Subcooled forced convection boiling of trichlorotrifluoroethane
NASA Technical Reports Server (NTRS)
Dougall, R. S.; Panian, D. J.
1972-01-01
Experimental heat-transfer data were obtained for the forced-convection boiling of trichlorotrifluoroethane (R-113 or Freon-113) in a vertical annular test annular test section. The 97 data points obtained covered heat transfer by forced convection, local boiling, and fully-developed boiling. Correlating methods were obtained which accurately predicted the heat flux as a function of wall superheat (boiling curve) over the range of parameters studied.
Boiling incipience and convective boiling of neon and nitrogen
NASA Technical Reports Server (NTRS)
Papell, S. S.; Hendricks, R. C.
1977-01-01
Forced convection and subcooled boiling heat transfer data for liquid nitrogen and liquid neon were obtained in support of a design study for a 30 tesla cryomagnet cooled by forced convection of liquid neon. The cryogen data obtained over a range of system pressures, fluid flow rates, and applied heat fluxes were used to develop correlations for predicting boiling incipience and convective boiling heat transfer coefficients in uniformly heated flow channels. The accuracy of the correlating equations was then evaluated. A technique was also developed to calculate the position of boiling incipience in a uniformly heated flow channel. Comparisons made with the experimental data showed a prediction accuracy of + or - 15 percent.
Boiling incipience and convective boiling of neon and nitrogen
NASA Technical Reports Server (NTRS)
Papell, S. S.; Hendricks, R. C.
1977-01-01
Forced convection and subcooled boiling heat transfer data for liquid nitrogen and liquid neon were obtained in support of a design study for a 30 tesla cryomagnet cooled by forced convection of liquid neon. This design precludes nucleate boiling in the flow channels as they are too small to handle vapor flow. Consequently, it was necessary to determine boiling incipience under the operating conditions of the magnet system. The cryogen data obtained over a range of system pressures, fluid flow rates, and applied heat fluxes were used to develop correlations for predicting boiling incipience and convective boiling heat transfer coefficients in uniformly heated flow channels. The accuracy of the correlating equations was then evaluated. A technique was also developed to calculate the position of boiling incipience in a uniformly heated flow channel. Comparisons made with the experimental data showed a prediction accuracy of plus or minus 15 percent
Correlational approach to turbulent saturated film boiling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, T.Y.
A correlation method for saturated film boiling is proposed. The correlation is based on the analogy between film boiling and natural convection. As in the case of natural convection, the turbulent film boiling correlation takes the form of a Nusselt number versus the Raleigh number power law, Nu[sub B] [proportional to] Ra[sub B][sup 1.3]. The proposed correlation shows very good agreement with current data for film boiling of water from vertical surfaces. The general applicability of the correlation is established by comparisons with film boiling data from R-113 and cryogenic fluids. 25 refs., 8 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwang-Won, Lee; Sang-Yong, Lee
1995-09-01
A mechanistic model for forced convective transition boiling has been developed to investigate transition boiling mechanisms and to predict transition boiling heat flux realistically. This model is based on a postulated multi-stage boiling process occurring during the passage time of the elongated vapor blanket specified at a critical heat flux (CHF) condition. Between the departure from nucleate boiling (DNB) and the departure from film boiling (DFB) points, the boiling heat transfer is established through three boiling stages, namely, the macrolayer evaporation and dryout governed by nucleate boiling in a thin liquid film and the unstable film boiling characterized by themore » frequent touches of the interface and the heated wall. The total heat transfer rates after the DNB is weighted by the time fractions of each stage, which are defined as the ratio of each stage duration to the vapor blanket passage time. The model predictions are compared with some available experimental transition boiling data. The parametric effects of pressure, mass flux, inlet subcooling on the transition boiling heat transfer are also investigated. From these comparisons, it can be seen that this model can identify the crucial mechanisms of forced convective transition boiling, and that the transition boiling heat fluxes including the maximum heat flux and the minimum film boiling heat flux are well predicted at low qualities/high pressures near 10 bar. In future, this model will be improved in the unstable film boiling stage and generalized for high quality and low pressure situations.« less
A study of forced convection boiling under reduced gravity
NASA Technical Reports Server (NTRS)
Merte, Herman, Jr.
1992-01-01
This report presents the results of activities conducted over the period 1/2/85-12/31/90, in which the study of forced convection boiling under reduced gravity was initiated. The study seeks to improve the understanding of the basic processes that constitute forced convection boiling by removing the buoyancy effects which may mask other phenomena. Specific objectives may also be expressed in terms of the following questions: (1) what effects, if any, will the removal of body forces to the lowest possible levels have on the forced convection boiling heat transfer processes in well-defined and meaningful circumstances? (this includes those effects and processes associated with the nucleation or onset of boiling during the transient increase in heater surface temperature, as well as the heat transfer and vapor bubble behaviors with established or steady-state conditions); and (2) if such effects are present, what are the boundaries of the relevant parameters such as heat flux, heater surface superheat, fluid velocity, bulk subcooling, and geometric/orientation relationships within which such effects will be produced?
Critical heat flux for free convection boiling in thin rectangular channels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Lap Y.; Tichler, P.R.
A review of the experimental data on free convection boiling critical heat flux (CHF) in vertical rectangular channels reveals three mechanisms of burnout. They are the pool boiling limit, the circulation limit, and the flooding limit associated with a transition in flow regime from churn to annular flow. The dominance of a particular mechanism depends on the dimensions of the channel. Analytical models were developed for each free convection boiling limit. Limited agreement with data is observed. A CHF correlation, which is valid for a wide range of gap sizes, was constructed from the CHFs calculated according to the threemore » mechanisms of burnout. 17 refs., 7 figs.« less
Evaporation of a sessile water drop and a drop of aqueous salt solution.
Misyura, S Y
2017-11-07
The influence of various factors on the evaporation of drops of water and aqueous salt solution has been experimentally studied. Typically, in the studies of drop evaporation, only the diffusive vapor transfer, radiation and the molecular heat conduction are taken into account. However, vapor-gas convection plays an important role at droplet evaporation. In the absence of droplet boiling, the influence of gas convection turns out to be the prevailing factor. At nucleate boiling, a prevailing role is played by bubbles generation and vapor jet discharge at a bubble collapse. The gas convection behavior for water and aqueous salt solution is substantially different. With a growth of salt concentration over time, the influence of the convective component first increases, reaches an extremum and then significantly decreases. At nucleate boiling in a salt solution it is incorrect to simulate the droplet evaporation and the heat transfer in quasi-stationary approximation. The evaporation at nucleate boiling in a liquid drop is divided into several characteristic time intervals. Each of these intervals is characterized by a noticeable change in both the evaporation rate and the convection role.
Pool Boiling Experiment Has Five Successful Flights
NASA Technical Reports Server (NTRS)
Chiaramonte, Fran
1997-01-01
The Pool Boiling Experiment (PBE) is designed to improve understanding of the fundamental mechanisms that constitute nucleate pool boiling. Nucleate pool boiling is a process wherein a stagnant pool of liquid is in contact with a surface that can supply heat to the liquid. If the liquid absorbs enough heat, a vapor bubble can be formed. This process occurs when a pot of water boils. On Earth, gravity tends to remove the vapor bubble from the heating surface because it is dominated by buoyant convection. In the orbiting space shuttle, however, buoyant convection has much less of an effect because the forces of gravity are very small. The Pool Boiling Experiment was initiated to provide insight into this nucleate boiling process, which has many earthbound applications in steamgeneration power plants, petroleum plants, and other chemical plants. In addition, by using the test fluid R-113, the Pool Boiling Experiment can provide some basic understanding of the boiling behavior of cryogenic fluids without the large cost of an experiment using an actual cryogen.
Wang, T; Zhao, G; Tang, H Y; Jiang, Z D
2015-01-01
Cell survival upon cryopreservation is affected by the cooling rate. However, it is difficult to model the heat transfer process or to predict the cooling curve of a cryoprotective agent (CPA) solution due to the uncertainty of its convective heat transfer coefficient (h). To measure the h and to better understand the heat transfer process of cryovials filled with CPA solution being plunged in liquid nitrogen. The temperatures at three locations of the CPA solution in a cryovial were measured. Different h values were selected after the cooling process was modeled as natural convection heat transfer, the film boiling and the nucleate boiling, respectively. And the temperatures of the selected points are simulated based on the selected h values. h was determined when the simulated temperature best fitted the experimental temperature. When the experimental results were best fitted, according to natural convection heat transfer model, h(1) = 120 W/(m(2)·K) while due to film boiling and nucleate boiling regimes h(f) = 5 W/(m(2)·K) followed by h(n) = 245 W/(m(2)·K). These values were verified by the differential cooling rates at the three locations of a cryovial. The heat transfer process during cooling in liquid nitrogen is better modeled as film boiling followed by nucleate boiling.
NASA Astrophysics Data System (ADS)
Alavi Fazel, S. Ali
2017-09-01
A new optimized model which can predict the heat transfer in the nucleate boiling at isolated bubble regime is proposed for pool boiling on a horizontal rod heater. This model is developed based on the results of direct observations of the physical boiling phenomena. Boiling heat flux, wall temperature, bubble departing diameter, bubble generation frequency and bubble nucleation site density have been experimentally measured. Water and ethanol have been used as two different boiling fluids. Heating surface was made by several metals and various degrees of roughness. The mentioned model considers various mechanisms such as latent heat transfer due to micro-layer evaporation, transient conduction due to thermal boundary layer reformation, natural convection, heat transfer due to the sliding bubbles and bubble super-heating. The fractional contributions of individual mentioned heat transfer mechanisms have been calculated by genetic algorithm. The results show that at wall temperature difference more that about 3 K, bubble sliding transient conduction, non-sliding transient conduction, micro-layer evaporation, natural convection, radial forced convection and bubble super-heating have higher to lower fractional contributions respectively. The performance of the new optimized model has been verified by comparison of the existing experimental data.
Estimating surface temperature in forced convection nucleate boiling - A simplified method
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Papell, S. S.
1977-01-01
A simplified expression to estimate surface temperatures in forced convection boiling was developed using a liquid nitrogen data base. Using the principal of corresponding states and the Kutateladze relation for maximum pool boiling heat flux, the expression was normalized for use with other fluids. The expression was applied also to neon and water. For the neon data base, the agreement was acceptable with the exclusion of one set suspected to be in the transition boiling regime. For the water data base at reduced pressure greater than 0.05 the agreement is generally good. At lower reduced pressures, the water data scatter and the calculated temperature becomes a function of flow rate.
New Correlation Methods of Evaporation Heat Transfer in Horizontal Microfine Tubes
NASA Astrophysics Data System (ADS)
Makishi, Osamu; Honda, Hiroshi
A stratified flow model and an annular flow model of evaporation heat transfer in horizontal microfin tubes have been proposed. In the stratified flow model, the contributions of thin film evaporation and nucleate boiling in the groove above a stratified liquid were predicted by a previously reported numerical analysis and a newly developed correlation, respectively. The contributions of nucleate boiling and forced convection in the stratified liquid region were predicted by the new correlation and the Carnavos equation, respectively. In the annular flow model, the contributions of nucleate boiling and forced convection were predicted by the new correlation and the Carnavos equation in which the equivalent Reynolds number was introduced, respectively. A flow pattern transition criterion proposed by Kattan et al. was incorporated to predict the circumferential average heat transfer coefficient in the intermediate region by use of the two models. The predictions of the heat transfer coefficient compared well with available experimental data for ten tubes and four refrigerants.
A Correlation for Forced Convective Boiling Heat Transfer of Refrigerants in a Microfin Tube
NASA Astrophysics Data System (ADS)
Momoki, Satoru; Yu, Jian; Koyama, Shigeru; Fujii, Tetsu; Honda, Hiroshi
The experimental study is reported on the forced convective boiling of pure refrigerants HCFC22, HFC134a and HCFC123 flowing in a horizontal microfin tube. The local heat transfer coefficient defined based on the actual inside surface area is measured in the ranges of mass velocity of 200 to 400 kg/m2s, heat flux of 5 to 64 kW/m2 and reduced pressure of 0.07 to 0.24. Using the Chen-type model, a new correlation for microfin tubes is proposed considering the enhancement effect of microfins on both the convective heat transfer and the nucleate boiling components. In the convective heat transfer component, the correlation to predict the heat transfer coefficient of liquid-only flow is determined from preliminary experiments on single-phase flow in microfin tubes, and the two-phase flow enhancement factor is determined from the present experimental data. For the nucleate boiling component, the correlation of Takamatsu et al. for smooth tube is modified. The prediction of the present correlation agrees well with present experimental data, and is available for several microfin tubes which were tested by other researchers.
Experimental Study of a Nitrogen Natural Circulation Loop at Low Heat Flux
NASA Astrophysics Data System (ADS)
Baudouy, B.
2010-04-01
A natural convection circulation loop in liquid nitrogen, i.e. an open thermosiphon flow configuration, has been investigated experimentally near atmospheric pressure. The experiments were conducted on a 2 m high loop with a copper tube of 10 mm inner diameter uniformly heated over a length of 0.95 m. Evolution of the total mass flow rate of the loop and the pressure difference along the tube are described. We also report the boiling curves where single phase and two-phase flows are identified with increasing heat flux. We focus our heat transfer analysis on the single phase regime where mixed convection is encountered. A heat transfer coefficient correlation is proposed. We also examine the boiling incipience as a function of the tube height.
Heat transport in bubbling turbulent convection
Lakkaraju, Rajaram; Stevens, Richard J. A. M.; Oresta, Paolo; Verzicco, Roberto; Lohse, Detlef; Prosperetti, Andrea
2013-01-01
Boiling is an extremely effective way to promote heat transfer from a hot surface to a liquid due to numerous mechanisms, many of which are not understood in quantitative detail. An important component of the overall process is that the buoyancy of the bubble compounds with that of the liquid to give rise to a much-enhanced natural convection. In this article, we focus specifically on this enhancement and present a numerical study of the resulting two-phase Rayleigh–Bénard convection process in a cylindrical cell with a diameter equal to its height. We make no attempt to model other aspects of the boiling process such as bubble nucleation and detachment. The cell base and top are held at temperatures above and below the boiling point of the liquid, respectively. By keeping this difference constant, we study the effect of the liquid superheat in a Rayleigh number range that, in the absence of boiling, would be between 2 × 106 and 5 × 109. We find a considerable enhancement of the heat transfer and study its dependence on the number of bubbles, the degree of superheat of the hot cell bottom, and the Rayleigh number. The increased buoyancy provided by the bubbles leads to more energetic hot plumes detaching from the cell bottom, and the strength of the circulation in the cell is significantly increased. Our results are in general agreement with recent experiments on boiling Rayleigh–Bénard convection. PMID:23696657
Heat transport in bubbling turbulent convection.
Lakkaraju, Rajaram; Stevens, Richard J A M; Oresta, Paolo; Verzicco, Roberto; Lohse, Detlef; Prosperetti, Andrea
2013-06-04
Boiling is an extremely effective way to promote heat transfer from a hot surface to a liquid due to numerous mechanisms, many of which are not understood in quantitative detail. An important component of the overall process is that the buoyancy of the bubble compounds with that of the liquid to give rise to a much-enhanced natural convection. In this article, we focus specifically on this enhancement and present a numerical study of the resulting two-phase Rayleigh-Bénard convection process in a cylindrical cell with a diameter equal to its height. We make no attempt to model other aspects of the boiling process such as bubble nucleation and detachment. The cell base and top are held at temperatures above and below the boiling point of the liquid, respectively. By keeping this difference constant, we study the effect of the liquid superheat in a Rayleigh number range that, in the absence of boiling, would be between 2 × 10(6) and 5 × 10(9). We find a considerable enhancement of the heat transfer and study its dependence on the number of bubbles, the degree of superheat of the hot cell bottom, and the Rayleigh number. The increased buoyancy provided by the bubbles leads to more energetic hot plumes detaching from the cell bottom, and the strength of the circulation in the cell is significantly increased. Our results are in general agreement with recent experiments on boiling Rayleigh-Bénard convection.
Transient boiling heat transfer in saturated liquid nitrogen and F113 at standard and zero gravity
NASA Technical Reports Server (NTRS)
Oker, E.; Merte, H., Jr.
1973-01-01
Transient and steady state nucleate boiling in saturated LN2 and F113 at standard and near zero gravity conditions were investigated for the horizontal up, vertical and horizontal down orientations of the heating surface. Two distinct regimes of heat transfer mechanisms were observed during the interval from the step increase of power input to the onset of nucleate boiling: the conduction and convection dominated regimes. The time duration in each regime was considerably shorter with LN2 than with F113, and decreased as heat flux increased, as gravity was reduced, and as the orientation was changed from horizontal up to horizontal down. In transient boiling, boiling initiates at a single point following the step increase in power, and then spreads over the surface. The delay time for the inception of boiling at the first site, and the velocity of spread of boiling varies depending upon the heat flux, orientation, body force, surface roughness and liquid properties, and are a consequence of changes in boundary layer temperature levels associated with changes in natural convection. Following the step increase in power input, surface temperature overshoot and undershoot occur before the steady state boiling temperature level is established.
Surface Deformation by Thermo-capillary Convection -Sounding Rocket COMPERE Experiment SOURCE
NASA Astrophysics Data System (ADS)
Fuhrmann, Eckart; Dreyer, Michael E.
The sounding rocket COMPERE experiment SOURCE was successfully flown on MASER 11, launched in Kiruna (ESRANGE), May 15th, 2008. SOURCE has been intended to partly ful-fill the scientific objectives of the European Space Agency (ESA) Microgravity Applications Program (MAP) project AO-2004-111 (Convective boiling and condensation). Three parties of principle investigators have been involved to design the experiment set-up: ZARM for thermo-capillary flows, IMFT (Toulouse, France) for boiling studies, EADS Astrium (Bremen, Ger-many) for depressurization. The scientific aims are to study the effect of wall heat flux on the contact line of the free liquid surface and to obtain a correlation for a convective heat transfer coefficient. The experiment has been conducted along a predefined time line. A preheating sequence at ground was the first operation to achieve a well defined temperature evolution within the test cell and its environment inside the rocket. Nearly one minute after launch, the pressurized test cell was filled with the test liquid HFE-7000 until a certain fill level was reached. Then the free surface could be observed for 120 s without distortion. Afterwards, the first depressurization was started to induce subcooled boiling, the second one to start saturated boiling. The data from the flight consists of video images and temperature measurements in the liquid, the solid, and the gaseous phase. Data analysis provides the surface shape versus time and the corresponding apparent contact angle. Computational analysis provides information for the determination of the heat transfer coefficient in a compensated gravity environment where a flow is caused by the temperature difference between the hot wall and the cold liquid. Correlations for the effective contact angle and the heat transfer coefficient shall be delivered as a function of the relevant dimensionsless parameters. The data will be used for benchmarking of commercial CFD codes and the tank design (using these codes) of future cryogenic upper stages.
NASA Astrophysics Data System (ADS)
Seiler, J. M.; Rameau, B.
Bundle sodium boiling in nominal geometry for different accident conditions is reviewed. Voiding of a subassembly is controlled by not only hydrodynamic effects but mainly by thermal effects. There is a strong influence of the thermal inertia of the bundle material compared to the sodium thermal inertia. Flow instability, during a slow transient, can be analyzed with numerical tools and estimated using simplified approximations. Stable boiling operational conditions under bundle mixed convection (natural convection in the reactor) can be predicted. Voiding during a fast transient can be approximated from single channel calculations. The phenomenology of boiling behavior for a subassembly with inlet completely blocked, submitted to decay heat and lateral cooling; two-phase sodium flow pressure drop in a tube of large hydraulic diameter under adiabatic conditions; critical flow phenomena and voiding rate under high power, slow transient conditions; and onset of dry out under local boiling remains problematical.
NASA Astrophysics Data System (ADS)
Agishev, B. Y.; Boltenko, E. A.; Varava, A. N.; Dedov, A. V.; Zakharenkov, A. V.; Komov, A. T.; Smorchova, Y. V.
2018-03-01
The effectiveness of the heat exchange intensifier “rib-twisted wire” is considered in this paper. The main goal is to study the influence of the wire coiling step t on heat transfer and hydraulic resistance for different values Ḣ of the dimensionless height of the edge Ḣ, as well as some results on heat exchange during bubbly boiling in an annular channel. Show: • a brief description and an image of the heat exchange intensifier “rib-twisted wire” • generalized results of studies of heat exchange and hydraulic resistance in the annular channel in the single-phase convection with different geometric characteristics of the intensifier; • empirical correlations of the generalized experimental results that allow to calculating the coefficient of hydraulic resistance and heat transfer in the range of regime parameters in the single-phase convection that is being studied. • some results of experiments in bubbly boiling regimes and near-critical thermal loads.
Heat Transfer by Thermo-capillary Convection -Sounding Rocket COMPERE Experiment SOURCE
NASA Astrophysics Data System (ADS)
Dreyer, Michael; Fuhrmann, Eckart
The sounding rocket COMPERE experiment SOURCE was successfully flown on MASER 11, launched in Kiruna (ESRANGE), May 15th, 2008. SOURCE has been intended to partly ful-fill the scientific objectives of the European Space Agency (ESA) Microgravity Applications Program (MAP) project AO-2004-111 (Convective boiling and condensation). Three parties of principle investigators have been involved to design the experiment set-up: ZARM for thermo-capillary flows, IMFT (Toulouse, France) for boiling studies, EADS Astrium (Bremen, Ger-many) for depressurization. The topic of this paper is to study the effect of wall heat flux on the contact line of the free liquid surface and to obtain a correlation for a convective heat trans-fer coefficient. The experiment has been conducted along a predefined time line. A preheating sequence at ground was the first operation to achieve a well defined temperature evolution within the test cell and its environment inside the rocket. Nearly one minute after launch, the pressurized test cell was filled with the test liquid HFE-7000 until a certain fill level was reached. Then the free surface could be observed for 120 s without distortion. Afterwards, the first depressurization was started to induce subcooled boiling, the second one to start saturated boiling. The data from the flight consists of video images and temperature measurements in the liquid, the solid, and the gaseous phase. Data analysis provides the surface shape versus time and the corresponding apparent contact angle. Computational analysis provides information for the determination of the heat transfer coefficient in a compensated gravity environment where a flow is caused by the temperature difference between the hot wall and the cold liquid. The paper will deliver correlations for the effective contact angle and the heat transfer coefficient as a function of the relevant dimensionsless parameters as well as physical explanations for the observed behavior. The data will be used for benchmarking of commercial CFD codes and the tank design (using these codes) of future cryogenic upper stages. References Eckart Fuhrmann, Michael E. Dreyer, Description of the Sounding Rocket Experiment SOURCE, Microgravity sci. technol., 20/3-4, 206 (2008)
A review on boiling heat transfer enhancement with nanofluids
2011-01-01
There has been increasing interest of late in nanofluid boiling and its use in heat transfer enhancement. This article covers recent advances in the last decade by researchers in both pool boiling and convective boiling applications, with nanofluids as the working fluid. The available data in the literature is reviewed in terms of enhancements, and degradations in the nucleate boiling heat transfer and critical heat flux. Conflicting data have been presented in the literature on the effect that nanofluids have on the boiling heat-transfer coefficient; however, almost all researchers have noted an enhancement in the critical heat flux during nanofluid boiling. Several researchers have observed nanoparticle deposition at the heater surface, which they have related back to the critical heat flux enhancement. PMID:21711794
Investigation into flow boiling heat transfer in a minichannel with enhanced heating surface
NASA Astrophysics Data System (ADS)
Piasecka, Magdalena
2012-04-01
The paper presents results of flow boiling in a minichannel of 1.0 mm depth. The heating element for the working fluid (FC-72) that flows along the minichannel is a single-sided enhanced alloy foil made from Haynes-230. Microrecesses were formed on the selected area of the heating foil by laser technology. The observations of the flow structure were carried out through a piece of glass. Simultaneously, owing to the liquid crystal layer placed on the opposite side of the enhanced foil surface, it was possible to measure temperature distribution on the heating wall through another piece of glass. The experimental research has been focused on the transition from single phase forced convection to nucleate boiling, i.e. the zone of boiling incipience and further development of boiling. The objective of the paper is determining of the void fraction for some cross-sections of selected images for increasing heat fluxes supplied to the heating surface. The flow structure photos were processed in Corel graphics software and binarized. The analysis of phase volumes was developed in Techystem Globe software.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koster, J.N.; Sani, R.L.
1990-01-01
Various papers on low-gravity fluid dynamics and transport phenomena are presented. Individual topics addressed include: fluid management in low gravity, nucleate pool boiling in variable gravity, application of energy-stability theory to problems in crystal growth, thermosolutal convection in liquid HgCdTe near the liquidus temperature, capillary surfaces in microgravity, thermohydrodynamic instabilities and capillary flows, interfacial oscillators, effects of gravity jitter on typical fluid science experiments and on natural convection in a vertical cylinder. Also discussed are: double-diffusive convection and its effects under reduced gravity, segregation and convection in dendritic alloys, fluid flow and microstructure development, analysis of convective situations with themore » Soret effect, complex natural convection in low Prandtl number metals, separation physics, phase partitioning in reduced gravity, separation of binary alloys with miscibility gap in the melt, Ostwald ripening in liquids, particle cloud combustion in reduced gravity, opposed-flow flame spread with implications for combustion at microgravity.« less
NASA Technical Reports Server (NTRS)
Sabin, C. M.; Poppendiek, H. F.
1971-01-01
A number of heat transfer and fluid flow mechanisms that control once-through, forced convection potassium boiling are studied analytically. The topics discussed are: (1) flow through tubes containing helical wire inserts, (2) motion of droplets entrained in vapor flow, (3) liquid phase distribution in boilers, (4) temperature distributions in boiler tube walls, (5) mechanisms of heat transfer regime change, and (6) heat transfer in boiler tubes. Whenever possible, comparisons of predicted and actual performances are made. The model work presented aids in the prediction of operating characteristics of actual boilers.
Film Boiling Heat Transfer Properties of Liquid Hydrogen in Natural Convection
NASA Astrophysics Data System (ADS)
Horie, Y.; Shirai, Y.; Shiotsu, M.; Matsuzawa, T.; Yoneda, K.; Shigeta, H.; Tatsumoto, H.; Hata, K.; Naruo, Y.; Kobayashi, H.; Inatani, Y.
Film boiling heat transfer properties of LH2 for various pressures and subcooling conditions were measured by applying electric current to give an exponential heat input to a PtCo wire with a diameter of 1.2 mm submerged in LH2. The heated wire was set to be horizontal to the ground. The heat transfer coefficient in the film boiling region was higher for higher pressure and higher subcooling. The experimental results are compared with the equation of pool film boiling heat transfer. It is confirmed that the pool film boiling heat transfer coefficients in LH2 can be expressed by this equation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Weihuan; France, David M.; Yu, Wenhua
At present, single-phase liquid, forced convection cooled heat sinks with fins are used to cool power electronics in hybrid electric vehicles (HEVs). Although use of fins in the cooling channels increases heat transfer rates considerably, a second low-temperature radiator and associated pumping system are still required in HEVs. This additional cooling system adds weight and cost while decreasing the efficiency of HEVs. With the objective of eliminating this additional low-temperature radiator and pumping system in HEVs, an alternative cooling technology, subcooled boiling in the cooling channels, was investigated in the present study. Numerical heat transfer simulations were performed using subcooledmore » boiling in the power electronics cooling channels with the coolant supplied from the existing main engine cooling system. Results show that this subcooled boiling system is capable of removing 25% more heat from the power electronics than the conventional forced convection cooling technology, or it can reduce the junction temperature of the power electronics at the current heat removal rate. With the 25% increased heat transfer option, high heat fluxes up to 250 W/cm(2) (typical for wideband-gap semiconductor applications) are possible by using the subcooled boiling system.« less
Thermal effects in two-phase flow through face seals. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Basu, Prithwish
1988-01-01
When liquid is sealed at high temperature, it flashes inside the seal due to pressure drop and/or viscous heat dissipation. Two-phase seals generally exhibit more erratic behavior than their single phase counterparts. Thermal effects, which are often neglected in single phase seal analyses, play an important role in determining seal behavior under two-phase operation. It is necessary to consider the heat generation due to viscous shear, conduction into the seal rings and convection with the leakage flow. Analytical models developed work reasonably well at the two extremes - for low leakage rates when convection is neglected and for higher leakage rates when conduction is neglected. A preliminary model, known as the Film Coefficient Model, is presented which considers conduction and convection both, and allows continuous boiling over an extended region unlike the previous low-leakage rate model which neglects convection and always forces a discrete boiling interface. Another simplified, semi-analytical model, based on the assumption of isothermal conditions along the seal interafce, has been developed for low leakage rates. The Film Coefficient Model may be used for more accurate and realistic description.
RUBI -a Reference mUltiscale Boiling Investigation for the Fluid Science Laboratory
NASA Astrophysics Data System (ADS)
Schweizer, Nils; Stelzer, Marco; Schoele-Schulz, Olaf; Picker, Gerold; Ranebo, Hans; Dettmann, Jan; Minster, Olivier; Toth, Balazs; Winter, Josef; Tadrist, Lounes; Stephan, Peter; Grassi, Walter; di Marco, Paolo; Colin, Catherine; Piero Celata, Gian; Thome, John; Kabov, Oleg
Boiling is a two-phase heat transfer process where large heat fluxes can be transferred with small driving temperature differences. The high performance of boiling makes the process very interesting for heat transfer applications and it is widely used in industry for example in power plants, refrigeration systems, and electronics cooling. Nevertheless, due to the large number of involved phenomena and their often highly dynamic nature a fundamental understanding and closed theoretical description is not yet accomplished. The design of systems incorporating the process is generally based on empirical correlations, which are commonly accompanied by large uncertainties and, thus, has to be verified by expensive test campaigns. Hence, strong efforts are currently made to develop applicable numerical tools for a reliable prediction of the boiling heat transfer performance and limits. In order to support and validate this development and, in particular as a precondition, to enhance the basic knowledge about boiling the comprehensive multi-scale experiment RUBI (Reference mUlti-scale Boiling Investigation) for the Fluid Science Laboratory on board the ISS is currently in preparation. The scientific objectives and requirements of RUBI have been defined by the members of the ESA topical team "Boiling and Multiphase Flow" and addresses fundamental aspects of boiling phenomena. The main objectives are the measurement of wall temperature and heat flux distribution underneath vapour bubbles with high spatial and tem-poral resolution by means of IR thermography accompanied by the synchronized high-speed observation of the bubble shapes. Furthermore, the fluid temperature in the vicinity and inside of the bubbles will be measured by a micro sensor array. Additional stimuli are the generation of an electric field above the heating surface and a shear flow created by a forced convection loop. The objective of these stimuli is to impose forces on the bubbles and investigate the resulting bubble behaviour such as bubble sliding on and detaching from the surface. The experiments benefits from the absence of vapour buoyancy and natural convection in the high quality and long-term microgravity of the ISS. Effects and phenomena like thermocapillary convection that are hardly observable in normal gravity conditions can be investigated. Clearly predefined conditions particularly of the thermal layer at the heating surface can be established without disturbances by natural convection. Vapour buoyancy as the main detaching force in normal gravity is missing. Hence, it is possible to study stationary, attached bubbles and alternative detaching forces. With RUBI a long history of boiling experiments is perpetuated that used microgravity as a tool for a deeper understanding of the fundamental phenomena. Several precursor experiments closely related to the RUBI project have already been conducted on parabolic flights. The subject of the paper is to provide an overview on the RUBI project, its scientific objectives and the corresponding experimental principle. The current design of the experiment container that is under development at ASTRIUM Space Transportation in Friedrichshafen will be introduced. Furthermore, results from the precursor experiments are presented. The industrial activities of the RUBI project are funded and the science team is supported by ESA.
Capillary hydrodynamics and transport processes during phase change in microscale systems
NASA Astrophysics Data System (ADS)
Kuznetsov, V. V.
2017-09-01
The characteristics of two-phase gas-liquid flow and heat transfer during flow boiling and condensing in micro-scale heat exchangers are discussed in this paper. The results of numerical simulation of the evaporating liquid film flowing downward in rectangular minichannel of the two-phase compact heat exchanger are presented and the peculiarities of microscale heat transport in annular flow with phase changes are discussed. Presented model accounts the capillarity induced transverse flow of liquid and predicts the microscale heat transport processes when the nucleate boiling becomes suppressed. The simultaneous influence of the forced convection, nucleate boiling and liquid film evaporation during flow boiling in plate-fin heat exchangers is considered. The equation for prediction of the flow boiling heat transfer at low flux conditions is presented and verified using experimental data.
Forced convection flow boiling and two-phase flow phenomena in a microchannel
NASA Astrophysics Data System (ADS)
Na, Yun Whan
2008-07-01
The present study was performed to numerically analyze the evaporation phenomena through the liquid-vapor interface and to investigate bubble dynamics and heat transfer behavior during forced convective flow boiling in a microchannel. Flow instabilities of two-phase flow boiling in a microchannel were studied as well. The main objective of this research is to investigate the fundamental mechanisms of two-phase flow boiling in a microchannel and provide predictive tools to design thermal management systems, for example, microchannel heat sinks. The numerical results obtained from this study were qualitatively and quantitatively compared with experimental results in the open literature. Physical and mathematical models, accounting for evaporating phenomena through the liquid-vapor interface in a microchannel at constant heat flux and constant wall temperature, have been developed, respectively. The heat transfer mechanism is affected by the dominant heat conduction through the thin liquid film and vaporization at the liquid-vapor interface. The thickness of the liquid film and the pressure of the liquid and vapor phases were simultaneously solved by the governing differential equations. The developed semi-analytical evaporation model that takes into account of the interfacial phenomena and surface tension effects was used to obtain solutions numerically using the fourth-order Runge-Kutta method. The effects of heat flux 19 and wall temperature on the liquid film were evaluated. The obtained pressure drops in a microchannel were qualitatively consistent with the experimental results of Qu and Mudawar (2004). Forced convective flow boiling in a single microchannel with different channel heights was studied through a numerical simulation to investigate bubble dynamics, flow patterns, and heat transfer. The momentum and energy equations were solved using the finite volume method while the liquid-vapor interface of a bubble is captured using the VOF (Volume of Fluid) technique. The effects of different constant heat fluxes and different channel heights on the boiling mechanisms were investigated. The effects of liquid velocity on the bubble departure diameter were analyzed. The obtained results showed that the wall superheats at the position of nucleate boiling are relatively independent of the mass flow rates at the same channel height. The obtained results, however, showed that the heat flux at the onset of nucleate boiling strongly depends on the channel height. With a decrease of the channel height and an increase of the liquid velocity at the channel inlet, the departure diameter of a bubble was smaller. The periodic flow patterns, such as the bubbly flow, elongated slug flow, and churn flow were observed in the microchannel. Flow instabilities of two-phase flow boiling in a trapezoidal microchannel using a three-dimensional model were investigated. Fluctuation behaviors of flow boiling parameters such as wall temperature and inlet pressure caused by periodic flow patterns were studied at different heat fluxes and mass fluxes. The numerical results showed large amplitude and short period oscillations for wall temperature and inlet pressure fluctuations. Stable and unstable flow boiling regime with short period oscillations were investigated. Those flow boiling regimes were not listed in stable and unstable boiling regime map proposed by Wang et al. (2007).
Prospects for Boiling of Subcooled Dielectric Liquids for Supercomputer Cooling
NASA Astrophysics Data System (ADS)
Zeigarnik, Yu. A.; Vasil'ev, N. V.; Druzhinin, E. A.; Kalmykov, I. V.; Kosoi, A. S.; Khodakov, K. A.
2018-02-01
It is shown experimentally that using forced-convection boiling of dielectric coolants of the Novec 649 Refrigerant subcooled relative to the saturation temperature makes possible removing heat flow rates up to 100 W/cm2 from modern supercomputer chip interface. This fact creates prerequisites for the application of dielectric liquids in cooling systems of modern supercomputers with increased requirements for their operating reliability.
NASA Astrophysics Data System (ADS)
Mitrakusuma, Windy H.; Deendarlianto, Kamal, Samsul; Indarto, Nuriyadi, M.
2016-06-01
Onset of nucleate boiling of a droplet when impacted onto hot surface was investigated. Three kinds of surfaces, normal stainless steel (NSS), stainless steel with TiO2 coating (UVN), and stainless steel with TiO2 coating and radiated by ultraviolet ray were employed to examine the effect of wettability. The droplet size was 2.4 mm diameter, and dropped under different We number. The image is generated by high speed camera with the frame speed of 1000 fps. The boiling conditions are identified as natural convection, nucleate boiling, critical heat flux, transition, and film boiling. In the present report, the discussion will be focused on the beginning of nucleate boiling on the droplet. Nucleate boiling occurs when bubbles are generated. These bubbles are probably caused by nucleation on the impurities within the liquid rather than at nucleation sites on the heated surface because the bubbles appear to be in the bulk of the liquid instead of at the liquid-solid interface. In addition, the smaller the contact angle, the fastest the boiling.
Blanketing effect of expansion foam on liquefied natural gas (LNG) spillage pool.
Zhang, Bin; Liu, Yi; Olewski, Tomasz; Vechot, Luc; Mannan, M Sam
2014-09-15
With increasing consumption of natural gas, the safety of liquefied natural gas (LNG) utilization has become an issue that requires a comprehensive study on the risk of LNG spillage in facilities with mitigation measures. The immediate hazard associated with an LNG spill is the vapor hazard, i.e., a flammable vapor cloud at the ground level, due to rapid vaporization and dense gas behavior. It was believed that high expansion foam mitigated LNG vapor hazard through warming effect (raising vapor buoyancy), but the boil-off effect increased vaporization rate due to the heat from water drainage of foam. This work reveals the existence of blocking effect (blocking convection and radiation to the pool) to reduce vaporization rate. The blanketing effect on source term (vaporization rate) is a combination of boil-off and blocking effect, which was quantitatively studied through seven tests conducted in a wind tunnel with liquid nitrogen. Since the blocking effect reduces more heat to the pool than the boil-off effect adds, the blanketing effect contributes to the net reduction of heat convection and radiation to the pool by 70%. Water drainage rate of high expansion foam is essential to determine the effectiveness of blanketing effect, since water provides the boil-off effect. Copyright © 2014 Elsevier B.V. All rights reserved.
Boiling local heat transfer enhancement in minichannels using nanofluids
2013-01-01
This paper reports an experimental study on nanofluid convective boiling heat transfer in parallel rectangular minichannels of 800 μm hydraulic diameter. Experiments are conducted with pure water and silver nanoparticles suspended in water base fluid. Two small volume fractions of silver nanoparticles suspended in water are tested: 0.000237% and 0.000475%. The experimental results show that the local heat transfer coefficient, local heat flux, and local wall temperature are affected by silver nanoparticle concentration in water base fluid. In addition, different correlations established for boiling flow heat transfer in minichannels or macrochannels are evaluated. It is found that the correlation of Kandlikar and Balasubramanian is the closest to the water boiling heat transfer results. The boiling local heat transfer enhancement by adding silver nanoparticles in base fluid is not uniform along the channel flow. Better performances and highest effect of nanoparticle concentration on the heat transfer are obtained at the minichannels entrance. PMID:23506445
Liquid metal boiling inception
NASA Technical Reports Server (NTRS)
Sabin, C. M.; Poppendiek, H. F.; Mouritzen, G.; Meckel, P. T.; Cloakey, J. E.
1972-01-01
An experimental study of the inception of boiling in potassium in forced convection is reported. The boiler consisted of a 0.19-inch inside diameter, niobium-1% zirconium boiler tube approximately six feet long. Heating was accomplished by direct electrical tube wall conduction. Experiments were performed with both all-liquid fill and two-phase fill startup sequences and with a range of flow rates, saturation temperatures, inert gas levels, and fill liquid temperatures. Superheat of the liquid above the equilibrium saturation temperature was observed in all the experiments. Incipient boiling liquid superheat ranged from a few degrees to several hundred. Comparisons of these data with other data and with several analytical treatments are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitrakusuma, Windy H., E-mail: windyhm@polban.ac.id; Refrigeration and Airconditioning Department, Politeknik Negeri Bandung, Jl. Gegerkalong Hilir, Ds. Ciwaruga Kotak Pos 1234 Bandung; Deendarlianto,
2016-06-03
Onset of nucleate boiling of a droplet when impacted onto hot surface was investigated. Three kinds of surfaces, normal stainless steel (NSS), stainless steel with TiO{sub 2} coating (UVN), and stainless steel with TiO{sub 2} coating and radiated by ultraviolet ray were employed to examine the effect of wettability. The droplet size was 2.4 mm diameter, and dropped under different We number. The image is generated by high speed camera with the frame speed of 1000 fps. The boiling conditions are identified as natural convection, nucleate boiling, critical heat flux, transition, and film boiling. In the present report, the discussionmore » will be focused on the beginning of nucleate boiling on the droplet. Nucleate boiling occurs when bubbles are generated. These bubbles are probably caused by nucleation on the impurities within the liquid rather than at nucleation sites on the heated surface because the bubbles appear to be in the bulk of the liquid instead of at the liquid-solid interface. In addition, the smaller the contact angle, the fastest the boiling.« less
NASA Astrophysics Data System (ADS)
Mortensen, Dag
1999-02-01
A finite-element method model for the time-dependent heat and fluid flows that develop during direct-chill (DC) semicontinuous casting of aluminium ingots is presented. Thermal convection and turbulence are included in the model formulation and, in the mushy zone, the momentum equations are modified with a Darcy-type source term dependent on the liquid fraction. The boundary conditions involve calculations of the air gap along the mold wall as well as the heat transfer to the falling water film with forced convection, nucleate boiling, and film boiling. The mold wall and the starting block are included in the computational domain. In the start-up period of the casting, the ingot domain expands over the starting-block level. The numerical method applies a fractional-step method for the dynamic Navier-Stokes equations and the “streamline upwind Petrov-Galerkin” (SUPG) method for mixed diffusion and convection in the momentum and energy equations. The modeling of the start-up period of the casting is demonstrated and compared to temperature measurements in an AA1050 200×600 mm sheet ingot.
NASA Astrophysics Data System (ADS)
Barroso-Maldonado, J. M.; Belman-Flores, J. M.; Ledesma, S.; Aceves, S. M.
2018-06-01
A key problem faced in the design of heat exchangers, especially for cryogenic applications, is the determination of convective heat transfer coefficients in two-phase flow such as condensation and boiling of non-azeotropic refrigerant mixtures. This paper proposes and evaluates three models for estimating the convective coefficient during boiling. These models are developed using computational intelligence techniques. The performance of the proposed models is evaluated using the mean relative error (mre), and compared to two existing models: the modified Granryd's correlation and the Silver-Bell-Ghaly method. The three proposed models are distinguished by their architecture. The first is based on directly measured parameters (DMP-ANN), the second is based on equivalent Reynolds and Prandtl numbers (eq-ANN), and the third on effective Reynolds and Prandtl numbers (eff-ANN). The results demonstrate that the proposed artificial neural network (ANN)-based approaches greatly outperform available methodologies. While Granryd's correlation predicts experimental data within a mean relative error mre = 44% and the S-B-G method produces mre = 42%, DMP-ANN has mre = 7.4% and eff-ANN has mre = 3.9%. Considering that eff-ANN has the lowest mean relative error (one tenth of previously available methodologies) and the broadest range of applicability, it is recommended for future calculations. Implementation is straightforward within a variety of platforms and the matrices with the ANN weights are given in the appendix for efficient programming.
NASA Technical Reports Server (NTRS)
Mckillop, A. A.; Baughn, J. W.; Dwyer, H. A.
1976-01-01
Major research advances in heat transfer and fluid dynamics are outlined, with particular reference to relevant energy problems. Of significant importance are such topics as synthetic fuels in combustion, turbulence models, combustion modeling, numerical methods for interacting boundary layers, and light-scattering diagnostics for gases. The discussion covers thermal convection, two-phase flow and boiling heat transfer, turbulent flows, combustion, and aerospace heat transfer problems. Other areas discussed include compressible flows, fluid mechanics and drag, and heat exchangers. Featured topics comprise heat and salt transfer in double-diffusive systems, limits of boiling heat transfer in a liquid-filled enclosure, investigation of buoyancy-induced flow stratification in a cylindrical plenum, and digital algorithms for dynamic analysis of a heat exchanger. Individual items are announced in this issue.
APT Blanket Thermal Analyses of Top Horizontal Row 1 Modules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shadday, M.A.
1999-09-20
The Accelerator Production of Tritium (APT) cavity flood system (CFS) is designed to be the primary safeguard for the integrity of the blanket modules during loss of coolant accidents (LOCAs). For certain large break LOCAs the CFS also provides backup for the residual heat removal systems (RHRs) in cooling the target assemblies. In the unlikely event that the internal flow passages in a blanket module or target assembly dryout, decay heat in the metal structures will be dissipated to the CFS through the module or assembly walls (i.e., rung outer walls). The target assemblies consist of tungsten targets encased inmore » steel conduits, and they can safely sustain high metal temperatures. Under internally dry conditions, the cavity flood fluid will cool the target assemblies with vigorous nucleate boiling on the external surfaces. However, the metal structures in the blanket modules consist of lead cladded in aluminum, and they have a long-term exposure temperature limit currently set to 150 degrees C. Simultaneous LOCAs in both the target and blanket heat removal systems (HRS) could result in dryout of the target ladders, as well as the horizontal blanket modules above the target. The cavity flood coolant would boil on the outside surfaces of the target ladder rungs, and the resultant steam could reduce the effectiveness of convection heat transfer from the blanket modules to the cavity flood coolant. A two-part analysis was conducted to ascertain if the cavity flood system can adequately cool the blanket modules above the targets, even when boiling is occurring on the outer surfaces of the target ladder rungs. The first part of the analysis was to model transient thermal conduction in the front top horizontal row 1 module (i.e. top horizontal modules nearest the incoming beam), while varying parametrically the convection heat transfer coefficient (htc) for the external surfaces exposed to the cavity flood flow. This part of the analysis demonstrated that the module could adequately conduct heat to the outer module surfaces, given reasonable values for the convection heat transfer coefficients. The second part of the analysis consisted of two-phase flow modeling of the natural circulation of the cavity flood fluid past the top modules. Slots in the top shield allow the cavity flood fluid to circulate. The required width for these slots, to prevent steam from backing up and blanketing the outer surfaces of the top modules, was determined.« less
A Review of Boiling Heat Transfer Processes at High Heat Flux
1991-04-01
Hydrogen on Burnout for Water Flowing Vertically Upward in Round Tubes at 2000 psia," WAPD - TH-318, April 1957. 100. Doroschuck, V. E. and Lantsman, F. P...34Forced-Convection Heat Transfer Burnout Studies for Water in Rectangular Channels and Round Tubes at Pressures above 500 psia," USAEC Rept. WAPD ...Volumes in Subcooled Boiling Systems, ASME Paper 58-HT-19, 1958. 264 . Core, T. C. and Sato, K., "Determination of Burnout Limits of Polyphenyl Coolants
Effect of ice contamination on liquid-nitrogen drops in film boiling
NASA Technical Reports Server (NTRS)
Schoessow, G. J.; Chmielewski, C. E.; Baumeister, K. J.
1977-01-01
Previously reported vaporization time data of liquid nitrogen drops in film boiling on a flat plate are about 30 percent shorter than predicted from standard laminar film boiling theory. This theory, however, had been found to successfully correlate the data for conventional fluids such as water, ethanol, benzene, or carbon tetrachloride. This paper presents experimental evidence that some of the discrepancy for cryogenic fluids results from ice contamination due to condensation. The data indicate a fairly linear decrease in droplet evaporation time with the diameter of the ice crystal residue. After correcting the raw data for ice contamination along with convection, a comparison of theory with experiment shows good agreement.
Effect of ice contamination of liquid-nitrogen drops in film boiling
NASA Technical Reports Server (NTRS)
Schoessow, G. J.; Chmielewski, C. E.; Baumeister, K. J.
1977-01-01
Previously reported vaporization time data of liquid nitrogen drops in film boiling on a flat plate are about 30 percent shorter than predicted from standard laminar film boiling theory. This theory, however, had been found to successfully correlate the data for conventional fluids such as water, ethanol, benzene, or carbon tetrachloride. Experimental evidence that some of the discrepancy for cryogenic fluids results from ice contamination due to condensation is presented. The data indicate a fairly linear decrease in droplet evaporation time with the diameter of the ice crystal residue. After correcting the raw data for ice contamination along with convection, a comparison of theory with experiment shows good agreement.
Forced Convection Heat Transfer of Subcooled Liquid Nitrogen in Horizontal Tube
NASA Astrophysics Data System (ADS)
Tatsumoto, H.; Shirai, Y.; Hata, K.; Kato, T.; Shiotsu, M.
2008-03-01
The knowledge of forced convection heat transfer of liquid hydrogen is important for the cooling design of a HTS superconducting magnet and a cold neutron moderator material. An experimental apparatus that could obtain forced flow without a pump was developed. As a first step of the study, the forced flow heat transfer of subcooled liquid nitrogen in a horizontal tube, instead of liquid hydrogen, was measured for the pressures ranging from 0.3 to 2.5 MPa. The inlet temperature was varied from 78 K to around its saturation temperature. The flow velocities were varied from 0.1 to 7 m/s. The heat transfer coefficients in the non-boiling region and the departure from nucleate boiling (DNB) heat fluxes were higher for higher flow velocity and higher subcooling. The measured values of Nu/Pr0.4 in the non-boiling region were proportional to Reynolds number (Re) to the power of 0.8. With a decrease in Re, Nu/Pr0.4 approached a constant value corresponding to that in a pool of liquid nitrogen. The correlation of DNB heat flux was derived that can describe the experimental data within ±15% difference.
Nucleate pool boiling: High gravity to reduced gravity; liquid metals to cryogens
NASA Technical Reports Server (NTRS)
Merte, Herman, Jr.
1988-01-01
Requirements for the proper functioning of equipment and personnel in reduced gravity associated with space platforms and future space station modules introduce unique problems in temperature control; power generation; energy dissipation; the storage, transfer, control and conditioning of fluids; and liquid-vapor separation. The phase change of boiling is significant in all of these. Although both pool and flow boiling would be involved, research results to date include only pool boiling because buoyancy effects are maximized for this case. The effective application of forced convection boiling heat transfer in the microgravity of space will require a well grounded and cogent understanding of the mechanisms involved. Experimental results are presented for pool boiling from a single geometrical configuration, a flat surface, covering a wide range of body forces from a/g = 20 to 1 to a/g = 0 to -1 for a cryogenic liquid, and from a/g = 20 to 1 for water and a liquid metal. Similarities in behavior are noted for these three fluids at the higher gravity levels, and may reasonably be expected to continue at reduced gravity levels.
Effect of thermal-convection-induced defects on the performance of perovskite solar cells
NASA Astrophysics Data System (ADS)
Ye, Fei; Xie, Fengxian; Yin, Maoshu; He, Jinjin; Wang, Yanbo; Tang, Wentao; Chen, Han; Yang, Xudong; Han, Liyuan
2017-07-01
Thermal-convection-induced defects can cause huge loss in the power conversion efficiency of solution-processed perovskite solar cells. We investigated two types of convection in perovskite solution during the formation of perovskite films. By balancing the convection via special configurations of surface tension and boiling point in mixed γ-butyrolactone (GBL) and dimethylsulfoxide (DMSO), we removed microscopic defects such as rings, bumps, and crevices. The deposited perovskite films were smooth and dense, which enabled a high power conversion efficiency of 17.7% in a 1 cm2 cell area. We believe that the present strategy for controlling the convection can be helpful in improving the perovskite film quality for solvent-rich scalable solution processes of solar cells such as doctor blading, soft-cover deposition, printing, and slot-die coating.
Liquid neon heat transfer as applied to a 30 tesla cryomagnet
NASA Technical Reports Server (NTRS)
Papell, S. S.; Hendricks, R. C.
1975-01-01
Since superconducting magnets cooled by liquid helium are limited to magnetic fields of about 18 teslas, the design of a 30 tesla cryomagnet necessitates forced convection liquid neon heat transfer in small coolant channels. As these channels are too small to handle the vapor flow if the coolant were to boil, the design philosophy calls for suppressing boiling by subjecting the fluid to high pressures. Forced convection heat transfer data are obtained by using a blowdown technique to force the fluid vertically through a resistance-heated instrumented tube. The data are obtained at inlet temperatures between 28 and 34 K and system pressures between 28 to 29 bars. Data correlation is limited to a very narrow range of test conditions, since the tests were designed to simulate the heat transfer characteristics in the coolant channels of the 30 tesla cryomagnet concerned. The results can therefore be applied directly to the design of the magnet system.-
A PROCESS FOR SEPARATING AZEOTROPIC MIXTURES BY EXTRACTIVE AND CONVECTIVE DISTILLATION
Frazer, J.W.
1961-12-19
A method is described for separating an azeotrope of carbon tetrachloride and 1,1,2,2-tetrafluorodinitroethane boiling at 60 deg C. The ndethod comnprises, specifically, feeding azeotrope vapors admixed with a non- reactive gas into an extractive distillation column heated to a temperature preferably somewhat above the boiling point of the constant boiling mixture. A solvent, di-n-butylphthalate, is metered into the column above the gas inlet and permitted to flow downward, earrying with it the higher bomling fraction, while the constituent having the lower boiling point passes out of the top of the column with the non-reactive gas and is collected in a nitrogen cold trap. Other solvents which alter the vapor pressure relationship may be substituted. The method is generally applicable to azeotropic mixtures. A number of specific mixtures whicb may be separated are disclosed. (AEC)
Review of nucleation and incipient boiling under pool and forced convection conditions
NASA Technical Reports Server (NTRS)
Merte, Herman, Jr.
1987-01-01
An overview of liquid-vapor nucleation is given. The result of thermodynamic equilibrium across curved liquid-vapor interfaces is presented. The extension of this to include the interaction with idealizations of surface cavities is made to demonstrate how superheat requirements for nucleation will be affected by surface roughness, flow velocity and buoyancy. Experimental measurements of high liquid superheats and nucleation delay times are presented as examples of homogeneous nucleation. Examples of nucleation and boiling on smooth glass substrates and on metal surfaces with various surface roughnesses are presented.
Length Scale and Gravity Effects on Microgravity Boiling Heat Transfer
NASA Technical Reports Server (NTRS)
Kim, Jungho; McQuillen, John; Balombin, Joe
2002-01-01
Boiling is a complex phenomenon where hydrodynamics, heat transfer, mass transfer, and interfacial phenomena are tightly interwoven. An understanding of boiling and critical heat flux in microgravity environments is of importance to space based hardware and processes such as heat exchange, cryogenic fuel storage and transportation, electronic cooling, and material processing due to the large amounts of heat that can be removed with relatively little increase in temperature. Although research in this area has been performed in the past four decades, the mechanisms by which heat is removed from surfaces in microgravity are still unclear. In earth gravity, buoyancy is an important parameter that affects boiling heat transfer through the rate at which bubbles are removed from the surface. A simple model describing the bubble departure size based on a quasistatic force balance between buoyancy and surface tension is given by the Fritz [I] relation: Bo(exp 1/2) = 0.0208 theta where Bo is the ratio between buoyancy and surface tension forces. For small, rapidly growing bubbles, inertia associated with the induced liquid motion can also cause bubble departure. In microgravity, the magnitude of effects related to natural convection and buoyancy are small and physical mechanisms normally masked by natural convection in earth gravity such as Marangoni convection can substantially influence the boiling and vapor bubble dynamics. CHF (critical heat transfer) is also substantially affected by microgravity. In 1 g environments, Bo has been used as a correlating parameter for CHF. Zuber's CHF model for an infinite horizontal surface assumes that vapor columns formed by the merger of bubbles become unstable due to a Helmholtz instability blocking the supply of liquid to the surface. The jets are spaced lambda(sub D) apart, where lambda(sub D) = 2pi square root of 3[(sigma)/(g(rho(sub l) - rho(sub v)](exp 1/2) = 2pi square root of 3 L Bo(exp -1/2) = square root of 3 lambda(sub c) and is the wavelength that amplifies most rapidly. The critical wavelength, lambda(sub c), is the wavelength below which a vapor layer underneath a liquid layer is stable. For heaters with Bo smaller than about 3 (heaters smaller than lambda(sub D)), the above model is not applicable, and surface tension effects dominate. Bubble coalescence is thought to be the mechanism for CHF under these conditions. Small Bo can result by decreasing the size of a heater in earth gravity, or by operating a large heater in a lower gravity environment. In the microgravity of space, even large heaters can have low Bo, and models based on Helmholtz instability should not be applicable. The macrolayer model of Haramura and Katto is dimensionally equivalent to Zuber's model and has the same dependence on gravity, so it should not be applicable as well. The goal of this work is to determine how boiling heat transfer mechanisms in a low-g environment are altered from those at higher gravity levels. Boiling data using a microheater array was obtained under gravity environments ranging from 1.8 g to 0.02 g with heater sizes ranging from 2.7 mm to 1 mm. The boiling behavior for 2.7 mm at 0.02 g looked quite similar to boiling on the 1 mm heater at 1 g-the formation of a large primary bubble surrounded by smaller satellite bubbles was observed under both conditions. The similarity suggests that for heaters smaller than some fraction of I(sub c), coalescence and surface tension dominate boiling heat transfer. It also suggests that microgravity boiling can be studied by studying boiling on very small heaters.
2004-04-15
Fluid Physics is study of the motion of fluids and the effects of such motion. When a liquid is heated from the bottom to the boiling point in Earth's microgravity, small bubbles of heated gas form near the bottom of the container and are carried to the top of the liquid by gravity-driven convective flows. In the same setup in microgravity, the lack of convection and buoyancy allows the heated gas bubbles to grow larger and remain attached to the container's bottom for a significantly longer period.
NASA Astrophysics Data System (ADS)
Shishkin, A. V.; Tarasevich, S. E.
2018-03-01
The paper presents the results of experimental study of heat transfer for the refrigerant R134a flow in the channels with finned twisted tape inserts at bubble boiling. The flow regimes implemented under the given conditions are shown. The stable cord-like flows appear at boiling in channels with twisted tape inserts and high vapor content when the liquid phase moves in the form of a stream (cord) along the central part of the tape, which is not an active heat exchange surface. At boiling this can lead to an increase in the length required for complete liquid evaporation. Existing geometric modifications of twisted tapes are used in the heat-exchange equipment at forced convection of the coolant and do not solve the problem of cord-like flows elimination. The present work discusses the experimental study of heat transfer at boiling of refrigerant R134a in the channels with twisted tape inserts that have fins on its surface.
Characterizing preferential groundwater discharge through boils using temperature
NASA Astrophysics Data System (ADS)
Vandenbohede, A.; de Louw, P. G. B.; Doornenbal, P. J.
2014-03-01
In The Netherlands, preferential groundwater discharge trough boils is a key process in the salinization of deep polders. Previous work showed that boils also influence the temperature in the subsurface and of surface water. This paper elaborates on this process combining field observations with numerical modeling. As is the case for salinity, a distinct anomaly in the subsurface and surface water temperature can be attributed to boils. Lines of equal temperature are distorted towards the boil, which can be considered as an upconing of the temperature profile by analogy of the upconing of a fresh-saltwater interface. The zone of this distortion is limited to the immediate vicinity of the boil, being about 5 m in the aquitard which holds the boil's conduit, or maximum a few dozens of meters in the underlying aquifer. In the aquitard, heat transport is conduction dominated whereas this is convection dominated in the aquifer. The temperature anomaly differs from the salinity anomaly by the smaller radius of influence and faster time to reach a new steady-state of the former. Boils discharge water with a temperature equal to the mean groundwater temperature. This influences the yearly and diurnal variation of ditch water temperature in the immediate vicinity of the boil importantly but also the temperature in the downstream direction. Temporary nature of the boil (e.g. stability of the conduit, discharge rate), uncertainty on the 3D construction of the conduit and heterogeneity of the subsoil make it unlikely that temperature measurements can be interpreted further than a qualitative level.
Parametric analyses of DEMO Divertor using two dimensional transient thermal hydraulic modelling
NASA Astrophysics Data System (ADS)
Domalapally, Phani; Di Caro, Marco
2018-05-01
Among the options considered for cooling of the Plasma facing components of the DEMO reactor, water cooling is a conservative option because of its high heat removal capability. In this work a two-dimensional transient thermal hydraulic code is developed to support the design of the divertor for the projected DEMO reactor with water as a coolant. The mathematical model accounts for transient 2D heat conduction in the divertor section. Temperature-dependent properties are used for more accurate analysis. Correlations for single phase flow forced convection, partially developed subcooled nucleate boiling, fully developed subcooled nucleate boiling and film boiling are used to calculate the heat transfer coefficients on the channel side considering the swirl flow, wherein different correlations found in the literature are compared against each other. Correlation for the Critical Heat Flux is used to estimate its limit for a given flow conditions. This paper then investigates the results of the parametric analysis performed, whereby flow velocity, diameter of the coolant channel, thickness of the coolant pipe, thickness of the armor material, inlet temperature and operating pressure affect the behavior of the divertor under steady or transient heat fluxes. This code will help in understanding the basic parameterś effect on the behavior of the divertor, to achieve a better design from a thermal hydraulic point of view.
NASA Astrophysics Data System (ADS)
Parodi, A.; von Hardenberg, J.; Provenzale, A.
2012-04-01
Intense precipitation events are often associated with strong convective phenomena in the atmosphere. A deeper understanding of how microphysics affects the spatial and temporal variability of convective processes is relevant for many hydro-meteorological applications, such as the estimation of rainfall using remote sensing techniques and the ability to predict severe precipitation processes. In this paper, high-resolution simulations (0.1-1 km) of an atmosphere in radiative-convective equilibrium are performed using the Weather Research and Forecasting (WRF) model by prescribing different microphysical parameterizations. The dependence of fine-scale spatio-temporal properties of convective structures on microphysical details are investigated and the simulation results are compared with the known properties of radar maps of precipitation fields. We analyze and discuss similarities and differences and, based also on previous results on the dependence of precipitation statistics on the raindrop terminal velocity, try to draw some general inferences.
Pohlman, F W; Dikeman, M E; Kropf, D H
1997-05-01
Beef pectoralis muscles were removed at 24 h post mortem from nine steers, and samples were vacuum packaged and exposed to high-intensity ultrasound (20 kHz, 22 W/cm(2)) for 0, 5 or 10 min, then aged for 1, 6 or 10 days before evaluation of purge and cooking losses, instrumental shear and color and sensory traits (Experiment 1). For Experiment 2, unpackaged beef pectoralis muscle samples from eight steers were subjected to ultrasonic cooking, boiling, convection cooking or ultrasound treatment for 5 or 10 min followed by cooking in a convection oven. Neither duration of sonication nor storage of packaged pectoralis muscles affected (p > 0.05) storage purge or cooking losses, shear properties or sensory characteristics (Experiment 1). However, muscles receiving ultrasonic treatment showed tendencies for reduced peak force and total work to shear. Increased length of storage caused pectoralis muscles to become more vivid red-orange colored (p < 0.05), whereas ultrasonic treatment caused muscles to become less vivid, less red and more orange colored (p < 0.05). Ultrasonically cooked pectoralis muscles (Experiment 2) had lower (p < 0.05) cooking losses than muscles cooked by other methods. Both ultrasonic cooking and boiling were faster than convection cooking only and ultrasound exposure followed by convection cooking. Additional studies are needed to verify the ability of ultrasound to promote improved cooking, sensory and shear properties of muscle.
Ferrari, Anthony; Hunt, Jacob; Stiegman, Albert; Dudley, Gregory B
2015-12-04
Temporary superheating and sustained nucleation-limited "superboiling" of unstirred liquids above the normal atmospheric boiling point have been documented during microwave heating. These phenomena are reliably observed under prescribed conditions, although the duration (of superheating) and magnitude (of superheating and superboiling) vary according to system parameters such as volume of the liquid and the size and shape of the vessel. Both phenomena are mitigated by rapid stirring with an appropriate stir bar and/or with the addition of boiling chips, which provide nucleation sites to support the phase-change from liquid to gas. With proper experimental design and especially proper stirring, the measured temperature of typical organic reaction mixtures heated at reflux will be close to the normal boiling point temperature of the solvent, whether heated using microwave radiation or conventional convective heat transfer. These observations are important to take into consideration when comparing reaction rates under conventional and microwave heating.
Superconducting magnet cooling system
Vander Arend, Peter C.; Fowler, William B.
1977-01-01
A device is provided for cooling a conductor to the superconducting state. The conductor is positioned within an inner conduit through which is flowing a supercooled liquid coolant in physical contact with the conductor. The inner conduit is positioned within an outer conduit so that an annular open space is formed therebetween. Through the annular space is flowing coolant in the boiling liquid state. Heat generated by the conductor is transferred by convection within the supercooled liquid coolant to the inner wall of the inner conduit and then is removed by the boiling liquid coolant, making the heat removal from the conductor relatively independent of conductor length.
NASA Astrophysics Data System (ADS)
Trujillo, Abraham Gerardo
In the past decades, interest in developing hydrocarbon-fueled rocket engines for deep spaceflight missions has continued to grow. In particular, liquid methane (LCH4) has been of interest due to the weight efficiency, storage, and handling advantages it offers over several currently used propellants. Deep space exploration requires reusable, long life rocket engines. Due to the high temperatures reached during combustion, the life of an engine is significantly impacted by the cooling system's efficiency. Regenerative (regen) cooling is presented as a viable alternative to common cooling methods such as film and dump cooling since it provides improved engine efficiency. Due to limited availability of experimental sub-critical liquid methane cooling data for regen engine design, there has been an interest in studying the heat transfer characteristics of the propellant. For this reason, recent experimental studies at the Center for Space Exploration Technology Research (cSETR) at the University of Texas at El Paso (UTEP) have focused on investigating the heat transfer characteristics of sub-critical CH4 flowing through sub-scale cooling channels. To conduct the experiments, the csETR developed a High Heat Flux Test Facility (HHFTF) where all the channels are heated using a conduction-based thermal concentrator. In this study, two smooth channels with cross sectional geometries of 1.8 mm x 4.1 mm and 3.2 mm x 3.2 mm were tested. In addition, three roughened channels all with a 3.2 mm x 3.2 mm square cross section were also tested. For the rectangular smooth channel, Reynolds numbers ranged between 68,000 and 131,000, while the Nusselt numbers were between 40 and 325. For the rough channels, Reynolds numbers ranged from 82,000 to 131,000, and Nusselt numbers were between 65 and 810. Sub-cooled film-boiling phenomena were confirmed for all the channels presented in this work. Film-boiling onset at Critical Heat Flux (CHF) was correlated to a Boiling Number (Bo) of approximately 0.1 for all channels. Convective Nusselt number follows predicted trends for Reynolds number with a wall temperature correction for both the boiling and non-boiling regimes.
The effect of heating direction on flow boiling heat transfer of R134a in micro-channels
NASA Astrophysics Data System (ADS)
Xu, Mingchen; Jia, Li; Dang, Chao; Peng, Qi
2017-04-01
This paper presents effects of heating directions on heat transfer performance of R134a flow boiling in micro- channel heat sink. The heat sink has 30 parallel rectangular channels with cross-sectional dimensions of 500μm width 500μm depth and 30mm length. The experimental operation condition ranges of the heat flux and the mass flux were 13.48 to 82.25 W/cm2 and 373.3 to 1244.4 kg/m2s respectively. The vapor quality ranged from 0.07 to 0.93. The heat transfer coefficients of top heating and bottom heating both were up to 25 kW/m2 K. Two dominate transfer mechanisms of nucleate boiling and convection boiling were observed according to boiling curves. The experimental results indicated that the heat transfer coefficient of bottom heating was 13.9% higher than top heating in low heat flux, while in high heat flux, the heat transfer coefficient of bottom heating was 9.9%.higher than the top heating, because bubbles were harder to divorce the heating wall. And a modified correlation was provided to predict heat transfer of top heating.
NASA Technical Reports Server (NTRS)
Ling, Lisa
2014-01-01
For the purpose of performing safety analysis and risk assessment for a probable offnominal suborbital/orbital atmospheric reentry resulting in vehicle breakup, a synthesis of trajectory propagation coupled with thermal analysis and the evaluation of node failure is required to predict the sequence of events, the timeline, and the progressive demise of spacecraft components. To provide this capability, the Simulation for Prediction of Entry Article Demise (SPEAD) analysis tool was developed. This report discusses the capabilities, modeling, and validation of the SPEAD analysis tool. SPEAD is applicable for Earth or Mars, with the option for 3 or 6 degrees-of-freedom (DOF) trajectory propagation. The atmosphere and aerodynamics data are supplied in tables, for linear interpolation of up to 4 independent variables. The gravitation model can include up to 20 zonal harmonic coefficients. The modeling of a single motor is available and can be adapted to multiple motors. For thermal analysis, the aerodynamic radiative and free-molecular/continuum convective heating, black-body radiative cooling, conductive heat transfer between adjacent nodes, and node ablation are modeled. In a 6- DOF simulation, the local convective heating on a node is a function of Mach, angle-ofattack, and sideslip angle, and is dependent on 1) the location of the node in the spacecraft and its orientation to the flow modeled by an exposure factor, and 2) the geometries of the spacecraft and the node modeled by a heating factor and convective area. Node failure is evaluated using criteria based on melting temperature, reference heat load, g-load, or a combination of the above. The failure of a liquid propellant tank is evaluated based on burnout flux from nucleate boiling or excess internal pressure. Following a component failure, updates are made as needed to the spacecraft mass and aerodynamic properties, nodal exposure and heating factors, and nodal convective and conductive areas. This allows the trajectory to be propagated seamlessly in a single run, inclusive of the trajectories of components that have separated from the spacecraft. The node ablation simulates the decreasing mass and convective/reference areas, and variable heating factor. A built-in database provides the thermo-mechanical properties of For the purpose of performing safety analysis and risk assessment for a probable offnominal suborbital/orbital atmospheric reentry resulting in vehicle breakup, a synthesis of trajectory propagation coupled with thermal analysis and the evaluation of node failure is required to predict the sequence of events, the timeline, and the progressive demise of spacecraft components. To provide this capability, the Simulation for Prediction of Entry Article Demise (SPEAD) analysis tool was developed. This report discusses the capabilities, modeling, and validation of the SPEAD analysis tool. SPEAD is applicable for Earth or Mars, with the option for 3 or 6 degrees-of-freedom (DOF) trajectory propagation. The atmosphere and aerodynamics data are supplied in tables, for linear interpolation of up to 4 independent variables. The gravitation model can include up to 20 zonal harmonic coefficients. The modeling of a single motor is available and can be adapted to multiple motors. For thermal analysis, the aerodynamic radiative and free-molecular/continuum convective heating, black-body radiative cooling, conductive heat transfer between adjacent nodes, and node ablation are modeled. In a 6- DOF simulation, the local convective heating on a node is a function of Mach, angle-ofattack, and sideslip angle, and is dependent on 1) the location of the node in the spacecraft and its orientation to the flow modeled by an exposure factor, and 2) the geometries of the spacecraft and the node modeled by a heating factor and convective area. Node failure is evaluated using criteria based on melting temperature, reference heat load, g-load, or a combination of the above. The failure of a liquid propellant tank is evaluated based on burnout flux from nucleate boiling or excess internal pressure. Following a component failure, updates are made as needed to the spacecraft mass and aerodynamic properties, nodal exposure and heating factors, and nodal convective and conductive areas. This allows the trajectory to be propagated seamlessly in a single run, inclusive of the trajectories of components that have separated from the spacecraft. The node ablation simulates the decreasing mass and convective/reference areas, and variable heating factor. A built-in database provides the thermo-mechanical properties of
Unorthodox bubbles when boiling in cold water.
Parker, Scott; Granick, Steve
2014-01-01
High-speed movies are taken when bubbles grow at gold surfaces heated spotwise with a near-infrared laser beam heating water below the boiling point (60-70 °C) with heating powers spanning the range from very low to so high that water fails to rewet the surface after bubbles detach. Roughly half the bubbles are conventional: They grow symmetrically through evaporation until buoyancy lifts them away. Others have unorthodox shapes and appear to contribute disproportionately to heat transfer efficiency: mushroom cloud shapes, violently explosive bubbles, and cavitation events, probably stimulated by a combination of superheating, convection, turbulence, and surface dewetting during the initial bubble growth. Moreover, bubbles often follow one another in complex sequences, often beginning with an unorthodox bubble that stirs the water, followed by several conventional bubbles. This large dataset is analyzed and discussed with emphasis on how explosive phenomena such as cavitation induce discrepancies from classical expectations about boiling.
Numerical Simulation of Liquid Nitrogen Chilldown of a Vertical Tube
NASA Technical Reports Server (NTRS)
Darr, Samuel; Hu, Hong; Schaeffer, Reid; Chung, Jacob; Hartwig, Jason; Majumdar, Alok
2015-01-01
This paper presents the results of a one-dimensional numerical simulation of the transient chilldown of a vertical stainless steel tube with liquid nitrogen. The direction of flow is downward (with gravity) through the tube. Heat transfer correlations for film, transition, and nucleate boiling, as well as critical heat flux, rewetting temperature, and the temperature at the onset of nucleate boiling were used to model the convection to the tube wall. Chilldown curves from the simulations were compared with data from 55 recent liquid nitrogen chilldown experiments. With these new correlations the simulation is able to predict the time to rewetting temperature and time to onset of nucleate boiling to within 25% for mass fluxes ranging from 61.2 to 1150 kg/(sq m s), inlet pressures from 175 to 817 kPa, and subcooled inlet temperatures from 0 to 14 K below the saturation temperature.
Small-scale experimental study of vaporization flux of liquid nitrogen released on water.
Gopalaswami, Nirupama; Olewski, Tomasz; Véchot, Luc N; Mannan, M Sam
2015-10-30
A small-scale experimental study was conducted using liquid nitrogen to investigate the convective heat transfer behavior of cryogenic liquids released on water. The experiment was performed by spilling five different amounts of liquid nitrogen at different release rates and initial water temperatures. The vaporization mass fluxes of liquid nitrogen were determined directly from the mass loss measured during the experiment. A variation of initial vaporization fluxes and a subsequent shift in heat transfer mechanism were observed with changes in initial water temperature. The initial vaporization fluxes were directly dependent on the liquid nitrogen spill rate. The heat flux from water to liquid nitrogen determined from experimental data was validated with two theoretical correlations for convective boiling. It was also observed from validation with correlations that liquid nitrogen was found to be predominantly in the film boiling regime. The substantial results provide a suitable procedure for predicting the heat flux from water to cryogenic liquids that is required for source term modeling. Copyright © 2015 Elsevier B.V. All rights reserved.
