been adjusted to reflect the pilot-display interaction.

  9. Television News Without Pictures?

    ERIC Educational Resources Information Center

    Graber, Doris A.

    1987-01-01

    Describes "gestalt" coding procedures that concentrate on the meanings conveyed by audio-visual messages rather than on coding individual pictorial elements shown in a news story. Discusses the totality of meaning that results from the interaction of verbal and visual story elements, external settings, and the decoding proclivities of…

  10. The Deceptively Simple N170 Reflects Network Information Processing Mechanisms Involving Visual Feature Coding and Transfer Across Hemispheres

    PubMed Central

    Ince, Robin A. A.; Jaworska, Katarzyna; Gross, Joachim; Panzeri, Stefano; van Rijsbergen, Nicola J.; Rousselet, Guillaume A.; Schyns, Philippe G.

    2016-01-01

    A key to understanding visual cognition is to determine “where”, “when”, and “how” brain responses reflect the processing of the specific visual features that modulate categorization behavior—the “what”. The N170 is the earliest Event-Related Potential (ERP) that preferentially responds to faces. Here, we demonstrate that a paradigmatic shift is necessary to interpret the N170 as the product of an information processing network that dynamically codes and transfers face features across hemispheres, rather than as a local stimulus-driven event. Reverse-correlation methods coupled with information-theoretic analyses revealed that visibility of the eyes influences face detection behavior. The N170 initially reflects coding of the behaviorally relevant eye contralateral to the sensor, followed by a causal communication of the other eye from the other hemisphere. These findings demonstrate that the deceptively simple N170 ERP hides a complex network information processing mechanism involving initial coding and subsequent cross-hemispheric transfer of visual features. PMID:27550865

  11. Ant-Based Cyber Defense (also known as

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glenn Fink, PNNL

    2015-09-29

    ABCD is a four-level hierarchy with human supervisors at the top, a top-level agent called a Sergeant controlling each enclave, Sentinel agents located at each monitored host, and mobile Sensor agents that swarm through the enclaves to detect cyber malice and misconfigurations. The code comprises four parts: (1) the core agent framework, (2) the user interface and visualization, (3) test-range software to create a network of virtual machines including a simulated Internet and user and host activity emulation scripts, and (4) a test harness to allow the safe running of adversarial code within the framework of monitored virtual machines.

  12. FY 2002 Report on Software Visualization Techniques for IV and V

    NASA Technical Reports Server (NTRS)

    Fotta, Michael E.

    2002-01-01

    One of the major challenges software engineers often face in performing IV&V is developing an understanding of a system created by a development team they have not been part of. As budgets shrink and software increases in complexity, this challenge will become even greater as these software engineers face increased time and resource constraints. This research will determine which current aspects of providing this understanding (e.g., code inspections, use of control graphs, use of adjacency matrices, requirements traceability) are critical to the performing IV&V and amenable to visualization techniques. We will then develop state-of-the-art software visualization techniques to facilitate the use of these aspects to understand software and perform IV&V.

  13. Experimental design and analysis of JND test on coded image/video

    NASA Astrophysics Data System (ADS)

    Lin, Joe Yuchieh; Jin, Lina; Hu, Sudeng; Katsavounidis, Ioannis; Li, Zhi; Aaron, Anne; Kuo, C.-C. Jay

    2015-09-01

    The visual Just-Noticeable-Difference (JND) metric is characterized by the detectable minimum amount of two visual stimuli. Conducting the subjective JND test is a labor-intensive task. In this work, we present a novel interactive method in performing the visual JND test on compressed image/video. JND has been used to enhance perceptual visual quality in the context of image/video compression. Given a set of coding parameters, a JND test is designed to determine the distinguishable quality level against a reference image/video, which is called the anchor. The JND metric can be used to save coding bitrates by exploiting the special characteristics of the human visual system. The proposed JND test is conducted using a binary-forced choice, which is often adopted to discriminate the difference in perception in a psychophysical experiment. The assessors are asked to compare coded image/video pairs and determine whether they are of the same quality or not. A bisection procedure is designed to find the JND locations so as to reduce the required number of comparisons over a wide range of bitrates. We will demonstrate the efficiency of the proposed JND test, report experimental results on the image and video JND tests.

  14. Wireless visual sensor network resource allocation using cross-layer optimization

    NASA Astrophysics Data System (ADS)

    Bentley, Elizabeth S.; Matyjas, John D.; Medley, Michael J.; Kondi, Lisimachos P.

    2009-01-01

    In this paper, we propose an approach to manage network resources for a Direct Sequence Code Division Multiple Access (DS-CDMA) visual sensor network where nodes monitor scenes with varying levels of motion. It uses cross-layer optimization across the physical layer, the link layer and the application layer. Our technique simultaneously assigns a source coding rate, a channel coding rate, and a power level to all nodes in the network based on one of two criteria that maximize the quality of video of the entire network as a whole, subject to a constraint on the total chip rate. One criterion results in the minimal average end-to-end distortion amongst all nodes, while the other criterion minimizes the maximum distortion of the network. Our approach allows one to determine the capacity of the visual sensor network based on the number of nodes and the quality of video that must be transmitted. For bandwidth-limited applications, one can also determine the minimum bandwidth needed to accommodate a number of nodes with a specific target chip rate. Video captured by a sensor node camera is encoded and decoded using the H.264 video codec by a centralized control unit at the network layer. To reduce the computational complexity of the solution, Universal Rate-Distortion Characteristics (URDCs) are obtained experimentally to relate bit error probabilities to the distortion of corrupted video. Bit error rates are found first by using Viterbi's upper bounds on the bit error probability and second, by simulating nodes transmitting data spread by Total Square Correlation (TSC) codes over a Rayleigh-faded DS-CDMA channel and receiving that data using Auxiliary Vector (AV) filtering.

  15. Beyond Visual Communication Technology.

    ERIC Educational Resources Information Center

    Bell, Thomas P.

    1993-01-01

    Discusses various aspects of visual communication--light, semiotics, codes, photography, typography, and visual literacy--within the context of the communications technology area of technology education. (SK)

  16. Exclusively Visual Analysis of Classroom Group Interactions

    ERIC Educational Resources Information Center

    Tucker, Laura; Scherr, Rachel E.; Zickler, Todd; Mazur, Eric

    2016-01-01

    Large-scale audiovisual data that measure group learning are time consuming to collect and analyze. As an initial step towards scaling qualitative classroom observation, we qualitatively coded classroom video using an established coding scheme with and without its audio cues. We find that interrater reliability is as high when using visual data…

  17. Distributed Estimation, Coding, and Scheduling in Wireless Visual Sensor Networks

    ERIC Educational Resources Information Center

    Yu, Chao

    2013-01-01

    In this thesis, we consider estimation, coding, and sensor scheduling for energy efficient operation of wireless visual sensor networks (VSN), which consist of battery-powered wireless sensors with sensing (imaging), computation, and communication capabilities. The competing requirements for applications of these wireless sensor networks (WSN)…

  18. Selective population rate coding: a possible computational role of gamma oscillations in selective attention.

    PubMed

    Masuda, Naoki

    2009-12-01

    Selective attention is often accompanied by gamma oscillations in local field potentials and spike field coherence in brain areas related to visual, motor, and cognitive information processing. Gamma oscillations are implicated to play an important role in, for example, visual tasks including object search, shape perception, and speed detection. However, the mechanism by which gamma oscillations enhance cognitive and behavioral performance of attentive subjects is still elusive. Using feedforward fan-in networks composed of spiking neurons, we examine a possible role for gamma oscillations in selective attention and population rate coding of external stimuli. We implement the concept proposed by Fries ( 2005 ) that under dynamic stimuli, neural populations effectively communicate with each other only when there is a good phase relationship among associated gamma oscillations. We show that the downstream neural population selects a specific dynamic stimulus received by an upstream population and represents it by population rate coding. The encoded stimulus is the one for which gamma rhythm in the corresponding upstream population is resonant with the downstream gamma rhythm. The proposed role for gamma oscillations in stimulus selection is to enable top-down control, a neural version of time division multiple access used in communication engineering.

  19. A visual parallel-BCI speller based on the time-frequency coding strategy.

    PubMed

    Xu, Minpeng; Chen, Long; Zhang, Lixin; Qi, Hongzhi; Ma, Lan; Tang, Jiabei; Wan, Baikun; Ming, Dong

    2014-04-01

    Spelling is one of the most important issues in brain-computer interface (BCI) research. This paper is to develop a visual parallel-BCI speller system based on the time-frequency coding strategy in which the sub-speller switching among four simultaneously presented sub-spellers and the character selection are identified in a parallel mode. The parallel-BCI speller was constituted by four independent P300+SSVEP-B (P300 plus SSVEP blocking) spellers with different flicker frequencies, thereby all characters had a specific time-frequency code. To verify its effectiveness, 11 subjects were involved in the offline and online spellings. A classification strategy was designed to recognize the target character through jointly using the canonical correlation analysis and stepwise linear discriminant analysis. Online spellings showed that the proposed parallel-BCI speller had a high performance, reaching the highest information transfer rate of 67.4 bit min(-1), with an average of 54.0 bit min(-1) and 43.0 bit min(-1) in the three rounds and five rounds, respectively. The results indicated that the proposed parallel-BCI could be effectively controlled by users with attention shifting fluently among the sub-spellers, and highly improved the BCI spelling performance.

  20. Experimental aerothermodynamic research of hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Cleary, Joseph W.

    1987-01-01

    The 2-D and 3-D advance computer codes being developed for use in the design of such hypersonic aircraft as the National Aero-Space Plane require comparison of the computational results with a broad spectrum of experimental data to fully assess the validity of the codes. This is particularly true for complex flow fields with control surfaces present and for flows with separation, such as leeside flow. Therefore, the objective is to provide a hypersonic experimental data base required for validation of advanced computational fluid dynamics (CFD) computer codes and for development of more thorough understanding of the flow physics necessary for these codes. This is being done by implementing a comprehensive test program for a generic all-body hypersonic aircraft model in the NASA/Ames 3.5 foot Hypersonic Wind Tunnel over a broad range of test conditions to obtain pertinent surface and flowfield data. Results from the flow visualization portion of the investigation are presented.

  1. Feedback and Elaboration within a Computer-Based Simulation: A Dual Coding Perspective.

    ERIC Educational Resources Information Center

    Rieber, Lloyd P.; And Others

    The purpose of this study was to explore how adult users interact and learn during a computer-based simulation given visual and verbal forms of feedback coupled with embedded elaborations of the content. A total of 52 college students interacted with a computer-based simulation of Newton's laws of motion in which they had control over the motion…

  2. Mapping the Color Space of Saccadic Selectivity in Visual Search

    ERIC Educational Resources Information Center

    Xu, Yun; Higgins, Emily C.; Xiao, Mei; Pomplun, Marc

    2007-01-01

    Color coding is used to guide attention in computer displays for such critical tasks as baggage screening or air traffic control. It has been shown that a display object attracts more attention if its color is more similar to the color for which one is searching. However, what does "similar" precisely mean? Can we predict the amount of attention…

  3. Effects of Secondary Task Modality and Processing Code on Automation Trust and Utilization During Simulated Airline Luggage Screening

    NASA Technical Reports Server (NTRS)

    Phillips, Rachel; Madhavan, Poornima

    2010-01-01

    The purpose of this research was to examine the impact of environmental distractions on human trust and utilization of automation during the process of visual search. Participants performed a computer-simulated airline luggage screening task with the assistance of a 70% reliable automated decision aid (called DETECTOR) both with and without environmental distractions. The distraction was implemented as a secondary task in either a competing modality (visual) or non-competing modality (auditory). The secondary task processing code either competed with the luggage screening task (spatial code) or with the automation's textual directives (verbal code). We measured participants' system trust, perceived reliability of the system (when a target weapon was present and absent), compliance, reliance, and confidence when agreeing and disagreeing with the system under both distracted and undistracted conditions. Results revealed that system trust was lower in the visual-spatial and auditory-verbal conditions than in the visual-verbal and auditory-spatial conditions. Perceived reliability of the system (when the target was present) was significantly higher when the secondary task was visual rather than auditory. Compliance with the aid increased in all conditions except for the auditory-verbal condition, where it decreased. Similar to the pattern for trust, reliance on the automation was lower in the visual-spatial and auditory-verbal conditions than in the visual-verbal and auditory-spatial conditions. Confidence when agreeing with the system decreased with the addition of any kind of distraction; however, confidence when disagreeing increased with the addition of an auditory secondary task but decreased with the addition of a visual task. A model was developed to represent the research findings and demonstrate the relationship between secondary task modality, processing code, and automation use. Results suggest that the nature of environmental distractions influence interaction with automation via significant effects on trust and system utilization. These findings have implications for both automation design and operator training.

  4. Indexing sensory plasticity: Evidence for distinct Predictive Coding and Hebbian learning mechanisms in the cerebral cortex.

    PubMed

    Spriggs, M J; Sumner, R L; McMillan, R L; Moran, R J; Kirk, I J; Muthukumaraswamy, S D

    2018-04-30

    The Roving Mismatch Negativity (MMN), and Visual LTP paradigms are widely used as independent measures of sensory plasticity. However, the paradigms are built upon fundamentally different (and seemingly opposing) models of perceptual learning; namely, Predictive Coding (MMN) and Hebbian plasticity (LTP). The aim of the current study was to compare the generative mechanisms of the MMN and visual LTP, therefore assessing whether Predictive Coding and Hebbian mechanisms co-occur in the brain. Forty participants were presented with both paradigms during EEG recording. Consistent with Predictive Coding and Hebbian predictions, Dynamic Causal Modelling revealed that the generation of the MMN modulates forward and backward connections in the underlying network, while visual LTP only modulates forward connections. These results suggest that both Predictive Coding and Hebbian mechanisms are utilized by the brain under different task demands. This therefore indicates that both tasks provide unique insight into plasticity mechanisms, which has important implications for future studies of aberrant plasticity in clinical populations. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Efficient visual object and word recognition relies on high spatial frequency coding in the left posterior fusiform gyrus: evidence from a case-series of patients with ventral occipito-temporal cortex damage.

    PubMed

    Roberts, Daniel J; Woollams, Anna M; Kim, Esther; Beeson, Pelagie M; Rapcsak, Steven Z; Lambon Ralph, Matthew A

    2013-11-01

    Recent visual neuroscience investigations suggest that ventral occipito-temporal cortex is retinotopically organized, with high acuity foveal input projecting primarily to the posterior fusiform gyrus (pFG), making this region crucial for coding high spatial frequency information. Because high spatial frequencies are critical for fine-grained visual discrimination, we hypothesized that damage to the left pFG should have an adverse effect not only on efficient reading, as observed in pure alexia, but also on the processing of complex non-orthographic visual stimuli. Consistent with this hypothesis, we obtained evidence that a large case series (n = 20) of patients with lesions centered on left pFG: 1) Exhibited reduced sensitivity to high spatial frequencies; 2) demonstrated prolonged response latencies both in reading (pure alexia) and object naming; and 3) were especially sensitive to visual complexity and similarity when discriminating between novel visual patterns. These results suggest that the patients' dual reading and non-orthographic recognition impairments have a common underlying mechanism and reflect the loss of high spatial frequency visual information normally coded in the left pFG.

  6. Analyzing simulation-based PRA data through traditional and topological clustering: A BWR station blackout case study

    DOE PAGES

    Maljovec, D.; Liu, S.; Wang, B.; ...

    2015-07-14

    Here, dynamic probabilistic risk assessment (DPRA) methodologies couple system simulator codes (e.g., RELAP and MELCOR) with simulation controller codes (e.g., RAVEN and ADAPT). Whereas system simulator codes model system dynamics deterministically, simulation controller codes introduce both deterministic (e.g., system control logic and operating procedures) and stochastic (e.g., component failures and parameter uncertainties) elements into the simulation. Typically, a DPRA is performed by sampling values of a set of parameters and simulating the system behavior for that specific set of parameter values. For complex systems, a major challenge in using DPRA methodologies is to analyze the large number of scenarios generated,more » where clustering techniques are typically employed to better organize and interpret the data. In this paper, we focus on the analysis of two nuclear simulation datasets that are part of the risk-informed safety margin characterization (RISMC) boiling water reactor (BWR) station blackout (SBO) case study. We provide the domain experts a software tool that encodes traditional and topological clustering techniques within an interactive analysis and visualization environment, for understanding the structures of such high-dimensional nuclear simulation datasets. We demonstrate through our case study that both types of clustering techniques complement each other for enhanced structural understanding of the data.« less

  7. Position coding effects in a 2D scenario: the case of musical notation.

    PubMed

    Perea, Manuel; García-Chamorro, Cristina; Centelles, Arnau; Jiménez, María

    2013-07-01

    How does the cognitive system encode the location of objects in a visual scene? In the past decade, this question has attracted much attention in the field of visual-word recognition (e.g., "jugde" is perceptually very close to "judge"). Letter transposition effects have been explained in terms of perceptual uncertainty or shared "open bigrams". In the present study, we focus on note position coding in music reading (i.e., a 2D scenario). The usual way to display music is the staff (i.e., a set of 5 horizontal lines and their resultant 4 spaces). When reading musical notation, it is critical to identify not only each note (temporal duration), but also its pitch (y-axis) and its temporal sequence (x-axis). To examine note position coding, we employed a same-different task in which two briefly and consecutively presented staves contained four notes. The experiment was conducted with experts (musicians) and non-experts (non-musicians). For the "different" trials, the critical conditions involved staves in which two internal notes that were switched vertically, horizontally, or fully transposed--as well as the appropriate control conditions. Results revealed that note position coding was only approximate at the early stages of processing and that this encoding process was modulated by expertise. We examine the implications of these findings for models of object position encoding. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Color-coded visualization of magnetic resonance imaging multiparametric maps

    NASA Astrophysics Data System (ADS)

    Kather, Jakob Nikolas; Weidner, Anja; Attenberger, Ulrike; Bukschat, Yannick; Weis, Cleo-Aron; Weis, Meike; Schad, Lothar R.; Zöllner, Frank Gerrit

    2017-01-01

    Multiparametric magnetic resonance imaging (mpMRI) data are emergingly used in the clinic e.g. for the diagnosis of prostate cancer. In contrast to conventional MR imaging data, multiparametric data typically include functional measurements such as diffusion and perfusion imaging sequences. Conventionally, these measurements are visualized with a one-dimensional color scale, allowing only for one-dimensional information to be encoded. Yet, human perception places visual information in a three-dimensional color space. In theory, each dimension of this space can be utilized to encode visual information. We addressed this issue and developed a new method for tri-variate color-coded visualization of mpMRI data sets. We showed the usefulness of our method in a preclinical and in a clinical setting: In imaging data of a rat model of acute kidney injury, the method yielded characteristic visual patterns. In a clinical data set of N = 13 prostate cancer mpMRI data, we assessed diagnostic performance in a blinded study with N = 5 observers. Compared to conventional radiological evaluation, color-coded visualization was comparable in terms of positive and negative predictive values. Thus, we showed that human observers can successfully make use of the novel method. This method can be broadly applied to visualize different types of multivariate MRI data.

  9. GRASP/Ada 95: Reverse Engineering Tools for Ada

    NASA Technical Reports Server (NTRS)

    Cross, James H., II

    1996-01-01

    The GRASP/Ada project (Graphical Representations of Algorithms, Structures, and Processes for Ada) has successfully created and prototyped an algorithmic level graphical representation for Ada software, the Control Structure Diagram (CSD), and a new visualization for a fine-grained complexity metric called the Complexity Profile Graph (CPG). By synchronizing the CSD and the CPG, the CSD view of control structure, nesting, and source code is directly linked to the corresponding visualization of statement level complexity in the CPG. GRASP has been integrated with GNAT, the GNU Ada 95 Translator to provide a comprehensive graphical user interface and development environment for Ada 95. The user may view, edit, print, and compile source code as a CSD with no discernible addition to storage or computational overhead. The primary impetus for creation of the CSD was to improve the comprehension efficiency of Ada software and, as a result, improve reliability and reduce costs. The emphasis has been on the automatic generation of the CSD from Ada 95 source code to support reverse engineering and maintenance. The CSD has the potential to replace traditional prettyprinted Ada source code. The current update has focused on the design and implementation of a new Motif compliant user interface, and a new CSD generator consisting of a tagger and renderer. The Complexity Profile Graph (CPG) is based on a set of functions that describes the context, content, and the scaling for complexity on a statement by statement basis. When combined graphicafly, the result is a composite profile of complexity for the program unit. Ongoing research includes the development and refinement of the associated functions, and the development of the CPG generator prototype. The current Version 5.0 prototype provides the capability for the user to generate CSDs and CPGs from Ada 95 source code in a reverse engineering as well as forward engineering mode with a level of flexibility suitable for practical application. This report provides an overview of the GRASP/Ada project with an emphasis on the current update.

  10. Rapid visual perception of interracial crowds: Racial category learning from emotional segregation.

    PubMed

    Lamer, Sarah Ariel; Sweeny, Timothy D; Dyer, Michael Louis; Weisbuch, Max

    2018-05-01

    Drawing from research on social identity and ensemble coding, we theorize that crowd perception provides a powerful mechanism for social category learning. Crowds include allegiances that may be distinguished by visual cues to shared behavior and mental states, providing perceivers with direct information about social groups and thus a basis for learning social categories. Here, emotion expressions signaled group membership: to the extent that a crowd exhibited emotional segregation (i.e., was segregated into emotional subgroups), a visible characteristic (race) that incidentally distinguished emotional subgroups was expected to support categorical distinctions. Participants were randomly assigned to view interracial crowds in which emotion differences between (black vs. white) subgroups were either small (control condition) or large (emotional segregation condition). On each trial, participants saw crowds of 12 faces (6 black, 6 white) for roughly 300 ms and were asked to estimate the average emotion of the entire crowd. After all trials, participants completed a racial categorization task and self-report measure of race essentialism. As predicted, participants exposed to emotional segregation (vs. control) exhibited stronger racial category boundaries and stronger race essentialism. Furthermore, such effects accrued via ensemble coding, a visual mechanism that summarizes perceptual information: emotional segregation strengthened participants' racial category boundaries to the extent that segregation limited participants' abilities to integrate emotion across racial subgroups. Together with evidence that people observe emotional segregation in natural environments, these findings suggest that crowd perception mechanisms support racial category boundaries and race essentialism. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  11. Automatic frame-centered object representation and integration revealed by iconic memory, visual priming, and backward masking.

    PubMed

    Lin, Zhicheng; He, Sheng

    2012-10-25

    Object identities ("what") and their spatial locations ("where") are processed in distinct pathways in the visual system, raising the question of how the what and where information is integrated. Because of object motions and eye movements, the retina-based representations are unstable, necessitating nonretinotopic representation and integration. A potential mechanism is to code and update objects according to their reference frames (i.e., frame-centered representation and integration). To isolate frame-centered processes, in a frame-to-frame apparent motion configuration, we (a) presented two preceding or trailing objects on the same frame, equidistant from the target on the other frame, to control for object-based (frame-based) effect and space-based effect, and (b) manipulated the target's relative location within its frame to probe frame-centered effect. We show that iconic memory, visual priming, and backward masking depend on objects' relative frame locations, orthogonal of the retinotopic coordinate. These findings not only reveal that iconic memory, visual priming, and backward masking can be nonretinotopic but also demonstrate that these processes are automatically constrained by contextual frames through a frame-centered mechanism. Thus, object representation is robustly and automatically coupled to its reference frame and continuously being updated through a frame-centered, location-specific mechanism. These findings lead to an object cabinet framework, in which objects ("files") within the reference frame ("cabinet") are orderly coded relative to the frame.

  12. The Deceptively Simple N170 Reflects Network Information Processing Mechanisms Involving Visual Feature Coding and Transfer Across Hemispheres.

    PubMed

    Ince, Robin A A; Jaworska, Katarzyna; Gross, Joachim; Panzeri, Stefano; van Rijsbergen, Nicola J; Rousselet, Guillaume A; Schyns, Philippe G

    2016-08-22

    A key to understanding visual cognition is to determine "where", "when", and "how" brain responses reflect the processing of the specific visual features that modulate categorization behavior-the "what". The N170 is the earliest Event-Related Potential (ERP) that preferentially responds to faces. Here, we demonstrate that a paradigmatic shift is necessary to interpret the N170 as the product of an information processing network that dynamically codes and transfers face features across hemispheres, rather than as a local stimulus-driven event. Reverse-correlation methods coupled with information-theoretic analyses revealed that visibility of the eyes influences face detection behavior. The N170 initially reflects coding of the behaviorally relevant eye contralateral to the sensor, followed by a causal communication of the other eye from the other hemisphere. These findings demonstrate that the deceptively simple N170 ERP hides a complex network information processing mechanism involving initial coding and subsequent cross-hemispheric transfer of visual features. © The Author 2016. Published by Oxford University Press.

  13. Seeing the mean: ensemble coding for sets of faces.

    PubMed

    Haberman, Jason; Whitney, David

    2009-06-01

    We frequently encounter groups of similar objects in our visual environment: a bed of flowers, a basket of oranges, a crowd of people. How does the visual system process such redundancy? Research shows that rather than code every element in a texture, the visual system favors a summary statistical representation of all the elements. The authors demonstrate that although it may facilitate texture perception, ensemble coding also occurs for faces-a level of processing well beyond that of textures. Observers viewed sets of faces varying in emotionality (e.g., happy to sad) and assessed the mean emotion of each set. Although observers retained little information about the individual set members, they had a remarkably precise representation of the mean emotion. Observers continued to discriminate the mean emotion accurately even when they viewed sets of 16 faces for 500 ms or less. Modeling revealed that perceiving the average facial expression in groups of faces was not due to noisy representation or noisy discrimination. These findings support the hypothesis that ensemble coding occurs extremely fast at multiple levels of visual analysis. (c) 2009 APA, all rights reserved.

  14. Visual coding of human bodies: perceptual aftereffects reveal norm-based, opponent coding of body identity.

    PubMed

    Rhodes, Gillian; Jeffery, Linda; Boeing, Alexandra; Calder, Andrew J

    2013-04-01

    Despite the discovery of body-selective neural areas in occipitotemporal cortex, little is known about how bodies are visually coded. We used perceptual adaptation to determine how body identity is coded. Brief exposure to a body (e.g., anti-Rose) biased perception toward an identity with opposite properties (Rose). Moreover, the size of this aftereffect increased with adaptor extremity, as predicted by norm-based, opponent coding of body identity. A size change between adapt and test bodies minimized the effects of low-level, retinotopic adaptation. These results demonstrate that body identity, like face identity, is opponent coded in higher-level vision. More generally, they show that a norm-based multidimensional framework, which is well established for face perception, may provide a powerful framework for understanding body perception.

  15. Optimal power allocation and joint source-channel coding for wireless DS-CDMA visual sensor networks

    NASA Astrophysics Data System (ADS)

    Pandremmenou, Katerina; Kondi, Lisimachos P.; Parsopoulos, Konstantinos E.

    2011-01-01

    In this paper, we propose a scheme for the optimal allocation of power, source coding rate, and channel coding rate for each of the nodes of a wireless Direct Sequence Code Division Multiple Access (DS-CDMA) visual sensor network. The optimization is quality-driven, i.e. the received quality of the video that is transmitted by the nodes is optimized. The scheme takes into account the fact that the sensor nodes may be imaging scenes with varying levels of motion. Nodes that image low-motion scenes will require a lower source coding rate, so they will be able to allocate a greater portion of the total available bit rate to channel coding. Stronger channel coding will mean that such nodes will be able to transmit at lower power. This will both increase battery life and reduce interference to other nodes. Two optimization criteria are considered. One that minimizes the average video distortion of the nodes and one that minimizes the maximum distortion among the nodes. The transmission powers are allowed to take continuous values, whereas the source and channel coding rates can assume only discrete values. Thus, the resulting optimization problem lies in the field of mixed-integer optimization tasks and is solved using Particle Swarm Optimization. Our experimental results show the importance of considering the characteristics of the video sequences when determining the transmission power, source coding rate and channel coding rate for the nodes of the visual sensor network.

  16. A smart sensor architecture based on emergent computation in an array of outer-totalistic cells

    NASA Astrophysics Data System (ADS)

    Dogaru, Radu; Dogaru, Ioana; Glesner, Manfred

    2005-06-01

    A novel smart-sensor architecture is proposed, capable to segment and recognize characters in a monochrome image. It is capable to provide a list of ASCII codes representing the recognized characters from the monochrome visual field. It can operate as a blind's aid or for industrial applications. A bio-inspired cellular model with simple linear neurons was found the best to perform the nontrivial task of cropping isolated compact objects such as handwritten digits or characters. By attaching a simple outer-totalistic cell to each pixel sensor, emergent computation in the resulting cellular automata lattice provides a straightforward and compact solution to the otherwise computationally intensive problem of character segmentation. A simple and robust recognition algorithm is built in a compact sequential controller accessing the array of cells so that the integrated device can provide directly a list of codes of the recognized characters. Preliminary simulation tests indicate good performance and robustness to various distortions of the visual field.

  17. Suppressive and enhancing effects in early visual cortex during illusory shape perception: A comment on.

    PubMed

    Moors, Pieter

    2015-01-01

    In a recent functional magnetic resonance imaging study, Kok and de Lange (2014) observed that BOLD activity for a Kanizsa illusory shape stimulus, in which pacmen-like inducers elicit an illusory shape percept, was either enhanced or suppressed relative to a nonillusory control configuration depending on whether the spatial profile of BOLD activity in early visual cortex was related to the illusory shape or the inducers, respectively. The authors argued that these findings fit well with the predictive coding framework, because top-down predictions related to the illusory shape are not met with bottom-up sensory input and hence the feedforward error signal is enhanced. Conversely, for the inducing elements, there is a match between top-down predictions and input, leading to a decrease in error. Rather than invoking predictive coding as the explanatory framework, the suppressive effect related to the inducers might be caused by neural adaptation to perceptually stable input due to the trial sequence used in the experiment.

  18. The audiovisual structure of onomatopoeias: An intrusion of real-world physics in lexical creation.

    PubMed

    Taitz, Alan; Assaneo, M Florencia; Elisei, Natalia; Trípodi, Mónica; Cohen, Laurent; Sitt, Jacobo D; Trevisan, Marcos A

    2018-01-01

    Sound-symbolic word classes are found in different cultures and languages worldwide. These words are continuously produced to code complex information about events. Here we explore the capacity of creative language to transport complex multisensory information in a controlled experiment, where our participants improvised onomatopoeias from noisy moving objects in audio, visual and audiovisual formats. We found that consonants communicate movement types (slide, hit or ring) mainly through the manner of articulation in the vocal tract. Vowels communicate shapes in visual stimuli (spiky or rounded) and sound frequencies in auditory stimuli through the configuration of the lips and tongue. A machine learning model was trained to classify movement types and used to validate generalizations of our results across formats. We implemented the classifier with a list of cross-linguistic onomatopoeias simple actions were correctly classified, while different aspects were selected to build onomatopoeias of complex actions. These results show how the different aspects of complex sensory information are coded and how they interact in the creation of novel onomatopoeias.

  19. Protection of data carriers using secure optical codes

    NASA Astrophysics Data System (ADS)

    Peters, John A.; Schilling, Andreas; Staub, René; Tompkin, Wayne R.

    2006-02-01

    Smartcard technologies, combined with biometric-enabled access control systems, are required for many high-security government ID card programs. However, recent field trials with some of the most secure biometric systems have indicated that smartcards are still vulnerable to well equipped and highly motivated counterfeiters. In this paper, we present the Kinegram Secure Memory Technology which not only provides a first-level visual verification procedure, but also reinforces the existing chip-based security measures. This security concept involves the use of securely-coded data (stored in an optically variable device) which communicates with the encoded hashed information stored in the chip memory via a smartcard reader device.

  20. Visual loss after spine surgery: a population-based study.

    PubMed

    Patil, Chirag G; Lad, Eleonora M; Lad, Shivanand P; Ho, Chris; Boakye, Maxwell

    2008-06-01

    Retrospective cohort study using National inpatient sample administrative data. To determine national estimates of visual impairment and ischemic optic neuropathy after spine surgery. Loss of vision after spine surgery is rare but has devastating complications that has gained increasing recognition in the recent literature. National population-based studies of visual complications after spine surgery are lacking. All patients from 1993 to 2002 who underwent spine surgery (Clinical Classifications software procedure code: 3, 158) and who had ischemic optic neuropathy (ION) (ICD9-CM code 377.41), central retinal artery occlusion (CRAO) (ICD9-CM code 362.31) or non-ION, non-CRAO perioperative visual impairment (ICD9-CM codes: 369, 368.4, 368.8-9368.11-13) were included. Univariate and multivariate analysis were performed to identify potential risk factors. The overall incidence of visual disturbance after spine surgery was 0.094%. Spine surgery for scoliosis correction and posterior lumbar fusion had the highest rates of postoperative visual loss of 0.28% and 0.14% respectively. Pediatric patients (<18 years) were 5.8 times and elderly patients (>84 years) were 3.2 times more likely than, patients 18 to 44 years of age to develop non-ION, non-CRAO visual loss after spine surgery. Patients with peripheral vascular disease (OR = 2.0), hypertension (OR = 1.3), and those who received blood transfusion (OR = 2.2) were more likely to develop non-ION, non-CRAO vision loss after spine surgery. Ischemic optic neuropathy was present in 0.006% of patients. Hypotension (OR = 10.1), peripheral vascular disease (OR = 6.3) and anemia (OR = 5.9) were the strongest risk factors identified for the development of ION. We used multivariate analysis to identify significant risk factors for visual loss after spine surgery. National population-based estimate of visual impairment after spine surgery confirms that ophthalmic complications after spine surgery are rare. Since visual loss may be reversible in the early stages, awareness, evaluation and prompt management of this rare but potentially devastating complication is critical.

  1. Towards an Analysis of Visual Images in School Science Textbooks and Press Articles about Science and Technology

    NASA Astrophysics Data System (ADS)

    Dimopoulos, Kostas; Koulaidis, Vasilis; Sklaveniti, Spyridoula

    2003-04-01

    This paper aims at presenting the application of a grid for the analysis of the pedagogic functions of visual images included in school science textbooks and daily press articles about science and technology. The analysis is made using the dimensions of content specialisation (classification) and social-pedagogic relationships (framing) promoted by the images as well as the elaboration and abstraction of the corresponding visual code (formality), thus combining pedagogical and socio-semiotic perspectives. The grid is applied to the analysis of 2819 visual images collected from school science textbooks and another 1630 visual images additionally collected from the press. The results show that the science textbooks in comparison to the press material: a) use ten times more images, b) use more images so as to familiarise their readers with the specialised techno-scientific content and codes, and c) tend to create a sense of higher empowerment for their readers by using the visual mode. Furthermore, as the educational level of the school science textbooks (i.e., from primary to lower secondary level) rises, the content specialisation projected by the visual images and the elaboration and abstraction of the corresponding visual code also increases. The above results have implications for the terms and conditions for the effective exploitation of visual material as the educational level rises as well as for the effective incorporation of visual images from press material into science classes.

  2. Nonlinear Multiscale Transformations: From Synchronization to Error Control

    DTIC Science & Technology

    2001-07-01

    transformation (plus the quantization step) has taken place, a lossless Lempel - Ziv compression algorithm is applied to reduce the size of the transformed... compressed data are all very close, however the visual quality of the reconstructed image is significantly better for the EC compression algorithm ...used in recent times in the first step of transform coding algorithms for image compression . Ideally, a multiscale transformation allows for an

  3. Integrated Efforts for Analysis of Geophysical Measurements and Models.

    DTIC Science & Technology

    1997-09-26

    12b. DISTRIBUTION CODE 13. ABSTRACT ( Maximum 200 words) This contract supported investigations of integrated applications of physics, ephemerides...REGIONS AND GPS DATA VALIDATIONS 20 2.5 PL-SCINDA: VISUALIZATION AND ANALYSIS TECHNIQUES 22 2.5.1 View Controls 23 2.5.2 Map Selection...and IR data, about cloudy pixels. Clustering and maximum likelihood classification algorithms categorize up to four cloud layers into stratiform or

  4. The role of 3-D interactive visualization in blind surveys of H I in galaxies

    NASA Astrophysics Data System (ADS)

    Punzo, D.; van der Hulst, J. M.; Roerdink, J. B. T. M.; Oosterloo, T. A.; Ramatsoku, M.; Verheijen, M. A. W.

    2015-09-01

    Upcoming H I surveys will deliver large datasets, and automated processing using the full 3-D information (two positional dimensions and one spectral dimension) to find and characterize H I objects is imperative. In this context, visualization is an essential tool for enabling qualitative and quantitative human control on an automated source finding and analysis pipeline. We discuss how Visual Analytics, the combination of automated data processing and human reasoning, creativity and intuition, supported by interactive visualization, enables flexible and fast interaction with the 3-D data, helping the astronomer to deal with the analysis of complex sources. 3-D visualization, coupled to modeling, provides additional capabilities helping the discovery and analysis of subtle structures in the 3-D domain. The requirements for a fully interactive visualization tool are: coupled 1-D/2-D/3-D visualization, quantitative and comparative capabilities, combined with supervised semi-automated analysis. Moreover, the source code must have the following characteristics for enabling collaborative work: open, modular, well documented, and well maintained. We review four state of-the-art, 3-D visualization packages assessing their capabilities and feasibility for use in the case of 3-D astronomical data.

  5. Reading color barcodes using visual snakes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaub, Hanspeter

    2004-05-01

    Statistical pressure snakes are used to track a mono-color target in an unstructured environment using a video camera. The report discusses an algorithm to extract a bar code signal that is embedded within the target. The target is assumed to be rectangular in shape, with the bar code printed in a slightly different saturation and value in HSV color space. Thus, the visual snake, which primarily weighs hue tracking errors, will not be deterred by the presence of the color bar codes in the target. The bar code is generate with the standard 3 of 9 method. Using this method,more » the numeric bar codes reveal if the target is right-side-up or up-side-down.« less

  6. Improving comprehension in adolescents with severe receptive language impairments: a randomized control trial of intervention for coordinating conjunctions.

    PubMed

    Ebbels, Susan H; Marić, Nataša; Murphy, Aoife; Turner, Gail

    2014-01-01

    Little evidence exists for the effectiveness of therapy for children with receptive language difficulties, particularly those whose difficulties are severe and persistent. To establish the effectiveness of explicit speech and language therapy with visual support for secondary school-aged children with language impairments focusing on comprehension of coordinating conjunctions in a randomized control trial with an assessor blind to group status. Fourteen participants (aged 11;3-16;1) with severe RELI (mean standard scores: CELF4 ELS = 48, CELF4 RLS = 53 and TROG-2 = 57), but higher non-verbal (Matrices = 83) and visual perceptual skills (Test of Visual Perceptual Skills (TVPS) = 86) were randomly assigned to two groups: therapy versus waiting controls. In Phase 1, the therapy group received eight 30-min individual sessions of explicit teaching with visual support (Shape Coding) with their usual SLT. In Phase 2, the waiting controls received the same therapy. The participants' comprehension was tested pre-, post-Phase 1 and post-Phase 2 therapy on (1) a specific test of the targeted conjunctions, (2) the TROG-2 and (3) a test of passives. After Phase 1, the therapy group showed significantly more progress than the waiting controls on the targeted conjunctions (d = 1.6) and overall TROG-2 standard score (d = 1.4). The two groups did not differ on the passives test. After Phase 2, the waiting controls made similar progress to those in the original therapy group, who maintained their previous progress. Neither group showed progress on passives. When the two groups were combined, significant progress was found on the specific conjunctions (d = 1.3) and TROG-2 raw (d = 1.1) and standard scores (d = 0.9). Correlations showed no measures taken (including Matrices and TVPS) correlated significantly with progress on the targeted conjunctions or the TROG-2. Four hours of Shape Coding therapy led to significant gains on comprehension of coordinating conjunctions which were maintained after 4 months. Given the significant progress at a group level and the lack of reliable predictors of progress, this approach could be offered to other children with similar difficulties to the participants. However, the intervention was delivered one-to-one by speech and language therapists, thus the effectiveness of this therapy method with other methods of delivery remains to be evaluated. © 2013 Royal College of Speech and Language Therapists.

  7. Data and code for the exploratory data analysis of the electrical energy demand in the time domain in Greece.

    PubMed

    Tyralis, Hristos; Karakatsanis, Georgios; Tzouka, Katerina; Mamassis, Nikos

    2017-08-01

    We present data and code for visualizing the electrical energy data and weather-, climate-related and socioeconomic variables in the time domain in Greece. The electrical energy data include hourly demand, weekly-ahead forecasted values of the demand provided by the Greek Independent Power Transmission Operator and pricing values in Greece. We also present the daily temperature in Athens and the Gross Domestic Product of Greece. The code combines the data to a single report, which includes all visualizations with combinations of all variables in multiple time scales. The data and code were used in Tyralis et al. (2017) [1].

  8. How Object-Specific Are Object Files? Evidence for Integration by Location

    ERIC Educational Resources Information Center

    van Dam, Wessel O.; Hommel, Bernhard

    2010-01-01

    Given the distributed representation of visual features in the human brain, binding mechanisms are necessary to integrate visual information about the same perceptual event. It has been assumed that feature codes are bound into object files--pointers to the neural codes of the features of a given event. The present study investigated the…

  9. Learning about Probability from Text and Tables: Do Color Coding and Labeling through an Interactive-User Interface Help?

    ERIC Educational Resources Information Center

    Clinton, Virginia; Morsanyi, Kinga; Alibali, Martha W.; Nathan, Mitchell J.

    2016-01-01

    Learning from visual representations is enhanced when learners appropriately integrate corresponding visual and verbal information. This study examined the effects of two methods of promoting integration, color coding and labeling, on learning about probabilistic reasoning from a table and text. Undergraduate students (N = 98) were randomly…

  10. Cell-assembly coding in several memory processes.

    PubMed

    Sakurai, Y

    1998-01-01

    The present paper discusses why the cell assembly, i.e., an ensemble population of neurons with flexible functional connections, is a tenable view of the basic code for information processes in the brain. The main properties indicating the reality of cell-assembly coding are neurons overlaps among different assemblies and connection dynamics within and among the assemblies. The former can be detected as multiple functions of individual neurons in processing different kinds of information. Individual neurons appear to be involved in multiple information processes. The latter can be detected as changes of functional synaptic connections in processing different kinds of information. Correlations of activity among some of the recorded neurons appear to change in multiple information processes. Recent experiments have compared several different memory processes (tasks) and detected these two main properties, indicating cell-assembly coding of memory in the working brain. The first experiment compared different types of processing of identical stimuli, i.e., working memory and reference memory of auditory stimuli. The second experiment compared identical processes of different types of stimuli, i.e., discriminations of simple auditory, simple visual, and configural auditory-visual stimuli. The third experiment compared identical processes of different types of stimuli with or without temporal processing of stimuli, i.e., discriminations of elemental auditory, configural auditory-visual, and sequential auditory-visual stimuli. Some possible features of the cell-assembly coding, especially "dual coding" by individual neurons and cell assemblies, are discussed for future experimental approaches. Copyright 1998 Academic Press.

  11. Self-Taught Low-Rank Coding for Visual Learning.

    PubMed

    Li, Sheng; Li, Kang; Fu, Yun

    2018-03-01

    The lack of labeled data presents a common challenge in many computer vision and machine learning tasks. Semisupervised learning and transfer learning methods have been developed to tackle this challenge by utilizing auxiliary samples from the same domain or from a different domain, respectively. Self-taught learning, which is a special type of transfer learning, has fewer restrictions on the choice of auxiliary data. It has shown promising performance in visual learning. However, existing self-taught learning methods usually ignore the structure information in data. In this paper, we focus on building a self-taught coding framework, which can effectively utilize the rich low-level pattern information abstracted from the auxiliary domain, in order to characterize the high-level structural information in the target domain. By leveraging a high quality dictionary learned across auxiliary and target domains, the proposed approach learns expressive codings for the samples in the target domain. Since many types of visual data have been proven to contain subspace structures, a low-rank constraint is introduced into the coding objective to better characterize the structure of the given target set. The proposed representation learning framework is called self-taught low-rank (S-Low) coding, which can be formulated as a nonconvex rank-minimization and dictionary learning problem. We devise an efficient majorization-minimization augmented Lagrange multiplier algorithm to solve it. Based on the proposed S-Low coding mechanism, both unsupervised and supervised visual learning algorithms are derived. Extensive experiments on five benchmark data sets demonstrate the effectiveness of our approach.

  12. Joint Machine Learning and Game Theory for Rate Control in High Efficiency Video Coding.

    PubMed

    Gao, Wei; Kwong, Sam; Jia, Yuheng

    2017-08-25

    In this paper, a joint machine learning and game theory modeling (MLGT) framework is proposed for inter frame coding tree unit (CTU) level bit allocation and rate control (RC) optimization in High Efficiency Video Coding (HEVC). First, a support vector machine (SVM) based multi-classification scheme is proposed to improve the prediction accuracy of CTU-level Rate-Distortion (R-D) model. The legacy "chicken-and-egg" dilemma in video coding is proposed to be overcome by the learning-based R-D model. Second, a mixed R-D model based cooperative bargaining game theory is proposed for bit allocation optimization, where the convexity of the mixed R-D model based utility function is proved, and Nash bargaining solution (NBS) is achieved by the proposed iterative solution search method. The minimum utility is adjusted by the reference coding distortion and frame-level Quantization parameter (QP) change. Lastly, intra frame QP and inter frame adaptive bit ratios are adjusted to make inter frames have more bit resources to maintain smooth quality and bit consumption in the bargaining game optimization. Experimental results demonstrate that the proposed MLGT based RC method can achieve much better R-D performances, quality smoothness, bit rate accuracy, buffer control results and subjective visual quality than the other state-of-the-art one-pass RC methods, and the achieved R-D performances are very close to the performance limits from the FixedQP method.

  13. The effect of multiple internal representations on context-rich instruction

    NASA Astrophysics Data System (ADS)

    Lasry, Nathaniel; Aulls, Mark W.

    2007-11-01

    We discuss n-coding, a theoretical model of multiple internal mental representations. The n-coding construct is developed from a review of cognitive and imaging data that demonstrates the independence of information processed along different modalities such as verbal, visual, kinesthetic, logico-mathematic, and social modalities. A study testing the effectiveness of the n-coding construct in classrooms is presented. Four sections differing in the level of n-coding opportunities were compared. Besides a traditional-instruction section used as a control group, each of the remaining three sections were given context-rich problems, which differed by the level of n-coding opportunities designed into their laboratory environment. To measure the effectiveness of the construct, problem-solving skills were assessed as conceptual learning using the force concept inventory. We also developed several new measures that take students' confidence in concepts into account. Our results show that the n-coding construct is useful in designing context-rich environments and can be used to increase learning gains in problem solving, conceptual knowledge, and concept confidence. Specifically, when using props in designing context-rich problems, we find n-coding to be a useful construct in guiding which additional dimensions need to be attended to.

  14. Meaning and Identities: A Visual Performative Pedagogy for Socio-Cultural Learning

    ERIC Educational Resources Information Center

    Grushka, Kathryn

    2009-01-01

    In this article I present personalised socio-cultural inquiry in visual art education as a critical and expressive material praxis. The model of "Visual Performative Pedagogy and Communicative Proficiency for the Visual Art Classroom" is presented as a legitimate means of manipulating visual codes, communicating meaning and mediating…

  15. Sparse coding can predict primary visual cortex receptive field changes induced by abnormal visual input.

    PubMed

    Hunt, Jonathan J; Dayan, Peter; Goodhill, Geoffrey J

    2013-01-01

    Receptive fields acquired through unsupervised learning of sparse representations of natural scenes have similar properties to primary visual cortex (V1) simple cell receptive fields. However, what drives in vivo development of receptive fields remains controversial. The strongest evidence for the importance of sensory experience in visual development comes from receptive field changes in animals reared with abnormal visual input. However, most sparse coding accounts have considered only normal visual input and the development of monocular receptive fields. Here, we applied three sparse coding models to binocular receptive field development across six abnormal rearing conditions. In every condition, the changes in receptive field properties previously observed experimentally were matched to a similar and highly faithful degree by all the models, suggesting that early sensory development can indeed be understood in terms of an impetus towards sparsity. As previously predicted in the literature, we found that asymmetries in inter-ocular correlation across orientations lead to orientation-specific binocular receptive fields. Finally we used our models to design a novel stimulus that, if present during rearing, is predicted by the sparsity principle to lead robustly to radically abnormal receptive fields.

  16. Sparse Coding Can Predict Primary Visual Cortex Receptive Field Changes Induced by Abnormal Visual Input

    PubMed Central

    Hunt, Jonathan J.; Dayan, Peter; Goodhill, Geoffrey J.

    2013-01-01

    Receptive fields acquired through unsupervised learning of sparse representations of natural scenes have similar properties to primary visual cortex (V1) simple cell receptive fields. However, what drives in vivo development of receptive fields remains controversial. The strongest evidence for the importance of sensory experience in visual development comes from receptive field changes in animals reared with abnormal visual input. However, most sparse coding accounts have considered only normal visual input and the development of monocular receptive fields. Here, we applied three sparse coding models to binocular receptive field development across six abnormal rearing conditions. In every condition, the changes in receptive field properties previously observed experimentally were matched to a similar and highly faithful degree by all the models, suggesting that early sensory development can indeed be understood in terms of an impetus towards sparsity. As previously predicted in the literature, we found that asymmetries in inter-ocular correlation across orientations lead to orientation-specific binocular receptive fields. Finally we used our models to design a novel stimulus that, if present during rearing, is predicted by the sparsity principle to lead robustly to radically abnormal receptive fields. PMID:23675290

  17. Functional interplay of top-down attention with affective codes during visual short-term memory maintenance.

    PubMed

    Kuo, Bo-Cheng; Lin, Szu-Hung; Yeh, Yei-Yu

    2018-06-01

    Visual short-term memory (VSTM) allows individuals to briefly maintain information over time for guiding behaviours. Because the contents of VSTM can be neutral or emotional, top-down influence in VSTM may vary with the affective codes of maintained representations. Here we investigated the neural mechanisms underlying the functional interplay of top-down attention with affective codes in VSTM using functional magnetic resonance imaging. Participants were instructed to remember both threatening and neutral objects in a cued VSTM task. Retrospective cues (retro-cues) were presented to direct attention to the hemifield of a threatening object (i.e., cue-to-threat) or a neutral object (i.e., cue-to-neutral) during VSTM maintenance. We showed stronger activity in the ventral occipitotemporal cortex and amygdala for attending threatening relative to neutral representations. Using multivoxel pattern analysis, we found better classification performance for cue-to-threat versus cue-to-neutral objects in early visual areas and in the amygdala. Importantly, retro-cues modulated the strength of functional connectivity between the frontoparietal and early visual areas. Activity in the frontoparietal areas became strongly correlated with the activity in V3a-V4 coding the threatening representations instructed to be relevant for the task. Together, these findings provide the first demonstration of top-down modulation of activation patterns in early visual areas and functional connectivity between the frontoparietal network and early visual areas for regulating threatening representations during VSTM maintenance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Full 3D visualization tool-kit for Monte Carlo and deterministic transport codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frambati, S.; Frignani, M.

