Sea breeze: Induced mesoscale systems and severe weather
NASA Technical Reports Server (NTRS)
Nicholls, M. E.; Pielke, R. A.; Cotton, W. R.
1990-01-01
Sea-breeze-deep convective interactions over the Florida peninsula were investigated using a cloud/mesoscale numerical model. The objective was to gain a better understanding of sea-breeze and deep convective interactions over the Florida peninsula using a high resolution convectively explicit model and to use these results to evaluate convective parameterization schemes. A 3-D numerical investigation of Florida convection was completed. The Kuo and Fritsch-Chappell parameterization schemes are summarized and evaluated.
NASA Astrophysics Data System (ADS)
Fritsch, J. M.; Kane, R. J.; Chelius, C. R.
1986-10-01
The contribution of precipitation from mesoscale convective weather systems to the warm-season (April-September) rainfall in the United States is evaluated. Both Mesoscale Convective Complexes (MCC's) and other large, long-lived mesoscale convective systems that do not quite meet Maddox's criteria for being termed an MCC are included in the evaluation. The distribution and geographical limits of the precipitation from the convective weather systems are constructed for the warm seasons of 1982, a `normal' year, and 1983, a drought year. Precipitation characteristics of the systems are compared for the 2 years to determine how large-scale drought patterns affect their precipitation production.The frequency, precipitation characteristics and hydrologic ramifications of multiple occurrences, or series, of convective weather systems are presented and discussed. The temporal and spatial characteristics of the accumulated precipitation from a series of convective complexes is investigated and compared to that of Hurricane Alicia.It is found that mesoscale convective weather systems account for approximately 30% to 70% of the warm-season (April-September) precipitation over much of the region between the Rocky Mountains and the Mississippi River. During the June through August period, their contribution is even larger. Moreover, series of convective weather systems are very likely the most prolific precipitation producer in the United States, rivaling and even exceeding that of hurricanes.Changes in the large-scale circulation patterns affected the seasonal precipitation from mesoscale convective weather systems by altering the precipitation characteristics of individual systems. In particular, for the drought period of 1983, the frequency of the convective systems remained nearly the same as in the `normal' year (1982); however, the average precipitation area and the average volumetric production significantly decreased. Nevertheless, the rainfall that was produced by mesoscale convective weather systems in the drought year accounted for most of the precipitation received during the critical crop growth period.It is concluded that mesoscale convective weather systems may be a crucial precipitation-producing deterrent to drought and an important mechanism for enhancing midsummer crop growth throughout the midwestern United States. Furthermore, because mesoscale convective weather systems account for such a large fraction of the warm-season precipitation, significant improvements in prediction of such systems would likely translate into significant improvements in quantitative precipitation forecast skill and corresponding improvements in hydrologic forecasts of runoff.
A System for Measurement of Convection Aboard Space Station
NASA Technical Reports Server (NTRS)
Bogatyrev, Gennady P.; Gorbunov, Aleksei V; Putin, Gennady F.; Ivanov, Alexander I.; Nikitin, Sergei A.; Polezhaev, Vadim I.
1996-01-01
A simple device for direct measurement of buoyancy driven fluid flows in a low-gravity environment is proposed. A system connecting spacecraft accelerometers data and results of thermal convection in enclosure measurements and numerical simulations is developed. This system will permit also to evaluate the low frequency microacceleration component. The goal of the paper is to present objectives and current results of ground-based experimental and numerical modeling of this convection detector.
Classification of Clouds and Deep Convection from GEOS-5 Using Satellite Observations
NASA Technical Reports Server (NTRS)
Putman, William; Suarez, Max
2010-01-01
With the increased resolution of global atmospheric models and the push toward global cloud resolving models, the resemblance of model output to satellite observations has become strikingly similar. As we progress with our adaptation of the Goddard Earth Observing System Model, Version 5 (GEOS-5) as a high resolution cloud system resolving model, evaluation of cloud properties and deep convection require in-depth analysis beyond a visual comparison. Outgoing long-wave radiation (OLR) provides a sufficient comparison with infrared (IR) satellite imagery to isolate areas of deep convection. We have adopted a binning technique to generate a series of histograms for OLR which classify the presence and fraction of clear sky versus deep convection in the tropics that can be compared with a similar analyses of IR imagery from composite Geostationary Operational Environmental Satellite (GOES) observations. We will present initial results that have been used to evaluate the amount of deep convective parameterization required within the model as we move toward cloud system resolving resolutions of 10- to 1-km globally.
NASA Technical Reports Server (NTRS)
Freitas, Saulo R.; Grell, Georg; Molod, Andrea; Thompson, Matthew A.
2017-01-01
We implemented and began to evaluate an alternative convection parameterization for the NASA Goddard Earth Observing System (GEOS) global model. The parameterization is based on the mass flux approach with several closures, for equilibrium and non-equilibrium convection, and includes scale and aerosol awareness functionalities. Recently, the scheme has been extended to a tri-modal spectral size approach to simulate the transition from shallow, mid, and deep convection regimes. In addition, the inclusion of a new closure for non-equilibrium convection resulted in a substantial gain of realism in model simulation of the diurnal cycle of convection over the land. Here, we briefly introduce the recent developments, implementation, and preliminary results of this parameterization in the NASA GEOS modeling system.
NASA Technical Reports Server (NTRS)
Fritsch, J. Michael; Kain, John S.
1996-01-01
Research efforts focused on numerical simulations of two convective systems with the Penn State/NCAR mesoscale model. The first of these systems was tropical cyclone Irma, which occurred in 1987 in Australia's Gulf of Carpentaria during the AMEX field program. Comparison simulations of this system were done with two different convective parameterization schemes (CPS's), the Kain-Fritsch (KF) and the Betts-Miller (BM) schemes. The second system was the June 10-11, 1985 squall line simulation, which occurred over the Kansas-Oklahoma region during the PRE-STORM experiment. Simulations of this system using the KF scheme were examined in detail.
NASA Technical Reports Server (NTRS)
Fritsch, J. Michael (Principal Investigator); Kain, John S.
1995-01-01
Research efforts during the first year focused on numerical simulations of two convective systems with the Penn State/NCAR mesoscale model. The first of these systems was tropical cyclone Irma, which occurred in 1987 in Australia's Gulf of Carpentaria during the AMEX field program. Comparison simulations of this system were done with two different convective parameterization schemes (CPS's), the Kain-Fritsch (1993 - KF) and the Betts-Miller (Betts 1986- BM) schemes. The second system was the June 10-11 1985 squall line simulation, which occurred over the Kansas-Oklahoma region during the PRE-STORM experiment. Simulations of this system using the KF scheme were examined in detail.
Evaluation of Convective Transport in the GEOS-5 Chemistry and Climate Model
NASA Technical Reports Server (NTRS)
Pickering, Kenneth E.; Ott, Lesley E.; Shi, Jainn J.; Tao. Wei-Kuo; Mari, Celine; Schlager, Hans
2011-01-01
The NASA Goddard Earth Observing System (GEOS-5) Chemistry and Climate Model (CCM) consists of a global atmospheric general circulation model and the combined stratospheric and tropospheric chemistry package from the NASA Global Modeling Initiative (GMI) chemical transport model. The subgrid process of convective tracer transport is represented through the Relaxed Arakawa-Schubert parameterization in the GEOS-5 CCM. However, substantial uncertainty for tracer transport is associated with this parameterization, as is the case with all global and regional models. We have designed a project to comprehensively evaluate this parameterization from the point of view of tracer transport, and determine the most appropriate improvements that can be made to the GEOS-5 convection algorithm, allowing improvement in our understanding of the role of convective processes in determining atmospheric composition. We first simulate tracer transport in individual observed convective events with a cloud-resolving model (WRF). Initial condition tracer profiles (CO, CO2, O3) are constructed from aircraft data collected in undisturbed air, and the simulations are evaluated using aircraft data taken in the convective anvils. A single-column (SCM) version of the GEOS-5 GCM with online tracers is then run for the same convective events. SCM output is evaluated based on averaged tracer fields from the cloud-resolving model. Sensitivity simulations with adjusted parameters will be run in the SCM to determine improvements in the representation of convective transport. The focus of the work to date is on tropical continental convective events from the African Monsoon Multidisciplinary Analyses (AMMA) field mission in August 2006 that were extensively sampled by multiple research aircraft.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Jiwen; Liu, Yi-Chin; Xu, Kuan-Man
2015-04-27
The ultimate goal of this study is to improve representation of convective transport by cumulus parameterization for meso-scale and climate models. As Part I of the study, we perform extensive evaluations of cloud-resolving simulations of a squall line and mesoscale convective complexes in mid-latitude continent and tropical regions using the Weather Research and Forecasting (WRF) model with spectral-bin microphysics (SBM) and with two double-moment bulk microphysics schemes: a modified Morrison (MOR) and Milbrandt and Yau (MY2). Compared to observations, in general, SBM gives better simulations of precipitation, vertical velocity of convective cores, and the vertically decreasing trend of radar reflectivitymore » than MOR and MY2, and therefore will be used for analysis of scale-dependence of eddy transport in Part II. The common features of the simulations for all convective systems are (1) the model tends to overestimate convection intensity in the middle and upper troposphere, but SBM can alleviate much of the overestimation and reproduce the observed convection intensity well; (2) the model greatly overestimates radar reflectivity in convective cores (SBM predicts smaller radar reflectivity but does not remove the large overestimation); and (3) the model performs better for mid-latitude convective systems than tropical system. The modeled mass fluxes of the mid latitude systems are not sensitive to microphysics schemes, but are very sensitive for the tropical case indicating strong microphysics modification to convection. Cloud microphysical measurements of rain, snow and graupel in convective cores will be critically important to further elucidate issues within cloud microphysics schemes.« less
ARM - Midlatitude Continental Convective Clouds
Jensen, Mike; Bartholomew, Mary Jane; Genio, Anthony Del; Giangrande, Scott; Kollias, Pavlos
2012-01-19
Convective processes play a critical role in the Earth's energy balance through the redistribution of heat and moisture in the atmosphere and their link to the hydrological cycle. Accurate representation of convective processes in numerical models is vital towards improving current and future simulations of Earths climate system. Despite improvements in computing power, current operational weather and global climate models are unable to resolve the natural temporal and spatial scales important to convective processes and therefore must turn to parameterization schemes to represent these processes. In turn, parameterization schemes in cloud-resolving models need to be evaluated for their generality and application to a variety of atmospheric conditions. Data from field campaigns with appropriate forcing descriptors have been traditionally used by modelers for evaluating and improving parameterization schemes.
ARM - Midlatitude Continental Convective Clouds (comstock-hvps)
Jensen, Mike; Comstock, Jennifer; Genio, Anthony Del; Giangrande, Scott; Kollias, Pavlos
2012-01-06
Convective processes play a critical role in the Earth's energy balance through the redistribution of heat and moisture in the atmosphere and their link to the hydrological cycle. Accurate representation of convective processes in numerical models is vital towards improving current and future simulations of Earths climate system. Despite improvements in computing power, current operational weather and global climate models are unable to resolve the natural temporal and spatial scales important to convective processes and therefore must turn to parameterization schemes to represent these processes. In turn, parameterization schemes in cloud-resolving models need to be evaluated for their generality and application to a variety of atmospheric conditions. Data from field campaigns with appropriate forcing descriptors have been traditionally used by modelers for evaluating and improving parameterization schemes.
Evaluation of a Mesoscale Convective System in Variable-Resolution CESM
NASA Astrophysics Data System (ADS)
Payne, A. E.; Jablonowski, C.
2017-12-01
Warm season precipitation over the Southern Great Plains (SGP) follows a well observed diurnal pattern of variability, peaking at night-time, due to the eastward propagation of mesoscale convection systems that develop over the eastern slopes of the Rockies in the late afternoon. While most climate models are unable to adequately capture the organization of convection and characteristic pattern of precipitation over this region, models with high enough resolution to explicitly resolve convection show improvement. However, high resolution simulations are computationally expensive and, in the case of regional climate models, are subject to boundary conditions. Newly developed variable resolution global climate models strike a balance between the benefits of high-resolution regional climate models and the large-scale dynamics of global climate models and low computational cost. Recently developed parameterizations that are insensitive to the model grid scale provide a way to improve model performance. Here, we present an evaluation of the newly available Cloud Layers Unified by Binormals (CLUBB) parameterization scheme in a suite of variable-resolution CESM simulations with resolutions ranging from 110 km to 7 km within a regionally refined region centered over the SGP Atmospheric Radiation Measurement (ARM) site. Simulations utilize the hindcast approach developed by the Department of Energy's Cloud-Associated Parameterizations Testbed (CAPT) for the assessment of climate models. We limit our evaluation to a single mesoscale convective system that passed over the region on May 24, 2008. The effects of grid-resolution on the timing and intensity of precipitation, as well as, on the transition from shallow to deep convection are assessed against ground-based observations from the SGP ARM site, satellite observations and ERA-Interim reanalysis.
NASA Technical Reports Server (NTRS)
Fritsch, J. Michael; Kain, John S.
1997-01-01
Research efforts during the second year have centered on improving the manner in which convective stabilization is achieved in the Penn State/NCAR mesoscale model MM5. Ways of improving this stabilization have been investigated by (1) refining the partitioning between the Kain-Fritsch convective parameterization scheme and the grid scale by introducing a form of moist convective adjustment; (2) using radar data to define locations of subgrid-scale convection during a dynamic initialization period; and (3) parameterizing deep-convective feedbacks as subgrid-scale sources and sinks of mass. These investigations were conducted by simulating a long-lived convectively-generated mesoscale vortex that occurred during 14-18 Jul. 1982 and the 10-11 Jun. 1985 squall line that occurred over the Kansas-Oklahoma region during the PRE-STORM experiment. The long-lived vortex tracked across the central Plains states and was responsible for multiple convective outbreaks during its lifetime.
2010-09-30
oceans from radar , aircraft and satellite data; 2) Derive an accurate mesoscale environment of convective systems through the assimilation of satellite... radar , lidar and in-situ data; 3) Evaluate the quality of the global forecast system (e.g., Navy Operational Global Atmospheric Prediction System or...from Aqua and NASA Tropical Rainfall Measuring Mission (TRMM), 2) developing mesoscale data assimilation techniques to assimilate satellite, radar
Biot number and thermos bottle effect: implications for magma-chamber convection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carrigan, C.R.
1988-09-01
Thermal boundary conditions model the coupling between a convecting magmatic body and its host. Such conditions need to be considered in models of igneous systems that involve thermal histories, crystallization and fractionation of melt, formation of aureoles by contact metamorphism, and any other processes in which transport of heat plays a role. Usually, investigations of magmatic systems have tended to emphasize modeling the interior convective regime relative to treatment of the thermal coupling. Yet it is found that the thermal nature of an intrusion is likely to be influenced more by coupling to its host than by the details ofmore » internal convective flows. Evaluation of a parameter having the form of a Biot number (Bi) provides a basis for estimating which boundary conditions are most appropriate. It is found that Bi less than or equal to 0.1 (constant heat-flux limit) for models of several caldera systems. For such values of the Biot number, the host regime behaves somewhat like a thermos bottle by limiting the flow of heat through the magma-host system so that convective stirring of magma has little effect on the cooling rate of the intrusion. Because of this insulating effect, boundary temperatures assumed in convection models should approach magmatic values even if an active hydrothermal system is present. However, high boundary temperatures do not imply that melting and assimilation of host rock by magma must occur. Despite the thermos bottle effect, magmatic convection can still be quite vigorous.« less
Entropy production in a box: Analysis of instabilities in confined hydrothermal systems
NASA Astrophysics Data System (ADS)
Börsing, N.; Wellmann, J. F.; Niederau, J.; Regenauer-Lieb, K.
2017-09-01
We evaluate if the concept of thermal entropy production can be used as a measure to characterize hydrothermal convection in a confined porous medium as a valuable, thermodynamically motivated addition to the standard Rayleigh number analysis. Entropy production has been used widely in the field of mechanical and chemical engineering as a way to characterize the thermodynamic state and irreversibility of an investigated system. Pioneering studies have since adapted these concepts to natural systems, and we apply this measure here to investigate the specific case of hydrothermal convection in a "box-shaped" confined porous medium, as a simplified analog for, e.g., hydrothermal convection in deep geothermal aquifers. We perform various detailed numerical experiments to assess the response of the convective system to changing boundary conditions or domain aspect ratios, and then determine the resulting entropy production for each experiment. In systems close to the critical Rayleigh number, we derive results that are in accordance to the analytically derived predictions. At higher Rayleigh numbers, however, we observe multiple possible convection modes, and the analysis of the integrated entropy production reveals distinct curves of entropy production that provide an insight into the hydrothermal behavior in the system, both for cases of homogeneous materials, as well as for heterogeneous spatial material distributions. We conclude that the average thermal entropy production characterizes the internal behavior of hydrothermal systems with a meaningful thermodynamic measure, and we expect that it can be useful for the investigation of convection systems in many similar hydrogeological and geophysical settings.
2011-09-30
assimilating satellite, radar and in-situ observations for improved numerical simulations of major Typhoons (Jiangmi, Sinlaku, Nuri and Hagupit) during T- PARC ...oceans from radar , aircraft and satellite data; 2) Derive an accurate mesoscale environment of convective systems through the assimilation of satellite... radar , lidar and in-situ data; 3) Evaluate the quality of the global forecast system (e.g., Navy Operational Global Atmospheric Prediction System or
Progress and challenges with Warn-on-Forecast
NASA Astrophysics Data System (ADS)
Stensrud, David J.; Wicker, Louis J.; Xue, Ming; Dawson, Daniel T.; Yussouf, Nusrat; Wheatley, Dustan M.; Thompson, Therese E.; Snook, Nathan A.; Smith, Travis M.; Schenkman, Alexander D.; Potvin, Corey K.; Mansell, Edward R.; Lei, Ting; Kuhlman, Kristin M.; Jung, Youngsun; Jones, Thomas A.; Gao, Jidong; Coniglio, Michael C.; Brooks, Harold E.; Brewster, Keith A.
2013-04-01
The current status and challenges associated with two aspects of Warn-on-Forecast-a National Oceanic and Atmospheric Administration research project exploring the use of a convective-scale ensemble analysis and forecast system to support hazardous weather warning operations-are outlined. These two project aspects are the production of a rapidly-updating assimilation system to incorporate data from multiple radars into a single analysis, and the ability of short-range ensemble forecasts of hazardous convective weather events to provide guidance that could be used to extend warning lead times for tornadoes, hailstorms, damaging windstorms and flash floods. Results indicate that a three-dimensional variational assimilation system, that blends observations from multiple radars into a single analysis, shows utility when evaluated by forecasters in the Hazardous Weather Testbed and may help increase confidence in a warning decision. The ability of short-range convective-scale ensemble forecasts to provide guidance that could be used in warning operations is explored for five events: two tornadic supercell thunderstorms, a macroburst, a damaging windstorm and a flash flood. Results show that the ensemble forecasts of the three individual severe thunderstorm events are very good, while the forecasts from the damaging windstorm and flash flood events, associated with mesoscale convective systems, are mixed. Important interactions between mesoscale and convective-scale features occur for the mesoscale convective system events that strongly influence the quality of the convective-scale forecasts. The development of a successful Warn-on-Forecast system will take many years and require the collaborative efforts of researchers and operational forecasters to succeed.
Application of Ground Based Microwave Radiometry for Characterizing Tropical Convection
NASA Astrophysics Data System (ADS)
Renju, R.; Raju, C. S.
2016-12-01
The characterization of the microphysical and thermodynamical properties of convective events over the tropical coastal station Thiruvananthapuram (TVM, 8.5o N 76.9oE) has been carried out by utilizing multiyear Microwave Radiometer Profiler (MRP) observations. The analyses have been extended to develop a methodology to identify convective events, based on the radiometric brightness temperature (Tb) differences, at 30 GHz and 22.5 GHz channels and are compared using reflectivity and rainfall intensity deduced from concurrent and collocated disdrometer measurements. In all 84 such convections were identified using the above methodology over the station for a period of years, 2010-2013; both during pre- and post- Indian summer monsoon months and further evaluated by computing their stability indices. The occurrence of convection over this coastal station peaks in the afternoon and early morning hours with genesis, respectively, over the land and the sea. The number of occurrence of convective events are less during monsoon deficit year whereas strong and more during heavy monsoon rainfall year. These findings are further evaluated with the percentage occurrence of fractional convective clouds derived from microwave payload SAPHIR observations on Megha-Tropique satellite. Based on the analyses the frequency of occurrence of convection can be related to the monsoonal rainfall obtaining over the region. The analyses also indicate that the microwave radiometric brightness temperature of humidity channels depicts the type of convection and respond two hours prior to the occurrence of rainfall. In addition to that the multi-angle observations of microwave radiometer profiler have been utilized to study the propagation of convective systems. This study and the methodology developed for identifying convection have significance in microwave (Ka- and W-band) satellite propagation characterization since convection and precipitation are the major hindrance to satellite communication over the tropical region.
2009-09-30
from radar , aircraft and satellite data; 2) Derive an accurate mesoscale environment of convective systems through the assimilation of satellite... radar , lidar and in-situ data; 3) Evaluate the quality of the global forecast system (e.g., Navy Operational Global Atmospheric Prediction System or...ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 satellite, radar , lidar and in-situ data
Tropical convection regimes in climate models: evaluation with satellite observations
NASA Astrophysics Data System (ADS)
Steiner, Andrea K.; Lackner, Bettina C.; Ringer, Mark A.
2018-04-01
High-quality observations are powerful tools for the evaluation of climate models towards improvement and reduction of uncertainty. Particularly at low latitudes, the most uncertain aspect lies in the representation of moist convection and interaction with dynamics, where rising motion is tied to deep convection and sinking motion to dry regimes. Since humidity is closely coupled with temperature feedbacks in the tropical troposphere, a proper representation of this region is essential. Here we demonstrate the evaluation of atmospheric climate models with satellite-based observations from Global Positioning System (GPS) radio occultation (RO), which feature high vertical resolution and accuracy in the troposphere to lower stratosphere. We focus on the representation of the vertical atmospheric structure in tropical convection regimes, defined by high updraft velocity over warm surfaces, and investigate atmospheric temperature and humidity profiles. Results reveal that some models do not fully capture convection regions, particularly over land, and only partly represent strong vertical wind classes. Models show large biases in tropical mean temperature of more than 4 K in the tropopause region and the lower stratosphere. Reasonable agreement with observations is given in mean specific humidity in the lower to mid-troposphere. In moist convection regions, models tend to underestimate moisture by 10 to 40 % over oceans, whereas in dry downdraft regions they overestimate moisture by 100 %. Our findings provide evidence that RO observations are a unique source of information, with a range of further atmospheric variables to be exploited, for the evaluation and advancement of next-generation climate models.
Convective initiation in the vicinity of the subtropical Andes
NASA Astrophysics Data System (ADS)
Rasmussen, K. L.; Houze, R.
2014-12-01
Extreme convection tends to form in the vicinity of mountain ranges, and the Andes in subtropical South America help spawn some of the most intense convection in the world. An investigation of the most intense storms for 11 years of TRMM Precipitation Radar (PR) data shows a tendency for squall lines to initiate and develop in this region with the canonical leading convective line/trailing stratiform structure. The synoptic environment and structures of the extreme convection and MCSs in subtropical South America are similar to those found in other regions of the world, especially the United States. In subtropical South America, however, the topographical influence on the convective initiation and maintenance of the MCSs is unique. A capping inversion in the lee of the Andes is important in preventing premature triggering. The Andes and other mountainous terrain of Argentina focus deep convective initiation in a narrow region. Subsequent to initiation, the convection often evolves into propagating mesoscale convective systems similar to those seen over the Great Plains of the U. S. and produces damaging tornadoes, hail, and floods across a wide agricultural region. Numerical simulations conducted with the NCAR Weather Research and Forecasting (WRF) Model extend the observational analysis and provide an objective evaluation of storm initiation, terrain effects, and development mechanisms. The simulated mesoscale systems closely resemble the storm structures seen by the TRMM Precipitation Radar as well as the overall shape and character of the storms shown in GOES satellite data. A sensitivity experiment with different configurations of topography, including both decreasing and increasing the height of the Andes Mountains, provides insight into the significant influence of orography in focusing convective initiation in this region. Lee cyclogenesis and a strong low-level jet are modulated by the height of the Andes Mountains and directly affect the character, intensity, and spatial distribution of the convective systems. A new conceptual model for convective initiation in subtropical South America that integrates the results of the topographic sensitivity experiments will be presented.
Evaluation of the Plant-Craig stochastic convection scheme in an ensemble forecasting system
NASA Astrophysics Data System (ADS)
Keane, R. J.; Plant, R. S.; Tennant, W. J.
2015-12-01
The Plant-Craig stochastic convection parameterization (version 2.0) is implemented in the Met Office Regional Ensemble Prediction System (MOGREPS-R) and is assessed in comparison with the standard convection scheme with a simple stochastic element only, from random parameter variation. A set of 34 ensemble forecasts, each with 24 members, is considered, over the month of July 2009. Deterministic and probabilistic measures of the precipitation forecasts are assessed. The Plant-Craig parameterization is found to improve probabilistic forecast measures, particularly the results for lower precipitation thresholds. The impact on deterministic forecasts at the grid scale is neutral, although the Plant-Craig scheme does deliver improvements when forecasts are made over larger areas. The improvements found are greater in conditions of relatively weak synoptic forcing, for which convective precipitation is likely to be less predictable.
Evaluation of the sensitivity of the Amazonian diurnal cycle to convective intensity in reanalyses
NASA Astrophysics Data System (ADS)
Itterly, Kyle F.; Taylor, Patrick C.
2017-02-01
Model parameterizations of tropical deep convection are unable to reproduce the observed diurnal and spatial variability of convection in the Amazon, which contributes to climatological biases in the water cycle and energy budget. Convective intensity regimes are defined using percentiles of daily minimum 3-hourly averaged outgoing longwave radiation (OLR) from Clouds and the Earth's Radiant Energy System (CERES). This study compares the observed spatial variability of convective diurnal cycle statistics for each regime to MERRA-2 and ERA-Interim (ERA) reanalysis data sets. Composite diurnal cycle statistics are computed for daytime hours (06:00-21:00 local time) in the wet season (December-January-February). MERRA-2 matches observations more closely than ERA for domain averaged composite diurnal statistics—specifically precipitation. However, ERA reproduces mesoscale features of OLR and precipitation phase associated with topography and the propagation of the coastal squall line. Both reanalysis models are shown to underestimate extreme convection.
Evaluation of the Sensitivity of the Amazonian Diurnal Cycle to Convective Intensity in Reanalyses
NASA Technical Reports Server (NTRS)
Itterly, Kyle F.; Taylor, Patrick C.
2016-01-01
Model parameterizations of tropical deep convection are unable to reproduce the observed diurnal and spatial variability of convection in the Amazon, which contributes to climatological biases in the water cycle and energy budget. Convective intensity regimes are defined using percentiles of daily minimum 3-hourly averaged outgoing longwave radiation (OLR) from Clouds and the Earth's Radiant Energy System (CERES). This study compares the observed spatial variability of convective diurnal cycle statistics for each regime to MERRA-2 and ERA-Interim (ERA) reanalysis data sets. Composite diurnal cycle statistics are computed for daytime hours (06:00-21:00 local time) in the wet season (December-January-February). MERRA-2 matches observations more closely than ERA for domain averaged composite diurnal statistics-specifically precipitation. However, ERA reproduces mesoscale features of OLR and precipitation phase associated with topography and the propagation of the coastal squall line. Both reanalysis models are shown to underestimate extreme convection.
An Evaluation of the NOAA Climate Forecast System Subseasonal Forecasts
NASA Astrophysics Data System (ADS)
Mass, C.; Weber, N.
2016-12-01
This talk will describe a multi-year evaluation of the 1-5 week forecasts of the NOAA Climate Forecasting System (CFS) over the globe, North America, and the western U.S. Forecasts are evaluated for both specific times and for a variety of time-averaging periods. Initial results show a loss of predictability at approximately three weeks, with sea surface temperature retaining predictability longer than atmospheric variables. It is shown that a major CFS problem is an inability to realistically simulate propagating convection in the tropics, with substantial implications for midlatitude teleconnections and subseasonal predictability. The inability of CFS to deal with tropical convection will be discussed in connection with the prediction of extreme climatic events over the midlatitudes.
Boiling incipience and convective boiling of neon and nitrogen
NASA Technical Reports Server (NTRS)
Papell, S. S.; Hendricks, R. C.
1977-01-01
Forced convection and subcooled boiling heat transfer data for liquid nitrogen and liquid neon were obtained in support of a design study for a 30 tesla cryomagnet cooled by forced convection of liquid neon. The cryogen data obtained over a range of system pressures, fluid flow rates, and applied heat fluxes were used to develop correlations for predicting boiling incipience and convective boiling heat transfer coefficients in uniformly heated flow channels. The accuracy of the correlating equations was then evaluated. A technique was also developed to calculate the position of boiling incipience in a uniformly heated flow channel. Comparisons made with the experimental data showed a prediction accuracy of + or - 15 percent.
NASA Astrophysics Data System (ADS)
Keane, Richard J.; Plant, Robert S.; Tennant, Warren J.
2016-05-01
The Plant-Craig stochastic convection parameterization (version 2.0) is implemented in the Met Office Regional Ensemble Prediction System (MOGREPS-R) and is assessed in comparison with the standard convection scheme with a simple stochastic scheme only, from random parameter variation. A set of 34 ensemble forecasts, each with 24 members, is considered, over the month of July 2009. Deterministic and probabilistic measures of the precipitation forecasts are assessed. The Plant-Craig parameterization is found to improve probabilistic forecast measures, particularly the results for lower precipitation thresholds. The impact on deterministic forecasts at the grid scale is neutral, although the Plant-Craig scheme does deliver improvements when forecasts are made over larger areas. The improvements found are greater in conditions of relatively weak synoptic forcing, for which convective precipitation is likely to be less predictable.
Boiling incipience and convective boiling of neon and nitrogen
NASA Technical Reports Server (NTRS)
Papell, S. S.; Hendricks, R. C.
1977-01-01
Forced convection and subcooled boiling heat transfer data for liquid nitrogen and liquid neon were obtained in support of a design study for a 30 tesla cryomagnet cooled by forced convection of liquid neon. This design precludes nucleate boiling in the flow channels as they are too small to handle vapor flow. Consequently, it was necessary to determine boiling incipience under the operating conditions of the magnet system. The cryogen data obtained over a range of system pressures, fluid flow rates, and applied heat fluxes were used to develop correlations for predicting boiling incipience and convective boiling heat transfer coefficients in uniformly heated flow channels. The accuracy of the correlating equations was then evaluated. A technique was also developed to calculate the position of boiling incipience in a uniformly heated flow channel. Comparisons made with the experimental data showed a prediction accuracy of plus or minus 15 percent
Hazardous Convective Weather in the Central United States: Present and Future
NASA Astrophysics Data System (ADS)
Liu, C.; Ikeda, K.; Rasmussen, R.
2017-12-01
Two sets of 13-year continental-scale convection-permitting simulations were performed using the 4-km-resolution WRF model. They consist of a retrospective simulation, which downscales the ERA-Interim reanalysis during the period October 2000 - September 2013, and a future climate sensitivity simulation for the same period based on the perturbed reanalysis-derived boundary conditions with the CMIP5 ensemble-mean high-end emission scenario climate change. The evaluation of the retrospective simulation indicates that the model is able to realistically reproduce the main characteristics of deep precipitating convection observed in the current climate such as the spectra of convective population and propagating mesoscale convective systems (MCSs). It is also shown that severe convection and associated MCS will increase in frequency and intensity, implying a potential increase in high impact convective weather in a future warmer climate. In this study, the warm-season hazardous convective weather (i.e., tonadoes, hails and damaging gusty wind) in the central United states is examined using these 4-km downscaling simulations. First, a model-based proxy for hazardous convective weather is derived on the basis of a set of characteristic meteorological variables such as the model composite radar reflectivity, updraft helicity, vertical wind shear, and low-level wind. Second, the developed proxy is applied to the retrospective simulation for estimate of the model hazardous weather events during the historical period. Third, the simulated hazardous weather statistics are evaluated against the NOAA severe weather reports. Lastly, the proxy is applied to the future climate simulation for the projected change of hazardous convective weather in response to global warming. Preliminary results will be reported at the 2017 AGU session "High Resolution Climate Modeling".
NASA Astrophysics Data System (ADS)
Cheng, W. Y.; Kim, D.; Rowe, A.; Park, S.
2017-12-01
Despite the impact of mesoscale convective organization on the properties of convection (e.g., mixing between updrafts and environment), parameterizing the degree of convective organization has only recently been attempted in cumulus parameterization schemes (e.g., Unified Convection Scheme UNICON). Additionally, challenges remain in determining the degree of convective organization from observations and in comparing directly with the organization metrics in model simulations. This study addresses the need to objectively quantify the degree of mesoscale convective organization using high quality S-PolKa radar data from the DYNAMO field campaign. One of the most noticeable aspects of mesoscale convective organization in radar data is the degree of convective clustering, which can be characterized by the number and size distribution of convective echoes and the distance between them. We propose a method of defining contiguous convective echoes (CCEs) using precipitating convective echoes identified by a rain type classification algorithm. Two classification algorithms, Steiner et al. (1995) and Powell et al. (2016), are tested and evaluated against high-resolution WRF simulations to determine which method better represents the degree of convective clustering. Our results suggest that the CCEs based on Powell et al.'s algorithm better represent the dynamical properties of the convective updrafts and thus provide the basis of a metric for convective organization. Furthermore, through a comparison with the observational data, the WRF simulations driven by the DYNAMO large-scale forcing, similarly applied to UNICON Single Column Model simulations, will allow us to evaluate the ability of both WRF and UNICON to simulate convective clustering. This evaluation is based on the physical processes that are explicitly represented in WRF and UNICON, including the mechanisms leading to convective clustering, and the feedback to the convective properties.
Evaluation of earthquake and tsunami on JSFR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chikazawa, Y.; Enuma, Y.; Kisohara, N.
2012-07-01
Evaluation of earthquake and tsunami on JSFR has been analyzed. For seismic design, safety components are confirmed to maintain their functions even against recent strong earthquakes. As for Tsunami, some parts of reactor building might be submerged including component cooling water system whose final heat sink is sea water. However, in the JSFR design, safety grade components are independent from component cooling water system (CCWS). The JSFR emergency power supply adopts a gas turbine system with air cooling, since JSFR does not basically require quick start-up of the emergency power supply thanks to the natural convection DHRS. Even in casemore » of long station blackout, the DHRS could be activated by emergency batteries or manually and be operated continuously by natural convection. (authors)« less
NASA Astrophysics Data System (ADS)
Tulich, S. N.
2015-06-01
This paper describes a general method for the treatment of convective momentum transport (CMT) in large-scale dynamical solvers that use a cyclic, two-dimensional (2-D) cloud-resolving model (CRM) as a "superparameterization" of convective-system-scale processes. The approach is similar in concept to traditional parameterizations of CMT, but with the distinction that both the scalar transport and diagnostic pressure gradient force are calculated using information provided by the 2-D CRM. No assumptions are therefore made concerning the role of convection-induced pressure gradient forces in producing up or down-gradient CMT. The proposed method is evaluated using a new superparameterized version of the Weather Research and Forecast model (SP-WRF) that is described herein for the first time. Results show that the net effect of the formulation is to modestly reduce the overall strength of the large-scale circulation, via "cumulus friction." This statement holds true for idealized simulations of two types of mesoscale convective systems, a squall line, and a tropical cyclone, in addition to real-world global simulations of seasonal (1 June to 31 August) climate. In the case of the latter, inclusion of the formulation is found to improve the depiction of key synoptic modes of tropical wave variability, in addition to some aspects of the simulated time-mean climate. The choice of CRM orientation is also found to importantly affect the simulated time-mean climate, apparently due to changes in the explicit representation of wide-spread shallow convective regions.
NASA Astrophysics Data System (ADS)
Chalon, J. P.; Jaubert, G.; Lafore, J. P.; Roux, F.
1988-10-01
Durirg the night of 23/24 June 1981, new Korhogo, Ivory Coast, a squall line passed over the instrumented area of the COPT 81 experiment. Observations were obtained with a dual-Doppler radar system, a sounding station and 22 automatic meteorological surface stations. Data from these instruments and from satellite pictures were analyzed to depict the kinematic and thermodynamic structure of the squall line. Composite analysis techniques were used to obtain a vertical cross section of the reflectivity structure and of the wind field relative to the line. The redistributions of air, moisture and thermodynamic energy by the convection wet calculated through averaged two-dimensional wind fields from a dual-Doppler radar system. The method also allowed the evaluation of the exchanges that were occurring between the convective and the stratiform regions.This squall line had many similarities with tropical squall lines previously described by others. The leading convective part, composed of intense updrafts and downdrafts, and the trailing part, containing weak mesoscale updraft and downdraft, were separated by a reflectivity trough. A notable feature of this line was the presence of a leading anvil induced by intense easterly environmental winds in the upper troposphere. Observations of the evolution of the system at different scales indicated that the mesoalpha-scale (following the classification of Orlanski) and the mosobeta-scale patterns combined to allow the system to have optimum conditions for maximum strength and a maximum lifetime.A rear-to-front flow was found at midlevels in the stratiform region. The flow sloped downward to the surface and took on the characteristics of a density current in the forward half of the squall lice. Entering the convective region, this flow was supplied with cold air by the convective downdrafts and played an important role in forcing upward the less dense monsoon flow entering at the leading edge.Calculations of mass, moisture and energy transports showed the importance of the transfers between the convective and the stratiform regions. Particularly large quantities of condensate and energy were transferred from the convective region toward the anvils and made important contributions to the precipitation budget in the stratiform region, while large quantities of water vapor and latent heat energy were transferred from the stratiform region toward the convective region through the rear-to-front flow. Diabatic heating resulting from condensation in the convective region was also evaluated.
NASA Astrophysics Data System (ADS)
Freitas, S.; Grell, G. A.; Molod, A.
2017-12-01
We implemented and began to evaluate an alternative convection parameterization for the NASA Goddard Earth Observing System (GEOS) global model. The parameterization (Grell and Freitas, 2014) is based on the mass flux approach with several closures, for equilibrium and non-equilibrium convection, and includes scale and aerosol awareness functionalities. Scale dependence for deep convection is implemented either through using the method described by Arakawa et al (2011), or through lateral spreading of the subsidence terms. Aerosol effects are included though the dependence of autoconversion and evaporation on the CCN number concentration.Recently, the scheme has been extended to a tri-modal spectral size approach to simulate the transition from shallow, congestus, and deep convection regimes. In addition, the inclusion of a new closure for non-equilibrium convection resulted in a substantial gain of realism in model simulation of the diurnal cycle of convection over the land. Also, a beta-pdf is employed now to represent the normalized mass flux profile. This opens up an additional venue to apply stochasticism in the scheme.
NASA Astrophysics Data System (ADS)
Sabatino, Pietro; Fedele, Giuseppe; Procopio, Antonio; Chiaravalloti, Francesco; Gabriele, Salvatore
2016-10-01
Among many weather phenomena, convective storms are one of the most dangerous since they are able to cause, in a relatively small time window, great damages. Convective precipitations are in fact characterized by relatively small spatial and temporal scales, and as a consequence, the task of forecasting such phenomena turns out to be an elusive one. Nonetheless, given their dangerousness, the identification and tracking of meteorological convective systems are of paramount importance and are the subject of several studies. In particular, the early detection of the areas where deep convection is about to appear, and the prediction of the development and path of existing convective thunderstorms represent two focal research topics. The aim of the present work is to outline a framework employing various techniques apt to the task of monitoring and characterization of convective clouds. We analyze meteorological satellite images and data in order to evaluate the potential occurring of strong precipitation. Techniques considered include numerical, machine learning, image processing. The techniques are tested on data coming from real convective events captured in the last years on the Italian peninsula by the Meteosat meteorological satellites and weather radar.
NASA Astrophysics Data System (ADS)
Zhu, Kefeng; Xue, Ming; Zhou, Bowen; Zhao, Kun; Sun, Zhengqi; Fu, Peiling; Zheng, Yongguang; Zhang, Xiaoling; Meng, Qingtao
2018-01-01
Forecasts at a 4 km convection-permitting resolution over China during the summer season have been produced with the Weather Research and Forecasting model at Nanjing University since 2013. Precipitation forecasts from 2013 to 2014 are evaluated with dense rain gauge observations and compared with operational global model forecasts. Overall, the 4 km forecasts show very good agreement with observations over most parts of China, outperforming global forecasts in terms of spatial distribution, intensity, and diurnal variation. Quantitative evaluations with the Gilbert skill score further confirm the better performance of the 4 km forecasts over global forecasts for heavy precipitation, especially for the thresholds of 100 and 150 mm d-1. Besides bulk characteristics, the representations of some unique features of summer precipitation in China under the influence of the East Asian summer monsoon are further evaluated. These include the northward progression and southward retreat of the main rainband through the summer season, the diurnal variations of precipitation, and the meridional and zonal propagation of precipitation episodes associated with background synoptic flow and the embedded mesoscale convective systems. The 4 km forecast is able to faithfully reproduce most of the features while overprediction of afternoon convection near the southern China coast is found to be a main deficiency that requires further investigations.
Uncertainties related to the representation of momentum transport in shallow convection
NASA Astrophysics Data System (ADS)
Schlemmer, Linda; Bechtold, Peter; Sandu, Irina; Ahlgrimm, Maike
2017-04-01
The vertical transport of horizontal momentum by convection has an important impact on the general circulation of the atmosphere as well as on the life cycle and track of cyclones. So far convective momentum transport (CMT) has mostly been studied for deep convection, whereas little is known about its characteristics and importance in shallow convection. In this study CMT by shallow convection is investigated by analyzing both data from large-eddy simulations (LES) and simulations performed with the Integrated Forecasting System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF). In addition, the central terms underlying the bulk mass-flux parametrization of CMT are evaluated offline. Further, the uncertainties related to the representation of CMT are explored by running the stochastically perturbed parametrizations (SPP) approach of the IFS. The analyzed cases exhibit shallow convective clouds developing within considerable low-level wind shear. Analysis of the momentum fluxes in the LES data reveals significant momentum transport by the convection in both cases, which is directed down-gradient despite substantial organization of the cloud field. A detailed inspection of the convection parametrization reveals a very good representation of the entrainment and detrainment rates and an appropriate representation of the convective mass and momentum fluxes. To determine the correct values of mass-flux and in-cloud momentum at the cloud base in the parametrization yet remains challenging. The spread in convection-related quantities generated by the SPP is reasonable and addresses many of the identified uncertainties.
NASA Astrophysics Data System (ADS)
Chukaev, A. G.; Kuks, A. M.
Heat transfer calculations are presented for a heat accumulator using the melting heat of a substance which changes its state of aggregation. It is shown that the approach adopted here makes it possible to evaluate the efficiency of using heat-storage materials in the pipe-tank system. The calculations, which allow for the effect of free convection in the liquid phase, have been made using the Boussinesq approximation. Results of a numerical experiment for NaNO3 salt show that the effect of natural convection on heat transfer is significant and that the heat flux to the material decreases as heat accumulates.
Natural convection during heat accumulation by substances with change of aggregate state
NASA Astrophysics Data System (ADS)
Chukayev, A. G.; Kuks, A. M.
1985-03-01
Heat transfer calculations are presented for a heat accumulator using the melting heat of a substance which changes its state of aggregation. It is shown that the approach adopted here makes it possible to evaluate the efficiency of using heat-storage materials in the pipe-tank system. The calculations, which allow for the effect of free convection in the liquid phase, have been made using the Boussinesq approximation. Results of a numerical experiment for NaNO3 salt show that the effect of natural convection on heat transfer is significant and that the heat flux to the material decreases as heat accumulates.
Feedback control and heat transfer measurements in a Rayleigh-Bénard convection cell
NASA Astrophysics Data System (ADS)
Vial, M.; Hernández, R. H.
2017-07-01
We report experimental results on the heat transfer and instability onset of a Rayleigh-Bénard convection cell of aspect ratios 6:3:1 filled with a high Prandtl aqueous solution of glycerol under feedback control. We investigate the transient and stationary response of both local temperature readings and heat transfer fluxes on the Rayleigh Bénard cell in both conductive and convective states when we perform two independent feedback control actions on both hot and cold walls. We evaluate the performance of both controllers to maintain a temperature gradient independently if the system is below or above the convection threshold. As the convection cell can be rotated at 180° about the shorter axis of the cell, it was possible to perform transitions between thermal conduction and convection regimes and vice versa under a constant temperature difference maintained by both independent controllers. The experimental setup provided an accurate measurement of the critical Rayleigh number and the evolution of the Nusselt number as a function of the Rayleigh number in the moderately supercritical regime (R a <1 04). Flow visualizations show a steady cellular convection pattern formed by 6 transverse rolls throughout the range of Rayleigh numbers.
Experimental investigation on thermo-magnetic convection inside cavities.
Gontijo, R G; Cunha, F R
2012-12-01
This paper presents experimental results on thermo-magnetic convection inside cavities. We examine the flow induced by convective currents inside a cavity with aspect ratio near the unity and the heat transfer rates measurements inside a thin cavity with aspect ratio equal to twelve. The convective unstable currents are formed when a magnetic suspension is subjected to a temperature gradient combined with a gradient of an externally imposed magnetic field. Under these conditions, stratifications in the suspension density and susceptibility are both important effects to the convective motion. We show a comparison between flow patterns of magnetic and gravitational convections. The impact of the presence of a magnetic field on the amount of heat extracted from the system when magnetic and gravitational effects are combined inside the test cell is evaluated. The convection state is largely affected by new instability modes produced by stratification in susceptibility. The experiments reveal that magnetic field enhances the instability in the convective flow leading to a more effective mixing and consequently to a more statistically homogenous temperature distribution inside the test cell. The experimental results allow the validation of the scaling law proposed in a previous theoretical work that has predicted that the Nusselt number scales with the magnetic Rayleigh number to the power of 1/3, in the limit in which magnetic force balances viscous force in the convective flow.
NASA Technical Reports Server (NTRS)
Aumann, Hartmut H.; Gregorich, David T.; Broberg, Steven E.; Elliott, Denis A.
2007-01-01
The analysis of the response of the Earth Climate System to the seasonal changes of solar forcing in the tropical oceans using four years of the Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Sounding Unit (AMSU) data between 2002 and 2006 gives new insight into amplitude and phase relationships between surface and tropospheric temperatures, humidity, and convective activity. The intensity of the convective activity is measured by counting deep convective clouds. The peaks of convective activity, temperature in the mid-troposphere, and water vapor in the 0 - 30 N and 0 - 30 S tropical ocean zonal means occur about two months after solstice, all leading the peak of the sea surface temperature by several weeks. Phase is key to the evaluation of feedback. The evaluation of climate models in terms of zonal and annual means and annual mean deviations from zonal means can now be supplemented by evaluating the phase of key atmospheric and surface parameters relative to solstice. The ability of climate models to reproduce the statistical flavor of the observed amplitudes and relative phases for broad zonal means should lead to increased confidence in the realism of their water vapor and cloud feedback algorithms. AIRS and AMSU were launched into a 705 km altitude polar sun-synchronous orbit on the EOS Aqua spacecraft on May 4, 2002, and have been in routine data gathering mode since September 2002.
NASA Technical Reports Server (NTRS)
Aumann, Hartmut H.; Gregorich, David T.; Broberg, Steven E.; Elliott, Denis A.
2007-01-01
The analysis of the response of the Earth Climate System to the seasonal changes of solar forcing in the tropical oceans using four years of the Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Sounding Unit (AMSU) data between 2002 and 2006 gives new insight into amplitude and phase relationships between surface and tropospheric temperatures, humidity, and convective activity. The intensity of the convective activity is measured by counting deep convective clouds. The peaks of convective activity, temperature in the mid-troposphere, and water vapor in the 0-30 N and 0-30 S tropical ocean zonal means occur about two months after solstice, all leading the peak of the sea surface temperature by several weeks. Phase is key to the evaluation of feedback. The evaluation of climate models in terms of zonal and annual means and annual mean deviations from zonal means can now be supplemented by evaluating the phase of key atmospheric and surface parameters relative to solstice. The ability of climate models to reproduce the statistical flavor of the observed amplitudes and relative phases for broad zonal means should lead to increased confidence in the realism of their water vapor and cloud feedback algorithms. AIRS and AMSU were launched into a 705 km altitude polar sun-synchronous orbit on the EOS Aqua spacecraft on May 4, 2002, and have been in routine data gathering mode since September 2002.
The Nature and Variability of Ensemble Sensitivity Fields that Diagnose Severe Convection
NASA Astrophysics Data System (ADS)
Ancell, B. C.
2017-12-01
Ensemble sensitivity analysis (ESA) is a statistical technique that uses information from an ensemble of forecasts to reveal relationships between chosen forecast metrics and the larger atmospheric state at various forecast times. A number of studies have employed ESA from the perspectives of dynamical interpretation, observation targeting, and ensemble subsetting toward improved probabilistic prediction of high-impact events, mostly at synoptic scales. We tested ESA using convective forecast metrics at the 2016 HWT Spring Forecast Experiment to understand the utility of convective ensemble sensitivity fields in improving forecasts of severe convection and its individual hazards. The main purpose of this evaluation was to understand the temporal coherence and general characteristics of convective sensitivity fields toward future use in improving ensemble predictability within an operational framework.The magnitude and coverage of simulated reflectivity, updraft helicity, and surface wind speed were used as response functions, and the sensitivity of these functions to winds, temperatures, geopotential heights, and dew points at different atmospheric levels and at different forecast times were evaluated on a daily basis throughout the HWT Spring Forecast experiment. These sensitivities were calculated within the Texas Tech real-time ensemble system, which possesses 42 members that run twice daily to 48-hr forecast time. Here we summarize both the findings regarding the nature of the sensitivity fields and the evaluation of the participants that reflects their opinions of the utility of operational ESA. The future direction of ESA for operational use will also be discussed.
Towards evaluating the intensity of convective systems by using GPS radio occultation profiles
NASA Astrophysics Data System (ADS)
Biondi, Riccardo; Steiner, Andrea K.; Kirchengast, Gottfried
2015-04-01
Deep convective systems, also more casually often just called storms, are destructive weather phenomena causing every year many deaths, injuries and damages and accounting for major economic losses in several countries. The number and intensity of such phenomena increased over the last decades in some areas of the globe, including Europe. Damages are mostly caused by strong winds and heavy rain and these parameters are strongly connected to the structure of the storm. Convection over land is usually stronger and deeper than over the ocean and some convective systems, known as supercells, also develop tornadoes through processes which are still mostly unclear. The intensity forecast and monitoring of convective systems is one of the major challenges for meteorology because in-situ measurements during extreme events are too sparse or not reliable and most ongoing satellite missions do not provide suitable time/space coverage. With this study we propose a new method for detecting the convection intensity in terms of rain rate and surface wind speed by using meteorological surface measurements in combination with atmospheric profiles from Global Positioning System (GPS) radio occultation observations, which are available in essentially all weather conditions and with global coverage. The analysis of models indicated a relationship between the cloud top altitude and the intensity of a storm. We thus use GPS radio occultation bending angle profiles for detecting the storm's cloud top altitude and we correlate this value to the rain rate and wind speed measured by meteorological station networks in two different regions, the WegenerNet climate station network (South-Eastern Styria, Austria) and the Atmospheric Radiation Measurement site (ARM, Southern Great Plains, USA), respectively. The results show a good correlation between the cloud top altitude and the maximum rain rate in the monitored areas, while this is not found for maximum wind speed. We conclude from this initial study that for land convective systems the cloud top altitude is strongly connected to the rain intensity and that GPS radio occultation observations show encouraging potential to improve the intensity nowcasting and detection of such kind of severe weather phenomena.
Heavy rain forecasts in mesoscale convective system in July 2016 in Belarus
NASA Astrophysics Data System (ADS)
Lapo, Palina; Barodka, Siarhei; Krasouski, Aliaksandr
2017-04-01
During the last decade, the frequency of severe weather phenomena, such as heavy precipitation, hail and squalls, over Europe is observed to increase, which is attributed to climate change in the region. Such hazardous weather events over the territory of Belarus every year, having significant economic and social effects. Of special interest for further studies are mesoscale convective systems, which can be described as long-lived cloud complexes including groups of cumulonimbus clouds and squall lines. Passage of such systems is accompanied with intense thunderstorms, showers and squally wind. In this study, we investigate a case of Mesoscale Convective System (MCS) passage over the territory of Belarus, which occurred 13 July 2016. During this Mesoscale Convective Complex passage, heavy precipitation (up to 43 mm), squally winds and intense thunderstorms have been observed. Another feature of this MCS was the hook-shaped weather radar signature known as a "hook echo", seen on the Doppler weather radar Minsk-2. Tornadoes and powerful mesocyclones are often characterized by the presence of a hook echo on radar. Also we have performed simulations of the convective complex passage with the WRF-ARW mesoscale atmospheric modelling system using 6 different microphysics parameterizations. Our main objectives are to study the conditions of this Mesoscale Convective Systems (MCSs) development, to consider the microphysical structure of clouds in the MCS, and to identify which microphysics package provides the best forecast of precipitation for this case of MCS in terms of its geographical distribution and precipitation amount in towns and cities where highest levels of precipitation have been observed. We present analysis of microphysical structure of this MCS along with evaluation of precipitation forecasts obtained with different microphysics parametrizations as compared to real observational data. In particular, we may note that results of almost all microphysics simulations indicate underestimation of precipitation areas in the region of interest.
NASA Astrophysics Data System (ADS)
Shinohara, Hiroshi; Tanaka, Hiroyuki K. M.
2012-10-01
Quantitative re-evaluation of the muon radiography data obtained by Tanaka et al. (2009) was conducted to constrain conduit magma convection at the Iwodake rhyolitic cone of Satsuma-Iwojima volcano, Japan. Re-evaluation of the measurement error considering topography and fake muon counts confirms the existence of a low-density body of 300 m in diameter and with 0.9-1.0 g cm-3 at depths of 135-190 m from the summit crater floor. The low-density material is interpreted as rhyolitic magma with 60% vesicularity on average, and existence of this unstable highly vesiculated magma at shallow depth without any recent eruptive or intrusive activity is considered as evidence of conduit magma convection. The structure of the convecting magma column top was modeled based on density calculations of vesiculated ascending and outgassed descending magmas, compared with the observed density anomaly. The existence of the low-density anomaly was confirmed by comparison with published gravity measurements, and the predicted degassing at the shallow magma conduit top agrees with observed heat discharge anomaly distribution localized at the summit area. This study confirms that high viscosity of silicic magmas can be compensated by a large size conduit to cause the conduit magma convection phenomena. The rare occurrence of conduit magma convection in a rhyolitic magma system at Iwodake is suggested to be due to its specific magma features of low H2O content and high temperature.
Life Cycle of Tropical Convection and Anvil in Observations and Models
NASA Astrophysics Data System (ADS)
McFarlane, S. A.; Hagos, S. M.; Comstock, J. M.
2011-12-01
Tropical convective clouds are important elements of the hydrological cycle and produce extensive cirrus anvils that strongly affect the tropical radiative energy balance. To improve simulations of the global water and energy cycles and accurately predict both precipitation and cloud radiative feedbacks, models need to realistically simulate the lifecycle of tropical convection, including the formation and radiative properties of ice anvil clouds. By combining remote sensing datasets from precipitation and cloud radars at the Atmospheric Radiation Measurement (ARM) Darwin site with geostationary satellite data, we can develop observational understanding of the lifetime of convective systems and the links between the properties of convective systems and their associated anvil clouds. The relationships between convection and anvil in model simulations can then be compared to those seen in the observations to identify areas for improvement in the model simulations. We identify and track tropical convective systems in the Tropical Western Pacific using geostationary satellite observations. We present statistics of the tropical convective systems including size, age, and intensity and classify the lifecycle stage of each system as developing, mature, or dissipating. For systems that cross over the ARM Darwin site, information on convective intensity and anvil properties are obtained from the C-Pol precipitation radar and MMCR cloud radar, respectively, and are examined as a function of the system lifecycle. Initial results from applying the convective identification and tracking algorithm to a tropical simulation from the Weather Research and Forecasting (WRF) model run show that the model produces reasonable overall statistics of convective systems, but details of the life cycle (such as diurnal cycle, system tracks) differ from the observations. Further work will focus on the role of atmospheric temperature and moisture profiles in the model's convective life cycle.
NASA Astrophysics Data System (ADS)
Feng, Z.; Ma, P. L.; Hardin, J. C.; Houze, R.
2017-12-01
Mesoscale convective systems (MCSs) are the largest type of convective storms that develop when convection aggregates and induces mesoscale circulation features. Over North America, MCSs contribute over 60% of the total warm-season precipitation and over half of the extreme daily precipitation in the central U.S. Our recent study (Feng et al. 2016) found that the observed increases in springtime total and extreme rainfall in this region are dominated by increased frequency and intensity of long-lived MCSs*. To date, global climate models typically do not run at a resolution high enough to explicitly simulate individual convective elements and may not have adequate process representations for MCSs, resulting in a large deficiency in projecting changes of the frequency of extreme precipitation events in future climate. In this study, we developed a novel observation-guided approach specifically designed to evaluate simulated MCSs in the Department of Energy's climate model, Accelerated Climate Modeling for Energy (ACME). The ACME model has advanced treatments for convection and subgrid variability and for this study is run at 25 km and 100 km grid spacings. We constructed a robust MCS database consisting of over 500 MCSs from 3 warm-season observations by applying a feature-tracking algorithm to 4-km resolution merged geostationary satellite and 3-D NEXRAD radar network data over the Continental US. This high-resolution MCS database is then down-sampled to the 25 and 100 km ACME grids to re-characterize key MCS properties. The feature-tracking algorithm is adapted with the adjusted characteristics to identify MCSs from ACME model simulations. We demonstrate that this new analysis framework is useful for evaluating ACME's warm-season precipitation statistics associated with MCSs, and provides insights into the model process representations related to extreme precipitation events for future improvement. *Feng, Z., L. R. Leung, S. Hagos, R. A. Houze, C. D. Burleyson, and K. Balaguru (2016), More frequent intense and long-lived storms dominate the springtime trend in central US rainfall, Nat Commun, 7, 13429, doi: 10.1038/ncomms13429.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bucknor, Matthew; Hu, Rui; Lisowski, Darius
2016-04-17
The Reactor Cavity Cooling System (RCCS) is an important passive safety system being incorporated into the overall safety strategy for high temperature advanced reactor concepts such as the High Temperature Gas- Cooled Reactors (HTGR). The Natural Convection Shutdown Heat Removal Test Facility (NSTF) at Argonne National Laboratory (Argonne) reflects a 1/2-scale model of the primary features of one conceptual air-cooled RCCS design. The project conducts ex-vessel, passive heat removal experiments in support of Department of Energy Office of Nuclear Energy’s Advanced Reactor Technology (ART) program, while also generating data for code validation purposes. While experiments are being conducted at themore » NSTF to evaluate the feasibility of the passive RCCS, parallel modeling and simulation efforts are ongoing to support the design, fabrication, and operation of these natural convection systems. Both system-level and high fidelity computational fluid dynamics (CFD) analyses were performed to gain a complete understanding of the complex flow and heat transfer phenomena in natural convection systems. This paper provides a summary of the RELAP5-3D NSTF model development efforts and provides comparisons between simulation results and experimental data from the NSTF. Overall, the simulation results compared favorably to the experimental data, however, further analyses need to be conducted to investigate any identified differences.« less
Full Spatial Resolution Infrared Sounding Application in the Preconvection Environment
NASA Astrophysics Data System (ADS)
Liu, C.; Liu, G.; Lin, T.
2013-12-01
Advanced infrared (IR) sounders such as the Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer (IASI) provide atmospheric temperature and moisture profiles with high vertical resolution and high accuracy in preconvection environments. The derived atmospheric stability indices such as convective available potential energy (CAPE) and lifted index (LI) from advanced IR soundings can provide critical information 1 ; 6 h before the development of severe convective storms. Three convective storms are selected for the evaluation of applying AIRS full spatial resolution soundings and the derived products on providing warning information in the preconvection environments. In the first case, the AIRS full spatial resolution soundings revealed local extremely high atmospheric instability 3 h ahead of the convection on the leading edge of a frontal system, while the second case demonstrates that the extremely high atmospheric instability is associated with the local development of severe thunderstorm in the following hours. The third case is a local severe storm that occurred on 7-8 August 2010 in Zhou Qu, China, which caused more than 1400 deaths and left another 300 or more people missing. The AIRS full spatial resolution LI product shows the atmospheric instability 3.5 h before the storm genesis. The CAPE and LI from AIRS full spatial resolution and operational AIRS/AMSU soundings along with Geostationary Operational Environmental Satellite (GOES) Sounder derived product image (DPI) products were analyzed and compared. Case studies show that full spatial resolution AIRS retrievals provide more useful warning information in the preconvection environments for determining favorable locations for convective initiation (CI) than do the coarser spatial resolution operational soundings and lower spectral resolution GOES Sounder retrievals. The retrieved soundings are also tested in a regional data assimilation WRF 3D-var system to evaluate the potential assist in the NWP model.
Cirrus Simulations of CRYSTAL-FACE 23 July 2002 Case
NASA Technical Reports Server (NTRS)
Starr, David; Lin, Ruci-Fong; Demoz, Belay; Lare, Andrew
2004-01-01
A key objective of the Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment (CRYSTAL-FACE) is to understand relationships between the properties of tropical convective cloud systems and the properties and lifecycle of the extended cirrus anvils they produce. We report here on a case study of 23 July 2002 where a sequence of convective storms over central Florida produced an extensive anvil outflow. Our approach is to use a suitably-initialized cloud-system simulation with MM5 to define initial conditions and time-dependent forcing for a simulation of anvil evolution using a two-dimensional fine-resolution (100 m) cirrus cloud model that explicitly accounts for details of cirrus microphysical development (bin or spectra model) and fully interactive radiative processes. The cirrus model follows Lin. Meteorological conditions and observations for the 23 July case are described in this volume. The goals of the present study are to evaluate how well we can simulate a cirrus anvil lifecycle, to evaluate the importance of various physical processes that operate within the anvil, and to evaluate the importance of environmental conditions in regulating anvil lifecycle. CRYSTAL-FACE produced a number of excellent case studies of anvil systems that will allow environmental factors, such as static stability or wind shear in the upper troposphere, to be examined. In the present study, we strive to assess the importance of propagating gravity waves, likely produced by the deep convection itself, and radiative processes, to anvil lifecycle and characteristics.
A synoptic climatology of derecho producing mesoscale convective systems in the North-Central Plains
NASA Astrophysics Data System (ADS)
Bentley, Mace L.; Mote, Thomas L.; Byrd, Stephen F.
2000-09-01
Synoptic-scale environments favourable for producing derechos, or widespread convectively induced windstorms, in the North-Central Plains are examined with the goal of providing pattern-recognition/diagnosis techniques. Fifteen derechos were identified across the North-Central Plains region during 1986-1995. The synoptic environment at the initiation, mid-point and decay of each derecho was then evaluated using surface, upper-air and National Center for Atmospheric Research (NCAR)/National Center for Environmental Prediction (NCEP) reanalysis datasets.Results suggest that the synoptic environment is critical in maintaining derecho producing mesoscale convective systems (DMCSs). The synoptic environment in place downstream of the MCS initiation region determines the movement and potential strength of the system. Circulation around surface low pressure increased the instability gradient and maximized leading edge convergence in the initiation region of nearly all events regardless of DMCS location or movement. Other commonalities in the environments of these events include the presence of a weak thermal boundary, high convective instability and a layer of dry low-to-mid-tropospheric air. Of the two corridors sampled, northeastward moving derechos tend to initiate east of synoptic-scale troughs, while southeastward moving derechos form on the northeast periphery of a synoptic-scale ridge. Other differences between these two DMCS events are also discussed.
Fusing Multiple Satellite Datasets Toward Defining and Understanding Organized Convection
NASA Astrophysics Data System (ADS)
Elsaesser, G.; Del Genio, A. D.
2017-12-01
How do we differentiate unorganized from organized convection? We might think of organized convection as being long lasting (at least longer than the lifetime of any individual cumulus cell), clustered at larger spatial scales (>100 km), and responsible for substantial rainfall accumulation. Organized convection is sustained on such scales due to the arrangement of moist/dry and buoyant/non-buoyant mesoscale circulations. The nature of these circulations is tied to system diabatic heating profiles; in particular, the 2nd baroclinic (top-heavy), stratiform heating mode is thought to be important for organized convection maintenance/propagation. We investigate the extent to which these characteristics are jointly found in propagating convective systems. Lifecycle information comes from hi-res IR data. Diabatic heating profiles, convective fractions and rainfall are provided by GPM retrievals mapped to convective system tracks. Moisture is provided by AIRS/AMSU and passive microwave retrievals. Instead of compositing heating profile information along a system track, where information is smoothed out, we sort system heating profile structures according to their "top heaviness" and then analyze PDFs of system rainfall, system sizes, durations, convective/stratiform ratios, etc. as a function of diabatic heating structure. Perhaps contrary to expectation, we find only small differences in PDFs of rainfall rates, system sizes, and system duration for different heating profile structures. If organization is defined according to heating structures, then one possible interpretation of these results is that organization is independent of system size, duration, and many times, even lifecycle stage. Is it possible that most systems "hobble" along and exhibit varying degrees of organization, dependent on local environment moisture/buoyancy variations, unlike the archetypical MCS paradigm? This presentation will also discuss the questions posed above within the context of parameterizing organized convection in the GISS GCM. GCMs must make/sustain the right heating profile at the right time, which requires observations-based understanding of such distinctions. Such knowledge is important for simulating and understanding the deep convective contribution to cloud feedback in a changing climate.
Guisado, D I; Singh, R; Minkowitz, S; Zhou, Z; Haque, S; Peck, K K; Young, R J; Tsiouris, A J; Souweidane, M M; Thakur, S B
2016-07-01
Diffuse intrinsic pontine gliomas are inoperable high-grade gliomas with a median survival of less than 1 year. Convection-enhanced delivery is a promising local drug-delivery technique that can bypass the BBB in diffuse intrinsic pontine glioma treatment. Evaluating tumor response is critical in the assessment of convection-enhanced delivery of treatment. We proposed to determine the potential of 3D multivoxel (1)H-MR spectroscopy to evaluate convection-enhanced delivery treatment effect in these tumors. We prospectively analyzed 3D multivoxel (1)H-MR spectroscopy data for 6 patients with nonprogressive diffuse intrinsic pontine gliomas who received convection-enhanced delivery treatment of a therapeutic antibody (Phase I clinical trial NCT01502917). To compare changes in the metabolite ratios with time, we tracked the metabolite ratios Cho/Cr and Cho/NAA at several ROIs: normal white matter, tumor within the convection-enhanced delivery infusion site, tumor outside of the infused area, and the tumor average. There was a comparative decrease in both Cho/Cr and Cho/NAA metabolite ratios at the tumor convection-enhanced delivery site versus tumor outside the infused area. We used MR spectroscopy voxels with dominant white matter as a reference. The difference between changes in metabolite ratios became more prominent with increasing time after convection-enhanced delivery treatment. The comparative change in metabolite ratios between the convection-enhanced delivery site and the tumor site outside the infused area suggests that multivoxel (1)H-MR spectroscopy, in combination with other imaging modalities, may provide a clinical tool to accurately evaluate local tumor response after convection-enhanced delivery treatment. © 2016 by American Journal of Neuroradiology.
The role of cold pools in tropical convective systems
NASA Astrophysics Data System (ADS)
Grant, Leah; Lane, Todd; van den Heever, Susan
2017-04-01
Convective systems in the tropics have received less attention than their midlatitude counterparts, despite their important influences on the global circulation and the state of the tropical atmosphere. It is widely accepted that cold pools play key roles in the intensity, maintenance, and propagation of midlatitude organized convective systems. In the tropics, however, cold pools are weaker because the boundary layer is more humid, and the cold pools may interact with the convective systems differently than in the classic midlatitude system archetype, as suggested by recent studies. The goal of this research is to investigate the physical mechanisms by which cold pools impact tropical convective system intensity and propagation. To address this goal, a simulation of radiative-convective equilibrium (RCE) on a large (3000 km by 200 km) channel domain with an ocean SST of 300 K was conducted at 1 km horizontal resolution, as an idealized representation of the tropical atmosphere. Two different long-lived, organized convective systems - one more intense than the other - were selected from the base RCE simulation and simulated at higher (250 m horizontal) resolution. Next, the cold pools were effectively eliminated by shutting off the sub-cloud evaporation, in order to elucidate their roles in the convective systems' behavior. Surprisingly, the cold pools did not impact the propagation of either convective system. However, they did impact the intensities - cold pools acted to weaken one system but intensify the other system. Through composite analysis and additional simulations including tracers within the cold pools, the physical mechanisms explaining these results have been analyzed and will be presented.
Multiscale Cloud System Modeling
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Moncrieff, Mitchell W.
2009-01-01
The central theme of this paper is to describe how cloud system resolving models (CRMs) of grid spacing approximately 1 km have been applied to various important problems in atmospheric science across a wide range of spatial and temporal scales and how these applications relate to other modeling approaches. A long-standing problem concerns the representation of organized precipitating convective cloud systems in weather and climate models. Since CRMs resolve the mesoscale to large scales of motion (i.e., 10 km to global) they explicitly address the cloud system problem. By explicitly representing organized convection, CRMs bypass restrictive assumptions associated with convective parameterization such as the scale gap between cumulus and large-scale motion. Dynamical models provide insight into the physical mechanisms involved with scale interaction and convective organization. Multiscale CRMs simulate convective cloud systems in computational domains up to global and have been applied in place of contemporary convective parameterizations in global models. Multiscale CRMs pose a new challenge for model validation, which is met in an integrated approach involving CRMs, operational prediction systems, observational measurements, and dynamical models in a new international project: the Year of Tropical Convection, which has an emphasis on organized tropical convection and its global effects.
NASA Astrophysics Data System (ADS)
Whitehall, K. D.; Jenkins, G. S.; Mattmann, C. A.; Waliser, D. E.; Kim, J.; Goodale, C. E.; Hart, A. F.; Ramirez, P.; Whittell, J.; Zimdars, P. A.
2012-12-01
Mesoscale convective complexes (MCCs) are large (2 - 3 x 105 km2) nocturnal convectively-driven weather systems that are generally associated with high precipitation events in short durations (less than 12hrs) in various locations through out the tropics and midlatitudes (Maddox 1980). These systems are particularly important for climate in the West Sahel region, where the precipitation associated with them is a principal component of the rainfall season (Laing and Fritsch 1993). These systems occur on weather timescales and are historically identified from weather data analysis via manual and more recently automated processes (Miller and Fritsch 1991, Nesbett 2006, Balmey and Reason 2012). The Regional Climate Model Evaluation System (RCMES) is an open source tool designed for easy evaluation of climate and Earth system data through access to standardized datasets, and intrinsic tools that perform common analysis and visualization tasks (Hart et al. 2011). The RCMES toolkit also provides the flexibility of user-defined subroutines for further metrics, visualization and even dataset manipulation. The purpose of this study is to present a methodology for identifying MCCs in observation datasets using the RCMES framework. TRMM 3 hourly datasets will be used to demonstrate the methodology for 2005 boreal summer. This method promotes the use of open source software for scientific data systems to address a concern to multiple stakeholders in the earth sciences. A historical MCC dataset provides a platform with regards to further studies of the variability of frequency on various timescales of MCCs that is important for many including climate scientists, meteorologists, water resource managers, and agriculturalists. The methodology of using RCMES for searching and clipping datasets will engender a new realm of studies as users of the system will no longer be restricted to solely using the datasets as they reside in their own local systems; instead will be afforded rapid, effective, and transparent access, processing and visualization of the wealth of remote sensing datasets and climate model outputs available.
Covariability in the Monthly Mean Convective and Radiative Diurnal Cycles in the Amazon
NASA Technical Reports Server (NTRS)
Dodson, Jason B.; Taylor, Patrick C.
2015-01-01
The diurnal cycle of convective clouds greatly influences the radiative energy balance in convectively active regions of Earth, through both direct presence, and the production of anvil and stratiform clouds. Previous studies show that the frequency and properties of convective clouds can vary on monthly timescales as a result of variability in the monthly mean atmospheric state. Furthermore, the radiative budget in convectively active regions also varies by up to 7 Wm-2 in convectively active regions. These facts suggest that convective clouds connect atmospheric state variability and radiation variability beyond clear sky effects alone. Previous research has identified monthly covariability between the diurnal cycle of CERES-observed top-of-atmosphere radiative fluxes and multiple atmospheric state variables from reanalysis over the Amazon region. ASVs that enhance (reduce) deep convection, such as CAPE (LTS), tend to shift the daily OLR and cloud albedo maxima earlier (later) in the day by 2-3 hr. We first test the analysis method using multiple reanalysis products for both the dry and wet seasons to further investigate the robustness of the preliminary results. We then use CloudSat data as an independent cloud observing system to further evaluate the relationships of cloud properties to variability in radiation and atmospheric states. While CERES can decompose OLR variability into clear sky and cloud effects, it cannot determine what variability in cloud properties lead to variability in the radiative cloud effects. Cloud frequency, cloud top height, and cloud microphysics all contribute to the cloud radiative effect, all of which are observable by CloudSat. In addition, CloudSat can also observe the presence and variability of deep convective cores responsible for the production of anvil clouds. We use these capabilities to determine the covariability of convective cloud properties and the radiative diurnal cycle.
NASA Astrophysics Data System (ADS)
Sud, Y. C.; Walker, G. K.
1999-09-01
A prognostic cloud scheme named McRAS (Microphysics of Clouds with Relaxed Arakawa-Schubert Scheme) has been designed and developed with the aim of improving moist processes, microphysics of clouds, and cloud-radiation interactions in GCMs. McRAS distinguishes three types of clouds: convective, stratiform, and boundary layer. The convective clouds transform and merge into stratiform clouds on an hourly timescale, while the boundary layer clouds merge into the stratiform clouds instantly. The cloud condensate converts into precipitation following the autoconversion equations of Sundqvist that contain a parametric adaptation for the Bergeron-Findeisen process of ice crystal growth and collection of cloud condensate by precipitation. All clouds convect, advect, as well as diffuse both horizontally and vertically with a fully interactive cloud microphysics throughout the life cycle of the cloud, while the optical properties of clouds are derived from the statistical distribution of hydrometeors and idealized cloud geometry.An evaluation of McRAS in a single-column model (SCM) with the Global Atmospheric Research Program Atlantic Tropical Experiment (GATE) Phase III data has shown that, together with the rest of the model physics, McRAS can simulate the observed temperature, humidity, and precipitation without discernible systematic errors. The time history and time mean in-cloud water and ice distribution, fractional cloudiness, cloud optical thickness, origin of precipitation in the convective anvils and towers, and the convective updraft and downdraft velocities and mass fluxes all simulate a realistic behavior. Some of these diagnostics are not verifiable with data on hand. These SCM sensitivity tests show that (i) without clouds the simulated GATE-SCM atmosphere is cooler than observed; (ii) the model's convective scheme, RAS, is an important subparameterization of McRAS; and (iii) advection of cloud water substance is helpful in simulating better cloud distribution and cloud-radiation interaction. An evaluation of the performance of McRAS in the Goddard Earth Observing System II GCM is given in a companion paper (Part II).
Performance of a convective, infrared and combined infrared- convective heated conveyor-belt dryer.
El-Mesery, Hany S; Mwithiga, Gikuru
2015-05-01
A conveyor-belt dryer was developed using a combined infrared and hot air heating system that can be used in the drying of fruits and vegetables. The drying system having two chambers was fitted with infrared radiation heaters and through-flow hot air was provided from a convective heating system. The system was designed to operate under either infrared radiation and cold air (IR-CA) settings of 2000 W/m(2) with forced ambient air at 30 °C and air flow of 0.6 m/s or combined infrared and hot air convection (IR-HA) dryer setting with infrared intensity set at 2000 W/m(2) and hot at 60 °C being blown through the dryer at a velocity of 0.6 m/s or hot air convection (HA) at an air temperature of 60 °C and air flow velocity 0.6 m/s but without infrared heating. Apple slices dried under the different dryer settings were evaluated for quality and energy requirements. It was found that drying of apple (Golden Delicious) slices took place in the falling rate drying period and no constant rate period of drying was observed under any of the test conditions. The IR-HA setting was 57.5 and 39.1 % faster than IR-CA and HA setting, respectively. Specific energy consumption was lower and thermal efficiency was higher for the IR-HA setting when compared to both IR-CA and HA settings. The rehydration ratio, shrinkage and colour properties of apples dried under IR-HA conditions were better than for either IR-CA or HA.
Use of fiber-optic DTS to investigate physical processes in thermohaline environments
NASA Astrophysics Data System (ADS)
Suarez, F. I.; Sarabia, A.; Silva, C.
2014-12-01
Salt-gradient solar ponds are artificial thermohaline environments that collect and store thermal energy for long time-periods. A solar pond consists of three distinctive zones: the upper convective zone, which is a thin layer of cooler, less salty water; the non-convective zone that has gradients in temperature and salinity; and the lower convective zone, a layer of high salinity brine where temperatures are the highest. The solar radiation that penetrates the upper layers of the pond reaches the lower convective zone and heats the high salinity brine, which does not rise beyond the lower convective zone because the effect of salinity on density is greater than the effect of temperature. The sediments beneath the pond are also heated due to the temperature increase in the lower convective zone, providing an additional volume for energy storage. To study the different physical processes occurring within a solar pond and its surroundings, we deployed a helicoidally wrapped distributed-temperature-sensing (DTS) system in a small-scale solar pond (1-m deep, 2.5-m long and 1.5-m width). In this installation, the pond is surrounded by a sandy soil that serves as an additional energy storage volume. The thermal profile is observed at a spatial sampling resolution of 1.1 cm (spatial resolution of 2.2. cm), a temporal resolution ranging from 15 s to 5 min, and a thermal resolution ranging from 0.05 to 0.5°C. These resolutions allow closing the energy balance and inferring physical processes such as double-diffusive convection, solar radiation absorption, and heat conduction through the sediments or through the non-convective zone. Independent thermal measurements are also being made to evaluate strengths and limitations of DTS systems in thermohaline environments, and to assess different calibration algorithms that have been proposed in the past.
Benard and Marangoni convection in multiple liquid layers
NASA Technical Reports Server (NTRS)
Koster, Jean N.; Prakash, A.; Fujita, D.; Doi, T.
1992-01-01
Convective fluid dynamics of immiscible double and triple liquid layers are considered. First results on multilayer convective flow, in preparation for spaceflight experiment aboard IML-2 (International Microgravity Laboratory), are discussed. Convective flow in liquid layers with one or two horizontal interfaces with heat flow applied parallel to them is one of the systems investigated. The second system comprises two horizontally layered immiscible liquids heated from below and cooled from above, that is, heat flow orthogonal to the interface. In this system convection results due to the classical Benard instability.
Rasmussen, Kristen L.; Zuluaga, Manuel D.; Brodzik, Stella R.
2015-01-01
Abstract For over 16 years, the Precipitation Radar of the Tropical Rainfall Measuring Mission (TRMM) satellite detected the three‐dimensional structure of significantly precipitating clouds in the tropics and subtropics. This paper reviews and synthesizes studies using the TRMM radar data to present a global picture of the variation of convection throughout low latitudes. The multiyear data set shows convection varying not only in amount but also in its very nature across the oceans, continents, islands, and mountain ranges of the tropics and subtropics. Shallow isolated raining clouds are overwhelmingly an oceanic phenomenon. Extremely deep and intense convective elements occur almost exclusively over land. Upscale growth of convection into mesoscale systems takes a variety of forms. Oceanic cloud systems generally have less intense embedded convection but can form very wide stratiform regions. Continental mesoscale systems often have more intense embedded convection. Some of the most intense convective cells and mesoscale systems occur near the great mountain ranges of low latitudes. The Maritime Continent and Amazonia exhibit convective clouds with maritime characteristics although they are partially or wholly land. Convective systems containing broad stratiform areas manifest most strongly over oceans. The stratiform precipitation occurs in various forms. Often it occurs as quasi‐uniform precipitation with strong melting layers connected with intense convection. In monsoons and the Intertropical Convergence Zone, it takes the form of closely packed weak convective elements. Where fronts extend into the subtropics, broad stratiform regions are larger and have lower and sloping melting layers related to the baroclinic origin of the precipitation. PMID:27668295
Evaluating Cloud Initialization in a Convection-permit NWP Model
NASA Astrophysics Data System (ADS)
Li, Jia; Chen, Baode
2015-04-01
In general, to avoid "double counting precipitation" problem, in convection permit NWP models, it was a common practice to turn off convective parameterization. However, if there were not any cloud information in the initial conditions, the occurrence of precipitation could be delayed due to spin-up of cloud field or microphysical variables. In this study, we utilized the complex cloud analysis package from the Advanced Regional Prediction System (ARPS) to adjust the initial states of the model on water substance, such as cloud water, cloud ice, rain water, et al., that is, to initialize the microphysical variables (i.e., hydrometers), mainly based on radar reflectivity observations. Using the Advanced Research WRF (ARW) model, numerical experiments with/without cloud initialization and convective parameterization were carried out at grey-zone resolutions (i.e. 1, 3, and 9 km). The results from the experiments without convective parameterization indicate that model ignition with radar reflectivity can significantly reduce spin-up time and accurately simulate precipitation at the initial time. In addition, it helps to improve location and intensity of predicted precipitation. With grey-zone resolutions (i.e. 1, 3, and 9 km), using the cumulus convective parameterization scheme (without radar data) cannot produce realistic precipitation at the early time. The issues related to microphysical parametrization associated with cloud initialization were also discussed.