Transient boiling in two-phase helium natural circulation loops
NASA Astrophysics Data System (ADS)
Furci, H.; Baudouy, B.; Four, A.; Meuris, C.
2014-01-01
Two-phase helium natural circulation loops are used for cooling large superconducting magnets, as CMS for LHC. During normal operation or in the case of incidents, transients are exerted on the cooling system. Here a cooling system of this type is studied experimentally. Sudden power changes are operated on a vertical-heated-section natural convection loop, simulating a fast increase of heat deposition on magnet cooling pipes. Mass flow rate, heated section wall temperature and pressure drop variations are measured as a function of time, to assess the time behavior concerning the boiling regime according to the values of power injected on the heated section. The boiling curves and critical heat flux (CHF) values have been obtained in steady state. Temperature evolution has been observed in order to explore the operating ranges where heat transfer is deteriorated. Premature film boiling has been observed during transients on the heated section in some power ranges, even at appreciably lower values than the CHF. A way of attenuating these undesired temperature excursions has been identified through the application of high enough initial heating power.
A Study of Nucleate Boiling with Forced Convection in Microgravity
NASA Technical Reports Server (NTRS)
Merte, Herman, Jr.
1996-01-01
Boiling is a rather imprecise term applied to the process of evaporation in which the rate of liquid-vapor phase change is large. In seeking to determine the role and significance of body forces on the process, of which buoyancy or gravity is just one agent, it becomes necessary to define the term more precisely. It is generally characterized by the formation and growth of individual vapor bubbles arising from heat transfer to the liquid, either at a solid/liquid or liquid/liquid interface, or volumetrically. The terms 'bubble' boiling and 'nucleate' boiling are frequently used, in recognition of the interactions of surface tension and other forces in producing discrete bubbles at distinctive locations (although not always). Primary considerations are that evaporation can occur only at existing liquid-vapor interfaces, so that attention must be given to the formation of an interface (the nucleation process), and that the latent heat for this evaporation can come only from the superheated liquid, so that attention must also be given to the temperature distributions in the liquid.
Liquid neon heat transfer as applied to a 30 tesla cryomagnet
NASA Technical Reports Server (NTRS)
Papell, S. S.; Hendricks, R. C.
1975-01-01
A 30-tesla magnet design is studied which calls for forced convection liquid neon heat transfer in small coolant channels. The design also requires suppressing boiling by subjecting the fluid to high pressures through use of magnet coils enclosed in a pressure vessel which is maintained at the critical pressure of liquid neon. This high pressure reduces the possibility of the system flow instabilities which may occur at low pressures. The forced convection heat transfer data presented were obtained by using a blowdown technique to force the fluid to flow vertically through a resistance heated, instrumented tube.
Pool and flow boiling in variable and microgravity
NASA Technical Reports Server (NTRS)
Merte, Herman, Jr.
1994-01-01
As is well known, boiling is an effective mode of heat transfer in that high heat flux levels are possible with relatively small temperature differences. Its optimal application requires that the process be adequately understood. A measure of the understanding of any physical event lies in the ability to predict its behavior in terms of the relevant parameters. Despite many years of research the predictability of boiling is currently possible only for quite specialized circumstances, e.g., the critical heat flux and film boiling for the pool boiling case, and then only with special geometries. Variable gravity down to microgravity provides the opportunity to test this understanding, but possibly more important, by changing the dimensional and time scales involved permits more detailed observations of elements involved in the boiling process, and perhaps discloses phenomena heretofore unknown. The focus here is on nucleate boiling although, as will be demonstrated below, under but certain circumstances in microgravity it can take place concurrently with the dryout process. In the presence of earth gravity or forced convection effects, the latter process is usually referred to as film boiling. However, no vapor film as such forms with pool boiling in microgravity, only dryout. Initial results are presented here for pool boiling in microgravity, and were made possible at such an early date by the availability of the Get-Away-Specials (GAS). Also presented here are some results of ground testing of a flow loop for the study of low velocity boiling, eventually to take place also in microgravity. In the interim, variable buoyancy normal to the heater surface is achieved by rotation of the entire loop relative to earth gravity. Of course, this is at the expense of varying the buoyancy parallel to the heater surface. Two questions which must be resolved early in the study of flow boiling in microgravity are (1) the lower limits of liquid flow velocity where buoyancy effects become significant to the boiling process (2) the effect of lower liquid flow velocities on the Critical Heat Flux when buoyancy is removed. Results of initial efforts in these directions are presented, albeit restricted currently to the ever present earth gravity.
Momentum effects in steady nucleate pool boiling during microgravity.
Merte, Herman
2004-11-01
Pool boiling experiments were conducted in microgravity on five space shuttle flights, using a flat plate heater consisting of a semitransparent thin gold film deposited on a quartz substrate that also acted as a resistance thermometer. The test fluid was R-113, and the vapor bubble behavior at the heater surface was photographed from beneath as well as from the side. Each flight consisted of a matrix of three levels of heat flux and three levels of subcooling. In 26 of the total of 45 experiments conditions of steady-state pool boiling were achieved under certain combinations of heat flux and liquid subcooling. In many of the 26 cases, it was observed from the 16-mm movie films that a large vapor bubble formed, remaining slightly removed from the heater surface, and that subsequent vapor bubbles nucleate and grow on the heater surface. Coalescence occurs upon making contact with the large bubble, which thus acts as a vapor reservoir. Recently, measurements of the frequencies and sizes of the small vapor bubbles as they coalesced with the large bubble permitted computation of the associated momentum transfer. The transient forces obtained are presented here. Where these arise from the conversion of the surface energy in the small vapor bubble to kinetic energy acting away from the solid heater surface, they counter the Marangoni convection due to the temperature gradients normal to the heater surface. This Marangoni convection would otherwise impel the large vapor bubble toward the heater surface and result in dryout and unsteady heat transfer.
NASA Astrophysics Data System (ADS)
Ruiz, Maritza
Thermal management of systems under high heat fluxes on the order of hundreds of W/cm2 is important for the safety, performance and lifetime of devices, with innovative cooling technologies leading to improved performance of electronics or concentrating solar photovoltaics. A novel, spiraling radial inflow microchannel heat sink for high flux cooling applications, using a single phase or vaporizing coolant, has demonstrated enhanced heat transfer capabilities. The design of the heat sink provides an inward swirl flow between parallel, coaxial disks that form a microchannel of 1 cm radius and 300 micron channel height with a single inlet and a single outlet. The channel is heated on one side through a conducting copper surface, and is essentially adiabatic on the opposite side to simulate a heat sink scenario for electronics or concentrated photovoltaics cooling. Experimental results on the heat transfer and pressure drop characteristics in the heat sink, using single phase water as a working fluid, revealed heat transfer enhancements due to flow acceleration and induced secondary flows when compared to unidirectional laminar fully developed flow between parallel plates. Additionally, thermal gradients on the surface are small relative to the bulk fluid temperature gain, a beneficial feature for high heat flux cooling applications. Heat flux levels of 113 W/cm2 at a surface temperature of 77 deg C were reached with a ratio of pumping power to heat rate of 0.03%. Analytical models on single phase flow are used to explore the parametric trends of the flow rate and passage geometry on the streamlines and pressure drop through the device. Flow boiling heat transfer and pressure drop characteristics were obtained for this heat sink using water at near atmospheric pressure as the working fluid for inlet subcooling levels ranging from 20 to 80 deg C and mean mass flux levels ranging from 184-716 kg/m. 2s. Flow enhancements similar to singlephase flow were expected, as well as enhancements due to increased buoyant forces on vapor bubbles resulting from centripetal acceleration in the flow which will tend to draw the vapor towards the outlet. This can also aid in the reduction of vapor obstruction of the flow. The flow was identified as transitioning through three regimes as the heat rate was increased: partial subcooled flow boiling, oscillating boiling and fully developed flow boiling. During partial subcooled flow boiling, both forced convective and nucleate boiling effects are important. During oscillating boiling, the system fluctuated between partial subcooled flow boiling and fully developed nucleate boiling. Temperature and pressure oscillations were significant in this regime and are likely due to bubble constriction of flow in the microchannel. This regime of boiling is generally undesirable due to the large oscillations in temperatures and pressure and design constraints should be established to avoid large oscillations from occurring. During fully developed flow boiling, water vapor rapidly leaves the surface and the flow does not sustain large oscillations. Reducing inlet subcooling levels was found to reduce the magnitude of oscillations in the oscillating boiling regime. Additionally, reduced inlet subcooling levels reduced the average surface temperature at the highest heat flux levels tested when heat transfer was dominated by nucleate boiling, yet increased the average surface temperatures at low heat flux levels when heat transfer was dominated by forced convection. Experiments demonstrated heat fluxes up to 301 W/cm. 2at an average surface temperature of 134 deg C under partial subcooled flow boiling conditions. At this peak heat flux, the system required a pumping power to heat rate ratio of 0.01%. This heat flux is 2.4 times the typical values for critical heat flux in pool boiling under similar conditions.
Open-cell and closed-cell clouds off Peru
2010-04-27
2010/107 - 04/17 at 21 :05 UTC. Open-cell and closed-cell clouds off Peru, Pacific Ocean Resembling a frosted window on a cold winter's day, this lacy pattern of marine clouds was captured off the coast of Peru in the Pacific Ocean by the MODIS on the Aqua satellite on April 19, 2010. The image reveals both open- and closed-cell cumulus cloud patterns. These cells, or parcels of air, often occur in roughly hexagonal arrays in a layer of fluid (the atmosphere often behaves like a fluid) that begins to "boil," or convect, due to heating at the base or cooling at the top of the layer. In "closed" cells warm air is rising in the center, and sinking around the edges, so clouds appear in cell centers, but evaporate around cell edges. This produces cloud formations like those that dominate the lower left. The reverse flow can also occur: air can sink in the center of the cell and rise at the edge. This process is called "open cell" convection, and clouds form at cell edges around open centers, which creates a lacy, hollow-looking pattern like the clouds in the upper right. Closed and open cell convection represent two stable atmospheric configurations — two sides of the convection coin. But what determines which path the "boiling" atmosphere will take? Apparently the process is highly chaotic, and there appears to be no way to predict whether convection will result in open or closed cells. Indeed, the atmosphere may sometimes flip between one mode and another in no predictable pattern. Satellite: Aqua NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team To learn more about MODIS go to: rapidfire.sci.gsfc.nasa.gov/gallery/?latest NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.
Proceedings of Symposium on Energy Engineering in the 21st Century (SEE 2000). Volume One
2000-01-13
18, pp. 81-90 (1978). 9. G. Venuti and P. Valentin , High Temp. High Pressure, 11, pp. 301-310 (1979). 10. A.B. Murphy, Plasma Chemistry and Plasma...Galloway and Mudawar [7] for forced convection boiling in a narrow channel. (3) Based on the experiments by Tong et al. [8], and Carvalho and Bergles
NASA Astrophysics Data System (ADS)
Pye, John; Hughes, Graham; Abbasi, Ehsan; Asselineau, Charles-Alexis; Burgess, Greg; Coventry, Joe; Logie, Will; Venn, Felix; Zapata, José
2016-05-01
An integrated model for an axisymmetric helical-coil tubular cavity receiver is presented, incorporating optical ray-tracing for incident solar flux, radiosity analysis for thermal emissions, computational fluid dynamics for external convection, and a one-dimensional hydrodynamic model for internal flow-boiling of water. A receiver efficiency of 98.7% is calculated, for an inlet/outlet temperature range of 60-500 °C, which is the ratio of fluid heating to receiver incident irradiance. The high-efficiency design makes effective use of non-uniform flux in its non-isothermal layout, matching lower temperature regions to areas of lower flux. Full-scale testing of the design will occur in late 2015.
FILM-30: A Heat Transfer Properties Code for Water Coolant
DOE Office of Scientific and Technical Information (OSTI.GOV)
MARSHALL, THERON D.
2001-02-01
A FORTRAN computer code has been written to calculate the heat transfer properties at the wetted perimeter of a coolant channel when provided the bulk water conditions. This computer code is titled FILM-30 and the code calculates its heat transfer properties by using the following correlations: (1) Sieder-Tate: forced convection, (2) Bergles-Rohsenow: onset to nucleate boiling, (3) Bergles-Rohsenow: partially developed nucleate boiling, (4) Araki: fully developed nucleate boiling, (5) Tong-75: critical heat flux (CHF), and (6) Marshall-98: transition boiling. FILM-30 produces output files that provide the heat flux and heat transfer coefficient at the wetted perimeter as a function ofmore » temperature. To validate FILM-30, the calculated heat transfer properties were used in finite element analyses to predict internal temperatures for a water-cooled copper mockup under one-sided heating from a rastered electron beam. These predicted temperatures were compared with the measured temperatures from the author's 1994 and 1998 heat transfer experiments. There was excellent agreement between the predicted and experimentally measured temperatures, which confirmed the accuracy of FILM-30 within the experimental range of the tests. FILM-30 can accurately predict the CHF and transition boiling regimes, which is an important advantage over current heat transfer codes. Consequently, FILM-30 is ideal for predicting heat transfer properties for applications that feature high heat fluxes produced by one-sided heating.« less
A thermosyphon heat pipe cooler for high power LEDs cooling
NASA Astrophysics Data System (ADS)
Li, Ji; Tian, Wenkai; Lv, Lucang
2016-08-01
Light emitting diode (LED) cooling is facing the challenge of high heat flux more seriously with the increase of input power and diode density. The proposed unique thermosyphon heat pipe heat sink is particularly suitable for cooling of high power density LED chips and other electronics, which has a heat dissipation potential of up to 280 W within an area of 20 mm × 22 mm (>60 W/cm2) under natural air convection. Meanwhile, a thorough visualization investigation was carried out to explore the two phase flow characteristics in the proposed thermosyphon heat pipe. Implementing this novel thermosyphon heat pipe heat sink in the cooling of a commercial 100 W LED integrated chip, a very low apparent thermal resistance of 0.34 K/W was obtained under natural air convection with the aid of the enhanced boiling heat transfer at the evaporation side and the enhanced natural air convection at the condensation side.
USSR Report, Engineering and Equipment, No. 98.
1983-11-09
Nonhomogeneous Cylinder During Convective Cooling (V. Ya. Belousov; PROBLEM PROCHNOSTI, No 5, May 83) 66 Deformation of Spherical Shells Under Wind...generator and turbine, condenser , deaerator, and tap-water or hot-water tank for heat storage. The electric power is regulated by varying the steam rate...indicators, relative to those of hybrid condensation - boiler atomic electric power plants already in existence, So far the VK-500 boiling^water
Bubble, Drop and Particle Unit (BDPU)
NASA Technical Reports Server (NTRS)
1998-01-01
This section of the Life and Microgravity Spacelab (LMS) publication includes the following articles entitled: (1) Oscillatory Thermocapillary Instability; (2) Thermocapillary Convection in Multilayer Systems; (3) Bubble and Drop Interaction with Solidification Front; (4) A Liquid Electrohydrodynamics Experiment; (5) Boiling on Small Plate Heaters under Microgravity and a Comparison with Earth Gravity; (6) Thermocapillary Migration and Interactions of Bubbles and Drops; and (7) Nonlinear Surface Tension Driven Bubble Migration
NASA Technical Reports Server (NTRS)
Hasan, Mohammad M.; Balasubramaniam, R.
2012-01-01
Experiments performed with Freon 113 in the space shuttle have shown that in a pro- cess of very slow heating, high liquid superheats can be sustained for a long period in microgravity. In a closed system explosive vaporization of superheated liquid resulted in pressure spikes of varying magnitudes. In this paper, we analyze the pressure rise in a partially lled closed tank in which a large vapor bubble (i.e., ullage) is initially present, and the liquid is subjected to a low wall heat ux. The liquid layer adjacent to the wall becomes superheated until the temperature for nucleation of the bubbles (or the incipience of boiling) is achieved. In the absence of the gravity-induced convection large quantities of superheated liquid can accumulate over time near the heated surface. Once the incipience temperature is attained, explosive boiling occurs and the vapor bubbles that are produced on the heater surface tend to quickly raise the tank pressure. The liquid-vapor saturation temperature increases as well. These two e ects tend to induce condensation of the large ullage bubble that is initially present, and tends to mitigate the tank pressure rise. As a result, the tank pressure is predicted to rise sharply, attain a maximum, and subsequently decay slowly. The predicted pressure rise is compared with experimental results obtained in the microgravity environments of the space shuttle for Freon 113. The analysis is appli- cable, in general to heating of liquid in closed containers in microgravity and to cryogenic fuel tanks, in particular where small heat leaks into the tank are unavoidable.
Open-cell and closed-cell clouds off Peru [detail
2017-12-08
2010/107 - 04/17 at 21 :05 UTC. Open-cell and closed-cell clouds off Peru, Pacific Ocean. To view the full fame of this image to go: www.flickr.com/photos/gsfc/4557497219/ Resembling a frosted window on a cold winter's day, this lacy pattern of marine clouds was captured off the coast of Peru in the Pacific Ocean by the MODIS on the Aqua satellite on April 19, 2010. The image reveals both open- and closed-cell cumulus cloud patterns. These cells, or parcels of air, often occur in roughly hexagonal arrays in a layer of fluid (the atmosphere often behaves like a fluid) that begins to "boil," or convect, due to heating at the base or cooling at the top of the layer. In "closed" cells warm air is rising in the center, and sinking around the edges, so clouds appear in cell centers, but evaporate around cell edges. This produces cloud formations like those that dominate the lower left. The reverse flow can also occur: air can sink in the center of the cell and rise at the edge. This process is called "open cell" convection, and clouds form at cell edges around open centers, which creates a lacy, hollow-looking pattern like the clouds in the upper right. Closed and open cell convection represent two stable atmospheric configurations — two sides of the convection coin. But what determines which path the "boiling" atmosphere will take? Apparently the process is highly chaotic, and there appears to be no way to predict whether convection will result in open or closed cells. Indeed, the atmosphere may sometimes flip between one mode and another in no predictable pattern. Satellite: Aqua NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team To learn more about MODIS go to: rapidfire.sci.gsfc.nasa.gov/gallery/?latest NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.
Pool boiler heat transport system for a 25 kWe advanced Stirling conversion system
NASA Astrophysics Data System (ADS)
Anderson, W. G.; Rosenfeld, J. H.; Saaski, E. L.; Noble, J.; Tower, L.
Experiments to determine alkali metal/enhanced surface combinations that have stable boiling at the temperatures and heat fluxes that occur in the Stirling engine are reported. Two enhanced surfaces and two alkali metal working fluids were evaluated. The enhanced surfaces were an EDM hole covered surface and a sintered-powder-metal porous layer surface. The working fluids tested were potassium and eutectic sodium-potasium alloy (NaK), both with and without undissolved noncondensible gas. Noncondensible gas (He and Xe) was added to the system to provide gas in the nucleation sites, preventing quenching of the sites. The experiments demonstrated the potential of an alkali metal pool boiler heat transport system for use in a solar-powered Stirling engine. The most favorable fluid/surface combination tested was NaK boiling on a -100 +140 mesh 304L stainless steel sintered porous layer with no undissolved noncondensible gas. This combination provided stable, high-performance boiling at the operating temperature of 700 C. Heat fluxes into the system ranged from 10 to 50 W/sq cm. The transition from free convection to nucleate boiling occurred at temperatures near 540 C. Based on these experiments, a pool boiler was designed for a full-scale 25-kWe Stirling system.
Forrest, Eric C.; Don, Sarah M.; Hu, Lin -Wen; ...
2016-02-29
The onset of nucleate boiling (ONB) serves as the thermal-hydraulic operating limit for many research and test reactors. However, boiling incipience under forced convection has not been well-characterized in narrow channel geometries or for oxidized surface conditions. This study presents experimental data for the ONB in vertical upflow of deionized (DI) water in a simulated materials test reactor (MTR) coolant channel. The channel gap thickness and aspect ratio were 1.96 mm and 29:1, respectively. Boiling surface conditions were carefully controlled and characterized, with both heavily oxidized and native oxide surfaces tested. Measurements were performed for mass fluxes ranging from 750more » to 3000 kg/m 2s and for subcoolings ranging from 10 to 45°C. ONB was identified using a combination of high-speed visual observation, surface temperature measurements, and channel pressure drop measurements. Surface temperature measurements were found to be most reliable in identifying the ONB. For the nominal (native oxide) surface, results indicate that the correlation of Bergles and Rohsenow, when paired with the appropriate single-phase heat transfer correlation, adequately predicts the ONB heat flux. Furthermore, incipience on the oxidized surface occurred at a higher heat flux and superheat than on the plain surface.« less
Pool boiler heat transport system for a 25 kWe advanced Stirling conversion system
NASA Technical Reports Server (NTRS)
Anderson, W. G.; Rosenfeld, J. H.; Saaski, E. L.; Noble, J.; Tower, L.
1990-01-01
Experiments to determine alkali metal/enhanced surface combinations that have stable boiling at the temperatures and heat fluxes that occur in the Stirling engine are reported. Two enhanced surfaces and two alkali metal working fluids were evaluated. The enhanced surfaces were an EDM hole covered surface and a sintered-powder-metal porous layer surface. The working fluids tested were potassium and eutectic sodium-potasium alloy (NaK), both with and without undissolved noncondensible gas. Noncondensible gas (He and Xe) was added to the system to provide gas in the nucleation sites, preventing quenching of the sites. The experiments demonstrated the potential of an alkali metal pool boiler heat transport system for use in a solar-powered Stirling engine. The most favorable fluid/surface combination tested was NaK boiling on a -100 +140 mesh 304L stainless steel sintered porous layer with no undissolved noncondensible gas. This combination provided stable, high-performance boiling at the operating temperature of 700 C. Heat fluxes into the system ranged from 10 to 50 W/sq cm. The transition from free convection to nucleate boiling occurred at temperatures near 540 C. Based on these experiments, a pool boiler was designed for a full-scale 25-kWe Stirling system.
NASA Astrophysics Data System (ADS)
Ueno, Ichiro; Ando, Jun; Horiuchi, Kazuna; Saiki, Takahito; Kaneko, Toshihiro
2016-11-01
Microbubble emission boiling (MEB) produces a higher heat flux than critical heat flux (CHF) and therefore has been investigated in terms of its heat transfer characteristics as well as the conditions under which MEB occurs. Its physical mechanism, however, is not yet clearly understood. We carried out a series of experiments to examine boiling on horizontal circular heated surfaces of 5 mm and of 10 mm in diameter, in a subcooled pool, paying close attention to the transition process to MEB. High-speed observation results show that, in the MEB regime, the growth, condensation, and collapse of the vapor bubbles occur within a very short time. In addition, a number of fine bubbles are emitted from the collapse of the vapor bubbles. By tracking these tiny bubbles, we clearly visualize that the collapse of the vapor bubbles drives the liquid near the bubbles towards the heated surface, such that the convection field around the vapor bubbles under MEB significantly differs from that under nucleate boiling. Moreover, the axial temperature gradient in a heated block (quasi-heat flux) indicates a clear difference between nucleate boiling and MEB. A combination of quasi-heat flux and the measurement of the behavior of the vapor bubbles allows us to discuss the transition to MEB. This work was financially supported by the 45th Research Grant in Natural Sciences from The Mitsubishi Foundation (2014 - 2015), and by Research Grant for Boiler and Pressurized Vessels from The Japan Boiler Association (2016).
Heat Transfer in Boiling Dilute Emulsion with Strong Buoyancy
NASA Astrophysics Data System (ADS)
Freeburg, Eric Thomas
Little attention has been given to the boiling of emulsions compared to that of boiling in pure liquids. The advantages of using emulsions as a heat transfer agent were first discovered in the 1970s and several interesting features have since been studied by few researchers. Early research focuses primarily on pool and flow boiling and looks to determine a mechanism by which the boiling process occurs. This thesis looks at the boiling of dilute emulsions in fluids with strong buoyant forces. The boiling of dilute emulsions presents many favorable characteristics that make it an ideal agent for heat transfer. High heat flux electronics, such as those seen in avionics equipment, produce high heat fluxes of 100 W/cm2 or more, but must be maintained at low temperatures. So far, research on single phase convection and flow boiling in small diameter channels have yet to provide an adequate solution. Emulsions allow the engineer to tailor the solution to the specific problem. The fluid can be customized to retain the high thermal conductivity and specific heat capacity of the continuous phase while enhancing the heat transfer coefficient through boiling of the dispersed phase component. Heat transfer experiments were carried out with FC-72 in water emulsions. FC-72 has a saturation temperature of 56 °C, far below that of water. The parameters were varied as follows: 0% ≤ epsilon ≤ 1% and 1.82 x 1012 ≤ RaH ≤ 4.42 x 1012. Surface temperatures along the heated surface reached temperature that were 20 °C in excess of the dispersed phase saturation temperature. An increase of ˜20% was seen in the average Nusselt numbers at the highest Rayleigh numbers. Holography was used to obtain images of individual and multiple FC-72 droplets in the boundary layer next to the heated surface. The droplet diameters ranged from 0.5 mm to 1.3 mm. The Magnus effect was observed when larger individual droplets were injected into the boundary layer, causing the droplets to be pushed outside the boundary layer. Vaporization of FC-72 droplets in the boundary layer next to the heated surface was not observed.
Numerical Investigation of Microgravity Tank Pressure Rise Due to Boiling
NASA Technical Reports Server (NTRS)
Hylton, Sonya; Ibrahim, Mounir; Kartuzova, Olga; Kassemi, Mohammad
2015-01-01
The ability to control self-pressurization in cryogenic storage tanks is essential for NASAs long-term space exploration missions. Predictions of the tank pressure rise in Space are needed in order to inform the microgravity design and optimization process. Due to the fact that natural convection is very weak in microgravity, heat leaks into the tank can create superheated regions in the liquid. The superheated regions can instigate microgravity boiling, giving rise to pressure spikes during self-pressurization. In this work, a CFD model is developed to predict the magnitude and duration of the microgravity pressure spikes. The model uses the Schrage equation to calculate the mass transfer, with a different accommodation coefficient for evaporation at the interface, condensation at the interface, and boiling in the bulk liquid. The implicit VOF model was used to account for the moving interface, with bounded second order time discretization. Validation of the models predictions was carried out using microgravity data from the Tank Pressure Control Experiment, which flew aboard the Space Shuttle Mission STS-52. Although this experiment was meant to study pressurization and pressure control, it underwent boiling during several tests. The pressure rise predicted by the CFD model compared well with the experimental data. The ZBOT microgravity experiment is scheduled to fly on February 2016 aboard the ISS. The CFD model was also used to perform simulations for setting parametric limits for the Zero-Boil-Off Tank (ZBOT) Experiments Test Matrix in an attempt to avoid boiling in the majority of the test runs that are aimed to study pressure increase rates during self-pressurization. *Supported in part by NASA ISS Physical Sciences Research Program, NASA HQ, USA
Technology of forced flow and once-through boiling: A survey. [pressure distribution
NASA Technical Reports Server (NTRS)
Poppendieck, H. F.; Sabin, C. M.
1975-01-01
Representative boiling heat transfer and pressure drop information obtained primarily from past NASA and AEC programs is presented which is applicable to forced flow and once-through boiler systems. The forced convection boiler has a number of advantages: little possibility of flow mal-distribution; heat transfer characteristics are usually consistent; and conductances are predictable, so that higher heat fluxes may be employed with safety (which leads to more compact, lighter weight equipment). It was found that in gas-fired systems particularly, the controlling heat transfer resistance may be on the hot side, so that increased fluxes would require extended surfaces. If in a power generation system the working fluid is very expensive, a forced flow boiler can be designed especially for small holdup volume. If the fluid is temperature sensitive, the boiling side wall temperatures can be tailored to maintain maximum heat transfer rates without overheating the fluid. The forced flow and once-through configurations may be the only type which can satisfy a specific need (such as the automotive Rankine cycle power plant design having a very short time-response boiler).
Results for the Aboveground Configuration of the Boiling Water Reactor Dry Cask Simulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durbin, Samuel G.; Lindgren, Eric R.
The thermal performance of commercial nuclear spent fuel dry storage casks is evaluated through detailed numerical analysis. These modeling efforts are completed by the vendor to demonstrate performance and regulatory compliance. The calculations are then independently verified by the Nuclear Regulatory Commission (NRC). Carefully measured data sets generated from testing of full-sized casks or smaller cask analogs are widely recognized as vital for validating these models. Recent advances in dry storage cask designs have significantly increased the maximum thermal load allowed in a cask, in part by increasing the efficiency of internal conduction pathways, and also by increasing the internalmore » convection through greater canister helium pressure. These same canistered cask systems rely on ventilation between the canister and the overpack to convect heat away from the canister to the environment for both above- and below-ground configurations. While several testing programs have been previously conducted, these earlier validation attempts did not capture the effects of elevated helium pressures or accurately portray the external convection of above-ground and below-ground canistered dry cask systems. The purpose of the current investigation was to produce data sets that can be used to test the validity of the assumptions associated with the calculations used to determine steady-state cladding temperatures in modern dry casks that utilize elevated helium pressure in the sealed canister in an above-ground configuration.« less
A Study of Nucleate Boiling with Forced Convection in Microgravity
NASA Technical Reports Server (NTRS)
Merte, Herman, Jr.
1999-01-01
The ultimate objective of basic studies of flow boiling in microgravity is to improve the understanding of the processes involved, as manifested by the ability to predict its behavior. This is not yet the case for boiling heat transfer even in earth gravity, despite the considerable research activity over the past 30 years. The elements that constitute the nucleate boiling process - nucleation, growth, motion, and collapse of the vapor bubbles (if the bulk liquid is subcooled) - are common to both pool and flow boiling. It is well known that the imposition of bulk liquid motion affects the vapor bubble behavior relative to pool boiling, but does not appear to significantly influence the heat transfer. Indeed, it has been recommended in the past that empirical correlations or experimental data of pool boiling be used for design purposes with forced convection nucleate boiling. It is anticipated that such will most certainly not be possible for boiling in microgravity, based on observations made with pool boiling in microgravity. In earth gravity buoyancy will act to remove the vapor bubbles from the vicinity of the heater surface regardless of how much the imposed bulk velocity is reduced, depending, of course, on the geometry of the system. Vapor bubbles have been observed to dramatically increase in size in pool boiling in microgravity, and the heat flux at which dryout took place was reduced considerably below what is generally termed the critical heat flux (CHF) in earth gravity, depending on the bulk liquid subcooling. However, at heat flux levels below dryout, the nucleate pool boiling process was enhanced considerably over that in earth gravity, in spite of the large vapor bubbles formed in microgravity and perhaps as a consequence. These large vapor bubbles tended to remain in the vicinity of the heater surface, and the enhanced heat transfer appeared to be associated with the presence of what variously has been referred to as a liquid microlayer between the bubble and the heater surface. The enhancement of the boiling process with low velocities in earth gravity for those orientations producing the formation of a liquid macrolayer described above, accompanied by "sliding" vapor bubbles, has been demonstrated. The enhancement was presented as a function of orientation, subcooling, and heated length, while a criterion for the heat transfer for mixed natural/forced convection nucleate boiling was given previously. A major unknown in the prediction and application of flow boiling heat transfer in microgravity is the upper limit of the heat flux for the onset of dryout (or critical heat flux - CHF), for given conditions of fluid-heater surfaces, including geometry, system pressure and bulk liquid subcooling. It is clearly understood that the behavior in microgravity will be no different than on earth with sufficiently high flow velocities, and would require no space experimentation. However, the boundary at which this takes place is still an unknown. Previous results of CHF measurements were presented for low velocity flow boiling at various orientations in earth gravity as a function of flow velocity and bulk liquid subcooling, along with preliminary measurements of bubble residence times on a flat heater surface. This showed promise as a parameter to be used in modeling the CHF, both in earth gravity and in microgravity. The objective of the work here is to draw attention to and show results of current modeling efforts for the CHF, with low velocities in earth gravity at different orientations and subcoolings. Many geometrical possibilities for a heater surface exist in flowing boiling, with boiling on the inner and outer surfaces of tubes perhaps being the most common. If the vapor bubble residence time on and departure size from the heater surface bear a relationship to the CHF, as results to be given indicate, it is important that visualization of and access to vapor bubble growth be conveniently available for research purposes. In addition, it is desirable to reduce the number of variables as much as possible in a fundamental study. These considerations dictated the use of a flat heater surface, which is rectangular in shape, 1.91 cm by 3.81 cm (0.75 x 1.5 inches), consisting either of a 400 Angstrom thick semi-transparent gold film sputtered on a quartz substrate which serves simultaneously as a heater and a resistance thermometer, or a copper substrate of the same size. The heater substrate is a disc which can be rotated so that the heated length in the flow direction can be changed from 1.91 to 3.81 cm (0.75 to 1.5 inches). The fluid is R-113, and the velocities can be varied between 0.5 cm/s and 60 cm/s. For a sufficiently low velocity the CHF can be modeled reasonably well at various orientations by the correlation for pool boiling corrected for the influence of bulk liquid subcooling, multiplied by the square root of q, the angle relative to horizontal. This arises from equating buoyancy and drag forces in the inverted positions where the vapor bubbles are held against the heater surface as they slide. A distortion of the measurements relative to pool boiling occurs as the flow velocity increases. In modeling this effect at different levels of subcooling it appeared appropriate to estimate the volumetric rate of vapor generation, using measurements of bubble frequency (or residence time), void fraction and average bubble boundary layer thickness. These were determined with the use of a platinum hot wire probe 0.025 mm in diameter by 1.3 mm long, applying a constant current to distinguish between contact with liquid or vapor. Two-dimensional spatial variations are obtained with a special mechanism to resolve displacements in increments of 0.025 mm. From such measurements it was determined that the fraction of the surface heat transfer resulting in evaporation varies inversely with the subcooling correction factor for the CHF. The measured inverse bubble residence time is normalized relative to that predicted for an infinite horizontal flat plate at the CHF, and is correlated well with the CHF normalized relative to that for pool boiling, for various orientation angles and subcooling levels. This correspondence is then combined with a normalizing factor for the energy flux leaving the heater surface at the CHF and the computed bubble radius at departure, determined from the balance between the outward velocity of the interface due to evaporation and the buoyance induced velocity of the center of mass of the bubble. The product of the CHF and the corresponding residence time was determined to be a constant for all orientations at a given bulk flow velocity and liquid subcooling, and must be determined empirically for each velocity and subcooling at present. It then becomes possible to predict the CHF for the different orientations, velocities, and subcoolings. These are compared with normalized measurements of the CHF for velocities ranging from 4 cm/s to 55 cm/s, subcoolings from 2.8 to 22.2 K, over orientations angles of 360 degrees.
NASA Technical Reports Server (NTRS)
Boyd, Ronald D., Sr.; Turknett, Jerry C.
1989-01-01
The effect of enhancement devices on flow boiling heat transfer in coolant channels, which are heated either from the top side or uniformly was studied. Studies are completed of the variations in the local (axial and circumferential) and mean heat transfer coefficients in horizontal, top-heated coolant channels with smooth walls and internal heat transfer enhancement devices. The working fluid is freon-11. The objectives are to: (1) examine the variations in both the mean and local (axial and circumferential) heat transfer coefficients for a circular coolant channel with either smooth walls or with both a twisted tape and spiral finned walls; (2) examine the effect of channel diameter (and the length-to-diameter aspect ratio) variations for the smooth wall channel; and (3) develop and improved data reduction analysis. The case of the top-heated, horizontal flow channel with smooth wall (1.37 cm inside diameter, and 122 cm heated length) was completed. The data were reduced using a preliminary analysis based on the heated hydraulic diameter. Preliminary examination of the local heat transfer coefficient variations indicated that there are significant axial and circumferential variations. However, it appears that the circumferential variation is more significant than the axial ones. In some cases, the circumferential variations were as much as a factor of ten. The axial variations rarely exceeded a factor of three.
Characterization of Convective Boiling in Branching Channel Heat Sinks
2009-05-06
pressure drop was well predicted using the void fraction correlation of Zivi [11] and the phase interaction parameter of Qu and Mudawar [16]. Model...paper number HT2008-56253, ASME Heat Transfer Summer Conference, August 10-14, 2008, Jacksonville, FL. 16. W. Qu, I. Mudawar , Measurement and...level. The Zivi [11] correlation is also recommended, with the two-phase interaction parameter of Qu and Mudawar [16] for use in the one-dimensional
DOE Office of Scientific and Technical Information (OSTI.GOV)
Triplett, C.E.
1996-12-01
This thesis presents the results of an experimental investigation of natural convection heat transfer in a staggered array of heated cylinders, oriented horizontally within a rectangular enclosure. The main purpose of this research was to extend the knowledge of heat transfer within enclosed bundles of spent nuclear fuel rods sealed within a shipping or storage container. This research extends Canaan`s investigation of an aligned array of heated cylinders that thermally simulated a boiling water reactor (BWR) spent fuel assembly sealed within a shipping or storage cask. The results are presented in terms of piecewise Nusselt-Rayleigh number correlations of the formmore » Nu = C(Ra){sup n}, where C and n are constants. Correlations are presented both for individual rods within the array and for the array as a whole. The correlations are based only on the convective component of the heat transfer. The radiative component was calculated with a finite-element code that used measured surface temperatures, rod array geometry, and measured surface emissivities as inputs. The correlation results are compared to Canaan`s aligned array results and to other studies of natural convection in horizontal tube arrays.« less
Influence of Oil on Refrigerant Evaporator Performance
NASA Astrophysics Data System (ADS)
Kim, Jong-Soo; Nagata, Karsuya; Katsuta, Masafumi; Tomosugi, Hiroyuki; Kikuchi, Kouichiro; Horichi, Toshiaki
In vapor compression refrigeration system using oil-lubricated compressors, some amount of oil is always circulated through the system. Oil circulation can have a significant influence on the evaporator performance of automotive air conditioner which is especially required to cool quickly the car interior after a period standing in the sun. An experimental investigation was carried out an electrically heated horizontal tube to measure local heat transfer coefficients for various flow rates and heat fluxes during forced convection boiling of pure refrigerant R12 and refrigerant-oil mixtures (0-11% oil concentration by weight) and the results were compared with oil free performance. Local heat transfer coefficients increased at the region of low vapor quality by the addition of oil. On the other hand, because the oil-rich liquid film was formed on the heat transfer surface, heat transfer coefficients gradually decreased as the vapor quality became higher. Average heat transfer coefficient reached a maximum at about 4% oil concentration and this trend agreed well with the results of Green and Furse. Previous correlations, using the properties of the refrigerant-oil mixture, could not predict satisfactorily the local heat transfer coefficients data. New correlation modified by oil concentration factor was developed for predicting the corresponding heat transfer coefficient for refrigerant-oil mixture convection boiling. The maximum percent deviation between predicted and measured heat transfer coefficient was within ±30%.
Horizontal convective boiling of R448A, R449A, and R452B within a micro-fin tube
KEDZIERSKI, MARK A.; KANG, DONGGYU
2017-01-01
This article presents local convective boiling measurements in a micro-fin tube for three low global warming potential refrigerants: R448A, R449A, and R452B1. An existing correlation was modified to predict multi-component mixtures, which predicted 98% of the measurements to within ±20%. The new correlation was used to compare the heat transfer coefficient of the three test fluids at the same heat flux, saturated refrigerant temperature, and refrigerant mass flux. The resulting comparison showed that refrigerant R452B exhibited the highest heat transfer, in large part due to its approximately 28% larger liquid thermal conductivity and smaller temperature glide as compared to the tested low-global warming potential refrigerants. For the example case, the heat transfer coefficient for R449A was approximately 8% larger than that for R448A, while the heat transfer coefficient for R452B was more than 59% larger than either R448A or R449A. The heat transfer coefficients for R448A and R449A were roughly between 26 and 48% less than that of R404A for the example case. In contrast, the model predicts that the R452B heat transfer coefficient was approximately 13% larger than that of R404A for the same conditions. PMID:28758148
Comparative study of flow condensation in conventional and small diameter tubes
NASA Astrophysics Data System (ADS)
Mikielewicz, Dariusz; Andrzejczyk, Rafał
2012-10-01
Flow boiling and flow condensation are often regarded as two opposite or symmetrical phenomena. Their description however with a single correlation has yet to be suggested. In the case of flow boiling in minichannels there is mostly encountered the annular flow structure, where the bubble generation is not present. Similar picture holds for the case of inside tube condensation, where annular flow structure predominates. In such case the heat transfer coefficient is primarily dependent on the convective mechanism. In the paper a method developed earlier by the first author is applied to calculations of heat transfer coefficient for inside tube condensation. The method has been verified using experimental data from literature on several fluids in different microchannels and compared to three well established correlations for calculations of heat transfer coefficient in flow condensation. It clearly stems from the results presented here that the flow condensation can be modeled in terms of appropriately devised pressure drop.
Subcooled Liquid Oxygen Cryostat for Magneto-Archimedes Particle Separation by Density
NASA Astrophysics Data System (ADS)
Hilton, D. K.; Celik, D.; Van Sciver, S. W.
2008-03-01
An instrument for the separation of particles by density (sorting) is being developed that uses the magneto-archimedes effect in liquid oxygen. With liquid oxygen strongly paramagnetic, the magneto-archimedes effect is an extension of diamagnetic levitation in the sense of increasing the effective buoyancy of a particle. The instrument will be able to separate ensembles of particles from 100 μm to 100 nm in size, and vertically map or mechanically deliver the separated particles. The instrument requires a column of liquid oxygen that is nearly isothermal, free of thermal convection, subcooled to prevent nucleate boiling, and supported against the strong magnetic field used. Thus, the unique cryostat design that meets these requirements is described in the present article. It consists in part of a column of liquid nitrogen below for cooling the liquid oxygen, with the liquid oxygen pressurized by helium gas to prevent nucleate boiling.
NASA Astrophysics Data System (ADS)
Ingersoll, A. P.; Nakajima, M.; Ewald, S.; Gao, P.
2015-12-01
Postberg et al (2009) argued that the observed plume activity requires large vapor chambers above the evaporating liquid (left figure). Here we argue that large vapor chambers are unnecessary, and that a liquid-filled crack 1 meter wide extending along the 500 km length of the tiger stripes would be an adequate source (right figure). We consider controlled boiling (companion paper by Nakajima and Ingersoll 2015AGU) regulated by friction between the gas and the walls. Postberg et al use formulas from Rayleigh-Benard convection, which we argue does not apply when bubbles are transferring their latent heat across the liquid-gas interface. We show that modest convection currents in the liquid (few cm/s) can supply energy to the boiling zone and prevent it from freezing. Hedman et al (2013) reported brightness variations with orbital phase, but they also reported that their 2005 observations were roughly 50% higher than the 2009 observations. Here we extend the observation period to 2015 (Ingersoll and Ewald 2015). Our analysis relies on ISS images whereas Hedman et al rely on VIMS near-IR images, which have 40 times lower resolution. We successfully separate the brightness of the plume from the E-ring background. Our earlier analysis of the particle size distribution (Ingersoll and Ewald 2011) allows us to correct for differences in scattering angle. We confirm a general decline in activity over the 10-year period, but we find hints of fluctuations on shorter time scales. Kempf (Cassini project science meeting, Jan 22, 2015) reported that the mass of particles in the plumes could be an order of magnitude less than that reported by Ingersoll and Ewald (2011). Kempf used in situ particle measurements by CDA, whereas I&E used brightness observations and the assumption that the particles are solid ice. Here we show (Gao et al 2015AGU) that fractal aggregates fit the brightness data just as well as solid ice, and are consistent with the lower mass reported by Kempf.
Santos, M V; Sansinena, M; Zaritzky, N; Chirife, J
2012-01-01
In oocyte vitrification, plunging directly into liquid nitrogen favor film boiling and strong nitrogen vaporization. A survey of literature values of heat transfer coefficients (h) for film boiling of small metal objects with different geometries plunged in liquid nitrogen revealed values between 125 to 1000 W per per square m per K. These h values were used in a numerical simulation of cooling rates of two oocyte vitrification devices (open-pulled straw and Cryotop), plunged in liquid and slush nitrogen conditions. Heat conduction equation with convective boundary condition was considered a linear mathematical problem and was solved using the finite element method applying the variational formulation. COMSOL Multiphysics was used to simulate the cooling process of the systems. Predicted cooling rates for OPS and Cryotop when cooled at -196 degree C (liquid nitrogen) or -207 degree C (average for slush nitrogen) for heat transfer coefficients estimated to be representative of film boiling, indicated lowering the cooling temperature produces only a maximum 10 percent increase in cooling rates; confirming the main benefit of plunging in slush over liquid nitrogen does not arise from their temperature difference. Numerical simulations also demonstrated that a hypothetical four-fold increase in the cooling rate of vitrification devices when plunging in slush nitrogen would be explained by an increase in heat transfer coefficient. This improvement in heat transfer (i.e., high cooling rates) in slush nitrogen is attributed to less or null film boiling when a sample is placed in slush (mixture of liquid and solid nitrogen) because it first melts the solid nitrogen before causing the liquid to boil and form a film.
New Technique for Cryogenically Cooling Small Test Articles
NASA Technical Reports Server (NTRS)
Rodriquez, Karen M.; Henderson, Donald J.
2011-01-01
Convective heat removal techniques to rapidly cool small test articles to Earth-Moon L2 temperatures of 77 K were accomplished through the use of liquid nitrogen (LN2). By maintaining a selected pressure range on the saturation curve, test articles were cooled below the LN2 boiling point at ambient pressure in less than 30 min. Difficulties in achieving test pressures while maintaining the temperature tolerance necessitated a modification to the original system to include a closed loop conductive cold plate and cryogenic shroud
NASA Astrophysics Data System (ADS)
Premnath, Kannan N.; Hajabdollahi, Farzaneh; Welch, Samuel W. J.
2018-04-01
The presence of surfactants in two-phase flows results in the transport and adsorption of surfactants to the interface, and the resulting local interfacial concentration significantly influences the surface tension between the liquid and vapor phases in a fluid undergoing phase change. This computational study is aimed at understanding and elucidating the mechanisms of enhanced flows and thermal transport processes in film boiling due to the addition of surfactants. A change in surface tension results in a change in the critical Rayleigh-Taylor wavelength leading to different bubble release patterns and a change in the overall heat transfer rates. Due to the presence of surfactants, an additional transport mechanism of the Marangoni convection arises from the resulting tangential gradients in the surfactant concentration along the phase interface. Our computational approach to study such phenomena consists of representing the interfacial motion by means of the coupled level set-volume-of-fluid method, the fluid motion via the classical marker-and-cell approach, as well as representations for the bulk transport of energy and surfactants, in conjunction with a phase change model and an interfacial surfactant model. Using such an approach, we perform numerical simulations of surfactant-laden single mode as well as multiple mode film boiling and study the effect of surfactants on the transport processes in film boiling, including bubble release patterns, vapor generation rates, and heat transfer rates at different surfactant concentrations. The details of the underlying mechanisms will be investigated and interpreted.
The influence of magma viscosity on convection within a magma chamber
NASA Astrophysics Data System (ADS)
Schubert, M.; Driesner, T.; Ulmer, P.
2012-12-01
Magmatic-hydrothermal ore deposits are the most important sources of metals like Cu, Mo, W and Sn and a major resource for Au. It is well accepted that they are formed by the release of magmatic fluids from a batholith-sized magma body. Traditionally, it has been assumed that crystallization-induced volatile saturation (called "second boiling") is the main mechanism for fluid release, typically operating over thousands to tens of thousands of years (Candela, 1991). From an analysis of alteration halo geometries caused by magmatic fluids, Cathles and Shannon (2007) suggested much shorter timescales in the order of hundreds of years. Such rapid release of fluids cannot be explained by second boiling as the rate of solidification scales with the slow conduction of heat away from the system. However, rapid fluid release is possible if convection is assumed within the magma chamber. The magma would degas in the upper part of the magma chamber and volatile poor magma would sink down again. Such, the rates of degassing can be much higher than due to cooling only. We developed a convection model using Navier-Stokes equations provided by the computational fluid dynamics platform OpenFOAM that gives the possibility to use externally derived meshes with complex (natural) geometries. We implemented a temperature, pressure, composition and crystal fraction dependent viscosity (Ardia et al., 2008; Giordano et al., 2008; Moore et al., 1998) and a temperature, pressure, composition dependent density (Lange1994). We found that the new viscosity and density models strongly affect convection within the magma chamber. The dependence of viscosity on crystal fraction has a particularly strong effect as the steep viscosity increase at the critical crystal fraction leads to steep decrease of convection velocity. As the magma chamber is cooling from outside to inside a purely conductive layer is developing along the edges of the magma chamber. Convection continues in the inner part of the magma chamber but the heat loss is limited by the conductive heat transport along the edges. The goal of the study is to consider magma degassing in terms of implementing solubility of water in dependence of temperature, pressure and composition and find a parameterization for the viscosity that considers the developing bubbles. References Ardia, P., Giordano, D., and Schmidt, M. W., 2008, A model for the viscosity of rhyolite as a function of H2O-content and pressure: A calibration based on centrifuge piston cylinder experiments: Geochimica Et Cosmochimica Acta, v. 72, no. 24, p. 6103-6123. Candela, P. A., 1991, Physics of Aqueous Phase Evolution in Plutonic Environments: American Mineralogist, v. 76, no. 7-8, p. 1081-1091. Cathles, L. M., and Shannon, R., 2007, How potassium silicate alteration suggests the formation of porphyry ore deposits begins with the nearly explosive but barren expulsion of large volumes of magmatic water: Earth and Planetary Science Letters, v. 262, no. 1-2, p. 92-108. Giordano, D., Russell, J. K., and Dingwell, D. B., 2008, Viscosity of magmatic liquids: A model: Earth and Planetary Science Letters, v. 271, no. 1-4, p. 123-134. Moore, G., Vennemann, T., and Carmichael, I. S. E., 1998, An empirical model for the solubility of H2O in magmas to 3 kilobars: American Mineralogist, v. 83, no. 1-2, p. 36-42.
The Future with Cryogenic Fluid Dynamics
NASA Astrophysics Data System (ADS)
Scurlock, R. G.
The applications of cryogenic systems have expanded over the past 50 years into many areas of our lives. During this time, the impact of the common features of Cryogenic Fluid Dynamics, CryoFD, on the economic design of these cryogenic systems, has grown out of a long series of experimental studies carried out by teams of postgraduate students at Southampton University.These studies have sought to understand the heat transfer and convective behavior of cryogenic liquids and vapors, but they have only skimmed over the many findings made, on the strong convective motions of fluids at low temperatures. The convection takes place in temperature gradients up to 10,000 K per meter, and density gradients of 1000% per meter and more, with rapid temperature and spatially dependent changes in physical properties like viscosity and surface tension, making software development and empirical correlations almost impossible to achieve. These temperature and density gradients are far larger than those met in other convecting systems at ambient temperatures, and there is little similarity. The paper will discuss the likely impact of CryoFD on future cryogenic systems, and hopefully inspire further research to support and expand the use of existing findings, and to improve the economy of present-day systems even more effectively. Particular examples to be mentioned include the following. Doubling the cooling power of cryo-coolers by a simple use of CryoFD. Reducing the boil-off rate of liquid helium stored at the South Pole, such that liquid helium availability is now all-the-year-round. Helping to develop the 15 kA current leads for the LHC superconducting magnets at CERN, with much reduced refrigeration loads. Improving the heat transfer capability of boiling heat transfer surfaces by 10 to 100 fold. This paper is an edited text of an invited plenary presentation at ICEC25/ICMC2014 by Professor Scurlock on the occasion of his being presented with the ICEC Mendelssohn Award for his many contributions to Cryogenics. As long ago as 1992, he first proposed in his "History and Origins of Cryogenics" that the temperature range for Cryogenics should be extended up to the ice-point at 273K. This paper expands on this proposal with the implicit assumption that Cryogenic Fluid Dynamics can provide a universal basis for modelling heat transfer and convective fluid behaviour of all fluids, at all temperatures, below the ice-point at 273K; or below 250K if you wish to exclude refrigeration engineering."
Local-Scale Simulations of Nucleate Boiling on Micrometer Featured Surfaces: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sitaraman, Hariswaran; Moreno, Gilberto; Narumanchi, Sreekant V
2017-08-03
A high-fidelity computational fluid dynamics (CFD)-based model for bubble nucleation of the refrigerant HFE7100 on micrometer-featured surfaces is presented in this work. The single-fluid incompressible Navier-Stokes equations, along with energy transport and natural convection effects are solved on a featured surface resolved grid. An a priori cavity detection method is employed to convert raw profilometer data of a surface into well-defined cavities. The cavity information and surface morphology are represented in the CFD model by geometric mesh deformations. Surface morphology is observed to initiate buoyancy-driven convection in the liquid phase, which in turn results in faster nucleation of cavities. Simulationsmore » pertaining to a generic rough surface show a trend where smaller size cavities nucleate with higher wall superheat. This local-scale model will serve as a self-consistent connection to larger device scale continuum models where local feature representation is not possible.« less
Local-Scale Simulations of Nucleate Boiling on Micrometer-Featured Surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sitaraman, Hariswaran; Moreno, Gilberto; Narumanchi, Sreekant V
2017-07-12
A high-fidelity computational fluid dynamics (CFD)-based model for bubble nucleation of the refrigerant HFE7100 on micrometer-featured surfaces is presented in this work. The single-fluid incompressible Navier-Stokes equations, along with energy transport and natural convection effects are solved on a featured surface resolved grid. An a priori cavity detection method is employed to convert raw profilometer data of a surface into well-defined cavities. The cavity information and surface morphology are represented in the CFD model by geometric mesh deformations. Surface morphology is observed to initiate buoyancy-driven convection in the liquid phase, which in turn results in faster nucleation of cavities. Simulationsmore » pertaining to a generic rough surface show a trend where smaller size cavities nucleate with higher wall superheat. This local-scale model will serve as a self-consistent connection to larger device scale continuum models where local feature representation is not possible.« less
Carbon-based nanostructured surfaces for enhanced phase-change cooling
NASA Astrophysics Data System (ADS)
Selvaraj Kousalya, Arun
To maintain acceptable device temperatures in the new generation of electronic devices under development for high-power applications, conventional liquid cooling schemes will likely be superseded by multi-phase cooling solutions to provide substantial enhancement to the cooling capability. The central theme of the current work is to investigate the two-phase thermal performance of carbon-based nanostructured coatings in passive and pumped liquid-vapor phase-change cooling schemes. Quantification of the critical parameters that influence thermal performance of the carbon nanostructured boiling surfaces presented herein will lead to improved understanding of the underlying evaporative and boiling mechanisms in such surfaces. A flow boiling experimental facility is developed to generate consistent and accurate heat transfer performance curves with degassed and deionized water as the working fluid. New means of boiling heat transfer enhancement by altering surface characteristics such as surface energy and wettability through light-surface interactions is explored in this work. In this regard, carbon nanotube (CNT) coatings are exposed to low-intensity irradiation emitted from a light emitting diode and the subcooled flow boiling performance is compared against a non-irradiated CNT-coated copper surface. A considerable reduction in surface superheat and enhancement in average heat transfer coefficient is observed. In another work involving CNTs, the thermal performance of CNT-integrated sintered wick structures is evaluated in a passively cooled vapor chamber. A physical vapor deposition process is used to coat the CNTs with varying thicknesses of copper to promote surface wetting with the working fluid, water. Thermal performance of the bare sintered copper powder sample and the copper-functionalized CNT-coated sintered copper powder wick samples is compared using an experimental facility that simulates the capillary fluid feeding conditions of a vapor chamber. Nanostructured samples having a thicker copper coating provided a considerable increase in dryout heat flux while maintaining lower surface superheat temperatures compared to a bare sintered powder sample; this enhancement is attributed primarily to the improved surface wettability. Dynamic contact angle measurements are conducted to quantitatively compare the surface wetting trends for varying copper coating thicknesses and confirm the increase in hydrophilicity with increasing coating thickness. The second and relatively new carbon nanostructured coating, carbon nanotubes decorated with graphitic nanopetals, are used as a template to manufacture boiling surfaces with heterogeneous wettability. Heat transfer surfaces with parallel alternating superhydrophobic and superhydrophilic stripes are fabricated by a combination of oxygen plasma treatment, Teflon coating and shadow masking. Such composite wetting surfaces exhibit enhanced flow-boiling performance compared to homogeneous wetting surfaces. Flow visualization studies elucidate the physical differences in nucleate boiling mechanisms between the different heterogeneous wetting surfaces. The third and the final carbon nanomaterial, graphene, is examined as an oxidation barrier coating for liquid and liquid-vapor phase-change cooling systems. Forced convection heat transfer experiments on bare and graphene-coated copper surfaces reveal nearly identical liquid-phase and two-phase thermal performance for the two surfaces. Surface analysis after thermal testing indicates significant oxide formation on the entire surface of the bare copper substrate; however, oxidation is observed only along the grain boundaries of the graphene-coated substrate. Results suggest that few-layer graphene can act as a protective layer even under vigorous flow boiling conditions, indicating a broad application space of few-layer graphene as an ultra-thin oxidation barrier coating.
A transient thermal model of a neutral buoyancy cryogenic fluid delivery system
NASA Astrophysics Data System (ADS)
Bue, Grant C.; Conger, Bruce S.
A thermal-performance model is presently used to evaluate a preliminary Neutral Buoyancy Cryogenic fluid-delivery system for underwater EVA training. Attention is given to the modeling of positional transients generated from the moving of internal components, including the control of cycling artifacts, as well as to the convection and boiling characteristics of the cryofluid, 250-psi N2/O2 gas, and water contained in the tank. Two piston designs are considered according to performance criteria; temperature and heat-transfer rate profiles are presented.
GFSSP Training Course Lectures
NASA Technical Reports Server (NTRS)
Majumdar, Alok K.
2008-01-01
GFSSP has been extended to model conjugate heat transfer Fluid Solid Network Elements include: a) Fluid nodes and Flow Branches; b) Solid Nodes and Ambient Nodes; c) Conductors connecting Fluid-Solid, Solid-Solid and Solid-Ambient Nodes. Heat Conduction Equations are solved simultaneously with Fluid Conservation Equations for Mass, Momentum, Energy and Equation of State. The extended code was verified by comparing with analytical solution for simple conduction-convection problem The code was applied to model: a) Pressurization of Cryogenic Tank; b) Freezing and Thawing of Metal; c) Chilldown of Cryogenic Transfer Line; d) Boil-off from Cryogenic Tank.
Active two-phase cooling of an IR window for a hypersonic interceptor
NASA Astrophysics Data System (ADS)
Burzlaff, B. H.; Chivian, Jay S.; Cotten, W. D.; Hemphill, R. B.; Huhlein, Michael A.
1993-06-01
A novel actively cooled window for an IR sensor on a hypersonic interceptor is envisioned which achieves an IR window with high transmittance, low emittance, and low image distortion under high aerodynamic heat flux. The cooling concept employs two-phase convective boiling of liquid ammonia. Coolant is confined to narrow, parallel channels within the window to minimize obscuration of the aperture. The high latent heat of vaporization of ammonia minimizes coolant mass-flow requirements. Low boiling temperatures at projected operating pressures promote high thermal conductivity and low emissivity in the window. The concept was tested with thermal measurements on sub-mm width coolant channels in Si. High values for heat transfer coefficient and critical heat flux were obtained. Thermal gradients within the window can be controlled by the coolant channel configuration. Design options are investigated by predicting the effect of aerodynamic heat flux on the image produced by an IR sensor with a cooled window. Ammonia-cooled IR windows will function in the anticipated aerothermal environment.
Issue a Boil-Water Advisory or Wait for Definitive Information? A Decision Analysis
Wagner, Michael M.; Wallstrom, Garrick L.; Onisko, Agnieszka
2005-01-01
Objective Study the decision to issue a boil-water advisory in response to a spike in sales of diarrhea remedies or wait 72 hours for the results of definitive testing of water and people. Methods Decision analysis. Results In the base-case analysis, the optimal decision is test-and-wait. If the cost of issuing a boil-water advisory is less than 13.92 cents per person per day, the optimal decision is to issue the boil-water advisory immediately. Conclusions Decisions based on surveillance data that are suggestive but not conclusive about the existence of a disease outbreak can be modeled. PMID:16779145
Grall; Leonard; Sacks
2000-02-01
Recent advances in column heating technology have made possible very fast linear temperature programming for high-speed gas chromatography. A fused-silica capillary column is contained in a tubular metal jacket, which is resistively heated by a precision power supply. With very rapid column heating, the rate of peak-capacity production is significantly enhanced, but the total peak capacity and the boiling-point resolution (minimum boiling-point difference required for the separation of two nonpolar compounds on a nonpolar column) are reduced relative to more conventional heating rates used with convection-oven instruments. As temperature-programming rates increase, elution temperatures also increase with the result that retention may become insignificant prior to elution. This results in inefficient utilization of the down-stream end of the column and causes a loss in the rate of peak-capacity production. The rate of peak-capacity production is increased by the use of shorter columns and higher carrier gas velocities. With high programming rates (100-600 degrees C/min), column lengths of 6-12 m and average linear carrier gas velocities in the 100-150 cm/s range are satisfactory. In this study, the rate of peak-capacity production, the total peak capacity, and the boiling point resolution are determined for C10-C28 n-alkanes using 6-18 m long columns, 50-200 cm/s average carrier gas velocities, and 60-600 degrees C/min programming rates. It was found that with a 6-meter-long, 0.25-mm i.d. column programmed at a rate of 600 degrees C/min, a maximum peak-capacity production rate of 6.1 peaks/s was obtained. A total peak capacity of about 75 peaks was produced in a 37-s long separation spanning a boiling-point range from n-C10 (174 degrees C) to n-C28 (432 degrees C).
Anomalous heat transfer modes of nanofluids: a review based on statistical analysis
NASA Astrophysics Data System (ADS)
Sergis, Antonis; Hardalupas, Yannis
2011-05-01
This paper contains the results of a concise statistical review analysis of a large amount of publications regarding the anomalous heat transfer modes of nanofluids. The application of nanofluids as coolants is a novel practise with no established physical foundations explaining the observed anomalous heat transfer. As a consequence, traditional methods of performing a literature review may not be adequate in presenting objectively the results representing the bulk of the available literature. The current literature review analysis aims to resolve the problems faced by researchers in the past by employing an unbiased statistical analysis to present and reveal the current trends and general belief of the scientific community regarding the anomalous heat transfer modes of nanofluids. The thermal performance analysis indicated that statistically there exists a variable enhancement for conduction, convection/mixed heat transfer, pool boiling heat transfer and critical heat flux modes. The most popular proposed mechanisms in the literature to explain heat transfer in nanofluids are revealed, as well as possible trends between nanofluid properties and thermal performance. The review also suggests future experimentation to provide more conclusive answers to the control mechanisms and influential parameters of heat transfer in nanofluids.
Anomalous heat transfer modes of nanofluids: a review based on statistical analysis.
Sergis, Antonis; Hardalupas, Yannis
2011-05-19
This paper contains the results of a concise statistical review analysis of a large amount of publications regarding the anomalous heat transfer modes of nanofluids. The application of nanofluids as coolants is a novel practise with no established physical foundations explaining the observed anomalous heat transfer. As a consequence, traditional methods of performing a literature review may not be adequate in presenting objectively the results representing the bulk of the available literature. The current literature review analysis aims to resolve the problems faced by researchers in the past by employing an unbiased statistical analysis to present and reveal the current trends and general belief of the scientific community regarding the anomalous heat transfer modes of nanofluids. The thermal performance analysis indicated that statistically there exists a variable enhancement for conduction, convection/mixed heat transfer, pool boiling heat transfer and critical heat flux modes. The most popular proposed mechanisms in the literature to explain heat transfer in nanofluids are revealed, as well as possible trends between nanofluid properties and thermal performance. The review also suggests future experimentation to provide more conclusive answers to the control mechanisms and influential parameters of heat transfer in nanofluids.
Anomalous heat transfer modes of nanofluids: a review based on statistical analysis
2011-01-01
This paper contains the results of a concise statistical review analysis of a large amount of publications regarding the anomalous heat transfer modes of nanofluids. The application of nanofluids as coolants is a novel practise with no established physical foundations explaining the observed anomalous heat transfer. As a consequence, traditional methods of performing a literature review may not be adequate in presenting objectively the results representing the bulk of the available literature. The current literature review analysis aims to resolve the problems faced by researchers in the past by employing an unbiased statistical analysis to present and reveal the current trends and general belief of the scientific community regarding the anomalous heat transfer modes of nanofluids. The thermal performance analysis indicated that statistically there exists a variable enhancement for conduction, convection/mixed heat transfer, pool boiling heat transfer and critical heat flux modes. The most popular proposed mechanisms in the literature to explain heat transfer in nanofluids are revealed, as well as possible trends between nanofluid properties and thermal performance. The review also suggests future experimentation to provide more conclusive answers to the control mechanisms and influential parameters of heat transfer in nanofluids. PMID:21711932
Pretest thermal analysis of the Tuff Water Migration/In-Situ Heater Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bulmer, B.M.
This report describes the pretest thermal analysis for the Tuff Water Migration/In-Situ Heater Experiment to be conducted in welded tuff in G-tunnel, Nevada Test Site. The parametric thermal modeling considers variable boiling temperature, tuff thermal conductivity, tuff emissivity, and heater operating power. For nominal tuff properties, some near field boiling is predicted for realistic operating power. However, the extent of boiling will be strongly determined by the ambient (100% water saturated) rock thermal conductivity. In addition, the thermal response of the heater and of the tuff within the dry-out zone (i.e., bounded by boiling isotherm) is dependent on the temperaturemore » variation of rock conductivity as well as the extent of induced boiling.« less
NASA Astrophysics Data System (ADS)
Wang, Lei; Li, Yanzhong; Zhang, Feini; Ma, Yuan
2015-12-01
Two finite difference computer models, aiming at the process predictions of no-vent fill in normal gravity and microgravity environments respectively, are developed to investigate the filling performance in a liquid hydrogen (LH2) tank. In the normal gravity case model, the tank/fluid system is divided into five control volume including ullage, bulk liquid, gas-liquid interface, ullage-adjacent wall, and liquid-adjacent wall. In the microgravity case model, vapor-liquid thermal equilibrium state is maintained throughout the process, and only two nodes representing fluid and wall regions are applied. To capture the liquid-wall heat transfer accurately, a series of heat transfer mechanisms are considered and modeled successively, including film boiling, transition boiling, nucleate boiling and liquid natural convection. The two models are validated by comparing their prediction with experimental data, which shows good agreement. Then the two models are used to investigate the performance of no-vent fill in different conditions and several conclusions are obtained. It shows that in the normal gravity environment the no-vent fill experiences a continuous pressure rise during the whole process and the maximum pressure occurs at the end of the operation, while the maximum pressure of the microgravity case occurs at the beginning stage of the process. Moreover, it seems that increasing inlet mass flux has an apparent influence on the pressure evolution of no-vent fill process in normal gravity but a little influence in microgravity. The larger initial wall temperature brings about more significant liquid evaporation during the filling operation, and then causes higher pressure evolution, no matter the filling process occurs under normal gravity or microgravity conditions. Reducing inlet liquid temperature can improve the filling performance in normal gravity, but cannot significantly reduce the maximum pressure in microgravity. The presented work benefits the understanding of the no-vent fill performance and may guide the design of on-orbit no-vent fill system.
NASA Technical Reports Server (NTRS)
Myers, Jerry G.; Hussey, Sam W.; Yee, Glenda F.; Kim, Jungho
2003-01-01
Investigations into single bubble pool boiling phenomena are often complicated by the difficulties in obtaining time and space resolved information in the bubble region. This usually occurs because the heaters and diagnostics used to measure heat transfer data are often on the order of, or larger than, the bubble characteristic length or region of influence. This has contributed to the development of many different and sometimes contradictory models of pool boiling phenomena and dominant heat transfer mechanisms. Recent investigations by Yaddanapyddi and Kim and Demiray and Kim have obtained time and space resolved heat transfer information at the bubble/heater interface under constant temperature conditions using a novel micro-heater array (10x10 array, each heater 100 microns on a side) that is semi-transparent and doubles as a measurement sensor. By using active feedback to maintain a state of constant temperature at the heater surface, they showed that the area of influence of bubbles generated in FC-72 was much smaller than predicted by standard models and that micro-conduction/micro-convection due to re-wetting dominated heat transfer effects. This study seeks to expand on the previous work by making time and space resolved measurements under bubbles nucleating on a micro-heater array operated under constant heat flux conditions. In the planned investigation, wall temperature measurements made under a single bubble nucleation site will be synchronized with high-speed video to allow analysis of the bubble energy removal from the wall.
Salt loaded heat pipes: steady-state operation and related heat and mass transport
NASA Astrophysics Data System (ADS)
Simakin, A.; Ghassemi, A.
2003-10-01
Fluids in the deep-seated zones (3.5-4.5 km) of active geothermal zones are known to have increased salinity and acidity that can enhance interaction with surrounding porous rocks. A possible mechanism for brine generation is the separation of the rising magmatic fluid into a gas-like and a liquid-like component. This work illustrates the main features of this mechanism by investigating the conditions for heat pipe convection of natural brines in hydrothermal systems. The well-established heat pipe regime for convection of two-phase pure water (vapor-liquid) in a porous column is extended to the case of boiling brines. In particular, the NaCl-H 2O system is used to model the 1-D reactive flow with dissolution-precipitation in geothermal reservoirs. The quasi steady-state equations of the conservation of matter, Darcy's law for the gas and liquid phases, and the heat balance equation have been examined while neglecting the temporal variation of porosity. A semi-analytical procedure is used to solve these equations for a two-phase fluid in equilibrium with a solid salt. The solution is in the form of the dependence of liquid volume fraction as a function of temperature for different heat fluxes. The solution is separated into two isolated regions by the temperature T=596°C, at the maximum fluid pressure for three-phase (H-L-V) equilibrium. In the case of unsaturated two-phase flow at the reference permeability of porous rocks (3·10 -16 m 2), the maximum heat flux that can be transferred through the porous column via convection is analytically estimated to be 4.3 W/m 2. This is close to the corresponding value for the three-phase case that is numerically calculated to be 6 W/m 2. Due to dissolution (partial leaching of oxide components by acid condensates) and precipitation of salt at the boiling front, heat transfer in a heat pipe in soluble media occurs in a direction opposite to the associated mass transfer. This can cause deep hydrothermal karsting that is manifested as surface subsidence at rates of about several cm/yr as observed in some active geothermal fields.
Multimedia Thermofluid Dynamics, an Undergraduate Education Project
NASA Astrophysics Data System (ADS)
Settles, G. S.; Dreibelbis, L. J.; Miller, J. D.; Smith, B. P.
2002-11-01
New multimedia materials are being developed for undergraduate instruction in thermofluid dynamics (e.g. convective heat transfer, thermodynamics, and gas dynamics), with strong emphasis on experimental and optical flow visualization. Since textbooks often show only simple line diagrams, our emphasis is on real flow images as in Van Dyke's classic "Album of Fluid Motion." Here, however, digital video clips illustrate the pertinent phenomena in motion, with voice-over explanations and occasional musical accompaniment. Beyond that, no attempt is made to duplicate traditional textbook material, but rather to provide a visual "window" into the laboratory experience. The results will be produced and distributed in DVD form for instructors and students as a visual supplement to the standard textbooks on these topics. The suitability of such materials for national dissemination has already been demonstrated. This approach is believed to be especially important for small and minority universities that sometimes lack laboratory facilities. Several examples will be shown, including transitional flow, hydraulic jumps, nucleate boiling, convective heat transfer, and supersonic flow. (Supported by NSF DUE Grant.)
Forced Convection Boiling and Critical Heat Flux of Ethanol in Electrically Heated Tube Tests
NASA Technical Reports Server (NTRS)
Meyer, Michael L.; Linne, Diane L.; Rousar, Donald C.
1998-01-01
Electrically heated tube tests were conducted to characterize the critical heat flux (transition from nucleate to film boiling) of subcritical ethanol flowing at conditions relevant to the design of a regeneratively cooled rocket engine thrust chamber. The coolant was SDA-3C alcohol (95% ethyl alcohol, 5% isopropyl alcohol by weight), and tests were conducted over the following ranges of conditions: pressure from 144 to 703 psia, flow velocities from 9.7 to 77 ft/s, coolant subcooling from 33 to 362 F, and critical heat fluxes up to 8.7 BTU/in(exp 2)/sec. For the data taken near 200 psia, critical heat flux was correlated as a function of the product of velocity and fluid subcooling to within +/- 20%. For data taken at higher pressures, an additional pressure term is needed to correlate the critical heat flux. It was also shown that at the higher test pressures and/or flow rates, exceeding the critical heat flux did not result in wall burnout. This result may significantly increase the engine heat flux design envelope for higher pressure conditions.
NASA Astrophysics Data System (ADS)
Kassemi, Mohammad; Kartuzova, Olga; Hylton, Sonya
2018-01-01
This paper examines our computational ability to capture the transport and phase change phenomena that govern cryogenic storage tank pressurization and underscores our strengths and weaknesses in this area in terms of three computational-experimental validation case studies. In the first study, 1g pressurization of a simulant low-boiling point fluid in a small scale transparent tank is considered in the context of the Zero-Boil-Off Tank (ZBOT) Experiment to showcase the relatively strong capability that we have developed in modelling the coupling between the convective transport and stratification in the bulk phases with the interfacial evaporative and condensing heat and mass transfer that ultimately control self-pressurization in the storage tank. Here, we show that computational predictions exhibit excellent temporal and spatial fidelity under the moderate Ra number - high Bo number convective-phase distribution regimes. In the second example, we focus on 1g pressurization and pressure control of the large-scale K-site liquid hydrogen tank experiment where we show that by crossing fluid types and physical scales, we enter into high Bo number - high Ra number flow regimes that challenge our ability to predict turbulent heat and mass transfer and their impact on the tank pressurization correctly, especially, in the vapor domain. In the final example, we examine pressurization results from the small scale simulant fluid Tank Pressure Control Experiment (TCPE) performed in microgravity to underscore the fact that in crossing into a low Ra number - low Bo number regime in microgravity, the temporal evolution of the phase front as affected by the time-dependent residual gravity and impulse accelerations becomes an important consideration. In this case detailed acceleration data are needed to predict the correct rate of tank self-pressurization.
