Science.gov

Sample records for convectively stabilised background

  1. Stabilised dG-FEM for incompressible natural convection flows with boundary and moving interior layers on non-adapted meshes

    NASA Astrophysics Data System (ADS)

    Schroeder, Philipp W.; Lube, Gert

    2017-04-01

    This paper presents heavily grad-div and pressure jump stabilised, equal- and mixed-order discontinuous Galerkin finite element methods for non-isothermal incompressible flows based on the Oberbeck-Boussinesq approximation. In this framework, the enthalpy-porosity model for multiphase flow in melting and solidification problems can be employed. By considering the differentially heated cavity and the melting of pure gallium in a rectangular enclosure, it is shown that both boundary layers and sharp moving interior layers can be handled naturally by the proposed class of non-conforming methods. Due to the stabilising effect of the grad-div term and the robustness of discontinuous Galerkin methods, it is possible to solve the underlying problems accurately on coarse, non-adapted meshes. The interaction of heavy grad-div stabilisation and discontinuous Galerkin methods significantly improves the mass conservation properties and the overall accuracy of the numerical scheme which is observed for the first time. Hence, it is inferred that stabilised discontinuous Galerkin methods are highly robust as well as computationally efficient numerical methods to deal with natural convection problems arising in incompressible computational thermo-fluid dynamics.

  2. Background error covariance modelling for convective-scale variational data assimilation

    NASA Astrophysics Data System (ADS)

    Petrie, R. E.

    An essential component in data assimilation is the background error covariance matrix (B). This matrix regularizes the ill-posed data assimilation problem, describes the confidence of the background state and spreads information. Since the B-matrix is too large to represent explicitly it must be modelled. In variational data assimilation it is essentially a climatological approximation of the true covariances. Such a conventional covariance model additionally relies on the imposition of balance conditions. A toy model which is derived from the Euler equations (by making appropriate simplifications and introducing tuneable parameters) is used as a convective-scale system to investigate these issues. Its behaviour is shown to exhibit large-scale geostrophic and hydrostatic balance while permitting small-scale imbalance. A control variable transform (CVT) approach to modelling the B-matrix where the control variables are taken to be the normal modes (NM) of the linearized model is investigated. This approach is attractive for convective-scale covariance modelling as it allows for unbalanced as well as appropriately balanced relationships. Although the NM-CVT is not applied to a data assimilation problem directly, it is shown to be a viable approach to convective-scale covariance modelling. A new mathematically rigorous method to incorporate flow-dependent error covariances with the otherwise static B-matrix estimate is also proposed. This is an extension to the reduced rank Kalman filter (RRKF) where its Hessian singular vector calculation is replaced by an ensemble estimate of the covariances, and is known as the ensemble RRKF (EnRRKF). Ultimately it is hoped that together the NM-CVT and the EnRRKF would improve the predictability of small-scale features in convective-scale weather forecasting through the relaxation of inappropriate balance and the inclusion of flow-dependent covariances.

  3. Background Noises Versus Intraseasonal Variation Signals: Small vs. Large Convective Cloud Objects From CERES Aqua Observations

    NASA Technical Reports Server (NTRS)

    Xu, Kuan-Man

    2015-01-01

    During inactive phases of Madden-Julian Oscillation (MJO), there are plenty of deep but small convective systems and far fewer deep and large ones. During active phases of MJO, a manifestation of an increase in the occurrence of large and deep cloud clusters results from an amplification of large-scale motions by stronger convective heating. This study is designed to quantitatively examine the roles of small and large cloud clusters during the MJO life cycle. We analyze the cloud object data from Aqua CERES (Clouds and the Earth's Radiant Energy System) observations between July 2006 and June 2010 for tropical deep convective (DC) and cirrostratus (CS) cloud object types according to the real-time multivariate MJO index, which assigns the tropics to one of the eight MJO phases each day. The cloud object is a contiguous region of the earth with a single dominant cloud-system type. The criteria for defining these cloud types are overcast footprints and cloud top pressures less than 400 hPa, but DC has higher cloud optical depths (=10) than those of CS (<10). The size distributions, defined as the footprint numbers as a function of cloud object diameters, for particular MJO phases depart greatly from the combined (8-phase) distribution at large cloud-object diameters due to the reduced/increased numbers of cloud objects related to changes in the large-scale environments. The medium diameter corresponding to the combined distribution is determined and used to partition all cloud objects into "small" and "large" groups of a particular phase. The two groups corresponding to the combined distribution have nearly equal numbers of footprints. The medium diameters are 502 km for DC and 310 km for cirrostratus. The range of the variation between two extreme phases (typically, the most active and depressed phases) for the small group is 6-11% in terms of the numbers of cloud objects and the total footprint numbers. The corresponding range for the large group is 19-44%. In

  4. Ozone tendencies in the free troposphere: A comparison of net ozone production for background conditions and convectively processed air in the tropics and extratropics

    NASA Astrophysics Data System (ADS)

    Bozem, H.

    2009-04-01

    Ozone is an important oxidant and a greenhouse gas. While the highest mixing ratios are found in the stratosphere, significant changes of ozone at tropopause levels can have significant climate effects. Furthermore ozone is the main precursor of the hydroxyl radical OH, thus strongly affecting the oxidation power of the atmosphere. Convective transport of ozone and its precursors between low altitudes near the surface and the middle and upper troposphere influences ozone in the tropopause region. Data from the airborne measurement campaigns, GABRIEL 2005 (Suriname, South America) and HOOVER 2006 and 2007 (Europe) are presented. We investigate the ozone budget in the free troposphere in cases of deep convection and in background conditions. Steady state model calculations, based on in-situ measurements of O3, NO, OH, HO2 and actinic radiation are used to calculate the net O3 tendency for background and convectively processed air. In the extratropics the net ozone production rate (OPR) in convective outflow amounts to 1.85 ppbv/h (Range: 0.26 to 8.21 ppbv/h, depending on the mixing ratio of NO and HO2), while the background atmosphere shows no clear tendency. In the tropics an OPR of 0.23 ppbv/h (0.01 to 1.13 ppbv/h) in the outflow and 0.08 ppbv/h (-0.01 to 0.47 ppbv/h) for the background atmosphere was calculated. Convective outflow in both regimes is able to produce ozone in high amounts. For background conditions no clear tendency for the extratropics compared to the tropics is found.

  5. Cyclodextrin stabilised emulsions and cyclodextrinosomes.

    PubMed

    Mathapa, Baghali G; Paunov, Vesselin N

    2013-11-07

    We report the preparation of o/w emulsions stabilised by microcrystals of cyclodextrin-oil inclusion complexes. The inclusion complexes are formed by threading cyclodextrins from the aqueous phase on n-tetradecane or silicone oil molecules from the emulsion drop surface which grow further into microrods and microplatelets depending on the type of cyclodextrin (CD) used. These microcrystals remain attached on the surface of the emulsion drops and form densely packed layers which resemble Pickering emulsions. The novelty of this emulsion stabilisation mechanism is that molecularly dissolved cyclodextrin from the continuous aqueous phase is assembled into colloid particles directly onto the emulsion drop surface, i.e. molecular adsorption leads to effective Pickering stabilisation. The β-CD stabilised tetradecane-in-water emulsions were so stable that we used this system as a template for preparation of cyclodextrinosomes. These structures were produced solely through formation of cyclodextrin-oil inclusion complexes and their assembly into a crystalline phase on the drop surface retained its stability after the removal of the core oil. The structures of CD-stabilised tetradecane-in-water emulsions were characterised using optical microscopy, fluorescence microscopy, cross-polarised light microscopy and WETSEM while the cyclodextrinosomes were characterised by SEM. We also report the preparation of CD-stabilised emulsions with a range of other oils, including tricaprylin, silicone oil, isopropyl myristate and sunflower oil. We studied the effect of the salt concentration in the aqueous phase, the type of CD and the oil volume fraction on the type of emulsion formed. The CD-stabilised emulsions can be applied in a range of surfactant-free formulations with possible applications in cosmetics, home and personal care. Cyclodextrinosomes could find applications in pharmaceutical formulations as microencapsulation and drug delivery vehicles.

  6. Spatial Variability of the Background Diurnal Cycle of Deep Convection around the GoAmazon2014/5 Field Campaign Sites

    SciTech Connect

    Burleyson, Casey D.; Feng, Zhe; Hagos, Samson M.; Fast, Jerome; Machado, Luiz A. T.; Martin, Scot T.

    2016-07-01

    The Amazon rainforest is one of a few regions of the world where continental tropical deep convection occurs. The Amazon’s isolation makes it challenging to observe, but also creates a unique natural laboratory to study anthropogenic impacts on clouds and precipitation in an otherwise pristine environment. Extensive measurements were made upwind and downwind of the large city of Manaus, Brazil during the Observations and Modeling of the Green Ocean Amazon 2014-2015 (GoAmazon2014/5) field campaign. In this study, 15 years of high-resolution satellite data are analyzed to examine the spatial and diurnal variability of convection occurring around the GoAmazon2014/5 sites. Interpretation of anthropogenic differences between the upwind (T0) and downwind (T1-T3) sites is complicated by naturally-occurring spatial variability between the sites. During the rainy season, the inland propagation of the previous day’s sea-breeze front happens to be in phase with the background diurnal cycle near Manaus, but is out of phase elsewhere. Enhanced convergence between the river-breezes and the easterly trade winds generates up to 10% more frequent deep convection at the GoAmazon2014/5 sites east of the river (T0a, T0t/k, and T1) compared to the T3 site which was located near the western bank. In general, the annual and diurnal cycles during 2014 were representative of the 2000-2013 distributions. The only exceptions were in March when the monthly mean rainrate was above the 95th percentile and September when both rain frequency and intensity were suppressed. The natural spatial variability must be accounted for before interpreting anthropogenically-induced differences among the GoAmazon2014/5 sites.

  7. Mesoscale Convective Vortices in Multiscale, Idealized Simulations: Dependence on Background State, Interdependency with Moist Baroclinic Cyclones, and Comparison with BAMEX Observations

    DTIC Science & Technology

    2010-04-01

    The most rapid potential vorticity ( PV ) development occurred in and just behind the leading convective line. The entire system grew upscale with time...as the newly created PV rotated cyclonically around a common center as the leading convective line continued to expand outward. Ten hours after the...Using potential vorticity ( PV ) concepts, the intensification can be explained by the vertical gra- dient of diabatic heating within the convective system

  8. Global asymptotic stabilisation for switched planar systems

    NASA Astrophysics Data System (ADS)

    Zhang, Junfeng; Han, Zhengzhi; Huang, Jun

    2015-04-01

    This paper studies the stabilisation problem of a class of switched planar systems. The present method is different from the existing one designing directly controllers for the underlying systems. The controllers are constructed through two steps. Firstly, by means of the backstepping approach, homogeneous controllers stabilising the nominal systems are obtained. Secondly, the controllers stabilising the planar subsystems are attained by modifying the obtained homogeneous controllers. The controllers depend on perturbations of the switched systems. Finally, by using the multiple Lyapunov functions approach, a sufficient condition of the stabilisation for switched planar systems is given. The conclusions are extended to multiple dimensional switched systems. An illustrative example verifies the validity of the design.

  9. Mycorrhizal aspects in slope stabilisation

    NASA Astrophysics Data System (ADS)

    Graf, Frank

    2016-04-01

    In order to re-colonise and stabilise slopes affected by superficial soil failure with plants essential requirements have to be met: the plants must grow the plants must survive sustainably plant succession must start and continuously develop These requirements, however, are anything but easy given, particularly under the often hostile environmental conditions dominating on bare and steep slopes. Mycorrhizal fungi, the symbiotic partners of almost all plants used in eco-engineering, are said to improve the plants' ability to overcome periods governed by strongly (growth) limiting factors. Subsequently, results of investigations are presented of mycorrhizal effects on different plant and soil functions related to eco-engineering in general and soil and slope stabilisation in particular. Generally, inoculation yielded higher biomass of the host plants above as well as below ground. Furthermore, the survival rate was higher for mycorrhized compared to non-mycorrhized plants, particularly under extreme environmental conditions. However, the scale of the mycorrhizal impact may be species specific of both the plant host as well as the fungal partner(s) and often becomes evident only after a certain time lag. Depending on the plant-fungus combination the root length per soil volume was found to be between 0 and 2.5 times higher for inoculated compared to non-inoculated specimens. On an alpine graded ski slope the survival of inoculated compared to non-treated Salix herbacea cuttings was significant after one vegetation period only for one of the three added mycorrhizal fungus species. However, after three years all of the inoculated plantlets performed significantly better than the non-inoculated controls. The analysis of the potential for producing and stabilising soil aggregates of five different ectomycorrhizal fungi showed high variation and, for the species Inocybe lacera, no significant difference compared to untreated soil. Furthermore, inoculation of Salix

  10. Assessment: Monitoring & Evaluation in a Stabilisation Context

    DTIC Science & Technology

    2010-09-15

    promote political processes and governance structures. This should enable a political settlement that institutionalises non-violent contests for power...of a political settlement , amenable to UK interests, between this triumvirate of actors. The Stabilisation Unit perspective is similar stating that...peaceful political settlement to produce a legitimate indigenous government, which can better serve its people. 102. Stabilisation will invariably sit

  11. Bioconjugation and stabilisation of biomolecules in biosensors

    PubMed Central

    Drago, Guido A.

    2016-01-01

    Suitable bioconjugation strategies and stabilisation of biomolecules on electrodes is essential for the development of novel and commercially viable biosensors. In the present review, the functional groups that comprise the selectable targets for practical bioconjugation methods are discussed. We focus on describing the most common immobilisation techniques used in biosensor construction, which are classified into irreversible and reversible methods. Concerning the stability of proteins, the two main types of stability may be defined as (i) storage or shelf stability, and (ii) operational stability. Both types of stability are explained, as well as the introduction of an electrophoretic technique for predicting protein–polymer interactions. In addition, solution and dry stabilisation as well as stabilisation using the covalent immobilisation of proteins are discussed including possible factors that influence stability. Finally, the integration of nanomaterials, such as magnetic particles, with protein immobilisation is discussed in relation to protein stability studies. PMID:27365036

  12. Partial stability and stabilisation of Boolean networks

    NASA Astrophysics Data System (ADS)

    Chen, Hong-Wei; Sun, Liang-Jie; Liu, Yang

    2016-07-01

    In this paper, we investigate the stability of Boolean networks and the stabilisation of Boolean control networks with respect to part of the system's states. First, an algebraic expression of the Boolean (control) network is derived by the semi-tensor product of matrices. Then, some necessary and sufficient conditions for partial stability of Boolean networks are given. Finally, the stabilisation of Boolean control networks by a free control sequence and a state-feedback control is investigated and the respective necessary and sufficient conditions are obtained. Examples are provided to illustrate the efficiency of the obtained results.

  13. On stabilisability of nonlinear systems on time scales

    NASA Astrophysics Data System (ADS)

    Bartosiewicz, Zbigniew; Piotrowska, Ewa

    2013-01-01

    In this article, stabilisability of nonlinear finite-dimensional control systems on arbitrary time scales is studied. The classical results on stabilisation of nonlinear continuous-time and discrete-time systems are extended to systems on arbitrary time scales with bounded graininess function. It is shown that uniform exponential stability of the linear approximation of a nonlinear system implies uniform exponential stability of the nonlinear system. Then this result is used to show a similar implication for uniform exponential stabilisability.

  14. Supergranular Convection

    NASA Astrophysics Data System (ADS)

    Udayashankar, Paniveni

    2015-12-01

    Observation of the Solar photosphere through high resolution instruments have long indicated that the surface of the Sun is not a tranquil, featureless surface but is beset with a granular appearance. These cellular velocity patterns are a visible manifestation of sub- photospheric convection currents which contribute substantially to the outward transport of energy from the deeper layers, thus maintaining the energy balance of the Sun as a whole.Convection is the chief mode of transport in the outer layers of all cool stars such as the Sun (Noyes,1982). Convection zone of thickness 30% of the Solar radius lies in the sub-photospheric layers of the Sun. Here the opacity is so large that heat flux transport is mainly by convection rather than by photon diffusion. Convection is revealed on four scales. On the scale of 1000 km, it is granulation and on the scale of 8-10 arcsec, it is Mesogranulation. The next hierarchial scale of convection , Supergranules are in the range of 30-40 arcsec. The largest reported manifestation of convection in the Sun are ‘Giant Cells’or ‘Giant Granules’, on a typical length scale of about 108 m.'Supergranules' is caused by the turbulence that extends deep into the convection zone. They have a typical lifetime of about 20hr with spicules marking their boundaries. Gas rises in the centre of the supergranules and then spreads out towards the boundary and descends.Broadly speaking supergranules are characterized by the three parameters namely the length L, the lifetime T and the horizontal flow velocity vh . The interrelationships amongst these parameters can shed light on the underlying convective processes and are in agreement with the Kolmogorov theory of turbulence as applied to large scale solar convection (Krishan et al .2002 ; Paniveni et. al. 2004, 2005, 2010).References:1) Noyes, R.W., The Sun, Our Star (Harvard University Press, 1982)2) Krishan, V., Paniveni U., Singh , J., Srikanth R., 2002, MNRAS, 334/1,2303) Paniveni

  15. Convection towers

    DOEpatents

    Prueitt, M.L.

    1996-01-16

    Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water. 6 figs.

  16. Modeling Convection

    ERIC Educational Resources Information Center

    Ebert, James R.; Elliott, Nancy A.; Hurteau, Laura; Schulz, Amanda

    2004-01-01

    Students must understand the fundamental process of convection before they can grasp a wide variety of Earth processes, many of which may seem abstract because of the scales on which they operate. Presentation of a very visual, concrete model prior to instruction on these topics may facilitate students' understanding of processes that are largely…

  17. Convection towers

    DOEpatents

    Prueitt, Melvin L.

    1995-01-01

    Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water.

  18. Convection towers

    DOEpatents

    Prueitt, Melvin L.

    1996-01-01

    Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water.

  19. Convection towers

    DOEpatents

    Prueitt, Melvin L.

    1994-01-01

    Convection towers which are capable of cleaning the pollution from large quantities of air and of generating electricity utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity. Other embodiments may also provide fresh water, and operate in an updraft mode.

  20. Aqueous foams stabilised solely by nanoparticles

    NASA Astrophysics Data System (ADS)

    Langevin, Dominique

    2011-03-01

    Particles are being increasingly used to stabilise foams and emulsions, the corresponding emulsions being known as ``Pickering'' emulsions. One of the peculiarities of these systems is the absence of Ostwald ripening: since the bubbles or drops do not grow (coalescence seems also suppressed) both foams and emulsions are stable over extremely long periods of time (months). These features make particles very interesting surface active agents as compared to standard surfactants or polymers/proteins. The origin of the suppression of ripening can be traced to the unusual behaviour of the interfacial layers made by these particles. The layers are solid-like and the usual characterisation methods (surface tension, surface rheology) are not straightforward to use. In this presentation, we will illustrate these difficulties with experiments made with partially hydrophobic silica nanoparticles. We will also discuss the relevance of foam characterisations methods such as multiple light scattering and X-ray tomography.

  1. Convection towers

    DOEpatents

    Prueitt, M.L.

    1994-02-08

    Convection towers which are capable of cleaning the pollution from large quantities of air and of generating electricity utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity. Other embodiments may also provide fresh water, and operate in an updraft mode. 5 figures.

  2. Interference stabilisation of Rydberg atoms in a strong laser field

    SciTech Connect

    Fedorov, Mikhail V

    1999-07-31

    A review is given of the published theoretical and experimental investigations of the interference stabilisation of Rydberg atoms by a strong optical field. The physical nature of the effect, the models used to describe it, the alternative stabilisation mechanisms, and the extent to which the theoretical results match the published experimental data are discussed. (this issue is dedicated to the memory of s a akhmanov)

  3. Globally uniformly asymptotical stabilisation of time-delay nonlinear systems

    NASA Astrophysics Data System (ADS)

    Cai, Xiushan; Han, Zhengzhi; Zhang, Wei

    2011-07-01

    Globally uniformly asymptotical stabilisation of nonlinear systems in feedback form with a delay arbitrarily large in the input is dealt with based on the backstepping approach in this article. The design strategy depends on the construction of a Lyapunov-Krasovskii functional. A continuously differentiable control law is obtained to globally uniformly asymptotically stabilise the closed-loop system. The simulation shows the effectiveness of the method.

  4. Finding a stabilising switching law for switching nonlinear models

    NASA Astrophysics Data System (ADS)

    Lendek, Zs.; Raica, P.; Lauber, J.; Guerra, T. M.

    2016-09-01

    This paper considers the stabilisation of switching nonlinear models by switching between the subsystems. We assume that arbitrary switching between two subsystems is possible once a subsystem has been active for a predefined number of samples. We use a Takagi-Sugeno representation of the models and a switching Lyapunov function is employed to develop sufficient stability conditions. If the conditions are satisfied, we construct a switching law that stabilises the system. The application of the conditions is illustrated in several examples.

  5. Stabilisation of second-order nonlinear equations with variable delay

    NASA Astrophysics Data System (ADS)

    Berezansky, Leonid; Braverman, Elena; Idels, Lev

    2015-08-01

    For a wide class of second-order nonlinear non-autonomous models, we illustrate that combining proportional state control with the feedback that is proportional to the derivative of the chaotic signal allows to stabilise unstable motions of the system. The delays are variable, which leads to more flexible controls permitting delay perturbations; only delay bounds are significant for stabilisation by a delayed control. The results are applied to the sunflower equation which has an infinite number of equilibrium points.

  6. Post-irradiation somatic mutation and clonal stabilisation time in the human colon.

    PubMed Central

    Campbell, F; Williams, G T; Appleton, M A; Dixon, M F; Harris, M; Williams, E D

    1996-01-01

    BACKGROUND: Colorectal crypts are clonal units in which somatic mutation of marker genes in stem cells leads to crypt restricted phenotypic conversion initially involving part of the crypt, later the whole crypt. Studies in mice show that the time taken for the great majority of mutated crypts to be completely converted, the clonal stabilisation time, is four weeks in the colon and 21 weeks in the ileum. Differences in the clonal stabilisation time between tissues and species are thought to reflect differences in stem cell organisation and crypt kinetics. AIM: To study the clonal stabilisation time in the human colorectum. METHODS: Stem cell mutation can lead to crypt restricted loss of O-acetylation of sialomucins in subjects heterozygous for O-acetyltransferase gene activity. mPAS histochemistry was used to visualise and quantify crypts partially or wholly involved by the mutant phenotype in 21 informative cases who had undergone colectomy up to 34 years after radiotherapy. RESULTS: Radiotherapy was followed by a considerable increase in the discordant crypt frequency that remained significantly increased for many years. The proportion of discordant crypts showing partial involvement was initially high but fell to normal levels about 12 months after irradiation. CONCLUSIONS: Crypts wholly involved by a mutant phenotype are stable and persistent while partially involved crypts are transient. The clonal stabilisation time is approximately one year in the human colon compared with four weeks in the mouse. The most likely reason for this is a difference in the number of stem cells in a crypt stem cell niche, although differences in stem cell cycle time and crypt fission may also contribute. These findings are of relevance to colorectal gene therapy and carcinogenesis in stem cell systems. PMID:8944567

  7. CONVECTION REACTOR

    DOEpatents

    Hammond, R.P.; King, L.D.P.

    1960-03-22

    An homogeneous nuclear power reactor utilizing convection circulation of the liquid fuel is proposed. The reactor has an internal heat exchanger looated in the same pressure vessel as the critical assembly, thereby eliminating necessity for handling the hot liquid fuel outside the reactor pressure vessel during normal operation. The liquid fuel used in this reactor eliminates the necessity for extensive radiolytic gas rocombination apparatus, and the reactor is resiliently pressurized and, without any movable mechanical apparatus, automatically regulates itself to the condition of criticality during moderate variations in temperature snd pressure and shuts itself down as the pressure exceeds a predetermined safe operating value.

  8. Convective heater

    DOEpatents

    Thorogood, Robert M.

    1983-01-01

    A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation.

  9. Convective heater

    DOEpatents

    Thorogood, Robert M.

    1986-01-01

    A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation.

  10. Convective heater

    DOEpatents

    Thorogood, R.M.