NASA Technical Reports Server (NTRS)
Mohr, Karen I.; Molinari, John; Thorncroft, Chris D,
2010-01-01
The characteristics of convective system populations in West Africa and the western Pacific tropical cyclone basin were analyzed to investigate whether interannual variability in convective activity in tropical continental and oceanic environments is driven by variations in the number of events during the wet season or by favoring large and/or intense convective systems. Convective systems were defined from TRMM data as a cluster of pixels with an 85 GHz polarization-corrected brightness temperature below 255 K and with an area at least 64 km 2. The study database consisted of convective systems in West Africa from May Sep for 1998-2007 and in the western Pacific from May Nov 1998-2007. Annual cumulative frequency distributions for system minimum brightness temperature and system area were constructed for both regions. For both regions, there were no statistically significant differences among the annual curves for system minimum brightness temperature. There were two groups of system area curves, split by the TRMM altitude boost in 2001. Within each set, there was no statistically significant interannual variability. Sub-setting the database revealed some sensitivity in distribution shape to the size of the sampling area, length of sample period, and climate zone. From a regional perspective, the stability of the cumulative frequency distributions implied that the probability that a convective system would attain a particular size or intensity does not change interannually. Variability in the number of convective events appeared to be more important in determining whether a year is wetter or drier than normal.
ARM - Midlatitude Continental Convective Clouds - Single Column Model Forcing (xie-scm_forcing)
Xie, Shaocheng; McCoy, Renata; Zhang, Yunyan
2012-10-25
The constrained variational objective analysis approach described in Zhang and Lin [1997] and Zhang et al. [2001]was used to derive the large-scale single-column/cloud resolving model forcing and evaluation data set from the observational data collected during Midlatitude Continental Convective Clouds Experiment (MC3E), which was conducted during April to June 2011 near the ARM Southern Great Plains (SGP) site. The analysis data cover the period from 00Z 22 April - 21Z 6 June 2011. The forcing data represent an average over the 3 different analysis domains centered at central facility with a diameter of 300 km (standard SGP forcing domain size), 150 km and 75 km, as shown in Figure 1. This is to support modeling studies on various-scale convective systems.
NASA Astrophysics Data System (ADS)
Gianotti, Rebecca L.
The Maritime Continent experiences strong moist convection, which produces significant rainfall and drives large fluxes of heat and moisture to the upper troposphere. Despite the importance of these processes to global circulations, current predictions of climate change over this region are still highly uncertain, largely due to inadequate representation of the diurnally-varying processes related to convection. In this work, a coupled numerical model of the land-atmosphere system (RegCM3-IBIS) is used to investigate how more physically-realistic representations of these processes can be incorporated into large-scale climate models. In particular, this work improves simulations of convective-radiative feedbacks and the role of cumulus clouds in mediating the diurnal cycle of rainfall. Three key contributions are made to the development of RegCM3-IBIS. Two pieces of work relate directly to the formation and dissipation of convective clouds: a new representation of convective cloud cover, and a new parameterization of convective rainfall production. These formulations only contain parameters that can be directly quantified from observational data, are independent of model user choices such as domain size or resolution, and explicitly account for subgrid variability in cloud water content and nonlinearities in rainfall production. The third key piece of work introduces a new method for representation of cloud formation within the boundary layer. A comprehensive evaluation of the improved model was undertaken using a range of satellite-derived and ground-based datasets, including a new dataset from Singapore's Changi airport that documents diurnal variation of the local boundary layer height. The performance of RegCM3-IBIS with the new formulations is greatly improved across all evaluation metrics, including cloud cover, cloud liquid water, radiative fluxes and rainfall, indicating consistent improvement in physical realism throughout the simulation. This work demonstrates that: (1) moist convection strongly influences the near surface environment by mediating the incoming solar radiation and net radiation at the surface; (2) dissipation of convective cloud via rainfall plays an equally important role in the convectiveradiative feedback as the formation of that cloud; and (3) over parts of the Maritime Continent, rainfall is a product of diurnally-varying convective processes that operate at small spatial scales, on the order of 1 km. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs@mit.edu)
Precipitation Characteristics in West and East Africa from Satellite and in Situ Observations
NASA Technical Reports Server (NTRS)
Dezfuli, Amin K.; Ichoku, Charles M.; Mohr, Karen I.; Huffman, George J.
2017-01-01
Using in situ data, three precipitation classes are identified for rainy seasons of West and East Africa: weak convective rainfall (WCR), strong convective rainfall (SCR), and mesoscale convective systems (MCSs).Nearly 75% of the total seasonal precipitation is produced by the SCR and MCSs, even though they represent only 8% of the rain events. Rain events in East Africa tend to have a longer duration and lower intensity than in West Africa, reflecting different characteristics of the SCR and MCS events in these two regions. Surface heating seems to be the primary convection trigger for the SCR, particularly in East Africa, whereas the WCR requires a dynamical trigger such as low-level convergence. The data are used to evaluate the performance of the recently launched Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG)project. The IMERG-based precipitation shows significant improvement over its predecessor, the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA), particularly in capturing the MCSs, due to its improved temporal resolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
PRINGLE,SCOTT E.; COOPER,CLAY A.; GLASS JR.,ROBERT J.
An experimental investigation was conducted to study double-diffusive finger convection in a Hele-Shaw cell by layering a sucrose solution over a more-dense sodium chloride (NaCl) solution. The solutal Rayleigh numbers were on the order of 60,000, based upon the height of the cell (25 cm), and the buoyancy ratio was 1.2. A full-field light transmission technique was used to measure a dye tracer dissolved in the NaCl solution. They analyze the concentration fields to yield the temporal evolution of length scales associated with the vertical and horizontal finger structure as well as the mass flux. These measures show a rapidmore » progression through two early stages to a mature stage and finally a rundown period where mass flux decays rapidly. The data are useful for the development and evaluation of numerical simulators designed to model diffusion and convection of multiple components in porous media. The results are useful for correct formulation at both the process scale (the scale of the experiment) and effective scale (where the lab-scale processes are averaged-up to produce averaged parameters). A fundamental understanding of the fine-scale dynamics of double-diffusive finger convection is necessary in order to successfully parameterize large-scale systems.« less
NASA Astrophysics Data System (ADS)
Christensen, H. M.; Moroz, I.; Palmer, T.
2015-12-01
It is now acknowledged that representing model uncertainty in atmospheric simulators is essential for the production of reliable probabilistic ensemble forecasts, and a number of different techniques have been proposed for this purpose. Stochastic convection parameterization schemes use random numbers to represent the difference between a deterministic parameterization scheme and the true atmosphere, accounting for the unresolved sub grid-scale variability associated with convective clouds. An alternative approach varies the values of poorly constrained physical parameters in the model to represent the uncertainty in these parameters. This study presents new perturbed parameter schemes for use in the European Centre for Medium Range Weather Forecasts (ECMWF) convection scheme. Two types of scheme are developed and implemented. Both schemes represent the joint uncertainty in four of the parameters in the convection parametrisation scheme, which was estimated using the Ensemble Prediction and Parameter Estimation System (EPPES). The first scheme developed is a fixed perturbed parameter scheme, where the values of uncertain parameters are changed between ensemble members, but held constant over the duration of the forecast. The second is a stochastically varying perturbed parameter scheme. The performance of these schemes was compared to the ECMWF operational stochastic scheme, Stochastically Perturbed Parametrisation Tendencies (SPPT), and to a model which does not represent uncertainty in convection. The skill of probabilistic forecasts made using the different models was evaluated. While the perturbed parameter schemes improve on the stochastic parametrisation in some regards, the SPPT scheme outperforms the perturbed parameter approaches when considering forecast variables that are particularly sensitive to convection. Overall, SPPT schemes are the most skilful representations of model uncertainty due to convection parametrisation. Reference: H. M. Christensen, I. M. Moroz, and T. N. Palmer, 2015: Stochastic and Perturbed Parameter Representations of Model Uncertainty in Convection Parameterization. J. Atmos. Sci., 72, 2525-2544.
On the controls of deep convection and lightning in the Amazon
NASA Astrophysics Data System (ADS)
Albrecht, R. I.; Giangrande, S. E.; Wang, D.; Morales, C. A.; Pereira, R. F. O.; Machado, L.; Silva Dias, M. A. F.
2017-12-01
Local observations and remote sensing have been extensively used to unravel cloud distribution and life cycle but yet their representativeness in cloud resolve models (CRMs) and global climate models (GCMs) are still very poor. In addition, the complex cloud-aerosol-precipitation interactions (CAPI), as well as thermodynamics, dynamics and large scale controls on convection have been the focus of many studies in the last two decades but still no final answer has been reached on the overall impacts of these interactions and controls on clouds, especially on deep convection. To understand the environmental and CAPI controls of deep convection, cloud electrification and lightning activity in the pristine region of Amazon basin, in this study we use long term satellite and field campaign measurements to depict the characteristics of deep convection and the relationships between lightning and convective fluxes in this region. Precipitation and lightning activity from the Tropical Rainfall Measuring Mission (TRMM) satellite are combined with estimates of aerosol concentrations and reanalysis data to delineate the overall controls on thunderstorms. A more detailed analysis is obtained studying these controls on the relationship between lightning activity and convective mass fluxes using radar wind profiler and 3D total lightning during GoAmazon 2014/15 field campaign. We find evidences that the large scale conditions control the distribution of the precipitation, with widespread and more frequent mass fluxes of moderate intensity during the wet season, resulting in less vigorous convection and lower lightning activity. Under higher convective available potential energy, lightning is enhanced in polluted and background aerosol conditions. The relationships found in this study can be used in model parameterizations and ensemble evaluations of both lightning activity and lightning NOx from seasonal forecasting to climate projections and in a broader sense to Earth Climate System Modeling.
A Stochastic Framework for Modeling the Population Dynamics of Convective Clouds
Hagos, Samson; Feng, Zhe; Plant, Robert S.; ...
2018-02-20
A stochastic prognostic framework for modeling the population dynamics of convective clouds and representing them in climate models is proposed. The framework follows the nonequilibrium statistical mechanical approach to constructing a master equation for representing the evolution of the number of convective cells of a specific size and their associated cloud-base mass flux, given a large-scale forcing. In this framework, referred to as STOchastic framework for Modeling Population dynamics of convective clouds (STOMP), the evolution of convective cell size is predicted from three key characteristics of convective cells: (i) the probability of growth, (ii) the probability of decay, and (iii)more » the cloud-base mass flux. STOMP models are constructed and evaluated against CPOL radar observations at Darwin and convection permitting model (CPM) simulations. Multiple models are constructed under various assumptions regarding these three key parameters and the realisms of these models are evaluated. It is shown that in a model where convective plumes prefer to aggregate spatially and the cloud-base mass flux is a nonlinear function of convective cell area, the mass flux manifests a recharge-discharge behavior under steady forcing. Such a model also produces observed behavior of convective cell populations and CPM simulated cloud-base mass flux variability under diurnally varying forcing. Finally, in addition to its use in developing understanding of convection processes and the controls on convective cell size distributions, this modeling framework is also designed to serve as a nonequilibrium closure formulations for spectral mass flux parameterizations.« less
A Stochastic Framework for Modeling the Population Dynamics of Convective Clouds
NASA Astrophysics Data System (ADS)
Hagos, Samson; Feng, Zhe; Plant, Robert S.; Houze, Robert A.; Xiao, Heng
2018-02-01
A stochastic prognostic framework for modeling the population dynamics of convective clouds and representing them in climate models is proposed. The framework follows the nonequilibrium statistical mechanical approach to constructing a master equation for representing the evolution of the number of convective cells of a specific size and their associated cloud-base mass flux, given a large-scale forcing. In this framework, referred to as STOchastic framework for Modeling Population dynamics of convective clouds (STOMP), the evolution of convective cell size is predicted from three key characteristics of convective cells: (i) the probability of growth, (ii) the probability of decay, and (iii) the cloud-base mass flux. STOMP models are constructed and evaluated against CPOL radar observations at Darwin and convection permitting model (CPM) simulations. Multiple models are constructed under various assumptions regarding these three key parameters and the realisms of these models are evaluated. It is shown that in a model where convective plumes prefer to aggregate spatially and the cloud-base mass flux is a nonlinear function of convective cell area, the mass flux manifests a recharge-discharge behavior under steady forcing. Such a model also produces observed behavior of convective cell populations and CPM simulated cloud-base mass flux variability under diurnally varying forcing. In addition to its use in developing understanding of convection processes and the controls on convective cell size distributions, this modeling framework is also designed to serve as a nonequilibrium closure formulations for spectral mass flux parameterizations.
A Stochastic Framework for Modeling the Population Dynamics of Convective Clouds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagos, Samson; Feng, Zhe; Plant, Robert S.
A stochastic prognostic framework for modeling the population dynamics of convective clouds and representing them in climate models is proposed. The framework follows the nonequilibrium statistical mechanical approach to constructing a master equation for representing the evolution of the number of convective cells of a specific size and their associated cloud-base mass flux, given a large-scale forcing. In this framework, referred to as STOchastic framework for Modeling Population dynamics of convective clouds (STOMP), the evolution of convective cell size is predicted from three key characteristics of convective cells: (i) the probability of growth, (ii) the probability of decay, and (iii)more » the cloud-base mass flux. STOMP models are constructed and evaluated against CPOL radar observations at Darwin and convection permitting model (CPM) simulations. Multiple models are constructed under various assumptions regarding these three key parameters and the realisms of these models are evaluated. It is shown that in a model where convective plumes prefer to aggregate spatially and the cloud-base mass flux is a nonlinear function of convective cell area, the mass flux manifests a recharge-discharge behavior under steady forcing. Such a model also produces observed behavior of convective cell populations and CPM simulated cloud-base mass flux variability under diurnally varying forcing. Finally, in addition to its use in developing understanding of convection processes and the controls on convective cell size distributions, this modeling framework is also designed to serve as a nonequilibrium closure formulations for spectral mass flux parameterizations.« less
NASA Technical Reports Server (NTRS)
Mohr, Karen I.; Molinari, John; Thorncroft, Chris
2009-01-01
The characteristics of convective system populations in West Africa and the western Pacific tropical cyclone basin were analyzed to investigate whether interannual variability in convective activity in tropical continental and oceanic environments is driven by variations in the number of events during the wet season or by favoring large and/or intense convective systems. Convective systems were defined from Tropical Rainfall Measuring Mission (TRMM) data as a cluster of pixels with an 85-GHz polarization-corrected brightness temperature below 255 K and with an area of at least 64 square kilometers. The study database consisted of convective systems in West Africa from May to September 1998-2007, and in the western Pacific from May to November 1998-2007. Annual cumulative frequency distributions for system minimum brightness temperature and system area were constructed for both regions. For both regions, there were no statistically significant differences between the annual curves for system minimum brightness temperature. There were two groups of system area curves, split by the TRMM altitude boost in 2001. Within each set, there was no statistically significant interannual variability. Subsetting the database revealed some sensitivity in distribution shape to the size of the sampling area, the length of the sample period, and the climate zone. From a regional perspective, the stability of the cumulative frequency distributions implied that the probability that a convective system would attain a particular size or intensity does not change interannually. Variability in the number of convective events appeared to be more important in determining whether a year is either wetter or drier than normal.
Evaluation of propellant tank insulation concepts for low-thrust chemical propulsion systems
NASA Technical Reports Server (NTRS)
Kramer, T.; Brogren, E.; Seigel, B.
1984-01-01
An analytical evaluation of cryogenic propellant tank insulations for liquid oxygen/liquid hydrogen low-thrust 2224N (500 lbf) propulsion systems (LTPS) was conducted. The insulation studied consisted of combinations of N2-purged foam and multilayer insulation (MLI) as well as He-purged MLI-only. Heat leak and payload performance predictions were made for three Shuttle-launched LTPS designed for Shuttle bay packaged payload densities of 56 kg/cu m, 40 kg/cu m and 24 kg/cu m. Foam/MLI insulations were found to increase LTPS payload delivery capability when compared with He-purged MLI-only. An additional benefit of foam/MLI was reduced operational complexity because Orbiter cargo bay N2 purge gas could be used for MLI purging. Maximum payload mass benefit occurred when an enhanced convection, rather than natural convection, heat transfer was specified for the insulation purge enclosure. The enhanced convection environment allowed minimum insulation thickness to be used for the foam/MLI interface temperature selected to correspond to the moisture dew point in the N2 purge gas. Experimental verification of foam/MLI benefits was recommended. A conservative program cost estimate for testing a MLI-foam insulated tank was 2.1 million dollars. It was noted this cost could be reduced significantly without increasing program risk.
NASA Astrophysics Data System (ADS)
Uhlig, Ralf; Frantz, Cathy; Fritsch, Andreas
2016-05-01
External receiver configurations are directly exposed to ambient wind. Therefore, a precise determination of the convective losses is a key factor in the prediction and evaluation of the efficiency of the solar absorbers. Based on several studies, the forced convective losses of external receivers are modeled using correlations for a roughened cylinder in a cross-flow of air. However at high wind velocities, the thermal efficiency measured during the Solar Two experiment was considerably lower than the efficiency predicted by these correlations. A detailed review of the available literature on the convective losses of external receivers has been made. Three CFD models of different level of detail have been developed to analyze the influence of the actual shape of the receiver and tower configuration, of the receiver shape and of the absorber panels on the forced convective heat transfer coefficients. The heat transfer coefficients deduced from the correlations have been compared to the results of the CFD simulations. In a final step the influence of both modeling approaches on the thermal efficiency of an external tubular receiver has been studied in a thermal FE model of the Solar Two receiver.
NASA Astrophysics Data System (ADS)
Wang, Xiaofeng; Jiang, Qin; Zhang, Lei
2016-04-01
A quality control system for the Aircraft Meteorological Data Relay (AMDAR) data has been implemented in China. This system is an extension to the AMDAR quality control system used at the US National Centers for Environmental Prediction. We present a study in which the characteristics of each AMDAR data quality type were examined and the impact of the AMDAR data quality system on short-range convective weather forecasts using the WRF model was investigated. The main results obtained from this study are as follows. (1) The hourly rejection rate of AMDAR data during 2014 was 5.79%, and most of the rejections happened in Near Duplicate Check. (2) There was a significant diurnal variation for both quantity and quality of AMDAR data. Duplicated reports increased with the increase of data quantity, while suspicious and disorderly reports decreased with the increase of data quantity. (3) The characteristics of the data quality were different in each model layer, with the quality problems occurring mainly at the surface as well as at the height where the power or the flight mode of the aircraft underwent adjustment. (4) Assimilating the AMDAR data improved the forecast accuracy, particularly over the region where strong convection occurred. (5) Significant improvements made by assimilating AMDAR data were found after six hours into the model forecast. The conclusion from this study is that the newly implemented AMDAR data quality system can help improve the accuracy of short-range convection forecasts using the WRF model.
A CPT for Improving Turbulence and Cloud Processes in the NCEP Global Models
NASA Astrophysics Data System (ADS)
Krueger, S. K.; Moorthi, S.; Randall, D. A.; Pincus, R.; Bogenschutz, P.; Belochitski, A.; Chikira, M.; Dazlich, D. A.; Swales, D. J.; Thakur, P. K.; Yang, F.; Cheng, A.
2016-12-01
Our Climate Process Team (CPT) is based on the premise that the NCEP (National Centers for Environmental Prediction) global models can be improved by installing an integrated, self-consistent description of turbulence, clouds, deep convection, and the interactions between clouds and radiative and microphysical processes. The goal of our CPT is to unify the representation of turbulence and subgrid-scale (SGS) cloud processes and to unify the representation of SGS deep convective precipitation and grid-scale precipitation as the horizontal resolution decreases. We aim to improve the representation of small-scale phenomena by implementing a PDF-based SGS turbulence and cloudiness scheme that replaces the boundary layer turbulence scheme, the shallow convection scheme, and the cloud fraction schemes in the GFS (Global Forecast System) and CFS (Climate Forecast System) global models. We intend to improve the treatment of deep convection by introducing a unified parameterization that scales continuously between the simulation of individual clouds when and where the grid spacing is sufficiently fine and the behavior of a conventional parameterization of deep convection when and where the grid spacing is coarse. We will endeavor to improve the representation of the interactions of clouds, radiation, and microphysics in the GFS/CFS by using the additional information provided by the PDF-based SGS cloud scheme. The team is evaluating the impacts of the model upgrades with metrics used by the NCEP short-range and seasonal forecast operations.
NASA Astrophysics Data System (ADS)
Koca, Aliihsan; Acikgoz, Ozgen; Çebi, Alican; Çetin, Gürsel; Dalkilic, Ahmet Selim; Wongwises, Somchai
2018-02-01
Investigations on heated ceiling method can be considered as a new research area in comparison to the common wall heating-cooling and cooled ceiling methods. In this work, heat transfer characteristics of a heated radiant ceiling system was investigated experimentally. There were different configurations for a single room design in order to determine the convective and radiative heat transfer rates. Almost all details on the arrangement of the test chamber, hydraulic circuit and radiant panels, the measurement equipment and experimental method including uncertainty analysis were revealed in detail indicating specific international standards. Total heat transfer amount from the panels were calculated as the sum of radiation to the unheated surfaces, convection to the air, and conduction heat loss from the backside of the panels. Integral expression of the view factors was calculated by means of the numerical evaluations using Matlab code. By means of this experimental chamber, the radiative, convective and total heat-transfer coefficient values along with the heat flux values provided from the ceiling to the unheated surrounding surfaces have been calculated. Moreover, the details of 28 different experimental case study measurements from the experimental chamber including the convective, radiative and total heat flux, and heat output results are given in a Table for other researchers to validate their theoretical models and empirical correlations.
Trace gas exchanges and transports over the Amazonian rain forest
NASA Technical Reports Server (NTRS)
Garstang, Michael; Greco, Steve; Scala, John; Harriss, Robert; Browell, Edward; Sachse, Glenn; Simpson, Joanne; Tao, Wei-Kuo; Torres, Arnold
1986-01-01
Early results are presented from a program to model deep convective transport of chemical species by means of in situ data collection and numerical models. Data were acquired during the NASA GTE Amazon Boundary Layer Experiment in July-August 1985. Airborne instrumentation, including a UV-DIAL system, collected data on the O3, CO, NO, temperature and water vapor profiles from the surface to 400 mb altitude, while GOES imagery tracked convective clouds over the study area. A two-dimensional cloud model with small amplitude random temperature fluctuations at low levels, which simulated thermals, was used to describe the movements of the chemical species sensed in the convective atmosphere. The data was useful for evaluating the accuracy of the cloud model, which in turn was effective in describing the circulation of the chemical species.
Design of a solar energy assisted air conditioning system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varlet, J.L.P.; Johnson, B.R.; Vora, J.N.
1976-03-24
Energy consumption in air conditioning systems can be reduced by reducing the water content of air before cooling. This reduction in humidity can be accomplished by contacting the humid air with a hygroscopic solution in a spray tower. The hydroscopic solution, diluted by water from the air, can be reconcentrated in a solar evaporator. A solar evaporator for this purpose was evaluated by formulating simultaneous energy and mass balances for forced air convection through the evaporator. Temperatures in the evaporator were calculated by numerical integration of the mathematical model. The calculations indicated that the salt solution cannot be reconcentrated inmore » a forced convection evaporator because of the large energy losses associated with the air stream passing through the evaporator.« less
A Stochastic Framework for Modeling the Population Dynamics of Convective Clouds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagos, Samson; Feng, Zhe; Plant, Robert S.
A stochastic prognostic framework for modeling the population dynamics of convective clouds and representing them in climate models is proposed. The approach used follows the non-equilibrium statistical mechanical approach through a master equation. The aim is to represent the evolution of the number of convective cells of a specific size and their associated cloud-base mass flux, given a large-scale forcing. In this framework, referred to as STOchastic framework for Modeling Population dynamics of convective clouds (STOMP), the evolution of convective cell size is predicted from three key characteristics: (i) the probability of growth, (ii) the probability of decay, and (iii)more » the cloud-base mass flux. STOMP models are constructed and evaluated against CPOL radar observations at Darwin and convection permitting model (CPM) simulations. Multiple models are constructed under various assumptions regarding these three key parameters and the realisms of these models are evaluated. It is shown that in a model where convective plumes prefer to aggregate spatially and mass flux is a non-linear function of convective cell area, mass flux manifests a recharge-discharge behavior under steady forcing. Such a model also produces observed behavior of convective cell populations and CPM simulated mass flux variability under diurnally varying forcing. Besides its use in developing understanding of convection processes and the controls on convective cell size distributions, this modeling framework is also designed to be capable of providing alternative, non-equilibrium, closure formulations for spectral mass flux parameterizations.« less
Convective transport over the central United States and its role in regional CO and ozone budgets
NASA Technical Reports Server (NTRS)
Thompson, Anne M.; Pickering, Kenneth E.; Dickerson, Russell R.; Ellis, William G., Jr.; Jacob, Daniel J.; Scala, John R.; Tao, Wei-Kuo; Mcnamara, Donna P.; Simpson, Joanne
1994-01-01
We have constructed a regional budget for boundary layer carbon monoxide over the central United States (32.5 deg - 50 deg N, 90 deg - 105 deg W), emphasizing a detailed evaluation of deep convective vertical fluxes appropriate for the month of June. Deep convective venting of the boundary layer (upward) dominates other components of the CO budget, e.g., downward convective transport, loss of CO by oxidation, anthropogenic emissions, and CO produced from oxidation of methane, isoprene, and anthropogenic nonmethane hydrocarbons (NMHCs). Calculations of deep convective venting are based on the method pf Pickering et al.(1992a) which uses a satellite-derived deep convective cloud climatology along with transport statistics from convective cloud model simulations of observed prototype squall line events. This study uses analyses of convective episodes in 1985 and 1989 and CO measurements taken during several midwestern field campaigns. Deep convective venting of the boundary layer over this moderately polluted region provides a net (upward minus downward) flux of 18.1 x 10(exp 8) kg CO/month to the free troposphere during early summer. Shallow cumulus and synoptic-scale weather systems together make a comparable contribution (total net flux 16.2 x 10(exp 8) kg CO/month). Boundary layer venting of CO with other O3 precursors leads to efficient free troposheric O3 formation. We estimate that deep convective transport of CO and other precursors over the central United States in early summer leads to a gross production of 0.66 - 1.1 Gmol O3/d in good agreement with estimates of O3 production from boundary layer venting in a continental-scale model (Jacob et al., 1993a, b). On this respect the central U.S. region acts as s `chimney' for the country, and presumably this O3 contributes to high background levels of O3 in the eastern United States and O3 export to the North Atlantic.
Long-range transport of Xe-133 emissions under convective and non-convective conditions.
Kuśmierczyk-Michulec, J; Krysta, M; Kalinowski, M; Hoffmann, E; Baré, J
2017-09-01
To investigate the transport of xenon emissions, the Provisional Technical Secretariat (PTS) operates an Atmospheric Transport Modelling (ATM) system based on the Lagrangian Particle Dispersion Model FLEXPART. The air mass trajectory ideally provides a "link" between a radionuclide release and a detection confirmed by radionuclide measurements. This paper investigates the long-range transport of Xe-133 emissions under convective and non-convective conditions, with special emphasis on evaluating the changes in the simulated activity concentration values due to the inclusion of the convective transport in the ATM simulations. For that purpose a series of 14 day forward simulations, with and without convective transport, released daily in the period from 1 January 2011 to 30 June 2013, were analysed. The release point was at the ANSTO facility in Australia. The simulated activity concentrations for the period January 2011 to February 2012 were calculated using the daily emission values provided by the ANSTO facility; outside the aforementioned period, the median daily emission value was used. In the simulations the analysed meteorological input data provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) were used with the spatial resolution of 0.5°. It was found that the long-range transport of Xe-133 emissions under convective conditions, where convection was included in the ATM simulation, led to a small decrease in the activity concentration, as compared to transport without convection. In special cases related to deep convection, the opposite effect was observed. Availability of both daily emission values and measured Xe-133 activity concentration values was an opportunity to validate the simulations. Based on the paired t-test, a 95% confidence interval for the true mean difference between simulations without convective transport and measurements was constructed. It was estimated that the overall uncertainty lies between 0.08 and 0.25 mBq/m 3 . The uncertainty for the simulations with the convective transport included is slighted shifted to the lower values and is in the range between 0.06 and 0.20 mBq/m 3 . Copyright © 2017. Published by Elsevier Ltd.
Evaluating Vertical Moisture Structure of the Madden-Julian Oscillation in Contemporary GCMs
NASA Astrophysics Data System (ADS)
Guan, B.; Jiang, X.; Waliser, D. E.
2013-12-01
The Madden-Julian Oscillation (MJO) remains a major challenge in our understanding and modeling of the tropical convection and circulation. Many models have troubles in realistically simulating key characteristics of the MJO, such as the strength, period, and eastward propagation. For models that do simulate aspects of the MJO, it remains to be understood what parameters and processes are the most critical in determining the quality of the simulations. This study focuses on the vertical structure of moisture in MJO simulations, with the aim to identify and understand the relationship between MJO simulation qualities and key parameters related to moisture. A series of 20-year simulations conducted by 26 GCMs are analyzed, including four that are coupled to ocean models and two that have a two-dimensional cloud resolving model embedded (i.e., superparameterized). TRMM precipitation and ERA-Interim reanalysis are used to evaluate the model simulations. MJO simulation qualities are evaluated based on pattern correlations of lead/lag regressions of precipitation - a measure of the model representation of the eastward propagating MJO convection. Models with strongest and weakest MJOs (top and bottom quartiles) are compared in terms of differences in moisture content, moisture convergence, moistening rate, and moist static energy. It is found that models with strongest MJOs have better representations of the observed vertical tilt of moisture. Relative importance of convection, advection, boundary layer, and large scale convection/precipitation are discussed in terms of their contribution to the moistening process. The results highlight the overall importance of vertical moisture structure in MJO simulations. The work contributes to the climatological component of the joint WCRP-WWRP/THORPEX YOTC MJO Task Force and the GEWEX Atmosphere System Study (GASS) global model evaluation project focused on the vertical structure and diabatic processes of the MJO.
Convection-enhanced delivery to the central nervous system.
Lonser, Russell R; Sarntinoranont, Malisa; Morrison, Paul F; Oldfield, Edward H
2015-03-01
Convection-enhanced delivery (CED) is a bulk flow-driven process. Its properties permit direct, homogeneous, targeted perfusion of CNS regions with putative therapeutics while bypassing the blood-brain barrier. Development of surrogate imaging tracers that are co-infused during drug delivery now permit accurate, noninvasive real-time tracking of convective infusate flow in nervous system tissues. The potential advantages of CED in the CNS over other currently available drug delivery techniques, including systemic delivery, intrathecal and/or intraventricular distribution, and polymer implantation, have led to its application in research studies and clinical trials. The authors review the biophysical principles of convective flow and the technology, properties, and clinical applications of convective delivery in the CNS.
Cirrus Simulations of CRYSTAL-FACE 23 July 2002 Case
NASA Technical Reports Server (NTRS)
Starr, David; Lin, Ruei-Fong; Demoz, Belay; Lare, Andrew
2004-01-01
A key objective of the Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment (CRYSTAL-FACE) is to understand relationships between the properties of tropical convective cloud systems and the properties and lifecycle of the extended cirrus anvils they produce. We report here on a case study of 23 July 2002 where a sequence of convective storms over central Florida produced an extensive anvil outflow. Our approach is to use a suitably-initialized cloud- system simulation with MM5 (Starr et al., companion paper in this volume) to define initial conditions and time-dependent forcing for a simulation of anvil evolution using a two-dimensional fine-resolution (100 m) cirrus cloud model that explicitly accounts for details of cirrus microphysical development (bin or spectra model) and fully interactive radiative processes. The cirrus model follows Lin (1997). The microphysical components are described in Lin et al. (2004) - see Lin et a1 (this volume). Meteorological conditions and observations for the 23 July case are described in Starr et al. (this volume). The goals of the present study are to evaluate how well we can simulate a cirrus anvil lifecycle, to evaluate the importance of various physical processes that operate within the anvil, and to evaluate the importance of environmental conditions in regulating anvil lifecycle. CRYSTAL-FACE produced a number of excellent case studies of anvil systems that will allow environmental factors, such as static stability or wind shear in the upper troposphere, to be examined. In the present study, we strive to assess the importance of propagating gravity waves, likely produced by the deep convection itself, and radiative processes, to anvil lifecycle and characteristics.
A stochastic parameterization for deep convection using cellular automata
NASA Astrophysics Data System (ADS)
Bengtsson, L.; Steinheimer, M.; Bechtold, P.; Geleyn, J.
2012-12-01
Cumulus parameterizations used in most operational weather and climate models today are based on the mass-flux concept which took form in the early 1970's. In such schemes it is assumed that a unique relationship exists between the ensemble-average of the sub-grid convection, and the instantaneous state of the atmosphere in a vertical grid box column. However, such a relationship is unlikely to be described by a simple deterministic function (Palmer, 2011). Thus, because of the statistical nature of the parameterization challenge, it has been recognized by the community that it is important to introduce stochastic elements to the parameterizations (for instance: Plant and Craig, 2008, Khouider et al. 2010, Frenkel et al. 2011, Bentsson et al. 2011, but the list is far from exhaustive). There are undoubtedly many ways in which stochastisity can enter new developments. In this study we use a two-way interacting cellular automata (CA), as its intrinsic nature possesses many qualities interesting for deep convection parameterization. In the one-dimensional entraining plume approach, there is no parameterization of horizontal transport of heat, moisture or momentum due to cumulus convection. In reality, mass transport due to gravity waves that propagate in the horizontal can trigger new convection, important for the organization of deep convection (Huang, 1988). The self-organizational characteristics of the CA allows for lateral communication between adjacent NWP model grid-boxes, and temporal memory. Thus the CA scheme used in this study contain three interesting components for representation of cumulus convection, which are not present in the traditional one-dimensional bulk entraining plume method: horizontal communication, memory and stochastisity. The scheme is implemented in the high resolution regional NWP model ALARO, and simulations show enhanced organization of convective activity along squall-lines. Probabilistic evaluation demonstrate an enhanced spread in large-scale variables in regions where convective activity is large. A two month extended evaluation of the deterministic behaviour of the scheme indicate a neutral impact on forecast skill. References: Bengtsson, L., H. Körnich, E. Källén, and G. Svensson, 2011: Large-scale dynamical response to sub-grid scale organization provided by cellular automata. Journal of the Atmospheric Sciences, 68, 3132-3144. Frenkel, Y., A. Majda, and B. Khouider, 2011: Using the stochastic multicloud model to improve tropical convective parameterization: A paradigm example. Journal of the Atmospheric Sciences, doi: 10.1175/JAS-D-11-0148.1. Huang, X.-Y., 1988: The organization of moist convection by internal 365 gravity waves. Tellus A, 42, 270-285. Khouider, B., J. Biello, and A. Majda, 2010: A Stochastic Multicloud Model for Tropical Convection. Comm. Math. Sci., 8, 187-216. Palmer, T., 2011: Towards the Probabilistic Earth-System Simulator: A Vision for the Future of Climate and Weather Prediction. Quarterly Journal of the Royal Meteorological Society 138 (2012) 841-861 Plant, R. and G. Craig, 2008: A stochastic parameterization for deep convection based on equilibrium statistics. J. Atmos. Sci., 65, 87-105.
NASA Astrophysics Data System (ADS)
Chern, J.; Tao, W.; Shen, B.
2011-12-01
The Madden-Julian oscillation (MJO) is the dominant component of intraseasonal variability in the tropic. It interacts and influences a wide range of weather and climate phenomena across different temporal and spatial scales. Despite the important role the MJO plays in the weather and climate system, past multi-model MJO intercomparison studies have shown that current global general circulation models (GCMs) still have considerable shortcomings in representing and forecasting this phenomenon. To improve representation of MJO and tropical convective cloud systems in global model, an Multiscale Modeling Framework (MMF) in which a cloud-resolving model takes the place of the sing-column cumulus parameterization used in convectional GCMs has been successfully developed at NAAS Goddard (Tao et al. 2009). To evaluate and improve the ability of this modeling system in representation and prediction of the MJO, several numerical hindcast experiments of a few selected MJO events during YOTC have been carried out. The ability of the model to simulate the MJO events is examined using diagnostic and skill metrics developed by the CLIVAR MJO Working Group Project as well as comparisons with a high-resolution global mesoscale model simulations, satellite observations, and analysis dataset. Several key variables associated with the MJO are investigated, including precipitation, outgoing longwave radiation, large-scale circulation, surface latent heat flux, low-level moisture convergence, vertical structure of moisture and hydrometers, and vertical diabatic heating profiles to gain insight of cloud processes associated with the MJO events.
David Frankman; Brent W. Webb; Bret W. Butler; Daniel Jimenez; Michael Harrington
2012-01-01
Time-resolved radiative and convective heating measurements were collected on a prescribed burn in coniferous fuels at a sampling frequency of 500 Hz. Evaluation of the data in the time and frequency domain indicate that this sampling rate was sufficient to capture the temporal fluctuations of radiative and convective heating. The convective heating signal contained...
Elliott, Elizabeth J.; Yu, Sungduk; Kooperman, Gabriel J.; ...
2016-05-01
The sensitivities of simulated mesoscale convective systems (MCSs) in the central U.S. to microphysics and grid configuration are evaluated here in a global climate model (GCM) that also permits global-scale feedbacks and variability. Since conventional GCMs do not simulate MCSs, studying their sensitivities in a global framework useful for climate change simulations has not previously been possible. To date, MCS sensitivity experiments have relied on controlled cloud resolving model (CRM) studies with limited domains, which avoid internal variability and neglect feedbacks between local convection and larger-scale dynamics. However, recent work with superparameterized (SP) GCMs has shown that eastward propagating MCS-likemore » events are captured when embedded CRMs replace convective parameterizations. This study uses a SP version of the Community Atmosphere Model version 5 (SP-CAM5) to evaluate MCS sensitivities, applying an objective empirical orthogonal function algorithm to identify MCS-like events, and harmonizing composite storms to account for seasonal and spatial heterogeneity. A five-summer control simulation is used to assess the magnitude of internal and interannual variability relative to 10 sensitivity experiments with varied CRM parameters, including ice fall speed, one-moment and two-moment microphysics, and grid spacing. MCS sensitivities were found to be subtle with respect to internal variability, and indicate that ensembles of over 100 storms may be necessary to detect robust differences in SP-GCMs. Furthermore, these results emphasize that the properties of MCSs can vary widely across individual events, and improving their representation in global simulations with significant internal variability may require comparison to long (multidecadal) time series of observed events rather than single season field campaigns.« less
NASA Astrophysics Data System (ADS)
Deshpande, Sachin M.; Dhangar, N.; Das, S. K.; Kalapureddy, M. C. R.; Chakravarty, K.; Sonbawne, S.; Konwar, M.
2015-11-01
Single Doppler analysis techniques known as velocity azimuth display (VAD) and volume velocity processing (VVP) are used to analyze kinematics of mesoscale flow such as horizontal wind and divergence using X-band Doppler weather radar observations, for selected cases of convective, stratiform, and shallow cloud systems near tropical Indian sites Pune (18.58°N, 73.92°E, above sea level (asl) 560 m) and Mandhardev (18.51°N, 73.85°E, asl 1297 m). The vertical profiles of horizontal wind estimated from radar VVP/VAD methods agree well with GPS radiosonde profiles, with the low-level jet at about 1.5 km during monsoon season well depicted in both. The vertical structure and temporal variability of divergence and reflectivity profiles are indicative of the dynamical and microphysical characteristics of shallow convective, deep convective, and stratiform cloud systems. In shallow convective systems, vertical development of reflectivity profiles is limited below 5 km. In deep convective systems, reflectivity values as large as 55 dBZ were observed above freezing level. The stratiform system shows the presence of a reflectivity bright band (~35 dBZ) near the melting level. The diagnosed vertical profiles of divergence in convective and stratiform systems are distinct. In shallow convective conditions, convergence was seen below 4 km with divergence above. Low-level convergence and upper level divergence are observed in deep convective profiles, while stratiform precipitation has midlevel convergence present between lower level and upper level divergence. The divergence profiles in stratiform precipitation exhibit intense shallow layers of "melting convergence" at 0°C level, near 4.5 km altitude, with a steep gradient on the both sides of the peak. The level of nondivergence in stratiform situations is lower than that in convective situations. These observed vertical structures of divergence are largely indicative of latent heating profiles in the atmosphere, an important ingredient of monsoon dynamics.
NASA Technical Reports Server (NTRS)
Latorella, Kara A.; Chamberlain, James P.
2002-01-01
Weather is a significant factor in General Aviation (GA) accidents and fatality rates. Graphical Weather Information Systems (GWISs) for the flight deck are appropriate technologies for mitigating the difficulties GA pilots have with current aviation weather information sources. This paper describes usability evaluations of a prototype GWIS by 12 GA pilots after using the system in flights towards convective weather. We provide design guidance for GWISs and discuss further research required to support weather situation awareness and in-flight decision making for GA pilots.
Fournier, R.O.
1990-01-01
Much has been published about double-diffusive convection as a mechanism for explaining variations in composition and temperature within all-liquid natural systems. However, relatively little is known about the applicability of this phenomenon within the heterogeneous rocks of currently active geothermal systems where primary porosity may control fluid flow in some places and fractures may control it in others. The main appeal of double-diffusive convection within hydrothermal systems is-that it is a mechanism that may allow efficient transfer of heat mainly by convection, while at the same time maintaining vertical and lateral salinity gradients. The Salton Sea geothermal system exhibits the following reservoir characteristics: (1) decreasing salinity and temperature from bottom to top and center toward the sides, (2) a very high heat flow from the top of the system that seems to require a major component of convective transfer of heat within the chemically stratified main reservoir, and (3) a relatively uniform density of the reservoir fluid throughout the system at all combinations of subsurface temperature, pressure, and salinity. Double-diffusive convection can account for these characteristics very nicely whereas other previously suggested models appear to account either for the thermal structure or for the salinity variations, but not both. Hydrologists, reservoir engineers, and particularly geochemists should consider the possibility and consequences of double-diffusive convection when formulating models of hydrothermal processes, and of the response of reservoirs to testing and production. ?? 1990.
The influence of terrain forcing on the initiation of deep convection over Mediterranean islands
NASA Astrophysics Data System (ADS)
Barthlott, Christian; Kirshbaum, Daniel
2013-04-01
The influence of mountainous islands on the initiation of deep convection is investigated using the Consortium for Small-scale Modeling (COSMO) model. The study day is 26 August 2009 on which moist convection occurred over both the Corsica and Sardinia island in the Mediterranean Sea. Sensitivity runs with systematically modified topography are explored to evaluate the relative importance of the land-sea contrast and the terrain height for convection initiation. Whereas no island precipitation is simulated when the islands are completely removed, all simulations that represent these land surfaces develop convective precipitation. Although convection initiates progressively earlier in the day over taller islands, the precipitation rates and accumulations do not show a fixed relationship with terrain height. This is due to the competing effects of different physical processes. First, whereas the forcing for low-level ascent increases over taller islands, the boundary-layer moisture supply decreases, which diminishes the conditional instability and precipitable water. Second, whereas taller islands enhance the inland propagation speeds of sea-breeze fronts, they also mechanically block these fronts and prevent them from reaching the island interior. As a result, the island precipitation is rather insensitive to island terrain height except for one particular case in which the island precipitation increases considerably due to an optimal superposition of the sea breeze and upslope flow. These results demonstrate the complexity of interactions between sea breezes and orography and reinforce that an adequate representation of detailed topographic features is necessary to account for thermally induced wind systems that initiate deep convection.
NASA Technical Reports Server (NTRS)
Lin, Bing; Wielicki, Bruce A.; Minnis, Patrick; Chambers, Lin H.; Xu, Kuan-Man; Hu, Yongxiang; Fan, Tai-Fang
2005-01-01
This study uses measurements of radiation and cloud properties taken between January and August 1998 by three Tropical Rainfall Measuring Mission (TRMM) instruments, the Clouds and the Earth's Radiant Energy System (CERES) scanner, the TRMM Microwave Imager (TMI), and the Visible and InfraRed Scanner (VIRS), to evaluate the variations of tropical deep convective systems (DCS) with sea surface temperature (SST) and precipitation. This study finds that DCS precipitation efficiency increases with SST at a rate of approx. 2%/K. Despite increasing rainfall efficiency, the cloud areal coverage rises with SST at a rate of about 7%/K in the warm tropical seas. There, the boundary layer moisture supply for deep convection and the moisture transported to the upper troposphere for cirrus-anvil cloud formation increase by approx. 6.3%/K and approx. 4.0%/K, respectively. The changes in cloud formation efficiency, along with the increased transport of moisture available for cloud formation, likely contribute to the large rate of increasing DCS areal coverage. Although no direct observations are available, the increase of cloud formation efficiency with rising SST is deduced indirectly from measurements of changes in the ratio of DCS ice water path and boundary layer water vapor amount with SST. Besides the cloud areal coverage, DCS cluster effective sizes also increase with precipitation. Furthermore, other cloud properties, such as cloud total water and ice water paths, increase with SST. These changes in DCS properties will produce a negative radiative feedback for the earth's climate system due to strong reflection of shortwave radiation by the DCS. These results significantly differ from some previous hypothesized dehydration scenarios for warmer climates, and have great potential in testing current cloud-system resolving models and convective parameterizations of general circulation models.
Entropy Production in Convective Hydrothermal Systems
NASA Astrophysics Data System (ADS)
Boersing, Nele; Wellmann, Florian; Niederau, Jan
2016-04-01
Exploring hydrothermal reservoirs requires reliable estimates of subsurface temperatures to delineate favorable locations of boreholes. It is therefore of fundamental and practical importance to understand the thermodynamic behavior of the system in order to predict its performance with numerical studies. To this end, the thermodynamic measure of entropy production is considered as a useful abstraction tool to characterize the convective state of a system since it accounts for dissipative heat processes and gives insight into the system's average behavior in a statistical sense. Solving the underlying conservation principles of a convective hydrothermal system is sensitive to initial conditions and boundary conditions which in turn are prone to uncertain knowledge in subsurface parameters. There exist multiple numerical solutions to the mathematical description of a convective system and the prediction becomes even more challenging as the vigor of convection increases. Thus, the variety of possible modes contained in such highly non-linear problems needs to be quantified. A synthetic study is carried out to simulate fluid flow and heat transfer in a finite porous layer heated from below. Various two-dimensional models are created such that their corresponding Rayleigh numbers lie in a range from the sub-critical linear to the supercritical non-linear regime, that is purely conductive to convection-dominated systems. Entropy production is found to describe the transient evolution of convective processes fairly well and can be used to identify thermodynamic equilibrium. Additionally, varying the aspect ratio for each Rayleigh number shows that the variety of realized convection modes increases with both larger aspect ratio and higher Rayleigh number. This phenomenon is also reflected by an enlarged spread of entropy production for the realized modes. Consequently, the Rayleigh number can be correlated to the magnitude of entropy production. In cases of moderate Rayleigh number and moderate aspect ratio, entropy production even enables to predict a preferred convection mode for a model with homogeneous parameter distribution. As a general rule, the thermodynamic measure of entropy production can be used to analyze uncertainties accompanied by modelling convective hydrothermal systems. Without considering any probability distributions of input data, this synthetic study shows that a higher entropy production implies a lower ability to uniquely predict the convection pattern. This in turn means that the uncertainty in estimating subsurface temperatures is higher.
Evaluation of AAFE apparatus to measure residual and transient convection in zero-gravity
NASA Technical Reports Server (NTRS)
Ruff, R. C.; Facemire, B. R.; Witherow, W. K.
1978-01-01
An evaluation apparatus which photographs convective and diffusive flows in crystal growth experiments is presented. Results in the following catagories are reported: (1) Human factors; (2) Electrical and mechanical; (3) Optical performance; and (4) Thermal performance.
NASA Technical Reports Server (NTRS)
Olson, William S.; Hong, Ye; Kummerow, Christian D.; Turk, Joseph; Einaudi, Franco (Technical Monitor)
2000-01-01
Observational and modeling studies have described the relationships between convective/stratiform rain proportion and the vertical distributions of vertical motion, latent heating, and moistening in mesoscale convective systems. Therefore, remote sensing techniques which can quantify the relative areal proportion of convective and stratiform, rainfall can provide useful information regarding the dynamic and thermodynamic processes in these systems. In the present study, two methods for deducing the convective/stratiform areal extent of precipitation from satellite passive microwave radiometer measurements are combined to yield an improved method. If sufficient microwave scattering by ice-phase precipitating hydrometeors is detected, the method relies mainly on the degree of polarization in oblique-view, 85.5 GHz radiances to estimate the area fraction of convective rain within the radiometer footprint. In situations where ice scattering is minimal, the method draws mostly on texture information in radiometer imagery at lower microwave frequencies to estimate the convective area fraction. Based upon observations of ten convective systems over ocean and nine systems over land, instantaneous 0.5 degree resolution estimates of convective area fraction from the Tropical Rainfall Measuring Mission Microwave Imager (TRMM TMI) are compared to nearly coincident estimates from the TRMM Precipitation Radar (TRMM PR). The TMI convective area fraction estimates are slightly low-biased with respect to the PR, with TMI-PR correlations of 0.78 and 0.84 over ocean and land backgrounds, respectively. TMI monthly-average convective area percentages in the tropics and subtropics from February 1998 exhibit the greatest values along the ITCZ and in continental regions of the summer (southern) hemisphere. Although convective area percentages. from the TMI are systematically lower than those from the PR, monthly rain patterns derived from the TMI and PR rain algorithms are very similar. TMI rain depths are significantly higher than corresponding rain depths from the PR in the ITCZ, but are similar in magnitude elsewhere.
NASA Astrophysics Data System (ADS)
Castro, C. L.; Chang, H. I.; Luong, T. M.; Lahmers, T.; Jares, M.; Mazon, J.; Carrillo, C. M.; Adams, D. K.
2015-12-01
The North American monsoon (NAM) is the principal driver of summer severe weather in the Southwest U.S. Monsoon convection typically initiates during daytime over the mountains and may organize into mesoscale convective systems (MCSs). Most monsoon-related severe weather occurs in association with organized convection, including microbursts, dust storms, flash flooding and lightning. A convective resolving grid spacing (on the kilometer scale) model is required to explicitly represent the physical characteristics of organized convection, for example the presence of leading convective lines and trailing stratiform precipitation regions. Our objective is to analyze how monsoon severe weather is changing in relation to anthropogenic climate change. We first consider a dynamically downscaled reanalysis during a historical period 1948-2010. Individual severe weather event days, identified by favorable thermodynamic conditions, are then simulated for short-term, numerical weather prediction-type simulations of 30h at a convective-permitting scale. Changes in modeled severe weather events indicate increases in precipitation intensity in association with long-term increases in atmospheric instability and moisture, particularly with organized convection downwind of mountain ranges. However, because the frequency of synoptic transients is decreasing during the monsoon, organized convection is less frequent and convective precipitation tends to be more phased locked to terrain. These types of modeled changes also similarly appear in observed CPC precipitation, when the severe weather event days are selected using historical radiosonde data. Next, we apply the identical model simulation and analysis procedures to several dynamically downscaled CMIP3 and CMIP5 models for the period 1950-2100, to assess how monsoon severe weather may change in the future with respect to occurrence and intensity and if these changes correspond with what is already occurring in the historical record. The CMIP5 models we are downscaling (HadGEM2-ES and MPI-ESM-LR) will be included as part of North American COordinated Regional climate Downscaling EXperiment (CORDEX). Results from this project will be used for climate change impacts assessment for U.S. military installations in the region.
The convective engine paradigm for the supernova explosion mechanism and its consequences.
NASA Astrophysics Data System (ADS)
Herant, M.
1995-05-01
The convective engine paradigm for the explosion mechanism in core collapse supernovae is presented in a pedagogical manner. A candid evaluation of its strengths and weaknesses is attempted. The case where the convective mode corresponds to l=1, m=0 (one inflow, one outflow) is explored in more detail. The author also discusses the potential importance of such a convective pattern for neutron star kicks.
Consequences of increasing convection onto patient care and protein removal in hemodialysis
Duranton, Flore; Guzman, Caroline; Szwarc, Ilan; Vetromile, Fernando; Cazevieille, Chantal; Brunet, Philippe; Servel, Marie-Françoise; Le Quintrec, Moglie
2017-01-01
Introduction Recent randomised controlled trials suggest that on-line hemodiafiltration (OL-HDF) improves survival, provided that it reaches high convective volumes. However, there is scant information on the feasibility and the consequences of modifying convection volumes in clinics. Methods Twelve stable dialysis patients were treated with high-flux 1.8 m2 polysulphone dialyzers and 4 levels of convection flows (QUF) based on GKD-UF monitoring of the system, for 1 week each. The consequences on dialysis delivery (transmembrane pressure (TMP), number of alarms, % of achieved prescribed convection) and efficacy (mass removal of low and high molecular weight compounds) were analysed. Results TMP increased exponentially with QUF (p<0.001 for N >56,000 monitoring values). Beyond 21 L/session, this resulted into frequent TMP alarms requiring nursing staff interventions (mean ± SEM: 10.3 ± 2.2 alarms per session, p<0.001 compared to lower convection volumes). Optimal convection volumes as assessed by GKD-UF-max were 20.6 ± 0.4 L/session, whilst 4 supplementary litres were obtained in the maximum situation (24.5 ± 0.6 L/session) but the proportion of sessions achieving the prescribed convection volume decreased from 94% to only 33% (p<0.001). Convection increased high molecular weight compound removal and shifted the membrane cut-off towards the higher molecular weight range. Conclusions Reaching high convection volumes as recommended by the recent RCTs (> 20L) is feasible by setting an HDF system at its optimal conditions based upon the GKD-UF monitoring. Prescribing higher convection volumes resulted in instability of the system, provoked alarms, was bothersome for the nursing staff and the patients, rarely achieved the prescribed convection volumes and increased removal of high molecular weight compounds, notably albumin. PMID:28166268
Consequences of increasing convection onto patient care and protein removal in hemodialysis.
Gayrard, Nathalie; Ficheux, Alain; Duranton, Flore; Guzman, Caroline; Szwarc, Ilan; Vetromile, Fernando; Cazevieille, Chantal; Brunet, Philippe; Servel, Marie-Françoise; Argilés, Àngel; Le Quintrec, Moglie
2017-01-01
Recent randomised controlled trials suggest that on-line hemodiafiltration (OL-HDF) improves survival, provided that it reaches high convective volumes. However, there is scant information on the feasibility and the consequences of modifying convection volumes in clinics. Twelve stable dialysis patients were treated with high-flux 1.8 m2 polysulphone dialyzers and 4 levels of convection flows (QUF) based on GKD-UF monitoring of the system, for 1 week each. The consequences on dialysis delivery (transmembrane pressure (TMP), number of alarms, % of achieved prescribed convection) and efficacy (mass removal of low and high molecular weight compounds) were analysed. TMP increased exponentially with QUF (p<0.001 for N >56,000 monitoring values). Beyond 21 L/session, this resulted into frequent TMP alarms requiring nursing staff interventions (mean ± SEM: 10.3 ± 2.2 alarms per session, p<0.001 compared to lower convection volumes). Optimal convection volumes as assessed by GKD-UF-max were 20.6 ± 0.4 L/session, whilst 4 supplementary litres were obtained in the maximum situation (24.5 ± 0.6 L/session) but the proportion of sessions achieving the prescribed convection volume decreased from 94% to only 33% (p<0.001). Convection increased high molecular weight compound removal and shifted the membrane cut-off towards the higher molecular weight range. Reaching high convection volumes as recommended by the recent RCTs (> 20L) is feasible by setting an HDF system at its optimal conditions based upon the GKD-UF monitoring. Prescribing higher convection volumes resulted in instability of the system, provoked alarms, was bothersome for the nursing staff and the patients, rarely achieved the prescribed convection volumes and increased removal of high molecular weight compounds, notably albumin.
NASA Technical Reports Server (NTRS)
Zavodsky, Bradley T.; Case, Jonathan L.; Molthan, Andrew L.
2012-01-01
The Short-term Prediction Research and Transition (SPoRT) Center is a collaborative partnership between NASA and operational forecasting partners, including a number of National Weather Service forecast offices. SPoRT provides real-time NASA products and capabilities to help its partners address specific operational forecast challenges. One challenge that forecasters face is using guidance from local and regional deterministic numerical models configured at convection-allowing resolution to help assess a variety of mesoscale/convective-scale phenomena such as sea-breezes, local wind circulations, and mesoscale convective weather potential on a given day. While guidance from convection-allowing models has proven valuable in many circumstances, the potential exists for model improvements by incorporating more representative land-water surface datasets, and by assimilating retrieved temperature and moisture profiles from hyper-spectral sounders. In order to help increase the accuracy of deterministic convection-allowing models, SPoRT produces real-time, 4-km CONUS forecasts using a configuration of the Weather Research and Forecasting (WRF) model (hereafter SPoRT-WRF) that includes unique NASA products and capabilities including 4-km resolution soil initialization data from the Land Information System (LIS), 2-km resolution SPoRT SST composites over oceans and large water bodies, high-resolution real-time Green Vegetation Fraction (GVF) composites derived from the Moderate-resolution Imaging Spectroradiometer (MODIS) instrument, and retrieved temperature and moisture profiles from the Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer (IASI). NCAR's Model Evaluation Tools (MET) verification package is used to generate statistics of model performance compared to in situ observations and rainfall analyses for three months during the summer of 2012 (June-August). Detailed analyses of specific severe weather outbreaks during the summer will be presented to assess the potential added-value of the SPoRT datasets and data assimilation methodology compared to a WRF configuration without the unique datasets and data assimilation.
NASA Technical Reports Server (NTRS)
Alexander, Joan
1996-01-01
This work evaluates the interaction of a simulated spectrum of convectively generated gravity waves with realistic middle atmosphere mean winds. The wave spectrum is derived from the nonlinear convection model described by Alexander et al. that simulated a two-dimensional midlatitude squall line. This spectrum becomes input to a linear ray tracing model for evaluation of wave propagation as a function of height through climatological background wind and buoyancy frequency profiles. The energy defined by the spectrum as a function of wavenumber and frequency is distributed spatially and temporally into wave packets for the purpose of estimating wave amplitudes at the lower boundary of the ray tracing model. A wavelet analysis provides an estimate of these wave packet widths in space and time. Without this redistribution of energies into wave packets the Fourier analysis alone inaccurately assumes the energy is evenly distributed throughout the storm model domain. The growth with height of wave amplitudes is derived from wave action flux conservation coupled to a convective instability saturation condition. Mean flow accelerations and wave energy dissipation profiles are derived from this analysis and compared to parameterized estimates of gravity wave forcing, providing a measure of the importance of the storm source to global gravity wave forcing. The results suggest that a single large convective storm system like the simulated squall line could provide a significant fraction of the zonal mean gravity wave forcing at some levels, particularly in the mesosphere. The vertical distributions of mean flow acceleration and energy dissipation do not much resemble the parameterized profiles in form because of the peculiarities of the spectral properties of the waves from the storm source. The ray tracing model developed herein provides a tool for examining the role of convectively generated waves in middle atmosphere physics.
NASA Technical Reports Server (NTRS)
Alexander, M. Joan
1996-01-01
This work evaluates the interaction of a simulated spectrum of convectively generated gravity waves with realistic middle atmosphere mean winds. The wave spectrum is derived from the nonlinear convection model described by Alexander et al. [1995] that simulated a two-dimensional midlatitude squall line. This spectrum becomes input to a linear ray tracing model for evaluation of wave propagation as a function of height through climatological background wind and buoyancy frequency profiles. The energy defined by the spectrum as a function of wavenumber and frequency is distributed spatially and temporally into wave packets for the purpose of estimating wave amplitudes at the lower boundary of the ray tracing model. A wavelet analysis provides an estimate of these wave packet widths in space and time. Without this redistribution of energies into wave packets the Fourier analysis alone inaccurately assumes the energy is evenly distributed throughout the storm model domain. The growth with height of wave amplitudes is derived from wave action flux conservation coupled to a convective instability saturation condition. Mean flow accelerations and wave energy dissipation profiles are derived from this analysis and compared to parameterized estimates of gravity wave forcing, providing a measure of the importance of the storm source to global gravity wave forcing. The results suggest that a single large convective storm system like the simulated squall line could provide a significant fraction of the zonal mean gravity wave forcing at some levels, particularly in the mesosphere. The vertical distributions of mean flow acceleration and energy dissipation do not much resemble the parameterized profiles in form because of the peculiarities of the spectral properties of the waves from the storm source. The ray tracing model developed herein provides a tool for examining the role of convectively generated waves in middle atmosphere physics.
Implementation & Evaluation of a New Shallow Convection Scheme in WRF
Clouds are well-known to be a crucial component of the weather and climate system since they transport heat, moisture and momentum vertically in the atmosphere, and strongly modify shortwave and longwave radiation budgets. From the air quality point of view, cloud processes, in p...
Asymmetric distribution of convection in tropical cyclones over the western North Pacific Ocean
NASA Astrophysics Data System (ADS)
Yang, Lu; Fei, Jianfang; Huang, Xiaogang; Cheng, Xiaoping; Yang, Xiangrong; Ding, Juli; Shi, Wenli
2016-11-01
Forecasts of the intensity and quantitative precipitation of tropical cyclones (TCs) are generally inaccurate, because the strength and structure of a TC show a complicated spatiotemporal pattern and are affected by various factors. Among these, asymmetric convection plays an important role. This study investigates the asymmetric distribution of convection in TCs over the western North Pacific during the period 2005-2012, based on data obtained from the Feng Yun 2 (FY2) geostationary satellite. The asymmetric distributions of the incidence, intensity and morphology of convections are analyzed. Results show that the PDFs of the convection occurrence curve to the azimuth are sinusoidal. The rear-left quadrant relative to TC motion shows the highest occurrence rate of convection, while the front-right quadrant has the lowest. In terms of intensity, weak convections are favored in the front-left of a TC at large distances, whereas strong convections are more likely to appear to the rear-right of a TC within a 300 km range. More than 70% of all MCSs examined here are elongated systems, and meso- β enlongated convective systems (M βECSs) are the most dominant type observed in the outer region of a TC. Smaller MCSs tend to be more concentrated near the center of a TC. While semi-circular MCSs [M βCCSs, MCCs (mesoscale convective complexes)] show a high incidence rate to the rear of a TC, elongated MCSs [M βECSs, PECSs (persistent elongated convective systems)] are more likely to appear in the rear-right quadrant of a TC within a range of 400 km.
Limit of Predictability in Mantle Convection
NASA Astrophysics Data System (ADS)
Bello, L.; Coltice, N.; Rolf, T.; Tackley, P. J.
2013-12-01
Linking mantle convection models with Earth's tectonic history has received considerable attention in recent years: modeling the evolution of supercontinent cycles, predicting present-day mantle structure or improving plate reconstructions. Predictions of future supercontinents are currently being made based on seismic tomography images, plate motion history and mantle convection models, and methods of data assimilation for mantle flow are developing. However, so far there are no studies of the limit of predictability these models are facing. Indeed, given the chaotic nature of mantle convection, we can expect forecasts and hindcasts to have a limited range of predictability. We propose here to use an approach similar to those used in dynamic meteorology, and more recently for the geodynamo, to evaluate the predictability limit of mantle dynamics forecasts. Following the pioneering works in weather forecast (Lorenz 1965), we study the time evolution of twin experiments, started from two very close initial temperature fields and monitor the error growth. We extract a characteristic time of the system, known as the e-folding timescale, which will be used to estimate the predictability limit. The final predictability time will depend on the imposed initial error and the error tolerance in our model. We compute 3D spherical convection solutions using StagYY (Tackley, 2008). We first evaluate the influence of the Rayleigh number on the limit of predictability of isoviscous convection. Then, we investigate the effects of various rheologies, from the simplest (isoviscous mantle) to more complex ones (plate-like behavior and floating continents). We show that the e-folding time increases with the wavelength of the flow and reaches 10Myrs with plate-like behavior and continents. Such an e-folding time together with the uncertainties in mantle temperature distribution suggests prediction of mantle structure from an initial given state is limited to <50 Myrs. References: 1. Lorenz, B. E. N., Norake, D. & Meteorologiake, I. A study of the predictability of a 28-variable atmospheric model. Tellus XXVII, 322-333 (1965). 2. Tackley, P. J. Modelling compressible mantle convection with large viscosity contrasts in a three-dimensional spherical shell using the yin-yang grid. Physics of the Earth and Planetary Interiors 171, 7-18 (2008).
Interactions between cumulus convection and its environment as revealed by the MC3E sounding array
Xie, Shaocheng; Zhang, Yunyan; Giangrande, Scott E.; ...
2014-10-27
This study attempts to understand interactions between midlatitude convective systems and their environments through a heat and moisture budget analysis using the sounding data collected from the Midlatitude Continental Convective Clouds Experiment (MC3E) in central Oklahoma. Distinct large-scale structures and diabatic heating and drying profiles are presented for cases of weaker and elevated thunderstorms as well as intense squall line and supercell thunderstorm events during the campaign. The elevated cell events were nocturnal convective systems occurring in an environment having low convective available potential energy (CAPE) and a very dry boundary layer. In contrast, deeper convective events happened during themore » morning into early afternoon within an environment associated with large CAPE and a near-saturated boundary layer. As the systems reached maturity, the diagnosed diabatic heating in the latter deep convective cases was much stronger and of greater vertical extent than the former. Both groups showed considerable diabatic cooling in the lower troposphere, associated with the evaporation of precipitation and low-level clouds. The horizontal advection of moisture also played a dominant role in moistening the lower troposphere, particularly for the deeper convective events, wherein the near surface southeasterly flow allows persistent low-level moisture return from the Gulf of Mexico to support convection. The moisture convergence often was present before these systems develop, suggesting a strong correlation between the large-scale moisture convergence and convection. As a result, sensitivity tests indicated that the uncertainty in the surface precipitation and the size of analysis domain mainly affected the magnitude of these analyzed fields rather than their vertical structures.« less
Gravity Scaling of a Power Reactor Water Shield
NASA Technical Reports Server (NTRS)
Reid, Robert S.; Pearson, J. Boise
2008-01-01
Water based reactor shielding is being considered as an affordable option for use on initial lunar surface power systems. Heat dissipation in the shield from nuclear sources must be rejected by an auxiliary thermal hydraulic cooling system. The mechanism for transferring heat through the shield is natural convection between the core surface and an array of thermosyphon radiator elements. Natural convection in a 100 kWt lunar surface reactor shield design has been previously evaluated at lower power levels (Pearson, 2007). The current baseline assumes that 5.5 kW are dissipated in the water shield, the preponderance on the core surface, but with some volumetric heating in the naturally circulating water as well. This power is rejected by a radiator located above the shield with a surface temperature of 370 K. A similarity analysis on a water-based reactor shield is presented examining the effect of gravity on free convection between a radiation shield inner vessel and a radiation shield outer vessel boundaries. Two approaches established similarity: 1) direct scaling of Rayleigh number equates gravity-surface heat flux products, 2) temperature difference between the wall and thermal boundary layer held constant on Earth and the Moon. Nussult number for natural convection (laminar and turbulent) is assumed of form Nu = CRa(sup n). These combined results estimate similarity conditions under Earth and Lunar gravities. The influence of reduced gravity on the performance of thermosyphon heat pipes is also examined.
Characteristic Evaluation on Cooling Performance of Thermoelectric Modules.
Seo, Sae Rom; Han, Seungwoo
2015-10-01
The aim of this work is to develop a performance evaluation system for thermoelectric cooling modules. We describe the design of such a system, composed of a vacuum chamber with a heat sink along with a metal block to measure the absorbed heat Qc. The system has a simpler structure than existing water-cooled or air-cooled systems. The temperature difference between the cold and hot sides of the thermoelectric module ΔT can be accurately measured without any effects due to convection, and the temperature equilibrium time is minimized compared to a water-cooled system. The evaluation system described here can be used to measure characteristic curves of Qc as a function of ΔT, as well as the current-voltage relations. High-performance thermoelectric systems can therefore be developed using optimal modules evaluated with this system.
NASA Technical Reports Server (NTRS)
Pearlman, Howard; Chapek, Richard; Neville, Donna; Sheredy, William; Wu, Ming-Shin; Tornabene, Robert
2001-01-01
A space-based experiment is currently under development to study diffusion-controlled, gas-phase, low temperature oxidation reactions, cool flames and auto-ignition in an unstirred, static reactor. At Earth's gravity (1g), natural convection due to self-heating during the course of slow reaction dominates diffusive transport and produces spatio-temporal variations in the thermal and thus species concentration profiles via the Arrhenius temperature dependence of the reaction rates. Natural convection is important in all terrestrial cool flame and auto-ignition studies, except for select low pressure, highly dilute (small temperature excess) studies in small vessels (i.e., small Rayleigh number). On Earth, natural convection occurs when the Rayleigh number (Ra) exceeds a critical value of approximately 600. Typical values of the Ra, associated with cool flames and auto-ignitions, range from 104-105 (or larger), a regime where both natural convection and conduction heat transport are important. When natural convection occurs, it alters the temperature, hydrodynamic, and species concentration fields, thus generating a multi-dimensional field that is extremely difficult, if not impossible, to be modeled analytically. This point has been emphasized recently by Kagan and co-workers who have shown that explosion limits can shift depending on the characteristic length scale associated with the natural convection. Moreover, natural convection in unstirred reactors is never "sufficiently strong to generate a spatially uniform temperature distribution throughout the reacting gas." Thus, an unstirred, nonisothermal reaction on Earth does not reduce to that generated in a mechanically, well-stirred system. Interestingly, however, thermal ignition theories and thermokinetic models neglect natural convection and assume a heat transfer correlation of the form: q=h(S/V)(T(bar) - Tw) where q is the heat loss per unit volume, h is the heat transfer coefficient, S/V is the surface to volume ratio, and (T(bar) - Tw ) is the spatially averaged temperature excess. This Newtonian form has been validated in spatially-uniform, well-stirred reactors, provided the effective heat transfer coefficient associated with the unsteady process is properly evaluated. Unfortunately, it is not a valid assumption for spatially-nonuniform temperature distributions induced by natural convection in unstirred reactors. "This is why the analysis of such a system is so difficult." Historically, the complexities associated with natural convection were perhaps recognized as early as 1938 when thermal ignition theory was first developed. In the 1955 text "Diffusion and Heat Exchange in Chemical Kinetics", Frank-Kamenetskii recognized that "the purely conductive theory can be applied at sufficiently low pressure and small dimensions of the vessel when the influence of natural convection can be disregarded." This was reiterated by Tyler in 1966 and further emphasized by Barnard and Harwood in 1974. Specifically, they state: "It is generally assumed that heat losses are purely conductive. While this may be valid for certain low pressure slow combustion regimes, it is unlikely to be true for the cool flame and ignition regimes." While this statement is true for terrestrial experiments, the purely conductive heat transport assumption is valid at microgravity (mu-g). Specifically, buoyant complexities are suppressed at mu-g and the reaction-diffusion structure associated with low temperature oxidation reactions, cool flames and auto-ignitions can be studied. Without natural convection, the system is simpler, does not require determination of the effective heat transfer coefficient, and is a testbed for analytic and numerical models that assume pure diffusive transport. In addition, mu-g experiments will provide baseline data that will improve our understanding of the effects of natural convection on Earth.
Convection-Enhanced Delivery for the Treatment of Pediatric Neurologic Disorders
Song, Debbie K.; Lonser, Russell R.
2013-01-01
Direct perfusion of specific regions of the central nervous system by convection-enhanced delivery is becoming more widely used for the delivery of compounds in the research and treatment of various neural disorders. In contrast to other currently available central nervous system delivery techniques, convection-enhanced delivery relies on bulk flow for distribution of solute. This allows for safe, targeted, reliable, and homogeneous delivery of small- and large-molecular-weight substances over clinically relevant volumes in a manner that bypasses the blood-central nervous system barrier. Recent studies have also shown that coinfused imaging surrogate tracers can be used to monitor and control the convective distribution of therapeutic agents in vivo. The unique features of convection-enhanced delivery, including the ability to monitor distribution in real-time, provide an opportunity to develop new research and treatment paradigms for pediatric patients with a variety of intrinsic central nervous system disorders. PMID:18952590
Analysis and modeling of tropical convection observed by CYGNSS
NASA Astrophysics Data System (ADS)
Lang, T. J.; Li, X.; Roberts, J. B.; Mecikalski, J. R.
2017-12-01
The Cyclone Global Navigation Satellite System (CYGNSS) is a multi-satellite constellation that utilizes Global Positioning System (GPS) reflectometry to retrieve near-surface wind speeds over the ocean. While CYGNSS is primarily aimed at measuring wind speeds in tropical cyclones, our research has established that the mission may also provide valuable insight into the relationships between wind-driven surface fluxes and general tropical oceanic convection. Currently, we are examining organized tropical convection using a mixture of CYGNSS level 1 through level 3 data, IMERG (Integrated Multi-satellite Retrievals for Global Precipitation Measurement), and other ancillary datasets (including buoys, GPM level 1 and 2 data, as well as ground-based radar). In addition, observing system experiments (OSEs) are being performed using hybrid three-dimensional variational assimilation to ingest CYGNSS observations into a limited-domain, convection-resolving model. Our focus for now is on case studies of convective evolution, but we will also report on progress toward statistical analysis of convection sampled by CYGNSS. Our working hypothesis is that the typical mature phase of organized tropical convection is marked by the development of a sharp gust-front boundary from an originally spatially broader but weaker wind speed change associated with precipitation. This increase in the wind gradient, which we demonstrate is observable by CYGNSS, likely helps to focus enhanced turbulent fluxes of convection-sustaining heat and moisture near the leading edge of the convective system where they are more easily ingested by the updraft. Progress on the testing and refinement of this hypothesis, using a mixture of observations and modeling, will be reported.
NASA Astrophysics Data System (ADS)
Sun, Y.; Zhou, G.; Li, K. R.; Li, Q.; Pan, W.
2017-12-01
With high specific heat and density, supercritical helium can be used to reduce the temperature oscillationand improve temperature stabilityin the low temperature conditions. However, the natural convection ofthe supercritical helium has a complex influence on the suppression of the temperature oscillation. In this paper,a transient three-dimensional numerical simulation is carried out for the natural convection in the cylinder to analyze the effect of natural convection on transferring of temperature oscillation.According to the results of numerical calculation, a cryogenic system cooled by GM cryocooler is designed tostudy the influence of natural convection of supercritical helium on temperature oscillation suppression.
Influence of thermal convection on density segregation in a vibrated binary granular system.
Windows-Yule, C R K; Weinhart, T; Parker, D J; Thornton, A R
2014-02-01
Using a combination of experimental results and discrete particle method simulations, the role of buoyancy-driven convection in the segregative behavior of a three-dimensional, binary granular system is investigated. A relationship between convective motion and segregation intensity is presented, and a qualitative explanation for this behavior is proposed. This study also provides an insight into the role of diffusive behavior in the segregation of a granular bed in the convective regime. The results of this work strongly imply the possibility that, for an adequately fluidized granular bed, the degree of segregation may be indirectly controlled through the adjustment of the system's driving parameters, or the dissipative properties of the system's side-boundaries.
Ionospheric convection driven by NBZ currents
NASA Technical Reports Server (NTRS)
Rasmussen, C. E.; Schunk, R. W.
1987-01-01
Computer simulations of Birkeland currents and electric fields in the polar ionosphere during periods of northward IMF were conducted. When the IMF z component is northward, an additional current system, called the NBZ current system, is present in the polar cap. These simulations show the effect of the addition of NBZ currents on ionospheric convection, particularly in the polar cap. When the total current in the NBZ system is roughly 25 to 50 percent of the net region 1 and 2 currents, convection in the central portion of the polar cap reverses direction and turns sunward. This creates a pattern of four-cell convection with two small cells located in the polar cap, rotating in an opposite direction from the larger cells. When the Birkeland currents are fixed (constant current source), the electric field is reduced in regions of relatively high conductivity, which affects the pattern of ionospheric convection. Day-night asymmetries in conductivity change convection in such a way that the two polar-cap cells are located within the large dusk cell. When ionospheric convection is fixed (constant voltage source), Birkeland currents are increased in regions of relatively high conductivity. Ionospheric currents, which flow horizontally to close the Birkeland currents, are changed appreciably by the NBZ current system. The principal effect is an increase in ionospheric current in the polar cap.
Tang, Shuaiqi; Xie, Shaocheng; Zhang, Yunyan; ...
2016-11-16
This study describes the characteristics of large-scale vertical velocity, apparent heating source ( Q 1) and apparent moisture sink ( Q 2) profiles associated with seasonal and diurnal variations of convective systems observed during the two intensive operational periods (IOPs) that were conducted from 15 February to 26 March 2014 (wet season) and from 1 September to 10 October 2014 (dry season) near Manaus, Brazil, during the Green Ocean Amazon (GoAmazon2014/5) experiment. The derived large-scale fields have large diurnal variations according to convective activity in the GoAmazon region and the morning profiles show distinct differences between the dry and wetmore » seasons. In the wet season, propagating convective systems originating far from the GoAmazon region are often seen in the early morning, while in the dry season they are rarely observed. Afternoon convective systems due to solar heating are frequently seen in both seasons. Accordingly, in the morning, there is strong upward motion and associated heating and drying throughout the entire troposphere in the wet season, which is limited to lower levels in the dry season. In the afternoon, both seasons exhibit weak heating and strong moistening in the boundary layer related to the vertical convergence of eddy fluxes. Here, a set of case studies of three typical types of convective systems occurring in Amazonia – i.e., locally occurring systems, coastal-occurring systems and basin-occurring systems – is also conducted to investigate the variability of the large-scale environment with different types of convective systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Shuaiqi; Xie, Shaocheng; Zhang, Yunyan
2016-01-01
This study describes the characteristics of large-scale vertical velocity, apparent heating source ( Q 1) and apparent moisture sink ( Q 2) profiles associated with seasonal and diurnal variations of convective systems observed during the two intensive operational periods (IOPs) that were conducted from 15 February to 26 March 2014 (wet season) and from 1 September to 10 October 2014 (dry season) near Manaus, Brazil, during the Green Ocean Amazon (GoAmazon2014/5) experiment. The derived large-scale fields have large diurnal variations according to convective activity in the GoAmazon region and the morning profiles show distinct differences between the dry and wetmore » seasons. In the wet season, propagating convective systems originating far from the GoAmazon region are often seen in the early morning, while in the dry season they are rarely observed. Afternoon convective systems due to solar heating are frequently seen in both seasons. Accordingly, in the morning, there is strong upward motion and associated heating and drying throughout the entire troposphere in the wet season, which is limited to lower levels in the dry season. In the afternoon, both seasons exhibit weak heating and strong moistening in the boundary layer related to the vertical convergence of eddy fluxes. A set of case studies of three typical types of convective systems occurring in Amazonia – i.e., locally occurring systems, coastal-occurring systems and basin-occurring systems – is also conducted to investigate the variability of the large-scale environment with different types of convective systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varble, A. C.; Zipser, Edward J.; Fridlind, Ann
2014-12-27
Ten 3D cloud-resolving model (CRM) simulations and four 3D limited area model (LAM) simulations of an intense mesoscale convective system observed on January 23-24, 2006 during the Tropical Warm Pool – International Cloud Experiment (TWP-ICE) are compared with each other and with observed radar reflectivity fields and dual-Doppler retrievals of vertical wind speeds in an attempt to explain published results showing a high bias in simulated convective radar reflectivity aloft. This high bias results from ice water content being large, which is a product of large, strong convective updrafts, although hydrometeor size distribution assumptions modulate the size of this bias.more » Snow reflectivity can exceed 40 dBZ in a two-moment scheme when a constant bulk density of 100 kg m-3 is used. Making snow mass more realistically proportional to area rather than volume should somewhat alleviate this problem. Graupel, unlike snow, produces high biased reflectivity in all simulations. This is associated with large amounts of liquid water above the freezing level in updraft cores. Peak vertical velocities in deep convective updrafts are greater than dual-Doppler retrieved values, especially in the upper troposphere. Freezing of large rainwater contents lofted above the freezing level in simulated updraft cores greatly contributes to these excessive upper tropospheric vertical velocities. Strong simulated updraft cores are nearly undiluted, with some showing supercell characteristics. Decreasing horizontal grid spacing from 900 meters to 100 meters weakens strong updrafts, but not enough to match observational retrievals. Therefore, overly intense simulated updrafts may partly be a product of interactions between convective dynamics, parameterized microphysics, and large-scale environmental biases that promote different convective modes and strengths than observed.« less
The Impact of Reduced Gravity on Free Convective Heat Transfer from a Finite, Flat, Vertical Plate
NASA Astrophysics Data System (ADS)
Lotto, Michael A.; Johnson, Kirstyn M.; Nie, Christopher W.; Klaus, David M.
2017-10-01
Convective heat transfer is governed by a number of factors including various fluid properties, the presence of a thermal gradient, geometric configuration, flow condition, and gravity. Empirically-derived analytical relationships can be used to estimate convection as a function of these governing parameters. Although it is relatively straightforward to experimentally quantify the contributions of the majority of these variables, it is logistically difficult to assess the influence of reduced-gravity due to practical limitations of establishing this environment. Therefore, in order to explore this regime, a series of tests was conducted to evaluate convection under reduced-gravity conditions averaging 0.45 m/sec2 (0.05 g) achieved aboard a parabolic aircraft. The results showed a reduction in net heat transfer of approximately 61% in flight relative to a 1 g terrestrial baseline using the same setup. The average experimental Nusselt Number of 19.05 ± 1.41 statistically correlated with the predicted value of 18.90 ± 0.63 (N = 13), estimated using the Churchill-Chu correlation for free convective heat transfer from a finite, flat, vertical plate. Extrapolating this to similar performance in true microgravity (10-6 g) indicates that these conditions should yield a Nusselt Number of 1.27, which is 2.6% the magnitude of free convection at 1 g, or a reduction of 97.4%. With advection essentially eliminated, heat transfer becomes limited to diffusion and radiation, which are gravity-independent and nearly equivalent in magnitude in this case. These results offer a general guideline for integrating components that utilize natural (free) convective gas cooling in a spacecraft habitat and properly sizing the thermal control system.