NASA Astrophysics Data System (ADS)
Galvan, Manuel de Jesus
In the past years, hydrocarbon fuels have been the focus of attention as the interest in developing reusable, high-performing liquid rocket engines has grown. Liquid methane (LCH4) has been of particular interest because of the cost, handling, and storage advantages that it presents when compared to currently used propellants. Deep space exploration requires thrusters that can operate reliably during long-duration missions. One of the challenges in the development of a reliable engine has been providing adequate combustion chamber cooling to prevent engine failure. Regenerative (regen) cooling has presented itself as an appealing option because it provides improved cooling and engine efficiency over other types of cooling, such as film or dump cooling. Due to limited availability of experimental sub-critical liquid methane cooling data for pressure-fed regen engine design, there has been an interest in studying the heat transfer characteristics of the propellant. For this reason, recent experimental studies at the Center for Space Exploration Technology Research (cSETR) at the University of Texas at El Paso (UTEP) have focused on investigating the heat transfer characteristics of sub-critical CH4 flowing through smooth sub-scale cooling channels. In addition to investigating smooth channels, the cSETR has conducted experiments to investigate the effects of internal longitudinal fins on the heat transfer of methane. To conduct the experiments, the cSETR developed a conduction-based thermal concentrator known as the High Heat Flux Test Facility (HHFTF) in which the channels are heated. In this study, a smooth channel and three channels with longitudinal fins all with cross sectional geometries of 3.2 mm x 3.2 mm were tested. The Nusselt numbers ranged from 70 and 510, and Reynolds numbers were between 50,000 and 128,000. Sub-cooled film-boiling phenomena were discovered in the data pertaining to the smooth and two finned channels. Sub-cooled film-boiling was not observed in the channel that had the fins with the highest height. Film-boiling onset at Critical Heat Flux (CHF) was correlated to a Boiling Number (Bo) of approximately 0.1 for the channels studies. Convective Nusselt number follows predicted trends for Reynolds number with a wall temperature correction factor for both the boiling and non-boiling regimes.
Boiling process modelling peculiarities analysis of the vacuum boiler
NASA Astrophysics Data System (ADS)
Slobodina, E. N.; Mikhailov, A. G.
2017-06-01
The analysis of the low and medium powered boiler equipment development was carried out, boiler units possible development directions with the purpose of energy efficiency improvement were identified. Engineering studies for the vacuum boilers applying are represented. Vacuum boiler heat-exchange processes where boiling water is the working body are considered. Heat-exchange intensification method under boiling at the maximum heat- transfer coefficient is examined. As a result of the conducted calculation studies, heat-transfer coefficients variation curves depending on the pressure, calculated through the analytical and numerical methodologies were obtained. The conclusion about the possibility of numerical computing method application through RPI ANSYS CFX for the boiling process description in boiler vacuum volume was given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruggles, A.E.; Morris, D.G.
The RELAP5/MOD2 code was used to predict the thermal-hydraulic behavior of the HFIR core during decay heat removal through boiling natural circulation. The low system pressure and low mass flux values associated with boiling natural circulation are far from conditions for which RELAP5 is well exercised. Therefore, some simple hand calculations are used herein to establish the physics of the results. The interpretation and validation effort is divided between the time average flow conditions and the time varying flow conditions. The time average flow conditions are evaluated using a lumped parameter model and heat balance. The Martinelli-Nelson correlations are usedmore » to model the two-phase pressure drop and void fraction vs flow quality relationship within the core region. Systems of parallel channels are susceptible to both density wave oscillations and pressure drop oscillations. Periodic variations in the mass flux and exit flow quality of individual core channels are predicted by RELAP5. These oscillations are consistent with those observed experimentally and are of the density wave type. The impact of the time varying flow properties on local wall superheat is bounded herein. The conditions necessary for Ledinegg flow excursions are identified. These conditions do not fall within the envelope of decay heat levels relevant to HFIR in boiling natural circulation. 14 refs., 5 figs., 1 tab.« less
Physical quality of Simental Ongole crossbred silverside meat at various boiling times
NASA Astrophysics Data System (ADS)
Riyanto, J.; Cahyadi, M.; Guntari, W. S.
2018-03-01
This study aims to determine the physical quality of silverside beef meat at various boiling times. Samples that have been used are the back thigh or silverside meat. Treatment of boiling meat included TR (meat without boiled), R15 (boiled 15 minutes), and R30 (boiled for 30 minutes). The experimental design using Completely Randomized Design with 3 replications. Each replication was done in triple physical quality test. Determination of physical quality was performed at the Livestock Industry and Processing Laboratory at Sebelas Maret University Surakarta and the Meat Technology Laboratory at the Faculty of Animal Husbandry of Gadjah Mada University. The result of variance analysis showed that boiling affect cooking loss (P≥0.05) and but did not affect (P≤0,05) pH, water holding capacity and meat tenderness. The conclusions of the study showed that boiling for 15 minutes and 30 minutes decreased the cooking loss of Simental Ongole Crossbred silverside meat. Meat physical quality of pH, water holding capacity and the value of tenderness is not affected by boiling for 15 and 30 minutes.
Numerical Modeling of Conjugate Heat Transfer in Fluid Network
NASA Technical Reports Server (NTRS)
Majumdar, Alok
2004-01-01
Fluid network modeling with conjugate heat transfer has many applications in Aerospace engineering. In modeling unsteady flow with heat transfer, it is important to know the variation of wall temperature in time and space to calculate heat transfer between solid to fluid. Since wall temperature is a function of flow, a coupled analysis of temperature of solid and fluid is necessary. In cryogenic applications, modeling of conjugate heat transfer is of great importance to correctly predict boil-off rate in propellant tanks and chill down of transfer lines. In TFAWS 2003, the present author delivered a paper to describe a general-purpose computer program, GFSSP (Generalized Fluid System Simulation Program). GFSSP calculates flow distribution in complex flow circuit for compressible/incompressible, with or without heat transfer or phase change in all real fluids or mixtures. The flow circuit constitutes of fluid nodes and branches. The mass, energy and specie conservation equations are solved at the nodes where as momentum conservation equations are solved at the branches. The proposed paper describes the extension of GFSSP to model conjugate heat transfer. The network also includes solid nodes and conductors in addition to fluid nodes and branches. The energy conservation equations for solid nodes solves to determine the temperatures of the solid nodes simultaneously with all conservation equations governing fluid flow. The numerical scheme accounts for conduction, convection and radiation heat transfer. The paper will also describe the applications of the code to predict chill down of cryogenic transfer line and boil-off rate of cryogenic propellant storage tank.
NASA Technical Reports Server (NTRS)
Zhang, Nengli; Chao, David F.
1999-01-01
The contact angle and the spreading process of sessile droplet are very crucial in many technological processes, such as painting and coating, material processing, film-cooling applications, lubrication, and boiling. Additionally, as it is well known that the surface free energy of polymers cannot be directly, measured for their elastic and viscous restraints. The measurements of liquid contact angle on the polymer surfaces become extremely important to evaluate the surface free energy of polymers through indirect methods linked with the contact angle data. Due to the occurrence of liquid evaporation is inevitable, the effects of evaporation on the contact angle and the spreading become very important for more complete understanding of these processes. It is of interest to note that evaporation can induce Marangoni-Benard convection in sessile drops. However, the impacts of the inside convection on the wetting and spreading processes are not clear. The experimental methods used by previous investigators cannot simultaneously measure the spreading process and visualize the convection inside. Based on the laser shadowgraphic system used by the present author, a very simple optical procedure has been developed to measure the contact angle, the spreading speed, the evaporation rate, and to visualize inside convection of a sessile drop simultaneously. Two CCD cameras were used to synchronously record the real-time diameter of the sessile drop, which is essential for determination of both spreading speed and evaporation rate, and the shadowgraphic image magnified by the sessile drop acting as a thin plano-convex lens. From the shadowgraph, the inside convection of the drop can be observed if any and the image outer diameter, which linked to the drop profile, can be measured. Simple equations have been derived to calculate the drop profile, including the instantaneous contact angle, height, and volume of the sessile drop, as well as the evaporation rate. The influence of the inside convection on the wetting and spreading processes can be figured out through comparison of the drop profiles with and without inside convection when the sessile drop is placed at different evaporation conditions.
Electric kettles as a source of human lead exposure.
Wigle, D T; Charlebois, E J
1978-01-01
Five hundred and seventy-four households in Ottawa were surveyed to evaluate water boiled in electric kettles as a source of lead exposure. Samples of boiled water exceeded the World Health Organization mandatory limit for drinking water (50 microgram/l) in 42.5% of the households. Excessive lead concentrations were observed in 62.8% of water samples from kettles more than 5 years old. Multiple regression analysis indicated that age, sex, and cigarette smoking habits, but not lead concentration in boiled water, nor weekly consumption of boiled water were significantly associated with blood-lead concentration. Lead exposure from electric kettles may be a significant problem only in infants receiving formula prepared with boiled water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukhopadhyay, Sumit; Sonnenthal, Eric L.; Spycher, Nicolas
When hot radioactive waste is placed in subsurface tunnels, a series of complex changes occurs in the surrounding medium. The water in the pore space of the medium undergoes vaporization and boiling. Subsequently, vapor migrates out of the matrix pore space, moving away from the tunnel through the permeable fracture network. This migration is propelled by buoyancy, by the increased vapor pressure caused by heating and boiling, and through local convection. In cooler regions, the vapor condenses on fracture walls, where it drains through the fracture network. Slow imbibition of water thereafter leads to gradual rewetting of the rock matrix.more » These thermal and hydrological processes also bring about chemical changes in the medium. Amorphous silica precipitates from boiling and evaporation, and calcite from heating and CO2 volatilization. The precipitation of amorphous silica, and to a much lesser extent calcite, results in long-term permeability reduction. Evaporative concentration also results in the precipitation of gypsum (or anhydrite), halite, fluorite and other salts. These evaporative minerals eventually redissolve after the boiling period is over, however, their precipitation results in a significant temporary decrease in permeability. Reduction of permeability is also associated with changes in fracture capillary characteristics. In short, the coupled thermal-hydrological-chemical (THC) processes dynamically alter the hydrological properties of the rock. A model based on the TOUGHREACT reactive transport software is presented here to investigate the impact of THC processes on flow near an emplacement tunnel at Yucca Mountain, Nevada. We show how transient changes in hydrological properties caused by THC processes often lead to local flow channeling and saturation increases above the tunnel. For models that include only permeability changes to fractures, such local flow channeling may lead to seepage relative to models where THC effects are ignored. However, coupled THC seepage models that include both permeability and capillary changes to fractures may not show this additional seepage.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukhopadhyay, S.; Sonnenthal, E.L.; Spycher, N.
When hot radioactive waste is placed in subsurface tunnels, a series of complex changes occurs in the surrounding medium. The water in the pore space of the medium undergoes vaporization and boiling. Subsequently, vapor migrates out of the matrix pore space, moving away from the tunnel through the permeable fracture network. This migration is propelled by buoyancy, by the increased vapor pressure caused by heating and boiling, and through local convection. In cooler regions, the vapor condenses on fracture walls, where it drains through the fracture network. Slow imbibition of water thereafter leads to gradual rewetting of the rock matrix.more » These thermal and hydrological processes also bring about chemical changes in the medium. Amorphous silica precipitates from boiling and evaporation, and calcite from heating and CO{sub 2} volatilization. The precipitation of amorphous silica, and to a much lesser extent calcite, results in long-term permeability reduction. Evaporative concentration also results in the precipitation of gypsum (or anhydrite), halite, fluorite and other salts. These evaporative minerals eventually redissolve after the boiling period is over, however, their precipitation results in a significant temporary decrease in permeability. Reduction of permeability is also associated with changes in fracture capillary characteristics. In short, the coupled thermal-hydrological-chemical (THC) processes dynamically alter the hydrological properties of the rock. A model based on the TOUGHREACT reactive transport software is presented here to investigate the impact of THC processes on flow near an emplacement tunnel at Yucca Mountain, Nevada. We show how transient changes in hydrological properties caused by THC processes often lead to local flow channeling and saturation increases above the tunnel. For models that include only permeability changes to fractures, such local flow channeling may lead to seepage relative to models where THC effects are ignored. However, coupled THC seepage models that include both permeability and capillary changes to fractures may not show this additional seepage.« less
Dryout and Rewetting in the Pool Boiling Experiment Flown on STS-72 (PBE-2 B) and STS-77 (PBE-2 A)
NASA Technical Reports Server (NTRS)
Merte, Herman, Jr.; Lee, Ho Sung; Keller, Robert B.
1998-01-01
Experiments were conducted in the microgravity of space in which a pool of liquid (R-113), initially at a precisely defined pressure and temperature, is subjected to a step imposed heat flux from a semi-transparent thin-film heater forming part of one wall of the container such that boiling is initiated and maintained for a defined period of time at a constant pressure level. A total of nine tests were conducted at three levels of heat flux and three levels of subcooling in each of the two space experiments in a GAS canister on the STS-77, -72, respectively. Three (3) modes of propagation of boiling across the heater surface and subsequent vapor bubble growths were observed, in addition to the two (2) modes observed in the previous microgravity pool boiling space flights on STS-47, -57, and -60. Of particular interest were the extremely dynamic or "explosive" growths, which were determined to be the consequence of the large increase in the liquid-vapor interface area associated with the appearance of a corrugated or rough interface. Predictions of circumstances for its onset have been carried out. Assumptions were necessary regarding the character of disturbances necessary for the instabilities to grow. Also, a new vapor bubble phenomena was observed in which small vapor bubbles migrated toward a larger bubble, eventually coalescing with this larger bubble. The heat transfer was enhanced approximately 30% as a result of these migrating bubbles, which is believed to be a vapor bubble manifestation of Marangoni convection and/or molecular momentum effects, sometimes referred to as vapor recoil. The circumstances of heat flux and liquid subcooling necessary to produce heater surface dryout for an initially stagnant liquid subjected to an imposed heat flux have been more closely identified.
Noise analysis of nucleate boiling
NASA Technical Reports Server (NTRS)
Mcknight, R. D.; Ram, K. S.
1971-01-01
The techniques of noise analysis have been utilized to investigate nucleate pool boiling. A simple experimental setup has been developed for obtaining the power spectrum of a nucleate boiling system. These techniques were first used to study single bubbles, and a method of relating the two-dimensional projected size and the local velocity of the bubbles to the auto-correlation functions is presented. This method is much less time consuming than conventional methods of measurement and has no probes to disturb the system. These techniques can be used to determine the contribution of evaporation to total heat flux in nucleate boiling. Also, these techniques can be used to investigate the effect of various parameters upon the frequency response of nucleate boiling. The predominant frequencies of the power spectrum correspond to the frequencies of bubble generation. The effects of heat input, degree of subcooling, and liquid surface tension upon the power spectra of a boiling system are presented. It was found that the degree of subcooling has a more pronounced effect upon bubble size than does heat flux. Also the effect of lowering surface tension can be sufficient to reduce the effect of the degree of subcooling upon the size of the bubbles.
A New Theory of Nucleate Pool Boiling in Arbitrary Gravity
NASA Technical Reports Server (NTRS)
Buyevich, Y. A.; Webbon, Bruce W.
1995-01-01
Heat transfer rates specific to nucleate pool boiling under various conditions are determined by the dynamics of vapour bubbles that are originated and grow at nucleation sites of a superheated surface. A new dynamic theory of these bubbles has been recently developed on the basis of the thermodynamics of irreversible processes. In contrast to other existing models based on empirically postulated equations for bubble growth and motion, this theory does not contain unwarrantable assumptions, and both the equations are rigorously derived within the framework of a unified approach. The conclusions of the theory are drastically different from those of the conventional models. The bubbles are shown to detach themselves under combined action of buoyancy and a surface tension force that is proven to add to buoyancy in bubble detachment, but not the other way round as is commonly presumed. The theory ensures a sound understanding of a number of so far unexplained phenomena, such as effect caused by gravity level and surface tension on the bubble growth rate and dependence of the bubble characteristics at detachment on the liquid thermophysical parameters and relevant temperature differences. The theoretical predictions are shown to be in a satisfactory qualitative and quantitative agreement with observations. When being applied to heat transfer at nucleate pool boiling, this bubble dynamic theory offers an opportunity to considerably improve the main formulae that are generally used to correlate experimental findings and to design boiling heat removal in various industrial applications. Moreover, the theory makes possible to pose and study a great deal of new problems of essential impact in practice. Two such problems are considered in detail. One problem concerns the development of a principally novel physical model for the first crisis of boiling. This model allows for evaluating critical boiling heat fluxes under various conditions, and in particular at different gravity levels, with a good agreement with experimental evidence. The other problem bears upon equilibrium shapes of a detached bubble near a heated surface in exceedingly low gravity. In low gravity or in weightlessness, the bubble can remain in the close vicinity of the surface for a long time, and its shape is greatly affected by the Marangoni effect due to both temperature and possible surfactant concentration being nonuniform along the interface. The bubble performs at these conditions like a heat pipe, with evaporation at the bubble lower boundary and condensation at its upper boundary, and ultimately ensures a substantial increase in heat removal as compared with that in normal gravity. Some other problems relevant to nucleate pool and forced convection boiling heat transfer are also discussed.
Environmental qualification testing of the prototype pool boiling experiment
NASA Technical Reports Server (NTRS)
Sexton, J. Andrew
1992-01-01
The prototype Pool Boiling Experiment (PBE) flew on the STS-47 mission in September 1992. This report describes the purpose of the experiment and the environmental qualification testing program that was used to prove the integrity of the prototype hardware. Component and box level vibration and thermal cycling tests were performed to give an early level of confidence in the hardware designs. At the system level, vibration, thermal extreme soaks, and thermal vacuum cycling tests were performed to qualify the complete design for the expected shuttle environment. The system level vibration testing included three axis sine sweeps and random inputs. The system level hot and cold soak tests demonstrated the hardware's capability to operate over a wide range of temperatures and gave the project team a wider latitude in determining which shuttle thermal altitudes were compatible with the experiment. The system level thermal vacuum cycling tests demonstrated the hardware's capability to operate in a convection free environment. A unique environmental chamber was designed and fabricated by the PBE team and allowed most of the environmental testing to be performed within the project's laboratory. The completion of the test program gave the project team high confidence in the hardware's ability to function as designed during flight.
NASA Technical Reports Server (NTRS)
Kim, Jungho; Benton, John; Kucner, Robert
2000-01-01
A microscale heater array was used to study boiling in earth gravity and microgravity. The heater array consisted of 96 serpentine heaters on a quartz substrate. Each heater was 0.27 square millimeters. Electronic feedback loops kept each heater's temperature at a specified value. The University of Maryland constructed an experiment for the Terrier-Improved Orion sounding rocket that was delivered to NASA Wallops and flown. About 200 s of high quality microgravity and heat transfer data were obtained. The VCR malfunctioned, and no video was acquired. Subsequently, the test package was redesigned to fly on the KC-135 to obtain both data and video. The pressure was held at atmospheric pressure and the bulk temperature was about 20 C. The wall temperature was varied from 85 to 65 C. Results show that gravity has little effect on boiling heat transfer at wall superheats below 25 C, despite vast differences in bubble behavior between gravity levels. In microgravity, a large primary bubble was surrounded by smaller bubbles, which eventually merged with the primary bubble. This bubble was formed by smaller bubbles coalescing, but had a constant size for a given superheat, indicating a balance between evaporation at the base and condensation on the cap. Most of the heaters under the bubble indicated low heat transfer, suggesting dryout at those heaters. High heat transfer occurred at the contact line surrounding the primary bubble. Marangoni convection formed a "jet" of fluid into the bulk fluid that forced the bubble onto the heater.
Fundamental approaches for analysis thermal hydraulic parameter for Puspati Research Reactor
NASA Astrophysics Data System (ADS)
Hashim, Zaredah; Lanyau, Tonny Anak; Farid, Mohamad Fairus Abdul; Kassim, Mohammad Suhaimi; Azhar, Noraishah Syahirah
2016-01-01
The 1-MW PUSPATI Research Reactor (RTP) is the one and only nuclear pool type research reactor developed by General Atomic (GA) in Malaysia. It was installed at Malaysian Nuclear Agency and has reached the first criticality on 8 June 1982. Based on the initial core which comprised of 80 standard TRIGA fuel elements, the very fundamental thermal hydraulic model was investigated during steady state operation using the PARET-code. The main objective of this paper is to determine the variation of temperature profiles and Departure of Nucleate Boiling Ratio (DNBR) of RTP at full power operation. The second objective is to confirm that the values obtained from PARET-code are in agreement with Safety Analysis Report (SAR) for RTP. The code was employed for the hot and average channels in the core in order to calculate of fuel's center and surface, cladding, coolant temperatures as well as DNBR's values. In this study, it was found that the results obtained from the PARET-code showed that the thermal hydraulic parameters related to safety for initial core which was cooled by natural convection was in agreement with the designed values and safety limit in SAR.
NASA Astrophysics Data System (ADS)
Likhanskii, V. V.; Loboiko, A. I.; Antonova, G. F.; Krasyukov, A. G.; Sayapin, V. P.
1999-02-01
The possibility of making a hole in a vertical plate with the aid of laser radiation at a surface temperature not exceeding the boiling point is analysed neglecting the vapour pressure. The mechanism of the degradation of the liquid layer involving a reduction of its thickness, as a result of the redistribution of the molten mass owing to the operation of the force of gravity and of thermocapillary convection, is examined. The theoretical dependence of the critical size of the molten zone on the plate thickness is obtained and a comparison is made with experimental data.
NASA Technical Reports Server (NTRS)
Tobin, R. D.
1974-01-01
Descriptions are given of the test hardware, facility, procedures, and results of electrically heated tube, channel and panel tests conducted to determine effects of helium ingestion, two dimensional conduction, and plugged coolant channels on operating limits of convectively cooled chambers typical of space shuttle orbit maneuvering engine designs. Helium ingestion in froth form, was studied in tubular and rectangular single channel test sections. Plugged channel simulation was investigated in a three channel panel. Burn-out limits (transition of film boiling) were studied in both single channel and panel test sections to determine 2-D conduction effects as compared to tubular test results.
On the pulse boiling frequency in thermosyphons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, J.F.; Wang, J.C.Y.
1992-02-01
The unsteady periodic boiling phenomenon, pulse boiling, appearing in the evaporator of thermosyphons has been mentioned and investigated by many researchers. The heat transfer coefficient in evaporators was predicted according to different considerations of flow patterns. For instance, Shiraishi et al. proposed a method based on a combination flow pattern: the nucleate boiling in a liquid pool and the evaporation from a falling condensate film. Liu et al. only considered a pure pulse boiling flow pattern, and Xin et al. focused on the flow pattern of the continuous boiling process without pulse phenomenon. Besides, the forming conditions of pulse boilingmore » were also described differently. Xin et al. also reported that pulse boiling cannot occur in a carbon-steel/water heat pipe; Ma et al., however, observed this phenomenon in a carbon-steel/water thermosyphon. Nearly all researchers mentioned that this phenomenon indeed exists in glass/water thermosyphons. Although the influential factors have been discussed qualitatively, the quantitative analysis has yet to be conducted. This study focuses on the pulse boiling frequency as a criterion for the determination of flow patterns, and attempts are made to predict the frequency both experimentally and theoretically.« less
NASA Astrophysics Data System (ADS)
Nerdy
2018-01-01
Vegetables from the cabbage family vegetables consumed by many people, which is known healthful, by eaten raw, boiled, or cooked (stir fry or soup). Vegetables like broccoli and cauliflower contain vitamins, minerals, and fiber. This study aims to determine the decrease percentage of sodium, potassium, magnesium, and calcium minerals level caused by boiled broccoli and cauliflower by atomic absorption spectrometry. Boiled broccoli and cauliflower prepared by given boiled treatment in boiling water for 3 minutes. Fresh and boiled broccoli and cauliflower carried out dry destruction, followed by quantitative analysis of sodium, potassium, magnesium, and calcium minerals respectively at a wavelength of 589.0 nm; 766.5 nm; 285.2 nm; and 422.7 nm, using atomic absorption spectrometry methods. After the determination of the sodium, potassium, magnesium, and calcium minerals level followed by validation of analytical methods with accuracy, precision, linearity, range, limit of detection (LOD), and limit of quantitation (LOQ) parameters. Research results show a decrease in the sodium, potassium, magnesium, and calcium minerals level in boiled broccoli and cauliflower compared with fresh broccoli and cauliflower. Validation of analytical methods gives results that spectrometry methods used for determining sodium, potassium, magnesium, and calcium minerals level are valid. It concluded that the boiled gives the effect of decreasing the minerals level significantly in broccoli and cauliflower.
Results for the Aboveground Configuration of the Boiling Water Reactor Dry Cask Simulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durbin, Samuel G.; Lindgren, Eric Richard
The thermal performance of commercial nuclear spent fuel dry storage casks are evaluated through detailed numerical analysis. These modeling efforts are completed by the vendor to demonstrate performance and regulatory compliance. The calculations are then independently verified by the Nuclear Regulatory Commission (NRC). Carefully measured data sets generated from testing of full sized casks or smaller cask analogs are widely recognized as vital for validating these models. Recent advances in dry storage cask designs have significantly increased the maximum thermal load allowed in a cask in part by increasing the efficiency of internal conduction pathways and also by increasing themore » internal convection through greater canister helium pressure. These same canistered cask systems rely on ventilation between the canister and the overpack to convect heat away from the canister to the environment for both above and belowground configurations. While several testing programs have been previously conducted, these earlier validation attempts did not capture the effects of elevated helium pressures or accurately portray the external convection of aboveground and belowground canistered dry cask systems. The purpose of the current investigation was to produce data sets that can be used to test the validity of the assumptions associated with the calculations used to determine steady-state cladding temperatures in modern dry casks that utilize elevated helium pressure in the sealed canister in an aboveground configuration. An existing electrically heated but otherwise prototypic BWR Incoloy-clad test assembly was deployed inside of a representative storage basket and cylindrical pressure vessel that represents a vertical canister system. The symmetric single assembly geometry with well-controlled boundary conditions simplifies interpretation of results. The arrangement of ducting was used to mimic conditions for an aboveground storage configuration in a vertical, dry cask systems with canisters. Transverse and axial temperature profiles were measured for a wide range of decay power and helium cask pressures. Of particular interest was the evaluation of the effect of increased helium pressure on peak cladding temperatures (PCTs) for identical thermal loads. All steady state peak temperatures and induced flow rates increased with increasing assembly power. Peak cladding temperatures decreased with increasing internal helium pressure for a given assembly power, indicating increased internal convection. In addition, the location of the PCT moved from near the top of the assembly to ~1/3 the height of the assembly for the highest (8 bar absolute) to the lowest (0 bar absolute) pressure studied, respectively. This shift in PCT location is consistent with the varying contribution of convective heat transfer proportional with of internal helium pressure.« less
ERIC Educational Resources Information Center
Glazier, Samantha; Marano, Nadia; Eisen, Laura
2010-01-01
We describe how we use boiling-point trends of group IV-VII hydrides to introduce intermolecular forces in our first-year general chemistry classes. Starting with the idea that molecules in the liquid state are held together by some kind of force that must be overcome for boiling to take place, students use data analysis and critical reasoning to…
NASA Astrophysics Data System (ADS)
Matsumoto, T.; Shirai, Y.; Shiotsu, M.; Fujita, K.; Kainuma, T.; Tatsumoto, H.; Naruo, Y.; Kobayashi, H.; Nonaka, S.; Inatani, Y.
2017-12-01
Liquid hydrogen has excellent physical properties, high latent heat and low viscosity of liquid, as a coolant for superconductors like MgB2. The knowledge of Departure from Nucleate Boiling (DNB) heat flux of liquid hydrogen is necessary for designing and cooling analysis of high critical temperature superconducting devices. In this paper, DNB heat fluxes of liquid hydrogen were measured under saturated and subcooled conditions at absolute pressures of 400, 700 and 1100 kPa for various flow velocities. Two wire test heaters made by Pt-Co alloy with the length of 200 mm and the diameter of 0.7 mm were used. And these round heaters were set in central axis of a flow channel made of Fiber Reinforced Plastic (FRP) with inner diameters of 8 mm and 12 mm. These test bodies were vertically mounted and liquid hydrogen flowed upward through the channel. From these experimental values, the correlations of DNB heat flux under saturated and subcooled conditions are presented in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindgren, Eric Richard; Durbin, Samuel G
2007-04-01
The objective of this project was to provide basic thermal-hydraulic data associated with a SFP complete loss-of-coolant accident. The accident conditions of interest for the SFP were simulated in a full-scale prototypic fashion (electrically-heated, prototypic assemblies in a prototypic SFP rack) so that the experimental results closely represent actual fuel assembly responses. A major impetus for this work was to facilitate code validation (primarily MELCOR) and reduce questions associated with interpretation of the experimental results. It was necessary to simulate a cluster of assemblies to represent a higher decay (younger) assembly surrounded by older, lower-power assemblies. Specifically, this program providedmore » data and analysis confirming: (1) MELCOR modeling of inter-assembly radiant heat transfer, (2) flow resistance modeling and the natural convective flow induced in a fuel assembly as it heats up in air, (3) the potential for and nature of thermal transient (i.e., Zircaloy fire) propagation, and (4) mitigation strategies concerning fuel assembly management.« less
NASA Technical Reports Server (NTRS)
Lundin, Bruce T; Povolny, John H; Chelko, Louis J
1949-01-01
Data obtained from an extensive investigation of the cooling characteristics of four multicylinder, liquid-cooled engines have been analyzed and a correlation of both the cylinder-head temperatures and the coolant heat rejections with the primary engine and coolant variables was obtained. The method of correlation was previously developed by the NACA from an analysis of the cooling processes involved in a liquid-cooled-engine cylinder and is based on the theory of nonboiling, forced-convection heat transfer. The data correlated included engine power outputs from 275 to 1860 brake horsepower; coolant flows from 50 to 320 gallons per minute; coolants varying in composition from 100 percent water to 97 percent ethylene glycol and 3 percent water; and ranges of engine speed, manifold pressure, carburetor-air temperature, fuel-air ratio, exhaust-gas pressure, ignition timing, and coolant temperature. The effect on engine cooling of scale formation on the coolant passages of the engine and of boiling of the coolant under various operating conditions is also discussed.
ERIC Educational Resources Information Center
Beauchamp, Guy
2005-01-01
A study to present specific hypothesis that satisfactorily explain the boiling point of a number of molecules, CH[subscript w]F[subscript x]Cl[subscript y]Br[subscript z] having similar structure, and then analyze the model with the help of multiple linear regression (MLR), a data analysis tool. The MLR analysis was useful in selecting the…
Determination of aromatics and olefins in wide-boiling petroleum fractions
NASA Technical Reports Server (NTRS)
Spakowski, A E; Evans, A; Hibbard, R R
1950-01-01
A chromatographic method is described herein for the analysis of aromatics and olefins in wide boiling petroleum fractions. The fuel is split into four fractions: nonaromatic, intermediate, pure aromatic, and wash. The analysis, which need be run only on the intermediate cut to determine aromatics in the fuel, is based on specific dispersion. With analysis times of less than 8 hours, accuracies of 1 percent were attained.
Criticality in the slowed-down boiling crisis at zero gravity.
Charignon, T; Lloveras, P; Chatain, D; Truskinovsky, L; Vives, E; Beysens, D; Nikolayev, V S
2015-05-01
Boiling crisis is a transition between nucleate and film boiling. It occurs at a threshold value of the heat flux from the heater called CHF (critical heat flux). Usually, boiling crisis studies are hindered by the high CHF and short transition duration (below 1 ms). Here we report on experiments in hydrogen near its liquid-vapor critical point, in which the CHF is low and the dynamics slow enough to be resolved. As under such conditions the surface tension is very small, the experiments are carried out in the reduced gravity to preserve the conventional bubble geometry. Weightlessness is created artificially in two-phase hydrogen by compensating gravity with magnetic forces. We were able to reveal the fractal structure of the contour of the percolating cluster of the dry areas at the heater that precedes the boiling crisis. We provide a direct statistical analysis of dry spot areas that confirms the boiling crisis at zero gravity as a scale-free phenomenon. It was observed that, in agreement with theoretical predictions, saturated boiling CHF tends to zero (within the precision of our thermal control system) in zero gravity, which suggests that the boiling crisis may be observed at any heat flux provided the experiment lasts long enough.
Thermal Analysis on Cryogenic Liquid Hydrogen Tank on an Unmanned Aerial Vehicle System
NASA Technical Reports Server (NTRS)
Wang, Xiao-Yen; Harpster, George; Hunter, James
2007-01-01
Thermal analyses are performed on the liquid hydrogen (LH2) tank designed for an unmanned aerial vehicle (UAV) powered by solar arrays and a regenerative proton-exchange membrane (PEM) fuel cell. A 14-day cruise mission at a 65,000 ft altitude is considered. Thermal analysis provides the thermal loads on the tank system and the boiling-off rates of LH2. Different approaches are being considered to minimize the boiling-off rates of the LH2. It includes an evacuated multilayer insulation (MLI) versus aerogel insulation on the LH2 tank and aluminum versus stainless steel spacer rings between the inner and outer tank. The resulting boil-off rates of LH2 provided by the one-dimensional model and three-dimensional finite element analysis (FEA) on the tank system are presented and compared to validate the results of the three-dimensional FEA. It concludes that heat flux through penetrations by conduction is as significant as that through insulation around the tank. The tank system with MLI insulation and stainless steel spacer rings result in the lowest boiling-off rate of LH2.
Food-cooking processes modulate allergenic properties of hen's egg white proteins.
Liu, Xiaoyu; Feng, Bai-Sui; Kong, Xiaoli; Xu, Hong; Li, Xiumin; Yang, Ping-Chang; Liu, Zhigang
2013-01-01
Reducing the allergenicity of food allergens can suppress the clinical symptoms of food allergy. The objective of the present study was to investigate the effects of processing on the allergenic properties of hen's egg white proteins. Eggs were processed by traditional Chinese cooking, including steaming, water boiling, frying, spicing and tea boiling. The contents of processed egg protein were assessed by sodium dodecyl sulfate polyacrylamide gel electrophoresis; the allergenicity was evaluated by Western blotting, enzyme-linked immunosorbent assay and enzyme allergosorbent test inhibition. Circular dichroism spectrum analysis of four major egg allergens from various egg products was performed as well. A mouse model of food allergy was developed to test the allergenicity of processed egg protein in vivo. Protein degradation was significant following tea boiling and spiced-tea boiling. The total allergenic potential of water-boiled egg and fried egg was relatively higher than that of steamed egg, spiced egg and tea-boiled egg. Challenge with proteins from raw egg, water-boiled egg and fried egg induced skewed T-helper 2 pattern responses (Th2 responses) in the intestine of mice sensitized to egg proteins; however, when the mice sensitized to egg proteins were challenged with proteins from steamed egg, spiced egg and tea-boiled egg, respectively, only weak Th2 responses were induced in their intestine. Processing by steaming, spicing, or tea boiling can weaken the allergenicity of egg proteins. Copyright © 2012 S. Karger AG, Basel.
The purity of water at hospital and at home as a problem of intercultural understanding.
Burghart, R
1996-03-01
Women in a provincial town in southern Nepal were instructed by medical doctors and compounders to boil water, and to keep it boiling for 15 minutes before mixing it with infant formula or oral rehydration salts. Most women ignored the advice. Those who seemed to follow it merely brought the water to boil. This report describes how and why women boil water and assesses the health implications of their practices. The failure of women to adopt "proper" procedures procedures provides a point of entry into an analysis of the role of intercultural dialogue in exposing one's presuppositions about health and empowering one to change them.
Fluid Physics and Transport Phenomena in a Simulated Reduced Gravity Environment
NASA Technical Reports Server (NTRS)
Lipa, J.
2004-01-01
We describe a ground-based apparatus that allows the cancellation of gravity on a fluid using magnetic forces. The present system was designed for liquid oxygen studies over the range 0.001 - 5 g s. This fluid is an essential component of any flight mission using substantial amounts of liquid propellant, especially manned missions. The apparatus has been used to reduce the hydrostatic compression near the oxygen critical point and to demonstrate inverted phase separation. It could also be used to study pool boiling and two-phase heat transfer in Martian, Lunar or near-zero gravity, as well as phenomena such as Marangoni flow and convective instabilities. These studies would contribute directly to the reliability and optimization of the Moon and Mars flight programs.
Advanced Heat/Mass Exchanger Technology for Geothermal and Solar Renewable Energy Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greiner, Miles; Childress, Amy; Hiibel, Sage
2014-12-16
Northern Nevada has abundant geothermal and solar energy resources, and these renewable energy sources provide an ample opportunity to produce economically viable power. Heat/mass exchangers are essential components to any energy conversion system. Improvements in the heat/mass exchange process will lead to smaller, less costly (more efficient) systems. There is an emerging heat transfer technology, based on micro/nano/molecular-scale surface science that can be applied to heat/mass exchanger design. The objective is to develop and characterize unique coating materials, surface configurations and membranes capable of accommodating a 10-fold increase in heat/mass exchanger performance via phase change processes (boiling, condensation, etc.) andmore » single phase convective heat/mass transfer.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, S.D.; Dearing, J.F.
An understanding of conditions that may cause sodium boiling and boiling propagation that may lead to dryout and fuel failure is crucial in liquid-metal fast-breeder reactor safety. In this study, the SABRE-2P subchannel analysis code has been used to analyze the ultimate transient of the in-core W-1 Sodium Loop Safety Facility experiment. This code has a 3-D simple nondynamic boiling model which is able to predict the flow instability which caused dryout. In other analyses dryout has been predicted for out-of-core test bundles and so this study provides additional confirmation of the model.
NASA Astrophysics Data System (ADS)
Hasanpour, B.; Irandoost, M. S.; Hassani, M.; Kouhikamali, R.
2018-01-01
In this paper a numerical simulation of upward two-phase flow evaporation in a vertical tube has been studied by considering water as working fluid. To this end, the computational fluid dynamic simulations of this system are performed with heat and mass transfer mechanisms due to energy transfer during the phase change interaction near the heat transfer surface. The volume of fluid model in an available Eulerian-Eulerian approach based on finite volume method is utilized and the mass source term in conservation of mass equation is implemented using a user defined function. The characteristics of water flow boiling such as void fraction and heat transfer coefficient distribution are investigated. The main cause of fluctuations on heat transfer coefficient and volume fraction is velocity increment in the vapor phase rather than the liquid phase. The case study of this research including convective heat transfer coefficient and tube diameter are considered as a parametric study. The operating conditions are considered at high pressure in saturation temperature and the physical properties of water are determined by considering system's inlet temperature and pressure in saturation conditions. Good agreement is achieved between the numerical and the experimental values of heat transfer coefficients.
NASA Astrophysics Data System (ADS)
Hasanpour, B.; Irandoost, M. S.; Hassani, M.; Kouhikamali, R.
2018-07-01
In this paper a numerical simulation of upward two-phase flow evaporation in a vertical tube has been studied by considering water as working fluid. To this end, the computational fluid dynamic simulations of this system are performed with heat and mass transfer mechanisms due to energy transfer during the phase change interaction near the heat transfer surface. The volume of fluid model in an available Eulerian-Eulerian approach based on finite volume method is utilized and the mass source term in conservation of mass equation is implemented using a user defined function. The characteristics of water flow boiling such as void fraction and heat transfer coefficient distribution are investigated. The main cause of fluctuations on heat transfer coefficient and volume fraction is velocity increment in the vapor phase rather than the liquid phase. The case study of this research including convective heat transfer coefficient and tube diameter are considered as a parametric study. The operating conditions are considered at high pressure in saturation temperature and the physical properties of water are determined by considering system's inlet temperature and pressure in saturation conditions. Good agreement is achieved between the numerical and the experimental values of heat transfer coefficients.
Environmental qualification testing of payload G-534, the Pool Boiling Experiment
NASA Technical Reports Server (NTRS)
Sexton, J. Andrew
1992-01-01
Payload G-534, the prototype Pool Boiling Experiment (PBE), is scheduled to fly on the STS-47 mission in September 1992. This paper describes the purpose of the experiment and the environmental qualification testing program that was used to prove the integrity of the hardware. Component and box level vibration and thermal cycling tests were performed to give an early level of confidence in the hardware designs. At the system level, vibration, thermal extreme soaks, and thermal vacuum cycling tests were performed to qualify the complete design for the expected shuttle environment. The system level vibration testing included three axis sine sweeps and random inputs. The system level hot and cold soak tests demonstrated the hardware's capability to operate over a wide range of temperatures and gave wider latitude in determining which shuttle thermal attitudes were compatible with the experiment. The system level thermal vacuum cycling tests demonstrated the hardware's capability to operate in a convection free environment. A unique environmental chamber was designed and fabricated by the PBE team and allowed most of the environmental testing to be performed within the hardware build laboratory. The completion of the test program gave the project team high confidence in the hardware's ability to function as designed during flight.
Cohen, Alasdair; Colford, John M.
2017-01-01
Abstract. Globally, approximately 2 billion people lack microbiologically safe drinking water. Boiling is the most prevalent household water treatment method, yet evidence of its health impact is limited. To conduct this systematic review, we searched four online databases with no limitations on language or publication date. Studies were eligible if health outcomes were measured for participants who reported consuming boiled and untreated water. We used reported and calculated odds ratios (ORs) and random-effects meta-analysis to estimate pathogen-specific and pooled effects by organism group and nonspecific diarrhea. Heterogeneity and publication bias were assessed using I2, meta-regression, and funnel plots; study quality was also assessed. Of the 1,998 records identified, 27 met inclusion criteria and reported extractable data. We found evidence of a significant protective effect of boiling for Vibrio cholerae infections (OR = 0.31, 95% confidence interval [CI] = 0.13–0.79, N = 4 studies), Blastocystis (OR = 0.35, 95% CI = 0.17–0.69, N = 3), protozoal infections overall (pooled OR = 0.61, 95% CI = 0.43–0.86, N = 11), viral infections overall (pooled OR = 0.83, 95% CI = 0.7–0.98, N = 4), and nonspecific diarrheal outcomes (OR = 0.58, 95% CI = 0.45–0.77, N = 7). We found no evidence of a protective effect for helminthic infections. Although our study was limited by the use of self-reported boiling and non-experimental designs, the evidence suggests that boiling provides measureable health benefits for pathogens whose transmission routes are primarily water based. Consequently, we believe a randomized controlled trial of boiling adherence and health outcomes is needed. PMID:29016318
Formation and Growth of Micro and Macro Bubbles on Copper-Graphite Composite Surfaces
NASA Technical Reports Server (NTRS)
Chao, David F.; Sankovic, John M.; Motil, Brian J.; Zhang, Nengli
2007-01-01
Micro scale boiling behavior in the vicinity of graphite micro-fiber tips on the coppergraphite composite boiling surfaces is investigated. It is discovered that a large number of micro bubbles are formed first at the micro scratches and cavities on the copper matrix in pool boiling. In virtue of the non-wetting property of graphite, once the growing micro bubbles touch the graphite tips, the micro bubbles are sucked by the tips and merged into larger micro bubbles sitting on the tips. The micro bubbles grow rapidly and coalesce to form macro bubbles, each of which sitting on several tips. The growth processes of the micro and macro bubbles are analyzed and formulated followed by an analysis of bubble departure on the composite surfaces. Based on these analyses, the enhancement mechanism of the pool boiling heat transfer on the composite surfaces is clearly revealed. Experimental results of pool boiling heat transfer both for water and Freon-113 on the composite surfaces convincingly demonstrate the enhancement effects of the unique structure of Cu-Gr composite surfaces on boiling heat transfer.
Steady State Film Boiling Heat Transfer Simulated With Trace V4.160
DOE Office of Scientific and Technical Information (OSTI.GOV)
Audrius Jasiulevicius; Rafael Macian-Juan
2006-07-01
This paper presents the results of the assessment and analysis of TRACE v4.160 heat transfer predictions in the post-CHF (critical heat flux) region and discusses the possibilities to improve the TRACE v4.160 code predictions in the film boiling heat transfer when applying different film boiling correlations. For this purpose, the TRACE v4.160-calculated film boiling heat flux and the resulting maximum inner wall temperatures during film boiling in single tubes were compared with experimental data obtained at the Royal Institute of Technology (KTH) in Stockholm, Sweden. The experimental database included measurements for pressures ranging from 30 to 200 bar and coolantmore » mass fluxes from 500 to 3000 kg/m{sup 2}s. It was found that TRACE v4.160 does not produce correct predictions of the film boiling heat flux, and consequently of the maximum inner wall temperature in the test section, under the wide range of conditions documented in the KTH experiments. In particular, it was found that the standard TRACE v4.160 under-predicts the film boiling heat transfer coefficient at low pressure-low mass flux and high pressure-high mass flux conditions. For most of the rest of the investigated range of parameters, TRACE v4.160 over-predicts the film boiling heat transfer coefficient, which can lead to non-conservative predictions in applications to nuclear power plant analyses. Since no satisfactory agreement with the experimental database was obtained with the standard TRACE v4.160 film boiling heat transfer correlations, we have added seven film boiling correlations to TRACE v4.160 in order to investigate the possibility to improve the code predictions for the conditions similar to the KTH tests. The film boiling correlations were selected among the most commonly used film boiling correlations found in the open literature, namely Groeneveld 5.7, Bishop (2 correlations), Tong, Konkov, Miropolskii and Groeneveld-Delorme correlations. The only correlation among the investigated, which resulted in a significant improvement of TRACE predictions, was the Groeneveld 5.7. It was found, that replacing the current film boiling correlation (Dougall-Rohsenow) for the wall-togas heat transfer with Groeneveld 5.7 improves the code predictions for the film boiling heat transfer at high qualities in single tubes in the entire range of pressure and coolant mass flux considered. (authors)« less
Peng, Xin; Yu, Ke-Qiang; Deng, Guan-Hua; Jiang, Yun-Xia; Wang, Yu; Zhang, Guo-Xia; Zhou, Hong-Wei
2013-12-01
Low cost and high throughput capacity are major advantages of using next generation sequencing (NGS) techniques to determine metagenomic 16S rRNA tag sequences. These methods have significantly changed our view of microorganisms in the fields of human health and environmental science. However, DNA extraction using commercial kits has shortcomings of high cost and time constraint. In the present study, we evaluated the determination of fecal microbiomes using a direct boiling method compared with 5 different commercial extraction methods, e.g., Qiagen and MO BIO kits. Principal coordinate analysis (PCoA) using UniFrac distances and clustering showed that direct boiling of a wide range of feces concentrations gave a similar pattern of bacterial communities as those obtained from most of the commercial kits, with the exception of the MO BIO method. Fecal concentration by boiling method affected the estimation of α-diversity indices, otherwise results were generally comparable between boiling and commercial methods. The operational taxonomic units (OTUs) determined through direct boiling showed highly consistent frequencies with those determined through most of the commercial methods. Even those for the MO BIO kit were also obtained by the direct boiling method with high confidence. The present study suggested that direct boiling could be used to determine the fecal microbiome and using this method would significantly reduce the cost and improve the efficiency of the sample preparation for studying gut microbiome diversity. © 2013 Elsevier B.V. All rights reserved.
The boiling point of stratospheric aerosols.
NASA Technical Reports Server (NTRS)
Rosen, J. M.
1971-01-01
A photoelectric particle counter was used for the measurement of aerosol boiling points. The operational principle involves raising the temperature of the aerosol by vigorously heating a portion of the intake tube. At or above the boiling point, the particles disintegrate rather quickly, and a noticeable effect on the size distribution and concentration is observed. Stratospheric aerosols appear to have the same volatility as a solution of 75% sulfuric acid. Chemical analysis of the aerosols indicates that there are other substances present, but that the sulfate radical is apparently the major constituent.
Hydrodynamic Stability Analysis on Sheared Stratified Flow in a Convective Flow Environment
NASA Astrophysics Data System (ADS)
Xiao, Yuan; Lin, Wenxian; Armfiled, Steven; Kirkpatrick, Michael; He, Yinghe; Fluid Dynamics Research Group, James Cook University Team; Fluid Dynamics Research Group, University of Sydney Team
2014-11-01
A hydrodynamic stability analysis on the convective sheared boundary layer (SCBL) flow, where a sheared stratified flow and a thermally convective flow coexist, is carried out in this study. The linear unstable stratifications representing the convective flow are included in the TaylorGoldstein equations as an unstable factor Jb. A new unstable region corresponding to the convective instability, which is not present in pure sheared stratified flows, is found with the analysis. It is also found that the boundaries of the convective instability regions expand with increasing Jb and interact with the sheared stratified instability region. More results will be presented at the conference
Hydrothermal convection and mordenite precipitation in the cooling Bishop Tuff, California, USA
NASA Astrophysics Data System (ADS)
Randolph-Flagg, N. G.; Breen, S. J.; Hernandez, A.; Self, S.; Manga, M.
2014-12-01
We present field observations of erosional columns in the Bishop Tuff and then use laboratory results and numerical models to argue that these columns are evidence of relict convection in a cooling ignimbrite. Many square kilometers of the Bishop Tuff have evenly-spaced, vertical to semi-vertical erosional columns, a result of hydrothermal alteration. These altered regions are more competent than the surrounding tuff, are 0.1-0.7 m in diameter, are separated by ~ 1 m, and in some cases are more than 8 m in height. JE Bailey (U. of Hawaii, dissertation, 2005) suggested that similar columns in the Bandelier Tuff were formed when slumping allowed water to pool at the surface of the still-cooling ignimbrite. As water percolated downward it boiled generating evenly spaced convection cells similar to heat pipes. We quantify this conceptual model and apply it the Bishop Tuff to understand the physics within ignimbrite-borne hydrothermal systems. We use thin sections to measure changing porosity and use scanning electron microscope (SEM) and x-ray diffraction (XRD) analyses to show that pore spaces in the columns are cemented by the mineral mordenite, a low temperature zeolite that precipitates between 120-200 oC (Bish et al., 1982), also found in the Bandelier Tuff example. We then use scaling to show 1) that water percolating into the cooling Bishop Tuff would convect and 2) that the geometry and spacing of the columns is predicted by the ignimbrite temperature and permeability. We use the computer program HYDROTHERM (Hayba and Ingebritsen, 1994; Kipp et al., 2008) to model 2-phase convection in the Bishop Tuff. By systematically changing permeability, initial temperature, and topography we can identify the pattern of flows that develop when the ignimbrite is cooled by water from above. Hydrothermally altered columns in ignimbrite are the natural product of coupled heat, mass, and chemical transport and have similarities to other geothermal systems, economic ore deposits, and mid-ocean ridge hydrothermal systems. The columns allow direct observation to constrain complex models of multiphase convection, reactive transport, and permeability. Our results also have paleoclimate implications, implying a large and stable source of water in the SE/SSE Long Valley area immediately after the ~760,000 ka caldera-forming eruption.
Identification of quantitative trait loci associated with boiled seed hardness in soybean
Hirata, Kaori; Masuda, Ryoichi; Tsubokura, Yasutaka; Yasui, Takeshi; Yamada, Tetsuya; Takahashi, Koji; Nagaya, Taiko; Sayama, Takashi; Ishimoto, Masao; Hajika, Makita
2014-01-01
Boiled seed hardness is an important factor in the processing of soybean food products such as nimame and natto. Little information is available on the genetic basis for boiled seed hardness, despite the wide variation in this trait. DNA markers linked to the gene controlling this trait should be useful in soybean breeding programs because of the difficulty of its evaluation. In this report, quantitative trait locus (QTL) analysis was performed to reveal the genetic factors associated with boiled seed hardness using a recombinant inbred line population developed from a cross between two Japanese cultivars, ‘Natto-shoryu’ and ‘Hyoukei-kuro 3’, which differ largely in boiled seed hardness, which in ‘Natto-shoryu’ is about twice that of ‘Hyoukei-kuro 3’. Two significantly stable QTLs, qHbs3-1 and qHbs6-1, were identified on chromosomes 3 and 6, for which the ‘Hyoukei-kuro 3’ alleles contribute to decrease boiled seed hardness for both QTLs. qHbs3-1 also showed significant effects in progeny of a residual heterozygous line and in a different segregating population. Given its substantial effect on boiled seed hardness, SSR markers closely linked to qHbs3-1, such as BARCSOYSSR_03_0165 and BARCSOYSSR_03_0185, could be useful for marker-assisted selection in soybean breeding. PMID:25914591
Stability of film boiling on inclined plates and spheres
NASA Astrophysics Data System (ADS)
Aursand, Eskil; Hammer, Morten; Munkejord, Svend Tollak; Müller, Bernhard; Ytrehus, Tor
2017-11-01
In film boiling, a continuous sub-millimeter vapor film forms between a liquid and a heated surface, insulating the two from each other. While quite accurate steady state solutions are readily obtained, the intermediate Reynolds numbers can make transient analysis challenging. The present work is a theoretical study of film boiling instabilities. We study the formation of travelling waves that are a combination of Kelvin-Helmholtz and the Rayleigh-Taylor instabilities. In particular, we study how the nature of this process depends on the Reynolds number, the Bond number, and the inclination of the submerged heated plate. In addition we extend the analysis to the case of a submerged heated sphere. Modelling of the transient dynamics of such films is important for answering practical questions such as how instabilities affect the overall heat transfer, and whether they can lead to complete film boiling collapse (Leidenfrost point). This work has been financed under the MAROFF program. We acknowledge the Research Council of Norway (244076/O80) and The Gas Technology Centre NTNU-SINTEF (GTS) for support.
Analysis of moving surface structures at a laser-induced boiling front
NASA Astrophysics Data System (ADS)
Matti, R. S.; Kaplan, A. F. H.
2014-10-01
Recently ultra-high speed imaging enabled to observe moving wave patterns on metal melts that experience laser-induced boiling. In laser materials processing a vertical laser-induced boiling front governs processes like keyhole laser welding, laser remote fusion cutting, laser drilling or laser ablation. The observed waves originate from temperature variations that are closely related to the melt topology. For improved understanding of the essential front mechanisms and of the front topology, for the first time a deeper systematic analysis of the wave patterns was carried out. Seven geometrical shapes of bright or dark domains were distinguished and categorized, in particular bright peaks of three kinds and dark valleys, often inclined. Two categories describe special flow patterns at the top and bottom of the front. Dynamic and statistical analysis has revealed that the shapes often combine or separate from one category to another when streaming down the front. The brightness of wave peaks typically fluctuates during 20-50 μs. This variety of thermal wave observations is interpreted with respect to the accompanying surface topology of the melt and in turn for governing local mechanisms like absorption, shadowing, boiling, ablation pressure and melt acceleration. The findings can be of importance for understanding the key process mechanisms and for optimizing laser materials processing.
Sansinena, M; Santos, M V; Zaritzky, N; Chirife, J
2012-05-01
Slush nitrogen (SN(2)) is a mixture of solid nitrogen and liquid nitrogen, with an average temperature of -207 °C. To investigate whether plunging a French plastic straw (commonly used for sperm cryopreservation) in SN(2) substantially increases cooling rates with respect to liquid nitrogen (LN(2)), a numerical simulation of the heat conduction equation with convective boundary condition was used to predict cooling rates. Calculations performed using heat transfer coefficients in the range of film boiling confirmed the main benefit of plunging a straw in slush over LN(2) did not arise from their temperature difference (-207 vs. -196 °C), but rather from an increase in the external heat transfer coefficient. Numerical simulations using high heat transfer (h) coefficients (assumed to prevail in SN(2)) suggested that plunging in SN(2) would increase cooling rates of French straw. This increase of cooling rates was attributed to a less or null film boiling responsible for low heat transfer coefficients in liquid nitrogen when the straw is placed in the solid-liquid mixture or slush. In addition, predicted cooling rates of French straws in SN(2) tended to level-off for high h values, suggesting heat transfer was dictated by heat conduction within the liquid filled plastic straw. Copyright © 2012 Elsevier Inc. All rights reserved.
Skylab M518 multipurpose furnace convection analysis
NASA Technical Reports Server (NTRS)
Bourgeois, S. V.; Spradley, L. W.
1975-01-01
An analysis was performed of the convection which existed on ground tests and during skylab processing of two experiments: vapor growth of IV-VI compounds growth of spherical crystals. A parallel analysis was also performed on Skylab experiment indium antimonide crystals because indium antimonide (InSb) was used and a free surface existed in the tellurium-doped Skylab III sample. In addition, brief analyses were also performed of the microsegregation in germanium experiment because the Skylab crystals indicated turbulent convection effects. Simple dimensional analysis calculations and a more accurate, but complex, convection computer model, were used in the analysis.
Convection in Extratropical Cyclones: Analysis of GPM, NexRAD, GCMs and Re-Analysis
NASA Astrophysics Data System (ADS)
Jeyaratnam, J.; Booth, J. F.; Naud, C. M.; Luo, J.
2017-12-01
Extratropical Cyclones (ETCs) are the most common cause of extreme precipitation in mid-latitudes and are important in the general atmospheric circulation as they redistribute moisture and heat. Isentropic lifting, upright convection, and slantwise convection are mechanisms of vertical motion within an ETC, which deliver different rain rates and might respond differently to global warming. In this study we compare different metrics for identifying convection within the ETC's and calculate the relative contribution of convection to total ETC precipitation. We determine if convection occurs preferentially in specific regions of the storm and decide how to best utilize GPM retrievals covering other parts of the mid-latitudes. Additionally, mid-latitude cyclones are tracked and composites of these tracked cyclones are compared amongst multiple versions of Global Circulation Models (GCMs) from Coupled Model Intercomparison Project Phase 6 (CMIP6) prototype models and re-analysis data; Model Diagnostic Task Force (MDTF) Geophysical Fluid Dynamics Laboratory (GFDL) using a two-plume convection scheme, MDTF GFDL using the Donner convection scheme, Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2), and European Reanalysis produced by the European Center for Medium-Range Weather Forecasts (ECMWF).
Numerical Modeling of Propellant Boil-Off in a Cryogenic Storage Tank
NASA Technical Reports Server (NTRS)
Majumdar, A. K.; Steadman, T. E.; Maroney, J. L.; Sass, J. P.; Fesmire, J. E.
2007-01-01
A numerical model to predict boil-off of stored propellant in large spherical cryogenic tanks has been developed. Accurate prediction of tank boil-off rates for different thermal insulation systems was the goal of this collaboration effort. The Generalized Fluid System Simulation Program, integrating flow analysis and conjugate heat transfer for solving complex fluid system problems, was used to create the model. Calculation of tank boil-off rate requires simultaneous simulation of heat transfer processes among liquid propellant, vapor ullage space, and tank structure. The reference tank for the boil-off model was the 850,000 gallon liquid hydrogen tank at Launch Complex 39B (LC- 39B) at Kennedy Space Center, which is under study for future infrastructure improvements to support the Constellation program. The methodology employed in the numerical model was validated using a sub-scale model and tank. Experimental test data from a 1/15th scale version of the LC-39B tank using both liquid hydrogen and liquid nitrogen were used to anchor the analytical predictions of the sub-scale model. Favorable correlations between sub-scale model and experimental test data have provided confidence in full-scale tank boil-off predictions. These methods are now being used in the preliminary design for other cases including future launch vehicles
NASA Astrophysics Data System (ADS)
Jovanović, J.; Petronijević, R. B.; Lukić, M.; Karan, D.; Parunović, N.; Branković-Lazić, I.
2017-09-01
During the previous development of a chemometric method for estimating the amount of added colorant in meat products, it was noticed that the natural colorant most commonly added to boiled sausages, E 120, has different CIE-LAB behavior compared to artificial colors that are used for the same purpose. This has opened the possibility of transforming the developed method into a method for identifying the addition of natural or synthetic colorants in boiled sausages based on the measurement of the color of the cross-section. After recalibration of the CIE-LAB method using linear discriminant analysis, verification was performed on 76 boiled sausages, of either frankfurters or Parisian sausage types. The accuracy and reliability of the classification was confirmed by comparison with the standard HPLC method. Results showed that the LDA + CIE-LAB method can be applied with high accuracy, 93.42 %, to estimate food color type in boiled sausages. Natural orange colors can give false positive results. Pigments from spice mixtures had no significant effect on CIE-LAB results.
Preliminary design of flight hardware for two-phase fluid research
NASA Technical Reports Server (NTRS)
Hustvedt, D. C.; Oonk, R. L.
1982-01-01
This study defined the preliminary designs of flight software for the Space Shuttle Orbiter for three two-phase fluid research experiments: (1) liquid reorientation - to study the motion of liquid in tanks subjected to small accelerations; (2) pool boiling - to study low-gravity boiling from horizontal cylinders; and (3) flow boiling - to study low-gravity forced flow boiling heat transfer and flow phenomena in a heated horizontal tube. The study consisted of eight major tasks: reassessment of the existing experiment designs, assessment of the Spacelab facility approach, assessment of the individual carry-on approach, selection of the preferred approach, preliminary design of flight hardware, safety analysis, preparation of a development plan, estimates of detailed design, fabrication and ground testing costs. The most cost effective design approach for the experiments is individual carry-ons in the Orbiter middeck. The experiments were designed to fit into one or two middeck lockers. Development schedules for the detailed design, fabrication and ground testing ranged from 15 1/2 to 18 months. Minimum costs (in 1981 dollars) ranged from $463K for the liquid reorientation experiment to $998K for the pool boiling experiment.
Cryogenic Boil-Off Reduction System
NASA Astrophysics Data System (ADS)
Plachta, David W.; Guzik, Monica C.
2014-03-01
A computational model of the cryogenic boil-off reduction system being developed by NASA as part of the Cryogenic Propellant Storage and Transfer technology maturation project has been applied to a range of propellant storage tanks sizes for high-performing in-space cryogenic propulsion applications. This effort focuses on the scaling of multi-layer insulation (MLI), cryocoolers, broad area cooling shields, radiators, solar arrays, and tanks for liquid hydrogen propellant storage tanks ranging from 2 to 10 m in diameter. Component scaling equations were incorporated into the Cryogenic Analysis Tool, a spreadsheet-based tool used to perform system-level parametric studies. The primary addition to the evolution of this updated tool is the integration of a scaling method for reverse turbo-Brayton cycle cryocoolers, as well as the development and inclusion of Self-Supporting Multi-Layer Insulation. Mass, power, and sizing relationships are traded parametrically to establish the appropriate loiter period beyond which this boil-off reduction system application reduces mass. The projected benefit compares passive thermal control to active thermal control, where active thermal control is evaluated for reduced boil-off with a 90 K shield, zero boil-off with a single heat interception stage at the tank wall, and zero boil-off with a second interception stage at a 90 K shield. Parametric studies show a benefit over passive storage at loiter durations under one month, in addition to showing a benefit for two-stage zero boil-off in terms of reducing power and mass as compared to single stage zero boil-off. Furthermore, active cooling reduces the effect of varied multi-layer insulation performance, which, historically, has been shown to be significant.
Self-Propagating Frontal Polymerization in Water at Ambient Pressure
NASA Technical Reports Server (NTRS)
Olten, Nesrin; Kraigsley, Alison; Ronney, Paul D.
2003-01-01
Advances in polymer chemistry have led to the development of monomers and initiation agents that enable propagating free-radical polymerization fronts to exist. These fronts are driven by the exothermicity of the polymerization reaction and the transport of heat from the polymerized product to the reactant monomer/solvent/initiator solution. The thermal energy transported to the reactant solution causes the initiator to decompose, yielding free radicals, which start the free radical polymerization process as discussed in recent reviews. The use of polymerization processes based on propagating fronts has numerous applications. Perhaps the most important of these is that it enables rapid curing of polymers without external heating since the polymerization process itself provides the high temperatures necessary to initiate and sustain polymerization. This process also enables more uniform curing of arbitrarily thick samples since it does not rely on heat transfer from an external source, which will necessarily cause the temperature history of the sample to vary with distance from the surface according to a diffusion-like process. Frontal polymerization also enables filling and sealing of structures having cavities of arbitrary shape without having to externally heat the structure. Water at atmospheric pressure is most convenient solvent to employ and the most important for practical applications (because of the cost and environmental issues associated with DMSO and other solvents). Nevertheless, to our knowledge, steady, self-propagating polymerization fronts have not been reported in water at atmospheric pressure. Currently, polymerization fronts require a high boiling point solvent (either water at high pressures or an alternative solvent such as dimethyl sulfoxide (DMSO) (boiling point 189 C at atmospheric pressure.) Early work on frontal polymerization, employed pressures up to 5000 atm in order to avoid boiling of the monomer/solvent/initiator solution. High boiling point solutions are needed because in order to produce a propagating front, a high front temperature is needed to produce sufficiently rapid decomposition of the free radical initiator and subsequent free radical polymerization and heat release at a rate faster than heat losses remove thermal energy from the system. (While the conduction heat loss rate increases linearly with temperature, the free radical initiator decomposition is a high activation energy process whose rate increases much more rapidly than linearly with temperature, thus as the temperature decreases, the ratio of heat loss to heat generation increases, eventually leading to extinction of the front if the temperature is too low.) In order to obtain atmospheric pressure frontal polymerization in water, it is necessary to identify a monomer/initiator combination that is water soluble and will not extinguish even when the peak temperature (T*) is less than 100 C. In this work acrylic acid (AA) was chosen as the monomer because is it one of the most reactive monomers and can polymerize readily at low temperatures even without initiators. Ammonium persulfate (AP) was chosen as the initiator because it decomposes readily at low temperatures, produces relatively few bubbles and is commercially available. The propagation rates and extinction conditions of the fronts are studied for a range of AA and AP concentrations. Small amounts of fumed silica powder (Cab-o-sil, Cabot Corporation) were added to the solutions to inhibit buoyancy induced convection in the solutions; future studies will investigate the effects of buoyant convection within the solutions.
1983-03-01
AN ANALYSIS OF A FINITE ELEMENT METHOD FOR CONVECTION- DIFFUSION PROBLEMS PART II: A POSTERIORI ERROR ESTIMATES AND ADAPTIVITY by W. G. Szymczak Y 6a...PERIOD COVERED AN ANALYSIS OF A FINITE ELEMENT METHOD FOR final life of the contract CONVECTION- DIFFUSION PROBLEM S. Part II: A POSTERIORI ERROR ...Element Method for Convection- Diffusion Problems. Part II: A Posteriori Error Estimates and Adaptivity W. G. Szvmczak and I. Babu~ka# Laboratory for
Ng, Zhi Xiang; Chua, Kek Heng; Kuppusamy, Umah Rani
2014-04-01
This study aimed to investigate the changes in the proteome of bitter gourd prior to and after subjecting to boiling and microwaving. A comparative analysis of the proteome profiles of raw and thermally treated bitter gourds was performed using 2D-DIGE. The protein content and number of protein spots in raw sample was higher when compared to the cooked samples. Qualitative analysis revealed that 103 (boiled sample) and 110 (microwaved sample) protein spots were up regulated whereas 120 (boiled sample) and 107 (microwaved sample) protein spots were down regulated. Ten protein spots with the highest significant fold change in the cooked samples were involved in carbohydrate/energy metabolisms and stress responses. Small heat shock proteins, superoxide dismutase, quinone oxidoreductase, UDP-glucose pyrophosphorylase and phosphoglycerate kinase play a role in heat-stress-mediated protection of bitter gourd. This study suggests that appropriate heat treatment (cooking methods) can lead to induction of selected proteins in bitter gourd. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhao, Jian-Fu
2012-07-01
Boiling in microgravity is an increasing significant subject of investigation. Motivation for the study comes not only from many potential space applications due to its high efficiency to transfer high heat flux with liquid-vapor phase change, but also from powerful platform of microgravity to reveal the mechanism of heat transfer underneath the phenomenon of boiling. In the present paper, the growth of a discrete bubble during nucleate pool boiling and heat transfer in short-term microgravity is studied experimentally utilizing the drop tower Beijing. A P-doped N-type square silicon chip with the dimensions of 10x10x0.5 mm ^{3} was used as the heater. Two 0.25-mm diameters copper wires for power supply was soldered to the side surfaces of the chip at the opposite ends. The normal resistant of the chip is 75 Ω. The chip was heated by using Joule effect. A D.C. power supply of constant current was used to input energy to the heater element. A 0.12-mm diameter, T-type thermocouple adhered on the centre of the backside of the chip was used for the measurement of wall temperature, while two other T-type thermocouples were used for the bulk liquid temperature. FC-72 was used as working fluid. The concentration of air was determined by using Henry law as 0.0046 moles gas/mole liquid. The pressure and the bulk liquid temperature in the boiling chamber were nominally 102.0 kPa and 12.0 °C, respectively. The shapes of the bubbles were recorded using a high speed camera at a speed of 250 fps with a shutter speed of 1/2000 s. Based on the image manipulation, the effective diameter of the discrete bubble is obtained. The experiments were conducted utilizing the drop tower Beijing, which can provide a short-term microgravity condition. The residual gravity of 10 ^{-2 ... -3} g _{0} can be maintained throughout the short duration of 3.6 s. To avoid the influence of natural convection in normal gravity environment, the heating switched on at the release of the drop capsule. Moreover, careful choice of the experimental parameters was made to keep the boiling delay time, namely the duration from the beginning of heating to that of steady boiling, no more than 3.0 s. A typical growth of discrete bubble was observed with the heating current of 0.33 A. A discrete bubble appeared at the center of heater surface at 0.644 s after the heating current switched on. It grew gradually at first, and then stayed constantly, even decreases. Finally, it coalesced with other bubbles, and formed a larger coalesced bubble at 0.944 s. It is found that the bubble effective diameter is proportional to the square root of the time at the first stage, which is consistent with the bubble growth model based on classical thermal-controlled mechanism. The proportional coefficient is estimates as 5.6, which is located inside the range reported in the literature, indicating that gravity has a much slight influence on the early period of bubble growth. Large bubble size in microgravity, however, can provide much accurate measurement.
[Fluorescence spectra analysis of the scrophularia soup].
Yan, Li-hua; Song, Feng; Han, Juan; Su, Jing; Qu, Fei-fei; Song, Yi-zhan; Hu, Bo-lin; Tian, Jian-guo
2008-08-01
The cold-water and boiled-water soaked scrophularia soups have been prepared. The emission and excitation spectra of each scrophularia soup under different conditions have been measured at room temperature. The pH values of the different scrophularia soups have been also detected. There are obvious differences between the cold-water soaked scrophularia soup and the boiled-water soaked scrophularia. For both soups the emission wavelength increases with the wavelength of the excitation, but the peaks of the emission spectra for cold-water and boiled-water soaked scrophularia soup are different, which are 441 and 532 nm, respectively. Excitation spectrum has double peaks in the cold-water soaked scrophularia soup while only one peak with longer wavelength in the boiled-water soaked one. The pH value changes from 5.5 to 4.1. According to the organic admixture fluorescence mechanism we analyzed the reasons of the experimental results. Through heating, the interaction in different fluorescence molecular and the energy transfer process in the same fluorescence molecular become more active, and the conjugate structures and the generation of hydrogen bonds, increase. The fluorescence measurement is of value for the scrophularia pharmacology analysis and provides an analytical method for the quality identification of scrophularia soup.
NASA Astrophysics Data System (ADS)
Nemec, Patrik; Malcho, Milan
2018-06-01
This work deal with experimental measurement and calculation cooling efficiency of the cooling device working with a heat pipe technology. The referred device in the article is cooling device capable transfer high heat fluxes from electric elements to the surrounding. The work contain description, working principle and construction of cooling device. The main factor affected the dissipation of high heat flux from electronic elements through the cooling device to the surrounding is condenser construction, its capacity and option of heat removal. Experimental part describe the measuring method cooling efficiency of the cooling device depending on ambient temperature in range -20 to 40°C and at heat load of electronic components 750 W. Measured results are compared with results calculation based on physical phenomena of boiling, condensation and natural convection heat transfer.
Low-G fluid behavior technology summaries
NASA Technical Reports Server (NTRS)
Stark, J. A.; Bradshaw, R. D.; Blatt, M. H.
1974-01-01
This report presents a summarization and categorization of the pertinent literature associated with low-g fluid behavior technology. Initially a literature search was conducted to obtain pertinent documents for review. Reports determined to be of primary significance are summarized in detail. Each summary, where applicable, consists of; (1) report identification, (2) objective(s) of the work, (3) description of pertinent work performed, (4) major results, and (5) comments of the reviewer (GD/C). Pertinent figures are presented on a single facing page separate from the text. Specific areas covered are; interface configuration, interface stability, natural frequency and damping, liquid reorientation, bubbles and droplets, fluid inflow, fluid outflow, convection, boiling and condensation heat transfer, venting effects, and fluid properties. Reports which were reviewed and not summarized, along with reasons for not summarizing, are also listed. Cryogenic thermal control and fluid management systems technology are presented.
Anti-obesity effects of boiled tuna extract in mice with obesity induced by a high-fat diet.