    2012-07-01

    We propose a package of tools capable of translating the geometric inputs and outputs of many Monte Carlo and deterministic radiation transport codes into open source file formats. These tools are aimed at bridging the gap between trusted, widely-used radiation analysis codes and very powerful, more recent and commonly used visualization software, thus supporting the design process and helping with shielding optimization. Three main lines of development were followed: mesh-based analysis of Monte Carlo codes, mesh-based analysis of deterministic codes and Monte Carlo surface meshing. The developed kit is considered a powerful and cost-effective tool in the computer-aided design formore » radiation transport code users of the nuclear world, and in particular in the fields of core design and radiation analysis. (authors)« less

  19. Network analysis for the visualization and analysis of qualitative data.

    PubMed

    Pokorny, Jennifer J; Norman, Alex; Zanesco, Anthony P; Bauer-Wu, Susan; Sahdra, Baljinder K; Saron, Clifford D

    2018-03-01

    We present a novel manner in which to visualize the coding of qualitative data that enables representation and analysis of connections between codes using graph theory and network analysis. Network graphs are created from codes applied to a transcript or audio file using the code names and their chronological location. The resulting network is a representation of the coding data that characterizes the interrelations of codes. This approach enables quantification of qualitative codes using network analysis and facilitates examination of associations of network indices with other quantitative variables using common statistical procedures. Here, as a proof of concept, we applied this method to a set of interview transcripts that had been coded in 2 different ways and the resultant network graphs were examined. The creation of network graphs allows researchers an opportunity to view and share their qualitative data in an innovative way that may provide new insights and enhance transparency of the analytical process by which they reach their conclusions. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  20. Critical evaluation of reverse engineering tool Imagix 4D!

    PubMed

    Yadav, Rashmi; Patel, Ravindra; Kothari, Abhay

    2016-01-01

    The comprehension of legacy codes is difficult to understand. Various commercial reengineering tools are available that have unique working styles, and are equipped with their inherent capabilities and shortcomings. The focus of the available tools is in visualizing static behavior not the dynamic one. Therefore, it is difficult for people who work in software product maintenance, code understanding reengineering/reverse engineering. Consequently, the need for a comprehensive reengineering/reverse engineering tool arises. We found the usage of Imagix 4D to be good as it generates the maximum pictorial representations in the form of flow charts, flow graphs, class diagrams, metrics and, to a partial extent, dynamic visualizations. We evaluated Imagix 4D with the help of a case study involving a few samples of source code. The behavior of the tool was analyzed on multiple small codes and a large code gcc C parser. Large code evaluation was performed to uncover dead code, unstructured code, and the effect of not including required files at preprocessing level. The utility of Imagix 4D to prepare decision density and complexity metrics for a large code was found to be useful in getting to know how much reengineering is required. At the outset, Imagix 4D offered limitations in dynamic visualizations, flow chart separation (large code) and parsing loops. The outcome of evaluation will eventually help in upgrading Imagix 4D and posed a need of full featured tools in the area of software reengineering/reverse engineering. It will also help the research community, especially those who are interested in the realm of software reengineering tool building.

  1. The implementation of thermal image visualization by HDL based on pseudo-color

    NASA Astrophysics Data System (ADS)

    Zhu, Yong; Zhang, JiangLing

    2004-11-01

    The pseudo-color method which maps the sampled data to intuitive perception colors is a kind of powerful visualization way. And the all-around system of pseudo-color visualization, which includes the primary principle, model and HDL (Hardware Description Language) implementation for the thermal images, is expatiated on in the paper. The thermal images whose signal is modulated as video reflect the temperature distribution of measured object, so they have the speciality of mass and real-time. The solution to the intractable problem is as follows: First, the reasonable system, i.e. the combining of global pseudo-color visualization and local special area accurate measure, muse be adopted. Then, the HDL pseudo-color algorithms in SoC (System on Chip) carry out the system to ensure the real-time. Finally, the key HDL algorithms for direct gray levels connection coding, proportional gray levels map coding and enhanced gray levels map coding are presented, and its simulation results are showed. The pseudo-color visualization of thermal images implemented by HDL in the paper has effective application in the aspect of electric power equipment test and medical health diagnosis.

  2. A visual parallel-BCI speller based on the time-frequency coding strategy

    NASA Astrophysics Data System (ADS)

    Xu, Minpeng; Chen, Long; Zhang, Lixin; Qi, Hongzhi; Ma, Lan; Tang, Jiabei; Wan, Baikun; Ming, Dong

    2014-04-01

    Objective. Spelling is one of the most important issues in brain-computer interface (BCI) research. This paper is to develop a visual parallel-BCI speller system based on the time-frequency coding strategy in which the sub-speller switching among four simultaneously presented sub-spellers and the character selection are identified in a parallel mode. Approach. The parallel-BCI speller was constituted by four independent P300+SSVEP-B (P300 plus SSVEP blocking) spellers with different flicker frequencies, thereby all characters had a specific time-frequency code. To verify its effectiveness, 11 subjects were involved in the offline and online spellings. A classification strategy was designed to recognize the target character through jointly using the canonical correlation analysis and stepwise linear discriminant analysis. Main results. Online spellings showed that the proposed parallel-BCI speller had a high performance, reaching the highest information transfer rate of 67.4 bit min-1, with an average of 54.0 bit min-1 and 43.0 bit min-1 in the three rounds and five rounds, respectively. Significance. The results indicated that the proposed parallel-BCI could be effectively controlled by users with attention shifting fluently among the sub-spellers, and highly improved the BCI spelling performance.

  3. Influence of Interpretation Aids on Attentional Capture, Visual Processing, and Understanding of Front-of-Package Nutrition Labels.

    PubMed

    Antúnez, Lucía; Giménez, Ana; Maiche, Alejandro; Ares, Gastón

    2015-01-01

    To study the influence of 2 interpretational aids of front-of-package (FOP) nutrition labels (color code and text descriptors) on attentional capture and consumers' understanding of nutritional information. A full factorial design was used to assess the influence of color code and text descriptors using visual search and eye tracking. Ten trained assessors participated in the visual search study and 54 consumers completed the eye-tracking study. In the visual search study, assessors were asked to indicate whether there was a label high in fat within sets of mayonnaise labels with different FOP labels. In the eye-tracking study, assessors answered a set of questions about the nutritional content of labels. The researchers used logistic regression to evaluate the influence of interpretational aids of FOP nutrition labels on the percentage of correct answers. Analyses of variance were used to evaluate the influence of the studied variables on attentional measures and participants' response times. Response times were significantly higher for monochromatic FOP labels compared with color-coded ones (3,225 vs 964 ms; P < .001), which suggests that color codes increase attentional capture. The highest number and duration of fixations and visits were recorded on labels that did not include color codes or text descriptors (P < .05). The lowest percentage of incorrect answers was observed when the nutrient level was indicated using color code and text descriptors (P < .05). The combination of color codes and text descriptors seems to be the most effective alternative to increase attentional capture and understanding of nutritional information. Copyright © 2015 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.

  4. Dynamics of normalization underlying masking in human visual cortex.

    PubMed

    Tsai, Jeffrey J; Wade, Alex R; Norcia, Anthony M

    2012-02-22

    Stimulus visibility can be reduced by other stimuli that overlap the same region of visual space, a process known as masking. Here we studied the neural mechanisms of masking in humans using source-imaged steady state visual evoked potentials and frequency-domain analysis over a wide range of relative stimulus strengths of test and mask stimuli. Test and mask stimuli were tagged with distinct temporal frequencies and we quantified spectral response components associated with the individual stimuli (self terms) and responses due to interaction between stimuli (intermodulation terms). In early visual cortex, masking alters the self terms in a manner consistent with a reduction of input contrast. We also identify a novel signature of masking: a robust intermodulation term that peaks when the test and mask stimuli have equal contrast and disappears when they are widely different. We fit all of our data simultaneously with family of a divisive gain control models that differed only in their dynamics. Models with either very short or very long temporal integration constants for the gain pool performed worse than a model with an integration time of ∼30 ms. Finally, the absolute magnitudes of the response were controlled by the ratio of the stimulus contrasts, not their absolute values. This contrast-contrast invariance suggests that many neurons in early visual cortex code relative rather than absolute contrast. Together, these results provide a more complete description of masking within the normalization framework of contrast gain control and suggest that contrast normalization accomplishes multiple functional goals.

  5. Short-term retention of visual information: Evidence in support of feature-based attention as an underlying mechanism.

    PubMed

    Sneve, Markus H; Sreenivasan, Kartik K; Alnæs, Dag; Endestad, Tor; Magnussen, Svein

    2015-01-01

    Retention of features in visual short-term memory (VSTM) involves maintenance of sensory traces in early visual cortex. However, the mechanism through which this is accomplished is not known. Here, we formulate specific hypotheses derived from studies on feature-based attention to test the prediction that visual cortex is recruited by attentional mechanisms during VSTM of low-level features. Functional magnetic resonance imaging (fMRI) of human visual areas revealed that neural populations coding for task-irrelevant feature information are suppressed during maintenance of detailed spatial frequency memory representations. The narrow spectral extent of this suppression agrees well with known effects of feature-based attention. Additionally, analyses of effective connectivity during maintenance between retinotopic areas in visual cortex show that the observed highlighting of task-relevant parts of the feature spectrum originates in V4, a visual area strongly connected with higher-level control regions and known to convey top-down influence to earlier visual areas during attentional tasks. In line with this property of V4 during attentional operations, we demonstrate that modulations of earlier visual areas during memory maintenance have behavioral consequences, and that these modulations are a result of influences from V4. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Visualization and Analysis of Microtubule Dynamics Using Dual Color-Coded Display of Plus-End Labels

    PubMed Central

    Garrison, Amy K.; Xia, Caihong; Wang, Zheng; Ma, Le

    2012-01-01

    Investigating spatial and temporal control of microtubule dynamics in live cells is critical to understanding cell morphogenesis in development and disease. Tracking fluorescently labeled plus-end-tracking proteins over time has become a widely used method to study microtubule assembly. Here, we report a complementary approach that uses only two images of these labels to visualize and analyze microtubule dynamics at any given time. Using a simple color-coding scheme, labeled plus-ends from two sequential images are pseudocolored with different colors and then merged to display color-coded ends. Based on object recognition algorithms, these colored ends can be identified and segregated into dynamic groups corresponding to four events, including growth, rescue, catastrophe, and pause. Further analysis yields not only their spatial distribution throughout the cell but also provides measurements such as growth rate and direction for each labeled end. We have validated the method by comparing our results with ground-truth data derived from manual analysis as well as with data obtained using the tracking method. In addition, we have confirmed color-coded representation of different dynamic events by analyzing their history and fate. Finally, we have demonstrated the use of the method to investigate microtubule assembly in cells and provided guidance in selecting optimal image acquisition conditions. Thus, this simple computer vision method offers a unique and quantitative approach to study spatial regulation of microtubule dynamics in cells. PMID:23226282

  7. Investigation of roughing machining simulation by using visual basic programming in NX CAM system

    NASA Astrophysics Data System (ADS)

    Hafiz Mohamad, Mohamad; Nafis Osman Zahid, Muhammed

    2018-03-01

    This paper outlines a simulation study to investigate the characteristic of roughing machining simulation in 4th axis milling processes by utilizing visual basic programming in NX CAM systems. The selection and optimization of cutting orientation in rough milling operation is critical in 4th axis machining. The main purpose of roughing operation is to approximately shape the machined parts into finished form by removing the bulk of material from workpieces. In this paper, the simulations are executed by manipulating a set of different cutting orientation to generate estimated volume removed from the machine parts. The cutting orientation with high volume removal is denoted as an optimum value and chosen to execute a roughing operation. In order to run the simulation, customized software is developed to assist the routines. Operations build-up instructions in NX CAM interface are translated into programming codes via advanced tool available in the Visual Basic Studio. The codes is customized and equipped with decision making tools to run and control the simulations. It permits the integration with any independent program files to execute specific operations. This paper aims to discuss about the simulation program and identifies optimum cutting orientations for roughing processes. The output of this study will broaden up the simulation routines performed in NX CAM systems.

  8. Intelligent Data Visualization for Cross-Checking Spacecraft System Diagnosis

    NASA Technical Reports Server (NTRS)

    Ong, James C.; Remolina, Emilio; Breeden, David; Stroozas, Brett A.; Mohammed, John L.

    2012-01-01

    Any reasoning system is fallible, so crew members and flight controllers must be able to cross-check automated diagnoses of spacecraft or habitat problems by considering alternate diagnoses and analyzing related evidence. Cross-checking improves diagnostic accuracy because people can apply information processing heuristics, pattern recognition techniques, and reasoning methods that the automated diagnostic system may not possess. Over time, cross-checking also enables crew members to become comfortable with how the diagnostic reasoning system performs, so the system can earn the crew s trust. We developed intelligent data visualization software that helps users cross-check automated diagnoses of system faults more effectively. The user interface displays scrollable arrays of timelines and time-series graphs, which are tightly integrated with an interactive, color-coded system schematic to show important spatial-temporal data patterns. Signal processing and rule-based diagnostic reasoning automatically identify alternate hypotheses and data patterns that support or rebut the original and alternate diagnoses. A color-coded matrix display summarizes the supporting or rebutting evidence for each diagnosis, and a drill-down capability enables crew members to quickly view graphs and timelines of the underlying data. This system demonstrates that modest amounts of diagnostic reasoning, combined with interactive, information-dense data visualizations, can accelerate system diagnosis and cross-checking.

  9. Spread Spectrum Visual Sensor Network Resource Management Using an End-to-End Cross-Layer Design

    DTIC Science & Technology

    2011-02-01

    Coding In this work, we use rate compatible punctured convolutional (RCPC) codes for channel coding [11]. Using RCPC codes al- lows us to utilize Viterbi’s...11] J. Hagenauer, “ Rate - compatible punctured convolutional codes (RCPC codes ) and their applications,” IEEE Trans. Commun., vol. 36, no. 4, pp. 389...source coding rate , a channel coding rate , and a power level to all nodes in the

  10. Visual attention mitigates information loss in small- and large-scale neural codes

    PubMed Central

    Sprague, Thomas C; Saproo, Sameer; Serences, John T

    2015-01-01

    Summary The visual system transforms complex inputs into robust and parsimonious neural codes that efficiently guide behavior. Because neural communication is stochastic, the amount of encoded visual information necessarily decreases with each synapse. This constraint requires processing sensory signals in a manner that protects information about relevant stimuli from degradation. Such selective processing – or selective attention – is implemented via several mechanisms, including neural gain and changes in tuning properties. However, examining each of these effects in isolation obscures their joint impact on the fidelity of stimulus feature representations by large-scale population codes. Instead, large-scale activity patterns can be used to reconstruct representations of relevant and irrelevant stimuli, providing a holistic understanding about how neuron-level modulations collectively impact stimulus encoding. PMID:25769502

  11. FastDart : a fast, accurate and friendly version of DART code.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rest, J.; Taboada, H.

    2000-11-08

    A new enhanced, visual version of DART code is presented. DART is a mechanistic model based code, developed for the performance calculation and assessment of aluminum dispersion fuel. Major issues of this new version are the development of a new, time saving calculation routine, able to be run on PC, a friendly visual input interface and a plotting facility. This version, available for silicide and U-Mo fuels,adds to the classical accuracy of DART models for fuel performance prediction, a faster execution and visual interfaces. It is part of a collaboration agreement between ANL and CNEA in the area of Lowmore » Enriched Uranium Advanced Fuels, held by the Implementation Arrangement for Technical Exchange and Cooperation in the Area of Peaceful Uses of Nuclear Energy.« less

  12. Wireless Visual Sensor Network Resource Allocation using Cross-Layer Optimization

    DTIC Science & Technology

    2009-01-01

    Rate Compatible Punctured Convolutional (RCPC) codes for channel...vol. 44, pp. 2943–2959, November 1998. [22] J. Hagenauer, “ Rate - compatible punctured convolutional codes (RCPC codes ) and their applications,” IEEE... coding rate for H.264/AVC video compression is determined. At the data link layer, the Rate - Compatible Puctured Convolutional (RCPC) channel coding

  13. Image gathering, coding, and processing: End-to-end optimization for efficient and robust acquisition of visual information

    NASA Technical Reports Server (NTRS)

    Huck, Friedrich O.; Fales, Carl L.

    1990-01-01

    Researchers are concerned with the end-to-end performance of image gathering, coding, and processing. The applications range from high-resolution television to vision-based robotics, wherever the resolution, efficiency and robustness of visual information acquisition and processing are critical. For the presentation at this workshop, it is convenient to divide research activities into the following two overlapping areas: The first is the development of focal-plane processing techniques and technology to effectively combine image gathering with coding, with an emphasis on low-level vision processing akin to the retinal processing in human vision. The approach includes the familiar Laplacian pyramid, the new intensity-dependent spatial summation, and parallel sensing/processing networks. Three-dimensional image gathering is attained by combining laser ranging with sensor-array imaging. The second is the rigorous extension of information theory and optimal filtering to visual information acquisition and processing. The goal is to provide a comprehensive methodology for quantitatively assessing the end-to-end performance of image gathering, coding, and processing.

  14. Overview of codes and tools for nuclear engineering education

    NASA Astrophysics Data System (ADS)

    Yakovlev, D.; Pryakhin, A.; Medvedeva, L.

    2017-01-01

    The recent world trends in nuclear education have been developed in the direction of social education, networking, virtual tools and codes. MEPhI as a global leader on the world education market implements new advanced technologies for the distance and online learning and for student research work. MEPhI produced special codes, tools and web resources based on the internet platform to support education in the field of nuclear technology. At the same time, MEPhI actively uses codes and tools from the third parties. Several types of the tools are considered: calculation codes, nuclear data visualization tools, virtual labs, PC-based educational simulators for nuclear power plants (NPP), CLP4NET, education web-platforms, distance courses (MOOCs and controlled and managed content systems). The university pays special attention to integrated products such as CLP4NET, which is not a learning course, but serves to automate the process of learning through distance technologies. CLP4NET organizes all tools in the same information space. Up to now, MEPhI has achieved significant results in the field of distance education and online system implementation.

  15. Representations of temporal information in short-term memory: Are they modality-specific?

    PubMed

    Bratzke, Daniel; Quinn, Katrina R; Ulrich, Rolf; Bausenhart, Karin M

    2016-10-01

    Rattat and Picard (2012) reported that the coding of temporal information in short-term memory is modality-specific, that is, temporal information received via the visual (auditory) modality is stored as a visual (auditory) code. This conclusion was supported by modality-specific interference effects on visual and auditory duration discrimination, which were induced by secondary tasks (visual tracking or articulatory suppression), presented during a retention interval. The present study assessed the stability of these modality-specific interference effects. Our study did not replicate the selective interference pattern but rather indicated that articulatory suppression not only impairs short-term memory for auditory but also for visual durations. This result pattern supports a crossmodal or an abstract view of temporal encoding. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Automatic frame-centered object representation and integration revealed by iconic memory, visual priming, and backward masking

    PubMed Central

    Lin, Zhicheng; He, Sheng

    2012-01-01

    Object identities (“what”) and their spatial locations (“where”) are processed in distinct pathways in the visual system, raising the question of how the what and where information is integrated. Because of object motions and eye movements, the retina-based representations are unstable, necessitating nonretinotopic representation and integration. A potential mechanism is to code and update objects according to their reference frames (i.e., frame-centered representation and integration). To isolate frame-centered processes, in a frame-to-frame apparent motion configuration, we (a) presented two preceding or trailing objects on the same frame, equidistant from the target on the other frame, to control for object-based (frame-based) effect and space-based effect, and (b) manipulated the target's relative location within its frame to probe frame-centered effect. We show that iconic memory, visual priming, and backward masking depend on objects' relative frame locations, orthogonal of the retinotopic coordinate. These findings not only reveal that iconic memory, visual priming, and backward masking can be nonretinotopic but also demonstrate that these processes are automatically constrained by contextual frames through a frame-centered mechanism. Thus, object representation is robustly and automatically coupled to its reference frame and continuously being updated through a frame-centered, location-specific mechanism. These findings lead to an object cabinet framework, in which objects (“files”) within the reference frame (“cabinet”) are orderly coded relative to the frame. PMID:23104817

  17. A Need for a Theory of Visual Literacy.

    ERIC Educational Resources Information Center

    Hortin, John A.

    1982-01-01

    Examines sources available for developing a theory of visual literacy and attempts to clarify the meaning of the term. Suggests that visual thinking, a concept supported by recent research on mental imagery, visualization, and dual coding, ought to be the emphasis for future theory development. (FL)

  18. Development of a Top-View Numeric Coding Teaching-Learning Trajectory within an Elementary Grades 3-D Visualization Design Research Project

    ERIC Educational Resources Information Center

    Sack, Jacqueline J.

    2013-01-01

    This article explicates the development of top-view numeric coding of 3-D cube structures within a design research project focused on 3-D visualization skills for elementary grades children. It describes children's conceptual development of 3-D cube structures using concrete models, conventional 2-D pictures and abstract top-view numeric…

  19. Statistical regularities in art: Relations with visual coding and perception.

    PubMed

    Graham, Daniel J; Redies, Christoph

    2010-07-21

    Since at least 1935, vision researchers have used art stimuli to test human response to complex scenes. This is sensible given the "inherent interestingness" of art and its relation to the natural visual world. The use of art stimuli has remained popular, especially in eye tracking studies. Moreover, stimuli in common use by vision scientists are inspired by the work of famous artists (e.g., Mondrians). Artworks are also popular in vision science as illustrations of a host of visual phenomena, such as depth cues and surface properties. However, until recently, there has been scant consideration of the spatial, luminance, and color statistics of artwork, and even less study of ways that regularities in such statistics could affect visual processing. Furthermore, the relationship between regularities in art images and those in natural scenes has received little or no attention. In the past few years, there has been a concerted effort to study statistical regularities in art as they relate to neural coding and visual perception, and art stimuli have begun to be studied in rigorous ways, as natural scenes have been. In this minireview, we summarize quantitative studies of links between regular statistics in artwork and processing in the visual stream. The results of these studies suggest that art is especially germane to understanding human visual coding and perception, and it therefore warrants wider study. Copyright 2010 Elsevier Ltd. All rights reserved.

  20. A robust recognition and accurate locating method for circular coded diagonal target

    NASA Astrophysics Data System (ADS)

    Bao, Yunna; Shang, Yang; Sun, Xiaoliang; Zhou, Jiexin

    2017-10-01

    As a category of special control points which can be automatically identified, artificial coded targets have been widely developed in the field of computer vision, photogrammetry, augmented reality, etc. In this paper, a new circular coded target designed by RockeTech technology Corp. Ltd is analyzed and studied, which is called circular coded diagonal target (CCDT). A novel detection and recognition method with good robustness is proposed in the paper, and implemented on Visual Studio. In this algorithm, firstly, the ellipse features of the center circle are used for rough positioning. Then, according to the characteristics of the center diagonal target, a circular frequency filter is designed to choose the correct center circle and eliminates non-target noise. The precise positioning of the coded target is done by the correlation coefficient fitting extreme value method. Finally, the coded target recognition is achieved by decoding the binary sequence in the outer ring of the extracted target. To test the proposed algorithm, this paper has carried out simulation experiments and real experiments. The results show that the CCDT recognition and accurate locating method proposed in this paper can robustly recognize and accurately locate the targets in complex and noisy background.

  1. TankSIM: A Cryogenic Tank Performance Prediction Program

    NASA Technical Reports Server (NTRS)

    Bolshinskiy, L. G.; Hedayat, A.; Hastings, L. J.; Moder, J. P.; Schnell, A. R.; Sutherlin, S. G.

    2015-01-01

    Developed for predicting the behavior of cryogenic liquids inside propellant tanks under various environmental and operating conditions. Provides a multi-node analysis of pressurization, ullage venting and thermodynamic venting systems (TVS) pressure control using axial jet or spray bar TVS. Allows user to combine several different phases for predicting the liquid behavior for the entire flight mission timeline or part of it. Is a NASA in-house code, based on FORTRAN 90-95 and Intel Visual FORTRAN compiler, but can be used on any other platform (Unix-Linux, Compaq Visual FORTRAN, etc.). The last Version 7, released on December 2014, included detailed User's Manual. Includes the use of several RefPROP subroutines for calculating fluid properties.

  2. A sublethal dose of a neonicotinoid insecticide disrupts visual processing and collision avoidance behaviour in Locusta migratoria.

    PubMed

    Parkinson, Rachel H; Little, Jacelyn M; Gray, John R

    2017-04-20

    Neonicotinoids are known to affect insect navigation and vision, however the mechanisms of these effects are not fully understood. A visual motion sensitive neuron in the locust, the Descending Contralateral Movement Detector (DCMD), integrates visual information and is involved in eliciting escape behaviours. The DCMD receives coded input from the compound eyes and monosynaptically excites motorneurons involved in flight and jumping. We show that imidacloprid (IMD) impairs neural responses to visual stimuli at sublethal concentrations, and these effects are sustained two and twenty-four hours after treatment. Most significantly, IMD disrupted bursting, a coding property important for motion detection. Specifically, IMD reduced the DCMD peak firing rate within bursts at ecologically relevant doses of 10 ng/g (ng IMD per g locust body weight). Effects on DCMD firing translate to deficits in collision avoidance behaviours: exposure to 10 ng/g IMD attenuates escape manoeuvers while 100 ng/g IMD prevents the ability to fly and walk. We show that, at ecologically-relevant doses, IMD causes significant and lasting impairment of an important pathway involved with visual sensory coding and escape behaviours. These results show, for the first time, that a neonicotinoid pesticide directly impairs an important, taxonomically conserved, motion-sensitive visual network.

  3. Semantic and phonological coding in poor and normal readers.

    PubMed

    Vellutino, F R; Scanlon, D M; Spearing, D

    1995-02-01

    Three studies were conducted evaluating semantic and phonological coding deficits as alternative explanations of reading disability. In the first study, poor and normal readers in second and sixth grade were compared on various tests evaluating semantic development as well as on tests evaluating rapid naming and pseudoword decoding as independent measures of phonological coding ability. In a second study, the same subjects were given verbal memory and visual-verbal learning tasks using high and low meaning words as verbal stimuli and Chinese ideographs as visual stimuli. On the semantic tasks, poor readers performed below the level of the normal readers only at the sixth grade level, but, on the rapid naming and pseudoword learning tasks, they performed below the normal readers at the second as well as at the sixth grade level. On both the verbal memory and visual-verbal learning tasks, performance in poor readers approximated that of normal readers when the word stimuli were high in meaning but not when they were low in meaning. These patterns were essentially replicated in a third study that used some of the same semantic and phonological measures used in the first experiment, and verbal memory and visual-verbal learning tasks that employed word lists and visual stimuli (novel alphabetic characters) that more closely approximated those used in learning to read. It was concluded that semantic coding deficits are an unlikely cause of reading difficulties in most poor readers at the beginning stages of reading skills acquisition, but accrue as a consequence of prolonged reading difficulties in older readers. It was also concluded that phonological coding deficits are a probable cause of reading difficulties in most poor readers.

  4. Four Year-Olds Use Norm-Based Coding for Face Identity

    ERIC Educational Resources Information Center

    Jeffery, Linda; Read, Ainsley; Rhodes, Gillian

    2013-01-01

    Norm-based coding, in which faces are coded as deviations from an average face, is an efficient way of coding visual patterns that share a common structure and must be distinguished by subtle variations that define individuals. Adults and school-aged children use norm-based coding for face identity but it is not yet known if pre-school aged…

  5. Computer programming for generating visual stimuli.

    PubMed

    Bukhari, Farhan; Kurylo, Daniel D

    2008-02-01

    Critical to vision research is the generation of visual displays with precise control over stimulus metrics. Generating stimuli often requires adapting commercial software or developing specialized software for specific research applications. In order to facilitate this process, we give here an overview that allows nonexpert users to generate and customize stimuli for vision research. We first give a review of relevant hardware and software considerations, to allow the selection of display hardware, operating system, programming language, and graphics packages most appropriate for specific research applications. We then describe the framework of a generic computer program that can be adapted for use with a broad range of experimental applications. Stimuli are generated in the context of trial events, allowing the display of text messages, the monitoring of subject responses and reaction times, and the inclusion of contingency algorithms. This approach allows direct control and management of computer-generated visual stimuli while utilizing the full capabilities of modern hardware and software systems. The flowchart and source code for the stimulus-generating program may be downloaded from www.psychonomic.org/archive.

  6. Eye Velocity Gain Fields in MSTd During Optokinetic Stimulation

    PubMed Central

    Brostek, Lukas; Büttner, Ulrich; Mustari, Michael J.; Glasauer, Stefan

    2015-01-01

    Lesion studies argue for an involvement of cortical area dorsal medial superior temporal area (MSTd) in the control of optokinetic response (OKR) eye movements to planar visual stimulation. Neural recordings during OKR suggested that MSTd neurons directly encode stimulus velocity. On the other hand, studies using radial visual flow together with voluntary smooth pursuit eye movements showed that visual motion responses were modulated by eye movement-related signals. Here, we investigated neural responses in MSTd during continuous optokinetic stimulation using an information-theoretic approach for characterizing neural tuning with high resolution. We show that the majority of MSTd neurons exhibit gain-field-like tuning functions rather than directly encoding one variable. Neural responses showed a large diversity of tuning to combinations of retinal and extraretinal input. Eye velocity-related activity was observed prior to the actual eye movements, reflecting an efference copy. The observed tuning functions resembled those emerging in a network model trained to perform summation of 2 population-coded signals. Together, our findings support the hypothesis that MSTd implements the visuomotor transformation from retinal to head-centered stimulus velocity signals for the control of OKR. PMID:24557636

  7. A Fuzzy-Based Approach for Sensing, Coding and Transmission Configuration of Visual Sensors in Smart City Applications

    PubMed Central

    Costa, Daniel G.; Collotta, Mario; Pau, Giovanni; Duran-Faundez, Cristian

    2017-01-01

    The advance of technologies in several areas has allowed the development of smart city applications, which can improve the way of life in modern cities. When employing visual sensors in that scenario, still images and video streams may be retrieved from monitored areas, potentially providing valuable data for many applications. Actually, visual sensor networks may need to be highly dynamic, reflecting the changing of parameters in smart cities. In this context, characteristics of visual sensors and conditions of the monitored environment, as well as the status of other concurrent monitoring systems, may affect how visual sensors collect, encode and transmit information. This paper proposes a fuzzy-based approach to dynamically configure the way visual sensors will operate concerning sensing, coding and transmission patterns, exploiting different types of reference parameters. This innovative approach can be considered as the basis for multi-systems smart city applications based on visual monitoring, potentially bringing significant results for this research field. PMID:28067777

  8. A Fuzzy-Based Approach for Sensing, Coding and Transmission Configuration of Visual Sensors in Smart City Applications.

    PubMed

    Costa, Daniel G; Collotta, Mario; Pau, Giovanni; Duran-Faundez, Cristian

    2017-01-05

    The advance of technologies in several areas has allowed the development of smart city applications, which can improve the way of life in modern cities. When employing visual sensors in that scenario, still images and video streams may be retrieved from monitored areas, potentially providing valuable data for many applications. Actually, visual sensor networks may need to be highly dynamic, reflecting the changing of parameters in smart cities. In this context, characteristics of visual sensors and conditions of the monitored environment, as well as the status of other concurrent monitoring systems, may affect how visual sensors collect, encode and transmit information. This paper proposes a fuzzy-based approach to dynamically configure the way visual sensors will operate concerning sensing, coding and transmission patterns, exploiting different types of reference parameters. This innovative approach can be considered as the basis for multi-systems smart city applications based on visual monitoring, potentially bringing significant results for this research field.

  9. Visual attention mitigates information loss in small- and large-scale neural codes.

    PubMed

    Sprague, Thomas C; Saproo, Sameer; Serences, John T

    2015-04-01

    The visual system transforms complex inputs into robust and parsimonious neural codes that efficiently guide behavior. Because neural communication is stochastic, the amount of encoded visual information necessarily decreases with each synapse. This constraint requires that sensory signals are processed in a manner that protects information about relevant stimuli from degradation. Such selective processing--or selective attention--is implemented via several mechanisms, including neural gain and changes in tuning properties. However, examining each of these effects in isolation obscures their joint impact on the fidelity of stimulus feature representations by large-scale population codes. Instead, large-scale activity patterns can be used to reconstruct representations of relevant and irrelevant stimuli, thereby providing a holistic understanding about how neuron-level modulations collectively impact stimulus encoding. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Simulator platform for fast reactor operation and safety technology demonstration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vilim, R. B.; Park, Y. S.; Grandy, C.

    2012-07-30

    A simulator platform for visualization and demonstration of innovative concepts in fast reactor technology is described. The objective is to make more accessible the workings of fast reactor technology innovations and to do so in a human factors environment that uses state-of-the art visualization technologies. In this work the computer codes in use at Argonne National Laboratory (ANL) for the design of fast reactor systems are being integrated to run on this platform. This includes linking reactor systems codes with mechanical structures codes and using advanced graphics to depict the thermo-hydraulic-structure interactions that give rise to an inherently safe responsemore » to upsets. It also includes visualization of mechanical systems operation including advanced concepts that make use of robotics for operations, in-service inspection, and maintenance.« less

  11. 47 CFR 11.61 - Tests of EAS procedures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... EAS header codes, Attention Signal, Test Script and EOM code. (i) Tests in odd numbered months shall... substitute for a monthly test, activation must include transmission of the EAS header codes, Attention Signal, emergency message and EOM code and comply with the visual message requirements in § 11.51. To substitute for...

  12. Short-term retention of pictures and words: evidence for dual coding systems.

    PubMed

    Pellegrino, J W; Siegel, A W; Dhawan, M

    1975-03-01

    The recall of picture and word triads was examined in three experiments that manipulated the type of distraction in a Brown-Peterson short-term retention task. In all three experiments recall of pictures was superior to words under auditory distraction conditions. Visual distraction produced high performance levels with both types of stimuli, whereas combined auditory and visual distraction significantly reduced picture recall without further affecting word recall. The results were interpreted in terms of the dual coding hypothesis and indicated that pictures are encoded into separate visual and acoustic processing systems while words are primarily acoustically encoded.

  13. PlasmaPy: beginning a community developed Python package for plasma physics

    NASA Astrophysics Data System (ADS)

    Murphy, Nicholas A.; Huang, Yi-Min; PlasmaPy Collaboration

    2016-10-01

    In recent years, researchers in several disciplines have collaborated on community-developed open source Python packages such as Astropy, SunPy, and SpacePy. These packages provide core functionality, common frameworks for data analysis and visualization, and educational tools. We propose that our community begins the development of PlasmaPy: a new open source core Python package for plasma physics. PlasmaPy could include commonly used functions in plasma physics, easy-to-use plasma simulation codes, Grad-Shafranov solvers, eigenmode solvers, and tools to analyze both simulations and experiments. The development will include modern programming practices such as version control, embedding documentation in the code, unit tests, and avoiding premature optimization. We will describe early code development on PlasmaPy, and discuss plans moving forward. The success of PlasmaPy depends on active community involvement and a welcoming and inclusive environment, so anyone interested in joining this collaboration should contact the authors.

  14. Experimental Validation of an Ion Beam Optics Code with a Visualized Ion Thruster

    NASA Astrophysics Data System (ADS)

    Nakayama, Yoshinori; Nakano, Masakatsu

    For validation of an ion beam optics code, the behavior of ion beam optics was experimentally observed and evaluated with a two-dimensional visualized ion thruster (VIT). Since the observed beam focus positions, sheath positions and measured ion beam currents were in good agreement with the numerical results, it was confirmed that the numerical model of this code was appropriated. In addition, it was also confirmed that the beam focus position was moved on center axis of grid hole according to the applied grid potentials, which differs from conventional understanding/assumption. The VIT operations may be useful not only for the validation of ion beam optics codes but also for the fundamental and intuitive understanding of the Child Law Sheath theory.

  15. Auditory biofeedback substitutes for loss of sensory information in maintaining stance.

    PubMed

    Dozza, Marco; Horak, Fay B; Chiari, Lorenzo

    2007-03-01

    The importance of sensory feedback for postural control in stance is evident from the balance improvements occurring when sensory information from the vestibular, somatosensory, and visual systems is available. However, the extent to which also audio-biofeedback (ABF) information can improve balance has not been determined. It is also unknown why additional artificial sensory feedback is more effective for some subjects than others and in some environmental contexts than others. The aim of this study was to determine the relative effectiveness of an ABF system to reduce postural sway in stance in healthy control subjects and in subjects with bilateral vestibular loss, under conditions of reduced vestibular, visual, and somatosensory inputs. This ABF system used a threshold region and non-linear scaling parameters customized for each individual, to provide subjects with pitch and volume coding of their body sway. ABF had the largest effect on reducing the body sway of the subjects with bilateral vestibular loss when the environment provided limited visual and somatosensory information; it had the smallest effect on reducing the sway of subjects with bilateral vestibular loss, when the environment provided full somatosensory information. The extent that all subjects substituted ABF information for their loss of sensory information was related to the extent that each subject was visually dependent or somatosensory-dependent for their postural control. Comparison of postural sway under a variety of sensory conditions suggests that patients with profound bilateral loss of vestibular function show larger than normal information redundancy among the remaining senses and ABF of trunk sway. The results support the hypothesis that the nervous system uses augmented sensory information differently depending both on the environment and on individual proclivities to rely on vestibular, somatosensory or visual information to control sway.

  16. Data acquisition and real-time control using spreadsheets: interfacing Excel with external hardware.

    PubMed

    Aliane, Nourdine

    2010-07-01

    Spreadsheets have become a popular computational tool and a powerful platform for performing engineering calculations. Moreover, spreadsheets include a macro language, which permits the inclusion of standard computer code in worksheets, and thereby enable developers to greatly extend spreadsheets' capabilities by designing specific add-ins. This paper describes how to use Excel spreadsheets in conjunction to Visual Basic for Application programming language to perform data acquisition and real-time control. Afterwards, the paper presents two Excel applications with interactive user interfaces developed for laboratory demonstrations and experiments in an introductory course in control. 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Effects of isoflurane anesthesia on ensemble patterns of Ca2+ activity in mouse v1: reduced direction selectivity independent of increased correlations in cellular activity.

    PubMed

    Goltstein, Pieter M; Montijn, Jorrit S; Pennartz, Cyriel M A

    2015-01-01

    Anesthesia affects brain activity at the molecular, neuronal and network level, but it is not well-understood how tuning properties of sensory neurons and network connectivity change under its influence. Using in vivo two-photon calcium imaging we matched neuron identity across episodes of wakefulness and anesthesia in the same mouse and recorded spontaneous and visually evoked activity patterns of neuronal ensembles in these two states. Correlations in spontaneous patterns of calcium activity between pairs of neurons were increased under anesthesia. While orientation selectivity remained unaffected by anesthesia, this treatment reduced direction selectivity, which was attributable to an increased response to the null-direction. As compared to anesthesia, populations of V1 neurons coded more mutual information on opposite stimulus directions during wakefulness, whereas information on stimulus orientation differences was lower. Increases in correlations of calcium activity during visual stimulation were correlated with poorer population coding, which raised the hypothesis that the anesthesia-induced increase in correlations may be causal to degrading directional coding. Visual stimulation under anesthesia, however, decorrelated ongoing activity patterns to a level comparable to wakefulness. Because visual stimulation thus appears to 'break' the strength of pairwise correlations normally found in spontaneous activity under anesthesia, the changes in correlational structure cannot explain the awake-anesthesia difference in direction coding. The population-wide decrease in coding for stimulus direction thus occurs independently of anesthesia-induced increments in correlations of spontaneous activity.

  18. Effects of Isoflurane Anesthesia on Ensemble Patterns of Ca2+ Activity in Mouse V1: Reduced Direction Selectivity Independent of Increased Correlations in Cellular Activity

    PubMed Central

    Goltstein, Pieter M.; Montijn, Jorrit S.; Pennartz, Cyriel M. A.

    2015-01-01

    Anesthesia affects brain activity at the molecular, neuronal and network level, but it is not well-understood how tuning properties of sensory neurons and network connectivity change under its influence. Using in vivo two-photon calcium imaging we matched neuron identity across episodes of wakefulness and anesthesia in the same mouse and recorded spontaneous and visually evoked activity patterns of neuronal ensembles in these two states. Correlations in spontaneous patterns of calcium activity between pairs of neurons were increased under anesthesia. While orientation selectivity remained unaffected by anesthesia, this treatment reduced direction selectivity, which was attributable to an increased response to the null-direction. As compared to anesthesia, populations of V1 neurons coded more mutual information on opposite stimulus directions during wakefulness, whereas information on stimulus orientation differences was lower. Increases in correlations of calcium activity during visual stimulation were correlated with poorer population coding, which raised the hypothesis that the anesthesia-induced increase in correlations may be causal to degrading directional coding. Visual stimulation under anesthesia, however, decorrelated ongoing activity patterns to a level comparable to wakefulness. Because visual stimulation thus appears to ‘break’ the strength of pairwise correlations normally found in spontaneous activity under anesthesia, the changes in correlational structure cannot explain the awake-anesthesia difference in direction coding. The population-wide decrease in coding for stimulus direction thus occurs independently of anesthesia-induced increments in correlations of spontaneous activity. PMID:25706867

  19. Image gathering and coding for digital restoration: Information efficiency and visual quality

    NASA Technical Reports Server (NTRS)

    Huck, Friedrich O.; John, Sarah; Mccormick, Judith A.; Narayanswamy, Ramkumar

    1989-01-01

    Image gathering and coding are commonly treated as tasks separate from each other and from the digital processing used to restore and enhance the images. The goal is to develop a method that allows us to assess quantitatively the combined performance of image gathering and coding for the digital restoration of images with high visual quality. Digital restoration is often interactive because visual quality depends on perceptual rather than mathematical considerations, and these considerations vary with the target, the application, and the observer. The approach is based on the theoretical treatment of image gathering as a communication channel (J. Opt. Soc. Am. A2, 1644(1985);5,285(1988). Initial results suggest that the practical upper limit of the information contained in the acquired image data range typically from approximately 2 to 4 binary information units (bifs) per sample, depending on the design of the image-gathering system. The associated information efficiency of the transmitted data (i.e., the ratio of information over data) ranges typically from approximately 0.3 to 0.5 bif per bit without coding to approximately 0.5 to 0.9 bif per bit with lossless predictive compression and Huffman coding. The visual quality that can be attained with interactive image restoration improves perceptibly as the available information increases to approximately 3 bifs per sample. However, the perceptual improvements that can be attained with further increases in information are very subtle and depend on the target and the desired enhancement.

  20. VisIVO: A Library and Integrated Tools for Large Astrophysical Dataset Exploration

    NASA Astrophysics Data System (ADS)

    Becciani, U.; Costa, A.; Ersotelos, N.; Krokos, M.; Massimino, P.; Petta, C.; Vitello, F.

    2012-09-01

    VisIVO provides an integrated suite of tools and services that can be used in many scientific fields. VisIVO development starts in the Virtual Observatory framework. VisIVO allows users to visualize meaningfully highly-complex, large-scale datasets and create movies of these visualizations based on distributed infrastructures. VisIVO supports high-performance, multi-dimensional visualization of large-scale astrophysical datasets. Users can rapidly obtain meaningful visualizations while preserving full and intuitive control of the relevant parameters. VisIVO consists of VisIVO Desktop - a stand-alone application for interactive visualization on standard PCs, VisIVO Server - a platform for high performance visualization, VisIVO Web - a custom designed web portal, VisIVOSmartphone - an application to exploit the VisIVO Server functionality and the latest VisIVO features: VisIVO Library allows a job running on a computational system (grid, HPC, etc.) to produce movies directly with the code internal data arrays without the need to produce intermediate files. This is particularly important when running on large computational facilities, where the user wants to have a look at the results during the data production phase. For example, in grid computing facilities, images can be produced directly in the grid catalogue while the user code is running in a system that cannot be directly accessed by the user (a worker node). The deployment of VisIVO on the DG and gLite is carried out with the support of EDGI and EGI-Inspire projects. Depending on the structure and size of datasets under consideration, the data exploration process could take several hours of CPU for creating customized views and the production of movies could potentially last several days. For this reason an MPI parallel version of VisIVO could play a fundamental role in increasing performance, e.g. it could be automatically deployed on nodes that are MPI aware. A central concept in our development is thus to produce unified code that can run either on serial nodes or in parallel by using HPC oriented grid nodes. Another important aspect, to obtain as high performance as possible, is the integration of VisIVO processes with grid nodes where GPUs are available. We have selected CUDA for implementing a range of computationally heavy modules. VisIVO is supported by EGI-Inspire, EDGI and SCI-BUS projects.

  1. Progressive low-bitrate digital color/monochrome image coding by neuro-fuzzy clustering

    NASA Astrophysics Data System (ADS)

    Mitra, Sunanda; Meadows, Steven

    1997-10-01

    Color image coding at low bit rates is an area of research that is just being addressed in recent literature since the problems of storage and transmission of color images are becoming more prominent in many applications. Current trends in image coding exploit the advantage of subband/wavelet decompositions in reducing the complexity in optimal scalar/vector quantizer (SQ/VQ) design. Compression ratios (CRs) of the order of 10:1 to 20:1 with high visual quality have been achieved by using vector quantization of subband decomposed color images in perceptually weighted color spaces. We report the performance of a recently developed adaptive vector quantizer, namely, AFLC-VQ for effective reduction in bit rates while maintaining high visual quality of reconstructed color as well as monochrome images. For 24 bit color images, excellent visual quality is maintained upto a bit rate reduction to approximately 0.48 bpp (for each color plane or monochrome 0.16 bpp, CR 50:1) by using the RGB color space. Further tuning of the AFLC-VQ, and addition of an entropy coder module after the VQ stage results in extremely low bit rates (CR 80:1) for good quality, reconstructed images. Our recent study also reveals that for similar visual quality, RGB color space requires less bits/pixel than either the YIQ, or HIS color space for storing the same information when entropy coding is applied. AFLC-VQ outperforms other standard VQ and adaptive SQ techniques in retaining visual fidelity at similar bit rate reduction.

  2. Two different streams form the dorsal visual system: anatomy and functions.

    PubMed

    Rizzolatti, Giacomo; Matelli, Massimo

    2003-11-01

    There are two radically different views on the functional role of the dorsal visual stream. One considers it as a system involved in space perception. The other is of a system that codes visual information for action organization. On the basis of new anatomical data and a reconsideration of previous functional and clinical data, we propose that the dorsal stream and its recipient parietal areas form two distinct functional systems: the dorso-dorsal stream (d-d stream) and the ventro-dorsal stream (v-d stream). The d-d stream is formed by area V6 (main d-d extrastriate visual node) and areas V6A and MIP of the superior parietal lobule. Its major functional role is the control of actions "on line". Its damage leads to optic ataxia. The v-d stream is formed by area MT (main v-d extrastriate visual node) and by the visual areas of the inferior parietal lobule. As the d-d stream, v-d stream is responsible for action organization. It, however, also plays a crucial role in space perception and action understanding. The putative mechanisms linking action and perception in the v-d stream is discussed.

  3. The role of visual imagery in the retention of information from sentences.

    PubMed

    Drose, G S; Allen, G L

    1994-01-01

    We conducted two experiments to evaluate a multiple-code model for sentence memory that posits both propositional and visual representational systems. Both sentences involved recognition memory. The results of Experiment 1 indicated that subjects' recognition memory for concrete sentences was superior to their recognition memory for abstract sentences. Instructions to use visual imagery to enhance recognition performance yielded no effects. Experiment 2 tested the prediction that interference by a visual task would differentially affect recognition memory for concrete sentences. Results showed the interference task to have had a detrimental effect on recognition memory for both concrete and abstract sentences. Overall, the evidence provided partial support for both a multiple-code model and a semantic integration model of sentence memory.

  4. Visual communication - Information and fidelity. [of images

    NASA Technical Reports Server (NTRS)

    Huck, Freidrich O.; Fales, Carl L.; Alter-Gartenberg, Rachel; Rahman, Zia-Ur; Reichenbach, Stephen E.

    1993-01-01

    This assessment of visual communication deals with image gathering, coding, and restoration as a whole rather than as separate and independent tasks. The approach focuses on two mathematical criteria, information and fidelity, and on their relationships to the entropy of the encoded data and to the visual quality of the restored image. Past applications of these criteria to the assessment of image coding and restoration have been limited to the link that connects the output of the image-gathering device to the input of the image-display device. By contrast, the approach presented in this paper explicitly includes the critical limiting factors that constrain image gathering and display. This extension leads to an end-to-end assessment theory of visual communication that combines optical design with digital processing.

  5. Influence of auditory and audiovisual stimuli on the right-left prevalence effect.

    PubMed

    Vu, Kim-Phuong L; Minakata, Katsumi; Ngo, Mary Kim

    2014-01-01

    When auditory stimuli are used in two-dimensional spatial compatibility tasks, where the stimulus and response configurations vary along the horizontal and vertical dimensions simultaneously, a right-left prevalence effect occurs in which horizontal compatibility dominates over vertical compatibility. The right-left prevalence effects obtained with auditory stimuli are typically larger than that obtained with visual stimuli even though less attention should be demanded from the horizontal dimension in auditory processing. In the present study, we examined whether auditory or visual dominance occurs when the two-dimensional stimuli are audiovisual, as well as whether there will be cross-modal facilitation of response selection for the horizontal and vertical dimensions. We also examined whether there is an additional benefit of adding a pitch dimension to the auditory stimulus to facilitate vertical coding through use of the spatial-musical association of response codes (SMARC) effect, where pitch is coded in terms of height in space. In Experiment 1, we found a larger right-left prevalence effect for unimodal auditory than visual stimuli. Neutral, non-pitch coded, audiovisual stimuli did not result in cross-modal facilitation, but did show evidence of visual dominance. The right-left prevalence effect was eliminated in the presence of SMARC audiovisual stimuli, but the effect influenced horizontal rather than vertical coding. Experiment 2 showed that the influence of the pitch dimension was not in terms of influencing response selection on a trial-to-trial basis, but in terms of altering the salience of the task environment. Taken together, these findings indicate that in the absence of salient vertical cues, auditory and audiovisual stimuli tend to be coded along the horizontal dimension and vision tends to dominate audition in this two-dimensional spatial stimulus-response task.