Life Cycle of Midlatitude Deep Convective Systems in a Lagrangian Framework
NASA Technical Reports Server (NTRS)
Feng, Zhe; Dong, Xiquan; Xie, Baike; McFarlane, Sally A.; Kennedy, Aaron; Lin, Bing; Minnis, Patrick
2012-01-01
Deep Convective Systems (DCSs) consist of intense convective cores (CC), large stratiform rain (SR) regions, and extensive non-precipitating anvil clouds (AC). This study focuses on the evolution of these three components and the factors that affect convective AC production. An automated satellite tracking method is used in conjunction with a recently developed multi-sensor hybrid classification to analyze the evolution of DCS structure in a Lagrangian framework over the central United States. Composite analysis from 4221 tracked DCSs during two warm seasons (May-August, 2010-2011) shows that maximum system size correlates with lifetime, and longer-lived DCSs have more extensive SR and AC. Maximum SR and AC area lag behind peak convective intensity and the lag increases linearly from approximately 1-hour for short-lived systems to more than 3-hours for long-lived ones. The increased lag, which depends on the convective environment, suggests that changes in the overall diabatic heating structure associated with the transition from CC to SR and AC could prolong the system lifetime by sustaining stratiform cloud development. Longer-lasting systems are associated with up to 60% higher mid-tropospheric relative humidity and up to 40% stronger middle to upper tropospheric wind shear. Regression analysis shows that the areal coverage of thick AC is strongly correlated with the size of CC, updraft strength, and SR area. Ambient upper tropospheric wind speed and wind shear also play an important role for convective AC production where for systems with large AC (radius greater than 120-km) they are 24% and 20% higher, respectively, than those with small AC (radius=20 km).
NASA Astrophysics Data System (ADS)
Zakaria, Dzaki; Lubis, Sandro W.; Setiawan, Sonni
2018-05-01
Tropical weather system is controlled by periodic atmospheric disturbances ranging from daily to subseasonal time scales. One of the most prominent atmospheric disturbances in the tropics is convectively coupled equatorial waves (CCEWs). CCEWs are excited by latent heating due to a large-scale convective system and have a significant influence on weather system. They include atmospheric equatorial Kelvin wave, Mixed Rossby Gravity (MRG) wave, Equatorial Rossby (ER) wave and Tropical Depression (TD-type) wave. In this study, we will evaluate the seasonal variability of CCEWs activity in nine high-top CMIP5 models, including their spatial distribution in the troposphere. Our results indicate that seasonal variability of Kelvin waves is well represented in MPI-ESM-LR and MPI-ESM-MR, with maximum activity occurring during boreal spring. The seasonal variability of MRG waves is well represented in CanESM2, HadGEM2-CC, IPSL-CM5A-LR and IPSL-CM5A-MR, with maximum activity observed during boreal summer. On the other hand, ER waves are well captured by IPSL-CM5A-LR and IPSL-CM5A-MR and maximize during boreal fall; while TD-type waves, with maximum activity observed during boreal summer, are well observed in CanESM2, HadGEM2-CC, IPSL-CM5A-LR and IPSL-CM5A-MR. Our results indicate that the skill of CMIP5 models in representing seasonal variability of CCEWs highly depends on the convective parameterization and the spatial or vertical resolution used by each model.
Case study of a severe windstorm over Slovakia and Hungary on 25 June 2008
NASA Astrophysics Data System (ADS)
Simon, André; Kaňák, Ján; Sokol, Alois; Putsay, Mária; Uhrínová, Lucia; Csirmaz, Kálmán; Okon, Ľuboslav; Habrovský, Richard
2011-06-01
A system of thunderstorms approached the Slovakia and Hungary in the late evening hours of 25 June 2008, causing extensive damage and peak wind gusts up to 40 m/s. This study examines the macro- and mesosynoptic conditions for the windstorm using soundings, analyses, and forecasts of numerical models (ALADIN, ECMWF). A derecho-like character of the event is discussed. Meteosat Second Generation imagery and convective indices inferred from satellite and model data are used to assess the humidity distribution and the conditional instability of the thunderstorm environment. An intrusion of the environmental dry air into the convective system and intensification of downdrafts is considered to be one of the reasons for the damaging winds observed at some areas. This is supported by the radar imagery showing a sudden drop of radar reflectivity and creation of line echo wave patterns and bow echoes. A numerical simulation provided by the non-hydrostatic MM5 model indicated the development of meso-γ scale vortices embedded in the convective system. The genesis and a possible role of such vortices in creating rear-inflow jets and intensifying the low level winds are investigated with the help of the vorticity equation and several other diagnostic parameters. In addition, the effect of various physical parameterisations on the forecast of the windstorm is evaluated.
NASA Astrophysics Data System (ADS)
He, Y.; Puckett, E. G.; Billen, M. I.; Kellogg, L. H.
2016-12-01
For a convection-dominated system, like convection in the Earth's mantle, accurate modeling of the temperature field in terms of the interaction between convective and diffusive processes is one of the most common numerical challenges. In the geodynamics community using Finite Element Method (FEM) with artificial entropy viscosity is a popular approach to resolve this difficulty, but introduce numerical diffusion. The extra artificial viscosity added into the temperature system will not only oversmooth the temperature field where the convective process dominates, but also change the physical properties by increasing the local material conductivity, which will eventually change the local conservation of energy. Accurate modeling of temperature is especially important in the mantle, where material properties are strongly dependent on temperature. In subduction zones, for example, the rheology of the cold sinking slab depends nonlinearly on the temperature, and physical processes such as slab detachment, rollback, and melting all are sensitively dependent on temperature and rheology. Therefore methods that overly smooth the temperature may inaccurately represent the physical processes governing subduction, lithospheric instabilities, plume generation and other aspects of mantle convection. Here we present a method for modeling the temperature field in mantle dynamics simulations using a new solver implemented in the ASPECT software. The new solver for the temperature equation uses a Discontinuous Galerkin (DG) approach, which combines features of both finite element and finite volume methods, and is particularly suitable for problems satisfying the conservation law, and the solution has a large variation locally. Furthermore, we have applied a post-processing technique to insure that the solution satisfies a local discrete maximum principle in order to eliminate the overshoots and undershoots in the temperature locally. To demonstrate the capabilities of this new method we present benchmark results (e.g., falling sphere), and a simple subduction models with kinematic surface boundary condition. To evaluate the trade-offs in computational speed and solution accuracy we present results for the same benchmarks using the Finite Element entropy viscosity method available in ASPECT.
A Method for Obtaining High Frequency, Global, IR-Based Convective Cloud Tops for Studies of the TTL
NASA Technical Reports Server (NTRS)
Pfister, Leonhard; Ueyama, Rei; Jensen, Eric; Schoeberl, Mark
2017-01-01
Models of varying complexity that simulate water vapor and clouds in the Tropical Tropopause Layer (TTL) show that including convection directly is essential to properly simulating the water vapor and cloud distribution. In boreal winter, for example, simulations without convection yield a water vapor distribution that is too uniform with longitude, as well as minimal cloud distributions. Two things are important for convective simulations. First, it is important to get the convective cloud top potential temperature correctly, since unrealistically high values (reaching above the cold point tropopause too frequently) will cause excessive hydration of the stratosphere. Second, one must capture the time variation as well, since hydration by convection depends on the local relative humidity (temperature), which has substantial variation on synoptic time scales in the TTL. This paper describes a method for obtaining high frequency (3-hourly) global convective cloud top distributions which can be used in trajectory models. The method uses rainfall thresholds, standard IR brightness temperatures, meteorological temperature analyses, and physically realistic and documented corrections IR brightness temperature corrections to derive cloud top altitudes and potential temperatures. The cloud top altitudes compare well with combined CLOUDSAT and CALIPSO data, both in time-averaged overall vertical and horizontal distributions and in individual cases (correlations of .65-.7). An important finding is that there is significant uncertainty (nearly .5 km) in evaluating the statistical distribution of convective cloud tops even using lidar. Deep convection whose tops are in regions of high relative humidity (such as much of the TTL), will cause clouds to form above the actual convection. It is often difficult to distinguish these clouds from the actual convective cloud due to the uncertainties of evaluating ice water content from lidar measurements. Comparison with models show that calculated cloud top altitudes are generally higher than those calculated by global analyses (e.g., MERRA). Interannual variability in the distribution of convective cloud top altitudes is also investigated.
Convective Radio Occultations Final Campaign Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biondi, R.
2016-03-01
Deep convective systems are destructive weather phenomena that annually cause many deaths and injuries as well as much damage, thereby accounting for major economic losses in several countries. The number and intensity of such phenomena have increased over the last decades in some areas of the globe. Damage is mostly caused by strong winds and heavy rain parameters that are strongly connected to the structure of the particular storm. Convection over land is usually stronger and deeper than over the ocean and some convective systems, known as supercells, also develop tornadoes through processes that remain mostly unclear. The intensity forecastmore » and monitoring of convective systems is one of the major challenges for meteorology because in situ measurements during extreme events are too sparse or unreliable and most ongoing satellite missions do not provide suitable time/space coverage.« less
NASA Astrophysics Data System (ADS)
Abdelhafez, M. A.; Tsybulin, V. G.
2017-10-01
The onset of convection in a porous anisotropic rectangle occupied by a heat-conducting fluid heated from below is analyzed on the basis of the Darcy-Boussinesq model. It is shown that there are combinations of control parameters for which the system has a nontrivial cosymmetry and a one-parameter family of stationary convective regimes branches off from the mechanical equilibrium. For the two-dimensional convection equations in a porous medium, finite-difference approximations preserving the cosymmetry of the original system are developed. Numerical results are presented that demonstrate the formation of a family of convective regimes and its disappearance when the approximations do not inherit the cosymmetry property.
Simulating North American mesoscale convective systems with a convection-permitting climate model
NASA Astrophysics Data System (ADS)
Prein, Andreas F.; Liu, Changhai; Ikeda, Kyoko; Bullock, Randy; Rasmussen, Roy M.; Holland, Greg J.; Clark, Martyn
2017-10-01
Deep convection is a key process in the climate system and the main source of precipitation in the tropics, subtropics, and mid-latitudes during summer. Furthermore, it is related to high impact weather causing floods, hail, tornadoes, landslides, and other hazards. State-of-the-art climate models have to parameterize deep convection due to their coarse grid spacing. These parameterizations are a major source of uncertainty and long-standing model biases. We present a North American scale convection-permitting climate simulation that is able to explicitly simulate deep convection due to its 4-km grid spacing. We apply a feature-tracking algorithm to detect hourly precipitation from Mesoscale Convective Systems (MCSs) in the model and compare it with radar-based precipitation estimates east of the US Continental Divide. The simulation is able to capture the main characteristics of the observed MCSs such as their size, precipitation rate, propagation speed, and lifetime within observational uncertainties. In particular, the model is able to produce realistically propagating MCSs, which was a long-standing challenge in climate modeling. However, the MCS frequency is significantly underestimated in the central US during late summer. We discuss the origin of this frequency biases and suggest strategies for model improvements.
2013-12-01
Tropical cyclone research is an intense ongoing science that has acquired even greater importance in this era of global climate change . Increased study of...RECONNAISSANCE WITH THE GLOBAL HAWK: OPERATIONAL THRESHOLDS AND CHARACTERISTICS OF CONVECTIVE SYSTEMS OVER THE TROPICAL WESTERN NORTH PACIFIC by...TROPICAL CYCLONE RECONNAISSANCE WITH THE GLOBAL HAWK: OPERATIONAL THRESHOLDS AND CHARACTERISTICS OF CONVECTIVE SYSTEMS OVER THE TROPICAL WESTERN
NASA Astrophysics Data System (ADS)
Lagasio, Martina; Parodi, Antonio; Procopio, Renato; Rachidi, Farhad; Fiori, Elisabetta
2017-04-01
Lightning activity is a characteristic phenomenon of severe weather as confirmed by many studies on different weather regimes that reveal strong interplay between lightning phenomena and extreme rainfall process in thunderstorms. The improvement of the so-called total (i.e. cloud-to-ground and intra-cloud) lightning observation systems in the last decades has allowed to investigate the relationship between the lightning flash rate and the kinematic and microphysical properties of severe hydro-meteorological events characterized by strong convection. V-shape back-building Mesoscale Convective Systems (MCSs) occurring over short periods of time have hit several times the Liguria region located in north-western Italy in the period between October 2010 and November 2014, generating flash-flood events responsible for hundreds of fatalities and millions of euros of damage. All these events showed an area of intense precipitation sweeping an arc of a few degrees around the warm conveyor belt originating about 50-60 km from the Liguria coastline. A second main ingredient was the presence of a convergence line, which supported the development and the maintenance of the aforementioned back-building process. Other common features were the persistence of such geometric configuration for many hours and the associated strong lightning activity. A methodological approach for the evaluation of these types of extreme rainfall and lightning convective events is presented for a back-building MCS event occurred in Genoa in 2014. A microphysics driven ensemble of WRF simulations at cloud-permitting grid spacing (1 km) with different microphysics parameterizations is used and compared to the available observational radar and lightning data. To pursue this aim, the performance of the Lightning Potential Index (LPI) as a measure of the potential for charge generation and separation that leads to lightning occurrence in clouds, is computed and analyzed to gain further physical insight in these V-shape convective processes and to understand its predictive ability.
Results for the Aboveground Configuration of the Boiling Water Reactor Dry Cask Simulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durbin, Samuel G.; Lindgren, Eric Richard
The thermal performance of commercial nuclear spent fuel dry storage casks are evaluated through detailed numerical analysis. These modeling efforts are completed by the vendor to demonstrate performance and regulatory compliance. The calculations are then independently verified by the Nuclear Regulatory Commission (NRC). Carefully measured data sets generated from testing of full sized casks or smaller cask analogs are widely recognized as vital for validating these models. Recent advances in dry storage cask designs have significantly increased the maximum thermal load allowed in a cask in part by increasing the efficiency of internal conduction pathways and also by increasing themore » internal convection through greater canister helium pressure. These same canistered cask systems rely on ventilation between the canister and the overpack to convect heat away from the canister to the environment for both above and belowground configurations. While several testing programs have been previously conducted, these earlier validation attempts did not capture the effects of elevated helium pressures or accurately portray the external convection of aboveground and belowground canistered dry cask systems. The purpose of the current investigation was to produce data sets that can be used to test the validity of the assumptions associated with the calculations used to determine steady-state cladding temperatures in modern dry casks that utilize elevated helium pressure in the sealed canister in an aboveground configuration. An existing electrically heated but otherwise prototypic BWR Incoloy-clad test assembly was deployed inside of a representative storage basket and cylindrical pressure vessel that represents a vertical canister system. The symmetric single assembly geometry with well-controlled boundary conditions simplifies interpretation of results. The arrangement of ducting was used to mimic conditions for an aboveground storage configuration in a vertical, dry cask systems with canisters. Transverse and axial temperature profiles were measured for a wide range of decay power and helium cask pressures. Of particular interest was the evaluation of the effect of increased helium pressure on peak cladding temperatures (PCTs) for identical thermal loads. All steady state peak temperatures and induced flow rates increased with increasing assembly power. Peak cladding temperatures decreased with increasing internal helium pressure for a given assembly power, indicating increased internal convection. In addition, the location of the PCT moved from near the top of the assembly to ~1/3 the height of the assembly for the highest (8 bar absolute) to the lowest (0 bar absolute) pressure studied, respectively. This shift in PCT location is consistent with the varying contribution of convective heat transfer proportional with of internal helium pressure.« less
NASA Technical Reports Server (NTRS)
Jensen, Eric; Bergman, John; Pfister, Leonard; Ueyama, Rei; Kinnison, Doug
2014-01-01
Trajectory calculations with convective influence diagnosed from geostationary-satellite cloud measurements are used to evaluate the relative importance of different Tropical Tropopause Layer (TTL) transport pathways for establishing the distribution of carbon monoxide (CO) at 100 hPa as observed by the Microwave Limb Sounder (MLS) on board the Aura satellite. Carbon monoxide is a useful tracer for investigating TTL transport and convective influence because the CO lifetime is comparable to the time require for slow ascent through the TTL (a couple of months). Offline calculations of TTL radiative heating are used to determine the vertical motion field. The simple trajectory model does a reasonable job of reproducing the MLS CO distributions during Boreal wintertime and summertime. The broad maximum in CO concentration over the Pacific is primarily a result of the strong radiative heating (indicating upward vertical motion) associated with the abundant TTL cirrus in this region. Sensitivity tests indicate that the distinct CO maximum in the Asian monsoon anticyclone is strongly impacted by extreme convective systems with detrainment of polluted air above 360 K potential temperature. The relative importance of different CO source regions will also be discussed.
Results from Evaluations of Gridded CrIS/ATMS Visualization for Operational Forecasting
NASA Astrophysics Data System (ADS)
Stevens, E.; Zavodsky, B.; Dostalek, J.; Berndt, E.; Hoese, D.; White, K.; Bowlan, M.; Gambacorta, A.; Wheeler, A.; Haisley, C.; Smith, N.
2017-12-01
For forecast challenges which require diagnosis of the three-dimensional atmosphere, current observations, such as radiosondes, may not offer enough information. Satellite data can help fill the spatial and temporal gaps between soundings. In particular, temperature and moisture retrievals from the NOAA-Unique Combined Atmospheric Processing System (NUCAPS), which combines infrared soundings from the Cross-track Infrared Sounder (CrIS) with the Advanced Technology Microwave Sounder (ATMS) to retrieve profiles of temperature and moisture. NUCAPS retrievals are available in a wide swath with approximately 45-km spatial resolution at nadir and a local Equator crossing time of 1:30 A.M./P.M. enabling three-dimensional observations at asynoptic times. This abstract focuses on evaluation of a new visualization for NUCAPS within the operational National Weather Service Advanced Weather Interactive Processing System (AWIPS) decision support system that allows these data to be viewed in gridded horizontal maps or vertical cross sections. Two testbed evaluations have occurred in 2017: a Cold Air Aloft (CAA) evaluation at the Alaska Center Weather Service Unit and a Convective Potential evaluation at the NOAA Hazardous Weather Testbed. For CAA, at high latitudes during the winter months, the air at altitudes used by passenger and cargo aircraft can reach temperatures cold enough (-65°C) to begin to freeze jet fuel, and Gridded NUCAPS visualization was shown to help fill in the spatial and temporal gaps in data-sparse areas across the Alaskan airspace by identifying the 3D spatial extent of cold air features. For convective potential, understanding the vertical distribution of temperature and moisture is also very important for forecasting the potential for convection related to severe weather such as lightning, large hail, and tornadoes. The Gridded NUCAPS visualization was shown to aid forecasters in understanding temperature and moisture characteristics at critical levels for determining cap strength and instability. In both cases, when the products are used in conjunction with numerical output to reinforce confidence in model products or provide an alternative observation if forecasters are not sure the model is properly representing the atmosphere.
A satellite simulator for TRMM PR applied to climate model simulations
NASA Astrophysics Data System (ADS)
Spangehl, T.; Schroeder, M.; Bodas-Salcedo, A.; Hollmann, R.; Riley Dellaripa, E. M.; Schumacher, C.
2017-12-01
Climate model simulations have to be compared against observation based datasets in order to assess their skill in representing precipitation characteristics. Here we use a satellite simulator for TRMM PR in order to evaluate simulations performed with MPI-ESM (Earth system model of the Max Planck Institute for Meteorology in Hamburg, Germany) performed within the MiKlip project (https://www.fona-miklip.de/, funded by Federal Ministry of Education and Research in Germany). While classical evaluation methods focus on geophysical parameters such as precipitation amounts, the application of the satellite simulator enables an evaluation in the instrument's parameter space thereby reducing uncertainties on the reference side. The CFMIP Observation Simulator Package (COSP) provides a framework for the application of satellite simulators to climate model simulations. The approach requires the introduction of sub-grid cloud and precipitation variability. Radar reflectivities are obtained by applying Mie theory, with the microphysical assumptions being chosen to match the atmosphere component of MPI-ESM (ECHAM6). The results are found to be sensitive to the methods used to distribute the convective precipitation over the sub-grid boxes. Simple parameterization methods are used to introduce sub-grid variability of convective clouds and precipitation. In order to constrain uncertainties a comprehensive comparison with sub-grid scale convective precipitation variability which is deduced from TRMM PR observations is carried out.
Analyses and forecasts of a tornadic supercell outbreak using a 3DVAR system ensemble
NASA Astrophysics Data System (ADS)
Zhuang, Zhaorong; Yussouf, Nusrat; Gao, Jidong
2016-05-01
As part of NOAA's "Warn-On-Forecast" initiative, a convective-scale data assimilation and prediction system was developed using the WRF-ARW model and ARPS 3DVAR data assimilation technique. The system was then evaluated using retrospective short-range ensemble analyses and probabilistic forecasts of the tornadic supercell outbreak event that occurred on 24 May 2011 in Oklahoma, USA. A 36-member multi-physics ensemble system provided the initial and boundary conditions for a 3-km convective-scale ensemble system. Radial velocity and reflectivity observations from four WSR-88Ds were assimilated into the ensemble using the ARPS 3DVAR technique. Five data assimilation and forecast experiments were conducted to evaluate the sensitivity of the system to data assimilation frequencies, in-cloud temperature adjustment schemes, and fixed- and mixed-microphysics ensembles. The results indicated that the experiment with 5-min assimilation frequency quickly built up the storm and produced a more accurate analysis compared with the 10-min assimilation frequency experiment. The predicted vertical vorticity from the moist-adiabatic in-cloud temperature adjustment scheme was larger in magnitude than that from the latent heat scheme. Cycled data assimilation yielded good forecasts, where the ensemble probability of high vertical vorticity matched reasonably well with the observed tornado damage path. Overall, the results of the study suggest that the 3DVAR analysis and forecast system can provide reasonable forecasts of tornadic supercell storms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Shuaiqi; Xie, Shaocheng; Zhang, Yunyan
This study describes the characteristics of large-scale vertical velocity, apparent heating source ( Q 1) and apparent moisture sink ( Q 2) profiles associated with seasonal and diurnal variations of convective systems observed during the two intensive operational periods (IOPs) that were conducted from 15 February to 26 March 2014 (wet season) and from 1 September to 10 October 2014 (dry season) near Manaus, Brazil, during the Green Ocean Amazon (GoAmazon2014/5) experiment. The derived large-scale fields have large diurnal variations according to convective activity in the GoAmazon region and the morning profiles show distinct differences between the dry and wetmore » seasons. In the wet season, propagating convective systems originating far from the GoAmazon region are often seen in the early morning, while in the dry season they are rarely observed. Afternoon convective systems due to solar heating are frequently seen in both seasons. Accordingly, in the morning, there is strong upward motion and associated heating and drying throughout the entire troposphere in the wet season, which is limited to lower levels in the dry season. In the afternoon, both seasons exhibit weak heating and strong moistening in the boundary layer related to the vertical convergence of eddy fluxes. Here, a set of case studies of three typical types of convective systems occurring in Amazonia – i.e., locally occurring systems, coastal-occurring systems and basin-occurring systems – is also conducted to investigate the variability of the large-scale environment with different types of convective systems.« less
NASA Astrophysics Data System (ADS)
Rigo, Tomeu; Llasat, Maria-Carmen
2007-02-01
The aim of this paper is to show a climatology of Mesoscale Convective Systems (MCS) in the NE of the Iberian Peninsula, on the basis of meteorological radar observations. Special attention was paid to those cases that have produced heavy rainfalls during the period 1996-2000. Identification of the MCS was undertaken using two procedures. Firstly, the precipitation structures at the lowest level were recognised by means of a 2D algorithm that distinguishes between convective and non-convective contribution. Secondly, the convective cells were identified using a 3D procedure quite similar to the SCIT (Storm Cell Identification and Tracking) algorithm that looks for the reflectivity cores in each radar volume. Finally, the convective cells (3D) were associated with the 2D structures (convective rainfall areas), in order to characterize the complete MCS. Once this methodology was presented the paper offers a proposal for classifying the precipitation systems, and particularly the MCS. 57 MCS structures were classified: 49% of them were identified as linearly well-organised systems, called TS (39%), LS (18%) and NS (43%). In addition to the classification, the following items were analysed for each MCS found: duration, season, time of day, area affected and direction of movement, and main radar parameters related with convection. The average features of those MCS show an area of about 25000 km 2, Zmax values of 47 dBz, an echotop of 12 km, the maximum frequency at 12 UTC and early afternoon and a displacement towards E-NE. The study was completed by analysing the field at surface, the presence of a mesoscale low near the system and the quasi-stationary features of three cases related with heavy rainfalls. Maximum rainfall (more then 200 mm in 6 h) was related with the presence of a cyclone in combination with the production of a convective train effect.
Environmental Characteristics of Convective Systems During TRMM-LBA
NASA Technical Reports Server (NTRS)
Halverson, Jeffrey B.; Rickenbach, Thomas; Roy, Biswadev; Pierce, Harold; Williams, Earle; Einaudi, Franco (Technical Monitor)
2001-01-01
In this paper, data collected from 51 days of continual upper atmospheric soundings and TOGA radar at ABRACOS Hill during the TRMM-LBA experiment are used to describe the mean thermodynamic and kinematic airmass properties of wet season convection over Rondonia, Brazil. Distinct multi-day easterly and westerly lower tropospheric wind regimes occurred during the campaign with contrasting airmass characteristics. Westerly wind periods featured modest CAPE (1000 J/kg), moist conditions (>90% RH) extending through 700 mb and shallow (900 mb) speed shear on the order of 10(exp -4)/s. This combination of characteristics promoted convective systems that featured a relatively large fraction of stratiform rainfall and weak convection nearly devoid of lightning. The environment is very similar to the general airmass conditions experienced during the Darwin, Australia monsoon convective regime. In contrast, easterly regime convective systems were more strongly electrified and featured larger convective rain rates and reduced stratiform rainfall fraction. These systems formed in an environment with significantly larger CAPE (1500 J/kg), drier lower and middle level humidities (< 80% RH) and a wind shear layer that was both stronger (10(exp -3)/s) and deeper (700 mb). The larger CAPE resulted from strong insolation under relatively cloud-free skies (owing to reduced column humidity) and was also weakly capped in the lowest 1-2 km, thus contributing to a more explosive growth of convection. The time series of low- and mid-level averaged humidity exhibited marked variability between westerly and easterly regimes and was characterized by low frequency (i.e., multi-day to weekly) oscillations. The synoptic scale origins of these moisture fluctuations are examined, which include the effects of variable low-level airmass trajectories and upper-level, westward migrating cyclonic vortices. The results reported herein provide an environmental context for ongoing dual Doppler analyses and numerical modeling case studies of individual TRMM-LBA convective systems.
Convection Models for Ice-Water System: Dynamical Investigation of Phase Transition
NASA Astrophysics Data System (ADS)
Allu Peddinti, D.; McNamara, A. K.
2012-12-01
Ever since planetary missions of Voyager and Galileo revealed a dynamically altered surface of the icy moon Europa, a possible subsurface ocean under an icy shell has been speculated and surface features have been interpreted from an interior dynamics perspective. The physics of convection in a two phase water-ice system is governed by a wide set of physical parameters that include melting viscosity of ice, the variation of viscosity due to pressure and temperature, temperature contrast across and tidal heating within the system, and the evolving thickness of each layer. Due to the extreme viscosity contrast between liquid water and solid ice, it is not feasible to model the entire system to study convection. However, using a low-viscosity proxy (higher viscosity than the liquid water but much lower than solid ice) for the liquid phase provides a convenient approximation of the system, and allows for a relatively realistic representation of convection within the ice layer while also providing a self-consistent ice layer thickness that is a function of the thermal state of the system. In order to apply this method appropriately, we carefully examine the upper bound of viscosity required for the low-viscosity proxy to adequately represent the liquid phase. We identify upper bounds on the viscosity of the proxy liquid such that convective dynamics of the ice are not affected by further reductions of viscosity. Furthermore, we investigate how the temperature contrast across the system and viscosity contrast between liquid and ice control ice layer thickness. We also investigate ice shell thickening as a function of cooling, particularly how viscosity affects the conduction-to-convection transition within the ice shell. Finally, we present initial results that investigate the effects that latent heat of fusion (due to the ice-water phase transition) has on ice convection.
NASA Astrophysics Data System (ADS)
Yuan, Jian
2016-09-01
Vertical structures of deep convective systems during the Madden-Julian oscillation (MJO) are investigated using CloudSat radar measurements in Indo-Pacific oceanic areas. In active phases of the MJO, relatively more large systems and connected mesoscale convective systems (CMCSs) occur. The occurrence frequency of CMCSs peaks in the onset phase, a phase earlier than separated mesoscale convective systems (SMCSs). Compared with SMCSs, CMCSs of all sizes have weaker reflectivity above 8 km in their deep precipitating portions and thick anvil clouds closely linked to them, suggesting more "stratiform" physics associated with them. SMCSs and CMCSs together produce relatively the least anvil clouds in the onset phase, while their deep precipitating portions show stronger/weaker reflectivity above 8 km before/after the onset phase. Thus, after the onset phase of the MJO, mesoscale convective systems shift toward a more "convective" organization because SMCSs maximize after the onset, while their internal structures appear more stratiform because internally they have weaker reflectivity above 8 km. CMCSs coincide with a more humid middle troposphere spatially, even at the same locations a few days before they occur. Middle-tropospheric moistening peaks in the onset phase. Moistening of the free troposphere around deep convective systems shows relatively stronger moistening/drying below 700 hPa before/after the onset phase than domain-mean averages. Low-topped clouds occur most frequently around CMCSs and in active phases, consistent with the presence of a moister free troposphere. Coexistence of these phenomena suggests that the role of middle troposphere moisture in the formation of CMCSs should be better understood.
Characterization of convective heating in full scale wildland fires
Bret Butler
2010-01-01
Data collected in the International Crown Fire modeling Experiment during 1999 are evaluated to characterize the magnitude and duration of convective energy heating in full scale crown fires. To accomplish this objective data on total and radiant incident heat flux, air temperature, and horizontal and vertical gas velocities were evaluated. Total and radiant energy...
NASA Astrophysics Data System (ADS)
Khouider, B.; Majda, A.; Deng, Q.; Ravindran, A. M.
2015-12-01
Global climate models (GCMs) are large computer codes based on the discretization of the equations of atmospheric and oceanic motions coupled to various processes of transfer of heat, moisture and other constituents between land, atmosphere, and oceans. Because of computing power limitations, typical GCM grid resolution is on the order of 100 km and the effects of many physical processes, occurring on smaller scales, on the climate system are represented through various closure recipes known as parameterizations. The parameterization of convective motions and many processes associated with cumulus clouds such as the exchange of latent heat and cloud radiative forcing are believed to be behind much of uncertainty in GCMs. Based on a lattice particle interacting system, the stochastic multicloud model (SMCM) provide a novel and efficient representation of the unresolved variability in GCMs due to organized tropical convection and the cloud cover. It is widely recognized that stratiform heating contributes significantly to tropical rainfall and to the dynamics of tropical convective systems by inducing a front-to-rear tilt in the heating profile. Stratiform anvils forming in the wake of deep convection play a central role in the dynamics of tropical mesoscale convective systems. Here, aquaplanet simulations with a warm pool like surface forcing, based on a coarse-resolution GCM , of ˜170 km grid mesh, coupled with SMCM, are used to demonstrate the importance of stratiform heating for the organization of convection on planetary and intraseasonal scales. When some key model parameters are set to produce higher stratiform heating fractions, the model produces low-frequency and planetary-scale Madden Julian oscillation (MJO)-like wave disturbances while lower to moderate stratiform heating fractions yield mainly synoptic-scale convectively coupled Kelvin-like waves. Rooted from the stratiform instability, it is conjectured here that the strength and extent of stratiform downdrafts are key contributors to the scale selection of convective organizations perhaps with mechanisms that are in essence similar to those of mesoscale convective systems.
Origin of the pre-tropical storm Debby (2006) African easterly wave-mesoscale convective system
NASA Astrophysics Data System (ADS)
Lin, Yuh-Lang; Liu, Liping; Tang, Guoqing; Spinks, James; Jones, Wilson
2013-05-01
The origins of the pre-Debby (2006) mesoscale convective system (MCS) and African easterly wave (AEW) and their precursors were traced back to the southwest Arabian Peninsula, Asir Mountains (AS), and Ethiopian Highlands (EH) in the vicinity of the ITCZ using satellite imagery, GFS analysis data and ARW model. The sources of the convective cloud clusters and vorticity perturbations were attributed to the cyclonic convergence of northeasterly Shamal wind and the Somali jet, especially when the Mediterranean High shifted toward east and the Indian Ocean high strengthened and its associated Somali jet penetrated farther to the north. The cyclonic vorticity perturbations were strengthened by the vorticity stretching associated with convective cloud clusters in the genesis region—southwest Arabian Peninsula. A conceptual model was proposed to explain the genesis of convective cloud clusters and cyclonic vorticity perturbations preceding the pre-Debby (2006) AEW-MCS system.
Moisture structure of tropical cloud systems as inferred from SSM/I
NASA Technical Reports Server (NTRS)
Robertson, Franklin R.
1989-01-01
The structure of tropical cloud systems was examined using data obtained by the Special Sensor Microwave/Imager on vertically-integrated vapor, ice, and liquid water (including precipitable water) in a cloud cluster associated with a Pacific easterly wave. The cloud cluster provided a sample of the varying signatures of bulk microphysical processes in organized tropical convection. Composition techniques were used to interpret this variability and its significance in terms of the response of convection to its thermodynamic environment. The relative intensities of the ice and liquid-water signatures should provide insight on the relative contribution of stratiform vs convective rain and the characteristics of the water budgets of mesoscale convective systems.
Precipitation Estimation from the ARM Distributed Radar Network During the MC3E Campaign
NASA Astrophysics Data System (ADS)
Theisen, A. K.; Giangrande, S. E.; Collis, S. M.
2012-12-01
The DOE - NASA Midlatitude Continental Convective Cloud Experiment (MC3E) was the first demonstration of the Atmospheric Radiation Measurement (ARM) Climate Research Facility scanning precipitation radar platforms. A goal for the MC3E field campaign over the Southern Great Plains (SGP) facility was to demonstrate the capabilities of ARM polarimetric radar systems for providing unique insights into deep convective storm evolution and microphysics. One practical application of interest for climate studies and the forcing of cloud resolving models is improved Quantitative Precipitation Estimates (QPE) from ARM radar systems positioned at SGP. This study presents the results of ARM radar-based precipitation estimates during the 2-month MC3E campaign. Emphasis is on the usefulness of polarimetric C-band radar observations (CSAPR) for rainfall estimation to distances within 100 km of the Oklahoma SGP facility. Collocated ground disdrometer resources, precipitation profiling radars and nearby surface Oklahoma Mesonet gauge records are consulted to evaluate potential ARM radar-based rainfall products and optimal methods. Rainfall products are also evaluated against the regional NEXRAD-standard observations.
Boundary-modulated Thermal Convection Model in the Mantle
NASA Astrophysics Data System (ADS)
Kurita, K.; Kumagai, I.
2008-12-01
Analog experiments have played an important role in the constructing ideas of mantle dynamics. The series of experiments by H. Ramberg is one of the successful examples. Recently, however the realm of the analog experiments seems to be overwhelmed by steady progress of computer simulations. Is there still room for the analog experiments? This might be a main and hidden subject of this session. Here we propose a working hypothesis how the convecting mantle behaves based on the analog experiments in the system of viscous fluid and particles. The essential part is the interaction of convecting flow with heterogeneities existing in the boundaries. It is proposed the preexisting topographical heterogeneity in the boundary could control the flow pattern of convecting fluid. If this kind of heterogeneity can be formed as a consequence of convective motion and mobilized by the flow, the convection also can control the heterogeneity. We can expect interactions in two ways, by which the system behaves in a self-organize fashion. To explore the mutual interactions between convection flow and heterogeneity the system of viscous fluid and particles with slightly higher density is selected as 2D Rayleigh-Benard type convection. The basic structure consists of a basal particulate layer where permeable convection transports heat and an upper viscous fluid layer. By reducing the magnitude of the density difference the convective flow can mobilize the particles and can erode the basal layer. The condition of this erosion can be identified in the phase diagram of the particle Shields"f and the Rayleigh numbers. At Ra greater than 107 the convection style drastically changed before and after the erosion. Before the erosion where the flat interface of the boundary is maintained small scaled turbulent convection pattern is dominant. After the erosion where the interface becomes bumpy the large scale convective motion is observed. The structure is coherent to that of the boundary. This is a good example of the consequence of mutual interactions between convective flow and the heterogeneity in boundary. We propose this is a basic framework of the mantle dynamics which can reconcile apparent discrepancy between observed seismic signatures and corresponding convective motion. As a conclusion we would like to emphasize the analog experiments is a useful tool for developing/breeding new ideas.
From Geodynamics to Simplicity
NASA Astrophysics Data System (ADS)
Anderson, D. L.
2002-12-01
Mantle convection and plate tectonics are often thought as synonymous. Convection is sometimes treated as the driver or plate tectonics is viewed as simply a manifestation of mantle convection. Mantle plumes are regarded as supplying some of the elements missing in the plate tectonic and mantle convection paradigms, such as island chains, swells and large igneous provinces. An alternate view is motivated by Prigogine's concept of far-from-equilibrium self-organization ( SOFFE), not to be confused with Bak's self-organized criticality ( SOC) . In a SOFFE system the components interact, and the system is small compared to the outside world to which it is open. There must be multiple possible states and dissipation is important. Such a system is sensitive to small changes. Rayleigh-Benard convection in a container with isothermal walls is such a self-organizing system ; the driving bouyancy and the dissipation ( viscosity ) are in the fluid. In Marangoni convection the driving forces ( surface tension ) and dissipation are in the surface film and this organizes the surface and the underlying fluid. The mantle provides energy and matter to the interacting plate system but forces in the plates drive and dissipate the energy. Thus, plate tectonics may be a SOFFEE system that drives convection,as are systems cooled from above, in general. If so, plates will reorganize as boundary conditions change ; incipient plate boundaries will emerge as volcanic chains at tensile regions. Plates are defined as regions of lateral compression ( force chains ), rather than strength, and they are ephemeral. The plate system, rather than mantle viscosity, will modulate mantle cooling. The supercontinent cycle, with episodes of reorganization and massive magmatism, may be a manifestation of this far-from-equilibrium, driven from above, system. Geodynamics may be simpler than we think. Plate tectonics is certainly a more powerful concept once the concepts of rididity, elasticity, homogeneity, steady-state, equilibrium and uniformity are dropped or modified, as qualifiers of the system,as recommended in Occam's philosophy.
NASA Astrophysics Data System (ADS)
Seman, Charles J.
1994-06-01
Nonlinear nonhydrostatic conditional symmetric instability (CSI) is studied as an initial value problem using a two-dimensional (y, z)nonlinear, nonhydrostatic numerical mesoscale/cloud model. The initial atmosphere for the rotating, baroclinic (BCF) simulation contains large convective available potential energy (CAPE). Analytical theory, various model output diagnostics, and a companion nonrotating barotropic (BTNF) simulation are used to interpret the results from the BCF simulation. A single warm moist thermal initiates convection for the two 8-h simulations.The BCF simulation exhibited a very intricate life cycle. Following the initial convection, a series of discrete convective cells developed within a growing mesoscale circulation. Between hours 4 and 8, the circulation grew upscale into a structure resembling that of a squall-line mesoscale convective system (MCS). The mesoscale updrafts were nearly vertical and the circulation was strongest on the baroclinically cool side of the initial convection, as predicted by a two-dimensional Lagrangian parcel model of CSI with CAPE. The cool-side mesoscale circulation grew nearly exponentially over the last 5 h as it slowly propagated toward the warm air. Significant vertical transport of zonal momentum occurred in the (multicellular) convection that developed, resulting in local subgeostrophic zonal wind anomalies aloft. Over time, geostrophic adjustment acted to balance these anomalies. The system became warm core, with mesohigh pressure aloft and mesolow pressure at the surface. A positive zonal wind anomaly also formed downstream from the mesohigh.Analysis of the BCF simulation showed that convective momentum transport played a key role in the evolution of the simulated MCS, in that it fostered the development of the nonlinear CSI on mesoscale time scales. The vertical momentum transport in the initial deep convection generated a subgeostrophic zonal momentum anomaly aloft; the resulting imbalance in pressure gradient and Coriolis forces accelerated the meridional outflow toward the baroclinically cool side, transporting zonal momentum horizontally. The vertical (horizontal) momentum transport occurred on a convective (inertial) time scale. Taken together, the sloping convective updraft/cool side outflow represents the release of the CSI in the convectively unstable atmosphere. Further diagnostics showed that mass transports in the horizontal outflow branch ventilated the upper levels of the system, with enhanced mesoscale lifting in the core and on the leading edge of the MCS, which assisted in convective redevelopments on mesoscale time scales. Geostrophic adjustment acted to balance the convectively generated zonal momentum anomalies, thereby limiting the strength of the meridional outflow predicted by CSI theory. Circulation tendency diagnostics showed that the mesoscale circulation developed in response to thermal wind imbalances generated by the deep convection.Comparison of the BCF and BTNF simulations showed that baroclinicity enhanced mesoscale circulation growth. The BTNF circulation was more transient on mesoscale time and space scales. Overall, the BCF system produced more rainfall than the BTNF.Based on the present and past work in CSI theory, a new definition for the term `slantwise convection' is proposed.
Vertical transport by convective clouds: Comparisons of three modeling approaches
NASA Technical Reports Server (NTRS)
Pickering, Kenneth E.; Thompson, Anne M.; Tao, Wei-Kuo; Rood, Richard B.; Mcnamara, Donna P.; Molod, Andrea M.
1995-01-01
A preliminary comparison of the GEOS-1 (Goddard Earth Observing System) data assimilation system convective cloud mass fluxes with fluxes from a cloud-resolving model (the Goddard Cumulus Ensemble Model, GCE) is reported. A squall line case study (10-11 June 1985 Oklahoma PRESTORM episode) is the basis of the comparison. Regional (central U. S.) monthly total convective mass flux for June 1985 from GEOS-1 compares favorably with estimates from a statistical/dynamical approach using GCE simulations and satellite-derived cloud observations. The GEOS-1 convective mass fluxes produce reasonable estimates of monthly-averaged regional convective venting of CO from the boundary layer at least in an urban-influenced continental region, suggesting that they can be used in tracer transport simulations.
Application Bayesian Model Averaging method for ensemble system for Poland
NASA Astrophysics Data System (ADS)
Guzikowski, Jakub; Czerwinska, Agnieszka
2014-05-01
The aim of the project is to evaluate methods for generating numerical ensemble weather prediction using a meteorological data from The Weather Research & Forecasting Model and calibrating this data by means of Bayesian Model Averaging (WRF BMA) approach. We are constructing height resolution short range ensemble forecasts using meteorological data (temperature) generated by nine WRF's models. WRF models have 35 vertical levels and 2.5 km x 2.5 km horizontal resolution. The main emphasis is that the used ensemble members has a different parameterization of the physical phenomena occurring in the boundary layer. To calibrate an ensemble forecast we use Bayesian Model Averaging (BMA) approach. The BMA predictive Probability Density Function (PDF) is a weighted average of predictive PDFs associated with each individual ensemble member, with weights that reflect the member's relative skill. For test we chose a case with heat wave and convective weather conditions in Poland area from 23th July to 1st August 2013. From 23th July to 29th July 2013 temperature oscillated below or above 30 Celsius degree in many meteorology stations and new temperature records were added. During this time the growth of the hospitalized patients with cardiovascular system problems was registered. On 29th July 2013 an advection of moist tropical air masses was recorded in the area of Poland causes strong convection event with mesoscale convection system (MCS). MCS caused local flooding, damage to the transport infrastructure, destroyed buildings, trees and injuries and direct threat of life. Comparison of the meteorological data from ensemble system with the data recorded on 74 weather stations localized in Poland is made. We prepare a set of the model - observations pairs. Then, the obtained data from single ensemble members and median from WRF BMA system are evaluated on the basis of the deterministic statistical error Root Mean Square Error (RMSE), Mean Absolute Error (MAE). To evaluation probabilistic data The Brier Score (BS) and Continuous Ranked Probability Score (CRPS) were used. Finally comparison between BMA calibrated data and data from ensemble members will be displayed.
NASA Astrophysics Data System (ADS)
Schout, Gilian; Drijver, Benno; Gutierrez-Neri, Mariene; Schotting, Ruud
2014-01-01
High-temperature aquifer thermal energy storage (HT-ATES) is an important technique for energy conservation. A controlling factor for the economic feasibility of HT-ATES is the recovery efficiency. Due to the effects of density-driven flow (free convection), HT-ATES systems applied in permeable aquifers typically have lower recovery efficiencies than conventional (low-temperature) ATES systems. For a reliable estimation of the recovery efficiency it is, therefore, important to take the effect of density-driven flow into account. A numerical evaluation of the prime factors influencing the recovery efficiency of HT-ATES systems is presented. Sensitivity runs evaluating the effects of aquifer properties, as well as operational variables, were performed to deduce the most important factors that control the recovery efficiency. A correlation was found between the dimensionless Rayleigh number (a measure of the relative strength of free convection) and the calculated recovery efficiencies. Based on a modified Rayleigh number, two simple analytical solutions are proposed to calculate the recovery efficiency, each one covering a different range of aquifer thicknesses. The analytical solutions accurately reproduce all numerically modeled scenarios with an average error of less than 3 %. The proposed method can be of practical use when considering or designing an HT-ATES system.
Convective Mixing in Distal Pipes Exacerbates Legionella pneumophila Growth in Hot Water Plumbing.
Rhoads, William J; Pruden, Amy; Edwards, Marc A
2016-03-12
Legionella pneumophila is known to proliferate in hot water plumbing systems, but little is known about the specific physicochemical factors that contribute to its regrowth. Here, L. pneumophila trends were examined in controlled, replicated pilot-scale hot water systems with continuous recirculation lines subject to two water heater settings (40 °C and 58 °C) and three distal tap water use frequencies (high, medium, and low) with two pipe configurations (oriented upward to promote convective mixing with the recirculating line and downward to prevent it). Water heater temperature setting determined where L. pneumophila regrowth occurred in each system, with an increase of up to 4.4 log gene copies/mL in the 40 °C system tank and recirculating line relative to influent water compared to only 2.5 log gene copies/mL regrowth in the 58 °C system. Distal pipes without convective mixing cooled to room temperature (23-24 °C) during periods of no water use, but pipes with convective mixing equilibrated to 30.5 °C in the 40 °C system and 38.8 °C in the 58 °C system. Corresponding with known temperature effects on L. pneumophila growth and enhanced delivery of nutrients, distal pipes with convective mixing had on average 0.2 log more gene copies/mL in the 40 °C system and 0.8 log more gene copies/mL in the 58 °C system. Importantly, this work demonstrated the potential for thermal control strategies to be undermined by distal taps in general, and convective mixing in particular.
NASA Technical Reports Server (NTRS)
Carvalho, L. M. V.; Rickenbach, T.
1999-01-01
Satellite infrared (IR) and visible (VIS) images from the Tropical Ocean Global Atmosphere - Coupled Ocean Atmosphere Response Experiment (TOGA-COARE) experiment are investigated through the use of Clustering Analysis. The clusters are obtained from the values of IR and VIS counts and the local variance for both channels. The clustering procedure is based on the standardized histogram of each variable obtained from 179 pairs of images. A new approach to classify high clouds using only IR and the clustering technique is proposed. This method allows the separation of the enhanced convection in two main classes: convective tops, more closely related to the most active core of the storm, and convective systems, which produce regions of merged, thick anvil clouds. The resulting classification of different portions of cloudiness is compared to the radar reflectivity field for intensive events. Convective Systems and Convective Tops are followed during their life cycle using the IR clustering method. The areal coverage of precipitation and features related to convective and stratiform rain is obtained from the radar for each stage of the evolving Mesoscale Convective Systems (MCS). In order to compare the IR clustering method with a simple threshold technique, two IR thresholds (Tir) were used to identify different portions of cloudiness, Tir=240K which roughly defines the extent of all cloudiness associated with the MCS, and Tir=220K which indicates the presence of deep convection. It is shown that the IR clustering technique can be used as a simple alternative to identify the actual portion of convective and stratiform rainfall.
Design of a convective cooling system for a Mach 6 hypersonic transport airframe
NASA Technical Reports Server (NTRS)
Helenbrook, R. G.; Anthony, F. M.
1971-01-01
Results of analytical and design studies are presented for a water-glycol convective cooling system for the airframe structure of a hypersonic transport. System configurations and weights are compared. The influences of system pressure drop and flow control schedules on system weight are defined.
Xue, Qiao; Huang, Lei; Hu, Dongxia; Yan, Ping; Gong, Mali
2014-01-10
For thermal deformable mirrors (DMs), the thermal field control is important because it will decide aberration correction effects. In order to better manipulate the thermal fields, a simple water convection system is proposed. The water convection system, which can be applied in thermal field bimetal DMs, shows effective thermal fields and influence-function controlling abilities. This is verified by the simulations and the contrast experiments of two prototypes: one of which utilizes air convection, the other uses water convection. Controlling the thermal fields will greatly promote the influence-function adjustability and aberration correction ability of thermal DMs.
NASA Technical Reports Server (NTRS)
Kubota, H.
1976-01-01
A simplified analytical method for calculation of thermal response within a transpiration-cooled porous heat shield material in an intense radiative-convective heating environment is presented. The essential assumptions of the radiative and convective transfer processes in the heat shield matrix are the two-temperature approximation and the specified radiative-convective heatings of the front surface. Sample calculations for porous silica with CO2 injection are presented for some typical parameters of mass injection rate, porosity, and material thickness. The effect of these parameters on the cooling system is discussed.
Thermocapillary Convection in Liquid Droplets
NASA Technical Reports Server (NTRS)
1986-01-01
The purpose of this video is to understand the effects of surface tension on fluid convection. The fluid system chosen is the liquid sessile droplet to show the importance in single crystal growth, the spray drying and cooling of metal, and the advance droplet radiators of the space stations radiators. A cross sectional representation of a hemispherical liquid droplet under ideal conditions is used to show internal fluid motion. A direct simulation of buoyancy-dominant convection and surface tension-dominant convection is graphically displayed. The clear differences between two mechanisms of fluid transport, thermocapillary convection, and bouncy dominant convection is illustrated.
Using Jupiter's gravitational field to probe the Jovian convective dynamo.
Kong, Dali; Zhang, Keke; Schubert, Gerald
2016-03-23
Convective motion in the deep metallic hydrogen region of Jupiter is believed to generate its magnetic field, the strongest in the solar system. The amplitude, structure and depth of the convective motion are unknown. A promising way of probing the Jovian convective dynamo is to measure its effect on the external gravitational field, a task to be soon undertaken by the Juno spacecraft. We calculate the gravitational signature of non-axisymmetric convective motion in the Jovian metallic hydrogen region and show that with sufficiently accurate measurements it can reveal the nature of the deep convection.
Using Jupiter’s gravitational field to probe the Jovian convective dynamo
Kong, Dali; Zhang, Keke; Schubert, Gerald
2016-01-01
Convective motion in the deep metallic hydrogen region of Jupiter is believed to generate its magnetic field, the strongest in the solar system. The amplitude, structure and depth of the convective motion are unknown. A promising way of probing the Jovian convective dynamo is to measure its effect on the external gravitational field, a task to be soon undertaken by the Juno spacecraft. We calculate the gravitational signature of non-axisymmetric convective motion in the Jovian metallic hydrogen region and show that with sufficiently accurate measurements it can reveal the nature of the deep convection. PMID:27005472
Zhang, Rong; Saito, Ryuta; Mano, Yui; Kanamori, Masayuki; Sonoda, Yukihiko; Kumabe, Toshihiro; Tominaga, Teiji
2014-01-30
Convection-enhanced delivery (CED) has been developed as a potentially effective drug-delivery strategy into the central nervous system. In contrast to systemic intravenous administration, local delivery achieves high concentration and prolonged retention in the local tissue, with increased chance of local toxicity, especially with toxic agents such as chemotherapeutic agents. Therefore, the factors that affect local toxicity should be extensively studied. With the assumption that concentration-oriented evaluation of toxicity is important for local CED, we evaluated the appearance of local toxicity among different agents after delivery with CED and studied if it is dose dependent or concentration dependent. Local toxicity profile of chemotherapeutic agents delivered via CED indicates BCNU was dose-dependent, whereas that of ACNU was concentration-dependent. On the other hand, local toxicity for doxorubicin, which is not distributed effectively by CED, was dose-dependent. Local toxicity for PLD, which is extensively distributed by CED, was concentration-dependent. Traditional evaluation of drug induced toxicity was dose-oriented. This is true for systemic intravascular delivery. However, with local CED, toxicity of several drugs exacerbated in concentration-dependent manner. From our study, local toxicity of drugs that are likely to distribute effectively tended to be concentration-dependent. Concentration rather than dose may be more important for the toxicity of agents that are effectively distributed by CED. Concentration-oriented evaluation of toxicity is more important for CED. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Cecchini, Micael A.; Machado, Luiz A. T.; Artaxo, Paulo
2014-06-01
This work aims to study typical Droplet Size Distributions (DSDs) for different types of precipitation systems and Cloud Condensation Nuclei concentrations over the Vale do Paraíba region in southeastern Brazil. Numerous instruments were deployed during the CHUVA (Cloud processes of tHe main precipitation systems in Brazil: a contribUtion to cloud resolVing modeling and to the GPM) Project in Vale do Paraíba campaign, from November 22, 2011 through January 10, 2012. Measurements of CCN (Cloud Condensation Nuclei) and total particle concentrations, along with measurements of rain DSDs and standard atmospheric properties, including temperature, pressure and wind intensity and direction, were specifically made in this study. The measured DSDs were parameterized with a gamma function using the moment method. The three gamma parameters were disposed in a 3-dimensional space, and subclasses were classified using cluster analysis. Seven DSD categories were chosen to represent the different types of DSDs. The DSD classes were useful in characterizing precipitation events both individually and as a group of systems with similar properties. The rainfall regime classification system was employed to categorize rainy events as local convective rainfall, organized convection rainfall and stratiform rainfall. Furthermore, the frequencies of the seven DSD classes were associated to each type of rainy event. The rainfall categories were also employed to evaluate the impact of the CCN concentration on the DSDs. In the stratiform rain events, the polluted cases had a statistically significant increase in the total rain droplet concentrations (TDCs) compared to cleaner events. An average concentration increase from 668 cm- 3 to 2012 cm- 3 for CCN at 1% supersaturation was found to be associated with an increase of approximately 87 m- 3 in TDC for those events. For the local convection cases, polluted events presented a 10% higher mass weighted mean diameter (Dm) on average. For the organized convection events, no significant results were found.
MODELING OF THE GROUNDWATER TRANSPORT AROUND A DEEP BOREHOLE NUCLEAR WASTE REPOSITORY
DOE Office of Scientific and Technical Information (OSTI.GOV)
N. Lubchenko; M. Rodríguez-Buño; E.A. Bates
2015-04-01
The concept of disposal of high-level nuclear waste in deep boreholes drilled into crystalline bedrock is gaining renewed interest and consideration as a viable mined repository alternative. A large amount of work on conceptual borehole design and preliminary performance assessment has been performed by researchers at MIT, Sandia National Laboratories, SKB (Sweden), and others. Much of this work relied on analytical derivations or, in a few cases, on weakly coupled models of heat, water, and radionuclide transport in the rock. Detailed numerical models are necessary to account for the large heterogeneity of properties (e.g., permeability and salinity vs. depth, diffusionmore » coefficients, etc.) that would be observed at potential borehole disposal sites. A derivation of the FALCON code (Fracturing And Liquid CONvection) was used for the thermal-hydrologic modeling. This code solves the transport equations in porous media in a fully coupled way. The application leverages the flexibility and strengths of the MOOSE framework, developed by Idaho National Laboratory. The current version simulates heat, fluid, and chemical species transport in a fully coupled way allowing the rigorous evaluation of candidate repository site performance. This paper mostly focuses on the modeling of a deep borehole repository under realistic conditions, including modeling of a finite array of boreholes surrounded by undisturbed rock. The decay heat generated by the canisters diffuses into the host rock. Water heating can potentially lead to convection on the scale of thousands of years after the emplacement of the fuel. This convection is tightly coupled to the transport of the dissolved salt, which can suppress convection and reduce the release of the radioactive materials to the aquifer. The purpose of this work has been to evaluate the importance of the borehole array spacing and find the conditions under which convective transport can be ruled out as a radionuclide transport mechanism. Preliminary results show that modeling of the borehole array, including the surrounding rock, predicts convective flow in the system with physical velocities of the order of 10-5 km/yr over 105 years. This results in an escape length on the order of kilometers, which is comparable to the repository depth. However, a correct account of the salinity effects reduces convection velocity and escape length of the radionuclides from the repository.« less
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Wu, Di; Lang, Stephen; Chern, Jiun-Dar; Peters-Lidard, Christa; Fridlind, Ann; Matsui, Toshihisa
2016-01-01
The Goddard microphysics was recently improved by adding a fourth ice class (frozen dropshail). This new 4ICE scheme was developed and tested in the Goddard Cumulus Ensemble (GCE) model for an intense continental squall line and a moderate, less organized continental case. Simulated peak radar reflectivity profiles were improved in intensity and shape for both cases, as were the overall reflectivity probability distributions versus observations. In this study, the new Goddard 4ICE scheme is implemented into the regional-scale NASA Unified-Weather Research and Forecasting (NU-WRF) model, modified and evaluated for the same intense squall line, which occurred during the Midlatitude Continental Convective Clouds Experiment (MC3E). NU-WRF simulated radar reflectivities, total rainfall, propagation, and convective system structures using the 4ICE scheme modified herein agree as well as or significantly better with observations than the original 4ICE and two previous 3ICE (graupel or hail) versions of the Goddard microphysics. With the modified 4ICE, the bin microphysics-based rain evaporation correction improves propagation and in conjunction with eliminating the unrealistic dry collection of icesnow by hail can replicate the erect, narrow, and intense convective cores. Revisions to the ice supersaturation, ice number concentration formula, and snow size mapping, including a new snow breakup effect, allow the modified 4ICE to produce a stronger, better organized system, more snow, and mimic the strong aggregation signature in the radar distributions. NU-WRF original 4ICE simulated radar reflectivity distributions are consistent with and generally superior to those using the GCE due to the less restrictive domain and lateral boundaries.
Development of the Large-Scale Forcing Data to Support MC3E Cloud Modeling Studies
NASA Astrophysics Data System (ADS)
Xie, S.; Zhang, Y.
2011-12-01
The large-scale forcing fields (e.g., vertical velocity and advective tendencies) are required to run single-column and cloud-resolving models (SCMs/CRMs), which are the two key modeling frameworks widely used to link field data to climate model developments. In this study, we use an advanced objective analysis approach to derive the required forcing data from the soundings collected by the Midlatitude Continental Convective Cloud Experiment (MC3E) in support of its cloud modeling studies. MC3E is the latest major field campaign conducted during the period 22 April 2011 to 06 June 2011 in south-central Oklahoma through a joint effort between the DOE ARM program and the NASA Global Precipitation Measurement Program. One of its primary goals is to provide a comprehensive dataset that can be used to describe the large-scale environment of convective cloud systems and evaluate model cumulus parameterizations. The objective analysis used in this study is the constrained variational analysis method. A unique feature of this approach is the use of domain-averaged surface and top-of-the atmosphere (TOA) observations (e.g., precipitation and radiative and turbulent fluxes) as constraints to adjust atmospheric state variables from soundings by the smallest possible amount to conserve column-integrated mass, moisture, and static energy so that the final analysis data is dynamically and thermodynamically consistent. To address potential uncertainties in the surface observations, an ensemble forcing dataset will be developed. Multi-scale forcing will be also created for simulating various scale convective systems. At the meeting, we will provide more details about the forcing development and present some preliminary analysis of the characteristics of the large-scale forcing structures for several selected convective systems observed during MC3E.
NASA Technical Reports Server (NTRS)
Matsui, Toshihisa; Chern, Jiun-Dar; Tao, Wei-Kuo; Lang, Stephen E.; Satoh, Masaki; Hashino, Tempei; Kubota, Takuji
2016-01-01
A 14-year climatology of Tropical Rainfall Measuring Mission (TRMM) collocated multi-sensor signal statistics reveal a distinct land-ocean contrast as well as geographical variability of precipitation type, intensity, and microphysics. Microphysics information inferred from the TRMM precipitation radar and Microwave Imager (TMI) show a large land-ocean contrast for the deep category, suggesting continental convective vigor. Over land, TRMM shows higher echo-top heights and larger maximum echoes, suggesting taller storms and more intense precipitation, as well as larger microwave scattering, suggesting the presence of morelarger frozen convective hydrometeors. This strong land-ocean contrast in deep convection is invariant over seasonal and multi-year time-scales. Consequently, relatively short-term simulations from two global storm-resolving models can be evaluated in terms of their land-ocean statistics using the TRMM Triple-sensor Three-step Evaluation via a satellite simulator. The models evaluated are the NASA Multi-scale Modeling Framework (MMF) and the Non-hydrostatic Icosahedral Cloud Atmospheric Model (NICAM). While both simulations can represent convective land-ocean contrasts in warm precipitation to some extent, near-surface conditions over land are relatively moisture in NICAM than MMF, which appears to be the key driver in the divergent warm precipitation results between the two models. Both the MMF and NICAM produced similar frequencies of large CAPE between land and ocean. The dry MMF boundary layer enhanced microwave scattering signals over land, but only NICAM had an enhanced deep convection frequency over land. Neither model could reproduce a realistic land-ocean contrast in in deep convective precipitation microphysics. A realistic contrast between land and ocean remains an issue in global storm-resolving modeling.
NASA Technical Reports Server (NTRS)
Knupp, Kevin R.
1991-01-01
A summary of an investigation of deep convective cloud systems that typify the summertime subtropical environment of northern Alabama is presented. The major portion of the research effort included analysis of data acquired during the 1986 Cooperative Huntsville Meteorological Experiment (COHMEX), which consisted of the joint programs Satellite Precipitation and Cloud Experiment (SPACE) under NASA direction, the Microburst and Service Thunderstorm (MIST) Program under NSF sponsorship, and the FAA-Lincoln Laboratory Weather Study (FLOWS). This work relates closely to the SPACE component of COHMEX, one of the general goals of which was to further the understanding of kinematic and precipitation structure of convective cloud systems. The special observational plateforms that were available under the SPACE/COHMEX Program are shown. The original objectives included studies of both isolated deep convection and of (small) mesoscale convection systems that are observed in the Southeast environment. In addition, it was proposed to include both observational and comparative numerical modeling studies of these characteristic cloud systems. Changes in scope were made during the course of this investigation to better accommodate both the manpower available and the data that was acquired. A greater emphasis was placed on determination of the internal structure of small mesoscale convective systems, and the relationship of internal dynamical and microphysical processes to the observed cloud top behavior as inferred from GOES IR (30 min) data. The major accomplishments of this investigation are presented.
Akan, Ozgur B.
2018-01-01
We consider a microfluidic molecular communication (MC) system, where the concentration-encoded molecular messages are transported via fluid flow-induced convection and diffusion, and detected by a surface-based MC receiver with ligand receptors placed at the bottom of the microfluidic channel. The overall system is a convection-diffusion-reaction system that can only be solved by numerical methods, e.g., finite element analysis (FEA). However, analytical models are key for the information and communication technology (ICT), as they enable an optimisation framework to develop advanced communication techniques, such as optimum detection methods and reliable transmission schemes. In this direction, we develop an analytical model to approximate the expected time course of bound receptor concentration, i.e., the received signal used to decode the transmitted messages. The model obviates the need for computationally expensive numerical methods by capturing the nonlinearities caused by laminar flow resulting in parabolic velocity profile, and finite number of ligand receptors leading to receiver saturation. The model also captures the effects of reactive surface depletion layer resulting from the mass transport limitations and moving reaction boundary originated from the passage of finite-duration molecular concentration pulse over the receiver surface. Based on the proposed model, we derive closed form analytical expressions that approximate the received pulse width, pulse delay and pulse amplitude, which can be used to optimize the system from an ICT perspective. We evaluate the accuracy of the proposed model by comparing model-based analytical results to the numerical results obtained by solving the exact system model with COMSOL Multiphysics. PMID:29415019
Kuscu, Murat; Akan, Ozgur B
2018-01-01
We consider a microfluidic molecular communication (MC) system, where the concentration-encoded molecular messages are transported via fluid flow-induced convection and diffusion, and detected by a surface-based MC receiver with ligand receptors placed at the bottom of the microfluidic channel. The overall system is a convection-diffusion-reaction system that can only be solved by numerical methods, e.g., finite element analysis (FEA). However, analytical models are key for the information and communication technology (ICT), as they enable an optimisation framework to develop advanced communication techniques, such as optimum detection methods and reliable transmission schemes. In this direction, we develop an analytical model to approximate the expected time course of bound receptor concentration, i.e., the received signal used to decode the transmitted messages. The model obviates the need for computationally expensive numerical methods by capturing the nonlinearities caused by laminar flow resulting in parabolic velocity profile, and finite number of ligand receptors leading to receiver saturation. The model also captures the effects of reactive surface depletion layer resulting from the mass transport limitations and moving reaction boundary originated from the passage of finite-duration molecular concentration pulse over the receiver surface. Based on the proposed model, we derive closed form analytical expressions that approximate the received pulse width, pulse delay and pulse amplitude, which can be used to optimize the system from an ICT perspective. We evaluate the accuracy of the proposed model by comparing model-based analytical results to the numerical results obtained by solving the exact system model with COMSOL Multiphysics.
The moisture budget in relation to convection
NASA Technical Reports Server (NTRS)
Scott, R. W.; Scoggins, J. R.
1977-01-01
An evaluation of the moisture budget in the environment of convective storms is presented by using the unique 3- to 6-h rawinsonde data. Net horizontal and vertical boundary fluxes accounted for most of the large amounts of moisture which were concentrated into convective regions associated with two squall lines that moved through the area during the experiment. The largest values of moisture accumulations were located slightly downwind of the most intense convective activity. Relationships between computed moisture quantities of the moisture budget and radar-observed convection improved when lagging the radar data by 3 h. The residual of moisture which represents all sources and sinks of moisture in the budget equation was largely accounted for by measurements of precipitation.
Chaotic dynamics of large-scale double-diffusive convection in a porous medium
NASA Astrophysics Data System (ADS)
Kondo, Shutaro; Gotoda, Hiroshi; Miyano, Takaya; Tokuda, Isao T.
2018-02-01
We have studied chaotic dynamics of large-scale double-diffusive convection of a viscoelastic fluid in a porous medium from the viewpoint of dynamical systems theory. A fifth-order nonlinear dynamical system modeling the double-diffusive convection is theoretically obtained by incorporating the Darcy-Brinkman equation into transport equations through a physical dimensionless parameter representing porosity. We clearly show that the chaotic convective motion becomes much more complicated with increasing porosity. The degree of dynamic instability during chaotic convective motion is quantified by two important measures: the network entropy of the degree distribution in the horizontal visibility graph and the Kaplan-Yorke dimension in terms of Lyapunov exponents. We also present an interesting on-off intermittent phenomenon in the probability distribution of time intervals exhibiting nearly complete synchronization.
NASA Technical Reports Server (NTRS)
Solomatov, V. S.; Stevenson, D. J.
1992-01-01
The evolution of an initially totally molten magma ocean is constrained on the basis of analysis of various physical problems in the magma ocean. First of all an equilibrium thermodynamics of the magma ocean is developed in the melting temperature range. The equilibrium thermodynamical parameters are found as functions only of temperature and pressure and are used in the subsequent models of kinetics and convection. Kinematic processes determine the crystal size and also determine a non-equilibrium thermodynamics of the system. Rheology controls all dynamical regimes of the magma ocean. The thermal convection models for different rheological laws are developed for both the laminar convection and for turbulent convection in the case of equilibrium thermodynamics of the multiphase system. The evolution is estimated on the basis of all the above analysis.
Assessment of mesoscale convective systems using IR brightness temperature in the southwest of Iran
NASA Astrophysics Data System (ADS)
Rafati, Somayeh; Karimi, Mostafa
2017-07-01
In this research, the spatial and temporal distribution of Mesoscale Convective Systems was assessed in the southwest of Iran using Global merged satellite IR brightness temperature (acquired from Meteosat, GOES, and GMS geostationary satellites) and synoptic station data. Event days were selected using a set of storm reports and precipitation criteria. The following criteria are used to determine the days with occurrence of convective systems: (1) at least one station reported 6-h precipitation exceeding 10 mm and (2) at least three stations reported phenomena related to convection (thunderstorm, lightning, and shower). MCSs were detected based on brightness temperature, maximum areal extent, and duration thresholds (228 K, 10,000 km2, and 3 h, respectively). An MCS occurrence classification system is developed based on mean sea level, 850 and 500 hPa pressure patterns.
The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems
NASA Technical Reports Server (NTRS)
Cockburn, Bernardo; Shu, Chi-Wang
1997-01-01
In this paper, we study the Local Discontinuous Galerkin methods for nonlinear, time-dependent convection-diffusion systems. These methods are an extension of the Runge-Kutta Discontinuous Galerkin methods for purely hyperbolic systems to convection-diffusion systems and share with those methods their high parallelizability, their high-order formal accuracy, and their easy handling of complicated geometries, for convection dominated problems. It is proven that for scalar equations, the Local Discontinuous Galerkin methods are L(sup 2)-stable in the nonlinear case. Moreover, in the linear case, it is shown that if polynomials of degree k are used, the methods are k-th order accurate for general triangulations; although this order of convergence is suboptimal, it is sharp for the LDG methods. Preliminary numerical examples displaying the performance of the method are shown.
Gregarious Convection and Radiative Feedbacks in Idealized Worlds
2016-08-29
exist neither on the globe nor within the cloud model. Since mesoscales impose great computational costs on atmosphere models, as well as inconven...Atmospheric Science, University of Miami, Miami, Florida, USA Abstract What role does convection play in cloud feedbacks? What role does convective... cloud fields depends systematically on global temperature, then convective organization could be a climate system feedback. How reconcilable and how
NASA Astrophysics Data System (ADS)
Takahashi, H.; Luo, J.; Stephens, G. L.
2016-12-01
Deep convective cores, or "hot towers (HTs)", play a significant role in controlling the energy budgets and hydrological cycles. The vertical convective transport by HTs is like an express elevator transporting the near-surface air directly into the upper troposphere or lower stratosphere (e.g., Riehl and Malkus, 1958; Sun and Lindzen, 1993; Soden and Fu, 1995). The vertical convective transport will eventually make a transition to horizontal outflows where widespread cirrus anvils develop, which also play an important role in radiative-convective feedbacks (e.g., Stephens et al. 2008). In this study, we introduce two proxies to evaluate the strength of vertical and horizontal convective mass transport by hot towers. Result shows that HTs tend to have wider horizontal mass transport over land than ocean. In addition, an important aspect of the deep convection-to-outflow transition is the altitude where the outflow occurs, which can be conveniently summarized into a single parameter called level of neutral buoyancy (LNB). LNB is a critical parameter for understanding convection because it sets the potential vertical extent for convective development. This study develops a deeper and more comprehensive understanding of the relationship between LNB and deep convective outflow, including regional variations. To this end, a useful proxy to estimate convective dilution is introduced. Results show that active convective dilution can be seen over the Warm Pool throughout the year, while deep convection over tropical Africa and Amazonia tends to be less diluted.
Convective Mixing in Distal Pipes Exacerbates Legionella pneumophila Growth in Hot Water Plumbing
Rhoads, William J.; Pruden, Amy; Edwards, Marc A.
2016-01-01
Legionella pneumophila is known to proliferate in hot water plumbing systems, but little is known about the specific physicochemical factors that contribute to its regrowth. Here, L. pneumophila trends were examined in controlled, replicated pilot-scale hot water systems with continuous recirculation lines subject to two water heater settings (40 °C and 58 °C) and three distal tap water use frequencies (high, medium, and low) with two pipe configurations (oriented upward to promote convective mixing with the recirculating line and downward to prevent it). Water heater temperature setting determined where L. pneumophila regrowth occurred in each system, with an increase of up to 4.4 log gene copies/mL in the 40 °C system tank and recirculating line relative to influent water compared to only 2.5 log gene copies/mL regrowth in the 58 °C system. Distal pipes without convective mixing cooled to room temperature (23–24 °C) during periods of no water use, but pipes with convective mixing equilibrated to 30.5 °C in the 40 °C system and 38.8 °C in the 58 °C system. Corresponding with known temperature effects on L. pneumophila growth and enhanced delivery of nutrients, distal pipes with convective mixing had on average 0.2 log more gene copies/mL in the 40 °C system and 0.8 log more gene copies/mL in the 58 °C system. Importantly, this work demonstrated the potential for thermal control strategies to be undermined by distal taps in general, and convective mixing in particular. PMID:26985908
Laboratory flow experiments for visualizing carbon dioxide-induced, density-driven brine convection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kneafsey, T.; Pruess, K.
2009-09-01
Injection of carbon dioxide (CO{sub 2}) into saline aquifers confined by low-permeability cap rock will result in a layer of CO{sub 2} overlying the brine. Dissolution of CO{sub 2} into the brine increases the brine density, resulting in an unstable situation in which more-dense brine overlies less-dense brine. This gravitational instability could give rise to density-driven convection of the fluid, which is a favorable process of practical interest for CO{sub 2} storage security because it accelerates the transfer of buoyant CO{sub 2} into the aqueous phase, where it is no longer subject to an upward buoyant drive. Laboratory flow visualizationmore » tests in transparent Hele-Shaw cells have been performed to elucidate the processes and rates of this CO{sub 2} solute-driven convection (CSC). Upon introduction of CO{sub 2} into the system, a layer of CO{sub 2}-laden brine forms at the CO{sub 2}-water interface. Subsequently, small convective fingers form, which coalesce, broaden, and penetrate into the test cell. Images and time-series data of finger lengths and wavelengths are presented. Observed CO{sub 2} uptake of the convection system indicates that the CO{sub 2} dissolution rate is approximately constant for each test and is far greater than expected for a diffusion-only scenario. Numerical simulations of our system show good agreement with the experiments for onset time of convection and advancement of convective fingers. There are differences as well, the most prominent being the absence of cell-scale convection in the numerical simulations. This cell-scale convection observed in the experiments is probably initiated by a small temperature gradient induced by the cell illumination.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kao, C.Y.J.; Bossert, J.E.; Winterkamp, J.
1993-10-01
One of the objectives of the DOE ARM Program is to improve the parameterization of clouds in general circulation models (GCMs). The approach taken in this research is two fold. We first examine the behavior of cumulus parameterization schemes by comparing their performance against the results from explicit cloud simulations with state-of-the-art microphysics. This is conducted in a two-dimensional (2-D) configuration of an idealized convective system. We then apply the cumulus parameterization schemes to realistic three-dimensional (3-D) simulations over the western US for a case with an enormous amount of convection in an extended period of five days. In themore » 2-D idealized tests, cloud effects are parameterized in the ``parameterization cases`` with a coarse resolution, whereas each cloud is explicitly resolved by the ``microphysics cases`` with a much finer resolution. Thus, the capability of the parameterization schemes in reproducing the growth and life cycle of a convective system can then be evaluated. These 2-D tests will form the basis for further 3-D realistic simulations which have the model resolution equivalent to that of the next generation of GCMs. Two cumulus parameterizations are used in this research: the Arakawa-Schubert (A-S) scheme (Arakawa and Schubert, 1974) used in Kao and Ogura (1987) and the Kuo scheme (Kuo, 1974) used in Tremback (1990). The numerical model used in this research is the Regional Atmospheric Modeling System (RAMS) developed at Colorado State University (CSU).« less
Meteorological tools in support to the railway security system on the Calabria region
NASA Astrophysics Data System (ADS)
Laviola, Sante; Gabriele, Salvatore; Iovine, Giulio; Baldini, Luca; Chiravalloti, Francesco; Federico, Stefano; Miglietta, Marcello Mario; Milani, Lisa; Procopio, Antonio; Roberto, Nicoletta; Tiesi, Alessandro; Agostino, Mario; Niccoli, Raffaele; Stassi, Sergio; Rago, Valeria
2017-04-01
RAMSES (RAilway Meteorological SEcurity System) is a pilot project co-funded by the Italian Railway Company - RFI S.p.A. and conceived for the mitigation of the hydrological risk along the Calabria railways. RAMSES aims at improving the forecast of very short life-cycle convection systems, responsible of intense and localized rainfalls affecting small catchment areas, which are often underestimated by the numerical weather models and even non-adequately detected by the network of sparse raingauges. The RAMSES operational design is based on a synergistic and integrated architecture, providing a series of information able to identify the most active convective cells and monitoring their evolution in terms of vertical structure, rain intensity and geo-hydrological effects at ground (debris flow, landslides, collapses of bridges, erosion of the ballast). The RAMSES meteorological component is designed to identify and track the short-term evolution (15-60 min) of convective cells, by means of imaging techniques based on dual-polarization weather radar and Meteosat data. In support of this quasi-real time analysis, the numerical model WRF provides the weather forecast at 3-6 hours range by ingesting, through the assimilation system LAPS, the observational data (rain gauges, ground weather stations, radar, satellites) in order to improve the initial condition. Finally, the hydraulic flow modeling is used to assess the ground effects in terms of landslide susceptibility, rainfall-runoff intensity, debris impact on the drainage network and evaluate of risk along the railway track.
NASA Astrophysics Data System (ADS)
Sims, Aaron P.
In the Carolinas of the United States, there are two key land-surface features over which convective precipitation often forms during the summer months. These geomorphic features are the Sandhills and coastline. Along the coastline, sea-breeze circulations regularly form and are known to initiate convection. The Sandhills is a transitional zone of sandy soil surrounded by mixture of soils that include clay and loam. It extends through the central part of the Carolinas and into Georgia and is also the origin of convective storms. The two geographical features, the coastline and the Sandhills, are in regional proximity of each other and the resultant sea-breeze front and the Sandhills convection interact during summer. During this research, the investigation of the mechanism of interaction between these two features has led to the discovery of the Sandhills front, a shallow outflow density current that develops from deep convection over the Sandhills and propagates eastward toward the coast. The convergence of the Sandhills front and the sea-breeze front initiates and enhances convection between the Sandhills and the coastline. Observations during the month of June for the period 2004 to 2015 are used to evaluate the interaction between these two phenomena. On average, these interactions occur on approximately 24% of all days in June and on 36% of all days in June when synoptic scale systems are absent. Thus, the interactions between the sea-breeze and the Sandhills circulations do contribute to the precipitation in this region. Background wind speeds and directions influence the location and the strength of convection associated with this interaction. Onshore, offshore, and southwesterly flow classifications each present different strengths and locations of the interactions. Light winds ( 3 m s-1 to 6 m s-1 ) also influence the interactions differently. Observations indicate that moderate southwesterly flow has the highest total average and total maximum precipitation amounts over the region due to the advection of warm, moist air. Light offshore flow produces the highest totals of average precipitation due to opposing background winds that helps in the development of a robust sea-breeze circulation. Onshore flow produces the least amount of precipitation. The sea breeze circulation is weak in such cases, if it exists. Vertical characteristics and the variations of different defining parameters during the interactions were evaluated using numerical simulations. To improve the representation of convection in the numerical model, modifications were made to the convective parameterization scheme and the interactions were simulated using this improved version. These modifications include the addition of subgrid scale clouds in the radiation scheme, adjustments to the convective timescale, modifications to the entrainment rates, and linking of the subcloud velocity scale to the turbulent kinetic energy from the boundary layer parameterization. Modifications improved the numerical simulations of the mesoscale convection and precipitation predictions. Numerical simulations of the wind regime classifications reveal that the strength of the interaction, intensity of convection, and the location and depth of the convection and interaction are influenced by the background winds and moisture availability. Southwesterly flow regimes have the highest levels of atmospheric instability and produce widespread regional precipitation. Light offshore winds produce the strongest interactions between the sea-breeze front and the Sandhills front. Onshore flow produces the least amount of convective precipitation. In summary, mesoscale driven interaction events occur regularly during summer months in the coastal Carolinas. The principal driving mechanisms are surface-based differential heating over the Sandhills region caused by changes in soil heat capacity and the coastal sea breeze circulation. The location and intensity of these interactions are dictated by different wind regimes that regulate the strength of the interactions and moisture availability.
Relationships between outgoing longwave radiation and diabatic heating in reanalyses
NASA Astrophysics Data System (ADS)
Zhang, Kai; Randel, William J.; Fu, Rong
2017-10-01
This study investigates relationships between daily variability in National Oceanographic and Atmospheric Administration (NOAA) outgoing longwave radiation (OLR), as a proxy for deep convection, and the global diabatic heat budget derived from reanalysis data sets. Results are evaluated based on data from ECMWF Reanalysis (ERA-Interim), Japanese 55-year Reanalysis (JRA-55) and Modern-Era Retrospective Analysis for Research and Applications (MERRA2). The diabatic heating is separated into components linked to `physics' (mainly latent heat fluxes), plus longwave (LW) and shortwave (SW) radiative tendencies. Transient variability in deep convection is highly correlated with diabatic heating throughout the troposphere and stratosphere. Correlation patterns and composite analyses show that enhanced deep convection (lower OLR) is linked to amplified heating in the tropical troposphere and in the mid-latitude storm tracks, tied to latent heat release. Enhanced convection is also linked to radiative cooling in the lower stratosphere, due to weaker upwelling LW from lower altitudes. Enhanced transient deep convection increases LW and decreases SW radiation in the lower troposphere, with opposite effects in the mid to upper troposphere. The compensating effects in LW and SW radiation are largely linked to variations in cloud fraction and water content (vapor, liquid and ice). These radiative balances in reanalyses are in agreement with idealized calculations using a column radiative transfer model. The overall relationships between OLR and diabatic heating are robust among the different reanalyses, although there are differences in radiative tendencies in the tropics due to large differences of cloud water and ice content among the reanalyses. These calculations provide a simple statistical method to quantify variations in diabatic heating linked to transient deep convection in the climate system.