Kim, Youngmin; Kwon, Mi-Jin; Choi, Jeong-Wook; Lee, Min-Kyeong; Kim, Chorong; Jung, Jaehun; Aprianita, Heny; Nam, Heesop; Nam, Taek-Jeong
2016-10-01
The aim of this study was to examine the anti-obesity effects of boiled tuna extract in C57BL/6N mice with obesity induced by a high-fat diet (HFD). We determined the anti-obesity effects of boiled tuna extract (100, 200, or 400 mg/kg) on the progression of HFD-induced obesity for 10 weeks. The mice were divided into 5 groups as follows: the normal diet (ND) group (n=10); the HFD group (n=10); the mice fed HFD and 100 mg/kg boiled tuna extract group (n=10); those fed a HFD and 200 mg/kg boiled tuna extract group (n=10); and those fed a HFD and 400 mg/kg boiled tuna extract group (n=10). Changes in body weight, fat content, serum lipid levels and lipogenic enzyme levels were measured. The consumption of boiled tuna extract lowered epididymal tissue weight and exerted anti-obesity effects, as reflected by the serum glucose, triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL‑C), low-density lipoprotein cholesterol (LDL-C), insulin and leptin levels. In addition, we demonstrated changes in liver adipogenic- and lipogenic-related protein expression by western blot analysis. Boiled tuna extract downregulated the levels of the CCAAT/enhancer-binding protein α, β and δ (C/EBPα, β, δ), and peroxisome proliferator-activated receptor-γ (PPAR-γ) adipocyte marker genes. Boiled tuna extract also attenuated adipogenic and lipogenic gene expression, namely the levels of fatty acid synthase (FAS), lipoprotein lipase (LPL), acetyl-CoA carboxylase (ACC), glucose transporter type 4 (Glut4) and phosphorylated adenosine monophosphate-activated protein kinase α and β (AMPKα, β) in a dose-dependent manner. Moreover, the consumption of boiled tuna extract restored the levels of superoxide dismutase (SOD), catalase (CAT), glutamic oxaloacetic transaminase (GOT), glutamic-pyruvate transaminase (GPT), aspartate transaminase (AST) and alanine transaminase (ALT) to those of the control group. These results suggest that boiled tuna extract attenuates the progression of obesity by stimulating fatty acid oxidation through the upregulation of AMPK genes, as well as by inhibiting the synthesis of adipogenic and lipogenic enzymes. These characteristics of boiled tuna extract highlight its potential anti-obesity effects.
Wang, Yak-Nam; Khokhlova, Tatiana; Bailey, Michael; Hwang, Joo Ha; Khokhlova, Vera
2013-01-01
Recent studies have shown that shock wave heating and millisecond boiling in high intensity focused ultrasound (HIFU) fields can result in mechanical fractionation or emulsification of tissue - named boiling histotripsy. Visual observations of the change in color and contents indicated that the degree of thermal damage in the emulsified lesions can be controlled by varying the parameters of the exposure. The goal of this work was to examine thermal and mechanical effects in boiling histotripsy lesions using histological and biochemical analysis. The lesions were induced in ex vivo bovine heart and liver using a 2-MHz single-element transducer operating at duty factors of 0.005–0.01, pulse durations of 5–500 ms, and in situ shock amplitude of 73 MPa. Mechanical and thermal damage to tissue was evaluated histologically using conventional staining techniques (H&E and NADH-diphorase). Thermal effects were quantified by measuring denaturation of salt soluble proteins in the treated region. According to histology, the lesions that visually appeared as a liquid, contained no cellular structures larger than a cell nucleus and had a very sharp border of 1–2 cells. Both histology and protein analysis showed that lesions obtained with short pulses (< 10 ms) did not contain any thermal damage. Increasing the pulse duration resulted in an increase in thermal damage. However, both protein analysis and NADH-diaphorase staining showed less denaturation than visually observed as whitening of tissue. The number of HIFU pulses delivered per exposure did not change the lesion shape or the degree of thermal denaturation, whereas the size of the lesion showed a saturating behaviour thus suggesting optimal exposure duration. This study confirmed that boiling histotripsy offers an effective, predictable way to non-invasively fractionate tissue into subcellular fragments with or without inducing thermal damage. PMID:23312958
TRACE/PARCS Analysis of ATWS with Instability for a MELLLA+BWR/5
L. Y. Cheng; Baek, J. S.; Cuadra, A.; ...
2016-06-06
A TRACE/PARCS model has been developed to analyze anticipated transient without SCRAM (ATWS) events for a boiling water reactor (BWR) operating in the maximum extended load line limit analysis-plus (MELLLA+) expanded operating domain. The MELLLA+ domain expands allowable operation in the power/flow map of a BWR to low flow rates at high power conditions. Such operation exacerbates the likelihood of large amplitude power/flow oscillations during certain ATWS scenarios. The analysis shows that large amplitude power/flow oscillations, both core-wide and out-of-phase, arise following the establishment of natural circulation flow in the reactor pressure vessel (RPV) after the trip of the recirculationmore » pumps and an increase in core inlet subcooling. The analysis also indicates a mechanism by which the fuel may experience heat-up that could result in localized fuel damage. TRACE predicts the heat-up to occur when the cladding surface temperature exceeds the minimum stable film boiling temperature after periodic cycles of dryout and rewet; and the fuel becomes “locked” into a film boiling regime. Further, the analysis demonstrates the effectiveness of the simulated manual operator actions to suppress the instability.« less
Thermodynamic analysis on the role of hydrogen in anodic stress corrosion cracking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiao, L.; Mao, X.
1995-11-01
A synergistic effect of hydrogen and stress on a corrosion rate was analyzed with thermodynamics. The results showed that an interaction of stress and hydrogen could increase the corrosion rate remarkably. Stress corrosion cracking (SCC) of austenitic stainless steel (ASS) was investigated in boiling chloride solution to confirm the analysis. Hydrogen could be introduced into the specimen concentrated at the crack tip during SCC in boiling LiCl solution (143 C). The concentrating factor is about 3 which is consistent with calculated results according to stress induced diffusion.
2014-09-30
for Analysis of Convective Mass Flux Parameterizations Using DYNAMO Direct Observations R. Michael Hardesty CIRES/University of Colorado/NOAA 325...the RV-Revell during legs 2 & 3 of the DYNAMO experiement to help characterize vertical transport through the boundary layer and to build statistics...obtained during DYNAMO , and to investigate whether cold pools that emanate from convection organize the interplay between humidity and convection and
Cryogenic thermal system analysis for orbital propellant depot
NASA Astrophysics Data System (ADS)
Chai, Patrick R.; Wilhite, Alan W.
2014-09-01
In any manned mission architecture, upwards of seventy percent of all payload delivered to orbit is propellant, and propellant mass fraction dominates almost all transportation segments of any mission requiring a heavy lift launch system like the Saturn V. To mitigate this, the use of an orbital propellant depot has been extensively studied. In this paper, a thermal model of an orbital propellant depot is used to examine the effects of passive and active thermal management strategies. Results show that an all passive thermal management strategy results in significant boil-off for both hydrogen and oxygen. At current launch vehicle prices, these boil-offs equate to millions of dollars lost per month. Zero boil-off of propellant is achievable with the use of active cryocoolers; however, the cooling power required to produce zero-boil-off is an order of magnitude higher than current state-of-the-art cryocoolers. This study shows a zero-boil-off cryocooler minimum power requirement of 80-100 W at 80 K for liquid oxygen, and 100-120 W at 20 K for liquid hydrogen for a representative Near-Earth Object mission. Research and development effort is required to improve the state-of-the-arts in-space cryogenic thermal management.
Impact of different thickness of the smooth heated surface on flow boiling heat transfer
NASA Astrophysics Data System (ADS)
Strąk, Kinga; Piasecka, Magdalena
2018-06-01
This paper presents a comparison of the performance of three smooth heated surfaces with different thicknesses. Analysis was carried out on an experimental setup for flow boiling heat transfer. The most important element of the setup was the test section with a rectangular minichannel, 1.7 mm deep, 16 mm wide and 180 mm long, oriented vertically. The heated element for the FC-72 Fluorinert flowing in the minichannel was designated as a Haynes-230 alloy plate (0.10 mm and 0.45 mm thick) or a Hastelloy X alloy plate (0.65 mm thick). Infrared thermography was used to measure the temperature of the outer plate surface. The local values of the heat transfer coefficient for stationary state conditions were calculated using a simple one-dimensional method. The experimental results were presented as the relationship between the heat transfer coefficients in the subcooled boiling region and the distance along the minichannel length and boiling curves. The highest local heat transfer coefficients were recorded for the surface of 0.10 mm thick heated plate at the outlet and 0.45 mm thick plate at the minichannel inlet. All boiling curves were typical in shape.
Xiao, Zhichao; Luo, Yuting; Wang, Guiying; Ge, Changrong; Zhou, Guanghong; Zhang, Wangang; Liao, Guozhou
2018-06-13
Boiled Wuding chicken was produced using whole chicken by washing, boiling 1 h with salt, deep frying and boiling 2 h. The effect of process on the WLOM (water-soluble lower molecule) profiles of products was characterized using proton nuclear magnetic resonance spectroscopy ( 1 H-NMR) and fatty acid composition of products was analyzed using gas chromatography-mass spectrometry (GC-MS). The metabonome was dominated by 49 WLOM and 22 fatty acid compounds were detected. PC1 and PC2 explained a total of 93.4% and 3% of variance, respectively. Compared with control group, the total WLOM and fatty acid content of the chicken breast were significantly decreased in other three processing stages (P<0.05). Comprehensive multivariate data analysis showed significant differences about precursor substance between the different processing including creatine, lactate, creatinine, glucose, taurine, anserine and acetate (P<0.05). These results contribute to a more accurate understanding of precursor substance changes of flavor in chicken meat during processing. Boiled treated chicken had significant effects on fatty acid and WLOM compounds. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Modeling condensation with a noncondensable gas for mixed convection flow
NASA Astrophysics Data System (ADS)
Liao, Yehong
2007-05-01
This research theoretically developed a novel mixed convection model for condensation with a noncondensable gas. The model developed herein is comprised of three components: a convection regime map; a mixed convection correlation; and a generalized diffusion layer model. These components were developed in a way to be consistent with the three-level methodology in MELCOR. The overall mixed convection model was implemented into MELCOR and satisfactorily validated with data covering a wide variety of test conditions. In the development of the convection regime map, two analyses with approximations of the local similarity method were performed to solve the multi-component two-phase boundary layer equations. The first analysis studied effects of the bulk velocity on a basic natural convection condensation process and setup conditions to distinguish natural convection from mixed convection. It was found that the superimposed velocity increases condensation heat transfer by sweeping away the noncondensable gas accumulated at the condensation boundary. The second analysis studied effects of the buoyancy force on a basic forced convection condensation process and setup conditions to distinguish forced convection from mixed convection. It was found that the superimposed buoyancy force increases condensation heat transfer by thinning the liquid film thickness and creating a steeper noncondensable gas concentration profile near the condensation interface. In the development of the mixed convection correlation accounting for suction effects, numerical data were obtained from boundary layer analysis for the three convection regimes and used to fit a curve for the Nusselt number of the mixed convection regime as a function of the Nusselt numbers of the natural and forced convection regimes. In the development of the generalized diffusion layer model, the driving potential for mass transfer was expressed as the temperature difference between the bulk and the liquid-gas interface using the Clausius-Clapeyron equation. The model was developed on a mass basis instead of a molar basis to be consistent with general conservation equations. It was found that vapor diffusion is not only driven by a gradient of the molar fraction but also a gradient of the mixture molecular weight at the diffusion layer.
Estimating Convection Parameters in the GFDL CM2.1 Model Using Ensemble Data Assimilation
NASA Astrophysics Data System (ADS)
Li, Shan; Zhang, Shaoqing; Liu, Zhengyu; Lu, Lv; Zhu, Jiang; Zhang, Xuefeng; Wu, Xinrong; Zhao, Ming; Vecchi, Gabriel A.; Zhang, Rong-Hua; Lin, Xiaopei
2018-04-01
Parametric uncertainty in convection parameterization is one major source of model errors that cause model climate drift. Convection parameter tuning has been widely studied in atmospheric models to help mitigate the problem. However, in a fully coupled general circulation model (CGCM), convection parameters which impact the ocean as well as the climate simulation may have different optimal values. This study explores the possibility of estimating convection parameters with an ensemble coupled data assimilation method in a CGCM. Impacts of the convection parameter estimation on climate analysis and forecast are analyzed. In a twin experiment framework, five convection parameters in the GFDL coupled model CM2.1 are estimated individually and simultaneously under both perfect and imperfect model regimes. Results show that the ensemble data assimilation method can help reduce the bias in convection parameters. With estimated convection parameters, the analyses and forecasts for both the atmosphere and the ocean are generally improved. It is also found that information in low latitudes is relatively more important for estimating convection parameters. This study further suggests that when important parameters in appropriate physical parameterizations are identified, incorporating their estimation into traditional ensemble data assimilation procedure could improve the final analysis and climate prediction.
Alessandri, C; Zennaro, D; Scala, E; Ferrara, R; Bernardi, M Livia; Santoro, M; Palazzo, P; Mari, A
2012-03-01
Egg allergy is a very common finding in early childhood. Detecting hen's egg (HE) allergy outgrowing and reintroduction of food containing egg is a task for the allergist. We sought to evaluate the suitability of boiled egg food challenge compared with IgE to allergenic molecules from HE white using a microarray system. Sixty-eight children referring to our centre by the family paediatricians for a suspected egg allergy were enrolled. Patients underwent double-blind, placebo-controlled food challenge with boiled and raw eggs. Challenge outcomes were compared with skin tests performed using egg white and yolk commercial extracts, to prick-prick test with boiled and raw egg white and yolk, total IgE, egg white specific IgE detected using ImmunoCAP and IgE to egg allergens available on the immunosolid phase allergen chip (ISAC) 103 microarray. Nineteen subjects (28%) were reactive to both raw and boiled egg, 14 (20.5%) to raw egg only and 35 (51.4%) tolerated both boiled and raw egg. Efficiency analysis was carried out using both raw and boiled egg challenges as gold standard. Forty four of 47 Gal d 1 negative patients tolerated boiled egg (94%). Conversely, 20 of 21 Gal d 1 positive patients reacted to raw egg (95%). None of the other tests was able to discriminate patients' response to HE challenge. Furthermore, Gal d 1 positivity seems to lead to broader environmental allergen IgE sensitization. The Gal d 1 IgE reactivity appears to be a very good predictor of HE clinical allergy. Gal d 1 positive children have a high frequency of HE allergy, whereas Gal d 1 negative children have a high frequency of tolerance to boiled egg. Multiple specific IgE detection by means of ISAC improves the diagnostic approach in HE allergic children, disclosing other food and inhalant allergic sensitizations, anyhow requiring a comprehensive clinical evaluation. © 2011 Blackwell Publishing Ltd.
Ponce-Robles, L; Oller, I; Agüera, A; Trinidad-Lozano, M J; Yuste, F J; Malato, S; Perez-Estrada, L A
2018-08-15
Cork boiling wastewater is a very complex mixture of naturally occurring compounds leached and partially oxidized during the boiling cycles. The effluent generated is recalcitrant and could cause a significant environmental impact. Moreover, if this untreated industrial wastewater enters a municipal wastewater treatment plant it could hamper or reduce the efficiency of most activated sludge degradation processes. Despite the efforts to treat the cork boiling wastewater for reusing purposes, is still not well-known how safe these compounds (original compounds and oxidation by-products) will be. The purpose of this work was to apply an HPLC-high resolution mass spectrometry method and subsequent non-target screening using a multivariate analysis method (PCA), to explore relationships between samples (treatments) and spectral features (masses or compounds) that could indicate changes in formation, degradation or polarity, during coagulation/flocculation (C/F) and photo-Fenton (PhF). Although, most of the signal intensities were reduced after the treatment line, 16 and 4 new peaks were detected to be formed after C/F and PhF processes respectively. The use of this non-target approach showed to be an effective strategy to explore, classify and detect transformation products during the treatment of an unknown complex mixture. Copyright © 2018 Elsevier B.V. All rights reserved.
Lozowicka, Bozena; Jankowska, Magdalena; Hrynko, Izabela; Kaczynski, Piotr
2016-01-01
The effects of washing with tap and ozone water, ultrasonic cleaning and boiling on 16 pesticide (ten fungicides and six insecticides) residue levels in raw strawberries were investigated at different processing times (1, 2 and 5 min). An analysis of these pesticides was conducted using gas chromatography with nitrogen-phosphorous and electron capture detection (GC-NPD/ECD). The processing factor (PF) for each pesticide in each processing technique was determined. Washing with ozonated water was demonstrated to be more effective (reduction from 36.1 to 75.1 %) than washing with tap water (reduction from 19.8 to 68.1 %). Boiling decreased the residues of the most compounds, with reductions ranging from 42.8 to 92.9 %. Ultrasonic cleaning lowered residues for all analysed pesticides with removal of up to 91.2 %. The data indicated that ultrasonic cleaning and boiling were the most effective treatments for the reduction of 16 pesticide residues in raw strawberries, resulting in a lower health risk exposure. Calculated PFs for alpha-cypermethrin were used to perform an acute risk assessment of dietary exposure. To investigate the relationship between the levels of 16 pesticides in strawberry samples and their physicochemical properties, a principal component analysis (PCA) was performed. Graphical abstract ᅟ.
Mantle convection and the state of the Earth's interior
NASA Technical Reports Server (NTRS)
Hager, Bradford H.
1987-01-01
During 1983 to 1986 emphasis in the study of mantle convection shifted away from fluid mechanical analysis of simple systems with uniform material properties and simple geometries, toward analysis of the effects of more complicated, presumably more realistic models. The important processes related to mantle convection are considered. The developments in seismology are discussed.
NASA Astrophysics Data System (ADS)
Pranesh Rao, K. M.; Narayan Prabhu, K.
2017-10-01
Martempering is an industrial heat treatment process that requires a quench bath that can operate without undergoing degradation in the temperature range of 423 K to 873 K (150 °C to 600 °C). The quench bath is expected to cool the steel part from the austenizing temperature to quench bath temperature rapidly and uniformly. Molten eutectic NaNO3-KNO3 mixture has been widely used in industry to martemper steel parts. In the present work, the effect of quench bath temperature on the cooling performance of a molten eutectic NaNO3-KNO3 mixture has been studied. An Inconel ASTM D-6200 probe was heated to 1133 K (860 °C) and subsequently quenched in the quench bath maintained at different temperatures. Spatially dependent transient heat flux at the metal-quenchant interface for each bath temperature was calculated using inverse heat conduction technique. Heat transfer occurred only in two stages, namely, nucleate boiling and convective cooling. The mean peak heat flux ( q max) decreased with increase in quench bath temperature, whereas the mean surface temperature corresponding to q max and mean surface temperature at the start of convective cooling stage increased with increase in quench bath temperature. The variation in normalized cooling parameter t 85 along the length of the probe increased with increase in quench bath temperature.
Heating of foods in space-vehicle environments. [by conductive heat transfer
NASA Technical Reports Server (NTRS)
Bannerot, R. B.; Cox, J. E.; Chen, C. K.; Heidelbaugh, N. D.
1973-01-01
In extended space missions, foods will be heated to enhance the psychological as well as the physiological well-being of the crew. In the low-gravity space environment natural convection is essentially absent so that the heat transfer within the food is by conduction alone. To prevent boiling in reduced pressure environments the maximum temperature of the heating system is severely limited. The Skylab food-heating system utilizes a tray with receptables for the food containers. The walls of the receptacles are lined with thermally controlled, electrical-resistance, blanket-type heating elements. A finite difference model is employed to perform parametric studies on the food-heating system. The effects on heating time of the (1) thermophysical properties of the food, (2) heater power level, (3) initial food temperatures, (4) container geometry, and (5) heater control temperature are presented graphically. The optimal heater power level and container geometry are determined.
The Liquid Argon Purity Demonstrator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamowski, M.; Carls, B.; Dvorak, E.
2014-07-01
The Liquid Argon Purity Demonstrator was an R&D test stand designed to determine if electron drift lifetimes adequate for large neutrino detectors could be achieved without first evacuating the cryostat. We describe here the cryogenic system, its operations, and the apparatus used to determine the contaminant levels in the argon and to measure the electron drift lifetime. The liquid purity obtained by this system was facilitated by a gaseous argon purge. Additionally, gaseous impurities from the ullage were prevented from entering the liquid at the gas-liquid interface by condensing the gas and filtering the resulting liquid before returning to themore » cryostat. The measured electron drift lifetime in this test was greater than 6 ms, sustained over several periods of many weeks. Measurements of the temperature profile in the argon, to assess convective flow and boiling, were also made and are compared to simulation.« less
Comparison of immersed liquid and air cooling of NASA's Airborne Information Management System
NASA Technical Reports Server (NTRS)
Hoadley, A. W.; Porter, A. J.
1992-01-01
The Airborne Information Management System (AIMS) is currently under development at NASA Dryden Flight Research Facility. The AIMS is designed as a modular system utilizing surface mounted integrated circuits in a high-density configuration. To maintain the temperature of the integrated circuits within manufacturer's specifications, the modules are to be filled with Fluorinert FC-72. Unlike ground based liquid cooled computers, the extreme range of the ambient pressures experienced by the AIMS requires the FC-72 be contained in a closed system. This forces the latent heat absorbed during the boiling to be released during the condensation that must take within the closed module system. Natural convection and/or pumping carries the heat to the outer surface of the AIMS module where the heat transfers to the ambient air. This paper will present an evaluation of the relative effectiveness of immersed liquid cooling and air cooling of the Airborne Information Management System.
Comparison of immersed liquid and air cooling of NASA's Airborne Information Management System
NASA Astrophysics Data System (ADS)
Hoadley, A. W.; Porter, A. J.
1992-07-01
The Airborne Information Management System (AIMS) is currently under development at NASA Dryden Flight Research Facility. The AIMS is designed as a modular system utilizing surface mounted integrated circuits in a high-density configuration. To maintain the temperature of the integrated circuits within manufacturer's specifications, the modules are to be filled with Fluorinert FC-72. Unlike ground based liquid cooled computers, the extreme range of the ambient pressures experienced by the AIMS requires the FC-72 be contained in a closed system. This forces the latent heat absorbed during the boiling to be released during the condensation that must take within the closed module system. Natural convection and/or pumping carries the heat to the outer surface of the AIMS module where the heat transfers to the ambient air. This paper will present an evaluation of the relative effectiveness of immersed liquid cooling and air cooling of the Airborne Information Management System.
Li, Q.; Kang, Q. J.; Francois, M. M.; ...
2015-03-03
A hybrid thermal lattice Boltzmann (LB) model is presented to simulate thermal multiphase flows with phase change based on an improved pseudopotential LB approach (Li et al., 2013). The present model does not suffer from the spurious term caused by the forcing-term effect, which was encountered in some previous thermal LB models for liquid–vapor phase change. Using the model, the liquid–vapor boiling process is simulated. The boiling curve together with the three boiling stages (nucleate boiling, transition boiling, and film boiling) is numerically reproduced in the LB community for the first time. The numerical results show that the basic featuresmore » and the fundamental characteristics of boiling heat transfer are well captured, such as the severe fluctuation of transient heat flux in the transition boiling and the feature that the maximum heat transfer coefficient lies at a lower wall superheat than that of the maximum heat flux. Moreover, the effects of the heating surface wettability on boiling heat transfer are investigated. It is found that an increase in contact angle promotes the onset of boiling but reduces the critical heat flux, and makes the boiling process enter into the film boiling regime at a lower wall superheat, which is consistent with the findings from experimental studies.« less
Analysis of failed nuclear plant components
NASA Astrophysics Data System (ADS)
Diercks, D. R.
1993-12-01
Argonne National Laboratory has conducted analyses of failed components from nuclear power- gener-ating stations since 1974. The considerations involved in working with and analyzing radioactive compo-nents are reviewed here, and the decontamination of these components is discussed. Analyses of four failed components from nuclear plants are then described to illustrate the kinds of failures seen in serv-ice. The failures discussed are (1) intergranular stress- corrosion cracking of core spray injection piping in a boiling water reactor, (2) failure of canopy seal welds in adapter tube assemblies in the control rod drive head of a pressurized water reactor, (3) thermal fatigue of a recirculation pump shaft in a boiling water reactor, and (4) failure of pump seal wear rings by nickel leaching in a boiling water reactor.
Comparison of heat transfer coefficients of open micro-channels and plain micro-fins
NASA Astrophysics Data System (ADS)
Kaniowski, Robert; Pastuszko, Robert
2018-06-01
The paper describes results of analysis of pool boiling heat transfer on enhanced surfaces. Two types of structural surfaces were used: open microchannel surfaces consisting of a system of parallel micro-channels 0.3 mm wide, from 0.2 to 0.5 mm deep and with a pitch of 0.6 mm, and plain micro-fins 0.5 mm in height, uniformly spaced on the base surface with a spacing from 0.6 to1.5 mm. Pool boiling data at atmospheric pressure were obtained for saturated water, ethanol and FC-72. The effects of micro-channel/micro-fin dimensions on heat transfer coefficient in nucleate pool boiling were examined. Substantial enhancement of heat transfer coefficient was observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oba, T.; Iida, Y.; Shimizu, T., E-mail: oba.takayoshi@ac.jaxa.jp
The solar photosphere is the visible surface of the Sun, where many bright granules, surrounded by narrow dark intergranular lanes, are observed everywhere. The granular pattern is a manifestation of convective motion at the photospheric level, but its velocity structure in the height direction is poorly understood observationally. Applying bisector analysis to a photospheric spectral line recorded by the Hinode Solar Optical Telescope, we derived the velocity structure of the convective motion in granular regions and intergranular lanes separately. The amplitude of motion of the convective material decreases from 0.65 to 0.40 km s{sup −1} as the material rises inmore » granules, whereas the amplitude of motion increases from 0.30 to 0.50 km s{sup −1} as it descends in intergranular lanes. These values are significantly larger than those obtained in previous studies using bisector analysis. The acceleration of descending materials with depth is not predicted from the convectively stable condition in a stratified atmosphere. Such convective instability can be developed more efficiently by radiative cooling and/or a gas pressure gradient, which can control the dynamical behavior of convective material in intergranular lanes. Our analysis demonstrated that bisector analysis is a useful method for investigating the long-term dynamic behavior of convective material when a large number of pixels is available. In addition, one example is the temporal evolution of granular fragmentation, in which downflowing material develops gradually from a higher layer downward.« less
Data Analysis and Non-local Parametrization Strategies for Organized Atmospheric Convection
NASA Astrophysics Data System (ADS)
Brenowitz, Noah D.
The intrinsically multiscale nature of moist convective processes in the atmosphere complicates scientific understanding, and, as a result, current coarse-resolution climate models poorly represent convective variability in the tropics. This dissertation addresses this problem by 1) studying new cumulus convective closures in a pair of idealized models for tropical moist convection, and 2) developing innovative strategies for analyzing high-resolution numerical simulations of organized convection. The first two chapters of this dissertation revisit a historical controversy about the use of convective closures based on the large-scale wind field or moisture convergence. In the first chapter, a simple coarse resolution stochastic model for convective inhibition is designed which includes the non-local effects of wind-convergence on convective activity. This model is designed to replicate the convective dynamics of a typical coarse-resolution climate prediction model. The non-local convergence coupling is motivated by the phenomena of gregarious convection, whereby mesoscale convective systems emit gravity waves which can promote convection at a distant locations. Linearized analysis and nonlinear simulations show that this convergence coupling allows for increased interaction between cumulus convection and the large-scale circulation, but does not suffer from the deleterious behavior of traditional moisture-convergence closures. In the second chapter, the non-local convergence coupling idea is extended to an idealized stochastic multicloud model. This model allows for stochastic transitions between three distinct cloud types, and non-local convergence coupling is most beneficial when applied to the transition from shallow to deep convection. This is consistent with recent observational and numerical modeling evidence, and there is a growing body of work highlighting the importance of this transition in tropical meteorology. In a series of idealized Walker cell simulations, convergence coupling enhances the persistence of Kelvin wave analogs in dry regions of the domain while leaving the dynamics in moist regions largely unaltered. The final chapter of this dissertation presents a technique for analyzing the variability of a direct numerical simulation of Rayleigh-Benard convection at large aspect ratio, which is a basic prototype of convective organization. High resolution numerical models are an invaluable tool for studying atmospheric dynamics, but modern data analysis techniques struggle with the extreme size of the model outputs and the trivial symmetries of the underlying dynamical systems (e.g. shift-invariance). A new data analysis approach which is invariant to spatial symmetries is derived by combining a quasi-Lagrangian description of the data, time-lagged embedding, and manifold learning techniques. The quasi-Lagrangian description is obtained by a straightforward isothermal binning procedure, which compresses the data in a dynamically-aware fashion. A small number of orthogonal modes returned by this algorithm are able to explain the highly intermittent dynamics of the bulk heat transfer, as quantified by the Nusselt Number.
Oceanographic effects of the 1992 Point Loma sewage pipe spill
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casey, R.; Ciccateri, A.; Dougherty, K.
Early in early 1992, 180 million gallons of advanced primarily treated sewage emptied into 10 meters of water from the broken Point Loma sewage pipe, San Diego. For about two months a sewage boil about the size of a football field existed at the surface and within the Point Loma kelp bed. Sampling and observations taken during the spill indicated the surface waters at the spill site were grayish and smelling of sewage. The sewage water had mixed with the marine waters reducing salinity to about one-half normal (or 15 ppt.). The sediment load of the sewage coated the bladesmore » of the giant kelp and the kelp was limp and withdrawn from the surface. At the site of the main boil the kelp appeared to have dropped to the bottom. Sediments on the bottom in the boil area were mainly coarse sands as compared to the surrounding sandy-muds. Preliminary results using laboratory analysis suggest: one month into the spill no infauna were observed in the sediments or planktons in the water of the boil area, but were in the surrounding sediments and water; the observed phytoplankton were dominated by dinoflagellates and suggested red tide conditions surrounding the boil. The site has been monitored monthly since the spill to observe further impact and recovery.« less
Impact of Tropopause Structures on Deep Convective Transport Observed during MACPEX
NASA Astrophysics Data System (ADS)
Mullendore, G. L.; Bigelbach, B. C.; Christensen, L. E.; Maddox, E.; Pinkney, K.; Wagner, S.
2016-12-01
Deep convection is the most efficient method of transporting boundary layer mass to the upper troposphere and stratosphere (UTLS). The Mid-latitude Airborne Cirrus Properties Experiment (MACPEX) was conducted during April of 2011 over the central U.S. With a focus on cirrus clouds, the campaign flights often sampled large cirrus anvils downstream from deep convection and included an extensive observational suite of chemical measurements on a high altitude aircraft. As double-tropopause structures are a common feature in the central U.S. during the springtime, the MACPEX campaign provides a good opportunity to gather cases of deep convective transport in the context of both single and double tropopause structures. Sampling of chemical plumes well downstream from convection allows for sampling in relatively quiescent conditions and analysis of irreversible transport. The analysis presented includes multiple methods to assess air mass source and possible convective processing, including back trajectories and ratios of chemical concentrations. Although missions were flown downstream of deep convection, recent processing by convection does not seem likely in all cases that high altitude carbon monoxide plumes were observed. Additionally, the impact of single and double tropopause structures on deep convective transport is shown to be strongly dependent on high stability layers.
NASA Astrophysics Data System (ADS)
Dodson, J. B.; Taylor, P. C.
2016-12-01
The diurnal cycle of convection (CDC) greatly influences the water, radiative, and energy budgets in convectively active regions. For example, previous research of the Amazonian CDC has identified significant monthly covariability between the satellite-observed radiative and precipitation diurnal and multiple reanalysis-derived atmospheric state variables (ASVs) representing convective instability. However, disagreements between retrospective analysis products (reanalyses) over monthly ASV anomalies create significant uncertainty in the resulting covariability. Satellite observations of convective clouds can be used to characterize monthly anomalies in convective activity. CloudSat observes multiple properties of both deep convective cores and the associated anvils, and so is useful as an alternative to the use of reanalyses. CloudSat cannot observe the full diurnal cycle, but it can detect differences between daytime and nighttime convection. Initial efforts to use CloudSat data to characterize convective activity showed that the results are highly dependent on the choice of variable used to characterize the cloud. This is caused by a series of inverse relationships between convective frequency, cloud top height, radar reflectivity vertical profile, and other variables. A single, multi-variable index for convective activity based on CloudSat data may be useful to clarify the results. Principal component analysis (PCA) provides a method to create a multivariable index, where the first principal component (PC1) corresponds with convective instability. The time series of PC1 can then be used as a proxy for monthly variability in convective activity. The primary challenge presented involves determining the utility of PCA for creating a robust index for convective activity that accounts for the complex relationships of multiple convective cloud variables, and yields information about the interactions between convection, the convective environment, and radiation beyond the previous single-variable approaches. The choice of variables used to calculate PC1 may influence any results based on PC1, so it is necessary to test the sensitivity of the results to different variable combinations.
Interaction of deep and shallow convection is key to Madden-Julian Oscillation simulation
NASA Astrophysics Data System (ADS)
Zhang, Guang J.; Song, Xiaoliang
2009-05-01
This study investigates the role of the interaction between deep and shallow convection in MJO simulation using the NCAR CAM3. Two simulations were performed, one using a revised Zhang-McFarlane convection scheme for deep convection and the Hack scheme for shallow convection, and the other disallowing shallow convection below 700 mb in the tropical belt. The two simulations produce dramatically different MJO characteristics. While the control simulation produces realistic MJOs, the simulation without shallow convection has very weak MJO signals in the Indian Ocean and western Pacific. Composite analysis finds that shallow convection serves to precondition the lower troposphere by moistening it ahead of deep convection. It also produces enhanced low-level mass convergence below 850 mb ahead of deep convection. This work, together with previous studies, suggests that a correct simulation of the interaction between deep and shallow convection is key to MJO simulation in global climate models.
Pimenova, Anastasiya V; Goldobin, Denis S
2014-11-01
We consider the problem of boiling of the direct contact of two immiscible liquids. An intense vapour formation at such a direct contact is possible below the bulk boiling points of both components, meaning an effective decrease of the boiling temperature of the system. Although the phenomenon is known in science and widely employed in technology, the direct contact boiling process was thoroughly studied (both experimentally and theoretically) only for the case where one of liquids is becoming heated above its bulk boiling point. On the contrary, we address the case where both liquids remain below their bulk boiling points. In this paper we construct the theoretical description of the boiling process and discuss the actualisation of the case we consider for real systems.
Experimental and numerical investigation of HyperVapotron heat transfer
NASA Astrophysics Data System (ADS)
Wang, Weihua; Deng, Haifei; Huang, Shenghong; Chu, Delin; Yang, Bin; Mei, Luoqin; Pan, Baoguo
2014-12-01
The divertor first wall and neutral beam injection (NBI) components of tokamak devices require high heat flux removal up to 20-30 MW m-2 for future fusion reactors. The water cooled HyperVapotron (HV) structure, which relies on internal grooves or fins and boiling heat transfer to maximize the heat transfer capability, is the most promising candidate. The HV devices, that are able to transfer large amounts of heat (1-20 MW m-2) efficiently, have therefore been developed specifically for this application. Until recently, there have been few attempts to observe the detailed bubble characteristics and vortex evolvement of coolant flowing inside their various parts and understand of the internal two-phase complex heat transfer mechanism behind the vapotron effect. This research builds the experimental facilities of HyperVapotron Loop-I (HVL-I) and Pressure Water HyperVapotron Loop-II (PWHL-II) to implement the subcooled boiling principle experiment in terms of typical flow parameters, geometrical parameters of test section and surface heat flux, which are similar to those of the ITER-like first wall and NBI components (EAST and MAST). The multiphase flow and heat transfer phenomena on the surface of grooves and triangular fins when the subcooled water flowed through were observed and measured with the planar laser induced fluorescence (PLIF) and high-speed photography (HSP) techniques. Particle image velocimetry (PIV) was selected to reveal vortex formation, the flow structure that promotes the vapotron effect during subcooled boiling. The coolant flow data for contributing to the understanding of the vapotron phenomenon and the assessment of how the design and operational conditions that might affect the thermal performance of the devices were collected and analysed. The subcooled flow boiling model and methods of HV heat transfer adopted in the considered computational fluid dynamics (CFD) code were evaluated by comparing the calculated wall temperatures with the experimentally measured values. It was discovered that the bubble and vortex characteristics in the HV are clearly heavily dependent on the internal geometry, flow conditions and input heat flux. The evaporation latent heat is the primary heat transfer mechanism of HV flow under the condition of high heat flux, and the heat transfer through convection is very limited. The percentage of wall heat flux going into vapour production is almost 70%. These relationships between the flow phenomena and thermal performance of the HV device are essential to study the mechanisms for the flow structure alterations for design optimization and improvements of the ITER-like devices' water cooling structure and plasma facing components for future fusion reactors.
NASA Technical Reports Server (NTRS)
Yoshimura, Hirokazu
1987-01-01
An analysis of the absorption line shift data of the John M. Wilcox Solar Observatory at Stanford University has yielded signatures of the existence of global convection on the sun. These include persistent periodic time variations in the east-west component of the velocity fields defined by fitting a slope to the line shift data in a certain longitude window at a specified latitude and longitude by the least squares method. The amplitude of the velocity fields estimated from these variations is of the order of 100 m/s. The results of the analysis also suggest that several modes of global convection coexist in the solar convection zone. Details of the analysis are given.
The dryout region in frictionally heated sliding contacts
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Braun, J.; Arp, V.; Giarratano, P. J.
1982-01-01
Some conditions under which boiling and two-phase flow can occur in or near a wet sliding contact are determined and illustrated. The experimental apparatus consisted of a tool pressed against an instrumented slider plate and motion picture sequences at 4000 frames/sec. The temperature and photographic data demonstrated surface conditions of boiling, drying, trapped gas evolution (solutions), and volatility of fluid mixture components. The theoretical modeling and analysis are in reasonable agreement with experimental data.
Investigation of Critical Heat Flux in Reduced Gravity Using Photomicrographic Techniques
NASA Technical Reports Server (NTRS)
Mudawar, Issam; Zhang, Hui
2003-01-01
Experiments were performed to examine the effects of body force on flow boiling critical heat flux (CHF). FC-72 was boiled along one wall of a transparent rectangular flow channel that permitted photographic study of the vapor-liquid interface just prior to CHF. High-speed video imaging techniques were used to identify dominant CHF mechanisms corresponding to different flow orientations and liquid velocities. Six different CHF regimes were identified: Wavy Vapor Layer, Pool Boiling, Stratification, Vapor Counterflow, Vapor Stagnation, and Separated Concurrent Vapor Flow. CHF showed significant sensitivity to orientation for flow velocities below 0.2 m/s, where extremely low CHF values where measured, especially with downward-facing heated wall and downflow orientations. High flow velocities dampened the effects of orientation considerably. The CHF data were used to assess the suitability of previous CHF models and correlations. It is shown the Interfacial Lift-off Model is very effective at predicting CHF for high velocities at all orientations. The flooding limit, on the other hand, is useful at estimating CHF at low velocities and for downflow orientations. A new method consisting of three dimensionless criteria is developed for determining the minimum flow velocity required to overcome body force effects on near-saturated flow boiling CHF. Vertical upflow boiling experiments were performed in pursuit of identifying the trigger mechanism for subcooled flow boiling CHF. While virtually all prior studies on flow boiling CHF concern the prediction or measurement of conditions that lead to CHF, this study was focused on events that take place during the CHF transient. High-speed video imaging and photomicrographic techniques were used to record the transient behavior of interfacial features from the last steady-state power level before CHF until the moment of power cut-off following CHF. The video records show the development of a wavy vapor layer which propagates along the heated wall, permitting cooling prior to CHF only in wetting fronts corresponding to the wave troughs. Image analysis software was developed to estimate void fraction from the individual video images. The void fraction records for subcooled flow boiling show the CHF transient is accompanied by gradual lift-off of wetting fronts culminating in some maximum vapor layer mean thickness, following which the vapor layer begins to thin down as the transition to film boiling ensues. This study proves the Interfacial Lift-off Model, which has been validated for near-saturated flow boiling CHF, is equally valid for subcooled conditions.
NASA Astrophysics Data System (ADS)
Usov, E. V.; Butov, A. A.; Dugarov, G. A.; Kudasov, I. G.; Lezhnin, S. I.; Mosunova, N. A.; Pribaturin, N. A.
2017-07-01
The system of equations from a two-fluid model is widely used in modeling thermohydraulic processes during accidents in nuclear reactors. The model includes conservation equations governing the balance of mass, momentum, and energy in each phase of the coolant. The features of heat and mass transfer, as well as of mechanical interaction between phases or with the channel wall, are described by a system of closing relations. Properly verified foreign and Russian codes with a comprehensive system of closing relations are available to predict processes in water coolant. As to the sodium coolant, only a few open publications on this subject are known. A complete system of closing relations used in the HYDRA-IBRAE/LM/V1 thermohydraulic code for calculation of sodium boiling in channels of power equipment is presented. The selection of these relations is corroborated on the basis of results of analysis of available publications with an account taken of the processes occurring in liquid sodium. A comparison with approaches outlined in foreign publications is presented. Particular attention has been given to the calculation of the sodium two-phase flow boiling. The flow regime map and a procedure for the calculation of interfacial friction and heat transfer in a sodium flow with account taken of high conductivity of sodium are described in sufficient detail. Correlations are presented for calculation of heat transfer for a single-phase sodium flow, sodium flow boiling, and sodium flow boiling crisis. A method is proposed for prediction of flow boiling crisis initiation.
NASA Technical Reports Server (NTRS)
Golitsyn, G. S.
1977-01-01
The main results were the formulas for the mean convection velocities, of a viscous fluid and for the mean temperature difference in the bulk of the convecting fluid. These were obtained: by scaling analysis of the Boussinesq equations, by analysis of the energetics of the process, and by using similarity and dimensional arguments. The last approach defines the criteria of similarity and allows the proposition of some self-similarity hypotheses. By several simple new ways, an expression for the efficiency coefficient gamma of the thermal convection was also obtained. An analogy is pointed out between non-turbulent convection of a viscous fluid and the structure of turbulence for scales less than Kolmogorov's internal viscous microscale of turbulence.
Numerical analysis of natural convection in liquid droplets by phase change
NASA Astrophysics Data System (ADS)
Duh, J. C.; Yang, Wen-Jei
1989-09-01
A numerical analysis is performed on thermocapillary buoyancy convection induced by phase change in a liquid droplet. A finite-difference code is developed using an alternating-direction implicit (ADI) scheme. The intercoupling relation between thermocapillary force, buoyancy force, fluid property, heat transfer, and phase change, along with their effects on the induced flow patterns, are disclosed. The flow is classified into three types: thermocapillary, buoyancy, and combined convection. Among the three mechanisms, the combined convection simulates the experimental observations quite well, and the basic mechanism of the observed convection inside evaporating sessile drops is thus identified. It is disclosed that evaporation initiates unstable convection, while condensation always brings about a stable density distribution which eventually damps out all fluid disturbances. Another numerical model is presented to study the effect of boundary recession due to evaporation, and the 'peeling-off' effect (the removal of the surface layer of fluid by evaporation) is shown to be relevant.
Numerical analysis of natural convection in liquid droplets by phase change
NASA Technical Reports Server (NTRS)
Duh, J. C.; Yang, Wen-Jei
1989-01-01
A numerical analysis is performed on thermocapillary buoyancy convection induced by phase change in a liquid droplet. A finite-difference code is developed using an alternating-direction implicit (ADI) scheme. The intercoupling relation between thermocapillary force, buoyancy force, fluid property, heat transfer, and phase change, along with their effects on the induced flow patterns, are disclosed. The flow is classified into three types: thermocapillary, buoyancy, and combined convection. Among the three mechanisms, the combined convection simulates the experimental observations quite well, and the basic mechanism of the observed convection inside evaporating sessile drops is thus identified. It is disclosed that evaporation initiates unstable convection, while condensation always brings about a stable density distribution which eventually damps out all fluid disturbances. Another numerical model is presented to study the effect of boundary recession due to evaporation, and the 'peeling-off' effect (the removal of the surface layer of fluid by evaporation) is shown to be relevant.
Universality of oscillating boiling in Leidenfrost transition
NASA Astrophysics Data System (ADS)
Tran, Tuan; Khavari, Mohammad
2017-11-01
The Leidenfrost transition leads a boiling system to the boiling crisis, a state in which the liquid loses contact with the heated surface due to excessive vapor generation. Here, using experiments of liquid droplets boiling on a heated surface, we report a new phenomenon, termed oscillating boiling, at the Leidenfrost transition. We show that oscillating boiling results from the competition between two effects: separation of liquid from the heated surface due to localized boiling, and rewetting. We argue theoretically that the Leidenfrost transition can be predicted based on its link with the oscillating boiling phenomenon, and verify the prediction experimentally for various liquids. This work was funded by Nanyang Technological University and A*STAR, Singapore.
Boiling Experiment Facility for Heat Transfer Studies in Microgravity
NASA Technical Reports Server (NTRS)
Delombard, Richard; McQuillen, John; Chao, David
2008-01-01
Pool boiling in microgravity is an area of both scientific and practical interest. By conducting tests in microgravity, it is possible to assess the effect of buoyancy on the overall boiling process and assess the relative magnitude of effects with regards to other "forces" and phenomena such as Marangoni forces, liquid momentum forces, and microlayer evaporation. The Boiling eXperiment Facility is now being built for the Microgravity Science Glovebox that will use normal perfluorohexane as a test fluid to extend the range of test conditions to include longer test durations and less liquid subcooling. Two experiments, the Microheater Array Boiling Experiment and the Nucleate Pool Boiling eXperiment will use the Boiling eXperiment Facility. The objectives of these studies are to determine the differences in local boiling heat transfer mechanisms in microgravity and normal gravity from nucleate boiling, through critical heat flux and into the transition boiling regime and to examine the bubble nucleation, growth, departure and coalescence processes. Custom-designed heaters will be utilized to achieve these objectives.
NASA Astrophysics Data System (ADS)
Strąk, Kinga; Maciejewska, Beata; Piasecka, Magdalena
2018-06-01
In this paper, the solution of the two-dimensional inverse heat transfer problem with the use of the Beck method coupled with the Trefftz method is proposed. This method was applied for solving an inverse heat conduction problem. The aim of the calculation was to determine the boiling heat transfer coefficient on the basis of temperature measurements taken by infrared thermography. The experimental data of flow boiling heat transfer in a single vertical minichannel of 1.7 mm depth, heated asymmetrically, were used in calculations. The heating element for two refrigerants (FC-72 and HFE-7100, 3M) flowing in the minichannel was the plate enhanced on the side contacting with the fluid. The analysis of the results was performed on the basis of experimental series obtained for the same heat flux and two different mass flow velocities. The results were presented as infrared thermographs, heated wall temperature and heat transfer coefficient as a function of the distance from the minichannel inlet. The results was discussed for the subcooled and saturated boiling regions separately.
21 CFR 872.6710 - Boiling water sterilizer.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Boiling water sterilizer. 872.6710 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6710 Boiling water sterilizer. (a) Identification. A boiling water sterilizer is an AC-powered device that consists of a container for boiling water...
21 CFR 872.6710 - Boiling water sterilizer.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Boiling water sterilizer. 872.6710 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6710 Boiling water sterilizer. (a) Identification. A boiling water sterilizer is an AC-powered device that consists of a container for boiling water...
21 CFR 872.6710 - Boiling water sterilizer.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Boiling water sterilizer. 872.6710 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6710 Boiling water sterilizer. (a) Identification. A boiling water sterilizer is an AC-powered device that consists of a container for boiling water...
21 CFR 872.6710 - Boiling water sterilizer.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Boiling water sterilizer. 872.6710 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6710 Boiling water sterilizer. (a) Identification. A boiling water sterilizer is an AC-powered device that consists of a container for boiling water...
Glycaemic and satiating properties of potato products.
Leeman, M; Ostman, E; Björck, I
2008-01-01
To investigate glycaemic and satiating properties of potato products in healthy subjects using energy-equivalent or carbohydrate-equivalent test meals, respectively. Thirteen healthy subjects volunteered for the first study, and 14 for the second. The tests were performed at Applied Nutrition and Food Chemistry, Lund University, Sweden. EXPERIMENTAL DESIGN AND TEST MEALS: All meals were served as breakfast in random order after an overnight fast. Study 1 included four energy-equivalent (1000 kJ) meals of boiled potatoes, french fries, or mashed potatoes; the latter varying in portion size by use of different amounts of water. The available carbohydrate content varied between 32.5 and 50.3 g/portion. Capillary blood samples were collected during 240 min for analysis of glucose, and satiety was measured with a subjective rating scale. Study 2 included four carbohydrate-equivalent meals (50 g available carbohydrates) of french fries, boiled potatoes served with and without addition of oil, and white wheat bread (reference). The energy content varied between 963 and 1534 kJ/portion. Capillary blood samples were collected during 180 min for analysis of glucose, and satiety was measured using a subjective rating scale. Study 1: boiled potatoes induced higher subjective satiety than french fries when compared on an energy-equivalent basis. The french fries elicited the lowest early glycaemic response and was less satiating in the early postprandial phase (area under the curve (AUC) 0-45 min). No differences were found in glycaemic or satiety response between boiled or mashed potatoes. Study 2: french fries resulted in a significantly lower glycaemic response (glycaemic index (GI)=77) than boiled potatoes either with or without addition of oil (GI=131 and 111, respectively). No differences were found in subjective satiety response between the products served on carbohydrate equivalence. Boiled potatoes were more satiating than french fries on an energy-equivalent basis, the effect being most prominent in the early postprandial phase, whereas no difference in satiety could be seen on a carbohydrate-equivalent basis. The lowered GI for french fries, showing a typical prolonged low-GI profile, could not be explained by the fat content per se.
Assimilation of ZDR Columns for Improving the Spin-Up and Forecasts of Convective Storms
NASA Astrophysics Data System (ADS)
Carlin, J.; Gao, J.; Snyder, J.; Ryzhkov, A.
2017-12-01
A primary motivation for assimilating radar reflectivity data is the reduction of spin-up time for modeled convection. To accomplish this, cloud analysis techniques seek to induce and sustain convective updrafts in storm-scale models by inserting temperature and moisture increments and hydrometeor mixing ratios into the model analysis from simple relations with reflectivity. Polarimetric radar data provide additional insight into the microphysical and dynamic structure of convection. In particular, the radar meteorology community has known for decades that convective updrafts cause, and are typically co-located with, differential reflectivity (ZDR) columns - vertical protrusions of enhanced ZDR above the environmental 0˚C level. Despite these benefits, limited work has been done thus far to assimilate dual-polarization radar data into numerical weather prediction models. In this study, we explore the utility of assimilating ZDR columns to improve storm-scale model analyses and forecasts of convection. We modify the existing Advanced Regional Prediction System's (ARPS) cloud analysis routine to adjust model temperature and moisture state variables using detected ZDR columns as proxies for convective updrafts, and compare the resultant cycled analyses and forecasts with those from the original reflectivity-based cloud analysis formulation. Results indicate qualitative and quantitative improvements from assimilating ZDR columns, including more coherent analyzed updrafts, forecast updraft helicity swaths that better match radar-derived rotation tracks, more realistic forecast reflectivity fields, and larger equitable threat scores. These findings support the use of dual-polarization radar signatures to improve storm-scale model analyses and forecasts.
Islam, Sheikh Nazrul; Nusrat, Tania; Begum, Parveen; Ahsan, Monira
2016-05-15
The present study, in line with a plant-food-based approach to address vitamin A deficiency, reports the analysis of total carotenoids, and trans- and cis-β-carotenes, in different varieties of raw and boiled orange-fleshed sweet potatoes (OFSP). Carotenoids were isolated using acetone-petroleum ether extraction followed by spectrophotometric determination. trans- and cis-β-Carotenes were analyzed by reversed-phase HPLC method using a mobile phase containing acetonitrile:methanol:2-propanol in the ratio of 85:15:33 with 0.01% ammonium acetate. Intra-varietal difference in carotenoids as well as trans- and cis-β-carotenes were noted in both the raw and boiled potatoes. Carotenoid content was found to be higher in the raw potatoes compared to the boiled samples from the same variety. Amongst the OFSP varieties, Kamalasundari (BARI SP-2) was found to contain the most carotenoids in both the raw and boiled samples. β-Carotene was significantly higher in the Kamalsundari and BARI SP-5 varieties. trans-β-Carotene was found to be the major carotenoid in all of the raw potatoes, but boiling was associated with an increase in cis-β-carotene and a decrease in the trans isomer. Kamalsundari and BARI SP-5 orange-fleshed sweet potatoes have the potential to be used as food-based supplements to reduce vitamin A deficiency. Copyright © 2015 Elsevier Ltd. All rights reserved.
Investigation of saturated critical heat flux in a single, uniformly heated microchannel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wojtan, Leszek; Revellin, Remi; Thome, John R.
2006-08-15
A series of tests have been performed to determine the saturated critical heat flux (CHF) in 0.5 and 0.8mm internal diameter microchannel tubes as a function of refrigerant mass velocity, heated length, saturation temperature and inlet liquid subcooling. The tested refrigerants were R-134a and R-245fa and the heated length of microchannel was varied between 20 and 70mm. The results show a strong dependence of CHF on mass velocity, heated length and microchannel diameter but no influence of liquid subcooling (2-15{sup o}C) was observed. The experimental results have been compared to the well-known CHF single-channel correlation of Y. Katto and H.more » Ohno [An improved version of the generalized correlation of critical heat flux for the forced convective boiling in uniformly heated vertical tubes, Int. J. Heat and Mass Transfer 27 (9) (1984) 1641-1648] and the multichannel correlation of W. Qu and I. Mudawar [Measurement and correlation of critical heat flux in two-phase microchannel heat sinks, Int. J. Heat and Mass Transfer 47 (2004) 2045-2059]. The comparison shows that the correlation of Katto-Ohno predicts microchannel data with a mean absolute error of 32.8% with only 41.2% of the data falling within a +/-15% error band. The correlation of Qu and Mudawar shows the same trends as the CHF data but significantly overpredicts them. Based on the present experimental data, a new microscale version of the Katto-Ohno correlation for the prediction of CHF during saturated boiling in microchannels has been proposed. (author)« less
Cryogenic Tank Modeling for the Saturn AS-203 Experiment
NASA Technical Reports Server (NTRS)
Grayson, Gary D.; Lopez, Alfredo; Chandler, Frank O.; Hastings, Leon J.; Tucker, Stephen P.
2006-01-01
A computational fluid dynamics (CFD) model is developed for the Saturn S-IVB liquid hydrogen (LH2) tank to simulate the 1966 AS-203 flight experiment. This significant experiment is the only known, adequately-instrumented, low-gravity, cryogenic self pressurization test that is well suited for CFD model validation. A 4000-cell, axisymmetric model predicts motion of the LH2 surface including boil-off and thermal stratification in the liquid and gas phases. The model is based on a modified version of the commercially available FLOW3D software. During the experiment, heat enters the LH2 tank through the tank forward dome, side wall, aft dome, and common bulkhead. In both model and test the liquid and gases thermally stratify in the low-gravity natural convection environment. LH2 boils at the free surface which in turn increases the pressure within the tank during the 5360 second experiment. The Saturn S-IVB tank model is shown to accurately simulate the self pressurization and thermal stratification in the 1966 AS-203 test. The average predicted pressurization rate is within 4% of the pressure rise rate suggested by test data. Ullage temperature results are also in good agreement with the test where the model predicts an ullage temperature rise rate within 6% of the measured data. The model is based on first principles only and includes no adjustments to bring the predictions closer to the test data. Although quantitative model validation is achieved or one specific case, a significant step is taken towards demonstrating general use of CFD for low-gravity cryogenic fluid modeling.
Secondary pool boiling effects
NASA Astrophysics Data System (ADS)
Kruse, C.; Tsubaki, A.; Zuhlke, C.; Anderson, T.; Alexander, D.; Gogos, G.; Ndao, S.
2016-02-01
A pool boiling phenomenon referred to as secondary boiling effects is discussed. Based on the experimental trends, a mechanism is proposed that identifies the parameters that lead to this phenomenon. Secondary boiling effects refer to a distinct decrease in the wall superheat temperature near the critical heat flux due to a significant increase in the heat transfer coefficient. Recent pool boiling heat transfer experiments using femtosecond laser processed Inconel, stainless steel, and copper multiscale surfaces consistently displayed secondary boiling effects, which were found to be a result of both temperature drop along the microstructures and nucleation characteristic length scales. The temperature drop is a function of microstructure height and thermal conductivity. An increased microstructure height and a decreased thermal conductivity result in a significant temperature drop along the microstructures. This temperature drop becomes more pronounced at higher heat fluxes and along with the right nucleation characteristic length scales results in a change of the boiling dynamics. Nucleation spreads from the bottom of the microstructure valleys to the top of the microstructures, resulting in a decreased surface superheat with an increasing heat flux. This decrease in the wall superheat at higher heat fluxes is reflected by a "hook back" of the traditional boiling curve and is thus referred to as secondary boiling effects. In addition, a boiling hysteresis during increasing and decreasing heat flux develops due to the secondary boiling effects. This hysteresis further validates the existence of secondary boiling effects.
NASA Technical Reports Server (NTRS)
Solomatov, V. S.; Stevenson, D. J.
1992-01-01
The evolution of an initially totally molten magma ocean is constrained on the basis of analysis of various physical problems in the magma ocean. First of all an equilibrium thermodynamics of the magma ocean is developed in the melting temperature range. The equilibrium thermodynamical parameters are found as functions only of temperature and pressure and are used in the subsequent models of kinetics and convection. Kinematic processes determine the crystal size and also determine a non-equilibrium thermodynamics of the system. Rheology controls all dynamical regimes of the magma ocean. The thermal convection models for different rheological laws are developed for both the laminar convection and for turbulent convection in the case of equilibrium thermodynamics of the multiphase system. The evolution is estimated on the basis of all the above analysis.
Asteroseismic Constraints on the Models of Hot B Subdwarfs: Convective Helium-Burning Cores
NASA Astrophysics Data System (ADS)
Schindler, Jan-Torge; Green, Elizabeth M.; Arnett, W. David
2017-10-01
Asteroseismology of non-radial pulsations in Hot B Subdwarfs (sdB stars) offers a unique view into the interior of core-helium-burning stars. Ground-based and space-borne high precision light curves allow for the analysis of pressure and gravity mode pulsations to probe the structure of sdB stars deep into the convective core. As such asteroseismological analysis provides an excellent opportunity to test our understanding of stellar evolution. In light of the newest constraints from asteroseismology of sdB and red clump stars, standard approaches of convective mixing in 1D stellar evolution models are called into question. The problem lies in the current treatment of overshooting and the entrainment at the convective boundary. Unfortunately no consistent algorithm of convective mixing exists to solve the problem, introducing uncertainties to the estimates of stellar ages. Three dimensional simulations of stellar convection show the natural development of an overshooting region and a boundary layer. In search for a consistent prescription of convection in one dimensional stellar evolution models, guidance from three dimensional simulations and asteroseismological results is indispensable.
Choi, Yun-Sang; Kim, Hyun-Wook; Kim, Young-Boong; Kim, Cheon-Jei
2015-01-01
The combined effects of smoking and boiling on the proximate composition, technological quality traits, shear force, and sensory characteristics of the Korean traditional boiled loin were studied. Cooking loss, processing loss, and shear force were lower in the smoked/boiled samples than those in the control (without smoking treatment) (p<0.05). The results showed that the boiled loin samples between the control and treatment did not differ significantly in protein, fat, or ash contents, or pH values (p>0.05). The treated samples had higher score for overall acceptability than the control (p<0.05). Thus, these results show that the Korean traditional boiled loin treated with smoking for 60 min before boiling had improved physicochemical properties and sensory characteristics. PMID:26761822
Heat Transfer Performances of Pool Boiling on Metal-Graphite Composite Surfaces
NASA Technical Reports Server (NTRS)
Zhang, Nengli; Chao, David F.; Yang, Wen-Jei
2000-01-01
Nucleate boiling, especially near the critical heat flux (CHF), can provide excellent economy along with high efficiency of heat transfer. However, the performance of nucleate boiling may deteriorate in a reduced gravity environment and the nucleate boiling usually has a potentially dangerous characteristic in CHF regime. That is, any slight overload can result in burnout of the boiling surface because the heat transfer will suddenly move into the film-boiling regime. Therefore, enhancement of nucleate boiling heat transfer becomes more important in reduced gravity environments. Enhancing nucleate boiling and critical heat flux can be reached using micro-configured metal-graphite composites as the boiling surface. Thermocapillary force induced by temperature difference between the graphite-fiber tips and the metal matrix, which is independent of gravity, will play an important role in bubble detachment. Thus boiling heat transfer performance does not deteriorate in a reduced-gravity environment. Based on the existing experimental data, and a two-tier theoretical model, correlation formulas are derived for nucleate boiling on the copper-graphite and aluminum-graphite composite surfaces, in both the isolated and coalesced bubble regimes. Experimental studies were performed on nucleate pool boiling of pentane on cooper-graphite (Cu-Gr) and aluminum-graphite (Al-Gr) composite surfaces with various fiber volume concentrations for heat fluxes up to 35 W per square centimeter. It is revealed that a significant enhancement in boiling heat transfer performance on the composite surfaces is achieved, due to the presence of micro-graphite fibers embedded in the matrix. The onset of nucleate boiling (the isolated bubble regime) occurs at wall superheat of about 10 C for the Cu-Gr surface and 15 C for the Al-Gr surface, much lower than their respective pure metal surfaces. Transition from an isolated bubble regime to a coalesced bubble regime in boiling occurs at a superheat of about 14 C on Cu-Gr surface and 19 C on Al-Gr surface.
Visual analysis of flow boiling at different gravity levels in 4.0 mm tube
NASA Astrophysics Data System (ADS)
Valencia-Castillo, C. M.; Celata, G. P.; Saraceno, L.; Zummo, G.
2014-11-01
The aim of the present paper is to describe the results of flow boiling heat transfer at low gravity and compare them with those obtained at earth gravity, evaluating possible differences. The experimental campaigns at low gravity have been performed during the parabolic flight campaign of October-November 2013. The paper will show the analysis of differences between the heat transfer coefficients and vapour bubble parameters at normal and at zero gravity. The results of 4.0 mm tube are presented and discussed. With respect to terrestrial gravity, heat transfer is systematically lower at microgravity in the range of the experimental conditions. Heat transfer differences for the two gravity conditions are related to the different bubble size in each of them. The size of a bubble in flow boiling is affected by the gravity level, being larger at low gravity, unless inertial forces are largely predominant over buoyancy and other forces acting on the bubble itself when detaching from a heated wall. Vapour bubble parameters (bubble diameter, bubble length, width, and nose velocity) have been measured.
Liu, Dengyong; Li, Shengjie; Wang, Nan; Deng, Yajun; Sha, Lei; Gai, Shengmei; Liu, Huan; Xu, Xinglian
2017-05-01
This paper aimed to study the time course changes in taste compounds of Dezhou-braised chicken during the entire cooking process mainly consisting of deep-frying, high-temperature boiling, and low-temperature braising steps. For this purpose, meat samples at different processing stages were analyzed for 5'-nucleotides and free amino acids, and were also subjected to electronic tongue measurements. Results showed that IMP, Glu, Lys, and sodium chloride were the main compounds contributing to the taste attributes of the final product. IMP and Glu increased in the boiling step and remained unchanged in the following braising steps. Meanwhile, decrease in Lys content and increase in sodium chloride content were observed over time in both boiling and braising steps. Intensities for bitterness, saltiness, and Aftertaste-B obtained from the electronic tongue analysis were correlated with the concentrations of these above chemical compounds. Therefore, the electronic tongue system could be applied to evaluate the taste development of Dezhou-braised chicken during processing. © 2017 Institute of Food Technologists®.
Coal liquefaction process with increased naphtha yields
Ryan, Daniel F.
1986-01-01
An improved process for liquefying solid carbonaceous materials wherein the solid carbonaceous material is slurried with a suitable solvent and then subjected to liquefaction at elevated temperature and pressure to produce a normally gaseous product, a normally liquid product and a normally solid product. The normally liquid product is further separated into a naphtha boiling range product, a solvent boiling range product and a vacuum gas-oil boiling range product. At least a portion of the solvent boiling-range product and the vacuum gas-oil boiling range product are then combined and passed to a hydrotreater where the mixture is hydrotreated at relatively severe hydrotreating conditions and the liquid product from the hydrotreater then passed to a catalytic cracker. In the catalytic cracker, the hydrotreater effluent is converted partially to a naphtha boiling range product and to a solvent boiling range product. The naphtha boiling range product is added to the naphtha boiling range product from coal liquefaction to thereby significantly increase the production of naphtha boiling range materials. At least a portion of the solvent boiling range product, on the other hand, is separately hydrogenated and used as solvent for the liquefaction. Use of this material as at least a portion of the solvent significantly reduces the amount of saturated materials in said solvent.
Ito, Hiroshi; Hayakawa, Kazuichi; Yamamoto, Atsushi; Murase, Atsushi; Hayakawa, Kazumi; Kuno, Minoru; Inoue, Yoshinori
2006-11-03
A novel apparatus with a simple structure has been developed for introducing samples into the vaporizing chamber of a gas chromatograph. It requires no septum due to the gas sealing structure over the carrier gas supply line. The septum-free injector made it possible to use injection port temperatures as high as 450 degrees C. Repetitive injection of samples with boiling points below 300 degrees C resulted in peak areas with relative standard deviations between 1.25 and 3.28% (n=5) and good linearity (r(2)>0.9942) for the calibration curve. In the analysis of polycyclic aromatic hydrocarbons and a base oil, the peak areas of components with high boiling points increased as the injection port temperature was increased to 450 degrees C.
An Error Analysis for the Finite Element Method Applied to Convection Diffusion Problems.
1981-03-01
D TFhG-]NOLOGY k 4b 00 \\" ) ’b Technical Note BN-962 AN ERROR ANALYSIS FOR THE FINITE ELEMENT METHOD APPLIED TO CONVECTION DIFFUSION PROBLEM by I...Babu~ka and W. G. Szym’czak March 1981 V.. UNVI I Of- ’i -S AN ERROR ANALYSIS FOR THE FINITE ELEMENT METHOD P. - 0 w APPLIED TO CONVECTION DIFFUSION ...AOAO98 895 MARYLAND UNIVYCOLLEGE PARK INST FOR PHYSICAL SCIENCE--ETC F/G 12/I AN ERROR ANALYIS FOR THE FINITE ELEMENT METHOD APPLIED TO CONV..ETC (U
40 CFR 180.1056 - Boiled linseed oil; exemption from requirement of tolerance.
Code of Federal Regulations, 2010 CFR
2010-07-01
... “boiled linseed oil.” This exemption is limited to use on rice before edible parts form. [46 FR 33270... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Boiled linseed oil; exemption from... From Tolerances § 180.1056 Boiled linseed oil; exemption from requirement of tolerance. Boiled linseed...
Fiber-Supported Droplet Combustion Experiment-2
NASA Technical Reports Server (NTRS)
Colantonio, Renato O.
1998-01-01
A major portion of the energy produced in the world today comes from the burning of liquid hydrocarbon fuels in the form of droplets. Understanding the fundamental physical processes involved in droplet combustion is not only important in energy production but also in propulsion, in the mitigation of combustion-generated pollution, and in the control of the fire hazards associated with handling liquid combustibles. Microgravity makes spherically symmetric combustion possible, allowing investigators to easily validate their droplet models without the complicating effects of gravity. The Fiber-Supported Droplet Combustion (FSDC-2) investigation was conducted in the Microgravity Glovebox facility of the shuttles' Spacelab during the reflight of the Microgravity Science Laboratory (MSL- 1R) on STS-94 in July 1997. FSDC-2 studied fundamental phenomena related to liquid fuel droplet combustion in air. Pure fuels and mixtures of fuels were burned as isolated single and duo droplets with and without forced air convection. FSDC-2 is sponsored by the NASA Lewis Research Center, whose researchers are working in cooperation with several investigators from industry and academia. The rate at which a droplet burns is important in many commercial applications. The classical theory of droplet burning assumes that, for an isolated, spherically symmetric, single-fuel droplet, the gas-phase combustion processes are much faster than the droplet surface regression rate and that the liquid phase is at a uniform temperature equal to the boiling point. Recent, more advanced models predict that both the liquid and gas phases are unsteady during a substantial portion of the droplet's burning history, thus affecting the instantaneous and average burning rates, and that flame radiation is a dominant mechanism that can extinguish flames in a microgravity environment. FSDC-2 has provided well-defined, symmetric droplet burning data including radiative emissions to validate these theoretical models for heptane, decane, ethanol, and methanol fuels. Since most commercial combustion systems burn droplets in a convective environment, data were obtained without and with convective flow over the burning droplet (see the following photos).
NASA Technical Reports Server (NTRS)
Ramachandran, N.; Leslie, F. W.
2004-01-01
The effect of convection during the crystallization of proteins is not very well understood. In a gravitational field, convection is caused by crystal sedimentation and by solutal buoyancy induced flow and these can lead to crystal imperfections. While crystallization in microgravity can approach diffusion limited growth conditions (no convection), terrestrially strong magnetic fields can be used to control fluid flow and sedimentation effects. In this work, we develop the analysis for magnetic flow control and test the predictions using analog experiments. Specifically, experiments on solutal convection in a paramagnetic fluid were conducted in a strong magnetic field gradient using a dilute solution of Manganese Chloride. The observed flows indicate that the magnetic field can completely counter the settling effects of gravity locally and are consistent with the theoretical predictions presented. This phenomenon suggests that magnetic fields may be useful in mimicking the microgravity environment of space for some crystal growth ana biological applications where fluid convection is undesirable.
Seismic Constraints on Interior Solar Convection
NASA Technical Reports Server (NTRS)
Hanasoge, Shravan M.; Duvall, Thomas L.; DeRosa, Marc L.
2010-01-01
We constrain the velocity spectral distribution of global-scale solar convective cells at depth using techniques of local helioseismology. We calibrate the sensitivity of helioseismic waves to large-scale convective cells in the interior by analyzing simulations of waves propagating through a velocity snapshot of global solar convection via methods of time-distance helioseismology. Applying identical analysis techniques to observations of the Sun, we are able to bound from above the magnitudes of solar convective cells as a function of spatial convective scale. We find that convection at a depth of r/R(solar) = 0.95 with spatial extent l < 30, where l is the spherical harmonic degree, comprise weak flow systems, on the order of 15 m/s or less. Convective features deeper than r/R(solar) = 0.95 are more difficult to image due to the rapidly decreasing sensitivity of helioseismic waves.
ERIC Educational Resources Information Center
LeMaire, Peter; Waiveris, Charles
1995-01-01
Describes experiments designed to investigate the cooling rate of microwave-boiled water as compared to that of stove-boiled water. Concludes that within experimental limits, microwave-boiled water and stove-boiled water cool at the same rate. (JRH)
TAP 2: A finite element program for thermal analysis of convectively cooled structures
NASA Technical Reports Server (NTRS)
Thornton, E. A.
1980-01-01
A finite element computer program (TAP 2) for steady-state and transient thermal analyses of convectively cooled structures is presented. The program has a finite element library of six elements: two conduction/convection elements to model heat transfer in a solid, two convection elements to model heat transfer in a fluid, and two integrated conduction/convection elements to represent combined heat transfer in tubular and plate/fin fluid passages. Nonlinear thermal analysis due to temperature-dependent thermal parameters is performed using the Newton-Raphson iteration method. Transient analyses are performed using an implicit Crank-Nicolson time integration scheme with consistent or lumped capacitance matrices as an option. Program output includes nodal temperatures and element heat fluxes. Pressure drops in fluid passages may be computed as an option. User instructions and sample problems are presented in appendixes.
Magnetically Modulated Heat Transport in a Global Simulation of Solar Magneto-convection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cossette, Jean-Francois; Charbonneau, Paul; Smolarkiewicz, Piotr K.
We present results from a global MHD simulation of solar convection in which the heat transported by convective flows varies in-phase with the total magnetic energy. The purely random initial magnetic field specified in this experiment develops into a well-organized large-scale antisymmetric component undergoing hemispherically synchronized polarity reversals on a 40 year period. A key feature of the simulation is the use of a Newtonian cooling term in the entropy equation to maintain a convectively unstable stratification and drive convection, as opposed to the specification of heating and cooling terms at the bottom and top boundaries. When taken together, themore » solar-like magnetic cycle and the convective heat flux signature suggest that a cyclic modulation of the large-scale heat-carrying convective flows could be operating inside the real Sun. We carry out an analysis of the entropy and momentum equations to uncover the physical mechanism responsible for the enhanced heat transport. The analysis suggests that the modulation is caused by a magnetic tension imbalance inside upflows and downflows, which perturbs their respective contributions to heat transport in such a way as to enhance the total convective heat flux at cycle maximum. Potential consequences of the heat transport modulation for solar irradiance variability are briefly discussed.« less
Archetypal TRMM Radar Profiles Identified Through Cluster Analysis
NASA Technical Reports Server (NTRS)
Boccippio, Dennis J.
2003-01-01
It is widely held that identifiable 'convective regimes' exist in nature, although precise definitions of these are elusive. Examples include land / Ocean distinctions, break / monsoon beahvior, seasonal differences in the Amazon (SON vs DJF), etc. These regimes are often described by differences in the realized local convective spectra, and measured by various metrics of convective intensity, depth, areal coverage and rainfall amount. Objective regime identification may be valuable in several ways: regimes may serve as natural 'branch points' in satellite retrieval algorithms or data assimilation efforts; one example might be objective identification of regions that 'should' share a similar 2-R relationship. Similarly, objectively defined regimes may provide guidance on optimal siting of ground validation efforts. Objectively defined regimes could also serve as natural (rather than arbitrary geographic) domain 'controls' in studies of convective response to environmental forcing. Quantification of convective vertical structure has traditionally involved parametric study of prescribed quantities thought to be important to convective dynamics: maximum radar reflectivity, cloud top height, 30-35 dBZ echo top height, rain rate, etc. Individually, these parameters are somewhat deficient as their interpretation is often nonunique (the same metric value may signify different physics in different storm realizations). Individual metrics also fail to capture the coherence and interrelationships between vertical levels available in full 3-D radar datasets. An alternative approach is discovery of natural partitions of vertical structure in a globally representative dataset, or 'archetypal' reflectivity profiles. In this study, this is accomplished through cluster analysis of a very large sample (0[107) of TRMM-PR reflectivity columns. Once achieved, the rainconditional and unconditional 'mix' of archetypal profile types in a given location and/or season provides a description of the local convective spectrum which retains vertical structure information. A further cluster analysis of these 'mixes' can identify recurrent convective spectra. These are a first step towards objective identification of convective regimes, and towards answering the question: 'What are the most convectively similar locations in the world?'
NASA Astrophysics Data System (ADS)
Rajib, Basu; C. Layek, G.