    1983-12-27

    A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation. 14 figs.

  11. Image stabilisation of the beating heart by local linear interpolation

    NASA Astrophysics Data System (ADS)

    Gröger, Martin; Hirzinger, Gerd

    2006-03-01

    The stabilisation of motion on the beating heart is investigated in the context of minimally invasive robotic surgery. Although reduced by mechanical stabilisers, residual tissue motion makes safe surgery still difficult and time consuming. Compensation for this movement is therefore highly desirable. Motion can be captured by tracking natural landmarks on the heart surface recorded by a video endoscope. Stabilisation is achieved by transforming the images using a motion field calculated from captured local motion. Since the surface of the beating heart is distorted nonlinearly, compensating the occurring motion with a constant image correction factor is not sufficient. Therefore, heart motion is captured by several landmarks, the motion between which is interpolated such that locally appropriate motion correction values are obtained. To estimate the motion between the landmark positions, a triangulation is built and motion information in each triangle is approximated by linear interpolation. Motion compensation is evaluated by calculating the optical flow remaining in the stabilised images. The proposed linear interpolation model is able to reduce motion significantly and can also be implemented efficiently to stabilise images of the beating heart in realtime.

  12. Stabilisation of microalgae: Iodine mobilisation under aerobic and anaerobic conditions.

    PubMed

    Han, Wei; Clarke, William; Pratt, Steven

    2015-10-01

    Mobilisation of iodine during microalgae stabilisation was investigated, with the view of assessing the potential of stabilised microalgae as an iodine-rich fertiliser. An iodine-rich waste microalgae (0.35 ± 0.05 mg I g(-1) VS(added)) was stabilised under aerobic and anaerobic conditions. Iodine mobilisation was linearly correlated with carbon emission, indicating iodine was in the form of organoiodine. Comparison between iodine and nitrogen mobilisation relative to carbon emission indicated that these elements were, at least in part, housed separately within the cells. After stabilisation, there were 0.22 ± 0.05 and 0.19 ± 0.01 mg g(-1) VS(added) iodine remaining in the solid in the aerobic and anaerobic processed material respectively, meaning 38 ± 5.0% (aerobic) and 50 ± 8.6% (anaerobic) of the iodine were mobilised, and consequently lost from the material. The iodine content of the stabilised material is comparable to the iodine content of some seaweed fertilisers, and potentially satisfies an efficient I-fertilisation dose.

  13. Southwick Osteotomy Stabilised with External Fixator

    PubMed Central

    Grubor, Predrag; Mitkovic, Milorad; Grubor, Milan

    2014-01-01

    ABSTRACT Introduction: Epiphysiolysis of the femoral head is the most common accident occurring towards the end of pre-puberty and puberty growth. Case report: The author describes the experience in the treatment of chronic epiphysiolysis in two patients treated by Southwick osteotomy. The site is accessed by way of a 15-cm long lateral skin incision and the trochanteric region is reached through the layers. The osteotomy angles prepared beforehand on a thin aluminium model are used to mark the Southwick osteotomy site on the anterior and lateral sides at the level of the lesser trochanter. Before performing the trochanteric osteotomy, two Mitković convergent pins type M20 are applied distally and proximally, above the planned osteotomy site. A tenotomy of the iliopsas muscle is performed, and then the previously marked bone triangle is redissected up to three quarters of the width of the femur. The distal part of the femur is rotated inwards, so that the patella is turned towards the ceiling. The osteotomised fragments of the femur are adapted, repositioned and fixated by installing an external fixator on the previously placed pins. Two more pins are placed, one proximally and one distally, with a view to adequately stabilising the femur. The patient was mobile from day two after the surgery. If, after the surgery, the lead surgeon realises that there is a requirement to make a correction of 5, 10 and 15 degrees of the valgus, varus, anteversion or retroversion deformity, the correction shall be performed without surgically opening the patient, using the fixator pins. Conclusion: After performing a Southwick osteotomy it is easier to adapt, reposition and fixate the osteotomised fragments of the femur using a fixator type M20. Adequate stability allows regaining mobility quickly, which in turn is the best prevention of chondrolysis of the hip. It is possible to make post-operative valgus, varus, anteversion and retroversion corrections of 5, 10 and 15 degrees

  14. Security for whom? Stabilisation and civilian protection in Colombia.

    PubMed

    Elhawary, Samir

    2010-10-01

    This paper focuses on three periods of stabilisation in Colombia: the Alliance for Progress (1961-73) that sought to stem the threat of communist revolution in Latin America; Plan Colombia and President Alvaro Uribe's 'democratic security' policy (2000-07) aimed at defeating the guerrillas and negotiating a settlement with the paramilitaries; and the current 'integrated approach', adopted from 2007, to consolidate more effectively the state's control of its territory.(1) The paper assesses the extent to which these stabilisation efforts have enhanced the protection of civilians and ultimately finds that in all three periods there has been a disconnect between the discourse and the practice of stabilisation. While they have all sought to enhance security, in actual fact, they have privileged the security of the state and its allies at the expense of the effective protection of the civilian population. This has not only led to widespread human rights abuses but also has undermined the long-term stability being pursued.

  15. Early metal bis(phosphorus-stabilised)carbene chemistry.

    PubMed

    Liddle, Stephen T; Mills, David P; Wooles, Ashley J

    2011-05-01

    Since the discovery of covalently-bound mid- and late-transition metal carbenes there has been a spectacular explosion of interest in their chemistry, but their early metal counterparts have lagged behind. In recent years, bis(phosphorus-stabilised)carbenes have emerged as valuable ligands for metals across the periodic table, and their use has in particular greatly expanded covalently-bound early metal carbene chemistry. In this tutorial review we introduce the reader to bis(phosphorus-stabilised)carbenes, and cover general preparative methods, structure and bonding features, and emerging reactivity studies of early metal derivatives (groups 1-4 and the f-elements).

  16. Bounded stabilisation of stochastic port-Hamiltonian systems

    NASA Astrophysics Data System (ADS)

    Satoh, Satoshi; Saeki, Masami

    2014-08-01

    This paper proposes a stochastic bounded stabilisation method for a class of stochastic port-Hamiltonian systems. Both full-actuated and underactuated mechanical systems in the presence of noise are considered in this class. The proposed method gives conditions for the controller gain and design parameters under which the state remains bounded in probability. The bounded region and achieving probability are both assignable, and a stochastic Lyapunov function is explicitly provided based on a Hamiltonian structure. Although many conventional stabilisation methods assume that the noise vanishes at the origin, the proposed method is applicable to systems under persistent disturbances.

  17. Microtubule stabilising peptides rescue tau phenotypes in-vivo

    PubMed Central

    Quraishe, Shmma; Sealey, Megan; Cranfield, Louise; Mudher, Amritpal

    2016-01-01

    The microtubule cytoskeleton is a highly dynamic, filamentous network underpinning cellular structure and function. In Alzheimer’s disease, the microtubule cytoskeleton is compromised, leading to neuronal dysfunction and eventually cell death. There are currently no disease-modifying therapies to slow down or halt disease progression. However, microtubule stabilisation is a promising therapeutic strategy that is being explored. We previously investigated the disease-modifying potential of a microtubule-stabilising peptide NAP (NAPVSIPQ) in a well-established Drosophila model of tauopathy characterised by microtubule breakdown and axonal transport deficits. NAP prevented as well as reversed these phenotypes even after they had become established. In this study, we investigate the neuroprotective capabilities of an analogous peptide SAL (SALLRSIPA). We found that SAL mimicked NAP’s protective effects, by preventing axonal transport disruption and improving behavioural deficits, suggesting both NAP and SAL may act via a common mechanism. Both peptides contain a putative ‘SIP’ (Ser-Ile-Pro) domain that is important for interactions with microtubule end-binding proteins. Our data suggests this domain may be central to the microtubule stabilising function of both peptides and the mechanism by which they rescue phenotypes in this model of tauopathy. Our observations support microtubule stabilisation as a promising disease-modifying therapeutic strategy for tauopathies like Alzheimer’s disease. PMID:27910888

  18. Feedback-bounded stabilisation of certain discrete Volterra systems

    NASA Astrophysics Data System (ADS)

    Kotsios, Stelios

    2016-06-01

    Throughout this paper, we present a method for designing feedback-laws which stabilise nonlinear discrete Volterra systems. Our method is based on a factorisation algorithm which decomposes the original system as a composition of a δ-polynomial and a linear series.

  19. Exponential passivity for output feedback stabilisation of nonlinear uncertain systems

    NASA Astrophysics Data System (ADS)

    Benabdallah, Amel

    2010-11-01

    In this article, we address the problem of stabilisation by output feedback for a class of uncertain systems. We consider uncertain systems with a nominal part which is affine in the control and an uncertain part which is norm bounded by a known function. We propose an output feedback such that the closed loop system is globally exponentially stable.

  20. Gas gain stabilisation in the ATLAS TRT detector

    NASA Astrophysics Data System (ADS)

    Mindur, B.; Åkesson, T. P. A.; Anghinolfi, F.; Antonov, A.; Arslan, O.; Baker, O. K.; Banas, E.; Bault, C.; Beddall, A. J.; Bendotti, J.; Benjamin, D. P.; Bertelsen, H.; Bingul, A.; Bocci, A.; Boldyrev, A. S.; Brock, I.; Capeáns Garrido, M.; Catinaccio, A.; Celebi, E.; Cetin, S. A.; Choi, K.; Dam, M.; Danielsson, H.; Davis, D.; Degeorge, C.; Derendarz, D.; Desch, K.; Di Girolamo, B.; Dittus, F.; Dixon, N.; Dressnandt, N.; Dubinin, F. A.; Evans, H.; Farthouat, P.; Fedin, O. L.; Froidevaux, D.; Gavrilenko, I. L.; Gay, C.; Gecse, Z.; Godlewski, J.; Grefe, C.; Gurbuz, S.; Hajduk, Z.; Hance, M.; Haney, B.; Hansen, J. B.; Hansen, P. H.; Hawkins, A. D.; Heim, S.; Holway, K.; Kantserov, V. A.; Katounine, S.; Kayumov, F.; Keener, P. T.; Kisielewski, B.; Klopov, N. V.; Konovalov, S. P.; Koperny, S.; Korotkova, N. A.; Kowalski, T. Z.; Kramarenko, V.; Krasnopevtsev, D.; Kruse, M.; Kudin, L. G.; Lichard, P.; Loginov, A.; Martinez, N. Lorenzo; Lucotte, A.; Luehring, F.; Lytken, E.; Maleev, V. P.; Maevskiy, A. S.; Manjarres Ramos, J.; Mashinistov, R. Y.; Meyer, C.; Mialkovski, V.; Mistry, K.; Mitsou, V. A.; Nadtochi, A. V.; Newcomer, F. M.; Novodvorski, E. G.; Ogren, H.; Oh, S. H.; Oleshko, S. B.; Olszowska, J.; Ostrowicz, W.; Palacino, G.; Patrichev, S.; Penwell, J.; Perez-Gomez, F.; Peshekhonov, V. D.; RØhne, O.; Reilly, M. B.; Rembser, C.; Ricken, O.; Romaniouk, A.; Rousseau, D.; Ryjov, V.; Sasmaz, U.; Schaepe, S.; Schegelsky, V. A.; Shmeleva, A. P.; Shulga, E.; Sivoklokov, S.; Smirnov, S.; Smirnov, Yu.; Smirnova, L. N.; Soldatov, E.; Sulin, V. V.; Tartarelli, G.; Taylor, W.; Thomson, E.; Tikhomirov, V. O.; Tipton, P.; Valls Ferrer, J. A.; Van Berg, R.; Vasquez, J.; Vasilyeva, L. F.; Vlazlo, O.; Weinert, B.; Williams, H. H.; Wong, V.; Zhukov, K. I.; Zieminska, D.

    2016-04-01

    The ATLAS (one of two general purpose detectors at the LHC) Transition Radiation Tracker (TRT) is the outermost of the three tracking subsystems of the ATLAS Inner Detector. It is a large straw-based detector and contains about 350,000 electronics channels. The performance of the TRT as tracking and particularly particle identification detector strongly depends on stability of the operation parameters with most important parameter being the gas gain which must be kept constant across the detector volume. The gas gain in the straws can vary significantly with atmospheric pressure, temperature, and gas mixture composition changes. This paper presents a concept of the gas gain stabilisation in the TRT and describes in detail the Gas Gain Stabilisation System (GGSS) integrated into the Detector Control System (DCS). Operation stability of the GGSS during Run-1 is demonstrated.

  1. Use of Reinforced Lightweight Clay Aggregates for Landslide Stabilisation

    SciTech Connect

    Herle, Vitezslav

    2008-07-08

    In spring 2006 a large landslide combined with rock fall closed a highway tunnel near Svitavy in NE part of Czech Republic and cut the main highway connecting Bohemia with Moravia regions. Stabilisation work was complicated by steep mountainous terrain and large inflow of surface and underground water. The solution was based on formation of a stabilisation fill made of reinforced free draining aggregates at the toe of the slope with overlying lightweight fill up to 10 m high reinforced with PET geogrid and steel mesh protecting soft easily degrading sandstone against weathering. Extensive monitoring made possible to compare the FEM analysis with real values. The finished work fits very well in the environment and was awarded a special prize in the 2007 transport structures contest.

  2. Soret and Dufour effects on thermohaline convection in rotating fluids

    NASA Astrophysics Data System (ADS)

    Duba, C. T.; Shekar, M.; Narayana, M.; Sibanda, P.

    2016-07-01

    Using linear and weakly nonlinear stability theory, the effects of Soret and Dufour parameters are investigated on thermohaline convection in a horizontal layer of rotating fluid, specifically the ocean. Thermohaline circulation is important in mixing processes and contributes to heat and mass transports and hence the earth's climate. A general conception is that due to the smallness of the Soret and Dufour parameters their effect is negligible. However, it is shown here that the Soret parameter, salinity and rotation stabilise the system, whereas temperature destabilises it and the Dufour parameter has minimal effect on stationary convection. For oscillatory convection, the analysis is difficult as it shows that the Rayleigh number depends on six parameters, the Soret and Dufour parameters, the salinity Rayleigh number, the Lewis number, the Prandtl number, and the Taylor number. We demonstrate the interplay between these parameters and their effects on oscillatory convection in a graphical manner. Furthermore, we find that the Soret parameter enhances oscillatory convection whereas the Dufour parameter, salinity Rayleigh number, the Lewis number, and rotation delay instability. We believe that these results have not been elucidated in this way before for large-scale fluids. Furthermore, we investigate weakly nonlinear stability and the effect of cross diffusive terms on heat and mass transports. We show the existence of new solution bifurcations not previously identified in literature.

  3. [A difficult stabilisation. Chlorpromazine in the fifties in Belgium].

    PubMed

    Majerus, Benoît

    2010-01-01

    Through a Belgian case study the article tries to trace the gradual stabilisation of chlorpromazine as an antipsychotic in the 1950s. By varying ranges and angles of approach it shows the heterogeneity of actors involved and the semantic bricolage that accompany the marketing of the first antipsychotic. Far from being a revolution, the presence of Largactil in psychiatric practice is rather characterised by integration into a wider range of medicines and sinuous searching to give sense to this new drug.

  4. Stabilisation of scoliosis in two koi (Cyprinus carpio).

    PubMed

    Govett, P D; Olby, N J; Marcellin-Little, D J; Rotstein, D S; Reynolds, T L; Lewbart, G A

    2004-07-24

    Two koi (Cyprinus carpio) from the same pond developed similar lesions of scoliosis. Radiographic examinations showed that their spines had become malaligned as a result of vertebral compression fractures involving T14 to T16. The vertebrae in both fish were stabilised with screws, k-wire and polymethylmethacrylate. They both appeared to improve after surgery, but they began to decline and died within three months. A postmortem examination revealed multi-organ inflammation that was not associated with the surgical implants.

  5. Preliminary stabilisation of stormwater biofilters and loss of filter material.

    PubMed

    Subramaniam, D N; Mather, P B

    Stabilisation affects performance of stormwater biofilters operating under intermittent wetting and drying, mainly due to wash-off of filter material. Understanding the dynamics of solids wash-off is crucial in designing stormwater biofilters. The current study analysed the dynamics of solids wash-off in stormwater biofilters and quantified the loss of solids from the filter. Four Perspex™ bioretention columns (94 mm internal diameter) were fabricated with a filter layer that contained 8% organic material and were fed with tap water with different numbers of antecedent dry days (0-40 day) at 100 mL/min. Samples were collected from the outflow and tested for particle size distribution and total solids and turbidity. Solids of particle size less than 50 microns were washed off from the filter during the stabilisation period, indicating that no sand particles were washed off. The very first event after commissioning the filter resulted in the highest wash-off of solids (approximately 75 g of fines) while a significant drop in wash-off followed from the second event. An empirical model fitted to the data showed that preliminary stabilisation of a filter occurs in the first three events, during which almost 25% of fines are lost from the filter.

  6. Modeling ocean deep convection

    NASA Astrophysics Data System (ADS)

    Canuto, V. M.; Howard, A.; Hogan, P.; Cheng, Y.; Dubovikov, M. S.; Montenegro, L. M.

    The goal of this study is to assess models for Deep Convection with special emphasis on their use in coarse resolution ocean general circulation models. A model for deep convection must contain both vertical transport and lateral advection by mesoscale eddies generated by baroclinic instabilities. The first process operates mostly in the initial phases while the second dominates the final stages. Here, the emphasis is on models for vertical mixing. When mesoscales are not resolved, they are treated with the Gent and McWilliams parameterization. The model results are tested against the measurements of Lavender, Davis and Owens, 2002 (LDO) in the Labrador Sea. Specifically, we shall inquire whether the models are able to reproduce the region of " deepest convection," which we shall refer to as DC (mixed layer depths 800-1300 m). The region where it was measured by Lavender et al. (2002) will be referred to as the LDO region. The main results of this study can be summarized as follows. 3° × 3° resolution. A GFDL-type OGCM with the GISS vertical mixing model predicts DC in the LDO region where the vertical heat diffusivity is found to be 10 m 2 s -1, a value that is quite close to the one suggested by heuristic studies. No parameter was changed from the original GISS model. However, the GISS model also predicts some DC in a region to the east of the LDO region. 3° × 3° resolution. A GFDL-type OGCM with the KPP model (everything else being the same) does not predict DC in the LDO region where the vertical heat diffusivity is found to be 0.5 × 10 -4 m 2 s -1 which is the background value. The KPP model yields DC only to the east of the LDO region. 1° × 1° resolution. In this case, a MY2.5 mixing scheme predicts DC in the LDO region. However, it also predicts DC to the west, north and south of it, where it is not observed. The behavior of the KPP and MY models are somewhat anti-symmetric. The MY models yield too low a mixing in stably stratified flows since they

  7. Convective Available Potential Energy of World Ocean

    NASA Astrophysics Data System (ADS)

    Su, Z.; Ingersoll, A. P.; Thompson, A. F.

    2012-12-01

    Here, for the first time, we propose the concept of Ocean Convective Available Potential Energy (OCAPE), which is the maximum kinetic energy (KE) per unit seawater mass achievable by ocean convection. OCAPE occurs through a different mechanism from atmospheric CAPE, and involves the interplay of temperature and salinity on the equation of state of seawater. The thermobaric effect, which arises because the thermal coefficient of expansion increases with depth, is an important ingredient of OCAPE. We develop an accurate algorithm to calculate the OCAPE for a given temperature and salinity profile. We then validate our calculation of OCAPE by comparing it with the conversion of OCAPE to KE in a 2-D numerical model. We propose that OCAPE is an important energy source of ocean deep convection and contributes to deep water formation. OCAPE, like Atmospheric CAPE, can help predict deep convection and may also provide a useful constraint for modelling deep convection in ocean GCMs. We plot the global distribution of OCAPE using data from the World Ocean Atlas 2009 (WOA09) and see many important features. These include large values of OCAPE in the Labrador, Greenland, Weddell and Mediterranean Seas, which are consistent with our present observations and understanding, but also identify some new features like the OCAPE pattern in the Antarctic Circumpolar Current (ACC). We propose that the diagnosis of OCAPE can improve our understanding of global patterns of ocean convection and deep water formation as well as ocean stratification, the meridional overturning circulation and mixed layer processes. The background of this work is briefly introduced as below. Open-ocean deep convection can significantly modify water properties both at the ocean surface and throughout the water column (Gordon 1982). Open-ocean convection is also an important mechanism for Ocean Deep Water formation and the transport of heat, freshwater and nutrient (Marshall and Schott 1999). Open

  8. Mechanisms of flame stabilisation at low lifted height in a turbulent lifted slot-jet flame

    SciTech Connect

    Karami, Shahram; Hawkes, Evatt R.; Talei, Mohsen; Chen, Jacqueline H.

    2015-07-23

    A turbulent lifted slot-jet flame is studied using direct numerical simulation (DNS). A one-step chemistry model is employed with a mixture-fraction-dependent activation energy which can reproduce qualitatively the dependence of the laminar burning rate on the equivalence ratio that is typical of hydrocarbon fuels. The basic structure of the flame base is first examined and discussed in the context of earlier experimental studies of lifted flames. Several features previously observed in experiments are noted and clarified. Some other unobserved features are also noted. Comparison with previous DNS modelling of hydrogen flames reveals significant structural differences. The statistics of flow and relative edge-flame propagation velocity components conditioned on the leading edge locations are then examined. The results show that, on average, the streamwise flame propagation and streamwise flow balance, thus demonstrating that edge-flame propagation is the basic stabilisation mechanism. Fluctuations of the edge locations and net edge velocities are, however, significant. It is demonstrated that the edges tend to move in an essentially two-dimensional (2D) elliptical pattern (laterally outwards towards the oxidiser, then upstream, then inwards towards the fuel, then downstream again). It is proposed that this is due to the passage of large eddies, as outlined in Suet al.(Combust. Flame, vol. 144 (3), 2006, pp. 494–512). However, the mechanism is not entirely 2D, and out-of-plane motion is needed to explain how flames escape the high-velocity inner region of the jet. Finally, the time-averaged structure is examined. A budget of terms in the transport equation for the product mass fraction is used to understand the stabilisation from a time-averaged perspective. The result of this analysis is found to be consistent with the instantaneous perspective. The budget reveals a fundamentally 2D structure, involving transport in both

  9. Mechanisms of flame stabilisation at low lifted height in a turbulent lifted slot-jet flame

    DOE PAGES

    Karami, Shahram; Hawkes, Evatt R.; Talei, Mohsen; ...

    2015-07-23

    A turbulent lifted slot-jet flame is studied using direct numerical simulation (DNS). A one-step chemistry model is employed with a mixture-fraction-dependent activation energy which can reproduce qualitatively the dependence of the laminar burning rate on the equivalence ratio that is typical of hydrocarbon fuels. The basic structure of the flame base is first examined and discussed in the context of earlier experimental studies of lifted flames. Several features previously observed in experiments are noted and clarified. Some other unobserved features are also noted. Comparison with previous DNS modelling of hydrogen flames reveals significant structural differences. The statistics of flow andmore » relative edge-flame propagation velocity components conditioned on the leading edge locations are then examined. The results show that, on average, the streamwise flame propagation and streamwise flow balance, thus demonstrating that edge-flame propagation is the basic stabilisation mechanism. Fluctuations of the edge locations and net edge velocities are, however, significant. It is demonstrated that the edges tend to move in an essentially two-dimensional (2D) elliptical pattern (laterally outwards towards the oxidiser, then upstream, then inwards towards the fuel, then downstream again). It is proposed that this is due to the passage of large eddies, as outlined in Suet al.(Combust. Flame, vol. 144 (3), 2006, pp. 494–512). However, the mechanism is not entirely 2D, and out-of-plane motion is needed to explain how flames escape the high-velocity inner region of the jet. Finally, the time-averaged structure is examined. A budget of terms in the transport equation for the product mass fraction is used to understand the stabilisation from a time-averaged perspective. The result of this analysis is found to be consistent with the instantaneous perspective. The budget reveals a fundamentally 2D structure, involving transport in both the streamwise and transverse

  10. Stability and stabilisation of linear multidimensional discrete systems in the frequency domain

    NASA Astrophysics Data System (ADS)

    Li, Lizhen; Xu, Li; Lin, Zhiping

    2013-11-01

    This paper gives a reasonably detailed review of advances in stability and stabilisation of linear multidimensional (N-D) discrete systems in the frequency domain. The emphasis is on the recent progress, especially in the past decade. The discussion will focus on two topics: (i) stability test. Determination of whether a given N-D (N ≥ 2) system is stable; (ii) stabilisation. Parameterisation of all stabilising compensators for a stabilisable N-D system. After reviewing the progress and several state of the art methods in these two topics with illustrative examples, some related issues are also briefly mentioned at the end.