NASA Astrophysics Data System (ADS)
Walford, Segayle Cereta
Forecasting subtle, small-scale convective cases in both winter and summer time is an ongoing challenge in weather forecasting. Recent studies have shown that better structure of moisture within the boundary layer is crucial for improving forecasting skills, particularly quantitative precipitation forecasting (QPF). Lidars, which take high temporal observations of moisture, are able to capture very detailed structures, especially within the boundary layer where convection often begins. This study first investigates the extent to which an aerosol and a water vapor lidar are able to capture key boundary layer processes necessary for the development of convection. The results of this preliminary study show that the water vapor lidar is best able to capture the small scale water vapor variability that is necessary for the development of convection. These results are then used to investigate impacts of assimilating moisture from the Howard University Raman Lidar (HURL) for one mesoscale convective case, July 27-28, 2006. The data for this case is from the Water Vapor Validation Experiment-Satellite and Sondes (WAVES) field campaign located at the Howard University Beltsville Site (HUBS) in Beltsville, MD. Specifically, lidar-based water vapor mixing ratio profiles are assimilated into the Weather Research and Forecasting (WRF) regional model over a 4 km grid resolution over Washington, DC. Model verification is conducted using the Meteorological Evaluation Tool (MET) and the results from the lidar run are then compared to a control (no assimilation) run. The findings indicate that quantitatively conclusions cannot be draw from this one case study. However, qualitatively, the assimilation of the lidar observations improved the equivalent potential temperature, and water vapor distribution of the region. This difference changed location, strength and spatial coverage of the convective system over the HUBS region.
Preliminary Evaluation of Convective Heat Transfer in a Water Shield for a Surface Power Reactor
NASA Technical Reports Server (NTRS)
Pearson J. Boise; Reid, Robert S.
2007-01-01
As part of the Vision for Space Exploration, the end of the next decade will bring man back to the surface of the moon. A crucial issue for the establishment of human presence on the moon will be the availability of compact power sources. This presence could require greater than 10's of kWt's in follow on years. Nuclear reactors are well suited to meet the needs for power generation on the lunar or Martian surface. Radiation shielding is a key component of any surface power reactor system. Several competing concepts exist for lightweight, safe, robust shielding systems such as a water shield, lithium hydride (LiH), and boron carbide. Water offers several potential advantages, including reduced cost, reduced technical risk, and reduced mass. Water has not typically been considered for space reactor applications because of the need for gravity to fix the location of any vapor that could form radiation streaming paths. The water shield concept relies on the predictions of passive circulation of the shield water by natural convection to adequately cool the shield. This prediction needs to be experimentally evaluated, especially for shields with complex geometries. NASA Marshall Space Flight Center has developed the experience and facilities necessary to do this evaluation in its Early Flight Fission - Test Facility (EFF-TF).
Seismic Constraints on Interior Solar Convection
NASA Technical Reports Server (NTRS)
Hanasoge, Shravan M.; Duvall, Thomas L.; DeRosa, Marc L.
2010-01-01
We constrain the velocity spectral distribution of global-scale solar convective cells at depth using techniques of local helioseismology. We calibrate the sensitivity of helioseismic waves to large-scale convective cells in the interior by analyzing simulations of waves propagating through a velocity snapshot of global solar convection via methods of time-distance helioseismology. Applying identical analysis techniques to observations of the Sun, we are able to bound from above the magnitudes of solar convective cells as a function of spatial convective scale. We find that convection at a depth of r/R(solar) = 0.95 with spatial extent l < 30, where l is the spherical harmonic degree, comprise weak flow systems, on the order of 15 m/s or less. Convective features deeper than r/R(solar) = 0.95 are more difficult to image due to the rapidly decreasing sensitivity of helioseismic waves.
Convection vortex at dayside of high latitude ionosphere
NASA Astrophysics Data System (ADS)
Alexeev, I. I.; Feldstein, Y. I.; Greenwald, R. A.
Investigation of mesoscale convection in the dayside sector by SuperDARN radars has revealed the existence in afternoon sector a convection vortex whose location, intensity and convection direction coincide with the polar cap geomagnetic disturbances (DPC), which is reviewed thoroughly. Possible mechanism of the DPC generation are also described. Importance of the Earth's co-rotation potential is discussed. The existence of DPC vortex is interpreted in the framework of three dimensional current system with the field-aligned currents of coaxial cable type. In the vortex focus, the current outflowing from the ionosphere is concentrated whereas the inflowing current is distributed along the current system periphery.
Effect of Convection on the Tropical Tropopause Layer over the Tropical Americas
NASA Technical Reports Server (NTRS)
Pittman, Jasna; Robertson, Franklin
2007-01-01
Water vapor and ozone are the most important gases that regulate the radiative balance of the Tropical Tropopause Layer (TTL). Their radiative contribution dictates the height within the TTL and the rate at which air either ascends into the tropical stratosphere or subsides back to the tropical troposphere. The details of the mechanisms that control their concentration, however, are poorly understood. One of such mechanisms is convection that reaches into the TTL. ill this study, we will present evidence from space-borne observations of the impact that convection has on water vapor, ozone, and temperature in the TTL over the Tropical Americas where deep and overshooting convection have the highest frequency of occurrence in the tropics. We explore the effect of convective systems such as hurricanes during the 2005 season using the Microwave Limb Sounder (MLS) on Aura version 1.5 data and more recent tropical systems using the newly released version 2 data with higher vertical resolution. ill order to provide the horizontal extent and the vertical structure of the convective systems, we use data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on Aqua, the Microwave Humidity Sensor (MHS) on NOAA18, and CloudSat when available.
Onset of natural convection in a continuously perturbed system
NASA Astrophysics Data System (ADS)
Ghorbani, Zohreh; Riaz, Amir
2017-11-01
The convective mixing triggered by gravitational instability plays an important role in CO2 sequestration in saline aquifers. The linear stability analysis and the numerical simulation concerning convective mixing in porous media requires perturbations of small amplitude to be imposed on the concentration field in the form of an initial shape function. In aquifers, however, the instability is triggered by local porosity and permeability. In this work, we consider a canonical 2D homogeneous system where perturbations arise due to spatial variation of porosity in the system. The advantage of this approach is not only the elimination of the required initial shape function, but it also serves as a more realistic approach. Using a reduced nonlinear method, we first explore the effect of harmonic variations of porosity in the transverse and streamwise direction on the onset time of convection and late time behavior. We then obtain the optimal porosity structure that minimizes the convection onset. We further examine the effect of a random porosity distribution, that is independent of the spatial mode of porosity structure, on the convection onset. Using high-order pseudospectral DNS, we explore how the random distribution differs from the modal approach in predicting the onset time.
Effects of Implementing Subgrid-Scale Cloud-Radiation Interactions in a Regional Climate Model
NASA Astrophysics Data System (ADS)
Herwehe, J. A.; Alapaty, K.; Otte, T.; Nolte, C. G.
2012-12-01
Interactions between atmospheric radiation, clouds, and aerosols are the most important processes that determine the climate and its variability. In regional scale models, when used at relatively coarse spatial resolutions (e.g., larger than 1 km), convective cumulus clouds need to be parameterized as subgrid-scale clouds. Like many groups, our regional climate modeling group at the EPA uses the Weather Research & Forecasting model (WRF) as a regional climate model (RCM). One of the findings from our RCM studies is that the summertime convective systems simulated by the WRF model are highly energetic, leading to excessive surface precipitation. We also found that the WRF model does not consider the interactions between convective clouds and radiation, thereby omitting an important process that drives the climate. Thus, the subgrid-scale cloudiness associated with convective clouds (from shallow cumuli to thunderstorms) does not exist and radiation passes through the atmosphere nearly unimpeded, potentially leading to overly energetic convection. This also has implications for air quality modeling systems that are dependent upon cloud properties from the WRF model, as the failure to account for subgrid-scale cloudiness can lead to problems such as the underrepresentation of aqueous chemistry processes within clouds and the overprediction of ozone from overactive photolysis. In an effort to advance the climate science of the cloud-aerosol-radiation (CAR) interactions in RCM systems, as a first step we have focused on linking the cumulus clouds with the radiation processes. To this end, our research group has implemented into WRF's Kain-Fritsch (KF) cumulus parameterization a cloudiness formulation that is widely used in global earth system models (e.g., CESM/CAM5). Estimated grid-scale cloudiness and associated condensate are adjusted to account for the subgrid clouds and then passed to WRF's Rapid Radiative Transfer Model - Global (RRTMG) radiation schemes to affect the shortwave and longwave radiative processes. To evaluate the effects of implementing the subgrid-scale cloud-radiation interactions on WRF regional climate simulations, a three-year study period (1988-1990) was simulated over the CONUS using two-way nested domains with 108 km and 36 km horizontal grid spacing, without and with the cumulus feedbacks to radiation, and without and with some form of four dimensional data assimilation (FDDA). Initial and lateral boundary conditions (as well as data for the FDDA, when enabled) were supplied from downscaled NCEP-NCAR Reanalysis II (R2) data sets. Evaluation of the simulation results will be presented comparing regional surface precipitation and temperature statistics with North American Regional Reanalysis (NARR) data and Climate Forecast System Reanalysis (CFSR) data, respectively, as well as comparison with available surface radiation (SURFRAD) and satellite (CERES) observations. This research supports improvements in the EPA's WRF-CMAQ modeling system, leading to better predictions of present and future air quality and climate interactions in order to protect human health and the environment.
A mixed finite difference/Galerkin method for three-dimensional Rayleigh-Benard convection
NASA Technical Reports Server (NTRS)
Buell, Jeffrey C.
1988-01-01
A fast and accurate numerical method, for nonlinear conservation equation systems whose solutions are periodic in two of the three spatial dimensions, is presently implemented for the case of Rayleigh-Benard convection between two rigid parallel plates in the parameter region where steady, three-dimensional convection is known to be stable. High-order streamfunctions secure the reduction of the system of five partial differential equations to a system of only three. Numerical experiments are presented which verify both the expected convergence rates and the absolute accuracy of the method.
Numerical simulation of two-dimensional Rayleigh-Benard convection
NASA Astrophysics Data System (ADS)
Grigoriev, Vasiliy V.; Zakharov, Petr E.
2017-11-01
This paper considered Rayleigh-Benard convection (natural convection). This is a flow, which is formed in a viscous medium when heated from below and cooled from above. As a result, are formed vortices (convective cells). This process is described by a system of nonlinear differential equations in Oberbeck-Boussinesq approximation. As the governing parameters characterizing convection states Rayleigh number, Prandtl number are picked. The problem is solved by using finite element method with computational package FEniCS. Numerical results for different Rayleigh numbers are obtained. Studied integral characteristic (Nusselt number) depending on the Rayleigh number.
NASA Astrophysics Data System (ADS)
Lacour, Jean-Lionel; Risi, Camille; Worden, John; Clerbaux, Cathy; Coheur, Pierre-François
2018-01-01
We use tropical observations of the water vapor isotopic composition, derived from IASI and TES spaceborne measurements, to show that the isotopic composition of water vapor in the free troposphere is sensitive to both the depth and the intensity of convection. We find that for any given precipitation intensity, vapor associated with deep convection is isotopically depleted relative to vapor associated with shallow convection. The intensity of precipitation also plays a role as for any given depth of convection, the relative enrichment of water vapor decreases as the intensity of precipitation increases. Shallow convection, via the uplifting of enriched boundary layer air into the free troposphere and the convective detrainment, enriches the free troposphere. In contrast, deep convection is associated with processes that deplete the water vapor in the free troposphere, such as rain re-evaporation. The results of this study allow for a better identification of the parameters controlling the isotopic composition of the free troposphere and indicate that the isotopic composition of water vapor can be used to evaluate the relative contributions of shallow and deep convection in global models.
Impact of convection on stratospheric humidity and upper tropospheric clouds
NASA Astrophysics Data System (ADS)
Ueyama, R.; Schoeberl, M. R.; Jensen, E. J.; Pfister, L.; Avery, M. A.
2017-12-01
The role of convection on stratospheric water vapor and upper tropospheric cloud fraction is investigated using two sets of complementary transport and microphysical models driven by MERRA-2 and ERA-Interim meteorological analyses: (1) computationally efficient ensembles of forward trajectories with simplified cloud microphysics, and (2) one-dimensional simulations with detailed microphysics along back trajectories. Convective influence along the trajectories is diagnosed based on TRMM/GPM rainfall products and geostationary infrared satellite cloud-top measurements, with convective cloud-top height adjusted to match the CloudSat, CALIPSO, and CATS measurements. We evaluate and constrain the model results by comparison with satellite observations (e.g., Aura MLS, CALIPSO CALIOP) and high-altitude aircraft campaigns (e.g., ATTREX, POSIDON). Convection moistens the lower stratosphere by approximately 10-15% and increases the cloud fraction in the upper troposphere by 35-50%. Convective moistening is dominated by the saturating effect of parcels; convectively-lofted ice has a negligible impact on lower stratospheric humidity. We also find that the highest convective clouds have a disproportionately large impact on stratospheric water vapor because stratospheric relative humidity is low. Implications of these model results on the role of convection on present and future climate will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varble, Adam; Zipser, Edward J.; Fridlind, Ann M.
2014-12-18
Ten 3D cloud-resolving model (CRM) simulations and four 3D limited area model (LAM) simulations of an intense mesoscale convective system observed on 23-24 January 2006 during the Tropical Warm Pool – International Cloud Experiment (TWP-ICE) are compared with each other and with observed radar reflectivity fields and dual-Doppler retrievals of vertical wind speeds in an attempt to explain published results showing a high bias in simulated convective radar reflectivity aloft. This high bias results from ice water content being large, which is a product of large, strong convective updrafts, although hydrometeor size distribution assumptions modulate the size of this bias.more » Making snow mass more realistically proportional to D2 rather than D3 eliminates unrealistically large snow reflectivities over 40 dBZ in some simulations. Graupel, unlike snow, produces high biased reflectivity in all simulations, which is partly a result of parameterized microphysics, but also partly a result of overly intense simulated updrafts. Peak vertical velocities in deep convective updrafts are greater than dual-Doppler retrieved values, especially in the upper troposphere. Freezing of liquid condensate, often rain, lofted above the freezing level in simulated updraft cores greatly contributes to these excessive upper tropospheric vertical velocities. The strongest simulated updraft cores are nearly undiluted, with some of the strongest showing supercell characteristics during the multicellular (pre-squall) stage of the event. Decreasing horizontal grid spacing from 900 to 100 meters slightly weakens deep updraft vertical velocity and moderately decreases the amount of condensate aloft, but not enough to match observational retrievals. Therefore, overly intense simulated updrafts may additionally be a product of unrealistic interactions between convective dynamics, parameterized microphysics, and the large-scale model forcing that promote different convective strengths than observed.« less
Convective Cold Pool Structure and Boundary Layer Recovery in DYNAMO
NASA Astrophysics Data System (ADS)
Savarin, A.; Chen, S. S.; Kerns, B. W.; Lee, C.; Jorgensen, D. P.
2012-12-01
One of the key factors controlling convective cloud systems in the Madden-Julian Oscillation (MJO) over the tropical Indian Ocean is the property of the atmospheric boundary layer. Convective downdrafts and precipitation from the cloud systems produce cold pools in the boundary layer, which can inhibit subsequent development of convection. The recovery time is the time it takes for the boundary layer to return to pre convective conditions. It may affect the variability of the convection on various time scales during the initiation of MJO. This study examines the convective cold pool structure and boundary layer recovery using the NOAA WP-3D aircraft observations, include the flight-level, Doppler radar, and GPS dropsonde data, collected during the Dynamics of MJO (DYNAMO) field campaign from November-December 2011. The depth and strength of convective cold pools are defined by the negative buoyancy, which can be computed from the dropsonde data. Convective downdraft can be affected by environmental water vapor due to entrainment. Mid-level dry air observed during the convectively suppressed phase of MJO seems to enhance convective downdraft, making the cold pools stronger and deeper. Recovery of the cold pools in the boundary layer is determined by the strength and depth of the cold pools and also the air-sea heat and moisture fluxes. Given that the water vapor and surface winds are distinct for the convectively active and suppressed phases of MJO over the Indian Ocean, the aircraft data are stratified by the two different large-scale regimes of MJO. Preliminary results show that the strength and depth of the cold pools are inversely correlated with the surrounding mid-level moisture. During the convectively suppressed phase, the recovery time is ~5-20 hours in relative weak wind condition with small air-sea fluxes. The recovery time is generally less than 6 hours during the active phase of MJO with moist mid-levels and stronger surface wind and air-sea fluxes.
REVIEWS OF TOPICAL PROBLEMS: Free convection in geophysical processes
NASA Astrophysics Data System (ADS)
Alekseev, V. V.; Gusev, A. M.
1983-10-01
A highly significant geophysical process, free convection, is examined. Thermal convection often controls the dynamical behavior in several of the earth's envelopes: the atmosphere, ocean, and mantle. Section 2 sets forth the thermohydrodynamic equations that describe convection in a compressible or incompressible fluid, thermochemical convection, and convection in the presence of thermal diffusion. Section 3 reviews the mechanisms for the origin of the global atmospheric and oceanic circulation. Interlatitudinal convection and jet streams are discussed, as well as monsoon circulation and the mean meridional circulation of ocean waters due to the temperature and salinity gradients. Also described are the hypotheses for convective motion in the mantle and the thermal-wave (moving flame) mechanism for inducing global circulation (the atmospheres of Venus and Mars provide illustrations). Eddy formation by convection in a centrifugal force field is considered. Section 4 deals with medium- and small-scale convective processes, including hurricane systems with phase transitions, cellular cloud structure, and convection penetrating into the ocean, with its stepped vertical temperature and salinity microstructure. Self-oscillatory processes involving convection in fresh-water basins are discussed, including effects due to the anomalous (p,T) relation for water.
NASA Astrophysics Data System (ADS)
Ladino, Luis A.; Korolev, Alexei; Heckman, Ivan; Wolde, Mengistu; Fridlind, Ann M.; Ackerman, Andrew S.
2017-02-01
Over the decades, the cloud physics community has debated the nature and role of aerosol particles in ice initiation. The present study shows that the measured concentration of ice crystals in tropical mesoscale convective systems exceeds the concentration of ice nucleating particles (INPs) by several orders of magnitude. The concentration of INPs was assessed from the measured aerosol particle concentration in the size range of 0.5 to 1 µm. The observations from this study suggest that primary ice crystals formed on INPs make only a minor contribution to the total concentration of ice crystals in tropical mesoscale convective systems. This is found by comparing the predicted INP number concentrations with in situ ice particle number concentrations. The obtained measurements suggest that ice multiplication is the likely explanation for the observed high concentrations of ice crystals in this type of convective system.
Ladino, Luis A.; Korolev, Alexei; Heckman, Ivan; Wolde, Mengistu; Fridlind, Ann M.; Ackerman, Andrew S.
2018-01-01
Over decades, the cloud physics community has debated the nature and role of aerosol particles in ice initiation. The present study shows that the measured concentration of ice crystals in tropical mesoscale convective systems exceeds the concentration of ice nucleating particles (INPs) by several orders of magnitude. The concentration of INPs was assessed from the measured aerosol particles concentration in the size range of 0.5 to 1 µm. The observations from this study suggest that primary ice crystals formed on INPs make only a minor contribution to the total concentration of ice crystals in tropical mesoscale convective systems. This is found by comparing the predicted INP number concentrations with in-situ ice particle number concentrations. The obtained measurements suggest that ice multiplication is the likely explanation for the observed high concentrations of ice crystals in this type of convective system. PMID:29551842
The Evolution of a Long-Lived Mesoscale Convective System Observed by GLM
NASA Astrophysics Data System (ADS)
Peterson, M. J.; Rudlosky, S. D.; Antunes, L.
2017-12-01
Continuous Geostationary Lightning Mapper (GLM) observations are used to document total lightning activity over the life cycle of a long-lived Mesoscale Convective System (MCS). MCS's may be few in number, but they are important for the Global Electric Circuit (GEC) because they sustain high lightning flash rates and quasi steady state conduction currents (Wilson currents) over longer time periods than ordinary isolated convection. The optical characteristics of the flashes produced by MCS's change over time, providing additional insights into the precipitation structure, convective mode, and evolution of the storm system. These insights are particularly useful in areas void of radar observations. Intercalibrated passive microwave radiometer data from the Global Precipitation Measurement (GPM) constellation also are used to estimate changes in Wilson current generation as the system evolves. These results highlight the role of MCS's in the GEC, and showcase how optical flash descriptors relate to thunderstorm organization, maturity, and structure.
NASA Technical Reports Server (NTRS)
McNally, B. David (Inventor); Erzberger, Heinz (Inventor); Sheth, Kapil (Inventor)
2015-01-01
A dynamic weather route system automatically analyzes routes for in-flight aircraft flying in convective weather regions and attempts to find more time and fuel efficient reroutes around current and predicted weather cells. The dynamic weather route system continuously analyzes all flights and provides reroute advisories that are dynamically updated in real time while the aircraft are in flight. The dynamic weather route system includes a graphical user interface that allows users to visualize, evaluate, modify if necessary, and implement proposed reroutes.
Design of a CO2 laser power control system for a Spacelab microgravity experiment
NASA Technical Reports Server (NTRS)
Wenzler, Carl J.; Eichenberg, Dennis J.
1990-01-01
The surface tension driven convection experiment (STDCE) is a Space Transportation System flight experiment manifested to fly aboard the USML-1 Spacelab mission. A CO2 laser is used to heat a spot on the surface of silicone oil contained inside a test chamber. Several CO2 laser control systems were evaluated and the selected system will be interfaced with the balance of the experimental hardware to constitute a working engineering model. Descriptions and a discussion of these various design approaches are presented.
NASA Astrophysics Data System (ADS)
Dhara, Chirag; Renner, Maik; Kleidon, Axel
2015-04-01
The convective transport of heat and moisture plays a key role in the climate system, but the transport is typically parameterized in models. Here, we aim at the simplest possible physical representation and treat convective heat fluxes as the result of a heat engine. We combine the well-known Carnot limit of this heat engine with the energy balances of the surface-atmosphere system that describe how the temperature difference is affected by convective heat transport, yielding a maximum power limit of convection. This results in a simple analytic expression for convective strength that depends primarily on surface solar absorption. We compare this expression with an idealized grey atmosphere radiative-convective (RC) model as well as Global Circulation Model (GCM) simulations at the grid scale. We find that our simple expression as well as the RC model can explain much of the geographic variation of the GCM output, resulting in strong linear correlations among the three approaches. The RC model, however, shows a lower bias than our simple expression. We identify the use of the prescribed convective adjustment in RC-like models as the reason for the lower bias. The strength of our model lies in its ability to capture the geographic variation of convective strength with a parameter-free expression. On the other hand, the comparison with the RC model indicates a method for improving the formulation of radiative transfer in our simple approach. We also find that the latent heat fluxes compare very well among the approaches, as well as their sensitivity to surface warming. What our comparison suggests is that the strength of convection and their sensitivity in the climatic mean can be estimated relatively robustly by rather simple approaches.
NASA Astrophysics Data System (ADS)
Vizy, Edward K.; Cook, Kerry H.
2018-01-01
A convection-permitting regional model simulation for August 2006 and observations are evaluated to better understand the diurnal cycle of precipitation over the Sahel. In particular, reasons for a nocturnal rainfall maximum over parts of the Sahel during the height of the West African monsoon are investigated. A relationship between mesoscale convective system (MCS) activity and inter-tropical front (ITF)/dryline dynamics is revealed. Over 90% of the Sahel nocturnal rainfall derives from propagating MCSs that have been associated with topography in earlier studies. In contrast, in this case study, 70-90% of the nocturnal rainfall over the southern Sahel (11°N-14°N) west of 15°E is associated with MCSs that originate less than 1000 km upstream (to the north and east) in the afternoon, in a region largely devoid of significant orography. This MCS development occurs in association with the Sahel ITF, combined with atmospheric pre-conditioning. Daytime surface heating generates turbulent mixing that promotes planetary boundary layer (PBL) growth accompanied by a low-level reversal in the meridional flow. This enhances wind convergence in the low-level moist layer within 2°-3° of latitude of the equatorward side of the ITF. MCSs tend to form when this vertical mixing extends to the level of free convection and is accompanied by a mid-tropospheric African easterly wave disturbance to the east. This synoptic disturbance enhances the vertical wind shear and atmospheric instability over the genesis location. These results are found to be robust across the region.
NASA Astrophysics Data System (ADS)
Posselt, D.; L'Ecuyer, T.; Matsui, T.
2009-05-01
Cloud resolving models are typically used to examine the characteristics of clouds and precipitation and their relationship to radiation and the large-scale circulation. As such, they are not required to reproduce the exact location of each observed convective system, much less each individual cloud. Some of the most relevant information about clouds and precipitation is provided by instruments located on polar-orbiting satellite platforms, but these observations are intermittent "snapshots" in time, making assessment of model performance challenging. In contrast to direct comparison, model results can be evaluated statistically. This avoids the requirement for the model to reproduce the observed systems, while returning valuable information on the performance of the model in a climate-relevant sense. The focus of this talk is a model evaluation study, in which updates to the microphysics scheme used in a three-dimensional version of the Goddard Cumulus Ensemble (GCE) model are evaluated using statistics of observed clouds, precipitation, and radiation. We present the results of multiday (non-equilibrium) simulations of organized deep convection using single- and double-moment versions of a the model's cloud microphysical scheme. Statistics of TRMM multi-sensor derived clouds, precipitation, and radiative fluxes are used to evaluate the GCE results, as are simulated TRMM measurements obtained using a sophisticated instrument simulator suite. We present advantages and disadvantages of performing model comparisons in retrieval and measurement space and conclude by motivating the use of data assimilation techniques for analyzing and improving model parameterizations.
NASA Technical Reports Server (NTRS)
Lopez, Jimena P.; Fridlind, Ann M.; Jost, Hans-Jurg; Loewenstein, Max; Ackerman, Andrew S.; Campos, Teresa L.; Weinstock, Elliot M.; Sayres, David S.; Smith, Jessica B.; Pittman, Jasna V.;
2006-01-01
Convective systems are an important mechanism in the transport of boundary layer air into the upper troposphere. The Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE) campaign, in July 2002, was developed as a comprehensive atmospheric mission to improve knowledge of subtropical cirrus systems and their roles in regional and global climate. In situ measurements of carbon monoxide (CO), water vapor (H20v), and total water (H20t) aboard NASA's . WB-57F aircraft and CO aboard the U.S. Navy's Twin Otter aircraft were obtained to study the role of convective transport. Three flights sampled convective outflow on 11, 16 and 29 July found varying degrees of CO enhancement relative to the fiee troposphere. A cloud-resolving model used the in situ observations and meteorological fields to study these three systems. Several methods of filtering the observations were devised here using ice water content, relative humidity with respect to ice, and particle number concentration as a means to statistically sample the model results to represent the flight tracks. A weighted histogram based on ice water content observations was then used to sample the simulations for the three flights. In addition, because the observations occurred in the convective outflow cirrus and not in the storm cores, the model was used to estimate the maximum CO within the convective systems. In general, anvil-level air parcels contained an estimated 20-40% boundary layer air in the analyzed storms.
NASA Technical Reports Server (NTRS)
Lopez, Jimena P.; Fridlind, Ann M.; Jost, Hans-Juerg; Loewenstein, Max; Ackerman, Andrew S.; Campos, Teresa L.; Weinstock, Elliot M.; Sayres, David S.; Smith, Jessica B.; Pittman, Jasna V.
2006-01-01
Convective systems are an important mechanism in the transport of boundary layer air into the upper troposphere. The Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE) campaign, in July 2002, was developed as a comprehensive atmospheric mission to improve knowledge of subtropical cirrus systems and their roles in regional and global climate. In situ measurements of carbon monoxide (CO), water vapor (H2Ov), and total water (H2Ot) aboard NASA's WB-57F aircraft and CO aboard the U.S. Navy's Twin Otter aircraft were obtained to study the role of convective transport. Three flights sampled convective outflow on 11, 16 and 29 July found varying degrees of CO enhancement relative to the free troposphere. A cloud-resolving model used the in situ observations and meteorological fields to study these three systems. Several methods of filtering the observations were devised here using ice water content, relative humidity with respect to ice, and particle number concentration as a means to statistically sample the model results to represent the flight tracks. A weighted histogram based on ice water content observations was then used to sample the simulations for the three flights. In addition, because the observations occurred in the convective outflow cirrus and not in the storm cores, the model was used to estimate the maximum CO within the convective systems. In general, anvil-level air parcels contained an estimated 20-40% boundary layer air in the analyzed storms.
NASA Astrophysics Data System (ADS)
Rajib, Basu; C. Layek, G.
2013-05-01
Double-diffusive stationary and oscillatory instabilities at the marginal state in a saturated porous horizontal fluid layer heated and salted from above are investigated theoretically under the Darcy's framework for a porous medium. The contributions of Soret and Dufour coefficients are taken into account in the analysis. Linear stability analysis shows that the critical value of the Darcy—Rayleigh number depends on cross-diffusive parameters at marginally stationary convection, while the marginal state characterized by oscillatory convection does not depend on the cross-diffusion terms even if the condition and frequency of oscillatory convection depends on the cross-diffusive parameters. The critical value of the Darcy—Rayleigh number increases with increasing value of the solutal Darcy—Rayleigh number in the absence of cross-diffusive parameters. The critical Darcy—Rayleigh number decreases with increasing Soret number, resulting in destabilization of the system, while its value increases with increasing Dufour number, resulting in stabilization of the system at the marginal state characterized by stationary convection. The analysis reveals that the Dufour and Soret parameters as well as the porosity parameter play an important role in deciding the type of instability at the onset. This analysis also indicates that the stationary convection is followed by the oscillatory convection for certain fluid mixtures. It is interesting to note that the roles of cross-diffusive parameters on the double-diffusive system heated and salted from above are reciprocal to the double-diffusive system heated and salted from below.
Sensitivity of Pacific Cold Tongue and Double-ITCZ Bias to Convective Parameterization
NASA Astrophysics Data System (ADS)
Woelfle, M.; Bretherton, C. S.; Pritchard, M. S.; Yu, S.
2016-12-01
Many global climate models struggle to accurately simulate annual mean precipitation and sea surface temperature (SST) fields in the tropical Pacific basin. Precipitation biases are dominated by the double intertropical convergence zone (ITCZ) bias where models exhibit precipitation maxima straddling the equator while only a single Northern Hemispheric maximum exists in observations. The major SST bias is the enhancement of the equatorial cold tongue. A series of coupled model simulations are used to investigate the sensitivity of the bias development to convective parameterization. Model components are initialized independently prior to coupling to allow analysis of the transient response of the system directly following coupling. These experiments show precipitation and SST patterns to be highly sensitive to convective parameterization. Simulations in which the deep convective parameterization is disabled forcing all convection to be resolved by the shallow convection parameterization showed a degradation in both the cold tongue and double-ITCZ biases as precipitation becomes focused into off-equatorial regions of local SST maxima. Simulations using superparameterization in place of traditional cloud parameterizations showed a reduced cold tongue bias at the expense of additional precipitation biases. The equatorial SST responses to changes in convective parameterization are driven by changes in near equatorial zonal wind stress. The sensitivity of convection to SST is important in determining the precipitation and wind stress fields. However, differences in convective momentum transport also play a role. While no significant improvement is seen in these simulations of the double-ITCZ, the system's sensitivity to these changes reaffirm that improved convective parameterizations may provide an avenue for improving simulations of tropical Pacific precipitation and SST.
Convective dissolution of carbon dioxide in saline aquifers
NASA Astrophysics Data System (ADS)
Neufeld, Jerome A.; Hesse, Marc A.; Riaz, Amir; Hallworth, Mark A.; Tchelepi, Hamdi A.; Huppert, Herbert E.
2010-11-01
Geological carbon dioxide (CO2) storage is a means of reducing anthropogenic emissions. Dissolution of CO2 into the brine, resulting in stable stratification, increases storage security. The dissolution rate is determined by convection in the brine driven by the increase of brine density with CO2 saturation. We present a new analogue fluid system that reproduces the convective behaviour of CO2-enriched brine. Laboratory experiments and high-resolution numerical simulations show that the convective flux scales with the Rayleigh number to the 4/5 power, in contrast with a classical linear relationship. A scaling argument for the convective flux incorporating lateral diffusion from downwelling plumes explains this nonlinear relationship for the convective flux, provides a physical picture of high Rayleigh number convection in a porous medium, and predicts the CO2 dissolution rates in CO2 accumulations. These estimates of the dissolution rate show that convective dissolution can play an important role in enhancing storage security.
Regional analysis of convective systems during the West African monsoon
NASA Astrophysics Data System (ADS)
Guy, Bradley Nicholas
The West African monsoon (WAM) occurs during the boreal summer and is responsible for a majority of precipitation in the northern portion of West Africa. A distinct shift of precipitation, often driven by large propagating mesoscale convective systems, is indicated from satellite observations. Excepting the coarser satellite observations, sparse data across the continent has prevented understanding of mesoscale variability of these important systems. The interaction between synoptic and mesoscale features appears to be an important part of the WAM system. Without an understanding of the mesoscale properties of precipitating systems, improved understanding of the feedback mechanism between spatial scales cannot be attained. Convective and microphysical characteristics of West African convective systems are explored using various observational data sets. Focus is directed toward meso -alpha and -beta scale convective systems to improve our understanding of characteristics at this spatial scale and contextualize their interaction with the larger-scale. Ground-based radar observations at three distinct geographical locations in West Africa along a common latitudinal band (Niamey, Niger [continental], Kawsara, Senegal [coastal], and Praia, Republic of Cape Verde [maritime]) are analyzed to determine convective system characteristics in each domain during a 29 day period in 2006. Ancillary datasets provided by the African Monsoon Multidisciplinary Analyses (AMMA) and NASA-AMMA (NAMMA) field campaigns are also used to place the radar observations in context. Results show that the total precipitation is dominated by propagating mesoscale convective systems. Convective characteristics vary according to environmental properties, such as vertical shear, CAPE, and the degree of synoptic forcing. Data are bifurcated based on the presence or absence of African easterly waves. In general, African easterly waves appear to enhance mesoscale convective system strength characteristics (e.g. total precipitation and vertical reflectivity profiles) at the inland and maritime sites. The wave regime also resulted in an increased population of the largest observed mesoscale convective systems observed near the coast, which led to an increase in stratiform precipitation. Despite this increase, differentiation of convective strength characteristics was less obvious between wave and no-wave regimes at the coast. Due to the propagating nature of these advecting mesoscale convective systems, interaction with the regional thermodynamic and dynamic environment appears to result in more variability than enhancements due to the wave regime, independent of location. A 13-year (1998-2010) climatology of mesoscale convective characteristics associated with the West African monsoon are also investigated using precipitation radar and passive microwave data from the NASA Tropical Rainfall Measuring Mission satellite. Seven regions defined as continental northeast and northwest, southeast and southwest, coastal, and maritime north and south are compared to analyze zonal and meridional differences. Data are categorized according to identified African easterly wave (AEW) phase and when no wave is present. While some enhancements are observed in association with AEW regimes, regional differences were generally more apparent than wave vs. no-wave differences. Convective intensity metrics confirm that land-based systems exhibit stronger characteristics, such as higher storm top and maximum 30-dBZ heights and significant 85-GHz brightness temperature depressions. Continental systems also contain a lower fraction of points identified as stratiform. Results suggest that precipitation processes also varied depending upon region and AEW regime, with warm-rain processes more apparent over the ocean and the southwest continental region and ice-based microphysics more dominant over land, including mixed-phase processes. AEW regimes did show variability in stratiform fraction and ice and liquid water content, suggesting modulation of mesoscale characteristics possibly through feedback with the synoptic environment. Two mesoscale convective systems (MCSs) observed during the African Monsoon Multidisciplinary Analyses (AMMA) experiment are simulated using the three-dimensional (3D) Goddard Cumulus Ensemble model. One of the MCSs, the 8 September 2006 system, is associated with the passage of an African easterly wave trough while the other, the 14 July 2006 case, is not. Simulations are performed using 1 km horizontal grid spacing, a lower limit on current embedded cloud resolving models within a multi-scale modeling framework. Simulated system structure is compared to radar observations using contoured frequency-by-altitude diagrams (CFADs), calculated ice and water mass, and identified hydrometeor variables. Results indicate general agreement in the temporal distribution of hydrometeors. Vertical distributions show that ice hydrometeors are often underestimated at mid- and upper-levels, partially due to the inability of the model to produce adequate system heights. Abundance of high reflectivity values below and near the melting level in the simulation led to a broadening of the CFAD distributions. Observed vertical reflectivity profiles indicate larger reflectivities aloft compared to simulated values. Despite these differences and biases, the radar-observed differences between the two cases are noticeable in the simulations as well, suggesting that the model is able to capture gross observed differences between the two MCSs.
NASA Technical Reports Server (NTRS)
Branscome, Lee E.; Bleck, Rainer; Obrien, Enda
1990-01-01
The project objectives are to develop process models to investigate the interaction of planetary and synoptic-scale waves including the effects of latent heat release (precipitation), nonlinear dynamics, physical and boundary-layer processes, and large-scale topography; to determine the importance of latent heat release for temporal variability and time-mean behavior of planetary and synoptic-scale waves; to compare the model results with available observations of planetary and synoptic wave variability; and to assess the implications of the results for monitoring precipitation in oceanic-storm tracks by satellite observing systems. Researchers have utilized two different models for this project: a two-level quasi-geostrophic model to study intraseasonal variability, anomalous circulations and the seasonal cycle, and a 10-level, multi-wave primitive equation model to validate the two-level Q-G model and examine effects of convection, surface processes, and spherical geometry. It explicitly resolves several planetary and synoptic waves and includes specific humidity (as a predicted variable), moist convection, and large-scale precipitation. In the past year researchers have concentrated on experiments with the multi-level primitive equation model. The dynamical part of that model is similar to the spectral model used by the National Meteorological Center for medium-range forecasts. The model includes parameterizations of large-scale condensation and moist convection. To test the validity of results regarding the influence of convective precipitation, researchers can use either one of two different convective schemes in the model, a Kuo convective scheme or a modified Arakawa-Schubert scheme which includes downdrafts. By choosing one or the other scheme, they can evaluate the impact of the convective parameterization on the circulation. In the past year researchers performed a variety of initial-value experiments with the primitive-equation model. Using initial conditions typical of climatological winter conditions, they examined the behavior of synoptic and planetary waves growing in moist and dry environments. Surface conditions were representative of a zonally averaged ocean. They found that moist convection associated with baroclinic wave development was confined to the subtropics.
NASA Astrophysics Data System (ADS)
Zhang, Wei; Jiang, Ling; Han, Lei
2018-04-01
Convective storm nowcasting refers to the prediction of the convective weather initiation, development, and decay in a very short term (typically 0 2 h) .Despite marked progress over the past years, severe convective storm nowcasting still remains a challenge. With the boom of machine learning, it has been well applied in various fields, especially convolutional neural network (CNN). In this paper, we build a servere convective weather nowcasting system based on CNN and hidden Markov model (HMM) using reanalysis meteorological data. The goal of convective storm nowcasting is to predict if there is a convective storm in 30min. In this paper, we compress the VDRAS reanalysis data to low-dimensional data by CNN as the observation vector of HMM, then obtain the development trend of strong convective weather in the form of time series. It shows that, our method can extract robust features without any artificial selection of features, and can capture the development trend of strong convective storm.
Collective phase description of oscillatory convection
NASA Astrophysics Data System (ADS)
Kawamura, Yoji; Nakao, Hiroya
2013-12-01
We formulate a theory for the collective phase description of oscillatory convection in Hele-Shaw cells. It enables us to describe the dynamics of the oscillatory convection by a single degree of freedom which we call the collective phase. The theory can be considered as a phase reduction method for limit-cycle solutions in infinite-dimensional dynamical systems, namely, stable time-periodic solutions to partial differential equations, representing the oscillatory convection. We derive the phase sensitivity function, which quantifies the phase response of the oscillatory convection to weak perturbations applied at each spatial point, and analyze the phase synchronization between two weakly coupled Hele-Shaw cells exhibiting oscillatory convection on the basis of the derived phase equations.
Thermosolutal convection during dendritic solidification
NASA Technical Reports Server (NTRS)
Heinrich, J. C.; Nandapurkar, P.; Poirier, D. R.; Felicelli, S.
1989-01-01
This paper presents a mathematical model for directional solidification of a binary alloy including a dendritic region underlying an all-liquid region. It is assumed initially that there exists a nonconvecting state with planar isotherms and isoconcentrates solidifying at a constant velocity. The stability of this system has been analyzed and nonlinear calculations are performed that show the effect of convection in the solidification process when the system is unstable. Results of calculations for various cases defined by the initial temperature gradient at the dendrite tips and varying strength of the gravitational field are presented for systems involving lead-tin alloys. The results show that the systems are stable for a gravitational constant of 0.0001 g(0) and that convection can be suppressed by appropriate choice of the container's size for higher values of the gravitational constant. It is also concluded that for the lead-tin systems considered, convection in the mushy zone is not significant below the upper 20 percent of the dendritic zone, if al all.
NASA Astrophysics Data System (ADS)
Prein, A. F.; Ikeda, K.; Liu, C.; Bullock, R.; Rasmussen, R.
2016-12-01
Convective storms are causing extremes such as flooding, landslides, and wind gusts and are related to the development of tornadoes and hail. Convective storms are also the dominant source of summer precipitation in most regions of the Contiguous United States. So far little is known about how convective storms might change due to global warming. This is mainly because of the coarse grid spacing of state-of-the-art climate models that are not able to resolve deep convection explicitly. Instead, coarse resolution models rely on convective parameterization schemes that are a major source of errors and uncertainties in climate change projections. Convection-permitting climate simulations, with grid-spacings smaller than 4 km, show significant improvements in the simulation of convective storms by representing deep convection explicitly. Here we use a pair of 13-year long current and future convection-permitting climate simulations that cover large parts of North America. We use the Method for Object-Based Diagnostic Evaluation (MODE) that incorporates the time dimension (MODE-TD) to analyze the model performance in reproducing storm features in the current climate and to investigate their potential future changes. We show that the model is able to accurately reproduce the main characteristics of convective storms in the present climate. The comparison with the future climate simulation shows that convective storms significantly increase in frequency, intensity, and size. Furthermore, they are projected to move slower which could result in a substantial increase in convective storm-related hazards such as flash floods, debris flows, and landslides. Some regions, such as the North Atlantic, might experience a regime shift that leads to significantly stronger storms that are unrepresented in the current climate.
Relating Convective System Durability with Vertical Wind Profile extracted from NCEP/NCAR Reanalysis
NASA Astrophysics Data System (ADS)
Bergès, Jean-Claude; Beltrando, Gérard; Cacault, Philippe
2014-05-01
Various theoretical models focus on the relationship between wind characteristic and convective system durability. Yet in 1988, Rotuno, Klemp and Weisman state that an optimal live length result from a balance between cold pool thickness and low level wind shear. However these models require a knowledge of local upper air environment and these data are scarcely available for climatological studies. Our presentation address the issue of relating the wind vertical profile extracted from reanalysis fields with a convective system type index. Whereas getting wind data from the NCEP/NCAR database is a straightforward task, assessing convective system extension from geostationary satellite data raise both methodological and practical issues. In a climatological view of convective systems, the initiating steps can be be neglected and a tropopause temperature threshold could be sufficient to delineate systems area. Thus the dynamic parameters between two consecutive would be obtained by a maximum recovery algorithm. But this simple method has to be enhanced to avoid two drawbacks: a rough system area overestimation due to the trailing cirrus and an over-segmentation of active systems. To mitigate the first bias a watershed image segmentation is carry out and the patches with a negative growing rate are eliminated. In order to properly join different parts of the same system, a 3D labeling algorithm has been implemented. Moreover, as motion retrieval methods are based on overlapping area, spatial and temporal resolution imports and full data processing require optimized computation procedures. Based on these methods, we have produced a base of convective systems trajectory based on MSG and Meteosat data. To avoid parallax effects only the central part of the acquisition disk has been considered. System extension and duration has been compared with wind shear in amplitude and direction. The preliminary results shows a global effect consistent with simulation models, but statistical data significance has yet to be investigated.
Experimental Evaluation of the Thermal Performance of a Water Shield for a Surface Power Reactor
NASA Technical Reports Server (NTRS)
Pearson, J. Boise; Stewart, Eric T.; Reid, Robert S.
2007-01-01
A water based shielding system is being investigated for use on initial lunar surface power systems. The use of water may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. Natural convection in a representative lunar surface reactor shield design is evaluated at various power levels in the Water Shield Testbed (WST) at the NASA Marshall Space Flight Center. The experimental data from the WST is used to anchor a CFD model. Performance of a water shield on the lunar surface is then predicted by CFD models anchored to test data. The accompanying viewgraph presentation includes the following topics: 1) Testbed Configuration; 2) Core Heater Placement and Instrumentation; 3) Thermocouple Placement; 4) Core Thermocouple Placement; 5) Outer Tank Thermocouple Placement; 6) Integrated Testbed; 7) Methodology; 8) Experimental Results: Core Temperatures; 9) Experimental Results; Outer Tank Temperatures; 10) CFD Modeling; 11) CFD Model: Anchored to Experimental Results (1-g); 12) CFD MOdel: Prediction for 1/6-g; and 13) CFD Model: Comparison of 1-g to 1/6-g.
Calculating Payload for a Tethered Balloon System
Charles D. Tangren
1980-01-01
A graph method to calculate payload for a tethered balloon system, with the supporting helium lift and payload equations. is described. The balloon system is designed to collect emissions data during the convective-lift and no-convective-lift phases of a forest fire. A description of the balloon system and a list of factors affecting balloon selection are included....
NASA Astrophysics Data System (ADS)
Behera, Abhinna; Rivière, Emmanuel; Marécal, Virginie; Claud, Chantal; Rysman, Jean-François; Geneviève, Seze
2016-04-01
Water vapour budget is a key component in the earth climate system. In the tropical upper troposphere, lower stratosphere (UTLS), it plays a central role both on the radiative and the chemical budget. Its abundance is mostly driven by slow ascent above the net zero radiative heating level followed by ice crystals' formation and sedimentation, so called the cold trap. In contrast to this large scale temperature driven process, overshooting convection penetrating the stratosphere could be one piece of the puzzle. It has been proven to hydrate the lower stratosphere at the local scale. Satellite-borne H2O instruments can not measure with a fine enough resolution the water vapour enhancements caused by overshooting convection. The consequence is that it is difficult to estimate the role of overshooting deep convection at the global scale. Using a mesoscale model i.e., Brazilian Regional Atmospheric Modelling System (BRAMS), past atmospheric conditions have been simulated for the full wet season i.e., Nov 2012 to Mar 2013 having a single grid with horizontal resolution of 20 km × 20km over a large part of Brazil and South America. This resolution is too coarse to reproduce overshooting convection in the model, so that this simulation should be used as a reference (REF) simulation, without the impact of overshooting convection in the TTL water budget. For initialisation, as well as nudging the grid boundary in every 6 hours, European Centre for Medium-Range Weather Forecasts (ECMWF) analyses has been used. The size distribution of hydrometeors and number of cloud condensation nuclei (CCN) are fitted in order to best reproduce accumulated precipitations derived from Tropical Rainfall Measuring Mission (TRMM). Similarly, GOES and MSG IR mages have been thoroughly compared with model's outputs, using image correlation statistics for the position of the clouds. The model H2O variability during the wet season, is compared with the in situ balloon-borne measurements during the TRO-pico campaign from Bauru, Brazil. Cloud tops of the REF simulation are evaluated from the GOES-E cloud top products. Finally, the thermal structure and evolution of the TTL in the REF simulation is evaluated from a comparison with series of radiosounding from different stations. The role of the solar activity in the variability of the thermal structure is also discussed. Globally the REF simulation is doing a rather good job in reproducing the key patterns of the TTL mentioned above, though quantitative biases are sometimes highlighted. The following step is to perform a similar simulation as REF, but injecting the hydration by overshooting convection, deduced from both the hydration rates taken from the TRO-pico balloon campaign at the local scale, and overshooting climatology taken from AMSU and comparable microwave satellite borne instruments. Preliminary results from this second simulation will be given in the presentation.
A Simple Demonstration of Convective Effects on Reaction-Diffusion Systems: A Burning Cigarette.
ERIC Educational Resources Information Center
Pojman, John A.
1990-01-01
Described is a demonstration that provides an introduction to nonequilibrium reaction-diffusion systems and the coupling of hydrodynamics to chemical reactions. Experiments that demonstrate autocatalytic behavior that are effected by gravity and convection are included. (KR)
Double-Diffusive Convection at Low Prandtl Number
NASA Astrophysics Data System (ADS)
Garaud, Pascale
2018-01-01
This work reviews present knowledge of double-diffusive convection at low Prandtl number obtained using direct numerical simulations, in both the fingering regime and the oscillatory regime. Particular emphasis is given to modeling the induced turbulent mixing and its impact in various astrophysical applications. The nonlinear saturation of fingering convection at low Prandtl number usually drives small-scale turbulent motions whose transport properties can be predicted reasonably accurately using a simple semi-analytical model. In some instances, large-scale internal gravity waves can be excited by a collective instability and eventually cause layering. The nonlinear saturation of oscillatory double-diffusive convection exhibits much more complex behavior. Weakly stratified systems always spontaneously transition into layered convection associated with very efficient mixing. More strongly stratified systems remain dominated by weak wave turbulence unless they are initialized into a layered state. The effects of rotation, shear, lateral gradients, and magnetic fields are briefly discussed.
Large Eddy Simulations of Severe Convection Induced Turbulence
NASA Technical Reports Server (NTRS)
Ahmad, Nash'at; Proctor, Fred
2011-01-01
Convective storms can pose a serious risk to aviation operations since they are often accompanied by turbulence, heavy rain, hail, icing, lightning, strong winds, and poor visibility. They can cause major delays in air traffic due to the re-routing of flights, and by disrupting operations at the airports in the vicinity of the storm system. In this study, the Terminal Area Simulation System is used to simulate five different convective events ranging from a mesoscale convective complex to isolated storms. The occurrence of convection induced turbulence is analyzed from these simulations. The validation of model results with the radar data and other observations is reported and an aircraft-centric turbulence hazard metric calculated for each case is discussed. The turbulence analysis showed that large pockets of significant turbulence hazard can be found in regions of low radar reflectivity. Moderate and severe turbulence was often found in building cumulus turrets and overshooting tops.
Numerical Simulation of Convective Heat and Mass Transfer in a Two-Layer System
NASA Astrophysics Data System (ADS)
Myznikova, B. I.; Kazaryan, V. A.; Tarunin, E. L.; Wertgeim, I. I.
The results are presented of mathematical and computer modeling of natural convection in the “liquid-gas” two-layer system, filling a vertical cylinder surrounded by solid heat conductive tract. The model describes approximately the conjugate heat and mass transfer in the underground oil product storage, filled partially by a hydrocarbon liquid, with natural gas layer above the liquid surface. The geothermal gradient in a rock mass gives rise to the intensive convection in the liquid-gas system. The consideration is worked out for laminar flows, laminar-turbulent transitional regimes, and developed turbulent flows.
Influence of zero-G on single-cell systems and zero-G fermenter design concepts
NASA Technical Reports Server (NTRS)
Mayeux, J. V.
1977-01-01
An analysis was made to identify potential gravity-sensitive mechanisms that may be present in the single-cell growth system. Natural convection (density gradients, induced sedimentation, and buoyancy) is important in microbial systems. The absence of natural convection in the space-flight environment could provide an opportunity for new approaches for developments in industrial fermentation and agriculture. Some of the potential influences of gravity (i.e., convection, sedimentation, etc.) on the cell were discussed to provide insight into what experimental areas may be pursued in future space-flight research programs.
NASA Astrophysics Data System (ADS)
Kerns, B. W.; Chen, S. S.
2017-12-01
The Indo-Pacific Maritime Continent (MC) is the most active convection center in the tropics, and the most important modes of variability are the diurnal cycle and the Madden-Julian Oscillation (MJO). Previous studies have shown that the MC has strong diurnal variability compared with the rest of the tropics, and the diurnal cycle of convection over the MC is amplified during the passage of an MJO. One outstanding science question is how the passage of the active MJO affects the diurnal cycle. The atmospheric, upper ocean, and land surface forcing factors contributing to the diurnal cycle need to be clarified. In order to address this, large scale precipitation tracking (LPT) is used to identify MJO active and suppressed periods for 2000-2015. To document the diurnal cycle of convection during the active and suppressed periods, TRMM/GPM and mesoscale cloud cluster tracking are used. Finally, the LPT tracking is used to composite the satellite-estimated surface wind, humidity, temperature, cloud cover, and soil moisture over the islands for active versus suppressed MJO periods. In active MJO periods, the diurnal convection in the surrounding marginal seas is enhanced and the diurnal convection over land is decreased. The islands of the MC have greater soil moisture, more cloud cover, and do not warm up as much during the day, leading to a weaker afternoon maximum over land. But how is nocturnal convection over the sea increased? The largest, most mature convective cloud systems are found over the marginal seas in the early morning. This is hypothesized to mainly be a consequence of the longer life cycle of convective systems in the favorable large-scale active MJO. The propagation of the MJO across the MC is facilitated by the enhanced nocturnal deep convection over the sea. In contrast, In the suppressed period the convection is mostly daytime forced convection over land which is locked to the terrain.
Fluid elasticity and the transition to chaos in thermal convection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khayat, R.E.
1995-01-01
The influence of fluid elasticity on the onset of aperiodic or chaotic motion of an upper-convected Maxwellian fluid is examined in the context of the Rayleigh-Benard thermal convection problem. A truncated Fourier representation of the flow and temperature fields leads to a four-dimensional dynamical system that constitutes a generalization of the classical Lorenz system for Newtonian fluids. It is found that, to the order of the present truncation and above a critical value of the Deborah number De[sup [ital c
Clouds Aerosols Internal Affaires: Increasing Cloud Fraction and Enhancing the Convection
NASA Technical Reports Server (NTRS)
Koren, Ilan; Kaufman, Yoram; Remer, Lorraine; Rosenfeld, Danny; Rudich, Yinon
2004-01-01
Clouds developing in a polluted environment have more numerous, smaller cloud droplets that can increase the cloud lifetime and liquid water content. Such changes in the cloud droplet properties may suppress low precipitation allowing development of a stronger convection and higher freezing level. Delaying the washout of the cloud water (and aerosol), and the stronger convection will result in higher clouds with longer life time and larger anvils. We show these effects by using large statistics of the new, 1km resolution data from MODIS on the Terra satellite. We isolate the aerosol effects from meteorology by regression and showing that aerosol microphysical effects increases cloud fraction by average of 30 presents for all cloud types and increases convective cloud top pressure by average of 35mb. We analyze the aerosol cloud interaction separately for high pressure trade wind cloud systems and separately for deep convective cloud systems. The resultant aerosol radiative effect on climate for the high pressure cloud system is: -10 to -13 W/sq m at the top of the atmosphere (TOA) and -11 to -14 W/sq m at the surface. For deeper convective clouds the forcing is: -4 to -5 W/sq m at the TOA and -6 to -7 W/sq m at the surface.
NASA Astrophysics Data System (ADS)
Forsythe, V. V.; Makarevich, R. A.
2016-12-01
Small-scale ionospheric plasma irregularities in the high-latitude E region and their control by F-region plasma convection are investigated using Super Dual Auroral Network (SuperDARN) observations at high southern latitudes over a 1-year period. Significant asymmetries are found in the velocity occurrence distribution due to the clustering of the high-velocity echoes of a particular velocity polarity. Statistical analysis of convection showed that some radars observe predominantly negative bias in the convection component within their short, E-region ranges, while others have a predominantly positive bias. A hypothesis that this bias is caused by asymmetric sectoring of the high-latitude plasma convection pattern is investigated. A new algorithm is developed that samples the plasma convection map and evaluates the convection pattern asymmetry along the particular latitude that corresponds to the radar location. It is demonstrated that the convection asymmetry has a particular seasonal and diurnal pattern, which is different for the polar and auroral radars. Possible causes for the observed convection pattern asymmetry are discussed. It is further proposed that the statistical occurrence of high-velocity E-region echoes generated by the Farley-Buneman instability (FBI) is highly sensitive to small changes in the convection pattern, which is consistent with the electric field threshold for the FBI onset being perhaps sharper and lower than previously thought.
NASA Technical Reports Server (NTRS)
Pfister, Leonhard; Scott, Stanley; Loewenstein, Max; Bowen, Stuart; Legg, Marion
1993-01-01
Aircraft temperature and pressure measurements as well as satellite imagery are used to establish the amplitudes and the space and time scale of potential temperature disturbances over convective systems. A conceptual model is proposed for the generation of mesoscale gravity waves by convection. The momentum forcing that a reasonable distribution of convection might exert on the tropical stratosphere through convectively excited mesoscale gravity waves of the observed amplitudes is estimated. Aircraft measurements show that presence of mesoscale disturbances in the lower stratospheric temperature, disturbances that appear to be associated with underlying convection. If the disturbances are convectively excited mesoscale gravity waves, their amplitude is sufficient that their breakdown in the upper stratosphere will exert a zonal force comparable to but probably smaller than the planetary-scale Kelvin waves.
NASA Astrophysics Data System (ADS)
Leutwyler, D.; Fuhrer, O.; Ban, N.; Lapillonne, X.; Lüthi, D.; Schar, C.
2017-12-01
The representation of moist convection in climate models represents a major challenge, due to the small scales involved. Regional climate simulations using horizontal resolutions of O(1km) allow to explicitly resolve deep convection leading to an improved representation of the water cycle. However, due to their extremely demanding computational requirements, they have so far been limited to short simulations and/or small computational domains. A new version of the Consortium for Small-Scale Modeling weather and climate model (COSMO) is capable of exploiting new supercomputer architectures employing GPU accelerators, and allows convection-resolving climate simulations on computational domains spanning continents and time periods up to one decade. We present results from a decade-long, convection-resolving climate simulation on a European-scale computational domain. The simulation has a grid spacing of 2.2 km, 1536x1536x60 grid points, covers the period 1999-2008, and is driven by the ERA-Interim reanalysis. Specifically we present an evaluation of hourly rainfall using a wide range of data sets, including several rain-gauge networks and a remotely-sensed lightning data set. Substantial improvements are found in terms of the diurnal cycles of precipitation amount, wet-hour frequency and all-hour 99th percentile. However the results also reveal substantial differences between regions with and without strong orographic forcing. Furthermore we present an index for deep-convective activity based on the statistics of vertical motion. Comparison of the index with lightning data shows that the convection-resolving climate simulations are able to reproduce important features of the annual cycle of deep convection in Europe. Leutwyler D., D. Lüthi, N. Ban, O. Fuhrer, and C. Schär (2017): Evaluation of the Convection-Resolving Climate Modeling Approach on Continental Scales , J. Geophys. Res. Atmos., 122, doi:10.1002/2016JD026013.
Characterization of Mesoscale Convective Systems by Means of Composite Radar Reflectivity Data
NASA Technical Reports Server (NTRS)
Geerts, Bart
1998-01-01
A mesoscale convective system (MCS) is broadly defined as a cloud and precipitation system of mesoscale dimensions (often too large for most aircraft to circumnavigate) with deep-convective activity concentrated in at least part of the MCS, or present during part of its evolution. A large areal fraction of MCSs is stratiform in nature, yet estimates from MCSs over the Great Plains, the Southeast, and tropical waters indicate that at least half of the precipitation is of convective origin. The presence of localized convection is important, because within convective towers cloud particles and hydrometeors are carried upward towards the cloud top. Ice crystals then move over more stratiform regions, either laterally, or through in situ settling over decaying and spreading convection. These ice crystals then grow to precipitation-size particles in mid- to upper tropospheric mesoscale updrafts. The convective portion of a MCS is often a more or less continuous line of thunderstorms, and may be either short-lived or long-lived. Geerts (1997) presents a preliminary climatology of MCSs in the southeastern USA, using just one year of composite digital radar reflectivity data. In this study MCSs are identified and characterized by means of visual inspection of animated images. A total of 398 MCSs were identified. In the warm season MCSs were found to be about twice as frequent as in the cold season. The average lifetime and maximum length of MCSs are 9 hours, and 350 km, respectively, but some MCSs are much larger and more persistent. In the summer months small and short-lived MCSs are relatively more common, whereas in winter larger and longer-lived systems occur more frequently. MCSs occur more commonly in the afternoon, in phase with thunderstorm activity, but the amplitude of the diurnal cycle is small compared to that of observed thunderstorms. It is estimated that in the Southeast more than half of all precipitation and severe weather results from MCSs.
Mantle convection and the state of the Earth's interior
NASA Technical Reports Server (NTRS)
Hager, Bradford H.
1987-01-01
During 1983 to 1986 emphasis in the study of mantle convection shifted away from fluid mechanical analysis of simple systems with uniform material properties and simple geometries, toward analysis of the effects of more complicated, presumably more realistic models. The important processes related to mantle convection are considered. The developments in seismology are discussed.
WRF nested large-eddy simulations of deep convection during SEAC4RS
NASA Astrophysics Data System (ADS)
Heath, Nicholas Kyle
Deep convection is an important component of atmospheric circulations that affects many aspects of weather and climate. Therefore, improved understanding and realistic simulations of deep convection are critical to both operational and climate forecasts. Large-eddy simulations (LESs) often are used with observations to enhance understanding of convective processes. This study develops and evaluates a nested-LES method using the Weather Research and Forecasting (WRF) model. Our goal is to evaluate the extent to which the WRF nested-LES approach is useful for studying deep convection during a real-world case. The method was applied on 2 September 2013, a day of continental convection having a robust set of ground and airborne data available for evaluation. A three domain mesoscale WRF simulation is run first. Then, the finest mesoscale output (1.35 km grid length) is used to separately drive nested-LES domains with grid lengths of 450 and 150 m. Results reveal that the nested-LES approach reasonably simulates a broad spectrum of observations, from reflectivity distributions to vertical velocity profiles, during the study period. However, reducing the grid spacing does not necessarily improve results for our case, with the 450 m simulation outperforming the 150 m version. We find that simulated updrafts in the 150 m simulation are too narrow to overcome the negative effects of entrainment, thereby generating convection that is weaker than observed. Increasing the sub-grid mixing length in the 150 m simulation leads to deeper, more realistic convection, but comes at the expense of delaying the onset of the convection. Overall, results show that both the 450 m and 150 m simulations are influenced considerably by the choice of sub-grid mixing length used in the LES turbulence closure. Finally, the simulations and observations are used to study the processes forcing strong midlevel cloud-edge downdrafts that were observed on 2 September. Results suggest that these downdrafts are forced by evaporative cooling due to mixing near cloud edge and by vertical perturbation pressure gradient forces acting to restore mass continuity around neighboring updrafts. We conclude that the WRF nested-LES approach provides an effective method for studying deep convection for our real-world case. The method can be used to provide insight into physical processes that are important to understanding observations. The WRF nested-LES approach could be adapted for other case studies in which high-resolution observations are available for validation.
Droplet transport system and methods
NASA Technical Reports Server (NTRS)
Neitzel, G. Paul (Inventor)
2010-01-01
Embodiments of droplet transport systems and methods are disclosed for levitating and transporting single or encapsulated droplets using thermocapillary convection. One method embodiment, among others comprises providing a droplet of a first liquid; and applying thermocapillary convection to the droplet to levitate and move the droplet.
Collective phase description of oscillatory convection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawamura, Yoji, E-mail: ykawamura@jamstec.go.jp; Nakao, Hiroya
We formulate a theory for the collective phase description of oscillatory convection in Hele-Shaw cells. It enables us to describe the dynamics of the oscillatory convection by a single degree of freedom which we call the collective phase. The theory can be considered as a phase reduction method for limit-cycle solutions in infinite-dimensional dynamical systems, namely, stable time-periodic solutions to partial differential equations, representing the oscillatory convection. We derive the phase sensitivity function, which quantifies the phase response of the oscillatory convection to weak perturbations applied at each spatial point, and analyze the phase synchronization between two weakly coupled Hele-Shawmore » cells exhibiting oscillatory convection on the basis of the derived phase equations.« less
Analysis of Summertime Convective Initiation in Central Alabama Using the Land Information System
NASA Technical Reports Server (NTRS)
James, Robert S.; Case, Jonathan L.; Molthan, Andrew L.; Jedlovec, Gary J.
2011-01-01
During the summer months in the southeastern United States, convective initiation presents a frequent challenge to operational forecasters. Thunderstorm development has traditionally been referred to as random due to their disorganized, sporadic appearance and lack of atmospheric forcing. Horizontal variations in land surface characteristics such as soil moisture, soil type, land and vegetation cover could possibly be a focus mechanism for afternoon convection during the summer months. The NASA Land Information System (LIS) provides a stand-alone land surface modeling framework that incorporates these varying soil and vegetation properties, antecedent precipitation, and atmospheric forcing to represent the soil state at high resolution. The use of LIS as a diagnostic tool may help forecasters to identify boundaries in land surface characteristics that could correlate to favored regions of convection initiation. The NASA Shortterm Prediction Research and Transition (SPoRT) team has been collaborating with the National Weather Service Office in Birmingham, AL to help incorporate LIS products into their operational forecasting methods. This paper highlights selected convective case dates from summer 2009 when synoptic forcing was weak, and identifies any boundaries in land surface characteristics that may have contributed to convective initiation. The LIS output depicts the effects of increased sensible heat flux from urban areas on the development of convection, as well as convection along gradients in land surface characteristics and surface sensible and latent heat fluxes. These features may promote mesoscale circulations and/or feedback processes that can either enhance or inhibit convection. With this output previously unavailable to operational forecasters, LIS provides a new tool to forecasters in order to help eliminate the randomness of summertime convective initiation.
Assessing the role of slab rheology in coupled plate-mantle convection models
NASA Astrophysics Data System (ADS)
Bello, Léa; Coltice, Nicolas; Tackley, Paul J.; Dietmar Müller, R.; Cannon, John
2015-11-01
Reconstructing the 3D structure of the Earth's mantle has been a challenge for geodynamicists for about 40 yr. Although numerical models and computational capabilities have substantially progressed, parameterizations used for modeling convection forced by plate motions are far from being Earth-like. Among the set of parameters, rheology is fundamental because it defines in a non-linear way the dynamics of slabs and plumes, and the organization of lithosphere deformation. In this study, we evaluate the role of the temperature dependence of viscosity (variations up to 6 orders of magnitude) and the importance of pseudo-plasticity on reconstructing slab evolution in 3D spherical models of convection driven by plate history models. Pseudo-plasticity, which produces plate-like behavior in convection models, allows a consistent coupling between imposed plate motions and global convection, which is not possible with temperature-dependent viscosity alone. Using test case models, we show that increasing temperature dependence of viscosity enhances vertical and lateral coherence of slabs, but leads to unrealistic slab morphologies for large viscosity contrasts. Introducing pseudo-plasticity partially solves this issue, producing thin laterally and vertically more continuous slabs, and flat subduction where trench retreat is fast. We evaluate the differences between convection reconstructions employing different viscosity laws to be very large, and similar to the differences between two models with the same rheology but using two different plate histories or initial conditions.
On the sensitivity of the diurnal cycle in the Amazon to convective intensity
Taylor, Patrick C.; Dodson, Jason B.; Tawfik, Ahmed B.
2016-01-01
Abstract Climate and reanalysis models contain large water and energy budget errors over tropical land related to the misrepresentation of diurnally forced moist convection. Motivated by recent work suggesting that the water and energy budget is influenced by the sensitivity of the convective diurnal cycle to atmospheric state, this study investigates the relationship between convective intensity, the convective diurnal cycle, and atmospheric state in a region of frequent convection—the Amazon. Daily, 3‐hourly satellite observations of top of atmosphere (TOA) fluxes from Clouds and the Earth's Radiant Energy System Ed3a SYN1DEG and precipitation from Tropical Rainfall Measuring Mission 3B42 data sets are collocated with twice daily Integrated Global Radiosonde Archive observations from 2002 to 2012 and hourly flux tower observations. Percentiles of daily minimum outgoing longwave radiation are used to define convective intensity regimes. The results indicate a significant increase in the convective diurnal cycle amplitude with increased convective intensity. The TOA flux diurnal phase exhibits 1–3 h shifts with convective intensity, and precipitation phase is less sensitive. However, the timing of precipitation onset occurs 2–3 h earlier and the duration lasts 3–5 h longer on very convective compared to stable days. While statistically significant changes are found between morning atmospheric state and convective intensity, variations in upper and lower tropospheric humidity exhibit the strongest relationships with convective intensity and diurnal cycle characteristics. Lastly, convective available potential energy (CAPE) is found to vary with convective intensity but does not explain the variations in Amazonian convection, suggesting that a CAPE‐based convective parameterization will not capture the observed behavior without incorporating the sensitivity of convection to column humidity. PMID:27867784
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kollias, Pavlos
2017-08-08
This is a multi-institutional, collaborative project using observations and modeling to study the evolution (e.g. formation and growth) of hydrometeors in continental convective clouds. Our contribution was in data analysis for the generation of high-value cloud and precipitation products and derive cloud statistics for model validation. There are two areas in data analysis that we contributed: i) the development of novel, state-of-the-art dual-wavelength radar algorithms for the retrieval of cloud microphysical properties and ii) the evaluation of large domain, high-resolution models using comprehensive multi-sensor observations. Our research group developed statistical summaries from numerous sensors and developed retrievals of vertical airmore » motion in deep convection.« less
The growth of metastable peritectic compounds
NASA Technical Reports Server (NTRS)
Larson, D. J., Jr.
1984-01-01
The influence of gravitationally driven convection on the directional solidification of peritectic alloys was evaluated. The Pb-Bi peritectic was studied as a model solidification system. Analyses of directionally solidified Pb-Bi peritectic samples indicate that appreciable macrosegregation occurs due to thermosolutal convection and/or Soret diffusion. The macrosegregation results in sequantial change of phase and morphology as solidification progresses down the length of the sample. Banding was eliminated when furnace conditions were selected which resulted in a planar solidification interface. The directional solidification that occurs in the vicinity of the Pb-Bi peritectic isothermal was found to be isocompositional and to consist solely of the equilibrium terminal solid solution and peritectic phases on an extremely fine scale. Evidence was found to support the peritectic supercooling mechanism, but not the proposed peritectic superheat mechanism.
Scales of convective activity in the MJO (Invited)
NASA Astrophysics Data System (ADS)
Houze, R.
2013-12-01
One of the results of the Dynamics of the Madden-Julian Oscillation (MJO) field experiment (DYNAMO) is the realization that an active period of the MJO is not a continuous stretch of time in which convection and rainfall are occurring. Rather, an active MJO period, as determined by standard statistical treatments of the wind and satellite data such as that of Wheeler and Hendon (2004), has periods of highly suppressed conditions interspersed with bursts or episodes of deep convection and rainfall. At a given location, an MJO cycle is of the order of 30-60 days. The active half of a cycle is then about 2-4 weeks. DYNAMO data show that within this multi-week period rain falls in intermittent bursts of deep convection at intervals of 2-6 days, with each burst lasting 1-2 days. The time between bursts is highly suppressed, such that the convective cloud population consists of shallow non-precipitating cumulus. This intermediate burst timescale is neither the MJO timescale nor the timescale of an individual convective cloud. The modulation on the 2-6 day timescale was related to various types of higher frequency equatorial waves (especially, inertio-gravity waves and easterly waves). The largest individual convective cloud element in the MJO environment is the mesoscale convective system (MCS), which lasts about a half day, much shorter than the time period of the wave-modulated bursts. The intermediate scale bursts reflect an evolution of the cloud population. Numerous individual cloud systems undergo their lifecycles within the envelope of the wave-controlled time period of a few days. At a given site, such as the principal island site of Addu Atoll in DYNAMO, radar observations show that in an intermediate timescale episode the convective ensemble goes through a systematic series of stages characterized by differing proportions of elements of different sizes and intensities. The first stage is a population of shallow non-precipitating cumulus, followed by an ensemble of clouds containing some deeper convective elements. At the time of maximum rain during the episode, the population contains growing mesoscale systems. As the rain episode declines the population contains a substantial number of MCSs with broad stratiform regions. Thus, at least three scales are critical in the active periods of an MJO: the MJO scale, the equatorial wave scale of 2-6 days, and the scale of individual clouds, the largest of which are MCSs. This presentation will document the large-scale environment conditions on each of these scales, the population characteristics of the convection during the wave-modulated bursts, and of the individual cloud systems themselves.
The Diagnosis and application of a convective vorticity vector associated with convective systems
NASA Astrophysics Data System (ADS)
Gao, S.; Zhou, Y.; Tao, W.
2005-05-01
Although dry/moist potential vorticity is a very useful and powerful physical quantity in the large scale dynamics, it is not a quite ideal dynamical tool for the study of convective systems or severe storms. A new convective vorticity vector (CVV) is introduced in this study to identify the development of convective systems or severe storms. The daily Aviation (AVN) Model Data is used to diagnose the distribution of the CVV associated with rain storms occurred in the period of Meiyu in 1998. The results have clearly demonstrated that the CVV is an effective vector for indicating the convective actions along the Meiyu front. The CVV also is used to diagnose a 2-D cloud-resolving simulation data associated with 2-D tropical convection. The cloud model is forced by the vertical velocity, zonal wind, horizontal advection, and sea surface temperature obtained from the Tropical cean-Global tmosphere (TOGA) Coupled Ocean-Atmosphere Response Experiment (COARE) and is integrated for a selected 10-day period. The CVV has zonal and vertical components in the 2-D x-z frame. Analysis of zonally averaged and mass-integrated quantities shows that the correlation coefficient between the vertical component of the CVV and the sum of the cloud hydrometeor mixing ratios is 0.81, whereas the correlation coefficient between the zonal component and the sum of the mixing ratios is only 0.18. This indicates that the vertical component of the CVV is closely associated with tropical convection. The tendency equation for the vertical component of the CVV is derived and the zonally averaged and mass-integrated tendency budgets are analyzed. The tendency of the vertical component of the CVV is determined by the interaction between the vorticity and the zonal gradient of cloud heating. The results demonstrate that the vertical component of the CVV is a cloud-linked parameter and can be used to study tropical convection.
NASA Technical Reports Server (NTRS)
Poellot, Michael R.; Kucera, Paul A.
2004-01-01
This report describes the work performed by the University of North Dakota (UND) under NASA Grant NAG5-11509, titled Airborne In Situ and Ground-based Polarimetric Radar Measurements of Tropical Convection in Support of CRYSTAL-FACE. This work focused on the collection of data by two key platforms: the UND Citation II research aircraft and the NASA NPOL radar system. The CRYSTAL-FACE (C-F) mission addresses several key issues from the NASA Earth System Enterprise, including the variability of water in the atmosphere, the forcing provided by tropical cirrus and the response of the Earth system to this forcing. In situ measurements and radar observations of tropical convection, cirrus clouds and their environment are core elements of C-F. One of the primary issues that C-F is addressing is the relationship of tropical cirrus anvils to precipitating deep convection. The in situ measurements from C-F are being used to validate remote sensing of Earth-Atmosphere properties, increase our knowledge of upper tropospheric water vapor and its distribution, and increase our knowledge of tropical cirrus cloud morphology and composition. Radar measurements, especially polarimetric diversity observations available fiom the NASA NPOL radar, are providing essential information about the initiation, modulation, and dissipation of convective cores and the generation of associated anvils in tropical convection. Specifically, NPOL radar measurements contain information about convective intensity and its vertical structure for comparison with thermodynamic and kinematic environmental measurements observed from soundings. Because of the polarimetric diversity of MOL, statistics on bulk microphysical properties can be retrieved and compared to the other characteristics of convection and associated cirrus anvils. In summary, the central objectives of this proposal were to deploy the UND Citation research aircraft as an in situ sensing platform for this mission and to provide collaborative analyses of the recorded data and to deploy the NPOL radar to observe the characteristics of cirrus and parent convection.
On the Nature of Severe Orographic Thunderstorms near the Andes in Subtropical South America
NASA Astrophysics Data System (ADS)
Rasmussen, Kristen Lani Emi
Identifying common features and differences between the mechanisms producing extreme convection near major mountain ranges of the world is an essential step toward a general understanding of orographic precipitation on a global scale. The overarching objective of this dissertation is to understand and examine orographic convective processes in general, while specifically focusing on systems in the lee of the Andes Mountains. Diagnosing the key ingredients necessary for generating high impact weather near extreme topography is crucial to our understanding of orographic precipitating systems. An investigation of the most intense storms in 11 years of TRMM Precipitation Radar (PR) data has shown a tendency for squall lines to initiate and develop east of the Andes with a mesoscale organization similar to storms in the U.S. Great Plains (Rasmussen and Houze 2011). In subtropical South America, however, the topographical influence on the convective initiation and maintenance of the mesoscale convective systems (MCSs) is unique. The Andes and other mountainous terrain of Argentina focus deep convective initiation in the foothills of western Argentina (Romatschke and Houze 2010; Rasmussen and Houze 2011). Subsequent to initiation, the convection often evolves into propagating MCSs similar to those seen over the U.S. Great Plains sometimes producing damaging tornadoes, hail and floods across a wide agricultural region (Rasmussen and Houze 2011; Rasmussen et al. 2014b). The TRMM satellite was designed to determine the spatial and temporal variation of tropical and subtropical rainfall amounts and storm structures around the globe with the goal of understanding the factors controlling the precipitation. However, the TRMM PR algorithm significantly underestimates surface rainfall in deep convection over land (Nesbitt et al. 2004; Iguchi et al. 2009; Kozu et al. 2009). When the algorithm rates are compared to a range of conventional Z-R relations, the rain bias tends to be worse in storms with significant mixed phase hydrometeors, such as graupel and hail, that are similarly affected by assumptions in the TRMM PR algorithm (Rasmussen et al. 2013). A quantitative approach that mitigates this bias using TRMM PR data was developed and employed to investigate the role of the most extreme precipitating systems on the hydrological cycle in South America (Rasmussen et al. 2014c). Results from this study indicate that ~95% of the accumulated warm season precipitation in La Plata Basin in subtropical South America is contributed by echoes structurally related to MCSs and their life cycle. From a hydrologic and climatological viewpoint, this empirical knowledge is critical, as the type of runoff and flooding that may occur depends on the specific character of the convective storm and precipitation reaching the surface, and has broad implications for the hydrological cycle in this region. Numerical simulations conducted with the NCAR Weather Research and Forecasting (WRF) model extends the observational analysis and provides an objective dynamical evaluation of storm initiation, development mechanisms, dynamics (Rasmussen and Houze 2014), and microphysics (Rasmussen et al. 2014d). The capping inversion in the lee of the Andes (Rasmussen and Houze 2011) is important in preventing premature triggering in the simulations. The impingement of the South American Low Level Jet on foothills and low mountains to the east of the main Andes range triggers extremely deep and intense convection. The simulated mesoscale systems closely resemble the storm structures seen by the TRMM satellite as well as the overall shape and character of the storms shown in GOES satellite data (Rasmussen and Houze 2014; Rasmussen et al. 2014d). Sensitivity studies removing and/or reducing various topographic features have shown the profound influence of the terrain on the initiation and upscale growth of the subsequent MCSs. The extreme vertical extent of the Andes tends to keep the South American storms tied to the topography during upscale organization and development longer than similar storms east of the Rocky Mountains in the U.S. and is related to enhanced lee cyclogenesis, flow deformation, and wake effects (Rasmussen and Houze 2014). From this research, an original conceptual model for convective storm environments leading to convective initiation was developed for subtropical South America.
Accurate representation of organized convection in CFSv2 via a stochastic lattice model
NASA Astrophysics Data System (ADS)
Goswami, B. B.; Khouider, B.; Krishna, R. P. M. M.; Mukhopadhyay, P.; Majda, A.
2016-12-01
General circulation models (GCM) show limitations of various sorts in their representation of synoptic and intra-seasonal variability associated with tropical convective systems apart from the success of superparameterization and cloud system permitting global models. This systematic deficiency is believed to be due to the inadequate treatment of organized convection by the underlying cumulus parameterizations, which have the quasi-equilibrium assumption as a common denominator. By its nature, this assumption neglects the continuous interactions across scales between convection and the large scale dynamics. By design, the stochastic multicloud model (SMCM) mimics the interactions between the three cloud types, congestus, deep, and stratiform, that are observed to play a central role across multiple scales in the dynamics and physical structure of tropical convective systems. It is based on a stochastic lattice model, overlaid over each GCM grid box, where an order parameter taking the values 0,1,2,3 at each lattice site according to whether the site is clear sky or occupied by a congestus, deep, or stratiform cloud, respectively. As such the SMCM mimics the unresolved variability due to cumulus convection and the interactions across multiple scales of organized convective systems, following the philosophy of superparameterization. Here, we discuss the implementation of the SMCM in NCEP Climate Forecast System model (CFS), version-2, through the use of a simple parametrization of adiabatic heating and moisture sink due to cumulus clouds based on their observed vertical profiles (a.k.a Q1 and Q2). Much like the success of superparameterization but without the burden of high computational cost, a 20 year run showed tremendous improvements in the ability of the CFS-SMCM model to represent synoptic and intraseasonal variability associated with organized convection as well as a few minor improvements in the simulated climatology when compared to the control CFSv2 model which is based on the widely used simplified Arakawa-Shubert parameterization. This extra-ordinary improvement comes in despite the fact that CFSv2 is one of the best GCMs in terms of its representation of intra-seasonal oscillations in the tropical atmosphere.
Observation and numerical simulation of a convective initiation during COHMEX
NASA Technical Reports Server (NTRS)
Song, J. Aaron; Kaplan, Michael L.
1991-01-01
Under a synoptically undisturbed condition, a dual-peak convective lifecycle was observed with the COoperative Huntsville Meteorological EXperiment (COHMEX) observational network over a 24-hour period. The lifecycle included a multicell storm, which lasted about 6 hours, produced a peak rainrate exceeding 100 mm/hr, and initiated a downstream mesoscale convective system. The 24-hour accumulated rainfall of this event was the largest during the entire COHMEX. The downstream mesoscale convective system, unfortunately, was difficult to investigate quantitatively due to the lack of mesoscale observations. The dataset collected near the time of the multicell storm evolution, including its initiation, was one of the best datasets of COHMEX. In this study, the initiation of this multicell storm is chosen as the target of the numerical simulations.