  6. Interaction between gaze and visual and proprioceptive position judgements.

    PubMed

    Fiehler, Katja; Rösler, Frank; Henriques, Denise Y P

    2010-06-01

    There is considerable evidence that targets for action are represented in a dynamic gaze-centered frame of reference, such that each gaze shift requires an internal updating of the target. Here, we investigated the effect of eye movements on the spatial representation of targets used for position judgements. Participants had their hand passively placed to a location, and then judged whether this location was left or right of a remembered visual or remembered proprioceptive target, while gaze direction was varied. Estimates of position of the remembered targets relative to the unseen position of the hand were assessed with an adaptive psychophysical procedure. These positional judgements significantly varied relative to gaze for both remembered visual and remembered proprioceptive targets. Our results suggest that relative target positions may also be represented in eye-centered coordinates. This implies similar spatial reference frames for action control and space perception when positions are coded relative to the hand.

  7. The effect of visualizing healthy eaters and mortality reminders on nutritious grocery purchases: an integrative terror management and prototype willingness analysis.

    PubMed

    McCabe, Simon; Arndt, Jamie; Goldenberg, Jamie L; Vess, Matthew; Vail, Kenneth E; Gibbons, Frederick X; Rogers, Ross

    2015-03-01

    To use insights from an integration of the terror management health model and the prototype willingness model to inform and improve nutrition-related behavior using an ecologically valid outcome. Prior to shopping, grocery shoppers were exposed to a reminder of mortality (or pain) and then visualized a healthy (vs. neutral) prototype. Receipts were collected postshopping and food items purchased were coded using a nutrition database. Compared with those in the control conditions, participants who received the mortality reminder and who were led to visualize a healthy eater prototype purchased more nutritious foods. The integration of the terror management health model and the prototype willingness model has the potential for both basic and applied advances and offers a generative ground for future research. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  8. Motion sickness increases functional connectivity between visual motion and nausea-associated brain regions.

    PubMed

    Toschi, Nicola; Kim, Jieun; Sclocco, Roberta; Duggento, Andrea; Barbieri, Riccardo; Kuo, Braden; Napadow, Vitaly

    2017-01-01

    The brain networks supporting nausea not yet understood. We previously found that while visual stimulation activated primary (V1) and extrastriate visual cortices (MT+/V5, coding for visual motion), increasing nausea was associated with increasing sustained activation in several brain areas, with significant co-activation for anterior insula (aIns) and mid-cingulate (MCC) cortices. Here, we hypothesized that motion sickness also alters functional connectivity between visual motion and previously identified nausea-processing brain regions. Subjects prone to motion sickness and controls completed a motion sickness provocation task during fMRI/ECG acquisition. We studied changes in connectivity between visual processing areas activated by the stimulus (MT+/V5, V1), right aIns and MCC when comparing rest (BASELINE) to peak nausea state (NAUSEA). Compared to BASELINE, NAUSEA reduced connectivity between right and left V1 and increased connectivity between right MT+/V5 and aIns and between left MT+/V5 and MCC. Additionally, the change in MT+/V5 to insula connectivity was significantly associated with a change in sympathovagal balance, assessed by heart rate variability analysis. No state-related connectivity changes were noted for the control group. Increased connectivity between a visual motion processing region and nausea/salience brain regions may reflect increased transfer of visual/vestibular mismatch information to brain regions supporting nausea perception and autonomic processing. We conclude that vection-induced nausea increases connectivity between nausea-processing regions and those activated by the nauseogenic stimulus. This enhanced low-frequency coupling may support continual, slowly evolving nausea perception and shifts toward sympathetic dominance. Disengaging this coupling may be a target for biobehavioral interventions aimed at reducing motion sickness severity. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Visual search in complex displays: factors affecting conflict detection by air traffic controllers.

    PubMed

    Remington, R W; Johnston, J C; Ruthruff, E; Gold, M; Romera, M

    2000-01-01

    Recent free flight proposals to relax airspace constraints and give greater autonomy to aircraft have raised concerns about their impact on controller performance. Relaxing route and altitude restrictions would reduce the regularity of traffic through individual sectors, possibly impairing controller situation awareness. We examined the impact of this reduced regularity in four visual search experiments that tested controllers' detection of traffic conflicts in the four conditions created by factorial manipulation of fixed routes (present vs. absent) and altitude restrictions (present vs. absent). These four conditions were tested under varying levels of traffic load and conflict geometry (conflict time and conflict angle). Traffic load and conflict geometry showed strong and consistent effects in all experiments. Color coding altitude also substantially improved detection times. In contrast, removing altitude restrictions had only a small negative impact, and removing route restrictions had virtually no negative impact. In some cases conflict detection was actually better without fixed routes. The implications and limitations of these results for the feasibility of free flight are discussed. Actual or potential applications include providing guidance in the selection of free flight operational concepts.

  10. Remembering Plurals: Unit of Coding and Form of Coding during Serial Recall.

    ERIC Educational Resources Information Center

    Van Der Molen, Hugo; Morton, John

    1979-01-01

    Adult females recalled lists of six words, including some plural nouns, presented visually in sequence. A frequent error was to detach the plural from its root. This supports a morpheme-based as opposed to a unitary word code. Evidence for a primarily phonological coding of the plural morpheme was obtained. (Author/RD)

  11. Orthographic Coding: Brain Activation for Letters, Symbols, and Digits.

    PubMed

    Carreiras, Manuel; Quiñones, Ileana; Hernández-Cabrera, Juan Andrés; Duñabeitia, Jon Andoni

    2015-12-01

    The present experiment investigates the input coding mechanisms of 3 common printed characters: letters, numbers, and symbols. Despite research in this area, it is yet unclear whether the identity of these 3 elements is processed through the same or different brain pathways. In addition, some computational models propose that the position-in-string coding of these elements responds to general flexible mechanisms of the visual system that are not character-specific, whereas others suggest that the position coding of letters responds to specific processes that are different from those that guide the position-in-string assignment of other types of visual objects. Here, in an fMRI study, we manipulated character position and character identity through the transposition or substitution of 2 internal elements within strings of 4 elements. Participants were presented with 2 consecutive visual strings and asked to decide whether they were the same or different. The results showed: 1) that some brain areas responded more to letters than to numbers and vice versa, suggesting that processing may follow different brain pathways; 2) that the left parietal cortex is involved in letter identity, and critically in letter position coding, specifically contributing to the early stages of the reading process; and that 3) a stimulus-specific mechanism for letter position coding is operating during orthographic processing. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. A distributed code for color in natural scenes derived from center-surround filtered cone signals

    PubMed Central

    Kellner, Christian J.; Wachtler, Thomas

    2013-01-01

    In the retina of trichromatic primates, chromatic information is encoded in an opponent fashion and transmitted to the lateral geniculate nucleus (LGN) and visual cortex via parallel pathways. Chromatic selectivities of neurons in the LGN form two separate clusters, corresponding to two classes of cone opponency. In the visual cortex, however, the chromatic selectivities are more distributed, which is in accordance with a population code for color. Previous studies of cone signals in natural scenes typically found opponent codes with chromatic selectivities corresponding to two directions in color space. Here we investigated how the non-linear spatio-chromatic filtering in the retina influences the encoding of color signals. Cone signals were derived from hyper-spectral images of natural scenes and preprocessed by center-surround filtering and rectification, resulting in parallel ON and OFF channels. Independent Component Analysis (ICA) on these signals yielded a highly sparse code with basis functions that showed spatio-chromatic selectivities. In contrast to previous analyses of linear transformations of cone signals, chromatic selectivities were not restricted to two main chromatic axes, but were more continuously distributed in color space, similar to the population code of color in the early visual cortex. Our results indicate that spatio-chromatic processing in the retina leads to a more distributed and more efficient code for natural scenes. PMID:24098289

  13. Letter position coding across modalities: the case of Braille readers.

    PubMed

    Perea, Manuel; García-Chamorro, Cristina; Martín-Suesta, Miguel; Gómez, Pablo

    2012-01-01

    The question of how the brain encodes letter position in written words has attracted increasing attention in recent years. A number of models have recently been proposed to accommodate the fact that transposed-letter stimuli like jugde or caniso are perceptually very close to their base words. Here we examined how letter position coding is attained in the tactile modality via Braille reading. The idea is that Braille word recognition may provide more serial processing than the visual modality, and this may produce differences in the input coding schemes employed to encode letters in written words. To that end, we conducted a lexical decision experiment with adult Braille readers in which the pseudowords were created by transposing/replacing two letters. We found a word-frequency effect for words. In addition, unlike parallel experiments in the visual modality, we failed to find any clear signs of transposed-letter confusability effects. This dissociation highlights the differences between modalities. The present data argue against models of letter position coding that assume that transposed-letter effects (in the visual modality) occur at a relatively late, abstract locus.

  14. Novel approach to multispectral image compression on the Internet

    NASA Astrophysics Data System (ADS)

    Zhu, Yanqiu; Jin, Jesse S.

    2000-10-01

    Still image coding techniques such as JPEG have been always applied onto intra-plane images. Coding fidelity is always utilized in measuring the performance of intra-plane coding methods. In many imaging applications, it is more and more necessary to deal with multi-spectral images, such as the color images. In this paper, a novel approach to multi-spectral image compression is proposed by using transformations among planes for further compression of spectral planes. Moreover, a mechanism of introducing human visual system to the transformation is provided for exploiting the psycho visual redundancy. The new technique for multi-spectral image compression, which is designed to be compatible with the JPEG standard, is demonstrated on extracting correlation among planes based on human visual system. A high measure of compactness in the data representation and compression can be seen with the power of the scheme taken into account.

  15. Visual information processing II; Proceedings of the Meeting, Orlando, FL, Apr. 14-16, 1993

    NASA Technical Reports Server (NTRS)

    Huck, Friedrich O. (Editor); Juday, Richard D. (Editor)

    1993-01-01

    Various papers on visual information processing are presented. Individual topics addressed include: aliasing as noise, satellite image processing using a hammering neural network, edge-detetion method using visual perception, adaptive vector median filters, design of a reading test for low-vision image warping, spatial transformation architectures, automatic image-enhancement method, redundancy reduction in image coding, lossless gray-scale image compression by predictive GDF, information efficiency in visual communication, optimizing JPEG quantization matrices for different applications, use of forward error correction to maintain image fidelity, effect of peanoscanning on image compression. Also discussed are: computer vision for autonomous robotics in space, optical processor for zero-crossing edge detection, fractal-based image edge detection, simulation of the neon spreading effect by bandpass filtering, wavelet transform (WT) on parallel SIMD architectures, nonseparable 2D wavelet image representation, adaptive image halftoning based on WT, wavelet analysis of global warming, use of the WT for signal detection, perfect reconstruction two-channel rational filter banks, N-wavelet coding for pattern classification, simulation of image of natural objects, number-theoretic coding for iconic systems.

  16. Stimulus information contaminates summation tests of independent neural representations of features

    NASA Technical Reports Server (NTRS)

    Shimozaki, Steven S.; Eckstein, Miguel P.; Abbey, Craig K.

    2002-01-01

    Many models of visual processing assume that visual information is analyzed into separable and independent neural codes, or features. A common psychophysical test of independent features is known as a summation study, which measures performance in a detection, discrimination, or visual search task as the number of proposed features increases. Improvement in human performance with increasing number of available features is typically attributed to the summation, or combination, of information across independent neural coding of the features. In many instances, however, increasing the number of available features also increases the stimulus information in the task, as assessed by an optimal observer that does not include the independent neural codes. In a visual search task with spatial frequency and orientation as the component features, a particular set of stimuli were chosen so that all searches had equivalent stimulus information, regardless of the number of features. In this case, human performance did not improve with increasing number of features, implying that the improvement observed with additional features may be due to stimulus information and not the combination across independent features.

  17. Connectivity Reveals Sources of Predictive Coding Signals in Early Visual Cortex During Processing of Visual Optic Flow.

    PubMed

    Schindler, Andreas; Bartels, Andreas

    2017-05-01

    Superimposed on the visual feed-forward pathway, feedback connections convey higher level information to cortical areas lower in the hierarchy. A prominent framework for these connections is the theory of predictive coding where high-level areas send stimulus interpretations to lower level areas that compare them with sensory input. Along these lines, a growing body of neuroimaging studies shows that predictable stimuli lead to reduced blood oxygen level-dependent (BOLD) responses compared with matched nonpredictable counterparts, especially in early visual cortex (EVC) including areas V1-V3. The sources of these modulatory feedback signals are largely unknown. Here, we re-examined the robust finding of relative BOLD suppression in EVC evident during processing of coherent compared with random motion. Using functional connectivity analysis, we show an optic flow-dependent increase of functional connectivity between BOLD suppressed EVC and a network of visual motion areas including MST, V3A, V6, the cingulate sulcus visual area (CSv), and precuneus (Pc). Connectivity decreased between EVC and 2 areas known to encode heading direction: entorhinal cortex (EC) and retrosplenial cortex (RSC). Our results provide first evidence that BOLD suppression in EVC for predictable stimuli is indeed mediated by specific high-level areas, in accord with the theory of predictive coding. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Color-coded duplex sonography for diagnosis of testicular torsion.

    PubMed

    Zoeller, G; Ringert, R H

    1991-11-01

    By color-coded duplex sonography moving structures are visualized as red or blue colors within a normal gray-scale B-mode ultrasound image. Thus, blood flow even within small vessels can be visualized clearly. Color-coded duplex sonographic examination was performed in 11 patients who presented with scrotal pain. This method proved to be reliable to differentiate between testicular torsion and testicular inflammation. By clearly demonstrating a lack of intratesticular blood flow in testicular torsion, while avoiding flow in scrotal skin vessels being misinterpreted as intratesticular blood flow, this method significantly decreases the number of patients in whom surgical evaluation is necessary to exclude testicular torsion.

  19. Visual Computing Environment Workshop

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles (Compiler)

    1998-01-01

    The Visual Computing Environment (VCE) is a framework for intercomponent and multidisciplinary computational simulations. Many current engineering analysis codes simulate various aspects of aircraft engine operation. For example, existing computational fluid dynamics (CFD) codes can model the airflow through individual engine components such as the inlet, compressor, combustor, turbine, or nozzle. Currently, these codes are run in isolation, making intercomponent and complete system simulations very difficult to perform. In addition, management and utilization of these engineering codes for coupled component simulations is a complex, laborious task, requiring substantial experience and effort. To facilitate multicomponent aircraft engine analysis, the CFD Research Corporation (CFDRC) is developing the VCE system. This system, which is part of NASA's Numerical Propulsion Simulation System (NPSS) program, can couple various engineering disciplines, such as CFD, structural analysis, and thermal analysis.

  20. Auditory presentation and synchronization in Adobe Flash and HTML5/JavaScript Web experiments.

    PubMed

    Reimers, Stian; Stewart, Neil

    2016-09-01

    Substantial recent research has examined the accuracy of presentation durations and response time measurements for visually presented stimuli in Web-based experiments, with a general conclusion that accuracy is acceptable for most kinds of experiments. However, many areas of behavioral research use auditory stimuli instead of, or in addition to, visual stimuli. Much less is known about auditory accuracy using standard Web-based testing procedures. We used a millisecond-accurate Black Box Toolkit to measure the actual durations of auditory stimuli and the synchronization of auditory and visual presentation onsets. We examined the distribution of timings for 100 presentations of auditory and visual stimuli across two computers with difference specs, three commonly used browsers, and code written in either Adobe Flash or JavaScript. We also examined different coding options for attempting to synchronize the auditory and visual onsets. Overall, we found that auditory durations were very consistent, but that the lags between visual and auditory onsets varied substantially across browsers and computer systems.

  1. Predictive Coding Strategies for Invariant Object Recognition and Volitional Motion Control in Neuromorphic Agents

    DTIC Science & Technology

    2015-09-02

    human behavior. In this project, we hypothesized that visual memory of past motion trajectories may be used for selecting future behavior. In other...34Decoding sequence of actions using fMRI ", Society for Neuroscience Annual Meeting, San Diego, CA, USA, Nov 9-13 2013 (only abstract) 3. Hansol Choi, Dae...Shik Kim, "Planning as inference in a Hierarchical Predictive Memory ", Proceedings of International Conference on Neural Information Processing

  2. Neuron Learning to Network Organization.

    DTIC Science & Technology

    1983-12-20

    02912 N 0-8 1t COTOLIGOF 1HV AflRS 12. REPORT OATE Pesne an ann Research Program December 20, 1983 Office of Naval Research , Code 442PT 13. NUMBER...visual cortc\\ from R. Cajal, Histologie du Systete Nerveux. mostly hard-wired and perform a great variety of control functions took hundreds of millions of...certain sense there is much that is known. A set of coupled non -linear differential equations. including time delays, can be written down that in

  3. Location-coding account versus affordance-activation account in handle-to-hand correspondence effects: Evidence of Simon-like effects based on the coding of action direction.

    PubMed

    Pellicano, Antonello; Koch, Iring; Binkofski, Ferdinand

    2017-09-01

    An increasing number of studies have shown a close link between perception and action, which is supposed to be responsible for the automatic activation of actions compatible with objects' properties, such as the orientation of their graspable parts. It has been observed that left and right hand responses to objects (e.g., cups) are faster and more accurate if the handle orientation corresponds to the response location than when it does not. Two alternative explanations have been proposed for this handle-to-hand correspondence effect : location coding and affordance activation. The aim of the present study was to provide disambiguating evidence on the origin of this effect by employing object sets for which the visually salient portion was separated from, and opposite to the graspable 1, and vice versa. Seven experiments were conducted employing both single objects and object pairs as visual stimuli to enhance the contextual information about objects' graspability and usability. Notwithstanding these manipulations intended to favor affordance activation, results fully supported the location-coding account displaying significant Simon-like effects that involved the orientation of the visually salient portion of the object stimulus and the location of the response. Crucially, we provided evidence of Simon-like effects based on higher-level cognitive, iconic representations of action directions rather than based on lower-level spatial coding of the pure position of protruding portions of the visual stimuli. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  4. Fostering Team Awareness in Earth System Modeling Communities

    NASA Astrophysics Data System (ADS)

    Easterbrook, S. M.; Lawson, A.; Strong, S.

    2009-12-01

    Existing Global Climate Models are typically managed and controlled at a single site, with varied levels of participation by scientists outside the core lab. As these models evolve to encompass a wider set of earth systems, this central control of the modeling effort becomes a bottleneck. But such models cannot evolve to become fully distributed open source projects unless they address the imbalance in the availability of communication channels: scientists at the core site have access to regular face-to-face communication with one another, while those at remote sites have access to only a subset of these conversations - e.g. formally scheduled teleconferences and user meetings. Because of this imbalance, critical decision making can be hidden from many participants, their code contributions can interact in unanticipated ways, and the community loses awareness of who knows what. We have documented some of these problems in a field study at one climate modeling centre, and started to develop tools to overcome these problems. We report on one such tool, TracSNAP, which analyzes the social network of the scientists contributing code to the model by extracting the data in an existing project code repository. The tool presents the results of this analysis to modelers and model users in a number of ways: recommendation for who has expertise on particular code modules, suggestions for code sections that are related to files being worked on, and visualizations of team communication patterns. The tool is currently available as a plugin for the Trac bug tracking system.

  5. Pyramid image codes

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.

    1990-01-01

    All vision systems, both human and machine, transform the spatial image into a coded representation. Particular codes may be optimized for efficiency or to extract useful image features. Researchers explored image codes based on primary visual cortex in man and other primates. Understanding these codes will advance the art in image coding, autonomous vision, and computational human factors. In cortex, imagery is coded by features that vary in size, orientation, and position. Researchers have devised a mathematical model of this transformation, called the Hexagonal oriented Orthogonal quadrature Pyramid (HOP). In a pyramid code, features are segregated by size into layers, with fewer features in the layers devoted to large features. Pyramid schemes provide scale invariance, and are useful for coarse-to-fine searching and for progressive transmission of images. The HOP Pyramid is novel in three respects: (1) it uses a hexagonal pixel lattice, (2) it uses oriented features, and (3) it accurately models most of the prominent aspects of primary visual cortex. The transform uses seven basic features (kernels), which may be regarded as three oriented edges, three oriented bars, and one non-oriented blob. Application of these kernels to non-overlapping seven-pixel neighborhoods yields six oriented, high-pass pyramid layers, and one low-pass (blob) layer.

  6. Letter position coding across modalities: braille and sighted reading of sentences with jumbled words.

    PubMed

    Perea, Manuel; Jiménez, María; Martín-Suesta, Miguel; Gómez, Pablo

    2015-04-01

    This article explores how letter position coding is attained during braille reading and its implications for models of word recognition. When text is presented visually, the reading process easily adjusts to the jumbling of some letters (jugde-judge), with a small cost in reading speed. Two explanations have been proposed: One relies on a general mechanism of perceptual uncertainty at the visual level, and the other focuses on the activation of an abstract level of representation (i.e., bigrams) that is shared by all orthographic codes. Thus, these explanations make differential predictions about reading in a tactile modality. In the present study, congenitally blind readers read sentences presented on a braille display that tracked the finger position. The sentences either were intact or involved letter transpositions. A parallel experiment was conducted in the visual modality. Results revealed a substantially greater reading cost for the sentences with transposed-letter words in braille readers. In contrast with the findings with sighted readers, in which there is a cost of transpositions in the external (initial and final) letters, the reading cost in braille readers occurs serially, with a large cost for initial letter transpositions. Thus, these data suggest that the letter-position-related effects in visual word recognition are due to the characteristics of the visual stream.

  7. Performance comparison of AV1, HEVC, and JVET video codecs on 360 (spherical) video

    NASA Astrophysics Data System (ADS)

    Topiwala, Pankaj; Dai, Wei; Krishnan, Madhu; Abbas, Adeel; Doshi, Sandeep; Newman, David

    2017-09-01

    This paper compares the coding efficiency performance on 360 videos, of three software codecs: (a) AV1 video codec from the Alliance for Open Media (AOM); (b) the HEVC Reference Software HM; and (c) the JVET JEM Reference SW. Note that 360 video is especially challenging content, in that one codes full res globally, but typically looks locally (in a viewport), which magnifies errors. These are tested in two different projection formats ERP and RSP, to check consistency. Performance is tabulated for 1-pass encoding on two fronts: (1) objective performance based on end-to-end (E2E) metrics such as SPSNR-NN, and WS-PSNR, currently developed in the JVET committee; and (2) informal subjective assessment of static viewports. Constant quality encoding is performed with all the three codecs for an unbiased comparison of the core coding tools. Our general conclusion is that under constant quality coding, AV1 underperforms HEVC, which underperforms JVET. We also test with rate control, where AV1 currently underperforms the open source X265 HEVC codec. Objective and visual evidence is provided.

  8. OntoBrowser: a collaborative tool for curation of ontologies by subject matter experts.

    PubMed

    Ravagli, Carlo; Pognan, Francois; Marc, Philippe

    2017-01-01

    The lack of controlled terminology and ontology usage leads to incomplete search results and poor interoperability between databases. One of the major underlying challenges of data integration is curating data to adhere to controlled terminologies and/or ontologies. Finding subject matter experts with the time and skills required to perform data curation is often problematic. In addition, existing tools are not designed for continuous data integration and collaborative curation. This results in time-consuming curation workflows that often become unsustainable. The primary objective of OntoBrowser is to provide an easy-to-use online collaborative solution for subject matter experts to map reported terms to preferred ontology (or code list) terms and facilitate ontology evolution. Additional features include web service access to data, visualization of ontologies in hierarchical/graph format and a peer review/approval workflow with alerting. The source code is freely available under the Apache v2.0 license. Source code and installation instructions are available at http://opensource.nibr.com This software is designed to run on a Java EE application server and store data in a relational database. philippe.marc@novartis.com. © The Author 2016. Published by Oxford University Press.

  9. OntoBrowser: a collaborative tool for curation of ontologies by subject matter experts

    PubMed Central

    Ravagli, Carlo; Pognan, Francois

    2017-01-01

    Summary: The lack of controlled terminology and ontology usage leads to incomplete search results and poor interoperability between databases. One of the major underlying challenges of data integration is curating data to adhere to controlled terminologies and/or ontologies. Finding subject matter experts with the time and skills required to perform data curation is often problematic. In addition, existing tools are not designed for continuous data integration and collaborative curation. This results in time-consuming curation workflows that often become unsustainable. The primary objective of OntoBrowser is to provide an easy-to-use online collaborative solution for subject matter experts to map reported terms to preferred ontology (or code list) terms and facilitate ontology evolution. Additional features include web service access to data, visualization of ontologies in hierarchical/graph format and a peer review/approval workflow with alerting. Availability and implementation: The source code is freely available under the Apache v2.0 license. Source code and installation instructions are available at http://opensource.nibr.com. This software is designed to run on a Java EE application server and store data in a relational database. Contact: philippe.marc@novartis.com PMID:27605099

  10. Assessment of visual communication by information theory

    NASA Astrophysics Data System (ADS)

    Huck, Friedrich O.; Fales, Carl L.

    1994-01-01

    This assessment of visual communication integrates the optical design of the image-gathering device with the digital processing for image coding and restoration. Results show that informationally optimized image gathering ordinarily can be relied upon to maximize the information efficiency of decorrelated data and the visual quality of optimally restored images.

  11. Summary statistics in the attentional blink.

    PubMed

    McNair, Nicolas A; Goodbourn, Patrick T; Shone, Lauren T; Harris, Irina M

    2017-01-01

    We used the attentional blink (AB) paradigm to investigate the processing stage at which extraction of summary statistics from visual stimuli ("ensemble coding") occurs. Experiment 1 examined whether ensemble coding requires attentional engagement with the items in the ensemble. Participants performed two sequential tasks on each trial: gender discrimination of a single face (T1) and estimating the average emotional expression of an ensemble of four faces (or of a single face, as a control condition) as T2. Ensemble coding was affected by the AB when the tasks were separated by a short temporal lag. In Experiment 2, the order of the tasks was reversed to test whether ensemble coding requires more working-memory resources, and therefore induces a larger AB, than estimating the expression of a single face. Each condition produced a similar magnitude AB in the subsequent gender-discrimination T2 task. Experiment 3 additionally investigated whether the previous results were due to participants adopting a subsampling strategy during the ensemble-coding task. Contrary to this explanation, we found different patterns of performance in the ensemble-coding condition and a condition in which participants were instructed to focus on only a single face within an ensemble. Taken together, these findings suggest that ensemble coding emerges automatically as a result of the deployment of attentional resources across the ensemble of stimuli, prior to information being consolidated in working memory.

  12. Sandia Engineering Analysis Code Access System v. 2.0.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjaardema, Gregory D.

    The Sandia Engineering Analysis Code Access System (SEACAS) is a suite of preprocessing, post processing, translation, visualization, and utility applications supporting finite element analysis software using the Exodus database file format.

  13. Rank Order Coding: a Retinal Information Decoding Strategy Revealed by Large-Scale Multielectrode Array Retinal Recordings.

    PubMed

    Portelli, Geoffrey; Barrett, John M; Hilgen, Gerrit; Masquelier, Timothée; Maccione, Alessandro; Di Marco, Stefano; Berdondini, Luca; Kornprobst, Pierre; Sernagor, Evelyne

    2016-01-01

    How a population of retinal ganglion cells (RGCs) encodes the visual scene remains an open question. Going beyond individual RGC coding strategies, results in salamander suggest that the relative latencies of a RGC pair encode spatial information. Thus, a population code based on this concerted spiking could be a powerful mechanism to transmit visual information rapidly and efficiently. Here, we tested this hypothesis in mouse by recording simultaneous light-evoked responses from hundreds of RGCs, at pan-retinal level, using a new generation of large-scale, high-density multielectrode array consisting of 4096 electrodes. Interestingly, we did not find any RGCs exhibiting a clear latency tuning to the stimuli, suggesting that in mouse, individual RGC pairs may not provide sufficient information. We show that a significant amount of information is encoded synergistically in the concerted spiking of large RGC populations. Thus, the RGC population response described with relative activities, or ranks, provides more relevant information than classical independent spike count- or latency- based codes. In particular, we report for the first time that when considering the relative activities across the whole population, the wave of first stimulus-evoked spikes is an accurate indicator of stimulus content. We show that this coding strategy coexists with classical neural codes, and that it is more efficient and faster. Overall, these novel observations suggest that already at the level of the retina, concerted spiking provides a reliable and fast strategy to rapidly transmit new visual scenes.

  14. Neural Mechanisms of Information Storage in Visual Short-Term Memory

    PubMed Central

    Serences, John T.

    2016-01-01

    The capacity to briefly memorize fleeting sensory information supports visual search and behavioral interactions with relevant stimuli in the environment. Traditionally, studies investigating the neural basis of visual short term memory (STM) have focused on the role of prefrontal cortex (PFC) in exerting executive control over what information is stored and how it is adaptively used to guide behavior. However, the neural substrates that support the actual storage of content-specific information in STM are more controversial, with some attributing this function to PFC and others to the specialized areas of early visual cortex that initially encode incoming sensory stimuli. In contrast to these traditional views, I will review evidence suggesting that content-specific information can be flexibly maintained in areas across the cortical hierarchy ranging from early visual cortex to PFC. While the factors that determine exactly where content-specific information is represented are not yet entirely clear, recognizing the importance of task-demands and better understanding the operation of non-spiking neural codes may help to constrain new theories about how memories are maintained at different resolutions, across different timescales, and in the presence of distracting information. PMID:27668990

  15. Neural mechanisms of information storage in visual short-term memory.

    PubMed

    Serences, John T

    2016-11-01

    The capacity to briefly memorize fleeting sensory information supports visual search and behavioral interactions with relevant stimuli in the environment. Traditionally, studies investigating the neural basis of visual short term memory (STM) have focused on the role of prefrontal cortex (PFC) in exerting executive control over what information is stored and how it is adaptively used to guide behavior. However, the neural substrates that support the actual storage of content-specific information in STM are more controversial, with some attributing this function to PFC and others to the specialized areas of early visual cortex that initially encode incoming sensory stimuli. In contrast to these traditional views, I will review evidence suggesting that content-specific information can be flexibly maintained in areas across the cortical hierarchy ranging from early visual cortex to PFC. While the factors that determine exactly where content-specific information is represented are not yet entirely clear, recognizing the importance of task-demands and better understanding the operation of non-spiking neural codes may help to constrain new theories about how memories are maintained at different resolutions, across different timescales, and in the presence of distracting information. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Flowfield computer graphics

    NASA Technical Reports Server (NTRS)

    Desautel, Richard

    1993-01-01

    The objectives of this research include supporting the Aerothermodynamics Branch's research by developing graphical visualization tools for both the branch's adaptive grid code and flow field ray tracing code. The completed research for the reporting period includes development of a graphical user interface (GUI) and its implementation into the NAS Flowfield Analysis Software Tool kit (FAST), for both the adaptive grid code (SAGE) and the flow field ray tracing code (CISS).

  17. The role of visual spatial attention in adult developmental dyslexia.

    PubMed

    Collis, Nathan L; Kohnen, Saskia; Kinoshita, Sachiko

    2013-01-01

    The present study investigated the nature of visual spatial attention deficits in adults with developmental dyslexia, using a partial report task with five-letter, digit, and symbol strings. Participants responded by a manual key press to one of nine alternatives, which included other characters in the string, allowing an assessment of position errors as well as intrusion errors. The results showed that the dyslexic adults performed significantly worse than age-matched controls with letter and digit strings but not with symbol strings. Both groups produced W-shaped serial position functions with letter and digit strings. The dyslexics' deficits with letter string stimuli were limited to position errors, specifically at the string-interior positions 2 and 4. These errors correlated with letter transposition reading errors (e.g., reading slat as "salt"), but not with the Rapid Automatized Naming (RAN) task. Overall, these results suggest that the dyslexic adults have a visual spatial attention deficit; however, the deficit does not reflect a reduced span in visual-spatial attention, but a deficit in processing a string of letters in parallel, probably due to difficulty in the coding of letter position.

  18. Visual Dysfunction Following Blast-Related Traumatic Brain Injury from the Battlefield

    DTIC Science & Technology

    2011-01-01

    and visual disorders is varied, depending on the diagnostic criteria, condition and patient popu- lation, but has primarily been studied in civilian... diagnostic codes for ‘disorders of the eye and adnexa’ (360.0– 379.9) obtained from electronic outpatient medical records (Standard Ambulatory Data Record) and...disorder diagnostic category by TBI status. ICD-9-CM code and categorya TBI (n¼ 837) Other injury (n¼1417) 360 Disorders of the globe 0 1 ɘ.1% 361

  19. Digital visual communications using a Perceptual Components Architecture

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.

    1991-01-01

    The next era of space exploration will generate extraordinary volumes of image data, and management of this image data is beyond current technical capabilities. We propose a strategy for coding visual information that exploits the known properties of early human vision. This Perceptual Components Architecture codes images and image sequences in terms of discrete samples from limited bands of color, spatial frequency, orientation, and temporal frequency. This spatiotemporal pyramid offers efficiency (low bit rate), variable resolution, device independence, error-tolerance, and extensibility.

  20. Information Technology Innovation in the U.S. Army: The Case of the Adoption, Adaptation, and Utilization of the Strategic Crisis Exercise Intranet.

    DTIC Science & Technology

    1999-01-01

    the system using widely available Microsoft Visual and Access Basic programming language . For SCE 󈨦, SWAMI was upgraded to automatically update...into pseudo-code and pass it on to contractors to program, usually using a complex programming language like FORTRAN. Army operations research...easier to use than programming languages like FORTRAN or C, there was still very little expertise in HTML among the instructors and controllers who were

  1. Hazards of Colour Coding in Visual Approach Slope Indicators,

    DTIC Science & Technology

    1981-12-01

    the glideslope. The central spot (the ’ meatball ’) is displaced above or below the datum lights when the pilot views from above or below the...undershoot is increasing or decreasing, the step changes in intensity may also be evident as a form of flash coding. Colour coding of the ’ meatball " in

  2. Pour une pedagogie integree du code oral et du code ecrit (Toward a Pedagogy Integrating Oral and Written Codes).

    ERIC Educational Resources Information Center

    Guillen-Diaz, Carmen

    1990-01-01

    A classroom approach that brings oral and written language learning closer together is outlined. The strategy focuses on proper pronunciation using minimal pairs and uses exercises designed for listening and visualization, production, discrimination, re-use and reinforcement, and computer-assisted instruction. (MSE)

  3. Effects of Action Relations on the Configural Coding between Objects

    ERIC Educational Resources Information Center

    Riddoch, M. J.; Pippard, B.; Booth, L.; Rickell, J.; Summers, J.; Brownson, A.; Humphreys, G. W.

    2011-01-01

    Configural coding is known to take place between the parts of individual objects but has never been shown between separate objects. We provide novel evidence here for configural coding between separate objects through a study of the effects of action relations between objects on extinction. Patients showing visual extinction were presented with…

  4. A Test of Two Alternative Cognitive Processing Models: Learning Styles and Dual Coding

    ERIC Educational Resources Information Center

    Cuevas, Joshua; Dawson, Bryan L.

    2018-01-01

    This study tested two cognitive models, learning styles and dual coding, which make contradictory predictions about how learners process and retain visual and auditory information. Learning styles-based instructional practices are common in educational environments despite a questionable research base, while the use of dual coding is less…

  5. Letter Position Coding Across Modalities: The Case of Braille Readers

    PubMed Central

    Perea, Manuel; García-Chamorro, Cristina; Martín-Suesta, Miguel; Gómez, Pablo

    2012-01-01

    Background The question of how the brain encodes letter position in written words has attracted increasing attention in recent years. A number of models have recently been proposed to accommodate the fact that transposed-letter stimuli like jugde or caniso are perceptually very close to their base words. Methodology Here we examined how letter position coding is attained in the tactile modality via Braille reading. The idea is that Braille word recognition may provide more serial processing than the visual modality, and this may produce differences in the input coding schemes employed to encode letters in written words. To that end, we conducted a lexical decision experiment with adult Braille readers in which the pseudowords were created by transposing/replacing two letters. Principal Findings We found a word-frequency effect for words. In addition, unlike parallel experiments in the visual modality, we failed to find any clear signs of transposed-letter confusability effects. This dissociation highlights the differences between modalities. Conclusions The present data argue against models of letter position coding that assume that transposed-letter effects (in the visual modality) occur at a relatively late, abstract locus. PMID:23071522

  6. Vector and Raster Data Storage Based on Morton Code

    NASA Astrophysics Data System (ADS)

    Zhou, G.; Pan, Q.; Yue, T.; Wang, Q.; Sha, H.; Huang, S.; Liu, X.

    2018-05-01

    Even though geomatique is so developed nowadays, the integration of spatial data in vector and raster formats is still a very tricky problem in geographic information system environment. And there is still not a proper way to solve the problem. This article proposes a method to interpret vector data and raster data. In this paper, we saved the image data and building vector data of Guilin University of Technology to Oracle database. Then we use ADO interface to connect database to Visual C++ and convert row and column numbers of raster data and X Y of vector data to Morton code in Visual C++ environment. This method stores vector and raster data to Oracle Database and uses Morton code instead of row and column and X Y to mark the position information of vector and raster data. Using Morton code to mark geographic information enables storage of data make full use of storage space, simultaneous analysis of vector and raster data more efficient and visualization of vector and raster more intuitive. This method is very helpful for some situations that need to analyse or display vector data and raster data at the same time.

  7. Benchmarking a Visual-Basic based multi-component one-dimensional reactive transport modeling tool

    NASA Astrophysics Data System (ADS)

    Torlapati, Jagadish; Prabhakar Clement, T.

    2013-01-01

    We present the details of a comprehensive numerical modeling tool, RT1D, which can be used for simulating biochemical and geochemical reactive transport problems. The code can be run within the standard Microsoft EXCEL Visual Basic platform, and it does not require any additional software tools. The code can be easily adapted by others for simulating different types of laboratory-scale reactive transport experiments. We illustrate the capabilities of the tool by solving five benchmark problems with varying levels of reaction complexity. These literature-derived benchmarks are used to highlight the versatility of the code for solving a variety of practical reactive transport problems. The benchmarks are described in detail to provide a comprehensive database, which can be used by model developers to test other numerical codes. The VBA code presented in the study is a practical tool that can be used by laboratory researchers for analyzing both batch and column datasets within an EXCEL platform.

  8. Three-dimensional holoscopic image coding scheme using high-efficiency video coding with kernel-based minimum mean-square-error estimation

    NASA Astrophysics Data System (ADS)

    Liu, Deyang; An, Ping; Ma, Ran; Yang, Chao; Shen, Liquan; Li, Kai

    2016-07-01

    Three-dimensional (3-D) holoscopic imaging, also known as integral imaging, light field imaging, or plenoptic imaging, can provide natural and fatigue-free 3-D visualization. However, a large amount of data is required to represent the 3-D holoscopic content. Therefore, efficient coding schemes for this particular type of image are needed. A 3-D holoscopic image coding scheme with kernel-based minimum mean square error (MMSE) estimation is proposed. In the proposed scheme, the coding block is predicted by an MMSE estimator under statistical modeling. In order to obtain the signal statistical behavior, kernel density estimation (KDE) is utilized to estimate the probability density function of the statistical modeling. As bandwidth estimation (BE) is a key issue in the KDE problem, we also propose a BE method based on kernel trick. The experimental results demonstrate that the proposed scheme can achieve a better rate-distortion performance and a better visual rendering quality.

  9. Spatial Tuning Shifts Increase the Discriminability and Fidelity of Population Codes in Visual Cortex

    PubMed Central

    2017-01-01

    Selective visual attention enables organisms to enhance the representation of behaviorally relevant stimuli by altering the encoding properties of single receptive fields (RFs). Yet we know little about how the attentional modulations of single RFs contribute to the encoding of an entire visual scene. Addressing this issue requires (1) measuring a group of RFs that tile a continuous portion of visual space, (2) constructing a population-level measurement of spatial representations based on these RFs, and (3) linking how different types of RF attentional modulations change the population-level representation. To accomplish these aims, we used fMRI to characterize the responses of thousands of voxels in retinotopically organized human cortex. First, we found that the response modulations of voxel RFs (vRFs) depend on the spatial relationship between the RF center and the visual location of the attended target. Second, we used two analyses to assess the spatial encoding quality of a population of voxels. We found that attention increased fine spatial discriminability and representational fidelity near the attended target. Third, we linked these findings by manipulating the observed vRF attentional modulations and recomputing our measures of the fidelity of population codes. Surprisingly, we discovered that attentional enhancements of population-level representations largely depend on position shifts of vRFs, rather than changes in size or gain. Our data suggest that position shifts of single RFs are a principal mechanism by which attention enhances population-level representations in visual cortex. SIGNIFICANCE STATEMENT Although changes in the gain and size of RFs have dominated our view of how attention modulates visual information codes, such hypotheses have largely relied on the extrapolation of single-cell responses to population responses. Here we use fMRI to relate changes in single voxel receptive fields (vRFs) to changes in population-level representations. We find that vRF position shifts contribute more to population-level enhancements of visual information than changes in vRF size or gain. This finding suggests that position shifts are a principal mechanism by which spatial attention enhances population codes for relevant visual information. This poses challenges for labeled line theories of information processing, suggesting that downstream regions likely rely on distributed inputs rather than single neuron-to-neuron mappings. PMID:28242794

  10. Visual analysis of inter-process communication for large-scale parallel computing.

    PubMed

    Muelder, Chris; Gygi, Francois; Ma, Kwan-Liu

    2009-01-01

    In serial computation, program profiling is often helpful for optimization of key sections of code. When moving to parallel computation, not only does the code execution need to be considered but also communication between the different processes which can induce delays that are detrimental to performance. As the number of processes increases, so does the impact of the communication delays on performance. For large-scale parallel applications, it is critical to understand how the communication impacts performance in order to make the code more efficient. There are several tools available for visualizing program execution and communications on parallel systems. These tools generally provide either views which statistically summarize the entire program execution or process-centric views. However, process-centric visualizations do not scale well as the number of processes gets very large. In particular, the most common representation of parallel processes is a Gantt char t with a row for each process. As the number of processes increases, these charts can become difficult to work with and can even exceed screen resolution. We propose a new visualization approach that affords more scalability and then demonstrate it on systems running with up to 16,384 processes.

  11. Adaptation and perceptual norms

    NASA Astrophysics Data System (ADS)

    Webster, Michael A.; Yasuda, Maiko; Haber, Sara; Leonard, Deanne; Ballardini, Nicole

    2007-02-01

    We used adaptation to examine the relationship between perceptual norms--the stimuli observers describe as psychologically neutral, and response norms--the stimulus levels that leave visual sensitivity in a neutral or balanced state. Adapting to stimuli on opposite sides of a neutral point (e.g. redder or greener than white) biases appearance in opposite ways. Thus the adapting stimulus can be titrated to find the unique adapting level that does not bias appearance. We compared these response norms to subjectively defined neutral points both within the same observer (at different retinal eccentricities) and between observers. These comparisons were made for visual judgments of color, image focus, and human faces, stimuli that are very different and may depend on very different levels of processing, yet which share the property that for each there is a well defined and perceptually salient norm. In each case the adaptation aftereffects were consistent with an underlying sensitivity basis for the perceptual norm. Specifically, response norms were similar to and thus covaried with the perceptual norm, and under common adaptation differences between subjectively defined norms were reduced. These results are consistent with models of norm-based codes and suggest that these codes underlie an important link between visual coding and visual experience.

  12. Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R.

    PubMed

    McCarthy, Davis J; Campbell, Kieran R; Lun, Aaron T L; Wills, Quin F

    2017-04-15

    Single-cell RNA sequencing (scRNA-seq) is increasingly used to study gene expression at the level of individual cells. However, preparing raw sequence data for further analysis is not a straightforward process. Biases, artifacts and other sources of unwanted variation are present in the data, requiring substantial time and effort to be spent on pre-processing, quality control (QC) and normalization. We have developed the R/Bioconductor package scater to facilitate rigorous pre-processing, quality control, normalization and visualization of scRNA-seq data. The package provides a convenient, flexible workflow to process raw sequencing reads into a high-quality expression dataset ready for downstream analysis. scater provides a rich suite of plotting tools for single-cell data and a flexible data structure that is compatible with existing tools and can be used as infrastructure for future software development. The open-source code, along with installation instructions, vignettes and case studies, is available through Bioconductor at http://bioconductor.org/packages/scater . davis@ebi.ac.uk. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.

  13. ANOPP/VMS HSCT ground contour system

    NASA Technical Reports Server (NTRS)

    Rawls, John, Jr.; Glaab, Lou

    1992-01-01

    This viewgraph shows the integration of the Visual Motion Simulator with ANOPP. ANOPP is an acronym for the Aircraft NOise Prediction Program. It is a computer code consisting of dedicated noise prediction modules for jet, propeller, and rotor powered aircraft along with flight support and noise propagation modules, all executed under the control of an executive system. The Visual Motion Simulator (VMS) is a ground based motion simulator with six degrees of freedom. The transport-type cockpit is equipped with conventional flight and engine-thrust controls and with flight instrument displays. Control forces on the wheel, column, and rudder pedals are provided by a hydraulic system coupled with an analog computer. The simulator provides variable-feel characteristics of stiffness, damping, coulomb friction, breakout forces, and inertia. The VMS provides a wide range of realistic flight trajectories necessary for computing accurate ground contours. The NASA VMS will be discussed in detail later in this presentation. An equally important part of the system for both ANOPP and VMS is the engine performance. This will also be discussed in the presentation.

  14. DaMoScope and its internet graphics for the visual control of adjusting mathematical models describing experimental data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belousov, V. I.; Ezhela, V. V.; Kuyanov, Yu. V., E-mail: Yu.Kuyanov@gmail.com

    The experience of using the dynamic atlas of the experimental data and mathematical models of their description in the problems of adjusting parametric models of observable values depending on kinematic variables is presented. The functional possibilities of an image of a large number of experimental data and the models describing them are shown by examples of data and models of observable values determined by the amplitudes of elastic scattering of hadrons. The Internet implementation of an interactive tool DaMoScope and its interface with the experimental data and codes of adjusted parametric models with the parameters of the best description ofmore » data are schematically shown. The DaMoScope codes are freely available.« less

  15. Motion-related resource allocation in dynamic wireless visual sensor network environments.

    PubMed

    Katsenou, Angeliki V; Kondi, Lisimachos P; Parsopoulos, Konstantinos E

    2014-01-01

    This paper investigates quality-driven cross-layer optimization for resource allocation in direct sequence code division multiple access wireless visual sensor networks. We consider a single-hop network topology, where each sensor transmits directly to a centralized control unit (CCU) that manages the available network resources. Our aim is to enable the CCU to jointly allocate the transmission power and source-channel coding rates for each node, under four different quality-driven criteria that take into consideration the varying motion characteristics of each recorded video. For this purpose, we studied two approaches with a different tradeoff of quality and complexity. The first one allocates the resources individually for each sensor, whereas the second clusters them according to the recorded level of motion. In order to address the dynamic nature of the recorded scenery and re-allocate the resources whenever it is dictated by the changes in the amount of motion in the scenery, we propose a mechanism based on the particle swarm optimization algorithm, combined with two restarting schemes that either exploit the previously determined resource allocation or conduct a rough estimation of it. Experimental simulations demonstrate the efficiency of the proposed approaches.

  16. Predictive Coding: A Possible Explanation of Filling-In at the Blind Spot

    PubMed Central

    Raman, Rajani; Sarkar, Sandip

    2016-01-01

    Filling-in at the blind spot is a perceptual phenomenon in which the visual system fills the informational void, which arises due to the absence of retinal input corresponding to the optic disc, with surrounding visual attributes. It is known that during filling-in, nonlinear neural responses are observed in the early visual area that correlates with the perception, but the knowledge of underlying neural mechanism for filling-in at the blind spot is far from complete. In this work, we attempted to present a fresh perspective on the computational mechanism of filling-in process in the framework of hierarchical predictive coding, which provides a functional explanation for a range of neural responses in the cortex. We simulated a three-level hierarchical network and observe its response while stimulating the network with different bar stimulus across the blind spot. We find that the predictive-estimator neurons that represent blind spot in primary visual cortex exhibit elevated non-linear response when the bar stimulated both sides of the blind spot. Using generative model, we also show that these responses represent the filling-in completion. All these results are consistent with the finding of psychophysical and physiological studies. In this study, we also demonstrate that the tolerance in filling-in qualitatively matches with the experimental findings related to non-aligned bars. We discuss this phenomenon in the predictive coding paradigm and show that all our results could be explained by taking into account the efficient coding of natural images along with feedback and feed-forward connections that allow priors and predictions to co-evolve to arrive at the best prediction. These results suggest that the filling-in process could be a manifestation of the general computational principle of hierarchical predictive coding of natural images. PMID:26959812

  17. Semantic and visual memory codes in learning disabled readers.

    PubMed

    Swanson, H L

    1984-02-01

    Two experiments investigated whether learning disabled readers' impaired recall is due to multiple coding deficiencies. In Experiment 1, learning disabled and skilled readers viewed nonsense pictures without names or with either relevant or irrelevant names with respect to the distinctive characteristics of the picture. Both types of names improved recall of nondisabled readers, while learning disabled readers exhibited better recall for unnamed pictures. No significant difference in recall was found between name training (relevant, irrelevant) conditions within reading groups. In Experiment 2, both reading groups participated in recall training for complex visual forms labeled with unrelated words, hierarchically related words, or without labels. A subsequent reproduction transfer task showed a facilitation in performance in skilled readers due to labeling, with learning disabled readers exhibiting better reproduction for unnamed pictures. Measures of output organization (clustering) indicated that recall is related to the development of superordinate categories. The results suggest that learning disabled children's reading difficulties are due to an inability to activate a semantic representation that interconnects visual and verbal codes.

  18. Cognitive/emotional models for human behavior representation in 3D avatar simulations

    NASA Astrophysics Data System (ADS)

    Peterson, James K.

    2004-08-01

    Simplified models of human cognition and emotional response are presented which are based on models of auditory/ visual polymodal fusion. At the core of these models is a computational model of Area 37 of the temporal cortex which is based on new isocortex models presented recently by Grossberg. These models are trained using carefully chosen auditory (musical sequences), visual (paintings) and higher level abstract (meta level) data obtained from studies of how optimization strategies are chosen in response to outside managerial inputs. The software modules developed are then used as inputs to character generation codes in standard 3D virtual world simulations. The auditory and visual training data also enable the development of simple music and painting composition generators which significantly enhance one's ability to validate the cognitive model. The cognitive models are handled as interacting software agents implemented as CORBA objects to allow the use of multiple language coding choices (C++, Java, Python etc) and efficient use of legacy code.

  19. Large-scale two-photon imaging revealed super-sparse population codes in the V1 superficial layer of awake monkeys.

    PubMed

    Tang, Shiming; Zhang, Yimeng; Li, Zhihao; Li, Ming; Liu, Fang; Jiang, Hongfei; Lee, Tai Sing

    2018-04-26

    One general principle of sensory information processing is that the brain must optimize efficiency by reducing the number of neurons that process the same information. The sparseness of the sensory representations in a population of neurons reflects the efficiency of the neural code. Here, we employ large-scale two-photon calcium imaging to examine the responses of a large population of neurons within the superficial layers of area V1 with single-cell resolution, while simultaneously presenting a large set of natural visual stimuli, to provide the first direct measure of the population sparseness in awake primates. The results show that only 0.5% of neurons respond strongly to any given natural image - indicating a ten-fold increase in the inferred sparseness over previous measurements. These population activities are nevertheless necessary and sufficient to discriminate visual stimuli with high accuracy, suggesting that the neural code in the primary visual cortex is both super-sparse and highly efficient. © 2018, Tang et al.