  11. Interplay between body stabilisation and quadriceps muscle activation capacity.

    PubMed

    Bampouras, Theodoros M; Reeves, Neil D; Baltzopoulos, Vasilios; Maganaris, Constantinos N

    2017-03-22

    The study aimed to distinguish the effect of stabilisation and muscle activation on quadriceps maximal isometric voluntary contraction (MVC) torque generation. Nine subjects performed (a) an MVC with restrained leg and pelvis (Typical MVC), (b) a Typical MVC with handgrip (Handgrip MVC), (c) an MVC focusing on contracting the knee extensors only (Isolated knee extension MVC), and (d) an MVC with unrestrained leg and pelvis (Unrestrained MVC). Torque and activation capacity between conditions were compared with repeated measures ANOVA and dependent t-tests. EMG (from eleven remote muscles) was compared using Friedman's and Wilcoxon. Typical MVC (277.2±49.6Nm) and Handgrip MVC (261.0±55.4Nm) were higher than Isolated knee extension MVC (210.2±48.3Nm, p<0.05) and Unrestrained MVC (195.2±49.7Nm, p<0.05) torque. Typical MVC (83.1±15.9%) activation was higher than Isolated knee extension MVC (68.9±24.3%, p<0.05), and both Typical MVC and Handgrip MVC (81.8±17.4%) were higher than Unrestrained MVC (64.9±16.2%, p<0.05). Only flexor carpi radialis, biceps brachii, triceps brachii and external oblique muscles showed EMG differences, with Isolated knee extension MVC consistently lower than Typical MVC or Handgrip MVC. Stabilisation of the involved segments is the prime concern allowing fuller activation of the muscle, reinforcing the need for close attention to stabilisation during dynamometry-based knee joint functional assessment.

  12. Thermal Decomposition and Stabilisation of Poly(vinyl Chloride)

    NASA Astrophysics Data System (ADS)

    Troitskii, B. B.; Troitskaya, L. S.

    1985-08-01

    The kinetics and mechanism of the thermal dehydrochlorination of poly(vinyl chloride) and low-molecular-weight chlorohydrocarbons which model various fragments of the polymer molecule, are discussed. Studies designed to determine the qualitative and quantitative compositions of the unstable fragments in poly(vinyl chloride) macromolecules by 13C NMR are examined. Attention is concentrated on the consideration of the mechanism of the action of the most effective thermostabilisers for the polymer - organotin compounds. The principal features of synergism in the stabilisation of poly(vinyl chloride) and the mechanism of the action of synergistic mixtures are analysed. The bibliography includes 107 references.

  13. Stabilised electromagnetic levitation at 2-13 MHz

    NASA Technical Reports Server (NTRS)

    Danley, T. J.; Schiffman, R. A.; Weber, J. K. R.; Krishnan, S.; Rey, C. A.; Bruno, P. A.; Nordine, P. C.

    1991-01-01

    SEL, the Stabilised Electromagnetic Levitator, has been developed to exploit the unique design opportunities available in containerless microgravity experiments. Efficiency and versatility are obtained with multiple coils driven by individual broadband amplifiers whose phase and frequency are controlled. The heating and positioning fields are decoupled. Specimen translation, spin, and for liquids, shape may be adjusted. An open coil structure provides access for optical and diagnostic probes. Results of experiments with a prototype device are discussed. Levitating and heating materials on earth were demonstrated at frequencies up to 13 MHz.

  14. Stochastic Convection Parameterizations

    NASA Technical Reports Server (NTRS)

    Teixeira, Joao; Reynolds, Carolyn; Suselj, Kay; Matheou, Georgios

    2012-01-01

    computational fluid dynamics, radiation, clouds, turbulence, convection, gravity waves, surface interaction, radiation interaction, cloud and aerosol microphysics, complexity (vegetation, biogeochemistry, radiation versus turbulence/convection stochastic approach, non-linearities, Monte Carlo, high resolutions, large-Eddy Simulations, cloud structure, plumes, saturation in tropics, forecasting, parameterizations, stochastic, radiation-clod interaction, hurricane forecasts

  15. Stabilising emulsion-based colloidal structures with mixed food ingredients.

    PubMed

    Dickinson, Eric

    2013-03-15

    The physical scientist views food as a complex form of soft matter. The complexity has its origin in the numerous ingredients that are typically mixed together and the subtle variations in microstructure and texture induced by thermal and mechanical processing. The colloid science approach to food product formulation is based on the assumption that the major product attributes such as appearance, rheology and physical stability are determined by the spatial distribution and interactions of a small number of generic structural entities (biopolymers, particles, droplets, bubbles, crystals) organised in various kinds of structural arrangements (layers, complexes, aggregates, networks). This review describes some recent advances in this field with reference to three discrete classes of dispersed systems: particle-stabilised emulsions, emulsion gels and aerated emulsions. Particular attention is directed towards explaining the crucial role of the macromolecular ingredients (proteins and polysaccharides) in controlling the formation and stabilisation of the colloidal structures. The ultimate objective of this research is to provide the basic physicochemical insight required for the reliable manufacture of novel structured foods with an appealing taste and texture, whilst incorporating a more healthy set of ingredients than those found in many existing traditional products.

  16. On the reliable decentralised stabilisation of n MIMO systems

    NASA Astrophysics Data System (ADS)

    Befekadu, Getachew K.; Gupta, Vijay; Antsaklis, Panos J.

    2014-08-01

    In this paper, we consider the problem of reliable decentralised stabilisation for n multi-input multi-output (MIMO) systems when some of the shared controllers among these systems are faulty, in the sense that they fail to operate properly due to subsystem (module) failures that may occur in actuators, sensors or controllers. Specifically, we present a design framework using a dilated linear matrix inequalities (LMIs) technique for deriving reliable stabilising state-feedback gains for all n MIMO systems; while a set of decentralised unknown disturbance observers (UDOs) that are shared by all n MIMO systems is used for extending the result to the output-feedback case. Moreover, a sufficient condition for the solvability of the set of decentralised UDOs is given in terms of a minimum-phase condition of each subsystem and a lower-bounding condition on the number of outputs of each channel. We also present a numerical example that illustrates the applicability of the proposed technique.

  17. Compact atomic clocks and stabilised laser for space applications

    NASA Astrophysics Data System (ADS)

    Mileti, Gaetano; Affolderbach, Christoph; Matthey-de-l'Endroit, Renaud

    2016-07-01

    We present our developments towards next generation compact vapour-cell based atomic frequency standards using a tunable laser diode instead of a traditional discharge lamp. The realisation of two types of Rubidium clocks addressing specific applications is in progress: high performance frequency standards for demanding applications such as satellite navigation, and chip-scale atomic clocks, allowing further miniaturisation of the system. The stabilised laser source constitutes the main technological novelty of these new standards, allowing a more efficient preparation and interrogation of the atoms and hence an improvement of the clock performances. However, before this key component may be employed in a commercial and ultimately in a space-qualified instrument, further studies are necessary to demonstrate their suitability, in particular concerning their reliability and long-term operation. The talk will present our preliminary investigations on this subject. The stabilised laser diode technology developed for our atomic clocks has several other applications on ground and in space. We will conclude our talk by illustrating this for the example of a recently completed ESA project on a 1.6 microns wavelength reference for a future space-borne Lidar. This source is based on a Rubidium vapour cell providing the necessary stability and accuracy, while a second harmonic generator and a compact optical comb generated from an electro-optic modulator allow to transfer these properties from the Rubidium wavelength (780nm) to the desired spectral range.

  18. Convection in Condensible-rich Atmospheres

    NASA Astrophysics Data System (ADS)

    Ding, F.; Pierrehumbert, R. T.

    2016-05-01

    Condensible substances are nearly ubiquitous in planetary atmospheres. For the most familiar case—water vapor in Earth’s present climate—the condensible gas is dilute, in the sense that its concentration is everywhere small relative to the noncondensible background gases. A wide variety of important planetary climate problems involve nondilute condensible substances. These include planets near or undergoing a water vapor runaway and planets near the outer edge of the conventional habitable zone, for which CO2 is the condensible. Standard representations of convection in climate models rely on several approximations appropriate only to the dilute limit, while nondilute convection differs in fundamental ways from dilute convection. In this paper, a simple parameterization of convection valid in the nondilute as well as dilute limits is derived and used to discuss the basic character of nondilute convection. The energy conservation properties of the scheme are discussed in detail and are verified in radiative-convective simulations. As a further illustration of the behavior of the scheme, results for a runaway greenhouse atmosphere for both steady instellation and seasonally varying instellation corresponding to a highly eccentric orbit are presented. The latter case illustrates that the high thermal inertia associated with latent heat in nondilute atmospheres can damp out the effects of even extreme seasonal forcing.

  19. Determination of Stabiliser Contents in Advanced Gun Propellants by Reverse Phase High Performance Liquid Chromatography

    DTIC Science & Technology

    1994-03-01

    HIGH PERFORMANCE LIQUID CHROMATOGRAPHY N"m A.R. TURNER AND A. WHITE...TO biEPROOU.; AND SELL THIS REPORT Determination of Stabiliser Contents in Advanced Gun Propellants by Reverse Phase High Performance Liquid Chromatography A.R...8217/......... .. Availability Cooes Dist Avaiardlo A-i Determination of Stabiliser Contents in Advanced Gun Propellants by Reverse Phase High Performance Liquid Chromatography

  20. Stabilisation of liquid-air surfaces by particles of low surface energy.

    PubMed

    Binks, Bernard P; Rocher, Anaïs

    2010-08-28

    We describe the stabilisation of liquid-air surfaces by microparticles of a low surface energy solid. By varying the surface tension of the liquid, various particle-stabilised materials from oil dispersions to air-in-oil foams to dry water can be prepared.

  1. Magneto-convection.

    PubMed

    Stein, Robert F

    2012-07-13

    Convection is the transport of energy by bulk mass motions. Magnetic fields alter convection via the Lorentz force, while convection moves the fields via the curl(v×B) term in the induction equation. Recent ground-based and satellite telescopes have increased our knowledge of the solar magnetic fields on a wide range of spatial and temporal scales. Magneto-convection modelling has also greatly improved recently as computers become more powerful. Three-dimensional simulations with radiative transfer and non-ideal equations of state are being performed. Flux emergence from the convection zone through the visible surface (and into the chromosphere and corona) has been modelled. Local, convectively driven dynamo action has been studied. The alteration in the appearance of granules and the formation of pores and sunspots has been investigated. Magneto-convection calculations have improved our ability to interpret solar observations, especially the inversion of Stokes spectra to obtain the magnetic field and the use of helioseismology to determine the subsurface structure of the Sun.

  2. Quantifying lingual coarticulation using ultrasound imaging data collected with and without head stabilisation.

    PubMed

    Zharkova, Natalia; Gibbon, Fiona E; Hardcastle, William J

    2015-04-01

    Previous studies reporting the use of ultrasound tongue imaging with clinical populations have generally provided qualitative information on tongue movement. Meaningful quantitative measures for use in the clinic typically require the speaker's head to be stabilised in relation to a transducer, which may be uncomfortable, and unsuitable for young children. The objective of this study was to explore the applicability of quantitative measurements of stabilisation-free tongue movement data, by comparing ultrasound data collected from 10 adolescents, with and without head stabilisation. Several measures of tongue shape were used to quantify coarticulatory influence from two contrasting vowels on four different consonants. Only one of the measures was completely unaffected by the stabilisation condition for all the consonants. The study also reported cross-consonant differences in vowel-related coarticulatory effects. The implications of the findings for the theory of coarticulation and for potential applications of stabilisation-free tongue curve measurements in clinical studies are discussed.

  3. Production and validation of model iron-tannate dyed textiles for use as historic textile substitutes in stabilisation treatment studies

    PubMed Central

    2012-01-01

    Background For millennia, iron-tannate dyes have been used to colour ceremonial and domestic objects shades of black, grey, or brown. Surviving iron-tannate dyed objects are part of our cultural heritage but their existence is threatened by the dye itself which can accelerate oxidation and acid hydrolysis of the substrate. This causes many iron-tannate dyed textiles to discolour and decrease in tensile strength and flexibility at a faster rate than equivalent undyed textiles. The current lack of suitable stabilisation treatments means that many historic iron-tannate dyed objects are rapidly crumbling to dust with the knowledge and value they hold being lost forever. This paper describes the production, characterisation, and validation of model iron-tannate dyed textiles as substitutes for historic iron-tannate dyed textiles in the development of stabilisation treatments. Spectrophotometry, surface pH, tensile testing, SEM-EDX, and XRF have been used to characterise the model textiles. Results On application to textiles, the model dyes imparted mid to dark blue-grey colouration, an immediate tensile strength loss of the textiles and an increase in surface acidity. The dyes introduced significant quantities of iron into the textiles which was distributed in the exterior and interior of the cotton, abaca, and silk fibres but only in the exterior of the wool fibres. As seen with historic iron-tannate dyed objects, the dyed cotton, abaca, and silk textiles lost tensile strength faster and more significantly than undyed equivalents during accelerated thermal ageing and all of the dyed model textiles, most notably the cotton, discoloured more than the undyed equivalents on ageing. Conclusions The abaca, cotton, and silk model textiles are judged to be suitable for use as substitutes for cultural heritage materials in the testing of stabilisation treatments. PMID:22616934

  4. Formation and stabilisation of triclosan colloidal suspensions using supersaturated systems.

    PubMed

    Raghavan, S L; Schuessel, K; Davis, A; Hadgraft, J

    2003-08-11

    The aim of this paper is to prepare and stabilise, in situ, colloidal microsuspensions of triclosan using the polymer, hydroxypropyl methylcellulose (HPMC). The suspensions were prepared from supersaturated solutions of triclosan. The cosolvent technique was used to create supersaturation. Propylene glycol and water were used as the cosolvents. The triclosan particles had a large needle-shaped morphology, when grown in the absence of the polymer. Moreover, the particles grew rapidly to sizes greater than 5 micrometer over a period of 7h. When HPMC was added, the particle sizes were in the range 90-250 nm depending on the amount of polymer present in the solutions. The stability of the solutions was evaluated over a period of 40 days during which the particle sizes did not vary. The results were consistent with the mechanism proposed by Raghavan et al. [Int. J. Pharm. 212 (2001b) 213].

  5. Ammonia volatilisation in waste stabilisation ponds: a cascade of misinterpretations?

    PubMed

    Camargo Valero, M A; Mara, D D

    2010-01-01

    Ammonia volatilisation has generally been reported as, or assumed to be, the main nitrogen removal mechanism in waste stabilisation ponds (WSP). Nitrogen removal via ammonia volatilisation is based on two observations: (a) in-pond pH values can reach high values (>9, even >10), so increasing the proportion of the total ammonia present as the un-ionized form or free ammonia (NH(3)); and (b) in-pond temperatures can also be high, so improving the mass transfer rate of free ammonia to the atmosphere. Consequently, one of the most widely accepted models for ammonia removal in WSP is that reported by Pano & Middlebrooks in 1982, which was developed to reflect the occurrence of these two observations. This work reports how simple mathematical models for ammonia volatilisation in WSP, in spite of the possibility of their giving good predictions, may not accurately describe the main pathways and mechanisms involved in ammonia removal in WSP.

  6. Helium damage and helium effusion in fully stabilised zirconia

    NASA Astrophysics Data System (ADS)

    Damen, P. M. G.; Matzke, Hj.; Ronchi, C.; Hiernaut, J.-P.; Wiss, T.; Fromknecht, R.; van Veen, A.; Labohm, F.

    2002-05-01

    Fully stabilised zirconia (FSZ) samples have been implanted with helium-ions of different energies (200 keV and 1 MeV) and with different fluences (1.4×10 13-1.4×10 16 He +/cm 2). Neutron depth profiling (NDP) for different annealing temperatures and effusion experiments in two different experimental systems with different thermal annealings have been performed on these samples. The samples were analysed by electron microscopy during the various annealing stages. For the low-fluence samples, the diffusion of helium is probably caused by vacancy assisted interstitial diffusion with an activation energy of 1.6 eV. In the highest fluence samples probably high pressure bubbles are formed during thermal annealing.

  7. Stabilising compensators for linear time-varying differential systems

    NASA Astrophysics Data System (ADS)

    Oberst, Ulrich

    2016-04-01

    In this paper, we describe a constructive test to decide whether a given linear time-varying (LTV) differential system admits a stabilising compensator for the control tasks of tracking, disturbance rejection or model matching and construct and parametrise all of them if at least one exists. In analogy to the linear time-invariant (LTI) case, the ring of stable rational functions, noncommutative in the LTV situation, and the Kučera-Youla parametrisation play prominent parts in the theory. We transfer Blumthaler's thesis from the LTI to the LTV case and sharpen, complete and simplify the corresponding results in the book 'Linear Time-Varying Systems' by Bourlès and Marinescu.

  8. Finite settling time stabilisation: the robust SISO case

    NASA Astrophysics Data System (ADS)

    Milonidis, E.; Kostarigka, A.; Karcanias, N.

    2011-09-01

    This article deals with the problem of robustness to multiplicative plant perturbations for the case of finite settling time stabilisation (FSTS) of single input single output (SISO), linear, discrete-time systems. FSTS is a generalisation of the deadbeat control and as in the case of deadbeat control the main feature of FSTS is the placement of all closed-loop poles at the origin of the z-plane. This makes FSTS sensitive to plant perturbations hence, the need of robust design. An efficient robustness index is introduced and the problem is reduced to a finite linear programme where all the benefits of the simplex method, such as effectiveness, efficiency and ability to provide complete solution to the optimisation problem, can be exploited.

  9. Pcr by Thermal Convection

    NASA Astrophysics Data System (ADS)

    Braun, Dieter

    The Polymerase Chain Reaction (PCR) allows for highly sensitive and specific amplification of DNA. It is the backbone of many genetic experiments and tests. Recently, three labs independently uncovered a novel and simple way to perform a PCR reaction. Instead of repetitive heating and cooling, a temperature gradient across the reaction vessel drives thermal convection. By convection, the reaction liquid circulates between hot and cold regions of the chamber. The convection triggers DNA amplification as the DNA melts into two single strands in the hot region and replicates into twice the amount in the cold region. The amplification progresses exponentially as the convection moves on. We review the characteristics of the different approaches and show the benefits and prospects of the method.

  10. Mesoscale/convective interaction

    NASA Technical Reports Server (NTRS)

    Haines, P. A.; Sun, W. Y.

    1988-01-01

    A novel cumulus parameterization scheme (CPS) has been developed in order to account for mesoscale/convective-scale interaction which considers both the mesoscale and convective scale mass and moisture budgets, under the assumption that the heating rate is a maximum for given environmental conditions. The basis of the CPS is a detailed, quasi-one-dimensional cloud model that calculates mass and moisture fluxes similar to those calculated by the Schlesinger (1978) three-dimensional model.

  11. Complex spatiotemporal convection patterns

    NASA Astrophysics Data System (ADS)

    Pesch, W.

    1996-09-01

    This paper reviews recent efforts to describe complex patterns in isotropic fluids (Rayleigh-Bénard convection) as well as in anisotropic liquid crystals (electro-hydrodynamic convection) when driven away from equilibrium. A numerical scheme for solving the full hydrodynamic equations is presented that allows surprisingly well for a detailed comparison with experiments. The approach can also be useful for a systematic construction of models (order parameter equations).

  12. Comparison of simulated and observed convective gravity waves

    NASA Astrophysics Data System (ADS)

    Kalisch, S.; Chun, H.-Y.; Ern, M.; Preusse, P.; Trinh, Q. T.; Eckermann, S. D.; Riese, M.

    2016-11-01

    Gravity waves (GWs) from convection have horizontal wavelengths typically shorter than 100 km. Resolving these waves in state-of-the-art atmospheric models still remains challenging. Also, their time-dependent excitation process cannot be represented by a common GW drag parametrization with static launch distribution. Thus, the aim of this paper is to investigate the excitation and three-dimensional propagation of GWs forced by deep convection in the troposphere and estimate their influence on the middle atmosphere. For that purpose, the GW ray tracer Gravity-wave Regional Or Global Ray Tracer (GROGRAT) has been coupled to the Yonsei convective GW source model. The remaining free model parameters have been constrained by measurements. This work led to a coupled convective GW model representing convective GWs forced from small cells of deep convection up to large-scale convective clusters. In order to compare our simulation results with observed global distributions of momentum flux, limitations of satellite instruments were taken into account: The observational filter of a limb-viewing satellite instrument restricts measurements of GWs to waves with horizontal wavelengths longer than 100 km. Convective GWs, however, often have shorter wavelengths. This effect is taken into account when comparing simulated and observable GW spectra. We find good overall agreement between simulated and observed GW global distributions, if superimposed with a nonorographic background spectrum for higher-latitude coverage. Our findings indicate that parts of the convective GW spectrum can indeed be observed by limb-sounding satellites.

  13. Strong stabilisation of a wind turbine tower model in the plane of the turbine blades

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaowei; Weiss, George

    2014-10-01

    We investigate the strong stabilisation of a wind turbine tower model in the plane of the turbine blades, which comprises a nonuniform NASA Spacecraft Control Laboratory Experiment (SCOLE) system and a two-mass drive-train model (with gearbox). The control input is the torque created by the electrical generator. Using a strong stabilisation theorem for a class of impedance passive linear systems with bounded control and observation operators, we show that the wind turbine tower model can be strongly stabilised. The control is by static output feedback from the angular velocities of the nacelle and the generator rotor.

  14. Supergranulation, a convective phenomenon

    NASA Astrophysics Data System (ADS)

    Udayashankar, Paniveni

    2015-08-01

    Observation of the Solar photosphere through high resolution instruments have long indicated that the surface of the Sun is not a tranquil, featureless surface but is beset with a granular appearance. These cellular velocity patterns are a visible manifestation of sub- photospheric convection currents which contribute substantially to the outward transport of energy from the deeper layers, thus maintaining the energy balance of the Sun as a whole.Convection is the chief mode of transport in the outer layers of all cool stars such as the Sun (Noyes,1982). Convection zone of thickness 30% of the Solar radius lies in the sub-photospheric layers of the Sun. Convection is revealed on four scales. On the scale of 1000 km, it is granulation and on the scale of 8-10 arcsec, it is Mesogranulation. The next hierarchial scale of convection ,Supergranules are in the range of 30-40 arcsec. The largest reported manifestation of convection in the Sun are ‘Giant Cells’or ‘Giant Granules’, on a typical length scale of about 108 m.'Supergranules' is caused by the turbulence that extends deep into the convection zone. They have a typical lifetime of about 20hr with spicules marking their boundaries. Gas rises in the centre of the supergranules and then spreads out towards the boundary and descends.Broadly speaking supergranules are characterized by the three parameters namely the length L, the lifetime T and the horizontal flow velocity vh . The interrelationships amongst these parameters can shed light on the underlying convective processes and are in agreement with the Kolmogorov theory of turbulence as applied to large scale solar convection (Krishan et al .2002 ; Paniveni et. al. 2004, 2005, 2010).References:1) Noyes, R.W., The Sun, Our Star (Harvard University Press, 1982)2) Krishan, V., Paniveni U., Singh , J., Srikanth R., 2002, MNRAS, 334/1,2303) Paniveni , U., Krishan, V., Singh, J., Srikanth, R., 2004, MNRAS, 347, 1279-12814) Paniveni , U., Krishan, V., Singh, J

  15. Convection in White Dwarfs

    NASA Astrophysics Data System (ADS)

    Provencal, Judith L.; Shipman, H.; Dalessio, J.; M, M.