Time Relevance of Convective Weather Forecast for Air Traffic Automation
NASA Technical Reports Server (NTRS)
Chan, William N.
2006-01-01
The Federal Aviation Administration (FAA) is handling nearly 120,000 flights a day through its Air Traffic Management (ATM) system and air traffic congestion is expected to increse substantially over the next 20 years. Weather-induced impacts to throughput and efficiency are the leading cause of flight delays accounting for 70% of all delays with convective weather accounting for 60% of all weather related delays. To support the Next Generation Air Traffic System goal of operating at 3X current capacity in the NAS, ATC decision support tools are being developed to create advisories to assist controllers in all weather constraints. Initial development of these decision support tools did not integrate information regarding weather constraints such as thunderstorms and relied on an additional system to provide that information. Future Decision Support Tools should move towards an integrated system where weather constraints are factored into the advisory of a Decision Support Tool (DST). Several groups such at NASA-Ames, Lincoln Laboratories, and MITRE are integrating convective weather data with DSTs. A survey of current convective weather forecast and observation data show they span a wide range of temporal and spatial resolutions. Short range convective observations can be obtained every 5 mins with longer range forecasts out to several days updated every 6 hrs. Today, the short range forecasts of less than 2 hours have a temporal resolution of 5 mins. Beyond 2 hours, forecasts have much lower temporal. resolution of typically 1 hour. Spatial resolutions vary from 1km for short range to 40km for longer range forecasts. Improving the accuracy of long range convective forecasts is a major challenge. A report published by the National Research Council states improvements for convective forecasts for the 2 to 6 hour time frame will only be achieved for a limited set of convective phenomena in the next 5 to 10 years. Improved longer range forecasts will be probabilistic as opposed to the deterministic shorter range forecasts. Despite the known low level of confidence with respect to long range convective forecasts, these data are still useful to a DST routing algorithm. It is better to develop an aircraft route using the best information available than no information. The temporally coarse long range forecast data needs to be interpolated to be useful to a DST. A DST uses aircraft trajectory predictions that need to be evaluated for impacts by convective storms. Each time-step of a trajectory prediction n&s to be checked against weather data. For the case of coarse temporal data, there needs to be a method fill in weather data where there is none. Simply using the coarse weather data without any interpolation can result in DST routes that are impacted by regions of strong convection. Increasing the temporal resolution of these data can be achieved but result in a large dataset that may prove to be an operational challenge in transmission and loading by a DST. Currently, it takes about 7mins retrieve a 7mb RUC2 forecast file from NOAA at NASA-Ames Research Center. A prototype NCWF6 1 hour forecast is about 3mb in size. A Six hour NCWFG forecast with a 1hr forecast time-step will be about l8mb (6 x 3mb). A 6 hour NCWF6 forecast with a l5min forecast time-step will be about 7mb (24 x 3mb). Based on the time it takes to retrieve a 7mb RUC2 forecast, it will take approximately 70mins to retrieve a 6 hour NCWF forecast with 15min time steps. Until those issues are addressed, there is a need to develop an algorithm that interpolates between these temporally coarse long range forecasts. This paper describes a method of how to use low temporal resolution probabilistic weather forecasts in a DST. The beginning of this paper is a description of some convective weather forecast and observation products followed by an example of how weather data are used by a DST. The subsequent sections will describe probabilistic forecasts followed by a descrtion of a method to use low temporal resolution probabilistic weather forecasts by providing a relevance value to these data outside of their valid times.
Gigantic Jet Environments: A Meteorological Evaluation Using Reanalysis Data Sets
NASA Astrophysics Data System (ADS)
Splitt, M. E.; Lazarus, S. M.
2017-12-01
The meteorological conditions of gigantic jet (GJ) producing thunderstorms tend to be connected to maritime tropical environments. In particular, they have an affinity toward tropical disturbances including those with moderate values of upper tropospheric environmental wind shear. Wind shear related effects (including turbulence) in association with deep convection in these environments have been proposed as mechanisms for the arrangement of GJ favorable charge structures. This study focuses on a climatological evaluation in an effort to assess whether the proposed ingredients are consistent with observed GJ event regions. The Climate System Forecast System - Version 2 (CFSR V2) is used here to test for the proposed GJ conditions.
Derecho-like event in Bulgaria on 20 July 2011
NASA Astrophysics Data System (ADS)
Gospodinov, Ilian; Dimitrova, Tsvetelina; Bocheva, Lilia; Simeonov, Petio; Dimitrov, Rumen
2015-05-01
In this work we analyze the development of a severe-convective-storm system in northwestern Bulgaria on 20 July 2011 which exhibited derecho-like characteristics. Prior to this event, a derecho had never been documented in Bulgaria. The convective system was associated with a cold front. We present a synoptic-scale analysis of the evolution of the cold front and an overview of the wind and the damage that has occurred in the region with the strongest impact. The convective system consisted of two multi-cell thunderstorms that are analyzed in some detail, based on radar data. The two storms merged and the convective system evolved into a bow-shape reflectivity structure with two rear inflow notches. The analysis of the radar data revealed cloud top heights of 17 km, with the formation of а bounded weak echo region, a maximum radar reflectivity factor of 63 dBZ, and wind speeds above 30 m/s. The field investigation revealed patterns in the damaged crops typical of strong wind gusts.
NASA Astrophysics Data System (ADS)
Nugroho, G. A.; Sinatra, T.; Trismidianto; Fathrio, I.
2018-05-01
Simultaneous observation of transportable weather radar LAPAN-GMR25SP and rain-scanner SANTANU were conducted in Bandung and vicinity. The objective is to observe and analyse the weather condition in this area during rainy and transition season from March until April 2017. From the observation result reported some heavy rainfall with hail and strong winds occurred on March 17th and April 19th 2017. This events were lasted within 1 to 2 hours damaged some properties and trees in Bandung. Mesoscale convective system (MCS) are assumed to be the cause of this heavy rainfall. From two radar data analysis showed a more local convective activity in around 11.00 until 13.00 LT. This local convective activity are showed from the SANTANU observation supported by the VSECT and CMAX of the Transportable radar data that signify the convective activity within those area. MCS activity were observed one hour after that. This event are confirm by the classification of convective-stratiform echoes from radar data and also from the high convective index from Tbb Himawari 8 satellite data. The different MCS activity from this two case study is that April 19 have much more MCS activity than in March 17, 2017.
Spherical-shell boundaries for two-dimensional compressible convection in a star
NASA Astrophysics Data System (ADS)
Pratt, J.; Baraffe, I.; Goffrey, T.; Geroux, C.; Viallet, M.; Folini, D.; Constantino, T.; Popov, M.; Walder, R.
2016-10-01
Context. Studies of stellar convection typically use a spherical-shell geometry. The radial extent of the shell and the boundary conditions applied are based on the model of the star investigated. We study the impact of different two-dimensional spherical shells on compressible convection. Realistic profiles for density and temperature from an established one-dimensional stellar evolution code are used to produce a model of a large stellar convection zone representative of a young low-mass star, like our sun at 106 years of age. Aims: We analyze how the radial extent of the spherical shell changes the convective dynamics that result in the deep interior of the young sun model, far from the surface. In the near-surface layers, simple small-scale convection develops from the profiles of temperature and density. A central radiative zone below the convection zone provides a lower boundary on the convection zone. The inclusion of either of these physically distinct layers in the spherical shell can potentially affect the characteristics of deep convection. Methods: We perform hydrodynamic implicit large eddy simulations of compressible convection using the MUltidimensional Stellar Implicit Code (MUSIC). Because MUSIC has been designed to use realistic stellar models produced from one-dimensional stellar evolution calculations, MUSIC simulations are capable of seamlessly modeling a whole star. Simulations in two-dimensional spherical shells that have different radial extents are performed over tens or even hundreds of convective turnover times, permitting the collection of well-converged statistics. Results: To measure the impact of the spherical-shell geometry and our treatment of boundaries, we evaluate basic statistics of the convective turnover time, the convective velocity, and the overshooting layer. These quantities are selected for their relevance to one-dimensional stellar evolution calculations, so that our results are focused toward studies exploiting the so-called 321D link. We find that the inclusion in the spherical shell of the boundary between the radiative and convection zones decreases the amplitude of convective velocities in the convection zone. The inclusion of near-surface layers in the spherical shell can increase the amplitude of convective velocities, although the radial structure of the velocity profile established by deep convection is unchanged. The impact of including the near-surface layers depends on the speed and structure of small-scale convection in the near-surface layers. Larger convective velocities in the convection zone result in a commensurate increase in the overshooting layer width and a decrease in the convective turnover time. These results provide support for non-local aspects of convection.
NASA Technical Reports Server (NTRS)
Wilson, G. S.; Scoggins, J. R.
1976-01-01
The structure and variability of the atmosphere in areas of radar-observed convection were established by using 3-h rawinsonde and surface data from NASA's second Atmospheric Variability Experiment. Convective activity was shown to exist in areas where the low and middle troposphere is moist and the air is potentially and convectively unstable and has upward motion, in combination with positive moisture advection, at either the surface or within the boundary layer. The large variability of the parameters associated with convective storms over time intervals less than 12 h was also demonstrated so as to possibly produce a change in the probability of convective activity by a factor of 8 or more in 3 h. Between 30 and 60 percent of the total changes in parameters associated with convective activity over a 12-h period were shown to take place during a 3-h period. These large changes in parameters are related to subsynoptic-scale systems that often produce convective storms.
Boundary-layer diabatic processes, the virtual effect, and convective self-aggregation
NASA Astrophysics Data System (ADS)
Yang, D.
2017-12-01
The atmosphere can self-organize into long-lasting large-scale overturning circulations over an ocean surface with uniform temperature. This phenomenon is referred to as convective self-aggregation and has been argued to be important for tropical weather and climate systems. Here we use a 1D shallow water model and a 2D cloud-resolving model (CRM) to show that boundary-layer diabatic processes are essential for convective self-aggregation. We will show that boundary-layer radiative cooling, convective heating, and surface buoyancy flux help convection self-aggregate because they generate available potential energy (APE), which sustains the overturning circulation. We will also show that evaporative cooling in the boundary layer (cold pool) inhibits convective self-aggregation by reducing APE. Both the shallow water model and CRM results suggest that the enhanced virtual effect of water vapor can lead to convective self-aggregation, and this effect is mainly in the boundary layer. This study proposes new dynamical feedbacks for convective self-aggregation and complements current studies that focus on thermodynamic feedbacks.
Silicon Web Process Development
NASA Technical Reports Server (NTRS)
Duncan, C. S.; Seidensticker, R. G.; Hopkins, R. H.; Mchugh, J. P.; Hill, F. E.; Heimlich, M. E.; Driggers, J. M.
1978-01-01
Progress in the development of techniques to grow silicon web at 25 wq cm/min output rate is reported. Feasibility of web growth with simultaneous melt replenishment is discussed. Other factors covered include: (1) tests of aftertrimmers to improve web width; (2) evaluation of growth lid designs to raise speed and output rate; (3) tests of melt replenishment hardware; and (4) investigation of directed gas flow systems to control unwanted oxide deposition in the system and to improve convective cooling of the web. Compatibility with sufficient solar cell performance is emphasized.
Uddin, Mohammed J.; Khan, Waqar A.; Ismail, Ahmad Izani Md.
2015-01-01
Taking into account the effect of constant convective thermal and mass boundary conditions, we present numerical solution of the 2-D laminar g-jitter mixed convective boundary layer flow of water-based nanofluids. The governing transport equations are converted into non-similar equations using suitable transformations, before being solved numerically by an implicit finite difference method with quasi-linearization technique. The skin friction decreases with time, buoyancy ratio, and thermophoresis parameters while it increases with frequency, mixed convection and Brownian motion parameters. Heat transfer rate decreases with time, Brownian motion, thermophoresis and diffusion-convection parameters while it increases with the Reynolds number, frequency, mixed convection, buoyancy ratio and conduction-convection parameters. Mass transfer rate decreases with time, frequency, thermophoresis, conduction-convection parameters while it increases with mixed convection, buoyancy ratio, diffusion-convection and Brownian motion parameters. To the best of our knowledge, this is the first paper on this topic and hence the results are new. We believe that the results will be useful in designing and operating thermal fluids systems for space materials processing. Special cases of the results have been compared with published results and an excellent agreement is found. PMID:25933066
What Determines Upscale Growth of Oceanic Convection into MCSs?
NASA Astrophysics Data System (ADS)
Zipser, E. J.
2017-12-01
Over tropical oceans, widely scattered convection of various depths may or may not grow upscale into mesoscale convective systems (MCSs). But what distinguishes the large-scale environment that favors such upscale growth from that favoring "unorganized", scattered convection? Is it some combination of large-scale low-level convergence and ascending motion, combined with sufficient instability? We recently put this to a test with ERA-I reanalysis data, with disappointing results. The "usual suspects" of total column water vapor, large-scale ascent, and CAPE may all be required to some extent, but their differences between large MCSs and scattered convection are small. The main positive results from this work (already published) demonstrate that the strength of convection is well correlated with the size and perhaps "organization" of convective features over tropical oceans, in contrast to tropical land, where strong convection is common for large or small convective features. So, important questions remain: Over tropical oceans, how should we define "organized" convection? By size of the precipitation area? And what environmental conditions lead to larger and better organized MCSs? Some recent attempts to answer these questions will be described, but good answers may require more data, and more insights.
Chapdelaine, Isabelle; de Roij van Zuijdewijn, Camiel L.M.; Mostovaya, Ira M.; Lévesque, Renée; Davenport, Andrew; Blankestijn, Peter J.; Wanner, Christoph; Nubé, Menso J.; Grooteman, Muriel P.C.
2015-01-01
In post-dilution online haemodiafiltration (ol-HDF), a relationship has been demonstrated between the magnitude of the convection volume and survival. However, to achieve high convection volumes (>22 L per session) detailed notion of its determining factors is highly desirable. This manuscript summarizes practical problems and pitfalls that were encountered during the quest for high convection volumes. Specifically, it addresses issues such as type of vascular access, needles, blood flow rate, recirculation, filtration fraction, anticoagulation and dialysers. Finally, five of the main HDF systems in Europe are briefly described as far as HDF prescription and optimization of the convection volume is concerned. PMID:25815176
NASA Astrophysics Data System (ADS)
Gururaja Rao, C.; Nagabhushana Rao, V.; Krishna Das, C.
2008-04-01
Prominent results of a simulation study on conjugate convection with surface radiation from an open cavity with a traversable flush mounted discrete heat source in the left wall are presented in this paper. The open cavity is considered to be of fixed height but with varying spacing between the legs. The position of the heat source is varied along the left leg of the cavity. The governing equations for temperature distribution along the cavity are obtained by making energy balance between heat generated, conducted, convected and radiated. Radiation terms are tackled using radiosity-irradiation formulation, while the view factors, therein, are evaluated using the crossed-string method of Hottel. The resulting non-linear partial differential equations are converted into algebraic form using finite difference formulation and are subsequently solved by Gauss Seidel iterative technique. An optimum grid system comprising 111 grids along the legs of the cavity, with 30 grids in the heat source and 31 grids across the cavity has been used. The effects of various parameters, such as surface emissivity, convection heat transfer coefficient, aspect ratio and thermal conductivity on the important results, including local temperature distribution along the cavity, peak temperature in the left and right legs of the cavity and relative contributions of convection and radiation to heat dissipation in the cavity, are studied in great detail.
NASA Technical Reports Server (NTRS)
Ng, Hok K.; Grabbe, Shon; Mukherjee, Avijit
2010-01-01
The optimization of traffic flows in congested airspace with varying convective weather is a challenging problem. One approach is to generate shortest routes between origins and destinations while meeting airspace capacity constraint in the presence of uncertainties, such as weather and airspace demand. This study focuses on development of an optimal flight path search algorithm that optimizes national airspace system throughput and efficiency in the presence of uncertainties. The algorithm is based on dynamic programming and utilizes the predicted probability that an aircraft will deviate around convective weather. It is shown that the running time of the algorithm increases linearly with the total number of links between all stages. The optimal routes minimize a combination of fuel cost and expected cost of route deviation due to convective weather. They are considered as alternatives to the set of coded departure routes which are predefined by FAA to reroute pre-departure flights around weather or air traffic constraints. A formula, which calculates predicted probability of deviation from a given flight path, is also derived. The predicted probability of deviation is calculated for all path candidates. Routes with the best probability are selected as optimal. The predicted probability of deviation serves as a computable measure of reliability in pre-departure rerouting. The algorithm can also be extended to automatically adjust its design parameters to satisfy the desired level of reliability.
Salt-Finger Convection in a Stratified Fluid Layer Induced by Thermal and Solutal Capillary Motion
NASA Technical Reports Server (NTRS)
Chen, Chuan F.; Chan, Cho Lik
1996-01-01
Salt-finger convection in a double-diffusive system is a motion driven by the release of gravitational potential due to different diffusion rates. Normally, when the gravitational field is reduced, salt-finger convection together with other convective motions driven by buoyancy forces will be rapidly suppressed. However, because the destabilizing effect of the concentration gradient is amplified by the Lewis number, with values varying from 10(exp 2) for aqueous salt solutions to 10 (exp 4) for liquid metals, salt-finger convection may be generated at much reduced gravity levels. In the microgravity environment, the surface tension gradient assumes a dominant role in causing fluid motion. In this paper, we report on some experimental results showing the generation of salt-finger convection due to capillary motio on the surface of a stratified fluid layer. A numerical simulation is presented to show the cause of salt-finger convection.
Applying an economical scale-aware PDF-based turbulence closure model in NOAA NCEP GCMs
NASA Astrophysics Data System (ADS)
Belochitski, A.; Krueger, S. K.; Moorthi, S.; Bogenschutz, P.; Pincus, R.
2016-12-01
A novel unified representation of sub-grid scale (SGS) turbulence, cloudiness, and shallow convection is being implemented into the NOAA NCEP Global Forecasting System (GFS) general circulation model. The approach, known as Simplified High Order Closure (SHOC), is based on predicting a joint PDF of SGS thermodynamic variables and vertical velocity and using it to diagnose turbulent diffusion coefficients, SGS fluxes, condensation and cloudiness. Unlike other similar methods, only one new prognostic variable, turbulent kinetic energy (TKE), needs to be intoduced, making the technique computationally efficient.SHOC is now incorporated into a version of GFS, as well as into the next generation of the NCEP global model - NOAA Environmental Modeling System (NEMS). Turbulent diffusion coefficients computed by SHOC are now used in place of those produced by the boundary layer turbulence and shallow convection parameterizations. Large scale microphysics scheme is no longer used to calculate cloud fraction or the large-scale condensation/deposition. Instead, SHOC provides these variables. Radiative transfer parameterization uses cloudiness computed by SHOC.Outstanding problems include high level tropical cloud fraction being too high in SHOC runs, possibly related to the interaction of SHOC with condensate detrained from deep convection.Future work will consist of evaluating model performance and tuning the physics if necessary, by performing medium-range NWP forecasts with prescribed initial conditions, and AMIP-type climate tests with prescribed SSTs. Depending on the results, the model will be tuned or parameterizations modified. Next, SHOC will be implemented in the NCEP CFS, and tuned and evaluated for climate applications - seasonal prediction and long coupled climate runs. Impact of new physics on ENSO, MJO, ISO, monsoon variability, etc will be examined.
Effects of wildfire on source-water quality and aquatic ecosystems, Colorado Front Range
Writer, Jeffrey H.; McCleskey, R. Blaine; Murphy, Sheila F.; Stone, Mike; Collins, Adrian; Thoms, Martin C.
2012-01-01
Watershed erosion can dramatically increase after wildfire, but limited research has evaluated the corresponding influence on source-water quality. This study evaluated the effects of the Fourmile Canyon wildfire (Colorado Front Range, USA) on source-water quality and aquatic ecosystems using high- frequency sampling. Dissolved organic carbon (DOC) and nutrient loads in stream water were evaluated for a one-year period during different types of runoff events, including spring snowmelt, and both frontal and summer convective storms. DOC export from the burned watershed did not increase relative to the unburned watershed during spring snowmelt, but substantial increases in DOC export were observed during summer convective storms. Elevated nutrient export from the burned watershed was observed during spring snowmelt and summer convective storms, which increased the primary productivity of stream biofilms. Wildfire effects on source-water quality were shown to be substantial following high-intensity storms, with the potential to affect drinking-water treatment processes.
Retrievals of ice cloud microphysical properties of deep convective systems using radar measurements
NASA Astrophysics Data System (ADS)
Tian, Jingjing; Dong, Xiquan; Xi, Baike; Wang, Jingyu; Homeyer, Cameron R.; McFarquhar, Greg M.; Fan, Jiwen
2016-09-01
This study presents newly developed algorithms for retrieving ice cloud microphysical properties (ice water content (IWC) and median mass diameter (Dm)) for the stratiform rain and thick anvil regions of deep convective systems (DCSs) using Next Generation Radar (NEXRAD) reflectivity and empirical relationships from aircraft in situ measurements. A typical DCS case (20 May 2011) during the Midlatitude Continental Convective Clouds Experiment (MC3E) is selected as an example to demonstrate the 4-D retrievals. The vertical distributions of retrieved IWC are compared with previous studies and cloud-resolving model simulations. The statistics from six selected cases during MC3E show that the aircraft in situ derived IWC and Dm are 0.47 ± 0.29 g m-3 and 2.02 ± 1.3 mm, while the mean values of retrievals have a positive bias of 0.19 g m-3 (40%) and negative bias of 0.41 mm (20%), respectively. To evaluate the new retrieval algorithms, IWC and Dm are retrieved for other DCSs observed during the Bow Echo and Mesoscale Convective Vortex Experiment (BAMEX) using NEXRAD reflectivity and compared with aircraft in situ measurements. During BAMEX, a total of 63, 1 min collocated aircraft and radar samples are available for comparisons, and the averages of radar retrieved and aircraft in situ measured IWC values are 1.52 g m-3 and 1.25 g m-3 with a correlation of 0.55, and their averaged Dm values are 2.08 and 1.77 mm. In general, the new retrieval algorithms are suitable for continental DCSs during BAMEX, especially within stratiform rain and thick anvil regions.
NASA Technical Reports Server (NTRS)
Mcnider, Richard T.
1992-01-01
In the spring and summer of 1986, NASA/Marshall Space Flight Center (MSFC) will sponsor the Satellite Precipitation And Cloud Experiment (SPACE) to be conducted in the Central Tennessee, Northern Alabama, and Northeastern Mississippi area. The field program will incorporate high altitude flight experiments associated with meteorological remote sensor development for future space flight, and an investigation of precipitation processes associated with mesoscale and small convective systems. In addition to SPACE, the MIcroburst and Severe Thunderstorm (MIST) program, sponsored by the National Science Foundation (NSF), and the FAA-Lincoln Laboratory Operational Weather Study (FLOWS), sponsored by the Federal Aviation Administration (FAA), will take place concurrently within the SPACE experiment area. All three programs (under the joint acronym COHMEX (COoperative Huntsville Meteorological EXperiment)) will provide a data base for detailed analysis of mesoscale convective systems while providing ground truth comparisons for remote sensor evaluation. The purpose of this document is to outline the experiment design criteria for SPACE, and describe the special observing facilities and data sets that will be available under the COHMEX joint program. In addition to the planning of SPACE-COHMEX, this document covers three other parts of the program. The field program observations' main activity was the operation of an upper air rawinsonde network to provide ground truth for aircraft and spacecraft observations. Another part of the COHMEX program involved using boundary layer mesoscale models to study and simulate the initiation and organization of moist convection due to mesoscale thermal and mechanical circulations. The last part of the program was the collection, archival and distribution of the resulting COHMEX-SPACE data sets.
2012-03-01
Planetary Boundary Layer POD—Probability of Detection RCA—Rossby Centre Regional Atmospheric Model RMSE—Root Mean Square Error RUC—Rapid Update Cycle SWW...SIGNIFICANCE ....................................1 B. NON-CONVECTIVE WINDS DEFINITIONS AND THRESHOLDS ......4 C . METEOROLOGY ASSOCIATED WITH NON-CONVECTIVE...19 B. RESULTS FROM PREVIOUS STUDIES ON THE WGE METHOD ....21 C . RAPID UPDATE CYCLE (RUC) EMPIRICAL METHOD .....................25 III. DATA AND
Experimental Evaluation of a Water Shield for a Surface Power Reactor
NASA Technical Reports Server (NTRS)
Pearson, J. B.; Reid, R.; Sadasivan, P.; Stewart, E.
2007-01-01
A water based shielding system is being investigated for use on initial lunar surface power systems. The use of water may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. A representative lunar surface reactor design is evaluated at various power levels in the Water Shield Testbed (WST) at the NASA Marshall Space Flight Center. The evaluation compares the experimental data from the WST to CFD models. Performance of a water shield on the lunar surface is predicted by CFD models anchored to test data, and by matching relevant dimensionless parameters.
NASA Technical Reports Server (NTRS)
Ferrier, Brad S.; Tao, Wei-Kuo; Simpson, Joanne
1991-01-01
The basic features of a new and improved bulk-microphysical parameterization capable of simulating the hydrometeor structure of convective systems in all types of large-scale environments (with minimal adjustment of coefficients) are studied. Reflectivities simulated from the model are compared with radar observations of an intense midlatitude convective system. Simulated reflectivities using the novel four-class ice scheme with a microphysical parameterization rain distribution at 105 min are illustrated. Preliminary results indicate that this new ice scheme works efficiently in simulating midlatitude continental storms.
Analysis of Summer Thunderstorms in Central Alabama Using the NASA Land Information System
NASA Technical Reports Server (NTRS)
James, Robert; Case, Jonathan; Molthan, Andrew; Jedloved, Gary
2010-01-01
Forecasters have difficulty predicting "random" afternoon thunderstorms during the summer months. Differences in soil characteristics could be a contributing factor for storms. The NASA Land Information System (LIS) may assist forecasters in predicting summer convection by identifying boundaries in land characteristics. This project identified case dates during the summer of 2009 by analyzing synoptic weather maps, radar, and satellite data to look for weak atmospheric forcing and disorganized convective development. Boundaries in land characteristics that may have lead to convective initiation in central Alabama were then identified using LIS.
Research of heat transfer of staggered horizontal bundles of finned tubes at free air convection
NASA Astrophysics Data System (ADS)
Novozhilova, A. V.; Maryna, Z. G.; Samorodov, A. V.; Lvov, E. A.
2017-11-01
The study of free-convective processes is important because of the cooling problem in many machines and systems, where other ways of cooling are impossible or impractical. Natural convective processes are common in the steam turbine air condensers of electric power plants located within the city limits, in dry cooling towers of circulating water systems, in condensers cooled by air and water, in radiators cooling oil of power electric transformers, in emergency cooling systems of nuclear reactors, in solar power, as well as in air-cooling of power semiconductor energy converters. All this makes actual the synthesis of the results of theoretical and experimental research of free convection for heat exchangers with finned tube bundles. The results of the study of free-convection heat transfer for two-, three- and four-row staggered horizontal bundles of industrial bimetallic finned tubes with finning factor of 16.8 and equilateral tubes arrangement are presented. Cross and diagonal steps in the bundles are the same: 58; 61; 64; 70; 76; 86; 100 mm, which corresponds to the relative steps: 1.042; 1.096; 1.152; 1.258; 1.366; 1.545; 1.797. These steps are standardized for air coolers. An equation for calculating the free-convection heat transfer, taking into account the influence of geometrical parameters in the range of Rayleigh number from 30,000 to 350,000 with an average deviation of ± 4.8%, has been obtained. The relationship presented in the article allows designing a wide range of air coolers for various applications, working in the free convection modes.
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Wang, Y.; Lang, S.; Ferrier, B.; Simpson, J.; Einaudi, Franco (Technical Monitor)
2000-01-01
The 3D Goddard Cumulus Ensemble (GCE) model was utilized to examine the behavior and response of simulated deep tropical cloud systems that occurred over the west Pacific warm pool region, the Atlantic ocean and the central United States. The periods chosen for simulation were convectively active periods during TOGA-COARE (February 22 1993, December 11-17, 1992; December 19-28, February 9-13, 1993), GATE (September 4, 1974), LBA (January 26 and February 23, 1998), ARM (1997 IOP) and PRESTORM (June 11, 1985). We will examine differences in the microphysics for both warm rain and ice processes (evaporation /sublimation and condensation/ deposition), Q1 (Temperature), Q2 (Water vapor) and Q3 (momentum both U and V) budgets for these three convective events from different large-scale environments. The contribution of stratiform precipitation and its relationship to the vertical shear of the large-scale horizontal wind will also be examined. New improvements to the GCE model (i.e., microphysics: 4ICE two moments and 3ICE one moment; advection schemes) as well as their sensitivity to the model results will be discussed. Preliminary results indicated that various microphysical schemes could have a major impact on stratiform formation as well as the size of convective systems. However, they do not change the major characteristics of the convective systems, such as: arc shape, strong rotational circulation on both ends of system, heavy precipitation along the leading edge of systems.
A cloud, precipitation and electrification modeling effort for COHMEX
NASA Technical Reports Server (NTRS)
Orville, Harold D.; Helsdon, John H.; Farley, Richard D.
1991-01-01
In mid-1987, the Modeling Group of the Institute of Atmospheric Sciences (IAS) began to simulate and analyze cloud runs that were made during the Cooperative Huntsville Meteorological Experiment (COHMEX) Project and later. The cloud model was run nearly every day during the summer 1986 COHMEX Project. The Modeling Group was then funded to analyze the results, make further modeling tests, and help explain the precipitation processes in the Southeastern United States. The main science objectives of COHMEX were: (1) to observe the prestorm environment and understand the physical mechanisms leading to the formation of small convective systems and processes controlling the production of precipitation; (2) to describe the structure of small convective systems producing precipitation including the large and small scale events in the environment surrounding the developing and mature convective system; (3) to understand the interrelationships between electrical activity within the convective system and the process of precipitation; and (4) to develop and test numerical models describing the boundary layer, tropospheric, and cloud scale thermodynamics and dynamics associated with small convective systems. The latter three of these objectives were addressed by the modeling activities of the IAS. A series of cloud modes were used to simulate the clouds that formed during the operational project. The primary models used to date on the project were a two dimensional bulk water model, a two dimensional electrical model, and to a lesser extent, a two dimensional detailed microphysical cloud model. All of the models are based on fully interacting microphysics, dynamics, thermodynamics, and electrical equations. Only the 20 July 1986 case was analyzed in detail, although all of the cases run during the summer were analyzed as to how well they did in predicting the characteristics of the convection for that day.
NASA Technical Reports Server (NTRS)
Wang, P.; Li, P.
1998-01-01
A high-resolution numerical study on parallel systems is reported on three-dimensional, time-dependent, thermal convective flows. A parallel implentation on the finite volume method with a multigrid scheme is discussed, and a parallel visualization systemm is developed on distributed systems for visualizing the flow.
Results for the Aboveground Configuration of the Boiling Water Reactor Dry Cask Simulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durbin, Samuel G.; Lindgren, Eric R.
The thermal performance of commercial nuclear spent fuel dry storage casks is evaluated through detailed numerical analysis. These modeling efforts are completed by the vendor to demonstrate performance and regulatory compliance. The calculations are then independently verified by the Nuclear Regulatory Commission (NRC). Carefully measured data sets generated from testing of full-sized casks or smaller cask analogs are widely recognized as vital for validating these models. Recent advances in dry storage cask designs have significantly increased the maximum thermal load allowed in a cask, in part by increasing the efficiency of internal conduction pathways, and also by increasing the internalmore » convection through greater canister helium pressure. These same canistered cask systems rely on ventilation between the canister and the overpack to convect heat away from the canister to the environment for both above- and below-ground configurations. While several testing programs have been previously conducted, these earlier validation attempts did not capture the effects of elevated helium pressures or accurately portray the external convection of above-ground and below-ground canistered dry cask systems. The purpose of the current investigation was to produce data sets that can be used to test the validity of the assumptions associated with the calculations used to determine steady-state cladding temperatures in modern dry casks that utilize elevated helium pressure in the sealed canister in an above-ground configuration.« less
Different Applications of FORTRACC: From Convective Clouds to thunderstorms and radar fields
NASA Astrophysics Data System (ADS)
Morales, C.; Machado, L. A.
2009-09-01
The algorithm Forecasting and Tracking the Evolution of Cloud Clusters (ForTraCC), Vila et al. (2008), has been employed operationally in Brazil since 2005 to track and forecast the development of convective clouds. This technique depicts the main morphological features of the cloud systems and most importantly it reconstructs its entire life cycle. Based on this information, several relationships that use the area expansion and convective and stratiform fraction are employed to predict the life time duration and cloud area. Because of these features, the civil defense and power companies are using this information to mitigate the damages in the population. Further developments in FORTRACC included the integration of satellite rainfall retrievals, radar fields and thunderstorm initiation. These improvements try to address the following problems: a) most of the satellite rainfall retrievals do not take into account the life cycle stage that it is a key element on defining the rain area and rain intensity; b) by using the life cycle information it is possible to better predict the precipitation pattern observed in the radar fields; c) cloud signatures are associated to the development of systems that have lightning and no lightning activity. During the presentation, an overview of the different applications of FORTRACC will be presented including case studies and evaluation of the technique. Finally, the presentation will address how the users can have access to the algorithm to implement in their institute.
NASA Technical Reports Server (NTRS)
Kramer, T.; Brogren, E.; Siegel, B.
1984-01-01
Cryogenic propellant tank insulations or liquid oxygen/liquid hydrogen low-thrust 2224N (500 lbf) propulsion systems (LTPS) were assessed. The insulation studied consisted of combinations of N2-purged foam and multilayer insulation (MLI) as well as He-purged MLI-only. Heat leak and payload performance predictions were made for three shuttle-launched LTPS designed for shuttle bay packaged payload densities of 56 kg cu/m (3.5 lbm/cu ft), 40 kg/cu m (2.5 lbm/cu ft) and 24 kg/cu m (1.5 lbm/cu ft). Foam/MLI insulations were found to increase LTPS payload delivery capability when compared with He-purged MLI-only. An additional benefit of foam/MLI was reduced operational complexity because orbiter cargo bay N2 purge gas could be used for MLI purging. Maximum payload mass benefit occurred when an enhanced convection, rather than natural convection, heat transfer was specified for the insulation purge enclosure. The enhanced convection environment allowed minimum insulation thickness to be used for the foam/MLI interface temperature selected to correspond to the moisture dew point in the N2 purge gas. Experimental verification of foam/MLI benefits was recommended. A conservative program cost estimate for testing a MLI-foam insulated tank was 2.1 million dollars. This cost could be reduced significantly without increasing program risk.
NASA Astrophysics Data System (ADS)
Di Girolamo, Paolo; Summa, Donato; Stelitano, Dario
2013-05-01
An approach to determine the convective available potential energy (CAPE) and the convective inhibition (CIN) based on the use of data from a Raman lidar system is illustrated in this work. The use of Raman lidar data allows to provide high temporal resolution measurements (5 min) of CAPE and CIN and follow their evolution over extended time periods covering the full cycle of convective activity. Lidar-based measurements of CAPE and CIN are obtained from Raman lidar measurements of the temperature and water vapor mixing ratio profiles and the surface measurements of temperature, pressure and dew point temperature provided by a surface weather station. The approach is applied to the data collected by the Raman lidar system BASIL in the frame of COPS. Attention was focused on 15 July and 25-26 July 2007. Lidar-based measurements are in good agreement with simultaneous measurements from radiosondes and with estimates from different mesoscale models.
Geometric effects on bilayer convection in cylindrical containers
NASA Astrophysics Data System (ADS)
Johnson, Duane Thomas
The study of convection in two immiscible fluid layers is of interest for reasons both theoretical as well as applied. Recently, bilayer convection has been used as a model of convection in the earth's mantle. It is also an interesting system to use in the study of pattern formation. Bilayer convection also occurs in a process known as liquid encapsulated crystal growth, which is used to grow compound semiconductors. It is the last application which motivates this study. To analyze bilayer convection, theoretical models, numerical calculations and experiments were used. One theoretical model involves the derivation of the Navier- Stokes and energy equation for two immiscible fluid layers, using the Boussinesq approximation. A weakly nonlinear analysis was also performed to study the behavior of the system slightly beyond the onset of convection. Numerical calculations were necessary to solve both models. The experiments involved a single liquid layer of silicone oil, superposed by a layer of air. The radius and height of each fluid layer were changed to observe different flow patterns at the onset of convection. From the experiments and theory, two major discoveries were made as well as several interesting observations. The first discovery is the existence of codimension-two points-particular aspect ratios where two flow patterns coexist-in cylindrical containers. At these points, dynamic switching between different flow patterns was observed. The second discovery was the effect of air convection on the flow pattern in silicone oil. Historically, air has been considered a passive medium that has no effect on the lower fluid. However, experiments were done to show that for large air heights, convection in the air can cause radial temperature gradients at the liquid interface. These temperature gradients then cause surface tension gradient-driven flows. It was also shown that changing the radius of the container can change the driving force of convection from a surface tension gradient-driven to buoyancy-driven and back again. Finally, the weakly nonlinear analysis was able to give a qualitative description of codimension-two points as well as the change in flow patterns due to the convecting air layer.
Three-dimensional convection of binary mixtures in porous media.
Umla, R; Augustin, M; Huke, B; Lücke, M
2011-11-01
We investigate convection patterns of binary mixtures with a positive separation ratio in porous media. As setup, we choose the Rayleigh-Bénard system of a fluid layer heated from below. Results are obtained by a multimode Galerkin method. Using this method, we compute square and crossroll patterns, and we analyze their structural, bifurcation, and stability properties. Evidence is provided that, for a strong enough Soret effect, both structures exist as stable forms of convection. Some of their properties are found to be similar to square and crossroll convection in the system without porous medium. However, there are also qualitative differences. For example, squares can be destabilized by oscillatory perturbations with square symmetry in porous media, and their velocity isolines are deformed in the so-called Soret regime.
Cloud draft structure and trace gas transport
NASA Technical Reports Server (NTRS)
Scala, John R.; Tao, Wei-Kuo; Thompson, Anne M.; Simpson, Joanne; Garstang, Michael; Pickering, Kenneth E.; Browell, Edward V.; Sachse, Glen W.; Gregory, Gerald L.; Torres, Arnold L.
1990-01-01
During the second Amazon Boundary Layer Experiment (ABLE 2B), meteorological observations, chemical measurements, and model simulations are utilized in order to interpret convective cloud draft structure and to analyze its role in transport and vertical distribution of trace gases. One-dimensional photochemical model results suggest that the observed poststorm changes in ozone concentration can be attributed to convective transports rather than photochemical production and the results of a two-dimensional time-dependent cloud model simulation are presented for the May 6, 1987 squall system. The mesoscale convective system exhibited evidence of significant midlevel detrainment in addition to transports to anvil heights. Chemical measurements of O3 and CO obtained in the convective environment are used to predict photochemical production within the troposphere and to corroborate the cloud model results.
A polarimetric radar analysis of convection observed during NAME and TiMREX
NASA Astrophysics Data System (ADS)
Rowe, Angela Kay
2011-12-01
The mountainous regions of northwestern Mexico and southwestern Taiwan experience periods of intense rainfall associated with the North American and Asian monsoons, respectively, as warm, moist air is ushered onshore due to a reversal of mean low-level winds. Potentially unstable air is lifted along the steep topography, leading to convective initiation over the high peaks and adjacent foothills in both regions. In addition, an enhancement of convection in preexisting systems is observed due to interaction with the terrain, leading to localized heavy rain along the western slopes. The predictability of warm-reason rainfall in these regions is limited by the lack of understanding of the nature of these precipitating features, including the diurnal variability and elevation-dependent trends in microphysical processes. Using polarimetric data from NCAR's S-band, polarimetric radar (S-Pol), deployed during the North American Monsoon Experiment (NAME) and Terrain-influenced Monsoon Rainfall Experiment (TiMREX), individual convective elements were identified and tracked, allowing for an analysis of hydrometeor characteristics within evolving cells. Furthermore, a feature classification algorithm was applied to these datasets to compare characteristics associated with isolated convection to cells contained within organized systems. Examples of isolated cells from a range of topography during NAME revealed the presence of ZDR columns, attributed to the lofting of drops above the melting level, where subsequent freezing and growth by riming led to the production of graupel along the western slopes of the Sierra Madre Occidental (SMO) and adjacent coastal plain. Melting of large ice hydrometeors was also noted over higher terrain, leading to short-lived yet intense rainfall despite truncated warm-cloud depths compared to cells over the lower elevations. Cells embedded within mesoscale convective systems (MCSs) during NAME also displayed the combined roles of warm-rain and ice-based microphysical processes as convection organized along the terrain. In addition to enhancing precipitation along the western slopes of the SMO, melting ice contributed to the production of mesoscale outflow boundaries, which provided an additional focus mechanism for convective initiation over the lower elevations and resulted in propagation of these systems toward the coast. Intense rainfall was also observed along the Central Mountain Range (CMR) in Taiwan; however, in contrast to the systems during NAME, this enhancement occurred as MCSs moved onshore within the southwesterly flow and intercepted the CMR's steep slopes. Elevated maxima in polarimetric variables, similar to observations in convection during NAME, indicated a contribution from melting ice to rainfall at these higher elevations. Vertical profiles of ice mass, however, revealed greater amounts throughout the entire vertical depth of convection during NAME. In addition, isolated cells during TiMREX were relatively shallow compared to organized convection in both regions. Nonetheless, instantaneous rain rates were comparable during both experiments, suggesting efficient warm-rain processes within convection observed in the TiMREX radar domain and emphasizing a range of microphysical processes in these two regions. In addition, the greatest contribution to hourly accumulated rain mass in these regions was associated with deep organized systems along the western slopes, posing threats along the steep topography due to flash flooding and subsequent landslides, emphasizing the need for accurate prediction and understanding of the processes that lead to intense rainfall in these vulnerable regions.
Sims, Aaron P; Alapaty, Kiran; Raman, Sethu
2017-01-01
Two mesoscale circulations, the Sandhills circulation and the sea breeze, influence the initiation of deep convection over the Sandhills and the coast in the Carolinas during the summer months. The interaction of these two circulations causes additional convection in this coastal region. Accurate representation of mesoscale convection is difficult as numerical models have problems with the prediction of the timing, amount, and location of precipitation. To address this issue, the authors have incorporated modifications to the Kain-Fritsch (KF) convective parameterization scheme and evaluated these mesoscale interactions using a high-resolution numerical model. The modifications include changes to the subgrid-scale cloud formulation, the convective turnover time scale, and the formulation of the updraft entrainment rates. The use of a grid-scaling adjustment parameter modulates the impact of the KF scheme as a function of the horizontal grid spacing used in a simulation. Results indicate that the impact of this modified cumulus parameterization scheme is more effective on domains with coarser grid sizes. Other results include a decrease in surface and near-surface temperatures in areas of deep convection (due to the inclusion of the effects of subgrid-scale clouds on the radiation), improvement in the timing of convection, and an increase in the strength of deep convection.
Convective instability and boundary driven oscillations in a reaction-diffusion-advection model
NASA Astrophysics Data System (ADS)
Vidal-Henriquez, Estefania; Zykov, Vladimir; Bodenschatz, Eberhard; Gholami, Azam
2017-10-01
In a reaction-diffusion-advection system, with a convectively unstable regime, a perturbation creates a wave train that is advected downstream and eventually leaves the system. We show that the convective instability coexists with a local absolute instability when a fixed boundary condition upstream is imposed. This boundary induced instability acts as a continuous wave source, creating a local periodic excitation near the boundary, which initiates waves travelling both up and downstream. To confirm this, we performed analytical analysis and numerical simulations of a modified Martiel-Goldbeter reaction-diffusion model with the addition of an advection term. We provide a quantitative description of the wave packet appearing in the convectively unstable regime, which we found to be in excellent agreement with the numerical simulations. We characterize this new instability and show that in the limit of high advection speed, it is suppressed. This type of instability can be expected for reaction-diffusion systems that present both a convective instability and an excitable regime. In particular, it can be relevant to understand the signaling mechanism of the social amoeba Dictyostelium discoideum that may experience fluid flows in its natural habitat.
Mantle convection on modern supercomputers
NASA Astrophysics Data System (ADS)
Weismüller, Jens; Gmeiner, Björn; Mohr, Marcus; Waluga, Christian; Wohlmuth, Barbara; Rüde, Ulrich; Bunge, Hans-Peter
2015-04-01
Mantle convection is the cause for plate tectonics, the formation of mountains and oceans, and the main driving mechanism behind earthquakes. The convection process is modeled by a system of partial differential equations describing the conservation of mass, momentum and energy. Characteristic to mantle flow is the vast disparity of length scales from global to microscopic, turning mantle convection simulations into a challenging application for high-performance computing. As system size and technical complexity of the simulations continue to increase, design and implementation of simulation models for next generation large-scale architectures demand an interdisciplinary co-design. Here we report about recent advances of the TERRA-NEO project, which is part of the high visibility SPPEXA program, and a joint effort of four research groups in computer sciences, mathematics and geophysical application under the leadership of FAU Erlangen. TERRA-NEO develops algorithms for future HPC infrastructures, focusing on high computational efficiency and resilience in next generation mantle convection models. We present software that can resolve the Earth's mantle with up to 1012 grid points and scales efficiently to massively parallel hardware with more than 50,000 processors. We use our simulations to explore the dynamic regime of mantle convection assessing the impact of small scale processes on global mantle flow.
NASA Astrophysics Data System (ADS)
Lemone, Margaret A.; Zipser, Edward J.; Trier, Stanley B.
1998-12-01
A collection of case studies is used to elucidate the influence of environmental soundings on the structure and evolution of the convection in the mesoscale convective systems sampled by the turboprop aircraft in the Tropical Ocean Global Atmosphere (TOGA) Coupled Ocean-Atmosphere Response Experiment (COARE). The soundings were constructed primarily from aircraft data below 5-6 km and primarily from radiosonde data at higher altitudes.The well-documented role of the vertical shear of the horizontal wind in determining the mesoscale structure of tropical convection is confirmed and extended. As noted by earlier investigators, nearly all convective bands occurring in environments with appreciable shear below a low-level wind maximum are oriented nearly normal to the shear beneath the wind maximum and propagate in the direction of the low-level shear at a speed close to the wind maximum; when there is appreciable shear at middle levels (800-400 mb), convective bands form parallel to the shear. With appreciable shear at both levels, the lower-level shear determines the orientation of the primary convective bands. If the midlevel shear is opposite the low-level shear, secondary bands parallel to the midlevel shear will extend rearward from the primary band in later stages of its evolution; if the midlevel shear is 90 degrees to the low-level shear, the primary band will retain its two-dimensional mesoscale structure. Convection has no obvious mesoscale organization on days with little shear or days with widespread convection.Environmental temperatures and humidities have no obvious effect on the mesoscale convective pattern, but they affect COARE convection in other ways. The high tops of COARE convection are related to high parcel equilibrium levels, which approach 100 mb in some cases. Convective available potential energies are larger than those in the GARP (Global Atmospheric Research Program) Atlantic Tropical Experiment (GATE) mainly because of the higher equilibrium levels. The buoyancy integrated over the lowest 500 mb is similar for the two experiments. Convective inihibitions are small, enabling convection to propagate with only weak forcing. Comparison of slow-moving shear-parallel bands in COARE and GATE suggests that lower relative humidities between the top of the mixed layer and 500 mb can shorten their lifetimes significantly.COARE mesoscale organization and evolution differs from what was observed in GATE. Less-organized convection is more common in COARE. Of the convective bands observed, a greater fraction in COARE are faster-moving, shear-perpendicular squall lines. GATE slow-moving lines tend to be longer lived than those for COARE. The differences are probably traceable to differences in environmental shear and relative humidity, respectively.
Data Analysis and Non-local Parametrization Strategies for Organized Atmospheric Convection
NASA Astrophysics Data System (ADS)
Brenowitz, Noah D.
The intrinsically multiscale nature of moist convective processes in the atmosphere complicates scientific understanding, and, as a result, current coarse-resolution climate models poorly represent convective variability in the tropics. This dissertation addresses this problem by 1) studying new cumulus convective closures in a pair of idealized models for tropical moist convection, and 2) developing innovative strategies for analyzing high-resolution numerical simulations of organized convection. The first two chapters of this dissertation revisit a historical controversy about the use of convective closures based on the large-scale wind field or moisture convergence. In the first chapter, a simple coarse resolution stochastic model for convective inhibition is designed which includes the non-local effects of wind-convergence on convective activity. This model is designed to replicate the convective dynamics of a typical coarse-resolution climate prediction model. The non-local convergence coupling is motivated by the phenomena of gregarious convection, whereby mesoscale convective systems emit gravity waves which can promote convection at a distant locations. Linearized analysis and nonlinear simulations show that this convergence coupling allows for increased interaction between cumulus convection and the large-scale circulation, but does not suffer from the deleterious behavior of traditional moisture-convergence closures. In the second chapter, the non-local convergence coupling idea is extended to an idealized stochastic multicloud model. This model allows for stochastic transitions between three distinct cloud types, and non-local convergence coupling is most beneficial when applied to the transition from shallow to deep convection. This is consistent with recent observational and numerical modeling evidence, and there is a growing body of work highlighting the importance of this transition in tropical meteorology. In a series of idealized Walker cell simulations, convergence coupling enhances the persistence of Kelvin wave analogs in dry regions of the domain while leaving the dynamics in moist regions largely unaltered. The final chapter of this dissertation presents a technique for analyzing the variability of a direct numerical simulation of Rayleigh-Benard convection at large aspect ratio, which is a basic prototype of convective organization. High resolution numerical models are an invaluable tool for studying atmospheric dynamics, but modern data analysis techniques struggle with the extreme size of the model outputs and the trivial symmetries of the underlying dynamical systems (e.g. shift-invariance). A new data analysis approach which is invariant to spatial symmetries is derived by combining a quasi-Lagrangian description of the data, time-lagged embedding, and manifold learning techniques. The quasi-Lagrangian description is obtained by a straightforward isothermal binning procedure, which compresses the data in a dynamically-aware fashion. A small number of orthogonal modes returned by this algorithm are able to explain the highly intermittent dynamics of the bulk heat transfer, as quantified by the Nusselt Number.
NASA Astrophysics Data System (ADS)
Coniglio, Michael Charles
Common large-scale environments associated with the development of derecho-producing convective systems from a large number of events are identified using statistical clustering of the 500-mb geopotential heights as guidance. The majority of the events (72%) fall into three main patterns that include a well-defined upstream trough (40%), a ridge (20%), and a zonal, low-amplitude flow (12%), which is defined as an additional warm-season pattern that is not identified in past studies of derecho environments. Through an analysis of proximity soundings, discrepancies are found in both low-level and deep-tropospheric shear parameters between observations and the shear profiles considered favorable for strong, long-lived convective systems in idealized simulations. To explore the role of upper-level shear in derecho environments, a set of two-dimensional simulations of density currents within a dry, neutrally stable environment are used to examine the ability of a cold pool to lift environmental air within a vertically sheared flow. The results confirm that the addition of upper-level shear to a wind profile with weak to moderate low-level shear increases the vertical displacement of low-level parcels despite a decrease in the vertical velocity along the cold pool interface, as suggested by previous studies. Parcels that are elevated above the surface (1-2 km) overturn and are responsible for the deep lifting in the deep-shear environments. This deep overturning caused by the upper-level shear helps to maintain the tilt of the convective systems in more complex two-dimensional and three dimensional simulations. The overturning also is shown to greatly increase the size of the convective systems in the three-dimensional simulations by facilitating the initiation and maintenance of convective cells along the cold pool. When combined with estimates of the cold pool motion and the storm-relative hodograph, these results may best be used for the prediction of the demise of strong, linear mesoscale convective systems (MCSs) and may provide a conceptual model for the persistence of strong MCSs above a surface nocturnal inversion in situations that are not forced by a low-level jet.
An experimental and theoretical evaluation of increased thermal diffusivity phase change devices
NASA Technical Reports Server (NTRS)
White, S. P.; Golden, J. O.; Stermole, F. J.
1972-01-01
This study was to experimentally evaluate and mathematically model the performance of phase change thermal control devices containing high thermal conductivity metal matrices. Three aluminum honeycomb filters were evaluated at five different heat flux levels using n-oct-adecane as the test material. The system was mathematically modeled by approximating the partial differential equations with a three-dimensional implicit alternating direction technique. The mathematical model predicts the system quite well. All of the phase change times are predicted. The heating of solid phase is predicted exactly while there is some variation between theoretical and experimental results in the liquid phase. This variation in the liquid phase could be accounted for by the fact that there are some heat losses in the cell and there could be some convection in the experimental system.
NASA Astrophysics Data System (ADS)
Vimeux, Françoise; Tremoy, Guillaume; Risi, Camille; Gallaire, Robert
2011-07-01
Water stable isotopes (δ) in tropical regions are a valuable tool to study both convective processes and climate variability provided that local and remote controls on δ are well known. Here, we examine the intra-seasonal variability of the event-based isotopic composition of precipitation (δD Zongo) in the Bolivian Andes (Zongo valley, 16°20'S-67°47'W) from September 1st, 1999 to August 31st, 2000. We show that the local amount effect is a very poor parameter to explain δD Zongo. We thus explore the property of water isotopes to integrate both temporal and spatial convective activities. We first show that the local convective activity averaged over the 7-8 days preceding the rainy event is an important control on δD Zongo during the rainy season (~ 40% of the δD Zongo variability is captured). This could be explained by the progressive depletion of local water vapor by unsaturated downdrafts of convective systems. The exploration of remote convective controls on δD Zongo shows a strong influence of the South American SeeSaw (SASS) which is the first climate mode controlling the precipitation variability in tropical South America during austral summer. Our study clearly evidences that temporal and spatial controls are not fully independent as the 7-day averaged convection in the Zongo valley responds to the SASS. Our results are finally used to evaluate a water isotope enabled atmospheric general circulation model (LMDZ-iso), using the stretched grid functionality to run zoomed simulations over the entire South American continent (15°N-55°S; 30°-85°W). We find that zoomed simulations capture the intra-seasonal isotopic variation and its controls, though with an overestimated local sensitivity, and confirm the role of a remote control on δ according to a SASS-like dipolar structure.
Reduced-Order Modeling of 3D Rayleigh-Benard Turbulent Convection
NASA Astrophysics Data System (ADS)
Hassanzadeh, Pedram; Grover, Piyush; Nabi, Saleh
2017-11-01
Accurate Reduced-Order Models (ROMs) of turbulent geophysical flows have broad applications in science and engineering; for example, to study the climate system or to perform real-time flow control/optimization in energy systems. Here we focus on 3D Rayleigh-Benard turbulent convection at the Rayleigh number of 106 as a prototype for turbulent geophysical flows, which are dominantly buoyancy driven. The purpose of the study is to evaluate and improve the performance of different model reduction techniques using this setting. One-dimensional ROMs for horizontally averaged temperature are calculated using several methods. Specifically, the Linear Response Function (LRF) of the system is calculated from a large DNS dataset using Dynamic Mode Decomposition (DMD) and Fluctuation-Dissipation Theorem (FDT). The LRF is also calculated using the Green's function method of Hassanzadeh and Kuang (2016, J. Atmos. Sci.), which is based on using numerous forced DNS runs. The performance of these LRFs in estimating the system's response to weak external forcings or controlling the time-mean flow are compared and contrasted. The spectral properties of the LRFs and the scaling of the accuracy with the length of the dataset (for the data-driven methods) are also discussed.
NASA Technical Reports Server (NTRS)
Williamson, Rebecca; Carbo, Jorge; Luna, Bernadette; Webbon, Bruce W.
1998-01-01
Wearing impermeable garments for hazardous materials clean up can often present a health and safety problem for the wearer. Even short duration clean up activities can produce heat stress injuries in hazardous materials workers. It was hypothesized that an internal cooling system might increase worker productivity and decrease likelihood of heat stress injuries in typical HazMat operations. Two HazMat protective ensembles were compared during treadmill exercise. The different ensembles were created using two different suits: a Trelleborg VPS suit representative of current HazMat suits and a prototype suit developed by NASA engineers. The two life support systems used were a current technology Interspiro Spirolite breathing apparatus and a liquid air breathing system that also provided convective cooling. Twelve local members of a HazMat team served as test subjects. They were fully instrumented to allow a complete physiological comparison of their thermal responses to the different ensembles. Results showed that cooling from the liquid air system significantly decreased thermal stress. The results of the subjective evaluations of new design features in the prototype suit were also highly favorable. Incorporation of these new design features could lead to significant operational advantages in the future.
NASA Astrophysics Data System (ADS)
Stanford, McKenna W.
The High Altitude Ice Crystals - High Ice Water Content (HAIC-HIWC) field campaign produced aircraft retrievals of total condensed water content (TWC), hydrometeor particle size distributions, and vertical velocity (w) in high ice water content regions of tropical mesoscale convective systems (MCSs). These observations are used to evaluate deep convective updraft properties in high-resolution nested Weather Research and Forecasting (WRF) simulations of observed MCSs. Because simulated hydrometeor properties are highly sensitive to the parameterization of microphysics, three commonly used microphysical parameterizations are tested, including two bulk schemes (Thompson and Morrison) and one bin scheme (Fast Spectral Bin Microphysics). A commonly documented bias in cloud-resolving simulations is the exaggeration of simulated radar reflectivities aloft in tropical MCSs. This may result from overly strong convective updrafts that loft excessive condensate mass and from simplified approximations of hydrometeor size distributions, properties, species separation, and microphysical processes. The degree to which the reflectivity bias is a separate function of convective dynamics, condensate mass, and hydrometeor size has yet to be addressed. This research untangles these components by comparing simulated and observed relationships between w, TWC, and hydrometer size as a function of temperature. All microphysics schemes produce median mass diameters that are generally larger than observed for temperatures between -10 °C and -40 °C and TWC > 1 g m-3. Observations produce a prominent mode in the composite mass size distribution around 300 microm, but under most conditions, all schemes shift the distribution mode to larger sizes. Despite a much greater number of samples, all simulations fail to reproduce observed high TWC or high w conditions between -20 °C and -40 °C in which only a small fraction of condensate mass is found in relatively large particle sizes. Increasing model resolution and employing explicit cloud droplet nucleation decrease the size bias, but not nearly enough to reproduce observations. Because simulated particle sizes are too large across all schemes when controlling for temperature, w, and TWC, this bias is hypothesized to partly result from errors in parameterized microphysical processes in addition to overly simplified hydrometeor properties such as mass-size relationships and particle size distribution parameters.
NASA Astrophysics Data System (ADS)
Chang, W.; Wang, J.; Marohnic, J.; Kotamarthi, V. R.; Moyer, E. J.
2017-12-01
We use a novel rainstorm identification and tracking algorithm (Chang et al 2016) to evaluate the effects of using resolved convection on improving how faithfully high-resolution regional simulations capture precipitation characteristics. The identification and tracking algorithm allocates all precipitation to individual rainstorms, including low-intensity events with complicated features, and allows us to decompose changes or biases in total mean precipitation into their causes: event size, intensity, number, and duration. It allows lower threshold for tracking so captures nearly all rainfall and improves tracking, so that events that are clearly meteorologically related are tracked across lifespans up to days. We evaluate a series of dynamically downscaled simulations of the summertime United States at 12 and 4 km under different model configurations, and find that resolved convection offers the largest gains in reducing biases in precipitation characteristics, especially in event size. Simulations with parametrized convection produce event sizes 80-220% too large in extent; with resolved convection the bias is reduced to 30%. The identification and tracking algorithm also allows us to demonstrate that the diurnal cycle in rainfall stems not from temporal variation in the production of new events but from diurnal fluctuations in rainfall from existing events. We show further hat model errors in the diurnal cycle biases are best represented as additive offsets that differ by time of day, and again that convection-permitting simulations are most efficient in reducing these additive biases.
NASA Astrophysics Data System (ADS)
Lee, Y. H.; Min, K. H.
2017-12-01
We investigated the ability of high-resolution numerical weather prediction (NWP) model (nested grid spacing at 500 m) in simulating convective precipitation event over the Seoul metropolitan area on 16 August 2015. Intense rainfall occurred from 0930 UTC to 1030 UTC and subsequent trailing precipitation lasted until 1400 UTC. The synoptic condition for the convective event was characterized by a large value of convective available potential energy (CAPE) at the outer edge of a meso-high pressure system. Observational analysis showed that triggering mechanism for convective rainfall was provided by the convergence of northeasterly wind which was driven by a cold pool in the northeastern Kyonggi province. The cold pool formed after heavy rain occurred in northeastern Kyonggi province at 0500UTC. Several experiments were performed in order to evaluate the sensitivity of different initial conditions (IC12, IC18, IC00, IC06) and the impact of data assimilation (IC06A) on simulating the convective event. The quantitative precipitation forecasts (QPF) appeared to vary widely among the experiments, depending on the timing of ICs that were chosen. QPF amount was underestimated in all experiments when data assimilation was not performed. Among the four experiments, QPF amounts and locations were better simulated in the 1200 UTC 15 August (IC12) run due to large values of CAPE in late afternoon and the presence of low-level convergence zone in the metropolitan area. Although 0600 UTC 16 August (IC06) run simulated the largest CAPE in late afternoon, the location and amount of heavy rainfall were significantly different from observations. IC06 did not simulate the convergence of low-level wind associated with the mesoscale cold pool. However, when assimilation of surface observations and radar data at 0600 UTC was performed (IC06A), the simulation reproduced the location and amount of rainfall reasonably well, indicating that high-resolution NWP model with data assimilation can predict the local convective precipitation event with a short-life time (1 3 hours) effectively within 6 hours.
NASA Technical Reports Server (NTRS)
Zhang, Nengli; Chao, David F.
1999-01-01
The contact angle and the spreading process of sessile droplet are very crucial in many technological processes, such as painting and coating, material processing, film-cooling applications, lubrication, and boiling. Additionally, as it is well known that the surface free energy of polymers cannot be directly, measured for their elastic and viscous restraints. The measurements of liquid contact angle on the polymer surfaces become extremely important to evaluate the surface free energy of polymers through indirect methods linked with the contact angle data. Due to the occurrence of liquid evaporation is inevitable, the effects of evaporation on the contact angle and the spreading become very important for more complete understanding of these processes. It is of interest to note that evaporation can induce Marangoni-Benard convection in sessile drops. However, the impacts of the inside convection on the wetting and spreading processes are not clear. The experimental methods used by previous investigators cannot simultaneously measure the spreading process and visualize the convection inside. Based on the laser shadowgraphic system used by the present author, a very simple optical procedure has been developed to measure the contact angle, the spreading speed, the evaporation rate, and to visualize inside convection of a sessile drop simultaneously. Two CCD cameras were used to synchronously record the real-time diameter of the sessile drop, which is essential for determination of both spreading speed and evaporation rate, and the shadowgraphic image magnified by the sessile drop acting as a thin plano-convex lens. From the shadowgraph, the inside convection of the drop can be observed if any and the image outer diameter, which linked to the drop profile, can be measured. Simple equations have been derived to calculate the drop profile, including the instantaneous contact angle, height, and volume of the sessile drop, as well as the evaporation rate. The influence of the inside convection on the wetting and spreading processes can be figured out through comparison of the drop profiles with and without inside convection when the sessile drop is placed at different evaporation conditions.
NASA Technical Reports Server (NTRS)
Battaglia, A.; Mroz, K.; Lang, Tim; Tridon, F.; Tanelli, S.; Tian, Lin; Heymsfield, Gerald M.
2016-01-01
Due to the large natural variability of its microphysical properties, the characterization of solid precipitation is a longstanding problem. Since in situ observations are unavailable in severe convective systems, innovative remote sensing retrievals are needed to extend our understanding of such systems. This study presents a novel technique able to retrieve the density, mass, and effective diameter of graupel and hail in severe convection through the combination of airborne microwave remote sensing instruments. The retrieval is applied to measure solid precipitation properties within two convective cells observed on 2324 May 2014 over North Carolina during the IPHEx campaign by the NASA ER-2 instrument suite. Between 30 and 40 degrees of freedom of signal are associated with the measurements, which is insufficient to provide full microphysics profiling. The measurements have the largest impact on the retrieval of ice particle sizes, followed by ice water contents. Ice densities are mainly driven by a priori assumptions, though low relative errors in ice densities suggest that in extensive regions of the convective system, only particles with densities larger than 0.4 gcm3 are compatible with the observations. This is in agreement with reports of large hail on the ground and with hydrometeor classification derived from ground-based polarimetric radars observations. This work confirms that multiple scattering generated by large ice hydrometeors in deep convection is relevant for airborne radar systems already at Ku band. A fortiori, multiple scattering will play a pivotal role in such conditions also for Ku band spaceborne radars (e.g., the GPM Dual Precipitation Radar).
A study of the vortex structures around circular cylinder mounted on vertical heated plate
NASA Astrophysics Data System (ADS)
Malah, Hamid; Chumakov, Yurii S.; Levchenya, Alexander M.
2018-05-01
In recent years, studies of natural convection boundary layer interacting with obstacles draw much of attention, because of its practical applications. Pressure gradient resulting from this interaction leads to separation of the boundary layer. The formation of vortex structure around obstacle is characteristic to any kind of convection flow. In this paper, we describe the formation of three-dimensional vortex structure for the case of natural convection flow around the circular cylinder mounted on vertical heated plate. Navier-Stokes equations were used for numerical computations. The results proved the presence of a horseshoe vortex system in the case of natural convection flow as in the forced convection flow.
NASA Technical Reports Server (NTRS)
Davis, J. G.; Scoggins, J. R.
1981-01-01
Data from the Fourth Atmospheric Variability Experiment were used to investigate conditions/factors responsible for the development (local time rate-of-change) of convective instability, wind shear, and vertical motion in areas with varying degrees of convective activity. AVE IV sounding data were taken at 3 or 6 h intervals during a 36 h period on 24-25 April 1975 over approximately the eastern half of the United States. An error analysis was performed for each variable studied.
The feasibility of thermal and compositional convection in Earth's inner core
NASA Astrophysics Data System (ADS)
Lythgoe, Karen H.; Rudge, John F.; Neufeld, Jerome A.; Deuss, Arwen
2015-05-01
Inner core convection, and the corresponding variations in grain size and alignment, has been proposed to explain the complex seismic structure of the inner core, including its anisotropy, lateral variations and the F-layer at the base of the outer core. We develop a parametrized convection model to investigate the possibility of convection in the inner core, focusing on the dominance of the plume mode of convection versus the translation mode. We investigate thermal and compositional convection separately so as to study the end-members of the system. In the thermal case the dominant mode of convection is strongly dependent on the viscosity of the inner core, the magnitude of which is poorly constrained. Furthermore recent estimates of a large core thermal conductivity result in stable thermal stratification, hindering convection. However, an unstable density stratification may arise due to the pressure dependant partition coefficient of certain light elements. We show that this unstable stratification leads to compositionally driven convection, and that inner core translation is likely to be the dominant convective mode due to the low compositional diffusivity. The style of convection resulting from a combination of both thermal and compositional effects is not easy to understand. For reasonable parameter estimates, the stabilizing thermal buoyancy is greater than the destabilizing compositional buoyancy. However we anticipate complex double diffusive processes to occur given the very different thermal and compositional diffusivities.
The Feasibility of Thermal and Compositional Convection in Earth's Inner Core
NASA Astrophysics Data System (ADS)
Lythgoe, K.; Rudge, J. F.; Neufeld, J. A.; Deuss, A. F.
2014-12-01
Inner core convection, and the corresponding variations in grain size and alignment, has been proposed to explain the complex seismic structure of the inner core, including its anisotropy, lateral variations and the F-layer at the base of the outer core. We develop a parameterised convection model to investigate the possibility of convection in the inner core, focusing on the dominance of the plume mode of convection versus the translation mode. We investigate thermal and compositional convection separately so as to study the end-members of the system. In the thermal case the dominant mode of convection is strongly dependent on the viscosity of the inner core, the magnitude of which is poorly constrained. Furthermore recent estimates of a large core thermal conductivity result in stable thermal stratification, hindering convection. However, an unstable density stratification may arise due to the pressure dependant partition coefficient of certain light elements. We show that this unstable stratification leads to compositionally driven convection, and that inner core translation is likely to be the dominant convective mode due to the low compositional diffusivity. The style of convection resulting from a combination of both thermal and compositional effects is not easy to understand. The stabilising thermal buoyancy is greater than the destabilising compositional buoyancy, however we anticipate complex double diffusive processes to occur given the very different thermal and compositional diffusivities and more work is needed to understand these processes.
Qian, Yun; Yan, Huiping; Berg, Larry K.; ...
2016-10-28
Accuracy of turbulence parameterization in representing Planetary Boundary Layer (PBL) processes in climate models is critical for predicting the initiation and development of clouds, air quality issues, and underlying surface-atmosphere-cloud interactions. In this study, we 1) evaluate WRF model-simulated spatial patterns of precipitation and surface fluxes, as well as vertical profiles of potential temperature, humidity, moist static energy and moisture tendency terms as simulated by WRF at various spatial resolutions and with PBL, surface layer and shallow convection schemes against measurements, 2) identify model biases by examining the moisture tendency terms contributed by PBL and convection processes through nudging experiments,more » and 3) evaluate the dependence of modeled surface latent heat (LH) fluxes onPBL and surface layer schemes over the tropical ocean. The results show that PBL and surface parameterizations have surprisingly large impacts on precipitation, convection initiation and surface moisture fluxes over tropical oceans. All of the parameterizations tested tend to overpredict moisture in PBL and free atmosphere, and consequently result in larger moist static energy and precipitation. Moisture nudging tends to suppress the initiation of convection and reduces the excess precipitation. The reduction in precipitation bias in turn reduces the surface wind and LH flux biases, which suggests that the model drifts at least partly because of a positive feedback between precipitation and surface fluxes. The updated shallow convection scheme KF-CuP tends to suppress the initiation and development of deep convection, consequently decreasing precipitation. The Eta surface layer scheme predicts more reasonable LH fluxes and the LH-Wind Speed relationship than the MM5 scheme, especially when coupled with the MYJ scheme. By examining various parameterization schemes in WRF, we identify sources of biases and weaknesses of current PBL, surface layer and shallow convection schemes in reproducing PBL processes, the initiation of convection and intra-seasonal variability of precipitation.« less
TRMM precipitation analysis of extreme storms in South America: Bias and climatological contribution
NASA Astrophysics Data System (ADS)
Rasmussen, K. L.; Houze, R.; Zuluaga, M. D.; Choi, S. L.; Chaplin, M.
2013-12-01
The TRMM (Tropical Rainfall Measuring Mission) satellite was designed both to measure spatial and temporal variation of tropical rainfall around the globe and to understand the factors controlling the precipitation. TRMM observations have led to the realization that storms just east of the Andes in southeastern South America are among the most intense deep convection in the world. For a complete perspective of the impact of intense precipitation systems on the hydrologic cycle in South America, it is necessary to assess the contribution from various forms of extreme storms to the climatological rainfall. However, recent studies have suggested that the TRMM Precipitation Radar (PR) algorithm significantly underestimates surface rainfall in deep convection over land. Prior to investigating the climatological behavior, this research first investigates the range of the rain bias in storms containing four different types of extreme radar echoes: deep convective cores, deep and wide convective cores, wide convective cores, and broad stratiform regions over South America. The TRMM PR algorithm exhibits bias in all four extreme echo types considered here when the algorithm rates are compared to a range of conventional Z-R relations. Storms with deep convective cores, defined as high reflectivity echo volumes that extend above 10 km in altitude, show the greatest underestimation, and the bias is unrelated to their echo top height. The bias in wide convective cores, defined as high reflectivity echo volumes that extend horizontally over 1,000 km2, relates to the echo top, indicating that storms with significant mixed phase and ice hydrometeors are similarly affected by assumptions in the TRMM PR algorithm. The subtropical region tends to have more intense precipitating systems than the tropics, but the relationship between the TRMM PR rain bias and storm type is the same regardless of the climatological regime. The most extreme storms are typically not collocated with regions of high climatological precipitation. A quantitative approach that accounts for the previously described bias using TRMM PR data is employed to investigate the role of the most extreme precipitating systems on the hydrological cycle in South America. These data are first used to investigate the relative contribution of precipitation from the TRMM-identified echo cores to each separate storm in which the convective cores are embedded. The second part of the study assesses how much of the climatological rainfall in South America is accounted for by storms containing deep convective, wide convective, and broad stratiform echo components. Systems containing these echoes produce very different hydrologic responses. From a hydrologic and climatological viewpoint, this empirical knowledge is critical, as the type of runoff and flooding that may occur depends on the specific character of the convective storm and has broad implications for the hydrological cycle in this region.
Significant Features Found in Simulated Tropical Climates Using a Cloud Resolving Model
NASA Technical Reports Server (NTRS)
Shie, C.-L.; Tao, W.-K.; Simpson, J.; Sui, C.-H.
2000-01-01
Cloud resolving model (CRM) has widely been used in recent years for simulations involving studies of radiative-convective systems and their role in determining the tropical regional climate. The growing popularity of CRMs usage can be credited for their inclusion of crucial and realistic features such like explicit cloud-scale dynamics, sophisticated microphysical processes, and explicit radiative-convective interaction. For example, by using a two-dimensional cloud model with radiative-convective interaction process, found a QBO-like (quasibiennial oscillation) oscillation of mean zonal wind that affected the convective system. Accordingly, the model-generated rain band corresponding to convective activity propagated in the direction of the low-level zonal mean winds; however, the precipitation became "localized" (limited within a small portion of the domain) as zonal mean winds were removed. Two other CRM simulations by S94 and Grabowski et al. (1996, hereafter G96), respectively that produced distinctive quasi-equilibrium ("climate") states on both tropical water and energy, i.e., a cold/dry state in S94 and a warm/wet state in G96, have later been investigated by T99. They found that the pattern of the imposed large-scale horizontal wind and the magnitude of the imposed surface fluxes were the two crucial mechanisms in determining the tropical climate states. The warm/wet climate was found associated with prescribed strong surface winds, or with maintained strong vertical wind shears that well-organized convective systems prevailed. On the other hand, the cold/dry climate was produced due to imposed weak surface winds and weak wind shears throughout a vertically mixing process by convection. In this study, considered as a sequel of T99, the model simulations to be presented are generally similar to those of T99 (where a detailed model setup can be found), except for a more detailed discussion along with few more simulated experiments. There are twelve major experiments chosen for presentations that are introduced in section two. Several significant feature analyses regarding the rainfall properties, CAPE (Convective Available Potential Energy), cloud-scale eddies, the stability issue, the convective system propagation, relative humidity, and the effect on the quasi-equilibrium state by the imposed constant. radiation or constant surface fluxes, and etc. will be presented in the meeting. However, only three of the subjects are discussed in section three. A brief summary is concluded in the end section.
NASA Technical Reports Server (NTRS)
Ukanwa, A. O.; Stermole, F. J.; Golden, J. O.
1972-01-01
Natural convection effects in phase change thermal control devices were studied. A mathematical model was developed to evaluate natural convection effects in a phase change test cell undergoing solidification. Although natural convection effects are minimized in flight spacecraft, all phase change devices are ground tested. The mathematical approach to the problem was to first develop a transient two-dimensional conduction heat transfer model for the solidification of a normal paraffin of finite geometry. Next, a transient two-dimensional model was developed for the solidification of the same paraffin by a combined conduction-natural-convection heat transfer model. Throughout the study, n-hexadecane (n-C16H34) was used as the phase-change material in both the theoretical and the experimental work. The models were based on the transient two-dimensional finite difference solutions of the energy, continuity, and momentum equations.
NASA Astrophysics Data System (ADS)
Clifford, Corey; Kimber, Mark
2017-11-01
Over the last 30 years, an industry-wide shift within the nuclear community has led to increased utilization of computational fluid dynamics (CFD) to supplement nuclear reactor safety analyses. One such area that is of particular interest to the nuclear community, specifically to those performing loss-of-flow accident (LOFA) analyses for next-generation very-high temperature reactors (VHTR), is the capacity of current computational models to predict heat transfer across a wide range of buoyancy conditions. In the present investigation, a critical evaluation of Reynolds-averaged Navier-Stokes (RANS) and large-eddy simulation (LES) turbulence modeling techniques is conducted based on CFD validation data collected from the Rotatable Buoyancy Tunnel (RoBuT) at Utah State University. Four different experimental flow conditions are investigated: (1) buoyancy-aided forced convection; (2) buoyancy-opposed forced convection; (3) buoyancy-aided mixed convection; (4) buoyancy-opposed mixed convection. Overall, good agreement is found for both forced convection-dominated scenarios, but an overly-diffusive prediction of the normal Reynolds stress is observed for the RANS-based turbulence models. Low-Reynolds number RANS models perform adequately for mixed convection, while higher-order RANS approaches underestimate the influence of buoyancy on the production of turbulence.
Thermodynamic Environments Supporting Extreme Convection in Subtropical South America
NASA Astrophysics Data System (ADS)
Rasmussen, K. L.; Trier, S. B.
2015-12-01
Extreme convection tends to form in the vicinity of mountain ranges, and the Andes in subtropical South America help spawn some of the most intense convection in the world. Subsequent to initiation, the convection often evolves into propagating mesoscale convective systems (MCSs) similar to those seen over the U.S. Great Plains and produces damaging tornadoes, hail, and floods across a wide agricultural region. In recent years, studies on the nature of convection in subtropical South America using spaceborne radar data have elucidated key processes responsible for their extreme characteristics, including a strong relationship between the Andes topography and convective initiation. Building on previous work, an investigation of the thermodynamic environment supporting some of the deepest convection in the world will be presented. In particular, an analysis of the thermodynamic destabilization in subtropical South America, which considers the parcel buoyancy minimum for conditionally unstable air parcels, will be presented. Additional comparisons between the nocturnal nature and related diurnal cycle of MCSs in subtropical South America the U.S. Great Plains will provide insights into the processes controlling MCS initiation and upscale growth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mrowiec, Agnieszka A.; Rio, Catherine; Fridlind, Ann
2012-10-02
We analyze three cloud-resolving model simulations of a strong convective event observed during the TWP-ICE campaign, differing in dynamical core, microphysical scheme or both. Based on simulated and observed radar reflectivity, simulations roughly reproduce observed convective and stratiform precipitating areas. To identify the characteristics of convective and stratiform drafts that are difficult to observe but relevant to climate model parameterization, independent vertical wind speed thresholds are calculated to capture 90% of total convective and stratiform updraft and downdraft mass fluxes. Convective updrafts are fairly consistent across simulations (likely owing to fixed large-scale forcings and surface conditions), except that hydrometeor loadingsmore » differ substantially. Convective downdraft and stratiform updraft and downdraft mass fluxes vary notably below the melting level, but share similar vertically uniform draft velocities despite differing hydrometeor loadings. All identified convective and stratiform downdrafts contain precipitation below ~10 km and nearly all updrafts are cloudy above the melting level. Cold pool properties diverge substantially in a manner that is consistent with convective downdraft mass flux differences below the melting level. Despite differences in hydrometeor loadings and cold pool properties, convective updraft and downdraft mass fluxes are linearly correlated with convective area, the ratio of ice in downdrafts to that in updrafts is ~0.5 independent of species, and the ratio of downdraft to updraft mass flux is ~0.5-0.6, which may represent a minimum evaporation efficiency under moist conditions. Hydrometeor loading in stratiform regions is found to be a fraction of hydrometeor loading in convective regions that ranges from ~10% (graupel) to ~90% (cloud ice). These findings may lead to improved convection parameterizations.« less
NASA Technical Reports Server (NTRS)
Pfister, Leonhard; Chan, Kwoklong R.; Gary, Bruce; Singh, Hanwant B. (Technical Monitor)
1995-01-01
The advent of high altitude aircraft measurements in the stratosphere over tropical convective systems has made it possible to observe the mesoscale disturbances in the temperature field that these systems excite. Such measurements show that these disturbances have horizontal scales comparable to those of the underlying anvils (about 50-100 km) with peak to peak theta surface variations of about 300-400 meters. Moreover, correlative wind measurements from the tropical phase of the Stratosphere-Troposphere Exchange Project (STEP) clearly show that these disturbances are gravity waves. We present two case studies of anvil-scale gravity waves over convective systems. Using steady and time-dependent linear models of gravity wave propagation in the stratosphere, we show: (1) that the underlying convective systems are indeed the source of the observed phenomena; and (2) that their generating mechanism can be crudely represented as flow over a time-dependent mountain. We will then discuss the effects gravity waves of the observed amplitudes have on the circulation of the middle atmosphere, particularly the quasi-biennial, and semiannual oscillations.
Weather Research and Forecasting Model Sensitivity Comparisons for Warm Season Convective Initiation
NASA Technical Reports Server (NTRS)
Watson, Leela R.
2007-01-01
This report describes the work done by the Applied Meteorology Unit (AMU) in assessing the success of different model configurations in predicting warm season convection over East-Central Florida. The Weather Research and Forecasting Environmental Modeling System (WRF EMS) software allows users to choose among two dynamical cores - the Advanced Research WRF (ARW) and the Non-hydrostatic Mesoscale Model (NMM). There are also data assimilation analysis packages available for the initialization of the WRF model - the Local Analysis and Prediction System (LAPS) and the Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS). Besides model core and initialization options, the WRF model can be run with one- or two-way nesting. Having a series of initialization options and WRF cores, as well as many options within each core, creates challenges for local forecasters, such as determining which configuration options are best to address specific forecast concerns. This project assessed three different model intializations available to determine which configuration best predicts warm season convective initiation in East-Central Florida. The project also examined the use of one- and two-way nesting in predicting warm season convection.