  20. Working memory: a developmental study of phonological recoding.

    PubMed

    Palmer, S

    2000-05-01

    A cross-sectional study using children aged 3 to 7 years and a cross-sequential study using children aged between 5 and 8 years showed that the development of phonological recoding in working memory was more complex than the simple dichotomous picture portrayed in the current literature. It appears that initially children use no strategy in recall, which is proposed to represent the level of automatic activation of representations in long-term memory and the storage capacity of the central executive. This is followed by a period in which a visual strategy prevails, followed by a period of dual visual-verbal coding before the adult-like strategy of verbal coding finally emerges. The results are discussed in terms of three working memory models (Baddeley, 1990; Engle, 1996; Logie, 1996) where strategy use is seen as the development of attentional processes and phonological recoding as the development of inhibitory mechanisms in the central executive to suppress the habitual response set of visual coding.

  1. Effects of visual cue and response assignment on spatial stimulus coding in stimulus-response compatibility.

    PubMed

    Nishimura, Akio; Yokosawa, Kazuhiko

    2012-01-01

    Tlauka and McKenna ( 2000 ) reported a reversal of the traditional stimulus-response compatibility (SRC) effect (faster responding to a stimulus presented on the same side than to one on the opposite side) when the stimulus appearing on one side of a display is a member of a superordinate unit that is largely on the opposite side. We investigated the effects of a visual cue that explicitly shows a superordinate unit, and of assignment of multiple stimuli within each superordinate unit to one response, on the SRC effect based on superordinate unit position. Three experiments revealed that stimulus-response assignment is critical, while the visual cue plays a minor role, in eliciting the SRC effect based on the superordinate unit position. Findings suggest bidirectional interaction between perception and action and simultaneous spatial stimulus coding according to multiple frames of reference, with contribution of each coding to the SRC effect flexibly varying with task situations.

  2. Toward a New Theory for Selecting Instructional Visuals.

    ERIC Educational Resources Information Center

    Croft, Richard S.; Burton, John K.

    This paper provides a rationale for the selection of illustrations and visual aids for the classroom. The theories that describe the processing of visuals are dual coding theory and cue summation theory. Concept attainment theory offers a basis for selecting which cues are relevant for any learning task which includes a component of identification…

  3. Visual Information Literacy: Reading a Documentary Photograph

    ERIC Educational Resources Information Center

    Abilock, Debbie

    2008-01-01

    Like a printed text, an architectural blueprint, a mathematical equation, or a musical score, a visual image is its own language. Visual literacy has three components: (1) learning; (2) thinking; and (3) communicating. A "literate" person is able to decipher the basic code and syntax, interpret the signs and symbols, correctly apply terms from an…

  4. A Visual Analysis of the 1980 Houston Republican Presidential Primary Debate.

    ERIC Educational Resources Information Center

    Hellweg, Susan A.; Phillips, Steven L.

    In partial replication of an analysis of the 1976 presidential campaign debates, two researchers analyzed the debate between Republican presidential candidates Ronald Reagan and George Bush (Houston, April 23, 1980) for its visual features, (amount and type of camera shots). The visual categories by which camera shots were coded included…

  5. The Use of Final-Letter Braille Contractions: A Case Study

    ERIC Educational Resources Information Center

    Tallon, Emily M.; Herzberg, Tina S.

    2013-01-01

    Louis Braille developed a six-dot braille code in the early 1800s, thus creating an effective way for persons who are visually impaired to communicate through reading and writing (Holbrook, D'Andrea, & Sanford, 2011). Students with visual impairments require braille instruction from teachers of students with visual impairments, who are responsible…

  6. Comprehending News Videotexts: The Influence of the Visual Content

    ERIC Educational Resources Information Center

    Cross, Jeremy

    2011-01-01

    Informed by dual coding theory, this study explores the role of the visual content in L2 listeners' comprehension of news videotexts. L1 research into the visual characteristics and comprehension of news videotexts is outlined, subsequently informing the quantitative analysis of audiovisual correspondence in the news videotexts used. In each of…

  7. On the assessment of visual communication by information theory

    NASA Technical Reports Server (NTRS)

    Huck, Friedrich O.; Fales, Carl L.

    1993-01-01

    This assessment of visual communication integrates the optical design of the image-gathering device with the digital processing for image coding and restoration. Results show that informationally optimized image gathering ordinarily can be relied upon to maximize the information efficiency of decorrelated data and the visual quality of optimally restored images.

  8. High performance visual display for HENP detectors

    NASA Astrophysics Data System (ADS)

    McGuigan, Michael; Smith, Gordon; Spiletic, John; Fine, Valeri; Nevski, Pavel

    2001-08-01

    A high end visual display for High Energy Nuclear Physics (HENP) detectors is necessary because of the sheer size and complexity of the detector. For BNL this display will be of special interest because of STAR and ATLAS. To load, rotate, query, and debug simulation code with a modern detector simply takes too long even on a powerful work station. To visualize the HENP detectors with maximal performance we have developed software with the following characteristics. We develop a visual display of HENP detectors on BNL multiprocessor visualization server at multiple level of detail. We work with general and generic detector framework consistent with ROOT, GAUDI etc, to avoid conflicting with the many graphic development groups associated with specific detectors like STAR and ATLAS. We develop advanced OpenGL features such as transparency and polarized stereoscopy. We enable collaborative viewing of detector and events by directly running the analysis in BNL stereoscopic theatre. We construct enhanced interactive control, including the ability to slice, search and mark areas of the detector. We incorporate the ability to make a high quality still image of a view of the detector and the ability to generate animations and a fly through of the detector and output these to MPEG or VRML models. We develop data compression hardware and software so that remote interactive visualization will be possible among dispersed collaborators. We obtain real time visual display for events accumulated during simulations.

  9. WebViz:A Web-based Collaborative Interactive Visualization System for large-Scale Data Sets

    NASA Astrophysics Data System (ADS)

    Yuen, D. A.; McArthur, E.; Weiss, R. M.; Zhou, J.; Yao, B.

    2010-12-01

    WebViz is a web-based application designed to conduct collaborative, interactive visualizations of large data sets for multiple users, allowing researchers situated all over the world to utilize the visualization services offered by the University of Minnesota’s Laboratory for Computational Sciences and Engineering (LCSE). This ongoing project has been built upon over the last 3 1/2 years .The motivation behind WebViz lies primarily with the need to parse through an increasing amount of data produced by the scientific community as a result of larger and faster multicore and massively parallel computers coming to the market, including the use of general purpose GPU computing. WebViz allows these large data sets to be visualized online by anyone with an account. The application allows users to save time and resources by visualizing data ‘on the fly’, wherever he or she may be located. By leveraging AJAX via the Google Web Toolkit (http://code.google.com/webtoolkit/), we are able to provide users with a remote, web portal to LCSE's (http://www.lcse.umn.edu) large-scale interactive visualization system already in place at the University of Minnesota. LCSE’s custom hierarchical volume rendering software provides high resolution visualizations on the order of 15 million pixels and has been employed for visualizing data primarily from simulations in astrophysics to geophysical fluid dynamics . In the current version of WebViz, we have implemented a highly extensible back-end framework built around HTTP "server push" technology. The web application is accessible via a variety of devices including netbooks, iPhones, and other web and javascript-enabled cell phones. Features in the current version include the ability for users to (1) securely login (2) launch multiple visualizations (3) conduct collaborative visualization sessions (4) delegate control aspects of a visualization to others and (5) engage in collaborative chats with other users within the user interface of the web application. These features are all in addition to a full range of essential visualization functions including 3-D camera and object orientation, position manipulation, time-stepping control, and custom color/alpha mapping.

  10. 3D topology of orientation columns in visual cortex revealed by functional optical coherence tomography.

    PubMed

    Nakamichi, Yu; Kalatsky, Valery A; Watanabe, Hideyuki; Sato, Takayuki; Rajagopalan, Uma Maheswari; Tanifuji, Manabu

    2018-04-01

    Orientation tuning is a canonical neuronal response property of six-layer visual cortex that is encoded in pinwheel structures with center orientation singularities. Optical imaging of intrinsic signals enables us to map these surface two-dimensional (2D) structures, whereas lack of appropriate techniques has not allowed us to visualize depth structures of orientation coding. In the present study, we performed functional optical coherence tomography (fOCT), a technique capable of acquiring a 3D map of the intrinsic signals, to study the topology of orientation coding inside the cat visual cortex. With this technique, for the first time, we visualized columnar assemblies in orientation coding that had been predicted from electrophysiological recordings. In addition, we found that the columnar structures were largely distorted around pinwheel centers: center singularities were not rigid straight lines running perpendicularly to the cortical surface but formed twisted string-like structures inside the cortex that turned and extended horizontally through the cortex. Looping singularities were observed with their respective termini accessing the same cortical surface via clockwise and counterclockwise orientation pinwheels. These results suggest that a 3D topology of orientation coding cannot be fully anticipated from 2D surface measurements. Moreover, the findings demonstrate the utility of fOCT as an in vivo mesoscale imaging method for mapping functional response properties of cortex in the depth axis. NEW & NOTEWORTHY We used functional optical coherence tomography (fOCT) to visualize three-dimensional structure of the orientation columns with millimeter range and micrometer spatial resolution. We validated vertically elongated columnar structure in iso-orientation domains. The columnar structure was distorted around pinwheel centers. An orientation singularity formed a string with tortuous trajectories inside the cortex and connected clockwise and counterclockwise pinwheel centers in the surface orientation map. The results were confirmed by comparisons with conventional optical imaging and electrophysiological recordings.

  11. Toward unsupervised outbreak detection through visual perception of new patterns

    PubMed Central

    Lévy, Pierre P; Valleron, Alain-Jacques

    2009-01-01

    Background Statistical algorithms are routinely used to detect outbreaks of well-defined syndromes, such as influenza-like illness. These methods cannot be applied to the detection of emerging diseases for which no preexisting information is available. This paper presents a method aimed at facilitating the detection of outbreaks, when there is no a priori knowledge of the clinical presentation of cases. Methods The method uses a visual representation of the symptoms and diseases coded during a patient consultation according to the International Classification of Primary Care 2nd version (ICPC-2). The surveillance data are transformed into color-coded cells, ranging from white to red, reflecting the increasing frequency of observed signs. They are placed in a graphic reference frame mimicking body anatomy. Simple visual observation of color-change patterns over time, concerning a single code or a combination of codes, enables detection in the setting of interest. Results The method is demonstrated through retrospective analyses of two data sets: description of the patients referred to the hospital by their general practitioners (GPs) participating in the French Sentinel Network and description of patients directly consulting at a hospital emergency department (HED). Informative image color-change alert patterns emerged in both cases: the health consequences of the August 2003 heat wave were visualized with GPs' data (but passed unnoticed with conventional surveillance systems), and the flu epidemics, which are routinely detected by standard statistical techniques, were recognized visually with HED data. Conclusion Using human visual pattern-recognition capacities to detect the onset of unexpected health events implies a convenient image representation of epidemiological surveillance and well-trained "epidemiology watchers". Once these two conditions are met, one could imagine that the epidemiology watchers could signal epidemiological alerts, based on "image walls" presenting the local, regional and/or national surveillance patterns, with specialized field epidemiologists assigned to validate the signals detected. PMID:19515246

  12. Natural image sequences constrain dynamic receptive fields and imply a sparse code.

    PubMed

    Häusler, Chris; Susemihl, Alex; Nawrot, Martin P

    2013-11-06

    In their natural environment, animals experience a complex and dynamic visual scenery. Under such natural stimulus conditions, neurons in the visual cortex employ a spatially and temporally sparse code. For the input scenario of natural still images, previous work demonstrated that unsupervised feature learning combined with the constraint of sparse coding can predict physiologically measured receptive fields of simple cells in the primary visual cortex. This convincingly indicated that the mammalian visual system is adapted to the natural spatial input statistics. Here, we extend this approach to the time domain in order to predict dynamic receptive fields that can account for both spatial and temporal sparse activation in biological neurons. We rely on temporal restricted Boltzmann machines and suggest a novel temporal autoencoding training procedure. When tested on a dynamic multi-variate benchmark dataset this method outperformed existing models of this class. Learning features on a large dataset of natural movies allowed us to model spatio-temporal receptive fields for single neurons. They resemble temporally smooth transformations of previously obtained static receptive fields and are thus consistent with existing theories. A neuronal spike response model demonstrates how the dynamic receptive field facilitates temporal and population sparseness. We discuss the potential mechanisms and benefits of a spatially and temporally sparse representation of natural visual input. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Explaining neural signals in human visual cortex with an associative learning model.

    PubMed

    Jiang, Jiefeng; Schmajuk, Nestor; Egner, Tobias

    2012-08-01

    "Predictive coding" models posit a key role for associative learning in visual cognition, viewing perceptual inference as a process of matching (learned) top-down predictions (or expectations) against bottom-up sensory evidence. At the neural level, these models propose that each region along the visual processing hierarchy entails one set of processing units encoding predictions of bottom-up input, and another set computing mismatches (prediction error or surprise) between predictions and evidence. This contrasts with traditional views of visual neurons operating purely as bottom-up feature detectors. In support of the predictive coding hypothesis, a recent human neuroimaging study (Egner, Monti, & Summerfield, 2010) showed that neural population responses to expected and unexpected face and house stimuli in the "fusiform face area" (FFA) could be well-described as a summation of hypothetical face-expectation and -surprise signals, but not by feature detector responses. Here, we used computer simulations to test whether these imaging data could be formally explained within the broader framework of a mathematical neural network model of associative learning (Schmajuk, Gray, & Lam, 1996). Results show that FFA responses could be fit very closely by model variables coding for conditional predictions (and their violations) of stimuli that unconditionally activate the FFA. These data document that neural population signals in the ventral visual stream that deviate from classic feature detection responses can formally be explained by associative prediction and surprise signals.

  14. Working memory in wayfinding-a dual task experiment in a virtual city.

    PubMed

    Meilinger, Tobias; Knauff, Markus; Bülthoff, Heinrich H

    2008-06-01

    This study examines the working memory systems involved in human wayfinding. In the learning phase, 24 participants learned two routes in a novel photorealistic virtual environment displayed on a 220° screen while they were disrupted by a visual, a spatial, a verbal, or-in a control group-no secondary task. In the following wayfinding phase, the participants had to find and to "virtually walk" the two routes again. During this wayfinding phase, a number of dependent measures were recorded. This research shows that encoding wayfinding knowledge interfered with the verbal and with the spatial secondary task. These interferences were even stronger than the interference of wayfinding knowledge with the visual secondary task. These findings are consistent with a dual-coding approach of wayfinding knowledge. 2008 Cognitive Science Society, Inc.

  15. Memory functioning in children with reading disabilities and/or attention deficit/hyperactivity disorder: a clinical investigation of their working memory and long-term memory functioning.

    PubMed

    Kibby, Michelle Y; Cohen, Morris J

    2008-11-01

    We examined memory functioning in children with reading disabilities (RD), Attention deficit/hyperactivity disorder (ADHD), and RD/ADHD using a clinic sample with a clinical instrument: the Children's Memory Scale, enhancing its generalizability. Participants included 23 children with RD, 30 with ADHD, 30 with RD/ADHD, and 30 controls. Children with RD presented with reduced verbal short-term memory (STM) but intact visual STM, central executive (CE), and long-term memory (LTM) functioning. Their deficit in STM appeared specific to tasks requiring phonetic coding of material. Children with ADHD displayed intact CE and LTM functioning but reduced visual-spatial STM, especially when off stimulant medication. Children with RD/ADHD had deficits consistent with both disorders.

  16. Programming (Tips) for Physicists & Engineers

    ScienceCinema

    Ozcan, Erkcan

    2018-02-19

    Programming for today's physicists and engineers. Work environment: today's astroparticle, accelerator experiments and information industry rely on large collaborations. Need more than ever: code sharing/resuse, code building--framework integration, documentation and good visualization, working remotely, not reinventing the wheel.

  17. Programming (Tips) for Physicists & Engineers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozcan, Erkcan

    2010-07-13

    Programming for today's physicists and engineers. Work environment: today's astroparticle, accelerator experiments and information industry rely on large collaborations. Need more than ever: code sharing/resuse, code building--framework integration, documentation and good visualization, working remotely, not reinventing the wheel.

  18. An alpha-numeric code for representing N-linked glycan structures in secreted glycoproteins.

    PubMed

    Yusufi, Faraaz Noor Khan; Park, Wonjun; Lee, May May; Lee, Dong-Yup

    2009-01-01

    Advances in high-throughput techniques have led to the creation of increasing amounts of glycome data. The storage and analysis of this data would benefit greatly from a compact notation for describing glycan structures that can be easily stored and interpreted by computers. Towards this end, we propose a fixed-length alpha-numeric code for representing N-linked glycan structures commonly found in secreted glycoproteins from mammalian cell cultures. This code, GlycoDigit, employs a pre-assigned alpha-numeric index to represent the monosaccharides attached in different branches to the core glycan structure. The present branch-centric representation allows us to visualize the structure while the numerical nature of the code makes it machine readable. In addition, a difference operator can be defined to quantitatively differentiate between glycan structures for further analysis. The usefulness and applicability of GlycoDigit were demonstrated by constructing and visualizing an N-linked glycosylation network.

  19. Temporal Processing in the Olfactory System: Can We See a Smell?

    PubMed Central

    Gire, David H.; Restrepo, Diego; Sejnowski, Terrence J.; Greer, Charles; De Carlos, Juan A.; Lopez-Mascaraque, Laura

    2013-01-01

    Sensory processing circuits in the visual and olfactory systems receive input from complex, rapidly changing environments. Although patterns of light and plumes of odor create different distributions of activity in the retina and olfactory bulb, both structures use what appears on the surface similar temporal coding strategies to convey information to higher areas in the brain. We compare temporal coding in the early stages of the olfactory and visual systems, highlighting recent progress in understanding the role of time in olfactory coding during active sensing by behaving animals. We also examine studies that address the divergent circuit mechanisms that generate temporal codes in the two systems, and find that they provide physiological information directly related to functional questions raised by neuroanatomical studies of Ramon y Cajal over a century ago. Consideration of differences in neural activity in sensory systems contributes to generating new approaches to understand signal processing. PMID:23664611

  20. Use of fluorescent proteins and color-coded imaging to visualize cancer cells with different genetic properties.

    PubMed

    Hoffman, Robert M

    2016-03-01

    Fluorescent proteins are very bright and available in spectrally-distinct colors, enable the imaging of color-coded cancer cells growing in vivo and therefore the distinction of cancer cells with different genetic properties. Non-invasive and intravital imaging of cancer cells with fluorescent proteins allows the visualization of distinct genetic variants of cancer cells down to the cellular level in vivo. Cancer cells with increased or decreased ability to metastasize can be distinguished in vivo. Gene exchange in vivo which enables low metastatic cancer cells to convert to high metastatic can be color-coded imaged in vivo. Cancer stem-like and non-stem cells can be distinguished in vivo by color-coded imaging. These properties also demonstrate the vast superiority of imaging cancer cells in vivo with fluorescent proteins over photon counting of luciferase-labeled cancer cells.

  1. Excel2Genie: A Microsoft Excel application to improve the flexibility of the Genie-2000 Spectroscopic software.

    PubMed

    Forgács, Attila; Balkay, László; Trón, Lajos; Raics, Péter

    2014-12-01

    Excel2Genie, a simple and user-friendly Microsoft Excel interface, has been developed to the Genie-2000 Spectroscopic Software of Canberra Industries. This Excel application can directly control Canberra Multichannel Analyzer (MCA), process the acquired data and visualize them. Combination of Genie-2000 with Excel2Genie results in remarkably increased flexibility and a possibility to carry out repetitive data acquisitions even with changing parameters and more sophisticated analysis. The developed software package comprises three worksheets: display parameters and results of data acquisition, data analysis and mathematical operations carried out on the measured gamma spectra. At the same time it also allows control of these processes. Excel2Genie is freely available to assist gamma spectrum measurements and data evaluation by the interested Canberra users. With access to the Visual Basic Application (VBA) source code of this application users are enabled to modify the developed interface according to their intentions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Processing Code-Switching in Algerian Bilinguals: Effects of Language Use and Semantic Expectancy

    PubMed Central

    Kheder, Souad; Kaan, Edith

    2016-01-01

    Using a cross-modal naming paradigm this study investigated the effect of sentence constraint and language use on the expectancy of a language switch during listening comprehension. Sixty-five Algerian bilinguals who habitually code-switch between Algerian Arabic and French (AA-FR) but not between Standard Arabic and French (SA-FR) listened to sentence fragments and named a visually presented French target NP out loud. Participants’ speech onset times were recorded. The sentence context was either highly semantically constraining toward the French NP or not. The language of the sentence context was either in Algerian Arabic or in Standard Arabic, but the target NP was always in French, thus creating two code-switching contexts: a typical and recurrent code-switching context (AA-FR) and a non-typical code-switching context (SA-FR). Results revealed a semantic constraint effect indicating that the French switches were easier to process in the high compared to the low-constraint context. In addition, the effect size of semantic constraint was significant in the more typical code-switching context (AA-FR) suggesting that language use influences the processing of switching between languages. The effect of semantic constraint was also modulated by code-switching habits and the proficiency of L2 French. Semantic constraint was reduced in bilinguals who frequently code-switch and in bilinguals with high proficiency in French. Results are discussed with regards to the bilingual interactive activation model (Dijkstra and Van Heuven, 2002) and the control process model of code-switching (Green and Wei, 2014). PMID:26973559

  3. World Wind 3D Earth Viewing

    NASA Technical Reports Server (NTRS)

    Hogan, Patrick; Maxwell, Christopher; Kim, Randolph; Gaskins, Tom

    2007-01-01

    World Wind allows users to zoom from satellite altitude down to any place on Earth, leveraging high-resolution LandSat imagery and SRTM (Shuttle Radar Topography Mission) elevation data to experience Earth in visually rich 3D. In addition to Earth, World Wind can also visualize other planets, and there are already comprehensive data sets for Mars and the Earth's moon, which are as easily accessible as those of Earth. There have been more than 20 million downloads to date, and the software is being used heavily by the Department of Defense due to the code s ability to be extended and the evolution of the code courtesy of NASA and the user community. Primary features include the dynamic access to public domain imagery and its ease of use. All one needs to control World Wind is a two-button mouse. Additional guides and features can be accessed through a simplified menu. A JAVA version will be available soon. Navigation is automated with single clicks of a mouse, or by typing in any location to automatically zoom in to see it. The World Wind install package contains the necessary requirements such as the .NET runtime and managed DirectX library. World Wind can display combinations of data from a variety of sources, including Blue Marble, LandSat 7, SRTM, NASA Scientific Visualization Studio, GLOBE, and much more. A thorough list of features, the user manual, a key chart, and screen shots are available at http://worldwind.arc.nasa.gov.

  4. Aphasic Patients Exhibit a Reversal of Hemispheric Asymmetries in Categorical Color Discrimination

    PubMed Central

    Paluy, Yulia; Gilbert, Aubrey L.; Baldo, Juliana V.; Dronkers, Nina F.; Ivry, Richard B.

    2010-01-01

    Patients with left hemisphere (LH) or right hemisphere (RH) brain injury due to stroke were tested on a speeded, color discrimination task in which two factors were manipulated: 1) the categorical relationship between the target and the distracters and 2) the visual field in which the target was presented. Similar to controls, the RH patients were faster in detecting targets in the right visual field when the target and distracters had different color names compared to when their names were the same. This effect was absent in the LH patients, consistent with the hypothesis that injury to the left hemisphere handicaps the automatic activation of lexical codes. Moreover, the LH patients showed a reversed effect, such that the advantage of different target-distracter names was now evident for targets in the left visual field. This reversal may suggest a reorganization of the color lexicon in the right hemisphere following left hemisphere brain injury and/or the unmasking of a heightened right hemisphere sensitivity to color categories. PMID:21216454

  5. Spectral analysis method and sample generation for real time visualization of speech

    NASA Astrophysics Data System (ADS)

    Hobohm, Klaus

    A method for translating speech signals into optical models, characterized by high sound discrimination and learnability and designed to provide to deaf persons a feedback towards control of their way of speaking, is presented. Important properties of speech production and perception processes and organs involved in these mechanisms are recalled in order to define requirements for speech visualization. It is established that the spectral representation of time, frequency and amplitude resolution of hearing must be fair and continuous variations of acoustic parameters of speech signal must be depicted by a continuous variation of images. A color table was developed for dynamic illustration and sonograms were generated with five spectral analysis methods such as Fourier transformations and linear prediction coding. For evaluating sonogram quality, test persons had to recognize consonant/vocal/consonant words and an optimized analysis method was achieved with a fast Fourier transformation and a postprocessor. A hardware concept of a real time speech visualization system, based on multiprocessor technology in a personal computer, is presented.

  6. Visual information processing; Proceedings of the Meeting, Orlando, FL, Apr. 20-22, 1992

    NASA Technical Reports Server (NTRS)

    Huck, Friedrich O. (Editor); Juday, Richard D. (Editor)

    1992-01-01

    Topics discussed in these proceedings include nonlinear processing and communications; feature extraction and recognition; image gathering, interpolation, and restoration; image coding; and wavelet transform. Papers are presented on noise reduction for signals from nonlinear systems; driving nonlinear systems with chaotic signals; edge detection and image segmentation of space scenes using fractal analyses; a vision system for telerobotic operation; a fidelity analysis of image gathering, interpolation, and restoration; restoration of images degraded by motion; and information, entropy, and fidelity in visual communication. Attention is also given to image coding methods and their assessment, hybrid JPEG/recursive block coding of images, modified wavelets that accommodate causality, modified wavelet transform for unbiased frequency representation, and continuous wavelet transform of one-dimensional signals by Fourier filtering.

  7. Neuronal population coding of perceived and memorized visual features in the lateral prefrontal cortex

    PubMed Central

    Mendoza-Halliday, Diego; Martinez-Trujillo, Julio C.

    2017-01-01

    The primate lateral prefrontal cortex (LPFC) encodes visual stimulus features while they are perceived and while they are maintained in working memory. However, it remains unclear whether perceived and memorized features are encoded by the same or different neurons and population activity patterns. Here we record LPFC neuronal activity while monkeys perceive the motion direction of a stimulus that remains visually available, or memorize the direction if the stimulus disappears. We find neurons with a wide variety of combinations of coding strength for perceived and memorized directions: some neurons encode both to similar degrees while others preferentially or exclusively encode either one. Reading out the combined activity of all neurons, a machine-learning algorithm reliably decode the motion direction and determine whether it is perceived or memorized. Our results indicate that a functionally diverse population of LPFC neurons provides a substrate for discriminating between perceptual and mnemonic representations of visual features. PMID:28569756

  8. Binary video codec for data reduction in wireless visual sensor networks

    NASA Astrophysics Data System (ADS)

    Khursheed, Khursheed; Ahmad, Naeem; Imran, Muhammad; O'Nils, Mattias

    2013-02-01

    Wireless Visual Sensor Networks (WVSN) is formed by deploying many Visual Sensor Nodes (VSNs) in the field. Typical applications of WVSN include environmental monitoring, health care, industrial process monitoring, stadium/airports monitoring for security reasons and many more. The energy budget in the outdoor applications of WVSN is limited to the batteries and the frequent replacement of batteries is usually not desirable. So the processing as well as the communication energy consumption of the VSN needs to be optimized in such a way that the network remains functional for longer duration. The images captured by VSN contain huge amount of data and require efficient computational resources for processing the images and wide communication bandwidth for the transmission of the results. Image processing algorithms must be designed and developed in such a way that they are computationally less complex and must provide high compression rate. For some applications of WVSN, the captured images can be segmented into bi-level images and hence bi-level image coding methods will efficiently reduce the information amount in these segmented images. But the compression rate of the bi-level image coding methods is limited by the underlined compression algorithm. Hence there is a need for designing other intelligent and efficient algorithms which are computationally less complex and provide better compression rate than that of bi-level image coding methods. Change coding is one such algorithm which is computationally less complex (require only exclusive OR operations) and provide better compression efficiency compared to image coding but it is effective for applications having slight changes between adjacent frames of the video. The detection and coding of the Region of Interest (ROIs) in the change frame efficiently reduce the information amount in the change frame. But, if the number of objects in the change frames is higher than a certain level then the compression efficiency of both the change coding and ROI coding becomes worse than that of image coding. This paper explores the compression efficiency of the Binary Video Codec (BVC) for the data reduction in WVSN. We proposed to implement all the three compression techniques i.e. image coding, change coding and ROI coding at the VSN and then select the smallest bit stream among the results of the three compression techniques. In this way the compression performance of the BVC will never become worse than that of image coding. We concluded that the compression efficiency of BVC is always better than that of change coding and is always better than or equal that of ROI coding and image coding.

  9. Orienting attention in visual space by nociceptive stimuli: investigation with a temporal order judgment task based on the adaptive PSI method.

    PubMed

    Filbrich, Lieve; Alamia, Andrea; Burns, Soline; Legrain, Valéry

    2017-07-01

    Despite their high relevance for defending the integrity of the body, crossmodal links between nociception, the neural system specifically coding potentially painful information, and vision are still poorly studied, especially the effects of nociception on visual perception. This study investigated if, and in which time window, a nociceptive stimulus can attract attention to its location on the body, independently of voluntary control, to facilitate the processing of visual stimuli occurring in the same side of space as the limb on which the visual stimulus was applied. In a temporal order judgment task based on an adaptive procedure, participants judged which of two visual stimuli, one presented next to either hand in either side of space, had been perceived first. Each pair of visual stimuli was preceded (by 200, 400, or 600 ms) by a nociceptive stimulus applied either unilaterally on one single hand, or bilaterally, on both hands simultaneously. Results show that, as compared to the bilateral condition, participants' judgments were biased to the advantage of the visual stimuli that occurred in the same side of space as the hand on which a unilateral, nociceptive stimulus was applied. This effect was present in a time window ranging from 200 to 600 ms, but importantly, biases increased with decreasing time interval. These results suggest that nociceptive stimuli can affect the perceptual processing of spatially congruent visual inputs.

  10. Secure web-based invocation of large-scale plasma simulation codes

    NASA Astrophysics Data System (ADS)

    Dimitrov, D. A.; Busby, R.; Exby, J.; Bruhwiler, D. L.; Cary, J. R.

    2004-12-01

    We present our design and initial implementation of a web-based system for running, both in parallel and serial, Particle-In-Cell (PIC) codes for plasma simulations with automatic post processing and generation of visual diagnostics.

  11. A functional hierarchy within the parietofrontal network in stimulus selection and attention control.

    PubMed

    Ibos, Guilhem; Duhamel, Jean-René; Ben Hamed, Suliann

    2013-05-08

    Although we are confronted with an ever-changing environment, we do not have the capacity to analyze all incoming sensory information. Perception is selective and is guided both by salient events occurring in our visual field and by cognitive premises about what needs our attention. Although the lateral intraparietal area (LIP) and frontal eye field (FEF) are known to represent the position of visual attention, their respective contributions to its control are still unclear. Here, we report LIP and FEF neuronal activities recorded while monkeys performed a voluntary attention-orientation target-detection task. We show that both encode behaviorally significant events, but that the FEF plays a specific role in mapping abstract cue instructions onto a spatial priority map to voluntarily guide attention. On the basis of a latency analysis, we show that the coding of stimulus identity and position precedes the emergence of an explicit attentional signal within the FEF. We also describe dynamic temporal hierarchies between LIP and FEF: stimuli carrying the highest intrinsic saliency are signaled by LIP before FEF, whereas stimuli carrying the highest extrinsic saliency are signaled in FEF before LIP. This suggests that whereas the parietofrontal attentional network most probably processes visual information in a recurrent way, exogenous processing predominates in the parietal cortex and the endogenous control of attention takes place in the FEF.

  12. Impaired Letter-String Processing in Developmental Dyslexia: What Visual-to-Phonology Code Mapping Disorder?

    ERIC Educational Resources Information Center

    Valdois, Sylviane; Lassus-Sangosse, Delphine; Lobier, Muriel

    2012-01-01

    Poor parallel letter-string processing in developmental dyslexia was taken as evidence of poor visual attention (VA) span, that is, a limitation of visual attentional resources that affects multi-character processing. However, the use of letter stimuli in oral report tasks was challenged on its capacity to highlight a VA span disorder. In…

  13. Shape Similarity, Better than Semantic Membership, Accounts for the Structure of Visual Object Representations in a Population of Monkey Inferotemporal Neurons

    PubMed Central

    DiCarlo, James J.; Zecchina, Riccardo; Zoccolan, Davide

    2013-01-01

    The anterior inferotemporal cortex (IT) is the highest stage along the hierarchy of visual areas that, in primates, processes visual objects. Although several lines of evidence suggest that IT primarily represents visual shape information, some recent studies have argued that neuronal ensembles in IT code the semantic membership of visual objects (i.e., represent conceptual classes such as animate and inanimate objects). In this study, we investigated to what extent semantic, rather than purely visual information, is represented in IT by performing a multivariate analysis of IT responses to a set of visual objects. By relying on a variety of machine-learning approaches (including a cutting-edge clustering algorithm that has been recently developed in the domain of statistical physics), we found that, in most instances, IT representation of visual objects is accounted for by their similarity at the level of shape or, more surprisingly, low-level visual properties. Only in a few cases we observed IT representations of semantic classes that were not explainable by the visual similarity of their members. Overall, these findings reassert the primary function of IT as a conveyor of explicit visual shape information, and reveal that low-level visual properties are represented in IT to a greater extent than previously appreciated. In addition, our work demonstrates how combining a variety of state-of-the-art multivariate approaches, and carefully estimating the contribution of shape similarity to the representation of object categories, can substantially advance our understanding of neuronal coding of visual objects in cortex. PMID:23950700

  14. Redundant Coding in Visual Search Displays: Effects of Shape and Colour.

    DTIC Science & Technology

    1997-02-01

    results for refining color selection algorithms and for color coding in situations where the gamut of available colors is limited. In a secondary set of analyses, we note large performance differences as a function of target shape.

  15. OHD/HL - SHEF: code

    Science.gov Websites

    specification How to install the software How to use the software Download the source code (using .gz). Standard Exchange Format (SHEF) is a documented set of rules for coding of data in a form for both visual and information to describe the data. Current SHEF specification How to install the software How to use the

  16. Nine-year-old children use norm-based coding to visually represent facial expression.

    PubMed

    Burton, Nichola; Jeffery, Linda; Skinner, Andrew L; Benton, Christopher P; Rhodes, Gillian

    2013-10-01

    Children are less skilled than adults at making judgments about facial expression. This could be because they have not yet developed adult-like mechanisms for visually representing faces. Adults are thought to represent faces in a multidimensional face-space, and have been shown to code the expression of a face relative to the norm or average face in face-space. Norm-based coding is economical and adaptive, and may be what makes adults more sensitive to facial expression than children. This study investigated the coding system that children use to represent facial expression. An adaptation aftereffect paradigm was used to test 24 adults and 18 children (9 years 2 months to 9 years 11 months old). Participants adapted to weak and strong antiexpressions. They then judged the expression of an average expression. Adaptation created aftereffects that made the test face look like the expression opposite that of the adaptor. Consistent with the predictions of norm-based but not exemplar-based coding, aftereffects were larger for strong than weak adaptors for both age groups. Results indicate that, like adults, children's coding of facial expressions is norm-based. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  17. Interactive three-dimensional visualization and creation of geometries for Monte Carlo calculations

    NASA Astrophysics Data System (ADS)

    Theis, C.; Buchegger, K. H.; Brugger, M.; Forkel-Wirth, D.; Roesler, S.; Vincke, H.

    2006-06-01

    The implementation of three-dimensional geometries for the simulation of radiation transport problems is a very time-consuming task. Each particle transport code supplies its own scripting language and syntax for creating the geometries. All of them are based on the Constructive Solid Geometry scheme requiring textual description. This makes the creation a tedious and error-prone task, which is especially hard to master for novice users. The Monte Carlo code FLUKA comes with built-in support for creating two-dimensional cross-sections through the geometry and FLUKACAD, a custom-built converter to the commercial Computer Aided Design package AutoCAD, exists for 3D visualization. For other codes, like MCNPX, a couple of different tools are available, but they are often specifically tailored to the particle transport code and its approach used for implementing geometries. Complex constructive solid modeling usually requires very fast and expensive special purpose hardware, which is not widely available. In this paper SimpleGeo is presented, which is an implementation of a generic versatile interactive geometry modeler using off-the-shelf hardware. It is running on Windows, with a Linux version currently under preparation. This paper describes its functionality, which allows for rapid interactive visualization as well as generation of three-dimensional geometries, and also discusses critical issues regarding common CAD systems.

  18. Code-modulated visual evoked potentials using fast stimulus presentation and spatiotemporal beamformer decoding.

    PubMed

    Wittevrongel, Benjamin; Van Wolputte, Elia; Van Hulle, Marc M

    2017-11-08

    When encoding visual targets using various lagged versions of a pseudorandom binary sequence of luminance changes, the EEG signal recorded over the viewer's occipital pole exhibits so-called code-modulated visual evoked potentials (cVEPs), the phase lags of which can be tied to these targets. The cVEP paradigm has enjoyed interest in the brain-computer interfacing (BCI) community for the reported high information transfer rates (ITR, in bits/min). In this study, we introduce a novel decoding algorithm based on spatiotemporal beamforming, and show that this algorithm is able to accurately identify the gazed target. Especially for a small number of repetitions of the coding sequence, our beamforming approach significantly outperforms an optimised support vector machine (SVM)-based classifier, which is considered state-of-the-art in cVEP-based BCI. In addition to the traditional 60 Hz stimulus presentation rate for the coding sequence, we also explore the 120 Hz rate, and show that the latter enables faster communication, with a maximal median ITR of 172.87 bits/min. Finally, we also report on a transition effect in the EEG signal following the onset of the stimulus sequence, and recommend to exclude the first 150 ms of the trials from decoding when relying on a single presentation of the stimulus sequence.

  19. Predictions of the spontaneous symmetry-breaking theory for visual code completeness and spatial scaling in single-cell learning rules.

    PubMed

    Webber, C J

    2001-05-01

    This article shows analytically that single-cell learning rules that give rise to oriented and localized receptive fields, when their synaptic weights are randomly and independently initialized according to a plausible assumption of zero prior information, will generate visual codes that are invariant under two-dimensional translations, rotations, and scale magnifications, provided that the statistics of their training images are sufficiently invariant under these transformations. Such codes span different image locations, orientations, and size scales with equal economy. Thus, single-cell rules could account for the spatial scaling property of the cortical simple-cell code. This prediction is tested computationally by training with natural scenes; it is demonstrated that a single-cell learning rule can give rise to simple-cell receptive fields spanning the full range of orientations, image locations, and spatial frequencies (except at the extreme high and low frequencies at which the scale invariance of the statistics of digitally sampled images must ultimately break down, because of the image boundary and the finite pixel resolution). Thus, no constraint on completeness, or any other coupling between cells, is necessary to induce the visual code to span wide ranges of locations, orientations, and size scales. This prediction is made using the theory of spontaneous symmetry breaking, which we have previously shown can also explain the data-driven self-organization of a wide variety of transformation invariances in neurons' responses, such as the translation invariance of complex cell response.

  20. Lightweight computational steering of very large scale molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beazley, D.M.; Lomdahl, P.S.

    1996-09-01

    We present a computational steering approach for controlling, analyzing, and visualizing very large scale molecular dynamics simulations involving tens to hundreds of millions of atoms. Our approach relies on extensible scripting languages and an easy to use tool for building extensions and modules. The system is extremely easy to modify, works with existing C code, is memory efficient, and can be used from inexpensive workstations and networks. We demonstrate how we have used this system to manipulate data from production MD simulations involving as many as 104 million atoms running on the CM-5 and Cray T3D. We also show howmore » this approach can be used to build systems that integrate common scripting languages (including Tcl/Tk, Perl, and Python), simulation code, user extensions, and commercial data analysis packages.« less

  1. Ink-constrained halftoning with application to QR codes

    NASA Astrophysics Data System (ADS)

    Bayeh, Marzieh; Compaan, Erin; Lindsey, Theodore; Orlow, Nathan; Melczer, Stephen; Voller, Zachary

    2014-01-01

    This paper examines adding visually significant, human recognizable data into QR codes without affecting their machine readability by utilizing known methods in image processing. Each module of a given QR code is broken down into pixels, which are halftoned in such a way as to keep the QR code structure while revealing aspects of the secondary image to the human eye. The loss of information associated to this procedure is discussed, and entropy values are calculated for examples given in the paper. Numerous examples of QR codes with embedded images are included.

  2. A controlled evaluation of case clinical effect coding by poison center specialists for detection of WMD scenarios.

    PubMed

    Beuhler, Michael C; Wittler, Mary A; Ford, Marsha; Dulaney, Anna R

    2011-08-01

    Many public health entities employ computer-based syndromic surveillance to monitor for aberrations including possible exposures to weapons of mass destruction (WMD). Often, this is done by screening signs and symptoms reported for cases against syndromic definitions. Poison centers (PCs) may offer significant contributions to public health surveillance because of their detailed clinical effect data field coding and real-time data entry. Because improper clinical effect coding may impede syndromic surveillance, it is important to assess this accuracy for PCs. An AAPCC-certified regional PC assessed the accuracy of clinical effect coding by specialists in poison information (SPIs) listening to audio recordings of standard cases. Eighteen different standardized cases were used, consisting of six cyanide, six botulism, and six control cases. Cases were scripted to simulate clinically relevant telephone conversations and converted to audio recordings. Ten SPIs were randomly selected from the center's staff to listen to and code case information from the recorded cases. Kappa scores and the percentage of correctly coding a present clinical effect were calculated for individual clinical effects summed over all test cases along with corresponding 95% confidence intervals. The rate of the case coding by the SPIs triggering the PC's automated botulism and cyanide alerts was also determined. The kappa scores and the percentage of correctly coding a present clinical effect varied depending on the specific clinical effect, with greater accuracy observed for the clinical effects of vomiting and agitation/irritability, and poor accuracy observed for the clinical effects of visual defect and anion gap increase. Lack of correct coding resulted in only 60 and 86% of the cases that met the botulism and cyanide surveillance definitions, respectively, triggering the corresponding alert. There was no difference observed in the percentage of coding a present clinical effect between certified (9.0 years experience) and non-certified (2.4 years experience) specialists. There were no cases of coding errors that resulted in the triggering of a false positive alert. The success of syndromic surveillance depends on accurate coding of signs and symptoms. Although PCs generally contribute high-quality data to public health surveillance, it is important to recognize this potential weak link in surveillance methods.

  3. Surfing a spike wave down the ventral stream.

    PubMed

    VanRullen, Rufin; Thorpe, Simon J

    2002-10-01

    Numerous theories of neural processing, often motivated by experimental observations, have explored the computational properties of neural codes based on the absolute or relative timing of spikes in spike trains. Spiking neuron models and theories however, as well as their experimental counterparts, have generally been limited to the simulation or observation of isolated neurons, isolated spike trains, or reduced neural populations. Such theories would therefore seem inappropriate to capture the properties of a neural code relying on temporal spike patterns distributed across large neuronal populations. Here we report a range of computer simulations and theoretical considerations that were designed to explore the possibilities of one such code and its relevance for visual processing. In a unified framework where the relation between stimulus saliency and spike relative timing plays the central role, we describe how the ventral stream of the visual system could process natural input scenes and extract meaningful information, both rapidly and reliably. The first wave of spikes generated in the retina in response to a visual stimulation carries information explicitly in its spatio-temporal structure: the most salient information is represented by the first spikes over the population. This spike wave, propagating through a hierarchy of visual areas, is regenerated at each processing stage, where its temporal structure can be modified by (i). the selectivity of the cortical neurons, (ii). lateral interactions and (iii). top-down attentional influences from higher order cortical areas. The resulting model could account for the remarkable efficiency and rapidity of processing observed in the primate visual system.

  4. Automatic Activation of Phonological Code during Visual Word Recognition in Children: A Masked Priming Study in Grades 3 and 5

    ERIC Educational Resources Information Center

    Sauval, Karinne; Perre, Laetitia; Casalis, Séverine

    2017-01-01

    The present study aimed to investigate the development of automatic phonological processes involved in visual word recognition during reading acquisition in French. A visual masked priming lexical decision experiment was carried out with third, fifth graders and adult skilled readers. Three different types of partial overlap between the prime and…

  5. Effects of Length of Retention Interval on Proactive Interference in Short-Term Visual Memory

    ERIC Educational Resources Information Center

    Meudell, Peter R.

    1977-01-01

    These experiments show two things: (a) In visual memory, long-term interference on a current item from items previously stored only seems to occur when the current item's retention interval is relatively long, and (b) the visual code appears to decay rapidly, reaching asymptote within 3 seconds of input in the presence of an interpolated task.…

  6. The Armed Forces Casualty Assistance Readiness Enhancement System (CARES): Design for Flexibility

    DTIC Science & Technology

    2006-06-01

    Special Form SQL Structured Query Language SSA Social Security Administration U USMA United States Military Academy V VB Visual Basic VBA Visual Basic for...of Abbreviations ................................................................... 26 Appendix B: Key VBA Macros and MS Excel Coding...internet portal, CARES Version 1.0 is a MS Excel spreadsheet application that contains a considerable number of Visual Basic for Applications ( VBA

  7. Information, entropy, and fidelity in visual communication

    NASA Astrophysics Data System (ADS)

    Huck, Friedrich O.; Fales, Carl L.; Alter-Gartenberg, Rachel; Rahman, Zia-ur

    1992-10-01

    This paper presents an assessment of visual communication that integrates the critical limiting factors of image gathering an display with the digital processing that is used to code and restore images. The approach focuses on two mathematical criteria, information and fidelity, and on their relationships to the entropy of the encoded data and to the visual quality of the restored image.

  8. Information, entropy and fidelity in visual communication

    NASA Technical Reports Server (NTRS)

    Huck, Friedrich O.; Fales, Carl L.; Alter-Gartenberg, Rachel; Rahman, Zia-Ur

    1992-01-01

    This paper presents an assessment of visual communication that integrates the critical limiting factors of image gathering and display with the digital processing that is used to code and restore images. The approach focuses on two mathematical criteria, information and fidelity, and on their relationships to the entropy of the encoded data and to the visual quality of the restored image.

  9. Evaluation of Persons of Varying Ages.

    ERIC Educational Resources Information Center

    Stolte, John F.

    1996-01-01

    Reviews two experiments that strongly support dual coding theory. Dual coding theory holds that communicating concretely (tactile, auditory, or visual stimuli) affects evaluative thinking stronger than communicating abstractly through words and numbers. The experiments applied this theory to the realm of age and evaluation. (MJP)

  10. Static Verification for Code Contracts

    NASA Astrophysics Data System (ADS)

    Fähndrich, Manuel

    The Code Contracts project [3] at Microsoft Research enables programmers on the .NET platform to author specifications in existing languages such as C# and VisualBasic. To take advantage of these specifications, we provide tools for documentation generation, runtime contract checking, and static contract verification.

  11. FY17Q4 Ristra project: Release Version 1.0 of a production toolkit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hungerford, Aimee L.; Daniel, David John

    2017-09-21

    The Next Generation Code project will release Version 1.0 of a production toolkit for multi-physics application development on advanced architectures. Features of this toolkit will include remap and link utilities, control and state manager, setup, visualization and I/O, as well as support for a variety of mesh and particle data representations. Numerical physics packages that operate atop this foundational toolkit will be employed in a multi-physics demonstration problem and released to the community along with results from the demonstration.

  12. Unraveling transcriptional control and cis-regulatory codes using the software suite GeneACT

    PubMed Central

    Cheung, Tom Hiu; Kwan, Yin Lam; Hamady, Micah; Liu, Xuedong

    2006-01-01

    Deciphering gene regulatory networks requires the systematic identification of functional cis-acting regulatory elements. We present a suite of web-based bioinformatics tools, called GeneACT , that can rapidly detect evolutionarily conserved transcription factor binding sites or microRNA target sites that are either unique or over-represented in differentially expressed genes from DNA microarray data. GeneACT provides graphic visualization and extraction of common regulatory sequence elements in the promoters and 3'-untranslated regions that are conserved across multiple mammalian species. PMID:17064417

  13. Quality Scalability Aware Watermarking for Visual Content.

    PubMed

    Bhowmik, Deepayan; Abhayaratne, Charith

    2016-11-01

    Scalable coding-based content adaptation poses serious challenges to traditional watermarking algorithms, which do not consider the scalable coding structure and hence cannot guarantee correct watermark extraction in media consumption chain. In this paper, we propose a novel concept of scalable blind watermarking that ensures more robust watermark extraction at various compression ratios while not effecting the visual quality of host media. The proposed algorithm generates scalable and robust watermarked image code-stream that allows the user to constrain embedding distortion for target content adaptations. The watermarked image code-stream consists of hierarchically nested joint distortion-robustness coding atoms. The code-stream is generated by proposing a new wavelet domain blind watermarking algorithm guided by a quantization based binary tree. The code-stream can be truncated at any distortion-robustness atom to generate the watermarked image with the desired distortion-robustness requirements. A blind extractor is capable of extracting watermark data from the watermarked images. The algorithm is further extended to incorporate a bit-plane discarding-based quantization model used in scalable coding-based content adaptation, e.g., JPEG2000. This improves the robustness against quality scalability of JPEG2000 compression. The simulation results verify the feasibility of the proposed concept, its applications, and its improved robustness against quality scalable content adaptation. Our proposed algorithm also outperforms existing methods showing 35% improvement. In terms of robustness to quality scalable video content adaptation using Motion JPEG2000 and wavelet-based scalable video coding, the proposed method shows major improvement for video watermarking.

  14. Perceptually tuned low-bit-rate video codec for ATM networks

    NASA Astrophysics Data System (ADS)

    Chou, Chun-Hsien

    1996-02-01

    In order to maintain high visual quality in transmitting low bit-rate video signals over asynchronous transfer mode (ATM) networks, a layered coding scheme that incorporates the human visual system (HVS), motion compensation (MC), and conditional replenishment (CR) is presented in this paper. An empirical perceptual model is proposed to estimate the spatio- temporal just-noticeable distortion (STJND) profile for each frame, by which perceptually important (PI) prediction-error signals can be located. Because of the limited channel capacity of the base layer, only coded data of motion vectors, the PI signals within a small strip of the prediction-error image and, if there are remaining bits, the PI signals outside the strip are transmitted by the cells of the base-layer channel. The rest of the coded data are transmitted by the second-layer cells which may be lost due to channel error or network congestion. Simulation results show that visual quality of the reconstructed CIF sequence is acceptable when the capacity of the base-layer channel is allocated with 2 multiplied by 64 kbps and the cells of the second layer are all lost.