    2012-01-01

    Convection is one of the largest sources of theoretical uncertainty in our understanding of stellar physics. Current studies of convective energy transport are based on the mixing length theory. Originally intended to depict turbulent flows in engineering situations, MLT enjoys moderate success in describing stellar convection. However, problems arising from MLT's incompleteness are apparent in studies ranging from determinations of the ages of massive stars, to understanding the structure F and early A stars, to predicting the pulsation periods of solar stars, to understanding the atmosphere of Titan. As an example for white dwarfs, Bergeron et al. (1995) show that model parameters such as flux, line profiles, energy distribution, color indices, and equivalent widths are extremely sensitive to the assumed MLT parameterization. The authors find systematic uncertainties ranging from 25% for effective temperatures to 11% for mass and radius. The WET is engaged in a long term project to empirically determine the physical properties of convection in the atmospheres of pulsating white dwarfs. The technique, outlined by Montgomery et al. (2010), uses information from nonlinear (non-sinusoidal) pulse shapes of the target star to empirically probe the physical properties of its convection zone. Approximately two thirds of all white dwarfs show nonlinear characteristics in their light curves. We present current results from WET targets in 2008-2011.

  16. Anomalously weak solar convection.

    PubMed

    Hanasoge, Shravan M; Duvall, Thomas L; Sreenivasan, Katepalli R

    2012-07-24

    Convection in the solar interior is thought to comprise structures on a spectrum of scales. This conclusion emerges from phenomenological studies and numerical simulations, though neither covers the proper range of dynamical parameters of solar convection. Here, we analyze observations of the wavefield in the solar photosphere using techniques of time-distance helioseismology to image flows in the solar interior. We downsample and synthesize 900 billion wavefield observations to produce 3 billion cross-correlations, which we average and fit, measuring 5 million wave travel times. Using these travel times, we deduce the underlying flow systems and study their statistics to bound convective velocity magnitudes in the solar interior, as a function of depth and spherical-harmonic degree ℓ. Within the wavenumber band ℓ < 60, convective velocities are 20-100 times weaker than current theoretical estimates. This constraint suggests the prevalence of a different paradigm of turbulence from that predicted by existing models, prompting the question: what mechanism transports the heat flux of a solar luminosity outwards? Advection is dominated by Coriolis forces for wavenumbers ℓ < 60, with Rossby numbers smaller than approximately 10(-2) at r/R([symbol: see text]) = 0.96, suggesting that the Sun may be a much faster rotator than previously thought, and that large-scale convection may be quasi-geostrophic. The fact that isorotation contours in the Sun are not coaligned with the axis of rotation suggests the presence of a latitudinal entropy gradient.

  17. Anomalously Weak Solar Convection

    NASA Technical Reports Server (NTRS)

    Hanasoge, Shravan M.; Duvall, Thomas L.; Sreenivasan, Katepalli R.

    2012-01-01

    Convection in the solar interior is thought to comprise structures on a spectrum of scales. This conclusion emerges from phenomenological studies and numerical simulations, though neither covers the proper range of dynamical parameters of solar convection. Here, we analyze observations of the wavefield in the solar photosphere using techniques of time-distance helioseismology to image flows in the solar interior. We downsample and synthesize 900 billion wavefield observations to produce 3 billion cross-correlations, which we average and fit, measuring 5 million wave travel times. Using these travel times, we deduce the underlying flow systems and study their statistics to bound convective velocity magnitudes in the solar interior, as a function of depth and spherical- harmonic degree l..Within the wavenumber band l < 60, convective velocities are 20-100 times weaker than current theoretical estimates. This constraint suggests the prevalence of a different paradigm of turbulence from that predicted by existing models, prompting the question: what mechanism transports the heat flux of a solar luminosity outwards? Advection is dominated by Coriolis forces for wavenumbers l < 60, with Rossby numbers smaller than approximately 10(exp -2) at r/R-solar = 0.96, suggesting that the Sun may be a much faster rotator than previously thought, and that large-scale convection may be quasi-geostrophic. The fact that isorotation contours in the Sun are not coaligned with the axis of rotation suggests the presence of a latitudinal entropy gradient.

  18. Convection in containerless processing.

    PubMed

    Hyers, Robert W; Matson, Douglas M; Kelton, Kenneth F; Rogers, Jan R

    2004-11-01

    Different containerless processing techniques have different strengths and weaknesses. Applying more than one technique allows various parts of a problem to be solved separately. For two research projects, one on phase selection in steels and the other on nucleation and growth of quasicrystals, a combination of experiments using electrostatic levitation (ESL) and electromagnetic levitation (EML) is appropriate. In both experiments, convection is an important variable. The convective conditions achievable with each method are compared for two very different materials: a low-viscosity, high-temperature stainless steel, and a high-viscosity, low-temperature quasicrystal-forming alloy. It is clear that the techniques are complementary when convection is a parameter to be explored in the experiments. For a number of reasons, including the sample size, temperature, and reactivity, direct measurement of the convective velocity is not feasible. Therefore, we must rely on computation techniques to estimate convection in these experiments. These models are an essential part of almost any microgravity investigation. The methods employed and results obtained for the projects levitation observation of dendrite evolution in steel ternary alloy rapid solidification (LODESTARS) and quasicrystalline undercooled alloys for space investigation (QUASI) are explained.

  19. Phenomenology of turbulent convection

    NASA Astrophysics Data System (ADS)

    Verma, Mahendra; Chatterjee, Anando; Kumar, Abhishek; Samtaney, Ravi

    2016-11-01

    We simulate Rayleigh-Bénard convection (RBC) in which a fluid is confined between two thermally conducting plates. We report results from direct numerical simulation (DNS) of RBC turbulence on 40963 grid, the highest resolution hitherto reported, on 65536 cores of Cray XC40, Shaheen II, at KAUST. The non-dimensional parameters of our simulation are: the Rayleigh number Ra = 1 . 1 ×1011 (the highest ever for a pseudo-spectral simulation) and Prandtl number of unity. We present energy flux diagnostics of shell-to-shell (in wave number space) transfer. Furthermore, noting that convective flows are anisotropic due to buoyancy, we quantify anisotropy by subdividing each wavenumber shell into rings and quantify ring energy spectrum. An outstanding question in convective turbulence is the wavenumber scaling of the energy spectrum. Our pseudo-spectral simulations of turbulent thermal convection coupled with novel energy transfer diagnostics have provided a definitive answer to this question. We conclude that convective turbulence exhibits behavior similar to fluid turbulence, that is, Kolmogorov's k - 5 / 3 spectrum with forward and local energy transfers, along with a nearly isotropic energy distribution. The supercomputer Shaheen at KAUST was utilized for the simulations.

  20. A full spectral cumulus cloud parameterisation including aerosol effects: The Convective Cloud Field Model (CCFM)

    NASA Astrophysics Data System (ADS)

    Wagner, T. M.; Graf, H. F.; Yano, J. I.

    2009-04-01

    The convective cloud field model is a convection parameterisation based on the representation of a full cumulus cloud spectrum using a dynamical quasi-equilibrium closure. It employs a one dimensional entraining parcel model whose properties are simulated on a refined vertical resolution (~100 m) in order to capture the complex cloud microphysical processes in convective clouds. We introduced an enhanced microphysics compared to those currently used in convection parameterisations, containing warm and mixed phase cloud microphysics processes and incorporates aerosol effects by linking the cloud droplet number concentration to the aerosol amount. Similar to the Arakawa and Schubert (1974) quasi-equilibrium closure we allow for the mutual influence of clouds via the environment. Instead of assuming instantaneous stabilisation of the environment though, the clouds are dynamically interacting for the length of the large scale model time step without necessarily adopting an equilibrium situation. The model is evaluated in single column mode (SCM) for continental and tropical convection using the ARM SGP and TWP-ICE cases. Moreover it is evaluated in global mode using the global atmospheric circulation model ECHAM5. For the SCM cases the precipitation, heating and moistening rates for the simulated period is better represented than with the Tiedtke massflux scheme which is the usual convection parameterisation within ECHAM5. Moreover, we find a clear response to an enhanced aerosol loading which generally leads to a reduction of convective precipitation. Globally, the CCFM produces slightly higher convective precipitation rates and especially responds better to convective instability over lower latitudes and the storm track regions.

  1. Natural convection: Fundamentals and applications

    NASA Astrophysics Data System (ADS)

    Kakac, S.; Aung, W.; Viskanta, R.

    Among the topics discussed are: stability solutions for laminar external boundary region flows; natural convection in plane layers and cavities with volumetric energy sources; and turbulence modelling equations. Consideration is also given to: natural convection in enclosures containing tube bundles; natural limiting behaviors in porous media cavity flows; numerical solutions in laminar and turbulent natural convection; and heat transfer in the critical region of binary mixtures. Additional topics discussed include: natural convective cooling of electronic equipment; natural convection suppression in solar collectors; and laser induced buoyancy and forced convection in vertical tubes.

  2. A groundwater convection model for Rio Grande rift geothermal resources

    NASA Technical Reports Server (NTRS)

    Morgan, P.; Harder, V.; Daggett, P. H.; Swanberg, C. A.

    1981-01-01

    It has been proposed that forced convection, driven by normal groundwater flow through the interconnected basins of the Rio Grande rift is the primary source mechanism for the numerous geothermal anomalies along the rift. A test of this concept using an analytical model indicates that significant forced convection must occur in the basins even if permeabilities are as low as 50-200 millidarcies at a depth of 2 km. Where groundwater flow is constricted at the discharge areas of the basins forced convection can locally increase the gradient to a level where free convection also occurs, generating surface heat flow anomalies 5-15 times background. A compilation of groundwater data for the rift basins shows a strong correlation between constrictions in groundwater flow and hot springs and geothermal anomalies, giving strong circumstantial support to the convection model.

  3. Gravity wave initiated convection

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1990-01-01

    The vertical velocity of convection initiated by gravity waves was investigated. In one particular case, the convective motion-initiated and supported by the gravity wave-induced activity (excluding contributions made by other mechanisms) reached its maximum value about one hour before the production of the funnel clouds. In another case, both rawinsonde and geosynchronous satellite imagery were used to study the life cycles of severe convective storms. Cloud modelling with input sounding data and rapid-scan imagery from GOES were used to investigate storm cloud formation, development and dissipation in terms of growth and collapse of cloud tops, as well as, the life cycles of the penetration of overshooting turrets above the tropopause. The results based on these two approaches are presented and discussed.

  4. Active control of convection

    SciTech Connect

    Bau, H.H.

    1995-12-31

    Using stability theory, numerical simulations, and in some instances experiments, it is demonstrated that the critical Rayleigh number for the bifurcation (1) from the no-motion (conduction) state to the motion state and (2) from time-independent convection to time-dependent, oscillatory convection in the thermal convection loop and Rayleigh-Benard problems can be significantly increased or decreased. This is accomplished through the use of a feedback controller effectuating small perturbations in the boundary data. The controller consists of sensors which detect deviations in the fluid`s temperature from the motionless, conductive values and then direct actuators to respond to these deviations in such a way as to suppress the naturally occurring flow instabilities. Actuators which modify the boundary`s temperature/heat flux are considered. The feedback controller can also be used to control flow patterns and generate complex dynamic behavior at relatively low Rayleigh numbers.

  5. Event-triggered control for semi-global stabilisation of systems with actuator saturation

    NASA Astrophysics Data System (ADS)

    Zhang, Liangyin; Chen, Michael Z. Q.

    2016-05-01

    This paper investigates the problem of event-triggered control for semi-global stabilisation of null controllable systems subject to actuator saturation. First, for a continuous-time system, novel event-triggered low-gain control algorithms based on Riccati equations are proposed to achieve semi-global stabilisation. The algebraic Riccati equation with a low-gain parameter is utilised to design both the event-triggering condition and the linear controller; a minimum inter-event time based on the Riccati ordinary differential equation is set a priori to exclude the Zeno behaviour. In addition, the high-low gain techniques are utilised to extend the semi-global results to event-based global stabilisation. Furthermore, for a discrete-time system, novel low-gain and high-low-gain control algorithms are proposed to achieve event-triggered stabilisation. Numerical examples are provided to illustrate the theoretical results.

  6. Dynamic quantised feedback stabilisation of discrete-time linear system with white noise input

    NASA Astrophysics Data System (ADS)

    Ji, Mingming; He, Xing; Zhang, Weidong

    2015-09-01

    In this paper, we mainly focus on the problem of quantised feedback stabilisation of a stochastic discrete-time linear system with white noise input. The dynamic quantiser is used here. The stability of the system under state quantisation and input quantisation is analysed in detail, respectively. Both the convergence of the state's mean and the boundedness of the state's covariance matrix norm should be considered when analysing its stability. It is shown that for the two situations of the state quantisation and the input quantisation, if the system without noise input can be stabilised by a linear feedback law, it must be stabilised by the dynamic quantised feedback control policy. The sufficient conditions that the dynamic quantiser should satisfy are given. Using the results obtained in this paper, one can test whether the stochastic system is stabilisable or not. Numerical examples are given to show the effectiveness of the results.

  7. Mean square stabilisation of complex oscillatory regimes in nonlinear stochastic systems

    NASA Astrophysics Data System (ADS)

    Bashkirtseva, Irina; Ryashko, Lev

    2016-04-01

    A problem of stabilisation of the randomly forced periodic and quasiperiodic modes for nonlinear dynamic systems is considered. For this problem solution, we propose a new theoretical approach to consider these modes as invariant manifolds of the stochastic differential equations with control. The aim of the control is to provide the exponential mean square (EMS) stability for these manifolds. A general method of the stabilisation based on the algebraic criterion of the EMS-stability is elaborated. A constructive technique for the design of the feedback regulators stabilising various types of oscillatory regimes is proposed. A detailed parametric analysis of the problem of the stabilisation for stochastically forced periodic and quasiperiodic modes is given. An illustrative example of stochastic Hopf system is included to demonstrate the effectiveness of the proposed technique.

  8. Magnetospheric convection at Uranus

    NASA Technical Reports Server (NTRS)

    Selesnick, R. S.

    1987-01-01

    The unusual configuration of the Uranian magnetosphere leads to differences in the relative effects of solar wind induced magnetospheric convection and plasma corotation from those at the other planets. At the present epoch the orientation of the rotation axis of Uranus with respect to the solar wind flow direction leads to a decoupling of the convective and corotational flows, allowing plasma from the tail to move unimpeded through the inner magnetosphere. As Uranus progresses in its orbit around the sun, corotation plays a gradually more important role and the plasma residence times within the magnetosphere increase. When the rotation axis finally becomes perpendicular to the solar wind flow, corotation is dominant.

  9. Feedback control and output feedback control for the stabilisation of switched Boolean networks

    NASA Astrophysics Data System (ADS)

    Li, Fangfei; Yu, Zhaoxu

    2016-02-01

    This paper presents the feedback control and output feedback control for the stabilisation of switched Boolean network. A necessary condition for the existence of a state feedback controller for the stabilisation of switched Boolean networks under arbitrary switching signal is derived first, and constructive procedures for feedback control and output feedback control design are provided. An example is introduced to show the effectiveness of this paper.

  10. CO2 dissociation in vortex-stabilised microwave plasmas

    NASA Astrophysics Data System (ADS)

    Welzel, S.; Bongers, W. A.; Graswinckel, M. F.; van de Sanden, M. C. M.

    2014-10-01

    Plasma-assisted gas conversion techniques are widely considered as efficient building blocks in a future energy infrastructure which will be based on intermittent, renewable electricity sources. CO2 dissociation in high-frequency plasmas is of particular interest in carbon capture and utilisation process chains for the production of CO2-neutral fuels. In order to achieve efficient plasma processes of high throughput specifically designed gas flow and power injection regimes are required. In this contribution vortex-stabilised microwave plasmas in undiluted CO2 were studied in a pressure range from 170 to 1000 mbar at up to 1 kW (forward) injected power, respectively. The CO2 depletion was measured downstream, e.g. by means of mass spectrometry. Although the system configuration was entirely not optimised, energy efficiencies of nearly 40%, i.e. close to the thermal dissociation limit, and conversion efficiencies of up to 23% were achieved. Additionally, spatially-resolved emission spectroscopy was applied to map the axial and radial distribution of excited atomic (C, O) and molecular (CO, C2) species along with their rotational temperatures. Eindhoven University of Technology, Postbox 513, 5600 MB Eindhoven.

  11. Enhancement of free tropospheric ozone production by deep convection

    NASA Technical Reports Server (NTRS)

    Pickering, Kenneth E.; Thompson, Anne M.; Scala, John R.; Tao, Wei-Kuo; Simpson, Joanne

    1994-01-01

    It is found from model simulations of trace gas and meteorological data from aircraft campaigns that deep convection may enhance the potential for photochemical ozone production in the middle and upper troposphere by up to a factor of 60. Examination of half a dozen individual convective episodes show that the degree of enhancement is highly variable. Factors affecting enhancement include boundary layer NO(x) mixing ratios, differences in the strength and structure of convective cells, as well as variation in the amount of background pollution already in the free troposphere.

  12. Anomalously weak solar convection

    PubMed Central

    Hanasoge, Shravan M.; Duvall, Thomas L.

    2012-01-01

    Convection in the solar interior is thought to comprise structures on a spectrum of scales. This conclusion emerges from phenomenological studies and numerical simulations, though neither covers the proper range of dynamical parameters of solar convection. Here, we analyze observations of the wavefield in the solar photosphere using techniques of time-distance helioseismology to image flows in the solar interior. We downsample and synthesize 900 billion wavefield observations to produce 3 billion cross-correlations, which we average and fit, measuring 5 million wave travel times. Using these travel times, we deduce the underlying flow systems and study their statistics to bound convective velocity magnitudes in the solar interior, as a function of depth and spherical-harmonic degree ℓ. Within the wavenumber band ℓ < 60, convective velocities are 20–100 times weaker than current theoretical estimates. This constraint suggests the prevalence of a different paradigm of turbulence from that predicted by existing models, prompting the question: what mechanism transports the heat flux of a solar luminosity outwards? Advection is dominated by Coriolis forces for wavenumbers ℓ < 60, with Rossby numbers smaller than approximately 10-2 at r/R⊙ = 0.96, suggesting that the Sun may be a much faster rotator than previously thought, and that large-scale convection may be quasi-geostrophic. The fact that isorotation contours in the Sun are not coaligned with the axis of rotation suggests the presence of a latitudinal entropy gradient. PMID:22665774

  13. Stabilisation/solidification of synthetic petroleum drill cuttings.

    PubMed

    Al-Ansary, Marwa S; Al-Tabbaa, Abir

    2007-03-15

    This paper presents the results of an experimental investigation into the use of stabilisation/solidification (S/S) to treat synthetic drill cuttings as a pre-treatment to landfilling or for potential re-use as construction products. Two synthetic mixes were used based on average concentrations of specific contaminates present in typical drill cuttings from the North Sea and the Red Sea areas. The two synthetic drill cuttings contained similar chloride content of 2.03% and 2.13% by weight but different hydrocarbon content of 4.20% and 10.95% by weight, respectively; hence the mixes were denoted as low and high oil content mixes, respectively. A number of conventional S/S binders were tested including Portland cement (PC), lime and blast-furnace slag (BFS), in addition to novel binders such as microsilica and magnesium oxide cement. Physical, chemical and microstructural analyses were used to compare the relative performance of the different binder mixes. The unconfined compressive strength (UCS) values were observed to cover a wide range depending on the binder used. Despite the significant difference in the hydrocarbon content in the two synthetic cuttings, the measured UCS values of the mixes with the same binder type and content were similar. The leachability results showed the reduction of the synthetic drill cuttings to a stable non-reactive hazardous waste, compliant with the UK acceptance criteria for non-hazardous landfills: (a) by most of the binders for chloride concentrations, and (b) by the 20% BFS-PC and 30% PC binders for the low oil content mix. The 30% BFS-PC binder successfully reduced the leached oil concentration of the low oil content mix to inert levels. Finally, the microstructural analysis offered valuable information on the morphology and general behaviour of the mixes that were not depicted by the other tests.

  14. Quantum gate generation by T-sampling stabilisation

    NASA Astrophysics Data System (ADS)

    Silveira, H. B.; Pereira da Silva, P. S.; Rouchon, P.

    2014-06-01

    This paper considers right-invariant and controllable driftless quantum systems with state X(t) evolving on the unitary group U(n) and m inputs u = (u1, …, um). The T-sampling stabilisation problem is introduced and solved: given any initial condition X0 and any goal state ?, find a control law u = u(X, t) such that ? for the closed-loop system. The purpose is to generate arbitrary quantum gates corresponding to ?. This is achieved by the tracking of T-periodic reference trajectories ? of the quantum system that pass by ? using the framework of Coron's return method. The T-periodic reference trajectories ? are generated by applying controls ? that are a sum of a finite number M of harmonics of sin (2πt/T), whose amplitudes are parameterised by a vector a. The main result establishes that, for M big enough, X(jT) exponentially converges towards ? for almost all fixed a, with explicit and completely constructive control laws. This paper also establishes a stochastic version of this deterministic control law. The key idea is to randomly choose a different parameter vector of control amplitudes a = aj at each t = jT, and keeping it fixed for t ∈ [jT, (j + 1)T). It is shown in the paper that X(jT) exponentially converges towards ? almost surely. Simulation results have indicated that the convergence speed of X(jT) may be significantly improved with such stochastic technique. This is illustrated in the generation of the C-NOT quantum logic gate on U(4).

  15. Thermocapillary Convection in Liquid Droplets

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The purpose of this video is to understand the effects of surface tension on fluid convection. The fluid system chosen is the liquid sessile droplet to show the importance in single crystal growth, the spray drying and cooling of metal, and the advance droplet radiators of the space stations radiators. A cross sectional representation of a hemispherical liquid droplet under ideal conditions is used to show internal fluid motion. A direct simulation of buoyancy-dominant convection and surface tension-dominant convection is graphically displayed. The clear differences between two mechanisms of fluid transport, thermocapillary convection, and bouncy dominant convection is illustrated.

  16. On the use of the stabilised Q1P0 element for geodynamical simulations and why this is a bad choice for buyoancy-driven flows.

    NASA Astrophysics Data System (ADS)

    Thieulot, Cedric

    2016-04-01

    Many Finite Element geodynamical codes (Fullsack,1995; Zhong et al., 2000; Thieulot, 2011) are based on bi/tri­-linear velocity constant pressure element (commonly called Q1P0), because of its ease of programming and rather low memory footprint, despite the presence of (pressure) checker­board modes. However, it is long known that the Q1P0 is not inf­-sup stable and does not lend itself to the use of iterative solvers, which makes it a less­ than­ ideal candidate for high resolution 3D models. Other attempts were made more recently (Burstedde et al., 2013; Le Pourhiet et al., 2012) with the use of the stabilised Q1Q1 element (bi/tri­-linear velocity and pressure). This element, while also attractive from an implementation and memory standpoint, suffers a major drawback due to the artificial compressibility introduced by the polynomial projection stabilization. These observations have shifted part of the community towards the Finite Difference Method while the remaining part is now embracing inf­sup stable second­ order elements [May et al., 2015; Kronbichler,2012). Rather surprinsingly, a third option exists when it comes to first ­order elements in the form of the stabilised Q1P0 element, but virtually no literature exists concerning its use for geodynamical applications. I will then recall the specificity of the stabilisation and will carry out a series of benchmark experiments and geodynamical tests to assess its performance. While being shown to work as expected in benchmark experiments, the stabilised Q1P0 element turns out to introduce first-order numerical artefacts in the velocity and pressure solutions in the case of buoyancy-driven flows. Burstedde, C., Stadler, G., Alisic, L., Wilcox, L. C., Tan, E., Gurnis, M., & Ghattas, O. (2013). Large­scale adaptive mantle convection simulation. Geophysical Journal International, 192(3), 889­906. Fullsack, P. (1995). An arbitrary Lagrangian­Eulerian formulation for creeping flows and its application in

  17. Natural convective mixing flows

    NASA Astrophysics Data System (ADS)

    Ramos, Eduardo; de La Cruz, Luis; del Castillo, Luis

    1998-11-01

    Natural convective mixing flows. Eduardo Ramos and Luis M. de La Cruz, National University of Mexico and Luis Del Castillo San Luis Potosi University. The possibility of mixing a fluid with a natural convective flow is analysed by solving numerically the mass, momentum and energy equations in a cubic container. Two opposite vertical walls of the container are assumed to have temperatures that oscillate as functions of time. The phase of the oscillations is chosen in such a way that alternating corrotating vortices are formed in the cavity. The mixing efficiency of this kind of flow is examined with a Lagrangian tracking technique. This work was partially financed by CONACyT-Mexico project number GE0044

  18. Oxygen abundance and convection

    NASA Astrophysics Data System (ADS)

    Van't Veer, C.; Cayrel, R.