Climatology of convective showers dynamics in a convection-permitting model
NASA Astrophysics Data System (ADS)
Brisson, Erwan; Brendel, Christoph; Ahrens, Bodo
2017-04-01
Convection-permitting simulations have proven their usefulness in improving both the representation of convective rain and the uncertainty range of climate projections. However, most studies have focused on temporal scales greater or equal to convection cell lifetime. A large knowledge gap remains on the model's performance in representing the temporal dynamic of convective showers and how could this temporal dynamic be altered in a warmer climate. In this study, we proposed to fill this gap by analyzing 5-minute convection-permitting model (CPM) outputs. In total, more than 1200 one-day cases are simulated at the resolution of 0.01° using the regional climate model COSMO-CLM over central Europe. The analysis follows a Lagrangian approach and consists of tracking showers characterized by five-minute intensities greater than 20 mm/hour. The different features of these showers (e.g., temporal evolution, horizontal speed, lifetime) are investigated. These features as modeled by an ERA-Interim forced simulation are evaluated using a radar dataset for the period 2004-2010. The model shows good performance in representing most features observed in the radar dataset. Besides, the observed relation between the temporal evolution of precipitation and temperature are well reproduced by the CPM. In a second modeling experiment, the impact of climate change on convective cell features are analyzed based on an EC-Earth RCP8.5 forced simulation for the period 2071-2100. First results show only minor changes in the temporal structure and size of showers. The increase in convective precipitation found in previous studies seems to be mainly due to an increase in the number of convective cells.
NASA Astrophysics Data System (ADS)
Budroni, M. A.
2015-12-01
Cross diffusion, whereby a flux of a given species entrains the diffusive transport of another species, can trigger buoyancy-driven hydrodynamic instabilities at the interface of initially stable stratifications. Starting from a simple three-component case, we introduce a theoretical framework to classify cross-diffusion-induced hydrodynamic phenomena in two-layer stratifications under the action of the gravitational field. A cross-diffusion-convection (CDC) model is derived by coupling the fickian diffusion formalism to Stokes equations. In order to isolate the effect of cross-diffusion in the convective destabilization of a double-layer system, we impose a starting concentration jump of one species in the bottom layer while the other one is homogeneously distributed over the spatial domain. This initial configuration avoids the concurrence of classic Rayleigh-Taylor or differential-diffusion convective instabilities, and it also allows us to activate selectively the cross-diffusion feedback by which the heterogeneously distributed species influences the diffusive transport of the other species. We identify two types of hydrodynamic modes [the negative cross-diffusion-driven convection (NCC) and the positive cross-diffusion-driven convection (PCC)], corresponding to the sign of this operational cross-diffusion term. By studying the space-time density profiles along the gravitational axis we obtain analytical conditions for the onset of convection in terms of two important parameters only: the operational cross-diffusivity and the buoyancy ratio, giving the relative contribution of the two species to the global density. The general classification of the NCC and PCC scenarios in such parameter space is supported by numerical simulations of the fully nonlinear CDC problem. The resulting convective patterns compare favorably with recent experimental results found in microemulsion systems.
Validation of satellite-based CI detection of convective storms via backward trajectories
NASA Astrophysics Data System (ADS)
Dietzsch, Felix; Senf, Fabian; Deneke, Hartwig
2013-04-01
Within this study, the rapid development and evolution of several severe convective events is investigated based on geostationary satellite images, and is related to previous findings on suitable detection thresholds for convective initiation. Nine severe events have been selected that occurred over Central Europe in summer 2012, and have been classified into the categories supercell, mesoscale convective system, frontal system and orographic convection. The cases are traced backward starting from the fully developed convective systems to its very beginning initial state using ECMWF data with 0.5 degree spatial resolution and 3h temporal resolution. For every case the storm life cycle was quantified through the storm's infrared (IR) brightness temperatures obtained from Meteosat Second Generation SEVIRI with 5 min temporal resolution and 4.5 km spatial resolution. In addition, cloud products including cloud optical thickness, cloud phase and effective droplet radius have been taken into account. A semi-automatic adjustment of the tracks within a search box was necessary to improve the tracking accuracy and thus the quality of the derived life-cycles. The combination of IR brightness temperatures, IR temperature time trends and satellite-based cloud products revealed different stages of storm development such as updraft intensification and glaciation well in most casesconfirming previously developed CI criteria from other studies. The vertical temperature gradient between 850 and 500 hPa, the Total-Totals-Index and the storm-relative helicity have been derived from ECMWF data and were used to characterize the storm synoptic environment. The results suggest that the storm-relative helicity also influences the life time of convective storms over Central Europe confirming previous studies. Tracking accuracy has shown to be a crucial issue in our study and a fully automated approach is required to enlarge the number of cases for significant statistics.
NASA Astrophysics Data System (ADS)
Pu, Zhaoxia; Lin, Chao; Dong, Xiquan; Krueger, Steven K.
2018-01-01
Mesoscale convective systems (MCSs) and their associated cloud properties are the important factors that influence the aviation activities, yet they present a forecasting challenge in numerical weather prediction. In this study, the sensitivity of numerical simulations of an MCS over the US Southern Great Plains to ice hydrometeors in bulk microphysics (MP) schemes has been investigated using the Weather Research and Forecasting (WRF) model. It is found that the simulated structure, life cycle, cloud coverage, and precipitation of the convective system as well as its associated cold pools are sensitive to three selected MP schemes, namely, the WRF single-moment 6-class (WSM6), WRF double-moment 6-class (WDM6, with the double-moment treatment of warm-rain only), and Morrison double-moment (MORR, with the double-moment representation of both warm-rain and ice) schemes. Compared with observations, the WRF simulation with WSM6 only produces a less organized convection structure with a short lifetime, while WDM6 can produce the structure and length of the MCS very well. Both simulations heavily underestimate the precipitation amount, the height of the radar echo top, and stratiform cloud fractions. With MORR, the model performs well in predicting the lifetime, cloud coverage, echo top, and precipitation amount of the convection. Overall results demonstrate the importance of including double-moment representation of ice hydrometeors along with warm-rain. Additional experiments are performed to further examine the role of ice hydrometeors in numerical simulations of the MCS. Results indicate that replacing graupel with hail in the MORR scheme improves the prediction of the convective structure, especially in the convective core region.
Direct Measurements of the Convective Recycling of the Upper Troposphere
NASA Technical Reports Server (NTRS)
Bertram, Timothy H.; Perring, Anne E.; Wooldridge, Paul J.; Crounse, John D.; Kwan, Alan J.; Wennberg, Paul O.; Scheuer, Eric; Dibb, Jack; Avery, Melody; Sachse, Glen;
2007-01-01
We present a statistical representation of the aggregate effects of deep convection on the chemistry and dynamics of the Upper Troposphere (UT) based on direct aircraft observations of the chemical composition of the UT over the Eastern United States and Canada during summer. These measurements provide new and unique observational constraints on the chemistry occurring downwind of convection and the rate at which air in the UT is recycled, previously only the province of model analyses. These results provide quantitative measures that can be used to evaluate global climate and chemistry models.
Heat flow anomalies caused by water circulation
NASA Astrophysics Data System (ADS)
Alföldi, L.; Gálfi, J.; Liebe, P.
1985-12-01
The practically important part of geothermal systems belongs to the convective type where the thermal energy is transported by movement of water or steam. Both geothermics and hydrology should be in very close cooperation at the interpretation of convective geothermal anomalies. In the first part of the study the parameters required for the calculation of water- and thermal-balance will be enumerated and their obtainable accuracy will be discussed based mainly on the praxis used in Hungary. In the second part, heat convection problems connected to subterranean water movement will be discussed, divided into three cases which have importance in praxis: — regional water-flow systems with great inflow and outflow areas; — mountainous — mainly karstic — areas of infiltration with springs at the foot of the mountain; — closed convective systems of circulation. For illustrating the conceptual examples given above, Hungarian case histories with characteristic data will be presented: The Transdanubian Middle Range, Spa of Budapest, Spa of Héviz, the Great Hungarian Plain and the Thermal Anomaly at Tiszakécske.
NASA Astrophysics Data System (ADS)
Sinsky, E.; Zhu, Y.; Li, W.; Guan, H.; Melhauser, C.
2017-12-01
Optimal forecast quality is crucial for the preservation of life and property. Improving monthly forecast performance over both the tropics and extra-tropics requires attention to various physical aspects such as the representation of the underlying SST, model physics and the representation of the model physics uncertainty for an ensemble forecast system. This work focuses on the impact of stochastic physics, SST and the convection scheme on forecast performance for the sub-seasonal scale over the tropics and extra-tropics with emphasis on the Madden-Julian Oscillation (MJO). A 2-year period is evaluated using the National Centers for Environmental Prediction (NCEP) Global Ensemble Forecast System (GEFS). Three experiments with different configurations than the operational GEFS were performed to illustrate the impact of the stochastic physics, SST and convection scheme. These experiments are compared against a control experiment (CTL) which consists of the operational GEFS but its integration is extended from 16 to 35 days. The three configurations are: 1) SPs, which uses a Stochastically Perturbed Physics Tendencies (SPPT), Stochastic Perturbed Humidity (SHUM) and Stochastic Kinetic Energy Backscatter (SKEB); 2) SPs+SST_bc, which uses a combination of SPs and a bias-corrected forecast SST from the NCEP Climate Forecast System Version 2 (CFSv2); and 3) SPs+SST_bc+SA_CV, which combines SPs, a bias-corrected forecast SST and a scale aware convection scheme. When comparing to the CTL experiment, SPs shows substantial improvement. The MJO skill has improved by about 4 lead days during the 2-year period. Improvement is also seen over the extra-tropics due to the updated stochastic physics, where there is a 3.1% and a 4.2% improvement during weeks 3 and 4 over the northern hemisphere and southern hemisphere, respectively. Improvement is also seen when the bias-corrected CFSv2 SST is combined with SPs. Additionally, forecast performance enhances when the scale aware convection scheme (SPs+SST_bc+SA_CV) is added, especially over the tropics. Among the three experiments, the SPs+SST_bc+SA_CV is the best configuration in MJO forecast skill.
Evaluation of Heating Methods for Thermal Structural Testing of Large Structures
NASA Technical Reports Server (NTRS)
Daryabeigi, Kamran; Sikora, Joseph G.; Caldwell, Darrell L., Jr.
1998-01-01
An experimental study was conducted to evaluate different heating methods for thermal structural testing of large scale structures at temperatures up to 350 F as part of the High Speed Research program. The heating techniques evaluated included: radiative/convective, forced convective, and conductive. The radiative/convective heaters included finned strip heaters, and clear and frosted quartz lamps. The forced convective heating was accomplished by closed loop circulation of heated air. The conductive heater consisted of heating blankets. The tests were conducted on an 1/8 inch thick stainless steel plate in a custom-built oven. The criteria used for comparing the different heating methods included test specimen temperature uniformity, heater response time, and consumed power. The parameters investigated included air circulation in the oven, reflectance of oven walls, and the orientation of the test specimen and heaters (vertical and horizontal). It was found that reflectance of oven walls was not an important parameter. Air circulation was necessary to obtain uniform temperatures only for the vertically oriented specimen. Heating blankets provided unacceptably high temperature non-uniformities. Quartz lamps with internal air circulation had the lowest power consumption levels. Using frosted quartz lamps with closed loop circulation of cool air, and closed loop circulation of heated air provided the fastest response time.
Davenport, Andrew; Peters, Sanne A E; Bots, Michiel L; Canaud, Bernard; Grooteman, Muriel P C; Asci, Gulay; Locatelli, Francesco; Maduell, Francisco; Morena, Marion; Nubé, Menso J; Ok, Ercan; Torres, Ferran; Woodward, Mark; Blankestijn, Peter J
2016-01-01
Mortality remains high for hemodialysis patients. Online hemodiafiltration (OL-HDF) removes more middle-sized uremic toxins but outcomes of individual trials comparing OL-HDF with hemodialysis have been discrepant. Secondary analyses reported higher convective volumes, easier to achieve in larger patients, and improved survival. Here we tested different methods to standardize OL-HDF convection volume on all-cause and cardiovascular mortality compared with hemodialysis. Pooled individual patient analysis of four prospective trials compared thirds of delivered convection volume with hemodialysis. Convection volumes were either not standardized or standardized to weight, body mass index, body surface area, and total body water. Data were analyzed by multivariable Cox proportional hazards modeling from 2793 patients. All-cause mortality was reduced when the convective dose was unstandardized or standardized to body surface area and total body water; hazard ratio (95% confidence intervals) of 0.65 (0.51-0.82), 0.74 (0.58-0.93), and 0.71 (0.56-0.93) for those receiving higher convective doses. Standardization by body weight or body mass index gave no significant survival advantage. Higher convection volumes were generally associated with greater survival benefit with OL-HDF, but results varied across different ways of standardization for body size. Thus, further studies should take body size into account when evaluating the impact of delivered convection volume on mortality end points. Copyright © 2015 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Mean-field theory of differential rotation in density stratified turbulent convection
NASA Astrophysics Data System (ADS)
Rogachevskii, I.
2018-04-01
A mean-field theory of differential rotation in a density stratified turbulent convection has been developed. This theory is based on the combined effects of the turbulent heat flux and anisotropy of turbulent convection on the Reynolds stress. A coupled system of dynamical budget equations consisting in the equations for the Reynolds stress, the entropy fluctuations and the turbulent heat flux has been solved. To close the system of these equations, the spectral approach, which is valid for large Reynolds and Péclet numbers, has been applied. The adopted model of the background turbulent convection takes into account an increase of the turbulence anisotropy and a decrease of the turbulent correlation time with the rotation rate. This theory yields the radial profile of the differential rotation which is in agreement with that for the solar differential rotation.
Preliminary Analysis of a Water Shield for a Surface Power Reactor
NASA Technical Reports Server (NTRS)
Pearson, J. Boise
2006-01-01
A water based shielding system is being investigated for use on initial lunar surface power systems. The use of water may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. A simple 1-D thermal model indicates the necessity of natural convection to maintain acceptable temperatures and pressures in the water shield. CFD analysis is done to quantify the natural convection in the shield, and predicts sufficient natural convection to transfer heat through the shield with small temperature gradients. A test program will he designed to experimentally verify the thermal hydraulic performance of the shield, and to anchor the CFD models to experimental results.
1990-02-02
National Aero-Space Plane NTC no time counter TSS-2 Tethered Satellite System - 2 VHS variable hard sphere VSL viscous shock-layer Introduction With...required at each time step to evaluate the mass fractions Yi+’ it is shown in [21] that the matrix of this linear system is an M-matrix (see e.g. [42]), and...first rewrite system (4.7)- (4.8) under the following form, separating the time -dependent, convective, diffusive and reactive terms: VW’ + F(W)r + G(,W
NASA Astrophysics Data System (ADS)
Madhulatha, A.; Rajeevan, M.
2018-02-01
Main objective of the present paper is to examine the role of various parameterization schemes in simulating the evolution of mesoscale convective system (MCS) occurred over south-east India. Using the Weather Research and Forecasting (WRF) model, numerical experiments are conducted by considering various planetary boundary layer, microphysics, and cumulus parameterization schemes. Performances of different schemes are evaluated by examining boundary layer, reflectivity, and precipitation features of MCS using ground-based and satellite observations. Among various physical parameterization schemes, Mellor-Yamada-Janjic (MYJ) boundary layer scheme is able to produce deep boundary layer height by simulating warm temperatures necessary for storm initiation; Thompson (THM) microphysics scheme is capable to simulate the reflectivity by reasonable distribution of different hydrometeors during various stages of system; Betts-Miller-Janjic (BMJ) cumulus scheme is able to capture the precipitation by proper representation of convective instability associated with MCS. Present analysis suggests that MYJ, a local turbulent kinetic energy boundary layer scheme, which accounts strong vertical mixing; THM, a six-class hybrid moment microphysics scheme, which considers number concentration along with mixing ratio of rain hydrometeors; and BMJ, a closure cumulus scheme, which adjusts thermodynamic profiles based on climatological profiles might have contributed for better performance of respective model simulations. Numerical simulation carried out using the above combination of schemes is able to capture storm initiation, propagation, surface variations, thermodynamic structure, and precipitation features reasonably well. This study clearly demonstrates that the simulation of MCS characteristics is highly sensitive to the choice of parameterization schemes.
NASA Astrophysics Data System (ADS)
Pante, Gregor; Knippertz, Peter
2017-04-01
The West African monsoon is the driving element of weather and climate during summer in the Sahel region. It interacts with mesoscale convective systems (MCSs) and the African easterly jet and African easterly waves. Poor representation of convection in numerical models, particularly its organisation on the mesoscale, can result in unrealistic forecasts of the monsoon dynamics. Arguably, the parameterisation of convection is one of the main deficiencies in models over this region. Overall, this has negative impacts on forecasts over West Africa itself but may also affect remote regions, as waves originating from convective heating are badly represented. Here we investigate those remote forecast impacts based on daily initialised 10-day forecasts for July 2016 using the ICON model. One set of simulations employs the default setup of the global model with a horizontal grid spacing of 13 km. It is compared with simulations using the 2-way nesting capability of ICON. A second model domain over West Africa (the nest) with 6.5 km grid spacing is sufficient to explicitly resolve MCSs in this region. In the 2-way nested simulations, the prognostic variables of the global model are influenced by the results of the nest through relaxation. The nest with explicit convection is able to reproduce single MCSs much more realistically compared to the stand-alone global simulation with parameterised convection. Explicit convection leads to cooler temperatures in the lower troposphere (below 500 hPa) over the northern Sahel due to stronger evaporational cooling. Overall, the feedback of dynamic variables from the nest to the global model shows clear positive effects when evaluating the output of the global domain of the 2-way nesting simulation and the output of the stand-alone global model with ERA-Interim re-analyses. Averaged over the 2-way nested region, bias and root mean squared error (RMSE) of temperature, geopotential, wind and relative humidity are significantly reduced in the lower troposphere. Outside Africa over the Atlantic or in Europe the effect of the 2-way nesting becomes visible after some days of simulation. The changes in error measures are not as clear as in the nesting region itself but still improvements for some variables at different altitudes are evident, most likely due to a better representation of African easterly waves and Rossby waves. This work shows the importance of the West African region for global weather forecasts and the potential of convective permitting modelling in this region to improve the forecasts even far away from Africa in the future.
NASA Technical Reports Server (NTRS)
Robertson, Franklin; Bacmeister, Julio; Bosilovich, Michael; Pittman, Jasna
2007-01-01
Validating water vapor and prognostic condensate in global models remains a challenging research task. Model parameterizations are still subject to a large number of tunable parameters; furthermore, accurate and representative in situ observations are very sparse, and satellite observations historically have significant quantitative uncertainties. Progress on improving cloud / hydrometeor fields in models stands to benefit greatly from the growing inventory ofA-Train data sets. ill the present study we are using a variety of complementary satellite retrievals of hydrometeors to examine condensate produced by the emerging NASA Modem Era Retrospective Analysis for Research and Applications, MERRA, and its associated atmospheric general circulation model GEOS5. Cloud and precipitation are generated by both grid-scale prognostic equations and by the Relaxed Arakawa-Schubert (RAS) diagnostic convective parameterization. The high frequency channels (89 to 183.3 GHz) from AMSU-B and MRS on NOAA polar orbiting satellites are being used to evaluate the climatology and variability of precipitating ice from tropical convective anvils. Vertical hydrometeor structure from the Tropical Rainfall Measuring Mission (TRMM) and CloudSat radars are used to develop statistics on vertical hydrometeor structure in order to better interpret the extensive high frequency passive microwave climatology. Cloud liquid and ice water path data retrieved from the Moderate Resolution Imaging Spectroradiometer, MODIS, are used to investigate relationships between upper level cloudiness and tropical deep convective anvils. Together these data are used to evaluate cloud / ice water path, gross aspects of vertical hydrometeor structure, and the relationship between cloud extent and surface precipitation that the MERRA reanalysis must capture.
NASA Technical Reports Server (NTRS)
Olson, Sandra
2011-01-01
To better evaluate the buoyant contributions to the convective cooling (or heating) inherent in normal-gravity material flammability test methods, we derive a convective heat transfer correlation that can be used to account for the forced convective stretch effects on the net radiant heat flux for both ignition delay time and burning rate. The Equivalent Low Stretch Apparatus (ELSA) uses an inverted cone heater to minimize buoyant effects while at the same time providing a forced stagnation flow on the sample, which ignites and burns as a ceiling fire. Ignition delay and burning rate data is correlated with incident heat flux and convective heat transfer and compared to results from other test methods and fuel geometries using similarity to determine the equivalent stretch rates and thus convective cooling (or heating) rates for those geometries. With this correlation methodology, buoyant effects inherent in normal gravity material flammability test methods can be estimated, to better apply the test results to low stretch environments relevant to spacecraft material selection.
NASA Astrophysics Data System (ADS)
Xu, W.; Rutledge, S. A.
2017-12-01
Weather forecasting and climate models have difficulty in simulating the BSISO due to incomplete understanding of the underlying multiscale physical processes, which also motivates the PISTON field campaign to be held in the SCS in 2018. In preparation for PISTON, this study investigates the regional, intraseasonal, and diurnal variability of BSISO-associated convection over the SCS and surrounding landmasses using long-term satellite data. The SCS is characterized by suppressed precipitation and weak southerlies during inactive BSISO phases (BSISO-1 index, phases 1-3), while a substantial northwest-southeast oriented rainband and strong low-level westerlies dominate active BSISO phases (phases 5-7). In general, convective intensity (e.g., radar echo-top height) and lightning activity are in phase with rainfall over the SCS. However, convective intensity and lightning are out of phase with rainfall over landmasses along the BSISO rainband (e.g., Indochina and Philippines). During active BSISO phases, convective systems over both land and ocean are characterized by larger size, colder cloud tops (IR), and greater fraction of stratiform precipitation. Convection over the SCS during active BSISO phases has taller precipitation echoes (20-dBZ echo top heights), higher lightning density, stronger microwave ice scattering signatures, and more robust mixed-phase microphysics (larger 30/40 dBZ echo volume above the freezing level). These same parameters maximize over land masses of Indochina and the Philippines during BSISO inactive periods. Statistics of environmental conditions suggest that the peak convection over land is due to stronger surface heating (thus higher CAPE) during inactive phases, whereas larger sea surface heat fluxes (leading to higher CAPE) during active phases enhances convective intensity over the SCS. On the other hand, mesoscale organization, convective intensity, and microphysical properties of precipitation systems to the south and north of the BSISO key rainband region have only negligible intraseasonal variability. Land convection shows a strong diurnal cycle (maximizing at afternoon and early evening) across all BSISO phases, while offshore convection peaks at midnight and early morning times during inactive BSISO phases.
Raindrop Size Distribution and rainfall in São Paulo, Brazil
NASA Astrophysics Data System (ADS)
Foster, P.; Pereira Filho, A.
2011-12-01
A dataset of 34,452 samples (sampling interval of one minute) collected with a Joss-Waldvogel disdrometer (JWD-RD80) at São Paulo (23°39'S; 46°37'W; 799m), Brazil, between 8 August 2009 and 31 January 2010 was used to study the characteristics of the raindrop size distribution at the transition between convective and stratiform regions. This corresponds to a total of 999.18 mm of rainfall in 574 hours. Most of these rain systems made up of an intense convective line followed by a wide stratiform area. The convective rain area is found to represent about 13% of rain duration, but 75% of the cumulative rainfall. The raindrop size distributions (DSD) were stratified into six rain-rate classes and were fitted to exponential distributions. The radar reflectivity factor - rain-rate (Z-R) relation is found to be different for convective and stratiform areas, with linear and power coefficients smaller and higher, respectively. Results suggests a relation Z = 248R1,43, with the correlation coefficient between rain rate (mm h-1) and radar reflectivity factor (mm6 m-3) of 0.94. The study reveals sharp fluctuations in the drop spectra within and between rainy systems that significantly affect weather radar precipitation estimates. It is intended in the continuation of research work, jointly evaluate the spectra of drops of disdrômetro against measures with polarimetric radar MXPOL. We selected one rain events to present the simultaneous measurements of drop size distributions by JWD-RD80 and radar MXPOL. This rain event occurred on 11 January 2010. This day was chosen because among the events penetration of sea breeze associated with runoff, flooding, floods, landslides, lightning, falling trees and hail was what produced the largest number of occurrences in the MASP. It consisted of a convective shower followed by stratiform rain. The rain gauge recorded 45.4mm of rainfall in just over 1.4h. The JWD-RD80 measured 42.2mm of rainfall. During the convective shower, there were 36 consecutive minutes during which rain rates were above 20mm.h-1. In this time, in 20 minutes the rain rate were above 50mm.h-1. The composite DSD derived from this period showed a good agreement between two spectra except for very small drops. The underestimation of small drops by JWD-RD80 is again the main reason for the discrepancy in drop concentrations. The fallout from the afternoon of 11 January 2010 detected by JWD-RD80 fluctuated between moderate and extreme, with instantaneous precipitation exceeding 124mm.h-1. About 73% of precipitation rates were greater than 10 mm h-1, ie, there was more precipitation associated with convective systems than stratiform. The highest rate of precipitation was estimated at 124.3mm.h-1.
The SPoRT-WRF: Evaluating the Impact of NASA Datasets on Convective Forecasts
NASA Technical Reports Server (NTRS)
Zavodsky, Bradley; Case, Jonathan; Kozlowski, Danielle; Molthan, Andrew
2012-01-01
The Short-term Prediction Research and Transition Center (SPoRT) is a collaborative partnership between NASA and operational forecasting entities, including a number of National Weather Service offices. SPoRT transitions real-time NASA products and capabilities to its partners to address specific operational forecast challenges. One challenge that forecasters face is applying convection-allowing numerical models to predict mesoscale convective weather. In order to address this specific forecast challenge, SPoRT produces real-time mesoscale model forecasts using the Weather Research and Forecasting (WRF) model that includes unique NASA products and capabilities. Currently, the SPoRT configuration of the WRF model (SPoRT-WRF) incorporates the 4-km Land Information System (LIS) land surface data, 1-km SPoRT sea surface temperature analysis and 1-km Moderate resolution Imaging Spectroradiometer (MODIS) greenness vegetation fraction (GVF) analysis, and retrieved thermodynamic profiles from the Atmospheric Infrared Sounder (AIRS). The LIS, SST, and GVF data are all integrated into the SPoRT-WRF through adjustments to the initial and boundary conditions, and the AIRS data are assimilated into a 9-hour SPoRT WRF forecast each day at 0900 UTC. This study dissects the overall impact of the NASA datasets and the individual surface and atmospheric component datasets on daily mesoscale forecasts. A case study covering the super tornado outbreak across the Ce ntral and Southeastern United States during 25-27 April 2011 is examined. Three different forecasts are analyzed including the SPoRT-WRF (NASA surface and atmospheric data), the SPoRT WRF without AIRS (NASA surface data only), and the operational National Severe Storms Laboratory (NSSL) WRF (control with no NASA data). The forecasts are compared qualitatively by examining simulated versus observed radar reflectivity. Differences between the simulated reflectivity are further investigated using convective parameters along with model soundings to determine the impacts of the various NASA datasets. Additionally, quantitative evaluation of select meteorological parameters is performed using the Meteorological Evaluation Tools model verification package to compare forecasts to in situ surface and upper air observations.
Observations of aerosol-induced convective invigoration in the tropical east Atlantic
NASA Astrophysics Data System (ADS)
Storer, R. L.; van den Heever, S. C.; L'Ecuyer, T. S.
2014-04-01
Four years of CloudSat data have been analyzed over a region of the east Atlantic Ocean in order to examine the influence of aerosols on deep convection. The satellite data were combined with information about aerosols taken from the Global and Regional Earth-System Monitoring Using Satellite and In Situ Data model. Only those profiles fitting the definition of deep convective clouds were analyzed. Overall, the cloud center of gravity, cloud top, and rain top were all found to increase with increased aerosol loading. These effects were largely independent of the environment, and the differences between the cleanest and most polluted clouds sampled were found to be statistically significant. When examining an even smaller subset of deep convective clouds likely to be part of the convective core, similar trends were seen. These observations suggest that convective invigoration occurs with increased aerosol loading, leading to deeper, stronger storms in polluted environments.
Rashidi, Mohammad M.; Kavyani, Neda; Abelman, Shirley; Uddin, Mohammed J.; Freidoonimehr, Navid
2014-01-01
In this study combined heat and mass transfer by mixed convective flow along a moving vertical flat plate with hydrodynamic slip and thermal convective boundary condition is investigated. Using similarity variables, the governing nonlinear partial differential equations are converted into a system of coupled nonlinear ordinary differential equations. The transformed equations are then solved using a semi-numerical/analytical method called the differential transform method and results are compared with numerical results. Close agreement is found between the present method and the numerical method. Effects of the controlling parameters, including convective heat transfer, magnetic field, buoyancy ratio, hydrodynamic slip, mixed convective, Prandtl number and Schmidt number are investigated on the dimensionless velocity, temperature and concentration profiles. In addition effects of different parameters on the skin friction factor, , local Nusselt number, , and local Sherwood number are shown and explained through tables. PMID:25343360
Exploring The Relation Between Upper Tropospheric (UT) Clouds and Convection
NASA Astrophysics Data System (ADS)
Stephens, G. L.; Stubenrauch, C.
2017-12-01
The importance of knowing the vertical transports of water vapor and condensate by atmospheric moist convection cannot be overstated. Vertical convective transports have wide-ranging influences on the Earth system, shaping weather, climate, the hydrological cycle and the composition of the atmosphere. These transports also influence the upper tropospheric cloudiness that exerts profound effects on climate. Although there are presently no direct observations to quantify these transports on the large scale, and there are no observations to constrain model assumptions about them, it might be possible to derive useful observations proxies of these transports and their influence. This talk will present results derived from a large community effort that has developed important observations data records that link clouds and convection. Steps to use these observational metrics to examine the relation between convection, UT clouds in both cloud and global scale models are exemplified and important feedbacks between high clouds, radiation and convection will be elucidated.
Reducing and Inducing Convection in Ge-Si Melts with Static Magnetic Field
NASA Technical Reports Server (NTRS)
Szofran, Frank R.
1999-01-01
Results of a study of the effectiveness of using static magnetic fields to reduce convection in Ge-Si melts will be presented. Lenz's law causes a retardation of convection when a static magnetic field is applied to an electrically conducting liquid. However, during the solidification of a solid-solution system such as Ge-Si, the interface is neither isothermal nor isoconcentrational. The variation of temperature and chemical composition along the interface causes thermoelectric currents to be generated within the solidifying material (and the container if it is electrically conductive). These currents, in the presence of a magnetic field, can cause movement (stirring, convection) in the melt which can exceed convection induced by normal thermosolutal mechanisms. Crystals have been grown by both the Bridgman and floating-zone methods. Clear evidence for the existence of this thermoelectromagnetic convection, especially in the case of Si floating-zone growth, will be presented.
Study on convection improvement of standard vacuum tube
NASA Astrophysics Data System (ADS)
He, J. H.; Du, W. P.; Qi, R. R.; He, J. X.
2017-11-01
For the standard all-glass vacuum tube collector, enhancing the vacuum tube axial natural convection can improve its thermal efficiency. According to the study of the standard all-glass vacuum tube, three kinds of guide plates which can inhibit the radial convection and increase axial natural convection are designed, and theory model is established. Experiments were carried out on vacuum tubes with three types of baffles and standard vacuum tubes without the improvement. The results show that T-type guide plate is better than that of Y-type guide plate on restraining convection and increasing axial radial convection effect, Y type is better than that of flat plate type, all guide plates are better than no change; the thermal efficiency of the tube was 2.6% higher than that of the unmodified standard vacuum tube. The efficiency of the system in the experiment can be increased by 3.1%.
Influence of free surface curvature on the Pearson instability in Marangoni convection
NASA Astrophysics Data System (ADS)
Hu, W. R.
The Peason instability in a liquid layer bounded by a plate solid boundary with higher constant temperature and a plane free surface with lower constant temperatures in the microgravity environment has by extensively studied The free surface in the microgravity environment tends to be curved in general as a spherical shape and the plane configuration of free surface is a special case In the present paper a system of liquid layer bounded by a plat solid boundary with higher constant temperature and a curved free surface with lower non-uniform temperature is studied The temperature gradient on the free surface will induce the thermocapillary convection and the onset of Marangoni convection is coupled with the thermocapillary convection The thermocapillary convection induced by the temperature gradient on the curved free surface and its influence on the Marangoni convection are studied in the present paper
NASA Astrophysics Data System (ADS)
Stanford, M.; Varble, A.; Zipser, E. J.; Strapp, J. W.; Leroy, D.; Schwarzenboeck, A.; Korolev, A.; Potts, R.
2016-12-01
A model intercomparison study is conducted to identify biases in simulated tropical convective core microphysical properties using two popular bulk parameterization schemes (Thompson and Morrison) and the Fast Spectral Bin Microphysics (FSBM) scheme. In-situ aircraft measurements of total condensed water content (TWC) and particle size distributions are compared with output from high-resolution WRF simulations of 4 mesoscale convective system (MCS) cases during the High Altitude Ice Crystals-High Ice Water Content (HAIC-HIWC) field campaign conducted in Darwin, Australia in 2014 and Cayenne, French Guiana in 2015. Observations of TWC collected using an isokinetic evaporator probe (IKP) optimized for high IWC measurements in conjunction with particle image processing from two optical array probes aboard the Falcon-20 research aircraft were used to constrain mass-size relationships in the observational dataset. Hydrometeor mass size distributions are compared between retrievals and simulations providing insight into the well-known high bias in simulated convective radar reflectivity. For TWC > 1 g m-3 between -10 and -40°C, simulations generally produce significantly greater median mass diameters (MMDs). Observations indicate that a sharp particle size mode occurs at 300 μm for large TWC values (> 2 g m-3) regardless of temperature. All microphysics schemes fail to reproduce this feature, and relative contributions of different hydrometeor species to this size bias vary between schemes. Despite far greater sample sizes, simulations also fail to produce high TWC conditions with very little of the mass contributed by large particles for a range of temperatures, despite such conditions being observed. Considering vapor grown particles alone in comparison with observations fails to correct the bias present in all schemes. Decreasing horizontal resolution from 1 km to 333 m shifts graupel and rain size distributions to slightly smaller sizes, but increased resolution alone will clearly not eliminate model biases. Results instead indicate that biases in both hydrometeor size distribution assumptions and parameterized processes also exist and need to be addressed before cloud and precipitation properties of convective systems can be adequately predicted.
NASA Astrophysics Data System (ADS)
Wang, Haoliang; Liu, Yubao; Cheng, William Y. Y.; Zhao, Tianliang; Xu, Mei; Liu, Yuewei; Shen, Si; Calhoun, Kristin M.; Fierro, Alexandre O.
2017-11-01
In this study, a lightning data assimilation (LDA) scheme was developed and implemented in the National Center for Atmospheric Research Weather Research and Forecasting-Real-Time Four-Dimensional Data Assimilation system. In this LDA method, graupel mixing ratio (qg) is retrieved from observed total lightning. To retrieve qg on model grid boxes, column-integrated graupel mass is first calculated using an observation-based linear formula between graupel mass and total lightning rate. Then the graupel mass is distributed vertically according to the empirical qg vertical profiles constructed from model simulations. Finally, a horizontal spread method is utilized to consider the existence of graupel in the adjacent regions of the lightning initiation locations. Based on the retrieved qg fields, latent heat is adjusted to account for the latent heat releases associated with the formation of the retrieved graupel and to promote convection at the observed lightning locations, which is conceptually similar to the method developed by Fierro et al. Three severe convection cases were studied to evaluate the LDA scheme for short-term (0-6 h) lightning and precipitation forecasts. The simulation results demonstrated that the LDA was effective in improving the short-term lightning and precipitation forecasts by improving the model simulation of the qg fields, updrafts, cold pool, and front locations. The improvements were most notable in the first 2 h, indicating a highly desired benefit of the LDA in lightning and convective precipitation nowcasting (0-2 h) applications.
New theory of stellar convection without the mixing-length parameter: new stellar atmosphere model
NASA Astrophysics Data System (ADS)
Pasetto, Stefano; Chiosi, Cesare; Cropper, Mark; Grebel, Eva K.
2018-01-01
Stellar convection is usually described by the mixing-length theory, which makes use of the mixing-length scale factor to express the convective flux, velocity, and temperature gradients of the convective elements and stellar medium. The mixing-length scale is proportional to the local pressure scale height of the star, and the proportionality factor (i.e. mixing-length parameter) is determined by comparing the stellar models to some calibrator, i.e. the Sun. No strong arguments exist to suggest that the mixing-length parameter is the same in all stars and all evolutionary phases and because of this, all stellar models in the literature are hampered by this basic uncertainty. In a recent paper [1] we presented a new theory that does not require the mixing length parameter. Our self-consistent analytical formulation of stellar convection determines all the properties of stellar convection as a function of the physical behavior of the convective elements themselves and the surrounding medium. The new theory of stellar convection is formulated starting from a conventional solution of the Navier-Stokes/Euler equations expressed in a non-inertial reference frame co-moving with the convective elements. The motion of stellar convective cells inside convective-unstable layers is fully determined by a new system of equations for convection in a non-local and time-dependent formalism. The predictions of the new theory are compared with those from the standard mixing-length paradigm with positive results for atmosphere models of the Sun and all the stars in the Hertzsprung-Russell diagram.
Investigation of Vibrational Control of the Bridgman Crystal Growth Technique
NASA Technical Reports Server (NTRS)
Fedoseyev, Alexandre I.
1998-01-01
The objectives are: Conduct a parametric theoretical and numerical investigation of vibro-convective buoyancy-driven flow in differentially heated cylindrical containers. Investigate buoyant vibro-convective transport regimes in Bridgman-type systems with a focus on the use of vibration to suppress, or control, convection in order to achieve transport control during crystal growth. Assess the feasibility of vibro-convective control as a means of offsetting "g-jitter" effects under microgravity conditions, Exchange information with the experimental group at the General Physics Institute (GPI) of the Russian Academy of Science who are undertaking a complementary experimental program.
The Shallow-to-Deep Transition in Convective Clouds During GoAmazon 2014/5
NASA Astrophysics Data System (ADS)
Jensen, M. P.; Gostic, C.; Giangrande, S. E.; Mechem, D. B.; Ghate, V. P.; Toto, T.
2016-12-01
Nearly two years of observations from the ARM Mobile Facility (AMF) deployed at Manacapuru, Brazil during the GOAmazon 2014/5 campaign are analyzed to investigate the environmental conditions controlling the transition from shallow to deep convective clouds. The Active Remote Sensing of Clouds (ARSCL) product, which combines radar and lidar observations to produce best estimates of cloud locations in the vertical column is used to qualitatively define four subsets of convective cloud conditions: 1,2) Transition cases (wet season, dry season), where a period of shallow convective clouds is followed by a period of deep convective clouds and 2) Non-transition cases (wet season, dry season), where shallow convective clouds persist without any subsequent development. For these subsets, observations of the time varying thermodynamic properties of the atmosphere, including the surface heat and radiative fluxes, the profiles of atmospheric state variables, and the ECMWF-derived large-scale advective tendencies, are composited to define averaged properties for each transition state. Initial analysis indicates that the transition state strongly depends on the pre-dawn free-tropospheric humidity, the convective inhibition and surface temperature and humidity with little dependence on the convective available potential energy and surface heat fluxes. The composited environmental thermodynamics are then used to force large-eddy simulations for the four transition states to further evaluate the sensitivity of the transition to the composite thermodynamics versus the importance of larger-scale forcing.
Challenges in Parameterizing the Lifecycle of Cumulus Convection in Global Climate Models
NASA Astrophysics Data System (ADS)
Del Genio, A. D.
2012-12-01
Moist convection exerts a strong influence on Earth's general circulation, energy cycle, and water cycle and has long been considered among the most difficult processes to represent in global climate models. Historically, convection has been portrayed in models as a collection of individual cells, and most of the attention has focused on deep precipitating convection that adjusts quickly to large-scale processes that destabilize the atmosphere. Only in the past decade has the need to represent the full convective lifecycle been recognized by the global climate modeling community, although many of the relevant features have been observed in field experiments for decades. Progress has accelerated in recent years with the aid of insights gained from cloud-resolving models and new satellite and surface remote sensing datasets. There has also been a welcome trend away from emphasis on the mean state and toward understanding of major modes of convective variability such as the Madden-Julian Oscillation and the continental diurnal cycle. On one end of the lifecycle, the need to capture the gradual transition from shallow to congestus to deep convection has renewed interest in understanding the process of entrainment and the previously underappreciated sensitivity of convection to the humidity of the free troposphere. On the other end, the tendency for convection to organize on the mesoscale in favorable humidity and shear conditions is only now beginning to receive attention in the parameterization community. Approaches to representing downdraft cold pools, which stimulate further convection and trigger organization, are now being implemented in GCMs. The subsequent evolution from convective cells to organized clusters with stratiform precipitation, which shifts the heating profile upward, extends the lifetime of convective systems, and can change the sign of convective momentum transport, remains a challenge, especially as model resolution increases.
NASA Astrophysics Data System (ADS)
Jackson, R. C.; Collis, S. M.; Protat, A.; Louf, V.; Lin, W.; Vogelmann, A. M.; Endo, S.; Majewski, L.
2017-12-01
A known deficiency of general circulation models (GCMs) is that convection is typically parameterized using given assumptions about entrainment rates and mass fluxes. Furthermore, mechanisms coupling large scale forcing and convective organization are poorly represented, leading to a poor representation of the macrophysical properties of convection. The U.S. Department of Energy (DOE) Accelerated Climate Model for Energy (ACME) aims to run at a 12 km resolution. At this scale mesoscale motions are resolved and how they interact with the convective parameterization is unknown. This prompts the need for observational datasets to validate the macrophysical characteristics of convection in simulations and guide model development in ACME in several regions of the globe. This presentation will highlight a study of convective systems focused on data collected at the Tropical Western Pacific (TWP) ARM site in Darwin, Australia and the surrounding maritime continent. In Darwin well defined forcing regimes occur during the wet season of November to April with the onset and break of the Northern Australian Monsoon and the phase of the Madden-Julien Oscillation (MJO) which can alter the characteristics of convection over the region. The echo top heights, and convective and stratiform areas are retrieved from fifteen years of continuous plan position indicator scans from the C-band POLarimetric (CPOL) radar. Echo top heights in convective regions are 2 to 3 km lower than those retrieved by the Multifunctional Transport Satellites over Darwin, suggesting that the radar underestimates the vertical extent of convection. Distributions of echo top heights are trimodal in convective regions and unimodal in stratiform regions. This regime based convective behaviour will be used to assess the skill of ACME in reproducing the macrophysical properties of maritime continent clouds vital to the global circulation.
Time-Resolved Records of Magnetic Activity on the Pallasite Parent Body and Psyche
NASA Astrophysics Data System (ADS)
Bryson, J. F. J.; Nichols, C. I. O.; Herrero-Albillos, J.; Kronast, F.; Kasama, T.; Alimadadi, H.; van der Laan, G.; Nimmo, F.; Harrison, R. J.
2014-12-01
Although many small bodies apparently generated dynamo fields in the early solar system, the nature and temporal evolution of these fields has remained enigmatic. Time-resolved records of the Earth's planetary field have been essential in understanding the dynamic history of our planet, and equivalent information from asteroids could provide a unique insight into the development of the solar system. Here we present time-resolved records of magnetic activity on the main-group pallasite parent body and (16) Psyche, obtained using newly-developed nanomagnetic imaging techniques. For the pallasite parent body, the inferred field direction remained relatively constant and the intensity was initially stable at ~100 μT before it decreased in two discrete steps down to 0 μT. We interpret this behaviour as due to vigorous dynamo activity driven by compositional convection in the core, ultimately transitioning from a dipolar to multipolar field as the inner core grew from the bottom-up. For Psyche (measured from IVA iron meteorites), the inferred field direction reversed, while the intensity remained stable at >50 μT. Psyche cooled rapidly as an unmantled core, although the resulting thermal convection alone cannot explain these observations. Instead, this behaviour required top-down core solidification, and is attributed either to compositional convection (if the core also solidified from the bottom-up) or convection generated directly by top-down solidification (e.g. Fe-snow). The mechanism governing convection in small body cores is an open question (due partly to uncertainties in the direction of core solidification), and these observations suggest that unconventional (i.e. not thermal) mechanisms acted in the early solar system. These mechanisms are very efficient at generating convection, implying a long-lasting and widespread epoch of dynamo activity among small bodies in the early solar system.
A transient thermal model of a neutral buoyancy cryogenic fluid delivery system
NASA Astrophysics Data System (ADS)
Bue, Grant C.; Conger, Bruce S.
A thermal-performance model is presently used to evaluate a preliminary Neutral Buoyancy Cryogenic fluid-delivery system for underwater EVA training. Attention is given to the modeling of positional transients generated from the moving of internal components, including the control of cycling artifacts, as well as to the convection and boiling characteristics of the cryofluid, 250-psi N2/O2 gas, and water contained in the tank. Two piston designs are considered according to performance criteria; temperature and heat-transfer rate profiles are presented.
Design and evaluation of active cooling systems for Mach 6 cruise vehicle wings
NASA Technical Reports Server (NTRS)
Mcconarty, W. A.; Anthony, F. M.
1971-01-01
Active cooling systems, which included transpiration, film, and convective cooling concepts, are examined. Coolants included hydrogen, helium, air, and water. Heat shields, radiation barriers, and thermal insulation are considered to reduce heat flow to the cooling systems. Wing sweep angles are varied from 0 deg to 75 deg and wing leading edge radii of 0.05 inch and 2.0 inches are examined. Structural temperatures are varied to allow comparison of aluminum alloy, titanium alloy, and superalloy structural materials. Cooled wing concepts are compared among themselves, and with the uncooled concept on the basis of structural weight, cooling system weight, and coolant weight.
Forecasting Lightning Threat Using WRF Proxy Fields
NASA Technical Reports Server (NTRS)
McCaul, E. W., Jr.
2010-01-01
Objectives: Given that high-resolution WRF forecasts can capture the character of convective outbreaks, we seek to: 1. Create WRF forecasts of LTG threat (1-24 h), based on 2 proxy fields from explicitly simulated convection: - graupel flux near -15 C (captures LTG time variability) - vertically integrated ice (captures LTG threat area). 2. Calibrate each threat to yield accurate quantitative peak flash rate densities. 3. Also evaluate threats for areal coverage, time variability. 4. Blend threats to optimize results. 5. Examine sensitivity to model mesh, microphysics. Methods: 1. Use high-resolution 2-km WRF simulations to prognose convection for a diverse series of selected case studies. 2. Evaluate graupel fluxes; vertically integrated ice (VII). 3. Calibrate WRF LTG proxies using peak total LTG flash rate densities from NALMA; relationships look linear, with regression line passing through origin. 4. Truncate low threat values to make threat areal coverage match NALMA flash extent density obs. 5. Blend proxies to achieve optimal performance 6. Study CAPS 4-km ensembles to evaluate sensitivities.
NASA Astrophysics Data System (ADS)
Hidalgo, J. J.; MacMinn, C. W.; Cueto-Felgueroso, L.; Fe, J.
2011-12-01
Dissolution by convective mixing is one of the main trapping mechanisms during CO2 sequestration in saline aquifers. The free-phase CO2 tends to rise due to buoyancy, accumulate beneath the caprock and dissolve into the brine, initially by diffusion. The CO2-brine mixture, however, is denser than the two initial fluids, leading to a Rayleigh-Bénard-type instability known as convective mixing, which greatly accelerates CO2 dissolution. Although this is a well-known process, it remains unclear how convective mixing scales with the governing parameters of the system and its impact on the actual mixing of CO2 and brine. Here, we perform high-resolution numerical simulations and laboratory experiments with an analogue fluid system (water and propylene glycol) to explore the dependence of the CO2 dissolution flux on the nonlinearity of the density and viscosity of the fluid mixture. We find that the convective flux depends strongly on the value of the concentration for which the density of the mixture is maximum, and on the viscosity contrast between the fluids. From the experimental and simulation results we elucidate the scaling behavior of convective mixing, and clarify the role of nonlinear density and viscosity feedbacks in the interpretation of the analogue-fluid experiments.
Experiments and High-resolution Simulations of Density and Viscosity Feedbacks on Convective Mixing
NASA Astrophysics Data System (ADS)
Hidalgo, Juan J.; Fe, Jaime; MacMinn, Christopher W.; Cueto-Felgueroso, Luis; Juanes, Ruben
2011-11-01
Dissolution by convective mixing is one of the main trapping mechanisms during CO2 sequestration in saline aquifers. Initially, the buoyant CO2 dissolves into the underlying brine by diffusion. The CO2-brine mixture is denser than the two initial fluids, leading to a Rayleigh-Bénard-type instability known as convective mixing, which greatly accelerates CO2 dissolution. Although this is a well-known process, it remains unclear how convective mixing scales with the governing parameters of the system and its impact on the actual mixing of CO2 and brine. We explore the dependence of the CO2 dissolution flux on the nonlinearity of the density and viscosity of the fluid mixture by means of high-resolution numerical simulations and laboratory experiments with an analogue fluid system (water and propylene glycol). We find that the value of the concentration for which the density of the mixture is maximum, and the viscosity contrast between the fluids, both exert a powerful control on the convective flux. From the experimental and simulation results, we obtain the scaling behavior of convective mixing, and clarify the role of nonlinear density and viscosity feedbacks. JJH acknowledges the support from the FP7 Marie Curie Actions of the European Commission, via the CO2-MATE project (PIOF-GA-2009-253678).
NASA Astrophysics Data System (ADS)
Schumacher, R. S.; Peters, J. M.
2015-12-01
Mesoscale convective systems (MCSs) are responsible for a large fraction of warm-season extreme rainfall events over the continental United States, as well as other midlatitude regions globally. The rainfall production in these MCSs is determined by numerous factors, including the large-scale forcing for ascent, the organization of the convection, cloud microphysical processes, and the surrounding thermodynamic and kinematic environment. Furthermore, heavy-rain-producing MCSs are most common at night, which means that well-studied mechanisms for MCS maintenance and organization such as cold pools (gravity currents) are not always at work. In this study, we use numerical model simulations and recent field observations to investigate the sensitivity of low-level MCS structures, and their influences on rainfall, to the details of the thermodynamic environment. In particular, small alterations to the initial conditions in idealized and semi-idealized simulations result in comparatively large precipitation changes, both in terms of the intensity and the spatial distribution. The uncertainties in the thermodynamic enviroments in the model simulations will be compared with high-resolution observations from the Plains Elevated Convection At Night (PECAN) field experiment in 2015. The results have implications for the paradigms of "surface-based" versus "elevated" convection, as well as for the predictability of warm-season convective rainfall.
The cross-over to magnetostrophic convection in planetary dynamo systems
King, E. M.
2017-01-01
Global scale magnetostrophic balance, in which Lorentz and Coriolis forces comprise the leading-order force balance, has long been thought to describe the natural state of planetary dynamo systems. This argument arises from consideration of the linear theory of rotating magnetoconvection. Here we test this long-held tenet by directly comparing linear predictions against dynamo modelling results. This comparison shows that dynamo modelling results are not typically in the global magnetostrophic state predicted by linear theory. Then, in order to estimate at what scale (if any) magnetostrophic balance will arise in nonlinear dynamo systems, we carry out a simple scaling analysis of the Elsasser number Λ, yielding an improved estimate of the ratio of Lorentz and Coriolis forces. From this, we deduce that there is a magnetostrophic cross-over length scale, LX≈(Λo2/Rmo)D, where Λo is the linear (or traditional) Elsasser number, Rmo is the system scale magnetic Reynolds number and D is the length scale of the system. On scales well above LX, magnetostrophic convection dynamics should not be possible. Only on scales smaller than LX should it be possible for the convective behaviours to follow the predictions for the magnetostrophic branch of convection. Because LX is significantly smaller than the system scale in most dynamo models, their large-scale flows should be quasi-geostrophic, as is confirmed in many dynamo simulations. Estimating Λo≃1 and Rmo≃103 in Earth’s core, the cross-over scale is approximately 1/1000 that of the system scale, suggesting that magnetostrophic convection dynamics exists in the core only on small scales below those that can be characterized by geomagnetic observations. PMID:28413338
The cross-over to magnetostrophic convection in planetary dynamo systems.
Aurnou, J M; King, E M
2017-03-01
Global scale magnetostrophic balance, in which Lorentz and Coriolis forces comprise the leading-order force balance, has long been thought to describe the natural state of planetary dynamo systems. This argument arises from consideration of the linear theory of rotating magnetoconvection. Here we test this long-held tenet by directly comparing linear predictions against dynamo modelling results. This comparison shows that dynamo modelling results are not typically in the global magnetostrophic state predicted by linear theory. Then, in order to estimate at what scale (if any) magnetostrophic balance will arise in nonlinear dynamo systems, we carry out a simple scaling analysis of the Elsasser number Λ , yielding an improved estimate of the ratio of Lorentz and Coriolis forces. From this, we deduce that there is a magnetostrophic cross-over length scale, [Formula: see text], where Λ o is the linear (or traditional) Elsasser number, Rm o is the system scale magnetic Reynolds number and D is the length scale of the system. On scales well above [Formula: see text], magnetostrophic convection dynamics should not be possible. Only on scales smaller than [Formula: see text] should it be possible for the convective behaviours to follow the predictions for the magnetostrophic branch of convection. Because [Formula: see text] is significantly smaller than the system scale in most dynamo models, their large-scale flows should be quasi-geostrophic, as is confirmed in many dynamo simulations. Estimating Λ o ≃1 and Rm o ≃10 3 in Earth's core, the cross-over scale is approximately 1/1000 that of the system scale, suggesting that magnetostrophic convection dynamics exists in the core only on small scales below those that can be characterized by geomagnetic observations.
Simulated Radar Characteristics of LBA Convective Systems: Easterly and Westerly Regimes
NASA Technical Reports Server (NTRS)
Lang, Stephen E.; Tao, Wei-Kuo; Simpson, Joanne
2003-01-01
The 3D Goddard Cumulus Ensemble (GCE) model was used to simulate convection that occurred during the TRMM LBA field experiment in Brazil. Convection in this region can be categorized into two different regimes. Low-level easterly flow results in moderate to high CAPE and a drier environment. Convection is more intense like that seen over continents. Low-level westerly flow results in low CAPE and a moist environment. Convection is weaker and more widespread characteristic of oceanic or monsoon-like systems. The GCE model has been used to study both regimes n order to provide cloud datasets that are representative of both environments in support of TRMM rainfall and heating algorithm development. Two different cases are analyzed: Jan 26, 1999, an eastely regime case, and Feb 23, 1999, a westerly regime case. The Jan 26 case is an organized squall line, while the Feb 23 case is less organized with only transient lines. Radar signatures, including CFADs, from the two simulated cases are compared to each other and with observations. The microphysical processes simulated in the model are also compared between the two cases.
WRF nested large-eddy simulations of deep convection during SEAC4RS
NASA Astrophysics Data System (ADS)
Heath, Nicholas K.; Fuelberg, Henry E.; Tanelli, Simone; Turk, F. Joseph; Lawson, R. Paul; Woods, Sarah; Freeman, Sean
2017-04-01
Large-eddy simulations (LES) and observations are often combined to increase our understanding and improve the simulation of deep convection. This study evaluates a nested LES method that uses the Weather Research and Forecasting (WRF) model and, specifically, tests whether the nested LES approach is useful for studying deep convection during a real-world case. The method was applied on 2 September 2013, a day of continental convection that occurred during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) campaign. Mesoscale WRF output (1.35 km grid length) was used to drive a nested LES with 450 m grid spacing, which then drove a 150 m domain. Results reveal that the 450 m nested LES reasonably simulates observed reflectivity distributions and aircraft-observed in-cloud vertical velocities during the study period. However, when examining convective updrafts, reducing the grid spacing to 150 m worsened results. We find that the simulated updrafts in the 150 m run become too diluted by entrainment, thereby generating updrafts that are weaker than observed. Lastly, the 450 m simulation is combined with observations to study the processes forcing strong midlevel cloud/updraft edge downdrafts that were observed on 2 September. Results suggest that these strong downdrafts are forced by evaporative cooling due to mixing and by perturbation pressure forces acting to restore mass continuity around neighboring updrafts. We conclude that the WRF nested LES approach, with further development and evaluation, could potentially provide an effective method for studying deep convection in real-world cases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimura, Keiji; Takehiro, Shin-ichi; Yamada, Michio
2014-08-15
We investigate properties of convective solutions of the Boussinesq thermal convection in a moderately rotating spherical shell allowing the respective rotation of the inner and outer spheres due to the viscous torque of the fluid. The ratio of the inner and outer radii of the spheres, the Prandtl number, and the Taylor number are fixed to 0.4, 1, and 500{sup 2}, respectively. The Rayleigh number is varied from 2.6 × 10{sup 4} to 3.4 × 10{sup 4}. In this parameter range, the behaviours of obtained asymptotic convective solutions are almost similar to those in the system whose inner and outermore » spheres are restricted to rotate with the same constant angular velocity, although the difference is found in the transition process to chaotic solutions. The convective solution changes from an equatorially symmetric quasi-periodic one to an equatorially symmetric chaotic one, and further to an equatorially asymmetric chaotic one, as the Rayleigh number is increased. This is in contrast to the transition in the system whose inner and outer spheres are assumed to rotate with the same constant angular velocity, where the convective solution changes from an equatorially symmetric quasi-periodic one, to an equatorially asymmetric quasi-periodic one, and to equatorially asymmetric chaotic one. The inner sphere rotates in the retrograde direction on average in the parameter range; however, it sometimes undergoes the prograde rotation when the convective solution becomes chaotic.« less
First Principles Analysis of Convection in the Earth's Mantle, Eustatic Sea Level and Earth Volume
NASA Astrophysics Data System (ADS)
Kinsland, G. L.
2011-12-01
Steady state convection (convection whereby heat leaving the mantle at the top is equal to the heat entering the mantle across the core mantle boundary and that created within the mantle) of the Earth's mantle is, to a very good approximation, both a constant mass and constant volume process. Mass or volume which moves to one place; e.g., an oceanic ridge; must be accompanied by mass or volume removed from another place. The location of removal, whether from underneath of an ocean or a continent, determines the relationship between oceanic ridge volume and eustatic sea level. If all of the volume entering a ridge were to come from under an oceanic basin then the size of the ridge would not affect eustatic sea level as it would be compensated by a lowering of the sea floor elsewhere. If the volume comes from under a continent then the hypsometry of the continent becomes important. Thus, eustatic sea level is not simply related to convection rate and oceanic ridge volume as posited by Hays and Pitman(1973). Non-steady state convection is still a constant mass process but is not a constant volume process. The mantle experiences a net gain of heat, warms and expands during periods of relatively slow convection (that being convection rate which is less than that necessary to transport incoming and internally created heat to the surface). Conversely, the mantle has a net loss of heat, cools and contracts during periods of relatively rapid convection. The Earth itself expands and contracts as the mantle does. During rapid convection more volume is delivered from the interior of the mantle to the Earth's ridge system than during slow convection. The integral of the difference of ridge system volume between fast and slow convection over a fast-slow convection cycle is a measure of the difference in volume of the mantle over a cycle. The magnitude of the Earth's volume expansion and contraction as calculated from published values for the volume of ocean ridges and is about .05% and has a period of hundreds of millions of years. Hays, J.D., W.C. Pitmann III, 1973, Lithospheric plate motion, sea level changes and climatic and ecological consequences, Nature 246, 18 - 22.
Characterizing convective cold pools: Characterizing Convective Cold Pools
Drager, Aryeh J.; van den Heever, Susan C.
2017-05-09
Cold pools produced by convective storms play an important role in Earth's climate system. However, a common framework does not exist for objectively identifying convective cold pools in observations and models. The present study investigates convective cold pools within a simulation of tropical continental convection that uses a cloud-resolving model with a coupled land-surface model. Multiple variables are assessed for their potential in identifying convective cold pool boundaries, and a novel technique is developed and tested for identifying and tracking cold pools in numerical model simulations. This algorithm is based on surface rainfall rates and radial gradients in the densitymore » potential temperature field. The algorithm successfully identifies near-surface cold pool boundaries and is able to distinguish between connected cold pools. Once cold pools have been identified and tracked, composites of cold pool evolution are then constructed, and average cold pool properties are investigated. Wet patches are found to develop within the centers of cold pools where the ground has been soaked with rainwater. These wet patches help to maintain cool surface temperatures and reduce cold pool dissipation, which has implications for the development of subsequent convection.« less
Characterizing convective cold pools: Characterizing Convective Cold Pools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drager, Aryeh J.; van den Heever, Susan C.
Cold pools produced by convective storms play an important role in Earth's climate system. However, a common framework does not exist for objectively identifying convective cold pools in observations and models. The present study investigates convective cold pools within a simulation of tropical continental convection that uses a cloud-resolving model with a coupled land-surface model. Multiple variables are assessed for their potential in identifying convective cold pool boundaries, and a novel technique is developed and tested for identifying and tracking cold pools in numerical model simulations. This algorithm is based on surface rainfall rates and radial gradients in the densitymore » potential temperature field. The algorithm successfully identifies near-surface cold pool boundaries and is able to distinguish between connected cold pools. Once cold pools have been identified and tracked, composites of cold pool evolution are then constructed, and average cold pool properties are investigated. Wet patches are found to develop within the centers of cold pools where the ground has been soaked with rainwater. These wet patches help to maintain cool surface temperatures and reduce cold pool dissipation, which has implications for the development of subsequent convection.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, D; Parsons, D; Geerts, B
The Plains Elevated Convection at Night (PECAN) experiment is a large field campaign that is being supported by the National Science Foundation (NSF) with contributions from the National Oceanic and Atmospheric Administration (NOAA), the National Atmospheric and Space Administration (NASA), and the U.S. Department of Energy (DOE). The overarching goal of the PECAN experiment is to improve the understanding and simulation of the processes that initiate and maintain convection and convective precipitation at night over the central portion of the Great Plains region of the United States (Parsons et al. 2013). These goals are important because (1) a large fractionmore » of the yearly precipitation in the Great Plains comes from nocturnal convection, (2) nocturnal convection in the Great Plains is most often decoupled from the ground and, thus, is forced by other phenomena aloft (e.g., propagating bores, frontal boundaries, low-level jets [LLJ], etc.), (3) there is a relative lack of understanding how these disturbances initiate and maintain nocturnal convection, and (4) this lack of understanding greatly hampers the ability of numerical weather and climate models to simulate nocturnal convection well. This leads to significant uncertainties in predicting the onset, location, frequency, and intensity of convective cloud systems and associated weather hazards over the Great Plains.« less
Interacting Convective Processes in Kilauea Iki Lava Lake, Hawaii
NASA Astrophysics Data System (ADS)
Helz, R. T.
2007-12-01
Kilauea Iki lava lake formed in 1959 as a closed magma chamber of 40 million m3 of picritic magma. Repeated drilling and sampling of the lake allows recognition of processes of magmatic differentiation, and places time restrictions on the periods when they operated. Two processes, double-diffusive convection and finger diapirism, occurred because melt density decreases as olivine crystallization and re-equilibration proceeds, until after plagioclase begins to crystallize. Finger diapirism, described in previous work, occurred from 1961 to 1971 and affected most the lava lake between depths of 13 to 94 m. The period of inferred double- diffusive convection occurred between mid-1962 and 1964 and affected only the most olivine-poor part of the lava lake. Recent re-evaluation of petrographic and chemical data refine our understanding of this second process. The overall variation of bulk MgO content with depth in Kilauea Iki is an S-curve, consistent with gravitative redistribution of the abundant olivine phenocrysts present in the erupted lava. The olivine-poor zone (MgO <11 weight percent) is a sill-like volume found between depths of 21 to 43 m in the lake. This zone is bisected by a median layer containing more and slightly coarser olivine phenocrysts, which has an MgO content 2 weight percent higher than the minimum in the layers above and below. This configuration, not achievable by gravitative settling, suggests that the olivine-poor zone at some point contained a two-layer convective system. The upper and median layers of the olivine-poor zone contain a sparse population of augite microphenocrysts (0.2-0.4 mm in length), often in monomineralic clusters (1-3 mm in length), while the lower layer contains only olivine. Plagioclase and other phases occur only in the groundmass in all samples. If the layers developed before groundmass crystallization began, then the assemblage in the upper layer was olivine + augite, and was olivine-only in the lower. Because melt density decreases as temperature decreases in this part of the crystallization range and because the lava lake was strongly cooled from above, the conditions for double- diffusive convection, with splitting of the melt column into layers, were met. Core samples and temperature data obtained by drilling the lake in mid-1962 and late 1967 constrain the period of double-diffusive convection to the first half of that period. The process ceased without shifting the position of the median olivine-enriched layer downward, suggesting that it was very brief. Finger diapirism, already active in Kilauea Iki, was volumetrically more important, and passed through both layers. This overlapping process may have ended the broader convective process by reducing the thermal gradient that drove it. Although double- diffusive convection was a minor process in Kilauea Iki, it did occur in this closed magma system.
A Generalized Simple Formulation of Convective Adjustment ...
Convective adjustment timescale (τ) for cumulus clouds is one of the most influential parameters controlling parameterized convective precipitation in climate and weather simulation models at global and regional scales. Due to the complex nature of deep convection, a prescribed value or ad hoc representation of τ is used in most global and regional climate/weather models making it a tunable parameter and yet still resulting in uncertainties in convective precipitation simulations. In this work, a generalized simple formulation of τ for use in any convection parameterization for shallow and deep clouds is developed to reduce convective precipitation biases at different grid spacing. Unlike existing other methods, our new formulation can be used with field campaign measurements to estimate τ as demonstrated by using data from two different special field campaigns. Then, we implemented our formulation into a regional model (WRF) for testing and evaluation. Results indicate that our simple τ formulation can give realistic temporal and spatial variations of τ across continental U.S. as well as grid-scale and subgrid scale precipitation. We also found that as the grid spacing decreases (e.g., from 36 to 4-km grid spacing), grid-scale precipitation dominants over subgrid-scale precipitation. The generalized τ formulation works for various types of atmospheric conditions (e.g., continental clouds due to heating and large-scale forcing over la
Aerobiology in the operating room and its implications for working standards.
Friberg, B; Friberg, S
2005-01-01
Two novel operating room (OR) ventilation concepts, i.e. the upward displacement or thermal convection system and the exponential ultra-clean laminar air flow (LAF) designed to function without extra walls, were evaluated from a bacteriological point of view. The thermal convection system (17 air changes/h) was compared with conventional ventilation (16 air changes/h) with an air inlet at the ceiling and evacuation at floor level. The exponential LAF was compared with the vertical ultra-clean LAF and the horizontal ultra-clean LAF, both with extra side walls. The comparison was made using strictly standardized simulated operations and, except for the horizontal LAF, it was performed in the same OR where the type of ventilation was changed. In the different areas important for surgical asepsis, the thermal system resulted in a twofold to threefold increase in bacterial air and surface counts compared to the conventional system (statistical significance = p < 0.05-0.0001). The bacteriological efficiency of the exponential LAF was equal to the horizontal and vertical LAF units with extra walls in the OR, and all three systems easily fulfilled the criteria for ultra-clean air, i.e. bacteria-carrying particles < 10/m3. In the areas important for surgical asepsis the turbulent ventilation systems yielded highly significant correlation between air and surface contamination (p < 0.02-0.0006). No such correlation existed in the LAF systems.
Thermal regime of the deep carbonate reservoir of the Po Plain (Italy)
NASA Astrophysics Data System (ADS)
Pasquale, V.; Chiozzi, P.; Verdoya, M.
2012-04-01
Italy is one of the most important countries in the world with regard to high-medium enthalpy geothermal resources, a large part of which is already extracted at relatively low cost. High temperatures at shallow to medium depth occur within a wide belt, several hundred kilometre long, west of the Apennines mountain chain. This belt, affected by recent lithosphere extension, includes several geothermal fields, which are largely exploited for electricity generation. Between the Alps and Apennines ranges, the deeper aquifer, occurring in carbonate rocks of the Po Plain, can host medium enthalpy fluids, which are exploited for district heating. Such a general picture of the available geothermal resources has been well established through several geophysical investigations and drillings. Nevertheless, additional studies are necessary to evaluate future developments, especially with reference to the deep carbonate aquifer of the Po Plain. In this paper, we focus on the eastern sector of the plain and try to gain a better understanding of the thermal regime by using synergically geothermal methodologies and geological information. The analysis of the temperatures recorded to about 6 km depth in hydrocarbon wells supplies basic constraints to outline the thermal regime of the sedimentary basin and to investigate the occurrence and importance of hydrothermal processes in the carbonate layer. After correction for drilling disturbance, temperatures were analysed, together with geological information, through an inversion technique based on a laterally constant thermal gradient model. The inferred thermal gradient changes with depth; it is quite low within the carbonate layer, while is larger in the overlying, practically impermeable formations. As the thermal conductivity variation does not justify such a thermal gradient difference, the vertical change can be interpreted as due to convective processes occurring in the carbonate layer, acting as thermal reservoir. The hydrogeological characteristics hardly permit forced convection in the deep aquifer. Thus, we argue that thermal convection could be the driving mechanism of water flow in the carbonate reservoir. The potential of this mechanism was evaluated by means of the Rayleigh number analysis. A relatively low permeability is required for thermal convection to occur. The carbonate reservoir can be thus envisaged as a hydrothermal convection system of large thickness and extension having a large over-heat ratio. Lateral variation of hydrothermal regime was also tested by using temperature data representing the reservoir thermal conditions. We found that thermal convection is of variable intensity and may more likely occur at an area (Ferrara structural high) where widespread fracturing due to tectonism is expected yielding a local increase in permeability.
Investigation of thermocapillary convection in a three-liquid-layer system
NASA Astrophysics Data System (ADS)
Géoris, Ph.; Hennenberg, M.; Lebon, G.; Legros, J. C.
1999-06-01
This paper presents the first experimental results on Marangoni Bénard instability in a symmetrical three-layer system. A pure thermocapillary phenomenon has been observed by performing the experiment in a microgravity environment where buoyancy forces can be neglected. This configuration enables the hydrodynamic stability of two identical liquid liquid interfaces subjected to a normal gradient of temperature to be studied. The flow is driven by one interface only and obeys the criterion based on the heat diffusivity ratio proposed by Scriven & Sternling (1959) and Smith (1966). The measured critical temperature difference for the onset of convection is compared to the value obtained from two-dimensional numerical simulations. The results of the simulations are in reasonable agreement with the velocimetry and the thermal experimental data for moderate supercriticality. Numerically and experimentally, the convective pattern exhibits a transition between different convective regimes for similar temperature gradients. Their common detailed features are discussed.
Transient performance and temperature field of a natural convection air dehumidifier loop
NASA Astrophysics Data System (ADS)
Fazilati, Mohammad Ali; Sedaghat, Ahmad; Alemrajabi, Ali-Akbar
2017-07-01
In this paper, transient performance of the previously introduced natural convection heat and mass transfer loop is investigated for an air dehumidifier system. The performance of the loop is studied in different conditions of heat source/heat sink temperature and different startup desiccant concentrations. Unlike conventional loops, it is observed that natural convection of the fluid originates from the heat sink towards the heat source. The proper operation of the cycle is highly dependent on the heat sink/heat source temperatures. To reduce the time constant of the system, a proper desiccant concentration should be adopted for charge of the loop.
Tactical Versus Strategic Behavior: General Aviation Piloting in Convective Weather Scenarios
NASA Technical Reports Server (NTRS)
Latorella, Kara A.; Chamberlain, James P.
2002-01-01
We commonly describe environments and behavioral responses to environmental conditions as 'tactical' and 'strategic.' However theoretical research defining relevant environmental characteristics is rare, as are empirical investigations that would inform such theory. This paper discusses General Aviation (GA) pilots' descriptions of tactical/strategic conditions with respect to weather flying, and evaluates their ratings along a tactical/strategic scale in response to real convective weather scenarios experienced during a flight experiment with different weather information cues. Perceived risk was significantly associated with ratings for all experimental conditions. In addition, environmental characteristics were found to be predictive of ratings for Traditional IMC (instrument meteorological conditions), i.e., aural weather information only, and Traditional VMC (visual meteorological conditions), i.e., aural information and an external view. The paper also presents subjects' comments regarding use of Graphical Weather Information Systems (GWISs) to support tactical and strategic weather flying decisions and concludes with implications for the design and use of GWISs.
NASA Technical Reports Server (NTRS)
Wilson, G. S.
1977-01-01
The paper describes interrelationships between synoptic-scale and convective-scale systems obtained by following individual air parcels as they traveled within the convective storm environment of AVE IV. (NASA's fourth Atmospheric Variability Experiment, AVE IV, was a 36-hour study in April 1975 of the atmospheric variability and structure in regions of convective storms.) A three-dimensional trajectory model was used to calculate parcel paths, and manually digitized radar was employed to locate convective activity of various intensities and to determine those trajectories that traversed the storm environment. Spatial and temporal interrelationships are demonstrated by reference to selected time periods of AVE IV which contain the development and movement of the squall line in which the Neosho tornado was created.
NASA Technical Reports Server (NTRS)
Ohtani, S.; Potemra, T. A.; Newell, P. T.; Zanetti, L. J.; Iijima, T.; Watanabe, M.; Yamauchi, M.; Elphinstone, R. D.; De La Beauijardie, O.; Blomberg, L. G.
1995-01-01
The spatial structure of dayside large-scale field-aligned current (FAC) systems is examined by using Viking and Defense Meteorological Satellite Program-F7 (DMSP-F7) data. We focus on four events in which the satellites simultaneously observed postnoon and prenoon three FAC systems: the region 2, the region 1, and the mantle (referred to as midday region O) systems, from equatorward to poleward. These events provide the most solid evidence to date that the midday region O system is a separate and unique FAC system, and is not an extension of the region 1 system from other local times. The events are examined comprehensively by making use of a mulit-instrumental data set, which includes magnetic field, particle flux, electric field, auroral UV image data from the satellites, and the Sondrestrom convection data. The results are summarized as follows: (1) Region 2 currents flow mostly in the central plasma sheet (CPS) precipitation region, often overlapping with the boundary plasma sheet (BPD) at their poleward edge. (2) The region 1 system is located in the core part of the auroral oval and is confined in a relatively narrow range in latitude which includes the convection reversal. The low-latitude boundary layer, possibly including the outer part of the plasma sheet, and the external cusp are the major source regions of dayside region 1 currents. (2) Midday region O currents flow on open field lines and are collocated with the shear of antisunward convection flows with velocites decreasing poleward. On the basis of these results we support the view that both prenoon and postnoon current systems consist of the three-sheet structure when the disctortion ofthe convection pattern associated with interplanetary magnetic field (IMF) B(sub Y) is small and both morningside and eveningside convection cells are crescent-shaped. We also propose that the midday region O and a part of the region 1 systems are closely coupled to the same source.
Aqua-planet simulations of the formation of the South Atlantic convergence zone
NASA Technical Reports Server (NTRS)
Nieto Ferreira, Rosana; Chao, Winston C.
2013-01-01
The impact of Amazon Basin convection and cold fronts on the formation and maintenance of the South Atlantic convergence zone (SACZ) is studied using aqua-planet simulations with a general circulation model. In the model, a circular patch of warm sea-surface temperature (SST) is used to mimic the effect of the Amazon Basin on South American monsoon convection. The aqua-planet simulations were designed to study the effect of the strength and latitude of Amazon Basin convection on the formation of the SACZ. The simulations indicate that the strength of the SACZ increases as the Amazon convection intensifies and is moved away from the equator. Of the two controls studied here, the latitude of the Amazon convection exerts the strongest effect on the strength of the SACZ. An analysis of the synoptic-scale variability in the simulations shows the importance of frontal systems in the formation of the aqua-planet SACZ. Composite time series of frontal systems that occurred in the simulations show that a robust SACZ occurs when fronts penetrate into the subtropics and become stationary there as they cross eastward of the longitude of the Amazon Basin. Moisture convergence associated with these frontal systems produces rainfall not along the model SACZ region and along a large portion of the northern model Amazon Basin. Simulations in which the warm SST patch was too weak or too close to the equator did not produce frontal systems that extended into the tropics and became stationary, and did not form a SACZ. In the model, the SACZ forms as Amazon Basin convection strengthens and migrates far enough southward to allow frontal systems to penetrate into the tropics and stall over South America. This result is in agreement with observations that the SACZ tends to form after the onset of the monsoon season in the Amazon Basin.
Transport processes in directional solidification and their effects on microstructure development
NASA Astrophysics Data System (ADS)
Mazumder, Prantik
The processing of materials with unique electronic, mechanical, optical and thermal properties plays a crucial role in modern technology. The quality of these materials depend strongly on the microstructures and the solute/dopant fields in the solid product, that are strongly influenced by the intricate coupling of heat and mass transfer and melt flow in the growth systems. An integrated research program is developed that include precisely characterized experiments and detailed physical and numerical modeling of the complex transport and dynamical processes. Direct numerical simulation of the solidification process is carried out that takes into account the unsteady thermo-solutal convection in the vertical Bridgman crystal growth system, and accurately models the thermal interaction between the furnace and the ampoule by appropriately using experimentally measured thermal profiles. The flow instabilities and transitions and the nonlinear evolution following the transitions are investigated by time series and flow pattern analysis. A range of complex dynamical behavior is predicted with increasing thermal Rayleigh number. The route to chaos appears as: steady convection --> transient mono-periodic --> transient bi-periodic --> transient quasiperiodic --> transient intermittent oscillation- relaxation --> stable intermittent oscillation-relaxation attractor. The spatio-temporal dynamics of the melt flow is found to be directly related to the spatial patterns observed experimentally in the solidified crystals. The application of the model to two phase Sn-Cd peritectic alloys showed that a new class of tree-like oscillating microstructure develops in the solid phase due to unsteady thermo-solutal convection in the liquid melt. These oscillating layered structures can give the illusion of band structures on a plane of polish. The model is applied to single phase solidification in the Al-Cu and Pb-Sn systems to characterize the effect of convection on the macroscopic shape and disorder in the primary arm spacing of the cellular/dendritic freezing front. The apparently puzzling experimental observation of higher disorder in the weakly convective Al-Cu system than that in the highly convective Pb-Sn system is explained by the numerical calculations.
NASA Astrophysics Data System (ADS)
Tomassini, Lorenzo; Field, Paul R.; Honnert, Rachel; Malardel, Sylvie; McTaggart-Cowan, Ron; Saitou, Kei; Noda, Akira T.; Seifert, Axel
2017-03-01
A stratocumulus-to-cumulus transition as observed in a cold air outbreak over the North Atlantic Ocean is compared in global climate and numerical weather prediction models and a large-eddy simulation model as part of the Working Group on Numerical Experimentation "Grey Zone" project. The focus of the project is to investigate to what degree current convection and boundary layer parameterizations behave in a scale-adaptive manner in situations where the model resolution approaches the scale of convection. Global model simulations were performed at a wide range of resolutions, with convective parameterizations turned on and off. The models successfully simulate the transition between the observed boundary layer structures, from a well-mixed stratocumulus to a deeper, partly decoupled cumulus boundary layer. There are indications that surface fluxes are generally underestimated. The amount of both cloud liquid water and cloud ice, and likely precipitation, are under-predicted, suggesting deficiencies in the strength of vertical mixing in shear-dominated boundary layers. But also regulation by precipitation and mixed-phase cloud microphysical processes play an important role in the case. With convection parameterizations switched on, the profiles of atmospheric liquid water and cloud ice are essentially resolution-insensitive. This, however, does not imply that convection parameterizations are scale-aware. Even at the highest resolutions considered here, simulations with convective parameterizations do not converge toward the results of convection-off experiments. Convection and boundary layer parameterizations strongly interact, suggesting the need for a unified treatment of convective and turbulent mixing when addressing scale-adaptivity.
A model for Entropy Production, Entropy Decrease and Action Minimization in Self-Organization
NASA Astrophysics Data System (ADS)
Georgiev, Georgi; Chatterjee, Atanu; Vu, Thanh; Iannacchione, Germano
In self-organization energy gradients across complex systems lead to change in the structure of systems, decreasing their internal entropy to ensure the most efficient energy transport and therefore maximum entropy production in the surroundings. This approach stems from fundamental variational principles in physics, such as the principle of least action. It is coupled to the total energy flowing through a system, which leads to increase the action efficiency. We compare energy transport through a fluid cell which has random motion of its molecules, and a cell which can form convection cells. We examine the signs of change of entropy, and the action needed for the motion inside those systems. The system in which convective motion occurs, reduces the time for energy transmission, compared to random motion. For more complex systems, those convection cells form a network of transport channels, for the purpose of obeying the equations of motion in this geometry. Those transport networks are an essential feature of complex systems in biology, ecology, economy and society.
Exergetic simulation of a combined infrared-convective drying process
NASA Astrophysics Data System (ADS)
Aghbashlo, Mortaza
2016-04-01
Optimal design and performance of a combined infrared-convective drying system with respect to the energy issue is extremely put through the application of advanced engineering analyses. This article proposes a theoretical approach for exergy analysis of the combined infrared-convective drying process using a simple heat and mass transfer model. The applicability of the developed model to actual drying processes was proved using an illustrative example for a typical food.
Passively Enhancing Convection Heat Transfer Around Cylinder Using Shrouds
NASA Astrophysics Data System (ADS)
Samaha, Mohamed A.; Kahwaji, Ghalib Y.
2017-11-01
Natural convection heat transfer around a horizontal cylinder has received considerable attention through decades since it has been used in several viable applications. However, investigations into passively enhancement of the free convective cooling using external walls and chimney effect are lacking. In this work, a numerical simulation to study natural convection from a horizontal cylinder configured with semicircular shrouds with an expended chimney is employed. The fluid flow and convective heat transfer around the cylinder are modeled. The bare cylinder is also simulated for comparison. The present study are aimed at improving our understanding of the parameters advancing the free convective cooling of the cylinder implemented with the shrouds configuration. For validation, the present results for the bare tube are compared with data reported in the literature. The numerical simulations indicate that applying the shrouds configuration with extended chimney to a tube promotes the convection heat transfer from the cylinder. Such a method is less expensive and simpler in design than other configurations (e.g. utilizing extended surfaces, fins), making the technology more practical for industrial productions, especially for cooling systems. Dubai Silicon Oasis Authority (DSOA) Grants.
NASA Technical Reports Server (NTRS)
Cotton, W. R.; Tripoli, G. J.