2013-05-01
Double-diffusive stationary and oscillatory instabilities at the marginal state in a saturated porous horizontal fluid layer heated and salted from above are investigated theoretically under the Darcy's framework for a porous medium. The contributions of Soret and Dufour coefficients are taken into account in the analysis. Linear stability analysis shows that the critical value of the Darcy—Rayleigh number depends on cross-diffusive parameters at marginally stationary convection, while the marginal state characterized by oscillatory convection does not depend on the cross-diffusion terms even if the condition and frequency of oscillatory convection depends on the cross-diffusive parameters. The critical value of the Darcy—Rayleigh number increases with increasing value of the solutal Darcy—Rayleigh number in the absence of cross-diffusive parameters. The critical Darcy—Rayleigh number decreases with increasing Soret number, resulting in destabilization of the system, while its value increases with increasing Dufour number, resulting in stabilization of the system at the marginal state characterized by stationary convection. The analysis reveals that the Dufour and Soret parameters as well as the porosity parameter play an important role in deciding the type of instability at the onset. This analysis also indicates that the stationary convection is followed by the oscillatory convection for certain fluid mixtures. It is interesting to note that the roles of cross-diffusive parameters on the double-diffusive system heated and salted from above are reciprocal to the double-diffusive system heated and salted from below.
Bioactive compounds and antioxidant activity of fresh and processed white cauliflower.
Ahmed, Fouad A; Ali, Rehab F M
2013-01-01
Brassica species are very rich in health-promoting phytochemicals, including phenolic compounds, vitamin C, and minerals. The objective of this study was to investigate the effect of different blanching (i.e., water and steam) and cooking (i.e., water boiling, steam boiling, microwaving, and stir-frying) methods on the nutrient components, phytochemical contents (i.e., polyphenols, carotenoids, flavonoid, and ascorbic acid), antioxidant activity measured by DPPH assay, and phenolic profiles of white cauliflower. Results showed that water boiling and water blanching processes had a great effect on the nutrient components and caused significant losses of dry matter, protein, and mineral and phytochemical contents. However, steam treatments (blanching and cooking), stir-frying, and microwaving presented the lowest reductions. Methanolic extract of fresh cauliflower had significantly the highest antioxidant activity (68.91%) followed by the extracts of steam-blanched, steam-boiled, stir-fried, and microwaved cauliflower 61.83%, 59.15%, 58.93%, and 58.24%, respectively. HPLC analysis revealed that the predominant phenolics of raw cauliflower were protocatechuic acid (192.45), quercetin (202.4), pyrogallol (18.9), vanillic acid (11.90), coumaric acid (6.94), and kaempferol (25.91) mg/100 g DW, respectively.
Bioactive Compounds and Antioxidant Activity of Fresh and Processed White Cauliflower
Ahmed, Fouad A.; Ali, Rehab F. M.
2013-01-01
Brassica species are very rich in health-promoting phytochemicals, including phenolic compounds, vitamin C, and minerals. The objective of this study was to investigate the effect of different blanching (i.e., water and steam) and cooking (i.e., water boiling, steam boiling, microwaving, and stir-frying) methods on the nutrient components, phytochemical contents (i.e., polyphenols, carotenoids, flavonoid, and ascorbic acid), antioxidant activity measured by DPPH assay, and phenolic profiles of white cauliflower. Results showed that water boiling and water blanching processes had a great effect on the nutrient components and caused significant losses of dry matter, protein, and mineral and phytochemical contents. However, steam treatments (blanching and cooking), stir-frying, and microwaving presented the lowest reductions. Methanolic extract of fresh cauliflower had significantly the highest antioxidant activity (68.91%) followed by the extracts of steam-blanched, steam-boiled, stir-fried, and microwaved cauliflower 61.83%, 59.15%, 58.93%, and 58.24%, respectively. HPLC analysis revealed that the predominant phenolics of raw cauliflower were protocatechuic acid (192.45), quercetin (202.4), pyrogallol (18.9), vanillic acid (11.90), coumaric acid (6.94), and kaempferol (25.91) mg/100 g DW, respectively. PMID:24171164
Entropy generation analysis for film boiling: A simple model of quenching
NASA Astrophysics Data System (ADS)
Lotfi, Ali; Lakzian, Esmail
2016-04-01
In this paper, quenching in high-temperature materials processing is modeled as a superheated isothermal flat plate. In these phenomena, a liquid flows over the highly superheated surfaces for cooling. So the surface and the liquid are separated by the vapor layer that is formed because of the liquid which is in contact with the superheated surface. This is named forced film boiling. As an objective, the distribution of the entropy generation in the laminar forced film boiling is obtained by similarity solution for the first time in the quenching processes. The PDE governing differential equations of the laminar film boiling including continuity, momentum, and energy are reduced to ODE ones, and a dimensionless equation for entropy generation inside the liquid boundary and vapor layer is obtained. Then the ODEs are solved by applying the 4th-order Runge-Kutta method with a shooting procedure. Moreover, the Bejan number is used as a design criterion parameter for a qualitative study about the rate of cooling and the effects of plate speed are studied in the quenching processes. It is observed that for high speed of the plate the rate of cooling (heat transfer) is more.
Bach, Vibe; Mikkelsen, Laerke; Kidmose, Ulla; Edelenbos, Merete
2015-07-01
Beetroot is a diverse vegetable available in different shapes and colours. The objectives of this study were to evaluate sensory qualities, and sugar and dry matter content of five beetroot varieties in relationship to the appropriateness for raw, boiled and pan-fried preparation. Sensory evaluation by descriptive sensory analysis and consumer tests showed clear distinctions between red varieties Taunus, Rocket and Pablo, and the pink-white striped Chioggia and yellow Burpee's Golden in raw preparations. However, variety delimination was more difficult after boiling and pan-frying. Different sensory qualities were important for beetroot appropriateness in raw, boiled and pan-fried preparations. Appropriateness of raw beetroots was associated with high sensory scores in beetroot flavour, crispness and juiciness, and low scores in bitterness. Appropriateness of boiled beetroots was related to high scores in beetroot and earthy flavours. Pan-fried beetroot appropriateness was associated with high scores in beetroot flavour, colour intensity and crispness. This study showed that the quality of raw materials is integral in culinary preparations. These results can be used to guide consumers in the use of beetroot in culinary preparations and subsequently increase consumption. © 2014 Society of Chemical Industry.
Evaluation of CASL boiling model for DNB performance in full scale 5x5 fuel bundle with spacer grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Seung Jun
As one of main tasks for FY17 CASL-THM activity, Evaluation study on applicability of the CASL baseline boiling model for 5x5 DNB application is conducted and the predictive capability of the DNB analysis is reported here. While the baseline CASL-boiling model (GEN- 1A) approach has been successfully implemented and validated with a single pipe application in the previous year’s task, the extended DNB validation for realistic sub-channels with detailed spacer grid configurations are tasked in FY17. The focus area of the current study is to demonstrate the robustness and feasibility of the CASL baseline boiling model for DNB performance inmore » a full 5x5 fuel bundle application. A quantitative evaluation of the DNB predictive capability is performed by comparing with corresponding experimental measurements (i.e. reference for the model validation). The reference data are provided from the Westinghouse Electricity Company (WEC). Two different grid configurations tested here include Non-Mixing Vane Grid (NMVG), and Mixing Vane Grid (MVG). Thorough validation studies with two sub-channel configurations are performed at a wide range of realistic PWR operational conditions.« less
Explosive Boiling at Very Low Heat Fluxes: A Microgravity Phenomenon
NASA Technical Reports Server (NTRS)
Hasan, M. M.; Lin, C. S.; Knoll, R. H.; Bentz, M. D.
1993-01-01
The paper presents experimental observations of explosive boiling from a large (relative to bubble sizes) flat heating surface at very low heat fluxes in microgravity. The explosive boiling is characterized as either a rapid growth of vapor mass over the entire heating surface due to the flashing of superheated liquid or a violent boiling spread following the appearance of single bubbles on the heating surface. Pool boiling data with saturated Freon 113 was obtained in the microgravity environment of the space shuttle. The unique features of the experimental results are the sustainability of high liquid superheat for long periods and the occurrence of explosive boiling at low heat fluxes (0.2 to 1.2 kW/sq m). For a heat flux of 1.0 kW/sq m a wall superheat of 17.9 degrees C was attained in ten minutes of heating. This was followed by an explosive boiling accompanied with a pressure spike and a violent bulk liquid motion. However, at this heat flux the vapor blanketing the heating surface could not be sustained. Stable nucleate boiling continued following the explosive boiling.
Analysis of three echo-trainings of a rainstorm in the South China warm region
NASA Astrophysics Data System (ADS)
Ding, Zhiying; Qian, Lei; Zhao, Xiangjun; Xia, Fan
2018-06-01
A rainstorm which occurred between May 22 and 23, 2014 in Guangdong Province of the South China warm region was simulated by using the ARW-WRF model. Three "echo-trainings" over the rainstorm center were analyzed and the results of both the simulation and observational analysis showed that this rainstorm process was composed of three stages. In the first stage, gravity waves triggered the simultaneous but relatively independent formation of linear convection and convective cells, which moved toward the northeast through the rain center, thus creating the echo-training. In the second stage, with the formation of cold outflow, new convective cells were continuously created in the southwest and northwest of the rain area and then gradually moved to merge into the northeast rain area, thus forming a new echo-training. In the third stage, multiple rain bands above the rain area moved southeastward and passed through the strongest precipitation center, thus creating the third echo-training. The model simulation showed that a substantial warming appeared at 900 hPa before the convective initiation, leading to the formation of a stable layer below 900 hPa, which was the primary cause for the gravity waves that triggered the multiple convective cells. The multiple convective cells formed the convective line, following which new convection was formed from the cold outflow in its southwest and northwest directions. The new convection in the southwest maintained the rain band; however, the new convection in the northwest, combined with the rain band of the north, formed a large radar reflectivity area and consequently, a larger MCS.
The Tropical Convective Spectrum. Part 1; Archetypal Vertical Structures
NASA Technical Reports Server (NTRS)
Boccippio, Dennis J.; Petersen, Walter A.; Cecil, Daniel J.
2005-01-01
A taxonomy of tropical convective and stratiform vertical structures is constructed through cluster analysis of 3 yr of Tropical Rainfall Measuring Mission (TRMM) "warm-season" (surface temperature greater than 10 C) precipitation radar (PR) vertical profiles, their surface rainfall, and associated radar-based classifiers (convective/ stratiform and brightband existence). Twenty-five archetypal profile types are identified, including nine convective types, eight stratiform types, two mixed types, and six anvil/fragment types (nonprecipitating anvils and sheared deep convective profiles). These profile types are then hierarchically clustered into 10 similar families, which can be further combined, providing an objective and physical reduction of the highly multivariate PR data space that retains vertical structure information. The taxonomy allows for description of any storm or local convective spectrum by the profile types or families. The analysis provides a quasi-independent corroboration of the TRMM 2A23 convective/ stratiform classification. The global frequency of occurrence and contribution to rainfall for the profile types are presented, demonstrating primary rainfall contribution by midlevel glaciated convection (27%) and similar depth decaying/stratiform stages (28%-31%). Profiles of these types exhibit similar 37- and 85-GHz passive microwave brightness temperatures but differ greatly in their frequency of occurrence and mean rain rates, underscoring the importance to passive microwave rain retrieval of convective/stratiform discrimination by other means, such as polarization or texture techniques, or incorporation of lightning observations. Close correspondence is found between deep convective profile frequency and annualized lightning production, and pixel-level lightning occurrence likelihood directly tracks the estimated mean ice water path within profile types.
Analysis of three echo-trainings of a rainstorm in the South China warm region
NASA Astrophysics Data System (ADS)
Ding, Zhiying; Qian, Lei; Zhao, Xiangjun; Xia, Fan
2017-07-01
A rainstorm which occurred between May 22 and 23, 2014 in Guangdong Province of the South China warm region was simulated by using the ARW-WRF model. Three "echo-trainings" over the rainstorm center were analyzed and the results of both the simulation and observational analysis showed that this rainstorm process was composed of three stages. In the first stage, gravity waves triggered the simultaneous but relatively independent formation of linear convection and convective cells, which moved toward the northeast through the rain center, thus creating the echo-training. In the second stage, with the formation of cold outflow, new convective cells were continuously created in the southwest and northwest of the rain area and then gradually moved to merge into the northeast rain area, thus forming a new echo-training. In the third stage, multiple rain bands above the rain area moved southeastward and passed through the strongest precipitation center, thus creating the third echo-training. The model simulation showed that a substantial warming appeared at 900 hPa before the convective initiation, leading to the formation of a stable layer below 900 hPa, which was the primary cause for the gravity waves that triggered the multiple convective cells. The multiple convective cells formed the convective line, following which new convection was formed from the cold outflow in its southwest and northwest directions. The new convection in the southwest maintained the rain band; however, the new convection in the northwest, combined with the rain band of the north, formed a large radar reflectivity area and consequently, a larger MCS.
Introductory Analysis of Benard-Marangoni Convection
ERIC Educational Resources Information Center
Maroto, J. A.; Perez-Munuzuri, V.; Romero-Cano, M. S.
2007-01-01
We describe experiments on Benard-Marangoni convection which permit a useful understanding of the main concepts involved in this phenomenon such as, for example, Benard cells, aspect ratio, Rayleigh and Marangoni numbers, Crispation number and critical conditions. In spite of the complexity of convection theory, we carry out a simple and…
NaK pool-boiler bench-scale receiver durability test: Test results and materials analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andraka, C.E.; Goods, S.H.; Bradshaw, R.W.
1994-06-01
Pool-boiler reflux receivers have been considered as an alternative to heat pipes for the input of concentrated solar energy to Stirling-cycle engines in dish-Stirling electric generation systems. Pool boilers offer simplicity in design and fabrication. The operation of a full-scale pool-boiler receiver has been demonstrated for short periods of time. However, to generate cost-effective electricity, the receiver must operate Without significant maintenance for the entire system life, as much as 20 to 30 years. Long-term liquid-metal boiling stability and materials compatibility with refluxing NaK-78 is not known and must be determined for the pool boiler receiver. No boiling system hasmore » been demonstrated for a significant duration with the current porous boiling enhancement surface and materials. Therefore, it is necessary to simulate the full-scale pool boiler design as much as possible, including flux levels, materials, and operating cycles. On-sun testing is impractical because of the limited test time available. A test vessel was constructed with a porous boiling enhancement surface. The boiling surface consisted of a brazed stainless steel powder with about 50% porosity. The vessel was heated with a quartz lamp array providing about go W/CM2 peak incident thermal flux. The vessel was charged with NaK-78. This allows the elimination of costly electric preheating, both on this test and on fullscale receivers. The vessel was fabricated from Haynes 230 alloy. The vessel operated at 750{degrees}C around the clock, with a 1/2-hour shutdown cycle to ambient every 8 hours. The test completed 7500 hours of lamp-on operation time, and over 1000 startups from ambient. The test was terminated when a small leak in an Inconel 600 thermowell was detected. The test design and data are presented here. Metallurgical analysis of virgin and tested materials has begun, and initial results are also presented.« less
TAP 1: A Finite Element Program for Steady-State Thermal Analysis of Convectively Cooled Structures
NASA Technical Reports Server (NTRS)
Thornton, E. A.
1976-01-01
The program has a finite element library of six elements: two conduction/convection elements to model heat transfer in a solid, two convection elements to model heat transfer in a fluid, and two integrated conduction/convection elements to represent combined heat transfer in tubular and plate/fin fluid passages. Nonlinear thermal analysis due to temperature dependent thermal parameters is performed using the Newton-Raphson iteration method. Program output includes nodal temperatures and element heat fluxes. Pressure drops in fluid passages may be computed as an option. A companion plotting program for displaying the finite element model and predicted temperature distributions is presented. User instructions and sample problems are presented in appendixes.
Scale/Analytical Analyses of Freezing and Convective Melting with Internal Heat Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali S. Siahpush; John Crepeau; Piyush Sabharwall
2013-07-01
Using a scale/analytical analysis approach, we model phase change (melting) for pure materials which generate constant internal heat generation for small Stefan numbers (approximately one). The analysis considers conduction in the solid phase and natural convection, driven by internal heat generation, in the liquid regime. The model is applied for a constant surface temperature boundary condition where the melting temperature is greater than the surface temperature in a cylindrical geometry. The analysis also consider constant heat flux (in a cylindrical geometry).We show the time scales in which conduction and convection heat transfer dominate.
Hydromagnetic couple-stress nanofluid flow over a moving convective wall: OHAM analysis
NASA Astrophysics Data System (ADS)
Awais, M.; Saleem, S.; Hayat, T.; Irum, S.
2016-12-01
This communication presents the magnetohydrodynamics (MHD) flow of a couple-stress nanofluid over a convective moving wall. The flow dynamics are analyzed in the boundary layer region. Convective cooling phenomenon combined with thermophoresis and Brownian motion effects has been discussed. Similarity transforms are utilized to convert the system of partial differential equations into coupled non-linear ordinary differential equation. Optimal homotopy analysis method (OHAM) is utilized and the concept of minimization is employed by defining the average squared residual errors. Effects of couple-stress parameter, convective cooling process parameter and energy enhancement parameters are displayed via graphs and discussed in detail. Various tables are also constructed to present the error analysis and a comparison of obtained results with the already published data. Stream lines are plotted showing a difference of Newtonian fluid model and couplestress fluid model.
Vertical velocity structure and geometry of clear air convective elements
NASA Technical Reports Server (NTRS)
Rowland, J. R.; Arnold, A.
1975-01-01
The paper discusses observations of individual convective elements with a high-power narrow-beam scanning radar, an FM-CW radar, and an acoustic sounder, including the determination of the vertical air velocity patterns of convective structures with the FM-CW radar and acoustic sounder. Data are presented which link the observed velocity structure and geometrical patterns to previously proposed models of boundary layer convection. It is shown that the high-power radar provides a clear three-dimensional picture of convective cells and fields over a large area with a resolution of 150 m, where the convective cells are roughly spherical. Analysis of time-height records of the FM-CW radar and acoustic sounder confirms the downdraft-entrainment mechanism of the convective cell. The Doppler return of the acoustic sounder and the insect-trail slopes on FM-CW radar records are independent but redundant methods for obtaining the vertical velocity patterns of convective structures.
The diurnal interaction between convection and peninsular-scale forcing over South Florida
NASA Technical Reports Server (NTRS)
Cooper, H. J.; Simpson, J.; Garstang, M.
1982-01-01
One of the outstanding problems in modern meterology is that of describing in detail the manner in which larger scales of motion interact with, influence and are influenced by successively smaller scales of motion. The present investigation is concerned with a study of the diurnal evolution of convection, the interaction between the peninsular-scale convergence and convection, and the role of the feedback produced by the cloud-scale downdrafts in the maintenance of the convection. Attention is given to the analysis, the diurnal cycle of the network area-averaged divergence, convective-scale divergence, convective mass transports, and the peninsular scale divergence. The links established in the investigation between the large scale (peninsular), the mesoscale (network), and the convective scale (cloud) are found to be of fundamental importance to the understanding of the initiation, maintenance, and decay of deep precipitating convection and to its theoretical parameterization.
ERIC Educational Resources Information Center
Struyf, Jef
2011-01-01
The boiling point of a monofunctional organic compound is expressed as the sum of two parts: a contribution to the boiling point due to the R group and a contribution due to the functional group. The boiling point in absolute temperature of the corresponding RH hydrocarbon is chosen for the contribution to the boiling point of the R group and is a…
The myth of the boiling point.
Chang, Hasok
2008-01-01
Around 1800, many reputable scientists reported significant variations in the temperature of pure water boiling under normal atmospheric pressure. The reported variations included a difference of over 1 degree C between boiling in metallic and glass vessels (Gay-Lussac), and "superheating" up to 112 degrees C on extracting dissolved air out of water (De Luc). I have confirmed most of these observations in my own experiments, many of which are described in this paper. Water boils at the "boiling point" only under very particular circumstances. Our common-sense intuition about the fixedness of the boiling point is only sustained by our limited experience.
Boczkaj, Grzegorz; Przyjazny, Andrzej; Kamiński, Marian
2015-03-01
The paper describes a new procedure for the determination of boiling point distribution of high-boiling petroleum fractions using size-exclusion chromatography with refractive index detection. Thus far, the determination of boiling range distribution by chromatography has been accomplished using simulated distillation with gas chromatography with flame ionization detection. This study revealed that in spite of substantial differences in the separation mechanism and the detection mode, the size-exclusion chromatography technique yields similar results for the determination of boiling point distribution compared with simulated distillation and novel empty column gas chromatography. The developed procedure using size-exclusion chromatography has a substantial applicability, especially for the determination of exact final boiling point values for high-boiling mixtures, for which a standard high-temperature simulated distillation would have to be used. In this case, the precision of final boiling point determination is low due to the high final temperatures of the gas chromatograph oven and an insufficient thermal stability of both the gas chromatography stationary phase and the sample. Additionally, the use of high-performance liquid chromatography detectors more sensitive than refractive index detection allows a lower detection limit for high-molar-mass aromatic compounds, and thus increases the sensitivity of final boiling point determination. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Free surface convection in a bounded cylindrical geometry
NASA Astrophysics Data System (ADS)
Vrentas, J. S.; Narayanan, R.; Agrawal, S. S.
1981-09-01
Surface tension-driven convection and buoyancy-driven convection in a bounded cylindrical geometry with a free surface are studied for a range of aspect ratios and Nusselt numbers. The thermal convection is in a liquid layer contained in a vertical circular cylinder with a single free boundary, the top surface, which is in contact with an inviscid gas phase. A different method is also developed for analyzing free convection problems using Green's functions, reducing the problem to the solution of an integral equation. Linear theory and some aspects of a nonlinear analysis are utilized to determine the critical Marangoni and Rayleigh numbers, the structure of the convective motion, the direction of flow, and the nature of the bifurcation branching.
Oberg, Tomas
2004-01-01
Halogenated aliphatic compounds have many technical uses, but substances within this group are also ubiquitous environmental pollutants that can affect the ozone layer and contribute to global warming. The establishment of quantitative structure-property relationships is of interest not only to fill in gaps in the available database but also to validate experimental data already acquired. The three-dimensional structures of 240 compounds were modeled with molecular mechanics prior to the generation of empirical descriptors. Two bilinear projection methods, principal component analysis (PCA) and partial-least-squares regression (PLSR), were used to identify outliers. PLSR was subsequently used to build a multivariate calibration model by extracting the latent variables that describe most of the covariation between the molecular structure and the boiling point. Boiling points were also estimated with an extension of the group contribution method of Stein and Brown.
Saha, Kaushik; Som, Sibendu; Battistoni, Michele
2017-01-01
Flash boiling is known to be a common phenomenon for gasoline direct injection (GDI) engine sprays. The Homogeneous Relaxation Model has been adopted in many recent numerical studies for predicting cavitation and flash boiling. The Homogeneous Relaxation Model is assessed in this study. Sensitivity analysis of the model parameters has been documented to infer the driving factors for the flash-boiling predictions. The model parameters have been varied over a range and the differences in predictions of the extent of flashing have been studied. Apart from flashing in the near nozzle regions, mild cavitation is also predicted inside the gasoline injectors.more » The variation in the predicted time scales through the model parameters for predicting these two different thermodynamic phenomena (cavitation, flash) have been elaborated in this study. Turbulence model effects have also been investigated by comparing predictions from the standard and Re-Normalization Group (RNG) k-ε turbulence models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saha, Kaushik; Som, Sibendu; Battistoni, Michele
Flash boiling is known to be a common phenomenon for gasoline direct injection (GDI) engine sprays. The Homogeneous Relaxation Model has been adopted in many recent numerical studies for predicting cavitation and flash boiling. The Homogeneous Relaxation Model is assessed in this study. Sensitivity analysis of the model parameters has been documented to infer the driving factors for the flash-boiling predictions. The model parameters have been varied over a range and the differences in predictions of the extent of flashing have been studied. Apart from flashing in the near nozzle regions, mild cavitation is also predicted inside the gasoline injectors.more » The variation in the predicted time scales through the model parameters for predicting these two different thermodynamic phenomena (cavitation, flash) have been elaborated in this study. Turbulence model effects have also been investigated by comparing predictions from the standard and Re-Normalization Group (RNG) k-ε turbulence models.« less
Pool boiling from rotating and stationary spheres in liquid nitrogen
NASA Technical Reports Server (NTRS)
Cuan, Winston M.; Schwartz, Sidney H.
1988-01-01
Results are presented for a preliminary experiment involving saturated pool boiling at 1 atm from rotating 2 and 3 in. diameter spheres which were immersed in liquid nitrogen (LN2). Additional results are presented for a stationary, 2 inch diameter sphere, quenched in LN2, which were obtained utilizing a more versatile and complete experimental apparatus that will eventually be used for additional rotating sphere experiments. The speed for the rotational tests was varied from 0 to 10,000 rpm. The stationary experiments parametrically varied pressure and subcooling levels from 0 to 600 psig and from 0 to 50 F, respectively. During the rotational tests, a high speed photographic analysis was undertaken to measure the thickness of the vapor film surrounding the sphere. The average Nusselt number over the cooling period was plotted against the rotational Reynolds number. Stationary sphere results included local boiling heat transfer coefficients at different latitudinal locations, for various pressure and subcooling levels.
NASA Astrophysics Data System (ADS)
Huang, Lihao; Li, Gang; Tao, Leren
2016-07-01
Experimental investigation for the flow boiling of water in a vertical rectangular channel was conducted to reveal the boiling heat transfer mechanism and flow patterns map aspects. The onset of nucleate boiling went upward with the increasing of the working fluid mass flow rate or the decreasing of the inlet working fluid temperature. As the vapour quality was increased, the local heat transfer coefficient increased first, then decreased, followed by various flow patterns. The test data from other researchers had a similar pattern transition for the bubble-slug flow and the slug-annular flow. Flow pattern transition model analysis was performed to make the comparison with current test data. The slug-annular and churn-annular transition models showed a close trend with current data except that the vapor phase superficial velocity of flow pattern transition was much higher than that of experimental data.
NASA Astrophysics Data System (ADS)
Lin, W.; Xie, S.; Jackson, R. C.; Endo, S.; Vogelmann, A. M.; Collis, S. M.; Golaz, J. C.
2017-12-01
Climate models are known to have difficulty in simulating tropical diurnal convections that exhibit distinct characteristics over land and open ocean. While the causes are rooted in deficiencies in convective parameterization in general, lack of representations of mesoscale dynamics in terms of land-sea breeze, convective organization, and propagation of convection-induced gravity waves also play critical roles. In this study, the problem is investigated at the process-level with the U.S. Department of Energy Accelerated Climate Modeling for Energy (ACME) model in short-term hindcast mode using the Cloud Associated Parameterization Testbed (CAPT) framework. Convective-scale radar retrievals and observation-driven convection-permitting simulations for the Tropical Warm Pool-International Cloud Experiment (TWP-ICE) cases are used to guide the analysis of the underlying processes. The emphasis will be on linking deficiencies in representation of detailed process elements to the model biases in diurnal convective properties and their contrast among inland, coastal and open ocean conditions.
Xu, Baojun; Chang, Sam K C
2008-09-01
The effects of soaking, boiling and steaming processes on the total phenolic components and antioxidant activity in commonly consumed cool season food legumes (CSFL's), including green pea, yellow pea, chickpea and lentil were investigated. As compared to original unprocessed legumes, all processing steps caused significant (p<0.05) decreases in total phenolic content (TPC), DPPH free radical scavenging activity (DPPH) in all tested CSFL's. All soaking and atmospheric boiling treatments caused significant (p<0.05) decreases in oxygen radical absorbing capacity (ORAC). However, pressure boiling and pressure steaming caused significant (p<0.05) increases in ORAC values. Steaming treatments resulted in a greater retention of TPC, DPPH, and ORAC values in all tested CSFL's as compared to boiling treatments. To obtain cooked legumes with similar palatability and firmness, pressure boiling shortened processing time as compared to atmospheric boiling, resulted in insignificant differences in TPC, DPPH for green and yellow pea. However, TPC and DPPH in cooked lentils differed significantly between atmospheric and pressure boiling. As compared to atmospheric processes, pressure processes significantly increased ORAC values in both boiled and steamed CSFL's. Greater TPC, DPPH and ORAC values were detected in boiling water than that in soaking and steaming water. Boiling also caused more solid loss than steaming. Steam processing exhibited several advantages in retaining the integrity of the legume appearance and texture of the cooked product, shortening process time, and greater retention of antioxidant components and activities. Copyright © 2008 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chernokulsky, A. V.; Kurgansky, M. V.; Mokhov, I. I.
2017-12-01
A simple index of convective instability (3D-index) is used for analysis of weather and climate processes that favor to the occurrence of severe convective events including tornadoes. The index is based on information on the surface air temperature and humidity. The prognostic ability of the index to reproduce severe convective events (thunderstorms, showers, tornadoes) is analyzed. It is shown that most tornadoes in North Eurasia are characterized by high values of the 3D-index; furthermore, the 3D-index is significantly correlated with the available convective potential energy. Reanalysis data (for recent decades) and global climate model simulations (for the 21st century) show an increase in the frequency of occurrence of favorable for tornado formation meteorological conditions in the regions of Northern Eurasia. The most significant increase is found on the Black Sea coast and in the south of the Far East.
Micro-structured heat exchanger for cryogenic mixed refrigerant cycles
NASA Astrophysics Data System (ADS)
Gomse, D.; Reiner, A.; Rabsch, G.; Gietzelt, T.; Brandner, J. J.; Grohmann, S.
2017-12-01
Mixed refrigerant cycles (MRCs) offer a cost- and energy-efficient cooling method for the temperature range between 80 and 200 K. The performance of MRCs is strongly influenced by entropy production in the main heat exchanger. High efficiencies thus require small temperature gradients among the fluid streams, as well as limited pressure drop and axial conduction. As temperature gradients scale with heat flux, large heat transfer areas are necessary. This is best achieved with micro-structured heat exchangers, where high volumetric heat transfer areas can be realized. The reliable design of MRC heat exchangers is challenging, since two-phase heat transfer and pressure drop in both fluid streams have to be considered simultaneously. Furthermore, only few data on the convective boiling and condensation kinetics of zeotropic mixtures is available in literature. This paper presents a micro-structured heat exchanger designed with a newly developed numerical model, followed by experimental results on the single-phase pressure drop and their implications on the hydraulic diameter.
Numerical Simulation of the Emergency Condenser of the SWR-1000
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krepper, Eckhard; Schaffrath, Andreas; Aszodi, Attila
The SWR-1000 is a new innovative boiling water reactor (BWR) concept, which was developed by Siemens AG. This concept is characterized in particular by passive safety systems (e.g., four emergency condensers, four building condensers, eight passive pressure pulse transmitters, and six gravity-driven core-flooding lines). In the framework of the BWR Physics and Thermohydraulic Complementary Action to the European Union BWR Research and Development Cluster, emergency condenser tests were performed by Forschungszentrum Juelich at the NOKO test facility. Posttest calculations with ATHLET are presented, which aim at the determination of the removable power of the emergency condenser and its operation mode.more » The one-dimensional thermal-hydraulic code ATHLET was extended by the module KONWAR for the calculation of the heat transfer coefficient during condensation in horizontal tubes. In addition, results of conventional finite difference calculations using the code CFX-4 are presented, which investigate the natural convection during the heatup process at the secondary side of the NOKO test facility.« less
Experimental and numerical investigation of one and two phase natural convection in storage tanks
NASA Astrophysics Data System (ADS)
Aszodi, A.; Krepper, E.; Prasser, H.-M.
Experiments were performed to investigate heating up processes of fluids in storage tanks under the influence of an external heat source. As a consequence of an external fire, the heat-up of the inventory may lead to the evaporation of the liquid and to release of significant quantities of dangerous gases into the environment. Several tests were performed both with heating from the bottom and with heating from the side walls. In recent tests in addition to thermocouples, the tank was equipped with needle probes for measuring of the local void fraction. The paper presents experimental and numerical investigations of single and two phase heating up processes of tanks with side wall heating. The measurement of the temperature and of the void fraction makes interesting phenomena evident, which could be explained by an own 2D model. The gained experimental results may be used for the validation of boiling models in 3D CFD codes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedotov, S.A.
Using geophysical data, the mechanism of deep-seated magmatic and volcanic activity was studied in the region of the island arcs and associated structures. Data on magmatic activity below the volcanic belt of East Kamchatka, obtained during geophysical investigations, mainly during detailed seismological investigations and deep seismic sounding, provide evidence for an association between the volcanoes and the processes in the Pacific Ocean focal layer of earthquakes, and for the accumulation of magmas below the volcanic belt at depths less than 60 km. Anomalous columnar bodies more than 5 to 7 km across were found linking the volcanoes with the focalmore » layer. There was also a very large concentration of convective heat flow and volatiles in the magma columns feeding the volcanoes. As to the role of different forces in the uprise of magmas into the volcanoes, hydrostatic forces probably predominate in the asthenosphere, supplemented by tectonic pressure in the lithosphere and forces associated with boiling of magmas during release of volatiles in the crust, especially in its upper layers.« less
Fournier, R.O.; Sorey, M.L.; Mariner, R.H.; Truesdell, A.H.
1979-01-01
Temperatures of aquifers feeding thermal springs and wells in Long Valley, California, estimated using silica and Na-K-Ca geothermometers and warm spring mixing models, range from 160/dg to about 220??C. This information was used to construct a diagram showing enthalpy-chloride relations for the various thermal waters in the Long Valley region. The enthalpy-chloride information suggests that a 282 ?? 10??C aquifer with water containing about 375 mg chloride per kilogram of water is present somewhere deep in the system. That deep water would be related to ??? 220??C Casa Diablo water by mixing with cold water, and to Hot Creek water by first boiling with steam loss and then mixing with cold water. Oxygen and deuterium isotopic data are consistent with that interpretation. An aquifer at 282??C with 375 mg/kg chloride implies a convective heat flow in Long Valley of 6.6 ?? 107 cal/s. ?? 1979.
Synoptic scale convection and wave activity over tropical Africa and the Atlantic
NASA Astrophysics Data System (ADS)
Mekonnen, Ademe
The objective of this research is to investigate synoptic scale convection and its association with wave disturbances over eastern Atlantic and tropical Africa. Analyses of convection highlight a significant peak periodicity in 2-6 day time scale over the Atlantic and most of tropical North Africa. The 2-6 day convective variance is the same order of magnitude over West and East Africa and accounts for 25%-35% of the total variance. However, dynamical measures of the African easterly wave (AEW) activity showed marked differences, variances over the West being more than the East. The explanation for this is that AEWs are initiated by convective precursors in the east and grow as they propagate westwards along the African easterly jet. Results show two major regions of synoptic time scale convection that are important for AEW initiation: the Darfur mountains (˜20°E) and the Ethiopian highlands (35°-40°E), with the former being more consistent and coherent. This study also shows the presence of eastward moving convective structures over tropical Africa, which are associated with Kelvin waves. The Kelvin waves originate in the Pacific and propagate across Africa. An important aspect of the Kelvin wave activity is its impact on convection and rainfall and its interaction with AEWs. Analysis of July-September 1987 weather events showed that convection and rainfall increase in association with Kelvin waves over tropical Africa. This event also suggested a series of AEWs initiated in association with Kelvin convection over tropical Africa. Spectral analysis of convection indicates a significant 3-4 day periodicity over Central Sudan, a region not known for wave disturbances. Two key factors that are associated with this variance are: (a) convective variability over equatorial Congo, and (b) upper level easterly waves that originate over Bay of Bengal-Southeast Asia. Results show the presence of a dipole pattern between the equatorial and East African convection that oscillates on a 4-day time scale. It is suggested that the two regions interact through a recharge-discharge process. This study also shows that convection over East Africa enhances in association with anomalous northerlies and weakens in association with southerlies in the upper troposphere.
Sasada, M.; Roedder, E.; Belkin, H.E.
1986-01-01
Fluid inclusion studies have been used to derive a model for fluid evolution in the Hohi geothermal area, Japan. Six types of fluid inclusions are found in quartz obtained from the drill core of DW-5 hole. They are: (I) primary liquid-rich with evidence of boiling; (II) primary liquid-rich without evidence of boiling; (III) primary vapor-rich (assumed to have been formed by boiling); (IV) secondary liquid-rich with evidence of boiling; (V) secondary liquid-rich without evidence of boiling; (VI) secondary vapor-rich (assumed to have been formed by boiling). Homogenization temperatures (Th) range between 196 and 347??C and the final melting point of ice (Tm) between -0.2 and -4.3??C. The CO2 content was estimated semiquantitatively to be between 0 and 0.39 wt. % based on the bubble behavior on crushing. NaCl equivalent solid solute salinity of fluid inclusions was determined as being between 0 and 6.8 wt. % after minor correction for CO2 content. Fluid inclusions in quartz provide a record of geothermal activity of early boiling and later cooling. The CO2 contents and homogenization temperatures of fluid inclusions with evidence of boiling generally increase with depth; these changes, and NaCl equivalent solid solute salinity of the fluid can be explained by an adiabatic boiling model for a CO2-bearing low-salinity fluid. Some high-salinity inclusions without CO2 are presumed to have formed by a local boiling process due to a temperature increase or a pressure decrease. The liquid-rich primary and secondary inclusions without evidence of boiling formed during the cooling process. The salinity and CO2 content of these inclusions are lower than those in the boiling fluid at the early stage, probably as a result of admixture with groundwater. ?? 1986.
Transition boiling heat transfer and the film transition regime
NASA Technical Reports Server (NTRS)
Ramilison, J. M.; Lienhard, J. H.
1987-01-01
The Berenson (1960) flat-plate transition-boiling experiment has been recreated with a reduced thermal resistance in the heater, and an improved access to those portions of the transition boiling regime that have a steep negative slope. Tests have been made in Freon-113, acetone, benzene, and n-pentane boiling on horizontal flat copper heaters that have been mirror-polished, 'roughened', or teflon-coated. The resulting data reproduce and clarify certain features observed by Berenson: the modest surface finish dependence of boiling burnout, and the influence of surface chemistry on both the minimum heat flux and the mode of transition boiling, for example. A rational scheme of correlation yields a prediction of the heat flux in what Witte and Lienhard (1982) previously identified as the 'film-transition boiling' region. It is also shown how to calculate the heat flux at the boundary between the pure-film, and the film-transition, boiling regimes, as a function of the advancing contact angle.
Feasibility study of a brine boiling machine by solar energy
NASA Astrophysics Data System (ADS)
Phayom, W.
2018-06-01
This study presented the technical and operational feasibility of brine boiling machine by using solar energy instead of firewood or husk for salt production. The solar salt brine boiling machine consisted of a boiling chamber with an enhanced thermal efficiency through use of a solar brine heater. The stainless steel solar salt brine boiling chamber had dimensions of 60 cm x 70 cm x 20 cm. The steel brine heater had dimensions of 70 cm x 80 cm x 20 cm. The tilt angle of both the boiling chamber and brine heater was 20 degrees from horizontal. The brine temperature in the reservoir tank was 42°C with a flow rate of 6.64 L/h discharging into the solar boiling machine. It was found that the thermal efficiency and overall efficiency of the solar salt brine boiling machine were 0.63 and 0.38, respectively at a solar irradiance of 787.6 W/m2. The results shows that the potential of using solar energy for salt production system is feasible.
A microphysical pathway analysis to investigate aerosol effects on convective clouds
NASA Astrophysics Data System (ADS)
Heikenfeld, Max; White, Bethan; Labbouz, Laurent; Stier, Philip
2017-04-01
The impact of aerosols on ice- and mixed-phase processes in convective clouds remains highly uncertain, which has strong implications for estimates of the role of aerosol-cloud interactions in the climate system. The wide range of interacting microphysical processes are still poorly understood and generally not resolved in global climate models. To understand and visualise these processes and to conduct a detailed pathway analysis, we have added diagnostic output of all individual process rates for number and mass mixing ratios to two commonly-used cloud microphysics schemes (Thompson and Morrison) in WRF. This allows us to investigate the response of individual processes to changes in aerosol conditions and the propagation of perturbations throughout the development of convective clouds. Aerosol effects on cloud microphysics could strongly depend on the representation of these interactions in the model. We use different model complexities with regard to aerosol-cloud interactions ranging from simulations with different levels of fixed cloud droplet number concentration (CDNC) as a proxy for aerosol, to prognostic CDNC with fixed modal aerosol distributions. Furthermore, we have implemented the HAM aerosol model in WRF-chem to also perform simulations with a fully interactive aerosol scheme. We employ a hierarchy of simulation types to understand the evolution of cloud microphysical perturbations in atmospheric convection. Idealised supercell simulations are chosen to present and test the analysis methods for a strongly confined and well-studied case. We then extend the analysis to large case study simulations of tropical convection over the Amazon rainforest. For both cases we apply our analyses to individually tracked convective cells. Our results show the impact of model uncertainties on the understanding of aerosol-convection interactions and have implications for improving process representation in models.
Experimental and theoretical study of horizontal tube bundle for passive condensation heat transfer
NASA Astrophysics Data System (ADS)
Song, Yong Jae
The research in this thesis supports the design of a horizontal tube bundle condenser for passive heat removal system in nuclear reactors. From nuclear power plant containment, condensation of steam from a steam/noncondensable gas occurs on the primary side and boiling occurs on the secondary side; thus, heat exchanger modeling is a challenge. For the purpose of this experimental study, a six-tube bundle is used, where the outer diameter, inner diameter, and length of each stainless steel tube measures 38.10mm (1.5 inches), 31.75mm (1.25 inches) and 3.96m (156 inches), respectively. The pitch to diameter ratio was determined based on information gathered from literature surveys, and the dimensions were determined from calculations and experimental data. The objective of the calculations, correlations, and experimental data was to obtain complete condensation within the tube bundle. Experimental conditions for the tests in this thesis work were determined from Design Basis Accident (DBA). The applications are for an actual Passive Containment Cooling Systems (PCCS) condenser under postulated accident conditions in future light water reactors. In this research, steady state and transient experiments were performed to investigate the effect of noncondensable gas on steam condensation inside and boiling outside a tube bundle heat exchanger. The condenser tube inlet steam mass flow rate varied from 18.0 to 48.0 g/s, the inlet pressure varied from 100 kPa to 400 kPa, and the inlet noncondensable gas mass fraction varied from 1% to 10%. The effect of the noncondensable gas was examined by comparing the tube centerline temperatures for various inlet and system conditions. As a result, it was determined that the noncondensable gas accumulated near the condensate film causing a decrease of mass and energy transfer. In addition, the effect of the inlet steam flow rate gas was investigated by comparing the tube centerline temperatures, the conclusion being that, as the inlet steam mass flow rate increased, the length required for complete condensation also increased. Comparison of tube centerline temperature profiles was also used to examine the effect of inlet pressure on the heat transfer performance. From this assessment, it was determined that as the inlet pressure increased, the length required for complete condensation decreased. The investigation of tube bundle effects was conducted by comparing the condensate flow rates. The experimental results showed that the upper tubes in the bundle had better heat transfer performance than the lower tubes. In regard to modeling of the heat exchanger in this study, for the primary side, an empirical correlation was developed herein to provide Nusselt numbers for condensation heat transfer in horizontal tubes with noncondensable gases. Nusselt numbers were correlated as: Nu = 106.31·Re m0.147·W a-0.843. The empirical model for condensation heat transfer coefficients and the secondary-side model were integrated within a Matlab program to provide an analysis tool for horizontal tube bundle condenser heat exchangers. Also on the secondary side, two phase heat transfer coefficients were modeled considering both convective boiling and nucleate boiling as: hTP = 10.03·exp(-2.28·alpha)· hCV + 0.076·exp[3.73x10-6·(Re f-1.6x105)]·hNB.
Magnetic Control of Convection in Electrically Nonconducting Fluids
NASA Technical Reports Server (NTRS)
Huang, Jie; Gray, Donald D.; Edwards, Boyd F.
1999-01-01
Inhomogeneous magnetic fields exert a body force on electrically nonconducting, magnetically permeable fluids. This force can be used to compensate for gravity and to control convection. The effects of uniform and nonuniform magnetic fields on a laterally unbounded fluid layer heated from below or above are studied using a linear stability analysis of the Navier-Stokes equations supplemented by Maxwell's equations and the appropriate magnetic body force. For a uniform oblique field, the analysis shows that longitudinal rolls with axes parallel to the horizontal component of the field are the rolls most unstable to convection. The corresponding critical Rayleigh number and critical wavelength for the onset of such rolls are less than the well-known Rayleigh-Benard values in the absence of magnetic fields. Vertical fields maximize these deviations, which vanish for horizontal fields. Horizontal fields increase the critical Rayleigh number and the critical wavelength for all rolls except longitudinal rolls. For a nonuniform field, our analysis shows that the magnetic effect on convection is represented by a dimensionless vector parameter which measures the relative strength of the induced magnetic buoyancy force due to the applied field gradient. The vertical component of this parameter competes with the gravitational buoyancy effect, and a critical relationship between this component and the Rayleigh number is identified for the onset of convection. Therefore, Rayleigh-Benard convection in such fluids can be enhanced or suppressed by the field. It also shows that magnetothermal convection is possible in both paramagnetic and diamagnetic fluids. Our theoretical predictions for paramagnetic fluids agree with experiments. Magnetically driven convection in diamagnetic fluids should be observable even in pure water using current technology.
Ares I Reaction Control System Propellant Feedline Decontamination Modeling
NASA Technical Reports Server (NTRS)
Pasch, James J.
2010-01-01
The objective of the work presented here is to quantify the effects of purge gas temperature, pressure, and mass flow rate on Hydrazine (Hz) decontamination rates of the Ares I Roll Control System and Reaction Control System. A survey of experts in this field revealed the absence of any decontamination rate prediction models. Three basic decontamination methods were identified for analysis and modeling. These include low pressure eduction, high flow rate purge, and pulse purge. For each method, an approach to predict the Hz mass transfer rate, as a function of system pressure, temperature, and purge gas mass flow rate, is developed based on the applicable physics. The models show that low pressure eduction is two orders of magnitude more effective than the high velocity purge, which in turn is two orders of magnitude more effective than the pure diffusion component of pulse purging of deadheads. Eduction subjects the system to low pressure conditions that promote the extraction of Hz vapors. At 120 F, Hz is saturated at approximately 1 psia. At lower pressures and 120 F, Hz will boil, which is an extremely efficient means to remove liquid Hz. The Hz boiling rate is predicted by equating the rate at which energy is added to the saturated liquid Hz through heaters at the tube outer wall with the energy removed from the liquid through evaporation. Boil-off fluxes were predicted by iterating through the range of local pressures with limits set by the minimum allowed pressure of 0.2 psia and maximum allowed wall temperature of 120 F established by the heaters, which gives a saturation pressure of approximately 1.0 psia. Figure 1 shows the resulting boil-off fluxes as a function of local eduction pressure. As depicted in figure 1, the flux is a strong inverse function of eduction pressure, and that minimizing the eduction pressure maximizes the boil-off flux. Also, higher outer wall temperatures lead to higher boil-off fluxes and allow for boil-off over a greater range of eduction pressures.
NASA Astrophysics Data System (ADS)
Zell, M.; Straub, J.; Weinzierl, A.
1984-12-01
Experiments on subcooled nucleate pool boiling in microgravity were carried out to separate gravity driven effects on heat transfer within the boiling process. A ballistic trajectory by sounding rocket flight (TEXUS 5 and 10) achieved a gravity level of a/g = 0.0001 for 360 sec. For determination of geometrical effects on heat transport two different experimental configurations (platinum wire and flat plate) were employed. Boiling curves and bubble dynamics recorded by cinematography lead to gravity independent modelling of the boiling phenomena. The results ensure the applicability and high efficiency of nucleate pool boiling for heat exchangers in space laboratories.
Ram, Pavani K.; Blanton, Elizabeth; Klinghoffer, Debra; Platek, Mary; Piper, Janet; Straif-Bourgeois, Susanne; Bonner, Matthew R.; Mintz, Eric D.
2007-01-01
Objectives. Thousands of Louisiana residents were asked to boil water because of widespread disruptions in electricity and natural gas services after Hurricane Rita. We sought to assess awareness of boil water orders and familiarity with household water disinfection techniques other than boiling. Methods. We conducted a cross-sectional survey in randomly selected mobile home communities in Louisiana. Results. We interviewed 196 respondents from 8 communities, which had boil water orders instituted. Of 97 who were home while communities were still under orders to boil water, 30 (31%) were aware of the orders and, of those, 24 (80%) said the orders were active while they were living at home; of the 24, 10 (42%) reported boiling water. Overall, 163 (83%) respondents were aware of a method of water disinfection at the household level: boiling (78%), chlorination (27%), and filtration (25%); 87% had a container of chlorine bleach at home. Conclusions. Few hurricane-affected respondents were aware of boil water orders and of alternate water disinfection techniques. Most had access to chlorine and could have practiced household chlorination if disruption in natural gas and electricity made boiling impossible. PMID:17413065
Nonlinear instability and convection in a vertically vibrated granular bed
NASA Astrophysics Data System (ADS)
Shukla, Priyanka; Ansari, I. H.; van der Meer, D.; Lohse, Detlef; Alam, Meheboob
2015-11-01
The nonlinear instability of the density-inverted granular Leidenfrost state and the resulting convective motion in strongly shaken granular matter are analysed via a weakly nonlinear analysis. Under a quasi-steady ansatz, the base state temperature decreases with increasing height away from from the vibrating plate, but the density profile consists of three distinct regions: (i) a collisional dilute layer at the bottom, (ii) a levitated dense layer at some intermediate height and (iii) a ballistic dilute layer at the top of the granular bed. For the nonlinear stability analysis, the nonlinearities up-to cubic order in perturbation amplitude are retained, leading to the Landau equation. The genesis of granular convection is shown to be tied to a supercritical pitchfork bifurcation from the Leidenfrost state. Near the bifurcation point the equilibrium amplitude is found to follow a square-root scaling law, Ae √{ ▵} , with the distance ▵ from bifurcation point. The strength of convection is maximal at some intermediate value of the shaking strength, with weaker convection both at weaker and stronger shaking. Our theory predicts a novel floating-convection state at very strong shaking.
Acoustic emission feedback control for control of boiling in a microwave oven
White, Terry L.
1991-01-01
An acoustic emission based feedback system for controlling the boiling level of a liquid medium in a microwave oven is provided. The acoustic emissions from the medium correlated with surface boiling is used to generate a feedback control signal proportional to the level of boiling of the medium. This signal is applied to a power controller to automatically and continuoulsly vary the power applied to the oven to control the boiling at a selected level.
Water boiling inside carbon nanotubes: toward efficient drug release.
Chaban, Vitaly V; Prezhdo, Oleg V
2011-07-26
We show using molecular dynamics simulation that spatial confinement of water inside carbon nanotubes (CNTs) substantially increases its boiling temperature and that a small temperature growth above the boiling point dramatically raises the inside pressure. Capillary theory successfully predicts the boiling point elevation down to 2 nm, below which large deviations between the theory and atomistic simulation take place. Water behaves qualitatively different inside narrow CNTs, exhibiting transition into an unusual phase, where pressure is gas-like and grows linearly with temperature, while the diffusion constant is temperature-independent. Precise control over boiling by CNT diameter, together with the rapid growth of inside pressure above the boiling point, suggests a novel drug delivery protocol. Polar drug molecules are packaged inside CNTs; the latter are delivered into living tissues and heated by laser. Solvent boiling facilitates drug release.
Interactions between cumulus convection and its environment as revealed by the MC3E sounding array
Xie, Shaocheng; Zhang, Yunyan; Giangrande, Scott E.; ...
2014-10-27
This study attempts to understand interactions between midlatitude convective systems and their environments through a heat and moisture budget analysis using the sounding data collected from the Midlatitude Continental Convective Clouds Experiment (MC3E) in central Oklahoma. Distinct large-scale structures and diabatic heating and drying profiles are presented for cases of weaker and elevated thunderstorms as well as intense squall line and supercell thunderstorm events during the campaign. The elevated cell events were nocturnal convective systems occurring in an environment having low convective available potential energy (CAPE) and a very dry boundary layer. In contrast, deeper convective events happened during themore » morning into early afternoon within an environment associated with large CAPE and a near-saturated boundary layer. As the systems reached maturity, the diagnosed diabatic heating in the latter deep convective cases was much stronger and of greater vertical extent than the former. Both groups showed considerable diabatic cooling in the lower troposphere, associated with the evaporation of precipitation and low-level clouds. The horizontal advection of moisture also played a dominant role in moistening the lower troposphere, particularly for the deeper convective events, wherein the near surface southeasterly flow allows persistent low-level moisture return from the Gulf of Mexico to support convection. The moisture convergence often was present before these systems develop, suggesting a strong correlation between the large-scale moisture convergence and convection. As a result, sensitivity tests indicated that the uncertainty in the surface precipitation and the size of analysis domain mainly affected the magnitude of these analyzed fields rather than their vertical structures.« less
NASA Astrophysics Data System (ADS)
Al-Ajmi, R. M.; Abou-Ziyan, H. Z.; Mahmoud, M. A.
2012-01-01
This paper reports the results of a comprehensive study that aimed at identifying best neural network architecture and parameters to predict subcooled boiling characteristics of engine oils. A total of 57 different neural networks (NNs) that were derived from 14 different NN architectures were evaluated for four different prediction cases. The NNs were trained on experimental datasets performed on five engine oils of different chemical compositions. The performance of each NN was evaluated using a rigorous statistical analysis as well as careful examination of smoothness of predicted boiling curves. One NN, out of the 57 evaluated, correctly predicted the boiling curves for all cases considered either for individual oils or for all oils taken together. It was found that the pattern selection and weight update techniques strongly affect the performance of the NNs. It was also revealed that the use of descriptive statistical analysis such as R2, mean error, standard deviation, and T and slope tests, is a necessary but not sufficient condition for evaluating NN performance. The performance criteria should also include inspection of the smoothness of the predicted curves either visually or by plotting the slopes of these curves.
The decrease of cylindrical pempek quality during boiling
NASA Astrophysics Data System (ADS)
Karneta, R.; Gultom, N. F.
2017-09-01
The research objective was to study the effects of temperature and formulation on quality of pempek lenjer during boiling. Treatments in this study were four levels of pempek formulation and five levels of temperature. Data was processed by using analysis of variance (Anova). If test results showed that samples were significantly different or highly significantly different, then further test was conducted by using Honestly Significant Different. The results showed that chemical analysis showed that fish dominant formula of cylindrical pempek had higher water content, protein content, lipid content and ash content than that of tapioca starch dominant formula, but it had lower carbohydrate content and fibre content than that of tapioca starch dominant formula.The higher the temperature at center point of cylindrical pempek, the lower the chemical quality of cylindrical pempek. The effect of formula on physical quality of cylindrical pempek showed that tapioca starch dominant formula had more rubbery texture, more neutral pH and brighter color than that of fish dominant formula.The temperature change had no significant effect on texture and pH of cylindrical pempek, but it had significant effect on lightness, intensity and chromatic color especially after exceeding optimum time of boiling.
On the numerical treatment of nonlinear source terms in reaction-convection equations
NASA Technical Reports Server (NTRS)
Lafon, A.; Yee, H. C.
1992-01-01
The objectives of this paper are to investigate how various numerical treatments of the nonlinear source term in a model reaction-convection equation can affect the stability of steady-state numerical solutions and to show under what conditions the conventional linearized analysis breaks down. The underlying goal is to provide part of the basic building blocks toward the ultimate goal of constructing suitable numerical schemes for hypersonic reacting flows, combustions and certain turbulence models in compressible Navier-Stokes computations. It can be shown that nonlinear analysis uncovers much of the nonlinear phenomena which linearized analysis is not capable of predicting in a model reaction-convection equation.
When water does not boil at the boiling point.
Chang, Hasok
2007-03-01
Every schoolchild learns that, under standard pressure, pure water always boils at 100 degrees C. Except that it does not. By the late 18th century, pioneering scientists had already discovered great variations in the boiling temperature of water under fixed pressure. So, why have most of us been taught that the boiling point of water is constant? And, if it is not constant, how can it be used as a 'fixed point' for the calibration of thermometers? History of science has the answers.
Nucleate Pool Boiling Performance of Smooth and Finned Tube Bundles in R-113 and R-114/Oil Mixtures
1989-06-01
tfilm Film thermodynamic temperature (K) Tfilm Film Celcius temperature (C) Tldl Liquid temperature (C) Tld2 Liquid temperature (C) Tn Tube wall local...surface immersed in a pool of saturated liquid is the most thoroughly studied boiling heat-transfer mechanism, when compared to partial film boiling and... film boiling. Figure 2.1 shows the characteristic boiling curve of a heated surface immersed in a froon. As the surface is heated up, heat is
Analysis and modeling of tropical convection observed by CYGNSS
NASA Astrophysics Data System (ADS)
Lang, T. J.; Li, X.; Roberts, J. B.; Mecikalski, J. R.
2017-12-01
The Cyclone Global Navigation Satellite System (CYGNSS) is a multi-satellite constellation that utilizes Global Positioning System (GPS) reflectometry to retrieve near-surface wind speeds over the ocean. While CYGNSS is primarily aimed at measuring wind speeds in tropical cyclones, our research has established that the mission may also provide valuable insight into the relationships between wind-driven surface fluxes and general tropical oceanic convection. Currently, we are examining organized tropical convection using a mixture of CYGNSS level 1 through level 3 data, IMERG (Integrated Multi-satellite Retrievals for Global Precipitation Measurement), and other ancillary datasets (including buoys, GPM level 1 and 2 data, as well as ground-based radar). In addition, observing system experiments (OSEs) are being performed using hybrid three-dimensional variational assimilation to ingest CYGNSS observations into a limited-domain, convection-resolving model. Our focus for now is on case studies of convective evolution, but we will also report on progress toward statistical analysis of convection sampled by CYGNSS. Our working hypothesis is that the typical mature phase of organized tropical convection is marked by the development of a sharp gust-front boundary from an originally spatially broader but weaker wind speed change associated with precipitation. This increase in the wind gradient, which we demonstrate is observable by CYGNSS, likely helps to focus enhanced turbulent fluxes of convection-sustaining heat and moisture near the leading edge of the convective system where they are more easily ingested by the updraft. Progress on the testing and refinement of this hypothesis, using a mixture of observations and modeling, will be reported.
A numerical investigation of the effect of surface wettability on the boiling curve.
Hsu, Hua-Yi; Lin, Ming-Chieh; Popovic, Bridget; Lin, Chii-Ruey; Patankar, Neelesh A
2017-01-01
Surface wettability is recognized as playing an important role in pool boiling and the corresponding heat transfer curve. In this work, a systematic study of pool boiling heat transfer on smooth surfaces of varying wettability (contact angle range of 5° - 180°) has been conducted and reported. Based on numerical simulations, boiling curves are calculated and boiling dynamics in each regime are studied using a volume-of-fluid method with contact angle model. The calculated trends in critical heat flux and Leidenfrost point as functions of surface wettability are obtained and compared with prior experimental and theoretical predictions, giving good agreement. For the first time, the effect of contact angle on the complete boiling curve is shown. It is demonstrated that the simulation methodology can be used for studying pool boiling and related dynamics and providing more physical insights.
A numerical investigation of the effect of surface wettability on the boiling curve
Lin, Ming-Chieh; Popovic, Bridget; Lin, Chii-Ruey; Patankar, Neelesh A.
2017-01-01
Surface wettability is recognized as playing an important role in pool boiling and the corresponding heat transfer curve. In this work, a systematic study of pool boiling heat transfer on smooth surfaces of varying wettability (contact angle range of 5° − 180°) has been conducted and reported. Based on numerical simulations, boiling curves are calculated and boiling dynamics in each regime are studied using a volume-of-fluid method with contact angle model. The calculated trends in critical heat flux and Leidenfrost point as functions of surface wettability are obtained and compared with prior experimental and theoretical predictions, giving good agreement. For the first time, the effect of contact angle on the complete boiling curve is shown. It is demonstrated that the simulation methodology can be used for studying pool boiling and related dynamics and providing more physical insights. PMID:29125847
A Novel Role of Three Dimensional Graphene Foam to Prevent Heater Failure during Boiling
Ahn, Ho Seon; Kim, Ji Min; Park, Chibeom; Jang, Ji-Wook; Lee, Jae Sung; Kim, Hyungdae; Kaviany, Massoud; Kim, Moo Hwan
2013-01-01
We report a novel boiling heat transfer (NBHT) in reduced graphene oxide (RGO) suspended in water (RGO colloid) near critical heat flux (CHF), which is traditionally the dangerous limitation of nucleate boiling heat transfer because of heater failure. When the heat flux reaches the maximum value (CHF) in RGO colloid pool boiling, the wall temperature increases gradually and slowly with an almost constant heat flux, contrary to the rapid wall temperature increase found during water pool boiling. The gained time by NBHT would provide the safer margin of the heat transfer and the amazing impact on the thermal system as the first report of graphene application. In addition, the CHF and boiling heat transfer performance also increase. This novel boiling phenomenon can effectively prevent heater failure because of the role played by the self-assembled three-dimensional foam-like graphene network (SFG). PMID:23743619
Introductory analysis of Bénard Marangoni convection
NASA Astrophysics Data System (ADS)
Maroto, J. A.; Pérez-Muñuzuri, V.; Romero-Cano, M. S.
2007-03-01
We describe experiments on Bénard-Marangoni convection which permit a useful understanding of the main concepts involved in this phenomenon such as, for example, Bénard cells, aspect ratio, Rayleigh and Marangoni numbers, Crispation number and critical conditions. In spite of the complexity of convection theory, we carry out a simple and introductory analysis which has the additional advantage of providing very suggestive experiments. As a consequence, we recommend our device for use as a laboratory experiment for undergraduate students of the thermodynamics of nonlinear and fluid physics.
Lubkowitz, Joaquin A; Meneghini, Roberto I
2002-01-01
This work presents the carrying out of boiling-point distributions by simulated distillation with direct-column heating rather than oven-column heating. Column-heating rates of 300 degrees C/min are obtained yielding retention times of 73 s for n-tetratetracontane. The calibration curves of the retention time versus the boiling point, in the range of n-pentane to n-tetratetracontane, are identical to those obtained by slower oven-heating rates. The boiling-point distribution of the reference gas oil is compared with that obtained with column oven heating at rates of 15 to 40 degrees C/min. The results show boiling-point distribution values nearly the same (1-2 degrees F) as those obtained with oven column heating from the initial boiling point to 80% distilled off. Slightly higher differences are obtained (3-4 degrees F) for the 80% distillation to final boiling-point interval. Nonetheless, allowed consensus differences are never exceeded. Precision of the boiling-point distributions (expressed as standard deviations) are 0.1-0.3% for the data obtained in the direct column-heating mode.
Compressible Analysis of Bénard Convection of Magneto Rotatory Couple-Stress Fluid
NASA Astrophysics Data System (ADS)
Mehta, C. B.; Singh, M.
2018-02-01
Thermal Instability (Benard's Convection) in the presence of uniform rotation and uniform magnetic field (separately) is studied. Using the linearized stability theory and normal mode analyses the dispersion relation is obtained in each case. In the case of rotatory Benard's stationary convection compressibility and rotation postpone the onset of convection whereas the couple-stress have duel character onset of convection depending on rotation parameter. While in the absence of rotation couple-stress always postpones the onset of convection. On the other hand, magnetic field on thermal instability problem on couple-stress fluid for stationary convection couple-stress parameter and magnetic field postpones the onset of convection. The effect of compressibility also postpones the onset of convection in both cases as rotation and magnetic field. Graphs have been plotted by giving numerical values to the parameters to depict the stationary characteristics. Further, the magnetic field and rotation are found to introduce oscillatory modes which were non-existent in their absence and then the principle of exchange of stability is valid. The sufficient conditions for non-existence of overstability are also obtained.
Alkali metal pool boiler life tests for a 25 kWe advanced Stirling conversion system
NASA Technical Reports Server (NTRS)
Anderson, W. G.; Rosenfeld, J. H.; Noble, J.
1991-01-01
The overall operating temperature and efficiency of solar-powered Stirling engines can be improved by adding an alkali metal pool boiler heat transport system to supply heat more uniformly to the heater head tubes. One issue with liquid metal pool boilers is unstable boiling. Stable boiling is obtained with an enhanced boiling surface containing nucleation sites that promote continuous boiling. Over longer time periods, it is possible that the boiling behavior of the system will change. An 800-h life test was conducted to verify that pool boiling with the chosen fluid/surface combination remains stable as the system ages. The apparatus uses NaK boiling on a - 100 + 140 stainless steel sintered porous layer, with the addition of a small amount of xenon. Pool boiling remained stable to the end of life test. The pool boiler life test included a total of 82 cold starts, to simulate startup each morning, and 60 warm restarts, to simulate cloud cover transients. The behavior of the cold and warm starts showed no significant changes during the life test. In the experiments, the fluid/surface combination provided stable, high-performance boiling at the operating temperature of 700 C. Based on these experiments, a pool boiler was designed for a full-scale 25-kWe Stirling system.
Evaluation of fresh pasta-making properties of extra-strong common wheat (Triticum aestivum L.).
Ito, Miwako; Maruyama-Funatsuki, Wakako; Ikeda, Tatsuya M; Nishio, Zenta; Nagasawa, Koichi; Tabiki, Tadashi; Yamauchi, Hiroaki
2012-12-01
The relationship between characterictics of flour of common wheat varieties and fresh pasta-making qualitites was examined, and the fresh pasta-making properties of extra-strong varieties that have extra-strong dough were evaluated. There was a positive correlation between mixing time (PT) and hardness of boiled pasta, indicating that the hardness of boiled pasta was affected by dough properties. Boiled pasta made from extra-strong varieties, Yumechikara, Hokkai 262 and Hokkai 259, was harder than that from other varieties and commercial flour. There was a negative correlation between flour protein content and brightness of boiled pasta. The colors of boiled pasta made from Yumechikara and Hokkai 262 grown under the condition of standard manuring culture were superior to those of boiled pasta made from other varieties. Discoloration of boiled pasta made from Yumechikara grown under the condition of heavy manuring culture was caused by increase of flour protein content. On the other hand, discoloration of boiled pasta made from Hokkai 262 grown under the condition of heavy manuring culture was less than that of boiled pasta made from Yumechikara. These results indicate that pasta made from extra-strong wheat varieties has good hardness and that Hokkai 262 has extraordinary fresh pasta-making properties.
Evaluation of fresh pasta-making properties of extra-strong common wheat (Triticum aestivum L.)
Ito, Miwako; Maruyama-Funatsuki, Wakako; Ikeda, Tatsuya M.; Nishio, Zenta; Nagasawa, Koichi; Tabiki, Tadashi; Yamauchi, Hiroaki
2012-01-01
The relationship between characterictics of flour of common wheat varieties and fresh pasta-making qualitites was examined, and the fresh pasta-making properties of extra-strong varieties that have extra-strong dough were evaluated. There was a positive correlation between mixing time (PT) and hardness of boiled pasta, indicating that the hardness of boiled pasta was affected by dough properties. Boiled pasta made from extra-strong varieties, Yumechikara, Hokkai 262 and Hokkai 259, was harder than that from other varieties and commercial flour. There was a negative correlation between flour protein content and brightness of boiled pasta. The colors of boiled pasta made from Yumechikara and Hokkai 262 grown under the condition of standard manuring culture were superior to those of boiled pasta made from other varieties. Discoloration of boiled pasta made from Yumechikara grown under the condition of heavy manuring culture was caused by increase of flour protein content. On the other hand, discoloration of boiled pasta made from Hokkai 262 grown under the condition of heavy manuring culture was less than that of boiled pasta made from Yumechikara. These results indicate that pasta made from extra-strong wheat varieties has good hardness and that Hokkai 262 has extraordinary fresh pasta-making properties. PMID:23341748
Enabling Highly Effective Boiling from Superhydrophobic Surfaces
NASA Astrophysics Data System (ADS)
Allred, Taylor P.; Weibel, Justin A.; Garimella, Suresh V.
2018-04-01
A variety of industrial applications such as power generation, water distillation, and high-density cooling rely on heat transfer processes involving boiling. Enhancements to the boiling process can improve the energy efficiency and performance across multiple industries. Highly wetting textured surfaces have shown promise in boiling applications since capillary wicking increases the maximum heat flux that can be dissipated. Conversely, highly nonwetting textured (superhydrophobic) surfaces have been largely dismissed for these applications as they have been shown to promote formation of an insulating vapor film that greatly diminishes heat transfer efficiency. The current Letter shows that boiling from a superhydrophobic surface in an initial Wenzel state, in which the surface texture is infiltrated with liquid, results in remarkably low surface superheat with nucleate boiling sustained up to a critical heat flux typical of hydrophilic wetting surfaces, and thus upends this conventional wisdom. Two distinct boiling behaviors are demonstrated on both micro- and nanostructured superhydrophobic surfaces based on the initial wetting state. For an initial surface condition in which vapor occupies the interstices of the surface texture (Cassie-Baxter state), premature film boiling occurs, as has been commonly observed in the literature. However, if the surface texture is infiltrated with liquid (Wenzel state) prior to boiling, drastically improved thermal performance is observed; in this wetting state, the three-phase contact line is pinned during vapor bubble growth, which prevents the development of a vapor film over the surface and maintains efficient nucleate boiling behavior.
Xu, Zhanfeng; Bunker, Christopher E; Harrington, Peter de B
2010-11-01
Monitoring the changes of jet fuel physical properties is important because fuel used in high-performance aircraft must meet rigorous specifications. Near-infrared (NIR) spectroscopy is a fast method to characterize fuels. Because of the complexity of NIR spectral data, chemometric techniques are used to extract relevant information from spectral data to accurately classify physical properties of complex fuel samples. In this work, discrimination of fuel types and classification of flash point, freezing point, boiling point (10%, v/v), boiling point (50%, v/v), and boiling point (90%, v/v) of jet fuels (JP-5, JP-8, Jet A, and Jet A1) were investigated. Each physical property was divided into three classes, low, medium, and high ranges, using two evaluations with different class boundary definitions. The class boundaries function as the threshold to alarm when the fuel properties change. Optimal partial least squares discriminant analysis (oPLS-DA), fuzzy rule-building expert system (FuRES), and support vector machines (SVM) were used to build the calibration models between the NIR spectra and classes of physical property of jet fuels. OPLS-DA, FuRES, and SVM were compared with respect to prediction accuracy. The validation of the calibration model was conducted by applying bootstrap Latin partition (BLP), which gives a measure of precision. Prediction accuracy of 97 ± 2% of the flash point, 94 ± 2% of freezing point, 99 ± 1% of the boiling point (10%, v/v), 98 ± 2% of the boiling point (50%, v/v), and 96 ± 1% of the boiling point (90%, v/v) were obtained by FuRES in one boundaries definition. Both FuRES and SVM obtained statistically better prediction accuracy over those obtained by oPLS-DA. The results indicate that combined with chemometric classifiers NIR spectroscopy could be a fast method to monitor the changes of jet fuel physical properties.
Progress and challenges with Warn-on-Forecast
NASA Astrophysics Data System (ADS)
Stensrud, David J.; Wicker, Louis J.; Xue, Ming; Dawson, Daniel T.; Yussouf, Nusrat; Wheatley, Dustan M.; Thompson, Therese E.; Snook, Nathan A.; Smith, Travis M.; Schenkman, Alexander D.; Potvin, Corey K.; Mansell, Edward R.; Lei, Ting; Kuhlman, Kristin M.; Jung, Youngsun; Jones, Thomas A.; Gao, Jidong; Coniglio, Michael C.; Brooks, Harold E.; Brewster, Keith A.
2013-04-01
The current status and challenges associated with two aspects of Warn-on-Forecast-a National Oceanic and Atmospheric Administration research project exploring the use of a convective-scale ensemble analysis and forecast system to support hazardous weather warning operations-are outlined. These two project aspects are the production of a rapidly-updating assimilation system to incorporate data from multiple radars into a single analysis, and the ability of short-range ensemble forecasts of hazardous convective weather events to provide guidance that could be used to extend warning lead times for tornadoes, hailstorms, damaging windstorms and flash floods. Results indicate that a three-dimensional variational assimilation system, that blends observations from multiple radars into a single analysis, shows utility when evaluated by forecasters in the Hazardous Weather Testbed and may help increase confidence in a warning decision. The ability of short-range convective-scale ensemble forecasts to provide guidance that could be used in warning operations is explored for five events: two tornadic supercell thunderstorms, a macroburst, a damaging windstorm and a flash flood. Results show that the ensemble forecasts of the three individual severe thunderstorm events are very good, while the forecasts from the damaging windstorm and flash flood events, associated with mesoscale convective systems, are mixed. Important interactions between mesoscale and convective-scale features occur for the mesoscale convective system events that strongly influence the quality of the convective-scale forecasts. The development of a successful Warn-on-Forecast system will take many years and require the collaborative efforts of researchers and operational forecasters to succeed.
NASA Technical Reports Server (NTRS)
Nahra, Henry K.; Hall, Nancy R.; Hasan, Mohammad M.; Wagner, James D.; May, Rochelle L.; Mackey, Jeffrey R.; Kolacz, John S.; Butcher, Robert L.; Frankenfield, Bruce J.; Mudawar, Issam;
2013-01-01
Flow boiling and condensation have been identified as two key mechanisms for heat transport that are vital for achieving weight and volume reduction as well as performance enhancement in future space systems. Since inertia driven flows are demanding on power usage, lower flows are desirable. However, in microgravity, lower flows are dominated by forces other than inertia (like the capillary force). It is of paramount interest to investigate limits of low flows beyond which the flow is inertial enough to be gravity independent. One of the objectives of the Flow Boiling and Condensation Flight Experiment sets to investigate these limits for flow boiling and condensation. A two-phase flow loop consisting of a Flow Boiling Module and two Condensation Modules has been developed to experimentally study flow boiling condensation heat transfer in the reduced gravity environment provided by the reduced gravity platform. This effort supports the development of a flow boiling and condensation facility for the International Space Station (ISS). The closed loop test facility is designed to deliver the test fluid, FC-72 to the inlet of any one of the test modules at specified thermodynamic and flow conditions. The zero-g-aircraft tests will provide subcooled and saturated flow boiling critical heat flux and flow condensation heat transfer data over wide range of flow velocities. Additionally, these tests will verify the performance of all gravity sensitive components, such as evaporator, condenser and accumulator associated with the two-phase flow loop. We will present in this paper the breadboard development and testing results which consist of detailed performance evaluation of the heater and condenser combination in reduced and normal gravity. We will also present the design of the reduced gravity aircraft rack and the results of the ground flow boiling heat transfer testing performed with the Flow Boiling Module that is designed to investigate flow boiling heat transfer and Critical Heat Flux (CHF) phenomena.