    The triplet IR lines of O I near 777 nm are computed with the Kurucz's code, modified to accept several convection models. The program has been run with the MLT algorithm, with l/H = 1.25 and 0.5, and with the Canuto-Mazzitelli and Canuto-Goldman-Mazzitelli approaches, on a metal-poor turnoff-star model atmosphere with Teff=6200 K, log g = 4.3, [Fe/H]= -1.5. The results show that the differences in equivalent widths for the 4 cases do not exceed 2 per cent (0.3 mA). The convection treatment is therefore not an issue for the oxygen abundance derived from the permitted lines.

  19. Global stabilisation for a class of uncertain nonlinear time-delay systems by dynamic state and output feedback

    NASA Astrophysics Data System (ADS)

    Chai, Lin; Qian, Chunjiang

    2015-06-01

    This paper investigates the design problem of constructing the state and output feedback stabilisation controller for a class of uncertain nonlinear systems subject to time-delay. First, a dynamic linear state feedback control law with an adaptive strategy is developed to globally stabilise the uncertain nonlinear time-delay system under a lower-triangular higher-order growth condition. Then, one more challenging problem of the adaptive output feedback stabilisation is addressed, which can globally stabilise the time-delay system when the unmeasurable states linearly grow with rate functions consisting of higher-order output.

  20. Convective injection and photochemical decay of peroxides in the tropical upper troposphere: Methyl iodide as a tracer of marine convection

    NASA Astrophysics Data System (ADS)

    Cohan, Daniel S.; Schultz, Martin G.; Jacob, Daniel J.; Heikes, Brian G.; Blake, Donald R.

    1999-03-01

    The convective injection and subsequent fate of the peroxides H2O2 and CH3OOH in the upper troposphere is investigated using aircraft observations from the NASA Pacific Exploratory Mission-Tropics A (PEM-Tropics A) over the South Pacific up to 12 km altitude. Fresh convective outflow is identified by high CH3I concentrations; CH3I is an excellent tracer of marine convection because of its relatively uniform marine boundary layer concentration, relatively well-defined atmospheric lifetime against photolysis, and high sensitivity of measurement. We find that mixing ratios of CH3OOH in convective outflow at 8-12 km altitude are enhanced on average by a factor of 6 relative to background, while mixing ratios of H2O2 are enhanced by less than a factor of 2. The scavenging efficiency of H2O2 in the precipitation associated with deep convection is estimated to be 55-70%. Scavenging of CH3OOH is negligible. Photolysis of convected peroxides is a major source of the HOx radical family (OH + peroxy radicals) in convective outflow. The timescale for decay of the convective enhancement of peroxides in the upper troposphere is determined using CH3I as a chemical clock and is interpreted using photochemical model calculations. Decline of CH3OOH takes place on a timescale of a 1-2 days, but the resulting HOx converts to H2O2, so H2O2 mixing ratios show no decline for ˜5 days following a convective event. The perturbation to HOx at 8-12 km altitude from deep convective injection of peroxides decays on a timescale of 2-3 days for the PEM-Tropics A conditions.

  1. Thermal Vibrational Convection

    NASA Astrophysics Data System (ADS)

    Gershuni, G. Z.; Lyubimov, D. V.

    1998-08-01

    Recent increasing awareness of the ways in which vibrational effects can affect low-gravity experiments have renewed interest in the study of thermal vibrational convection across a wide range of fields. For example, in applications where vibrational effects are used to provide active control of heat and mass transfer, such as in heat exchangers, stirrers, mineral separators and crystal growth, a sound understanding of the fundamental theory is required. In Thermal Vibrational Convection, the authors present the theory of vibrational effects caused by a static gravity field, and of fluid flows which appear under vibration in fluid-filled cavities. The first part of the book discusses fluid-filled cavities where the fluid motion only appears in the presence of temperature non-uniformities, while the second considers those situations where the vibrational effects are caused by a non-uniform field. Throughout, the authors concentrate on consideration of high frequency vibrations, where averaging methods can be successfully applied in the study of the phenomena. Written by two of the pioneers in this field, Thermal Vibrational Convection will be of great interest to scientists and engineers working in the many areas that are concerned with vibration, and its effect on heat and mass transfer. These include hydrodynamics, hydro-mechanics, low gravity physics and mechanics, and geophysics. The rigorous approach adopted in presenting the theory of this fascinating and highly topical area will facilitate a greater understanding of the phenomena involved, and will lead to the development of more and better-designed experiments.

  2. The Solar Convection Spectrum

    NASA Technical Reports Server (NTRS)

    Bachmann, Kurt T.

    2000-01-01

    I helped to complete a research project with NASA scientists Dr. David Hathaway (my mentor), Rick Bogart, and John Beck from the SOHO/SOI collaboration. Our published paper in 'Solar Physics' was titled 'The Solar Convection Spectrum' (April 2000). Two of my undergraduate students were named on the paper--Gavrav Khutri and Josh Petitto. Gavrav also wrote a short paper for the National Conference of Undergraduate Research Proceedings in 1998 using a preliminary result. Our main result was that we show no evidence of a scale of convection named 'mesogranulation'. Instead, we see only direct evidence for the well-known scales of convection known as graduation and supergranulation. We are also completing work on vertical versus horizontal flow fluxes at the solar surface. I continue to work on phase relationships of solar activity indicators, but I have not yet written a paper with my students on this topic. Along with my research results, I have developed and augmented undergraduate courses at Birmingham-Southern College by myself and with other faculty. We have included new labs and observations, speakers from NASA and elsewhere, new subject material related to NASA and space science. I have done a great deal of work in outreach, mostly as President and other offices in the Birmingham Astronomical Society. My work includes speaking, attracting speakers, giving workshops, and governing.

  3. Effect of particle adsorption rates on the disproportionation process in pickering stabilised bubbles

    NASA Astrophysics Data System (ADS)

    Ettelaie, Rammile; Murray, Brent

    2014-05-01

    The degree of shrinkage of particle stabilised bubbles of various sizes, in a polydisperse bubble dispersion, has been investigated in the light of the finite adsorption times for the particles and the disproportionation kinetics of the bubbles. For the case where the system contains an abundance of particles we find a threshold radius, above which bubbles are stabilised without any significant reduction in their size. Bubbles with an initial radius below this threshold on the other hand undergo a large degree of shrinkage prior to stabilisation. As the ratio of the available particles to the bubbles is reduced, it is shown that the final bubble size, for the larger bubbles in the distribution, becomes increasingly governed by the number of particles, rather than their adsorption time per se. For systems with "adsorption controlled" shrinkage ratio, the final bubble distribution is found to be wider than the initial one, while for a "particle number controlled" case it is actually narrower. Starting from a unimodal bubble size distribution, we predict that at intermediate times, prior to the full stabilisation of all bubbles, the distribution breaks up into a bimodal one. However, the effect is transient and a unimodal final bubble size distribution is recovered, when all the bubbles are stabilised by the particles.

  4. Enhanced stabilisation of trapped electron modes by collisional energy scattering in tokamaks

    SciTech Connect

    Manas, P.; Camenen, Y.; Benkadda, S.; Hornsby, W. A.; Peeters, A. G.

    2015-06-15

    The collisional stabilisation via energy scattering and pitch-angle scattering of micro-instabilities in tokamak plasmas is investigated by means of gyrokinetic simulations with a special emphasis on the often neglected energy scattering operator. It is shown that in the linear regime energy scattering has a negligible effect on Ion Temperature Gradient (ITG) modes but enhances the stabilisation of Trapped Electron Modes (TEM) in presence of nonzero ion temperature and density gradients. This stabilisation is sensitive to the model used for the energy restoring term in the collision operator. The contributions of parallel and drift motion to the total growth rate in velocity space are used to characterize the complex stabilisation mechanisms behind pitch-angle and energy scattering for a range of relevant parameters such as the magnetic shear, the collisionality, the logarithmic density gradient, and the logarithmic ion temperature gradient. It is shown that depending on these parameters, energy scattering stabilisation of TEM can be either due to a decrease of the contribution from drifting trapped electrons or to an increase of the contribution from the parallel motion of passing electrons. Finally, for a standard ITG/TEM case, the effect of energy scattering on the nonlinear heat and particle fluxes is investigated.

  5. Acetabular Fractures in the Elderly: Midterm Outcomes of Column Stabilisation and Primary Arthroplasty

    PubMed Central

    Ortega-Briones, A.; Smith, S.

    2017-01-01

    Background. Interest in arthroplasty techniques for periarticular or intra-articular fractures in the elderly/osteoporotic patient continues to rise, including for geriatric acetabular fractures. In line with this, many acetabular fracture surgeons are now undertaking acute total hip arthroplasty in elderly/osteoporotic patients. Little is known however of the outcomes of this procedure, beyond the first year after surgery. Questions/Purposes. We determined the clinical outcomes of a series of elderly osteoporotic patients (mean age at surgery 77.4 years) treated for acetabular fractures with column fixation and simultaneous total hip arthroplasty, at a mean of 49 months after surgery. Methods. 24 patients (25 hips) were reviewed at a mean of 49 months after surgery. The surgical technique employed has previously been described. Radiographs were obtained, and clinical outcomes were assessed using Harris Hip Scores and the Merle d'Aubigné score. Results. 14 hips were available for assessment (9 deceased, 2 lost to follow-up). No patient suffered any complications beyond the perioperative period, no acetabular components were loose clinically or on latest radiographs, and the mean Harris Hip Score was 92. All but one patient scored good or excellent on the Merle d'Aubigné score. Conclusions. Column fixation and simultaneous total hip arthroplasty are a viable option for complex geriatric acetabular fractures, with encouraging midterm results. We conclude that THR is a viable long-term solution in this situation provided that the acetabular columns are stabilised prior to implantation, but more research is needed to aid in overall management decision making. PMID:28194414

  6. Observers and output feedback stabilising controllers for nonlinear strict-feedback systems with sampled observation

    NASA Astrophysics Data System (ADS)

    Katayama, Hitoshi

    2016-02-01

    The design of observers and output feedback stabilising controllers for continuous-time strict-feedback systems with sampled observation is considered. First two types of observers are designed. One is a discrete-time semiglobal and practical reduced-order observer for the exact model and the other is a continuous-time semiglobal and practical full-order observer for continuous-time strict feedback systems with sampled observation. Then by combining the designed continuous-time observers and continuous-time state feedback laws that are continuous, zero at the origin, and uniformly globally asymptotically stabilise continuous-time systems, output feedback semiglobally practically uniformly asymptotically stabilising controllers are constructed. Numerical examples are given to illustrate the proposed design of observers and output feedback controllers.

  7. Global asymptotic stabilisation in probability of nonlinear stochastic systems via passivity

    NASA Astrophysics Data System (ADS)

    Florchinger, Patrick

    2016-07-01

    The purpose of this paper is to develop a systematic method for global asymptotic stabilisation in probability of nonlinear control stochastic systems with stable in probability unforced dynamics. The method is based on the theory of passivity for nonaffine stochastic differential systems combined with the technique of Lyapunov asymptotic stability in probability for stochastic differential equations. In particular, we prove that a nonlinear stochastic differential system whose unforced dynamics are Lyapunov stable in probability is globally asymptotically stabilisable in probability provided some rank conditions involving the affine part of the system coefficients are satisfied. In this framework, we show that a stabilising smooth state feedback law can be designed explicitly. A dynamic output feedback compensator for a class of nonaffine stochastic systems is constructed as an application of our analysis.

  8. The effect of environmentally relevant conditions on PVP stabilised gold nanoparticles.

    PubMed

    Hitchman, Adam; Smith, Gregory H Sambrook; Ju-Nam, Yon; Sterling, Mark; Lead, Jamie R

    2013-01-01

    Nanoparticles are a major product from the nanotechnology industry and have been shown to have a potentially large environmental exposure and hazard. In this study, sterically stabilised polyvinyl pyrrolidone (PVP) 7 nm gold nanoparticles (NPs) were produced and characterised as prepared by surface plasmon resonance (SPR), size and aggregation, morphology and surface charge. Changes in these properties with changes in environmentally relevant conditions (pH, ionic strength, Ca concentration and fulvic acid presence) were quantified. These sterically stabilised NPs showed no aggregation with changes in pH or inorganic ions, even under high (0.1 M) Ca concentrations. In addition, the presence of fulvic acid resulted in no observable changes in SPR, size, aggregation or surface chemistry, suggesting limited interaction between the PVP stabilised nanoparticles and fulvic acid. Due to the lack of aggregation and interaction, these NPs are expected to be highly mobile and potentially bioavailable in the environment.

  9. Solidification/stabilisation of liquid oil waste in metakaolin-based geopolymer

    NASA Astrophysics Data System (ADS)

    Cantarel, V.; Nouaille, F.; Rooses, A.; Lambertin, D.; Poulesquen, A.; Frizon, F.

    2015-09-01

    The solidification/stabilisation of liquid oil waste in metakaolin based geopolymer was studied in the present work. The process consists of obtaining a stabilised emulsion of oil in a water-glass solution and then adding metakaolin to engage the setting of a geopolymer block with an oil emulsion stabilised in the material. Geopolymer/oil composites have been made with various oil fraction (7, 14 and 20 vol.%). The rigidity and the good mechanical properties have been demonstrated with compressive strength tests. Leaching tests evidenced the release of oil from the composite material is very limited whereas the constitutive components of the geopolymer (Na, Si and OH-) are involved into diffusion process.

  10. Early Spin-Stabilised Rockets - the Rockets of Bergrat Heinrich Gottlob Kuhn

    NASA Astrophysics Data System (ADS)

    Fricke, H.-D.

    19th century's war rockets were at first stabilised by sticks, but these sticks produced a very uncertain flight path and it often happened that rockets changed their direction and even flew back to their firing position. So very many early inventors in Europe, America, and British-India tried to stabilise the rocket's flight in a better way. They tried fins and even rotation but they did not succeed. It is said in history that William Hale was the first who succeeded in constructing a spin stabilised (i.e. rotating) rocket which worked. But before him, in the thirties of that century, a German amateur rocket inventor succeeded as well and secretly proved his stickless rotating rockets in trials for Prussian officers and some years later officially for Saxon artillery officers. His invention was then bought by the kingdom of Saxony, but these were never use in the field because of lack of money.

  11. Effective solidification/stabilisation of mercury-contaminated wastes using zeolites and chemically bonded phosphate ceramics.

    PubMed

    Zhang, Shaoqing; Zhang, Xinyan; Xiong, Ya; Wang, Guoping; Zheng, Na

    2015-02-01

    In this study, two kinds of zeolites materials (natural zeolite and thiol-functionalised zeolite) were added to the chemically bonded phosphate ceramic processes to treat mercury-contaminated wastes. Strong promotion effects of zeolites (natural zeolite and thiol-functionalised zeolite) on the stability of mercury in the wastes were obtained and these technologies showed promising advantages toward the traditional Portland cement process, i.e. using Portland cement as a solidification agent and natural or thiol-functionalised zeolite as a stabilisation agent. Not only is a high stabilisation efficiency (lowered the Toxicity Characteristic Leaching Procedure Hg by above 10%) obtained, but also a lower dosage of solidification (for thiol-functionalised zeolite as stabilisation agent, 0.5 g g(-1) and 0.7 g g(-1) for chemically bonded phosphate ceramic and Portland cement, respectively) and stabilisation agents (for natural zeolite as stabilisation agent, 0.35 g g(-1) and 0.4 g g(-1) for chemically bonded phosphate ceramic and Portland cement, respectively) were used compared with the Portland cement process. Treated by thiol-functionalised zeolite and chemically bonded phosphate ceramic under optimum parameters, the waste containing 1500 mg Hg kg(-1) passed the Toxicity Characteristic Leaching Procedure test. Moreover, stabilisation/solidification technology using natural zeolite and chemically bonded phosphate ceramic also passed the Toxicity Characteristic Leaching Procedure test (the mercury waste containing 625 mg Hg kg(-1)). Moreover, the presence of chloride and phosphate did not have a negative effect on the chemically bonded phosphate ceramic/thiol-functionalised zeolite treatment process; thus, showing potential for future application in treatment of 'difficult-to-manage' mercury-contaminated wastes or landfill disposal with high phosphate and chloride content.

  12. Plasma convection in Neptune's magnetosphere

    NASA Technical Reports Server (NTRS)

    Selesnick, R. S.

    1990-01-01

    The magnetosphere of Neptune changes its magnetic configuration continuously as the planet rotates, leading to a strong modulation of the convection electric field. Even though the corotation speed is considerably larger, the modulation causes the small convection speed to have a cumulative effect, much like the acceleration of particles in a cyclotron. A model calculation shows that plasma on one side of the planet convects out of the magnetosphere in a few planetary rotations, while on the other side it convects slowly planetward. The observation of nitrogen ions from a Triton plasma torus may provide a critical test of the model.

  13. Robust stabilisation and L2 -gain analysis for switched systems with actuator saturation under asynchronous switching

    NASA Astrophysics Data System (ADS)

    Wang, Juan; Zhao, Jun

    2016-09-01

    Robust stabilisation and L2-gain analysis for a class of switched systems with actuator saturation are studied in this paper. The switching signal of the controllers lags behind that of the system modes, which leads to the asynchronous switching between the candidate controllers and the subsystems. By combining the piecewise Lyapunov function method with the convex hull technique, sufficient conditions in terms of LMIs for the solvability of the robust stabilisation and weighted L2-gain problems are presented respectively under the dwell time scheme. Finally, a numerical example is given to demonstrate the feasibility and effectiveness of the proposed results.

  14. Global finite-time output feedback stabilisation for a class of uncertain nontriangular nonlinear systems

    NASA Astrophysics Data System (ADS)

    Zhai, Jun-Yong

    2014-03-01

    This article addresses the problem of global finite-time output feedback stabilisation for a class of nonlinear systems in nontriangular form with an unknown output function. Since the output function is not precisely known, traditional observers based on the output is not implementable. We first design a state observer and use the observer states to construct a controller to globally stabilise the nominal system without the perturbing nonlinearities. Then, we apply the homogeneous domination approach to design a scaled homogeneous observer and controller with an appropriate choice of gain to render the nonlinear system globally finite-time stable.

  15. H ∞ output feedback stabilisation of linear discrete-time systems with impulses

    NASA Astrophysics Data System (ADS)

    Zhao, Shouwei; Sun, Jitao; Pan, Shengtao

    2010-10-01

    This article addresses the issue of designing an H ∞ output feedback controller for linear discrete-time systems with impulses. First, a new concept of H ∞ output feedback stabilisation for general linear discrete-time systems with impulses is introduced. Then sufficient linear matrix inequality conditions for the stabilisation and H ∞ performance of general discrete systems with impulses are proposed. In addition, the result is applied to resolve typical output feedback control problems for systems with impulses, such as the decentralised H ∞ output feedback control and the simultaneous H ∞ output feedback control. Finally, a numerical simulation is also presented to illustrate the effectiveness of the proposed results.

  16. Global output feedback stabilisation of nonlinear systems with a unifying linear controller structure

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Lin, Yan

    2014-02-01

    We investigate the problem of global stabilisation by linear output feedback for a class of uncertain nonlinear systems with zero-dynamics. Compared with the previous works, new dilation-based assumptions are introduced that allow the system nonlinearities and its bounding functions to be coupled with all the states. The nonlinear systems of this paper can be considered as an extended form of some low triangular and feedforward systems. Dynamic gain scaling technique is applied to the controller design and stability analysis. It is proved that with a unifying linear controller structure and flexible adaptive laws for the observer gain, global stabilisation of the nonlinear systems can be achieved.

  17. Stabilisation for switched linear systems with time-varying delay and input saturation

    NASA Astrophysics Data System (ADS)

    Chen, Yonggang; Fei, Shumin; Zhang, Kanjian

    2014-03-01

    This article investigates the stabilisation problems for continuous-time and discrete-time switched systems with time-varying delay and saturated control input. Based on dwell time switching signals and multiple Lyapunov functional method, stabilisation conditions are well obtained in the context of linear matrix inequalities. To estimate attractive regions as large as possible, the feasibility problems are translated into optimisation problems. In addition, the corresponding results are presented for linear time-delay systems and switched delay-free systems, which improve and supplement some existing ones in the literature. Finally, numerical examples and simulations are given to illustrate the effectiveness and values of the proposed results.

  18. Stabilisation analysis for switched neutral systems based on sampled-data control

    NASA Astrophysics Data System (ADS)

    Krishnasamy, R.; Balasubramaniam, P.

    2015-10-01

    In this paper, the problem of stabilisation analysis for switched neutral systems based on sampled-data control and average dwell time approach is investigated. Delay-dependent stabilisation results are derived in terms of linear matrix inequalities by constructing piecewise Lyapunov-Krasovskii functional based on the Wirtinger's inequality. Also, the controller gain matrix is designed by applying an input-delay approach. Further convex combination technique and some integral inequalities are used to derive less conservative results. The effectiveness of the derived results is validated through numerical examples.

  19. Bidispersive-inclined convection

    NASA Astrophysics Data System (ADS)

    Falsaperla, Paolo; Mulone, Giuseppe; Straughan, Brian

    2016-08-01

    A model is presented for thermal convection in an inclined layer of porous material when the medium has a bidispersive structure. Thus, there are the usual macropores which are full of a fluid, but there are also a system of micropores full of the same fluid. The model we employ is a modification of the one proposed by Nield & Kuznetsov (2006 Int. J. Heat Mass Transf. 49, 3068-3074. (doi:10.1016/j.ijheatmasstransfer.2006.02.008)), although we consider a single temperature field only.

  20. Zoned mantle convection.

    PubMed

    Albarède, Francis; Van Der Hilst, Rob D

    2002-11-15

    We review the present state of our understanding of mantle convection with respect to geochemical and geophysical evidence and we suggest a model for mantle convection and its evolution over the Earth's history that can reconcile this evidence. Whole-mantle convection, even with material segregated within the D" region just above the core-mantle boundary, is incompatible with the budget of argon and helium and with the inventory of heat sources required by the thermal evolution of the Earth. We show that the deep-mantle composition in lithophilic incompatible elements is inconsistent with the storage of old plates of ordinary oceanic lithosphere, i.e. with the concept of a plate graveyard. Isotopic inventories indicate that the deep-mantle composition is not correctly accounted for by continental debris, primitive material or subducted slabs containing normal oceanic crust. Seismological observations have begun to hint at compositional heterogeneity in the bottom 1000 km or so of the mantle, but there is no compelling evidence in support of an interface between deep and shallow mantle at mid-depth. We suggest that in a system of thermochemical convection, lithospheric plates subduct to a depth that depends - in a complicated fashion - on their composition and thermal structure. The thermal structure of the sinking plates is primarily determined by the direction and rate of convergence, the age of the lithosphere at the trench, the sinking rate and the variation of these parameters over time (i.e. plate-tectonic history) and is not the same for all subduction systems. The sinking rate in the mantle is determined by a combination of thermal (negative) and compositional buoyancy and as regards the latter we consider in particular the effect of the loading of plates with basaltic plateaux produced by plume heads. Barren oceanic plates are relatively buoyant and may be recycled preferentially in the shallow mantle. Oceanic plateau-laden plates have a more pronounced

  1. Active control of convection

    NASA Astrophysics Data System (ADS)

    Singer, Jonathan; Bau, Haim H.

    1991-12-01

    It is demonstrated theoretically that active (feedback) control can be used to alter the characteristics of thermal convection in a toroidal, vertical loop heated from below and cooled from above. As the temperature difference between the heated and cooled sections of the loop increases, the flow in the uncontrolled loop changes from no motion to steady, time-independent motion to temporally oscillatory, chaotic motion. With the use of a feedback controller effecting small perturbations in the boundary conditions, one can maintain the no-motion state at significantly higher temperature differences than the critical one corresponding to the onset of convection in the uncontrolled system. Alternatively, one can maintain steady, time-independent flow under conditions in which the flow would otherwise be chaotic. That is, the controller can be used to suppress chaos. Likewise, it is possible to stabilize periodic nonstable orbits that exist in the chaotic regime of the uncontrolled system. Finally, the controller also can be used to induce chaos in otherwise laminar (fully predictable), nonchaotic flow.