1982-01-01
Observational requirements for predicting convective storm development and intensity as suggested by recent numerical experiments are examined. Recent 3D numerical experiments are interpreted with regard to the relationship between overshooting tops and surface wind gusts. The development of software for emulating satellite inferred cloud properties using 3D cloud model predicted data and the simulation of Heymsfield (1981) Northern Illinois storm are described as well as the development of a conceptual/semi-quantitative model of eastward propagating, mesoscale convective complexes forming to the lee of the Rocky Mountains.
Peculiarities of convection and oil maturation in 3D porous medium structure.
NASA Astrophysics Data System (ADS)
Yurie Khachay, Professor; Mindubaev, Mansur
2017-04-01
An important estimation of oil source thickness productivity is to study the thermal influences of magmatic intrusions on the maturation of the organic matter. The heterogeneity of permeability distribution of the reservoir rock and respectively the convection structure provide temperature heterogeneity and different degree of maturity for the oil source material. A numerical algorithm for solving the problem of developed convection in two-dimensional and three-dimensional models of the porous medium, which consists of a system of Darcy equations, heat conduction with convection term and the continuity equation, is developed. Because of the effective values of the coefficients of thermal conductivity, heat capacity, viscosity and permeability of the medium depend from the temperature; the system of equations is nonlinear. For solution we used the dimensionless system of coordinates. For numerical solution we used the longitudinal cross-implicit scheme. The coordinates step for the 3D model had been used constant and equal to H/20, where H=1- dimensionless thickness of porous medium layer. As it is shown from the variants of numerical solution, by the stationary regime of developed convection because of the temperature heterogeneous distribution in the sedimentary reservoir the formation of oil source matter different degree of maturity is possible. That result is very significant for estimation of reservoirs oil-bearing The work was fulfilled by supporting of the Fund of UB RAS, project 1518532. Reference 1. Yurie Khachay and Mansur Mindubaev, 2016, Effect of convective transport in porous media on the conductions of organic matter maturation and generation of hydrocarbons in trap rocks complexes, Energy Procedia. 74 pp.79-83.
NASA Astrophysics Data System (ADS)
Matsumoto, J.; Takimoto, I.
2004-05-01
East Asian summer monsoon experiences drastic seasonal changes, especially at the beginning and end of the Baiu/Mei-yu season. Here, impact of tropical convection on the withdrawal of Baiu in western Japan was investigated in order to show the complicated interaction between tropical and mid-latitude systems as well as the influence of tropical intraseasonal variations on the seasonal changes in East Asia. First, the Baiu withdrawal date in each year was defined objectively by utilizing NOAA outgoing longwave radiation (OLR) data for the period (1979-2003). When compared the situation of the tropical convection accompanied with the end of Baiu season in each year thus obtained, four categories were classified based on the region and/or state of the tropical convective activity when the end of Baiu season is clearly defined. The years convection is enhanced in both near Philippines and in the western Pacific regions (PW-type)_Cin either of the above region (P-type and W-type), in South China region (SC-type). Composite analyses of the atmospheric conditions were performed for these four types using NCEP/NCAR reanalysis data. As a result, the different characteristics of the general circulation changes before and after Baiu withdrawal were clearly identified among each type. The relationship with SST fields and intraseasonal variations in the tropical convective activities is also analyzed. The results obtained show a complicated climatic system on the seasonal changes of East Asian monsoon system, which should be investigated in more detail in future using CEOP data.
Mechanisms initiating deep convection over complex terrain during COPS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kottmeier, C.; Kalthoff, N.; Barthlott, C.
2008-12-01
Precipitating convection in a mountain region of moderate topography is investigated, with particular emphasis on its initiation in response to boundary-layer and mid- and upper-tropospheric forcing mechanisms. The data used in the study are from COPS (Convective and Orographically-induced Precipitation Study) that took place in southwestern Germany and eastern France in the summer of 2007. It is found that the initiation of precipitating convection can be roughly classified as being due to either: (i) surface heating and low-level flow convergence; (ii) surface heating and moisture supply overcoming convective inhibition during latent and/or potential instability; or (iii) mid-tropospheric dynamical processes duemore » to mesoscale convergence lines and forced mean vertical motion. These phenomena have to be adequately represented in models in order to improve quantitative precipitation forecast. Selected COPS cases are analyzed and classified into these initiation categories. Although only a subset of COPS data (mainly radiosondes, surface weather stations, radar and satellite data) are used here, it is shown that convective systems are captured in considerable detail by sensor synergy. Convergence lines were observed by Doppler radar in the location where deep convection is triggered several hours later. The results suggest that in many situations, observations of the location and timing of convergence lines will facilitate the nowcasting of convection. Further on, forecasting of the initiation of convection is significantly complicated if advection of potentially convective air masses over changing terrain features plays a major role. The passage of a frontal structure over the Vosges - Rhine valley - Black Forest orography was accompanied by an intermediate suppression of convection over the wide Rhine valley. Further downstream, an intensification of convection was observed over the Black Forest due to differential surface heating, a convergence line, and the flow generated by a gust front.« less
A second-order bulk boundary-layer model
NASA Technical Reports Server (NTRS)
Randall, David A.; Shao, Qingqiu; Moeng, Chin-Hoh
1992-01-01
Bulk mass-flux models represent the large eddies that are primarily responsible for the turbulent fluxes in the planetary boundary layer as convective circulations, with an associated convective mass flux. In order for such models to be useful, it is necessary to determine the fractional area covered by rising motion in the convective circulations. This fraction can be used as an estimate of the cloud amount, under certain conditions. 'Matching' conditions have been developed that relate the convective mass flux to the ventilation and entrainment mass fluxes. These are based on conservation equations for the scalar means and variances in the entrainment and ventilation layers. Methods are presented to determine both the fractional area covered by rising motion and the convective mass flux. The requirement of variance balance is used to relax the 'well-mixed' assumption. The vertical structures of the mean state and the turbulent fluxes are determined analytically. Several aspects of this simple model's formulation are evaluated using results from large-eddy simulations.
Benchmarking FEniCS for mantle convection simulations
NASA Astrophysics Data System (ADS)
Vynnytska, L.; Rognes, M. E.; Clark, S. R.
2013-01-01
This paper evaluates the usability of the FEniCS Project for mantle convection simulations by numerical comparison to three established benchmarks. The benchmark problems all concern convection processes in an incompressible fluid induced by temperature or composition variations, and cover three cases: (i) steady-state convection with depth- and temperature-dependent viscosity, (ii) time-dependent convection with constant viscosity and internal heating, and (iii) a Rayleigh-Taylor instability. These problems are modeled by the Stokes equations for the fluid and advection-diffusion equations for the temperature and composition. The FEniCS Project provides a novel platform for the automated solution of differential equations by finite element methods. In particular, it offers a significant flexibility with regard to modeling and numerical discretization choices; we have here used a discontinuous Galerkin method for the numerical solution of the advection-diffusion equations. Our numerical results are in agreement with the benchmarks, and demonstrate the applicability of both the discontinuous Galerkin method and FEniCS for such applications.
Evaluation of T-111 forced-convection loop tested with lithium at 1370 C. [free convection
NASA Technical Reports Server (NTRS)
Devan, J. H.; Long, E. L., Jr.
1975-01-01
A T-111 alloy (Ta-8% W-2% Hf) forced-convection loop containing molten lithium was operated 3000 hr at a maximum temperature of 1370 C. Flow velocities up to 6.3 m/sec were used, and the results of this forced-convection loop are very similar to those observed in lower velocity thermal-convection loops of T-111 containing lithium. Weight changes were determined at 93 positions around the loop. The maximum dissolution rate occurred at the maximum wall temperature of the loop and was less than 1.3 microns/year. Mass transfer of hafnium, nitrogen, and, to a lesser extent, carbon occurred from the hotter to cooler regions. Exposed surfaces in the highest temperature region were found to be depleted in hafnium to a depth of 60 microns with no detectable change in tungsten content. There was some loss in room-temperature tensile strength for specimens exposed to lithium at 1370 C, attributable to depletion of hafnium and nitrogen and to attendant grain growth.
Explicit Convection over the Western Pacific Warm Pool in the Community Atmospheric Model.
NASA Astrophysics Data System (ADS)
Ziemiaski, Micha Z.; Grabowski, Wojciech W.; Moncrieff, Mitchell W.
2005-05-01
This paper reports on the application of the cloud-resolving convection parameterization (CRCP) to the Community Atmospheric Model (CAM), the atmospheric component of the Community Climate System Model (CCSM). The cornerstone of CRCP is the use of a two-dimensional zonally oriented cloud-system-resolving model to represent processes on mesoscales at the subgrid scale of a climate model. Herein, CRCP is applied at each climate model column over the tropical western Pacific warm pool, in a domain spanning 10°S-10°N, 150°-170°E. Results from the CRCP simulation are compared with CAM in its standard configuration.The CRCP simulation shows significant improvements of the warm pool climate. The cloud condensate distribution is much improved as well as the bias of the tropopause height. More realistic structure of the intertropical convergence zone (ITCZ) during the boreal winter and better representation of the variability of convection are evident. In particular, the diurnal cycle of precipitation has phase and amplitude in good agreement with observations. Also improved is the large-scale organization of the tropical convection, especially superclusters associated with Madden-Julian oscillation (MJO)-like systems. Location and propagation characteristics, as well as lower-tropospheric cyclonic and upper-tropospheric anticyclonic gyres, are more realistic than in the standard CAM. Finally, the simulations support an analytic theory of dynamical coupling between organized convection and equatorial beta-plane vorticity dynamics associated with MJO-like systems.
The hydrothermal-convection systems of Kilauea: An historical perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, R.B.; Kauahikaua, J.P.
1993-08-01
Kilauea is one of only two basaltic volcanoes in the world where geothermal power has been produced commercially. Little is known about the origin, size and longevity of its hydrothermal-convection systems. The authors review the history of scientific studies aimed at understanding these systems and describe their commercial development. Geothermal energy is a controversial issue in Hawaii, partly because of hydrogen sulfide emissions and concerns about protection of rain forests.
Thunderstorm-environment interactions determined with three-dimensional trajectories
NASA Technical Reports Server (NTRS)
Wilson, G. S.
1980-01-01
Diagnostically determined three dimensional trajectories were used to reveal some of the scale interaction processes that occur between convective storms and their environment. Data from NASA's fourth Atmospheric Variability Experiment are analyzed. Two intense squall lines and numerous reports of severe weather occurred during the period. Convective storm systems with good temporal and spatial continuity are shown to be related to the development and movement of short wave circulation systems aloft that propagate eastward within a zonal mid tropospheric wind pattern. These short wave systems are found to produce the potential instability and dynamic triggering needed for thunderstorm formation. The environmental flow patterns, relative to convective storm systems, are shown to produce large upward air parcel movements in excess of 50 mb/3h in the immediate vicinity of the storms. The air undergoing strong lifting originates as potentially unstable low level air traveling into the storm environment from southern and southwestern directions. The thermo and hydrodynamical processes that lead to changes in atmospheric structure before, during, and after convective storm formation are described using total time derivatives of pressure or net vertical displacement, potential temperature, and vector wind calculated by following air parcels.
Infrared Drying as a Potential Alternative to Convective Drying for Biltong Production.
Cherono, Kipchumba; Mwithiga, Gikuru; Schmidt, Stefan
2016-06-03
Two infrared systems set at an intensity of 4777 W/m 2 with peak emission wavelengths of 2.5 and 3.5 µm were used to produce biltong by drying differently pre-treated meat. In addition to meat texture and colour, the microbial quality of the biltong produced was assessed by quantifying viable heterotrophic microorganisms using a most probable number (MPN) method and by verifying the presence of presumptive Escherichia coli in samples produced using infrared and conventional convective drying. The two infrared drying systems reduced the heterotrophic microbial burden from 5.11 log 10 MPN/g to 2.89 log 10 MPN/g (2.5 µm) and 3.42 log 10 MPN/g (3.5 µm), respectively. The infrared systems achieved an up to one log higher MPN/g reduction than the convective system. In biltong samples produced by short wavelength (2.5 µm) infrared drying, E. coli was not detectable. This study demonstrates that the use of short wavelength infrared drying is a potential alternative to conventional convective drying by improving the microbiological quality of biltong products while at the same time delivering products of satisfactory quality.
Advection of Microphysical Scalars in Terminal Area Simulation System (TASS)
NASA Technical Reports Server (NTRS)
Ahmad, Nashat N.; Proctor, Fred H.
2011-01-01
The Terminal Area Simulation System (TASS) is a large eddy scale atmospheric flow model with extensive turbulence and microphysics packages. It has been applied successfully in the past to a diverse set of problems ranging from prediction of severe convective events (Proctor et al. 2002), tracking storms and for simulating weapons effects such as the dispersion and fallout of fission debris (Bacon and Sarma 1991), etc. More recently, TASS has been used for predicting the transport and decay of wake vortices behind aircraft (Proctor 2009). An essential part of the TASS model is its comprehensive microphysics package, which relies on the accurate computation of microphysical scalar transport. This paper describes an evaluation of the Leonard scheme implemented in the TASS model for transporting microphysical scalars. The scheme is validated against benchmark cases with exact solutions and compared with two other schemes - a Monotone Upstream-centered Scheme for Conservation Laws (MUSCL)-type scheme after van Leer and LeVeque's high-resolution wave propagation method. Finally, a comparison between the schemes is made against an incident of severe tornadic super-cell convection near Del City, Oklahoma.
Does Solar Wind also Drive Convection in Jupiter's Magnetosphere?
NASA Astrophysics Data System (ADS)
Khurana, K. K.
2001-05-01
Using a simple model of magnetic field and plasma velocity, Brice and Ioannidis [1970] showed that the corotation electric field exceeds convection electric field throughout the Jovian magnetosphere. Since that time it has been tacitly assumed that Jupiter's magnetosphere is driven from within. If Brice and Ioannidis conjecture is correct then one would not expect major asymmetries in the field and plasma parameters in the middle magnetosphere of Jupiter. Yet, new field and plasma observations from Galileo and simultaneous auroral observations from HST show that there are large dawn/dusk and day/night asymmetries in many magnetospheric parameters. For example, the magnetic observations show that a partial ring current and an associated Region-2 type field-aligned current system exist in the magnetosphere of Jupiter. In the Earth's magnetosphere it is well known that the region-2 current system is created by the asymmetries imposed by a solar wind driven convection. Thus, we are getting first hints that the solar wind driven convection is important in Jupiter's magnetosphere as well. Other in-situ observations also point to dawn-dusk asymmetries imposed by the solar wind. For example, first order anisotropies in the Energetic Particle Detector show that the plasma is close to corotational on the dawn side but lags behind corotation in the dusk sector. Magnetic field data show that the current sheet is thin and highly organized on the dawn side but thick and disturbed on the dusk side. I will discuss the reasons why Brice and Ioannidis calculation may not be valid. I will show that both the magnetic field and plasma velocity estimates used by Brice and Ioannidis were rather excessive. Using more modern estimates of the field and velocity values I show that the solar wind convection can penetrate as deep as 40 RJ on the dawnside. I will present a new model of convection that invokes in addition to a distant neutral line spanning the whole magnetotail, a near-Jupiter neutral line only on the dawnside. I will discuss how the internal and external drivers together set up a convection system and transport plasma and magnetic flux in Jupiter's magnetosphere. I will explore the consequences of this convection system on the flows, current sheet and the Jovian aurorae.
Factors governing the total rainfall yield from continental convective clouds
NASA Technical Reports Server (NTRS)
Rosenfeld, Daniel; Gagin, Abraham
1989-01-01
Several important factors that govern the total rainfall from continental convective clouds were investigated by tracking thousands of convective cells in Israel and South Africa. The rainfall volume yield (Rvol) of the individual cells that build convective rain systems has been shown to depend mainly on the cloud-top height. There is, however, considerable variability in this relationship. The following factors that influence the Rvol were parameterized and quantitatively analyzed: (1) cloud base temperature, (2)atmospheric instability, and (3) the extent of isolation of the cell. It is also shown that a strong low level forcing increases the duration of Rvol of clouds reaching the same vertical extent.
Traffic Management Coordinator Evaluation of the Dynamic Weather Routes Concept and System
NASA Technical Reports Server (NTRS)
Gong, Chester
2014-01-01
Dynamic Weather Routes (DWR) is a weather-avoidance system for airline dispatchers and FAA traffic managers that continually searches for and advises the user of more efficient routes around convective weather. NASA and American Airlines (AA) have been conducting an operational trial of DWR since July 17, 2012. The objective of this evaluation is to assess DWR from a traffic management coordinator (TMC) perspective, using recently retired TMCs and actual DWR reroutes advisories that were rated acceptable by AA during the operational trial. Results from the evaluation showed that the primary reasons for a TMC to modify or reject airline reroute requests were related to airspace configuration. Approximately 80 percent of the reroutes evaluated required some coordination before implementation. Analysis showed TMCs approved 62 percent of the requested DWR reroutes, resulting in 57 percent of the total requested DWR time savings.
NASA Astrophysics Data System (ADS)
Alapaty, K.; Zhang, G. J.; Song, X.; Kain, J. S.; Herwehe, J. A.
2012-12-01
Short lived pollutants such as aerosols play an important role in modulating not only the radiative balance but also cloud microphysical properties and precipitation rates. In the past, to understand the interactions of aerosols with clouds, several cloud-resolving modeling studies were conducted. These studies indicated that in the presence of anthropogenic aerosols, single-phase deep convection precipitation is reduced or suppressed. On the other hand, anthropogenic aerosol pollution led to enhanced precipitation for mixed-phase deep convective clouds. To date, there have not been many efforts to incorporate such aerosol indirect effects (AIE) in mesoscale models or global models that use parameterization schemes for deep convection. Thus, the objective of this work is to implement a diagnostic cloud microphysical scheme directly into a deep convection parameterization facilitating aerosol indirect effects in the WRF-CMAQ integrated modeling systems. Major research issues addressed in this study are: What is the sensitivity of a deep convection scheme to cloud microphysical processes represented by a bulk double-moment scheme? How close are the simulated cloud water paths as compared to observations? Does increased aerosol pollution lead to increased precipitation for mixed-phase clouds? These research questions are addressed by performing several WRF simulations using the Kain-Fritsch convection parameterization and a diagnostic cloud microphysical scheme. In the first set of simulations (control simulations) the WRF model is used to simulate two scenarios of deep convection over the continental U.S. during two summer periods at 36 km grid resolution. In the second set, these simulations are repeated after incorporating a diagnostic cloud microphysical scheme to study the impacts of inclusion of cloud microphysical processes. Finally, in the third set, aerosol concentrations simulated by the CMAQ modeling system are supplied to the embedded cloud microphysical scheme to study impacts of aerosol concentrations on precipitation and radiation fields. Observations available from the ARM microbase data, the SURFRAD network, GOES imagery, and other reanalysis and measurements will be used to analyze the impacts of a cloud microphysical scheme and aerosol concentrations on parameterized convection.
Global Turbulence Decision Support for Aviation
NASA Astrophysics Data System (ADS)
Williams, J.; Sharman, R.; Kessinger, C.; Feltz, W.; Wimmers, A.
2009-09-01
Turbulence is widely recognized as the leading cause of injuries to flight attendants and passengers on commercial air carriers, yet legacy decision support products such as SIGMETs and SIGWX charts provide relatively low spatial- and temporal-resolution assessments and forecasts of turbulence, with limited usefulness for strategic planning and tactical turbulence avoidance. A new effort is underway to develop an automated, rapid-update, gridded global turbulence diagnosis and forecast system that addresses upper-level clear-air turbulence, mountain-wave turbulence, and convectively-induced turbulence. This NASA-funded effort, modeled on the U.S. Federal Aviation Administration's Graphical Turbulence Guidance (GTG) and GTG Nowcast systems, employs NCEP Global Forecast System (GFS) model output and data from NASA and operational satellites to produce quantitative turbulence nowcasts and forecasts. A convective nowcast element based on GFS forecasts and satellite data provides a basis for diagnosing convective turbulence. An operational prototype "Global GTG” system has been running in real-time at the U.S. National Center for Atmospheric Research since the spring of 2009. Initial verification based on data from TRMM, Cloudsat and MODIS (for the convection nowcasting) and AIREPs and AMDAR data (for turbulence) are presented. This product aims to provide the "single authoritative source” for global turbulence information for the U.S. Next Generation Air Transportation System.
Experimental Measurements of Spreading of Volatile Liquid Droplets
NASA Technical Reports Server (NTRS)
Zhang, Neng-Li; Chao, David F.
2001-01-01
Based on the laser shadowgraphic system used by the first author of the present paper, a simple optical system, which combined the laser shadowgraphy and the direct magnified-photography, has been developed to measure the contact angle, the spreading speed, and the evaporation rate. Additionally, the system can also visualize thermocapillary convection inside of a sessile drop simultaneously. The experimental results show that evaporation/condensation and thermocapillary convection in the sessile drop induced by the evaporation strongly affects the wetting and spreading of the drop. Condensation always promotes the wetting and spreading of the drop. Evaporation may increase or decrease the contact angle of the evaporating sessile drops, depending on the evaporation rate. The thermocapillary convection in the drop induced by the evaporation enhances the effects of evaporation to suppress the spreading.
The influence of convective activity on the vorticity budget
NASA Technical Reports Server (NTRS)
Townsend, T. L.; Scoggins, J. R.
1983-01-01
The influence of convective activity on the vorticity budget was determined during the AVE VII and AVE-SESAME I periods. This was accomplished by evaluating each term in the expanded vorticity equation with twisting and tilting and friction representing the residual of all other terms. Convective areas were delineated by use of radar summary charts. The influence of convective activity was established by analyzing contoured fields of each term as well as numerical values and profiles of the various terms in convective and nonconvective areas. Vertical motion was computed by the kinematic method, and all computations were performed over the central United States using a grid spacing of 158 km. The results show that, in convective areas in particular, the residual is of comparable magnitude to the horizontal advection and divergence terms, and therefore, cannot be neglected. In convective areas, the residual term represents a sink of vorticity below 500 mb and a strong source near 300 mb. In nonconvective areas, the residual was small in magnitude at all levels, but tended to be negative (vorticity sink) at 300 mb. The local change term, over convective areas, tended to be balanced by the residual term, and appeared to be a good indicator of development (vorticity becoming more cyclonic). Finally, the shape of the vertical profiles of the term in the budget equation agreed with those found by other investigators for easterly waves, but the terms were one order of magnitude larger than those for easterly waves.
Observational and numerical analysis of the genesis of a mesoscale convective system
NASA Astrophysics Data System (ADS)
Nachamkin, Jason Edward
1998-11-01
A high resolution observational and numerical study was conducted on a mesoscale convective system (MCS) that developed in northeastern Colorado on 19 July 1993. Convection was followed from its origins in the Rockies west of Denver as it grew to near mesoscale convective complex (MCC) proportions over the plains. Five-minute surface data was collected from 48 mesonet stations over eastern Colorado, and six-minute dual Doppler data were collected from the CSU-CHILL and Mile High radars. The Regional Atmospheric Modeling System (RAMS) was then used to simulate this case. Initialization with variable topography, soil moisture, and atmospheric conditions facilitated the simulation of the inhomogeneous environment and its interactions with the MCS. Convection was explicitly resolved on the finest of four telescopically nested, moving grids. Storms developed consistently within the model without any artificial triggers such as warm bubbles or cold pools. Comparisons with the observations showed strong agreement down to the scale of the individual Doppler scans. The results show that convective position was deterministically focused by thermally driven solenoidal circulations and their interaction with a preexisting surface front. Away from the mountains, convection was fed by an intense low level jet less than 200 km across. The jet formed over southeastern Colorado in a region of localized thermal contrasts on either side of the plains inversion. Interactions between convection and its surrounding environment existed in two modes. When the upward mass flux was of moderate strength, continuity was maintained by linear, low frequency gravity waves. Most of the wave energy propagated rearward from the convective line, even though strong upper tropospheric shear advected most of the condensate ahead of the line. Almost all of the environmental compensating motions propagated rearward with the waves, inducing upper tropospheric front-to-rear and mid tropospheric rear-to-front perturbations in their wake. Most of the subsidence heating was also restricted to the narrow zone of wave propagation. When the convective mass flux became intense near sunset, condensate, heat and momentum were advected directly into the upper troposphere in a nonlinear outflow. The oval- shaped cold cloud top was defined by the leading edge of the outflow, and unlike the gravity waves, gradients of heat and momentum only slowly dispersed. This suggests that intense MCSs and MCCs with well defined anvils are more likely to produce a balanced disturbance because proportionately less energy is lost to gravity waves.
GoAmazon2014/5 campaign points to deep-inflow approach to deep convection across scales
Schiro, Kathleen A.; Ahmed, Fiaz; Giangrande, Scott E.; ...
2018-04-17
Representations of strongly precipitating deep-convective systems in climate models are among the most important factors in their simulation. Parameterizations of these motions face the dual challenge of unclear pathways to including mesoscale organization and high sensitivity of convection to approximations of turbulent entrainment of environmental air. Ill-constrained entrainment processes can even affect global average climate sensitivity under global warming. Multiinstrument observations from the Department of Energy GoAmazon2014/5 field campaign suggest that an alternative formulation from radar-derived dominant updraft structure yields a strong relationship of precipitation to buoyancy in both mesoscale and smaller-scale convective systems. This simultaneously provides a key stepmore » toward representing the influence of mesoscale convection in climate models and sidesteps a problematic dependence on traditional entrainment rates. A substantial fraction of precipitation is associated with mesoscale convective systems (MCSs), which are currently poorly represented in climate models. Convective parameterizations are highly sensitive to the assumptions of an entraining plume model, in which high equivalent potential temperature air from the boundary layer is modified via turbulent entrainment. Here we show, using multiinstrument evidence from the Green Ocean Amazon field campaign (2014–2015; GoAmazon2014/5), that an empirically constrained weighting for inflow of environmental air based on radar wind profiler estimates of vertical velocity and mass flux yields a strong relationship between resulting buoyancy measures and precipitation statistics. This deep-inflow weighting has no free parameter for entrainment in the conventional sense, but to a leading approximation is simply a statement of the geometry of the inflow. The structure further suggests the weighting could consistently apply even for coherent inflow structures noted in field campaign studies for MCSs over tropical oceans. For radar precipitation retrievals averaged over climate model grid scales at the GoAmazon2014/5 site, the use of deep-inflow mixing yields a sharp increase in the probability and magnitude of precipitation with increasing buoyancy. Furthermore, this applies for both mesoscale and smaller-scale convection. Results from reanalysis and satellite data show that this holds more generally: Deep-inflow mixing yields a strong precipitation–buoyancy relation across the tropics. Lastly, deep-inflow mixing may thus circumvent inadequacies of current parameterizations while helping to bridge the gap toward representing mesoscale convection in climate models.« less
GoAmazon2014/5 campaign points to deep-inflow approach to deep convection across scales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schiro, Kathleen A.; Ahmed, Fiaz; Giangrande, Scott E.
Representations of strongly precipitating deep-convective systems in climate models are among the most important factors in their simulation. Parameterizations of these motions face the dual challenge of unclear pathways to including mesoscale organization and high sensitivity of convection to approximations of turbulent entrainment of environmental air. Ill-constrained entrainment processes can even affect global average climate sensitivity under global warming. Multiinstrument observations from the Department of Energy GoAmazon2014/5 field campaign suggest that an alternative formulation from radar-derived dominant updraft structure yields a strong relationship of precipitation to buoyancy in both mesoscale and smaller-scale convective systems. This simultaneously provides a key stepmore » toward representing the influence of mesoscale convection in climate models and sidesteps a problematic dependence on traditional entrainment rates. A substantial fraction of precipitation is associated with mesoscale convective systems (MCSs), which are currently poorly represented in climate models. Convective parameterizations are highly sensitive to the assumptions of an entraining plume model, in which high equivalent potential temperature air from the boundary layer is modified via turbulent entrainment. Here we show, using multiinstrument evidence from the Green Ocean Amazon field campaign (2014–2015; GoAmazon2014/5), that an empirically constrained weighting for inflow of environmental air based on radar wind profiler estimates of vertical velocity and mass flux yields a strong relationship between resulting buoyancy measures and precipitation statistics. This deep-inflow weighting has no free parameter for entrainment in the conventional sense, but to a leading approximation is simply a statement of the geometry of the inflow. The structure further suggests the weighting could consistently apply even for coherent inflow structures noted in field campaign studies for MCSs over tropical oceans. For radar precipitation retrievals averaged over climate model grid scales at the GoAmazon2014/5 site, the use of deep-inflow mixing yields a sharp increase in the probability and magnitude of precipitation with increasing buoyancy. Furthermore, this applies for both mesoscale and smaller-scale convection. Results from reanalysis and satellite data show that this holds more generally: Deep-inflow mixing yields a strong precipitation–buoyancy relation across the tropics. Lastly, deep-inflow mixing may thus circumvent inadequacies of current parameterizations while helping to bridge the gap toward representing mesoscale convection in climate models.« less
Evidence for Tropopause Layer Moistening by Convection During CRYSTAL-FACE
NASA Technical Reports Server (NTRS)
Ackerman, A.; Fridlind, A.; Jensen, E.; Miloshevich, L.; Heymsfield, G.; McGill, M.
2003-01-01
Measurements and analysis of the impact of deep convection on tropopause layer moisture are easily confounded by difficulties making precise observations with sufficient spatial coverage before and after convective events and difficulties distinguishing between changes due to local convection versus large-scale advection. The interactions between cloud microphysics and dynamics in the convective transport of moisture into the tropopause layer also result in a sufficiently complex and poorly characterized system to allow for considerable freedom in theoretical models of stratosphere-troposphere exchange. In this work we perform detailed large-eddy simulations with an explicit cloud microphysics model to study the impact of deep convection on tropopause layer moisture profiles observed over southern Florida during CRYSTALFACE. For four days during the campaign (July 11, 16, 28, and 29) we initialize a 100-km square domain with temperature and moisture profiles measured prior to convection at the PARSL ground site, and initiate convection with a warm bubble that produces an anvil at peak elevations in agreement with lidar and radar observations on that day. Comparing the moisture field after the anvils decay with the initial state, we find that convection predominantly moistens the tropopause layer (as defined by minimum temperature and minimum potential temperature lapse rate), although some drying is also predicted in localized layers. We will also present results of sensitivity tests designed to separate the roles of cloud microphysics and dynamics.
Regime-dependence of Impacts of Radar Rainfall Data Assimilation
NASA Astrophysics Data System (ADS)
Craig, G. C.; Keil, C.
2009-04-01
Experience from the first operational trials of assimilation of radar data in kilometre scale numerical weather prediction models (operating without cumulus parameterisation) shows that the positive impact of the radar data on convective precipitation forecasts typically decay within a few hours, although certain cases show much longer impacts. Here the impact time of radar data assimilation is related to characteristics of the meteorological environment. This QPF uncertainty is investigated using an ensemble of 10 forecasts at 2.8 km horizontal resolution based on different initial and boundary conditions from a global forecast ensemble. Control forecasts are compared with forecasts where radar reflectivity data is assimilated using latent heat nudging. Examination of different cases of convection in southern Germany suggests that the forecasts can be separated into two regimes using a convective timescale. Short impact times are associated with short convective timescales that are characteristic of equilibrium convection. In this regime the statistical properties of the convection are constrained by the large-scale forcing, and effects of the radar data are lost within a few hours as the convection rapidly returns to equilibrium. When the convective timescale is large (non-equilibrium conditions), the impact of the radar data is longer since convective systems are triggered by the latent heat nudging and are able to persist for many hours in the very unstable conditions present in these cases.
Convectively driven PCR thermal-cycling
Benett, William J.; Richards, James B.; Milanovich, Fred P.
2003-07-01
A polymerase chain reaction system provides an upper temperature zone and a lower temperature zone in a fluid sample. Channels set up convection cells in the fluid sample and move the fluid sample repeatedly through the upper and lower temperature zone creating thermal cycling.
Convection systems and associated cloudiness directly influence regional and local radiation budgets, and dynamics and thermodynamics through feedbacks. However, most subgrid-scale convective parameterizations in regional weather and climate models do not consider cumulus cloud ...
Rashidi, Mohammad M; Kavyani, Neda; Abelman, Shirley; Uddin, Mohammed J; Freidoonimehr, Navid
2014-01-01
In this study combined heat and mass transfer by mixed convective flow along a moving vertical flat plate with hydrodynamic slip and thermal convective boundary condition is investigated. Using similarity variables, the governing nonlinear partial differential equations are converted into a system of coupled nonlinear ordinary differential equations. The transformed equations are then solved using a semi-numerical/analytical method called the differential transform method and results are compared with numerical results. Close agreement is found between the present method and the numerical method. Effects of the controlling parameters, including convective heat transfer, magnetic field, buoyancy ratio, hydrodynamic slip, mixed convective, Prandtl number and Schmidt number are investigated on the dimensionless velocity, temperature and concentration profiles. In addition effects of different parameters on the skin friction factor, [Formula: see text], local Nusselt number, [Formula: see text], and local Sherwood number [Formula: see text] are shown and explained through tables.
Convection driven zonal flows and vortices in the major planets.
Busse, F. H.
1994-06-01
The dynamical properties of convection in rotating cylindrical annuli and spherical shells are reviewed. Simple theoretical models and experimental simulations of planetary convection through the use of the centrifugal force in the laboratory are emphasized. The model of columnar convection in a cylindrical annulus not only serves as a guide to the dynamical properties of convection in rotating sphere; it also is of interest as a basic physical system that exhibits several dynamical properties in their most simple form. The generation of zonal mean flows is discussed in some detail and examples of recent numerical computations are presented. The exploration of the parameter space for the annulus model is not yet complete and the theoretical exploration of convection in rotating spheres is still in the beginning phase. Quantitative comparisons with the observations of the dynamics of planetary atmospheres will have to await the consideration in the models of the effects of magnetic fields and the deviations from the Boussinesq approximation.
NASA Technical Reports Server (NTRS)
Porro, A. Robert; Keith, Theo G., Jr.; Hingst, Warren R.; Chriss, Randall M.; Seablom, Kirk D.
1991-01-01
A technique is developed to measure the local convective heat transfer coefficient on a model surface in a supersonic flow field. The technique uses a laser to apply a discrete local heat flux at the model test surface, and an infrared camera system determines the local temperature distribution due to heating. From this temperature distribution and an analysis of the heating process, a local convective heat transfer coefficient is determined. The technique was used to measure the load surface convective heat transfer coefficient distribution on a flat plate at nominal Mach numbers of 2.5, 3.0, 3.5, and 4.0. The flat plate boundary layer initially was laminar and became transitional in the measurement region. The experimental results agreed reasonably well with theoretical predictions of convective heat transfer of flat plate laminar boundary layers. The results indicate that this non-intrusive optical measurement technique has the potential to obtain high quality surface convective heat transfer measurements in high speed flowfields.
A laser-induced heat flux technique for convective heat transfer measurements in high speed flows
NASA Technical Reports Server (NTRS)
Porro, A. R.; Keith, T. G., Jr.; Hingst, W. R.
1991-01-01
A technique is developed to measure the local convective heat transfer coefficient on a model surface in a supersonic flow field. The technique uses a laser to apply a discrete local heat flux at the model test surface, and an infrared camera system determines the local temperature distribution due to the heating. From this temperature distribution and an analysis of the heating process, a local convective heat transfer coefficient is determined. The technique was used to measure the local surface convective heat transfer coefficient distribution on a flat plate at nominal Mach numbers of 2.5, 3.0, 3.5, and 4.0. The flat plate boundary layer initially was laminar and became transitional in the measurement region. The experimentally determined convective heat transfer coefficients were generally higher than the theoretical predictions for flat plate laminar boundary layers. However, the results indicate that this nonintrusive optical measurement technique has the potential to measure surface convective heat transfer coefficients in high speed flow fields.
A laser-induced heat flux technique for convective heat transfer measurements in high speed flows
NASA Technical Reports Server (NTRS)
Porro, A. R.; Keith, T. G., Jr.; Hingst, W. R.
1991-01-01
A technique is developed to measure the local convective heat transfer coefficient on a model surface in a supersonic flow field. The technique uses a laser to apply a discrete local heat flux at the model test surface, and an infrared camera system determines the local temperature distribution due to the heating. From this temperature distribution and an analysis of the heating process, a local convective heat transfer coefficient is determined. The technique was used to measure the local surface convective heat transfer coefficient distribution on a flat plate at nominal Mach numbers of 2.5, 3.0, 3.5, and 4.0. The flat plate boundary layer initially was laminar and became transitional in the measurement region. The experimentally determined convective heat transfer coefficients were generally higher than the theoretical predictions for flat plate laminar boundary layers. However, the results indicate that this nonintrusive optical measurement technique has the potential to measure surface convective heat transfer coefficients in high-speed flowfields.
Moist entropy and water isotopologues in a Walker-type circulation framework of the MJO
NASA Astrophysics Data System (ADS)
Hurley, J. V.; Noone, D.
2017-12-01
The MJO is the principal source of tropical intraseasonal variability, yet we struggle to accurately simulate its observed convective behavior and eastward propagation. There is continued need for evaluating the role of water within the MJO, including evaporation, vertical transport, precipitation, and latent heating of the coupled atmosphere-ocean system. Isotopes are particularly useful for investigating these aspects of the water cycle. Recent contribution to resolve this includes analyses of the joint distribution of water vapor and isotopologue concentrations (dDv), to identify shortcomings in modeling MJO humidity, clouds or convection. Here, we complement the mixing ratio versus isotope approach with analyses of moist entropy, to distinguish the roles of convective and large-scale dynamic processes through the phases of the MJO. We do this in the classic MJO framework of the tropical Walker-type circulations. In this framework, the MJO can be characterized by strengthening and eastward expansion, and subsequent weakening and contraction, of the tropical stream function over the Indian Ocean. Low troposphere westerlies converge with easterlies, giving rise to uplift, convection, and precipitation, at a longitude that propagates east from 88°E to 136°E . In composite structure of the MJO, wet equivalent potential temperature (θq) anomalies have maximum expression at 500 hPa, and westward tilts with altitude. A positive θq anomaly occurs over the uplift and precipitation, and negative θq anomalies both trail and lead the convective center, along subsiding branches of the stream function anomalies. Out of phase with θq, dDv anomalies are positive east of and negative trailing or west of the convective center, suggesting moistening of the atmosphere with limited precipitation efficiency. MJO phase tendencies show θq is coherent with precipitation, and dDv are coherent with the tropical stream function, thus tying moist entropy to convective processes and isotope ratios to the large-scale dynamics. Joint distributions of MJO mixing ratio versus dDv are near or below Rayleigh curves, but θq is higher than would be expected for simple Rayleigh fractionation. To resolve this, we assess MJO θq versus mixing ratio and find vertical mixing likely occurs between the stratosphere and lower troposphere.
Using Profiles of Water Vapor Flux to Characterize Turbulence in the Convective Boundary Layer
NASA Astrophysics Data System (ADS)
Weber, Kristy Jane
The 2015 Plains Elevated Convection at Night (PECAN) field campaign sought to increase understanding of mechanisms for nocturnal severe weather in the Great Plains of the United States. A collection of instruments from this field campaign, including a water vapor Differential LiDAR (Light Detection Imaging And Ranging) (DIAL) and 449 MHz radar wind profiler were used to measure water vapor flux in regions between 300 m and the convective boundary layer. Methods to properly sample eddies using eddy-covariance were established, where analysis showed that a 90-minute Reynold's averaging period was optimal to sample most eddies. Additionally, a case study was used to demonstrate the additional atmospheric parameters which can be calculated from profiles of water vapor flux, such as the water vapor flux convergence/divergence. Flux footprints calculated at multiple heights within the convective boundary layer also show how a surface based instrument is sampling a completely different source than one taking measurements above 300 m. This result is important, as it shows how measurements above the surface layer will not be expected to match with those taken within a few meters of the surface, especially if average surface features such as land use type and roughness length are significantly different. These calculated water vapor flux profile measurements provide a new tool to analyze boundary layer dynamics during the PECAN field campaign, and their relationships to PECAN's study areas such as mesoscale convective systems (MCSs), nocturnal low-level jets (NLLJs), elevated convective initiation, and the propagation of bores or wavelike features from nocturnal convective systems.
NASA Technical Reports Server (NTRS)
Mapes, Brian; Houze, Robert A., Jr.
1993-01-01
The vertical structure of monsoon thermal forcing by precipitating convection is diagnosed in terms of horizontal divergence. Airborne Doppler-radar divergence profiles from nine diverse mesoscale convective systems (MCSs) are presented. The MCSs consisted of multicellular convective elements which in time gave rise to areas of stratiform precipitation. Each of the three basic building blocks of the MCSs - convective, intermediary, and stratiform precipitation areas - has a consistent, characteristic divergence profile. Convective areas have low-level convergence, with its peak at 2-4 km altitude, and divergence above 6 km. Intermediary areas have convergence aloft, peaked near 10 km, feeding into mean ascent high in the upper troposphere. Stratiform areas have mid-level convergence, indicating a mesoscale downdraught below the melting level, and a mesoscale updraught aloft. Rawinsonde composite divergence profiles agree with the Doppler data in at least one important respect: the lower-tropospheric convergence into the MCSs peaks 2-4-km above the surface. Rawinsonde vorticity profiles show that monsoonal tropical cyclones spin-up at these elevated levels first, then later descend to the surface. Rawinsonde observations on a larger, continental scale demonstrate that at large horizontal scales only the 'gravest vertical mode' of MCS heating is felt, while the effects of shallower components of the heating (or divergence) profiles are trapped near the heating, as predicted by geostrophic adjustment theory.
Mantle Convection on Modern Supercomputers
NASA Astrophysics Data System (ADS)
Weismüller, J.; Gmeiner, B.; Huber, M.; John, L.; Mohr, M.; Rüde, U.; Wohlmuth, B.; Bunge, H. P.
2015-12-01
Mantle convection is the cause for plate tectonics, the formation of mountains and oceans, and the main driving mechanism behind earthquakes. The convection process is modeled by a system of partial differential equations describing the conservation of mass, momentum and energy. Characteristic to mantle flow is the vast disparity of length scales from global to microscopic, turning mantle convection simulations into a challenging application for high-performance computing. As system size and technical complexity of the simulations continue to increase, design and implementation of simulation models for next generation large-scale architectures is handled successfully only in an interdisciplinary context. A new priority program - named SPPEXA - by the German Research Foundation (DFG) addresses this issue, and brings together computer scientists, mathematicians and application scientists around grand challenges in HPC. Here we report from the TERRA-NEO project, which is part of the high visibility SPPEXA program, and a joint effort of four research groups. TERRA-NEO develops algorithms for future HPC infrastructures, focusing on high computational efficiency and resilience in next generation mantle convection models. We present software that can resolve the Earth's mantle with up to 1012 grid points and scales efficiently to massively parallel hardware with more than 50,000 processors. We use our simulations to explore the dynamic regime of mantle convection and assess the impact of small scale processes on global mantle flow.
Penne, E Lars; van der Weerd, Neelke C; Blankestijn, Peter J; van den Dorpel, Marinus A; Grooteman, Muriel P C; Nubé, Menso J; Ter Wee, Piet M; Lévesque, Renée; Bots, Michiel L
2010-01-01
Removal of beta2-microglobulin (beta2M) can be increased by adding convective transport to hemodialysis (HD). The aim of this study was to investigate the change in beta2M levels after 6-mo treatment with hemodiafiltration (HDF) and to evaluate the role of residual kidney function (RKF) and the amount of convective volume with this change. Predialysis serum beta2M levels were evaluated in 230 patients with and 176 patients without RKF from the CONvective TRAnsport STudy (CONTRAST) at baseline and 6 mo after randomization for online HDF or low-flux HD. In HDF patients, potential determinants of change in beta2M were analyzed using multivariable linear regression models. Mean serum beta2M levels decreased from 29.5 +/- 0.8 (+/-SEM) at baseline to 24.3 +/- 0.6 mg/L after 6 mo in HDF patients and increased from 31.9 +/- 0.9 to 34.4 +/- 1.0 mg/L in HD patients, with the difference of change between treatment groups being statistically significant (regression coefficient -7.7 mg/L, 95% confidence interval -9.5 to -5.6, P < 0.001). This difference was more pronounced in patients without RKF as compared with patients with RKF. In HDF patients, beta2M levels remained unchanged in patients with GFR >4.2 ml/min/1.73 m2. The beta2M decrease was not related to convective volume. This study demonstrated effective lowering of beta2M levels by HDF, especially in patients without RKF. The role of the amount of convective volume on beta2M decrease appears limited, possibly because of resistance to beta2M transfer between body compartments.
NASA Astrophysics Data System (ADS)
Gholibeigian, H.; Amirshahkarami, A.; Gholibeigian, K.
2015-12-01
In our vision it is believed that the Big Bang was Convection Bang (CB). When CB occurred, a gigantic large-scale forced convection system (LFCS) began to create space-time including gravitons and gluons in more than light speed. Then, simultaneously by a swirling wild wind, created inflation process including many quantum convection loops (QCL) in locations which had more density of temperature and energetic particles like gravitons. QCL including fundamental particles, grew and formed black holes (BHs) as the core of galaxies. LFCSs of heat and mass in planets, stars, BHs and galaxies generate gravity and electromagnetic fields and change the properties of matter and space-time around the systems. Mechanism: Samples: 1- Due to gravity fields of Sun and Moon, Earth's inner core is dislocated toward them and rotates around the Earth's center per day and generates LFCSs, Gholibeigian [AGU, 2012]. 2- Dislocated Sun's core due to gravity fields of planets/ Jupiter, rotates around the Sun's center per 25-35 days and generates LFCSs, Gholibeigian [EGU, 2014]. 3- If a planet/star falls into a BH, what happens? It means, its dislocated core rotates around its center in less than light speed and generates very fast LFCS and friction, while it is rotating/melting around/inward the center of BH. Observable Factors: 1- There is not logical relation between surface gravity fields of planets/Sun and their masses (general relativity); see Planetary Fact Sheet/Ratio to Earth Values-NASA: Earth: mass/gravity =1/1, Jupiter=317.8/2.36, Neptune=17.1/1.12, Saturn=95.2/0.916, Moon=0.0128/0.166, Sun=333000/28. 2- Convective systems in thunderstorms help bring ozone down to Earth [Brian-Kahn]. 3- In 12 surveyed BHs, produced gravity force & magnetic field strength were matched (unique LFCS source) [PhysOrg - June 4, 2014]. Justification: After BB/CB, gravitons were created without any other masses and curvature of space-time (general relativity), but by primary gigantic convection process.
NASA Astrophysics Data System (ADS)
Takayabu, Yukari; Hamada, Atsushi; Mori, Yuki; Murayama, Yuki; Liu, Chuntao; Zipser, Edward
2015-04-01
While extreme rainfall has a huge impact upon human society, the characteristics of the extreme precipitation vary from region to region. Seventeen years of three dimensional precipitation measurements from the space-borne precipitation radar equipped with the Tropical Precipitation Measurement Mission satellite enabled us to describe the characteristics of regional extreme precipitation globally. Extreme rainfall statistics are based on rainfall events defined as a set of contiguous PR rainy pixels. Regional extreme rainfall events are defined as those in which maximum near-surface rainfall rates are higher than the corresponding 99.9th percentile in each 2.5degree x2.5degree horizontal resolution grid. First, regional extreme rainfall is characterized in terms of its intensity and event size. Regions of ''intense and extensive'' extreme rainfall are found mainly over oceans near coastal areas and are likely associated with tropical cyclones and convective systems associated with the establishment of monsoons. Regions of ''intense but less extensive'' extreme rainfall are distributed widely over land and maritime continents, probably related to afternoon showers and mesoscale convective systems. Regions of ''extensive but less intense'' extreme rainfall are found almost exclusively over oceans, likely associated with well-organized mesoscale convective systems and extratropical cyclones. Secondly, regional extremes in terms of surface rainfall intensity and those in terms of convection height are compared. Conventionally, extremely tall convection is considered to contribute the largest to the intense rainfall. Comparing probability density functions (PDFs) of 99th percentiles in terms of the near surface rainfall intensity in each regional grid and those in terms of the 40dBZ echo top heights, it is found that heaviest precipitation in the region is not associated with tallest systems, but rather with systems with moderate heights. Interestingly, this separation of extremely heavy precipitation from extremely tall convection is found to be quite universal, irrespective of regions. Rainfall characteristics and environmental conditions both indicate the importance of warm-rain processes in producing extreme rainfall rates. Thus it is demonstrated that, even in regions where severe convective storms are representative extreme weather events, the heaviest rainfall events are mostly associated with less intense convection. Third, the size effect of rainfall events on the precipitation intensity is investigated. Comparisons of normalized PDFs of foot-print size rainfall intensity for different sizes of rainfall events show that footprint-scale extreme rainfall becomes stronger as the rainfall events get larger. At the same time, stratiform ratio in area as well as in rainfall amount increases with the size, confirming larger sized features are more organized systems. After all, it is statistically shown that organization of precipitation not only brings about an increase in extreme volumetric rainfall but also an increase in probability of the satellite footprint scale extreme rainfall.
Scaling of Convective Mixing in Porous Media
NASA Astrophysics Data System (ADS)
Hidalgo, Juan J.; Fe, Jaime; Cueto-Felgueroso, Luis; Juanes, Ruben
2012-12-01
Convective mixing in porous media is triggered by a Rayleigh-Bénard-type hydrodynamic instability as a result of an unstable density stratification of fluids. While convective mixing has been studied extensively, the fundamental behavior of the dissolution flux and its dependence on the system parameters are not yet well understood. Here, we show that the dissolution flux and the rate of fluid mixing are determined by the mean scalar dissipation rate. We use this theoretical result to provide computational evidence that the classical model of convective mixing in porous media exhibits, in the regime of high Rayleigh number, a dissolution flux that is constant and independent of the Rayleigh number. Our findings support the universal character of convective mixing and point to the need for alternative explanations for nonlinear scalings of the dissolution flux with the Rayleigh number, recently observed experimentally.
Convection- and SASI-driven flows in parametrized models of core-collapse supernova explosions
Endeve, E.; Cardall, C. Y.; Budiardja, R. D.; ...
2016-01-21
We present initial results from three-dimensional simulations of parametrized core-collapse supernova (CCSN) explosions obtained with our astrophysical simulation code General Astrophysical Simulation System (GenASIS). We are interested in nonlinear flows resulting from neutrino-driven convection and the standing accretion shock instability (SASI) in the CCSN environment prior to and during the explosion. By varying parameters in our model that control neutrino heating and shock dissociation, our simulations result in convection-dominated and SASI-dominated evolution. We describe this initial set of simulation results in some detail. To characterize the turbulent flows in the simulations, we compute and compare velocity power spectra from convection-dominatedmore » and SASI-dominated (both non-exploding and exploding) models. When compared to SASI-dominated models, convection-dominated models exhibit significantly more power on small spatial scales.« less
NASA Astrophysics Data System (ADS)
Mamgain, Ashu; Rajagopal, E. N.; Mitra, A. K.; Webster, S.
2018-03-01
There are increasing efforts towards the prediction of high-impact weather systems and understanding of related dynamical and physical processes. High-resolution numerical model simulations can be used directly to model the impact at fine-scale details. Improvement in forecast accuracy can help in disaster management planning and execution. National Centre for Medium Range Weather Forecasting (NCMRWF) has implemented high-resolution regional unified modeling system with explicit convection embedded within coarser resolution global model with parameterized convection. The models configurations are based on UK Met Office unified seamless modeling system. Recent land use/land cover data (2012-2013) obtained from Indian Space Research Organisation (ISRO) are also used in model simulations. Results based on short-range forecast of both the global and regional models over India for a month indicate that convection-permitting simulations by the high-resolution regional model is able to reduce the dry bias over southern parts of West Coast and monsoon trough zone with more intense rainfall mainly towards northern parts of monsoon trough zone. Regional model with explicit convection has significantly improved the phase of the diurnal cycle of rainfall as compared to the global model. Results from two monsoon depression cases during study period show substantial improvement in details of rainfall pattern. Many categories in rainfall defined for operational forecast purposes by Indian forecasters are also well represented in case of convection-permitting high-resolution simulations. For the statistics of number of days within a range of rain categories between `No-Rain' and `Heavy Rain', the regional model is outperforming the global model in all the ranges. In the very heavy and extremely heavy categories, the regional simulations show overestimation of rainfall days. Global model with parameterized convection have tendency to overestimate the light rainfall days and underestimate the heavy rain days compared to the observation data.
Airborne Turbulence Detection System Certification Tool Set
NASA Technical Reports Server (NTRS)
Hamilton, David W.; Proctor, Fred H.
2006-01-01
A methodology and a corresponding set of simulation tools for testing and evaluating turbulence detection sensors has been presented. The tool set is available to industry and the FAA for certification of radar based airborne turbulence detection systems. The tool set consists of simulated data sets representing convectively induced turbulence, an airborne radar simulation system, hazard tables to convert the radar observable to an aircraft load, documentation, a hazard metric "truth" algorithm, and criteria for scoring the predictions. Analysis indicates that flight test data supports spatial buffers for scoring detections. Also, flight data and demonstrations with the tool set suggest the need for a magnitude buffer.
Southern Ocean Convection and tropical telleconnections
NASA Astrophysics Data System (ADS)
Marinov, I.; Cabre, A.; Gnanadesikan, A.
2014-12-01
We show that Southern Ocean (SO) temperatures in the latest generation of Earth System Models exhibit two major modes of variation, one driven by deep convection, the other by tropical variability. We perform a CMIP5 model intercomparison to understand why different climate models represent SO variability so differently in long, control simulations. We show that multiyear variability in Southern Ocean sea surface temperatures (SSTs) can in turn influence oceanic and atmospheric conditions in the tropics on short (atmospheric) time-scales. We argue that the strength and pattern of SO-tropical teleconnections depends on the intensity of SO deep convection. Periodic convection in the SO is a feature of most CMIP5 models under preindustrial forcing (deLavergne et al., 2014). Models show a wide distribution in the spatial extent, periodicity and intensity of their SO convection, with some models convecting most of the time, and some showing very little convection. In a highly convective coupled model, we find that multidecadal variability in SO and global SSTs, as well as SO heat storage are driven by Weddell Sea convective variability, with convective decades relatively warm due to the heat released from the deep southern ocean and non-convective decades cold due to the subsurface storage of heat. Furthermore, pulses of SO convection drive SST and sea ice variations, influencing absorbed shortwave and emitted longwave radiation, wind, cloud and precipitation patterns, with climatic implications for the low latitudes via fast atmospheric teleconnections. We suggest that these high-low latitude teleconnection mechanisms are relevant for understanding hiatus decades. Additionally, Southern Ocean deep convection varied significantly during past, natural climate changes such as during the last deglaciation. Weddell Sea open convection was recently weakened, likely as a consequence of anthropogenic forcing and the resulting surface freshening. Our study opens up the tantalizing possibility that such large-scale changes in SO deep convection might have tropical and indeed global implications via atmospheric teleconnections. We advocate the collection of both paleo and modern proxies that can verify these model-derived mechanisms and global teleconnections.
NASA Technical Reports Server (NTRS)
Elsaesser, Gregory
2015-01-01
Cold pools are increasingly being recognized as important players in the evolution of both shallow and deep convection; hence, the incorporation of cold pool processes into a number of recently developed convective parameterizations. Unfortunately, observations serving to inform cold pool parameterization development are limited to select field programs and limited radar domains. However, a number of recent studies have noted that cold pools are often associated with arcs-lines of shallow clouds traversing 10 100 km in visible satellite imagery. Boundary layer thermodynamic perturbations are plausible at such scales, coincident with such mesoscale features. Atmospheric signatures of features at these spatial scales are potentially observable from satellites. In this presentation, we discuss recent work that uses multi-sensor, high-resolution satellite products for observing mesoscale wind vector fluctuations and boundary layer temperature depressions attributed to cold pools produced by antecedent convection. The relationship to subsequent convection as well as convective system longevity is discussed. As improvements in satellite technology occur and efforts to reduce noise in high-resolution orbital products progress, satellite pixel level (10 km) thermodynamic and dynamic (e.g. mesoscale convergence) parameters can increasingly serve as useful benchmarks for constraining convective parameterization development, including for regimes where organized convection contributes substantially to the cloud and rainfall climatology.
Influences of the MJO on the space-time organization of tropical convection
NASA Astrophysics Data System (ADS)
Dias, Juliana; Sakaeda, Naoko; Kiladis, George N.; Kikuchi, Kazuyoshi
2017-08-01
The fact that the Madden-Julian Oscillation (MJO) is characterized by large-scale patterns of enhanced tropical rainfall has been widely recognized for decades. However, the precise nature of any two-way feedback between the MJO and the properties of smaller-scale organization that makes up its convective envelope is not well understood. Satellite estimates of brightness temperature are used here as a proxy for tropical rainfall, and a variety of diagnostics are applied to determine the degree to which tropical convection is affected either locally or globally by the MJO. To address the multiscale nature of tropical convective organization, the approach ranges from space-time spectral analysis to an object-tracking algorithm. In addition to the intensity and distribution of global tropical rainfall, the relationship between the MJO and other tropical processes such as convectively coupled equatorial waves, mesoscale convective systems, and the diurnal cycle of tropical convection is also analyzed. The main findings of this paper are that, aside from the well-known increase in rainfall activity across scales within the MJO convective envelope, the MJO does not favor any particular scale or type of organization, and there is no clear signature of the MJO in terms of the globally integrated distribution of brightness temperature or rainfall.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliott, Elizabeth J.; Yu, Sungduk; Kooperman, Gabriel J.
The sensitivities of simulated mesoscale convective systems (MCSs) in the central U.S. to microphysics and grid configuration are evaluated here in a global climate model (GCM) that also permits global-scale feedbacks and variability. Since conventional GCMs do not simulate MCSs, studying their sensitivities in a global framework useful for climate change simulations has not previously been possible. To date, MCS sensitivity experiments have relied on controlled cloud resolving model (CRM) studies with limited domains, which avoid internal variability and neglect feedbacks between local convection and larger-scale dynamics. However, recent work with superparameterized (SP) GCMs has shown that eastward propagating MCS-likemore » events are captured when embedded CRMs replace convective parameterizations. This study uses a SP version of the Community Atmosphere Model version 5 (SP-CAM5) to evaluate MCS sensitivities, applying an objective empirical orthogonal function algorithm to identify MCS-like events, and harmonizing composite storms to account for seasonal and spatial heterogeneity. A five-summer control simulation is used to assess the magnitude of internal and interannual variability relative to 10 sensitivity experiments with varied CRM parameters, including ice fall speed, one-moment and two-moment microphysics, and grid spacing. MCS sensitivities were found to be subtle with respect to internal variability, and indicate that ensembles of over 100 storms may be necessary to detect robust differences in SP-GCMs. Furthermore, these results emphasize that the properties of MCSs can vary widely across individual events, and improving their representation in global simulations with significant internal variability may require comparison to long (multidecadal) time series of observed events rather than single season field campaigns.« less
Predicting global thunderstorm activity for sprite observations from the International Space Station
NASA Astrophysics Data System (ADS)
Yair, Y.; Mezuman, K.; Ziv, B.; Priente, M.; Glickman, M.; Takahashi, Y.; Inoue, T.
2012-04-01
The global rate of sprites occurring above thunderstorms, estimated from the ISUAL satellite data, is ~0.5 per minute (Chen et al., 2008). During the summer 2011, in the framework of the "Cosmic Shore" project, we conducted a concentrated attempt to image sprites from the ISS. The methodology for target selection was based on that developed for the space shuttle MEIDEX sprite campaign (Ziv et al., 2004). There are several types of convective systems generating thunderstorms which differ in their effectiveness for sprite production (Lyons et al., 2009), and so we had to evaluate the ability of the predicted storms to produce sprites. We used the Aviation Weather Center (http://aviationweather.gov) daily significant weather forecast maps (SIGWX) to select regions with high probability for convective storms and lightning such that they were within the camera filed-of-view as deduced from the ISS trajectory and distance to the limb. In order to enhance the chance for success, only storms with predicted "Frequent Cb" and cloud tops above 45 Kft (~14 km) were selected. Additionally, we targeted tropical storms and hurricanes over the oceans. The accuracy of the forecast method enabled obtaining the first-ever color images of sprites from space. We will report the observations showing various types of sprites in many different geographical locations, and correlated parent lightning properties derived from ELF and global and local lightning location networks. Chen, A. B., et al. (2008), Global distributions and occurrence rates of transient luminous events, J. Geophys. Res., 113,A08306, doi:10.1029/2008JA013101 Lyons, W. A., et al. (2009), The meteorological and electrical structure of TLE-producing convective storms. In: Betz et al. (eds.): Lighting: principles instruments and applications, Springer-Science + Business Media B.V.. Ziv, B., Y. Yair, K. Pressman and M. Fullekrug, (2004), Verification of the Aviation Center global forecasts of Mesoscale Convective Systems. Jour. App. Meteor., 43, 720-726.
Dixon, Christopher M; Cedano, Edwin Rijo; Pacik, Dalibor; Vit, Vítězslav; Varga, Gabriel; Wagrell, Lennart; Larson, Thayne R; Mynderse, Lance A
2016-01-01
The objective of this study was to assess the effectiveness and safety of convective radiofrequency (RF) water vapor thermal therapy in men with lower urinary tract symptoms (LUTS) associated with benign prostatic hyperplasia (BPH); a pilot study design with 2-year follow-up evaluations. Men aged ≥45 years with an International Prostate Symptom Score ≥13, a maximum urinary flow rate (Q max ) ≤15 mL/s, and prostate volume 20-120 cc were enrolled in a prospective, open-label pilot study using convective RF water vapor energy with the Rezūm System. Patients were followed up for 2 years after transurethral thermal treatment at 3 international centers in the Dominican Republic, Czech Republic, and Sweden. The transurethral thermal therapy utilizes radiofrequency to generate wet thermal energy in the form of water vapor injected through a rigid endoscope into the lateral lobes and median lobe as needed. Urinary symptom relief, urinary flow, quality of life (QOL) impact, sexual function, and adverse events (AEs) were assessed at 1 week, 1, 3, 6, 12, and 24 months. LUTS, flow rate, and QOL showed significant improvements from baseline; prostate volumes were appreciably reduced. Sexual function was maintained and no de novo erectile dysfunction occurred. The responses evident as early as 1 month after treatment remained consistent and durable over the 24 months of study. Early AEs were typically transient and mild to moderate; most were related to endoscopic instrumentation. No procedure related to late AEs were seen. The Rezūm System convective RF thermal therapy is a minimally invasive treatment for BPH/LUTS which can be performed in the office or as an outpatient procedure with minimal associated perioperative AEs. It has no discernable effect on sexual function and provides significant improvement of LUTS that remain durable at 2 years.
Dixon, Christopher M; Cedano, Edwin Rijo; Pacik, Dalibor; Vit, Vítězslav; Varga, Gabriel; Wagrell, Lennart; Larson, Thayne R; Mynderse, Lance A
2016-01-01
Objective The objective of this study was to assess the effectiveness and safety of convective radiofrequency (RF) water vapor thermal therapy in men with lower urinary tract symptoms (LUTS) associated with benign prostatic hyperplasia (BPH); a pilot study design with 2-year follow-up evaluations. Patients and methods Men aged ≥45 years with an International Prostate Symptom Score ≥13, a maximum urinary flow rate (Qmax) ≤15 mL/s, and prostate volume 20–120 cc were enrolled in a prospective, open-label pilot study using convective RF water vapor energy with the Rezūm System. Patients were followed up for 2 years after transurethral thermal treatment at 3 international centers in the Dominican Republic, Czech Republic, and Sweden. The transurethral thermal therapy utilizes radiofrequency to generate wet thermal energy in the form of water vapor injected through a rigid endoscope into the lateral lobes and median lobe as needed. Urinary symptom relief, urinary flow, quality of life (QOL) impact, sexual function, and adverse events (AEs) were assessed at 1 week, 1, 3, 6, 12, and 24 months. Results LUTS, flow rate, and QOL showed significant improvements from baseline; prostate volumes were appreciably reduced. Sexual function was maintained and no de novo erectile dysfunction occurred. The responses evident as early as 1 month after treatment remained consistent and durable over the 24 months of study. Early AEs were typically transient and mild to moderate; most were related to endoscopic instrumentation. No procedure related to late AEs were seen. Conclusion The Rezūm System convective RF thermal therapy is a minimally invasive treatment for BPH/LUTS which can be performed in the office or as an outpatient procedure with minimal associated perioperative AEs. It has no discernable effect on sexual function and provides significant improvement of LUTS that remain durable at 2 years. PMID:27921028
NASA Astrophysics Data System (ADS)
Mahmud, M. N.
2018-04-01
The chaotic dynamical behaviour of thermal convection in an anisotropic porous layer subject to gravity, heated from below and cooled from above, is studied based on theory of dynamical system in the presence of feedback control. The extended Darcy model, which includes the time derivative has been employed in the momentum equation to derive a low dimensional Lorenz-like equation by using Galerkin-truncated approximation. The classical fourth-order Runge-Kutta method is used to obtain the numerical solution in order to exemplify the dynamics of the nonlinear autonomous system. The results show that stability enhancement of chaotic convection is feasible via feedback control.
Magnetostrophic balance as the optimal state for turbulent magnetoconvection
King, Eric M.; Aurnou, Jonathan M.
2015-01-01
The magnetic fields of Earth and other planets are generated by turbulent convection in the vast oceans of liquid metal within them. Although direct observation is not possible, this liquid metal circulation is thought to be dominated by the controlling influences of planetary rotation and magnetic fields through the Coriolis and Lorentz forces. Theory famously predicts that planetary dynamo systems naturally settle into the so-called magnetostrophic state, where the Coriolis and Lorentz forces partially cancel, and convection is optimally efficient. Although this magnetostrophic theory correctly predicts the strength of Earth’s magnetic field, no laboratory experiments have reached the magnetostrophic regime in turbulent liquid metal convection. Furthermore, computational dynamo simulations have as yet failed to produce a magnetostrophic dynamo, which has led some to question the existence of the magnetostrophic state. Here, we present results from the first, to our knowledge, turbulent, magnetostrophic convection experiments using the liquid metal gallium. We find that turbulent convection in the magnetostrophic regime is, in fact, maximally efficient. The experimental results clarify these previously disparate results, suggesting that the dynamically optimal magnetostrophic state is the natural expression of turbulent planetary dynamo systems. PMID:25583512
Mobile Disdrometer Observations of Nocturnal Mesoscale Convective Systems During PECAN
NASA Astrophysics Data System (ADS)
Bodine, D. J.; Rasmussen, K. L.
2015-12-01
Understanding microphysical processes in nocturnal mesoscale convective systems (MCSs) is an important objective of the Plains Elevated Convection At Night (PECAN) experiment, which occurred from 1 June - 15 July 2015 in the central Great Plains region of the United States. Observations of MCSs were collected using a large array of mobile and fixed instrumentation, including ground-based radars, soundings, PECAN Integrated Sounding Arrays (PISAs), and aircraft. In addition to these observations, three mobile Parsivel disdrometers were deployed to obtain drop-size distribution (DSD) measurements to further explore microphysical processes in convective and stratiform regions of nocturnal MCSs. Disdrometers were deployed within close range of a multiple frequency network of mobile and fixed dual-polarization radars (5 - 30 km range), and near mobile sounding units and PISAs. Using mobile disdrometer and multiple-wavelength, dual-polarization radar data, microphysical properties of convective and stratiform regions of MCSs are investigated. The analysis will also examine coordinated Range-Height Indicator (RHI) scans over the disdrometers to elucidate vertical DSD structure. Analysis of dense observations obtained during PECAN in combination with mobile disdrometer DSD measurements contributes to a greater understanding of the structural characteristics and evolution of nocturnal MCSs.
NASA Technical Reports Server (NTRS)
Jonathan L. Case; Kumar, Sujay V.; Srikishen, Jayanthi; Jedlovec, Gary J.
2010-01-01
One of the most challenging weather forecast problems in the southeastern U.S. is daily summertime pulse-type convection. During the summer, atmospheric flow and forcing are generally weak in this region; thus, convection typically initiates in response to local forcing along sea/lake breezes, and other discontinuities often related to horizontal gradients in surface heating rates. Numerical simulations of pulse convection usually have low skill, even in local predictions at high resolution, due to the inherent chaotic nature of these precipitation systems. Forecast errors can arise from assumptions within parameterization schemes, model resolution limitations, and uncertainties in both the initial state of the atmosphere and land surface variables such as soil moisture and temperature. For this study, it is hypothesized that high-resolution, consistent representations of surface properties such as soil moisture, soil temperature, and sea surface temperature (SST) are necessary to better simulate the interactions between the surface and atmosphere, and ultimately improve predictions of summertime pulse convection. This paper describes a sensitivity experiment using the Weather Research and Forecasting (WRF) model. Interpolated land and ocean surface fields from a large-scale model are replaced with high-resolution datasets provided by unique NASA assets in an experimental simulation: the Land Information System (LIS) and Moderate Resolution Imaging Spectroradiometer (MODIS) SSTs. The LIS is run in an offline mode for several years at the same grid resolution as the WRF model to provide compatible land surface initial conditions in an equilibrium state. The MODIS SSTs provide detailed analyses of SSTs over the oceans and large lakes compared to current operational products. The WRF model runs initialized with the LIS+MODIS datasets result in a reduction in the overprediction of rainfall areas; however, the skill is almost equally as low in both experiments using traditional verification methodologies. Output from object-based verification within NCAR s Meteorological Evaluation Tools reveals that the WRF runs initialized with LIS+MODIS data consistently generated precipitation objects that better matched observed precipitation objects, especially at higher precipitation intensities. The LIS+MODIS runs produced on average a 4% increase in matched precipitation areas and a simultaneous 4% decrease in unmatched areas during three months of daily simulations.
NASA Astrophysics Data System (ADS)
Leuenberger, D.; Rossa, A.
2007-12-01
Next-generation, operational, high-resolution numerical weather prediction models require economical assimilation schemes for radar data. In the present study we evaluate and characterise the latent heat nudging (LHN) rainfall assimilation scheme within a meso-γ scale NWP model in the framework of identical twin simulations of an idealised supercell storm. Consideration is given to the model’s dynamical response to the forcing as well as to the sensitivity of the LHN scheme to uncertainty in the observations and the environment. The results indicate that the LHN scheme is well able to capture the dynamical structure and the right rainfall amount of the storm in a perfect environment. This holds true even in degraded environments but a number of important issues arise. In particular, changes in the low-level humidity field are found to affect mainly the precipitation amplitude during the assimilation with a fast adaptation of the storm to the system dynamics determined by the environment during the free forecast. A constant bias in the environmental wind field, on the other hand, has the potential to render a successful assimilation with the LHN scheme difficult, as the velocity of the forcing is not consistent with the system propagation speed determined by the wind. If the rainfall forcing moves too fast, the system propagation is supported and the assimilated storm and forecasts initialised therefrom develop properly. A too slow forcing, on the other hand, can decelerate the system and eventually disturb the system dynamics by decoupling the low-level moisture inflow from the main updrafts during the assimilation. This distortion is sustained in the free forecast. It has further been found that a sufficient temporal resolution of the rainfall input is crucial for the successful assimilation of a fast moving, coherent convective storm and that the LHN scheme, when applied to a convective storm, appears to necessitate a careful tuning.
A Simplified Land Model (SLM) for use in cloud-resolving models: Formulation and evaluation
NASA Astrophysics Data System (ADS)
Lee, Jungmin M.; Khairoutdinov, Marat
2015-09-01
A Simplified Land Model (SLM) that uses a minimalist set of parameters with a single-layer vegetation and multilevel soil structure has been developed distinguishing canopy and undercanopy energy budgets. The primary motivation has been to design a land model for use in the System for Atmospheric Modeling (SAM) cloud-resolving model to study land-atmosphere interactions with a sufficient level of realism. SLM uses simplified expressions for the transport of heat, moisture, momentum, and radiation in soil-vegetation system. The SLM performance has been evaluated over several land surface types using summertime tower observations of micrometeorological and biophysical data from three AmeriFlux sites, which include grassland, cropland, and deciduous-broadleaf forest. In general, the SLM captures the observed diurnal cycle of surface energy budget and soil temperature reasonably well, although reproducing the evolution of soil moisture, especially after rain events, has been challenging. The SLM coupled to SAM has been applied to the case of summertime shallow cumulus convection over land based on the Atmospheric Radiation Measurements (ARM) Southern Great Plain (SGP) observations. The simulated surface latent and sensible heat fluxes as well as the evolution of thermodynamic profiles in convective boundary layer agree well with the estimates based on the observations. Sensitivity of atmospheric boundary layer development to the soil moisture and different land cover types has been also examined.
NASA Astrophysics Data System (ADS)
Kuang, Zhiming; Bretherton, Christopher S.
2006-07-01
In this paper, an idealized, high-resolution simulation of a gradually forced transition from shallow, nonprecipitating to deep, precipitating cumulus convection is described; how the cloud and transport statistics evolve as the convection deepens is explored; and the collected statistics are used to evaluate assumptions in current cumulus schemes. The statistical analysis methodologies that are used do not require tracing the history of individual clouds or air parcels; instead they rely on probing the ensemble characteristics of cumulus convection in the large model dataset. They appear to be an attractive way for analyzing outputs from cloud-resolving numerical experiments. Throughout the simulation, it is found that 1) the initial thermodynamic properties of the updrafts at the cloud base have rather tight distributions; 2) contrary to the assumption made in many cumulus schemes, nearly undiluted air parcels are too infrequent to be relevant to any stage of the simulated convection; and 3) a simple model with a spectrum of entraining plumes appears to reproduce most features of the cloudy updrafts, but significantly overpredicts the mass flux as the updrafts approach their levels of zero buoyancy. A buoyancy-sorting model was suggested as a potential remedy. The organized circulations of cold pools seem to create clouds with larger-sized bases and may correspondingly contribute to their smaller lateral entrainment rates. Our results do not support a mass-flux closure based solely on convective available potential energy (CAPE), and are in general agreement with a convective inhibition (CIN)-based closure. The general similarity in the ensemble characteristics of shallow and deep convection and the continuous evolution of the thermodynamic structure during the transition provide justification for developing a single unified cumulus parameterization that encompasses both shallow and deep convection.
Tests of two convection theories for red giant and red supergiant envelopes
NASA Technical Reports Server (NTRS)
Stothers, Richard B.; Chin, Chao-Wen
1995-01-01
Two theories of stellar envelope convection are considered here in the context of red giants and red supergiants of intermediate to high mass: Boehm-Vitense's standard mixing-length theory (MLT) and Canuto & Mazzitelli's new theory incorporating the full spectrum of turbulence (FST). Both theories assume incompressible convection. Two formulations of the convective mixing length are also evaluated: l proportional to the local pressure scale height (H(sub P)) and l proportional to the distance from the upper boundary of the convection zone (z). Applications to test both theories are made by calculating stellar evolutionary sequences into the red zone (z). Applications to test both theories are made by calculating stellar evolutionary sequences into the red phase of core helium burning. Since the theoretically predicted effective temperatures for cool stars are known to be sensitive to the assigned value of the mixing length, this quantity has been individually calibrated for each evolutionary sequence. The calibration is done in a composite Hertzsprung-Russell diagram for the red giant and red supergiant members of well-observed Galactic open clusters. The MLT model requires the constant of proportionality for the convective mixing length to vary by a small but statistically significant amount with stellar mass, whereas the FST model succeeds in all cases with the mixing lenghth simply set equal to z. The structure of the deep stellar interior, however, remains very nearly unaffected by the choices of convection theory and mixing lenghth. Inside the convective envelope itself, a density inversion always occurs, but is somewhat smaller for the convectively more efficient MLT model. On physical grounds the FST model is preferable, and seems to alleviate the problem of finding the proper mixing length.
NASA Astrophysics Data System (ADS)
Strauss, Cesar; Rosa, Marcelo Barbio; Stephany, Stephan
2013-12-01
Convective cells are cloud formations whose growth, maturation and dissipation are of great interest among meteorologists since they are associated with severe storms with large precipitation structures. Some works suggest a strong correlation between lightning occurrence and convective cells. The current work proposes a new approach to analyze the correlation between precipitation and lightning, and to identify electrically active cells. Such cells may be employed for tracking convective events in the absence of weather radar coverage. This approach employs a new spatio-temporal clustering technique based on a temporal sliding-window and a standard kernel density estimation to process lightning data. Clustering allows the identification of the cells from lightning data and density estimation bounds the contours of the cells. The proposed approach was evaluated for two convective events in Southeast Brazil. Image segmentation of radar data was performed to identify convective precipitation structures using the Steiner criteria. These structures were then compared and correlated to the electrically active cells in particular instants of time for both events. It was observed that most precipitation structures have associated cells, by comparing the ground tracks of their centroids. In addition, for one particular cell of each event, its temporal evolution was compared to that of the associated precipitation structure. Results show that the proposed approach may improve the use of lightning data for tracking convective events in countries that lack weather radar coverage.
NASA Astrophysics Data System (ADS)
Skamarock, W. C.
2015-12-01
One of the major problems in atmospheric model applications is the representation of deep convection within the models; explicit simulation of deep convection on fine meshes performs much better than sub-grid parameterized deep convection on coarse meshes. Unfortunately, the high cost of explicit convective simulation has meant it has only been used to down-scale global simulations in weather prediction and regional climate applications, typically using traditional one-way interactive nesting technology. We have been performing real-time weather forecast tests using a global non-hydrostatic atmospheric model (the Model for Prediction Across Scales, MPAS) that employs a variable-resolution unstructured Voronoi horizontal mesh (nominally hexagons) to span hydrostatic to nonhydrostatic scales. The smoothly varying Voronoi mesh eliminates many downscaling problems encountered using traditional one- or two-way grid nesting. Our test weather forecasts cover two periods - the 2015 Spring Forecast Experiment conducted at the NOAA Storm Prediction Center during the month of May in which we used a 50-3 km mesh, and the PECAN field program examining nocturnal convection over the US during the months of June and July in which we used a 15-3 km mesh. An important aspect of this modeling system is that the model physics be scale-aware, particularly the deep convection parameterization. These MPAS simulations employ the Grell-Freitas scale-aware convection scheme. Our test forecasts show that the scheme produces a gradual transition in the deep convection, from the deep unstable convection being handled entirely by the convection scheme on the coarse mesh regions (dx > 15 km), to the deep convection being almost entirely explicit on the 3 km NA region of the meshes. We will present results illustrating the performance of critical aspects of the MPAS model in these tests.
NASA Astrophysics Data System (ADS)
Zhu, Kefeng; Xue, Ming
2016-11-01
On 21 July 2012, an extreme rainfall event that recorded a maximum rainfall amount over 24 hours of 460 mm, occurred in Beijing, China. Most operational models failed to predict such an extreme amount. In this study, a convective-permitting ensemble forecast system (CEFS), at 4-km grid spacing, covering the entire mainland of China, is applied to this extreme rainfall case. CEFS consists of 22 members and uses multiple physics parameterizations. For the event, the predicted maximum is 415 mm d-1 in the probability-matched ensemble mean. The predicted high-probability heavy rain region is located in southwest Beijing, as was observed. Ensemble-based verification scores are then investigated. For a small verification domain covering Beijing and its surrounding areas, the precipitation rank histogram of CEFS is much flatter than that of a reference global ensemble. CEFS has a lower (higher) Brier score and a higher resolution than the global ensemble for precipitation, indicating more reliable probabilistic forecasting by CEFS. Additionally, forecasts of different ensemble members are compared and discussed. Most of the extreme rainfall comes from convection in the warm sector east of an approaching cold front. A few members of CEFS successfully reproduce such precipitation, and orographic lift of highly moist low-level flows with a significantly southeasterly component is suggested to have played important roles in producing the initial convection. Comparisons between good and bad forecast members indicate a strong sensitivity of the extreme rainfall to the mesoscale environmental conditions, and, to less of an extent, the model physics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Jiwen; Han, Bin; Varble, Adam
A constrained model intercomparison study of a mid-latitude mesoscale squall line is performed using the Weather Research & Forecasting (WRF) model at 1-km horizontal grid spacing with eight cloud microphysics schemes, to understand specific processes that lead to the large spread of simulated cloud and precipitation at cloud-resolving scales, with a focus of this paper on convective cores. Various observational data are employed to evaluate the baseline simulations. All simulations tend to produce a wider convective area than observed, but a much narrower stratiform area, with most bulk schemes overpredicting radar reflectivity. The magnitudes of the virtual potential temperature drop,more » pressure rise, and the peak wind speed associated with the passage of the gust front are significantly smaller compared with the observations, suggesting simulated cool pools are weaker. Simulations also overestimate the vertical velocity and Ze in convective cores as compared with observational retrievals. The modeled updraft velocity and precipitation have a significant spread across the eight schemes even in this strongly dynamically-driven system. The spread of updraft velocity is attributed to the combined effects of the low-level perturbation pressure gradient determined by cold pool intensity and buoyancy that is not necessarily well correlated to differences in latent heating among the simulations. Variability of updraft velocity between schemes is also related to differences in ice-related parameterizations, whereas precipitation variability increases in no-ice simulations because of scheme differences in collision-coalescence parameterizations.« less
Natural convection of a two-dimensional Boussinesq fluid does not maximize entropy production.
Bartlett, Stuart; Bullock, Seth
2014-08-01
Rayleigh-Bénard convection is a canonical example of spontaneous pattern formation in a nonequilibrium system. It has been the subject of considerable theoretical and experimental study, primarily for systems with constant (temperature or heat flux) boundary conditions. In this investigation, we have explored the behavior of a convecting fluid system with negative feedback boundary conditions. At the upper and lower system boundaries, the inward heat flux is defined such that it is a decreasing function of the boundary temperature. Thus the system's heat transport is not constrained in the same manner that it is in the constant temperature or constant flux cases. It has been suggested that the entropy production rate (which has a characteristic peak at intermediate heat flux values) might apply as a selection rule for such a system. In this work, we demonstrate with Lattice Boltzmann simulations that entropy production maximization does not dictate the steady state of this system, despite its success in other, somewhat similar scenarios. Instead, we will show that the same scaling law of dimensionless variables found for constant boundary conditions also applies to this system.