NASA Astrophysics Data System (ADS)
Hermawan, E.
2018-04-01
This study is mainly concerned an application of Mini Automatic Weather Station (MAWS) at Kototabang, West Sumatera nearby the location of an Equatorial Atmosphere Radar (EAR) side. We are interest to use this data to investigate the propagation of the Madden-Julian Oscillation (MJO). We examined of daily MAWS data for 3 years observations started from January 2001 to Mei 2004. By applying wavelet analysis, we found the MJO at Kototabang have 32 days oscillations as shown in Fig.1 below. In this study, we concentrate just for local mechanis only. We will show in this paper that at the phase of the MJO with a dipole structure to the convection anomalies, there is enhanced tropical convection over the eastern Indian Ocean and reduced convection over the western Pacific. Over the equatorial western Indian Ocean, the equatorial Rossby wave response to the west of the enhanced convection includes a region of anomalous surface divergence associated with the anomalous surface westerlies and pressure ridge. This tends to suppress ascent in the boundary layer and shuts off the deep convection, eventually leading to a convective anomaly of the opposite sign. Over the Indonesian sector, the equatorial Kelvin wave response to the east of the enhanced convection includes a region of anomalous surface convergence into the anomalous equatorial surface easterlies and pressure trough, which will tend to favour convection in this region. The Indonesian sector is also influenced by an equatorial Rossby wave response (of opposite sign) to the west of the reduced convection over the western Pacific, which also has a region of anomalous surface convergence associated with its anomalous equatorial surface easterlies and pressure trough. Hence, convective anomalies of either sign tend to erode themselves from the west and initiate a convective anomaly of opposite sign via their equatorial Rossby wave response, and expand to the east via their equatorial Kelvin wave response.
NASA Technical Reports Server (NTRS)
Gao, Shou-Ting; Ping, Fan; Li, Xiao-Fan; Tao, Wei-Kuo
2004-01-01
Although dry/moist potential vorticity is a useful physical quantity for meteorological analysis, it cannot be applied to the analysis of 2D simulations. A convective vorticity vector (CVV) is introduced in this study to analyze 2D cloud-resolving simulation data associated with 2D tropical convection. The cloud model is forced by the vertical velocity, zonal wind, horizontal advection, and sea surface temperature obtained from the TOGA COARE, and is integrated for a selected 10-day period. The CVV has zonal and vertical components in the 2D x-z frame. Analysis of zonally-averaged and mass-integrated quantities shows that the correlation coefficient between the vertical component of the CVV and the sum of the cloud hydrometeor mixing ratios is 0.81, whereas the correlation coefficient between the zonal component and the sum of the mixing ratios is only 0.18. This indicates that the vertical component of the CVV is closely associated with tropical convection. The tendency equation for the vertical component of the CVV is derived and the zonally-averaged and mass-integrated tendency budgets are analyzed. The tendency of the vertical component of the CVV is determined by the interaction between the vorticity and the zonal gradient of cloud heating. The results demonstrate that the vertical component of the CVV is a cloud-linked parameter and can be used to study tropical convection.
NASA Astrophysics Data System (ADS)
Arifan, Fahmi; Winarni, Sri; Handoyo, Gentur; Nurdiana, Asri; Nabila Rahma H, Afkar; Risdiyanti, Sri
2018-05-01
There are so many jasmine plantations without any preservation and post production in Kaliprau, Pemalang. The aims of this research are analyzing the amount of antioxidant and organoleptic-hedonic test. The measurement of antioxidant used in this research is using DPPH. The organoleptic and hedonic test on 25 respondents. Jasmines that been used on this research are the flower and the root part. Through the test, some results have been found from the jasmine tea’s sampling with the boiling time of 15 minutes and it contain antioxidant for about 55.0% and 74.84% for the jasmine root tea. Whereas for the boiling time of 30 minutes, it contained 54.00% of antioxidant for the jasmine tea and 84.00% of antioxidant in jasmine root tea. Jasmine tea and jasmine root tea contains flavonoids. Despite the large amount of antioxidant were found in jasmine tea and jasmine root tea (50-100%). There’s a decreasing of antioxidant amount found in the samples, along with the prolonged boiling time. 84% of tresponden like the scent, flavor, color and the texture of jasmine tea and jasmine root tea. These products are finally accepted by the people and have its large amount of antioxidant contain for the jasmine tea.
Paz, Concepción; Conde, Marcos; Porteiro, Jacobo; Concheiro, Miguel
2017-01-01
This work introduces the use of machine vision in the massive bubble recognition process, which supports the validation of boiling models involving bubble dynamics, as well as nucleation frequency, active site density and size of the bubbles. The two algorithms presented are meant to be run employing quite standard images of the bubbling process, recorded in general-purpose boiling facilities. The recognition routines are easily adaptable to other facilities if a minimum number of precautions are taken in the setup and in the treatment of the information. Both the side and front projections of subcooled flow-boiling phenomenon over a plain plate are covered. Once all of the intended bubbles have been located in space and time, the proper post-process of the recorded data become capable of tracking each of the recognized bubbles, sketching their trajectories and size evolution, locating the nucleation sites, computing their diameters, and so on. After validating the algorithm’s output against the human eye and data from other researchers, machine vision systems have been demonstrated to be a very valuable option to successfully perform the recognition process, even though the optical analysis of bubbles has not been set as the main goal of the experimental facility. PMID:28632158
NASA Astrophysics Data System (ADS)
Maeda, Yuta; Kato, Aitaro; Yamanaka, Yoshiko
2017-02-01
Although phreatic eruptions are common volcanic phenomena that sometimes result in significant disasters, their dynamics are poorly understood. In this study, we address the dynamics of the phreatic eruption of Mount Ontake, Japan, in 2014 based on analyses of a tilt change observed immediately (450 s) before the eruption onset. We conducted two sets of analysis: a waveform inversion and a modified phase-space analysis. Our waveform inversion of the tilt signal points to a vertical tensile crack at a depth of 1100 m. Our modified phase-space analysis suggests that the tilt change was at first a linear function in time that then switched to exponential growth. We constructed simple analytical models to explain these temporal functions. The linear function was explained by the boiling of underground water controlled by a constant heat supply from a greater depth. The exponential function was explained by the decompression-induced boiling of water and the upward Darcy flow of the water vapor through a permeable region of small cracks that were newly created in response to ongoing boiling. We interpret that this region was intact prior to the start of the tilt change, and thus, it has acted as a permeability barrier for the upward migration of fluids; it was a breakage of this barrier that led to the eruption.
Ten Year Analysis of Tropopause-Overshooting Convection Using GridRad Data
NASA Astrophysics Data System (ADS)
Cooney, John W.; Bowman, Kenneth P.; Homeyer, Cameron R.; Fenske, Tyler M.
2018-01-01
Convection that penetrates the tropopause (overshooting convection) rapidly transports air from the lower troposphere to the lower stratosphere, potentially mixing air between the two layers. This exchange of air can have a substantial impact on the composition, radiation, and chemistry of the upper troposphere and lower stratosphere (UTLS). In order to improve our understanding of the role convection plays in the transport of trace gases across the tropopause, this study presents a 10 year analysis of overshooting convection for the eastern two thirds of the contiguous United States for March through August of 2004 to 2013 based on radar observations. Echo top altitudes are estimated at hourly intervals using high-resolution, three-dimensional, gridded, radar reflectivity fields created by merging observations from available radars in the National Oceanic and Atmospheric Administration Next Generation Weather Radar (NEXRAD) network. Overshooting convection is identified by comparing echo top altitudes with tropopause altitudes derived from the ERA-Interim reanalysis. It is found that overshooting convection is most common in the central United States, with a weak secondary maximum along the southeast coast. The maximum number of overshooting events occur consistently between 2200 and 0200 UTC. Most overshooting events occur in May, June, and July when convection is deepest and the tropopause altitude is relatively low. Approximately 45% of the analyzed overshooting events (those with echo tops at least 1 km above the tropopause) have echo tops extending above the 380 K level into the stratospheric overworld.
Experimental study of the spill and vaporization of a volatile liquid.
Bohl, Douglas; Jackson, Gregory
2007-02-09
Pool and vapor cloud characteristics of an acetone spill issuing from the downstream wall of a flow obstruction oriented perpendicular to a uniform flow were investigated experimentally. Data indicate that the spill event was largely governed by the temperature of the surface in relation to the boiling point of the spilled liquid. The free stream velocity (ranging from 0.75 to 3.0m/s) also impacted the spreading of the spill. Planar laser-induced fluorescence (PLIF) was used to measure acetone vapor concentrations during the transient pool spreading and vaporization in a window 60cm long by 50cm high and located downstream of the 16cm high obstruction. The recirculation region induced by the flow obstruction caused upstream transport of the acetone vapor along the spill surface, after which it was convected vertically along the obstruction wall before being entrained into the flow and convected downstream. The recirculating flow caused regions of vapor within the flammability limits to be localized near the flow obstruction. These regions moved into and out of the measurement plane by large three-dimensional flow structures. The flammable region of the evolved vapor cloud was observed to grow well past the downstream edge of the measurement domain. With decreasing wind speeds, both the mass of acetone vapor within the flammability limits and the total spill event time increased significantly. The data presented herein provides a basis for validating future spill models of hazardous chemical releases, where complex turbulent flow modeling must be coupled with spill spreading and vaporization dynamics.
Experimental evidence of the vapor recoil mechanism in the boiling crisis.
Nikolayev, V S; Chatain, D; Garrabos, Y; Beysens, D
2006-11-03
Boiling crisis experiments are carried out in the vicinity of the liquid-gas critical point of H2. A magnetic gravity compensation setup is used to enable nucleate boiling at near critical pressure. The measurements of the critical heat flux that defines the threshold for the boiling crisis are carried out as a function of the distance from the critical point. The obtained power law behavior and the boiling crisis dynamics agree with the predictions of the vapor recoil mechanism and disagree with the classical vapor column mechanism.
Conversion of direct process high-boiling residue to monosilanes
Brinson, Jonathan Ashley; Crum, Bruce Robert; Jarvis, Jr., Robert Frank
2000-01-01
A process for the production of monosilanes from the high-boiling residue resulting from the reaction of hydrogen chloride with silicon metalloid in a process typically referred to as the "direct process." The process comprises contacting a high-boiling residue resulting from the reaction of hydrogen chloride and silicon metalloid, with hydrogen gas in the presence of a catalytic amount of aluminum trichloride effective in promoting conversion of the high-boiling residue to monosilanes. The present process results in conversion of the high-boiling residue to monosilanes. At least a portion of the aluminum trichloride catalyst required for conduct of the process may be formed in situ during conduct of the direct process and isolation of the high-boiling residue.
NASA Technical Reports Server (NTRS)
Thompson, E.
1979-01-01
A finite element computer code for the analysis of mantle convection is described. The coupled equations for creeping viscous flow and heat transfer can be solved for either a transient analysis or steady-state analysis. For transient analyses, either a control volume or a control mass approach can be used. Non-Newtonian fluids with viscosities which have thermal and spacial dependencies can be easily incorporated. All material parameters may be written as function statements by the user or simply specified as constants. A wide range of boundary conditions, both for the thermal analysis and the viscous flow analysis can be specified. For steady-state analyses, elastic strain rates can be included. Although this manual was specifically written for users interested in mantle convection, the code is equally well suited for analysis in a number of other areas including metal forming, glacial flows, and creep of rock and soil.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buongiorno, Jacopo; Hu, Lin-wen
2009-07-31
Nanofluids are colloidal dispersions of nanoparticles in water. Many studies have reported very significant enhancement (up to 200%) of the Critical Heat Flux (CHF) in pool boiling of nanofluids (You et al. 2003, Vassallo et al. 2004, Bang and Chang 2005, Kim et al. 2006, Kim et al. 2007). These observations have generated considerable interest in nanofluids as potential coolants for more compact and efficient thermal management systems. Potential Light Water Reactor applications include the primary coolant, safety systems and severe accident management strategies, as reported in other papers (Buongiorno et al. 2008 and 2009). However, the situation of interestmore » in reactor applications is often flow boiling, for which no nanofluid data have been reported so far. In this project we investigated the potential of nanofluids to enhance CHF in flow boiling. Subcooled flow boiling heat transfer and CHF experiments were performed with low concentrations of alumina, zinc oxide, and diamond nanoparticles in water (≤ 0.1 % by volume) at atmospheric pressure. It was found that for comparable test conditions the values of the nanofluid and water heat transfer coefficient (HTC) are similar (within ±20%). The HTC increased with mass flux and heat flux for water and nanofluids alike, as expected in flow boiling. The CHF tests were conducted at 0.1 MPa and at three different mass fluxes (1500, 2000, 2500 kg/m2s) under subcooled conditions. The maximum CHF enhancement was 53%, 53% and 38% for alumina, zinc oxide and diamond, respectively, always obtained at the highest mass flux. A post-mortem analysis of the boiling surface reveals that its morphology is altered by deposition of the particles during nanofluids boiling. A confocal-microscopy-based examination of the test section revealed that nanoparticles deposition not only changes the number of micro-cavities on the surface, but also the surface wettability. A simple model was used to estimate the ensuing nucleation site density changes, but no definitive correlation between the nucleation site density and the heat transfer coefficient data could be found. Wettability of the surface was substantially increased for heater coupons boiled in alumina and zinc oxide nanofluids, and such wettability increase seems to correlate reasonably well with the observed marked CHF enhancement for the respective nanofluids. Interpretation of the experimental data was conducted in light of the governing surface parameters (surface area, contact angle, roughness, thermal conductivity) and existing models. It was found that no single parameter could explain the observed HTC or CHF phenomena.« less
Hayat, Tasawar; Ashraf, Muhammad Bilal; Alsulami, Hamed H.; Alhuthali, Muhammad Shahab
2014-01-01
The objective of present research is to examine the thermal radiation effect in three-dimensional mixed convection flow of viscoelastic fluid. The boundary layer analysis has been discussed for flow by an exponentially stretching surface with convective conditions. The resulting partial differential equations are reduced into a system of nonlinear ordinary differential equations using appropriate transformations. The series solutions are developed through a modern technique known as the homotopy analysis method. The convergent expressions of velocity components and temperature are derived. The solutions obtained are dependent on seven sundry parameters including the viscoelastic parameter, mixed convection parameter, ratio parameter, temperature exponent, Prandtl number, Biot number and radiation parameter. A systematic study is performed to analyze the impacts of these influential parameters on the velocity and temperature, the skin friction coefficients and the local Nusselt number. It is observed that mixed convection parameter in momentum and thermal boundary layers has opposite role. Thermal boundary layer is found to decrease when ratio parameter, Prandtl number and temperature exponent are increased. Local Nusselt number is increasing function of viscoelastic parameter and Biot number. Radiation parameter on the Nusselt number has opposite effects when compared with viscoelastic parameter. PMID:24608594
Hayat, Tasawar; Ashraf, Muhammad Bilal; Alsulami, Hamed H; Alhuthali, Muhammad Shahab
2014-01-01
The objective of present research is to examine the thermal radiation effect in three-dimensional mixed convection flow of viscoelastic fluid. The boundary layer analysis has been discussed for flow by an exponentially stretching surface with convective conditions. The resulting partial differential equations are reduced into a system of nonlinear ordinary differential equations using appropriate transformations. The series solutions are developed through a modern technique known as the homotopy analysis method. The convergent expressions of velocity components and temperature are derived. The solutions obtained are dependent on seven sundry parameters including the viscoelastic parameter, mixed convection parameter, ratio parameter, temperature exponent, Prandtl number, Biot number and radiation parameter. A systematic study is performed to analyze the impacts of these influential parameters on the velocity and temperature, the skin friction coefficients and the local Nusselt number. It is observed that mixed convection parameter in momentum and thermal boundary layers has opposite role. Thermal boundary layer is found to decrease when ratio parameter, Prandtl number and temperature exponent are increased. Local Nusselt number is increasing function of viscoelastic parameter and Biot number. Radiation parameter on the Nusselt number has opposite effects when compared with viscoelastic parameter.
NASA Astrophysics Data System (ADS)
Rasmussen, K. L.; Prein, A. F.; Rasmussen, R. M.; Ikeda, K.; Liu, C.
2017-11-01
Novel high-resolution convection-permitting regional climate simulations over the US employing the pseudo-global warming approach are used to investigate changes in the convective population and thermodynamic environments in a future climate. Two continuous 13-year simulations were conducted using (1) ERA-Interim reanalysis and (2) ERA-Interim reanalysis plus a climate perturbation for the RCP8.5 scenario. The simulations adequately reproduce the observed precipitation diurnal cycle, indicating that they capture organized and propagating convection that most climate models cannot adequately represent. This study shows that weak to moderate convection will decrease and strong convection will increase in frequency in a future climate. Analysis of the thermodynamic environments supporting convection shows that both convective available potential energy (CAPE) and convective inhibition (CIN) increase downstream of the Rockies in a future climate. Previous studies suggest that CAPE will increase in a warming climate, however a corresponding increase in CIN acts as a balancing force to shift the convective population by suppressing weak to moderate convection and provides an environment where CAPE can build to extreme levels that may result in more frequent severe convection. An idealized investigation of fundamental changes in the thermodynamic environment was conducted by shifting a standard atmospheric profile by ± 5 °C. When temperature is increased, both CAPE and CIN increase in magnitude, while the opposite is true for decreased temperatures. Thus, even in the absence of synoptic and mesoscale variations, a warmer climate will provide more CAPE and CIN that will shift the convective population, likely impacting water and energy budgets on Earth.
Geometric effects on bilayer convection in cylindrical containers
NASA Astrophysics Data System (ADS)
Johnson, Duane Thomas
The study of convection in two immiscible fluid layers is of interest for reasons both theoretical as well as applied. Recently, bilayer convection has been used as a model of convection in the earth's mantle. It is also an interesting system to use in the study of pattern formation. Bilayer convection also occurs in a process known as liquid encapsulated crystal growth, which is used to grow compound semiconductors. It is the last application which motivates this study. To analyze bilayer convection, theoretical models, numerical calculations and experiments were used. One theoretical model involves the derivation of the Navier- Stokes and energy equation for two immiscible fluid layers, using the Boussinesq approximation. A weakly nonlinear analysis was also performed to study the behavior of the system slightly beyond the onset of convection. Numerical calculations were necessary to solve both models. The experiments involved a single liquid layer of silicone oil, superposed by a layer of air. The radius and height of each fluid layer were changed to observe different flow patterns at the onset of convection. From the experiments and theory, two major discoveries were made as well as several interesting observations. The first discovery is the existence of codimension-two points-particular aspect ratios where two flow patterns coexist-in cylindrical containers. At these points, dynamic switching between different flow patterns was observed. The second discovery was the effect of air convection on the flow pattern in silicone oil. Historically, air has been considered a passive medium that has no effect on the lower fluid. However, experiments were done to show that for large air heights, convection in the air can cause radial temperature gradients at the liquid interface. These temperature gradients then cause surface tension gradient-driven flows. It was also shown that changing the radius of the container can change the driving force of convection from a surface tension gradient-driven to buoyancy-driven and back again. Finally, the weakly nonlinear analysis was able to give a qualitative description of codimension-two points as well as the change in flow patterns due to the convecting air layer.
A fundamental study of nucleate pool boiling under microgravity
NASA Technical Reports Server (NTRS)
Ervin, Jamie S.; Merte, Herman, Jr.
1991-01-01
An experimental study of incipient boiling in short-term microgravity and with a/g = +/- 1 for pool boiling was performed. Calibrated thin gold films sputtered on a smoothly polished quartz surface were used simultaneously for thermal resistance measurements and heating of the boiling surface. The gold films were used for both transient and quasi-steady heating surface temperature measurements. Two test vessels were constructed for precise measurement and control of fluid temperature and pressure: a laboratory pool boiling vessel for the a/g = +/- experiments and a pool boiling vessel designed for the 131 m free-fall in the NASA Lewis Research Center Microgravity Research Facility for the microgravity tests. Measurements included the heater surface temperature, the pressure near the heating surface, and the bulk liquid temperatures. High speed photography was used in the experiments. With high quality microgravity and the measured initial temperature of the quiescent test fluid, R113, the temperature distribution in the liquid at the moment of boiling inception resulting from an imposed step in heat flux is known with a certainty not possible previously. The types of boiling propagation across the large flat heating surface are categorized; the conditions necessary for their occurrence are described. Explosive boiling propagation with a striking pattern of small scale protuberances over the entire vapor mass periphery not observed previously at low heat flux levels is described. For the heater surface with a/g = -1, a step in the heater surface temperature of short duration was imposed. The resulting liquid temperature distribution at the moment of boiling inception was different from that obtained with a step in heat flux.
Nucleate pool boiling in the long duration low gravity environment of the space shuttle
NASA Technical Reports Server (NTRS)
Hasan, M. M.; Lin, C. S.; Knoll, R. H.; Bentz, M. D.; Meserole, J. S.
1993-01-01
The results are presented of an experimental study of nucleate pool boiling performed in the low gravity environment of the space shuttle. Photographic observations of pool boiling in Freon 113 were obtained during the 'Tank Pressure Control Experiment', flown on the Space Transportation System STS-43 in August 1991. Nucleate boiling data from large (relative to bubble size) flat heating surfaces (0.1046 by 0.0742 m) was obtained at very low heat fluxes (0.22 to 1.19 kw/so m). The system pressure and the bulk liquid subcooling varied in the range of 40 to 60 kPa and 3 to 5 C respectively. Thirty-eight boiling tests, each of 10 min duration for a given heat flux, were conducted. Measurements included the heater power, heater surface temperature, the liquid temperature and the system pressure as functions of heating time. Video data of the first 2 min of heating was recorded for each test. In some tests the video clearly shows the inception of boiling and the growth and departure of bubbles from the surface during the first 2 min of heating. In the absence of video data, the heater temperature variation during heating shows the inception of boiling and stable nucleate boiling. During the stable nucleate boiling, the wall superheat varied between 2.8 to 3.8 C for heat fluxes in the range of 0.95 to 1.19 kw/so m. The wall superheat at the inception of boiling varied between 2 to 13 C.
Nucleate pool boiling in the long duration low gravity environment of the Space Shuttle
NASA Technical Reports Server (NTRS)
Hasan, M. M.; Lin, C. S.; Knoll, R. H.; Bentz, M. D.; Meserole, J. S.
1993-01-01
The results are presented of an experimental study of nucleate pool boiling performed in the low gravity environment of the space shuttle. Photographic observations of pool boiling in Freon 113 were obtained during the 'Tank Pressure Control Experiment,' flown on the Space Transportation System, STS-43 in August 1991. Nucleate boiling data from large (relative to bubble size) flat heating surfaces (0.1046 by 0.0742 m) was obtained at very low heat fluxes (0.22 to 1.19 kW/sq m). The system pressure and the bulk liquid subcooling varied in the range of 40 to 60 kPa and 3 to 5 C respectively. Thirty-eight boiling tests, each of 10-min duration for a given heat flux, were conducted. Measurements included the heater power, heater surface temperature, the liquid temperature and the system pressure as functions of heating time. Video data of the first 2 min of heating was recorded for each test. In some tests the video clearly shows the inception of boiling and the growth and departure of bubbles from the surface during the first 2 min of heating. In the absence of video data, the heater temperature variation during heating shows the inception of boiling and stable nucleate boiling. During the stable nucleate boiling, the wall superheat varied between 2.8 to 3.8 C for heat fluxes in the range of 0.95 to 1.19 kW/sq m. The wall superheat at the inception of boiling varied between 2 to 13 C.
Mining key elements for severe convection prediction based on CNN
NASA Astrophysics Data System (ADS)
Liu, Ming; Pan, Ning; Zhang, Changan; Sha, Hongzhou; Zhang, Bolei; Liu, Liang; Zhang, Meng
2017-04-01
Severe convective weather is a kind of weather disasters accompanied by heavy rainfall, gust wind, hail, etc. Along with recent developments on remote sensing and numerical modeling, there are high-volume and long-term observational and modeling data accumulated to capture massive severe convective events over particular areas and time periods. With those high-volume and high-variety weather data, most of the existing studies and methods carry out the dynamical laws, cause analysis, potential rule study, and prediction enhancement by utilizing the governing equations from fluid dynamics and thermodynamics. In this study, a key-element mining method is proposed for severe convection prediction based on convolution neural network (CNN). It aims to identify the key areas and key elements from huge amounts of historical weather data including conventional measurements, weather radar, satellite, so as numerical modeling and/or reanalysis data. Under this manner, the machine-learning based method could help the human forecasters on their decision-making on operational weather forecasts on severe convective weathers by extracting key information from the real-time and historical weather big data. In this paper, it first utilizes computer vision technology to complete the data preprocessing work of the meteorological variables. Then, it utilizes the information such as radar map and expert knowledge to annotate all images automatically. And finally, by using CNN model, it cloud analyze and evaluate each weather elements (e.g., particular variables, patterns, features, etc.), and identify key areas of those critical weather elements, then help forecasters quickly screen out the key elements from huge amounts of observation data by current weather conditions. Based on the rich weather measurement and model data (up to 10 years) over Fujian province in China, where the severe convective weathers are very active during the summer months, experimental tests are conducted with the new machine-learning method via CNN models. Based on the analysis of those experimental results and case studies, the proposed new method have below benefits for the severe convection prediction: (1) helping forecasters to narrow down the scope of analysis and saves lead-time for those high-impact severe convection; (2) performing huge amount of weather big data by machine learning methods rather relying on traditional theory and knowledge, which provide new method to explore and quantify the severe convective weathers; (3) providing machine learning based end-to-end analysis and processing ability with considerable scalability on data volumes, and accomplishing the analysis work without human intervention.
NASA Technical Reports Server (NTRS)
Davis, J. G.; Scoggins, J. R.
1981-01-01
Data from the Fourth Atmospheric Variability Experiment were used to investigate conditions/factors responsible for the development (local time rate-of-change) of convective instability, wind shear, and vertical motion in areas with varying degrees of convective activity. AVE IV sounding data were taken at 3 or 6 h intervals during a 36 h period on 24-25 April 1975 over approximately the eastern half of the United States. An error analysis was performed for each variable studied.
Measurements of Turbulent Convection Speeds in Multistream Jets Using Time-Resolved PIV
NASA Technical Reports Server (NTRS)
Bridges, James; Wernet, Mark P.
2017-01-01
Convection speeds of turbulent velocities in jets, including multi-stream jets with and without flight stream, were measured using an innovative application of time-resolved particle image velocimetry. The paper describes the unique instrumentation and data analysis that allows the measurement to be made. Extensive data is shown that relates convection speed, mean velocity, and turbulent velocities for multiple jet cases. These data support the overall observation that the local turbulent convection speed is roughly that of the local mean velocity, biased by the relative intensity of turbulence.
Measurements of Turbulence Convection Speeds in Multistream Jets Using Time-Resolved PIV
NASA Technical Reports Server (NTRS)
Bridges, James; Wernet, Mark P.
2017-01-01
Convection speeds of turbulent velocities in jets, including multi-stream jets with and without flight stream, were measured using an innovative application of time-resolved particle image velocimetry. The paper describes the unique instrumentation and data analysis that allows the measurement to be made. Extensive data is shown that relates convection speed, mean velocity, and turbulent velocities for multiple jet cases. These data support the overall observation that the local turbulent convection speed is roughly that of the local mean velocity, biased by the relative intensity of turbulence.
NASA Astrophysics Data System (ADS)
Ariyani, F.; Hermana, I.; Hidayah, I.
2018-03-01
The main problem in boiled salted fish ikan pindang is mucus and mold on the surface of the fish which is produced relatively fast as well as the high level of histamine content especially when scombroid fish species are used as raw material. This study was performed to evaluate the effectiveness of various preservatives to overcome such problems. Three combinations of preservatives P1 (green tea and sorbate), P3 (green tea, piper betel, sorbate), P4 (green tea and piper betel) and P0 (no preservative/control) resulted from the previous study were used in this study. Before being used, the preservatives were tested against deteriorating microorganisms commonly found in boiled salted products, of which the result showed that all microorganisms were inhibited. The preservatives were then applied at three different stages of the process of boiled salted fish, i.e. before boiling, during boiling and after boiling. Sensory attributes and microbial characteristics of the products were then evaluated. The results showed that the performance of all tested preservatives against deteriorating microorganisms was relatively similar. It was also shown that the application before and during boiling performed better.
Cooling of hot bubbles by surface texture during the boiling crisis
NASA Astrophysics Data System (ADS)
Dhillon, Navdeep; Buongiorno, Jacopo; Varanasi, Kripa
2015-11-01
We report the existence of maxima in critical heat flux (CHF) enhancement for pool boiling on textured hydrophilic surfaces and reveal the interaction mechanism between bubbles and surface texture that governs the boiling crisis phenomenon. Boiling is a process of fundamental importance in many engineering and industrial applications but the maximum heat flux that can be absorbed by the boiling liquid (or CHF) is limited by the boiling crisis. Enhancing the CHF of industrial boilers by surface texturing can lead to substantial energy savings and reduction in greenhouse gas emissions on a global scale. However, the fundamental mechanisms behind this enhancement are not well understood, with some previous studies indicating that CHF should increase monotonically with increasing texture density. However, using pool boiling experiments on a parametrically designed set of plain and nano-textured micropillar surfaces, we show that there is an optimum intermediate texture density that maximizes CHF and further that the length scale of this texture is of fundamental significance. Using imbibition experiments and high-speed optical and infrared imaging, we reveal the fundamental mechanisms governing the CHF enhancement maxima in boiling crisis. We acknowledge funding from the Chevron corporation.
NASA Technical Reports Server (NTRS)
Kozlowski, Danielle M.; Zavodsky, T.; Jedloved, Gary J.
2011-01-01
The Short-term Prediction Research and Transition Center (SPoRT) is a collaborative partnership between NASA and operational forecasting partners, including a number of National Weather Service offices. SPoRT provides real-time NASA products and capabilities to its partners to address specific operational forecast challenges. One operational forecast challenge is forecasting convective weather in data-void regions such as large bodies of water (e.g. Gulf of Mexico). To address this forecast challenge, SPoRT produces a twice-daily three-dimensional analysis that blends a model first-guess from the Advanced Research Weather Research and Forecasting (WRF-ARW) model with retrieved profiles from the Atmospheric Infrared Sounder (AIRS) -- a hyperspectral sounding instrument aboard NASA's Aqua satellite that provides temperature and moisture profiles of the atmosphere. AIRS profiles are unique in that they give a three dimensional view of the atmosphere that is not available through the current rawinsonde network. AIRS has two overpass swaths across North America each day, one valid in the 0700-0900 UTC timeframe and the other in the 1900-2100 UTC timeframe. This is helpful because the rawinsonde network only has data from 0000 UTC and 1200 UTC at specific land-based locations. Comparing the AIRS analysis product with control analyses that include no AIRS data demonstrates the value of the retrieved profiles to situational awareness for the pre-convective (and convective) environment. In an attempt to verify that the AIRS analysis was a good representation of the vertical structure of the atmosphere, both the AIRS and control analyses are compared to a Rapid Update Cycle (RUC) analysis used by operational forecasters. Using guidance from operational forecasters, convective available potential energy (CAPE) was determined to be a vital variable in making convective forecasts and is used herein to demonstrate the utility of the AIRS profiles in changing the vertical thermodynamic structure of the atmosphere in the pre-convective and convective environment. CAPE is an important metric because of it is a quantitative measure of atmospheric stability, which is necessary information when forecasting for convective weather. Case studies from the summer of 2010 were examined, and most impact from the AIRS retrieved profiles occurred over the data-void Gulf of Mexico with fields of convective potential closer to the RUC than the CNTL. Mixed results were found when AIRS retrieved profiles were used over land, so more cases need to be examined to determine whether AIRS would be an effective tool over land. Additional analyses of problematic convective forecasts over the Gulf Coast will be needed to determine the operational impact of AIRS. SPoRT eventually plans to transition the AIRS product to select Weather Forecast Office (WFO) partners, pending the outcome of these additional analyses.
Fundamental Boiling and RP-1 Freezing Experiments
NASA Technical Reports Server (NTRS)
Goode, Brian
2002-01-01
The prestart thermal conditioning of the hardware in LOX (liquid oxygen) systems involve heat transfer between LOX and metal where boiling plays a large role. Information is easily found on nucleate boiling, maximum heat flux, minimum heat flux and film boiling for common fluids like water. After looking at these standard correlations it was felt more data was needed for the cool down side transition boiling for the LN2 and LOX. In particular interest is the film boiling values, the temperature at which transition begins and the slope as peak heat flux is approached. The ultimate goal is an array of boiling heat transfer coefficient as a function of surface temperature which can be used in the chilldown model of the feed system, engine and bleed system for X-34. The first experiment consisted of an actual MC-1 LOX Impeller which had been machined backwards, that was instrumented with 17 surface thermocouples and submerged in liquid nitrogen. The thermocouples were installed on metal thicknesses varying from the thin inducer to the thick hub.
Beauchamp, Guy
2008-10-23
This study explores via structural clues the influence of weak intermolecular hydrogen-halogen bonds on the boiling point of halogenated ethanes. The plot of boiling points of 86 halogenated ethanes versus the molar refraction (linked to polarizability) reveals a series of straight lines, each corresponding to one of nine possible arrangements of hydrogen and halogen atoms on the two-carbon skeleton. A multiple linear regression model of the boiling points could be designed based on molar refraction and subgroup structure as independent variables (R(2) = 0.995, standard error of boiling point 4.2 degrees C). The model is discussed in view of the fact that molar refraction can account for approximately 83.0% of the observed variation in boiling point, while 16.5% could be ascribed to weak C-X...H-C intermolecular interactions. The difference in the observed boiling point of molecules having similar molar refraction values but differing in hydrogen-halogen intermolecular bonds can reach as much as 90 degrees C.
Folate content and retention in commonly consumed vegetables in the South Pacific.
Maharaj, Prayna P P; Prasad, Surendra; Devi, Riteshma; Gopalan, Romila
2015-09-01
This paper reports the effect of boiling and frying on the retention of folate in commonly consumed Fijian vegetables (drumstick leaves, taro leaves, bele leaves, amaranth leaves, fern/ota, okra and French bean). The folate content was determined by microbiological assay (Lactobacillus casei rhamnosus) and tri-enzyme (protease, α-amylase and chicken pancreas conjugase) extraction treatment. The folate loss varied among the vegetables from 10-64% on boiling while 1-36% on frying. The higher folate loss was observed during boiling. The folate content in the water derived after boiling different vegetables ranged from 11.9 ± 0.5 to 61.6 ± 2.5 μg/100mL. The folate loss on boiling was accounted for in the cooking water. The predominant way of folate loss on boiling was leaching rather than thermal degradation which makes boiling the better choice of cooking the studied vegetables for folate intake, provided the cooking water is consumed together with the vegetables. Copyright © 2015 Elsevier Ltd. All rights reserved.
Comparison of Computational Results with a Low-g, Nitrogen Slosh and Boiling Experiment
NASA Technical Reports Server (NTRS)
Stewart, Mark E.; Moder, Jeffrey P.
2015-01-01
This paper compares a fluid/thermal simulation, in Fluent, with a low-g, nitrogen slosh and boiling experiment. In 2010, the French Space Agency, CNES, performed cryogenic nitrogen experiments in a low-g aircraft campaign. From one parabolic flight, a low-g interval was simulated that focuses on low-g motion of nitrogen liquid and vapor with significant condensation, evaporation, and boiling. The computational results are compared with high-speed video, pressure data, heat transfer, and temperature data from sensors on the axis of the cylindrically shaped tank. These experimental and computational results compare favorably. The initial temperature stratification is in good agreement, and the two-phase fluid motion is qualitatively captured. Temperature data is matched except that the temperature sensors are unable to capture fast temperature transients when the sensors move from wet to dry (liquid to vapor) operation. Pressure evolution is approximately captured, but condensation and evaporation rate modeling and prediction need further theoretical analysis.
Nanosecond laser ablation of target Al in a gaseous medium: explosive boiling
NASA Astrophysics Data System (ADS)
Mazhukin, V. I.; Mazhukin, A. V.; Demin, M. M.; Shapranov, A. V.
2018-03-01
An approximate mathematical description of the processes of homogeneous nucleation and homogeneous evaporation (explosive boiling) of a metal target (Al) under the influence of ns laser radiation is proposed in the framework of the hydrodynamic model. Within the continuum approach, a multi-phase, multi-front hydrodynamic model and a computational algorithm are designed to simulate nanosecond laser ablation of the metal targets immersed in gaseous media. The proposed approach is intended for modeling and detailed analysis of the mechanisms of heterogeneous and homogeneous evaporation and their interaction with each other. It is shown that the proposed model and computational algorithm allow modeling of interrelated mechanisms of heterogeneous and homogeneous evaporation of metals, manifested in the form of pulsating explosive boiling. Modeling has shown that explosive evaporation in metals is due to the presence of a near-surface temperature maximum. It has been established that in nanosecond pulsed laser ablation, such exposure regimes can be implemented in which phase explosion is the main mechanism of material removal.
Water evaporation in silica colloidal deposits.
Peixinho, Jorge; Lefèvre, Grégory; Coudert, François-Xavier; Hurisse, Olivier
2013-10-15
The results of an experimental study on the evaporation and boiling of water confined in the pores of deposits made of mono-dispersed silica colloidal micro-spheres are reported. The deposits are studied using scanning electron microscopy, adsorption of nitrogen, and adsorption of water through attenuated total reflection-infrared spectroscopy. The evaporation is characterized using differential scanning calorimetry and thermal gravimetric analysis. Optical microscopy is used to observe the patterns on the deposits after evaporation. When heating at a constant rate and above boiling temperature, the release of water out of the deposits is a two step process. The first step is due to the evaporation and boiling of the surrounding and bulk water and the second is due to the desorption of water from the pores. Additional experiments on the evaporation of water from membranes having cylindrical pores and of heptane from silica deposits suggest that the second step is due to the morphology of the deposits. Copyright © 2013 Elsevier Inc. All rights reserved.
Thermal performance of a prototype plate heat exchanger with minichannels under boiling conditions
NASA Astrophysics Data System (ADS)
Wajs, J.; Mikielewicz, D.; Fornalik-Wajs, E.
2016-09-01
To solve the problem and to meet the requirements of customers in the field of high heat fluxes transfer in compact units, a new design of plate heat exchanger with minichannels (minichannels PHE) was proposed. The aim was to construct a compact heat exchanger of high effectiveness for the purpose of household cogeneration ORC system. In this paper the experimental analysis of an assembled prototype of such compact heat exchanger was described. The attention was paid to its thermal performance and the heat transfer coefficients under the boiling conditions. Water and ethanol were chosen as working fluids. The maximal value of transferred heat flux was about 84 kW/m2, while of the overall heat transfer coefficient was about 4000 W/(m2K). Estimated values of heat transfer coefficient on the ethanol (boiling) side reached the level of 7500 W/(m2K). The results are promising in the light of future applications, for example in cogeneration ORC systems, however further systematic investigations are necessary.
Experimental analysis of refrigerants flow boiling inside small sized microfin tubes
NASA Astrophysics Data System (ADS)
Diani, Andrea; Rossetto, Luisa
2017-07-01
The refrigerant charge reduction is one of the most challenging issues that the scientific community has to cope to reduce the anthropic global warming. Recently, mini microfin tubes have been matter of research, since they can reach better thermal performance in small domains, leading to a further refrigerant charge reduction. This paper presents experimental results about R134a flow boiling inside a microfin tube having an internal diameter at the fin tip of 2.4 mm. The mass flux was varied between 375 and 940 kg m-2 s-1, heat flux from 10 to 50 kW m-2, vapor quality from 0.10 to 0.99. The saturation temperature at the inlet of the test section was kept constant and equal to 30 °C. R134a thermal and fluid dynamic performances are presented and compared against those obtained with R1234ze(E) and R1234yf and against values obtained during R134a flow boiling inside a 3.4 mm ID microfin tube.
Isentropic Analysis of Convective Motions
NASA Technical Reports Server (NTRS)
Pauluis, Olivier M.; Mrowiec, Agnieszka A.
2013-01-01
This paper analyzes the convective mass transport by sorting air parcels in terms of their equivalent potential temperature to determine an isentropic streamfunction. By averaging the vertical mass flux at a constant value of the equivalent potential temperature, one can compute an isentropic mass transport that filters out reversible oscillatory motions such as gravity waves. This novel approach emphasizes the fact that the vertical energy and entropy transports by convection are due to the combination of ascending air parcels with high energy and entropy and subsiding air parcels with lower energy and entropy. Such conditional averaging can be extended to other dynamic and thermodynamic variables such as vertical velocity, temperature, or relative humidity to obtain a comprehensive description of convective motions. It is also shown how this approach can be used to determine the mean diabatic tendencies from the three-dimensional dynamic and thermodynamic fields. A two-stream approximation that partitions the isentropic circulation into a mean updraft and a mean downdraft is also introduced. This offers a straightforward way to identify the mean properties of rising and subsiding air parcels. The results from the two-stream approximation are compared with two other definitions of the cloud mass flux. It is argued that the isentropic analysis offers a robust definition of the convective mass transport that is not tainted by the need to arbitrarily distinguish between convection and its environment, and that separates the irreversible convective overturning fromoscillations associated with gravity waves.
Seasonality of the Tropical Intraseasonal Oscillations: Sensitivity to Mean Background State
NASA Astrophysics Data System (ADS)
Singh, Bohar
This study investigates the seasonality of tropical intraseasonal oscillations (TISO) in Earths current climate and its relationship with the inter-hemispherical migration of the climatological mean maximum sea surface temperature (SST) and the tropical core of the low-level westerly wind. TISO is identified with anomalies of atmospheric convection with large spatial scale (105 km2) that characteristically exist on the intra-seasonal time scale (20- 100 days period). A new method for tracking the large spatial scale features of convective anomalies, measured by outgoing long-wave radiation (OLR), is developed, based on a two-stage Kalman filter predictor-corrector method. Two dominant components of TISO (eastward-propagating and northward-propagating) are classified, and it is found that TISO remains active throughout the year, with eastward propagation of TISO events occurring from November to April and northward propagating events occurring from May to October. The eastward events have a phase speed of 4 m/s, while the northward events propagate at 2 m/s in both the Indian and Pacific Ocean basins. A composite analysis of the mean background states (zonal wind, SST and low-level moisture) reveals that the co-occurrence of warm climatological SST and mean westerly wind plays an important role in the direction of propagation and geographical location of TISO. It is hypothesized that the geographical location of TISO occurrences is coupled with SST, moisture and lower tropospheric circulation. The seasonal migration of the mean background state is a potential determinant of the seasonal changes in the characteristics of TISO. A Lagrangian composite analysis with respect to the center of mass of the each convective cloud system was done separately for eastward-propagating TISO events, northward propagating TISO events over the Indian Ocean and northward-propagating TISO events over the west Pacific Ocean. The analysis suggests that the average size of eastward propagating events is 106 km2 and the OLR anomaly at the center of convection is -50 W/m 2, and size of northward propagating events is 106 km 2 and the OLR anomaly at the center of convection is -45 W/ m2. The spatial asymmetry in the mean background state composite moisture, moist static energy, moisture convergence, and vertical velocity all suggest that the development phase of convection lies east of the convection center. A slight shift in moisture anomalies ahead of the convection center and moistening (drying) ahead of (behind) the convection is found in both eastward and northward propagating TISO events. An analysis of the individual terms from the anomalous vertically-integrated moisture budget suggests that vertical moisture advection dominates the local tendency of moisture, but it is balanced by the moisture sink term due to precipitation and evaporation. Column processes (the sum of vertical moisture advection and the moisture sinks) compete with the large drying produced by the horizontal moisture advection. Horizontal moisture advection that brings dry moisture anomalies into the convection area from behind the convective center is common to all three kinds of TISO. Horizontal moisture advection also plays an important role in the moistening ahead of the convection in eastward-propagating and northward-propagating events in the Indian Ocean. Moistening ahead of convection in northward-propagating events in the west Pacific Ocean is accomplished primarily by column processes. To test the hypothesis that the climatological SST maximum and the tropical core of the westerly low-level wind guide the development and propagation of TISO, a series of sensitivity experiments is performed. In these experiments, with initial conditions taken from early boreal summer in several selected years of the free run of the SP-CAM4 (a super-parameterized version of the Community Atmospheric Model, version 4), the lower boundary condition is prescribed as the climatological mean, seasonally varying SST in boreal winter. A companion set of sensitivity experiments is made with early boreal winter initial conditions and prescribed SST from the boreal summer. The four sets of runs were analyzed as was done with the observations. The results of these experiments indicate that the regionality and seasonality of TISO are closely coupled to the SST and the low- level circulation. The SST in the tropics must reach a required threshold for convection to occur, while the low-level circulation controls the direction of propagation by controlling the location of moisture convergence. A moisture budget analysis of the observations and control simulation with the model indicates that both eastward and northward propagating TISO events propagate according to the moisture mode, that is, dynamics are strongly regulated by the processes that control the growth of moisture. TISO remains active throughout the year in both the model and observations. During the boreal summer, when the maximum SST migrates into the northern hemisphere, the SST in this hemisphere becomes conducive for convection organization. The horizontal shear line in the northern hemisphere in the mean background zonal wind during boreal summer modulates the northward horizontal moisture advection. The convection then moves northward in the Indian and west Pacific Ocean basins. During boreal winter, when the maximum SST and low-level westerlies are located in the southern hemisphere, the SST in this hemisphere becomes conducive for convection organization. The mean background wind and anomalies together advect anomalously dry air into the convective region and advect anomalously moist air preferentially on the east side of the convective region, leading to eastward propagation. Column processes in both eastward and northward propagating events maintain the convection by competing with excessive drying produced by the horizontal advection. Column processes also help in moistening ahead of the convection. The analysis is unique insofar as it relies on a new method for tracking intra-seasonal propagating convection anomalies in the tropics and an event-centric Lagrangian moisture budget analysis. The results of the analysis and the sensitivity tests are consistent with published work showing that the moisture mode is the dominant mechanism for propagating organized convection in the tropics.
Extended hydrodynamic theory of the peak and minimum pool boiling heat fluxes
NASA Technical Reports Server (NTRS)
Linehard, J. H.; Dhir, V. K.
1973-01-01
The hydrodynamic theory of the extreme pool boiling heat fluxes is expanded to embrace a variety of problems that have not previously been analyzed. These problems include the prediction of the peak heat flux on a variety of finite heaters, the influence of viscosity on the Taylor and Helmoltz instability mechanisms with application to film boiling and to the peak heat flux in viscous liquids, the formalization of the analogy between high-current-density electrolysis and boiling, and the description of boiling in the low-gravity limit. The predictions are verified with a large number of new data.
Examining diapirs as a nutrient source for plants in a High Arctic polar desert.
NASA Astrophysics Data System (ADS)
Hardy, Sarah; Siciliano, Steven
2014-05-01
Polar deserts cover a quarter of ice-free land in the Canadian Arctic, yet little is known about the key ecological processes that take place. This understudied ecosystem is becoming increasingly vulnerable to climate change and growth of the natural resource industry. In polar deserts, below ground soil masses called diapirs occur in some patterned ground features such as frost boils. Diapirs are formed above permafrost soil where increases in moisture and temperature stimulate biological activity when thawing occurs to create an organic rich, Bhy horizon. Vascular plants are scarce (< 5% cover) and nutrients for survival are likely supplied by diapirs but this interaction is poorly understood. To determine if diapirs are an important nutrient source, nitrogen and phosphorous were traced from the diapir Bhy to vascular plants using δ15N and δ18O stable isotope signatures. Recent developments have shown that the oxygen isotopes of orthophosphate (18OP) can be used to trace plant-available phosphorous. At a polar desert site at Alexandra Fjord, Canada, diapir (n=12) and non-diapir (n=12) frost boils were identified in 12 blocks with a field-portable vis-NIR (visible and near infrared spectrometer) device. Soil cores and Salix arctica plant tissue were collected from each frost boil for stable isotope analysis. The δ15N of Salix arctica plant tissue (n=144) shows a significant relationship between block location and diapir presence (p=0.003). There was a consistent pattern in average δ15N in plant tissue parts with increasing concentration from leaf, stem to root in all frost boils. There was no significant difference in total plant δ15N between diapir and non-diapir frost boils but δ15N in soil cores will be measured to determine if these signatures are attributed to the Bhy horizon or biological nitrogen fixation. These results highlight the potential for stable isotopes to be used as a nutrient tracer in polar desert ecosystems and further analysis of phosphorous stable isotopes will provide a clearer picture of the role of diapirs as a nutrient source.
NASA Astrophysics Data System (ADS)
Molnar, I. L.; Krol, M.; Mumford, K. G.
2017-12-01
Developing numerical models for subsurface thermal remediation techniques - such as Electrical Resistive Heating (ERH) - that include multiphase processes such as in-situ water boiling, gas production and recovery has remained a significant challenge. These subsurface gas generation and recovery processes are driven by physical phenomena such as discrete and unstable gas (bubble) flow as well as water-gas phase mass transfer rates during bubble flow. Traditional approaches to multiphase flow modeling soil remain unable to accurately describe these phenomena. However, it has been demonstrated that Macroscopic Invasion Percolation (MIP) can successfully simulate discrete and unstable gas transport1. This has lead to the development of a coupled Electro Thermal-MIP Model2 (ET-MIP) capable of simulating multiple key processes in the thermal remediation and gas recovery process including: electrical heating of soil and groundwater, water flow, geological heterogeneity, heating-induced buoyant flow, water boiling, gas bubble generation and mobilization, contaminant mass transport and removal, and additional mechanisms such as bubble collapse in cooler regions. This study presents the first rigorous validation of a coupled ET-MIP model against two-dimensional water boiling and water/NAPL co-boiling experiments3. Once validated, the model was used to explore the impact of water and co-boiling events and subsequent gas generation and mobilization on ERH's ability to 1) generate, expand and mobilize gas at boiling and NAPL co-boiling temperatures, 2) efficiently strip contaminants from soil during both boiling and co-boiling. In addition, a quantification of the energy losses arising from steam generation during subsurface water boiling was examined with respect to its impact on the efficacy of thermal remediation. While this study specifically targets ERH, the study's focus on examining the fundamental mechanisms driving thermal remediation (e.g., water boiling) renders these results applicable to a wide range of thermal and gas-based remediation techniques. 1. Mumford, K. G., et al. (2010), Adv. Water Resour. 2010, 33 (4), 504-513. 2. Krol, M. M., et al. (2011), Adv. Water Resour. 2011, 34 (4), 537-549. 3. Hegele, P. R. and Mumford, K. G. Journal of Contaminant Hydrology 2014, 165, 24-36.
Thermodynamic Environments Supporting Extreme Convection in Subtropical South America
NASA Astrophysics Data System (ADS)
Rasmussen, K. L.; Trier, S. B.
2015-12-01
Extreme convection tends to form in the vicinity of mountain ranges, and the Andes in subtropical South America help spawn some of the most intense convection in the world. Subsequent to initiation, the convection often evolves into propagating mesoscale convective systems (MCSs) similar to those seen over the U.S. Great Plains and produces damaging tornadoes, hail, and floods across a wide agricultural region. In recent years, studies on the nature of convection in subtropical South America using spaceborne radar data have elucidated key processes responsible for their extreme characteristics, including a strong relationship between the Andes topography and convective initiation. Building on previous work, an investigation of the thermodynamic environment supporting some of the deepest convection in the world will be presented. In particular, an analysis of the thermodynamic destabilization in subtropical South America, which considers the parcel buoyancy minimum for conditionally unstable air parcels, will be presented. Additional comparisons between the nocturnal nature and related diurnal cycle of MCSs in subtropical South America the U.S. Great Plains will provide insights into the processes controlling MCS initiation and upscale growth.
Impacts of model spatial resolution on the vertical structure of convection in the tropics
NASA Astrophysics Data System (ADS)
Bui, Hien Xuan; Yu, Jia-Yuh; Chou, Chia
2018-02-01
This study examined the impacts of model horizontal resolution on vertical structures of convection in the tropics by performing sensitivity experiments with the NCAR CESM1. It was found that contributions to the total precipitation between top-heavy and bottom-heavy convection are different among various resolutions. A coarser resolution tends to produce a greater contribution from top-heavy convection and, as a result, stronger precipitation in the western Pacific ITCZ; while there is less contribution from bottom-heavy convection and weaker precipitation in the eastern Pacific ITCZ. In the western Pacific ITCZ, where the convection is dominated by a top-heavy structure, the stronger precipitation in coarser resolution experiments is due to changes in temperature and moisture profiles associated with a warmer environment (i.e., thermodynamical effect). In the eastern Pacific ITCZ, where the convection is dictated by a bottom-heavy structure, the stronger precipitation in finer resolution experiments comes from changes in convection structure (i.e., dynamic effect) which favors a greater contribution of bottom-heavy convection as the model resolution goes higher. The moisture budget analysis further suggested that the very different behavior in precipitation tendencies in response to model resolution changes between the western and eastern Pacific ITCZs are determined mainly by changes in convective structure rather than changes in convective strength. This study pointed out the importance of model spatial resolution in reproducing a reasonable contribution to the total precipitation between top-heavy and bottom-heavy structure of convection in the tropical Pacific ITCZs.
NASA Astrophysics Data System (ADS)
Marinov, I.; Cabre, A.; Gunn, A.; Gnanadesikan, A.
2016-12-01
The current generation (CMIP5) of Earth System Models (ESMs) shows a huge variability in their ability to represent Southern Ocean (SO) deep-ocean convection and Antarctic Bottom Water, with a preference for open-sea convection in the Weddell and Ross gyres. A long control simulation in a coarse 3o resolution ESM (the GFDL CM2Mc model) shows a highly regular multi-decadal oscillation between periods of SO open sea convection and non-convective periods. This process also happens naturally, with different frequencies and durations of convection across most CMIP5 models under preindustrial forcing (deLavergne et al, 2014). Here we assess the impact of SO deep convection and resulting sea surface temperature (SST) anomalies on the tropical atmosphere and ocean via teleconnections, with a focus on interannual to multi-decadal timescales. We combine analysis of our low-resolution coupled model with inter-model analysis across historical CMIP5 simulations. SST cooling south of 60S during non-convective decades triggers a stronger, northward shifted SH Hadley cell, which results in intensified northward cross-equatorial moist heat transport and a poleward shift in the ITCZ. Resulting correlations between the cross-equatorial atmospheric heat transport and ITCZ location are in good agreement with recent theories (e.g. Frierson et al. 2013; Donohoe et al. 2014). Lagged correlations between a SO convective index and cross-equatorial heat transports (in the atmosphere and ocean), as well as various tropical (and ENSO) climate indices are analyzed. In the ocean realm, we find that non-convective decades result in weaker AABW formation and weaker ACC but stronger Antarctic Intermediate Water (AAIW) formation, likely as a result of stronger SO westerlies (more positive SAM). The signals of AABW and AAIW are seen in the tropics on short timescales of years to decades in the temperature, heat storage and heat transport anomalies and also in deep and intermediate ocean oxygen. Most of the current ESMs with frequent deep-sea convection events in the control state predict a permanent shut down of this convection under climate change in the 21st century. We propose that the preindustrial convective state of the Southern Ocean and its evolution under climate warming will have implications for the SO-tropical teleconnections.
Decay Heat Removal from a GFR Core by Natural Convection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Wesley C.; Hejzlar, Pavel; Driscoll, Michael J.
2004-07-01
One of the primary challenges for Gas-cooled Fast Reactors (GFR) is decay heat removal after a loss of coolant accident (LOCA). Due to the fact that thermal gas cooled reactors currently under design rely on passive mechanisms to dissipate decay heat, there is a strong motivation to accomplish GFR core cooling through natural phenomena. This work investigates the potential of post-LOCA decay heat removal from a GFR core to a heat sink using an external convection loop. A model was developed in the form of the LOCA-COLA (Loss of Coolant Accident - Convection Loop Analysis) computer code as a meansmore » for 1D steady state convective heat transfer loop analysis. The results show that decay heat removal by means of gas cooled natural circulation is feasible under elevated post-LOCA containment pressure conditions. (authors)« less
Calibrating damping rates with LEGACY
NASA Astrophysics Data System (ADS)
Houdek, Günter
2017-10-01
Linear damping rates of radial oscillation modes in selected Kepler stars are estimated with the help of a nonadiabatic stability analysis. The convective fluxes are obtained from a nonlocal, time-dependent convection model. The mixing-length parameter is calibrated to the surface-convection-zone depth of a stellar model obtained from fitting adiabatic frequencies to the LEGACY* observations, and two of the three nonlocal convection parameters are calibrated to the corresponding LEGACY* linewidth measurements. The atmospheric structure in the 1D stability analysis adopts a temperature-optical-depth relation derived from 3D hydrodynamical simulations. Results from 3D simulations are also used to calibrate the turbulent pressure and to guide the functional form of the depth-dependence of the anisotropy of the turbulent velocity field in the 1D stability computations.
Preliminary Analysis of a Water Shield for a Surface Power Reactor
NASA Technical Reports Server (NTRS)
Pearson, J. Boise
2006-01-01
A water based shielding system is being investigated for use on initial lunar surface power systems. The use of water may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. A simple 1-D thermal model indicates the necessity of natural convection to maintain acceptable temperatures and pressures in the water shield. CFD analysis is done to quantify the natural convection in the shield, and predicts sufficient natural convection to transfer heat through the shield with small temperature gradients. A test program will he designed to experimentally verify the thermal hydraulic performance of the shield, and to anchor the CFD models to experimental results.
Entropy production in a box: Analysis of instabilities in confined hydrothermal systems
NASA Astrophysics Data System (ADS)
Börsing, N.; Wellmann, J. F.; Niederau, J.; Regenauer-Lieb, K.
2017-09-01
We evaluate if the concept of thermal entropy production can be used as a measure to characterize hydrothermal convection in a confined porous medium as a valuable, thermodynamically motivated addition to the standard Rayleigh number analysis. Entropy production has been used widely in the field of mechanical and chemical engineering as a way to characterize the thermodynamic state and irreversibility of an investigated system. Pioneering studies have since adapted these concepts to natural systems, and we apply this measure here to investigate the specific case of hydrothermal convection in a "box-shaped" confined porous medium, as a simplified analog for, e.g., hydrothermal convection in deep geothermal aquifers. We perform various detailed numerical experiments to assess the response of the convective system to changing boundary conditions or domain aspect ratios, and then determine the resulting entropy production for each experiment. In systems close to the critical Rayleigh number, we derive results that are in accordance to the analytically derived predictions. At higher Rayleigh numbers, however, we observe multiple possible convection modes, and the analysis of the integrated entropy production reveals distinct curves of entropy production that provide an insight into the hydrothermal behavior in the system, both for cases of homogeneous materials, as well as for heterogeneous spatial material distributions. We conclude that the average thermal entropy production characterizes the internal behavior of hydrothermal systems with a meaningful thermodynamic measure, and we expect that it can be useful for the investigation of convection systems in many similar hydrogeological and geophysical settings.
A Fundamental Study of Nucleate Pool Boiling Under Microgravity
NASA Technical Reports Server (NTRS)
Ervin, Jamie S.; Merte, Herman, Jr.
1996-01-01
An experimental study of incipient boiling in short-term microgravity and with a/g = +/- 1 for pool boiling was performed. Calibrated thin gold films sputtered on a smoothly polished quartz surface were used simultaneously for thermal-resistance measurements and heating of the boiling surface. The gold films were used for both transient and quasi-steady heating surface temperature measurements. Two test vessels were constructed for precise measurement and control of fluid temperature and pressure: a laboratory pool boiling vessel for the a/g = +/- 1 experiments and a pool boiling vessel designed for the 131 m free-fall in the NASA Lewis Research Center Microgravity Research Facility for the microgravity tests. Measurements included the heater surface temperature, the pressure near the heating surface, the bulk liquid temperatures. High speed photography (up to 1,000 frames per second) was used in the experiments. With high quality microgravity and the measured initial temperature of the quiescent test fluid, R113, the temperature distribution in the liquid at the moment of boiling inception resulting from an imposed step in heat flux is known with a certainty not possible previously. The types of boiling propagation across the large flat heating surface, some observed here for the first time, are categorized; the conditions necessary for their occurrence are described. Explosive boiling propagation with a striking pattern of small scale protuberances over the entire vapor mass periphery not observed previously at low heat flux levels (on the order of 5 W/cm(exp 2)) is described. For the heater surface with a/g = -1, a step in the heater surface temperature of short duration was imposed. The resulting liquid temperature distribution at the moment of boiling inception was different from that obtained with a step in heat flux.
Detection of glass particles on bone lesions using SEM-EDS.
Montoriol, Romain; Guilbeau-Frugier, Céline; Chantalat, Elodie; Roumiguié, Mathieu; Delisle, Marie-Bernadette; Payré, Bruno; Telmon, Norbert; Savall, Frédéric
2017-09-01
The problem of identifying the wounding agent in forensic cases is recurrent. Moreover, when several tools are involved, distinguishing the origin of lesions can be difficult. Scanning electron microscopy (SEM)/energy dispersive X-ray analysis (EDS) equipment is increasingly available to the scientific and medical community, and some studies have reported its use in forensic anthropology. However, at our knowledge, no study has reported the use of SEM-EDS in forensic cases involving glass tools, whether in case reports or experiments. We performed an experimental study on human rib fragments, on which we manually created wounds using fragments of window and mirror glass. SEM-EDS was executed on samples without any further preparation on low vacuum mode, then on the same samples after defleshing them completely by boiling them. Window and mirror glass particles were detected on experimental wounds. Both had silica in their spectra, and the opaque side of the mirror contained titanium, allowing for their identification. Boiling and defleshing the bone samples involved a loss of information in terms of the number of wounds detected as positive for glass particles and in the number of glass particles detected, for both window and mirror glass. We suggest the analysis of wounds with suspected glass particles using low vacuum mode and with no defleshment by boiling.
A deep belief network approach using VDRAS data for nowcasting
NASA Astrophysics Data System (ADS)
Han, Lei; Dai, Jie; Zhang, Wei; Zhang, Changjiang; Feng, Hanlei
2018-04-01
Nowcasting or very short-term forecasting convective storms is still a challenging problem due to the high nonlinearity and insufficient observation of convective weather. As the understanding of the physical mechanism of convective weather is also insufficient, the numerical weather model cannot predict convective storms well. Machine learning approaches provide a potential way to nowcast convective storms using various meteorological data. In this study, a deep belief network (DBN) is proposed to nowcast convective storms using the real-time re-analysis meteorological data. The nowcasting problem is formulated as a classification problem. The 3D meteorological variables are fed directly to the DBN with dimension of input layer 6*6*80. Three hidden layers are used in the DBN and the dimension of output layer is two. A box-moving method is presented to provide the input features containing the temporal and spatial information. The results show that the DNB can generate reasonable prediction results of the movement and growth of convective storms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mrowiec, Agnieszka A.; Rio, Catherine; Fridlind, Ann
2012-10-02
We analyze three cloud-resolving model simulations of a strong convective event observed during the TWP-ICE campaign, differing in dynamical core, microphysical scheme or both. Based on simulated and observed radar reflectivity, simulations roughly reproduce observed convective and stratiform precipitating areas. To identify the characteristics of convective and stratiform drafts that are difficult to observe but relevant to climate model parameterization, independent vertical wind speed thresholds are calculated to capture 90% of total convective and stratiform updraft and downdraft mass fluxes. Convective updrafts are fairly consistent across simulations (likely owing to fixed large-scale forcings and surface conditions), except that hydrometeor loadingsmore » differ substantially. Convective downdraft and stratiform updraft and downdraft mass fluxes vary notably below the melting level, but share similar vertically uniform draft velocities despite differing hydrometeor loadings. All identified convective and stratiform downdrafts contain precipitation below ~10 km and nearly all updrafts are cloudy above the melting level. Cold pool properties diverge substantially in a manner that is consistent with convective downdraft mass flux differences below the melting level. Despite differences in hydrometeor loadings and cold pool properties, convective updraft and downdraft mass fluxes are linearly correlated with convective area, the ratio of ice in downdrafts to that in updrafts is ~0.5 independent of species, and the ratio of downdraft to updraft mass flux is ~0.5-0.6, which may represent a minimum evaporation efficiency under moist conditions. Hydrometeor loading in stratiform regions is found to be a fraction of hydrometeor loading in convective regions that ranges from ~10% (graupel) to ~90% (cloud ice). These findings may lead to improved convection parameterizations.« less
Tagami, K; Uchida, S
2011-08-01
Iodine-131 concentrations in tap water higher than 100 BqL(-1) were reported by several local governments in Japan following the Fukushima Daiichi Nuclear Power Plant accident. Some individuals in the emergency-response community recommended the boiling of tap water to remove iodine-131. However, the tap water boiling tests in this study showed no iodine-131 loss from the tap water with either short-term boiling (1-10 min) or prolonged boiling (up to 30 min) resulting in up to 3-fold volume reductions. In this situation, boiling was shown to be not effective in removing iodine-131 from tap water; indeed even higher concentrations may result from the liquid-volume reduction accompanying this process. Copyright © 2011 Elsevier Ltd. All rights reserved.
The Boiling eXperiment Facility (BXF) for the Microgravity Science Glovebox (MSG)
NASA Technical Reports Server (NTRS)
McQuillen, John; Chao, David; Vergilii, Frank
2006-01-01
Boiling is an effective means of cooling by removing heat from surfaces through vaporization of a working fluid. It is also affected by both the magnitude and direction of gravity. By conducting pool boiling tests in microgravity, the effect of buoyancy n the overall boiling process and the relative magnitude of other phenomena can be assessed. The Boiling eXperiment Facility (BXF) is being built for the Microgravity Science Glovebox. This facility will conduct two pool boiling studies. The first study the Microheater Array Boiling Experiment (MABE) uses two 96 element microheater arrays, 2.7 mm and 7.0 mm in size, to measure localized hear fluxes while operating at a constant temperature. The other experiment, the Nucleate Pool Boiling eXperiment (NPBX) uses a 85 mm diameter heater wafer that has been "seeded" with five individually-controlled nucleation sites to study bubble nucleation, growth, coalescence and departure. The BXF uses normal-perfluorohexane as the test fluid and will operate between pressures of 60 to 244 Pa. and temperatures of 35 to 60 C. Both sets of experimental heaters are highly instrumented. Pressure and bulk fluid temperature measurements will be made with standard rate video. A high speed video system will be used to visualize the boiling process through the bottom of the MABE heater arrays. The BXF is currently scheduled to fly on Utilization Flight-13A.1 to the ISS with facility integration into the MSG and operation during Increment 15
2009-07-01
presented a summary of recent research on boiling in microchannels . He addressed the topics of macro scale versus micro scale heat transfer , two phase...flow regime, flow boiling 14 heat transfer results for microchannels , heat transfer mechanisms in microchannels , and flow boiling models for... Heat Transfer Boiling In Minichannel And Microchannel Flow Passages Of Compact Evaporators, Keynote Lecture Presented at the Engineering Foundation
Multicomponent gas sorption Joule-Thomson refrigeration
NASA Technical Reports Server (NTRS)
Jones, Jack A. (Inventor); Petrick, S. Walter (Inventor); Bard, Steven (Inventor)
1991-01-01
The present invention relates to a cryogenic Joule-Thomson refrigeration capable of pumping multicomponent gases with a single stage sorption compressor system. Alternative methods of pumping a multicomponent gas with a single stage compressor are disclosed. In a first embodiment, the sorbent geometry is such that a void is defined near the output of the sorption compressor. When the sorbent is cooled, the sorbent primarily adsorbs the higher boiling point gas such that the lower boiling point gas passes through the sorbent to occupy the void. When the sorbent is heated, the higher boiling point gas is desorbed at high temperature and pressure and thereafter propels the lower boiling point gas out of the sorption compressor. A mixing chamber is provided to remix the constituent gases prior to expansion of the gas through a Joule-Thomson valve. Other methods of pumping a multicomponent gas are disclosed. For example, where the sorbent is porous and the low boiling point gas does not adsorb very well, the pores of the sorbent will act as a void space for the lower boiling point gas. Alternatively, a mixed sorbent may be used where a first sorbent component physically adsorbs the high boiling point gas and where the second sorbent component chemically absorbs the low boiling point gas.
NASA Astrophysics Data System (ADS)
Wang, Qi; Ikegame, Keita; Takahashi, Koretaro; Xue, Changhu; Zhang, Weinong; Wang, Hongxun; Hou, Wenfu; Wang, Yuming
2013-09-01
Lipids were extracted from organs of the starfish Asterias amurensis associated with different treatments (raw-control, boiling and heating), and then analyzed for lipid content, lipid oxidation index, lipid classes and fatty acid composition. Results showed that boiling softened the hard starfish shells, thus facilitating the collection of starfish organs. As compared with raw organs, the boiled organs had lower water content and higher lipid content, possibly due to the loss of water-holding capacity caused by protein denaturation. Both boiling and heating increased the peroxide value (PV), thiobarbituric acid (TBA) value and carbon value (CV) of lipids. Despite slight increases in the content of complex lipids, associated lipid composition had no substantial variations upon boiling and heating. For simple lipids, the content of 1, 2-diglyceride decreased in boiled and heated organs, with free fatty acids observed on thin layer chromatography (TLC). However, neither boiling nor heating significantly changed the fatty acid compositions of simple or complex lipids in starfish organs, suggesting that these two treatments had no significant effects on complex lipids in starfish organs. Together, our results indicated that boiling of starfish soon after capture facilitated the handling and extraction of useful complex lipids consisting of abundant glucosylceramide and eicosapentaenoic acid (EPA)-bounded phospholipids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mudawar, I.; Galloway, J.E.; Gersey, C.O.
Pool boiling and flow boiling were examined for near-saturated bulk conditions in order to determine the critical heat flux (CHF) trigger mechanism for each. Photographic studies of the wall region revealed features common to both situations. At fluxes below CHF, the vapor coalesces into a wavy layer which permits wetting only in wetting fronts, the portions of the liquid-vapor interface which contact the wall as a result of the interfacial waviness. Close examination of the interfacial features revealed the waves are generated from the lower edge of the heater in pool boiling and the heater`s upstream region in flow boiling.more » Wavelengths follow predictions based upon the Kelvin-Helmholtz instability criterion. Critical heat flux in both cases occurs when the pressure force exerted upon the interface due to interfacial curvature, which tends to preserve interfacial contact with the wall prior to CHF, is overcome by the momentum of vapor at the site of the first wetting front, causing the interface to lift away from the wall. It is shown this interfacial lift-off criterion facilitates accurate theoretical modeling of CHF in pool boiling and in flow boiling in both straight and curved channels.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lombardo, N.J.; Marseille, T.J.; White, M.D.
TRUMP-BD (Boil Down) is an extension of the TRUMP (Edwards 1972) computer program for the analysis of nuclear fuel assemblies under severe accident conditions. This extension allows prediction of the heat transfer rates, metal-water oxidation rates, fission product release rates, steam generation and consumption rates, and temperature distributions for nuclear fuel assemblies under core uncovery conditions. The heat transfer processes include conduction in solid structures, convection across fluid-solid boundaries, and radiation between interacting surfaces. Metal-water reaction kinetics are modeled with empirical relationships to predict the oxidation rates of steam-exposed Zircaloy and uranium metal. The metal-water oxidation models are parabolic inmore » form with an Arrhenius temperature dependence. Uranium oxidation begins when fuel cladding failure occurs; Zircaloy oxidation occurs continuously at temperatures above 13000{degree}F when metal and steam are available. From the metal-water reactions, the hydrogen generation rate, total hydrogen release, and temporal and spatial distribution of oxide formations are computed. Consumption of steam from the oxidation reactions and the effect of hydrogen on the coolant properties is modeled for independent coolant flow channels. Fission product release from exposed uranium metal Zircaloy-clad fuel is modeled using empirical time and temperature relationships that consider the release to be subject to oxidation and volitization/diffusion ( bake-out'') release mechanisms. Release of the volatile species of iodine (I), tellurium (Te), cesium (Ce), ruthenium (Ru), strontium (Sr), zirconium (Zr), cerium (Cr), and barium (Ba) from uranium metal fuel may be modeled.« less
Convective dynamics - Panel report
NASA Technical Reports Server (NTRS)
Carbone, Richard; Foote, G. Brant; Moncrieff, Mitch; Gal-Chen, Tzvi; Cotton, William; Heymsfield, Gerald
1990-01-01
Aspects of highly organized forms of deep convection at midlatitudes are reviewed. Past emphasis in field work and cloud modeling has been directed toward severe weather as evidenced by research on tornadoes, hail, and strong surface winds. A number of specific issues concerning future thrusts, tactics, and techniques in convective dynamics are presented. These subjects include; convective modes and parameterization, global structure and scale interaction, convective energetics, transport studies, anvils and scale interaction, and scale selection. Also discussed are analysis workshops, four-dimensional data assimilation, matching models with observations, network Doppler analyses, mesoscale variability, and high-resolution/high-performance Doppler. It is also noted, that, classical surface measurements and soundings, flight-level research aircraft data, passive satellite data, and traditional photogrammetric studies are examples of datasets that require assimilation and integration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kroeger, P.G.; Rohatgi, U.S.; Jo, J.H.
1998-04-01
For three potential Loss-of-Coolant Accident (LOCA) scenarios in the General Electric Simplified Boiling Water Reactors (SBWR) a set of Phenomena Identification and Ranking Tables (PIRT) is presented. The selected LOCA scenarios are typical for the class of small and large breaks generally considered in Safety Analysis Reports. The method used to develop the PIRTs is described. Following is a discussion of the transient scenarios, the PIRTs are presented and discussed in detailed and in summarized form. A procedure for future validation of the PIRTs, to enhance their value, is outlined. 26 refs., 25 figs., 44 tabs.
Flow boiling with enhancement devices for cold plate coolant channel design
NASA Technical Reports Server (NTRS)
Boyd, Ronald D., Sr.