  15. An object oriented fully 3D tomography visual toolkit.

    PubMed

    Agostinelli, S; Paoli, G

    2001-04-01

    In this paper we present a modern object oriented component object model (COMM) C + + toolkit dedicated to fully 3D cone-beam tomography. The toolkit allows the display and visual manipulation of analytical phantoms, projection sets and volumetric data through a standard Windows graphical user interface. Data input/output is performed using proprietary file formats but import/export of industry standard file formats, including raw binary, Windows bitmap and AVI, ACR/NEMA DICOMM 3 and NCSA HDF is available. At the time of writing built-in implemented data manipulators include a basic phantom ray-tracer and a Matrox Genesis frame grabbing facility. A COMM plug-in interface is provided for user-defined custom backprojector algorithms: a simple Feldkamp ActiveX control, including source code, is provided as an example; our fast Feldkamp plug-in is also available.

  16. Visualizing how Seismic Waves Propagate Across Seismic Arrays using the IRIS DMS Ground Motion Visualization (GMV) Products and Codes

    NASA Astrophysics Data System (ADS)

    Taber, J.; Bahavar, M.; Bravo, T. K.; Butler, R. F.; Kilb, D. L.; Trabant, C.; Woodward, R.; Ammon, C. J.

    2011-12-01

    Data from dense seismic arrays can be used to visualize the propagation of seismic waves, resulting in animations effective for teaching both general and advanced audiences. One of the first visualizations of this type was developed using Objective C code and EarthScope/USArray data, which was then modified and ported to the Matlab platform and has now been standardized and automated as an IRIS Data Management System (IRIS-DMS) data product. These iterative code developments and improvements were completed by C. Ammon, R. Woodward and M. Bahavar, respectively. Currently, an automated script creates Ground Motion Visualizations (GMVs) for all global earthquakes over magnitude 6 recorded by EarthScope's USArray Transportable Array (USArray TA) network. The USArray TA network is a rolling array of 400 broadband stations deployed on a uniform 70-km grid. These near real-time GMV visualizations are typically available for download within 4 hours or less of their occurrence (see: www.iris.edu/dms/products/usarraygmv/). The IRIS-DMS group has recently added a feature that allows users to highlight key elements within the GMVs, by providing an online tool for creating customized GMVs. This new interface allows users to select the stations, channels, and time window of interest, adjust the mapped areal extent of the view, and specify high and low pass filters. An online tutorial available from the IRIS Education and Public Outreach (IRIS-EPO) website, listed below, steps through a teaching sequence that can be used to explain the basic features of the GMVs. For example, they can be used to demonstrate simple concepts such as relative P, S and surface wave velocities and corresponding wavelengths for middle-school students, or more advanced concepts such as the influence of focal mechanism on waveforms, or how seismic waves converge at an earthquake's antipode. For those who desire a greater level of customization, including the ability to use the GMV framework with data sets not stored within the IRIS-DMS, the Matlab GMV code is now also available from the IRIS-DMS website. These GMV codes have been applied to sac-formatted data from the Quake Catcher Network (QCN). Through a collaboration between NSF-funded programs and projects (e.g., IRIS and QCN) we are striving to make these codes user friendly enough to be routinely incorporated in undergraduate and graduate seismology classes. In this way, we will help provide a research tool for students to explore never-looked-at-before data, similar to actual seismology research. As technology is advancing quickly, we now have more data than seismologists can easily examine. Given this, we anticipate students using our codes can perform a 'citizen scientist' role in that they can help us identify key signals within the unexamined vast data streams we are acquiring.

  17. A method for closed-loop presentation of sensory stimuli conditional on the internal brain-state of awake animals

    PubMed Central

    Rutishauser, Ueli; Kotowicz, Andreas; Laurent, Gilles

    2013-01-01

    Brain activity often consists of interactions between internal—or on-going—and external—or sensory—activity streams, resulting in complex, distributed patterns of neural activity. Investigation of such interactions could benefit from closed-loop experimental protocols in which one stream can be controlled depending on the state of the other. We describe here methods to present rapid and precisely timed visual stimuli to awake animals, conditional on features of the animal’s on-going brain state; those features are the presence, power and phase of oscillations in local field potentials (LFP). The system can process up to 64 channels in real time. We quantified its performance using simulations, synthetic data and animal experiments (chronic recordings in the dorsal cortex of awake turtles). The delay from detection of an oscillation to the onset of a visual stimulus on an LCD screen was 47.5 ms and visual-stimulus onset could be locked to the phase of ongoing oscillations at any frequency ≤40 Hz. Our software’s architecture is flexible, allowing on-the-fly modifications by experimenters and the addition of new closed-loop control and analysis components through plugins. The source code of our system “StimOMatic” is available freely as open-source. PMID:23473800

  18. Assessing the Formation of Experience-Based Gender Expectations in an Implicit Learning Scenario

    PubMed Central

    Öttl, Anton; Behne, Dawn M.

    2017-01-01

    The present study investigates the formation of new word-referent associations in an implicit learning scenario, using a gender-coded artificial language with spoken words and visual referents. Previous research has shown that when participants are explicitly instructed about the gender-coding system underlying an artificial lexicon, they monitor the frequency of exposure to male vs. female referents within this lexicon, and subsequently use this probabilistic information to predict the gender of an upcoming referent. In an explicit learning scenario, the auditory and visual gender cues are necessarily highlighted prior to acqusition, and the effects previously observed may therefore depend on participants' overt awareness of these cues. To assess whether the formation of experience-based expectations is dependent on explicit awareness of the underlying coding system, we present data from an experiment in which gender-coding was acquired implicitly, thereby reducing the likelihood that visual and auditory gender cues are used strategically during acquisition. Results show that even if the gender coding system was not perfectly mastered (as reflected in the number of gender coding errors), participants develop frequency based expectations comparable to those previously observed in an explicit learning scenario. In line with previous findings, participants are quicker at recognizing a referent whose gender is consistent with an induced expectation than one whose gender is inconsistent with an induced expectation. At the same time however, eyetracking data suggest that these expectations may surface earlier in an implicit learning scenario. These findings suggest that experience-based expectations are robust against manner of acquisition, and contribute to understanding why similar expectations observed in the activation of stereotypes during the processing of natural language stimuli are difficult or impossible to suppress. PMID:28936186

  19. The frontal eye fields limit the capacity of visual short-term memory in rhesus monkeys.

    PubMed

    Lee, Kyoung-Min; Ahn, Kyung-Ha

    2013-01-01

    The frontal eye fields (FEF) in rhesus monkeys have been implicated in visual short-term memory (VSTM) as well as control of visual attention. Here we examined the importance of the area in the VSTM capacity and the relationship between VSTM and attention, using the chemical inactivation technique and multi-target saccade tasks with or without the need of target-location memory. During FEF inactivation, serial saccades to targets defined by color contrast were unaffected, but saccades relying on short-term memory were impaired when the target count was at the capacity limit of VSTM. The memory impairment was specific to the FEF-coded retinotopic locations, and subject to competition among targets distributed across visual fields. These results together suggest that the FEF plays a crucial role during the entry of information into VSTM, by enabling attention deployment on targets to be remembered. In this view, the memory capacity results from the limited availability of attentional resources provided by FEF: The FEF can concurrently maintain only a limited number of activations to register the targets into memory. When lesions render part of the area unavailable for activation, the number would decrease, further reducing the capacity of VSTM.

  20. Grid Computing and Collaboration Technology in Support of Fusion Energy Sciences

    NASA Astrophysics Data System (ADS)

    Schissel, D. P.

    2004-11-01

    The SciDAC Initiative is creating a computational grid designed to advance scientific understanding in fusion research by facilitating collaborations, enabling more effective integration of experiments, theory and modeling, and allowing more efficient use of experimental facilities. The philosophy is that data, codes, analysis routines, visualization tools, and communication tools should be thought of as easy to use network available services. Access to services is stressed rather than portability. Services share the same basic security infrastructure so that stakeholders can control their own resources and helps ensure fair use of resources. The collaborative control room is being developed using the open-source Access Grid software that enables secure group-to-group collaboration with capabilities beyond teleconferencing including application sharing and control. The ability to effectively integrate off-site scientists into a dynamic control room will be critical to the success of future international projects like ITER. Grid computing, the secure integration of computer systems over high-speed networks to provide on-demand access to data analysis capabilities and related functions, is being deployed as an alternative to traditional resource sharing among institutions. The first grid computational service deployed was the transport code TRANSP and included tools for run preparation, submission, monitoring and management. This approach saves user sites from the laborious effort of maintaining a complex code while at the same time reducing the burden on developers by avoiding the support of a large number of heterogeneous installations. This tutorial will present the philosophy behind an advanced collaborative environment, give specific examples, and discuss its usage beyond FES.

  1. Neural coding of image structure and contrast polarity of Cartesian, hyperbolic, and polar gratings in the primary and secondary visual cortex of the tree shrew.

    PubMed

    Poirot, Jordan; De Luna, Paolo; Rainer, Gregor

    2016-04-01

    We comprehensively characterize spiking and visual evoked potential (VEP) activity in tree shrew V1 and V2 using Cartesian, hyperbolic, and polar gratings. Neural selectivity to structure of Cartesian gratings was higher than other grating classes in both visual areas. From V1 to V2, structure selectivity of spiking activity increased, whereas corresponding VEP values tended to decrease, suggesting that single-neuron coding of Cartesian grating attributes improved while the cortical columnar organization of these neurons became less precise from V1 to V2. We observed that neurons in V2 generally exhibited similar selectivity for polar and Cartesian gratings, suggesting that structure of polar-like stimuli might be encoded as early as in V2. This hypothesis is supported by the preference shift from V1 to V2 toward polar gratings of higher spatial frequency, consistent with the notion that V2 neurons encode visual scene borders and contours. Neural sensitivity to modulations of polarity of hyperbolic gratings was highest among all grating classes and closely related to the visual receptive field (RF) organization of ON- and OFF-dominated subregions. We show that spatial RF reconstructions depend strongly on grating class, suggesting that intracortical contributions to RF structure are strongest for Cartesian and polar gratings. Hyperbolic gratings tend to recruit least cortical elaboration such that the RF maps are similar to those generated by sparse noise, which most closely approximate feedforward inputs. Our findings complement previous literature in primates, rodents, and carnivores and highlight novel aspects of shape representation and coding occurring in mammalian early visual cortex. Copyright © 2016 the American Physiological Society.

  2. Tri-Coding of Information.

    ERIC Educational Resources Information Center

    Simpson, Timothy J.

    Paivio's Dual Coding Theory has received widespread recognition for its connection between visual and aural channels of internal information processing. The use of only two channels, however, cannot satisfactorily explain the effects witnessed every day. This paper presents a study suggesting the presence a third, kinesthetic channel, currently…

  3. Web Service Model for Plasma Simulations with Automatic Post Processing and Generation of Visual Diagnostics*

    NASA Astrophysics Data System (ADS)

    Exby, J.; Busby, R.; Dimitrov, D. A.; Bruhwiler, D.; Cary, J. R.

    2003-10-01

    We present our design and initial implementation of a web service model for running particle-in-cell (PIC) codes remotely from a web browser interface. PIC codes have grown significantly in complexity and now often require parallel execution on multiprocessor computers, which in turn requires sophisticated post-processing and data analysis. A significant amount of time and effort is required for a physicist to develop all the necessary skills, at the expense of actually doing research. Moreover, parameter studies with a computationally intensive code justify the systematic management of results with an efficient way to communicate them among a group of remotely located collaborators. Our initial implementation uses the OOPIC Pro code [1], Linux, Apache, MySQL, Python, and PHP. The Interactive Data Language is used for visualization. [1] D.L. Bruhwiler et al., Phys. Rev. ST-AB 4, 101302 (2001). * This work is supported by DOE grant # DE-FG02-03ER83857 and by Tech-X Corp. ** Also University of Colorado.

  4. MO-E-18C-04: Advanced Computer Simulation and Visualization Tools for Enhanced Understanding of Core Medical Physics Concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naqvi, S

    2014-06-15

    Purpose: Most medical physics programs emphasize proficiency in routine clinical calculations and QA. The formulaic aspect of these calculations and prescriptive nature of measurement protocols obviate the need to frequently apply basic physical principles, which, therefore, gradually decay away from memory. E.g. few students appreciate the role of electron transport in photon dose, making it difficult to understand key concepts such as dose buildup, electronic disequilibrium effects and Bragg-Gray theory. These conceptual deficiencies manifest when the physicist encounters a new system, requiring knowledge beyond routine activities. Methods: Two interactive computer simulation tools are developed to facilitate deeper learning of physicalmore » principles. One is a Monte Carlo code written with a strong educational aspect. The code can “label” regions and interactions to highlight specific aspects of the physics, e.g., certain regions can be designated as “starters” or “crossers,” and any interaction type can be turned on and off. Full 3D tracks with specific portions highlighted further enhance the visualization of radiation transport problems. The second code calculates and displays trajectories of a collection electrons under arbitrary space/time dependent Lorentz force using relativistic kinematics. Results: Using the Monte Carlo code, the student can interactively study photon and electron transport through visualization of dose components, particle tracks, and interaction types. The code can, for instance, be used to study kerma-dose relationship, explore electronic disequilibrium near interfaces, or visualize kernels by using interaction forcing. The electromagnetic simulator enables the student to explore accelerating mechanisms and particle optics in devices such as cyclotrons and linacs. Conclusion: The proposed tools are designed to enhance understanding of abstract concepts by highlighting various aspects of the physics. The simulations serve as virtual experiments that give deeper and long lasting understanding of core principles. The student can then make sound judgements in novel situations encountered beyond routine clinical activities.« less

  5. Three-dimensional visualization of morphology and ventilation procedure (air flow and diffusion) of a subdivision of the acinus using synchrotron radiation microtomography of the human lung specimens

    NASA Astrophysics Data System (ADS)

    Shimizu, Kenji; Ikura, Hirohiko; Ikezoe, Junpei; Nagareda, Tomofumi; Yagi, Naoto; Umetani, Keiji; Imai, Yutaka

    2004-04-01

    We have previously reported a synchrotron radiation (SR) microtomography system constructed at the bending magnet beamline at the SPring-8. This system has been applied to the lungs obtained at autopsy and inflated and fixed by Heitzman"s method. Normal lung and lung specimens with two different types of pathologic processes (fibrosis and emphysema) were included. Serial SR microtomographic images were stacked to yield the isotropic volumetric data with high-resolution (12 μm3 in voxel size). Within the air spaces of a subdivision of the acinus, each voxel is segmented three-dimensionally using a region growing algorithm ("rolling ball algorithm"). For each voxel within the segmented air spaces, two types of voxel coding have been performed: single-seeded (SS) coding and boundary-seeded (BS) coding, in which the minimum distance from an initial point as the only seed point and all object boundary voxels as a seed set were calculated and assigned as the code values to each voxel, respectively. With these two codes, combinations of surface rendering and volume rendering techniques were applied to visualize three-dimensional morphology of a subdivision of the acinus. Furthermore, sequentially filling process of air into a subdivision of the acinus was simulated under several conditions to visualize the ventilation procedure (air flow and diffusion). A subdivision of the acinus was reconstructed three-dimensionally, demonstrating the normal architecture of the human lung. Significant differences in appearance of ventilation procedure were observed between normal and two pathologic processes due to the alteration of the lung architecture. Three-dimensional reconstruction of the microstructure of a subdivision of the acinus and visualization of the ventilation procedure (air flow and diffusion) with SR microtomography would offer a new approach to study the morphology, physiology, and pathophysiology of the human respiratory system.

  6. RatLab: an easy to use tool for place code simulations

    PubMed Central

    Schönfeld, Fabian; Wiskott, Laurenz

    2013-01-01

    In this paper we present the RatLab toolkit, a software framework designed to set up and simulate a wide range of studies targeting the encoding of space in rats. It provides open access to our modeling approach to establish place and head direction cells within unknown environments and it offers a set of parameters to allow for the easy construction of a variety of enclosures for a virtual rat as well as controlling its movement pattern over the course of experiments. Once a spatial code is formed RatLab can be used to modify aspects of the enclosure or movement pattern and plot the effect of such modifications on the spatial representation, i.e., place and head direction cell activity. The simulation is based on a hierarchical Slow Feature Analysis (SFA) network that has been shown before to establish a spatial encoding of new environments using visual input data only. RatLab encapsulates such a network, generates the visual training data, and performs all sampling automatically—with each of these stages being further configurable by the user. RatLab was written with the intention to make our SFA model more accessible to the community and to that end features a range of elements to allow for experimentation with the model without the need for specific programming skills. PMID:23908627

  7. What's behind a face: person context coding in fusiform face area as revealed by multivoxel pattern analysis.

    PubMed

    van den Hurk, J; Gentile, F; Jansma, B M

    2011-12-01

    The identification of a face comprises processing of both visual features and conceptual knowledge. Studies showing that the fusiform face area (FFA) is sensitive to face identity generally neglect this dissociation. The present study is the first that isolates conceptual face processing by using words presented in a person context instead of faces. The design consisted of 2 different conditions. In one condition, participants were presented with blocks of words related to each other at the categorical level (e.g., brands of cars, European cities). The second condition consisted of blocks of words linked to the personality features of a specific face. Both conditions were created from the same 8 × 8 word matrix, thereby controlling for visual input across conditions. Univariate statistical contrasts did not yield any significant differences between the 2 conditions in FFA. However, a machine learning classification algorithm was able to successfully learn the functional relationship between the 2 contexts and their underlying response patterns in FFA, suggesting that these activation patterns can code for different semantic contexts. These results suggest that the level of processing in FFA goes beyond facial features. This has strong implications for the debate about the role of FFA in face identification.

  8. Developing measures of fatigue using an alcohol comparison to validate the effects of fatigue on performance.

    PubMed

    Williamson, A M; Feyer, A M; Mattick, R P; Friswell, R; Finlay-Brown, S

    2001-05-01

    The effects of 28 h of sleep deprivation were compared with varying doses of alcohol up to 0.1% blood alcohol concentration (BAC) in the same subjects. The study was conducted in the laboratory. Twenty long-haul truck drivers and 19 people not employed as professional drivers acted as subjects. Tests were selected that were likely to be affected by fatigue, including simple reaction time, unstable tracking, dual task, Mackworth clock vigilance test, symbol digit coding, visual search, sequential spatial memory and logical reasoning. While performance effects were seen due to alcohol for all tests, sleep deprivation affected performance on most tests, but had no effect on performance on the visual search and logical reasoning tests. Some tests showed evidence of a circadian rhythm effect on performance, in particular, simple reaction time, dual task, Mackworth clock vigilance, and symbol digit coding, but only for response speed and not response accuracy. Drivers were slower but more accurate than controls on the symbol digit test, suggesting that they took a more conservative approach to performance of this test. This study demonstrated which tests are most sensitive to sleep deprivation and fatigue. The study therefore has established a set of tests that can be used in evaluations of fatigue and fatigue countermeasures.

  9. Using NJOY to Create MCNP ACE Files and Visualize Nuclear Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kahler, Albert Comstock

    We provide lecture materials that describe the input requirements to create various MCNP ACE files (Fast, Thermal, Dosimetry, Photo-nuclear and Photo-atomic) with the NJOY Nuclear Data Processing code system. Input instructions to visualize nuclear data with NJOY are also provided.

  10. Repetition priming of face recognition in a serial choice reaction-time task.

    PubMed

    Roberts, T; Bruce, V

    1989-05-01

    Marshall & Walker (1987) found that pictorial stimuli yield visual priming that is disrupted by an unpredictable visual event in the response-stimulus interval. They argue that visual stimuli are represented in memory in the form of distinct visual and object codes. Bruce & Young (1986) propose similar pictorial, structural and semantic codes which mediate the recognition of faces, yet repetition priming results obtained with faces as stimuli (Bruce & Valentine, 1985), and with objects (Warren & Morton, 1982) are quite different from those of Marshall & Walker (1987), in the sense that recognition is facilitated by pictures presented 20 minutes earlier. The experiment reported here used different views of familiar and unfamiliar faces as stimuli in a serial choice reaction-time task and found that, with identical pictures, repetition priming survives and intervening item requiring a response, with both familiar and unfamiliar faces. Furthermore, with familiar faces such priming was present even when the view of the prime was different from the target. The theoretical implications of these results are discussed.

  11. Effects of verbal and nonverbal interference on spatial and object visual working memory.

    PubMed

    Postle, Bradley R; Desposito, Mark; Corkin, Suzanne

    2005-03-01

    We tested the hypothesis that a verbal coding mechanism is necessarily engaged by object, but not spatial, visual working memory tasks. We employed a dual-task procedure that paired n-back working memory tasks with domain-specific distractor trials inserted into each interstimulus interval of the n-back tasks. In two experiments, object n-back performance demonstrated greater sensitivity to verbal distraction, whereas spatial n-back performance demonstrated greater sensitivity to motion distraction. Visual object and spatial working memory may differ fundamentally in that the mnemonic representation of featural characteristics of objects incorporates a verbal (perhaps semantic) code, whereas the mnemonic representation of the location of objects does not. Thus, the processes supporting working memory for these two types of information may differ in more ways than those dictated by the "what/where" organization of the visual system, a fact more easily reconciled with a component process than a memory systems account of working memory function.

  12. Top-Down Visual Saliency via Joint CRF and Dictionary Learning.

    PubMed

    Yang, Jimei; Yang, Ming-Hsuan

    2017-03-01

    Top-down visual saliency is an important module of visual attention. In this work, we propose a novel top-down saliency model that jointly learns a Conditional Random Field (CRF) and a visual dictionary. The proposed model incorporates a layered structure from top to bottom: CRF, sparse coding and image patches. With sparse coding as an intermediate layer, CRF is learned in a feature-adaptive manner; meanwhile with CRF as the output layer, the dictionary is learned under structured supervision. For efficient and effective joint learning, we develop a max-margin approach via a stochastic gradient descent algorithm. Experimental results on the Graz-02 and PASCAL VOC datasets show that our model performs favorably against state-of-the-art top-down saliency methods for target object localization. In addition, the dictionary update significantly improves the performance of our model. We demonstrate the merits of the proposed top-down saliency model by applying it to prioritizing object proposals for detection and predicting human fixations.

  13. Effects of verbal and nonverbal interference on spatial and object visual working memory

    PubMed Central

    POSTLE, BRADLEY R.; D’ESPOSITO, MARK; CORKIN, SUZANNE

    2005-01-01

    We tested the hypothesis that a verbal coding mechanism is necessarily engaged by object, but not spatial, visual working memory tasks. We employed a dual-task procedure that paired n-back working memory tasks with domain-specific distractor trials inserted into each interstimulus interval of the n-back tasks. In two experiments, object n-back performance demonstrated greater sensitivity to verbal distraction, whereas spatial n-back performance demonstrated greater sensitivity to motion distraction. Visual object and spatial working memory may differ fundamentally in that the mnemonic representation of featural characteristics of objects incorporates a verbal (perhaps semantic) code, whereas the mnemonic representation of the location of objects does not. Thus, the processes supporting working memory for these two types of information may differ in more ways than those dictated by the “what/where” organization of the visual system, a fact more easily reconciled with a component process than a memory systems account of working memory function. PMID:16028575

  14. ScreenRecorder: A Utility for Creating Screenshot Video Using Only Original Equipment Manufacturer (OEM) Software on Microsoft Windows Systems

    DTIC Science & Technology

    2015-01-01

    class within Microsoft Visual Studio . 2 It has been tested on and is compatible with Microsoft Vista, 7, and 8 and Visual Studio Express 2008...the ScreenRecorder utility assumes a basic understanding of compiling and running C++ code within Microsoft Visual Studio . This report does not...of Microsoft Visual Studio , the ScreenRecorder utility was developed as a C++ class that can be compiled as a library (static or dynamic) to be

  15. Securing information display by use of visual cryptography.

    PubMed

    Yamamoto, Hirotsugu; Hayasaki, Yoshio; Nishida, Nobuo

    2003-09-01

    We propose a secure display technique based on visual cryptography. The proposed technique ensures the security of visual information. The display employs a decoding mask based on visual cryptography. Without the decoding mask, the displayed information cannot be viewed. The viewing zone is limited by the decoding mask so that only one person can view the information. We have developed a set of encryption codes to maintain the designed viewing zone and have demonstrated a display that provides a limited viewing zone.

  16. Control code for laboratory adaptive optics teaching system

    NASA Astrophysics Data System (ADS)

    Jin, Moonseob; Luder, Ryan; Sanchez, Lucas; Hart, Michael

    2017-09-01

    By sensing and compensating wavefront aberration, adaptive optics (AO) systems have proven themselves crucial in large astronomical telescopes, retinal imaging, and holographic coherent imaging. Commercial AO systems for laboratory use are now available in the market. One such is the ThorLabs AO kit built around a Boston Micromachines deformable mirror. However, there are limitations in applying these systems to research and pedagogical projects since the software is written with limited flexibility. In this paper, we describe a MATLAB-based software suite to interface with the ThorLabs AO kit by using the MATLAB Engine API and Visual Studio. The software is designed to offer complete access to the wavefront sensor data, through the various levels of processing, to the command signals to the deformable mirror and fast steering mirror. In this way, through a MATLAB GUI, an operator can experiment with every aspect of the AO system's functioning. This is particularly valuable for tests of new control algorithms as well as to support student engagement in an academic environment. We plan to make the code freely available to the community.

  17. New procedures to evaluate visually lossless compression for display systems

    NASA Astrophysics Data System (ADS)

    Stolitzka, Dale F.; Schelkens, Peter; Bruylants, Tim

    2017-09-01

    Visually lossless image coding in isochronous display streaming or plesiochronous networks reduces link complexity and power consumption and increases available link bandwidth. A new set of codecs developed within the last four years promise a new level of coding quality, but require new techniques that are sufficiently sensitive to the small artifacts or color variations induced by this new breed of codecs. This paper begins with a summary of the new ISO/IEC 29170-2, a procedure for evaluation of lossless coding and reports the new work by JPEG to extend the procedure in two important ways, for HDR content and for evaluating the differences between still images, panning images and image sequences. ISO/IEC 29170-2 relies on processing test images through a well-defined process chain for subjective, forced-choice psychophysical experiments. The procedure sets an acceptable quality level equal to one just noticeable difference. Traditional image and video coding evaluation techniques, such as, those used for television evaluation have not proven sufficiently sensitive to the small artifacts that may be induced by this breed of codecs. In 2015, JPEG received new requirements to expand evaluation of visually lossless coding for high dynamic range images, slowly moving images, i.e., panning, and image sequences. These requirements are the basis for new amendments of the ISO/IEC 29170-2 procedures described in this paper. These amendments promise to be highly useful for the new content in television and cinema mezzanine networks. The amendments passed the final ballot in April 2017 and are on track to be published in 2018.

  18. A unified framework of unsupervised subjective optimized bit allocation for multiple video object coding

    NASA Astrophysics Data System (ADS)

    Chen, Zhenzhong; Han, Junwei; Ngan, King Ngi

    2005-10-01

    MPEG-4 treats a scene as a composition of several objects or so-called video object planes (VOPs) that are separately encoded and decoded. Such a flexible video coding framework makes it possible to code different video object with different distortion scale. It is necessary to analyze the priority of the video objects according to its semantic importance, intrinsic properties and psycho-visual characteristics such that the bit budget can be distributed properly to video objects to improve the perceptual quality of the compressed video. This paper aims to provide an automatic video object priority definition method based on object-level visual attention model and further propose an optimization framework for video object bit allocation. One significant contribution of this work is that the human visual system characteristics are incorporated into the video coding optimization process. Another advantage is that the priority of the video object can be obtained automatically instead of fixing weighting factors before encoding or relying on the user interactivity. To evaluate the performance of the proposed approach, we compare it with traditional verification model bit allocation and the optimal multiple video object bit allocation algorithms. Comparing with traditional bit allocation algorithms, the objective quality of the object with higher priority is significantly improved under this framework. These results demonstrate the usefulness of this unsupervised subjective quality lifting framework.

  19. Complex sparse spatial filter for decoding mixed frequency and phase coded steady-state visually evoked potentials.

    PubMed

    Morikawa, Naoki; Tanaka, Toshihisa; Islam, Md Rabiul

    2018-07-01

    Mixed frequency and phase coding (FPC) can achieve the significant increase of the number of commands in steady-state visual evoked potential-based brain-computer interface (SSVEP-BCI). However, the inconsistent phases of the SSVEP over channels in a trial and the existence of non-contributing channels due to noise effects can decrease accurate detection of stimulus frequency. We propose a novel command detection method based on a complex sparse spatial filter (CSSF) by solving ℓ 1 - and ℓ 2,1 -regularization problems for a mixed-coded SSVEP-BCI. In particular, ℓ 2,1 -regularization (aka group sparsification) can lead to the rejection of electrodes that are not contributing to the SSVEP detection. A calibration data based canonical correlation analysis (CCA) and CSSF with ℓ 1 - and ℓ 2,1 -regularization cases were demonstrated for a 16-target stimuli with eleven subjects. The results of statistical test suggest that the proposed method with ℓ 1 - and ℓ 2,1 -regularization significantly achieved the highest ITR. The proposed approaches do not need any reference signals, automatically select prominent channels, and reduce the computational cost compared to the other mixed frequency-phase coding (FPC)-based BCIs. The experimental results suggested that the proposed method can be usable implementing BCI effectively with reduce visual fatigue. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Symbol processing in the left angular gyrus: evidence from passive perception of digits.

    PubMed

    Price, Gavin R; Ansari, Daniel

    2011-08-01

    Arabic digits are one of the most ubiquitous symbol sets in the world. While there have been many investigations into the neural processing of the semantic information digits represent (e.g. through numerical comparison tasks), little is known about the neural mechanisms which support the processing of digits as visual symbols. To characterise the component neurocognitive mechanisms which underlie numerical cognition, it is essential to understand the processing of digits as a visual category, independent of numerical magnitude processing. The 'Triple Code Model' (Dehaene, 1992; Dehaene and Cohen, 1995) posits an asemantic visual code for processing Arabic digits in the ventral visual stream, yet there is currently little empirical evidence in support of this code. This outstanding question was addressed in the current functional Magnetic Resonance (fMRI) study by contrasting brain responses during the passive viewing of digits versus letters and novel symbols at short (50 ms) and long (500 ms) presentation times. The results of this study reveal increased activation for familiar symbols (digits and letters) relative to unfamiliar symbols (scrambled digits and letters) at long presentation durations in the left dorsal Angular gyrus (dAG). Furthermore, increased activation for Arabic digits was observed in the left ventral Angular gyrus (vAG) in comparison to letters, scrambled digits and scrambled letters at long presentation durations, but no digit specific activation in any region at short presentation durations. These results suggest an absence of a digit specific 'Visual Number Form Area' (VNFA) in the ventral visual cortex, and provide evidence for the role of the left ventral AG during the processing of digits in the absence of any explicit processing demands. We conclude that Arabic digit processing depends specifically on the left AG rather than a ventral visual stream VNFA. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Levels of Syntactic Realization in Oral Reading.

    ERIC Educational Resources Information Center

    Brown, Eric

    Two contrasting theories of reading are reviewed in light of recent research in psycholinguistics. A strictly "visual" model of fluent reading is contrasted with several mediational theories where auditory or articulatory coding is deemed necessary for comprehension. Surveying the research in visual information processing, oral reading,…

  2. Exploring the Engagement Effects of Visual Programming Language for Data Structure Courses

    ERIC Educational Resources Information Center

    Chang, Chih-Kai; Yang, Ya-Fei; Tsai, Yu-Tzu

    2017-01-01

    Previous research indicates that understanding the state of learning motivation enables researchers to deeply understand students' learning processes. Studies have shown that visual programming languages use graphical code, enabling learners to learn effectively, improve learning effectiveness, increase learning fun, and offering various other…

  3. Spatiotopic coding during dynamic head tilt

    PubMed Central

    Turi, Marco; Burr, David C.

    2016-01-01

    Humans maintain a stable representation of the visual world effortlessly, despite constant movements of the eyes, head, and body, across multiple planes. Whereas visual stability in the face of saccadic eye movements has been intensely researched, fewer studies have investigated retinal image transformations induced by head movements, especially in the frontal plane. Unlike head rotations in the horizontal and sagittal planes, tilting the head in the frontal plane is only partially counteracted by torsional eye movements and consequently induces a distortion of the retinal image to which we seem to be completely oblivious. One possible mechanism aiding perceptual stability is an active reconstruction of a spatiotopic map of the visual world, anchored in allocentric coordinates. To explore this possibility, we measured the positional motion aftereffect (PMAE; the apparent change in position after adaptation to motion) with head tilts of ∼42° between adaptation and test (to dissociate retinal from allocentric coordinates). The aftereffect was shown to have both a retinotopic and spatiotopic component. When tested with unpatterned Gaussian blobs rather than sinusoidal grating stimuli, the retinotopic component was greatly reduced, whereas the spatiotopic component remained. The results suggest that perceptual stability may be maintained at least partially through mechanisms involving spatiotopic coding. NEW & NOTEWORTHY Given that spatiotopic coding could play a key role in maintaining visual stability, we look for evidence of spatiotopic coding after retinal image transformations caused by head tilt. To this end, we measure the strength of the positional motion aftereffect (PMAE; previously shown to be largely spatiotopic after saccades) after large head tilts. We find that, as with eye movements, the spatial selectivity of the PMAE has a large spatiotopic component after head rotation. PMID:27903636

  4. An object-based visual attention model for robotic applications.

    PubMed

    Yu, Yuanlong; Mann, George K I; Gosine, Raymond G

    2010-10-01

    By extending integrated competition hypothesis, this paper presents an object-based visual attention model, which selects one object of interest using low-dimensional features, resulting that visual perception starts from a fast attentional selection procedure. The proposed attention model involves seven modules: learning of object representations stored in a long-term memory (LTM), preattentive processing, top-down biasing, bottom-up competition, mediation between top-down and bottom-up ways, generation of saliency maps, and perceptual completion processing. It works in two phases: learning phase and attending phase. In the learning phase, the corresponding object representation is trained statistically when one object is attended. A dual-coding object representation consisting of local and global codings is proposed. Intensity, color, and orientation features are used to build the local coding, and a contour feature is employed to constitute the global coding. In the attending phase, the model preattentively segments the visual field into discrete proto-objects using Gestalt rules at first. If a task-specific object is given, the model recalls the corresponding representation from LTM and deduces the task-relevant feature(s) to evaluate top-down biases. The mediation between automatic bottom-up competition and conscious top-down biasing is then performed to yield a location-based saliency map. By combination of location-based saliency within each proto-object, the proto-object-based saliency is evaluated. The most salient proto-object is selected for attention, and it is finally put into the perceptual completion processing module to yield a complete object region. This model has been applied into distinct tasks of robots: detection of task-specific stationary and moving objects. Experimental results under different conditions are shown to validate this model.

  5. A hexagonal orthogonal-oriented pyramid as a model of image representation in visual cortex

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Ahumada, Albert J., Jr.

    1989-01-01

    Retinal ganglion cells represent the visual image with a spatial code, in which each cell conveys information about a small region in the image. In contrast, cells of the primary visual cortex use a hybrid space-frequency code in which each cell conveys information about a region that is local in space, spatial frequency, and orientation. A mathematical model for this transformation is described. The hexagonal orthogonal-oriented quadrature pyramid (HOP) transform, which operates on a hexagonal input lattice, uses basis functions that are orthogonal, self-similar, and localized in space, spatial frequency, orientation, and phase. The basis functions, which are generated from seven basic types through a recursive process, form an image code of the pyramid type. The seven basis functions, six bandpass and one low-pass, occupy a point and a hexagon of six nearest neighbors on a hexagonal lattice. The six bandpass basis functions consist of three with even symmetry, and three with odd symmetry. At the lowest level, the inputs are image samples. At each higher level, the input lattice is provided by the low-pass coefficients computed at the previous level. At each level, the output is subsampled in such a way as to yield a new hexagonal lattice with a spacing square root of 7 larger than the previous level, so that the number of coefficients is reduced by a factor of seven at each level. In the biological model, the input lattice is the retinal ganglion cell array. The resulting scheme provides a compact, efficient code of the image and generates receptive fields that resemble those of the primary visual cortex.

  6. MARS15

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mokhov, Nikolai

    MARS is a Monte Carlo code for inclusive and exclusive simulation of three-dimensional hadronic and electromagnetic cascades, muon, heavy-ion and low-energy neutron transport in accelerator, detector, spacecraft and shielding components in the energy range from a fraction of an electronvolt up to 100 TeV. Recent developments in the MARS15 physical models of hadron, heavy-ion and lepton interactions with nuclei and atoms include a new nuclear cross section library, a model for soft pion production, the cascade-exciton model, the quark gluon string models, deuteron-nucleus and neutrino-nucleus interaction models, detailed description of negative hadron and muon absorption and a unified treatment ofmore » muon, charged hadron and heavy-ion electromagnetic interactions with matter. New algorithms are implemented into the code and thoroughly benchmarked against experimental data. The code capabilities to simulate cascades and generate a variety of results in complex media have been also enhanced. Other changes in the current version concern the improved photo- and electro-production of hadrons and muons, improved algorithms for the 3-body decays, particle tracking in magnetic fields, synchrotron radiation by electrons and muons, significantly extended histograming capabilities and material description, and improved computational performance. In addition to direct energy deposition calculations, a new set of fluence-to-dose conversion factors for all particles including neutrino are built into the code. The code includes new modules for calculation of Displacement-per-Atom and nuclide inventory. The powerful ROOT geometry and visualization model implemented in MARS15 provides a large set of geometrical elements with a possibility of producing composite shapes and assemblies and their 3D visualization along with a possible import/export of geometry descriptions created by other codes (via the GDML format) and CAD systems (via the STEP format). The built-in MARS-MAD Beamline Builder (MMBLB) was redesigned for use with the ROOT geometry package that allows a very efficient and highly-accurate description, modeling and visualization of beam loss induced effects in arbitrary beamlines and accelerator lattices. The MARS15 code includes links to the MCNP-family codes for neutron and photon production and transport below 20 MeV, to the ANSYS code for thermal and stress analyses and to the STRUCT code for multi-turn particle tracking in large synchrotrons and collider rings.« less

  7. Young children's coding and storage of visual and verbal material.

    PubMed

    Perlmutter, M; Myers, N A

    1975-03-01

    36 preschool children (mean age 4.2 years) were each tested on 3 recognition memory lists differing in test mode (visual only, verbal only, combined visual-verbal). For one-third of the children, original list presentation was visual only, for another third, presentation was verbal only, and the final third received combined visual-verbal presentation. The subjects generally performed at a high level of correct responding. Verbal-only presentation resulted in less correct recognition than did either visual-only or combined visual-verbal presentation. However, because performances under both visual-only and combined visual-verbal presentation were statistically comparable, and a high level of spontaneous labeling was observed when items were presented only visually, a dual-processing conceptualization of memory in 4-year-olds was suggested.

  8. Expectation and Surprise Determine Neural Population Responses in the Ventral Visual Stream

    PubMed Central

    Egner, Tobias; Monti, Jim M.; Summerfield, Christopher

    2014-01-01

    Visual cortex is traditionally viewed as a hierarchy of neural feature detectors, with neural population responses being driven by bottom-up stimulus features. Conversely, “predictive coding” models propose that each stage of the visual hierarchy harbors two computationally distinct classes of processing unit: representational units that encode the conditional probability of a stimulus and provide predictions to the next lower level; and error units that encode the mismatch between predictions and bottom-up evidence, and forward prediction error to the next higher level. Predictive coding therefore suggests that neural population responses in category-selective visual regions, like the fusiform face area (FFA), reflect a summation of activity related to prediction (“face expectation”) and prediction error (“face surprise”), rather than a homogenous feature detection response. We tested the rival hypotheses of the feature detection and predictive coding models by collecting functional magnetic resonance imaging data from the FFA while independently varying both stimulus features (faces vs houses) and subjects’ perceptual expectations regarding those features (low vs medium vs high face expectation). The effects of stimulus and expectation factors interacted, whereby FFA activity elicited by face and house stimuli was indistinguishable under high face expectation and maximally differentiated under low face expectation. Using computational modeling, we show that these data can be explained by predictive coding but not by feature detection models, even when the latter are augmented with attentional mechanisms. Thus, population responses in the ventral visual stream appear to be determined by feature expectation and surprise rather than by stimulus features per se. PMID:21147999

  9. Contour Curvature As an Invariant Code for Objects in Visual Area V4

    PubMed Central

    Pasupathy, Anitha

    2016-01-01

    Size-invariant object recognition—the ability to recognize objects across transformations of scale—is a fundamental feature of biological and artificial vision. To investigate its basis in the primate cerebral cortex, we measured single neuron responses to stimuli of varying size in visual area V4, a cornerstone of the object-processing pathway, in rhesus monkeys (Macaca mulatta). Leveraging two competing models for how neuronal selectivity for the bounding contours of objects may depend on stimulus size, we show that most V4 neurons (∼70%) encode objects in a size-invariant manner, consistent with selectivity for a size-independent parameter of boundary form: for these neurons, “normalized” curvature, rather than “absolute” curvature, provided a better account of responses. Our results demonstrate the suitability of contour curvature as a basis for size-invariant object representation in the visual cortex, and posit V4 as a foundation for behaviorally relevant object codes. SIGNIFICANCE STATEMENT Size-invariant object recognition is a bedrock for many perceptual and cognitive functions. Despite growing neurophysiological evidence for invariant object representations in the primate cortex, we still lack a basic understanding of the encoding rules that govern them. Classic work in the field of visual shape theory has long postulated that a representation of objects based on information about their bounding contours is well suited to mediate such an invariant code. In this study, we provide the first empirical support for this hypothesis, and its instantiation in single neurons of visual area V4. PMID:27194333

  10. Automated, Quantitative Cognitive/Behavioral Screening of Mice: For Genetics, Pharmacology, Animal Cognition and Undergraduate Instruction

    PubMed Central

    Gallistel, C. R.; Balci, Fuat; Freestone, David; Kheifets, Aaron; King, Adam

    2014-01-01

    We describe a high-throughput, high-volume, fully automated, live-in 24/7 behavioral testing system for assessing the effects of genetic and pharmacological manipulations on basic mechanisms of cognition and learning in mice. A standard polypropylene mouse housing tub is connected through an acrylic tube to a standard commercial mouse test box. The test box has 3 hoppers, 2 of which are connected to pellet feeders. All are internally illuminable with an LED and monitored for head entries by infrared (IR) beams. Mice live in the environment, which eliminates handling during screening. They obtain their food during two or more daily feeding periods by performing in operant (instrumental) and Pavlovian (classical) protocols, for which we have written protocol-control software and quasi-real-time data analysis and graphing software. The data analysis and graphing routines are written in a MATLAB-based language created to simplify greatly the analysis of large time-stamped behavioral and physiological event records and to preserve a full data trail from raw data through all intermediate analyses to the published graphs and statistics within a single data structure. The data-analysis code harvests the data several times a day and subjects it to statistical and graphical analyses, which are automatically stored in the "cloud" and on in-lab computers. Thus, the progress of individual mice is visualized and quantified daily. The data-analysis code talks to the protocol-control code, permitting the automated advance from protocol to protocol of individual subjects. The behavioral protocols implemented are matching, autoshaping, timed hopper-switching, risk assessment in timed hopper-switching, impulsivity measurement, and the circadian anticipation of food availability. Open-source protocol-control and data-analysis code makes the addition of new protocols simple. Eight test environments fit in a 48 in x 24 in x 78 in cabinet; two such cabinets (16 environments) may be controlled by one computer. PMID:24637442

  11. Automated, quantitative cognitive/behavioral screening of mice: for genetics, pharmacology, animal cognition and undergraduate instruction.

    PubMed

    Gallistel, C R; Balci, Fuat; Freestone, David; Kheifets, Aaron; King, Adam

    2014-02-26

    We describe a high-throughput, high-volume, fully automated, live-in 24/7 behavioral testing system for assessing the effects of genetic and pharmacological manipulations on basic mechanisms of cognition and learning in mice. A standard polypropylene mouse housing tub is connected through an acrylic tube to a standard commercial mouse test box. The test box has 3 hoppers, 2 of which are connected to pellet feeders. All are internally illuminable with an LED and monitored for head entries by infrared (IR) beams. Mice live in the environment, which eliminates handling during screening. They obtain their food during two or more daily feeding periods by performing in operant (instrumental) and Pavlovian (classical) protocols, for which we have written protocol-control software and quasi-real-time data analysis and graphing software. The data analysis and graphing routines are written in a MATLAB-based language created to simplify greatly the analysis of large time-stamped behavioral and physiological event records and to preserve a full data trail from raw data through all intermediate analyses to the published graphs and statistics within a single data structure. The data-analysis code harvests the data several times a day and subjects it to statistical and graphical analyses, which are automatically stored in the "cloud" and on in-lab computers. Thus, the progress of individual mice is visualized and quantified daily. The data-analysis code talks to the protocol-control code, permitting the automated advance from protocol to protocol of individual subjects. The behavioral protocols implemented are matching, autoshaping, timed hopper-switching, risk assessment in timed hopper-switching, impulsivity measurement, and the circadian anticipation of food availability. Open-source protocol-control and data-analysis code makes the addition of new protocols simple. Eight test environments fit in a 48 in x 24 in x 78 in cabinet; two such cabinets (16 environments) may be controlled by one computer.

  12. Transition from Target to Gaze Coding in Primate Frontal Eye Field during Memory Delay and Memory-Motor Transformation.

    PubMed

    Sajad, Amirsaman; Sadeh, Morteza; Yan, Xiaogang; Wang, Hongying; Crawford, John Douglas

    2016-01-01

    The frontal eye fields (FEFs) participate in both working memory and sensorimotor transformations for saccades, but their role in integrating these functions through time remains unclear. Here, we tracked FEF spatial codes through time using a novel analytic method applied to the classic memory-delay saccade task. Three-dimensional recordings of head-unrestrained gaze shifts were made in two monkeys trained to make gaze shifts toward briefly flashed targets after a variable delay (450-1500 ms). A preliminary analysis of visual and motor response fields in 74 FEF neurons eliminated most potential models for spatial coding at the neuron population level, as in our previous study (Sajad et al., 2015). We then focused on the spatiotemporal transition from an eye-centered target code (T; preferred in the visual response) to an eye-centered intended gaze position code (G; preferred in the movement response) during the memory delay interval. We treated neural population codes as a continuous spatiotemporal variable by dividing the space spanning T and G into intermediate T-G models and dividing the task into discrete steps through time. We found that FEF delay activity, especially in visuomovement cells, progressively transitions from T through intermediate T-G codes that approach, but do not reach, G. This was followed by a final discrete transition from these intermediate T-G delay codes to a "pure" G code in movement cells without delay activity. These results demonstrate that FEF activity undergoes a series of sensory-memory-motor transformations, including a dynamically evolving spatial memory signal and an imperfect memory-to-motor transformation.

  13. Balloon Ascent: 3-D Simulation Tool for the Ascent and Float of High-Altitude Balloons

    NASA Technical Reports Server (NTRS)

    Farley, Rodger E.

    2005-01-01

    The BalloonAscent balloon flight simulation code represents a from-scratch development using Visual Basic 5 as the software platform. The simulation code is a transient analysis of balloon flight, predicting the skin and gas temperatures along with the 3-D position and velocity in a time and spatially varying environment. There are manual and automated controls for gas valving and the dropping of ballast. Also, there are many handy calculators, such as appropriate free lift, and steady-state thermal solutions with temperature gradients. The strength of this simulation model over others in the past is that the infrared environment is deterministic rather than guessed at. The ground temperature is specified along with the emissivity, which creates a ground level IR environment that is then partially absorbed as it travels upward through the atmosphere to the altitude of the balloon.

  14. ImageX: new and improved image explorer for astronomical images and beyond

    NASA Astrophysics Data System (ADS)

    Hayashi, Soichi; Gopu, Arvind; Kotulla, Ralf; Young, Michael D.

    2016-08-01

    The One Degree Imager - Portal, Pipeline, and Archive (ODI-PPA) has included the Image Explorer interactive image visualization tool since it went operational. Portal users were able to quickly open up several ODI images within any HTML5 capable web browser, adjust the scaling, apply color maps, and perform other basic image visualization steps typically done on a desktop client like DS9. However, the original design of the Image Explorer required lossless PNG tiles to be generated and stored for all raw and reduced ODI images thereby taking up tens of TB of spinning disk space even though a small fraction of those images were being accessed by portal users at any given time. It also caused significant overhead on the portal web application and the Apache webserver used by ODI-PPA. We found it hard to merge in improvements made to a similar deployment in another project's portal. To address these concerns, we re-architected Image Explorer from scratch and came up with ImageX, a set of microservices that are part of the IU Trident project software suite, with rapid interactive visualization capabilities useful for ODI data and beyond. We generate a full resolution JPEG image for each raw and reduced ODI FITS image before producing a JPG tileset, one that can be rendered using the ImageX frontend code at various locations as appropriate within a web portal (for example: on tabular image listings, views allowing quick perusal of a set of thumbnails or other image sifting activities). The new design has decreased spinning disk requirements, uses AngularJS for the client side Model/View code (instead of depending on backend PHP Model/View/Controller code previously used), OpenSeaDragon to render the tile images, and uses nginx and a lightweight NodeJS application to serve tile images thereby significantly decreasing the Time To First Byte latency by a few orders of magnitude. We plan to extend ImageX for non-FITS images including electron microscopy and radiology scan images, and its featureset to include basic functions like image overlay and colormaps. Users needing more advanced visualization and analysis capabilities could use a desktop tool like DS9+IRAF on another IU Trident project called StarDock, without having to download Gigabytes of FITS image data.

  15. A paradoxical improvement of misreaching in optic ataxia: new evidence for two separate neural systems for visual localization.

    PubMed

    Milner, A D; Paulignan, Y; Dijkerman, H C; Michel, F; Jeannerod, M

    1999-11-07

    We tested a patient (A. T.) with bilateral brain damage to the parietal lobes, whose resulting 'optic ataxia' causes her to make large pointing errors when asked to locate single light emitting diodes presented in her visual field. We report here that, unlike normal individuals, A. T.'s pointing accuracy improved when she was required to wait for 5 s before responding. This counter-intuitive result is interpreted as reflecting the very brief time-scale on which visuomotor control systems in the superior parietal lobe operate. When an immediate response was required, A. T.'s damaged visuomotor system caused her to make large errors; but when a delay was required, a different, more flexible, visuospatial coding system--presumably relatively intact in her brain--came into play, resulting in much more accurate responses. The data are consistent with a dual processing theory whereby motor responses made directly to visual stimuli are guided by a dedicated system in the superior parietal and premotor cortices, while responses to remembered stimuli depend on perceptual processing and may thus crucially involve processing within the temporal neocortex.

  16. deepTools2: a next generation web server for deep-sequencing data analysis.