Pattanayak, Sujata; Mohanty, U C; Osuri, Krishna K
2012-01-01
The present study is carried out to investigate the performance of different cumulus convection, planetary boundary layer, land surface processes, and microphysics parameterization schemes in the simulation of a very severe cyclonic storm (VSCS) Nargis (2008), developed in the central Bay of Bengal on 27 April 2008. For this purpose, the nonhydrostatic mesoscale model (NMM) dynamic core of weather research and forecasting (WRF) system is used. Model-simulated track positions and intensity in terms of minimum central mean sea level pressure (MSLP), maximum surface wind (10 m), and precipitation are verified with observations as provided by the India Meteorological Department (IMD) and Tropical Rainfall Measurement Mission (TRMM). The estimated optimum combination is reinvestigated with six different initial conditions of the same case to have better conclusion on the performance of WRF-NMM. A few more diagnostic fields like vertical velocity, vorticity, and heat fluxes are also evaluated. The results indicate that cumulus convection play an important role in the movement of the cyclone, and PBL has a crucial role in the intensification of the storm. The combination of Simplified Arakawa Schubert (SAS) convection, Yonsei University (YSU) PBL, NMM land surface, and Ferrier microphysics parameterization schemes in WRF-NMM give better track and intensity forecast with minimum vector displacement error.
An Analysis of the Environments of Intense Convective Systems in West Africa in 2003
NASA Technical Reports Server (NTRS)
Nicholls, Stephen D.; Mohr, Karen I.
2010-01-01
We investigated the local- and regional-scale thermodynamical and dynamical environments associated with intense convective systems in West Africa during 2003. We identified convective system cases from TRMM microwave imagery, classifying each case by the system minimum 85-GHz brightness temperature and by the estimated elapsed time of propagation from high terrain. The speed of the mid-level jet, the magnitude of the low-level shear, and the surface equivalent potential temperature (theta(sub e)) were greater for the intense cases compared to the non-intense cases, although the differences between the means tended to be small, less than 3K for surface theta(sub e). Hypothesis testing of a series of commonly used intensity prediction metrics resulted in significant results only for low-level metrics such as convective available potential energy and not for any of the mid- or upper-level metrics such as 700-hPa theta(sub e). None of the environmental variables or intensity metrics by themselves or in combination appeared to be reliable direct predictors of intensity. In the regional scale analysis, the majority of intense convective systems occurred in the surface baroclinic zone where surface theta(sub e) exceeded 344 K and the 700-hPa zonal wind speeds were less than -6/ms. Fewer intense cases compared to non-intense cases were associated with African easterly wave troughs. Fewer than 25% of our cases occurred in environments with detectable Saharan dust loads, and the results for intense and non-intense cases were similar. Our results for the regional analysis were consistent with the seasonal movement of the WAM and the intertropical front, regional differences in topography, and AEW energetics.
Evolution of Planetary Ice-Ocean Systems: Effects of Salinity
NASA Astrophysics Data System (ADS)
Allu Peddinti, D.; McNamara, A. K.
2015-12-01
Planetary oceanography is enjoying renewed attention thanks to not only the detection of several exoplanetary ocean worlds but also due to the expanding family of ocean worlds within our own star system. Our solar system is now believed to host about nine ocean worlds including Earth, some dwarf planets and few moons of Jupiter and Saturn. Amongst them, Europa, like Earth is thought to have an ice Ih-liquid water system. However, the thickness of the Europan ice-ocean system is much larger than that of the Earth. The evolution of this system would determine the individual thicknesses of the ice shell and the ocean. In turn, these thicknesses can alter the course of evolution of the system. In a pure H2O system, the thickness of the ice shell would govern if heat loss occurs entirely by conduction or if the shell begins to convect as it attains a threshold thickness. This switch between conduction-convection regimes could determine the longevity of the subsurface ocean and hence define the astrobiological potential of the planetary body at any given time. In reality, however, the system is not pure water ice. The detected induced magnetic field infers a saline ocean layer. Salts are expected to act as an anti-freeze allowing a subsurface ocean to persist over long periods but the amount of salts would determine the extent of that effect. In our current study, we use geodynamic models to examine the effect of salinity on the evolution of ice-ocean system. An initial ocean with different salinities is allowed to evolve. The effect of salinity on thickness of the two layers at any time is examined. We also track how salinity controls the switch between conductive-convective modes. The study shows that for a given time period, larger salinities can maintain a thick vigorously convecting ocean while the smaller salinities behave similar to a pure H2O system leading to a thick convecting ice-shell. A range of salinities identified can potentially predict the current state and possibly the intermediate states of the ice-ocean system as it evolved over time. This could help constrain the endogenic contribution of salts to the surface chemistry.
NASA Astrophysics Data System (ADS)
Jayakumar, A.; Mamgain, Ashu; Jisesh, A. S.; Mohandas, Saji; Rakhi, R.; Rajagopal, E. N.
2016-05-01
Representation of rainfall distribution and monsoon circulation in the high resolution versions of NCMRWF Unified model (NCUM-REG) for the short-range forecasting of extreme rainfall event is vastly dependent on the key factors such as vertical cloud distribution, convection and convection/cloud relationship in the model. Hence it is highly relevant to evaluate the vertical structure of cloud and precipitation of the model over the monsoon environment. In this regard, we utilized the synergy of the capabilities of CloudSat data for long observational period, by conditioning it for the synoptic situation of the model simulation period. Simulations were run at 4-km grid length with the convective parameterization effectively switched off and on. Since the sample of CloudSat overpasses through the monsoon domain is small, the aforementioned methodology may qualitatively evaluate the vertical cloud structure for the model simulation period. It is envisaged that the present study will open up the possibility of further improvement in the high resolution version of NCUM in the tropics for the Indian summer monsoon associated rainfall events.
THE SPECTRAL AMPLITUDE OF STELLAR CONVECTION AND ITS SCALING IN THE HIGH-RAYLEIGH-NUMBER REGIME
DOE Office of Scientific and Technical Information (OSTI.GOV)
Featherstone, Nicholas A.; Hindman, Bradley W., E-mail: feathern@colorado.edu
2016-02-10
Convection plays a central role in the dynamics of any stellar interior, and yet its operation remains largely hidden from direct observation. As a result, much of our understanding concerning stellar convection necessarily derives from theoretical and computational models. The Sun is, however, exceptional in that regard. The wealth of observational data afforded by its proximity provides a unique test bed for comparing convection models against observations. When such comparisons are carried out, surprising inconsistencies between those models and observations become apparent. Both photospheric and helioseismic measurements suggest that convection simulations may overestimate convective flow speeds on large spatial scales.more » Moreover, many solar convection simulations have difficulty reproducing the observed solar differential rotation owing to this apparent overestimation. We present a series of three-dimensional stellar convection simulations designed to examine how the amplitude and spectral distribution of convective flows are established within a star’s interior. While these simulations are nonmagnetic and nonrotating in nature, they demonstrate two robust phenomena. When run with sufficiently high Rayleigh number, the integrated kinetic energy of the convection becomes effectively independent of thermal diffusion, but the spectral distribution of that kinetic energy remains sensitive to both of these quantities. A simulation that has converged to a diffusion-independent value of kinetic energy will divide that energy between spatial scales such that low-wavenumber power is overestimated and high-wavenumber power is underestimated relative to a comparable system possessing higher Rayleigh number. We discuss the implications of these results in light of the current inconsistencies between models and observations.« less
Rayleigh convective instability in a cloud medium
NASA Astrophysics Data System (ADS)
Shmerlin, B. Ya.; Shmerlin, M. B.
2017-09-01
The problem of convective instability of an atmospheric layer containing a horizontally finite region filled with a cloud medium is considered. Solutions exponentially growing with time, i.e., solitary cloud rolls or spatially localized systems of cloud rolls, have been constructed. In the case of axial symmetry, their analogs are convective vortices with both ascending and descending motions on the axis and cloud clusters with ring-shaped convective structures. Depending on the anisotropy of turbulent exchange, the scale of vortices changes from the tornado scale to the scale of tropical cyclones. The solutions with descending motions on the axis can correspond to the formation of a tornado funnel or a hurricane eye in tropical cyclones.
NASA Technical Reports Server (NTRS)
Knupp, Kevin; Geerts, Bart; Goodman, Steven J.
1997-01-01
The precipitation output was highly variable due to the transient nature of the intense convective elements. This result is attributed to the high Richardson number (175) of the environment, which is much higher than that of the typical MCS environment. The development of the stratiform precipitation was accomplished locally (in situ), and not be advection of from the convective region. In situ charging of the stratiform region is also supported by the observations.
Sheared boundary layers in turbulent Rayleigh-Benard convection
NASA Astrophysics Data System (ADS)
Solomon, T. H.; Gollub, J. P.
1990-05-01
Thermal boundary layers in turbulent Rayleigh-Benard convection are studied experimentally using a novel system in which the convecting fluid is sheared from below with a flowing layer of mercury. Oscillatory shear substantially alters the spatial structure and frequency of the eruptions, with minimal effect on the heat flux (less than 5 percent). The temperature probability distribution function (PDF) just above the lower boundary layer changes from Gaussian to exponential without significant changes in the interior PDF. Implications for theories of 'hard' turbulence are discussed.
NASA Technical Reports Server (NTRS)
Walker, Raymond J.; Ogino, Tatsuki
1988-01-01
A time-dependent three-dimensional MHD model was used to investigate the magnetospheric configuration as a function of the interplanetary magnetic field direction when it was in the y-z plane in geocentric solar magnetospheric coordinates. The model results show large global convection cells, tail lobe cells, high-latitude polarcap cells, and low latitude cells. The field-aligned currents generated in the model magnetosphere and the model convection system are compared with observations from low-altitude polar orbiting satellites.
NASA Astrophysics Data System (ADS)
Magri, Fabien; Cacace, Mauro; Fischer, Thomas; Kolditz, Olaf; Wang, Wenqing; Watanabe, Norihiro
2017-04-01
In contrast to simple homogeneous 1D and 2D systems, no appropriate analytical solutions exist to test onset of thermal convection against numerical models of complex 3D systems that account for variable fluid density and viscosity as well as permeability heterogeneity (e.g. presence of faults). Owing to the importance of thermal convection for the transport of energy and minerals, the development of a benchmark test for density/viscosity driven flow is crucial to ensure that the applied numerical models accurately simulate the physical processes at hands. The presented study proposes a 3D test case for the simulation of thermal convection in a faulted system that accounts for temperature dependent fluid density and viscosity. The linear stability analysis recently developed by Malkovsky and Magri (2016) is used to estimate the critical Rayleigh number above which thermal convection of viscous fluids is triggered. The numerical simulations are carried out using the finite element technique. OpenGeoSys (Kolditz et al., 2012) and Moose (Gaston et al., 2009) results are compared to those obtained using the commercial software FEFLOW (Diersch, 2014) to test the ability of widely applied codes in matching both the critical Rayleigh number and the dynamical features of convective processes. The methodology and Rayleigh expressions given in this study can be applied to any numerical model that deals with 3D geothermal processes in faulted basins as by example the Tiberas Basin (Magri et al., 2016). References Kolditz, O., Bauer, S., Bilke, L., Böttcher, N., Delfs, J. O., Fischer, T., U. J. Görke, T. Kalbacher, G. Kosakowski, McDermott, C. I., Park, C. H., Radu, F., Rink, K., Shao, H., Shao, H.B., Sun, F., Sun, Y., Sun, A., Singh, K., Taron, J., Walther, M., Wang,W., Watanabe, N., Wu, Y., Xie, M., Xu, W., Zehner, B., 2012. OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environmental Earth Sciences, 67(2), 589-599. Diersch, H. J, 2014. FEFLOW Finite Element Modeling of Flow, Mass and Heat Transport in Porous and Fractured Media, Springer-Verlag Berlin Heidelberg, ISBN 978-3-642-38738-8. Gaston D., Newman C., Hansen G., Lebrun-Grandie D, 2009. MOOSE: A parallel solution framework for coupled systems of nonlinear equations. Nucl. Engrg. Design, 239, 1,768-1778 Magri, F., Möller, S., Inbar, N., Möller, P., Raggad, M., Rödiger, T., Rosenthal, E., Siebert, C., 2016. 2D and 3D coexisting modes of thermal convection in fractured hydrothermal systems - Implications for transboundary flow in the Lower Yarmouk Gorge. Marine and Petroleum Geology 78, 750-758, DOI: /10.1016/j.marpetgeo.2016.10.002 Malkovsky, V. I., Magri, F., 2016. Thermal convection of temperature-dependent viscous fluids within three-dimensional faulted geothermal systems: estimation from linear and numerical analyses, Water Resour. Res., 52, 2855-2867, DOI:10.1002/2015WR018001.
Driving forces: Slab subduction and mantle convection
NASA Technical Reports Server (NTRS)
Hager, Bradford H.
1988-01-01
Mantle convection is the mechanism ultimately responsible for most geological activity at Earth's surface. To zeroth order, the lithosphere is the cold outer thermal boundary layer of the convecting mantle. Subduction of cold dense lithosphere provides tha major source of negative buoyancy driving mantle convection and, hence, surface tectonics. There are, however, importnat differences between plate tectonics and the more familiar convecting systems observed in the laboratory. Most important, the temperature dependence of the effective viscosity of mantle rocks makes the thermal boundary layer mechanically strong, leading to nearly rigid plates. This strength stabilizes the cold boundary layer against small amplitude perturbations and allows it to store substantial gravitational potential energy. Paradoxically, through going faults at subduction zones make the lithosphere there locally weak, allowing rapid convergence, unlike what is observed in laboratory experiments using fluids with temperature dependent viscosities. This bimodal strength distribution of the lithosphere distinguishes plate tectonics from simple convection experiments. In addition, Earth has a buoyant, relatively weak layer (the crust) occupying the upper part of the thermal boundary layer. Phase changes lead to extra sources of heat and bouyancy. These phenomena lead to observed richness of behavior of the plate tectonic style of mantle convection.
Characteristics of mesoscale vortices over China in 2015
NASA Astrophysics Data System (ADS)
Shu, Yu; Sun, Jisong; Pan, Yinong
2017-12-01
Mesoscale vortices, which appear at middle and lower levels of rainstorms, are cyclonic circulations with a size ranging from tens of kilometers to several hundred kilometers. Mesoscale vortices often have close relationships with convective activities. The ERA-Interim dataset and an automatic vortex-searching method were used to identify the mesoscale vortices occurring over China in 2015 and their basic characteristics were analyzed. The mesoscale vortices are divided into three categories: mesoscale convective vortices, mesoscale stratiform vortices, and mesoscale dry vortices. The mesoscale convective vortices have the largest intensity, size, and duration, whereas the mesoscale dry vortices have the smallest. Mesoscale convective vortices are able to form in any direction of the parent mesoscale convective system, although the secondary convection tends to appear to the southeast of the parent vortices. The mesoscale vortices tend to generate in the transition area between high and low altitudes. The leeward side of the Tibetan Plateau is the main source region of mesoscale vortices in China. Most of vortices are generated at midday and midnight. The activities of mesoscale convective vortices and mesoscale stratiform vortices peak in summer, whereas those of the mesoscale dry vortices peak in winter.
Shallow cumuli ensemble statistics for development of a stochastic parameterization
NASA Astrophysics Data System (ADS)
Sakradzija, Mirjana; Seifert, Axel; Heus, Thijs
2014-05-01
According to a conventional deterministic approach to the parameterization of moist convection in numerical atmospheric models, a given large scale forcing produces an unique response from the unresolved convective processes. This representation leaves out the small-scale variability of convection, as it is known from the empirical studies of deep and shallow convective cloud ensembles, there is a whole distribution of sub-grid states corresponding to the given large scale forcing. Moreover, this distribution gets broader with the increasing model resolution. This behavior is also consistent with our theoretical understanding of a coarse-grained nonlinear system. We propose an approach to represent the variability of the unresolved shallow-convective states, including the dependence of the sub-grid states distribution spread and shape on the model horizontal resolution. Starting from the Gibbs canonical ensemble theory, Craig and Cohen (2006) developed a theory for the fluctuations in a deep convective ensemble. The micro-states of a deep convective cloud ensemble are characterized by the cloud-base mass flux, which, according to the theory, is exponentially distributed (Boltzmann distribution). Following their work, we study the shallow cumulus ensemble statistics and the distribution of the cloud-base mass flux. We employ a Large-Eddy Simulation model (LES) and a cloud tracking algorithm, followed by a conditional sampling of clouds at the cloud base level, to retrieve the information about the individual cloud life cycles and the cloud ensemble as a whole. In the case of shallow cumulus cloud ensemble, the distribution of micro-states is a generalized exponential distribution. Based on the empirical and theoretical findings, a stochastic model has been developed to simulate the shallow convective cloud ensemble and to test the convective ensemble theory. Stochastic model simulates a compound random process, with the number of convective elements drawn from a Poisson distribution, and cloud properties sub-sampled from a generalized ensemble distribution. We study the role of the different cloud subtypes in a shallow convective ensemble and how the diverse cloud properties and cloud lifetimes affect the system macro-state. To what extent does the cloud-base mass flux distribution deviate from the simple Boltzmann distribution and how does it affect the results from the stochastic model? Is the memory, provided by the finite lifetime of individual clouds, of importance for the ensemble statistics? We also test for the minimal information given as an input to the stochastic model, able to reproduce the ensemble mean statistics and the variability in a convective ensemble. An important property of the resulting distribution of the sub-grid convective states is its scale-adaptivity - the smaller the grid-size, the broader the compound distribution of the sub-grid states.
NASA Astrophysics Data System (ADS)
Lowell, R. P.; Lata, C.
2016-12-01
The aim of this work is to model heat output from a cooling, convective, crystallizing, and replenished basaltic magma sill, representing an axial magma lens (AML) at mid oceanic ridges. As a simplified version of basaltic melt, we have assumed the melt to be a two-component eutectic system composed of diopside and anorthite. Convective vigor is expressed through the Rayleigh number and heat flux is scaled through a classical relationship between the Rayleigh number and Nusselt number, where the temperature difference driving the convective heat flux is derived from a "viscous" temperature scale reflecting the strong temperature dependent viscosity of the system. Viscosity is modeled as a function of melt composition and temperature using the Tammann-Vogel-Fulcher equation, with parameters fit to the values of observed viscosities along the diopside-anorthite liquidus. It was observed for the un-replenished case, in which crystals fall rapidly to the floor of the AML, model results show that the higher initial concentration of diopside, the more vigorous the convection and the faster the rate of crystallization and decay of heat output. Replenishment of the AML accompanied by modest thickening of the melt layer stabilizes the heat output at values similar to those observed at ridge-axis hydrothermal systems. This study is an important step forward in quantitative understanding of thermal evolution of the axial magma lens at a mid-ocean ridge and the corresponding effect on high-temperature hydrothermal systems. Future work could involve improved replenishment mechanisms, more complex melts, and direct coupling with hydrothermal circulation models.
Natural convection in melt crystal growth - The influence of flow pattern on solute segregation
NASA Technical Reports Server (NTRS)
Brown, R. A.; Yamaguchi, Y.; Chang, C. J.
1982-01-01
The results of two lines of research aimed at calculating the structure of the flows driven by buoyancy in small-scale crystal growth systems and at understanding the coupling between these flows, the shape of the solidification interface, and dopant segregation in the crystal are reviewed. First, finite-element methods are combined with computer-aided methods for detecting multiple steady solutions to analyze the structure of the buoyancy-driven axisymmetric flows in a vertical cylinder heated from below. This system exhibits onset of convection, multiple steady flows, and loss of the primary stable flow beyond a critical value of the Rayleigh number. Second, results are presented for calculations of convection, melt/solid interface shape, and dopant segregation within a vertical ampoule with thermal boundary conditions that represent a prototype of the vertical Bridgman growth system.
NASA Astrophysics Data System (ADS)
Drahotský, Jakub; Hanzelka, Pavel; Musilová, Věra; Macek, Michal; du Puits, Ronald; Urban, Pavel
2018-06-01
Modelling of large-scale natural (thermally-generated) turbulent flows (such as the turbulent convection in Earth's atmosphere, oceans, or Sun) is approached in laboratory experiments in the simplified model system called the Rayleigh-Bénard convection (RBC). We present preliminary measurements of vertical temperature profiles in the cell with the height of 4:7 m, 7:15m in diameter, obtained at the Barrel of Ilmenau (BOI), the worldwide largest experimental setup to study highly turbulent RBC, newly equipped with the Luna ODiSI-B optical fibre system. In our configuration, the system permits to measure the temperature with a high spatial resolution of 5mm along a very thin glass optical fibre with the length of 5m and seems to be perfectly suited for measurement of time series of instantaneous vertical temperature profiles. The system was supplemented with the two Pt100 vertically movable probes specially designed by us for reference temperature profiles measurements.
NASA Astrophysics Data System (ADS)
Fontaine, Emmanuel; Leroy, Delphine; Schwarzenboeck, Alfons; Coutris, Pierre; Delanoë, Julien; Protat, Alain; Dezitter, Fabien; Grandin, Alice; Strapp, John W.; Lilie, Lyle E.
2017-04-01
Mesoscale Convective Systems are complex cloud systems which are primarily the result of specific synoptic conditions associated with mesoscale instabilities leading to the development of cumulonimbus type clouds (Houze, 2004). These systems can last several hours and can affect human societies in various ways. In general, weather and climate models use simplistic schemes to describe ice hydrometeors' properties. However, MCS are complex cloud systems where the dynamic, radiative and precipitation processes depend on spatiotemporal location in the MCS (Houze, 2004). As a consequence, hydrometeor growth processes in MCS vary in space and time, thereby impacting shape and concentration of ice crystals and finally CWC. As a consequence, differences in the representation of ice properties in models (Li et al., 2007, 2005) lead to significant disagreements in the quantification of ice cloud effects on climate evolution (Intergovernmental Panel on Climate Change Fourth Assessment Report). An accurate estimation of the spatiotemporal CWC distribution is therefore a key parameter for evaluating and improving numerical weather prediction (Stephens et al., 2002). The main purpose of this study is to show ice microphysical properties of MCS observed in three different locations in the tropical atmosphere: West-African continent, Indian Ocean, and Northern Australia. An intercomparison study is performed in order to quantify how similar or different are the ice hydrometeors' properties in these three regions related to radar reflectivity factors and temperatures observed in respective MCS.
NASA Technical Reports Server (NTRS)
Shie, C.-L.; Tao, W.-K.; Simpson, J.; Sui, C.-H.; Starr, David OC. (Technical Monitor)
2001-01-01
A series of long-term integrations using the two-dimensional Goddard Cumulus Ensemble (GCE) model were performed by altering imposed environmental components to produce various quasi-equilibrium thermodynamic states. Model results show that the genesis of a warm/wet quasi-equilibrium state is mainly due to either strong vertical wind shear (from nudging) or large surface fluxes (from strong surface winds), while a cold/dry quasi-equilibrium state is attributed to a remarkably weakened mixed-wind shear (from vertical mixing due to deep convection) along with weak surface winds. In general, latent heat flux and net large-scale temperature forcing, the two dominant physical processes, dominate in the beginning stage of the simulated convective systems, then considerably weaken in the final stage, which leads to quasi-equilibrium states. A higher thermodynamic regime is found to produce a larger rainfall amount, as convective clouds are the leading source of rainfall over stratiform clouds even though the former occupy much less area. Moreover, convective clouds are more likely to occur in the presence of strong surface winds (latent heat flux), while stratiform clouds (especially the well-organized type) are favored in conditions with strong wind shear (large-scale forcing). The convective systems, which consist of distinct cloud types due to the variation in horizontal winds, are also found to propagate differently. Accordingly, convective systems with mixed-wind shear generally propagate in the direction of shear, while the system with strong (multidirectional) wind shear propagates in a more complex way. Based on the results from the temperature (Q1) and moisture (Q2) budgets, cloud-scale eddies are found to act as a hydrodynamic 'vehicle' that cascades the heat and moisture vertically. Several other specific features such as atmospheric stability, CAPE, and mass fluxes are also investigated and found to be significantly different between diverse quasi-equilibrium states. Detailed comparisons between the various states are presented.
NASA Astrophysics Data System (ADS)
de Campos, C. P.; Civetta, L.; Dingwell, D. B.; Perugini, D.; Petrelli, M.; Fehr, T. K.
2006-12-01
Abundant geochemical and volcanological data on the Campanian Ignimbrite, (>200 km3, 39 ka) Phlegrean Fields, Italy, support the existence of a layered magmatic reservoir, which evolved via 1) replenishment of the chamber with trachytic magma and 2) short-term pre-eruptive mixing between new trachytic and phono- trachytic resident magmas. We have initiated an experimental program in order to constrain the dynamics of such mingling/mixing events. We used melted natural products from these two magmas of sub-equal but distinct composition, which are thought to have been involved in the origin of this magmatic system as end-members (phono-trachyte = end- member A and trachyte = end-member B). The two were then stirred together and sampled by experiment termination as a time series, ranging from 1-hour up to 1-week. Stirring under constant low flow velocity (0.5 rotations per minute) generated at first homogenization and mixing of the starting compositions. Then separate convection cells and compositional layering for major and minor elements emerged. Calculated density distributions along sections from the experimental glasses, after decoupling, are very similar to density distributions in aqueous systems under double-diffusive convection. In order to test double- diffusive decoupled convection in this system, we performed 87Sr/86Sr-isotopic and Sr- LA-ICP-MS- measurements, using the 25-hour experimental glasses. The effective chemical separation of different convection cells has been confirmed with clearly distinct isotopic signatures for both bottom and top cells. Comparison with natural samples from the Campanian Ignimbrite strengthens the importance of the role of a double-diffusive similar convection as a major differentiation process leading to layering in this system. Our results support the effectiveness of a DDC-driven fractionation for moderately high-silica magmas under high near-liquidus temperatures, before the onset of fractional crystallization.
Electric and kinematic structure of the Oklahoma mesoscale convective system of 7 June 1989
NASA Technical Reports Server (NTRS)
Hunter, Steven M.; Schur, Terry J.; Marshall, Thomas C.; Rust, W. D.
1992-01-01
Balloon soundings of electric field in Oklahoma mesoscale convective systems (MCS) were obtained by the National Severe Storms Laboratory in the spring of 1989. This study focuses on a sounding made in the rearward edge of an MCS stratiform rain area on 7 June 1989. Data from Doppler radars, a lightning ground-strike location system, satellite, and other sources is used to relate the mesoscale attributes of the MCS to the observed electric-field profile.
NASA Astrophysics Data System (ADS)
Lee, Jonghyun; SanSoucie, Michael P.
2017-08-01
Materials research is being conducted using an electromagnetic levitator installed in the International Space Station. Various metallic alloys were tested to elucidate unknown links among the structures, processes, and properties. To accomplish the mission of these space experiments, several ground-based activities have been carried out. This article presents some of our ground-based supporting experiments and numerical modeling efforts. Mass evaporation of Fe50Co50, one of flight compositions, was predicted numerically and validated by the tests using an electrostatic levitator (ESL). The density of various compositions within the Fe-Co system was measured with ESL. These results are being served as reference data for the space experiments. The convection inside a electromagnetically-levitated droplet was also modeled to predict the flow status, shear rate, and convection velocity under various process parameters, which is essential information for designing and analyzing the space experiments of some flight compositions influenced by convection.
König, Jörg; Tschulik, Kristina; Büttner, Lars; Uhlemann, Margitta; Czarske, Jürgen
2013-03-19
To experimentally reveal the correlation between electrodeposited structure and electrolyte convection induced inside the concentration boundary layer, a highly inhomogeneous magnetic field, generated by a magnetized Fe-wire, has been applied to an electrochemical system. The influence of Lorentz and magnetic field gradient force to the local transport phenomena of copper ions has been studied using a novel two-component laser Doppler velocity profile sensor. With this sensor, the electrolyte convection within 500 μm of a horizontally aligned cathode is presented. The electrode-normal two-component velocity profiles below the electrodeposited structure show that electrolyte convection is induced and directed toward the rim of the Fe-wire. The measured deposited structure directly correlates to the observed boundary layer flow. As the local concentration of Cu(2+) ions is enhanced due to the induced convection, maximum deposit thicknesses can be found at the rim of the Fe-wire. Furthermore, a complex boundary layer flow structure was determined, indicating that electrolyte convection of second order is induced. Moreover, the Lorentz force-driven convection rapidly vanishes, while the electrolyte convection induced by the magnetic field gradient force is preserved much longer. The progress for research is the first direct experimental proof of the electrolyte convection inside the concentration boundary layer that correlates to the deposited structure and reveals that the magnetic field gradient force is responsible for the observed structuring effect.
NASA Astrophysics Data System (ADS)
Lu, Rong; Sun, Jianhua; Fu, Shenming
2017-04-01
This paper utilizes the observation data from the Southern China Monsoon Rainfall Experiment (SCMREX) and the numerical experiments to investigate the influence of moisture amount and convection development over the northern South China Sea on a heavy rainfall event in coastal South China on May 8, 2014. Intensive sounding and wind profiles data reveal that there existed a convergence region formed by the southwesterly and easterly jet in the Pearl River delta, which provided favorable conditions for the development of convection. Whether the initial relative humidity field was increased or decreased in the offshore area, or turning off sensible and latent heat release from the cumulus and microphysical processes, had significant effects on the intensity and movement of convection in the coastal areas of Guangdong owing to the adjustment of temperature and wind fields. Especially, when increasing offshore initial humidity, prosperous sea convection modified the circulation in the entire simulation area, and suppressed the development of convection over land. Moreover, if sensible and latent heat from cumulus and microphysical processes was turned off, the low-level jets could reach further north, and the convective system moved to the northeast in the later stage. These experiments indicate that offshore initial moisture filed and convection activity are indeed important for precipitation forecast in the coastal areas, therefore it's necessary to enhance offshore observation and data assimilation methods in the future.
Scaling of Convective Mixing in CO2 sequestration}
NASA Astrophysics Data System (ADS)
Hidalgo, J. J.; Cueto-Felgueroso, L.; Fe, J.; Juanes, R.
2012-12-01
Dissolution by convective mixing is a key trapping mechanisms during CO2 sequestration in saline aquifers. It is caused by a Rayleigh-Bénard-type instability resulting from the higher density CO2-brine mixture overlaying the resident brine. During the time period before the convective fingers reach the bottom of the aquifer, the Rayleigh number Ra is not a parameter that describes the system [Hidalgo & Carrera (2009), J. Fluid Mech.; Slim & Ramakrishnan (2010), Phys. Fluids], which suggests that dissolution fluxes should not depend on Ra. However, this appears to be in contradiction with recent experimental results using an analogue-fluid system characterized by a non-monotonic density-concentration curve, which naturally undergoes convection [Neufeld et al. (2010), Geophys. Res. Lett.; Backhaus, Turitsyn & Ecke (2011), Phys. Rev. Lett.]. Here we study the scaling of dissolution fluxes by means of the variance of concentration and the scalar dissipation rate. The fundamental relations among these three quantities allow us to study the canonical and analogue-fluid systems with high-resolution numerical simulations, and to demonstrate that both the canonical and analogue-fluid systems exhibit a dissolution flux that is constant and independent of Ra. Our findings point to the need for alternative explanations of recent nonlinear scalings of the Nusselt number observed experimentally.
NASA Technical Reports Server (NTRS)
Prasad, N.; Yeh, Hwa-Young M.; Adler, Robert F.; Tao, Wei-Kuo
1995-01-01
A three-dimensional cloud model, radiative transfer model-based simulation system is tested and validated against the aircraft-based radiance observations of an intense convective system in southeastern Virginia on 29 June 1986 during the Cooperative Huntsville Meteorological Experiment. NASA's ER-2, a high-altitude research aircraft with a complement of radiometers operating at 11-micrometer infrared channel and 18-, 37-, 92-, and 183-GHz microwave channels provided data for this study. The cloud model successfully simulated the cloud system with regard to aircraft- and radar-observed cloud-top heights and diameters and with regard to radar-observed reflectivity structure. For the simulation time found to correspond best with the aircraft- and radar-observed structure, brightness temperatures T(sub b) are simulated and compared with observations for all the microwave frequencies along with the 11-micrometer infrared channel. Radiance calculations at the various frequencies correspond well with the aircraft observations in the areas of deep convection. The clustering of 37-147-GHz T(sub b) observations and the isolation of the 18-GHz values over the convective cores are well simulated by the model. The radiative transfer model, in general, is able to simulate the observations reasonably well from 18 GHz through 174 GHz within all convective areas of the cloud system. When the aircraft-observed 18- and 37-GHz, and 90- and 174-GHz T(sub b) are plotted against each other, the relationships have a gradual difference in the slope due to the differences in the ice particle size in the convective and more stratiform areas of the cloud. The model is able to capture these differences observed by the aircraft. Brightness temperature-rain rate relationships compare reasonably well with the aircraft observations in terms of the slope of the relationship. The model calculations are also extended to select high-frequency channels at 220, 340, and 400 GHz to simulate the Millimeter-wave Imaging Radiometer aircraft instrument to be flown in the near future. All three of these frequencies are able to discriminate the convective and anvil portions of the system, providing useful information similar to that from the frequencies below 183 GHz but with potentially enhanced spatial resolution from a satellite platform. In thin clouds, the dominant effect of water vapor is seen at 174, 340, and 400 GHz. In thick cloudy areas, the scattering effect is dominant at 90 and 220 GHz, while the overlaying water vapor can attenuate at 174, 340, and 400 GHz. All frequencies (90-400 GHz) show strong signatures in the core.
Understanding and controlling plasmon-induced convection
NASA Astrophysics Data System (ADS)
Roxworthy, Brian J.; Bhuiya, Abdul M.; Vanka, Surya P.; Toussaint, Kimani C.
2014-01-01
The heat generation and fluid convection induced by plasmonic nanostructures is attractive for optofluidic applications. However, previously published theoretical studies predict only nanometre per second fluid velocities that are inadequate for microscale mass transport. Here we show both theoretically and experimentally that an array of plasmonic nanoantennas coupled to an optically absorptive indium-tin-oxide (ITO) substrate can generate >micrometre per second fluid convection. Crucially, the ITO distributes thermal energy created by the nanoantennas generating an order of magnitude increase in convection velocities compared with nanoantennas on a SiO2 base layer. In addition, the plasmonic array alters absorption in the ITO, causing a deviation from Beer-Lambert absorption that results in an optimum ITO thickness for a given system. This work elucidates the role of convection in plasmonic optical trapping and particle assembly, and opens up new avenues for controlling fluid and mass transport on the micro- and nanoscale.
NASA Technical Reports Server (NTRS)
Spradley, L. W.
1975-01-01
The effects on heated fluids of nonconstant accelerations, rocket vibrations, and spin rates, was studied. A system is discussed which can determine the influence of the convective effects on fluid experiments. The general suitability of sounding rockets for performing these experiments is treated. An analytical investigation of convection in an enclosure which is heated in low gravity is examined. The gravitational body force was taken as a time-varying function using anticipated sounding rocket accelerations, since accelerometer flight data were not available. A computer program was used to calculate the flow rates and heat transfer in fluids with geometries and boundary conditions typical of space processing configurations. Results of the analytical investigation identify the configurations, fluids and boundary values which are most suitable for measuring the convective environment of sounding rockets. A short description of fabricated fluid cells and the convection measurement package is given. Photographs are included.
Enhanced convective dissolution of CO2 in reactive systems
NASA Astrophysics Data System (ADS)
de Wit, Anne; Thomas, Carelle; Loodts, Vanessa; Knaepen, Bernard; Rongy, Laurence
2017-11-01
To decrease the atmospheric concentration of CO2, sequestration techniques whereby this greenhouse gas is injected in saline aquifers present in soils are considered. Upon contact with the aquifer, the CO2 can dissolve in it and subsequently be mineralized via reactions with minerals like carbonates for instance. We investigate both experimentally and theoretically the influence of such reactions on the convective dissolution of CO2. Experiments analyze convective patterns developing when gaseous CO2 is put in contact with aqueous solutions of reactants in a confined vertical Hele-Shaw geometry. We show that the reactions can enhance convection and modify the nonlinear dynamics of density fingering. Numerical simulations further show that reactions can increase the flux of dissolving CO2, inducing a more efficient sequestration. Emphasis will be put on the control of the convective pattern properties by varying the very nature of the chemicals. Implications on the choice of optimal sequestration sites will be discussed.
On the large-scale dynamics of rapidly rotating convection zones. [in solar and stellar interiors
NASA Technical Reports Server (NTRS)
Durney, B. R.
1983-01-01
The fact that the values of the eight basic waves present in turbulent flows in the presence of rotation prohibit a tilt of eddy towards the axis of rotation is incorporated into a formalism for rapidly rotating convection zones. Equations for turbulent velocities are defined in a rotating coordinate system, assuming that gravity and grad delta T act in a radial direction. An expression is derived for the lifetime of a basic wave and then for the average velocity vector. A real convective eddy is formulated and the wave vectors are calculated. The velocity amplitude and the stress tensor amplitude are integrated over the eddy domain. Applied to the solar convective zone, it is found that the convective cells are aligned along the axis of rotation at the poles and at the equator, a model that conflicts with nonrotating mixng length theory predictions.
EXPERIMENTAL EVALUATION OF THE THERMAL PERFORMANCE OF A WATER SHIELD FOR A SURFACE POWER REACTOR
DOE Office of Scientific and Technical Information (OSTI.GOV)
REID, ROBERT S.; PEARSON, J. BOSIE; STEWART, ERIC T.
2007-01-16
Water based reactor shielding is being investigated for use on initial lunar surface power systems. A water shield may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. Natural convection in a 100 kWt lunar surface reactor shield design is evaluated with 2 kW power input to the water in the Water Shield Testbed (WST) at the NASA Marshall Space Flight Center. The experimental data from the WSTmore » is used to validate a CFD model. Performance of the water shield on the lunar surface is then predicted with a CFD model anchored to test data. The experiment had a maximum water temperature of 75 C. The CFD model with 1/6-g predicts a maximum water temperature of 88 C with the same heat load and external boundary conditions. This difference in maximum temperature does not greatly affect the structural design of the shield, and demonstrates that it may be possible to use water for a lunar reactor shield.« less
Three-dimensional flow visualization and vorticity dynamics in revolving wings
NASA Astrophysics Data System (ADS)
Cheng, Bo; Sane, Sanjay P.; Barbera, Giovanni; Troolin, Daniel R.; Strand, Tyson; Deng, Xinyan
2013-01-01
We investigated the three-dimensional vorticity dynamics of the flows generated by revolving wings using a volumetric 3-component velocimetry system. The three-dimensional velocity and vorticity fields were represented with respect to the base axes of rotating Cartesian reference frames, and the second invariant of the velocity gradient was evaluated and used as a criterion to identify two core vortex structures. The first structure was a composite of leading, trailing, and tip-edge vortices attached to the wing edges, whereas the second structure was a strong tip vortex tilted from leading-edge vortices and shed into the wake together with the vorticity generated at the tip edge. Using the fundamental vorticity equation, we evaluated the convection, stretching, and tilting of vorticity in the rotating wing frame to understand the generation and evolution of vorticity. Based on these data, we propose that the vorticity generated at the leading edge is carried away by strong tangential flow into the wake and travels downwards with the induced downwash. The convection by spanwise flow is comparatively negligible. The three-dimensional flow in the wake also exhibits considerable vortex tilting and stretching. Together these data underscore the complex and interconnected vortical structures and dynamics generated by revolving wings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Ji-Young; Hong, Song-You; Sunny Lim, Kyo-Sun
The sensitivity of a cumulus parameterization scheme (CPS) to a representation of precipitation production is examined. To do this, the parameter that determines the fraction of cloud condensate converted to precipitation in the simplified Arakawa–Schubert (SAS) convection scheme is modified following the results from a cloud-resolving simulation. While the original conversion parameter is assumed to be constant, the revised parameter includes a temperature dependency above the freezing level, whichleadstolessproductionoffrozenprecipitating condensate with height. The revised CPS has been evaluated for a heavy rainfall event over Korea as well as medium-range forecasts using the Global/Regional Integrated Model system (GRIMs). The inefficient conversionmore » of cloud condensate to convective precipitation at colder temperatures generally leads to a decrease in pre-cipitation, especially in the category of heavy rainfall. The resultant increase of detrained moisture induces moistening and cooling at the top of clouds. A statistical evaluation of the medium-range forecasts with the revised precipitation conversion parameter shows an overall improvement of the forecast skill in precipitation and large-scale fields, indicating importance of more realistic representation of microphysical processes in CPSs.« less
Impacts of a Fire Smoke Plume on Deep Convective Clouds Observed during DC3
NASA Astrophysics Data System (ADS)
Takeishi, A.; Storelvmo, T.; Zagar, M.
2014-12-01
While the ability of aerosols to act as cloud condensation nuclei (CCN) and ice nuclei (IN) is well recognized, the effects of changing aerosol number concentrations on convective clouds have only been studied extensively in recent years. As deep convective clouds can produce heavy precipitation and may sometimes bring severe damages, especially in the tropics, we need to understand the changes in the convective systems that could stem from aerosol perturbations. By perturbing convective clouds, it has also been proposed that aerosols can affect large-scale climate. According to the convective invigoration mechanism, an increase in the aerosol concentration could lead to a larger amount of rainfall and higher vertical velocities in convective clouds, due to an increase in the latent heat release aloft. With some of the satellite observations supporting this mechanism, it is necessary to understand how sensitive the model simulations actually are to aerosol perturbations. This study uses the Weather Research and Forecasting (WRF) model as a cloud-resolving model to reproduce deep convective clouds observed during the Deep Convective Clouds and Chemistry (DC3) field campaign. The convective cloud of our interest was observed in northeastern Colorado on June 22nd in 2012, with a plume of forest fire smoke flowing into its core. Compared to other convective cells observed in the same area on different days, our aircraft data analysis shows that the convective cloud in question included more organic aerosols and more CCN. These indicate the influence of the biomass burning. We compare the results from simulations with different microphysics schemes and different cloud or ice number concentrations. These sensitivity tests tell us how different the amount and the pattern of precipitation would have been if the aerosol concentration had been higher or lower on that day. Both the sensitivity to aerosol perturbation and the reproducibility of the storm are shown to highly depend on the choice of the microphysics scheme.
ARM Support for the Plains Elevated Convection at Night (AS-PECAN) Field Campaign Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, D. D.; Geerts, B.
The Plains Elevated Convection at Night (PECAN) field campaign was a large multi-agency/multi-institutional experiment that targeted nighttime convection events in the central plains of the United States in order to better understand a range of processes that lead to the initiation and upscale growth of deep convection. Both weather and climate models struggle to properly represent the timing and intensity of precipitation in the central United States in their simulations. These models must be able to represent the interactions between the nocturnal stable boundary layer (SBL), the nocturnal low-level jet (LLJ), and a reservoir of convectively available potential energy (CAPE)more » that frequently exists above the SBL. Furthermore, a large fraction of the nocturnal precipitation is due to the organization of mesoscale convective systems (MCSs). In particular, there were four research foci for the PECAN campaign: •The initiation of elevated nocturnal convection focus seeks to elucidate the mesoscaleenvironmental characteristics and processes that lead to convection initiation (CI) and provide baseline data on the early evolution of mesoscale convective clusters. •The dynamics and internal structure and microphysics of nocturnal MCSs focus will investigatethe transition from surface-based to elevated storm structure, the interaction of cold pools generated by MCSs with the nocturnal stable boundary layer, and how the organization and evolution of elevated convection is influenced by the SBL and the vertical profile of wind and stability above the LLJ. •The bores and wave-like disturbances focus seeks to advance knowledge of the initiation of boredisturbances by convection, how the vertical profile of stability and winds modulate bore structure, the role of these disturbances in the initiation, maintenance, and organization of deep convection, and their impact on the LLJ and SBL. •The LLJ focus seeks to understand the processes that influence the spatial and temporal evolutionof the LLJ, how it affects the SBL, and the interaction between the LLJ and atmospheric boundaries in the development of CI.« less
NASA Astrophysics Data System (ADS)
Stelten, S. A.; Gallus, W. A., Jr.
2015-12-01
A large portion of precipitation seen in the Great Plains region of the United States falls from nocturnal convection. Quite often, nocturnally initiated convection may grow upscale into a Mesoscale Convective System (MCS) that in turn may cause high impact weather events such as severe wind, flooding, and even tornadoes. Thus, correctly predicting nocturnal convective initiation is an integral part of forecasting for the Great Plains. Unfortunately, it is also one of the most challenging aspects of forecasting for this region. Many forecasters familiar with the Great Plains region have noted that elevated nocturnal convective initiation seems to favor a few distinct and rather diverse modes, which pose varying degrees of forecasting difficulties. This study investigates four of these modes, including initiation caused by the interaction of the low level jet and a frontal feature, initiation at the nose of the low level jet without the presence of a frontal feature, linear features ahead of and perpendicular to a forward propagating MCS, and initiation occurring with no discernible large scale forcing mechanism. Improving elevated nocturnal convective initiation forecasts was one of the primary goals of the Plains Elevated Convection At Night (PECAN) field campaign that took place from June 1 to July 15, 2015, which collected a wealth of convective initiation data. To coincide with these data sets, nocturnal convective initiation episodes from the 2015 summer season were classified into each of the aforementioned groups. This allowed for a thorough investigation of the frequency of each type of initiation event, as well as identification of typical characteristics of the atmosphere (forcing mechanisms present, available instability, strength/location of low level jet, etc.) during each event type. Then, using archived model data and the vast data sets collected during the PECAN field campaign, model performance during PECAN for each convective initiation mode was compared to the high quality data sets in order to flesh out why certain convective initiation modes may be more difficult to forecast than others.
Effect of surface radiation on natural convection in an asymmetrically heated channel-chimney system
NASA Astrophysics Data System (ADS)
Nasri, Zied; Derouich, Youssef; Laatar, Ali Hatem; Balti, Jalloul
2018-05-01
In this paper, a more realistic numerical approach that takes into account the effect of surface radiation on the laminar air flow induced by natural convection in a channel-chimney system asymmetrically heated at uniform heat flux is used. The aim is to enrich the results given in Nasri et al. (Int J Therm Sci 90:122-134, 2015) by varying all the geometric parameters of the system and by taking into account the effect of surface radiation on the flows. The numerical results are first validated against experimental and numerical data available in the literature. The computations have allowed the determination of optimal configurations that maximize the mass flow rate and the convective heat transfer and minimize the heated wall temperatures. The analysis of the temperature fields with the streamlines and the pressure fields has helped to explain the effects of surface radiation and of the different thermo-geometrical parameters on the system performances to improve the mass flow rate and the heat transfer with respect to the simple channel. It is shown that the thermal performance of the channel-chimney system in terms of lower heated wall temperatures is little affected by the surface radiation. At the end, simple correlation equations have been proposed for quickly and easily predict the optimal configurations as well as the corresponding enhancement rates of the induced mass flow rate and the convective heat transfer.
Rotating non-Boussinesq Rayleigh-Benard convection
NASA Astrophysics Data System (ADS)
Moroz, Vadim Vladimir
This thesis makes quantitative predictions about the formation and stability of hexagonal and roll patterns in convecting system unbounded in horizontal direction. Starting from the Navier-Stokes, heat and continuity equations, the convection problem is then reduced to normal form equations using equivariant bifurcation theory. The relative stabilities of patterns lying on a hexagonal lattice in Fourier space are then determined using appropriate amplitude equations, with coefficients obtained via asymptotic expansion of the governing partial differential equations, with the conducting state being the base state, and the control parameter and the non-Boussinesq effects being small. The software package Mathematica was used to calculate amplitude coefficients of the appropriate coupled Ginzburg-Landau equations for the rigid-rigid and free-free case. A Galerkin code (initial version of which was written by W. Pesch et al.) is used to determine pattern stability further from onset and for strongly non-Boussinesq fluids. Specific predictions about the stability of hexagon and roll patterns for realistic experimental conditions are made. The dependence of the stability of the convective patterns on the Rayleigh number, planform wavenumber and the rotation rate is studied. Long- and shortwave instabilities, both steady and oscillatory, are identified. For small Prandtl numbers oscillatory sideband instabilities are found already very close to onset. A resonant mode interaction in hexagonal patterns arising in non-Boussinesq Rayleigh-Benard convection is studied using symmetry group methods. The lowest-order coupling terms for interacting patterns are identified. A bifurcation analysis of the resulting system of equations shows that the bifurcation is transcritical. Stability properties of resulting patterns are discussed. It is found that for some fluid properties the traditional hexagon convection solution does not exist. Analytical results are supported by numerical solutions of the convection equations using the Galerkin procedure and a Floquet analysis.
NASA Technical Reports Server (NTRS)
Bune, Andris V.; Gillies, Donald C.; Lehoczky, Sandor L.
1998-01-01
Numerical simulation of the HgCdTe growth by the vertical Bridgman method was performed using FIDAP finite element code. Double-diffusive melt convection is analyzed, as the primary factor at controls inhomogeneity of the solidified material. Temperature and concentration fields in the model are also coupled via material properties, such as thermal and solutal expansion coefficients with the dependence on both temperature and concentration, and melting temperature evaluation from pseudobinary CdTe-HgTe phase diagram. Experimental measurements were used to obtain temperature boundary conditions. Parametric study of the melt convection dependence on the gravity conditions was undertaken. It was found, that the maximum convection velocity in the melt can be reduced under certain conditions. Optimal conditions to obtain a near flat solidified interface are discussed. The predicted interface shape is in agreement with one obtained experimentally by quenching. The results of 3-D calculations are compared with previous 2- D findings. A video film featuring 3-D melt convection will be presented.
NASA Astrophysics Data System (ADS)
Wong, M.; Skamarock, W. C.
2015-12-01
Global numerical weather forecast tests were performed using the global nonhydrostatic atmospheric model, Model for Prediction Across Scales (MPAS), for the NOAA Storm Prediction Center 2015 Spring Forecast Experiment (May 2015) and the Plains Elevated Convection at Night (PECAN) field campaign (June to mid-July 2015). These two sets of forecasts were performed on 50-to-3 km and 15-to-3 km smoothly-varying horizontal meshes, respectively. Both variable-resolution meshes have nominal convection-permitting 3-km grid spacing over the entire continental US. Here we evaluate the limited-area (vs. global) spectra from these NWP simulations. We will show the simulated spectral characteristics of total kinetic energy, vertical velocity variance, and precipitation during these spring and summer periods when diurnal continental convection is most active over central US. Spectral characteristics of a high-resolution global 3-km simulation (essentially no nesting) from the 20 May 2013 Moore, OK tornado case are also shown. These characteristics include spectral scaling, shape, and anisotropy, as well as the effective resolution of continental convection representation in MPAS.
Application of airborne ultrasound in the convective drying of fruits and vegetables: A review.
Fan, Kai; Zhang, Min; Mujumdar, Arun S
2017-11-01
The application of airborne ultrasound is a promising technology in the drying of foods, particularly to fruits and vegetables. In this paper, designs of dryers using ultrasound to combine the convective drying process are described. The main factors affecting the drying kinetics with the ultrasound application are discussed. The results show that the ultrasound application accelerated the drying kinetics. Ultrasound application during the convective drying of fruits and vegetables shorten the drying time. Ultrasound application can produce an increase of the effective moisture diffusivity and the mass transfer coefficient. The influence of ultrasound on physical and chemical parameters evaluating the product quality is reviewed. Ultrasound application can decrease the total color change, reveal a low water activity and reduce the loss of some nutrient elements. Meanwhile, ultrasound application can also better preserve the microstructure of fruits and vegetables in comparison to convective drying. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Putman, William P.
2012-01-01
Using a high-resolution non-hydrostatic version of GEOS-5 with the cubed-sphere finite-volume dynamical core, the impact of spatial and temporal resolution on cloud properties will be evaluated. There are indications from examining convective cluster development in high resolution GEOS-5 forecasts that the temporal resolution within the model may playas significant a role as horizontal resolution. Comparing modeled convective cloud clusters versus satellite observations of brightness temperature, we have found that improved. temporal resolution in GEOS-S accounts for a significant portion of the improvements in the statistical distribution of convective cloud clusters. Using satellite simulators in GEOS-S we will compare the cloud optical properties of GEOS-S at various spatial and temporal resolutions with those observed from MODIS. The potential impact of these results on tropical cyclone formation and intensity will be examined as well.
Planetary-scale circulations in the presence of climatological and wave-induced heating
NASA Technical Reports Server (NTRS)
Salby, Murry L; Garcia, Rolando R.; Hendon, Harry H.
1994-01-01
Interaction between the large-scale circulation and the convective pattern is investigated in a coupled system governed by the linearized primitive equations. Convection is represented in terms of two components of heating: A 'climatological component' is prescribed stochastically to represent convection that is maintained by fixed distributions of land and sea and sea surface temperature (SST). An 'induced component' is defined in terms of the column-integrated moisture flux convergence to represent convection that is produced through feedback with the circulation. Each component describes the envelope organizing mesoscale convective activity. As SST on the equator is increased, induced heating amplifies in the gravest zonal wavenumbers at eastward frequencies, where positive feedback offsets dissipation. Under barotropic stratification, a critical SST of 29.5 C results in positive feedback exactly cancelling dissipation in wavenumber 1 for an eastward phase speed of 6 m/s. Sympathetic interaction between the circulation and the induced heating is the basis for 'frictional wave-Conditional Instability of the Second Kind (CISK)', which is distinguished from classical wave-CISK by rendering the gravest zonal dimensions most unstable. Under baroclinic stratification, the coupled system exhibits similar behavior. The critical SST is only 26.5 C for conditions representative of equinox, but in excess of 30 C for conditions representative of solstice. Having the form of an unsteady Walker circulation, the disturbance produced by frictional wave-CISK compares favorably with the observed life cycle of the Madden-Julian oscillation (MJO). SST above the critical value produces an amplifying disturbance in which enhanced convection coincides with upper-tropospheric westerlies and is positively correlated with temperature and surface convergence. Conversely, SST below the critical value produces a decaying disturbance in which enhanced convection coincides with upper-tropospheric easterlies and is nearly in quadrature with temperature and surface convergence. While sharing essential features with the MJO in the Eastern Hemisphere, frictional wave-CISK does not explain observed behavior in the Western Hemisphere, where the convective signal is largely absent. Comprised of Kelvin structure with the same frequency, observed behavior in the Western Hemisphere can be understood as a propagating response that is excited in and radiates away from the fluctuation of convection in the Eastern Hemisphere.
Determining the inertial states of low Prandtl number fluids using electrochemical cells
NASA Astrophysics Data System (ADS)
Crunkleton, Daniel Wray
The quality of crystals grown from the melt is often deteriorated by the presence of buoyancy-induced convection, produced by temperature or concentration inhomogenities. It is, therefore, important to develop techniques to visualize such flows. In this study, a novel technique is developed that uses solid-state electrochemical cells to establish and measure dissolved oxygen boundary conditions. To visualize convection, a packet of oxygen is electrochemically introduced at a specific location in the melt. As the fluid convects, this oxygen packet follows the flow, acting as a tracer. Electrochemical sensors located along the enclosure then detect the oxygen as it passes. Over sufficiently long times, oxygen diffusion is important; consequently, the oxygen diffusivity in the fluid is measured. This diffusivity is determined using both transient and steady state experiments with tin and tin-lead alloys as model fluids. It is concluded that the presence of convection due to solutal gradients and/or tilt increases the measured diffusivity by one-half to one order of magnitude. The oxygen diffusivity in tin-lead alloys is measured and the results show that the alloy diffusivities are lower than those of the corresponding pure metals. This concentration functionality is explained with a multicomponent diffusion model and shows good agreement. Rayleigh-Benard convection was used to validate the electrochemical approach to flow visualization. Thus, a numerical characterization of the second critical Rayleigh numbers in liquid tin was conducted for a variety of Cartesian aspect ratios. The extremely low Prandtl number of tin represents the lowest value studied numerically. Additionally, flow field oscillations are visualized and the effect of tilt on convecting systems is quantified. Finally, experimental studies of the effect of convection in liquid tin are presented. Three geometries are studied: (1) double cell with vertical concentration gradients; (2) double cell with horizontal concentration gradients; and (3) multiple cell with vertical temperature gradients. The first critical Rayleigh number transition is detected with geometry (1) and it is concluded that current measurements are not as affected by convection as EMF measurements. The system is compared with numerical simulations in geometry (2), and oscillating convection is detected with geometry (3).
NASA Astrophysics Data System (ADS)
Molodtsov, S.; Anis, A.; Marinov, I.; Cabre, A.
2016-12-01
Contemporary changes in the climate system due to anthropogenic activity have already resulted in unprecedented melting rates of the polar ice caps. This in turn may have a significant impact on the thermohaline circulation in the future. The freshening of the surface waters increases stable stratification in regions of deep water formation, eventually triggering a weakening and, ultimately, may bring to a cessation of deep convection in these regions. Here we present comparatively an analysis of the response of deep convective processes in the North Atlantic (NA) and Southern Ocean (SO) to anthropogenic forcing using output from the latest generation of Earth System Models (ESM), part of the CMIP5 intercomparison. Our findings indicate an attenuation of deep convection by the end of the 21st century from ESM simulations under representative concentration pathways (RCP) 8.5 scenario when compared to the years under historical scenario in both NA and SO. The average depth of the mixed layer in the regions studied during March/September, the months with maximum mixed layer depths in the NA/SO, respectively, was found to decrease dramatically by the end of the 21st century. Furthermore, the increase in stratification and decrease in mixed layer depths, resulting in the decay of deep convection, leads to accumulation of excess heat, previously released during the convection events, in the ocean interior in both regions.
NASA Astrophysics Data System (ADS)
Houpert, L.; Durrieu de Madron, X.; Testor, P.; Bosse, A.; D'Ortenzio, F.; Bouin, M. N.; Dausse, D.; Le Goff, H.; Kunesch, S.; Labaste, M.; Coppola, L.; Mortier, L.; Raimbault, P.
2016-11-01
We present here a unique oceanographic and meteorological data set focus on the deep convection processes. Our results are essentially based on in situ data (mooring, research vessel, glider, and profiling float) collected from a multiplatform and integrated monitoring system (MOOSE: Mediterranean Ocean Observing System on Environment), which monitored continuously the northwestern Mediterranean Sea since 2007, and in particular high-frequency potential temperature, salinity, and current measurements from the mooring LION located within the convection region. From 2009 to 2013, the mixed layer depth reaches the seabed, at a depth of 2330m, in February. Then, the violent vertical mixing of the whole water column lasts between 9 and 12 days setting up the characteristics of the newly formed deep water. Each deep convection winter formed a new warmer and saltier "vintage" of deep water. These sudden inputs of salt and heat in the deep ocean are responsible for trends in salinity (3.3 ± 0.2 × 10-3/yr) and potential temperature (3.2 ± 0.5 × 10-3 C/yr) observed from 2009 to 2013 for the 600-2300 m layer. For the first time, the overlapping of the three "phases" of deep convection can be observed, with secondary vertical mixing events (2-4 days) after the beginning of the restratification phase, and the restratification/spreading phase still active at the beginning of the following deep convection event.
A Test of Sensitivity to Convective Transport in a Global Atmospheric CO2 Simulation
NASA Technical Reports Server (NTRS)
Bian, H.; Kawa, S. R.; Chin, M.; Pawson, S.; Zhu, Z.; Rasch, P.; Wu, S.
2006-01-01
Two approximations to convective transport have been implemented in an offline chemistry transport model (CTM) to explore the impact on calculated atmospheric CO2 distributions. GlobalCO2 in the year 2000 is simulated using theCTM driven by assimilated meteorological fields from the NASA s Goddard Earth Observation System Data Assimilation System, Version 4 (GEOS-4). The model simulates atmospheric CO2 by adopting the same CO2 emission inventory and dynamical modules as described in Kawa et al. (convective transport scheme denoted as Conv1). Conv1 approximates the convective transport by using the bulk convective mass fluxes to redistribute trace gases. The alternate approximation, Conv2, partitions fluxes into updraft and downdraft, as well as into entrainment and detrainment, and has potential to yield a more realistic simulation of vertical redistribution through deep convection. Replacing Conv1 by Conv2 results in an overestimate of CO2 over biospheric sink regions. The largest discrepancies result in a CO2 difference of about 7.8 ppm in the July NH boreal forest, which is about 30% of the CO2 seasonality for that area. These differences are compared to those produced by emission scenario variations constrained by the framework of Intergovernmental Panel on Climate Change (IPCC) to account for possible land use change and residual terrestrial CO2 sink. It is shown that the overestimated CO2 driven by Conv2 can be offset by introducing these supplemental emissions.
NASA Technical Reports Server (NTRS)
Kiefer, Walter S.; Jones, John H.
2015-01-01
There is compelling isotopic and crater density evidence for geologically recent volcanism on Mars, in the last 100-200 million years and possibly in the last 50 million years. This volcanism is due to adiabatic decompression melting and thus requires some type of present-day convective upwelling in the martian mantle. On the other hand, martian meteorites preserve evidence for at least 3 distinct radiogenic isotopic reservoirs. Anomalies in short-lived isotopic systems (Sm-146, Nd-142, Hf-182, W-182) require that these reservoirs must have developed in the first 50 to 100 million years of Solar System history. The long-term preservation of chemically distinct reservoirs has sometimes been interpreted as evidence for the absence of mantle convection and convective mixing on Mars for most of martian history, a conclusion which is at odds with the evidence for young volcanism. This apparent paradox can be resolved by recognizing that a variety of processes, including both inefficient mantle mixing and geographic separation of isotopic reservoirs, may preserve isotopic heterogeneity on Mars in an actively convecting mantle. Here, we focus on the formation and preservation of the depleted and enriched isotopic and trace element reservoirs in the shergottites. In particular, we explore the possible roles of processes such as chemical diffusion and metasomatism in dikes and magma chambers for creating the isotopically enriched shergottites. We also consider processes that may preserve the enriched reservoir against convective mixing for most of martian history.
NASA Astrophysics Data System (ADS)
Di Girolamo, P.; Summa, D.; Stelitano, D.
2012-04-01
This paper illustrates an approach to determine the convective available potential energy (CAPE) and the convective inhibition (CIN) based on the use of data from a Raman lidar system. The use of Raman lidar data allows to provide high temporal resolution (5 min) measurements of CAPE and CIN and follow their evolution over extended time period covering the full cycle of convective activity. Lidar-based measurements of CAPE and CIN are obtained from Raman lidar measurements of the temperature profile and the surface measurements of temperature, pressure and dew point temperature provided from a surface weather station. The approach is tested and applied to the data collected by the Raman lidar system BASIL, which was operational in Achern (Black Forest, Lat: 48.64 ° N, Long: 8.06 ° E, Elev.: 140 m) in the period 01 June - 31 August 2007 in the frame of the Convective and Orographically-induced Precipitation Study (COPS), held in Southern Germany and Eastern France. Reported measurements are found to be in good agreement with simultaneous measurements obtained from the radiosondes launched in Achern and with estimates from different mesoscale models. An estimate of the different random error sources affecting the measurements of CAPE and CIN has also been performed, together with a detail sensitivity study to quantify the different systematic error sources. Preliminary results from this study will be illustrated and discussed at the Conference.
Mantle convection pattern and subcrustal stress field under South America
NASA Technical Reports Server (NTRS)
Liu, H.-S.
1980-01-01
The tectonic, igneous and metallogenic features of South America are discussed in terms of the crustal deformation associated with stresses due to mantle convection as inferred from the high degree harmonics in the geopotential field. The application of Runcorn's model for the laminar viscous flows in the upper mantle to satellite and gravity data results in a convection pattern which reveals the ascending flows between the descending Nazca plate and the overlying South American plate as well as segments of the descending Nazca plate beneath South America. The arc volcanism in South America is shown apparently to be related to the upwelling of high-temperature material induced by the subduction of the Nazca plate, with the South American basin systems associated with downwelling mantle flows. The resulting tensional stress fields are shown to be regions of structural kinship characterized by major concentrations of ore deposits and related to the cordillera, shield and igneous systems and the upward Andean movements. It is suggested that the upwelling convection flows in the upper mantle, coupled with crustal tension, have provided an uplift mechanism which has forced the hydrothermal systems in the basement rocks to the surface.
NASA Astrophysics Data System (ADS)
Uma, K. N.; Krishna Moorthy, K.; Sijikumar, S.; Renju, R.; Tinu, K. A.; Raju, Suresh C.
2012-07-01
Meso-scale Convective Systems (MCS) are important in view of their large cumulous build-up, vertical extent, short horizontal extent and associated thundershowers. The Microwave Radiometer Profiler (MRP) over the equatorial coastal station Thiruvanathapuram (Trivandrum, 8.55oN, 76.9oE), has been utilized to understand the genesis of Mesoscale convective system (MCS), that occur frequently during the pre-monsoon season. Examination of the measurement of relative humidity, temperature and cloud liquid water measurements, over the zenith and two scanning elevation angles (15o) viewing both over the land and the sea respectively revealed that the MCS generally originate over the land during early afternoon hours, propagate seawards over the observational site and finally dissipate over the sea, with accompanying rainfall and latent heat release. The simulations obtained using Advanced Research-Weather Research and Forecast (WRF-ARW) model effectively reproduces the thermodynamical and microphysical properties of the MCS. The time duration and quantity of rainfall obtained by the simulations also well compared with the observations. Analysis also suggests that wind shear in the upper troposphere is responsible for the growth and the shape of the convective cloud.
Active cooling from the sixties to NASP
NASA Technical Reports Server (NTRS)
Kelly, H. Neale; Blosser, Max L.
1992-01-01
Vehicles, such as the X-15 or National Aero-Space Plane, traveling at hypersonic speeds through the earth's atmosphere experience aerodynamic heating. The heating can be severe enough that a thermal protection system is required to limit the temperature of the vehicle structure. Although several categories of thermal protection systems are mentioned briefly, the majority of this paper describes convectively cooled structures for large areas. Convective cooling is a method of limiting structural temperatures by circulating a coolant through the vehicle structure. Efforts to develop convectively cooled structures during the past 30 years--from early engine structures, which were intended to be tested on the X-15, to structural--are described. Many of the lessons learned from these research efforts are presented.
On the role of convective motion during dendrite growth: Experiments under variable gravity, revised
NASA Technical Reports Server (NTRS)
Hallett, J.; Cho, N.; Harrison, K.; Lord, A.; Wedum, E.; Purcell, R.; Saunders, C. P. R.
1987-01-01
Experiments show the effect of self induced convection on individual dendrite growth in uniformly supercooled samples and solidification of the resulting mush under conditions of high and low g. Convection is visualized by a Schlieren optical system or a Mach Zender interferometer. For ice crystals growing from the vapor in air, a slight reduction in linear growth rate occur under low g. For ice crystals growing from NaCl solution, dendrite tip velocities are unchanged, but subsequent mush solidification is enhanced through drainage channels under higher g. By contrast, sodium sulfate decahydrate dendrites growing from solution produce convective plumes which lead to higher tip growth rate only as the crystal growth direction approaches that of gravity. Convective plumes are laminar for small crystals under conditions of these experiments; the rise velocity of such plumes is greater than individual vortex rings under identical conditions. Convection effects are only present in solution under a critical supercooling less than about 5 C for sodium sulfate and 2 C for ice in NaCl since at higher supercooling the crystallization velocity, proportional to the square of the supercooling, exceeds the convective velocity, proportional to the square root of the supercooling. The role of convective velocity in bulk solidification is to give a large scale flow which under extreme cases may lead to extensive secondary crystal production, which alters the resulting crystal texture of the completely solidified melt.
Observations of Overshooting Convective Tops and Dynamical Implications
NASA Technical Reports Server (NTRS)
Heymsfield, Gerald M.; Halverson, Jeffrey; Fitzgerald, Mike; Dominquez, Rose; Starr, David OC. (Technical Monitor)
2002-01-01
Convective tops overshooting the tropopause have been suggested in the literature to play an important role in modifying the tropical tropopause. The structure of thunderstorm tops overshooting the tropopause have been difficult to measure due to the intensity of the convection and aircraft safety. This paper presents remote observations of overshooting convective tops with the high-altitude ER-2 aircraft during several of the Tropical Rain Measuring Mission (TRMM) and (Convection and Moisture Experiment) CAMEX campaigns. The ER-2 was instrumented with the down-looking ER-2 Doppler Radar (EDOP), a new dropsonde system (ER-2 High Altitude Dropsonde, EHAD), and an IR radiometer (Modis Airborne Simulator, MAS). Measurements were collected in Florida and Amazonia (Brazil). In this study, we utilize the radar cloud top information and cloud top infrared temperatures to document the amount of overshoot and temperature difference relative to the soundings provided by dropsondes and conventional upsondes. The radar measurements provide the details of the updraft structure near cloud top, and it is found that tops of stronger convective cells can overshoot by 1-2 km and with temperatures 5C colder than the tropopause minimum temperature. The negatively buoyant cloud tops are also evidenced in the Doppler measurements by strong subsiding flow along the sides of the convective tops . These findings support some of the conceptual and modeling studies of deep convection penetrating the tropopause.
On the relationships between sprite production and convective evolution
NASA Astrophysics Data System (ADS)
Lang, T. J.
2017-12-01
Sprites can occur in the upper atmosphere when powerful lightning creates a large charge moment change (CMC) within a thunderstorm. A growing body of research supports the inference that sprite production and convective vigor are inversely related in mature storms. In the most typical scenario, long-lived organized convection first creates an adjacent region of stratiform precipitation filled with horizontally broad layers of charge. Once the main convective region enters a weakening phase, spatially larger lightning flashes become more prevalent, and these are subsequently more likely to tap the stratiform charge. This makes the occurrence of large-CMC cloud-to-ground (CG) lightning and thus sprites more likely. This process is stochastic, however. For instance, ionospheric conditions are themselves variable and can influence the likelihood of sprites. In addition, convective morphology and microphysical/electrical structure can modulate lightning characteristics, including the frequency and location of CG occurrence, flash polarity, the amount of continuing current, the altitudes of charge layers tapped, etc. This can lead to a broad variety of sprite-producing storms, including anomalously charged convection (i.e., dominant positive charge near -20 Celsius rather than the more typical negative), abnormally small convective systems producing sprites, wintertime sprites, and other interesting examples. A review of past and present research into these and other relationships between sprites and convection will be presented, and future opportunities to study these relationships (including from spaceborne platforms) will be highlighted.
Scaling of convective dissolution in porous media
NASA Astrophysics Data System (ADS)
Hidalgo, Juan J.; Cueto-Felgueroso, Luis; Fe, Jaime; Juanes, Ruben
2012-11-01
Convective mixing in porous media results from the density increase in an ambient fluid as a substance (a solute or another fluid) dissolves into it., which leads to a Rayleigh-Bènard-type instability. The canonical model of convective mixing in porous media, which exhibits a dissolution flux that is constant during the time period before the convective fingers reach the bottom of the aquifer, is not described by the Rayleigh number Ra [Hidalgo & Carrera (2009), J. Fluid Mech.; Slim & Ramakrishnan (2010), Phys. Fluids]. That suggests that dissolution fluxes should not depend on Ra. However, this appears to be in contradiction with recent experimental results using an analogue-fluid system characterized by a non-monotonic density-concentration curve, which naturally undergoes convection [Neufeld et al. (2010), Geophys. Res. Lett.; Backhaus, Turitsyn & Ecke (2011), Phys. Rev. Lett.]. Here we study the scaling of dissolution fluxes by means of the variance of concentration and the scalar dissipation rate. The fundamental relations among these three quantities allow us to study the canonical and analogue-fluid systems with high-resolution numerical simulations, and to demonstrate that both the canonical and analogue-fluid systems exhibit a dissolution flux that is constant and independent of Ra. Our findings point to the need for alternative explanations of recent nonlinear scalings of the Nusselt number observed experimentally. JJH acknowledges the support from the FP7 Marie Curie Actions of the European Commission, via the CO2-MATE project (PIOF-GA-2009-253678).
Electric Motor Thermal Management R&D. Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennion, Kevin
With the push to reduce component volumes, lower costs, and reduce weight without sacrificing performance or reliability, the challenges associated with thermal management increase for power electronics and electric motors. Thermal management for electric motors will become more important as the automotive industry continues the transition to more electrically dominant vehicle propulsion systems. The transition to more electrically dominant propulsion systems leads to higher-power duty cycles for electric drive systems. Thermal constraints place significant limitations on how electric motors ultimately perform, and as thermal management improves, there will be a direct trade-off between motor performance, efficiency, cost, and the sizingmore » of electric motors to operate within the thermal constraints. The goal of this research project is to support broad industry demand for data, analysis methods, and experimental techniques to improve and better understand motor thermal management. Work in FY15 focused on two areas related to motor thermal management: passive thermal performance and active convective cooling. Passive thermal performance emphasized the thermal impact of materials and thermal interfaces among materials within an assembled motor. The research tasks supported the publication of test methods and data for thermal contact resistances and direction-dependent thermal conductivity within an electric motor. Active convective cooling focused on measuring convective heat-transfer coefficients using automatic transmission fluid (ATF). Data for average convective heat transfer coefficients for direct impingement of ATF jets was published. Also, experimental hardware for mapping local-scale and stator-scale convective heat transfer coefficients for ATF jet impingement were developed.« less
NASA Astrophysics Data System (ADS)
Nehrir, A. R.; Ferrare, R. A.; Kooi, S. A.; Butler, C. F.; Notari, A.; Hair, J. W.; Collins, J. E., Jr.; Ismail, S.
2015-12-01
The Lidar Atmospheric Sensing Experiment (LASE) system was deployed on the NASA DC-8 aircraft during the Plains Elevated Convection At Night (PECAN) field experiment, which was conducted during June-July 2015 over the central and southern plains. LASE is an active remote sensor that employs the differential absorption lidar (DIAL) technique to measure range resolved profiles of water vapor and aerosols above and below the aircraft. The DC-8 conducted nine local science flights from June 30- July 14 where LASE sampled water vapor and aerosol fields in support of the PECAN primary science objectives relating to better understanding nocturnal Mesoscale Convective Systems (MCSs), Convective Initiation (CI), the Low Level Jet (LLJ), bores, and to compare different airborne and ground based measurements. LASE observed large spatial and temporal variability in water vapor and aerosol distributions in advance of nocturnal MCSs, across bores resulting from MCS outflow boundaries, and across the LLJ associated with the development of MCSs and CI. An overview of the LASE data collected during the PECAN field experiment will be presented where emphasis will be placed on variability of water vapor profiles in the vicinity of severe storms and intense convection in the central and southern plains. Preliminary comparisons show good agreement between coincident LASE and radiosonde water vapor profiles. In addition, an advanced water vapor DIAL system being developed at NASA Langley will be discussed.
NASA Astrophysics Data System (ADS)
Lange, Heiner; Craig, George
2014-05-01
This study uses the Local Ensemble Transform Kalman Filter (LETKF) to perform storm-scale Data Assimilation of simulated Doppler radar observations into the non-hydrostatic, convection-permitting COSMO model. In perfect model experiments (OSSEs), it is investigated how the limited predictability of convective storms affects precipitation forecasts. The study compares a fine analysis scheme with small RMS errors to a coarse scheme that allows for errors in position, shape and occurrence of storms in the ensemble. The coarse scheme uses superobservations, a coarser grid for analysis weights, a larger localization radius and larger observation error that allow a broadening of the Gaussian error statistics. Three hour forecasts of convective systems (with typical lifetimes exceeding 6 hours) from the detailed analyses of the fine scheme are found to be advantageous to those of the coarse scheme during the first 1-2 hours, with respect to the predicted storm positions. After 3 hours in the convective regime used here, the forecast quality of the two schemes appears indiscernible, judging by RMSE and verification methods for rain-fields and objects. It is concluded that, for operational assimilation systems, the analysis scheme might not necessarily need to be detailed to the grid scale of the model. Depending on the forecast lead time, and on the presence of orographic or synoptic forcing that enhance the predictability of storm occurrences, analyses from a coarser scheme might suffice.
Air Force Flight Feeding. Volume 1. Evaluation of Current System and Alternative Concepts
1989-07-01
3. How does ’show time’ (the time between actual pickup of meals and aircraft departure), affect flight kitchen food processing ? 4. What is the...inflexible meal heating process offered through use of convection ovens to reheat the frozen meals. Through discussions with active duty person- nel it...Fruit Punch Iced Tea, Hot Tea Milk Coffee Water Diet, Decaffeinated Drinks % of Responses 39.9 38.3 28.5 23.3 23.0 21.5 13.3 5.0 -59
NASA Technical Reports Server (NTRS)
Lydon, Thomas J.; Fox, Peter A.; Sofia, Sabatino
1993-01-01
We have constructed a series of models of Alpha Centauri A and Alpha Centauri B for the purposes of testing the effects of convection modeling both by means of the mixing-length theory (MLT), and by means of parameterization of energy fluxes based upon numerical simulations of turbulent compressible convection. We demonstrate that while MLT, through its adjustable parameter alpha, can be used to match any given values of luminosities and radii, our treatment of convection, which lacks any adjustable parameters, makes specific predictions of stellar radii. Since the predicted radii of the Alpha Centauri system fall within the errors of the observed radii, our treatment of convection is applicable to other stars in the H-R diagram in addition to the sun. A second set of models is constructed using MLT, adjusting alpha to yield not the 'measured' radii but, instead, the radii predictions of our revised treatment of convection. We conclude by assessing the appropriateness of using a single value of alpha to model a wide variety of stars.
Influence of convection on free growth of dendrite crystals from solution
NASA Technical Reports Server (NTRS)
Hallett, J.; Wedum, E.
1979-01-01
The free growth of dendrites in a uniformly supercooled solution was examined using cine photography with a Schlieren optical system. Crystals were grown in the bulk of the solution from a centrally located capillary tube, nucleated at the interface with a liquid nitrogen cooled wire. Crystals propagated along the tube, the slower growing orientations eliminated, and emerged at the tip, usually growing parallel to the tube direction. For both sodium sulfate decahydrate from its solution and ice from sodium chloride solution, growth rate and fineness of dendrites increased with supercooling. In sodium sulfate, upward convection of the less dense depleted solution occurs; downward convection was observed for the rejected, more concentrated sodium chloride solution. In both cases, there was a spatial and temporal delay in the release of the convective plume from the moving dendrite tip. The role of this convection on the growth characteristics and the production of secondary crystals is examined. A proposed low-g experiment to examine differences in growth rate, crystal texture, and secondary nucleation in a reduced convective regime where molecular diffusion is the dominant transfer process is discussed.
NASA Astrophysics Data System (ADS)
Jensen, M. P.; Petersen, W. A.; Giangrande, S.; Heymsfield, G. M.; Kollias, P.; Rutledge, S. A.; Schwaller, M.; Zipser, E. J.
2011-12-01
The Midlatitude Continental Convective Clouds Experiment (MC3E) took place from 22 April through 6 June 2011 centered at the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Southern Great Plains Central Facility in north-central Oklahoma. This campaign was a joint effort between the ARM and the National Aeronautics and Space Administration's (NASA) Global Precipitation Measurement mission Ground Validation program. It was the first major field campaign to take advantage of numerous new radars and other remote sensing instrumentation purchased through the American Recovery and Reinvestment Act of 2009. The measurement strategy for this field campaign was to provide a well-defined forcing dataset for modeling efforts coupled with detailed observations of cloud/precipitation dynamics and microphysics within the domain highlighted by advanced multi-scale, multi-frequency radar remote sensing. These observations are aimed at providing important insights into eight different components of convective simulation and microphysical parameterization: (1) pre-convective environment, (2) convective initiation, (3) updraft/downdraft dynamics, (4) condensate transport/detrainment/entrainment, (5) precipitation and cloud microphysics, (6) influence on the environment, (7) influence on radiation, and (8) large-scale forcing. In order to obtain the necessary dataset, the MC3E surface-based observational network included six radiosonde launch sites each launching 4-8 sondes per day, three X-band scanning ARM precipitation radars, a C-band scanning ARM precipitation radar, the NASA N-Pol (S-band) scanning radar, the NASA D3R Ka/Ku-band radar, the Ka/W-band scanning ARM cloud radar, vertically pointing radar systems at Ka-, S- and UHF band, a network of over 20 disdrometers and rain gauges and the full complement of radiation, cloud and atmospheric state observations available at the ARM facility. This surface-based network was complemented by aircraft measurements by the NASA ER-2 high altitude aircraft which included a radar system (Ka/Ku band) and multiple passive microwave radiometers (10-183 GHz) and the University of North Dakota Citation which included a full suite of in situ microphysics instruments. The campaign was successful in providing observations over a wide variety of convective cloud types, from shallow non-precipitating cloud fields to shallow-to-deep transitions to mature deep convective systems some of which included severe weather. We will present an overview of the convective cloud conditions that were observed, the status MC3E datastreams and a summary of some of the preliminary results.
NASA Astrophysics Data System (ADS)
Sasaki, Youhei; Takehiro, Shin-ichi; Ishiwatari, Masaki; Yamada, Michio
2018-03-01
Linear stability analysis of anelastic thermal convection in a rotating spherical shell with entropy diffusivities varying in the radial direction is performed. The structures of critical convection are obtained in the cases of four different radial distributions of entropy diffusivity; (1) κ is constant, (2) κT0 is constant, (3) κρ0 is constant, and (4) κρ0T0 is constant, where κ is the entropy diffusivity, T0 is the temperature of basic state, and ρ0 is the density of basic state, respectively. The ratio of inner and outer radii, the Prandtl number, the polytropic index, and the density ratio are 0.35, 1, 2, and 5, respectively. The value of the Ekman number is 10-3 or 10-5 . In the case of (1), where the setup is same as that of the anelastic dynamo benchmark (Jones et al., 2011), the structure of critical convection is concentrated near the outer boundary of the spherical shell around the equator. However, in the cases of (2), (3) and (4), the convection columns attach the inner boundary of the spherical shell. A rapidly rotating annulus model for anelastic systems is developed by assuming that convection structure is uniform in the axial direction taking into account the strong effect of Coriolis force. The annulus model well explains the characteristics of critical convection obtained numerically, such as critical azimuthal wavenumber, frequency, Rayleigh number, and the cylindrically radial location of convection columns. The radial distribution of entropy diffusivity, or more generally, diffusion properties in the entropy equation, is important for convection structure, because it determines the distribution of radial basic entropy gradient which is crucial for location of convection columns.