  2. Convective dynamos for rotating stars

    NASA Technical Reports Server (NTRS)

    Gilman, P. A.

    1981-01-01

    Global dynamo theory is applied to the problem of why some stars have field reversing dynamos, and others do not. It is argued that convectively driven dynamos are the most likely source of magnetic fields in stars that have convection zones.

  3. Multicloud parametrization of mesoscale convective systems for the ITCZ

    NASA Astrophysics Data System (ADS)

    Khouider, B.; Moncrieff, M. W.

    2014-12-01

    Mesoscale convective systems (MCS), aligned approximately parallel to the background low-level wind shear, are ubiquitous in the Eastern Pacific intertropical convergence zone (ITCZ). They are believed to control the local Hadley circulation and have a nontrivial momentum feedback on the ambient shear. They also play a central role in the two-way interactions between convection and the synoptic and planetary scale waves. They do so by serving as both the building block for organized convection, which involves congestus cloud decks that moisten and precondition the environment for deep convection which in turn is lagged by stratiform anvils, and as a conveyer belt for convective momentum transport (CMT). Here, we propose an extension of the multicloud model of Khouider and Majda (2006) to make the stratiform anvils more sensitive to the background wind shear profile. We do so by invoking two layers of moisture in the free troposphere instead of one, in addition to the boundary layer. Linear stability, in a wind shear background consisting of both mid-level and low-level easterly jets, representing, simultaneously, the Tropical Easterly and African Easterly jets, features the usual synoptic scale instability of the multicloud model plus two new instability bands at the meso-alpha and meso-beta scales, respectively. The meso-alpha and meso-beta modes constitute a paradigm for the dynamics of shear parallel convective systems with the meso-alpha waves being the quasi-stationary systems. In this talk we will present limited domain 3D simulations, without rotation, of realistic shear parallel lines of convection with parallel stratifrom anvils moving eastward, with a steering level in the upper troposphere, as a mesoscale envelope of the individual convective cells moving inwards, with a steering level in the lower troposphere. This provides, among other things, an excellent example of nontrivial CMT effect on the background low-level wind. It results in a narrow channel

  4. Towards a General Understanding of Carbonyl‐Stabilised Ammonium Ylide‐Mediated Epoxidation Reactions

    PubMed Central

    Novacek, Johanna; Roiser, Lukas; Zielke, Katharina

    2016-01-01

    Abstract The key factors for carbonyl‐stabilised ammonium ylide‐mediated epoxidation reactions were systematically investigated by experimental and computational means and the hereby obtained energy profiles provide explanations for the observed experimental results. In addition, we were able to identify the first tertiary amine‐based chiral auxiliary that allows for high enantioselectivities and high yields for such epoxidation reactions. PMID:27381752

  5. Stabilisation of proteins via mixtures of amino acids during spray drying.

    PubMed

    Ajmera, Ankur; Scherließ, Regina

    2014-03-10

    Biologicals are often formulated as solids in an effort to preserve stability which generally requires stabilising excipients for proper drying. The purpose of this study was to screen amino acids and their combinations for their stabilising effect on proteins during spray drying. Catalase, as model protein, was spray dried in 1+1 or 1+2 ratios with amino acids. Some amino acids namely arginine, glycine and histidine showed good retention of catalase functionality after spray drying and subsequent storage stress. A 1+1 combination of arginine and glycine in a 1+2 ratio with catalase resulted in a tremendously good stabilising effect. Storage at high temperature/humidity also showed beneficial effects of this combination. To evaluate whether this was a general principle, these findings were transferred to an antigenic protein of comparable size and supramolecular structure (haemagglutinin) as well as to a smaller enzyme (lysozyme). Upon spray drying with the combination of amino acids it could be shown that both proteins remain more stable especially after storage compared to the unprotected protein. The combination of arginine and glycine is tailored to the needs of protein stabilisation during spray drying and may hence be utilised in dry powder formulation of biomolecules with superior stability characteristics.

  6. 'A tradition of forgetting': stabilisation and humanitarian action in historical perspective.

    PubMed

    Barakat, Sultan; Deely, Seán; Zyck, Steven A

    2010-10-01

    While subject to increasing articulation and institutionalisation, stabilisation is a long-standing concept and practice that has consistently engaged with and, at times, conflicted with varied understandings of humanitarianism and humanitarian action. Reviewing selected historical experiences, including the Philippines (1898-1902), Algeria (1956-62), Vietnam (1967-75) and El Salvador (1980-92), this paper argues that contemporary models of stabilisation build on and repeat mistakes of the past, particularly the overt securitisation of aid and the perception that humanitarian and development actors are able to purchase security effectively. Where current stabilisation differs from its earlier incarnations, as in the introduction of the private sector and incorporation of humanitarian action into war-fighting strategies, the implications are shown to be troubling if not outright disastrous. T his examination of historical experience, which includes many failures and few, if any, successes, raises the likelihood that it is not solely the design or implementation of individual stability operations that require modification but perhaps the entire concept of stabilisation itself.

  7. CONTROL OF LASER RADIATION PARAMETERS: Stabilisation of a laser by the calculated quantum transition frequency

    NASA Astrophysics Data System (ADS)

    Bagaev, S. N.; Dmitriev, A. K.; Lugovoy, A. A.

    2008-01-01

    A method is proposed to stabilise the frequency of a He—Ne laser with an intracavity nonlinear absorption cell by the calculated frequency of the 7→6 transition of F2(2)P(7)ν3 in methane. The long-term frequency stability and reproducibility are measured for a He—Ne/CH4 laser with a telescopic cavity.

  8. Measurement of wind profiles by motion-stabilised ship-borne Doppler lidar

    NASA Astrophysics Data System (ADS)

    Achtert, P.; Brooks, I. M.; Brooks, B. J.; Moat, B. I.; Prytherch, J.; Persson, P. O. G.; Tjernström, M.

    2015-09-01

    Three months of Doppler lidar wind measurements were obtained during the Arctic Cloud Summer Experiment on the icebreaker Oden during the summer of 2014. Such ship-borne measurements require active stabilisation to remove the effects of ship motion. We demonstrate that the combination of a commercial Doppler lidar with a custom-made motion-stabilisation platform enables the retrieval of wind profiles in the Arctic boundary layer during both cruising and ice-breaking with statistical uncertainties comparable to land-based measurements. This holds particularly within the planetary boundary layer even though the overall aerosol load was very low. Motion stabilisation was successful for high wind speeds in open water and the resulting wave conditions. It allows for the retrieval of winds with a random error below 0.2 m s-1, comparable to the measurement error of standard radiosondes. The combination of a motion-stabilised platform with a low-maintenance autonomous Doppler lidar has the potential to enable continuous long-term high-resolution ship-based wind profile measurements over the oceans.

  9. Arsenic and copper stabilisation in a contaminated soil by coal fly ash and green waste compost.

    PubMed

    Tsang, Daniel C W; Yip, Alex C K; Olds, William E; Weber, Paul A

    2014-09-01

    In situ metal stabilisation by amendments has been demonstrated as an appealing low-cost remediation strategy for contaminated soil. This study investigated the short-term leaching behaviour and long-term stability of As and Cu in soil amended with coal fly ash and/or green waste compost. Locally abundant inorganic (limestone and bentonite) and carbonaceous (lignite) resources were also studied for comparison. Column leaching experiments revealed that coal fly ash outperformed limestone and bentonite amendments for As stabilisation. It also maintained the As stability under continuous leaching of acidic solution, which was potentially attributed to high-affinity adsorption, co-precipitation, and pozzolanic reaction of coal fly ash. However, Cu leaching in the column experiments could not be mitigated by any of these inorganic amendments, suggesting the need for co-addition of carbonaceous materials that provides strong chelation with oxygen-containing functional groups for Cu stabilisation. Green waste compost suppressed the Cu leaching more effectively than lignite due to the difference in chemical composition and dissolved organic matter. After 9-month soil incubation, coal fly ash was able to minimise the concentrations of As and Cu in the soil solution without the addition of carbonaceous materials. Nevertheless, leachability tests suggested that the provision of green waste compost and lignite augmented the simultaneous reduction of As and Cu leachability in a fairly aggressive leaching environment. These results highlight the importance of assessing stability and remobilisation of sequestered metals under varying environmental conditions for ensuring a plausible and enduring soil stabilisation.

  10. Measurement of wind profiles by motion-stabilised ship-borne Doppler lidar

    NASA Astrophysics Data System (ADS)

    Achtert, P.; Brooks, I. M.; Brooks, B. J.; Moat, B. I.; Prytherch, J.; Persson, P. O. G.; Tjernström, M.

    2015-11-01

    Three months of Doppler lidar wind measurements were obtained during the Arctic Cloud Summer Experiment on the icebreaker Oden during the summer of 2014. Such ship-borne Doppler measurements require active stabilisation to remove the effects of ship motion. We demonstrate that the combination of a commercial Doppler lidar with a custom-made motion-stabilisation platform enables the retrieval of wind profiles in the Arctic atmospheric boundary layer during both cruising and ice-breaking with statistical uncertainties comparable to land-based measurements. This held true particularly within the atmospheric boundary layer even though the overall aerosol load was very low. Motion stabilisation was successful for high wind speeds in open water and the resulting wave conditions. It allows for the retrieval of vertical winds with a random error below 0.2 m s-1. The comparison of lidar-measured wind and radio soundings gives a mean bias of 0.3 m s-1 (2°) and a mean standard deviation of 1.1 m s-1 (12°) for wind speed (wind direction). The agreement for wind direction degrades with height. The combination of a motion-stabilised platform with a low-maintenance autonomous Doppler lidar has the potential to enable continuous long-term high-resolution ship-based wind profile measurements over the oceans.

  11. The Stabilisation of Enzymes — a Key Factor in the Practical Application of Biocatalysis

    NASA Astrophysics Data System (ADS)

    Martinek, K.; Berezin, I. B.

    1980-05-01

    The present state of the problem of the practical application of biocatalysis is examined and physicochemical approaches whereby the denaturation of enzymes under the influence of elevated temperatures, extreme pH values, and organic solvents can be suppressed are analysed. The general principles of the stabilisation of enzymes are formulated. The bibliography includes 225 references.

  12. Dynamics of Compressible Convection and Thermochemical Mantle Convection

    NASA Astrophysics Data System (ADS)

    Liu, Xi

    The Earth's long-wavelength geoid anomalies have long been used to constrain the dynamics and viscosity structure of the mantle in an isochemical, whole-mantle convection model. However, there is strong evidence that the seismically observed large low shear velocity provinces (LLSVPs) in the lowermost mantle are chemically distinct and denser than the ambient mantle. In this thesis, I investigated how chemically distinct and dense piles influence the geoid. I formulated dynamically self-consistent 3D spherical convection models with realistic mantle viscosity structure which reproduce Earth's dominantly spherical harmonic degree-2 convection. The models revealed a compensation effect of the chemically dense LLSVPs. Next, I formulated instantaneous flow models based on seismic tomography to compute the geoid and constrain mantle viscosity assuming thermochemical convection with the compensation effect. Thermochemical models reconcile the geoid observations. The viscosity structure inverted for thermochemical models is nearly identical to that of whole-mantle models, and both prefer weak transition zone. Our results have implications for mineral physics, seismic tomographic studies, and mantle convection modelling. Another part of this thesis describes analyses of the influence of mantle compressibility on thermal convection in an isoviscous and compressible fluid with infinite Prandtl number. A new formulation of the propagator matrix method is implemented to compute the critical Rayleigh number and the corresponding eigenfunctions for compressible convection. Heat flux and thermal boundary layer properties are quantified in numerical models and scaling laws are developed.

  13. Temperature-Driven Convection

    NASA Astrophysics Data System (ADS)

    Bohan, Richard J.; Vandegrift, Guy

    2003-02-01

    Warm air aloft is stable. This explains the lack of strong winds in a warm front and how nighttime radiative cooling can lead to motionless air that can trap smog. The stability of stratospheric air can be attributed to the fact that it is heated from above as ultraviolet radiation strikes the ozone layer. On the other hand, fluid heated from below is unstable and can lead to Bernard convection cells. This explains the generally turbulent nature of the troposphere, which receives a significant fraction of its heat directly from the Earth's warmer surface. The instability of cold fluid aloft explains the violent nature of a cold front, as well as the motion of Earth's magma, which is driven by radioactive heating deep within the Earth's mantle. This paper describes how both effects can be demonstrated using four standard beakers, ice, and a bit of food coloring.

  14. Towards 12% stabilised efficiency in single junction polymorphous silicon solar cells: experimental developments and model predictions

    NASA Astrophysics Data System (ADS)

    Abolmasov, Sergey; Cabarrocas, Pere Roca i.; Chatterjee, Parsathi

    2016-01-01

    We have combined recent experimental developments in our laboratory with modelling to devise ways of maximising the stabilised efficiency of hydrogenated amorphous silicon (a-Si:H) PIN solar cells. The cells were fabricated using the conventional plasma enhanced chemical vapour deposition (PECVD) technique at various temperatures, pressures and gas flow ratios. A detailed electrical-optical simulator was used to examine the effect of using wide band gap P-and N-doped μc-SiOx:H layers, as well as a MgF2 anti-reflection coating (ARC) on cell performance. We find that with the best quality a-Si:H so far produced in our laboratory and optimised deposition parameters for the corresponding solar cell, we could not attain a 10% stabilised efficiency due to the high stabilised defect density of a-Si:H, although this landmark has been achieved in some laboratories. On the other hand, a close cousin of a-Si:H, hydrogenated polymorphous silicon (pm-Si:H), a nano-structured silicon thin film produced by PECVD under conditions close to powder formation, has been developed in our laboratory. This material has been shown to have a lower initial and stabilised defect density as well as higher hole mobility than a-Si:H. Modelling indicates that it is possible to attain stabilised efficiencies of 12% when pm-Si:H is incorporated in a solar cell, deposited in a NIP configuration to reduce the P/I interface defects and combined with P- and N-doped μc-SiOx:H layers and a MgF2 ARC.

  15. Geothermal Heating, Convective Flow and Ice Thickness on Mars

    NASA Technical Reports Server (NTRS)

    Rosenberg, N. D.; Travis, B. J.; Cuzzi, J.

    2001-01-01

    Our 3D calculations suggest that hydrothermal circulation may occur in the martian regolith and may significantly thin the surface ice layer on Mars at some locations due to the upwelling of warm convecting fluids driven solely by background geothermal heating. Additional information is contained in the original extended abstract.

  16. Scale-free convection theory

    NASA Astrophysics Data System (ADS)

    Pasetto, Stefano; Chiosi, Cesare; Cropper, Mark; Grebel, Eva K.

    2015-08-01

    Convection is one of the fundamental mechanism to transport energy, e.g., in planetology, oceanography as well as in astrophysics where stellar structure customarily described by the mixing-length theory, which makes use of the mixing-length scale parameter to express the convective flux, velocity, and temperature gradients of the convective elements and stellar medium. The mixing-length scale is taken to be proportional to the local pressure scale height of the star, and the proportionality factor (the mixing-length parameter) must be determined by comparing the stellar models to some calibrator, usually the Sun.No strong arguments exist to claim that the mixing-length parameter is the same in all stars and all evolutionary phases. Because of this, all stellar models in literature are hampered by this basic uncertainty.In a recent paper (Pasetto et al 2014) we presented the first fully analytical scale-free theory of convection that does not require the mixing-length parameter. Our self-consistent analytical formulation of convection determines all the properties of convection as a function of the physical behaviour of the convective elements themselves and the surrounding medium (being it a either a star, an ocean, a primordial planet). The new theory of convection is formulated starting from a conventional solution of the Navier-Stokes/Euler equations, i.e. the Bernoulli equation for a perfect fluid, but expressed in a non-inertial reference frame co-moving with the convective elements. In our formalism, the motion of convective cells inside convective-unstable layers is fully determined by a new system of equations for convection in a non-local and time dependent formalism.We obtained an analytical, non-local, time-dependent solution for the convective energy transport that does not depend on any free parameter. The predictions of the new theory in astrophysical environment are compared with those from the standard mixing-length paradigm in stars with

  17. Scale-free convection theory

    NASA Astrophysics Data System (ADS)

    Pasetto, Stefano; Chiosi, Cesare; Cropper, Mark; Grebel, Eva K.

    Convection is one of the fundamental mechanisms to transport energy, e.g., in planetology, oceanography, as well as in astrophysics where stellar structure is customarily described by the mixing-length theory, which makes use of the mixing-length scale parameter to express the convective flux, velocity, and temperature gradients of the convective elements and stellar medium. The mixing-length scale is taken to be proportional to the local pressure scale height of the star, and the proportionality factor (the mixing-length parameter) must be determined by comparing the stellar models to some calibrator, usually the Sun. No strong arguments exist to claim that the mixing-length parameter is the same in all stars and all evolutionary phases. Because of this, all stellar models in the literature are hampered by this basic uncertainty. In a recent paper (Pasetto et al. 2014) we presented the first fully analytical scale-free theory of convection that does not require the mixing-length parameter. Our self-consistent analytical formulation of convection determines all the properties of convection as a function of the physical behaviour of the convective elements themselves and the surrounding medium (be it a star, an ocean, or a primordial planet). The new theory of convection is formulated starting from a conventional solution of the Navier-Stokes/Euler equations, i.e. the Bernoulli equation for a perfect fluid, but expressed in a non-inertial reference frame co-moving with the convective elements. In our formalism, the motion of convective cells inside convective-unstable layers is fully determined by a new system of equations for convection in a non-local and time dependent formalism. We obtained an analytical, non-local, time-dependent solution for the convective energy transport that does not depend on any free parameter. The predictions of the new theory in astrophysical environment are compared with those from the standard mixing-length paradigm in stars with

  18. The time taken for the regional distribution of ventilation to stabilise: an investigation using electrical impedance tomography.

    PubMed

    Caruana, L; Paratz, J D; Chang, A; Barnett, A G; Fraser, J F

    2015-01-01

    Electrical impedance tomography is a novel technology capable of quantifying ventilation distribution in the lung in real time during various therapeutic manoeuvres. The technique requires changes to the patient's position to place the electrical impedance tomography electrodes circumferentially around the thorax. The impact of these position changes on the time taken to stabilise the regional distribution of ventilation determined by electrical impedance tomography is unknown. This study aimed to determine the time taken for the regional distribution of ventilation determined by electrical impedance tomography to stabilise after changing position. Eight healthy, male volunteers were connected to electrical impedance tomography and a pneumotachometer. After 30 minutes stabilisation supine, participants were moved into 60 degrees Fowler's position and then returned to supine. Thirty minutes was spent in each position. Concurrent readings of ventilation distribution and tidal volumes were taken every five minutes. A mixed regression model with a random intercept was used to compare the positions and changes over time. The anterior-posterior distribution stabilised after ten minutes in Fowler's position and ten minutes after returning to supine. Left-right stabilisation was achieved after 15 minutes in Fowler's position and supine. A minimum of 15 minutes of stabilisation should be allowed for spontaneously breathing individuals when assessing ventilation distribution. This time allows stabilisation to occur in the anterior-posterior direction as well as the left-right direction.

  19. The use of muscle dynamometer for correction of muscle imbalances in the area of deep stabilising spine system.

    PubMed

    Malátová, Renata; Rokytová, Jitka; Stumbauer, Jan

    2013-08-01

    Dorsal pain caused by spine dysfunctions belongs to most frequent chronic illnesses. The muscles of the deep stabilising spine system work as a single functional unit where a dysfunction of only one muscle causes dysfunction of the whole system. Non-invasive, objective and statistically measurable evaluation of the condition of deep stabilising spine system has been made possible by the construction of muscular dynamometer. The aim of our work has been the assessment of deep stabilising spine system by diaphragm test and muscular dynamometer measurements. Based on an initial examination, a 6-week intervention programme was established including instructions on physiological body posture and correct basic body stabilisation for the given exercises and muscle strengthening. Consecutive measurements are then compared with the initial ones. It was presumed that a smaller number of the tested subjects would be able to correctly activate the deep stabilising spine system muscles before the intervention programme when compared to those after the intervention programme. A positive change of 87% has been found. It is clear that if a person actively approaches the programme, then positive adaptation changes on the deep stabilising spine system are seen only after 6 weeks. With the muscular dynamometer, activation of deep stabilising spine system can be objectively measured. Changes between the initial condition of a subject and the difference after some exercise or rehabilitation are especially noticeable. Also, the effect of given therapy or correct performance of the exercise can be followed and observed.

  20. Convection in Type 2 supernovae

    SciTech Connect

    Miller, Douglas Scott

    1993-10-15

    Results are presented here from several two dimensional numerical calculations of events in Type II supernovae. A new 2-D hydrodynamics and neutrino transport code has been used to compute the effect on the supernova explosion mechanism of convection between the neutrinosphere and the shock. This convection is referred to as exterior convection to distinguish it from convection beneath the neutrinosphere. The model equations and initial and boundary conditions are presented along with the simulation results. The 2-D code was used to compute an exterior convective velocity to compare with the convective model of the Mayle and Wilson 1-D code. Results are presented from several runs with varying sizes of initial perturbation, as well as a case with no initial perturbation but including the effects of rotation. The M&W code does not produce an explosion using the 2-D convective velocity. Exterior convection enhances the outward propagation of the shock, but not enough to ensure a successful explosion. Analytic estimates of the growth rate of the neutron finger instability axe presented. It is shown that this instability can occur beneath the neutrinosphere of the proto-neutron star in a supernova explosion with a growth time of ~ 3 microseconds. The behavior of the high entropy bubble that forms between the shock and the neutrinosphere in one dimensional calculations of supernova is investigated. It has been speculated that this bubble is a site for γ-process generation of heavy elements. Two dimensional calculations are presented of the time evolution of the hot bubble and the surrounding stellar material. Unlike one dimensional calculations, the 2D code fails to achieve high entropies in the bubble. When run in a spherically symmetric mode the 2-D code reaches entropies of ~ 200. When convection is allowed, the bubble reaches ~60 then the bubble begins to move upward into the cooler, denser material above it.

  1. Nonlinear Convection in Mushy Layers

    NASA Technical Reports Server (NTRS)

    Worster, M. Grae; Anderson, Daniel M.; Schulze, T. P.

    1996-01-01

    When alloys solidify in a gravitational field there are complex interactions between solidification and natural, buoyancy-driven convection that can alter the composition and impair the structure of the solid product. The particular focus of this project has been the compositional convection within mushy layers that occurs in situations where the lighter component of the alloy is rejected into the melt during solidification by cooling from below. The linear stability of such a situation was previously described and has been further elucidated in a number of published articles. Here we describe some recent developments in the study of nonlinear evolution of convection in mushy layers.

  2. Dynamics of convective scale interaction

    NASA Technical Reports Server (NTRS)

    Purdom, James F. W.; Sinclair, Peter C.

    1988-01-01

    Several of the mesoscale dynamic and thermodynamic aspects of convective scale interaction are examined. An explanation of how sounding data can be coupled with satellite observed cumulus development in the warm sector and the arc cloud line's time evolution to develop a short range forecast of expected convective intensity along an arc cloud line. The formative, mature and dissipating stages of the arc cloud line life cycle are discussed. Specific properties of convective scale interaction are presented and the relationship between arc cloud lines and tornado producing thunderstorms is considered.

  3. Coupled radiative convective equilibrium simulations with explicit and parameterized convection

    NASA Astrophysics Data System (ADS)

    Hohenegger, Cathy; Stevens, Bjorn

    2016-09-01

    Radiative convective equilibrium has been applied in past studies to various models given its simplicity and analogy to the tropical climate. At convection-permitting resolution, the focus has been on the organization of convection that appears when using fixed sea surface temperature (SST). Here the SST is allowed to freely respond to the surface energy. The goals are to examine and understand the resulting transient behavior, equilibrium state, and perturbations thereof, as well as to compare these results to a simulation integrated with parameterized cloud and convection. Analysis shows that the coupling between the SST and the net surface energy acts to delay the onset of self-aggregation and may prevent it, in our case, for a slab ocean of less than 1 m. This is so because SST gradients tend to oppose the shallow low-level circulation that is associated with the self-aggregation of convection. Furthermore, the occurrence of self-aggregation is found to be necessary for reaching an equilibrium state and avoiding a greenhouse-like climate. In analogy to the present climate, the self-aggregation generates the dry and clear subtropics that allow the system to efficiently cool. In contrast, strong shortwave cloud radiative effects, much stronger than at convection-permitting resolution, prevent the simulation with parameterized cloud and convection to fall into a greenhouse state. The convection-permitting simulations also suggest that cloud feedbacks, as arising when perturbing the equilibrium state, may be very different, and in our case less negative, than what emerges from general circulation models.