    PubMed

    Ramírez, Fidel; Ryan, Devon P; Grüning, Björn; Bhardwaj, Vivek; Kilpert, Fabian; Richter, Andreas S; Heyne, Steffen; Dündar, Friederike; Manke, Thomas

    2016-07-08

    We present an update to our Galaxy-based web server for processing and visualizing deeply sequenced data. Its core tool set, deepTools, allows users to perform complete bioinformatic workflows ranging from quality controls and normalizations of aligned reads to integrative analyses, including clustering and visualization approaches. Since we first described our deepTools Galaxy server in 2014, we have implemented new solutions for many requests from the community and our users. Here, we introduce significant enhancements and new tools to further improve data visualization and interpretation. deepTools continue to be open to all users and freely available as a web service at deeptools.ie-freiburg.mpg.de The new deepTools2 suite can be easily deployed within any Galaxy framework via the toolshed repository, and we also provide source code for command line usage under Linux and Mac OS X. A public and documented API for access to deepTools functionality is also available. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Visual feedback system to reduce errors while operating roof bolting machines

    PubMed Central

    Steiner, Lisa J.; Burgess-Limerick, Robin; Eiter, Brianna; Porter, William; Matty, Tim

    2015-01-01

    Problem Operators of roof bolting machines in underground coal mines do so in confined spaces and in very close proximity to the moving equipment. Errors in the operation of these machines can have serious consequences, and the design of the equipment interface has a critical role in reducing the probability of such errors. Methods An experiment was conducted to explore coding and directional compatibility on actual roof bolting equipment and to determine the feasibility of a visual feedback system to alert operators of critical movements and to also alert other workers in close proximity to the equipment to the pending movement of the machine. The quantitative results of the study confirmed the potential for both selection errors and direction errors to be made, particularly during training. Results Subjective data confirmed a potential benefit of providing visual feedback of the intended operations and movements of the equipment. Impact This research may influence the design of these and other similar control systems to provide evidence for the use of warning systems to improve operator situational awareness. PMID:23398703

  18. Applications of CFD and visualization techniques

    NASA Technical Reports Server (NTRS)

    Saunders, James H.; Brown, Susan T.; Crisafulli, Jeffrey J.; Southern, Leslie A.

    1992-01-01

    In this paper, three applications are presented to illustrate current techniques for flow calculation and visualization. The first two applications use a commercial computational fluid dynamics (CFD) code, FLUENT, performed on a Cray Y-MP. The results are animated with the aid of data visualization software, apE. The third application simulates a particulate deposition pattern using techniques inspired by developments in nonlinear dynamical systems. These computations were performed on personal computers.

  19. Visualization Co-Processing of a CFD Simulation

    NASA Technical Reports Server (NTRS)

    Vaziri, Arsi

    1999-01-01

    OVERFLOW, a widely used CFD simulation code, is combined with a visualization system, pV3, to experiment with an environment for simulation/visualization co-processing on a SGI Origin 2000 computer(O2K) system. The shared memory version of the solver is used with the O2K 'pfa' preprocessor invoked to automatically discover parallelism in the source code. No other explicit parallelism is enabled. In order to study the scaling and performance of the visualization co-processing system, sample runs are made with different processor groups in the range of 1 to 254 processors. The data exchange between the visualization system and the simulation system is rapid enough for user interactivity when the problem size is small. This shared memory version of OVERFLOW, with minimal parallelization, does not scale well to an increasing number of available processors. The visualization task takes about 18 to 30% of the total processing time and does not appear to be a major contributor to the poor scaling. Improper load balancing and inter-processor communication overhead are contributors to this poor performance. Work is in progress which is aimed at obtaining improved parallel performance of the solver and removing the limitations of serial data transfer to pV3 by examining various parallelization/communication strategies, including the use of the explicit message passing.

  20. Illusory motion reversal is caused by rivalry, not by perceptual snapshots of the visual field.

    PubMed

    Kline, Keith; Holcombe, Alex O; Eagleman, David M

    2004-10-01

    In stroboscopic conditions--such as motion pictures--rotating objects may appear to rotate in the reverse direction due to under-sampling (aliasing). A seemingly similar phenomenon occurs in constant sunlight, which has been taken as evidence that the visual system processes discrete "snapshots" of the outside world. But if snapshots are indeed taken of the visual field, then when a rotating drum appears to transiently reverse direction, its mirror image should always appeared to reverse direction simultaneously. Contrary to this hypothesis, we found that when observers watched a rotating drum and its mirror image, almost all illusory motion reversals occurred for only one image at a time. This result indicates that the motion reversal illusion cannot be explained by snapshots of the visual field. The same result is found when the two images are presented within one visual hemifield, further ruling out the possibility that discrete sampling of the visual field occurs separately in each hemisphere. The frequency distribution of illusory reversal durations approximates a gamma distribution, suggesting perceptual rivalry as a better explanation for illusory motion reversal. After adaptation of motion detectors coding for the correct direction, the activity of motion-sensitive neurons coding for motion in the reverse direction may intermittently become dominant and drive the perception of motion.

  1. Investigating Navy Officer Retention Using Data Farming

    DTIC Science & Technology

    2015-09-01

    runs on Microsoft Access . Contractors from SAG Corporation translated the code into Visual Basic for Applications ( VBA ), bringing several benefits...18  b.  Accessions ............................................................. 18  c.  Promotions...Strategic Actions Group SEED Simulation Experiments & Efficient Design URL Unrestricted Line VBA Visual Basic for Applications VV&A Verification

  2. Visual and Auditory Memory: Relationships to Reading Achievement.

    ERIC Educational Resources Information Center

    Bruning, Roger H.; And Others

    1978-01-01

    Good and poor readers' visual and auditory memory were tested. No group differences existed for single mode presentation in recognition frequency or latency. With multimodal presentation, good readers had faster latencies. Dual coding and self-terminating memory search hypotheses were supported. Implications for the reading process and reading…

  3. Educating "The Simpsons": Teaching Queer Representations in Contemporary Visual Media

    ERIC Educational Resources Information Center

    Padva, Gilad

    2008-01-01

    This article analyzes queer representation in contemporary visual media and examines how the episode "Homer's Phobia" from Matt Groening's animation series "The Simpsons" can be used to deconstruct hetero- and homo-sexual codes of behavior, socialization, articulation, representation and visibility. The analysis is contextualized in the…

  4. A String Search Marketing Application Using Visual Programming

    ERIC Educational Resources Information Center

    Chin, Jerry M.; Chin, Mary H.; Van Landuyt, Cathryn

    2013-01-01

    This paper demonstrates the use of programing software that provides the student programmer visual cues to construct the code to a student programming assignment. This method does not disregard or minimize the syntax or required logical constructs. The student can concentrate more on the logic and less on the language itself.

  5. The function and failure of sensory predictions.

    PubMed

    Bansal, Sonia; Ford, Judith M; Spering, Miriam

    2018-04-23

    Humans and other primates are equipped with neural mechanisms that allow them to automatically make predictions about future events, facilitating processing of expected sensations and actions. Prediction-driven control and monitoring of perceptual and motor acts are vital to normal cognitive functioning. This review provides an overview of corollary discharge mechanisms involved in predictions across sensory modalities and discusses consequences of predictive coding for cognition and behavior. Converging evidence now links impairments in corollary discharge mechanisms to neuropsychiatric symptoms such as hallucinations and delusions. We review studies supporting a prediction-failure hypothesis of perceptual and cognitive disturbances. We also outline neural correlates underlying prediction function and failure, highlighting similarities across the visual, auditory, and somatosensory systems. In linking basic psychophysical and psychophysiological evidence of visual, auditory, and somatosensory prediction failures to neuropsychiatric symptoms, our review furthers our understanding of disease mechanisms. © 2018 New York Academy of Sciences.

  6. Between-object and within-object saccade programming in a visual search task.

    PubMed

    Vergilino-Perez, Dorine; Findlay, John M

    2006-07-01

    The role of the perceptual organization of the visual display on eye movement control was examined in two experiments using a task where a two-saccade sequence was directed toward either a single elongated object or three separate shorter objects. In the first experiment, we examined the consequences for the second saccade of a small displacement of the whole display during the first saccade. We found that between-object saccades compensated for the displacement to aim for a target position on the new object whereas within-object saccades did not show compensation but were coded as a fixed motor vector applied irrespective of wherever the preceding saccade landed. In the second experiment, we extended the paradigm to examine saccades performed in different directions. The results suggest that the within-object and between-object saccade distinction is an essential feature of saccadic planning.

  7. Fast ITTBC using pattern code on subband segmentation

    NASA Astrophysics Data System (ADS)

    Koh, Sung S.; Kim, Hanchil; Lee, Kooyoung; Kim, Hongbin; Jeong, Hun; Cho, Gangseok; Kim, Chunghwa

    2000-06-01

    Iterated Transformation Theory-Based Coding suffers from very high computational complexity in encoding phase. This is due to its exhaustive search. In this paper, our proposed image coding algorithm preprocess an original image to subband segmentation image by wavelet transform before image coding to reduce encoding complexity. A similar block is searched by using the 24 block pattern codes which are coded by the edge information in the image block on the domain pool of the subband segmentation. As a result, numerical data shows that the encoding time of the proposed coding method can be reduced to 98.82% of that of Joaquin's method, while the loss in quality relative to the Jacquin's is about 0.28 dB in PSNR, which is visually negligible.

  8. Electrophysiological correlates of predictive coding of auditory location in the perception of natural audiovisual events.

    PubMed

    Stekelenburg, Jeroen J; Vroomen, Jean

    2012-01-01

    In many natural audiovisual events (e.g., a clap of the two hands), the visual signal precedes the sound and thus allows observers to predict when, where, and which sound will occur. Previous studies have reported that there are distinct neural correlates of temporal (when) versus phonetic/semantic (which) content on audiovisual integration. Here we examined the effect of visual prediction of auditory location (where) in audiovisual biological motion stimuli by varying the spatial congruency between the auditory and visual parts. Visual stimuli were presented centrally, whereas auditory stimuli were presented either centrally or at 90° azimuth. Typical sub-additive amplitude reductions (AV - V < A) were found for the auditory N1 and P2 for spatially congruent and incongruent conditions. The new finding is that this N1 suppression was greater for the spatially congruent stimuli. A very early audiovisual interaction was also found at 40-60 ms (P50) in the spatially congruent condition, while no effect of congruency was found on the suppression of the P2. This indicates that visual prediction of auditory location can be coded very early in auditory processing.

  9. Video transmission on ATM networks. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Chen, Yun-Chung

    1993-01-01

    The broadband integrated services digital network (B-ISDN) is expected to provide high-speed and flexible multimedia applications. Multimedia includes data, graphics, image, voice, and video. Asynchronous transfer mode (ATM) is the adopted transport techniques for B-ISDN and has the potential for providing a more efficient and integrated environment for multimedia. It is believed that most broadband applications will make heavy use of visual information. The prospect of wide spread use of image and video communication has led to interest in coding algorithms for reducing bandwidth requirements and improving image quality. The major results of a study on the bridging of network transmission performance and video coding are: Using two representative video sequences, several video source models are developed. The fitness of these models are validated through the use of statistical tests and network queuing performance. A dual leaky bucket algorithm is proposed as an effective network policing function. The concept of the dual leaky bucket algorithm can be applied to a prioritized coding approach to achieve transmission efficiency. A mapping of the performance/control parameters at the network level into equivalent parameters at the video coding level is developed. Based on that, a complete set of principles for the design of video codecs for network transmission is proposed.

  10. Advanced technology development for image gathering, coding, and processing

    NASA Technical Reports Server (NTRS)

    Huck, Friedrich O.

    1990-01-01

    Three overlapping areas of research activities are presented: (1) Information theory and optimal filtering are extended to visual information acquisition and processing. The goal is to provide a comprehensive methodology for quantitatively assessing the end-to-end performance of image gathering, coding, and processing. (2) Focal-plane processing techniques and technology are developed to combine effectively image gathering with coding. The emphasis is on low-level vision processing akin to the retinal processing in human vision. (3) A breadboard adaptive image-coding system is being assembled. This system will be used to develop and evaluate a number of advanced image-coding technologies and techniques as well as research the concept of adaptive image coding.

  11. Visual Information Processing for Television and Telerobotics

    NASA Technical Reports Server (NTRS)

    Huck, Friedrich O. (Editor); Park, Stephen K. (Editor)

    1989-01-01

    This publication is a compilation of the papers presented at the NASA conference on Visual Information Processing for Television and Telerobotics. The conference was held at the Williamsburg Hilton, Williamsburg, Virginia on May 10 to 12, 1989. The conference was sponsored jointly by NASA Offices of Aeronautics and Space Technology (OAST) and Space Science and Applications (OSSA) and the NASA Langley Research Center. The presentations were grouped into three sessions: Image Gathering, Coding, and Advanced Concepts; Systems; and Technologies. The program was organized to provide a forum in which researchers from industry, universities, and government could be brought together to discuss the state of knowledge in image gathering, coding, and processing methods.

  12. Comprehensive Reconstruction and Visualization of Non-Coding Regulatory Networks in Human

    PubMed Central

    Bonnici, Vincenzo; Russo, Francesco; Bombieri, Nicola; Pulvirenti, Alfredo; Giugno, Rosalba

    2014-01-01

    Research attention has been powered to understand the functional roles of non-coding RNAs (ncRNAs). Many studies have demonstrated their deregulation in cancer and other human disorders. ncRNAs are also present in extracellular human body fluids such as serum and plasma, giving them a great potential as non-invasive biomarkers. However, non-coding RNAs have been relatively recently discovered and a comprehensive database including all of them is still missing. Reconstructing and visualizing the network of ncRNAs interactions are important steps to understand their regulatory mechanism in complex systems. This work presents ncRNA-DB, a NoSQL database that integrates ncRNAs data interactions from a large number of well established on-line repositories. The interactions involve RNA, DNA, proteins, and diseases. ncRNA-DB is available at http://ncrnadb.scienze.univr.it/ncrnadb/. It is equipped with three interfaces: web based, command-line, and a Cytoscape app called ncINetView. By accessing only one resource, users can search for ncRNAs and their interactions, build a network annotated with all known ncRNAs and associated diseases, and use all visual and mining features available in Cytoscape. PMID:25540777

  13. Comprehensive reconstruction and visualization of non-coding regulatory networks in human.

    PubMed

    Bonnici, Vincenzo; Russo, Francesco; Bombieri, Nicola; Pulvirenti, Alfredo; Giugno, Rosalba

    2014-01-01

    Research attention has been powered to understand the functional roles of non-coding RNAs (ncRNAs). Many studies have demonstrated their deregulation in cancer and other human disorders. ncRNAs are also present in extracellular human body fluids such as serum and plasma, giving them a great potential as non-invasive biomarkers. However, non-coding RNAs have been relatively recently discovered and a comprehensive database including all of them is still missing. Reconstructing and visualizing the network of ncRNAs interactions are important steps to understand their regulatory mechanism in complex systems. This work presents ncRNA-DB, a NoSQL database that integrates ncRNAs data interactions from a large number of well established on-line repositories. The interactions involve RNA, DNA, proteins, and diseases. ncRNA-DB is available at http://ncrnadb.scienze.univr.it/ncrnadb/. It is equipped with three interfaces: web based, command-line, and a Cytoscape app called ncINetView. By accessing only one resource, users can search for ncRNAs and their interactions, build a network annotated with all known ncRNAs and associated diseases, and use all visual and mining features available in Cytoscape.

  14. Pupil measures of alertness and mental load

    NASA Technical Reports Server (NTRS)

    Backs, Richard W.; Walrath, Larry C.

    1988-01-01

    A study of eight adults given active and passive search tasks showed that evoked pupillary response was sensitive to information processing demands. In particular, large pupillary diameter was observed in the active search condition where subjects were actively processing information relevant to task performance, as opposed to the passive search (control) condition where subjects passively viewed the displays. However, subjects may have simply been more aroused in the active search task. Of greater importance was that larger pupillary diameter, corresponding to longer search time, was observed for noncoded than for color-coded displays in active search. In the control condition, pupil diameter was larger with the color displays. The data indicate potential usefulness of pupillary responses in evaluating the information processing requirements of visual displays.

  15. From grid cells and visual place cells to multimodal place cell: a new robotic architecture

    PubMed Central

    Jauffret, Adrien; Cuperlier, Nicolas; Gaussier, Philippe

    2015-01-01

    In the present study, a new architecture for the generation of grid cells (GC) was implemented on a real robot. In order to test this model a simple place cell (PC) model merging visual PC activity and GC was developed. GC were first built from a simple “several to one” projection (similar to a modulo operation) performed on a neural field coding for path integration (PI). Robotics experiments raised several practical and theoretical issues. To limit the important angular drift of PI, head direction information was introduced in addition to the robot proprioceptive signal coming from the wheel rotation. Next, a simple associative learning between visual place cells and the neural field coding for the PI has been used to recalibrate the PI and to limit its drift. Finally, the parameters controlling the shape of the PC built from the GC have been studied. Increasing the number of GC obviously improves the shape of the resulting place field. Yet, other parameters such as the discretization factor of PI or the lateral interactions between GC can have an important impact on the place field quality and avoid the need of a very large number of GC. In conclusion, our results show our GC model based on the compression of PI is congruent with neurobiological studies made on rodent. GC firing patterns can be the result of a modulo transformation of PI information. We argue that such a transformation may be a general property of the connectivity from the cortex to the entorhinal cortex. Our model predicts that the effect of similar transformations on other kinds of sensory information (visual, tactile, auditory, etc…) in the entorhinal cortex should be observed. Consequently, a given EC cell should react to non-contiguous input configurations in non-spatial conditions according to the projection from its different inputs. PMID:25904862

  16. Processing of visually presented clock times.

    PubMed

    Goolkasian, P; Park, D C

    1980-11-01

    The encoding and representation of visually presented clock times was investigated in three experiments utilizing a comparative judgment task. Experiment 1 explored the effects of comparing times presented in different formats (clock face, digit, or word), and Experiment 2 examined angular distance effects created by varying positions of the hands on clock faces. In Experiment 3, encoding and processing differences between clock faces and digitally presented times were directly measured. Same/different reactions to digitally presented times were faster than to times presented on a clock face, and this format effect was found to be a result of differences in processing that occurred after encoding. Angular separation also had a limited effect on processing. The findings are interpreted within the framework of theories that refer to the importance of representational codes. The applicability to the data of Bank's semantic-coding theory, Paivio's dual-coding theory, and the levels-of-processing view of memory are discussed.

  17. SensA: web-based sensitivity analysis of SBML models.

    PubMed

    Floettmann, Max; Uhlendorf, Jannis; Scharp, Till; Klipp, Edda; Spiesser, Thomas W

    2014-10-01

    SensA is a web-based application for sensitivity analysis of mathematical models. The sensitivity analysis is based on metabolic control analysis, computing the local, global and time-dependent properties of model components. Interactive visualization facilitates interpretation of usually complex results. SensA can contribute to the analysis, adjustment and understanding of mathematical models for dynamic systems. SensA is available at http://gofid.biologie.hu-berlin.de/ and can be used with any modern browser. The source code can be found at https://bitbucket.org/floettma/sensa/ (MIT license) © The Author 2014. Published by Oxford University Press.

  18. LANDSAT 4 band 6 data evaluation

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Previously experienced data collection problems were successfully resolved. A limited effort, directed at improved methods of display of TM Band 6 data, has concentrated on implementation of intensity hue and saturation displays using the Band 6 data to control hue. These displays tend to give the appearance of high resolution thermal data and make whole scene thermal interpretation easier by color coding thermal data in a manner that aids visual interpretation. More quantitative efforts were directed at utilizing the reflected bands to define land cover classes and then modifying the thermal displays using long wave optical properties associated with cover type.

  19. A neurophysiologically plausible population code model for feature integration explains visual crowding.

    PubMed

    van den Berg, Ronald; Roerdink, Jos B T M; Cornelissen, Frans W

    2010-01-22

    An object in the peripheral visual field is more difficult to recognize when surrounded by other objects. This phenomenon is called "crowding". Crowding places a fundamental constraint on human vision that limits performance on numerous tasks. It has been suggested that crowding results from spatial feature integration necessary for object recognition. However, in the absence of convincing models, this theory has remained controversial. Here, we present a quantitative and physiologically plausible model for spatial integration of orientation signals, based on the principles of population coding. Using simulations, we demonstrate that this model coherently accounts for fundamental properties of crowding, including critical spacing, "compulsory averaging", and a foveal-peripheral anisotropy. Moreover, we show that the model predicts increased responses to correlated visual stimuli. Altogether, these results suggest that crowding has little immediate bearing on object recognition but is a by-product of a general, elementary integration mechanism in early vision aimed at improving signal quality.

  20. Conjunctive Coding of Complex Object Features

    PubMed Central

    Erez, Jonathan; Cusack, Rhodri; Kendall, William; Barense, Morgan D.

    2016-01-01

    Critical to perceiving an object is the ability to bind its constituent features into a cohesive representation, yet the manner by which the visual system integrates object features to yield a unified percept remains unknown. Here, we present a novel application of multivoxel pattern analysis of neuroimaging data that allows a direct investigation of whether neural representations integrate object features into a whole that is different from the sum of its parts. We found that patterns of activity throughout the ventral visual stream (VVS), extending anteriorly into the perirhinal cortex (PRC), discriminated between the same features combined into different objects. Despite this sensitivity to the unique conjunctions of features comprising objects, activity in regions of the VVS, again extending into the PRC, was invariant to the viewpoints from which the conjunctions were presented. These results suggest that the manner in which our visual system processes complex objects depends on the explicit coding of the conjunctions of features comprising them. PMID:25921583

  1. On the role of selective attention in visual perception

    PubMed Central

    Luck, Steven J.; Ford, Michelle A.

    1998-01-01

    What is the role of selective attention in visual perception? Before answering this question, it is necessary to differentiate between attentional mechanisms that influence the identification of a stimulus from those that operate after perception is complete. Cognitive neuroscience techniques are particularly well suited to making this distinction because they allow different attentional mechanisms to be isolated in terms of timing and/or neuroanatomy. The present article describes the use of these techniques in differentiating between perceptual and postperceptual attentional mechanisms and then proposes a specific role of attention in visual perception. Specifically, attention is proposed to resolve ambiguities in neural coding that arise when multiple objects are processed simultaneously. Evidence for this hypothesis is provided by two experiments showing that attention—as measured electrophysiologically—is allocated to visual search targets only under conditions that would be expected to lead to ambiguous neural coding. PMID:9448247

  2. Glocalized New Age Spirituality: A Mental Map of the New Central Bus Station in Tel Aviv, Deciphered through Its Visual Codes and Based on Ethno-Visual Research

    ERIC Educational Resources Information Center

    Ben-Peshat, Malka; Sitton, Shoshana

    2011-01-01

    We present here the findings of an ethno-visual research study involving the creation of a mental map of images, artifacts and practices in Tel Aviv's New Central Bus Station. This huge and complex building, part bus station, part shopping mall, has become a stage for multicultural encounters and interactions among diverse communities of users.…

  3. Differentially Expressed Long Non-Coding RNAs Were Predicted to Be Involved in the Control of Signaling Pathways in Pediatric Astrocytoma.

    PubMed

    Ruiz Esparza-Garrido, Ruth; Rodríguez-Corona, Juan Manuel; López-Aguilar, Javier Enrique; Rodríguez-Florido, Marco Antonio; Velázquez-Wong, Ana Claudia; Viedma-Rodríguez, Rubí; Salamanca-Gómez, Fabio; Velázquez-Flores, Miguel Ángel

    2017-10-01

    Expression changes for long non-coding RNAs (lncRNAs) have been identified in adult glioblastoma multiforme (GBM) and in a mixture of adult and pediatric astrocytoma. Since adult and pediatric astrocytomas are molecularly different, the mixture of both could mask specific features in each. We determined the global expression patterns of lncRNAs and messenger RNA (mRNAs) in pediatric astrocytoma of different histological grades. Transcript expression changes were determined with an HTA 2.0 array. lncRNA interactions with microRNAs and mRNAs were predicted by using an algorithm and the LncTar tool, respectively. Interactomes were constructed with the HIPPIE database and visualized with the Cytoscape platform. The array showed expression changes in 156 and 207 lncRNAs in tumors (versus the control) and in pediatric GBM (versus low-grade astrocytoma), respectively. Predictions identified lncRNAs that have putative microRNA binding sites, which might suggest that they function as sponges in these tumors. Also, lncRNAs were shown to interact with many mRNAs, such as Pleckstrin homology-like domain, family A, member 1 (PHLDA1) and sulfatase 2 (SULF2). For example, qPCR found long intergenic non-coding RNA regulator of reprogramming (linc-RoR) expression levels upregulated in pediatric GBM when they were compared with control tissues or with low-grade tumors. Meanwhile, PHLDA1 and ELAV-like RNA binding protein 1 (ELAV1) showed expression changes in tumors relative to the control. Our data showed many lncRNAs with expression changes in pediatric astrocytoma, which might be involved in the regulation of different signaling pathways.

  4. A Cloud-based, Open-Source, Command-and-Control Software Paradigm for Space Situational Awareness (SSA)

    NASA Astrophysics Data System (ADS)

    Melton, R.; Thomas, J.

    With the rapid growth in the number of space actors, there has been a marked increase in the complexity and diversity of software systems utilized to support SSA target tracking, indication, warning, and collision avoidance. Historically, most SSA software has been constructed with "closed" proprietary code, which limits interoperability, inhibits the code transparency that some SSA customers need to develop domain expertise, and prevents the rapid injection of innovative concepts into these systems. Open-source aerospace software, a rapidly emerging, alternative trend in code development, is based on open collaboration, which has the potential to bring greater transparency, interoperability, flexibility, and reduced development costs. Open-source software is easily adaptable, geared to rapidly changing mission needs, and can generally be delivered at lower costs to meet mission requirements. This paper outlines Ball's COSMOS C2 system, a fully open-source, web-enabled, command-and-control software architecture which provides several unique capabilities to move the current legacy SSA software paradigm to an open source model that effectively enables pre- and post-launch asset command and control. Among the unique characteristics of COSMOS is the ease with which it can integrate with diverse hardware. This characteristic enables COSMOS to serve as the command-and-control platform for the full life-cycle development of SSA assets, from board test, to box test, to system integration and test, to on-orbit operations. The use of a modern scripting language, Ruby, also permits automated procedures to provide highly complex decision making for the tasking of SSA assets based on both telemetry data and data received from outside sources. Detailed logging enables quick anomaly detection and resolution. Integrated real-time and offline data graphing renders the visualization of the both ground and on-orbit assets simple and straightforward.

  5. What Do Letter Migration Errors Reveal About Letter Position Coding in Visual Word Recognition?

    ERIC Educational Resources Information Center

    Davis, Colin J.; Bowers, Jeffrey S.

    2004-01-01

    Dividing attention across multiple words occasionally results in misidentifications whereby letters apparently migrate between words. Previous studies have found that letter migrations preserve within-word letter position, which has been interpreted as support for position-specific letter coding. To investigate this issue, the authors used word…

  6. Teaching Reading to the Disadvantaged Adult.

    ERIC Educational Resources Information Center

    Dinnan, James A.; Ulmer, Curtis, Ed.

    This manual is designed to assess the background of the individual and to bring him to the stage of unlocking the symbolic codes called Reading and Mathematics. The manual begins with Introduction to a Symbolic Code (The Thinking Process and The Key to Learning Basis), and continues with Basic Reading Skills (Readiness, Visual Discrimination,…

  7. Animations Need Narrations: An Experimental Test of a Dual-Coding Hypothesis.

    ERIC Educational Resources Information Center

    Mayer, Richard E.; Anderson, Richard B.

    1991-01-01

    In two experiments, 102 mechanically naive college students viewed an animation on bicycle tire pump operation with a verbal description before or during the animation or without description. Improved performance of those receiving description during the animation supports a dual-coding hypothesis of connections between visual and verbal stimuli.…

  8. Does Kaniso activate CASINO?: input coding schemes and phonology in visual-word recognition.

    PubMed

    Acha, Joana; Perea, Manuel

    2010-01-01

    Most recent input coding schemes in visual-word recognition assume that letter position coding is orthographic rather than phonological in nature (e.g., SOLAR, open-bigram, SERIOL, and overlap). This assumption has been drawn - in part - by the fact that the transposed-letter effect (e.g., caniso activates CASINO) seems to be (mostly) insensitive to phonological manipulations (e.g., Perea & Carreiras, 2006, 2008; Perea & Pérez, 2009). However, one could argue that the lack of a phonological effect in prior research was due to the fact that the manipulation always occurred in internal letter positions - note that phonological effects tend to be stronger for the initial syllable (Carreiras, Ferrand, Grainger, & Perea, 2005). To reexamine this issue, we conducted a masked priming lexical decision experiment in which we compared the priming effect for transposed-letter pairs (e.g., caniso-CASINO vs. caviro-CASINO) and for pseudohomophone transposed-letter pairs (kaniso-CASINO vs. kaviro-CASINO). Results showed a transposed-letter priming effect for the correctly spelled pairs, but not for the pseudohomophone pairs. This is consistent with the view that letter position coding is (primarily) orthographic in nature.

  9. Potential roles of cholinergic modulation in the neural coding of location and movement speed

    PubMed Central

    Dannenberg, Holger; Hinman, James R.; Hasselmo, Michael E.

    2016-01-01

    Behavioral data suggest that cholinergic modulation may play a role in certain aspects of spatial memory, and neurophysiological data demonstrate neurons that fire in response to spatial dimensions, including grid cells and place cells that respond on the basis of location and running speed. These neurons show firing responses that depend upon the visual configuration of the environment, due to coding in visually-responsive regions of the neocortex. This review focuses on the physiological effects of acetylcholine that may influence the sensory coding of spatial dimensions relevant to behavior. In particular, the local circuit effects of acetylcholine within the cortex regulate the influence of sensory input relative to internal memory representations, via presynaptic inhibition of excitatory and inhibitory synaptic transmission, and the modulation of intrinsic currents in cortical excitatory and inhibitory neurons. In addition, circuit effects of acetylcholine regulate the dynamics of cortical circuits including oscillations at theta and gamma frequencies. These effects of acetylcholine on local circuits and network dynamics could underlie the role of acetylcholine in coding of spatial information for the performance of spatial memory tasks. PMID:27677935

  10. Space coding for sensorimotor transformations can emerge through unsupervised learning.

    PubMed

    De Filippo De Grazia, Michele; Cutini, Simone; Lisi, Matteo; Zorzi, Marco

    2012-08-01

    The posterior parietal cortex (PPC) is fundamental for sensorimotor transformations because it combines multiple sensory inputs and posture signals into different spatial reference frames that drive motor programming. Here, we present a computational model mimicking the sensorimotor transformations occurring in the PPC. A recurrent neural network with one layer of hidden neurons (restricted Boltzmann machine) learned a stochastic generative model of the sensory data without supervision. After the unsupervised learning phase, the activity of the hidden neurons was used to compute a motor program (a population code on a bidimensional map) through a simple linear projection and delta rule learning. The average motor error, calculated as the difference between the expected and the computed output, was less than 3°. Importantly, analyses of the hidden neurons revealed gain-modulated visual receptive fields, thereby showing that space coding for sensorimotor transformations similar to that observed in the PPC can emerge through unsupervised learning. These results suggest that gain modulation is an efficient coding strategy to integrate visual and postural information toward the generation of motor commands.

  11. Beauty is in the efficient coding of the beholder.

    PubMed

    Renoult, Julien P; Bovet, Jeanne; Raymond, Michel

    2016-03-01

    Sexual ornaments are often assumed to be indicators of mate quality. Yet it remains poorly known how certain ornaments are chosen before any coevolutionary race makes them indicative. Perceptual biases have been proposed to play this role, but known biases are mostly restricted to a specific taxon, which precludes evaluating their general importance in sexual selection. Here we identify a potentially universal perceptual bias in mate choice. We used an algorithm that models the sparseness of the activity of simple cells in the primary visual cortex (or V1) of humans when coding images of female faces. Sparseness was found positively correlated with attractiveness as rated by men and explained up to 17% of variance in attractiveness. Because V1 is adapted to process signals from natural scenes, in general, not faces specifically, our results indicate that attractiveness for female faces is influenced by a visual bias. Sparseness and more generally efficient neural coding are ubiquitous, occurring in various animals and sensory modalities, suggesting that the influence of efficient coding on mate choice can be widespread in animals.

  12. Neural dynamics of reward probability coding: a Magnetoencephalographic study in humans

    PubMed Central

    Thomas, Julie; Vanni-Mercier, Giovanna; Dreher, Jean-Claude

    2013-01-01

    Prediction of future rewards and discrepancy between actual and expected outcomes (prediction error) are crucial signals for adaptive behavior. In humans, a number of fMRI studies demonstrated that reward probability modulates these two signals in a large brain network. Yet, the spatio-temporal dynamics underlying the neural coding of reward probability remains unknown. Here, using magnetoencephalography, we investigated the neural dynamics of prediction and reward prediction error computations while subjects learned to associate cues of slot machines with monetary rewards with different probabilities. We showed that event-related magnetic fields (ERFs) arising from the visual cortex coded the expected reward value 155 ms after the cue, demonstrating that reward value signals emerge early in the visual stream. Moreover, a prediction error was reflected in ERF peaking 300 ms after the rewarded outcome and showing decreasing amplitude with higher reward probability. This prediction error signal was generated in a network including the anterior and posterior cingulate cortex. These findings pinpoint the spatio-temporal characteristics underlying reward probability coding. Together, our results provide insights into the neural dynamics underlying the ability to learn probabilistic stimuli-reward contingencies. PMID:24302894

  13. Visualising Earth's Mantle based on Global Adjoint Tomography

    NASA Astrophysics Data System (ADS)

    Bozdag, E.; Pugmire, D.; Lefebvre, M. P.; Hill, J.; Komatitsch, D.; Peter, D. B.; Podhorszki, N.; Tromp, J.

    2017-12-01

    Recent advances in 3D wave propagation solvers and high-performance computing have enabled regional and global full-waveform inversions. Interpretation of tomographic models is often done on visually. Robust and efficient visualization tools are necessary to thoroughly investigate large model files, particularly at the global scale. In collaboration with Oak Ridge National Laboratory (ORNL), we have developed effective visualization tools and used for visualization of our first-generation global model, GLAD-M15 (Bozdag et al. 2016). VisIt (https://wci.llnl.gov/simulation/computer-codes/visit/) is used for initial exploration of the models and for extraction of seismological features. The broad capability of VisIt, and its demonstrated scalability proved valuable for experimenting with different visualization techniques, and in the creation of timely results. Utilizing VisIt's plugin-architecture, a data reader plugin was developed, which reads the ADIOS (https://www.olcf.ornl.gov/center-projects/adios/) format of our model files. Blender (https://www.blender.org) is used for the setup of lighting, materials, camera paths and rendering of geometry. Python scripting was used to control the orchestration of different geometries, as well as camera animation for 3D movies. While we continue producing 3D contour plots and movies for various seismic parameters to better visualize plume- and slab-like features as well as anisotropy throughout the mantle, our aim is to make visualization an integral part of our global adjoint tomography workflow to routinely produce various 2D cross-sections to facilitate examination of our models after each iteration. This will ultimately form the basis for use of pattern recognition techniques in our investigations. Simulations for global adjoint tomography are performed on ORNL's Titan system and visualization is done in parallel on ORNL's post-processing cluster Rhea.

  14. Training on Movement Figure-Ground Discrimination Remediates Low-Level Visual Timing Deficits in the Dorsal Stream, Improving High-Level Cognitive Functioning, Including Attention, Reading Fluency, and Working Memory.

    PubMed

    Lawton, Teri; Shelley-Tremblay, John

    2017-01-01

    The purpose of this study was to determine whether neurotraining to discriminate a moving test pattern relative to a stationary background, figure-ground discrimination, improves vision and cognitive functioning in dyslexics, as well as typically-developing normal students. We predict that improving the speed and sensitivity of figure-ground movement discrimination ( PATH to Reading neurotraining) acts to remediate visual timing deficits in the dorsal stream, thereby improving processing speed, reading fluency, and the executive control functions of attention and working memory in both dyslexic and normal students who had PATH neurotraining more than in those students who had no neurotraining. This prediction was evaluated by measuring whether dyslexic and normal students improved on standardized tests of cognitive skills following neurotraining exercises, more than following computer-based guided reading ( Raz-Kids ( RK )). The neurotraining used in this study was visually-based training designed to improve magnocellular function at both low and high levels in the dorsal stream: the input to the executive control networks coding working memory and attention. This approach represents a paradigm shift from the phonologically-based treatment for dyslexia, which concentrates on high-level speech and reading areas. This randomized controlled-validation study was conducted by training the entire second and third grade classrooms (42 students) for 30 min twice a week before guided reading. Standardized tests were administered at the beginning and end of 12-weeks of intervention training to evaluate improvements in academic skills. Only movement-discrimination training remediated both low-level visual timing deficits and high-level cognitive functioning, including selective and sustained attention, reading fluency and working memory for both dyslexic and normal students. Remediating visual timing deficits in the dorsal stream revealed the causal role of visual movement discrimination training in improving high-level cognitive functions such as attention, reading acquisition and working memory. This study supports the hypothesis that faulty timing in synchronizing the activity of magnocellular with parvocellular visual pathways in the dorsal stream is a fundamental cause of dyslexia and being at-risk for reading problems in normal students, and argues against the assumption that reading deficiencies in dyslexia are caused by phonological or language deficits, requiring a paradigm shift from phonologically-based treatment of dyslexia to a visually-based treatment. This study shows that visual movement-discrimination can be used not only to diagnose dyslexia early, but also for its successful treatment, so that reading problems do not prevent children from readily learning.

  15. Training on Movement Figure-Ground Discrimination Remediates Low-Level Visual Timing Deficits in the Dorsal Stream, Improving High-Level Cognitive Functioning, Including Attention, Reading Fluency, and Working Memory

    PubMed Central

    Lawton, Teri; Shelley-Tremblay, John

    2017-01-01

    The purpose of this study was to determine whether neurotraining to discriminate a moving test pattern relative to a stationary background, figure-ground discrimination, improves vision and cognitive functioning in dyslexics, as well as typically-developing normal students. We predict that improving the speed and sensitivity of figure-ground movement discrimination (PATH to Reading neurotraining) acts to remediate visual timing deficits in the dorsal stream, thereby improving processing speed, reading fluency, and the executive control functions of attention and working memory in both dyslexic and normal students who had PATH neurotraining more than in those students who had no neurotraining. This prediction was evaluated by measuring whether dyslexic and normal students improved on standardized tests of cognitive skills following neurotraining exercises, more than following computer-based guided reading (Raz-Kids (RK)). The neurotraining used in this study was visually-based training designed to improve magnocellular function at both low and high levels in the dorsal stream: the input to the executive control networks coding working memory and attention. This approach represents a paradigm shift from the phonologically-based treatment for dyslexia, which concentrates on high-level speech and reading areas. This randomized controlled-validation study was conducted by training the entire second and third grade classrooms (42 students) for 30 min twice a week before guided reading. Standardized tests were administered at the beginning and end of 12-weeks of intervention training to evaluate improvements in academic skills. Only movement-discrimination training remediated both low-level visual timing deficits and high-level cognitive functioning, including selective and sustained attention, reading fluency and working memory for both dyslexic and normal students. Remediating visual timing deficits in the dorsal stream revealed the causal role of visual movement discrimination training in improving high-level cognitive functions such as attention, reading acquisition and working memory. This study supports the hypothesis that faulty timing in synchronizing the activity of magnocellular with parvocellular visual pathways in the dorsal stream is a fundamental cause of dyslexia and being at-risk for reading problems in normal students, and argues against the assumption that reading deficiencies in dyslexia are caused by phonological or language deficits, requiring a paradigm shift from phonologically-based treatment of dyslexia to a visually-based treatment. This study shows that visual movement-discrimination can be used not only to diagnose dyslexia early, but also for its successful treatment, so that reading problems do not prevent children from readily learning. PMID:28555097

  16. Fluid Simulation in the Movies: Navier and Stokes Must Be Circulating in Their Graves

    NASA Astrophysics Data System (ADS)

    Tessendorf, Jerry

    2010-11-01

    Fluid simulations based on the Incompressible Navier-Stokes equations are commonplace computer graphics tools in the visual effects industry. These simulations mostly come from custom C++ code written by the visual effects companies. Their significant impact in films was recognized in 2008 with Academy Awards to four visual effects companies for their technical achievement. However artists are not fluid dynamicists, and fluid dynamics simulations are expensive to use in a deadline-driven production environment. As a result, the simulation algorithms are modified to limit the computational resources, adapt them to production workflow, and to respect the client's vision of the film plot. Eulerian solvers on fixed rectangular grids use a mix of momentum solvers, including Semi-Lagrangian, FLIP, and QUICK. Incompressibility is enforced with FFT, Conjugate Gradient, and Multigrid methods. For liquids, a levelset field tracks the free surface. Smooth Particle Hydrodynamics is also used, and is part of a hybrid Eulerian-SPH liquid simulator. Artists use all of them in a mix and match fashion to control the appearance of the simulation. Specially designed forces and boundary conditions control the flow. The simulation can be an input to artistically driven procedural particle simulations that enhance the flow with more detail and drama. Post-simulation processing increases the visual detail beyond the grid resolution. Ultimately, iterative simulation methods that fit naturally in the production workflow are extremely desirable but not yet successful. Results from some efforts for iterative methods are shown, and other approaches motivated by the history of production are proposed.

  17. How vision and movement combine in the hippocampal place code.

    PubMed

    Chen, Guifen; King, John A; Burgess, Neil; O'Keefe, John

    2013-01-02

    How do external environmental and internal movement-related information combine to tell us where we are? We examined the neural representation of environmental location provided by hippocampal place cells while mice navigated a virtual reality environment in which both types of information could be manipulated. Extracellular recordings were made from region CA1 of head-fixed mice navigating a virtual linear track and running in a similar real environment. Despite the absence of vestibular motion signals, normal place cell firing and theta rhythmicity were found. Visual information alone was sufficient for localized firing in 25% of place cells and to maintain a local field potential theta rhythm (but with significantly reduced power). Additional movement-related information was required for normally localized firing by the remaining 75% of place cells. Trials in which movement and visual information were put into conflict showed that they combined nonlinearly to control firing location, and that the relative influence of movement versus visual information varied widely across place cells. However, within this heterogeneity, the behavior of fully half of the place cells conformed to a model of path integration in which the presence of visual cues at the start of each run together with subsequent movement-related updating of position was sufficient to maintain normal fields.

  18. The visual attention span deficit in dyslexia is visual and not verbal.

    PubMed

    Lobier, Muriel; Zoubrinetzky, Rachel; Valdois, Sylviane

    2012-06-01

    The visual attention (VA) span deficit hypothesis of dyslexia posits that letter string deficits are a consequence of impaired visual processing. Alternatively, some have interpreted this deficit as resulting from a visual-to-phonology code mapping impairment. This study aims to disambiguate between the two interpretations by investigating performance in a non-verbal character string visual categorization task with verbal and non-verbal stimuli. Results show that VA span ability predicts performance for the non-verbal visual processing task in normal reading children. Furthermore, VA span impaired dyslexic children are also impaired for the categorization task independently of stimuli type. This supports the hypothesis that the underlying impairment responsible for the VA span deficit is visual, not verbal. Copyright © 2011 Elsevier Srl. All rights reserved.

  19. Mega-Scale Simulation of Multi-Layer Devices-- Formulation, Kinetics, and Visualization

    DTIC Science & Technology

    1994-07-28

    prototype code STRIDE, also initially developed under ARO support. The focus of the ARO supported research activities has been in the areas of multi ... FORTRAN -77. During its fifteen-year life- span several generations of researchers have modified the code . Due to this continual develop- ment, the...behavior. The replacement of the linear solver had no effect on the remainder of the code . We replaced the existing solver with a distributed multi -frontal

  20. Transition from Target to Gaze Coding in Primate Frontal Eye Field during Memory Delay and Memory–Motor Transformation123

    PubMed Central

    Sajad, Amirsaman; Sadeh, Morteza; Yan, Xiaogang; Wang, Hongying

    2016-01-01

    Abstract The frontal eye fields (FEFs) participate in both working memory and sensorimotor transformations for saccades, but their role in integrating these functions through time remains unclear. Here, we tracked FEF spatial codes through time using a novel analytic method applied to the classic memory-delay saccade task. Three-dimensional recordings of head-unrestrained gaze shifts were made in two monkeys trained to make gaze shifts toward briefly flashed targets after a variable delay (450-1500 ms). A preliminary analysis of visual and motor response fields in 74 FEF neurons eliminated most potential models for spatial coding at the neuron population level, as in our previous study (Sajad et al., 2015). We then focused on the spatiotemporal transition from an eye-centered target code (T; preferred in the visual response) to an eye-centered intended gaze position code (G; preferred in the movement response) during the memory delay interval. We treated neural population codes as a continuous spatiotemporal variable by dividing the space spanning T and G into intermediate T–G models and dividing the task into discrete steps through time. We found that FEF delay activity, especially in visuomovement cells, progressively transitions from T through intermediate T–G codes that approach, but do not reach, G. This was followed by a final discrete transition from these intermediate T–G delay codes to a “pure” G code in movement cells without delay activity. These results demonstrate that FEF activity undergoes a series of sensory–memory–motor transformations, including a dynamically evolving spatial memory signal and an imperfect memory-to-motor transformation. PMID:27092335

  1. A Public Education: The Lived Experiences of One Educator

    ERIC Educational Resources Information Center

    Mazza, Bonnie Streff

    2016-01-01

    This dissertation is a visual and narrative-based autoethnography that narrates the lived educational experiences of the author from preschool through doctoral studies. The text portrays a story that explores issues of power, identity, and pedagogy in education. Told in narrative form, this project utilizes visual data, thematic coding, layering,…

  2. Children's Visual Processing of Egocentric Cues in Action Planning for Reach

    ERIC Educational Resources Information Center

    Cordova, Alberto; Gabbard, Carl

    2011-01-01

    In this study the authors examined children's ability to code visual information into an egocentric frame of reference for planning reach movements. Children and adults estimated reach distance via motor imagery in immediate and response-delay conditions. Actual maximum reach was compared to estimates in multiple locations in peripersonal and…

  3. Visually lossless compression of digital hologram sequences

    NASA Astrophysics Data System (ADS)

    Darakis, Emmanouil; Kowiel, Marcin; Näsänen, Risto; Naughton, Thomas J.

    2010-01-01

    Digital hologram sequences have great potential for the recording of 3D scenes of moving macroscopic objects as their numerical reconstruction can yield a range of perspective views of the scene. Digital holograms inherently have large information content and lossless coding of holographic data is rather inefficient due to the speckled nature of the interference fringes they contain. Lossy coding of still holograms and hologram sequences has shown promising results. By definition, lossy compression introduces errors in the reconstruction. In all of the previous studies, numerical metrics were used to measure the compression error and through it, the coding quality. Digital hologram reconstructions are highly speckled and the speckle pattern is very sensitive to data changes. Hence, numerical quality metrics can be misleading. For example, for low compression ratios, a numerically significant coding error can have visually negligible effects. Yet, in several cases, it is of high interest to know how much lossy compression can be achieved, while maintaining the reconstruction quality at visually lossless levels. Using an experimental threshold estimation method, the staircase algorithm, we determined the highest compression ratio that was not perceptible to human observers for objects compressed with Dirac and MPEG-4 compression methods. This level of compression can be regarded as the point below which compression is perceptually lossless although physically the compression is lossy. It was found that up to 4 to 7.5 fold compression can be obtained with the above methods without any perceptible change in the appearance of video sequences.

  4. Visual adaptation and face perception

    PubMed Central

    Webster, Michael A.; MacLeod, Donald I. A.

    2011-01-01

    The appearance of faces can be strongly affected by the characteristics of faces viewed previously. These perceptual after-effects reflect processes of sensory adaptation that are found throughout the visual system, but which have been considered only relatively recently in the context of higher level perceptual judgements. In this review, we explore the consequences of adaptation for human face perception, and the implications of adaptation for understanding the neural-coding schemes underlying the visual representation of faces. The properties of face after-effects suggest that they, in part, reflect response changes at high and possibly face-specific levels of visual processing. Yet, the form of the after-effects and the norm-based codes that they point to show many parallels with the adaptations and functional organization that are thought to underlie the encoding of perceptual attributes like colour. The nature and basis for human colour vision have been studied extensively, and we draw on ideas and principles that have been developed to account for norms and normalization in colour vision to consider potential similarities and differences in the representation and adaptation of faces. PMID:21536555

  5. Visual adaptation and face perception.

    PubMed

    Webster, Michael A; MacLeod, Donald I A

    2011-06-12

    The appearance of faces can be strongly affected by the characteristics of faces viewed previously. These perceptual after-effects reflect processes of sensory adaptation that are found throughout the visual system, but which have been considered only relatively recently in the context of higher level perceptual judgements. In this review, we explore the consequences of adaptation for human face perception, and the implications of adaptation for understanding the neural-coding schemes underlying the visual representation of faces. The properties of face after-effects suggest that they, in part, reflect response changes at high and possibly face-specific levels of visual processing. Yet, the form of the after-effects and the norm-based codes that they point to show many parallels with the adaptations and functional organization that are thought to underlie the encoding of perceptual attributes like colour. The nature and basis for human colour vision have been studied extensively, and we draw on ideas and principles that have been developed to account for norms and normalization in colour vision to consider potential similarities and differences in the representation and adaptation of faces.