1989-01-01
A research program to study the effect of enhancement devices on flow boiling heat transfer in coolant channels, which are heated either from the top side or uniformly, is discussed. Freon 11 is the working fluid involved. The specific objectives are: (1) examine the variations in both the mean and local (axial and circumferential) heat transfer coefficients for a circular coolant channel with either smooth walls or with both a twisted tape and spiral finned walls, (2) examine the effect channel diameter (and the length-to-diameter aspect ratio) variations for the smooth wall channel, and (3) develop an improved data reduction analysis.
46 CFR 154.705 - Cargo boil-off as fuel: General.
Code of Federal Regulations, 2010 CFR
2010-10-01
... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.705 Cargo boil-off as fuel: General. (a) Each cargo boil-off fuel...
46 CFR 154.705 - Cargo boil-off as fuel: General.
Code of Federal Regulations, 2014 CFR
2014-10-01
... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.705 Cargo boil-off as fuel: General. (a) Each cargo boil-off fuel...
46 CFR 154.705 - Cargo boil-off as fuel: General.
Code of Federal Regulations, 2011 CFR
2011-10-01
... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.705 Cargo boil-off as fuel: General. (a) Each cargo boil-off fuel...
46 CFR 154.705 - Cargo boil-off as fuel: General.
Code of Federal Regulations, 2013 CFR
2013-10-01
... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.705 Cargo boil-off as fuel: General. (a) Each cargo boil-off fuel...
46 CFR 154.705 - Cargo boil-off as fuel: General.
Code of Federal Regulations, 2012 CFR
2012-10-01
... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.705 Cargo boil-off as fuel: General. (a) Each cargo boil-off fuel...
Models for Convectively Coupled Tropical Waves
NASA Astrophysics Data System (ADS)
Majda, A. J.
2001-05-01
\\small{The tropical Western Pacific is a key area with large input on short-term climate. There are many recent observations of convective complexes feeding into equatorially trapped planetary waves [5], [6] which need a theoretical explanation and also are poorly treated in contemporary General Circulation Models (GCM's). This area presents wonderful new research opportunities for applied mathematicians interested in nonlinear waves interacting over many spatio-temporal scales. This talk describes some ongoing recent activities of the speaker related to these important issues. A simplified intermediate model for analyzing and parametrizing convectively coupled tropical waves is introduced in [2]. This model has two baroclinic modes of vertical structure, a direct heating mode and a stratiform mode. The key essential parameter in these models is the area fraction occupied by deep convection, σ c. The unstable convectively coupled waves that emerge from perturbation of a radiative convective equilibrium are discussed in detail through linearized stability analysis. Without any mean flow, for an overall cooling rate of 1 K/day as the area fraction parameter increases from σ c=0.001 to σ c=0.0014 the waves pass from a regime with stable moist convective damping (MCD) to a regime of ``stratiform'' instability with convectively coupled waves propagating at speeds of roughly 15~m~s-1,instabilities for a band wavelengths in the super-cluster regime, O(1000) to O(2000) km, and a vertical structure in the upper troposphere lags behind that in the lower troposphere - thus, these convectively coupled waves in the model reproduce several key features of convectively coupled waves in the troposphere processed from recent observational data by Wheeler and Kiladis ([5], [6]). As the parameter σ c is increased further to values such as σ c=0.01, the band of unstable waves increase and spreads toward mesoscale wavelengths of O(100) km while the same wave structure and quantitative features mentioned above are retained wave structure and quantitative features mentioned above are retained for O(1000) km. A detailed analysis of the temporal development of instability of these convectively coupled waves is presented here. In the first stage of instability, a high CAPE region generates deep convection and front-to-rear ascending flow with enhanced vertical shear in a stratiform wake region. Thus, these intermediate models may be useful prototypes for studying the parametrization of upscale convective momentum transport due to organized convection [4], [3]. In the second stage of instability, detailed analysis of the CAPE budget establishes that the effects of the second baroclinic mode in the stratiform wake produce new CAPE, which regenerates the first half of the wake cycle. Finally, since these convectively coupled stratiform waves do not require a barotropic mean flow, a barotropic mean flow which alters the surface fluxes, is added to study the effect of their stability. These effects of a barotropic mean flow are secondary; an easterly mean flow enhances instability of the eastward propagating convectively coupled waves and diminishes the instability of the westward propagating waves through a WISHE mechanism. Finally, new models for treating the equatorial wave guide [1], [8] which are intermediate between full meriodonal resolution and the equatorial long wave approximation will be discussed. If time permits, the use of these models in efficient numerical schemes which allow for cloud resolving modeling [7], but also include large scale interaction in the equatorial wave guide will be outlined [8].}
Characteristics of Moderately Deep Tropical Convection Observed by Dual-Polarimetric Radar
NASA Astrophysics Data System (ADS)
Powell, Scott
2017-04-01
Moderately deep cumulonimbus clouds (often erroneously called congestus) over the tropical warm pool play an important role in large-scale dynamics by moistening the free troposphere, thus allowing for the upscale growth of convection into mesoscale convective systems. Direct observational analysis of such convection has been limited despite a wealth of radar data collected during several field experiments in the tropics. In this study, the structure of isolated cumulonimbus clouds, particularly those in the moderately deep mode with heights of up to 8 km, as observed by RHI scans obtained with the S-PolKa radar during DYNAMO is explored. Such elements are first identified following the algorithm of Powell et al (2016); small contiguous regions of echo are considered isolated convection. Within isolated echo objects, echoes are further subdivided into core echoes, which feature vertical profiles reflectivity and differential reflectivity that is similar to convection embedded in larger cloud complexes, and fringe echoes, which contain vertical profiles of differential reflectivity that are more similar to stratiform regions. Between the surface and 4 km, reflectivities of 30-40 (10-20) dBZ are most commonly observed in isolated convective core (fringe) echoes. Convective cores in echo objects too wide to be considered isolated have a ZDR profile that peaks near the surface (with values of 0.5-1 dB common), and decays linearly to about 0.3 dB at and above an altitude of 6 km. Stratiform echoes have a minimum ZDR below of 0-0.5 dB below the bright band and a constant distribution centered on 0.5 dB above the bright band. The isolated convective core and fringe respectively possess composite vertical profiles of ZDR that resemble convective and stratiform echoes. The mode of the distribution of aspect ratios of isolated convection is approximately 2.3, but the long axis of isolated echo objects demonstrates no preferred orientation. An early attempt at illustrating composite radial velocity profiles within isolated convection is made. When the mean flow (determined from sounding data) is subtracted, a clear picture of radial velocities inside a composite representation of convection is obtained. As expected, Doppler radar data shows convergence in the lowest 1-2 km of isolated convective elements and divergence in the upper portions of the clouds. The composite velocity profiles can be used to compute crude profiles of horizontal divergence. Because the analysis uses data along radar rays (with gate size of 150 m) instead of data interpolated to a Cartesian grid, features in composited clouds can be observed at high vertical and horizontal resolution.
NASA Astrophysics Data System (ADS)
Rajabzadeh Dareh, F.; Haghshenasfard, M.; Nasr Esfahany, M.; Salimi Jazi, H.
2018-06-01
Pool boiling heat transfer of pure water and nanofluids on a copper block has been studied experimentally. Nanofluids with various concentrations of 0.0025, 0.005 and 0.01 vol.% are employed and two simple surfaces (polished and machined copper surface) are used as the heating surfaces. The results indicated that the critical heat flux (CHF) in boiling of fluids on the polished surface is 7% higher than CHF on the machined surface. In the case of machined surface, the heat transfer coefficient (HTC) of 0.01 vol.% nanofluid is about 37% higher than HTC of base fluid, while in the polished surface the average HTC of 0.01% nanofluid is about 19% lower than HTC of the pure water. The results also showed that the boiling time and boiling cycles on the polished surface changes the heat transfer performance. By increasing the boiling time from 5 to 10 min, the roughness enhances about 150%, but by increasing the boiling time to 15 min, the roughness enhancement is only 8%.
Water On Mars: Mode of Emplacement, Scale, Behavior and Fate.
NASA Astrophysics Data System (ADS)
Head, J. W.
There is clear evidence for standing bodies of water in different places and at different times in the history of Mars. The martian outflow channels emptied into the northern lowlands primarily in the Late Hesperian Period and their characteristics suggest to many workers that a large standing body of water, or ocean, was produced as a result. Characteristics of northern lowland deposits in the Early Amazonian Period suggest that by this time such an ocean was gone. We analyze the fate of such standing bodies of water under climatic conditions similar to the present. The evolution of water loaded with sediments emplaced by outflow channel formation would include three phases. (1) Violent emplacement of warm water followed by a short period of intensive evaporation and convection. Water vapor would strongly influence the climate, at least for a geologically short time; when the water reached 277 K, boiling and intensive convection ceased and sediments were deposited. (2) Geologically fast (104 years) freezing accompanied by weak convective water movement. (3) Sublimation of the ice lasted longer than freezing, but for a geologically short period. The rate and latitudinal dependence of sublimation, and locations of water vapor condensation, crucially depend on planetary obliquity, climate, and sediment veneering of the ice. Several observations support the hypothesis that the Late Hesperian Vastitas Borealis Formation is the sublimation residue of the ocean. Geological evidence has been cited to support a `warm, wet' era in the earlier Noachian Period (e.g., valley networks, degradation rates, etc.) and standing bodies of water under these earlier conditions have different origins and could have significantly longer residence times. Critical assessment of this evidence leads to several scenarios for the emplacement style, location and fate of water on early Mars, and the important transition to conditions similar to those of today. Candidate early Mars emplacement styles include: 1) pluvial, 2) sapping and groundwater recharge, 3) ice sheet meltback, 4) global hydrostatic equilibrium, and 5) cryospheric seal disruption. We examine evidence for these mechanism for formation of standing bodies of water in the history of Mars, and assess their fate, including sequestration in polar and polar-like deposits.
Standing Bodies of Water on Mars: A Review of Their Mode of Emplacement, Scale, Behavior and Fate
NASA Astrophysics Data System (ADS)
Head, J. W.
2001-12-01
There is clear evidence for standing bodies of water in different places and at different times in the history of Mars. The martian outflow channels debouched into the northern lowlands primarily in the Late Hesperian Period and their characteristics suggest to many workers that a large standing body of water, or ocean, was produced as a result. Characteristics of northern lowland deposits in the Early Amazonian Period suggest that by this time such an ocean was gone. What would be the fate of such standing bodies of water under climatic conditions similar to the present? The evolution of water loaded with sediments emplaced by outflow channel formation would include three phases. (1) Violent emplacement of warm water followed by a short period of intensive evaporation and convection. Water vapor would strongly influence the climate, at least for a geologically short time; when the water reached 277 K, boiling and intensive convection ceased and sediments were deposited. (2) Geologically fast (104years) freezing accompanied by weak convective water movement. (3) Sublimation of the ice lasted longer than freezing, but for a geologically short period. The rate and latitudinal dependence of sublimation, and locations of water vapor condensation, crucially depend on planetary obliquity, climate, and sediment veneering of the ice. Several observations support the hypothesis that the Late Hesperian Vastitas Borealis Formation is the sublimation residue of the ocean. Geological evidence has been cited to support a `warm, wet' era in the earlier Noachian Period (e.g., valley networks, degradation rates, etc.) and standing bodies of water under these earlier conditions have different origins and could have significantly longer residence times. Critical assessment of this evidence leads to several scenarios for the emplacement style, location and fate of water on early Mars, and the important transition to conditions similar to those of today. Candidate early Mars emplacement styles include: 1) pluvial, 2) sapping and groundwater recharge, 3) ice sheet meltback, 4) global hydrostatic equilibrium, and 5) cryospheric seal disruption. We examine evidence for these mechanism for formation of standing bodies of water in the history of Mars, and assess their fate. Examples range in age from Noachian to Late Amazonian.
Daily variations in effluent water turbidity and diarrhoeal illness in a Russian city.
Egorov, Andrey I; Naumova, Elena N; Tereschenko, Andrey A; Kislitsin, Victor A; Ford, Timothy E
2003-03-01
To assess an association between temporal variations in drinking water quality and gastrointestinal (GI) illness, a cohort study involving 100 randomly selected families (367 individuals) was conducted in the city of Cherepovets, Russia from June through November 1999. Participants maintained daily diaries of gastrointestinal symptoms, water consumption and other behavioural exposure variables, while daily effluent water quality data were provided by the water utility. The cumulative incidence rate of self-reported gastrointestinal diseases, 1.7 cases per person-year, was almost two orders of magnitude higher than that of officially reported GI infections in the city. An interquartile range increase in effluent water turbidity of 0.8 Nephelometric Turbidity Units was associated with a relative risk of self-reported GI illness of 1.47 (95% Confidence Interval 1.16, 1.86) at a lag of 2 days after control for daily rate of consumption of non-boiled tap water, behavioural covariates, day of the week and a seasonally-related linear trend. In the analysis by subsets of study participants stratified by non-boiled tap water consumption, no statistically significant associations between turbidity and GI illness were found for the study participants who always boiled their drinking water. For individuals who drank non-boiled tap water, statistically significant associations between turbidity and GI illness were detected at lags 1, 2 and 7 days.
Flow boiling with enhancement devices for cold plate coolant channel design
NASA Technical Reports Server (NTRS)
Boyd, Ronald D., Sr.; Smith, Alvin
1990-01-01
The use of flow boiling for thermal energy transport is intended to provide an alternative for accommodating higher heat fluxes in commercial space systems. The objectives are to: (1) examine the variations in both the mean and local (axial and circumferential) heat transfer coefficients for a circular coolant channel with either smooth walls, spiral fins, or both spiral fins and a twisted tape; (2) examine the effects of channel diameter and subcooling; and (3) develop an improved reduction analysis and/or suggest possible heat transfer correlation of the present data. Freon-11 is the working fluid. Two-dimensional (circumferential and axial) wall temperature distributions were measured for coolant channels with the above noted internal geometries. The flow regimes which are being studied are: (1) single phase; (2) subcooled flow boiling; and (3) stratified flow boiling. The inside diameter of all test sections is near 1.0 cm. Cicumferentially averaged heat transfer coefficients at several axial locations were obtained for selected coolant channels for a mass velocity of 210 kg/sq m s, an exit pressure of 0.19 MPa (absolute), and an inlet subcooling of 20.8 C. Overall (averaged over the entire channel) heat transfer coefficients were compared for the above channel geometries. This comparison showed that the channel with large pitch spiral fins had higher heat transfer coefficients at all power levels.
Objective Classification of Radar Profile Types, and Their Relationship to Lightning Occurrence
NASA Technical Reports Server (NTRS)
Boccippio, Dennis
2003-01-01
A cluster analysis technique is used to identify 16 "archetypal" vertical radar profile types from a large, globally representative sample of profiles from the TRMM Precipitation Radar. These include nine convective types (7 of these deep convective) and seven stratiform types (5 of these clearly glaciated). Radar profile classification provides an alternative to conventional deep convective storm metrics, such as 30 dBZ echo height, maximum reflectivity or VIL. As expected, the global frequency of occurrence of deep convective profile types matches satellite-observed total lightning production, including to very small scall local features. Each location's "mix" of profile types provides an objective description of the local convective spectrum, and in turn, is a first step in objectively classifying convective regimes. These classifiers are tested as inputs to a neural network which attempts to predict lightning occurrence based on radar-only storm observations, and performance is compared with networks using traditional radar metrics as inputs.
Double-diffusive boundary layers along vertical free surfaces
NASA Astrophysics Data System (ADS)
Napolitano, L. G.; Viviani, A.; Savino, R.
1992-05-01
This paper deals with double-diffusive (or thermosolutal) combined free convection, i.e., free convection due to buoyant forces (natural convection) and surface tension gradients (Marangoni convection), which are generated by volume differences and surface gradients of temperature and solute concentration. Attention is focused on boundary layers that form along a vertical liquid-gas interface, when the appropriately defined nondimensional characteristic transport numbers are large enough, in problems of thermosolutal natural and Marangoni convection, such as buoyancy and surface tension driven flows in differentially heated open cavities and liquid bridges. Classes of similar solutions are derived for each class of convection on the basis of a rigorous order of magnitude analysis. Velocity, temperature and concentration profiles are reported in the similarity plane; flow and transport properties at the liquid-gas interface (interfacial velocity, heat and mass transfer bulk coefficients) are obtained for a wide range of Prandtl and Schmidt numbers and different values of the similarity parameter.
NASA Technical Reports Server (NTRS)
Arneson, Heather; Bombelli, Alessandro; Segarra-Torne, Adria; Tse, Elmer
2017-01-01
In response to severe weather conditions, Traffic Managers specify flow constraints and reroutes to route air traffic around affected regions of airspace. Providing analysis and recommendations of available reroute options and associated airspace capacities would assist Traffic Managers in making more efficient decisions in response to convective weather. These recommendations can be developed by examining historical data to determine which previous reroute options were used in similar weather and traffic conditions. This paper describes the initial steps and methodology used towards this goal. The focus of this work is flights departing from Fort Worth Center destined for New York Center. Dominant routing structures used in the absence of convective weather are identified. A method to extract relevant features from the large volume of weather data available to quantify the impact of convective weather on this routing structure over a given time range is presented. Finally, a method of estimating flow rate capacity along commonly used routes during convective weather events is described. Results show that the flow rates drop exponentially as a function of the values of the proposed feature and that convective weather on the final third of the route was found to have a greater impact on the flow rate restriction than other portions of the route.
Cryogenic storage tank thermal analysis
NASA Technical Reports Server (NTRS)
Wright, J. P.
1976-01-01
Parametric study discusses relationship between cryogenic boil-off and factors such as tank size, insulation thickness and performance, structural-support heat leaks and use of vapor-cooled shields. Data presented as series of nomographs and curves.
Thermal Analysis of Nanofluids Using Modeling and Molecular Dynamics Simulation
NASA Astrophysics Data System (ADS)
Namboori, P. K. Krishnan; Vasavi, C. S.; Gopal, K. Varun; Gopakumar, Deepa; Ramachandran, K. I.; Narayanan, B. Sabarish
2010-10-01
Nanofluids are nanotechnology-based heat transfer fluids obtained by suspending nanometer-sized particles in conventional heat transfer fluids in a stable manner. In many of the physical phenomena such as boiling and properties such as latent heat, thermal conductivity and heat transfer coefficient, there is significant change on addition of nanoparticles. These exceptional qualities of Nanofluids mainly depend on the atomic level mechanisms, which in turn govern all mechanical properties like strength, Young's modulus, Poisson's ratio, compressibility etc. Control over the fundamental thermo physical properties of the working medium will help to understand these unique phenomena of nanofluids to a great extent. Macroscopic modeling approaches, which are based on conventional relations of thermodynamics, have been proved to be incompetent to explain this difference. Atomistic `modeling and simulation' has been emerged out as an efficient alternative for this. The enhancement of thermal conductivity of water by suspending nanoparticle inclusions has been experimented and proved to be an effective method of enhancing convective heat dissipation. This work mainly deals with characterization of the thermal conductivity of nanofluids. Nano particle sized aluminium oxide; copper oxide and titanium dioxide have been taken in this work for the analysis of thermal conductivity. The effect of thermal conductivity on parameters like volume concentration of the fluid, nature of particle material and size of the particle has been computationally formulated. It has been found that there is an increase in effective thermal conductivity of the fluid by the addition of nanomaterials ascertaining an improvement in the heat transfer behavior of nanofluids. This facilitates the reduction in size of such heat transfer systems (radiators) and lead to increased energy and fuel efficiency, lower pollution and improved reliability.
Direct production of fractionated and upgraded hydrocarbon fuels from biomass
Felix, Larry G.; Linck, Martin B.; Marker, Terry L.; Roberts, Michael J.
2014-08-26
Multistage processing of biomass to produce at least two separate fungible fuel streams, one dominated by gasoline boiling-point range liquids and the other by diesel boiling-point range liquids. The processing involves hydrotreating the biomass to produce a hydrotreatment product including a deoxygenated hydrocarbon product of gasoline and diesel boiling materials, followed by separating each of the gasoline and diesel boiling materials from the hydrotreatment product and each other.
Microbiological effectiveness of disinfecting water by boiling in rural Guatemala.
Rosa, Ghislaine; Miller, Laura; Clasen, Thomas
2010-03-01
Boiling is the most common means of treating water in the home and the benchmark against which alternative point-of-use water treatment options must be compared. In a 5-week study in rural Guatemala among 45 households who claimed they always or almost always boiled their drinking water, boiling was associated with a 86.2% reduction in geometric mean thermotolerant coliforms (TTC) (N = 206, P < 0.0001). Despite consistent levels of fecal contamination in source water, 71.2% of stored water samples from self-reported boilers met the World Health Organization guidelines for safe drinking water (0 TTC/100 mL), and 10.7% fell within the commonly accepted low-risk category of (1-10 TTC/100 mL). As actually practiced in the study community, boiling significantly improved the microbiological quality of drinking water, though boiled and stored drinking water is not always free of fecal contaminations.
Evaluation of correlations of flow boiling heat transfer of R22 in horizontal channels.
Zhou, Zhanru; Fang, Xiande; Li, Dingkun
2013-01-01
The calculation of two-phase flow boiling heat transfer of R22 in channels is required in a variety of applications, such as chemical process cooling systems, refrigeration, and air conditioning. A number of correlations for flow boiling heat transfer in channels have been proposed. This work evaluates the existing correlations for flow boiling heat transfer coefficient with 1669 experimental data points of flow boiling heat transfer of R22 collected from 18 published papers. The top two correlations for R22 are those of Liu and Winterton (1991) and Fang (2013), with the mean absolute deviation of 32.7% and 32.8%, respectively. More studies should be carried out to develop better ones. Effects of channel dimension and vapor quality on heat transfer are analyzed, and the results provide valuable information for further research in the correlation of two-phase flow boiling heat transfer of R22 in channels.
Evaluation of Correlations of Flow Boiling Heat Transfer of R22 in Horizontal Channels
Fang, Xiande; Li, Dingkun
2013-01-01
The calculation of two-phase flow boiling heat transfer of R22 in channels is required in a variety of applications, such as chemical process cooling systems, refrigeration, and air conditioning. A number of correlations for flow boiling heat transfer in channels have been proposed. This work evaluates the existing correlations for flow boiling heat transfer coefficient with 1669 experimental data points of flow boiling heat transfer of R22 collected from 18 published papers. The top two correlations for R22 are those of Liu and Winterton (1991) and Fang (2013), with the mean absolute deviation of 32.7% and 32.8%, respectively. More studies should be carried out to develop better ones. Effects of channel dimension and vapor quality on heat transfer are analyzed, and the results provide valuable information for further research in the correlation of two-phase flow boiling heat transfer of R22 in channels. PMID:23956695
Microbiological Effectiveness of Disinfecting Water by Boiling in Rural Guatemala
Rosa, Ghislaine; Miller, Laura; Clasen, Thomas
2010-01-01
Boiling is the most common means of treating water in the home and the benchmark against which alternative point-of-use water treatment options must be compared. In a 5-week study in rural Guatemala among 45 households who claimed they always or almost always boiled their drinking water, boiling was associated with a 86.2% reduction in geometric mean thermotolerant coliforms (TTC) (N = 206, P < 0.0001). Despite consistent levels of fecal contamination in source water, 71.2% of stored water samples from self-reported boilers met the World Health Organization guidelines for safe drinking water (0 TTC/100 mL), and 10.7% fell within the commonly accepted low-risk category of (1–10 TTC/100 mL). As actually practiced in the study community, boiling significantly improved the microbiological quality of drinking water, though boiled and stored drinking water is not always free of fecal contaminations. PMID:20207876
Bubble dynamics, two-phase flow, and boiling heat transfer in a microgravity environment
NASA Technical Reports Server (NTRS)
Chung, Jacob N.
1994-01-01
The two-phase bubbly flow and boiling heat transfer in microgravity represents a substantial challenge to scientists and engineers and yet there is an urgent need to seek fundamental understanding in this area for future spacecraft design and space missions. At Washington State University, we have successfully designed, built and tested a 2.1 second drop tower with an innovation airbag deceleration system. Microgravity boiling experiments performed in our 0.6 second Drop Tower produced data flow visualizations that agree with published results and also provide some new understanding concerning flow boiling and microgravity bubble behavior. On the analytical and numerical work, the edge effects of finite divergent electrode plates on the forces experienced by bubbles were investigated. Boiling in a concentric cylinder microgravity and an electric field was numerically predicted. We also completed a feasibility study for microgravity boiling in an acoustic field.
A TRMM-Calibrated Infrared Technique for Convective and Stratiform Rainfall: Analysis and Validation
NASA Technical Reports Server (NTRS)
Negri, Andrew; Starr, David OC. (Technical Monitor)
2001-01-01
A satellite infrared technique with passive microwave calibration has been developed for estimating convective and stratiform rainfall. The Convective-Stratiform Technique, calibrated by coincident, physically retrieved rain rates from the TRMM Microwave Imager (TMI), has been applied to 30 min interval GOES infrared data and aggregated over seasonal and yearly periods over northern South America. The diurnal cycle of rainfall, as well as the division between convective and stratiform rainfall is presented. For the period Jan-April 1999, analysis revealed significant effects of local circulations (river breeze, land/sea breeze, mountain/valley) on both the total rainfall and it's diurnal cycle. Results compared well (a one-hour lag) with the diurnal cycle derived from TOGA radar-estimated rainfall in Rondonia. The satellite estimates revealed that the convective rain constituted 24% of the rain area while accounting for 67% of the rain volume. Estimates of the diurnal cycle (both total rainfall and convective/stratiform) for an area encompassing the Amazon Basin (3 x 10(exp 6) sq km) were in phase with those from the TRMM Precipitation Radar, despite the latter's limited sampling. Results will be presented comparing the yearly (2000) diurnal cycle for large regions (including the Amazon Basin), and an intercomparison of January-March estimates for three years, (1999-2001). We hope to demonstrate the utility of using the TRMM PR observations as verification for infrared estimates of the diurnal cycle, and as verification of the apportionment of rainfall into convective and stratiform components.
A TRMM-Calibrated Infrared Technique for Convective and Stratiform Rainfall: Analysis and Validation
NASA Technical Reports Server (NTRS)
Negri, Andrew; Starr, David OC. (Technical Monitor)
2001-01-01
A satellite infrared technique with passive microwave calibration has been developed for estimating convective and stratiform. rainfall. The Convective-Stratiform Technique, calibrated by coincident, physically retrieved rain rates from the TRMM Microwave Imager (TMI), has been applied to 30 min interval GOES infrared data and aggregated over seasonal and yearly periods over northern South America. The diurnal cycle of rainfall, as well as the division between convective and stratiform rainfall is presented. For the period Jan-April 1999, analysis revealed significant effects of local circulations (river breeze, land/sea breeze, mountain/valley) on both the total rainfall and it's diurnal cycle. Results compared well (a one-hour lag) with the diurnal cycle derived from TOGA radar-estimated rainfall in Rondonia. The satellite estimates revealed that the convective rain constituted 24% of the rain area while accounting for 67% of the rain volume. Estimates of the diurnal cycle (both total rainfall and convective/stratiform) for an area encompassing the Amazon Basin (3 x 10(exp 6) square km) were in phase with those from the TRMM Precipitation Radar, despite the latter's limited sampling. Results will be presented comparing the yearly (2000) diurnal cycle for large regions (including the Amazon Basin), and an intercomparison of January-March estimates for three years, 1999-2001. We hope to demonstrate the utility of using the TRMM PR observations as verification for infrared estimates of the diurnal cycle, and as verification of the apportionment of rainfall into convective and stratiform components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Lier-Walqui, Marcus; Fridlind, Ann; Ackerman, Andrew S
2016-02-01
The representation of deep convection in general circulation models is in part informed by cloud-resolving models (CRMs) that function at higher spatial and temporal resolution; however, recent studies have shown that CRMs often fail at capturing the details of deep convection updrafts. With the goal of providing constraint on CRM simulation of deep convection updrafts, ground-based remote sensing observations are analyzed and statistically correlated for four deep convection events observed during the Midlatitude Continental Convective Clouds Experiment (MC3E). Since positive values of specific differential phase observed above the melting level are associated with deep convection updraft cells, so-called columns aremore » analyzed using two scanning polarimetric radars in Oklahoma: the National Weather Service Vance WSR-88D (KVNX) and the Department of Energy C-band Scanning Atmospheric Radiation Measurement (ARM) Precipitation Radar (C-SAPR). KVNX and C-SAPR volumes and columns are then statistically correlated with vertical winds retrieved via multi-Doppler wind analysis, lightning flash activity derived from the Oklahoma Lightning Mapping Array, and KVNX differential reflectivity . Results indicate strong correlations of volume above the melting level with updraft mass flux, lightning flash activity, and intense rainfall. Analysis of columns reveals signatures of changing updraft properties from one storm event to another as well as during event evolution. Comparison of to shows commonalities in information content of each, as well as potential problems with associated with observational artifacts.« less
Uncertainties related to the representation of momentum transport in shallow convection
NASA Astrophysics Data System (ADS)
Schlemmer, Linda; Bechtold, Peter; Sandu, Irina; Ahlgrimm, Maike
2017-04-01
The vertical transport of horizontal momentum by convection has an important impact on the general circulation of the atmosphere as well as on the life cycle and track of cyclones. So far convective momentum transport (CMT) has mostly been studied for deep convection, whereas little is known about its characteristics and importance in shallow convection. In this study CMT by shallow convection is investigated by analyzing both data from large-eddy simulations (LES) and simulations performed with the Integrated Forecasting System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF). In addition, the central terms underlying the bulk mass-flux parametrization of CMT are evaluated offline. Further, the uncertainties related to the representation of CMT are explored by running the stochastically perturbed parametrizations (SPP) approach of the IFS. The analyzed cases exhibit shallow convective clouds developing within considerable low-level wind shear. Analysis of the momentum fluxes in the LES data reveals significant momentum transport by the convection in both cases, which is directed down-gradient despite substantial organization of the cloud field. A detailed inspection of the convection parametrization reveals a very good representation of the entrainment and detrainment rates and an appropriate representation of the convective mass and momentum fluxes. To determine the correct values of mass-flux and in-cloud momentum at the cloud base in the parametrization yet remains challenging. The spread in convection-related quantities generated by the SPP is reasonable and addresses many of the identified uncertainties.
NASA Astrophysics Data System (ADS)
Forsythe, V. V.; Makarevich, R. A.
2016-12-01
Small-scale ionospheric plasma irregularities in the high-latitude E region and their control by F-region plasma convection are investigated using Super Dual Auroral Network (SuperDARN) observations at high southern latitudes over a 1-year period. Significant asymmetries are found in the velocity occurrence distribution due to the clustering of the high-velocity echoes of a particular velocity polarity. Statistical analysis of convection showed that some radars observe predominantly negative bias in the convection component within their short, E-region ranges, while others have a predominantly positive bias. A hypothesis that this bias is caused by asymmetric sectoring of the high-latitude plasma convection pattern is investigated. A new algorithm is developed that samples the plasma convection map and evaluates the convection pattern asymmetry along the particular latitude that corresponds to the radar location. It is demonstrated that the convection asymmetry has a particular seasonal and diurnal pattern, which is different for the polar and auroral radars. Possible causes for the observed convection pattern asymmetry are discussed. It is further proposed that the statistical occurrence of high-velocity E-region echoes generated by the Farley-Buneman instability (FBI) is highly sensitive to small changes in the convection pattern, which is consistent with the electric field threshold for the FBI onset being perhaps sharper and lower than previously thought.
NASA Astrophysics Data System (ADS)
Lee, Seunghyun
Future manned space endeavors will require a new class of vehicles, capable of conducting different types of missions and enduring varying gravitational and temperature environments. Thermal management will play a vital role in these new vehicles, and is complicated by the need to tackle both low and high heat sink temperatures. The present study assesses the feasibility of hybrid thermal control system by thermodynamic analysis and investigates the heat transfer mechanisms in two large micro-channel heat exchangers in vapor compression mode and two-phase mode. Unlike prior published two-phase micro-channel studies that concern mostly miniature heat sinks, this study addresses transport characteristics of a heat sink containing large length-to-diameter ratio, up to 609.6 to 1,micro-channels. In the thermodynamic analysis, four different operational modes are considered: single-phase, two-phase, basic heat pump and heat pump with liquid-side, suction-side heat exchanger. A thermodynamic trade study is conducted for six different working fluids to assess important performance parameters including mass flow rate of the working fluid, maximum pressure, radiator area, compressor/pump work, and coefficient of performance (COP). R134a is determined to be most suitable based on its ability to provide a balanced compromise between reducing flow rate and maintaining low system pressure, and a moderate coefficient of performance (COP); this fluid is also both nontoxic and nonflammable, and features zero ozone depletion potential (ODP) and low global warming potential (GWP). It is shown how specific mission stages dictate which mode of operation is most suitable, and this information is used to size the radiator for the H-TCS. The experimental flow boiling investigation consists of exploring the steady-state and the transient two-phase heat transfer characteristics of two large micro-channel heat exchangers that serve as evaporators in the vapor compression loop using R134a as refrigerant. Both heat exchangers feature parallel micro-channels with identical 1x1-mm2 cross-sections. The evaporators are connected in series, with the smaller 152.4-mm long heat exchanger situated upstream of the larger 609.6-mm long heat exchanger. In the steady-state characteristics part, it is shown low qualities are associated with slug flow and dominated by nucleate boiling, and high qualities with annular flow and convective boiling. Important transition points between the different heat transfer regimes are identified as (1) intermittent dryout, resulting from vapor blanket formation in liquid slugs and/or partial dryout in the liquid film surrounding elongated bubbles, (2) incipient dryout, resulting from dry patch formation in the annular film, and (3) complete dryout, following which the wall has to rely entirely on the mild cooling provided by droplets deposited from the vapor core. In the transient characteristics part, heat transfer measurement and high speed video are used to investigate variations of heat transfer coefficient with quality for different mass velocities and heat fluxes, as well as transient fluid flow and heat transfer behavior. An important transient phenomenon that influences both fluid flow and heat transfer is a liquid wave composed of remnants of liquid slugs from the slug flow regime. The liquid wave serves to replenish dry wall patches in the slug flow regime and to a lesser extent the annular regime. Unlike small heat sinks employed in the electronics industry, TCS heat sinks are characterized by large length-to-diameter ratio, for which limited information is presently available. The large length-to-diameter ratio of 609.6 is especially instrumental to capturing detailed axial variations of flow pattern and corresponding variations in local heat transfer coefficient. High-speed video analysis of the inlet plenum shows appreciable vapor backflow under certain operating conditions, which is also reflected in periodic oscillations in the measured pressure drop. In fact, the backflow frequency captured by video matches closely the frequency obtained from Fourier analysis of the pressure drop signal. It is shown the periodic oscillations and vapor backflow are responsible for initiating intermittent dryout and appreciable drop in local heat transfer coefficient in the downstream regions of the channels. A parametric study of oscillation frequency shows a dependence on four dimensionless parameters that account for amount of vapor generation, subcooling, and upstream liquid length, in addition to Weber number. A new correlation for oscillation frequency is constructed that captures the frequency variations relative to these individual parameters. (Abstract shortened by ProQuest.).
Boiling-induced formation of colloidal gold in black smoker hydrothermal fluids
Gartman, Amy; Hannington, Mark; Jamieson, John W.; Peterkin, Ben; Garbe-Schönberg, Dieter; Findlay, Alyssa J; Fuchs, Sebastian; Kwasnitschka, Tom
2017-01-01
Gold colloids occur in black smoker fluids from the Niua South hydrothermal vent field, Lau Basin (South Pacific Ocean), confirming the long-standing hypothesis that gold may undergo colloidal transport in hydrothermal fluids. Six black smoker vents, varying in temperature from 250 °C to 325 °C, were sampled; the 325 °C vent was boiling at the time of sampling and the 250 °C fluids were diffusely venting. Native gold particles ranging from <50 nm to 2 µm were identified in 4 of the fluid samples and were also observed to precipitate on the sampler during collection from the boiling vent. Total gold concentrations (dissolved and particulate) in the fluid samples range from 1.6 to 5.4 nM in the high-temperature, focused flow vents. Although the gold concentrations in the focused flow fluids are relatively high, they are lower than potential solubilities prior to boiling and indicate that precipitation was boiling induced, with sulfide lost upon boiling to exsolution and metal sulfide formation. Gold concentrations reach 26.7 nM in the 250 °C diffuse flow sample, and abundant native gold particles were also found in the fluids and associated sulfide chimney and are interpreted to be a product of colloid accumulation and growth following initial precipitation upon boiling. These results indicate that colloid-driven precipitation as a result of boiling, the persistence of colloids after boiling, and the accumulation of colloids in diffuse flow fluids are important mechanisms for the enrichment of gold in seafloor hydrothermal systems.
Li, Jin-Lin; Tu, Zong-Cai; Zhang, Lu; Sha, Xiao-Mei; Wang, Hui; Pang, Juan-Juan; Tang, Ping-Ping
2016-08-01
Ginger and garlic have long been used in Asian countries to enhance the flavor and to neutralize any unpleasant odors present in fish soup. The purpose of this study was to evaluate the change in the amount of volatile components present in fish soup compared to boiled water solutions of ginger and garlic. The fish soup was prepared by boiling oil-fried grass carp ( Ctenopharyngodon idella ) with or without ginger and/or garlic. Generally, boiling garlic and ginger in water led to a decrease in the amount of the principal volatile constituents of these spices, together with the formation of some new volatiles such as pentanal, hexanal, and nonanal. The results showed that 16 terpenes present in raw ginger, predominantly camphene, β -phellandrene, β -citral, α -zingiberene, and ( E )-neral, were detected in fish soup with added ginger and thus remained in the solution even after boiling. Similarly, 2-propen-1-ol and three sulfur compounds (allyl sulfide, diallyl disulfide, and diallyl trisulfide) present in raw garlic, were present in trace amounts in the boiled garlic solution, but were present in considerably larger amounts in the boiled fish solution with garlic or garlic plus ginger. In conclusion, the effect of adding spices on the volatile profile of grass carp soup can be attributed to the dissolution of flavor volatiles mainly derived from raw spices into the solution, with few additional volatiles being formed during boiling. In addition, boiling previously fried grass carp with spices led to enhanced volatile levels compared to boiled spice solutions.
Experimental Study of Combined Forced and Free Laminar Convection in a Vertical Tube
NASA Technical Reports Server (NTRS)
Hallman, Theodore M.
1961-01-01
An apparatus was built to verify an analysis of combined forced and free convection in a vertical tube with uniform wall heat flux and to determine the limits of the analysis. The test section was electrically heated by resistance heating of the tube wall and was instrumented with thermocouples in such a way that detailed thermal entrance heat-transfer coefficients could be obtained for both upflow and downflow and any asymmetry in wall temperature could be detected. The experiments showed that fully developed heat-transfer results, predicted by a previous analysis, were confirmed over the range of Rayleigh numbers investigated. The concept of "locally fully developed" heat transfer was established. This concept involves the assumption that the fully developed heat-transfer analysis can be applied locally even though the Rayleigh number is varying along the tube because of physical-property variations with temperature. Thermal entrance region data were obtained for pure forced convection and for combined forced and free convection. The analysis of laminar pure forced convection in the thermal entrance region conducted by Siegel, Sparrow, and Hallman was experimentally confirmed. A transition to an eddy motion, indicated by a fluctuation in wall temperature was found in many of the upflow runs. A stability correlation was found. The fully developed Nusselt numbers in downflow were below those for pure forced convection but fell about 10 percent above the analytical curve. Quite large circumferential variations in wall temperature were observed in downflow as compaired with those encountered in upflow, and the fully developed Nussalt numbers reported are based on average wall temperatures determined by averaging the readings of two diametrically opposite wall thermocouples at each axial position. With larger heating rates in downflow the wall temperature distributions strongly suggested a cell flow near the bottom. At still larger heating rates the wall temperatures varied in a periodic way.
Science 101: Why Does It Take Longer to Boil Potatoes at High Altitudes?
ERIC Educational Resources Information Center
Robertson, Bill
2017-01-01
Why Does It Take Longer to Boil Potatoes at High Altitudes? This column provides background science information for elementary teachers. This month's issue looks at why water boils at different temperatures at different altitudes.
An Investigation of Graduate Scientists' Understandings of Evaporation and Boiling.
ERIC Educational Resources Information Center
Goodwin, Alan; Orlik, Yuri
2000-01-01
Uses a video presentation of six situations relating to the evaporation and boiling of liquids and the escape of dissolved gases from solution and investigates graduate scientists' understanding of the concepts of boiling and evaporation. (Author/YDS)
Pool boiling of water on nano-structured micro wires at sub-atmospheric conditions
NASA Astrophysics Data System (ADS)
Arya, Mahendra; Khandekar, Sameer; Pratap, Dheeraj; Ramakrishna, S. Anantha
2016-09-01
Past decades have seen active research in enhancement of boiling heat transfer by surface modifications. Favorable surface modifications are expected to enhance boiling efficiency. Several interrelated mechanisms such as capillarity, surface energy alteration, wettability, cavity geometry, wetting transitions, geometrical features of surface morphology, etc., are responsible for change in the boiling behavior of modified surfaces. Not much work is available on pool boiling at low pressures on microscale/nanoscale geometries; low pressure boiling is attractive in many applications wherein low operating temperatures are desired for a particular working fluid. In this background, an experimental setup was designed and developed to investigate the pool boiling performance of water on (a) plain aluminum micro wire (99.999 % pure) and, (b) nano-porous alumina structured aluminum micro wire, both having diameter of 250 µm, under sub-atmospheric pressure. Nano-structuring on the plain wire surface was achieved via anodization. Two samples, A and B of anodized wires, differing by the degree of anodization were tested. The heater length scale (wire diameter) was much smaller than the capillary length scale. Pool boiling characteristics of water were investigated at three different sub-atmospheric pressures of 73, 123 and 199 mbar (corresponding to T sat = 40, 50 and 60 °C). First, the boiling characteristics of plain wire were measured. It was noticed that at sub-atmospheric pressures, boiling heat transfer performance for plain wire was quite low due to the increased bubble sizes and low nucleation site density. Subsequently, boiling performance of nano-structured wires (both Sample A and Sample B) was compared with plain wire and it was noted that boiling heat transfer for the former was considerably enhanced as compared to the plain wire. This enhancement is attributed to increased nucleation site density, change in wettability and possibly due to enhanced pore scale evaporation. A preliminary estimation of the bubble growth rates, measured by high speed videography, was undertaken and compared with classical bubble growth rate correlations. It was observed that the average bubble departure sizes on Sample B were larger as compared to plain wire, due to larger surface forces holding the bubble before departure. Bubble condensation in the thermal boundary layer was also captured.
Mehmandoust, Babak; Sanjari, Ehsan; Vatani, Mostafa
2013-01-01
The heat of vaporization of a pure substance at its normal boiling temperature is a very important property in many chemical processes. In this work, a new empirical method was developed to predict vaporization enthalpy of pure substances. This equation is a function of normal boiling temperature, critical temperature, and critical pressure. The presented model is simple to use and provides an improvement over the existing equations for 452 pure substances in wide boiling range. The results showed that the proposed correlation is more accurate than the literature methods for pure substances in a wide boiling range (20.3–722 K). PMID:25685493
Mehmandoust, Babak; Sanjari, Ehsan; Vatani, Mostafa
2014-03-01
The heat of vaporization of a pure substance at its normal boiling temperature is a very important property in many chemical processes. In this work, a new empirical method was developed to predict vaporization enthalpy of pure substances. This equation is a function of normal boiling temperature, critical temperature, and critical pressure. The presented model is simple to use and provides an improvement over the existing equations for 452 pure substances in wide boiling range. The results showed that the proposed correlation is more accurate than the literature methods for pure substances in a wide boiling range (20.3-722 K).
Nonlinear stability analysis of Darcy’s flow with viscous heating
Alves, Leonardo S. de B.; Barletta, Antonio
2016-01-01
The nonlinear stability of a rectangular porous channel saturated by a fluid is here investigated. The aspect ratio of the channel is assumed to be variable. The channel walls are considered impermeable and adiabatic except for the horizontal top which is assumed to be isothermal. The viscous dissipation is acting inside the channel as internal heat generator. A basic throughflow is imposed, and the nonlinear convective stability is investigated by means of the generalized integral transform technique. The neutral stability curve is compared with the one obtained by the linear stability analysis already present in the literature. The growth rate analysis of different unstable modes is performed. The Nusselt number is investigated for several supercritical configurations in order to better understand how the system behaves when conditions far away from neutral stability are considered. The patterns of the neutrally stable convective cells are also reported. Nonlinear simulations support the results obtained by means of the linear stability analysis, confirming that viscous dissipation alone is indeed capable of inducing mixed convection. Low Gebhart or high Péclet numbers lead to a transient overheating of the originally motionless fluid before it settles in its convective steady state. PMID:27279772
Heat Transfer Enhancement due to Bubble Pumping in FC-72 Near the Saturation Temperature
1991-03-01
boiling, (2) reducing wall superheat during nucleate boiling and (3) enhancing critical heat flux ( Mudawar , 1990) . Since the heat transfer potential of...flux from a simulated electronic chip attached to the wall of a vertical rectangular channel was determined by Mudawar and Madox (1988). They concluded...Surface Boiling," Industrial and Engineering Chemistry, vol. 41, No. 9, 1949. Mudawar , I., and D.E. Maddox, Critical Heat Flux in Subcooled Flow Boiling
Zero Boil Off Cryogen Storage for Future Launchers
NASA Technical Reports Server (NTRS)
Valentian, D.; Plachta, D.; Kittel, P.; Hastings, L. J.; Salerno, Louis J.; Arnold, James O. (Technical Monitor)
2001-01-01
Zero boil off (ZBO) cryogen storage using both cryocoolers and passive insulation technologies will enable long-term exploration missions by allowing designers to optimize tankage without the need for excess cryogen storage to account for boil off. Studies of ZBO (zero boil off) have been on-going in the USA for several years. More recently, a review of the needs of advanced space propulsion took place in Europe. This showed the interest of the European community in cryogenic propulsion for planetary missions as well as the use of liquid hydrogen for large power electric propulsion (manned Mars missions). Although natural boiling could be acceptable for single leg missions, passive insulation techniques yield roughly a I% per month cryogen loss and this would not be cost effective for robotic planetary missions involving storage times greater than one year. To make economic sense, long-term exploration missions require lower tank capacity and longer storage times. Recent advances in cryocooler technology, resulting in vast improvements in both cooler efficiency and reliability, make ZBO is a clear choice for planetary exploration missions. Other, more near term applications of ZBO include boil-off reduction or elimination applied to first and upper stages of future earth-to-orbit (ETO) launchers. This would extend launch windows and reduce infrastructure costs. Successors to vehicles like Ariane 5 could greatly benefit by implementing ZBO. Zero Boil Off will only be successful in ETO launcher applications if it makes economic sense to implement. The energy cost is only a fraction of the total cost of buying liquid cryogen, the rest being transportation and other overhead. Because of this, higher boiling point cryogens will benefit more from on-board liquefaction, thus reducing the infrastructure costs. Since hydrogen requires a liquefier with at least a 17% efficiency just to break even from a cost standpoint, one approach for implementing ZBO in upper stages would be to actively cool the shield in the hydrogen tank to reduce the parasitic losses. This would allow the use of less expensive, presently available coolers (80 K vs. 20 K) and potentially simplify the system by requiring only a single compressor on the pad amd a single disconnect line. The compressor could be a hefty commercial unit, with only the cold head requiring expensive flight development and qualification. While this is actually a reduced boil off configuration rather than a zero-boil off case, if the cryogen loss could be cut significantly, the increase in hold time and reduced need for draining and refilling the propellant tanks could meet the vehicle operations needs in the majority of instances.Bearing in mind the potential benefits of ZBO, NASA AMES and SNECMA Moteurs decided to exchange their technical views on the subject. This paper will present a preliminary analysis for a multi-mission module using a fairly low thrust cryogenic engine and ZBO during cruise. Initial mass is 5.5. tons (in ETO). The cryogenic engine will be used near each periapsis in order to minimize the AV requirement. The payload obtained by this propulsion system is compared to a classical storable bipropellant propulsion system for several cases (e. g. Mars lander, Jupiter orbiter, Saturn orbiter). For the Jupiter and Saturn cases, the power source could be an RTG or a large parabolic mirror illuminating a solar panel. It is shown -that - due to its much larger specific impulse - the cryogenic ZBO solution provides much higher payloads, especially for exploration missions involving landing on planets, asteroids, comets, or other celestial bodies.
Boiling regimes of impacting drops on a heated substrate under reduced pressure
NASA Astrophysics Data System (ADS)
van Limbeek, Michiel A. J.; Hoefnagels, Paul B. J.; Shirota, Minori; Sun, Chao; Lohse, Detlef
2018-05-01
We experimentally investigate the boiling behavior of impacting ethanol drops on a heated smooth sapphire substrate at pressures ranging from P =0.13 bar to atmospheric pressure. We employ frustrated total internal reflection imaging to study the wetting dynamics of the contact between the drop and the substrate. The spreading drop can be in full contact (contact boiling), it can partially touch (transition boiling), or the drop can be fully levitated (Leidenfrost boiling). We show that the temperature of the boundary between contact and transition boiling shows at most a weak dependence on the impact velocity, but a significant decrease with decreasing ambient gas pressure. A striking correspondence is found between the temperature of this boundary and the static Leidenfrost temperature for all pressures. We therefore conclude that both phenomena share the same mechanism and are dominated by the dynamics taking place at the contact line. On the other hand, the boundary between transition boiling and Leidenfrost boiling, i.e., the dynamic Leidenfrost temperature, increases for increasing impact velocity for all ambient gas pressures. Moreover, the dynamic Leidenfrost temperature coincides for pressures between P =0.13 and 0.54 bar, whereas for atmospheric pressure the dynamic Leidenfrost temperature is slightly elevated. This indicates that the dynamic Leidenfrost temperature is at most weakly dependent on the enhanced evaporation by the lower saturation temperature of the liquid.
NASA Astrophysics Data System (ADS)
Sabatino, Pietro; Fedele, Giuseppe; Procopio, Antonio; Chiaravalloti, Francesco; Gabriele, Salvatore
2016-10-01
Among many weather phenomena, convective storms are one of the most dangerous since they are able to cause, in a relatively small time window, great damages. Convective precipitations are in fact characterized by relatively small spatial and temporal scales, and as a consequence, the task of forecasting such phenomena turns out to be an elusive one. Nonetheless, given their dangerousness, the identification and tracking of meteorological convective systems are of paramount importance and are the subject of several studies. In particular, the early detection of the areas where deep convection is about to appear, and the prediction of the development and path of existing convective thunderstorms represent two focal research topics. The aim of the present work is to outline a framework employing various techniques apt to the task of monitoring and characterization of convective clouds. We analyze meteorological satellite images and data in order to evaluate the potential occurring of strong precipitation. Techniques considered include numerical, machine learning, image processing. The techniques are tested on data coming from real convective events captured in the last years on the Italian peninsula by the Meteosat meteorological satellites and weather radar.
Transient nucleate pool boiling in microgravity: Some initial results
NASA Technical Reports Server (NTRS)
Merte, Herman, Jr.; Lee, H. S.; Ervin, J. S.
1994-01-01
Variable gravity provides an opportunity to test the understanding of phenomena which are considered to depend on buoyancy, such as nucleate pool boiling. The active fundamental research in nucleate boiling has sought to determine the mechanisms or physical processes responsible for its high effectiveness, manifested by the high heat flux levels possible with relatively low temperature differences. Earlier research on nucleate pool boiling at high gravity levels under steady conditions demonstrated quantitatively that the heat transfer is degraded as the buoyancy normal to the heater surfaced increases. Correspondingly, it was later shown, qualitatively for short periods of time only, that nucleate boiling heat transfer is enhanced as the buoyancy normal to the heater surface is reduced. It can be deduced that nucleate pool boiling can be sustained as a quasi-steady process provided that some means is available to remove the vapor generated from the immediate vicinity of the heater surface. One of the objectives of the research, the initial results of which are presented here, is to quantify the heat transfer associated with boiling in microgravity. Some quantitative results of nucleate pool boiling in high quality microgravity (a/g approximately 10(exp -5)) of 5s duration, obtained in an evacuated drop tower, are presented here. These experiments were conducted as precursors of longer term space experiments. A transient heating technique is used, in which the heater surface is a transparent gold film sputtered on a qua rtz substrate, simultaneously providing the mean surface temperature from resistance thermometry and viewing of the boiling process both from beneath and across the surface. The measurement of the transient mean heater surface temperature permits the computation, by numerical means, of the transient mean heat transfer coefficient. The preliminary data obtained demonstrates that a quasi-steady boiling process can occur in microgravity if the bulk liquid subcooling is sufficiently high and if the imposed heat flux is sufficiently low. This is attributed to suface tension effects at the liquid-vapor-solid junction causing rewetting to take place, sustaining the nucleate boiling. Otherwise, dryout at the heater surface will occur, as observed.
Estimating surface temperature in forced convection nucleate boiling: A simplified method
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Papell, S. S.
1977-01-01
During a test program to investigate low-cycle thermal fatigue, 21 of 22 cylindrical test sections of a cylindrical rocket thrust chamber were thermally cycled to failure. Cylinder liners were fabricated from OFHC copper, Amzirc, and NARloy-Z. The cylinders were fabricated by milling cooling channels into the liner and closing out the backside with electrodeposited copper. The tests were conducted at a chamber pressure of 4.14 MN/sq m (600 psia) and an oxidant-fuel ratio of 6.0 using hydrogen-oxygen as propellants. The average throat heat flux was 54 MW/sq m (33 Btu/sq in./sec). All of the failures were characterized by a thinning of the cooling channel wall and eventual failure by tensile rupture. The 1/2-hard Amzirc material showed little improvement in cyclic life when compared with OFHC copper; while the NARloy-Z and aged Amzirc materials had the best cyclic life characteristics. One OFHC copper cylinder was thermall cycled 2044 times at a steady-state hot-gas-side wall temperature of 514 K (925 R) without failing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, T.Y.; Bentz, J.H.; Bergeron, K.D.
1994-04-01
The possibility of achieving in-vessel core retention by flooding the reactor cavity, or the ``flooded cavity``, is an accident management concept currently under consideration for advanced light water reactors (ALWR), as well as for existing light water reactors (LWR). The CYBL (CYlindrical BoiLing) facility is a facility specifically designed to perform large-scale confirmatory testing of the flooded cavity concept. CYBL has a tank-within-a-tank design; the inner 3.7 m diameter tank simulates the reactor vessel, and the outer tank simulates the reactor cavity. The energy deposition on the bottom head is simulated with an array of radiant heaters. The array canmore » deliver a tailored heat flux distribution corresponding to that resulting from core melt convection. The present paper provides a detailed description of the capabilities of the facility, as well as results of recent experiments with heat flux in the range of interest to those required for in-vessel retention in typical ALWRs. The paper concludes with a discussion of other experiments for the flooded cavity applications.« less
Experimental research and numerical simulation on cryogenic line chill-down process
NASA Astrophysics Data System (ADS)
Jin, Lingxue; Cho, Hyokjin; Lee, Cheonkyu; Jeong, Sangkwon
2018-01-01
The empirical heat transfer correlations are suggested for the fast cool down process of the cryogenic transfer line from room temperature to cryogenic temperature. The correlations include the heat transfer coefficient (HTC) correlations for single-phase gas convection and film boiling regimes, minimum heat flux (MHF) temperature, critical heat flux (CHF) temperature and CHF. The correlations are obtained from the experimental measurements. The experiments are conducted on a 12.7 mm outer diameter (OD), 1.25 mm wall thickness and 7 m long stainless steel horizontal pipe with liquid nitrogen (LN2). The effect of the lengthwise position is verified by measuring the temperature profiles in near the inlet and the outlet of the transfer line. The newly suggested heat transfer correlations are applied to the one-dimensional homogeneous transient model to simulate the cryogenic line chill-down process, and the chill-down time and the cryogen consumption are well predicted in the mass flux range from 26.0 kg/m2 s to 73.6 kg/m2 s through the correlations.
Exergetic simulation of a combined infrared-convective drying process
NASA Astrophysics Data System (ADS)
Aghbashlo, Mortaza
2016-04-01
Optimal design and performance of a combined infrared-convective drying system with respect to the energy issue is extremely put through the application of advanced engineering analyses. This article proposes a theoretical approach for exergy analysis of the combined infrared-convective drying process using a simple heat and mass transfer model. The applicability of the developed model to actual drying processes was proved using an illustrative example for a typical food.
ERIC Educational Resources Information Center
McCullough, Brother Thomas
1984-01-01
Presents a novel approach to identification of unknown alcohols using experimental measurements of boiling point and viscosity which are easily obtained without expensive equipment of instrumentation. Provides instructions for preparing capillary viscometer, listing special hints for obtaining good results. (JM)
PHYSICAL PROPERTIES OF FLUORINATED PROPANE AND BUTANE DERIVATIVES AS ALTERNATIVE REFRIGERANTS
Physical property measurements are presented for 24 fluorinated propane and butane derivatives and one fluorinated ether. These measurements include melting point, boiling point, vapor pressure below the boiling point, heat of vaporization at the boiling point, critical propertie...
ARM - Midlatitude Continental Convective Clouds - Single Column Model Forcing (xie-scm_forcing)
Xie, Shaocheng; McCoy, Renata; Zhang, Yunyan
2012-10-25
The constrained variational objective analysis approach described in Zhang and Lin [1997] and Zhang et al. [2001]was used to derive the large-scale single-column/cloud resolving model forcing and evaluation data set from the observational data collected during Midlatitude Continental Convective Clouds Experiment (MC3E), which was conducted during April to June 2011 near the ARM Southern Great Plains (SGP) site. The analysis data cover the period from 00Z 22 April - 21Z 6 June 2011. The forcing data represent an average over the 3 different analysis domains centered at central facility with a diameter of 300 km (standard SGP forcing domain size), 150 km and 75 km, as shown in Figure 1. This is to support modeling studies on various-scale convective systems.
Weather Research and Forecasting Model Sensitivity Comparisons for Warm Season Convective Initiation
NASA Technical Reports Server (NTRS)
Watson, Leela R.
2007-01-01
This report describes the work done by the Applied Meteorology Unit (AMU) in assessing the success of different model configurations in predicting warm season convection over East-Central Florida. The Weather Research and Forecasting Environmental Modeling System (WRF EMS) software allows users to choose among two dynamical cores - the Advanced Research WRF (ARW) and the Non-hydrostatic Mesoscale Model (NMM). There are also data assimilation analysis packages available for the initialization of the WRF model - the Local Analysis and Prediction System (LAPS) and the Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS). Besides model core and initialization options, the WRF model can be run with one- or two-way nesting. Having a series of initialization options and WRF cores, as well as many options within each core, creates challenges for local forecasters, such as determining which configuration options are best to address specific forecast concerns. This project assessed three different model intializations available to determine which configuration best predicts warm season convective initiation in East-Central Florida. The project also examined the use of one- and two-way nesting in predicting warm season convection.
Mechanisms Regulating Deep Moist Convection and Sea-Surface Temperatures of the Tropics
NASA Technical Reports Server (NTRS)
Sud, Y. C.; Walker, G. K.; Lau, K. M.
1998-01-01
Despite numerous previous studies, two relationships between deep convection and the sea-surface temperature (SST) of the tropics remain unclear. The first is the cause for the sudden emergence of deep convection at about 28 deg SST, and the second is its proximity to the highest observed SST of about 30 C. Our analysis provides a rational explanation for both by utilizing the Improved Meteorological (IMET) buoy data together with radar rainfall retrievals and atmospheric soundings provided by the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA-COARE). The explanation relies on the basic principles of moist convection as enunciated in the Arakawa-Schubert cumulus parameterization. Our analysis shows that an SST range of 28-29 C is necessary for "charging" the atmospheric boundary layer with sufficient moist static energy that can enable the towering convection to reach up to the 200 hPa level. In the IMET buoy data, the changes in surface energy fluxes associated with different rainfall amounts show that the deep convection not only reduces the solar flux into the ocean with a thick cloud cover, but it also generates downdrafts which bring significantly cooler and drier air into the boundary-layer thereby augmenting oceanic cooling by increased sensible and latent heat fluxes. In this way, the ocean seasaws between a net energy absorber for non-raining and a net energy supplier for deep-convective raining conditions. These processes produce a thermostat-like control of the SST. The data also shows that convection over the warm pool is modulated by dynamical influences of large-scale circulation embodying tropical easterly waves (with a 5-day period) and MJOs (with 40-day period); however, the quasi-permanent feature of the vertical profile of moist static energy, which is primarily maintained by the large-scale circulation and thermodynamical forcings, is vital for both the 28 C SST for deep convection and its upper limit at about 30 C.
NASA Astrophysics Data System (ADS)
Rueslåtten, H.; Hovland, M. T.
2010-12-01
One of the common characteristics of planets Earth and Mars is that both host water (H2O) and large accumulations of salt. Whereas Earth’s surface-environment can be regarded as ‘water-friendly’ and ‘salt hostile’, the reverse can be said for the surface of Mars. This is because liquid water is stable on Earth, and the atmosphere transports humidity around the globe, whereas on planet Mars, liquid water is unstable, rendering the atmosphere dry and, therefore, ‘salt-friendly’. The riddle as to how the salt accumulated in various locations on those two planets, is one of long-lasting and great debate. The salt accumulations on Earth are traditionally termed ‘evaporites’, meaning that they formed as a consequence of the evaporation of large masses of seawater. How the accumulations on Mars formed is much harder to explain, as an ocean only existed briefly. Although water molecules and OH-groups may exist in abundance in bound form (crystal water, adsorbed water, etc.), the only place where free water is expected to be stable on Mars is within underground faults, fractures, and crevices. Here it likely occurs as brine or in the form of ice. Based on these conditions, a key to understanding the accumulation of large deposits of salt on both planets is linked to how brines behave in the subsurface when pressurized and heated beyond their supercritical point. At depths greater than about 3 km (P>300 bars) water will no longer boil in a steam phase. Rather, it becomes supercritical and will attain the phase of supercritical water vapor (SCRIW) with a specific gravity of typically 0.3 g/cm3. An important characteristic of SCRIW is its inability to dissolve the common sea salts. The salt dissolved in the brines will therefore precipitate as solid particles when brines (seawater on the Earth) move into the supercritical P&T-domain (T>400°C, P>300 bars). Numerical modeling of a hydrothermal system in the Atlantis II Deep of the Red Sea indicates that a shallow magma-chamber causes a sufficiently high heat-flow to drive a convection cell of seawater. The model shows that salt precipitates along the flow lines within the supercritical region (Hovland et al., 2006). During the various stages of planet Mars’ development, it must be inferred that zones with very high heat-flow also existed there. This meant that water (brine) confined in the crust of Mars was mobilized in a convective manner and would pass into the supercritical water zone during the down-going leg (the recharge leg) of the convective cell. The zones with supercritical out-salting would require accommodation space for large masses of solid salt, as modeled in the Red Sea analogy. However, as the accommodation space for the solid salt fills up, it will pile up and force its way upwards to form large, perhaps layered anticlines, as seen in the Hebes Mensa area of Mars and at numerous locations on Earth, including the Red Sea. Thus, we offer a universal ‘hydrothermal salt model’, which would be viable on all planets with free water in their interiors or on their surfaces, including Mars and Earth. Hovland, et al., 2006. Salt formation by supercritical seawater and submerged boiling. Marine and Petrol. Geol. 23, 855-69
NASA Astrophysics Data System (ADS)
Zhukov, Yu. M.; Urtenov, D. S.
2017-12-01
The problems of simulation of heterogeneous nucleate pool boiling on a horizontal surface on the ascending branch of the boiling curve from the formation of a steam lens (SL) to the boiling crisis are considered. The proposed hypothesis provides in a number of cases a logically consistent interpretation of experiments and outlines the organizational principle of transferring the wall-liquid-steam system into the regime of nonwettable "dry spot" formation. The model includes the following types of nucleate boiling: (a) cyclic boiling with the contact line reverse to the bubble bottom center and bubble departure from the surface (at low heat flux q and the contact angle θ < 90°); (b) single steam bubble conversion into a steam lens, i.e., local film boiling with the possibility of spreading of a single "dry spot" at the variation of the contact angle θ ≥ 90°, and substantial growth of the departure diameter D d and SL lifetime τd; (c) formation of a single steam cluster of four SLs at a given pressure, the liquid underheating, and the average wall overheating.
NASA Astrophysics Data System (ADS)
Depczyński, Wojciech; Piasecki, Artur; Piasecka, Magdalena; Strąk, Kinga
2017-10-01
This paper focuses on identification of the impact of porous heated surface on flow boiling heat transfer in a rectangular minichannel. The heated element for Fluorinert FC-72 was a thin plate made of Haynes-230. Infrared thermography was used to determine changes in the temperature on its outer smooth side. The porous surface in contact with the fluid in the minichannel was produced in two processes: sintering or soldering of Fe powder to the plate. The results were presented as relationships between the heat transfer coefficient and the distance from the minichannel inlet and as boiling curves. Results obtained for using a smooth heated plate at the saturated boiling region were also presented to compare. In the subcooled boiling region, at a higher heat flux, the heat transfer coefficient was slightly higher for the surface prepared via soldering. In the saturated boiling region, the local heat transfer coefficients obtained for the smooth plate surface were slightly higher than those achieved from the sintered plate surface. The porous structures formed have low thermal conductivity. This may induce noticeable thermal resistance at the diffusion bridges of the sintered structures, in particular within the saturated boiling region.
Bach, Vibe; Kidmose, Ulla; Thybo, Anette K; Edelenbos, Merete
2013-03-30
The aim of the present study was to investigate the sensory attributes, dry matter and sugar content of five varieties of Jerusalem artichoke tubers and their relation to the appropriateness of the tubers for raw and boiled preparation. Sensory evaluation of raw and boiled Jerusalem artichoke tubers was performed by a trained sensory panel and a semi-trained consumer panel of 49 participants, who also evaluated the appropriateness of the tubers for raw and boiled preparation. The appropriateness of raw Jerusalem artichoke tubers was related to Jerusalem artichoke flavour, green nut flavour, sweetness and colour intensity, whereas the appropriateness of boiled tubers was related to celeriac aroma, sweet aroma, sweetness and colour intensity. In both preparations the variety Dwarf stood out from the others by being the least appropriate tuber. A few sensory attributes can be used as predictors of the appropriateness of Jerusalem artichoke tubers for raw and boiled consumption. Knowledge on the quality of raw and boiled Jerusalem artichoke tubers can be used to inform consumers on the right choice of raw material and thereby increase the consumption of the vegetable. © 2012 Society of Chemical Industry.
Test Plan for the Boiling Water Reactor Dry Cask Simulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durbin, Samuel; Lindgren, Eric R.
The thermal performance of commercial nuclear spent fuel dry storage casks are evaluated through detailed numerical analysis . These modeling efforts are completed by the vendor to demonstrate performance and regulatory compliance. The calculations are then independently verified by the Nuclear Regulatory Commission (NRC). Carefully measured data sets generated from testing of full sized casks or smaller cask analogs are widely recognized as vital for validating these models. Recent advances in dry storage cask designs have significantly increased the maximum thermal load allowed in a cask in part by increasing the efficiency of internal conduction pathways and by increasing themore » internal convection through greater canister helium pressure. These same vertical, canistered cask systems rely on ventilation between the canister and the overpack to convect heat away from the canister to the environment for both above and below-ground configurations. While several testing programs have been previously conducted, these earlier validation attempts did not capture the effects of elevated helium pressures or accurately portray the external convection of above-ground and below-ground canistered dry cask systems. The purpose of the investigation described in this report is to produce a data set that can be used to test the validity of the assumptions associated with the calculations presently used to determine steady-state cladding temperatures in modern vertical, canistered dry cask systems. The BWR cask simulator (BCS) has been designed in detail for both the above-ground and below-ground venting configurations. The pressure vessel representing the canister has been designed, fabricated, and pressure tested for a maximum allowable pressure (MAWP) rating of 24 bar at 400 deg C. An existing electrically heated but otherwise prototypic BWR Incoloy-clad test assembly is being deployed inside of a representative storage basket and cylindrical pressure vessel that represents the canister. The symmetric single assembly geometry with well-controlled boundary conditions simplifies interpretation of results. Various configurations of outer concentric ducting will be used to mimic conditions for above and below-ground storage configurations of vertical, dry cask systems with canisters. Radial and axial temperature profiles will be measured for a wide range of decay power and helium cask pressures. Of particular interest is the evaluation of the effect of increased helium pressure on allowable heat load and the effect of simulated wind on a simplified below ground vent configuration. While incorporating the best available information, this test plan is subject to changes due to improved understanding from modeling or from as-built deviations to designs. As-built conditions and actual procedures will be documented in the final test report.« less
Film boiling of mercury droplets
NASA Technical Reports Server (NTRS)
Baumeister, K. J.; Schoessow, G. J.; Chmielewski, C. E.
1975-01-01
Vaporization times of mercury droplets in Leidenfrost film boiling on a flat horizontal plate are measured in an air atmosphere. Extreme care was used to prevent large amplitude droplet vibrations and surface wetting; therefore, these data can be compared to film boiling theory. Diffusion from the upper surface of the drop appears as a dominant mode of mass transfer from the drop. A closed-form analytical film boiling theory is developed to account for the diffusive evaporation. Reasonable agreement between data and theory is seen.
Yang, Mengyao; Rehman, Muhammad Saif Ur; Yan, Tingxuan; Khan, Asad Ullah; Oleskowicz-Popiel, Piotr; Xu, Xia; Cui, Ping; Xu, Jian
2018-02-01
The influence of different parts of corn stover on lignin extraction was investigated. Five kinds of lignin were isolated by the high boiling point solvent extraction from the whole corn stover and four different parts including leaf, husk, bark and pith. The optimal condition was obtained: 6.25 g/L NaOH, 140 °C, 1 h and 60% (v/v) 1,4-butanediol. The extracted lignins were then characterized. FT-IR analysis revealed that all of the lignins were typically herbaceous. The lignin extracted from husk contained more S unit. Gel permeation chromatography analysis showed that it was necessary to separate corn stover into different parts to obtain low polydispersity lignin. The SEM and FT-IR analysis proved that the lignin dissolution was related to the tightness structure presenting a positive correlation with hydrogen bond index. Copyright © 2017 Elsevier Ltd. All rights reserved.
Stability and potency of raw and boiled shrimp extracts for skin prick test.
Pariyaprasert, Wipada; Piboonpocanun, Surapon; Jirapongsananuruk, Orathai; Visitsunthorn, Nualanong
2015-06-01
The difference of stability between raw and boiled shrimp extracts used in prick tests has never been investigated despite its potential consequences in tests development. The aim of this study was to compare the raw and boiled shrimp extracts of two species; Macrobrachium rosenbergii (freshwater shrimp) and Penaeus monodon (seawater shrimp) held at 4 ?C for different periods of time for their stability and potency in vivo by using the skin prick test (SPT) method. Raw and boiled M. rosenbergii and P. monodon extracts were prepared and stored at 4 ?C for 1, 7, 14 and 30 days. Thirty patients were pricked with raw and boiled shrimp extracts at all storage times, as well as prick to prick skin test (PTP) to fresh raw and boiled shrimps of both species. The mean wheal diameter (MWD) resulting from prick tests for all shrimp extracts was measured and compared. The shrimp extracts of all storage times yielded positive skin test results in the range of 90% - 100%. Raw P. monodon extracts induced larger wheals than boiled extracts at all storage times. There was no significant difference of MWD between raw and boiled M. rosenbergii extracts on day 1, 7, and 14. Significant correlations between MWD of PTP to fresh shrimps and SPT to all shrimp extracts were observed. All shrimp extracts were sterile at all storage times. Raw and boiled M. rosenbergii and P. monodon extracts were stable and sterile at 4 ?C for at most 30 days. SPT with these extracts induced more than 10 mm in shrimp allergy patients and the results were comparable with PTP to fresh shrimps.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Jiwen; Liu, Yi-Chin; Xu, Kuan-Man
2015-04-27
The ultimate goal of this study is to improve representation of convective transport by cumulus parameterization for meso-scale and climate models. As Part I of the study, we perform extensive evaluations of cloud-resolving simulations of a squall line and mesoscale convective complexes in mid-latitude continent and tropical regions using the Weather Research and Forecasting (WRF) model with spectral-bin microphysics (SBM) and with two double-moment bulk microphysics schemes: a modified Morrison (MOR) and Milbrandt and Yau (MY2). Compared to observations, in general, SBM gives better simulations of precipitation, vertical velocity of convective cores, and the vertically decreasing trend of radar reflectivitymore » than MOR and MY2, and therefore will be used for analysis of scale-dependence of eddy transport in Part II. The common features of the simulations for all convective systems are (1) the model tends to overestimate convection intensity in the middle and upper troposphere, but SBM can alleviate much of the overestimation and reproduce the observed convection intensity well; (2) the model greatly overestimates radar reflectivity in convective cores (SBM predicts smaller radar reflectivity but does not remove the large overestimation); and (3) the model performs better for mid-latitude convective systems than tropical system. The modeled mass fluxes of the mid latitude systems are not sensitive to microphysics schemes, but are very sensitive for the tropical case indicating strong microphysics modification to convection. Cloud microphysical measurements of rain, snow and graupel in convective cores will be critically important to further elucidate issues within cloud microphysics schemes.« less
Convection induced by radiative cooling of a layer of participating medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prasanna, Swaminathan, E-mail: prasannaswam@gmail.com; Venkateshan, S. P., E-mail: spv@iitm.ac.in
2014-05-15
Simulations and experiments have been conducted to study the effect of radiative cooling on natural convection in a horizontal layer of a participating medium enclosed between isothermal opaque wall and radiatively transparent wall and exposed to a cold background. The study is of relevance to a nocturnal boundary layer under clear and calm conditions. The focus of the study is to capture the onset of convection caused by radiative cooling. The experiments have been designed to mimic the atmospheric radiative boundary conditions, and hence decoupling convection and radiation boundary conditions. Planck number Pl and optical thickness of the layer τ{submore » H} are the two important parameters that govern the interaction between radiation and convection. The radiation-convection coupling is a strong function of length scale. Convection sets up within first few seconds for all the experiments. Strong plume like convection is observed for the experimental conditions used in the present study. Both simulations and experiments confirm that radiative cooling increases substantially with decrease in emissivity of the bottom wall. Radiative cooling is strongly influenced by the nongray nature of the participating medium, especially when strong emission from the medium escapes to space, in the window region of the atmosphere. Accurate representation of radiative properties is critical. Linear stability analysis of onset of convection indicates that radiation stabilizes convection as Pl decreases. The observations are similar to the case of Rayleigh Bénard convection in a radiating gas. However, for both experimental and numerical conditions, the observed Rayleigh numbers are much greater than the critical Rayleigh number. To conclude, the role of radiation is to drive and sustain convection in the unstable layer.« less
Microstructural Indicators Of Convection In Sills And Dykes
NASA Astrophysics Data System (ADS)
Holness, M. B.; Neufeld, J. A.; Gilbert, A. J.; Macdonald, R.