  4. Delay-dependent stabilisation of systems with time-delayed state and control: application to a quadruple-tank process

    NASA Astrophysics Data System (ADS)

    El Haoussi, F.; Tissir, E. H.; Tadeo, F.; Hmamed, A.

    2011-01-01

    This work presents a study on the stabilisation of linear systems with delays in the control and states, motivated by a benchmark problem from the literature (a quadruple-tank system). A methodology for the stabilisation of this kind of systems is presented, expressing the conditions as LMIs. Using several examples from the literature, it is shown that the proposed stabilisation theorem is less conservative than previous results. Finally, the technique is applied to the benchmark problem, showing how it is possible to derive efficient controllers for realistic problems, using the proposed technique.

  5. Stochastic Microhertz Gravitational Radiation from Stellar Convection

    NASA Astrophysics Data System (ADS)

    Bennett, M. F.; Melatos, A.

    2014-09-01

    High Reynolds-number turbulence driven by stellar convection in main-sequence stars generates stochastic gravitational radiation. We calculate the wave-strain power spectral density as a function of the zero-age main-sequence mass for an individual star and for an isotropic, universal stellar population described by the Salpeter initial mass function and redshift-dependent Hopkins-Beacom star formation rate. The spectrum is a broken power law, which peaks near the turnover frequency of the largest turbulent eddies. The signal from the Sun dominates the universal background. For the Sun, the far-zone power spectral density peaks at S(f peak) = 5.2 × 10-52 Hz-1 at frequency f peak = 2.3 × 10-7 Hz. However, at low observing frequencies f < 3 × 10-4 Hz, the Earth lies inside the Sun's near zone and the signal is amplified to S near(f peak) = 4.1 × 10-27 Hz-1 because the wave strain scales more steeply with distance (vpropd -5) in the near zone than in the far zone (vpropd -1). Hence the Solar signal may prove relevant for pulsar timing arrays. Other individual sources and the universal background fall well below the projected sensitivities of the Laser Interferometer Space Antenna and next-generation pulsar timing arrays. Stellar convection sets a fundamental noise floor for more sensitive stochastic gravitational-wave experiments in the more distant future.

  6. Bistability Controlled by Convection in a Pattern-Forming System

    NASA Astrophysics Data System (ADS)

    Marsal, Nicolas; Weicker, Lionel; Wolfersberger, Delphine; Sciamanna, Marc

    2017-01-01

    We analyze the transition from convective to absolute dynamical instabilities in a nonlinear optical system forming patterns, i.e., a photorefractive crystal in a single feedback configuration. We demonstrate that the convective regime is directly related to the bistability area in which the homogeneous steady state coexists with a pattern solution. Outside this domain, the system exhibits either a homogeneous steady state or an absolute dynamical regime. We evidence that the bistability area can be greatly increased by adjusting the mirror tilt angle and/or by applying an external background illumination on the photorefractive crystal.

  7. Convection, nucleosynthesis, and core collapse

    NASA Technical Reports Server (NTRS)

    Bazan, Grant; Arnett, David

    1994-01-01

    We use a piecewise parabolic method hydrodynamics code (PROMETHEUS) to study convective burning in two dimensions in an oxygen shell prior to core collapse. Significant mixing beyond convective boundaries determined by mixing-length theory brings fuel (C-12) into the convective regon, causing hot spots of nuclear burning. Plumes dominate the velocity structure. Finite perturbations arise in a region in which O-16 will be explosively burned to Ni-56 when the star explodes; the resulting instabilities and mixing are likely to distribute Ni-56 throughout the supernova envelope. Inhomogeneities in Y(sub e) may be large enough to affect core collapse and will affect explosive nucleosynthesis. The nature of convective burning is dramatically different from that assumed in one-dimensional simulations; quantitative estimates of nucleosynthetic yields, core masses, and the approach to core collapse will be affected.

  8. Convective heat flow probe

    DOEpatents

    Dunn, J.C.; Hardee, H.C.; Striker, R.P.

    1984-01-09

    A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packet-type seals are provided along the probe above and below the heater pads.

  9. Convection coefficients at building surfaces

    NASA Astrophysics Data System (ADS)

    Kammerud, R. C.; Altmayer, E.; Bauman, F. S.; Gadgil, A.; Bohn, M.

    1982-09-01

    Correlations relating the rate of heat transfer from the surfaces of rooms to the enclosed air are being developed, based on empirical and analytic examinations of convection in enclosures. The correlations express the heat transfer rate in terms of boundary conditions relating to room geometry and surface temperatures. Work to date indicates that simple convection coefficient calculation techniques can be developed, which significantly improve accuracy of heat transfer predictions in comparison with the standard calculations recommended by ASHRAE.

  10. Isentropic Analysis of Convective Motions

    NASA Technical Reports Server (NTRS)

    Pauluis, Olivier M.; Mrowiec, Agnieszka A.

    2013-01-01

    This paper analyzes the convective mass transport by sorting air parcels in terms of their equivalent potential temperature to determine an isentropic streamfunction. By averaging the vertical mass flux at a constant value of the equivalent potential temperature, one can compute an isentropic mass transport that filters out reversible oscillatory motions such as gravity waves. This novel approach emphasizes the fact that the vertical energy and entropy transports by convection are due to the combination of ascending air parcels with high energy and entropy and subsiding air parcels with lower energy and entropy. Such conditional averaging can be extended to other dynamic and thermodynamic variables such as vertical velocity, temperature, or relative humidity to obtain a comprehensive description of convective motions. It is also shown how this approach can be used to determine the mean diabatic tendencies from the three-dimensional dynamic and thermodynamic fields. A two-stream approximation that partitions the isentropic circulation into a mean updraft and a mean downdraft is also introduced. This offers a straightforward way to identify the mean properties of rising and subsiding air parcels. The results from the two-stream approximation are compared with two other definitions of the cloud mass flux. It is argued that the isentropic analysis offers a robust definition of the convective mass transport that is not tainted by the need to arbitrarily distinguish between convection and its environment, and that separates the irreversible convective overturning fromoscillations associated with gravity waves.

  11. Convection wave studies over land and sea

    NASA Technical Reports Server (NTRS)

    Kuettner, Joachim; Grossmann, Robert

    1991-01-01

    Preliminary results of recent case studies conducted over land and sea are given. Two dimensional convection (roll vortex/cloudstreet) and three dimensional convection in the underlying boundary layer are dealt with. Vertical momentum flux profiles and time series of important parameters and vertical soundings taken in the experiment area are shown. The three cases described show that convection waves occur over land and over ocean, over three dimensional convection and over two dimensional convection.

  12. Observation of deep convection initiation from shallow convection environment

    NASA Astrophysics Data System (ADS)

    Lothon, Marie; Couvreux, Fleur; Guichard, Françoise; Campistron, Bernard; Chong, Michel; Rio, Catherine; Williams, Earle

    2010-05-01

    In the afternoon of 10 July 2006, deep convective cells initiated right in the field of view of the Massachusetts Institute Technology (MIT) C-band Doppler radar. This radar, with its 3D exploration at 10 min temporal resolution and 250 m radial resolution, allows us to track the deep convective cells and also provides clear air observations of the boundary layer structure prior to deep convection initiation. Several other observational platforms were operating then which allow us to thoroughly analyse this case: Vertically pointing aerosol lidar, W-band radar and ceilometer from the ARM Mobile Facility, along with radiosoundings and surface measurements enable us to describe the environment, from before their initiation to after the propagation of of one propagating cell that generated a circular gust front very nicely caught by the MIT radar. The systems considered here differ from the mesoscale convective systems which are often associated with African Easterly Waves, increasing CAPE and decreasing CIN. The former have smaller size, and initiate more locally, but there are numerous and still play a large role in the atmospheric circulation and scalar transport. Though, they remain a challenge to model. (See the presentation by Guichard et al. in the same session, for a model set up based on the same case, with joint single-column model and Large Eddy Simulation, which aims at better understanding and improving the parametrisation of deep convection initiation.) Based on the analysis of the observations mentioned above, we consider here the possible sources of deep convection initiation that day, which showed a typical boundary-layer growth in semi-arid environment, with isolated deep convective events.

  13. Finite-time boundedness and stabilisation of networked control systems with bounded packet dropout

    NASA Astrophysics Data System (ADS)

    Sun, Yeguo

    2014-09-01

    In this paper, the finite-time boundedness and stabilisation problems of a class of networked control systems (NCSs) with bounded packet dropout are investigated. The main results provided in the paper are sufficient conditions for finite-time boundedness and stability via state feedback. An iterative approach is proposed to model NCSs with bounded packet dropout as jump linear systems (JLSs). Based on Lyapunov stability theory and JLSs theory, the sufficient conditions for finite-time boundedness and stabilisation of the underlying systems are derived via linear matrix inequalities (LMIs) formulation. Moreover, both sensor-to-controller and controller-to-actuator packet dropouts are considered simultaneously. Lastly, an illustrative example is given to demonstrate the effectiveness of the proposed results.

  14. Green synthesis of highly concentrated aqueous colloidal solutions of large starch-stabilised silver nanoplatelets.

    PubMed

    Cheng, Fei; Betts, Jonathan W; Kelly, Stephen M; Hector, Andrew L

    2015-01-01

    A simple, environmentally friendly and cost-effective method has been developed to prepare a range of aqueous silver colloidal solutions, using ascorbic acid as a reducing agent, water-soluble starch as a combined crystallising, stabilising and solubilising agent, and water as the solvent. The diameter of silver nanoplatelets increases with higher concentrations of AgNO3 and starch. The silver nanoparticles are also more uniform in shape the greater the diameter of the nanoparticles. Colloidal solutions with a very high concentration of large, flat, hexagonal silver nanoplatelets (~230 nm in breadth) have been used to deposit and fix an antibacterial coating of these large starch-stabilised silver nanoplates on commercial cotton fibres, using a simple dip-coating process using water as the solvent, in order to study the dependence of the antibacterial properties of these nanoplatelets on their size.

  15. Observer-based stabilisation of a class of nonlinear systems in the presence of measurement delay

    NASA Astrophysics Data System (ADS)

    He, Qing; Liu, Jinkun

    2016-06-01

    In this paper, the stabilising control problem for a class of nonlinear system in the presence of measurement delay is addressed. A full-order observer is designed to eliminate the effect of variable output time delay, which is bounded and known. Then, the estimated states are utilised for the state feedback control law to stabilise the considered control system. Lyapunov-Razumikhin approach is employed to analyse the stability of the closed-loop system. Unlike the previous work, the exponential convergence of the estimation error is ensured, rather than asymptotic convergence, by designing a delay-dependent gain of the observer. Moreover, comparison with similar work is also made in simulation to illustrate the effectiveness of the proposed strategy.

  16. Preconditioning of Nonlinear Mixed Effects Models for Stabilisation of Variance-Covariance Matrix Computations.

    PubMed

    Aoki, Yasunori; Nordgren, Rikard; Hooker, Andrew C

    2016-03-01

    As the importance of pharmacometric analysis increases, more and more complex mathematical models are introduced and computational error resulting from computational instability starts to become a bottleneck in the analysis. We propose a preconditioning method for non-linear mixed effects models used in pharmacometric analyses to stabilise the computation of the variance-covariance matrix. Roughly speaking, the method reparameterises the model with a linear combination of the original model parameters so that the Hessian matrix of the likelihood of the reparameterised model becomes close to an identity matrix. This approach will reduce the influence of computational error, for example rounding error, to the final computational result. We present numerical experiments demonstrating that the stabilisation of the computation using the proposed method can recover failed variance-covariance matrix computations, and reveal non-identifiability of the model parameters.

  17. A simplified Galveston technique for the stabilisation of pathological fractures of the sacrum.

    PubMed

    McGee, A M; Bache, C E; Spilsbury, J; Marks, D S; Stirling, A J; Thompson, A G

    2000-10-01

    Mechanical stabilisation of pathological fractures of the sacrum is technically challenging. There is often inadequate purchase in the sacrum, and stabilisation has to be achieved between the lumbar vertebrae and ilium. We present a simplification of the Galveston technique. We treated a total of six patients with this technique, four for metastatic disease and two for primary tumours. Our technique consists of the formation of a proximal stable construct using ISOLA pedicle screws linked distally using a modular system of connectors to threaded iliac bolts with cross linkages. Neurological decompression and fusion was performed as appropriate. The benefits of this method are: ease of access to the ilium, a solid purchase to the ilium, less rod contouring and shorter operating time. We have had no operative complications from this procedure. All patients were discharged home mobile, with a reduced opiate requirement.

  18. Vibration-displacement measurements with a highly stabilised optical fiber Michelson interferometer system

    NASA Astrophysics Data System (ADS)

    Xie, Fang; Ren, Junyu; Chen, Zhimin; Feng, Qibo

    2010-02-01

    A highly stabilised vibration-displacement measurement system, which employs fiber Bragg gratings (FBGs) to interleave two fiber Michelson interferometers that share the common-interferometric-optical path, is presented. The phase change in the interferometric signals of the two fiber Michelson interferometers have been tracked, respectively, with two electronic feedback loops. One of the fiber interferometers is used to stabilise the system by the use of an electronic feedback loop to compensate the environmental disturbances. The second fiber interferometer is used to perform the measurement task and employs another electronic feedback loop to track the phase change in the interferometric signal. The measurement system is able to measure vibration-displacement and provide the sense of direction of the displacement. The frequency range of the measured vibration-displacement is from 0.1 to 200 Hz and the measurement resolution is 10 nm.

  19. Output-feedback stabilisation for a class of switched nonlinear systems with unknown control coefficients

    NASA Astrophysics Data System (ADS)

    Long, Lijun; Zhao, Jun

    2013-03-01

    This article investigates the problem of global stabilisation for a class of switched nonlinear systems with unknown control coefficients by output feedback. Full state measurements are unavailable. We first show that via a coordinate transformation, the unknown control coefficients are lumped together and the original switched nonlinear system is transformed into a new switched nonlinear system for which control design becomes feasible. Second, for the new switched nonlinear system, based on backstepping, we design output-feedback controllers for subsystems and construct a common Lyapunov function, which rely on the designed state observer, to guarantee asymptotic stability of the closed-loop system under arbitrary switchings. Finally, as an application of the proposed design method, global stabilisation of a mass-spring-damper system is achieved by output feedback.

  20. Novel Xylene-linked Maltoside Amphiphiles (XMAs) for Membrane Protein Stabilisation

    PubMed Central

    Cho, Kyung Ho; Du, Yang; Scull, Nicola J; Hariharan, Parameswaran; Gotfryd, Kamil; Loland, Claus J; Guan, Lan; Byrne, Bernadette; Kobilka, Brian K; Chae, Pil Seok

    2015-01-01

    Membrane proteins are key functional players in biological systems. These bio-macromolecules contain both hydrophilic and hydrophobic regions and thus amphipathic molecules are necessary to extract membrane proteins from their native lipid environments and stabilise them in aqueous solutions. Conventional detergents are commonly used for membrane protein manipulation, but membrane proteins surrounded by these agents often undergo denaturation and aggregation. In this study, we developed a novel class of maltoside-bearing amphiphiles, with a xylene linker in the central region, designated xylene-linked maltoside amphiphiles (XMAs). When these novel agents were evaluated with a number of membrane proteins, we found that XMA-4 and XMA-5 have particularly favorable efficacy with respect to membrane protein stabilisation, indicating that these agents hold significant potential for membrane protein structural study. PMID:26013293

  1. Femtosecond fibre laser stabilisation to an optical frequency standard using a KTP electro-optic crystal

    SciTech Connect

    Nyushkov, B N; Pivtsov, V S; Koliada, N A; Kaplun, A B; Meshalkin, A B

    2015-05-31

    A miniature intracavity KTP-based electro-optic phase modulator has been developed which can be used for effective stabilisation of an optical frequency comb of a femtosecond erbiumdoped fibre laser to an optical frequency standard. The use of such an electro-optic modulator (EOM) has made it possible to extend the working frequency band of a phase-locked loop system for laser stabilisation to several hundred kilohertz. We demonstrate that the KTP-based EOM is sufficiently sensitive even at a small optical length, which allows it to be readily integrated into cavities of femtosecond fibre lasers with high mode frequency spacings (over 100 MHz). (extreme light fields and their applications)

  2. A sol-powder coating technique for fabrication of yttria stabilised zirconia

    SciTech Connect

    Wattanasiriwech, Darunee . E-mail: darunee@mfu.ac.th; Wattanasiriwech, Suthee; Stevens, Ron

    2006-08-10

    Yttria stabilised zirconia has been prepared using a simple sol-powder coating technique. The polymeric yttria sol, which was prepared using 1,3 propanediol as a network modifier, was homogeneously mixed with nanocrystalline zirconia powder and it showed a dual function: as a binder which promoted densification and a phase modifier which stabilised zirconia in the tetragonal and cubic phases. Thermal analysis and X-ray diffraction revealed that the polymeric yttria sol which decomposed at low temperature into yttrium oxide could change the m {sup {yields}} t phase transformation behaviour of the zirconia, possibly due to the small particle size and very high surface area of both yttria and zirconia particles allowing rapid alloying. The sintered samples exhibited three crystalline phases: monoclinic, tetragonal and cubic, in which cubic and tetragonal are the major phases. The weight fractions of the individual phases present in the selected specimens were determined using quantitative Rietveld analysis.

  3. Robust stabilisation of time-varying delay systems with probabilistic uncertainties

    NASA Astrophysics Data System (ADS)

    Jiang, Ning; Xiong, Junlin; Lam, James

    2016-09-01

    For robust stabilisation of time-varying delay systems, only sufficient conditions are available to date. A natural question is as follows: if the existing sufficient conditions are not satisfied, and hence no controllers can be found, what can one do to improve the stability performance of time-varying delay systems? This question is addressed in this paper when there is a probabilistic structure on the parameter uncertainty set. A randomised algorithm is proposed to design a state-feedback controller, which stabilises the system over the uncertainty domain in a probabilistic sense. The capability of the designed controller is quantified by the probability of stability of the resulting closed-loop system. The accuracy of the solution obtained from the randomised algorithm is also analysed. Finally, numerical examples are used to illustrate the effectiveness and advantages of the developed controller design approach.

  4. The effect of external heat transfer on thermal explosion in a spherical vessel with natural convection.

    PubMed

    Campbell, A N

    2015-07-14

    When any exothermic reaction proceeds in an unstirred vessel, natural convection may develop. This flow can significantly alter the heat transfer from the reacting fluid to the environment and hence alter the balance between heat generation and heat loss, which determines whether or not the system will explode. Previous studies of the effects of natural convection on thermal explosion have considered reactors where the temperature of the wall of the reactor is held constant. This implies that there is infinitely fast heat transfer between the wall of the vessel and the surrounding environment. In reality, there will be heat transfer resistances associated with conduction through the wall of the reactor and from the wall to the environment. The existence of these additional heat transfer resistances may alter the rate of heat transfer from the hot region of the reactor to the environment and hence the stability of the reaction. This work presents an initial numerical study of thermal explosion in a spherical reactor under the influence of natural convection and external heat transfer, which neglects the effects of consumption of reactant. Simulations were performed to examine the changing behaviour of the system as the intensity of convection and the importance of external heat transfer were varied. It was shown that the temporal development of the maximum temperature in the reactor was qualitatively similar as the Rayleigh and Biot numbers were varied. Importantly, the maximum temperature in a stable system was shown to vary with Biot number. This has important consequences for the definitions used for thermal explosion in systems with significant reactant consumption. Additionally, regions of parameter space where explosions occurred were identified. It was shown that reducing the Biot number increases the likelihood of explosion and reduces the stabilising effect of natural convection. Finally, the results of the simulations were shown to compare favourably with

  5. FLUX EMERGENCE IN A MAGNETIZED CONVECTION ZONE

    SciTech Connect

    Pinto, R. F.; Brun, A. S.

    2013-07-20

    We study the influence of a dynamo magnetic field on the buoyant rise and emergence of twisted magnetic flux ropes and their influence on the global external magnetic field. We ran three-dimensional MHD numerical simulations using the ASH code (anelastic spherical harmonics) and analyzed the dynamical evolution of such buoyant flux ropes from the bottom of the convection zone until the post-emergence phases. The global nature of this model can only very crudely and inaccurately represent the local dynamics of the buoyant rise of the implanted magnetic structure, but nonetheless allows us to study the influence of global effects, such as self-consistently generated differential rotation and meridional circulation, and of Coriolis forces. Although motivated by the solar context, this model cannot be thought of as a realistic model of the rise of magnetic structures and their emergence in the Sun, where the local dynamics are completely different. The properties of initial phases of the buoyant rise are determined essentially by the flux-rope's properties and the convective flows and consequently are in good agreement with previous studies. However, the effects of the interaction of the background dynamo field become increasingly strong as the flux ropes evolve. During the buoyant rise across the convection zone, the flux-rope's magnetic field strength scales as B{proportional_to}{rho}{sup {alpha}}, with {alpha} {approx}< 1. An increase of radial velocity, density, and current density is observed to precede flux emergence at all longitudes. The geometry, latitude, and relative orientation of the flux ropes with respect to the background magnetic field influences the resulting rise speeds, zonal flow amplitudes (which develop within the flux ropes), and the corresponding surface signatures. This influences the morphology, duration and amplitude of the surface shearing, and the Poynting flux associated with magnetic flux-rope emergence. The emerged magnetic flux

  6. Rapid analysis of polyolefin antioxidants and light stabilisers by supercritical fluid chromatography.

    PubMed

    Kithinji, J P; Bartle, K D; Raynor, M W; Clifford, A A

    1990-02-01

    Nineteen commercial antioxidants and light stabilisers, with a wide range of relative molecular masses and boiling-points, present in polyolefins were analysed by packed column supercritical fluid chromatography on four different phases with CO2 or 10% MeOH-CO2 as the mobile phase and with UV detection. The technique is shown to yield short analysis times and sufficient resolution for a number of additives present in a given polyolefin.

  7. Finite-time state feedback stabilisation of stochastic high-order nonlinear feedforward systems

    NASA Astrophysics Data System (ADS)

    Xie, Xue-Jun; Zhang, Xing-Hui; Zhang, Kemei

    2016-07-01

    This paper studies the finite-time state feedback stabilisation of stochastic high-order nonlinear feedforward systems. Based on the stochastic Lyapunov theorem on finite-time stability, by using the homogeneous domination method, the adding one power integrator and sign function method, constructing a ? Lyapunov function and verifying the existence and uniqueness of solution, a continuous state feedback controller is designed to guarantee the closed-loop system finite-time stable in probability.

  8. The Stabilisation Potential of Individual and Mixed Assemblages of Natural Bacteria and Microalgae

    PubMed Central

    Lubarsky, Helen V.; Hubas, Cédric; Chocholek, Melanie; Larson, Fredrik; Manz, Werner; Paterson, David M.; Gerbersdorf, Sabine U.