  6. Are V1 Simple Cells Optimized for Visual Occlusions? A Comparative Study

    PubMed Central

    Bornschein, Jörg; Henniges, Marc; Lücke, Jörg

    2013-01-01

    Simple cells in primary visual cortex were famously found to respond to low-level image components such as edges. Sparse coding and independent component analysis (ICA) emerged as the standard computational models for simple cell coding because they linked their receptive fields to the statistics of visual stimuli. However, a salient feature of image statistics, occlusions of image components, is not considered by these models. Here we ask if occlusions have an effect on the predicted shapes of simple cell receptive fields. We use a comparative approach to answer this question and investigate two models for simple cells: a standard linear model and an occlusive model. For both models we simultaneously estimate optimal receptive fields, sparsity and stimulus noise. The two models are identical except for their component superposition assumption. We find the image encoding and receptive fields predicted by the models to differ significantly. While both models predict many Gabor-like fields, the occlusive model predicts a much sparser encoding and high percentages of ‘globular’ receptive fields. This relatively new center-surround type of simple cell response is observed since reverse correlation is used in experimental studies. While high percentages of ‘globular’ fields can be obtained using specific choices of sparsity and overcompleteness in linear sparse coding, no or only low proportions are reported in the vast majority of studies on linear models (including all ICA models). Likewise, for the here investigated linear model and optimal sparsity, only low proportions of ‘globular’ fields are observed. In comparison, the occlusive model robustly infers high proportions and can match the experimentally observed high proportions of ‘globular’ fields well. Our computational study, therefore, suggests that ‘globular’ fields may be evidence for an optimal encoding of visual occlusions in primary visual cortex. PMID:23754938

  7. Decon2LS: An open-source software package for automated processing and visualization of high resolution mass spectrometry data

    PubMed Central

    Jaitly, Navdeep; Mayampurath, Anoop; Littlefield, Kyle; Adkins, Joshua N; Anderson, Gordon A; Smith, Richard D

    2009-01-01

    Background Data generated from liquid chromatography coupled to high-resolution mass spectrometry (LC-MS)-based studies of a biological sample can contain large amounts of biologically significant information in the form of proteins, peptides, and metabolites. Interpreting this data involves inferring the masses and abundances of biomolecules injected into the instrument. Because of the inherent complexity of mass spectral patterns produced by these biomolecules, the analysis is significantly enhanced by using visualization capabilities to inspect and confirm results. In this paper we describe Decon2LS, an open-source software package for automated processing and visualization of high-resolution MS data. Drawing extensively on algorithms developed over the last ten years for ICR2LS, Decon2LS packages the algorithms as a rich set of modular, reusable processing classes for performing diverse functions such as reading raw data, routine peak finding, theoretical isotope distribution modelling, and deisotoping. Because the source code is openly available, these functionalities can now be used to build derivative applications in relatively fast manner. In addition, Decon2LS provides an extensive set of visualization tools, such as high performance chart controls. Results With a variety of options that include peak processing, deisotoping, isotope composition, etc, Decon2LS supports processing of multiple raw data formats. Deisotoping can be performed on an individual scan, an individual dataset, or on multiple datasets using batch processing. Other processing options include creating a two dimensional view of mass and liquid chromatography (LC) elution time features, generating spectrum files for tandem MS data, creating total intensity chromatograms, and visualizing theoretical peptide profiles. Application of Decon2LS to deisotope different datasets obtained across different instruments yielded a high number of features that can be used to identify and quantify peptides in the biological sample. Conclusion Decon2LS is an efficient software package for discovering and visualizing features in proteomics studies that require automated interpretation of mass spectra. Besides being easy to use, fast, and reliable, Decon2LS is also open-source, which allows developers in the proteomics and bioinformatics communities to reuse and refine the algorithms to meet individual needs. Decon2LS source code, installer, and tutorials may be downloaded free of charge at . PMID:19292916

  8. Decon2LS: An open-source software package for automated processing and visualization of high resolution mass spectrometry data.

    PubMed

    Jaitly, Navdeep; Mayampurath, Anoop; Littlefield, Kyle; Adkins, Joshua N; Anderson, Gordon A; Smith, Richard D

    2009-03-17

    Data generated from liquid chromatography coupled to high-resolution mass spectrometry (LC-MS)-based studies of a biological sample can contain large amounts of biologically significant information in the form of proteins, peptides, and metabolites. Interpreting this data involves inferring the masses and abundances of biomolecules injected into the instrument. Because of the inherent complexity of mass spectral patterns produced by these biomolecules, the analysis is significantly enhanced by using visualization capabilities to inspect and confirm results. In this paper we describe Decon2LS, an open-source software package for automated processing and visualization of high-resolution MS data. Drawing extensively on algorithms developed over the last ten years for ICR2LS, Decon2LS packages the algorithms as a rich set of modular, reusable processing classes for performing diverse functions such as reading raw data, routine peak finding, theoretical isotope distribution modelling, and deisotoping. Because the source code is openly available, these functionalities can now be used to build derivative applications in relatively fast manner. In addition, Decon2LS provides an extensive set of visualization tools, such as high performance chart controls. With a variety of options that include peak processing, deisotoping, isotope composition, etc, Decon2LS supports processing of multiple raw data formats. Deisotoping can be performed on an individual scan, an individual dataset, or on multiple datasets using batch processing. Other processing options include creating a two dimensional view of mass and liquid chromatography (LC) elution time features, generating spectrum files for tandem MS data, creating total intensity chromatograms, and visualizing theoretical peptide profiles. Application of Decon2LS to deisotope different datasets obtained across different instruments yielded a high number of features that can be used to identify and quantify peptides in the biological sample. Decon2LS is an efficient software package for discovering and visualizing features in proteomics studies that require automated interpretation of mass spectra. Besides being easy to use, fast, and reliable, Decon2LS is also open-source, which allows developers in the proteomics and bioinformatics communities to reuse and refine the algorithms to meet individual needs.Decon2LS source code, installer, and tutorials may be downloaded free of charge at http://http:/ncrr.pnl.gov/software/.

  9. Local coding based matching kernel method for image classification.

    PubMed

    Song, Yan; McLoughlin, Ian Vince; Dai, Li-Rong

    2014-01-01

    This paper mainly focuses on how to effectively and efficiently measure visual similarity for local feature based representation. Among existing methods, metrics based on Bag of Visual Word (BoV) techniques are efficient and conceptually simple, at the expense of effectiveness. By contrast, kernel based metrics are more effective, but at the cost of greater computational complexity and increased storage requirements. We show that a unified visual matching framework can be developed to encompass both BoV and kernel based metrics, in which local kernel plays an important role between feature pairs or between features and their reconstruction. Generally, local kernels are defined using Euclidean distance or its derivatives, based either explicitly or implicitly on an assumption of Gaussian noise. However, local features such as SIFT and HoG often follow a heavy-tailed distribution which tends to undermine the motivation behind Euclidean metrics. Motivated by recent advances in feature coding techniques, a novel efficient local coding based matching kernel (LCMK) method is proposed. This exploits the manifold structures in Hilbert space derived from local kernels. The proposed method combines advantages of both BoV and kernel based metrics, and achieves a linear computational complexity. This enables efficient and scalable visual matching to be performed on large scale image sets. To evaluate the effectiveness of the proposed LCMK method, we conduct extensive experiments with widely used benchmark datasets, including 15-Scenes, Caltech101/256, PASCAL VOC 2007 and 2011 datasets. Experimental results confirm the effectiveness of the relatively efficient LCMK method.

  10. Emergency vehicle traffic signal preemption system

    NASA Technical Reports Server (NTRS)

    Bachelder, Aaron D. (Inventor); Foster, Conrad F. (Inventor)

    2011-01-01

    An emergency vehicle traffic light preemption system for preemption of traffic lights at an intersection to allow safe passage of emergency vehicles. The system includes a real-time status monitor of an intersection which is relayed to a control module for transmission to emergency vehicles as well as to a central dispatch office. The system also provides for audio warnings at an intersection to protect pedestrians who may not be in a position to see visual warnings or for various reasons cannot hear the approach of emergency vehicles. A transponder mounted on an emergency vehicle provides autonomous control so the vehicle operator can attend to getting to an emergency and not be concerned with the operation of the system. Activation of a priority-code (i.e. Code-3) situation provides communications with each intersection being approached by an emergency vehicle and indicates whether the intersection is preempted or if there is any conflict with other approaching emergency vehicles. On-board diagnostics handle various information including heading, speed, and acceleration sent to a control module which is transmitted to an intersection and which also simultaneously receives information regarding the status of an intersection. Real-time communications and operations software allow central and remote monitoring, logging, and command of intersections and vehicles.

  11. Are neural correlates of visual consciousness retinotopic?

    PubMed

    ffytche, Dominic H; Pins, Delphine

    2003-11-14

    Some visual neurons code what we see, their defining characteristic being a response profile which mirrors conscious percepts rather than veridical sensory attributes. One issue yet to be resolved is whether, within a given cortical area, conscious visual perception relates to diffuse activity across the entire population of such cells or focal activity within the sub-population mapping the location of the perceived stimulus. Here we investigate the issue in the human brain with fMRI, using a threshold stimulation technique to dissociate perceptual from non-perceptual activity. Our results point to a retinotopic organisation of perceptual activity in early visual areas, with independent perceptual activations for different regions of visual space.

  12. A Brain-Computer Interface (BCI) system to use arbitrary Windows applications by directly controlling mouse and keyboard.

    PubMed

    Spuler, Martin

    2015-08-01

    A Brain-Computer Interface (BCI) allows to control a computer by brain activity only, without the need for muscle control. In this paper, we present an EEG-based BCI system based on code-modulated visual evoked potentials (c-VEPs) that enables the user to work with arbitrary Windows applications. Other BCI systems, like the P300 speller or BCI-based browsers, allow control of one dedicated application designed for use with a BCI. In contrast, the system presented in this paper does not consist of one dedicated application, but enables the user to control mouse cursor and keyboard input on the level of the operating system, thereby making it possible to use arbitrary applications. As the c-VEP BCI method was shown to enable very fast communication speeds (writing more than 20 error-free characters per minute), the presented system is the next step in replacing the traditional mouse and keyboard and enabling complete brain-based control of a computer.

  13. Interactive QR code beautification with full background image embedding

    NASA Astrophysics Data System (ADS)

    Lin, Lijian; Wu, Song; Liu, Sijiang; Jiang, Bo

    2017-06-01

    QR (Quick Response) code is a kind of two dimensional barcode that was first developed in automotive industry. Nowadays, QR code has been widely used in commercial applications like product promotion, mobile payment, product information management, etc. Traditional QR codes in accordance with the international standard are reliable and fast to decode, but are lack of aesthetic appearance to demonstrate visual information to customers. In this work, we present a novel interactive method to generate aesthetic QR code. By given information to be encoded and an image to be decorated as full QR code background, our method accepts interactive user's strokes as hints to remove undesired parts of QR code modules based on the support of QR code error correction mechanism and background color thresholds. Compared to previous approaches, our method follows the intention of the QR code designer, thus can achieve more user pleasant result, while keeping high machine readability.

  14. Math Description Engine Software Development Kit

    NASA Technical Reports Server (NTRS)

    Shelton, Robert O.; Smith, Stephanie L.; Dexter, Dan E.; Hodgson, Terry R.

    2010-01-01

    The Math Description Engine Software Development Kit (MDE SDK) can be used by software developers to make computer-rendered graphs more accessible to blind and visually-impaired users. The MDE SDK generates alternative graph descriptions in two forms: textual descriptions and non-verbal sound renderings, or sonification. It also enables display of an animated trace of a graph sonification on a visual graph component, with color and line-thickness options for users having low vision or color-related impairments. A set of accessible graphical user interface widgets is provided for operation by end users and for control of accessible graph displays. Version 1.0 of the MDE SDK generates text descriptions for 2D graphs commonly seen in math and science curriculum (and practice). The mathematically rich text descriptions can also serve as a virtual math and science assistant for blind and sighted users, making graphs more accessible for everyone. The MDE SDK has a simple application programming interface (API) that makes it easy for programmers and Web-site developers to make graphs accessible with just a few lines of code. The source code is written in Java for cross-platform compatibility and to take advantage of Java s built-in support for building accessible software application interfaces. Compiled-library and NASA Open Source versions are available with API documentation and Programmer s Guide at http:/ / prim e.jsc.n asa. gov.

  15. Oscillatory networks of high-level mental alignment: A perspective-taking MEG study.

    PubMed

    Seymour, R A; Wang, H; Rippon, G; Kessler, K

    2018-08-15

    Mentally imagining another's perspective is a high-level social process, reliant on manipulating internal representations of the self in an embodied manner. Recently Wang et al. (2016) showed that theta-band (3-7 Hz) brain oscillations within the right temporo-parietal junction (rTPJ) and brain regions coding for motor/body schema contribute to the process of perspective-taking. Using a similar paradigm, we set out to unravel the extended functional brain network in detail. Increasing the angle between self and other perspective was accompanied by longer reaction times and increases in theta power within rTPJ, right lateral prefrontal cortex (PFC) and right anterior cingulate cortex (ACC). Using Granger-causality, we showed that lateral PFC and ACC exert top-down influence over rTPJ, indicative of executive control processes required for managing conflicts between self and other perspectives. Finally, we quantified patterns of whole-brain phase coupling in relation to the rTPJ. Results suggest that rTPJ increases its theta-band phase synchrony with brain regions involved in mentalizing and regions coding for motor/body schema; whilst decreasing synchrony to visual regions. Implications for neurocognitive models are discussed, and it is proposed that rTPJ acts as a 'hub' to route bottom-up visual information to internal representations of the self during perspective-taking, co-ordinated by theta-band oscillations. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. How and why do infants imitate? An ideomotor approach to social and imitative learning in infancy (and beyond).

    PubMed

    Paulus, Markus

    2014-10-01

    It has been proposed that already in infancy, imitative learning plays a pivotal role in the acquisition of knowledge and abilities. Yet the cognitive mechanisms underlying the acquisition of novel action knowledge through social learning have remained unclear. The present contribution presents an ideomotor approach to imitative learning (IMAIL) in infancy (and beyond) that draws on the ideomotor theory of action control and on recent findings of perception-action matching. According to IMAIL, the central mechanism of imitative and social learning is the acquisition of cascading bidirectional action-effect associations through observation of own and others' actions. First, the observation of the visual effect of own actions leads to the acquisition of first-order action-effect associations, linking motor codes to the action's typical visual effects. Second, observing another person's action leads to motor activation (i.e., motor resonance) due to the first-order associations. This activated motor code then becomes linked to the other salient effects produced by the observed action, leading to the acquisition of (second-order) action-effect associations. These novel action-effect associations enable later imitation of the observed actions. The article reviews recent behavioral and neurophysiological studies with infants and adults that provide empirical support for the model. Furthermore, it is discussed how the model relates to other approaches on social-cognitive development and how developmental changes in imitative abilities can be conceptualized.

  17. Color Display Design Guide

    DTIC Science & Technology

    1978-10-01

    Garner, W.R. and C.G. Creelman , "Effect of Redundancy and Duration on Absolute Judgments of Visual Stimuli, " Journal of I.xperimental Psychology , 67...34Laws of Visual Choice Reaction Time, Psychological Review, 81, 1, 1974, pp. 75-98. 18Hitt, W.D., "An Evaluation of Five Different Abstract Coding...for Visual D)isplays, "’ Offi~cc of Naval Recsearchi Contract No: N00014-68-C’- 02711, Office of Naval Research, Engineering Psychology B1ranch

  18. Visual thinking in action: visualizations as used on whiteboards.

    PubMed

    Walny, Jagoda; Carpendale, Sheelagh; Riche, Nathalie Henry; Venolia, Gina; Fawcett, Philip

    2011-12-01

    While it is still most common for information visualization researchers to develop new visualizations from a data- or taskdriven perspective, there is growing interest in understanding the types of visualizations people create by themselves for personal use. As part of this recent direction, we have studied a large collection of whiteboards in a research institution, where people make active use of combinations of words, diagrams and various types of visuals to help them further their thought processes. Our goal is to arrive at a better understanding of the nature of visuals that are created spontaneously during brainstorming, thinking, communicating, and general problem solving on whiteboards. We use the qualitative approaches of open coding, interviewing, and affinity diagramming to explore the use of recognizable and novel visuals, and the interplay between visualization and diagrammatic elements with words, numbers and labels. We discuss the potential implications of our findings on information visualization design. © 2011 IEEE

  19. The neural code for face orientation in the human fusiform face area.

    PubMed

    Ramírez, Fernando M; Cichy, Radoslaw M; Allefeld, Carsten; Haynes, John-Dylan

    2014-09-03

    Humans recognize faces and objects with high speed and accuracy regardless of their orientation. Recent studies have proposed that orientation invariance in face recognition involves an intermediate representation where neural responses are similar for mirror-symmetric views. Here, we used fMRI, multivariate pattern analysis, and computational modeling to investigate the neural encoding of faces and vehicles at different rotational angles. Corroborating previous studies, we demonstrate a representation of face orientation in the fusiform face-selective area (FFA). We go beyond these studies by showing that this representation is category-selective and tolerant to retinal translation. Critically, by controlling for low-level confounds, we found the representation of orientation in FFA to be compatible with a linear angle code. Aspects of mirror-symmetric coding cannot be ruled out when FFA mean activity levels are considered as a dimension of coding. Finally, we used a parametric family of computational models, involving a biased sampling of view-tuned neuronal clusters, to compare different face angle encoding models. The best fitting model exhibited a predominance of neuronal clusters tuned to frontal views of faces. In sum, our findings suggest a category-selective and monotonic code of face orientation in the human FFA, in line with primate electrophysiology studies that observed mirror-symmetric tuning of neural responses at higher stages of the visual system, beyond the putative homolog of human FFA. Copyright © 2014 the authors 0270-6474/14/3412155-13$15.00/0.

  20. Visualized kinematics code for two-body nuclear reactions

    NASA Astrophysics Data System (ADS)

    Lee, E. J.; Chae, K. Y.

    2016-05-01

    The one or few nucleon transfer reaction has been a great tool for investigating the single-particle properties of a nucleus. Both stable and exotic beams are utilized to study transfer reactions in normal and inverse kinematics, respectively. Because many energy levels of the heavy recoil from the two-body nuclear reaction can be populated by using a single beam energy, identifying each populated state, which is not often trivial owing to high level-density of the nucleus, is essential. For identification of the energy levels, a visualized kinematics code called VISKIN has been developed by utilizing the Java programming language. The development procedure, usage, and application of the VISKIN is reported.

  1. Temporal parameters and time course of perceptual latency priming.

    PubMed

    Scharlau, Ingrid; Neumann, Odmar

    2003-06-01

    Visual stimuli (primes) reduce the perceptual latency of a target appearing at the same location (perceptual latency priming, PLP). Three experiments assessed the time course of PLP by masked and, in Experiment 3, unmasked primes. Experiments 1 and 2 investigated the temporal parameters that determine the size of priming. Stimulus onset asynchrony was found to exert the main influence accompanied by a small effect of prime duration. Experiment 3 used a large range of priming onset asynchronies. We suggest to explain PLP by the Asynchronous Updating Model which relates it to the asynchrony of 2 central coding processes, preattentive coding of basic visual features and attentional orienting as a prerequisite for perceptual judgments and conscious perception.

  2. A Graphical-User Interface for the U. S. Geological Survey's SUTRA Code using Argus ONE (for simulation of variable-density saturated-unsaturated ground-water flow with solute or energy transport)

    USGS Publications Warehouse

    Voss, Clifford I.; Boldt, David; Shapiro, Allen M.

    1997-01-01

    This report describes a Graphical-User Interface (GUI) for SUTRA, the U.S. Geological Survey (USGS) model for saturated-unsaturated variable-fluid-density ground-water flow with solute or energy transport,which combines a USGS-developed code that interfaces SUTRA with Argus ONE, a commercial software product developed by Argus Interware. This product, known as Argus Open Numerical Environments (Argus ONETM), is a programmable system with geographic-information-system-like (GIS-like) functionality that includes automated gridding and meshing capabilities for linking geospatial information with finite-difference and finite-element numerical model discretizations. The GUI for SUTRA is based on a public-domain Plug-In Extension (PIE) to Argus ONE that automates the use of ArgusONE to: automatically create the appropriate geospatial information coverages (information layers) for SUTRA, provide menus and dialogs for inputting geospatial information and simulation control parameters for SUTRA, and allow visualization of SUTRA simulation results. Following simulation control data and geospatial data input bythe user through the GUI, ArgusONE creates text files in a format required for normal input to SUTRA,and SUTRA can be executed within the Argus ONE environment. Then, hydraulic head, pressure, solute concentration, temperature, saturation and velocity results from the SUTRA simulation may be visualized. Although the GUI for SUTRA discussed in this report provides all of the graphical pre- and post-processor functions required for running SUTRA, it is also possible for advanced users to apply programmable features within Argus ONE to modify the GUI to meet the unique demands of particular ground-water modeling projects.

  3. Strengthening Software Authentication with the ROSE Software Suite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, G

    2006-06-15

    Many recent nonproliferation and arms control software projects include a software authentication regime. These include U.S. Government-sponsored projects both in the United States and in the Russian Federation (RF). This trend toward requiring software authentication is only accelerating. Demonstrating assurance that software performs as expected without hidden ''backdoors'' is crucial to a project's success. In this context, ''authentication'' is defined as determining that a software package performs only its intended purpose and performs said purpose correctly and reliably over the planned duration of an agreement. In addition to visual inspections by knowledgeable computer scientists, automated tools are needed to highlightmore » suspicious code constructs, both to aid visual inspection and to guide program development. While many commercial tools are available for portions of the authentication task, they are proprietary and not extensible. An open-source, extensible tool can be customized to the unique needs of each project (projects can have both common and custom rules to detect flaws and security holes). Any such extensible tool has to be based on a complete language compiler. ROSE is precisely such a compiler infrastructure developed within the Department of Energy (DOE) and targeted at the optimization of scientific applications and user-defined libraries within large-scale applications (typically applications of a million lines of code). ROSE is a robust, source-to-source analysis and optimization infrastructure currently addressing large, million-line DOE applications in C and C++ (handling the full C, C99, C++ languages and with current collaborations to support Fortran90). We propose to extend ROSE to address a number of security-specific requirements, and apply it to software authentication for nonproliferation and arms control projects.« less

  4. The Effects of Single and Dual Coded Multimedia Instructional Methods on Chinese Character Learning

    ERIC Educational Resources Information Center

    Wang, Ling

    2013-01-01

    Learning Chinese characters is a difficult task for adult English native speakers due to the significant differences between the Chinese and English writing system. The visuospatial properties of Chinese characters have inspired the development of instructional methods using both verbal and visual information based on the Dual Coding Theory. This…

  5. Secured Transactions: An Integrated Classroom Approach Using Financial Statements and Acronyms

    ERIC Educational Resources Information Center

    Seganish, W. Michael

    2005-01-01

    Students struggle with the subject of secured transactions under the Uniform Commercial Code. In this article, the author presents a method that uses balance-sheet information to help students visualize the difference between secured and unsecured creditors. The balance sheet is also used in the Uniform Commercial Code process, in which one must…

  6. A Manual for Coding Descriptions, Interpretations, and Evaluations of Visual Art Forms.

    ERIC Educational Resources Information Center

    Acuff, Bette C.; Sieber-Suppes, Joan

    This manual presents a system for categorizing stated esthetic responses to paintings. It is primarily a training manual for coders, but it may also be used for teaching reflective thinking skills and for evaluating programs of art education. The coding system contains 33 subdivisions of esthetic responses under three major categories: Cue…

  7. Ambiguity and Relatedness Effects in Semantic Tasks: Are They Due to Semantic Coding?

    ERIC Educational Resources Information Center

    Hino, Yasushi; Pexman, Penny M.; Lupker, Stephen J.

    2006-01-01

    According to parallel distributed processing (PDP) models of visual word recognition, the speed of semantic coding is modulated by the nature of the orthographic-to-semantic mappings. Consistent with this idea, an ambiguity disadvantage and a relatedness-of-meaning (ROM) advantage have been reported in some word recognition tasks in which semantic…

  8. Code Pulse: Software Assurance (SWA) Visual Analytics for Dynamic Analysis of Code

    DTIC Science & Technology

    2014-09-01

    31 4.5.1 Market Analysis...competitive market analysis to assess the tool potential. The final transition targets were selected and expressed along with our research on the topic...public release milestones. Details of our testing methodology is in our Software Test Plan deliv- erable, CP- STP -0001. A summary of this approach is

  9. Automating Visualization Service Generation with the WATT Compiler

    NASA Astrophysics Data System (ADS)

    Bollig, E. F.; Lyness, M. D.; Erlebacher, G.; Yuen, D. A.

    2007-12-01

    As tasks and workflows become increasingly complex, software developers are devoting increasing attention to automation tools. Among many examples, the Automator tool from Apple collects components of a workflow into a single script, with very little effort on the part of the user. Tasks are most often described as a series of instructions. The granularity of the tasks dictates the tools to use. Compilers translate fine-grained instructions to assembler code, while scripting languages (ruby, perl) are used to describe a series of tasks at a higher level. Compilers can also be viewed as transformational tools: a cross-compiler can translate executable code written on one computer to assembler code understood on another, while transformational tools can translate from one high-level language to another. We are interested in creating visualization web services automatically, starting from stand-alone VTK (Visualization Toolkit) code written in Tcl. To this end, using the OCaml programming language, we have developed a compiler that translates Tcl into C++, including all the stubs, classes and methods to interface with gSOAP, a C++ implementation of the Soap 1.1/1.2 protocols. This compiler, referred to as the Web Automation and Translation Toolkit (WATT), is the first step towards automated creation of specialized visualization web services without input from the user. The WATT compiler seeks to automate all aspects of web service generation, including the transport layer, the division of labor and the details related to interface generation. The WATT compiler is part of ongoing efforts within the NSF funded VLab consortium [1] to facilitate and automate time-consuming tasks for the science related to understanding planetary materials. Through examples of services produced by WATT for the VLab portal, we will illustrate features, limitations and the improvements necessary to achieve the ultimate goal of complete and transparent automation in the generation of web services. In particular, we will detail the generation of a charge density visualization service applicable to output from the quantum calculations of the VLab computation workflows, plus another service for mantle convection visualization. We also discuss WATT-LIVE [2], a web-based interface that allows users to interact with WATT. With WATT-LIVE users submit Tcl code, retrieve its C++ translation with various files and scripts necessary to locally install the tailor-made web service, or launch the service for a limited session on our test server. This work is supported by NSF through the ITR grant NSF-0426867. [1] Virtual Laboratory for Earth and Planetary Materials, http://vlab.msi.umn.edu, September 2007. [2] WATT-LIVE website, http://vlab2.scs.fsu.edu/watt-live, September 2007.

  10. Stochastic many-body problems in ecology, evolution, neuroscience, and systems biology

    NASA Astrophysics Data System (ADS)

    Butler, Thomas C.

    Using the tools of many-body theory, I analyze problems in four different areas of biology dominated by strong fluctuations: The evolutionary history of the genetic code, spatiotemporal pattern formation in ecology, spatiotemporal pattern formation in neuroscience and the robustness of a model circadian rhythm circuit in systems biology. In the first two research chapters, I demonstrate that the genetic code is extremely optimal (in the sense that it manages the effects of point mutations or mistranslations efficiently), more than an order of magnitude beyond what was previously thought. I further show that the structure of the genetic code implies that early proteins were probably only loosely defined. Both the nature of early proteins and the extreme optimality of the genetic code are interpreted in light of recent theory [1] as evidence that the evolution of the genetic code was driven by evolutionary dynamics that were dominated by horizontal gene transfer. I then explore the optimality of a proposed precursor to the genetic code. The results show that the precursor code has only limited optimality, which is interpreted as evidence that the precursor emerged prior to translation, or else never existed. In the next part of the dissertation, I introduce a many-body formalism for reaction-diffusion systems described at the mesoscopic scale with master equations. I first apply this formalism to spatially-extended predator-prey ecosystems, resulting in the prediction that many-body correlations and fluctuations drive population cycles in time, called quasicycles. Most of these results were previously known, but were derived using the system size expansion [2, 3]. I next apply the analytical techniques developed in the study of quasi-cycles to a simple model of Turing patterns in a predator-prey ecosystem. This analysis shows that fluctuations drive the formation of a new kind of spatiotemporal pattern formation that I name "quasi-patterns." These quasi-patterns exist over a much larger range of physically accessible parameters than the patterns predicted in mean field theory and therefore account for the apparent observations in ecology of patterns in regimes where Turing patterns do not occur. I further show that quasi-patterns have statistical properties that allow them to be distinguished empirically from mean field Turing patterns. I next analyze a model of visual cortex in the brain that has striking similarities to the activator-inhibitor model of ecosystem quasi-pattern formation. Through analysis of the resulting phase diagram, I show that the architecture of the neural network in the visual cortex is configured to make the visual cortex robust to unwanted internally generated spatial structure that interferes with normal visual function. I also predict that some geometric visual hallucinations are quasi-patterns and that the visual cortex supports a new phase of spatially scale invariant behavior present far from criticality. In the final chapter, I explore the effects of fluctuations on cycles in systems biology, specifically the pervasive phenomenon of circadian rhythms. By exploring the behavior of a generic stochastic model of circadian rhythms, I show that the circadian rhythm circuit exploits leaky mRNA production to safeguard the cycle from failure. I also show that this safeguard mechanism is highly robust to changes in the rate of leaky mRNA production. Finally, I explore the failure of the deterministic model in two different contexts, one where the deterministic model predicts cycles where they do not exist, and another context in which cycles are not predicted by the deterministic model.

  11. Scene segmentation by spike synchronization in reciprocally connected visual areas. I. Local effects of cortical feedback.

    PubMed

    Knoblauch, Andreas; Palm, Günther

    2002-09-01

    To investigate scene segmentation in the visual system we present a model of two reciprocally connected visual areas using spiking neurons. Area P corresponds to the orientation-selective subsystem of the primary visual cortex, while the central visual area C is modeled as associative memory representing stimulus objects according to Hebbian learning. Without feedback from area C, a single stimulus results in relatively slow and irregular activity, synchronized only for neighboring patches (slow state), while in the complete model activity is faster with an enlarged synchronization range (fast state). When presenting a superposition of several stimulus objects, scene segmentation happens on a time scale of hundreds of milliseconds by alternating epochs of the slow and fast states, where neurons representing the same object are simultaneously in the fast state. Correlation analysis reveals synchronization on different time scales as found in experiments (designated as tower, castle, and hill peaks). On the fast time scale (tower peaks, gamma frequency range), recordings from two sites coding either different or the same object lead to correlograms that are either flat or exhibit oscillatory modulations with a central peak. This is in agreement with experimental findings, whereas standard phase-coding models would predict shifted peaks in the case of different objects.

  12. Local spatio-temporal analysis in vision systems

    NASA Astrophysics Data System (ADS)

    Geisler, Wilson S.; Bovik, Alan; Cormack, Lawrence; Ghosh, Joydeep; Gildeen, David

    1994-07-01

    The aims of this project are the following: (1) develop a physiologically and psychophysically based model of low-level human visual processing (a key component of which are local frequency coding mechanisms); (2) develop image models and image-processing methods based upon local frequency coding; (3) develop algorithms for performing certain complex visual tasks based upon local frequency representations, (4) develop models of human performance in certain complex tasks based upon our understanding of low-level processing; and (5) develop a computational testbed for implementing, evaluating and visualizing the proposed models and algorithms, using a massively parallel computer. Progress has been substantial on all aims. The highlights include the following: (1) completion of a number of psychophysical and physiological experiments revealing new, systematic and exciting properties of the primate (human and monkey) visual system; (2) further development of image models that can accurately represent the local frequency structure in complex images; (3) near completion in the construction of the Texas Active Vision Testbed; (4) development and testing of several new computer vision algorithms dealing with shape-from-texture, shape-from-stereo, and depth-from-focus; (5) implementation and evaluation of several new models of human visual performance; and (6) evaluation, purchase and installation of a MasPar parallel computer.

  13. Phonological working memory in German children with poor reading and spelling abilities.

    PubMed

    Steinbrink, Claudia; Klatte, Maria

    2008-11-01

    Deficits in verbal short-term memory have been identified as one factor underlying reading and spelling disorders. However, the nature of this deficit is still unclear. It has been proposed that poor readers make less use of phonological coding, especially if the task can be solved through visual strategies. In the framework of Baddeley's phonological loop model, this study examined serial recall performance in German second-grade children with poor vs good reading and spelling abilities. Children were presented with four-item lists of common nouns for immediate serial recall. Word length and phonological similarity as well as presentation modality (visual vs auditory) and type of recall (visual vs verbal) were varied as within-subject factors in a mixed design. Word length and phonological similarity effects did not differ between groups, thus indicating equal use of phonological coding and rehearsal in poor and good readers. However, in all conditions, except the one that combined visual presentation and visual recall, overall performance was significantly lower in poor readers. The results suggest that the poor readers' difficulties do not arise from an avoidance of the phonological loop, but from its inefficient use. An alternative account referring to unstable phonological representations in long-term memory is discussed. Copyright (c) 2007 John Wiley & Sons, Ltd.

  14. Real-time distributed video coding for 1K-pixel visual sensor networks

    NASA Astrophysics Data System (ADS)

    Hanca, Jan; Deligiannis, Nikos; Munteanu, Adrian

    2016-07-01

    Many applications in visual sensor networks (VSNs) demand the low-cost wireless transmission of video data. In this context, distributed video coding (DVC) has proven its potential to achieve state-of-the-art compression performance while maintaining low computational complexity of the encoder. Despite their proven capabilities, current DVC solutions overlook hardware constraints, and this renders them unsuitable for practical implementations. This paper introduces a DVC architecture that offers highly efficient wireless communication in real-world VSNs. The design takes into account the severe computational and memory constraints imposed by practical implementations on low-resolution visual sensors. We study performance-complexity trade-offs for feedback-channel removal, propose learning-based techniques for rate allocation, and investigate various simplifications of side information generation yielding real-time decoding. The proposed system is evaluated against H.264/AVC intra, Motion-JPEG, and our previously designed DVC prototype for low-resolution visual sensors. Extensive experimental results on various data show significant improvements in multiple configurations. The proposed encoder achieves real-time performance on a 1k-pixel visual sensor mote. Real-time decoding is performed on a Raspberry Pi single-board computer or a low-end notebook PC. To the best of our knowledge, the proposed codec is the first practical DVC deployment on low-resolution VSNs.

  15. Development of Low-cost plotter for educational purposes using Arduino

    NASA Astrophysics Data System (ADS)

    Karthik, Siriparapu; Thirumal Reddy, Palwai; Marimuthu, K. Prakash

    2017-08-01

    With the development of CAD/CAM/CAE concept to product realization time has reduced drastically. Most of the activities such as design, drafting, and visualizations are carried out using high-end computers and commercial software. This has reduced the overall lead-time to market. It is important in the current scenario to equip the students with knowledge of advanced technological developments in order to use them effectively. However, the cost associated with the systems are very high which is not affordable to students. The present work is an attempt to build a low-cost plotter integrating some of the software that are available and components got from scrapped electronic devices. Here the authors are introducing G-code plotter with 3-axis which can implement the given g-code in 2D plane (X-Y). Lifting pen and adjusting to the base component is in the Z-axis. All conventional plotting devices existing until date are costly and need basic knowledge before operating. Our aim is to make students understand the working of plotter and the usage of G-code, achieving this at a much affordable cost. Arduino Uno controls the stepper motors, which can accurately plot the given dimensions.

  16. Framework for Evaluating Loop Invariant Detection Games in Relation to Automated Dynamic Invariant Detectors

    DTIC Science & Technology

    2015-09-01

    Detectability ...............................................................................................37 Figure 20. Excel VBA Codes for Checker...National Vulnerability Database OS Operating System SQL Structured Query Language VC Verification Condition VBA Visual Basic for Applications...checks each of these assertions for detectability by Daikon. The checker is an Excel Visual Basic for Applications ( VBA ) script that checks the

  17. Visual Representation of Eye Gaze Is Coded by a Nonopponent Multichannel System

    ERIC Educational Resources Information Center

    Calder, Andrew J.; Jenkins, Rob; Cassel, Anneli; Clifford, Colin W. G.

    2008-01-01

    To date, there is no functional account of the visual perception of gaze in humans. Previous work has demonstrated that left gaze and right gaze are represented by separate mechanisms. However, these data are consistent with either a multichannel system comprising separate channels for distinct gaze directions (e.g., left, direct, and right) or an…

  18. The Effects of Visual Cues and Learners' Field Dependence in Multiple External Representations Environment for Novice Program Comprehension

    ERIC Educational Resources Information Center

    Wei, Liew Tze; Sazilah, Salam

    2012-01-01

    This study investigated the effects of visual cues in multiple external representations (MER) environment on the learning performance of novices' program comprehension. Program codes and flowchart diagrams were used as dual representations in multimedia environment to deliver lessons on C-Programming. 17 field independent participants and 16 field…

  19. General Tool for Evaluating High-Contrast Coronagraphic Telescope Performance Error Budgets

    NASA Technical Reports Server (NTRS)

    Marchen, Luis F.

    2011-01-01

    The Coronagraph Performance Error Budget (CPEB) tool automates many of the key steps required to evaluate the scattered starlight contrast in the dark hole of a space-based coronagraph. The tool uses a Code V prescription of the optical train, and uses MATLAB programs to call ray-trace code that generates linear beam-walk and aberration sensitivity matrices for motions of the optical elements and line-of-sight pointing, with and without controlled fine-steering mirrors (FSMs). The sensitivity matrices are imported by macros into Excel 2007, where the error budget is evaluated. The user specifies the particular optics of interest, and chooses the quality of each optic from a predefined set of PSDs. The spreadsheet creates a nominal set of thermal and jitter motions, and combines that with the sensitivity matrices to generate an error budget for the system. CPEB also contains a combination of form and ActiveX controls with Visual Basic for Applications code to allow for user interaction in which the user can perform trade studies such as changing engineering requirements, and identifying and isolating stringent requirements. It contains summary tables and graphics that can be instantly used for reporting results in view graphs. The entire process to obtain a coronagraphic telescope performance error budget has been automated into three stages: conversion of optical prescription from Zemax or Code V to MACOS (in-house optical modeling and analysis tool), a linear models process, and an error budget tool process. The first process was improved by developing a MATLAB package based on the Class Constructor Method with a number of user-defined functions that allow the user to modify the MACOS optical prescription. The second process was modified by creating a MATLAB package that contains user-defined functions that automate the process. The user interfaces with the process by utilizing an initialization file where the user defines the parameters of the linear model computations. Other than this, the process is fully automated. The third process was developed based on the Terrestrial Planet Finder coronagraph Error Budget Tool, but was fully automated by using VBA code, form, and ActiveX controls.

  20. Biasing spatial attention with semantic information: an event coding approach.

    PubMed

    Amer, Tarek; Gozli, Davood G; Pratt, Jay

    2017-04-21

    We investigated the influence of conceptual processing on visual attention from the standpoint of Theory of Event Coding (TEC). The theory makes two predictions: first, an important factor in determining the influence of event 1 on processing event 2 is whether features of event 1 are bound into a unified representation (i.e., selection or retrieval of event 1). Second, whether processing the two events facilitates or interferes with each other should depend on the extent to which their constituent features overlap. In two experiments, participants performed a visual-attention cueing task, in which the visual target (event 2) was preceded by a relevant or irrelevant explicit (e.g., "UP") or implicit (e.g., "HAPPY") spatial-conceptual cue (event 1). Consistent with TEC, we found relevant explicit cues (which featurally overlap to a greater extent with the target) and implicit cues (which featurally overlap to a lesser extent), respectively, facilitated and interfered with target processing at compatible locations. Irrelevant explicit and implicit cues, on the other hand, both facilitated target processing, presumably because they were less likely selected or retrieved as an integrated and unified event file. We argue that such effects, often described as "attentional cueing", are better accounted for within the event coding framework.

  1. Dysfunctional visual word form processing in progressive alexia

    PubMed Central

    Rising, Kindle; Stib, Matthew T.; Rapcsak, Steven Z.; Beeson, Pélagie M.

    2013-01-01

    Progressive alexia is an acquired reading deficit caused by degeneration of brain regions that are essential for written word processing. Functional imaging studies have shown that early processing of the visual word form depends on a hierarchical posterior-to-anterior processing stream in occipito-temporal cortex, whereby successive areas code increasingly larger and more complex perceptual attributes of the letter string. A region located in the left lateral occipito-temporal sulcus and adjacent fusiform gyrus shows maximal selectivity for words and has been dubbed the ‘visual word form area’. We studied two patients with progressive alexia in order to determine whether their reading deficits were associated with structural and/or functional abnormalities in this visual word form system. Voxel-based morphometry showed left-lateralized occipito-temporal atrophy in both patients, very mild in one, but moderate to severe in the other. The two patients, along with 10 control subjects, were scanned with functional magnetic resonance imaging as they viewed rapidly presented words, false font strings, or a fixation crosshair. This paradigm was optimized to reliably map brain regions involved in orthographic processing in individual subjects. All 10 control subjects showed a posterior-to-anterior gradient of selectivity for words, and all 10 showed a functionally defined visual word form area in the left hemisphere that was activated for words relative to false font strings. In contrast, neither of the two patients with progressive alexia showed any evidence for a selectivity gradient or for word-specific activation of the visual word form area. The patient with mild atrophy showed normal responses to both words and false font strings in the posterior part of the visual word form system, but a failure to develop selectivity for words in the more anterior part of the system. In contrast, the patient with moderate to severe atrophy showed minimal activation of any part of the visual word form system for either words or false font strings. Our results suggest that progressive alexia is associated with a dysfunctional visual word form system, with or without substantial cortical atrophy. Furthermore, these findings demonstrate that functional MRI has the potential to reveal the neural bases of cognitive deficits in neurodegenerative patients at very early stages, in some cases before the development of extensive atrophy. PMID:23471694

  2. Dysfunctional visual word form processing in progressive alexia.

    PubMed

    Wilson, Stephen M; Rising, Kindle; Stib, Matthew T; Rapcsak, Steven Z; Beeson, Pélagie M

    2013-04-01

    Progressive alexia is an acquired reading deficit caused by degeneration of brain regions that are essential for written word processing. Functional imaging studies have shown that early processing of the visual word form depends on a hierarchical posterior-to-anterior processing stream in occipito-temporal cortex, whereby successive areas code increasingly larger and more complex perceptual attributes of the letter string. A region located in the left lateral occipito-temporal sulcus and adjacent fusiform gyrus shows maximal selectivity for words and has been dubbed the 'visual word form area'. We studied two patients with progressive alexia in order to determine whether their reading deficits were associated with structural and/or functional abnormalities in this visual word form system. Voxel-based morphometry showed left-lateralized occipito-temporal atrophy in both patients, very mild in one, but moderate to severe in the other. The two patients, along with 10 control subjects, were scanned with functional magnetic resonance imaging as they viewed rapidly presented words, false font strings, or a fixation crosshair. This paradigm was optimized to reliably map brain regions involved in orthographic processing in individual subjects. All 10 control subjects showed a posterior-to-anterior gradient of selectivity for words, and all 10 showed a functionally defined visual word form area in the left hemisphere that was activated for words relative to false font strings. In contrast, neither of the two patients with progressive alexia showed any evidence for a selectivity gradient or for word-specific activation of the visual word form area. The patient with mild atrophy showed normal responses to both words and false font strings in the posterior part of the visual word form system, but a failure to develop selectivity for words in the more anterior part of the system. In contrast, the patient with moderate to severe atrophy showed minimal activation of any part of the visual word form system for either words or false font strings. Our results suggest that progressive alexia is associated with a dysfunctional visual word form system, with or without substantial cortical atrophy. Furthermore, these findings demonstrate that functional MRI has the potential to reveal the neural bases of cognitive deficits in neurodegenerative patients at very early stages, in some cases before the development of extensive atrophy.

  3. Low back pain status in elite and semi-elite Australian football codes: a cross-sectional survey of football (soccer), Australian rules, rugby league, rugby union and non-athletic controls.

    PubMed

    Hoskins, Wayne; Pollard, Henry; Daff, Chris; Odell, Andrew; Garbutt, Peter; McHardy, Andrew; Hardy, Kate; Dragasevic, George

    2009-04-17

    Our understanding of the effects of football code participation on low back pain (LBP) is limited. It is unclear whether LBP is more prevalent in athletic populations or differs between levels of competition. Thus it was the aim of this study to document and compare the prevalence, intensity, quality and frequency of LBP between elite and semi-elite male Australian football code participants and a non-athletic group. A cross-sectional survey of elite and semi-elite male Australian football code participants and a non-athletic group was performed. Participants completed a self-reported questionnaire incorporating the Quadruple Visual Analogue Scale (QVAS) and McGill Pain Questionnaire (short form) (MPQ-SF), along with additional questions adapted from an Australian epidemiological study. Respondents were 271 elite players (mean age 23.3, range 17-39), 360 semi-elite players (mean age 23.8, range 16-46) and 148 non-athletic controls (mean age 23.9, range 18-39). Groups were matched for age (p = 0.42) and experienced the same age of first onset LBP (p = 0.40). A significant linear increase in LBP from the non-athletic group, to the semi-elite and elite groups for the QVAS and the MPQ-SF was evident (p < 0.001). Elite subjects were more likely to experience more frequent (daily or weekly OR 1.77, 95% CI 1.29-2.42) and severe LBP (discomforting and greater OR 1.75, 95% CI 1.29-2.38). Foolers in Australia have significantly more severe and frequent LBP than a non-athletic group and this escalates with level of competition.

  4. The TINS Lecture. The parietal association cortex in depth perception and visual control of hand action.

    PubMed

    Sakata, H; Taira, M; Kusunoki, M; Murata, A; Tanaka, Y

    1997-08-01

    Recent neurophysiological studies in alert monkeys have revealed that the parietal association cortex plays a crucial role in depth perception and visually guided hand movement. The following five classes of parietal neurons covering various aspects of these functions have been identified: (1) depth-selective visual-fixation (VF) neurons of the inferior parietal lobule (IPL), representing egocentric distance; (2) depth-movement sensitive (DMS) neurons of V5A and the ventral intraparietal (VIP) area representing direction of linear movement in 3-D space; (3) depth-rotation-sensitive (RS) neurons of V5A and the posterior parietal (PP) area representing direction of rotary movement in space; (4) visually responsive manipulation-related neurons (visual-dominant or visual-and-motor type) of the anterior intraparietal (AIP) area, representing 3-D shape or orientation (or both) of objects for manipulation; and (5) axis-orientation-selective (AOS) and surface-orientation-selective (SOS) neurons in the caudal intraparietal sulcus (cIPS) sensitive to binocular disparity and representing the 3-D orientation of the longitudinal axes and flat surfaces, respectively. Some AOS and SOS neurons are selective in both orientation and shape. Thus the dorsal visual pathway is divided into at least two subsystems, V5A, PP and VIP areas for motion vision and V6, LIP and cIPS areas for coding position and 3-D features. The cIPS sends the signals of 3-D features of objects to the AIP area, which is reciprocally connected to the ventral premotor (F5) area and plays an essential role in matching hand orientation and shaping with 3-D objects for manipulation.

  5. A Web-Based System for Monitoring and Controlling Multidisciplinary Design Projects

    NASA Technical Reports Server (NTRS)

    Salas, Andrea O.; Rogers, James L.

    1997-01-01

    In today's competitive environment, both industry and government agencies are under enormous pressure to reduce the time and cost of multidisciplinary design projects. A number of frameworks have been introduced to assist in this process by facilitating the integration of and communication among diverse disciplinary codes. An examination of current frameworks reveals weaknesses in various areas such as sequencing, displaying, monitoring, and controlling the design process. The objective of this research is to explore how Web technology, in conjunction with an existing framework, can improve these areas of weakness. This paper describes a system that executes a sequence of programs, monitors and controls the design process through a Web-based interface, and visualizes intermediate and final results through the use of Java(Tm) applets. A small sample problem, which includes nine processes with two analysis programs that are coupled to an optimizer, is used to demonstrate the feasibility of this approach.

  6. Architectural Visualization of C/C++ Source Code for Program Comprehension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panas, T; Epperly, T W; Quinlan, D

    2006-09-01

    Structural and behavioral visualization of large-scale legacy systems to aid program comprehension is still a major challenge. The challenge is even greater when applications are implemented in flexible and expressive languages such as C and C++. In this paper, we consider visualization of static and dynamic aspects of large-scale scientific C/C++ applications. For our investigation, we reuse and integrate specialized analysis and visualization tools. Furthermore, we present a novel layout algorithm that permits a compressive architectural view of a large-scale software system. Our layout is unique in that it allows traditional program visualizations, i.e., graph structures, to be seen inmore » relation to the application's file structure.« less

  7. An evaluation of end-point trajectory planning during skilled kicking.

    PubMed

    Ford, Paul; Hodges, Nicola J; Mark Williams, A

    2009-01-01

    There is evidence that actions are planned by anticipation of their external effects, with the strength of this effect being dependent on the amount of prior practice. In Experiment 1, skilled soccer players performed a kicking task under four conditions: planning in terms of an external action effect (i.e., ball trajectory) or in terms of body movements, either with or without visual error feedback. When feedback was withheld, a ball focus resulted in more accurate outcomes than a body focus. When visual feedback was allowed, there was no difference between these two conditions. In Experiment 2, both skilled and novice soccer players were tested with the addition of a control condition and in the absence of visual feedback. For both groups there was evidence that a ball focus was more beneficial for performance than a body focus, particularly in terms of movement kinematics where correlations across the joints were generally higher for body rather than ball planning. Most skilled participants reported that ball planning felt more normal than body planning. These experiments provide some evidence that actions are planned in terms of their external action effects, supporting the common-coding hypothesis of action planning.

  8. Dynamic assessment of microbial ecology (DAME): a web app for interactive analysis and visualization of microbial sequencing data.

    PubMed

    Piccolo, Brian D; Wankhade, Umesh D; Chintapalli, Sree V; Bhattacharyya, Sudeepa; Chunqiao, Luo; Shankar, Kartik

    2018-03-15

    Dynamic assessment of microbial ecology (DAME) is a Shiny-based web application for interactive analysis and visualization of microbial sequencing data. DAME provides researchers not familiar with R programming the ability to access the most current R functions utilized for ecology and gene sequencing data analyses. Currently, DAME supports group comparisons of several ecological estimates of α-diversity and β-diversity, along with differential abundance analysis of individual taxa. Using the Shiny framework, the user has complete control of all aspects of the data analysis, including sample/experimental group selection and filtering, estimate selection, statistical methods and visualization parameters. Furthermore, graphical and tabular outputs are supported by R packages using D3.js and are fully interactive. DAME was implemented in R but can be modified by Hypertext Markup Language (HTML), Cascading Style Sheets (CSS), and JavaScript. It is freely available on the web at https://acnc-shinyapps.shinyapps.io/DAME/. Local installation and source code are available through Github (https://github.com/bdpiccolo/ACNC-DAME). Any system with R can launch DAME locally provided the shiny package is installed. bdpiccolo@uams.edu.

  9. SieveSifter: a web-based tool for visualizing the sieve analyses of HIV-1 vaccine efficacy trials.

    PubMed

    Fiore-Gartland, Andrew; Kullman, Nicholas; deCamp, Allan C; Clenaghan, Graham; Yang, Wayne; Magaret, Craig A; Edlefsen, Paul T; Gilbert, Peter B

    2017-08-01

    Analysis of HIV-1 virions from participants infected in a randomized controlled preventive HIV-1 vaccine efficacy trial can help elucidate mechanisms of partial protection. By comparing the genetic sequence of viruses from vaccine and placebo recipients to the sequence of the vaccine itself, a technique called 'sieve analysis', one can identify functional specificities of vaccine-induced immune responses. We have created an interactive web-based visualization and data access tool for exploring the results of sieve analyses performed on four major preventive HIV-1 vaccine efficacy trials: (i) the HIV Vaccine Trial Network (HVTN) 502/Step trial, (ii) the RV144/Thai trial, (iii) the HVTN 503/Phambili trial and (iv) the HVTN 505 trial. The tool acts simultaneously as a platform for rapid reinterpretation of sieve effects and as a portal for organizing and sharing the viral sequence data. Access to these valuable datasets also enables the development of novel methodology for future sieve analyses. Visualization: http://sieve.fredhutch.org/viz . Source code: https://github.com/nkullman/SIEVE . Data API: http://sieve.fredhutch.org/data . agartlan@fredhutch.org. © The Author(s) 2017. Published by Oxford University Press.