2016-12-01
The question of whether or not convection occurs in crustal magma chambers is a vexed one, with some advocating vigorous convection while others argue that convection is weak and short-lived. We argue that microstructural analysis is key to determining whether crystallization took place in solidification fronts or whether crystals grew suspended in a convecting magma before settling. The 168m, composite, Shiant Isles Main Sill is dominated by a 140m unit, of which the lower 45m contains olivine phenocrysts. The phenocrysts first fine upwards, then coarsen upwards. The coarsening-upwards sequence contains clustered olivines. Both the extent of sintering and average cluster size increase upwards. The coarsening-upwards sequence is mirrored at the roof. The fining-upwards sequence formed by rapid settling of incoming cargo crystals, while the coarsening-upwards sequence represents post-emplacement growth and clustering of grains suspended in a convecting magma. Convection is also recorded by plagioclase grain shape. Well-facetted and compact plagioclase grains are platy in rapidly-cooled rocks and blocky in slowly-cooled rocks. Plagioclase grain shape varies smoothly across mafic sills, consistent with growth in solidification fronts. In contrast, grain shape is invariant across mafic dykes, consistent with growth as individual grains and clusters suspended in a convecting magma. Convection in sills occurs when the critical Rayleigh number is exceeded, but cooling at vertical walls always results in convective instabilities. That the Shiant Isles Main Sill records prolonged and vigorous convection, while other sills of comparable thickness record grain growth predominantly in solidification fronts, is most likely due to the composite nature of the Shiant. The 140m unit is underlain by 23m of picrite which intruded shortly before - the strongly asymmetric cooling and absence of a cold, stagnant basal thermal boundary layer make convection throughout the sill more likely.
NASA Technical Reports Server (NTRS)
Goodman, Irving A; Wise, Paul H
1952-01-01
Three homologous series of related dicyclic hydrocarbons are presented for comparison on the basis of their physical properties, which include net heat of combustion, density, melting point, boiling point, and kinematic viscosity. The three series investigated include the 2-n-alkylbiphenyl, 2-n-alkylbicyclohexyl (high boiling), and 2-n-alkylbiphenyls (low boiling) series through c sub 16, in addition to three branched-chain (isopropyl, sec-butyl, and isobutyl) 2-alkylbiphenyls and their corresponding 2-alkylbicyclohexyls. The physical properties of the low-boiling and high-boiling isomers of 2-sec-butylbicyclohexyl and 2-isobutylbicyclohexyl are reported herein for the first time.
Detection of vapor nanobubbles by small angle neutron scattering (SANS)
NASA Astrophysics Data System (ADS)
Popov, Emilian; He, Lilin; Dominguez-Ontiveros, Elvis; Melnichenko, Yuri
2018-04-01
Experiments using boiling water on untreated (roughness 100-300 nm) metal surfaces using small-angle neutron scattering (SANS) show the appearance of structures that are 50-70 nm in size when boiling is present. The scattering signal disappears when the boiling ceases, and no change in the signal is detected at any surface temperature condition below saturation. This confirms that the signal is caused by vapor nanobubbles. Two boiling regimes are evaluated herein that differ by the degree of subcooling (3-10 °C). A polydisperse spherical model with a log-normal distribution fits the SANS data well. The size distribution indicates that a large number of nanobubbles exist on the surface during boiling, and some of them grow into large bubbles.
De Santiago, Elsy; Domínguez-Fernández, Maite; Cid, Concepción; De Peña, María-Paz
2018-02-01
The impact of cooking methods (boiling, microwaving, griddling and frying in olive and soybean oils) on nutritional composition (protein, minerals, fat, carbohydrates, fibre, fatty acid profile and energy), antioxidant capacity and (poly)phenolic compounds of cactus cladodes (Opuntia ficus-indica) was evaluated. Culinary processes, except boiling, increased soluble and insoluble fibre up to 5.0g/100g becoming a good fibre source. Cactus cladodes fried in olive oil showed a healthier fatty acid profile and lower ω-6/ω-3 ratio than in soybean oil. Flavonoids accounted for 80% of total (poly)phenolic compounds, being isorhamnetin the most abundant. Heat treatment, particularly griddling and microwaving, increased every flavonoid and phenolic acid up to 3.2-fold higher than in raw samples, and consequently their antioxidant capacity. Even boiling induced losses in total (poly)phenols and antioxidant capacity by leaching into water, the main compounds were maintained. Principal Component Analysis distributed heat treated cactus cladodes according to their distinctive polyphenols and antioxidant capacity. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Strąk, Kinga; Piasecka, Magdalena
This paper discusses test results concerning flow boiling heat transfer in a minichannel 1.7 mm in depth, 16 mm in width and 180 mm in length. The essential part of the experimental stand was a vertically oriented rectangular minichannel, which was heated asymmetrically with a plate made of Haynes-230 alloy. Distilled water was used as the cooling fluid. Changes in the temperature on the outer side of the heated plate in the central, axially symmetric part of the channel were measured using infrared thermography. Simultaneously, the other side of the heated plate in contact with the fluid was observed through a glass pane to identify the two-phase flow patterns. The one-dimensional model used for the heat transfer analysis took into account the heat flow direction, which was perpendicular to the direction of the fluid flow in the minichannel. The study involved determining local values of the heat transfer coefficient and generating boiling curves. The data for water were compared with the findings reported for the FC-72 fluid.
Numerical and experimental study of the dynamics of a superheated jet
NASA Astrophysics Data System (ADS)
Sinha, Avick; Gopalakrishnan, Shivasubramanian; Balasubramanian, Sridhar
2015-11-01
Flash-boiling is a phenomenon where a liquid experiences low pressures in a system resulting in it getting superheated. The sudden drop in pressures results in accelerated expansion and violent vapour formation. Understanding the physics behind the jet disintegration and flash-boiling phenomenon is still an open problem, with applications in automotive and aerospace combustors. The behaviour of a flash-boiling jet is highly dependent on the input parameters, inlet temperature and pressure. In the present study, the external (outside nozzle) and the internal (inside nozzle) flow characteristics of the two-phase flow has been studied numerically and experimentally. The phase change from liquid to vapour takes place over a finite period of time, modeled sing Homogeneous Relaxation Model (HRM). In order to validate the numerical results, controlled experiments were performed. Optical diagnostic techniques such as Particle Image Velocimetry (PIV) and Shadowgraphy were used to study the flow characteristics. Spray angle, penetration depth, droplet spectra were obtained which provides a better understanding of the break-up mechanism. Linear stability analysis is performed to study the stability characteristics of the jet.
Kieffer, S.W.
1984-01-01
Old Faithful Geyser in Yellowstone National Park, U.S.A., is a relatively isolated source of seismic noise and exhibits seismic behavior similar to that observed at many volcanoes, including "bubblequakes" that resemble B-type "earthquakes", harmonic tremor before and during eruptions, and periods of seismic quiet prior to eruptions. Although Old Faithful differs from volcanoes in that the conduit is continuously open, that rock-fracturing is not a process responsible for seismicity, and that the erupting fluid is inviscid H2O rather than viscous magma, there are also remarkable similarities in the problems of heat and mass recharge to the system, in the eruption dynamics, and in the seismicity. Water rises irregularly into the immediate reservoir of Old Faithful as recharge occurs, a fact that suggests that there are two enlarged storage regions: one between 18 and 22 m (the base of the immediate reservoir) and one between about 10 and 12 m depth. Transport of heat from hot water or steam entering at the base of the recharging water column into cooler overlying water occurs by migration of steam bubbles upward and their collapse in the cooler water, and by episodes of convective overturn. An eruption occurs when the temperature of the near-surface water exceeds the boiling point if the entire water column is sufficiently close to the boiling curve that the propagation of pressure-release waves (rarefactions) down the column can bring the liquid water onto the boiling curve. The process of conversion of the liquid water in the conduit at the onset of an eruption into a two-phase liquid-vapor mixture takes on the order of 30 s. The seismicity is directly related to the sequence of filling and heating during the recharge cycle, and to the fluid mechanics of the eruption. Short (0.2-0.3 s), monochromatic, high-frequency events (20-60 Hz) resembling unsustained harmonic tremor and, in some instances, B-type volcanic earthquakes, occur when exploding or imploding bubbles of steam cause transient vibrations of the fluid column. The frequency of the events is determined by the length of the water column and the speed of sound of the fluid in the conduit when these events occur; damping is controlled by the characteristic and hydraulic impedances, which depend on the above parameters, as well as on the recharge rate of the fluid. Two periods of reduced seismicity (of a few tens of seconds to nearly a minute in duration) occur during the recharge cycle, apparently when the water rises rapidly through the narrow regions of the conduit, causing a sudden pressure increase that temporarily suppresses steam bubble formation. A period of decreased seismicity also precedes preplay or an eruption; this appears to be the time when rising steam bubbles move into a zone of boiling that is acoustically decoupled from the wall of the conduit because of the acoustic impedance mismatch between boiling water (??c ??? 103 g cm-2 s-1) and rock (??c ??? 3 ?? 105 g cm2 s-1). Sustained harmonic tremor occurs during the first one to one-and-a-half minutes of an eruption of Old Faithful, but is not detectable in the succeeding minutes of the eruption. The eruption tremor is caused by hydraulic transients propagating within a sublayer of unvesiculated water that underlies the erupting two-phase liquid-vapor mixture. The resonant frequencies of the fluid column decrease to about 1 Hz when all of the water in the conduit has been converted to a water-steam mixture. Surges are observed in the flow at this frequency, but the resonance has not been detected seismically, possibly because the two-phase erupting fluid is seismically decoupled from the rock on which seismometers are placed. If Old Faithful is an analogue for volcanic seismicity, this study shows that because the frequency of tremor depends on the acoustic properties of the fluid and on conduit dimensions, both properties must be considered in analysis of tremor in volcanic regions. Because magma sound
The Role of a Lid in the 31 May 1985 Tornado Outbreak
1988-05-01
severe convection. Subjective analysis necessary to use this mode], however, is much too time consuming for operational forecasting . Therefore, a...analysis necessary to use this conceptual model, however, is much too time consuming for operational forecasting . Therefore, a computer application was...the forecasting of these systems continue to be desirable. Most severe convective storms in mid-latitudes are mesoscale phenomena. The term mesoscale
17. RW Meyer Sugar Mill: 18761889. Boiling House, 1878. View: ...
17. RW Meyer Sugar Mill: 1876-1889. Boiling House, 1878. View: Southwest corner of boiling house. The amimal-powered cane mill is located in the undergrowth in the right foreground, - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI
Structural changes of malt proteins during boiling.
Jin, Bei; Li, Lin; Liu, Guo-Qin; Li, Bing; Zhu, Yu-Kui; Liao, Liao-Ning
2009-03-09
Changes in the physicochemical properties and structure of proteins derived from two malt varieties (Baudin and Guangmai) during wort boiling were investigated by differential scanning calorimetry, SDS-PAGE, two-dimensional electrophoresis, gel filtration chromatography and circular dichroism spectroscopy. The results showed that both protein content and amino acid composition changed only slightly during boiling, and that boiling might cause a gradual unfolding of protein structures, as indicated by the decrease in surface hydrophobicity and free sulfhydryl content and enthalpy value, as well as reduced alpha-helix contents and markedly increased random coil contents. It was also found that major component of both worts was a boiling-resistant protein with a molecular mass of 40 kDa, and that according to the two-dimensional electrophoresis and SE-HPLC analyses, a small amount of soluble aggregates might be formed via hydrophobic interactions. It was thus concluded that changes of protein structure caused by boiling that might influence beer quality are largely independent of malt variety.
NASA Astrophysics Data System (ADS)
Song, Xiaoliang; Zhang, Guang J.
2018-03-01
Several improvements are implemented in the Zhang-McFarlane (ZM) convection scheme to investigate the roles of convection parameterization in the formation of double intertropical convergence zone (ITCZ) bias in the NCAR CESM1.2.1. It is shown that the prominent double ITCZ biases of precipitation, sea surface temperature (SST), and wind stress in the standard CESM1.2.1 are largely eliminated in all seasons with the use of these improvements in convection scheme. This study for the first time demonstrates that the modifications of convection scheme can eliminate the double ITCZ biases in all seasons, including boreal winter and spring. Further analysis shows that the elimination of the double ITCZ bias is achieved not by improving other possible contributors, such as stratus cloud bias off the west coast of South America and cloud/radiation biases over the Southern Ocean, but by modifying the convection scheme itself. This study demonstrates that convection scheme is the primary contributor to the double ITCZ bias in the CESM1.2.1, and provides a possible solution to the long-standing double ITCZ problem. The atmospheric model simulations forced by observed SST show that the original ZM convection scheme tends to produce double ITCZ bias in high SST scenario, while the modified convection scheme does not. The impact of changes in each core component of convection scheme on the double ITCZ bias in atmospheric model is identified and further investigated.
NASA Technical Reports Server (NTRS)
Knupp, Kevin R.
1991-01-01
A summary of an investigation of deep convective cloud systems that typify the summertime subtropical environment of northern Alabama is presented. The major portion of the research effort included analysis of data acquired during the 1986 Cooperative Huntsville Meteorological Experiment (COHMEX), which consisted of the joint programs Satellite Precipitation and Cloud Experiment (SPACE) under NASA direction, the Microburst and Service Thunderstorm (MIST) Program under NSF sponsorship, and the FAA-Lincoln Laboratory Weather Study (FLOWS). This work relates closely to the SPACE component of COHMEX, one of the general goals of which was to further the understanding of kinematic and precipitation structure of convective cloud systems. The special observational plateforms that were available under the SPACE/COHMEX Program are shown. The original objectives included studies of both isolated deep convection and of (small) mesoscale convection systems that are observed in the Southeast environment. In addition, it was proposed to include both observational and comparative numerical modeling studies of these characteristic cloud systems. Changes in scope were made during the course of this investigation to better accommodate both the manpower available and the data that was acquired. A greater emphasis was placed on determination of the internal structure of small mesoscale convective systems, and the relationship of internal dynamical and microphysical processes to the observed cloud top behavior as inferred from GOES IR (30 min) data. The major accomplishments of this investigation are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rice, R.E.
Results are presented of studies conducted by Aerojet Nuclear Company (ANC) in FY 1975 to support the Nuclear Regulatory Commission (NRC) on the boiling water reactor blowdown heat transfer (BWR-BDHT) program. The support provided by ANC is that of an independent assessor of the program to ensure that the data obtained are adequate for verification of analytical models used for predicting reactor response to a postulated loss-of-coolant accident. The support included reviews of program plans, objectives, measurements, and actual data. Additional activity included analysis of experimental system performance and evaluation of the RELAP4 computer code as applied to the experiments.
NASA Technical Reports Server (NTRS)
Cuan, Winston M.; Schwartz, Sidney H.
1988-01-01
Results are presented for a preliminary experiment involving a saturated pool boiling at 1 atm from rotating 2 and 3 inch diameter spheres which were immersed in LN2. Additional results are presented for a stationary 2 inch diameter sphere quenched in LN2, which were obtained with a more versatile and complete experimental apparatus. The speed of the rotational tests varied from 0 to 10,000 rpm. The stationary experiments parametrically varied pressure and subcooling levels from 0 to 600 psig and from 0 to 50 F, respectively. During the rotational tests, a high speed photographic analysis was undertaken to measure the thickness of the vapor film surrounding the sphere.
van Lier-Walqui, Marcus; Fridlind, Ann M.; Ackerman, Andrew S.; Collis, Scott; Helmus, Jonathan; MacGorman, Donald R.; North, Kirk; Kollias, Pavlos; Posselt, Derek J.
2017-01-01
The representation of deep convection in general circulation models is in part informed by cloud-resolving models (CRMs) that function at higher spatial and temporal resolution; however, recent studies have shown that CRMs often fail at capturing the details of deep convection updrafts. With the goal of providing constraint on CRM simulation of deep convection updrafts, ground-based remote-sensing observations are analyzed and statistically correlated for four deep convection events observed during the Midlatitude Continental Convective Clouds Experiment (MC3E). Since positive values of specific differential phase (KDP) observed above the melting level are associated with deep convection updraft cells, so-called “KDP columns” are analyzed using two scanning polarimetric radars in Oklahoma: the National Weather Service Vance WSR-88D (KVNX) and the Department of Energy C-band Scanning Atmospheric Radiation Measurement (ARM) Precipitation Radar (C-SAPR). KVNX and C-SAPR KDP volumes and columns are then statistically correlated with vertical winds retrieved via multi-Doppler wind analysis, lightning flash activity derived from the Oklahoma Lightning Mapping Array, and KVNX differential reflectivity (ZDR). Results indicate strong correlations of KDP volume above the melting level with updraft mass flux, lightning flash activity, and intense rainfall. Analysis of KDP columns reveals signatures of changing updraft properties from one storm event to another as well as during event evolution. Comparison of ZDR to KDP shows commonalities in information content of each, as well as potential problems with ZDR associated with observational artifacts. PMID:29503466
van Lier-Walqui, Marcus; Fridlind, Ann M; Ackerman, Andrew S; Collis, Scott; Helmus, Jonathan; MacGorman, Donald R; North, Kirk; Kollias, Pavlos; Posselt, Derek J
2016-02-01
The representation of deep convection in general circulation models is in part informed by cloud-resolving models (CRMs) that function at higher spatial and temporal resolution; however, recent studies have shown that CRMs often fail at capturing the details of deep convection updrafts. With the goal of providing constraint on CRM simulation of deep convection updrafts, ground-based remote-sensing observations are analyzed and statistically correlated for four deep convection events observed during the Midlatitude Continental Convective Clouds Experiment (MC3E). Since positive values of specific differential phase ( K DP ) observed above the melting level are associated with deep convection updraft cells, so-called " K DP columns" are analyzed using two scanning polarimetric radars in Oklahoma: the National Weather Service Vance WSR-88D (KVNX) and the Department of Energy C-band Scanning Atmospheric Radiation Measurement (ARM) Precipitation Radar (C-SAPR). KVNX and C-SAPR K DP volumes and columns are then statistically correlated with vertical winds retrieved via multi-Doppler wind analysis, lightning flash activity derived from the Oklahoma Lightning Mapping Array, and KVNX differential reflectivity ( Z DR ). Results indicate strong correlations of K DP volume above the melting level with updraft mass flux, lightning flash activity, and intense rainfall. Analysis of K DP columns reveals signatures of changing updraft properties from one storm event to another as well as during event evolution. Comparison of Z DR to K DP shows commonalities in information content of each, as well as potential problems with Z DR associated with observational artifacts.
Life Cycle of Midlatitude Deep Convective Systems in a Lagrangian Framework
NASA Technical Reports Server (NTRS)
Feng, Zhe; Dong, Xiquan; Xie, Baike; McFarlane, Sally A.; Kennedy, Aaron; Lin, Bing; Minnis, Patrick
2012-01-01
Deep Convective Systems (DCSs) consist of intense convective cores (CC), large stratiform rain (SR) regions, and extensive non-precipitating anvil clouds (AC). This study focuses on the evolution of these three components and the factors that affect convective AC production. An automated satellite tracking method is used in conjunction with a recently developed multi-sensor hybrid classification to analyze the evolution of DCS structure in a Lagrangian framework over the central United States. Composite analysis from 4221 tracked DCSs during two warm seasons (May-August, 2010-2011) shows that maximum system size correlates with lifetime, and longer-lived DCSs have more extensive SR and AC. Maximum SR and AC area lag behind peak convective intensity and the lag increases linearly from approximately 1-hour for short-lived systems to more than 3-hours for long-lived ones. The increased lag, which depends on the convective environment, suggests that changes in the overall diabatic heating structure associated with the transition from CC to SR and AC could prolong the system lifetime by sustaining stratiform cloud development. Longer-lasting systems are associated with up to 60% higher mid-tropospheric relative humidity and up to 40% stronger middle to upper tropospheric wind shear. Regression analysis shows that the areal coverage of thick AC is strongly correlated with the size of CC, updraft strength, and SR area. Ambient upper tropospheric wind speed and wind shear also play an important role for convective AC production where for systems with large AC (radius greater than 120-km) they are 24% and 20% higher, respectively, than those with small AC (radius=20 km).
Initial fuel temperature effects on burning rate of pool fire.
Chen, Bing; Lu, Shou-Xiang; Li, Chang-Hai; Kang, Quan-Sheng; Lecoustre, Vivien
2011-04-15
The influence of the initial fuel temperature on the burning behavior of n-heptane pool fire was experimentally studied at the State Key Laboratory of Fire Science (SKLFS) large test hall. Circular pool fires with diameters of 100mm, 141 mm, and 200 mm were considered with initial fuel temperatures ranging from 290 K to 363 K. Burning rate and temperature distributions in fuel and vessel wall were recorded during the combustion. The burning rate exhibited five typical stages: initial development, steady burning, transition, bulk boiling burning, and decay. The burning rate during the steady burning stage was observed to be relatively independent of the initial fuel temperature. In contrast, the burning rate of the bulk boiling burning stage increases with increased initial fuel temperature. It was also observed that increased initial fuel temperature decreases the duration of steady burning stage. When the initial temperature approaches the boiling point, the steady burning stage nearly disappears and the burning rate moves directly from the initial development stage to the transition stage. The fuel surface temperature increases to its boiling point at the steady burning stage, shortly after ignition, and the bulk liquid reaches boiling temperature at the bulk boiling burning stage. No distinguished cold zone is formed in the fuel bed. However, boiling zone is observed and the thickness increases to its maximum value when the bulk boiling phenomena occurs. Copyright © 2011 Elsevier B.V. All rights reserved.
Numerical and Experimental Study of Mechanisms Involved in Boiling Histotripsy.
Pahk, Ki Joo; Gélat, Pierre; Sinden, David; Dhar, Dipok Kumar; Saffari, Nader
2017-12-01
The aim of boiling histotripsy is to mechanically fractionate tissue as an alternative to thermal ablation for therapeutic applications. In general, the shape of a lesion produced by boiling histotripsy is tadpole like, consisting of a head and a tail. Although many studies have demonstrated the efficacy of boiling histotripsy for fractionating solid tumors, the exact mechanisms underpinning this phenomenon are not yet well understood, particularly the interaction of a boiling vapor bubble with incoming incident shockwaves. To investigate the mechanisms involved in boiling histotripsy, a high-speed camera with a passive cavitation detection system was used to observe the dynamics of bubbles produced in optically transparent tissue-mimicking gel phantoms exposed to the field of a 2.0-MHz high-intensity focused ultrasound (HIFU) transducer. We observed that boiling bubbles were generated in a localized heated region and cavitation clouds were subsequently induced ahead of the expanding bubble. This process was repeated with HIFU pulses and eventually resulted in a tadpole-shaped lesion. A simplified numerical model describing the scattering of the incident ultrasound wave by a vapor bubble was developed to help interpret the experimental observations. Together with the numerical results, these observations suggest that the overall size of a lesion induced by boiling histotripsy is dependent on the sizes of (i) the heated region at the HIFU focus and (ii) the backscattered acoustic field by the original vapor bubble. Copyright © 2017 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.
Agiang, M A; Umoh, I B; Essien, A I; Eteng, M U
2010-10-15
Evaluations of the effect of prolong cooking on the nutrient and antinutrient composition ofbeniseed and beniseed soup were carried out in this study. Proximate, mineral, vitamin A and C and antinutrient compositions of raw beniseed (BS-R), beniseed boiled (BSB) for 15, 30, 45 and 60 min and beniseed soup (BSS) cooked for the same intervals of time were assessed. Results of the proximate composition analyses showed that raw and boiled beniseed had lower moisture content (5.39-5.51%) than beniseed soups (10.06-15.20%). Nitrogen-free extract (total carbohydrates), fats and phosphorus contents were improved in both the boiled beniseed and beniseed soup while calcium and potassium were increased in the boiled seeds and soup samples respectively. Moisture (in the raw and boiled beniseed), ash, magnesium, zinc, iron contents in both the seed and soup were unchanged in all the samples. Vitamins A and C levels of both boiled beniseed and beniseed soup samples were reduced with increase in cooking time. Beniseed soup had higher protein contents than both the raw and boiled beniseed which decreased with increase in cooking time. Beniseed samples provided good sources of energy (572.97-666.05 kcal/100 g). Except for phytate, the levels of antinutrients tested were lower in the raw and boiled beniseed than in the soup samples which decreased with increase in cooking time. The results are discussed with reference to the effect of prolonged cooking on the nutrient requirements of consumers.
Ismail, Maznah; Mariod, Abdalbasit; Pin, Sia Soh
2013-01-01
The effect of preparation methods (raw, half-boiled and hard-boiled) on protein and amino acid contents, as well as the protein quality (amino acid score) of regular, kampung and nutrient enriched Malaysian eggs was investigated. The protein content was determined using a semi-micro Kjeldahl method whereas the amino acid composition was determined using HPLC. The protein content of raw regular, kampung and nutrient enriched eggs were 49.9 ±0.2%, 55.8 ±0.2% and 56.5 ±0.5%, respectively. The protein content of hard-boiled eggs of regular, kampung and nutrient enriched eggs was 56.8 ±0.1%, 54.7 ±0.1%, and 53.7 ±0.5%, while that for half-boiled eggs of regular, kampung and nutrient enriched eggs was 54.7 ±0.6%, 53.4 ±0.4%, and 55.1 ±0.7%, respectively. There were significant differences (p < 0.05) in protein and amino acid contents of half-boiled, hard-boiled as compared with raw samples, and valine was found as the limiting amino acid. It was found that there were significant differences (p < 0.05) of total amino score in regular, kampung and nutrient enriched eggs after heat treatments.Furthermore, hard-boiling (100°C) for 10 minutes and half-boiling (100°C) for 5 minutes affects the total amino score, which in turn alter the protein quality of the egg.
Evidence for Tropopause Layer Moistening by Convection During CRYSTAL-FACE
NASA Technical Reports Server (NTRS)
Ackerman, A.; Fridlind, A.; Jensen, E.; Miloshevich, L.; Heymsfield, G.; McGill, M.
2003-01-01
Measurements and analysis of the impact of deep convection on tropopause layer moisture are easily confounded by difficulties making precise observations with sufficient spatial coverage before and after convective events and difficulties distinguishing between changes due to local convection versus large-scale advection. The interactions between cloud microphysics and dynamics in the convective transport of moisture into the tropopause layer also result in a sufficiently complex and poorly characterized system to allow for considerable freedom in theoretical models of stratosphere-troposphere exchange. In this work we perform detailed large-eddy simulations with an explicit cloud microphysics model to study the impact of deep convection on tropopause layer moisture profiles observed over southern Florida during CRYSTALFACE. For four days during the campaign (July 11, 16, 28, and 29) we initialize a 100-km square domain with temperature and moisture profiles measured prior to convection at the PARSL ground site, and initiate convection with a warm bubble that produces an anvil at peak elevations in agreement with lidar and radar observations on that day. Comparing the moisture field after the anvils decay with the initial state, we find that convection predominantly moistens the tropopause layer (as defined by minimum temperature and minimum potential temperature lapse rate), although some drying is also predicted in localized layers. We will also present results of sensitivity tests designed to separate the roles of cloud microphysics and dynamics.
Pressure transfer function of a JT15D nozzle due to acoustic and convected entropy fluctuations
NASA Astrophysics Data System (ADS)
Miles, J. H.
An acoustic transmission matrix analysis of sound propagation in a variable area duct with and without flow is extended to include convected entropy fluctuations. The boundary conditions used in the analysis are a transfer function relating entropy and pressure at the nozzle inlet and the nozzle exit impedance. The nozzle pressure transfer function calculated is compared with JT15D turbofan engine nozzle data. The one dimensional theory for sound propagation in a variable area nozzle with flow but without convected entropy is good at the low engine speeds where the nozzle exit Mach number is low (M=0.2) and the duct exit impedance model is good. The effect of convected entropy appears to be so negligible that it is obscured by the inaccuracy of the nozzle exit impedance model, the lack of information on the magnitude of the convected entropy and its phase relationship with the pressure, and the scatter in the data. An improved duct exit impedance model is required at the higher engine speeds where the nozzle exit Mach number is high (M=0.56) and at low frequencies (below 120 Hz).
Mobile Disdrometer Observations of Nocturnal Mesoscale Convective Systems During PECAN
NASA Astrophysics Data System (ADS)
Bodine, D. J.; Rasmussen, K. L.
2015-12-01
Understanding microphysical processes in nocturnal mesoscale convective systems (MCSs) is an important objective of the Plains Elevated Convection At Night (PECAN) experiment, which occurred from 1 June - 15 July 2015 in the central Great Plains region of the United States. Observations of MCSs were collected using a large array of mobile and fixed instrumentation, including ground-based radars, soundings, PECAN Integrated Sounding Arrays (PISAs), and aircraft. In addition to these observations, three mobile Parsivel disdrometers were deployed to obtain drop-size distribution (DSD) measurements to further explore microphysical processes in convective and stratiform regions of nocturnal MCSs. Disdrometers were deployed within close range of a multiple frequency network of mobile and fixed dual-polarization radars (5 - 30 km range), and near mobile sounding units and PISAs. Using mobile disdrometer and multiple-wavelength, dual-polarization radar data, microphysical properties of convective and stratiform regions of MCSs are investigated. The analysis will also examine coordinated Range-Height Indicator (RHI) scans over the disdrometers to elucidate vertical DSD structure. Analysis of dense observations obtained during PECAN in combination with mobile disdrometer DSD measurements contributes to a greater understanding of the structural characteristics and evolution of nocturnal MCSs.
Investigating the Sensitivity of Model Intraseasonal Variability to Minimum Entrainment
NASA Astrophysics Data System (ADS)
Hannah, W. M.; Maloney, E. D.
2008-12-01
Previous studies have shown that using a Relaxed Arakawa-Schubert (RAS) convective parameterization with appropriate convective triggers and assumptions about rain re-evaporation produces realistic intraseasonal variability. RAS represents convection with an ensemble of clouds detraining at different heights, each with different entrainment rate, the highest clouds having the lowest entrainment rates. If tropospheric temperature gradients are weak and boundary layer moist static energy is relatively constant, then by limiting the minimum entrainment rate deep convection is suppressed in the presence of dry tropospheric air. This allows moist static energy to accumulate and be discharged during strong intraseasonal convective events, which is consistent with the discharge/recharge paradigm. This study will examine the sensitivity of intra-seasonal variability to changes in minimum entrainment rate in the NCAR-CAM3 with the RAS scheme. Simulations using several minimum entrainment rate thresholds will be investigated. A frequency-wavenumber analysis will show the improvement of the MJO signal as minimum entrainment rate is increased. The spatial and vertical structure of MJO-like disturbances will be examined, including an analysis of the time evolution of vertical humidity distribution for each simulation. Simulated results will be compared to observed MJO events in NCEP-1 reanalysis and CMAP precipitation.
NASA Astrophysics Data System (ADS)
Yu, Zhihao; Chen, Liangdong
1985-08-01
It is shown by observational data and synoptic analysis that the development of strong convective echo is influenced by the horizontally non-uniform heating, such as the one caused by lake-land distribution. In this paper, a simple linear cell-convection model is established using an appropriate heating field, and the instability of heating convection is theoretically studied. It is found that the heating convection development will be unstable if the heating-caused temperature gradient dT 0/ dy is greater than the critical value ( dT 0/ dy) c which is approximately 0.64°C/10 km, and that the development of convective band has a preferred width of 12.5 km. It will take 25 min for the initial disturbance to increase intensity by 10 times. All these results are in rather good agreement with the squall line process in the lake-land region of Jiangsu Province on June 8, 1979.
Heterogeneous nanofluids: natural convection heat transfer enhancement
NASA Astrophysics Data System (ADS)
Oueslati, Fakhreddine Segni; Bennacer, Rachid
2011-12-01
Convective heat transfer using different nanofluid types is investigated. The domain is differentially heated and nanofluids are treated as heterogeneous mixtures with weak solutal diffusivity and possible Soret separation. Owing to the pronounced Soret effect of these materials in combination with a considerable solutal expansion, the resulting solutal buoyancy forces could be significant and interact with the initial thermal convection. A modified formulation taking into account the thermal conductivity, viscosity versus nanofluids type and concentration and the spatial heterogeneous concentration induced by the Soret effect is presented. The obtained results, by solving numerically the full governing equations, are found to be in good agreement with the developed solution based on the scale analysis approach. The resulting convective flows are found to be dependent on the local particle concentration φ and the corresponding solutal to thermal buoyancy ratio N. The induced nanofluid heterogeneity showed a significant heat transfer modification. The heat transfer in natural convection increases with nanoparticle concentration but remains less than the enhancement previously underlined in forced convection case.
Heterogeneous nanofluids: natural convection heat transfer enhancement
2011-01-01
Convective heat transfer using different nanofluid types is investigated. The domain is differentially heated and nanofluids are treated as heterogeneous mixtures with weak solutal diffusivity and possible Soret separation. Owing to the pronounced Soret effect of these materials in combination with a considerable solutal expansion, the resulting solutal buoyancy forces could be significant and interact with the initial thermal convection. A modified formulation taking into account the thermal conductivity, viscosity versus nanofluids type and concentration and the spatial heterogeneous concentration induced by the Soret effect is presented. The obtained results, by solving numerically the full governing equations, are found to be in good agreement with the developed solution based on the scale analysis approach. The resulting convective flows are found to be dependent on the local particle concentration φ and the corresponding solutal to thermal buoyancy ratio N. The induced nanofluid heterogeneity showed a significant heat transfer modification. The heat transfer in natural convection increases with nanoparticle concentration but remains less than the enhancement previously underlined in forced convection case. PMID:21711755
NASA Technical Reports Server (NTRS)
Porro, A. Robert; Keith, Theo G., Jr.; Hingst, Warren R.; Chriss, Randall M.; Seablom, Kirk D.
1991-01-01
A technique is developed to measure the local convective heat transfer coefficient on a model surface in a supersonic flow field. The technique uses a laser to apply a discrete local heat flux at the model test surface, and an infrared camera system determines the local temperature distribution due to heating. From this temperature distribution and an analysis of the heating process, a local convective heat transfer coefficient is determined. The technique was used to measure the load surface convective heat transfer coefficient distribution on a flat plate at nominal Mach numbers of 2.5, 3.0, 3.5, and 4.0. The flat plate boundary layer initially was laminar and became transitional in the measurement region. The experimental results agreed reasonably well with theoretical predictions of convective heat transfer of flat plate laminar boundary layers. The results indicate that this non-intrusive optical measurement technique has the potential to obtain high quality surface convective heat transfer measurements in high speed flowfields.
A laser-induced heat flux technique for convective heat transfer measurements in high speed flows
NASA Technical Reports Server (NTRS)
Porro, A. R.; Keith, T. G., Jr.; Hingst, W. R.
1991-01-01
A technique is developed to measure the local convective heat transfer coefficient on a model surface in a supersonic flow field. The technique uses a laser to apply a discrete local heat flux at the model test surface, and an infrared camera system determines the local temperature distribution due to the heating. From this temperature distribution and an analysis of the heating process, a local convective heat transfer coefficient is determined. The technique was used to measure the local surface convective heat transfer coefficient distribution on a flat plate at nominal Mach numbers of 2.5, 3.0, 3.5, and 4.0. The flat plate boundary layer initially was laminar and became transitional in the measurement region. The experimentally determined convective heat transfer coefficients were generally higher than the theoretical predictions for flat plate laminar boundary layers. However, the results indicate that this nonintrusive optical measurement technique has the potential to measure surface convective heat transfer coefficients in high speed flow fields.
A laser-induced heat flux technique for convective heat transfer measurements in high speed flows
NASA Technical Reports Server (NTRS)
Porro, A. R.; Keith, T. G., Jr.; Hingst, W. R.
1991-01-01
A technique is developed to measure the local convective heat transfer coefficient on a model surface in a supersonic flow field. The technique uses a laser to apply a discrete local heat flux at the model test surface, and an infrared camera system determines the local temperature distribution due to the heating. From this temperature distribution and an analysis of the heating process, a local convective heat transfer coefficient is determined. The technique was used to measure the local surface convective heat transfer coefficient distribution on a flat plate at nominal Mach numbers of 2.5, 3.0, 3.5, and 4.0. The flat plate boundary layer initially was laminar and became transitional in the measurement region. The experimentally determined convective heat transfer coefficients were generally higher than the theoretical predictions for flat plate laminar boundary layers. However, the results indicate that this nonintrusive optical measurement technique has the potential to measure surface convective heat transfer coefficients in high-speed flowfields.
Hydrogen isotope geochemistry and heat balance of a fumarolic system: Kudriavy volcano, Kuriles
NASA Astrophysics Data System (ADS)
Botcharnikov, Roman E.; Shmulovich, Kirill I.; Tkachenko, Sergey I.; Korzhinsky, Mikhail A.; Rybin, Alexander V.
2003-05-01
The temperature and hydrogen isotope composition of the fumarolic gases have been studied at Kudriavy volcano, Kurile Islands, which is unique for investigating the processes of magma degassing because of the occurrence of numerous easily accessible fumaroles with a temperature range of 100-940°C. There are several local fumarolic fields with a total surface area of about 2600 m 2 within the flattened crater of 200×600 m. Each fumarolic field is characterized by the occurrence of high- and low-temperature fumaroles with high gas discharges and steaming areas with lower temperatures. We have studied the thermal budget of the Kudriavy fumarolic system on the basis of the quantitative dependences of the hydrogen isotope ratio (D/H) and tritium concentration on the temperature of fumarolic gases and compared them with the calculated heat balance of mixing between hot magmatic gas and cold meteoric water. Hydrogen isotope composition (δD and 3H) shows a well expressed correlation with the gas temperature. Since D/H ratio and 3H are good indicators of water sources in volcanic areas, it suggests that the thermal budget of the fumarolic system is mostly controlled by the admixing of meteoric waters to magmatic gases. The convective mechanism of heat transfer in the hydrothermal system governs the maximum temperatures of local fumaroles and fumarolic fields. Low-temperature fumaroles at Kudriavy are thermally buffered by the boiling processes of meteoric waters in the mixing zone at pressures of 3-12 bar. These values may correspond to the hydrostatic pressure of water columns about 30-120 m in height in the volcanic edifice and hence to the depth of a mixing/boiling zone. Conductive heat transfer is governed by conductive heat exchange between gases and country rocks and appears to be responsible for the temperature distribution around a local fumarolic vent. The temperature and pressure of shallow degassing magma are estimated to be 1050°C and 2-3 bar, respectively. The length of the 'main' fumarolic gas conduit is estimated to be about 80 m from the linear correlation between maximal temperatures of fumarolic fields and distances to the highest-temperature 'F-940' fumarole. This value may correspond to the depth of an apical part of the magmatic chamber. The geometry of the crater zone at the Kudriavy summit and the model of convective gas cooling suggest different hydrostatic pressures in the hydrothermal system at the base of high- and low-temperature gas conduits. The depths of gas sources for low-temperature fumaroles are evaluated to be about 200 m at the periphery of the magma chamber.
Topology optimisation for natural convection problems
NASA Astrophysics Data System (ADS)
Alexandersen, Joe; Aage, Niels; Andreasen, Casper Schousboe; Sigmund, Ole
2014-12-01
This paper demonstrates the application of the density-based topology optimisation approach for the design of heat sinks and micropumps based on natural convection effects. The problems are modelled under the assumptions of steady-state laminar flow using the incompressible Navier-Stokes equations coupled to the convection-diffusion equation through the Boussinesq approximation. In order to facilitate topology optimisation, the Brinkman approach is taken to penalise velocities inside the solid domain and the effective thermal conductivity is interpolated in order to accommodate differences in thermal conductivity of the solid and fluid phases. The governing equations are discretised using stabilised finite elements and topology optimisation is performed for two different problems using discrete adjoint sensitivity analysis. The study shows that topology optimisation is a viable approach for designing heat sink geometries cooled by natural convection and micropumps powered by natural convection.
Analysis of turbulent free-convection boundary layer on flat plate
NASA Technical Reports Server (NTRS)
Eckert, E R G; Jackson, Thomas W
1950-01-01
A calculation was made for the flow and heat transfer in the turbulent free-convection boundary layer on a vertical flat plate. Formulas for the heat-transfer coefficient, boundary layer thickness, and the maximum velocity in the boundary layer were obtained.
NASA Astrophysics Data System (ADS)
Yen, C. T.; Tiller, W. A.
1992-03-01
A one-dimensional mathematical analysis is made of the redistribution of solute which occurs during crystal growth from a convected melt. In this analysis, the important contribution from lateral melt convection to one-dimensional solute redistribution analysis is taken into consideration via an annihilation/creation term in the one-dimensional solute transport equation. Calculations of solute redistribution under steady-state conditions have been carried out analytically. It is found that this new solute redistribution model overcomes several weaknesses that occur when applying the Burton, Prim and Slichter solute segregation equation (1953) in real melt growth situations. It is also found that, with this correction, the diffusion coefficients for solute's in liquid silicon are now found to be in the same range as other liquid metal diffusion coefficients.
Numerical Analysis of Convection/Transpiration Cooling
NASA Technical Reports Server (NTRS)
Glass, David E.; Dilley, Arthur D.; Kelly, H. Neale
1999-01-01
An innovative concept utilizing the natural porosity of refractory-composite materials and hydrogen coolant to provide CONvective and TRANspiration (CONTRAN) cooling and oxidation protection has been numerically studied for surfaces exposed to a high heat flux, high temperature environment such as hypersonic vehicle engine combustor walls. A boundary layer code and a porous media finite difference code were utilized to analyze the effect of convection and transpiration cooling on surface heat flux and temperature. The boundary, layer code determined that transpiration flow is able to provide blocking of the surface heat flux only if it is above a minimum level due to heat addition from combustion of the hydrogen transpirant. The porous media analysis indicated that cooling of the surface is attained with coolant flow rates that are in the same range as those required for blocking, indicating that a coupled analysis would be beneficial.
Impact of topography on the diurnal cycle of summertime moist convection in idealized simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hassanzadeh, Hanieh; Schmidli, Jürg; Langhans, Wolfgang
The impact of an isolated mesoscale mountain on the diurnal cycle of moist convection and its spatial variation is investigated. Convection-resolving simulations of flow over 3D Gaussian-shaped mountains are performed for a conditionally unstable atmosphere under diurnal radiative forcing. The results show considerable spatial variability in terms of timing and amount of convective precipitation. This variability relates to different physical mechanisms responsible for convection initiation in different parts of the domain. During the late morning, the mass convergence from the radiatively driven diurnal upslope flow confronting the large-scale incident background flow triggers strong convective precipitation over the mountain lee slope.more » As a consequence, instabilities in the boundary layer are swept out by the emerging cold pool in the vicinity of the mountain, and some parts over the mountain near-field receive less rainfall than the far-field. Over the latter, an unperturbed boundary-layer growth allows for sporadic convective initiation. Still, secondary convection triggered over the leading edge of the cold pool spreads some precipitation over the downstream near-field. Detailed analysis of our control simulation provides further explanation of this frequently observed precipitation pattern over mountains and adjacent plains. Sensitivity experiments indicate a significant influence of the mountain height on the precipitation pattern over the domain.« less
Influences of the MJO on the space-time organization of tropical convection
NASA Astrophysics Data System (ADS)
Dias, Juliana; Sakaeda, Naoko; Kiladis, George N.; Kikuchi, Kazuyoshi
2017-08-01
The fact that the Madden-Julian Oscillation (MJO) is characterized by large-scale patterns of enhanced tropical rainfall has been widely recognized for decades. However, the precise nature of any two-way feedback between the MJO and the properties of smaller-scale organization that makes up its convective envelope is not well understood. Satellite estimates of brightness temperature are used here as a proxy for tropical rainfall, and a variety of diagnostics are applied to determine the degree to which tropical convection is affected either locally or globally by the MJO. To address the multiscale nature of tropical convective organization, the approach ranges from space-time spectral analysis to an object-tracking algorithm. In addition to the intensity and distribution of global tropical rainfall, the relationship between the MJO and other tropical processes such as convectively coupled equatorial waves, mesoscale convective systems, and the diurnal cycle of tropical convection is also analyzed. The main findings of this paper are that, aside from the well-known increase in rainfall activity across scales within the MJO convective envelope, the MJO does not favor any particular scale or type of organization, and there is no clear signature of the MJO in terms of the globally integrated distribution of brightness temperature or rainfall.
Impact of topography on the diurnal cycle of summertime moist convection in idealized simulations
Hassanzadeh, Hanieh; Schmidli, Jürg; Langhans, Wolfgang; ...
2015-08-31
The impact of an isolated mesoscale mountain on the diurnal cycle of moist convection and its spatial variation is investigated. Convection-resolving simulations of flow over 3D Gaussian-shaped mountains are performed for a conditionally unstable atmosphere under diurnal radiative forcing. The results show considerable spatial variability in terms of timing and amount of convective precipitation. This variability relates to different physical mechanisms responsible for convection initiation in different parts of the domain. During the late morning, the mass convergence from the radiatively driven diurnal upslope flow confronting the large-scale incident background flow triggers strong convective precipitation over the mountain lee slope.more » As a consequence, instabilities in the boundary layer are swept out by the emerging cold pool in the vicinity of the mountain, and some parts over the mountain near-field receive less rainfall than the far-field. Over the latter, an unperturbed boundary-layer growth allows for sporadic convective initiation. Still, secondary convection triggered over the leading edge of the cold pool spreads some precipitation over the downstream near-field. Detailed analysis of our control simulation provides further explanation of this frequently observed precipitation pattern over mountains and adjacent plains. Sensitivity experiments indicate a significant influence of the mountain height on the precipitation pattern over the domain.« less
Onset and localisation of convection during transient growth of mushy sea ice
NASA Astrophysics Data System (ADS)
Wells, Andrew; Hitchen, Joe
2017-11-01
More than 20 million square kilometres of the polar oceans freeze over each year to form sea ice. Sea ice is a mushy layer: a reactive, porous, multiphase material consisting of ice crystals bathed in liquid brine. Atmospheric cooling generates a density gradient in the interstitial brine, which can drive convection and rejection of brine from the sea ice to force ocean circulation and mixing. We use linear stability analysis and nonlinear numerical simulations to consider the convection in a transiently growing mushy layer. An initial salt water layer is cooled from above via a linearised thermal exchange with the atmosphere, and generates a growing mushy layer with the porosity varying in space and time. We determine how the critical porous-medium Rayleigh number for the onset of convection varies with the surface cooling rate, and the initial temperature and salinity of the solidifying salt water. Differences in the cooling conditions modify the structure of the ice and the resulting convection cells. Weak cooling leads to full-depth convection through ice with slowly varying porosity, whilst stronger cooling leads to localised convection confined to a highly permeable basal layer. These results provide insight into the onset of convective brine drainage from growing sea ice.
10 CFR 50.55a - Codes and standards.
Code of Federal Regulations, 2011 CFR
2011-01-01
... specified in § 50.55, except that each combined license for a boiling or pressurized water-cooled nuclear... boiling or pressurized water-cooled nuclear power facility is subject to the conditions in paragraphs (f... performed. (2) Systems and components of boiling and pressurized water-cooled nuclear power reactors must...
Assessment of in situ butanol recovery by vacuum during acetone butanol ethanol (ABE) fermentation
USDA-ARS?s Scientific Manuscript database
Butanol fermentation is product limiting due to butanol toxicity to microbial cells. Butanol (boiling point: 118 deg C) boils at a greater temperature than water (boiling point: 100 deg C) and application of vacuum technology to integrated acetone-butanol-ethanol (ABE) fermentation and recovery may ...
NASA Astrophysics Data System (ADS)
Xu, Bin; Shi, Yumei; Chen, Dongsheng
2014-03-01
This paper presents an experimental investigation on the heat transfer characteristics of liquefied natural gas flow boiling in a vertical micro-fin tube. The effect of heat flux, mass flux and inlet pressure on the flow boiling heat transfer coefficients was analyzed. The Kim, Koyama, and two kinds of Wellsandt correlations with different Ftp coefficients were used to predict the flow boiling heat transfer coefficients. The predicted results showed that the Koyama correlation was the most accurate over the range of experimental conditions.
Occurrence of nitrate, nitrite and volatile nitrosamines in certain feedstuffs and animal products.
Ologhobo, A D; Adegede, H I; Maduagiwu, E N
1996-01-01
Nitrate, nitrite and nitrosamines were analysed in poultry feeds, meat and eggs. The poultry meat was boiled and roasted while the eggs were raw and boiled, and the effects of these processing treatments on the level of these compounds were investigated. Nitrate levels in the meat samples were significantly (P < 0.05) reduced by boiling and roasting, with boiling being more effective. Nitrite levels were also reduced significantly by processing (P < 0.05). The feed samples contained levels of nitrate which were significantly different (P < 0.05) from one producer to another. Nitrite levels were generally low in all feed samples. Nitrosamines were not detected in any of the feed samples and in the meat samples except in two samples of boiled meat which contained 0.001 g/kg each.
20. RW Meyer Sugar Mill: 18761889. Boiling House Interior, 1878. ...
20. RW Meyer Sugar Mill: 1876-1889. Boiling House Interior, 1878. View: Remains of south wall. The molasses storage pits are below the floor in the foreground. The remaining piece of floor indicates the form of the entire floor. The sorghum pan and boiling range flue slope from left to right (east to west) and permitted batches of cane juice to flow through the boiling pan by gravity. The beams, joists, truss work are built of northwest pine. The sides and floor boards are built of redwood. The boiling range flue is built of fire-brick, masonry, and portland cement. The corrugated roof appears to be a later addition, not contemporary with mill operation. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI
NASA Astrophysics Data System (ADS)
Riyanto, J.; Sudibya; Cahyadi, M.; Aji, A. P.
2018-01-01
This aim of this study was to determine the quality of nutritional contents of beef brisket point end of Simental Ongole Crossbred meat in various boiling temperatures. Simental Ongole Crossbred had been fattened for 9 months. Furthermore, they were slaughtered at slaughterhouse and brisket point end part of meat had been prepared to analyse its nutritional contents using Food Scan. These samples were then boiled at 100°C for 0 (TR), 15 (R15), and 30 (R30) minutes, respectively. The data was analysed using Randomized Complete Design (CRD) and Duncan’s multiple range test (DMRT) had been conducted to differentiate among three treatments. The results showed that boiling temperatures significantly affected moisture, and cholesterol contents of beef (P<0.05) while fat content was not significantly affected by boiling temperatures. The boiling temperature decreased beef water contents from 72.77 to 70.84%, on the other hand, the treatment increased beef protein and cholesterol contents from 20.77 to 25.14% and 47.55 to 50.45 mg/100g samples, respectively. The conclusion of this study was boiling of beef at 100°C for 15 minutes and 30 minutes decreasing water content and increasing protein and cholesterol contents of brisket point end of Simental Ongole Crossbred beef.
Khokhlova, Tatiana D.; Canney, Michael S.; Khokhlova, Vera A.; Sapozhnikov, Oleg A.; Crum, Lawrence A.; Bailey, Michael R.
2011-01-01
In high intensity focused ultrasound (HIFU) applications, tissue may be thermally necrosed by heating, emulsified by cavitation, or, as was recently discovered, emulsified using repetitive millisecond boiling caused by shock wave heating. Here, this last approach was further investigated. Experiments were performed in transparent gels and ex vivo bovine heart tissue using 1, 2, and 3 MHz focused transducers and different pulsing schemes in which the pressure, duty factor, and pulse duration were varied. A previously developed derating procedure to determine in situ shock amplitudes and the time-to-boil was refined. Treatments were monitored using B-mode ultrasound. Both inertial cavitation and boiling were observed during exposures, but emulsification occurred only when shocks and boiling were present. Emulsified lesions without thermal denaturation were produced with shock amplitudes sufficient to induce boiling in less than 20 ms, duty factors of less than 0.02, and pulse lengths shorter than 30 ms. Higher duty factors or longer pulses produced varying degrees of thermal denaturation combined with mechanical emulsification. Larger lesions were obtained using lower ultrasound frequencies. The results show that shock wave heating and millisecond boiling is an effective and reliable way to emulsify tissue while monitoring the treatment with ultrasound. PMID:22088025
NASA Technical Reports Server (NTRS)
Herman, Cila; Iacona, Estelle; Acquaviva, Tom; Coho, Bill; Grant, Nechelle; Nahra, Henry; Sankaran, Subramanian; Taylor, Al; Julian, Ed; Robinson, Dale;
2001-01-01
The BCOEL project focuses on improving pool boiling heat transfer and bubble control in microgravity by exposing the fluid to electric fields. The electric fields induce a body force that can replace gravity in the low gravity environment, and enhance bubble removal from thc heated surface. A better understanding of microgravity effects on boiling with and without electric fields is critical to the proper design of the phase-change-heat-removal equipment for use in space-based applications. The microgravity experiments will focus on the visualization of bubble formation and shape during boiling. Heat fluxes on the boiling surface will be measured, and, together with the measured driving temperature differences, used to plot boiling curvcs for different electric field magnitudes. Bubble formation and boiling processes were found to be extremely sensitive to g-jitter. The duration of the experimental run is critical in order to achieve steady state in microgravity experiments. The International Space Station provides conditions suitable for such experiments. The experimental appararus to be used in the study is described in the paper. The apparatus will be tested in the KC-135 first, and microgravity experiments will be conducted on board of the International Space Station using the Microgravity Science Glovebox as the experimental platform.
NASA Astrophysics Data System (ADS)
Swastawati, F.
2018-03-01
Food processing using high temperatures can cause changes in pigment color and chemical characteristics in food stuffs, including prawn. The aim of this research was to evaluate the changes in pigment and chemical characteristics of tiger prawn caused by boiling, smoking and frying. Ten kg of tiger prawn was boiled, smoked and fried at the temperature of ± 100 °C for ± 10 min. The results showed that boiling, smoking and frying gave a significant effect (P < 0.05) on the astaxanthin pigment, pH, moisture, protein, salt content, Aw and color. The content of astaxanthin pigments in fresh prawn, boiled prawn, smoked prawn and fried prawn was: 132.79 ± 1.5 μg·g-1 82.89 ± 0.92 μg·g-1 78.28 ± 0.1 μg·g-1 and 91.35 ± 2.59 μg·g-1, respectively. The value of °Hue on fresh prawn, boiled prawn, smoked prawn and fried prawn was: 87.85° 52.5° 55.94° and 53.98°. The tiger prawn processed by the smoking method has preferable by panelist rather than processed by boiling and frying.
Infrared thermometry study of nanofluid pool boiling phenomena
2011-01-01
Infrared thermometry was used to obtain first-of-a-kind, time- and space-resolved data for pool boiling phenomena in water-based nanofluids with diamond and silica nanoparticles at low concentration (<0.1 vol.%). In addition to macroscopic parameters like the average heat transfer coefficient and critical heat flux [CHF] value, more fundamental parameters such as the bubble departure diameter and frequency, growth and wait times, and nucleation site density [NSD] were directly measured for a thin, resistively heated, indium-tin-oxide surface deposited onto a sapphire substrate. Consistent with other nanofluid studies, the nanoparticles caused deterioration in the nucleate boiling heat transfer (by as much as 50%) and an increase in the CHF (by as much as 100%). The bubble departure frequency and NSD were found to be lower in nanofluids compared with water for the same wall superheat. Furthermore, it was found that a porous layer of nanoparticles built up on the heater surface during nucleate boiling, which improved surface wettability compared with the water-boiled surfaces. Using the prevalent nucleate boiling models, it was possible to correlate this improved surface wettability to the experimentally observed reductions in the bubble departure frequency, NSD, and ultimately to the deterioration in the nucleate boiling heat transfer and the CHF enhancement. PMID:21711754
Cohen, Alasdair; Zhang, Qi; Luo, Qing; Tao, Yong; Colford, John M; Ray, Isha
2017-06-20
Approximately two billion people drink unsafe water. Boiling is the most commonly used household water treatment (HWT) method globally and in China. HWT can make water safer, but sustained adoption is rare and bottled water consumption is growing. To successfully promote HWT, an understanding of associated socioeconomic factors is critical. We collected survey data and water samples from 450 rural households in Guangxi Province, China. Covariates were grouped into blocks to hierarchically construct modified Poisson models and estimate risk ratios (RR) associated with boiling methods, bottled water, and untreated water. Female-headed households were most likely to boil (RR = 1.36, p < 0.01), and among boilers those using electric kettles rather than pots had higher income proxies (e.g., per capita TV ownership RR = 1.42, p < 0.01). Higher-income households with younger, literate, and male heads were more likely to purchase (frequently contaminated) bottled water, or use electric kettles if they boiled. Our findings show that boiling is not an undifferentiated practice, but one with different methods of varying effectiveness, environmental impact, and adoption across socioeconomic strata. Our results can inform programs to promote safer and more efficient boiling using electric kettles, and suggest that if rural China's economy continues to grow then bottled water use will increase.
NASA Technical Reports Server (NTRS)
Herman, Cila; Iacona, Estelle; Acquaviva, Tom; Coho, Bill; Grant, Nechelle; Nahra, Henry; Taylor, Al; Julian, Ed; Robinson, Dale; VanZandt, Dave
2001-01-01
The BCOEL project focuses on improving pool boiling heat transfer and bubble control in microgravity by exposing the fluid to electric fields. The electric fields induce a body force that can replace gravity in the low gravity environment, and enhance bubble removal from the heated surface. A better understanding of microgravity effects on boiling with and without electric fields is critical to the proper design of the phase-change-heat-removal equipment for use in spacebased applications. The microgravity experiments will focus on the visualization of bubble formation and shape during boiling. Heat fluxes on the boiling surface will be measured, and, together with the measured driving temperature differences, used to plot boiling curves for different electric field magnitudes. Bubble formation and boiling processes were found to be extremely sensitive to g-jitter. The duration of the experimental run is critical in order to achieve steady state in microgravity experiments. The International Space Station provides conditions suitable for such experiments. The experimental apparatus to be used in the study is described in the paper. The apparatus will be tested in the KC-135 first, and microgravity experiments will be conducted on board of the International Space Station using the Microgravity Science Glovebox as the experimental platform.
Flow regimes and mechanistic modeling of critical heat flux under subcooled flow boiling conditions
NASA Astrophysics Data System (ADS)
Le Corre, Jean-Marie
Thermal performance of heat flux controlled boiling heat exchangers are usually limited by the Critical Heat Flux (CHF) above which the heat transfer degrades quickly, possibly leading to heater overheating and destruction. In an effort to better understand the phenomena, a literature review of CHF experimental visualizations under subcooled flow boiling conditions was performed and systematically analyzed. Three major types of CHF flow regimes were identified (bubbly, vapor clot and slug flow regime) and a CHF flow regime map was developed, based on a dimensional analysis of the phenomena and available data. It was found that for similar geometric characteristics and pressure, a Weber number (We)/thermodynamic quality (x) map can be used to predict the CHF flow regime. Based on the experimental observations and the review of the available CHF mechanistic models under subcooled flow boiling conditions, hypothetical CHF mechanisms were selected for each CHF flow regime, all based on a concept of wall dry spot overheating, rewetting prevention and subsequent dry spot spreading. It is postulated that a high local wall superheat occurs locally in a dry area of the heated wall, due to a cyclical event inherent to the considered CHF two-phase flow regime, preventing rewetting (Leidenfrost effect). The selected modeling concept has the potential to span the CHF conditions from highly subcooled bubbly flow to early stage of annular flow. A numerical model using a two-dimensional transient thermal analysis of the heater undergoing nucleation was developed to mechanistically predict CHF in the case of a bubbly flow regime. In this type of CHF two-phase flow regime, the high local wall superheat occurs underneath a nucleating bubble at the time of bubble departure. The model simulates the spatial and temporal heater temperature variations during nucleation at the wall, accounting for the stochastic nature of the boiling phenomena. The model has also the potential to evaluate the post-DNB heater temperature up to the point of heater melting. Validation of the proposed model was performed using detailed measured wall boiling parameters near CHF, thereby bypassing most needed constitutive relations. It was found that under limiting nucleation conditions; a peak wall temperature at the time of bubble departure can be reached at CHF preventing wall cooling by quenching. The simulations show that the resulting dry patch can survive the surrounding quenching event, preventing further nucleation and leading to a fast heater temperature increase. For more practical applications, the model was applied at known CHF conditions in simple geometry coupled with one-dimensional and three-dimensional (CFD) codes. It was found that, in the case where CHF occurs under bubbly flow conditions, the local wall superheat underneath nucleating bubbles is predicted to reach the Leidenfrost temperature. However, a better knowledge of statistical variations in wall boiling parameters would be necessary to correctly capture the CHF trends with mass flux (or Weber number). In addition, consideration of relevant parameter influences on the Leidenfrost temperature and consideration of interfacial microphysics at the wall would allow improved simulation of the wall rewetting prevention and subsequent dry patch spreading.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Qing; Easter, Richard C.; Campuzano-Jost, Pedro
2015-08-20
The effect of wet scavenging on ambient aerosols in deep, continental convective clouds in the mid-latitudes is studied for a severe storm case in Oklahoma during the Deep Convective Clouds and Chemistry (DC3) field campaign. A new passive-tracer based transport analysis framework is developed to characterize the convective transport based on the vertical distribution of several slowly reacting and nearly insoluble trace gases. The passive gas concentration in the upper troposphere convective outflow results from a mixture of 47% from the lower level (0-3 km), 21% entrained from the upper troposphere, and 32% from mid-atmosphere based on observations. The transportmore » analysis framework is applied to aerosols to estimate aerosol transport and wet-scavenging efficiency. Observations yield high overall scavenging efficiencies of 81% and 68% for aerosol mass (Dp < 1μm) and aerosol number (0.03< Dp < 2.5μm), respectively. Little chemical selectivity to wet scavenging is seen among observed submicron sulfate (84%), organic (82%), and ammonium (80%) aerosols, while nitrate has a much lower scavenging efficiency of 57% likely due to the uptake of nitric acid. Observed larger size particles (0.15 - 2.5μm) are scavenged more efficiently (84%) than smaller particles (64%; 0.03 - 0.15μm). The storm is simulated using the chemistry version of the WRF model. Compared to the observation based analysis, the standard model underestimates the wet scavenging efficiency for both mass and number concentrations with low biases of 31% and 40%, respectively. Adding a new treatment of secondary activation significantly improves simulation results, so that the bias in scavenging efficiency in mass and number concentrations is reduced to <10%. This supports the hypothesis that secondary activation is an important process for wet removal of aerosols in deep convective storms.« less
NASA Technical Reports Server (NTRS)
Knupp, Kevin; Geerts, Bart; Goodman, Steven J.
1997-01-01
The precipitation output was highly variable due to the transient nature of the intense convective elements. This result is attributed to the high Richardson number (175) of the environment, which is much higher than that of the typical MCS environment. The development of the stratiform precipitation was accomplished locally (in situ), and not be advection of from the convective region. In situ charging of the stratiform region is also supported by the observations.
Inventory of File sref_nmm.t03z.pgrb221.p1.f00.grib2
ground VGRD analysis V-Component of Wind [m/s] 015 surface WEASD analysis Water Equivalent of Accumulated day acc f Convective Precipitation [kg/m^2] 018 surface WEASD 0-0 day acc f Water Equivalent of Potential Temperature [K] 403 surface NCPCP 0-0 day acc f Large-Scale Precipitation (non-convective) [kg/m^2
Inventory of File sref_nmb.t03z.pgrb221.p1.f00.grib2
ground VGRD analysis V-Component of Wind [m/s] 015 surface WEASD analysis Water Equivalent of Accumulated day acc f Convective Precipitation [kg/m^2] 018 surface WEASD 0-0 day acc f Water Equivalent of Potential Temperature [K] 403 surface NCPCP 0-0 day acc f Large-Scale Precipitation (non-convective) [kg/m^2
Derecho-like event in Bulgaria on 20 July 2011
NASA Astrophysics Data System (ADS)
Gospodinov, Ilian; Dimitrova, Tsvetelina; Bocheva, Lilia; Simeonov, Petio; Dimitrov, Rumen
2015-05-01
In this work we analyze the development of a severe-convective-storm system in northwestern Bulgaria on 20 July 2011 which exhibited derecho-like characteristics. Prior to this event, a derecho had never been documented in Bulgaria. The convective system was associated with a cold front. We present a synoptic-scale analysis of the evolution of the cold front and an overview of the wind and the damage that has occurred in the region with the strongest impact. The convective system consisted of two multi-cell thunderstorms that are analyzed in some detail, based on radar data. The two storms merged and the convective system evolved into a bow-shape reflectivity structure with two rear inflow notches. The analysis of the radar data revealed cloud top heights of 17 km, with the formation of а bounded weak echo region, a maximum radar reflectivity factor of 63 dBZ, and wind speeds above 30 m/s. The field investigation revealed patterns in the damaged crops typical of strong wind gusts.
Directional Solidification of a Binary Alloy into a Cellular Convective Flow: Localized Morphologies
NASA Technical Reports Server (NTRS)
Chen, Y.- J.; Davis, S. H.
1999-01-01
A steady, two dimensional cellular convection modifies the morphological instability of a binary alloy that undergoes directional solidification. When the convection wavelength is far longer than that of the morphological cells, the behavior of the moving front is described by a slow, spatial-temporal dynamics obtained through a multiple-scale analysis. The resulting system has a "parametric-excitation" structure in space, with complex parameters characterizing the interactions between flow, solute diffusion, and rejection. The convection stabilizes two dimensional disturbances oriented with the flow, but destabilizes three dimensional disturbances in general. When the flow is weak, the morphological instability behaves incommensurably to the flow wavelength, but becomes quantized and forced to fit into the flow-box as the flow gets stronger. At large flow magnitudes the instability is localized, confined in narrow envelopes with cells traveling with the flow. In this case the solutions are discrete eigenstates in an unbounded space. Their stability boundary and asymptotics are obtained by the WKB analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, E.U.; George, T.L.; Rector, D.R.
The natural circulation tests of the Fast Flux Test Facility (FFTF) demonstrated a safe and stable transition from forced convection to natural convection and showed that natural convection may adequately remove decay heat from the reactor core. The COBRA-WC computer code was developed by the Pacific Northwest laboratory (PNL) to account for buoyancy-induced coolant flow redistribution and interassembly heat transfer, effects that become important in mitigating temperature gradients and reducing reactor core temperatures when coolant flow rate in the core is low. This report presents work sponsored by the US Department of Energy (DOE) with the objective of checking themore » validity of COBRA-WC during the first 220 seconds (sec) of the FFTF natural-circulation (plant-startup) tests using recorded data from two instrumented Fuel Open Test Assemblies (FOTAs). Comparison of COBRA-WC predictions of the FOTA data is a part of the final confirmation of the COBRA-WC methodology for core natural-convection analysis.« less
NASA Technical Reports Server (NTRS)
Ramey, Holly S.; Robertson, Franklin R.
2009-01-01
Intraseasonal variability of deep convection represents a fundamental mode of variability in the organization of tropical convection. While most studies of intraseasonal oscillations (ISOs) have focused on the spatial propagation and dynamics of convectively coupled circulations, we examine the projection of ISOs on the tropically-averaged temperature and energy budget. The area of interest is the global oceans between 20oN/S. Our analysis then focuses on these questions: (i) How is tropospheric temperature related to tropical deep convection and the associated ice cloud fractional amount (ICF) and ice water path (IWP)? (ii) What is the source of moisture sustaining the convection and what role does deep convection play in mediating the PBL - free atmospheric temperature equilibration? (iii) What affect do convectively generated upper-tropospheric clouds have on the TOA radiation budget? Our methodology is similar to that of Spencer et al., (2007) with some modifications and some additional diagnostics of both clouds and boundary layer thermodynamics. A composite ISO time series of cloud, precipitation and radiation quantities built from nearly 40 events during a six-year period is referenced to the atmospheric temperature signal. The increase of convective precipitation cannot be sustained by evaporation within the domain, implying strong moisture transports into the tropical ocean area. While there is a decrease in net TOA radiation that develops after the peak in deep convective rainfall, there seems little evidence that an "Infrared Iris"- like mechanism is dominant. Rather, the cloud-induced OLR increase seems largely produced by weakened convection with warmer cloud tops. Tropical ISO events offer an accessible target for studying ISOs not just in terms of propagation mechanisms, but on their global signals of heat, moisture and radiative flux feedback processes.
NASA Technical Reports Server (NTRS)
Ramey, Holly S.; Robertson, Franklin R.
2010-01-01
Intraseasonal variability of deep convection represents a fundamental mode of variability in the organization of tropical convection. While most studies of intraseasonal oscillations (ISOs) have focused on the spatial propagation and dynamics of convectively coupled circulations, we examine the projection of ISOs on the tropically-averaged temperature and energy budget. The area of interest is the global oceans between 20degN/S. Our analysis then focuses on these questions: (i) How is tropospheric temperature related to tropical deep convection and the associated ice cloud fractional amount (ICF) and ice water path (IWP)? (ii) What is the source of moisture sustaining the convection and what role does deep convection play in mediating the PBL - free atmospheric temperature equilibration? (iii) What affect do convectively generated upper-tropospheric clouds have on the TOA radiation budget? Our methodology is similar to that of Spencer et al., (2007) with some modifications and some additional diagnostics of both clouds and boundary layer thermodynamics. A composite ISO time series of cloud, precipitation and radiation quantities built from nearly 40 events during a six-year period is referenced to the atmospheric temperature signal. The increase of convective precipitation cannot be sustained by evaporation within the domain, implying strong moisture transports into the tropical ocean area. While there is a decrease in net TOA radiation that develops after the peak in deep convective rainfall, there seems little evidence that an "Infrared Iris"- like mechanism is dominant. Rather, the cloud-induced OLR increase seems largely produced by weakened convection with warmer cloud tops. Tropical ISO events offer an accessible target for studying ISOs not just in terms of propagation mechanisms, but on their global signals of heat, moisture and radiative flux feedback processes.
NASA Technical Reports Server (NTRS)
Ramey, Holly S.; Robertson, Franklin R.
2009-01-01
Intraseasonal variability of deep convection represents a fundamental mode of variability in the organization of tropical convection. While most studies of intraseasonal oscillations (ISOs) have focused on the spatial propagation and dynamics of convectively coupled circulations, we examine the projection of ISOs on the tropically-averaged temperature and energy budget. The area of interest is the global oceans between 20oN/S. Our analysis then focuses on these questions: (i) How is tropospheric temperature related to tropical deep convection and the associated ice cloud fractional amount (ICF) and ice water path (IWP)? (ii) What is the source of moisture sustaining the convection and what role does deep convection play in mediating the PBL - free atmospheric temperature equilibration? (iii) What affect do convectively generated upper-tropospheric clouds have on the TOA radiation budget? Our methodology is similar to that of Spencer et al., (2007) with some modifications and some additional diagnostics of both clouds and boundary layer thermodynamics. A composite ISO time series of cloud, precipitation and radiation quantities built from nearly 40 events during a six-year period is referenced to the atmospheric temperature signal. The increase of convective precipitation cannot be sustained by evaporation within the domain, implying strong moisture transports into the tropical ocean area. While there is a decrease in net TOA radiation that develops after the peak in deep convective rainfall, there seems little evidence that an "Infrared Iris"- like mechanism is dominant. Rather, the cloud-induced OLR increase seems largely produced by weakened convection with warmer cloud tops. Tropical ISO events offer an accessible target for studying ISOs not just in terms of propagation mechanisms, but on their global signals of heat, moisture and radiative flux feedback processes.
Lee, In-Hee; Chung, Hwa-Jin; Shin, Joon-Shik; Ha, In-Hyuk; Kim, Me-Riong; Koh, Wonil; Lee, Jinho
2017-01-01
GCSB-5, an herbal drug composition with an anti-inflammatory effect, is prepared by boiling, which is the most common herbal extraction method in traditional Korean medicine. Several parameters are involved in the process, i.e., extractant type, herb-to-extractant ratio, extraction temperature and pressure, and total boiling time. The aim of this study was to examine the influence of boiling time on index compound amount and the antioxidative and anti-inflammatory activities of GCSB-5. Different samples of GCSB-5 were obtained by decocting for 30, 60, 90, 120, 150, and 240 min. Each sample was tested for hydrogen ion concentration (pH), total soluble solid content (TSSC), marker compound profiles, and antioxidative and anti-inflammatory activity. pH was found to decrease while TSSC increased with extended decoction. Marker compound contents for GCSB-5 (acanthoside D for Acanthopanax sessiliflorus Seem, 20-hydroxyecdysone for Achyranthes japonica Nakai, and pinoresinol diglucoside for Eucommia ulmoides Oliver) remained relatively constant regardless of the length of boiling. Total D-glucose amount increased with longer boiling. The antioxidative and anti-inflammatory potentials of GCSB-5 were not substantially affected by decoction duration. Biological characteristics and marker compound content of GCSB-5 were not altered significantly in prolonged boiling. Longer boiling duration of GCSB-5 did not increase yield in a time-dependent manner, but yields of 210 and 240 min samples were significantly higherHydrogen ion concentration of GCSB-5 samples decreased while total soluble solid content and D-glucose concentration levels increased with boiling durationAlthough concentrations of some index compounds increased with extended boiling duration of GCSB-5, increase was small and not in a direct proportional relationshipAntioxidative and anti-inflammatory properties of GCSB-5 were not substantially affected by decoction duration. Abbreviations used: CAM: Complementary and alternative medicine; KIOM: Korea Institute of Oriental Medicine; KMD: Korean medicine doctor; TSSC: Total soluble solid content; pH: Hydrogen ion concentration; HPLC: High-performance liquid chromatography; NO: Nitric oxide; NO 2 : Nitric dioxide; LPS: Lipopolysaccharide; DMSO: Dimethyl sulfoxide.