  10. The Interplay of Spatial Attentional Biases and Mental Codes in VSTM: Developmentally Informed Hypotheses

    ERIC Educational Resources Information Center

    Shimi, Andria; Scerif, Gaia

    2015-01-01

    What cognitive processes influence how well we maintain information in visual short-term memory (VSTM)? We used a developmentally informed design to delve into the interplay of top-down spatial biases with the nature of the internal memory codes, motivated by documented changes for both factors over childhood. Seven-year-olds, 11-year-olds, and…

  11. Does Location Uncertainty in Letter Position Coding Emerge Because of Literacy Training?

    ERIC Educational Resources Information Center

    Perea, Manuel; Jiménez, María; Gomez, Pablo

    2016-01-01

    In the quest to unveil the nature of the orthographic code, a useful strategy is to examine the transposed-letter effect (e.g., JUGDE is more confusable with its base word, JUDGE, than the replacement-letter nonword JUPTE). A leading explanation of this phenomenon, which is in line with models of visual attention, is that there is perceptual…

  12. Instruction in Specialized Braille Codes, Abacus, and Tactile Graphics at Universities in the United States and Canada

    ERIC Educational Resources Information Center

    Rosenblum, L. Penny; Smith, Derrick

    2012-01-01

    Introduction: This study gathered data on methods and materials that are used to teach the Nemeth braille code, computer braille, foreign-language braille, and music braille in 26 university programs in the United States and Canada that prepare teachers of students with visual impairments. Information about instruction in the abacus and the…

  13. HealthCyberMap: a semantic visual browser of medical Internet resources based on clinical codes and the human body metaphor.

    PubMed

    Kamel Boulos, Maged N; Roudsari, Abdul V; Carso N, Ewart R

    2002-12-01

    HealthCyberMap (HCM-http://healthcybermap.semanticweb.org) is a web-based service for healthcare professionals and librarians, patients and the public in general that aims at mapping parts of the health information resources in cyberspace in novel ways to improve their retrieval and navigation. HCM adopts a clinical metadata framework built upon a clinical coding ontology for the semantic indexing, classification and browsing of Internet health information resources. A resource metadata base holds information about selected resources. HCM then uses GIS (Geographic Information Systems) spatialization methods to generate interactive navigational cybermaps from the metadata base. These visual cybermaps are based on familiar medical metaphors. HCM cybermaps can be considered as semantically spatialized, ontology-based browsing views of the underlying resource metadata base. Using a clinical coding scheme as a metric for spatialization ('semantic distance') is unique to HCM and is very much suited for the semantic categorization and navigation of Internet health information resources. Clinical codes ensure reliable and unambiguous topical indexing of these resources. HCM also introduces a useful form of cyberspatial analysis for the detection of topical coverage gaps in the resource metadata base using choropleth (shaded) maps of human body systems.

  14. Kalai-Smorodinsky bargaining solution for optimal resource allocation over wireless DS-CDMA visual sensor networks

    NASA Astrophysics Data System (ADS)

    Pandremmenou, Katerina; Kondi, Lisimachos P.; Parsopoulos, Konstantinos E.

    2012-01-01

    Surveillance applications usually require high levels of video quality, resulting in high power consumption. The existence of a well-behaved scheme to balance video quality and power consumption is crucial for the system's performance. In the present work, we adopt the game-theoretic approach of Kalai-Smorodinsky Bargaining Solution (KSBS) to deal with the problem of optimal resource allocation in a multi-node wireless visual sensor network (VSN). In our setting, the Direct Sequence Code Division Multiple Access (DS-CDMA) method is used for channel access, while a cross-layer optimization design, which employs a central processing server, accounts for the overall system efficacy through all network layers. The task assigned to the central server is the communication with the nodes and the joint determination of their transmission parameters. The KSBS is applied to non-convex utility spaces, efficiently distributing the source coding rate, channel coding rate and transmission powers among the nodes. In the underlying model, the transmission powers assume continuous values, whereas the source and channel coding rates can take only discrete values. Experimental results are reported and discussed to demonstrate the merits of KSBS over competing policies.

  15. EvoluCode: Evolutionary Barcodes as a Unifying Framework for Multilevel Evolutionary Data.

    PubMed

    Linard, Benjamin; Nguyen, Ngoc Hoan; Prosdocimi, Francisco; Poch, Olivier; Thompson, Julie D

    2012-01-01

    Evolutionary systems biology aims to uncover the general trends and principles governing the evolution of biological networks. An essential part of this process is the reconstruction and analysis of the evolutionary histories of these complex, dynamic networks. Unfortunately, the methodologies for representing and exploiting such complex evolutionary histories in large scale studies are currently limited. Here, we propose a new formalism, called EvoluCode (Evolutionary barCode), which allows the integration of different evolutionary parameters (eg, sequence conservation, orthology, synteny …) in a unifying format and facilitates the multilevel analysis and visualization of complex evolutionary histories at the genome scale. The advantages of the approach are demonstrated by constructing barcodes representing the evolution of the complete human proteome. Two large-scale studies are then described: (i) the mapping and visualization of the barcodes on the human chromosomes and (ii) automatic clustering of the barcodes to highlight protein subsets sharing similar evolutionary histories and their functional analysis. The methodologies developed here open the way to the efficient application of other data mining and knowledge extraction techniques in evolutionary systems biology studies. A database containing all EvoluCode data is available at: http://lbgi.igbmc.fr/barcodes.

  16. Real-time visual simulation of APT system based on RTW and Vega

    NASA Astrophysics Data System (ADS)

    Xiong, Shuai; Fu, Chengyu; Tang, Tao

    2012-10-01

    The Matlab/Simulink simulation model of APT (acquisition, pointing and tracking) system is analyzed and established. Then the model's C code which can be used for real-time simulation is generated by RTW (Real-Time Workshop). Practical experiments show, the simulation result of running the C code is the same as running the Simulink model directly in the Matlab environment. MultiGen-Vega is a real-time 3D scene simulation software system. With it and OpenGL, the APT scene simulation platform is developed and used to render and display the virtual scenes of the APT system. To add some necessary graphics effects to the virtual scenes real-time, GLSL (OpenGL Shading Language) shaders are used based on programmable GPU. By calling the C code, the scene simulation platform can adjust the system parameters on-line and get APT system's real-time simulation data to drive the scenes. Practical application shows that this visual simulation platform has high efficiency, low charge and good simulation effect.

  17. View-Independent Working Memory Representations of Artificial Shapes in Prefrontal and Posterior Regions of the Human Brain.

    PubMed

    Christophel, Thomas B; Allefeld, Carsten; Endisch, Christian; Haynes, John-Dylan

    2018-06-01

    Traditional views of visual working memory postulate that memorized contents are stored in dorsolateral prefrontal cortex using an adaptive and flexible code. In contrast, recent studies proposed that contents are maintained by posterior brain areas using codes akin to perceptual representations. An important question is whether this reflects a difference in the level of abstraction between posterior and prefrontal representations. Here, we investigated whether neural representations of visual working memory contents are view-independent, as indicated by rotation-invariance. Using functional magnetic resonance imaging and multivariate pattern analyses, we show that when subjects memorize complex shapes, both posterior and frontal brain regions maintain the memorized contents using a rotation-invariant code. Importantly, we found the representations in frontal cortex to be localized to the frontal eye fields rather than dorsolateral prefrontal cortices. Thus, our results give evidence for the view-independent storage of complex shapes in distributed representations across posterior and frontal brain regions.

  18. Visual saliency-based fast intracoding algorithm for high efficiency video coding

    NASA Astrophysics Data System (ADS)

    Zhou, Xin; Shi, Guangming; Zhou, Wei; Duan, Zhemin

    2017-01-01

    Intraprediction has been significantly improved in high efficiency video coding over H.264/AVC with quad-tree-based coding unit (CU) structure from size 64×64 to 8×8 and more prediction modes. However, these techniques cause a dramatic increase in computational complexity. An intracoding algorithm is proposed that consists of perceptual fast CU size decision algorithm and fast intraprediction mode decision algorithm. First, based on the visual saliency detection, an adaptive and fast CU size decision method is proposed to alleviate intraencoding complexity. Furthermore, a fast intraprediction mode decision algorithm with step halving rough mode decision method and early modes pruning algorithm is presented to selectively check the potential modes and effectively reduce the complexity of computation. Experimental results show that our proposed fast method reduces the computational complexity of the current HM to about 57% in encoding time with only 0.37% increases in BD rate. Meanwhile, the proposed fast algorithm has reasonable peak signal-to-noise ratio losses and nearly the same subjective perceptual quality.

  19. Version 2.0 Visual Sample Plan (VSP): UXO Module Code Description and Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, Richard O.; Wilson, John E.; O'Brien, Robert F.

    2003-05-06

    The Pacific Northwest National Laboratory (PNNL) is developing statistical methods for determining the amount of geophysical surveys conducted along transects (swaths) that are needed to achieve specified levels of confidence of finding target areas (TAs) of anomalous readings and possibly unexploded ordnance (UXO) at closed, transferring and transferred (CTT) Department of Defense (DoD) ranges and other sites. The statistical methods developed by PNNL have been coded into the UXO module of the Visual Sample Plan (VSP) software code that is being developed by PNNL with support from the DoD, the U.S. Department of Energy (DOE, and the U.S. Environmental Protectionmore » Agency (EPA). (The VSP software and VSP Users Guide (Hassig et al, 2002) may be downloaded from http://dqo.pnl.gov/vsp.) This report describes and documents the statistical methods developed and the calculations and verification testing that have been conducted to verify that VSPs implementation of these methods is correct and accurate.« less

  20. Solutions for Digital Video Transmission Technology Final Report CRADA No. TC02068.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, A. T.; Rivers, W.

    This Project aimed at development of software for seismic data processing based on the Geotool code developed by the American company Multimax., Inc. The Geotool code was written in early 90-es for the UNIX platform. Under Project# 2821, functions of the old Geotool code were transferred into a commercial version for the Microsoft XP and Vista platform with addition of new capabilities on visualization and data processing. The developed new version of the Geotool+ was implemented using the up-to-date tool Microsoft Visual Studio 2005 and uses capabilities of the .NET platform. C++ was selected as the main programming language formore » the Geotool+. The two-year Project was extended by six months and funding levels increased from 600,000 to $670,000. All tasks were successfully completed and all deliverables were met for the project even though both the industrial partner and LLNL principal investigator left the project before its final report.« less

  1. MetaABC--an integrated metagenomics platform for data adjustment, binning and clustering.

    PubMed

    Su, Chien-Hao; Hsu, Ming-Tsung; Wang, Tse-Yi; Chiang, Sufeng; Cheng, Jen-Hao; Weng, Francis C; Kao, Cheng-Yan; Wang, Daryi; Tsai, Huai-Kuang

    2011-08-15

    MetaABC is a metagenomic platform that integrates several binning tools coupled with methods for removing artifacts, analyzing unassigned reads and controlling sampling biases. It allows users to arrive at a better interpretation via series of distinct combinations of analysis tools. After execution, MetaABC provides outputs in various visual formats such as tables, pie and bar charts as well as clustering result diagrams. MetaABC source code and documentation are available at http://bits2.iis.sinica.edu.tw/MetaABC/ CONTACT: dywang@gate.sinica.edu.tw; hktsai@iis.sinica.edu.tw Supplementary data are available at Bioinformatics online.

  2. Web-Altairis: An Internet-Enabled Ground System

    NASA Technical Reports Server (NTRS)

    Miller, Phil; Coleman, Jason; Gemoets, Darren; Hughes, Kevin

    2000-01-01

    This paper describes Web-Altairis, an Internet-enabled ground system software package funded by the Advanced Automation and Architectures Branch (Code 588) of NASA's Goddard Space Flight Center. Web-Altairis supports the trend towards "lights out" ground systems, where the control center is unattended and problems are resolved by remote operators. This client/server software runs on most popular platforms and provides for remote data visualization using the rich functionality of the VisAGE toolkit. Web-Altairis also supports satellite commanding over the Internet. This paper describes the structure of Web-Altairis and VisAGE, the underlying technologies, the provisions for security, and our experiences in developing and testing the software.

  3. Development and Testing of Functionally Operative and Visually Appealing Remote Firing Room Displays and Applications

    NASA Technical Reports Server (NTRS)

    Quaranto, Kristy

    2014-01-01

    This internship provided an opportunity for an intern to work with NASA's Ground Support Equipment (GSE) for the Spaceport Command and Control System (SCCS) at Kennedy Space Center as a remote display developer, under NASA technical mentor Kurt Leucht. The main focus was on creating remote displays and applications for the hypergolic and high pressure helium subsystem team to help control the filling of the respective tanks. As a remote display and application developer for the GSE hypergolic and high pressure helium subsystem team the intern was responsible for creating and testing graphical remote displays and applications to be used in the Launch Control Center (LCC) on the Firing Room's computers. To become more familiar with the subsystem, the individual attended multiple project meetings and acquired their specific requirements regarding what needed to be included in the software. After receiving the requirements for the displays, the next step was to create displays that had both visual appeal and logical order using the Display Editor, on the Virtual Machine (VM). In doing so, all Compact Unique Identifiers (CUI), which are associated with specific components within the subsystem, were need to be included in each respective display for the system to run properly. Then, once the display was created it was to be tested to ensure that the display runs as intended by using the Test Driver, also found on the VM. This Test Driver is a specific application that checks to make sure all the CUIs in the display are running properly and returning the correct form of information. After creating and locally testing the display it needed to go through further testing and evaluation before deemed suitable for actual use. For the remote applications the intern was responsible for creating a project that focused on channelizing each component included in each display. The core of the application code was created by setting up spreadsheets and having an auto test generator, generate the complete code structure. This application code was then loaded and ran on a testing environment set to ensure the code runs as anticipated. By the end of the semester-long experience at NASA's Kennedy Space Center, the individual should have gained great knowledge and experience in various areas of both display and application development and testing. They were able to demonstrate this new knowledge obtained by creating multiple successful remote displays that will one day be used by the hypergolic and high pressure helium subsystem team in the LCC's firing rooms to service the new Orion spacecraft. The completed display channelization application will be used to receive verification from NASA quality engineers.

  4. Spatial transformations between superior colliculus visual and motor response fields during head-unrestrained gaze shifts.

    PubMed

    Sadeh, Morteza; Sajad, Amirsaman; Wang, Hongying; Yan, Xiaogang; Crawford, John Douglas

    2015-12-01

    We previously reported that visuomotor activity in the superior colliculus (SC)--a key midbrain structure for the generation of rapid eye movements--preferentially encodes target position relative to the eye (Te) during low-latency head-unrestrained gaze shifts (DeSouza et al., 2011). Here, we trained two monkeys to perform head-unrestrained gaze shifts after a variable post-stimulus delay (400-700 ms), to test whether temporally separated SC visual and motor responses show different spatial codes. Target positions, final gaze positions and various frames of reference (eye, head, and space) were dissociated through natural (untrained) trial-to-trial variations in behaviour. 3D eye and head orientations were recorded, and 2D response field data were fitted against multiple models by use of a statistical method reported previously (Keith et al., 2009). Of 60 neurons, 17 showed a visual response, 12 showed a motor response, and 31 showed both visual and motor responses. The combined visual response field population (n = 48) showed a significant preference for Te, which was also preferred in each visual subpopulation. In contrast, the motor response field population (n = 43) showed a preference for final (relative to initial) gaze position models, and the Te model was statistically eliminated in the motor-only population. There was also a significant shift of coding from the visual to motor response within visuomotor neurons. These data confirm that SC response fields are gaze-centred, and show a target-to-gaze transformation between visual and motor responses. Thus, visuomotor transformations can occur between, and even within, neurons within a single frame of reference and brain structure. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  5. Carotid body size measured by computed tomographic angiography in individuals born prematurely.

    PubMed

    Bates, Melissa L; Welch, Brian T; Randall, Jess T; Petersen-Jones, Humphrey G; Limberg, Jacqueline K

    2018-05-24

    We tested the hypothesis that the carotid bodies would be smaller in individuals born prematurely or exposed to perinatal oxygen therapy when compared individuals born full term that did not receive oxygen therapy. A retrospective chart review was conducted on patients who underwent head/neck computed tomography angiography (CTA) at the Mayo Clinic between 10 and 40 years of age (n = 2503). Patients were identified as premature ( < 38 weeks) or receiving perinatal oxygen therapy by physician completion or billing codes (n = 16 premature and n = 7 receiving oxygen). Widest axial measurements of the carotid body images captured during the CTA were performed. Carotid body visualization was possible in 43% of patients and 52% of age, sex, and body mass index (BMI)-matched controls but only 17% of juvenile preterm subjects (p = 0.07). Of the carotid bodies that could be visualized, widest axial measurements of the carotid bodies in individuals born prematurely (n = 7, 34 ± 4 weeks gestation, birth weight: 2460 ± 454 g; average size: 2.5 ± 0.2 cm) or individuals exposed to perinatal oxygen therapy (n = 3, 38 ± 2 weeks gestation, Average size: 2.2 ± 0.1 cm) were not different when compared to controls (2.3 ± 0.2 cm and 2.3 ± 0.2 cm, respectively, p > 0.05). Carotid body size, as measured using CTA, is not smaller in adults born prematurely or exposed to perinatal oxygen therapy when compared to sex, age, and BMI-matched controls. However, carotid body visualization was lower in juvenile premature patients. The decreased ability to visualize the carotid bodies in these individuals may be a result of their prematurity. Copyright © 2018. Published by Elsevier B.V.

  6. A Computer Program for Flow-Log Analysis of Single Holes (FLASH)

    USGS Publications Warehouse

    Day-Lewis, F. D.; Johnson, C.D.; Paillet, Frederick L.; Halford, K.J.

    2011-01-01

    A new computer program, FLASH (Flow-Log Analysis of Single Holes), is presented for the analysis of borehole vertical flow logs. The code is based on an analytical solution for steady-state multilayer radial flow to a borehole. The code includes options for (1) discrete fractures and (2) multilayer aquifers. Given vertical flow profiles collected under both ambient and stressed (pumping or injection) conditions, the user can estimate fracture (or layer) transmissivities and far-field hydraulic heads. FLASH is coded in Microsoft Excel with Visual Basic for Applications routines. The code supports manual and automated model calibration. ?? 2011, The Author(s). Ground Water ?? 2011, National Ground Water Association.

  7. Early suppression effect in human primary visual cortex during Kanizsa illusion processing: A magnetoencephalographic evidence.

    PubMed

    Chernyshev, Boris V; Pronko, Platon K; Stroganova, Tatiana A

    2016-01-01

    Detection of illusory contours (ICs) such as Kanizsa figures is known to depend primarily upon the lateral occipital complex. Yet there is no universal agreement on the role of the primary visual cortex in this process; some existing evidence hints that an early stage of the visual response in V1 may involve relative suppression to Kanizsa figures compared with controls. Iso-oriented luminance borders, which are responsible for Kanizsa illusion, may evoke surround suppression in V1 and adjacent areas leading to the reduction in the initial response to Kanizsa figures. We attempted to test the existence, as well as to find localization and timing of the early suppression effect produced by Kanizsa figures in adult nonclinical human participants. We used two sizes of visual stimuli (4.5 and 9.0°) in order to probe the effect at two different levels of eccentricity; the stimuli were presented centrally in passive viewing conditions. We recorded magnetoencephalogram, which is more sensitive than electroencephalogram to activity originating from V1 and V2 areas. We restricted our analysis to the medial occipital area and the occipital pole, and to a 40-120 ms time window after the stimulus onset. By applying threshold-free cluster enhancement technique in combination with permutation statistics, we were able to detect the inverted IC effect-a relative suppression of the response to the Kanizsa figures compared with the control stimuli. The current finding is highly compatible with the explanation involving surround suppression evoked by iso-oriented collinear borders. The effect may be related to the principle of sparse coding, according to which V1 suppresses representations of inner parts of collinear assemblies as being informationally redundant. Such a mechanism is likely to be an important preliminary step preceding object contour detection.

  8. Web3DMol: interactive protein structure visualization based on WebGL.

    PubMed

    Shi, Maoxiang; Gao, Juntao; Zhang, Michael Q

    2017-07-03

    A growing number of web-based databases and tools for protein research are being developed. There is now a widespread need for visualization tools to present the three-dimensional (3D) structure of proteins in web browsers. Here, we introduce our 3D modeling program-Web3DMol-a web application focusing on protein structure visualization in modern web browsers. Users submit a PDB identification code or select a PDB archive from their local disk, and Web3DMol will display and allow interactive manipulation of the 3D structure. Featured functions, such as sequence plot, fragment segmentation, measure tool and meta-information display, are offered for users to gain a better understanding of protein structure. Easy-to-use APIs are available for developers to reuse and extend Web3DMol. Web3DMol can be freely accessed at http://web3dmol.duapp.com/, and the source code is distributed under the MIT license. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. A Neurophysiologically Plausible Population Code Model for Feature Integration Explains Visual Crowding

    PubMed Central

    van den Berg, Ronald; Roerdink, Jos B. T. M.; Cornelissen, Frans W.

    2010-01-01

    An object in the peripheral visual field is more difficult to recognize when surrounded by other objects. This phenomenon is called “crowding”. Crowding places a fundamental constraint on human vision that limits performance on numerous tasks. It has been suggested that crowding results from spatial feature integration necessary for object recognition. However, in the absence of convincing models, this theory has remained controversial. Here, we present a quantitative and physiologically plausible model for spatial integration of orientation signals, based on the principles of population coding. Using simulations, we demonstrate that this model coherently accounts for fundamental properties of crowding, including critical spacing, “compulsory averaging”, and a foveal-peripheral anisotropy. Moreover, we show that the model predicts increased responses to correlated visual stimuli. Altogether, these results suggest that crowding has little immediate bearing on object recognition but is a by-product of a general, elementary integration mechanism in early vision aimed at improving signal quality. PMID:20098499

  10. Mixing Metaphors in the Cerebral Hemispheres: What Happens When Careers Collide?

    PubMed Central

    Chettih, Selmaan; Durgin, Frank H.; Grodner, Daniel J.

    2014-01-01

    Are processes of figurative comparison and figurative categorization different? An experiment combining alternative-sense and matched-sense metaphor priming with a divided visual field assessment technique sought to isolate processes of comparison and categorization in the two cerebral hemispheres. For target metaphors presented in the RVF/LH, only matched-sense primes were facilitative. Literal primes and alternative-sense primes had no effect on comprehension time compared to the unprimed baseline. The effects of matched-sense primes were additive with the rated conventionality of the targets. For target metaphors presented to the LVF/RH, matched-sense primes were again additively facilitative. However, alternative-sense primes, though facilitative overall, seemed to eliminate the pre-existing advantages of conventional target metaphor senses in the LVF/RH in favor of metaphoric senses similar to those of the primes. These findings are consistent with tightly controlled categorical coding in the LH and coarse, and flexible, context dependent coding in the RH. PMID:22103787

  11. The Effects of Adding Coordinate Axes To a Mental Rotations Task in Measuring Spatial Visualization Ability in Introductory Undergraduate Technical Graphics Courses.

    ERIC Educational Resources Information Center

    Branoff, Ted

    1998-01-01

    Reports on a study to determine whether the presence of coordinate axes in a test of spatial-visualization ability affects scores and response times on a mental-rotations task for students enrolled in undergraduate introductory graphic communications classes. Based on Pavios's dual-coding theory. Contains 36 references. (DDR)

  12. Use of Visuals for Food Safety Education of Spanish-Speaking Foodservice Workers: A Case Study in Iowa

    ERIC Educational Resources Information Center

    Rajagopal, Lakshman

    2012-01-01

    Providing food safety training to an audience whose native language is not English is always a challenge. In the study reported here, minimal-text visuals in Spanish were used to train Hispanic foodservice workers about proper handwashing technique and glove use based on the 2005 Food Code requirements. Overall, results indicated that visuals…

  13. The Need to Help Journalists with Data and Information Visualization.

    PubMed

    Reilly, Susan

    2017-01-01

    As news migrates to mobile phones, media companies are turning to data visualization to wet readers' appetites for stories they can read at length on their home or work computers. Journalists are trained to write stories, not in statistics or coding, however. The big news organizations have the funds to hire computer graphics experts, but local news organizations need help.

  14. Visualization of semantic indexing similarity over MeSH.

    PubMed

    Du, Haixia; Yoo, Terry S

    2007-10-11

    We present an interactive visualization system for the evaluation of indexing results of the MEDLINE data-base over the Medical Subject Headings (MeSH) structure in a graphical radial-tree layout. It displays indexing similarity measurements with 2D color coding and a 3D height field permitting the evaluation of the automatic Medical Text Indexer (MTI), compared with human indexers.

  15. Mothers' Attention-Getting Utterances during Shared Book Reading: Links to Low-Income Preschoolers' Verbal Engagement, Visual Attention, and Early Literacy

    ERIC Educational Resources Information Center

    Son, Seung-Hee Claire; Tineo, Maria F.

    2016-01-01

    This study examined associations among low-income mothers' use of attention-getting utterances during shared book reading, preschoolers' verbal engagement and visual attention to reading, and their early literacy skills (N = 51). Mother-child shared book reading sessions were videotaped and coded for each utterance, including attention talk,…

  16. Using Cascading Style Sheets to Design a Fly-Out Menu with Microsoft Visual Studio

    ERIC Educational Resources Information Center

    Liu, Chang; Downing, Charles

    2010-01-01

    The menu has become an integrated component within nearly all professionally designed websites. This teaching tip presents a no-code way to design either a vertical or a horizontal fly-out menu by using Cascading Style Sheets (CSS) within Microsoft Visual Studio 2008. The approach described in this tip helps students fully understand how to…

  17. Task-set inertia and memory-consolidation bottleneck in dual tasks.

    PubMed

    Koch, Iring; Rumiati, Raffaella I

    2006-11-01

    Three dual-task experiments examined the influence of processing a briefly presented visual object for deferred verbal report on performance in an unrelated auditory-manual reaction time (RT) task. RT was increased at short stimulus-onset asynchronies (SOAs) relative to long SOAs, showing that memory consolidation processes can produce a functional processing bottleneck in dual-task performance. In addition, the experiments manipulated the spatial compatibility of the orientation of the visual object and the side of the speeded manual response. This cross-task compatibility produced relative RT benefits only when the instruction for the visual task emphasized overlap at the level of response codes across the task sets (Experiment 1). However, once the effective task set was in place, it continued to produce cross-task compatibility effects even in single-task situations ("ignore" trials in Experiment 2) and when instructions for the visual task did not explicitly require spatial coding of object orientation (Experiment 3). Taken together, the data suggest a considerable degree of task-set inertia in dual-task performance, which is also reinforced by finding costs of switching task sequences (e.g., AC --> BC vs. BC --> BC) in Experiment 3.

  18. Supranormal orientation selectivity of visual neurons in orientation-restricted animals.

    PubMed

    Sasaki, Kota S; Kimura, Rui; Ninomiya, Taihei; Tabuchi, Yuka; Tanaka, Hiroki; Fukui, Masayuki; Asada, Yusuke C; Arai, Toshiya; Inagaki, Mikio; Nakazono, Takayuki; Baba, Mika; Kato, Daisuke; Nishimoto, Shinji; Sanada, Takahisa M; Tani, Toshiki; Imamura, Kazuyuki; Tanaka, Shigeru; Ohzawa, Izumi

    2015-11-16

    Altered sensory experience in early life often leads to remarkable adaptations so that humans and animals can make the best use of the available information in a particular environment. By restricting visual input to a limited range of orientations in young animals, this investigation shows that stimulus selectivity, e.g., the sharpness of tuning of single neurons in the primary visual cortex, is modified to match a particular environment. Specifically, neurons tuned to an experienced orientation in orientation-restricted animals show sharper orientation tuning than neurons in normal animals, whereas the opposite was true for neurons tuned to non-experienced orientations. This sharpened tuning appears to be due to elongated receptive fields. Our results demonstrate that restricted sensory experiences can sculpt the supranormal functions of single neurons tailored for a particular environment. The above findings, in addition to the minimal population response to orientations close to the experienced one, agree with the predictions of a sparse coding hypothesis in which information is represented efficiently by a small number of activated neurons. This suggests that early brain areas adopt an efficient strategy for coding information even when animals are raised in a severely limited visual environment where sensory inputs have an unnatural statistical structure.

  19. Visual communications with side information via distributed printing channels: extended multimedia and security perspectives

    NASA Astrophysics Data System (ADS)

    Voloshynovskiy, Sviatoslav V.; Koval, Oleksiy; Deguillaume, Frederic; Pun, Thierry

    2004-06-01

    In this paper we address visual communications via printing channels from an information-theoretic point of view as communications with side information. The solution to this problem addresses important aspects of multimedia data processing, security and management, since printed documents are still the most common form of visual information representation. Two practical approaches to side information communications for printed documents are analyzed in the paper. The first approach represents a layered joint source-channel coding for printed documents. This approach is based on a self-embedding concept where information is first encoded assuming a Wyner-Ziv set-up and then embedded into the original data using a Gel'fand-Pinsker construction and taking into account properties of printing channels. The second approach is based on Wyner-Ziv and Berger-Flynn-Gray set-ups and assumes two separated communications channels where an appropriate distributed coding should be elaborated. The first printing channel is considered to be a direct visual channel for images ("analog" channel with degradations). The second "digital channel" with constrained capacity is considered to be an appropriate auxiliary channel. We demonstrate both theoretically and practically how one can benefit from this sort of "distributed paper communications".

  20. Supranormal orientation selectivity of visual neurons in orientation-restricted animals

    PubMed Central

    Sasaki, Kota S.; Kimura, Rui; Ninomiya, Taihei; Tabuchi, Yuka; Tanaka, Hiroki; Fukui, Masayuki; Asada, Yusuke C.; Arai, Toshiya; Inagaki, Mikio; Nakazono, Takayuki; Baba, Mika; Kato, Daisuke; Nishimoto, Shinji; Sanada, Takahisa M.; Tani, Toshiki; Imamura, Kazuyuki; Tanaka, Shigeru; Ohzawa, Izumi

    2015-01-01

    Altered sensory experience in early life often leads to remarkable adaptations so that humans and animals can make the best use of the available information in a particular environment. By restricting visual input to a limited range of orientations in young animals, this investigation shows that stimulus selectivity, e.g., the sharpness of tuning of single neurons in the primary visual cortex, is modified to match a particular environment. Specifically, neurons tuned to an experienced orientation in orientation-restricted animals show sharper orientation tuning than neurons in normal animals, whereas the opposite was true for neurons tuned to non-experienced orientations. This sharpened tuning appears to be due to elongated receptive fields. Our results demonstrate that restricted sensory experiences can sculpt the supranormal functions of single neurons tailored for a particular environment. The above findings, in addition to the minimal population response to orientations close to the experienced one, agree with the predictions of a sparse coding hypothesis in which information is represented efficiently by a small number of activated neurons. This suggests that early brain areas adopt an efficient strategy for coding information even when animals are raised in a severely limited visual environment where sensory inputs have an unnatural statistical structure. PMID:26567927

  1. Interactive-graphic flowpath plotting for turbine engines

    NASA Technical Reports Server (NTRS)

    Corban, R. R.

    1981-01-01

    An engine cycle program capable of simulating the design and off-design performance of arbitrary turbine engines, and a computer code which, when used in conjunction with the cycle code, can predict the weight of the engines are described. A graphics subroutine was added to the code to enable the engineer to visualize the designed engine with more clarity by producing an overall view of the designed engine for output on a graphics device using IBM-370 graphics subroutines. In addition, with the engine drawn on a graphics screen, the program allows for the interactive user to make changes to the inputs to the code for the engine to be redrawn and reweighed. These improvements allow better use of the code in conjunction with the engine program.

  2. The "periodic table" of the genetic code: A new way to look at the code and the decoding process.

    PubMed

    Komar, Anton A

    2016-01-01

    Henri Grosjean and Eric Westhof recently presented an information-rich, alternative view of the genetic code, which takes into account current knowledge of the decoding process, including the complex nature of interactions between mRNA, tRNA and rRNA that take place during protein synthesis on the ribosome, and it also better reflects the evolution of the code. The new asymmetrical circular genetic code has a number of advantages over the traditional codon table and the previous circular diagrams (with a symmetrical/clockwise arrangement of the U, C, A, G bases). Most importantly, all sequence co-variances can be visualized and explained based on the internal logic of the thermodynamics of codon-anticodon interactions.

  3. Data Visualization Using Immersive Virtual Reality Tools

    NASA Astrophysics Data System (ADS)

    Cioc, Alexandru; Djorgovski, S. G.; Donalek, C.; Lawler, E.; Sauer, F.; Longo, G.

    2013-01-01

    The growing complexity of scientific data poses serious challenges for an effective visualization. Data sets, e.g., catalogs of objects detected in sky surveys, can have a very high dimensionality, ~ 100 - 1000. Visualizing such hyper-dimensional data parameter spaces is essentially impossible, but there are ways of visualizing up to ~ 10 dimensions in a pseudo-3D display. We have been experimenting with the emerging technologies of immersive virtual reality (VR) as a platform for a scientific, interactive, collaborative data visualization. Our initial experiments used the virtual world of Second Life, and more recently VR worlds based on its open source code, OpenSimulator. There we can visualize up to ~ 100,000 data points in ~ 7 - 8 dimensions (3 spatial and others encoded as shapes, colors, sizes, etc.), in an immersive virtual space where scientists can interact with their data and with each other. We are now developing a more scalable visualization environment using the popular (practically an emerging standard) Unity 3D Game Engine, coded using C#, JavaScript, and the Unity Scripting Language. This visualization tool can be used through a standard web browser, or a standalone browser of its own. Rather than merely plotting data points, the application creates interactive three-dimensional objects of various shapes, colors, and sizes, and of course the XYZ positions, encoding various dimensions of the parameter space, that can be associated interactively. Multiple users can navigate through this data space simultaneously, either with their own, independent vantage points, or with a shared view. At this stage ~ 100,000 data points can be easily visualized within seconds on a simple laptop. The displayed data points can contain linked information; e.g., upon a clicking on a data point, a webpage with additional information can be rendered within the 3D world. A range of functionalities has been already deployed, and more are being added. We expect to make this visualization tool freely available to the academic community within a few months, on an experimental (beta testing) basis.

  4. Current Development Status of an Integrated Tool for Modeling Quasi-static Deformation in the Solid Earth

    NASA Astrophysics Data System (ADS)

    Williams, C. A.; Dicaprio, C.; Simons, M.

    2003-12-01

    With the advent of projects such as the Plate Boundary Observatory and future InSAR missions, spatially dense geodetic data of high quality will provide an increasingly detailed picture of the movement of the earth's surface. To interpret such information, powerful and easily accessible modeling tools are required. We are presently developing such a tool that we feel will meet many of the needs for evaluating quasi-static earth deformation. As a starting point, we begin with a modified version of the finite element code TECTON, which has been specifically designed to solve tectonic problems involving faulting and viscoelastic/plastic earth behavior. As our first priority, we are integrating the code into the GeoFramework, which is an extension of the Python-based Pyre modeling framework. The goal of this framework is to provide simplified user interfaces for powerful modeling codes, to provide easy access to utilities such as meshers and visualization tools, and to provide a tight integration between different modeling tools so they can interact with each other. The initial integration of the code into this framework is essentially complete, and a more thorough integration, where Python-based drivers control the entire solution, will be completed in the near future. We have an evolving set of priorities that we expect to solidify as we receive more input from the modeling community. Current priorities include the development of linear and quadratic tetrahedral elements, the development of a parallelized version of the code using the PETSc libraries, the addition of more complex rheologies, realistic fault friction models, adaptive time stepping, and spherical geometries. In this presentation we describe current progress toward our various priorities, briefly describe the structure of the code within the GeoFramework, and demonstrate some sample applications.

  5. Stand-alone front-end system for high- frequency, high-frame-rate coded excitation ultrasonic imaging.

    PubMed

    Park, Jinhyoung; Hu, Changhong; Shung, K Kirk

    2011-12-01

    A stand-alone front-end system for high-frequency coded excitation imaging was implemented to achieve a wider dynamic range. The system included an arbitrary waveform amplifier, an arbitrary waveform generator, an analog receiver, a motor position interpreter, a motor controller and power supplies. The digitized arbitrary waveforms at a sampling rate of 150 MHz could be programmed and converted to an analog signal. The pulse was subsequently amplified to excite an ultrasound transducer, and the maximum output voltage level achieved was 120 V(pp). The bandwidth of the arbitrary waveform amplifier was from 1 to 70 MHz. The noise figure of the preamplifier was less than 7.7 dB and the bandwidth was 95 MHz. Phantoms and biological tissues were imaged at a frame rate as high as 68 frames per second (fps) to evaluate the performance of the system. During the measurement, 40-MHz lithium niobate (LiNbO(3)) single-element lightweight (<;0.28 g) transducers were utilized. The wire target measure- ment showed that the -6-dB axial resolution of a chirp-coded excitation was 50 μm and lateral resolution was 120 μm. The echo signal-to-noise ratios were found to be 54 and 65 dB for the short burst and coded excitation, respectively. The contrast resolution in a sphere phantom study was estimated to be 24 dB for the chirp-coded excitation and 15 dB for the short burst modes. In an in vivo study, zebrafish and mouse hearts were imaged. Boundaries of the zebrafish heart in the image could be differentiated because of the low-noise operation of the implemented system. In mouse heart images, valves and chambers could be readily visualized with the coded excitation.

  6. Interactive MPEG-4 low-bit-rate speech/audio transmission over the Internet

    NASA Astrophysics Data System (ADS)

    Liu, Fang; Kim, JongWon; Kuo, C.-C. Jay

    1999-11-01

    The recently developed MPEG-4 technology enables the coding and transmission of natural and synthetic audio-visual data in the form of objects. In an effort to extend the object-based functionality of MPEG-4 to real-time Internet applications, architectural prototypes of multiplex layer and transport layer tailored for transmission of MPEG-4 data over IP are under debate among Internet Engineering Task Force (IETF), and MPEG-4 systems Ad Hoc group. In this paper, we present an architecture for interactive MPEG-4 speech/audio transmission system over the Internet. It utilities a framework of Real Time Streaming Protocol (RTSP) over Real-time Transport Protocol (RTP) to provide controlled, on-demand delivery of real time speech/audio data. Based on a client-server model, a couple of low bit-rate bit streams (real-time speech/audio, pre- encoded speech/audio) are multiplexed and transmitted via a single RTP channel to the receiver. The MPEG-4 Scene Description (SD) and Object Descriptor (OD) bit streams are securely sent through the RTSP control channel. Upon receiving, an initial MPEG-4 audio- visual scene is constructed after de-multiplexing, decoding of bit streams, and scene composition. A receiver is allowed to manipulate the initial audio-visual scene presentation locally, or interactively arrange scene changes by sending requests to the server. A server may also choose to update the client with new streams and list of contents for user selection.

  7. Electrical Microstimulation of the Superior Colliculus in Strabismic Monkeys.

    PubMed

    Fleuriet, Jérome; Walton, Mark M G; Ono, Seiji; Mustari, Michael J

    2016-06-01

    Visually guided saccades are disconjugate in human and nonhuman strabismic primates. The superior colliculus (SC) is a region of the brain topographically organized in visual and motor maps where the saccade goal is spatially coded. The present study was designed to investigate if a site of stimulation on the topographic motor map was evoking similar or different saccade vectors for each eye. We used microelectrical stimulation (MS) of the SC in two strabismic (one esotrope and one exotrope) and two control macaques under binocular and monocular viewing conditions. We compared the saccade amplitudes and directions for each SC site and each condition independently of the fixating eye and then between each fixating eye. A comparison with disconjugacies of visually guided saccades was also performed. We observed different saccade vectors for the two eyes in strabismic monkeys, but conjugate saccades in normal monkeys. Evoked saccade vectors for the left eye when that eye was fixating the target were different from those of the right eye when it was fixating. The disconjugacies evoked by the MS were not identical but similar to those observed for visually guided saccades especially for the dominant eye. Our results suggest that, in strabismus, the saccade generator does not interpret activation of a single location of the SC as the same desired displacement for each eye. This finding is important for advancing understanding of the development of neural circuits in strabismus. French Abstract.

  8. Interaction between numbers and size during visual search.

    PubMed

    Krause, Florian; Bekkering, Harold; Pratt, Jay; Lindemann, Oliver

    2017-05-01

    The current study investigates an interaction between numbers and physical size (i.e. size congruity) in visual search. In three experiments, participants had to detect a physically large (or small) target item among physically small (or large) distractors in a search task comprising single-digit numbers. The relative numerical size of the digits was varied, such that the target item was either among the numerically large or small numbers in the search display and the relation between numerical and physical size was either congruent or incongruent. Perceptual differences of the stimuli were controlled by a condition in which participants had to search for a differently coloured target item with the same physical size and by the usage of LCD-style numbers that were matched in visual similarity by shape transformations. The results of all three experiments consistently revealed that detecting a physically large target item is significantly faster when the numerical size of the target item is large as well (congruent), compared to when it is small (incongruent). This novel finding of a size congruity effect in visual search demonstrates an interaction between numerical and physical size in an experimental setting beyond typically used binary comparison tasks, and provides important new evidence for the notion of shared cognitive codes for numbers and sensorimotor magnitudes. Theoretical consequences for recent models on attention, magnitude representation and their interactions are discussed.

  9. Comparison of memory thresholds for planar qudit geometries

    NASA Astrophysics Data System (ADS)

    Marks, Jacob; Jochym-O'Connor, Tomas; Gheorghiu, Vlad

    2017-11-01

    We introduce and analyze a new type of decoding algorithm called general color clustering, based on renormalization group methods, to be used in qudit color codes. The performance of this decoder is analyzed under a generalized bit-flip error model, and is used to obtain the first memory threshold estimates for qudit 6-6-6 color codes. The proposed decoder is compared with similar decoding schemes for qudit surface codes as well as the current leading qubit decoders for both sets of codes. We find that, as with surface codes, clustering performs sub-optimally for qubit color codes, giving a threshold of 5.6 % compared to the 8.0 % obtained through surface projection decoding methods. However, the threshold rate increases by up to 112% for large qudit dimensions, plateauing around 11.9 % . All the analysis is performed using QTop, a new open-source software for simulating and visualizing topological quantum error correcting codes.

  10. Deconstructing processing speed deficits in schizophrenia: application of a parametric digit symbol coding test.

    PubMed

    Bachman, Peter; Reichenberg, Abraham; Rice, Patrick; Woolsey, Mary; Chaves, Olga; Martinez, David; Maples, Natalie; Velligan, Dawn I; Glahn, David C

    2010-05-01

    Cognitive processing inefficiency, often measured using digit symbol coding tasks, is a putative vulnerability marker for schizophrenia and a reliable indicator of illness severity and functional outcome. Indeed, performance on the digit symbol coding task may be the most severe neuropsychological deficit patients with schizophrenia display at the group level. Yet, little is known about the contributions of simpler cognitive processes to coding performance in schizophrenia (e.g. decision making, visual scanning, relational memory, motor ability). We developed an experimental behavioral task, based on a computerized digit symbol coding task, which allows the manipulation of demands placed on visual scanning efficiency and relational memory while holding decisional and motor requirements constant. Although patients (n=85) were impaired on all aspects of the task when compared to demographically matched healthy comparison subjects (n=30), they showed a particularly striking failure to benefit from the presence of predictable target information. These findings are consistent with predicted impairments in cognitive processing speed due to schizophrenia patients' well-known memory impairment, suggesting that this mnemonic deficit may have consequences for critical aspects of information processing that are traditionally considered quite separate from the memory domain. Future investigation into the mechanisms underlying the wide-ranging consequences of mnemonic deficits in schizophrenia should provide additional insight. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  11. [Learning virtual routes: what does verbal coding do in working memory?].

    PubMed

    Gyselinck, Valérie; Grison, Élise; Gras, Doriane

    2015-03-01

    Two experiments were run to complete our understanding of the role of verbal and visuospatial encoding in the construction of a spatial model from visual input. In experiment 1 a dual task paradigm was applied to young adults who learned a route in a virtual environment and then performed a series of nonverbal tasks to assess spatial knowledge. Results indicated that landmark knowledge as asserted by the visual recognition of landmarks was not impaired by any of the concurrent task. Route knowledge, assessed by recognition of directions, was impaired both by a tapping task and a concurrent articulation task. Interestingly, the pattern was modulated when no landmarks were available to perform the direction task. A second experiment was designed to explore the role of verbal coding on the construction of landmark and route knowledge. A lexical-decision task was used as a verbal-semantic dual task, and a tone decision task as a nonsemantic auditory task. Results show that these new concurrent tasks impaired differently landmark knowledge and route knowledge. Results can be interpreted as showing that the coding of route knowledge could be grounded on both a coding of the sequence of events and on a semantic coding of information. These findings also point on some limits of Baddeley's working memory model. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  12. Compressive Sampling based Image Coding for Resource-deficient Visual Communication.

    PubMed

    Liu, Xianming; Zhai, Deming; Zhou, Jiantao; Zhang, Xinfeng; Zhao, Debin; Gao, Wen

    2016-04-14

    In this paper, a new compressive sampling based image coding scheme is developed to achieve competitive coding efficiency at lower encoder computational complexity, while supporting error resilience. This technique is particularly suitable for visual communication with resource-deficient devices. At the encoder, compact image representation is produced, which is a polyphase down-sampled version of the input image; but the conventional low-pass filter prior to down-sampling is replaced by a local random binary convolution kernel. The pixels of the resulting down-sampled pre-filtered image are local random measurements and placed in the original spatial configuration. The advantages of local random measurements are two folds: 1) preserve high-frequency image features that are otherwise discarded by low-pass filtering; 2) remain a conventional image and can therefore be coded by any standardized codec to remove statistical redundancy of larger scales. Moreover, measurements generated by different kernels can be considered as multiple descriptions of the original image and therefore the proposed scheme has the advantage of multiple description coding. At the decoder, a unified sparsity-based soft-decoding technique is developed to recover the original image from received measurements in a framework of compressive sensing. Experimental results demonstrate that the proposed scheme is competitive compared with existing methods, with a unique strength of recovering fine details and sharp edges at low bit-rates.

  13. Imagining the truth and the moon: an electrophysiological study of abstract and concrete word processing.

    PubMed

    Gullick, Margaret M; Mitra, Priya; Coch, Donna

    2013-05-01

    Previous event-related potential studies have indicated that both a widespread N400 and an anterior N700 index differential processing of concrete and abstract words, but the nature of these components in relation to concreteness and imagery has been unclear. Here, we separated the effects of word concreteness and task demands on the N400 and N700 in a single word processing paradigm with a within-subjects, between-tasks design and carefully controlled word stimuli. The N400 was larger to concrete words than to abstract words, and larger in the visualization task condition than in the surface task condition, with no interaction. A marked anterior N700 was elicited only by concrete words in the visualization task condition, suggesting that this component indexes imagery. These findings are consistent with a revised or extended dual coding theory according to which concrete words benefit from greater activation in both verbal and imagistic systems. Copyright © 2013 Society for Psychophysiological Research.

  14. Combining image-processing and image compression schemes

    NASA Technical Reports Server (NTRS)

    Greenspan, H.; Lee, M.-C.

    1995-01-01

    An investigation into the combining of image-processing schemes, specifically an image enhancement scheme, with existing compression schemes is discussed. Results are presented on the pyramid coding scheme, the subband coding scheme, and progressive transmission. Encouraging results are demonstrated for the combination of image enhancement and pyramid image coding schemes, especially at low bit rates. Adding the enhancement scheme to progressive image transmission allows enhanced visual perception at low resolutions. In addition, further progressing of the transmitted images, such as edge detection schemes, can gain from the added image resolution via the enhancement.

  15. RELAP5-3D developmental assessment: Comparison of version 4.2.1i on Linux and Windows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayless, Paul D.

    2014-06-01

    Figures have been generated comparing the parameters used in the developmental assessment of the RELAP5-3D code, version 4.2i, compiled on Linux and Windows platforms. The figures, which are the same as those used in Volume III of the RELAP5-3D code manual, compare calculations using the semi-implicit solution scheme with available experiment data. These figures provide a quick, visual indication of how the code predictions differ between the Linux and Windows versions.

  16. RELAP5-3D Developmental Assessment. Comparison of Version 4.3.4i on Linux and Windows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayless, Paul David

    2015-10-01

    Figures have been generated comparing the parameters used in the developmental assessment of the RELAP5-3D code, version 4.3i, compiled on Linux and Windows platforms. The figures, which are the same as those used in Volume III of the RELAP5-3D code manual, compare calculations using the semi-implicit solution scheme with available experiment data. These figures provide a quick, visual indication of how the code predictions differ between the Linux and Windows versions.

  17. A publicly available SSC+EC code.

    NASA Astrophysics Data System (ADS)

    Georganopoulos, M.; Perlman, E. S.; Kazanas, D.; Wingert, B.; Castro, R.

    2004-08-01

    We present a time-dependent one zone SSC+EC code that takes into account the KN-cross section, and calculates self-consistently all orders of Compton scattering. In particular, it produces separate results for the first order Compton component, and for the total Compton emission. The kinetic equation is solved using a stable implicit scheme, and the user can select from a range of physically motivated temporal electron injection profile. The code is written in C, is fully documented and will soon be publicly available through the Internet, along with a set of IDL visualization routines.

  18. Supersonic Coaxial Jet Experiment for CFD Code Validation

    NASA Technical Reports Server (NTRS)

    Cutler, A. D.; Carty, A. A.; Doerner, S. E.; Diskin, G. S.; Drummond, J. P.

    1999-01-01

    A supersonic coaxial jet facility has been designed to provide experimental data suitable for the validation of CFD codes used to analyze high-speed propulsion flows. The center jet is of a light gas and the coflow jet is of air, and the mixing layer between them is compressible. Various methods have been employed in characterizing the jet flow field, including schlieren visualization, pitot, total temperature and gas sampling probe surveying, and RELIEF velocimetry. A Navier-Stokes code has been used to calculate the nozzle flow field and the results compared to the experiment.

  19. EXODUS II: A finite element data model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoof, L.A.; Yarberry, V.R.

    1994-09-01

    EXODUS II is a model developed to store and retrieve data for finite element analyses. It is used for preprocessing (problem definition), postprocessing (results visualization), as well as code to code data transfer. An EXODUS II data file is a random access, machine independent, binary file that is written and read via C, C++, or Fortran library routines which comprise the Application Programming Interface (API).

  20. ''The W and M Are Mixing Me Up'': Use of a Visual Code in Verbal Short-Term Memory Tasks

    ERIC Educational Resources Information Center

    Best, W.; Howard, D.

    2005-01-01

    When normal participants are presented with written verbal short-term memory tasks (e.g., remembering a set of letters for immediate spoken recall) there is evidence to suggest that the information is re-coded into phonological form. This paper presents a single case study of MJK whose reading follows the pattern of phonological dyslexia. In…

Top