    2010-01-01

    It is recognized that microorganisms inhabiting natural sediments significantly mediate the erosive response of the bed (“ecosystem engineers”) through the secretion of naturally adhesive organic material (EPS: extracellular polymeric substances). However, little is known about the individual engineering capability of the main biofilm components (heterotrophic bacteria and autotrophic microalgae) in terms of their individual contribution to the EPS pool and their relative functional contribution to substratum stabilisation. This paper investigates the engineering effects on a non-cohesive test bed as the surface was colonised by natural benthic assemblages (prokaryotic, eukaryotic and mixed cultures) of bacteria and microalgae. MagPI (Magnetic Particle Induction) and CSM (Cohesive Strength Meter) respectively determined the adhesive capacity and the cohesive strength of the culture surface. Stabilisation was significantly higher for the bacterial assemblages (up to a factor of 2) than for axenic microalgal assemblages. The EPS concentration and the EPS composition (carbohydrates and proteins) were both important in determining stabilisation. The peak of engineering effect was significantly greater in the mixed assemblage as compared to the bacterial (x 1.2) and axenic diatom (x 1.7) cultures. The possibility of synergistic effects between the bacterial and algal cultures in terms of stability was examined and rejected although the concentration of EPS did show a synergistic elevation in mixed culture. The rapid development and overall stabilisation potential of the various assemblages was impressive (x 7.5 and ×9.5, for MagPI and CSM, respectively, as compared to controls). We confirmed the important role of heterotrophic bacteria in “biostabilisation” and highlighted the interactions between autotrophic and heterotrophic biofilm consortia. This information contributes to the conceptual understanding of the microbial sediment engineering that represents an

  9. Radiative-convective instability

    NASA Astrophysics Data System (ADS)

    Emanuel, Kerry; Wing, Allison A.; Vincent, Emmanuel M.

    2014-03-01

    equilibrium (RCE) is a simple paradigm for the statistical equilibrium the earth's climate would exhibit in the absence of lateral energy transport. It has generally been assumed that for a given solar forcing and long-lived greenhouse gas concentration, such a state would be unique, but recent work suggests that more than one stable equilibrium may be possible. Here we show that above a critical specified sea surface temperature, the ordinary RCE state becomes linearly unstable to large-scale overturning circulations. The instability migrates the RCE state toward one of the two stable equilibria first found by Raymond and Zeng (2000). It occurs when the clear-sky infrared opacity of the lower troposphere becomes so large, owing to high water vapor concentration, that variations of the radiative cooling of the lower troposphere are governed principally by variations in upper tropospheric water vapor. We show that the instability represents a subcritical bifurcation of the ordinary RCE state, leading to either a dry state with large-scale descent, or to a moist state with mean ascent; these states may be accessed by finite amplitude perturbations to ordinary RCE in the subcritical state, or spontaneously in the supercritical state. As first suggested by Raymond (2000) and Sobel et al. (2007), the latter corresponds to the phenomenon of self-aggregation of moist convection, taking the form of cloud clusters or tropical cyclones. We argue that the nonrobustness of self-aggregation in cloud system resolving models may be an artifact of running such models close to the critical temperature for instability.

  10. Cooling and thermal stabilisation of Faraday rotators in the temperature range 300 — 200 K using Peltier elements

    NASA Astrophysics Data System (ADS)

    Palashov, O. V.; Ievlev, Ivan V.; Perevezentsev, E. A.; Katin, E. V.; Khazanov, Efim A.

    2011-09-01

    A new method for cooling and thermal stabilisation of Faraday rotators using Peltier elements is proposed and experimentally demonstrated. The scheme of thermal stabilisation of the magnetooptical elements ensures reliable operation of the device at the absorbed power ~2 W, which corresponds to the transmitted laser radiation power 1.5 kW. The results of the work make it possible to predict high efficiency of this method at the laser power of tens of kilowatts.

  11. Cold laser machining of nickel-yttrium stabilised zirconia cermets: Composition dependence

    SciTech Connect

    Sola, D.

    2009-09-15

    Cold laser micromachining efficiency in nickel-yttrium stabilised zirconia cermets was studied as a function of cermet composition. Nickel oxide-yttrium stabilised zirconia ceramic plates obtained via tape casting technique were machined using 8-25 ns pulses of a Nd: YAG laser at the fixed wavelength of 1.064 {mu}m and a frequency of 1 kHz. The morphology of the holes, etched volume, drill diameter, shape and depth were evaluated as a function of the processing parameters such as pulse irradiance and of the initial composition. The laser drilling mechanism was evaluated in terms of laser-material interaction parameters such as beam absorptivity, material spallation and the impact on the overall process discussed. By varying the nickel oxide content of the composite the optical absorption (-value is greatly modified and significantly affected the drilling efficiency of the green state ceramic substrates and the morphology of the holes. Higher depth values and improved drilled volume upto 0.2 mm{sup 3} per pulse were obtained for substrates with higher optical transparency (lower optical absorption value). In addition, a laser beam self-focussing effect is observed for the compositions with less nickel oxide content. Holes with average diameter from 60 {mu}m to 110 {mu}m and upto 1 mm in depth were drilled with a high rate of 40 ms per hole while the final microstructure of the cermet obtained by reduction of the nickel oxide-yttrium stabilised zirconia composites remained unchanged.

  12. Stabilisation of silver and copper nanoparticles in a chemically modified chitosan matrix.

    PubMed

    Tiwari, Anand D; Mishra, Ajay K; Mishra, Shivani B; Kuvarega, Alex T; Mamba, Bhekie B

    2013-02-15

    This work describes the stabilisation of silver and copper nanoparticles in chemically modified chitosan colloidal solution. Chitosan-N-2-methylidene-hydroxy-pyridine-6-methylidene hydroxy thiocarbohydrazide (CSPTH) was used as a stabilising and reducing agent for silver and copper nanoparticles. The modified chitosan derivatives and the synthesised nanoparticles were characterised by Fourier transform infrared (FT-IR) spectroscopy, Ultraviolet-visible (UV-Vis) spectroscopy and X-ray diffraction (XRD). Particle size, morphology and segregation of the nanoparticles were determined by transmission electron microscopy (TEM). The size of the nanoparticles was found to be less than 20 nm and 50 nm for silver and copper nanoparticles, respectively. These nanoparticles were stabilised in a chemically modified chitosan solution and their properties were studied using fluorescence spectroscopy, photoluminescence spectroscopy and surface-enhanced Raman scattering (SERS). The optical properties of silver nanoparticles in surface plasmon band (SPB) were enhanced at 407 nm compared to those of copper nanoparticles. Fluorescence (400 nm and 756 nm), photoluminescence (450 and 504 nm) and Raman scattering (1382 and 1581 cm(-1)) properties for the copper nanoparticles were superior to those of the silver nanoparticles.

  13. Stabilisation and control design by partial output feedback and by partial interconnection

    NASA Astrophysics Data System (ADS)

    Blumthaler, Ingrid

    2012-11-01

    We study stabilisation and control design by partial output feedback on the one hand and by partial interconnection according to Willems on the other hand. This article is based on the paper Design, parametrization, and pole placement of stabilizing output feedback compensators via injective cogenerator quotient signal modules by I. Blumthaler and U. Oberst, and the same technique is used. Both discrete and continuous behaviours and various notions of stability are treated simultaneously. In the case of partial output feedback, we require that both the compensator and the feedback behaviour have proper transfer matrices without presuming properness of the plant. We obtain conditions ensuring the existence of such stabilising compensators which perform additional control tasks like, for instance, tracking, and an algorithm for constructing a large class of such compensators. In the case of stabilisation by interconnection no input-output structures of plant or compensator are assumed, but the controlled behaviour is endowed with a canonical input-output structure. Again we demand this input-output behaviour to have proper transfer matrix. For this situation we obtain necessary and sufficient conditions for the existence of compensators solving the given control task, and a constructive parametrisation of all of them.

  14. High-performance electronic image stabilisation for shift and rotation correction

    NASA Astrophysics Data System (ADS)

    Parker, Steve C. J.; Hickman, D. L.; Wu, F.

    2014-06-01

    A novel low size, weight and power (SWaP) video stabiliser called HALO™ is presented that uses a SoC to combine the high processing bandwidth of an FPGA, with the signal processing flexibility of a CPU. An image based architecture is presented that can adapt the tiling of frames to cope with changing scene dynamics. A real-time implementation is then discussed that can generate several hundred optical flow vectors per video frame, to accurately calculate the unwanted rigid body translation and rotation of camera shake. The performance of the HALO™ stabiliser is comprehensively benchmarked against the respected Deshaker 3.0 off-line stabiliser plugin to VirtualDub. Eight different videos are used for benchmarking, simulating: battlefield, surveillance, security and low-level flight applications in both visible and IR wavebands. The results show that HALO™ rivals the performance of Deshaker within its operating envelope. Furthermore, HALO™ may be easily reconfigured to adapt to changing operating conditions or requirements; and can be used to host other video processing functionality like image distortion correction, fusion and contrast enhancement.

  15. Integrated waste management as a climate change stabilisation wedge for the Maltese islands.

    PubMed

    Falzon, Clyde; Fabri, Simon G; Frysinger, Steven

    2013-01-01

    The continuous increase in anthropogenic greenhouse gas emissions occurring since the Industrial Revolution is offering significant ecological challenges to Earth. These emissions are leading to climate changes which bring about extensive damage to communities, ecosystems and resources. The analysis in this article is focussed on the waste sector within the Maltese islands, which is the largest greenhouse gas emitter in the archipelago following the energy and transportation sectors. This work shows how integrated waste management, based on a life cycle assessment methodology, acts as an effective stabilisation wedge strategy for climate change. Ten different scenarios applicable to the Maltese municipal solid waste management sector are analysed. It is shown that the scenario that is most coherent with the stabilisation wedges strategy for the Maltese islands consists of 50% landfilling, 30% mechanical biological treatment and 20% recyclable waste export for recycling. It is calculated that 16.6 Mt less CO2-e gases would be emitted over 50 years by means of this integrated waste management stabilisation wedge when compared to the business-as-usual scenario. These scientific results provide evidence in support of policy development in Malta that is implemented through legislation, economic instruments and other applicable tools.

  16. Pavement thickness and stabilised foundation layer assessment using ground-coupled GPR

    NASA Astrophysics Data System (ADS)

    Hu, Jinhui; Vennapusa, Pavana K. R.; White, David J.; Beresnev, Igor

    2016-07-01

    Experimental results from field and laboratory investigations using a ground-coupled ground penetrating radar (GPR), dielectric measurement, magnetic imaging tomography (MIT) and dynamic cone penetrometer (DCP) tests are presented. Dielectric properties of asphalt pavement and stabilised and unstabilised pavement foundation materials were evaluated in the laboratory in frozen and unfrozen conditions. Laboratory test results showed that dielectric properties of materials back-calculated from GPR in comparison to dielectric gauge measurements are strongly correlated and repeatable. For chemically stabilised materials, curing time affected the dielectric properties of the materials. Field tests were conducted on asphalt pavement test sections with different foundation materials (stabilised and unstabilised layers), drainage conditions and layer thicknesses. GPR and MIT results were used to determine asphalt layer thicknesses and were compared with measured core thicknesses, while GPR and DCP were used to assess foundation layer profiles. Asphalt thicknesses estimated from GPR showed an average error of about 11% using the dielectric gauge values as input. The average error reduced to about 4% when calibrated with cores thicknesses. MIT results showed thicknesses that are about 9% higher than estimated using GPR. Foundation layer thicknesses could not be measured using GPR due to variations in moisture conditions between the test sections, which is partly attributed to variations in gradation and drainage characteristics of the subbase layer.

  17. Avalanches of coalescence events and local extensional flows--stabilisation or destabilisation due to surfactant.

    PubMed

    Gunes, Deniz Z; Clain, Xavier; Breton, Olivier; Mayor, Guy; Burbidge, Adam S

    2010-03-01

    From two-drop collision experiments, it is known that local extensional flow favors coalescence. Recently, Bremond et al. used microfluidic methods to evidence this point. Similarly, we used specific microfluidic geometries to impose sudden extensional flow, following drop collision under controlled conditions, and coalescence events were recorded with a high-speed camera. In this study we focus on the effect of surfactant on the coalescence, or stabilisation against it, between drops flowing apart due to either imposed external flow or capillary forces related to drop shape relaxation. Coalescence can be induced even when drops are initially separated by an intersticial lubricating film by far thicker than the critical thickness for rupturing under the action of Van der Waals forces. This is particularly relevant to avalanches of coalescence events, in flowing or even quiescent emulsions or foams. When non-ionic surfactant was used, it was observed that small concentrations apparently enhance coalescence in extension. But at higher concentrations it provides stabilisation through a specific mechanism of thread formation and rupture; the stabilisation mechanism can be complex.

  18. Stabilisation of Na,K-ATPase structure by the cardiotonic steroid ouabain

    SciTech Connect

    Miles, Andrew J.; Fedosova, Natalya U.; Hoffmann, Søren V.; Wallace, B.A.; Esmann, Mikael

    2013-05-31

    Highlights: •Ouabain binding to pig and shark Na,K-ATPase enhances thermal stability. •Ouabain stabilises both membrane-bound and solubilised Na,K-ATPase. •Synchrotron radiation circular dichroism is used for structure determination. •Secondary structure in general is not affected by ouabain binding. •Stabilisation is due to re-arrangement of tertiary structure. -- Abstract: Cardiotonic steroids such as ouabain bind with high affinity to the membrane-bound cation-transporting P-type Na,K-ATPase, leading to complete inhibition of the enzyme. Using synchrotron radiation circular dichroism spectroscopy we show that the enzyme-ouabain complex is less susceptible to thermal denaturation (unfolding) than the ouabain-free enzyme, and this protection is observed with Na,K-ATPase purified from pig kidney as well as from shark rectal glands. It is also shown that detergent-solubilised preparations of Na,K-ATPase are stabilised by ouabain, which could account for the successful crystallisation of Na,K-ATPase in the ouabain-bound form. The secondary structure is not significantly affected by the binding of ouabain. Ouabain appears however, to induce a reorganization of the tertiary structure towards a more compact protein structure which is less prone to unfolding; recent crystal structures of the two enzymes are consistent with this interpretation. These circular dichroism spectroscopic studies in solution therefore provide complementary information to that provided by crystallography.

  19. Emulsions stabilised by food colloid particles: role of particle adsorption and wettability at the liquid interface.

    PubMed

    Paunov, Vesselin N; Cayre, Olivier J; Noble, Paul F; Stoyanov, Simeon D; Velikov, Krassimir P; Golding, Matt

    2007-08-15

    We study the effect of the particle wettability on the preferred type of emulsion stabilised solely by food colloid particles. We present results obtained with the recently developed gel trapping technique (GTT) for characterisation of wettability and surface structuring of individual food colloid particles adsorbed at air-water and oil-water interfaces. This method allows us to replicate a particle monolayer onto the surface of polydimethylsiloxane (PDMS) without altering the position of the particles. By observing the polymer surface with scanning electron microscopy (SEM), we are able to determine the contact angle of the individual particles at the initial liquid interface. We demonstrate that the GTT can be applied to fat crystal particles, calcium carbonate particles coated with stearic acid and spray-dried soy protein/calcium phosphate particles at air-water and oil-water interfaces. Subsequently, we prepare emulsions of decane and water stabilised by the same food colloid particles and correlate the wettability data obtained for these particles to the preferred type of emulsions they stabilise.

  20. Solar Surface Magneto-Convection

    NASA Astrophysics Data System (ADS)

    Stein, Robert F.

    2012-12-01

    We review the properties of solar magneto-convection in the top half of the convection zones scale heights (from 20 Mm below the visible surface to the surface, and then through the photosphere to the temperature minimum). Convection is a highly non-linear and nonlocal process, so it is best studied by numerical simulations. We focus on simulations that include sufficient detailed physics so that their results can be quantitatively compared with observations. The solar surface is covered with magnetic features with spatial sizes ranging from unobservably small to hundreds of megameters. Three orders of magnitude more magnetic flux emerges in the quiet Sun than emerges in active regions. In this review we focus mainly on the properties of the quiet Sun magnetic field. The Sun's magnetic field is produced by dynamo action throughout the convection zone, primarily by stretching and twisting in the turbulent downflows. Diverging convective upflows and magnetic buoyancy carry magnetic flux toward the surface and sweep the field into the surrounding downflow lanes where the field is dragged downward. The result is a hierarchy of undulating magnetic Ω- and U-loops of different sizes. New magnetic flux first appears at the surface in a mixed polarity random pattern and then collects into isolated unipolar regions due to underlying larger scale magnetic structures. Rising magnetic structures are not coherent, but develop a filamentary structure. Emerging magnetic flux alters the convection properties, producing larger, darker granules. Strong field concentrations inhibit transverse plasma motions and, as a result, reduce convective heat transport toward the surface which cools. Being cooler, these magnetic field concentrations have a shorter scale height and become evacuated. The field becomes further compressed and can reach strengths in balance with the surrounding gas pressure. Because of their small internal density, photons escape from deeper in the atmosphere. Narrow

  1. Effects of electron beam irradiation on the property behaviour of poly(ether-block-amide) blended with various stabilisers

    NASA Astrophysics Data System (ADS)

    Murray, Kieran A.; Kennedy, James E.; Barron, Valerie; McEvoy, Brian; Vrain, Olivier; Ryan, Damien; Cowman, Richard; Higginbotham, Clement L.

    2015-05-01

    Radiosterilisation can induce modifications and/or degradation to transpire in poly(ether-block-amide) (PEBA) following irradiation. The current investigation utilises combined synergistic mixtures of stabilisers to minimise these effects, by melt blending them with the PEBA material. Hindered amine stabilisers (HAS), primary antioxidants and secondary antioxidants were the stabilisers incorporate to reduce/eliminate the effects of 50 kGy electron beam irradiation dose on the material. Results were discussed by comparing the stabilising efficiency of mixtures on the PEBA material in contrast to the control sample. Dynamic frequency sweeps demonstrated the formation of crosslinks, where the degree of crosslinking was dependent on the combination of stabilisers mixed in the base material (PEBA). The storage modulus displayed that PEBA blended with Irganox 565 had very slight changes in contrast to all other samples following irradiation. However, since this sample is a phenol containing system, severe discolouration was observed in comparison to other samples due to the oxidation of the hindered phenol. Overall, this study provides compelling evidence that a combined synergistic mixture of Irganox 565 (multifunctional phenolic antioxidant) and Tinuvin 783 (hindered amide light stabiliser) with PEBA, resulted in the best radiation stability.

  2. Tropical deep convective cloud morphology

    NASA Astrophysics Data System (ADS)

    Igel, Matthew R.

    A cloud-object partitioning algorithm is developed. It takes contiguous CloudSat cloudy regions and identifies various length scales of deep convective clouds from a tropical, oceanic subset of data. The methodology identifies a level above which anvil characteristics become important by analyzing the cloud object shape. Below this level in what is termed the pedestal region, convective cores are identified based on reflectivity maxima. Identifying these regions allows for the assessment of length scales of the anvil and pedestal of the deep convective clouds. Cloud objects are also appended with certain environmental quantities from the ECMWF reanalysis. Simple geospatial and temporal assessments show that the cloud object technique agrees with standard observations of local frequency of deep-convective cloudiness. Additionally, the nature of cloud volume scale populations is investigated. Deep convection is seen to exhibit power-law scaling. It is suggested that this scaling has implications for the continuous, scale invariant, and random nature of the physics controlling tropical deep convection and therefore on the potentially unphysical nature of contemporary convective parameterizations. Deep-convective clouds over tropical oceans play important roles in Earth's climate system. The response of tropical, deep convective clouds to sea surface temperatures (SSTs) is investigated using this new data set. Several previously proposed feedbacks are examined: the FAT hypothesis, the Iris hypothesis, and the Thermostat hypothesis. When the data are analyzed per cloud object, each hypothesis is broadly found to correctly predict cloud behavior in nature, although it appears that the FAT hypothesis needs a slight modification to allow for cooling cloud top temperatures with increasing SSTs. A new response that shows that the base temperature of deep convective anvils remains approximately constant with increasing SSTs is introduced. These cloud-climate feedbacks are

  3. Mantle convection on modern supercomputers

    NASA Astrophysics Data System (ADS)

    Weismüller, Jens; Gmeiner, Björn; Mohr, Marcus; Waluga, Christian; Wohlmuth, Barbara; Rüde, Ulrich; Bunge, Hans-Peter

    2015-04-01

    Mantle convection is the cause for plate tectonics, the formation of mountains and oceans, and the main driving mechanism behind earthquakes. The convection process is modeled by a system of partial differential equations describing the conservation of mass, momentum and energy. Characteristic to mantle flow is the vast disparity of length scales from global to microscopic, turning mantle convection simulations into a challenging application for high-performance computing. As system size and technical complexity of the simulations continue to increase, design and implementation of simulation models for next generation large-scale architectures demand an interdisciplinary co-design. Here we report about recent advances of the TERRA-NEO project, which is part of the high visibility SPPEXA program, and a joint effort of four research groups in computer sciences, mathematics and geophysical application under the leadership of FAU Erlangen. TERRA-NEO develops algorithms for future HPC infrastructures, focusing on high computational efficiency and resilience in next generation mantle convection models. We present software that can resolve the Earth's mantle with up to 1012 grid points and scales efficiently to massively parallel hardware with more than 50,000 processors. We use our simulations to explore the dynamic regime of mantle convection assessing the impact of small scale processes on global mantle flow.

  4. Mantle Convection on Modern Supercomputers

    NASA Astrophysics Data System (ADS)

    Weismüller, J.; Gmeiner, B.; Huber, M.; John, L.; Mohr, M.; Rüde, U.; Wohlmuth, B.; Bunge, H. P.

    2015-12-01

    Mantle convection is the cause for plate tectonics, the formation of mountains and oceans, and the main driving mechanism behind earthquakes. The convection process is modeled by a system of partial differential equations describing the conservation of mass, momentum and energy. Characteristic to mantle flow is the vast disparity of length scales from global to microscopic, turning mantle convection simulations into a challenging application for high-performance computing. As system size and technical complexity of the simulations continue to increase, design and implementation of simulation models for next generation large-scale architectures is handled successfully only in an interdisciplinary context. A new priority program - named SPPEXA - by the German Research Foundation (DFG) addresses this issue, and brings together computer scientists, mathematicians and application scientists around grand challenges in HPC. Here we report from the TERRA-NEO project, which is part of the high visibility SPPEXA program, and a joint effort of four research groups. TERRA-NEO develops algorithms for future HPC infrastructures, focusing on high computational efficiency and resilience in next generation mantle convection models. We present software that can resolve the Earth's mantle with up to 1012 grid points and scales efficiently to massively parallel hardware with more than 50,000 processors. We use our simulations to explore the dynamic regime of mantle convection and assess the impact of small scale processes on global mantle flow.

  5. Influence of convection on microstructure

    NASA Technical Reports Server (NTRS)

    Wilcox, William R.; Eisa, Gaber Faheem; Chandrasekhar, S.; Larrousse, Mark; Banan, Mohsen

    1988-01-01

    The influence was studied of convection during directional solidification on the resulting microstructure of eutectics, specifically lead/tin and manganese/bismuth. A theory was developed for the influence of convection on the microstructure of lamellar and fibrous eutectics, through the effect of convection on the concentration field in the melt in front of the growing eutectic. While the theory agrees with the experimental spin-up spin-down results, it predicts that the weak convection expected due to buoyancy will not produce a measurable change in eutectic microstructure. Thus, this theory does not explain the two fold decrease in MnBi fiber size and spacing observed when MnBi-Bi is solidified in space or on Earth with a magnetic field applied. Attention was turned to the morphology of the MnBi-Bi interface and to the generation of freezing rate fluctuations by convection. Decanting the melt during solidification of MnBi-Bi eutectic showed that the MnBi phase projects into the melt ahead of the Bi matrix. Temperature measurements in a Bi melt in the vertical Bridgman-Stockbarger configuration showed temperature variations of up to 25 C. Conclusions are drawn and discussed.

  6. Steady dissolution rate due to convective mixing in anisotropic porous media

    NASA Astrophysics Data System (ADS)

    Green, Christopher P.; Ennis-King, Jonathan

    2014-11-01

    Enhanced dissolution of CO2 into a saline aquifer due to convective mixing is an important physical process for the secure long-term storage of significant quantities of CO2. Numerical simulations have previously shown that the dissolution rate of CO2 into reservoir brine will stabilise after a certain time period, with only small oscillations about a long-term average. A theoretical estimate for this average long-term mass flux in an isotropic homogeneous reservoir has previously appeared in the literature. In this paper, an estimate for the steady dissolution rate in anisotropic homogenous porous media is developed using a simple theoretical argument. Detailed numerical simulations confirm that the steady dissolution rate scales as (kvkh) 1 / 2 in an anisotropic homogeneous porous media, where kv and kh are the vertical and horizontal permeabilities, respectively. The scaling is also shown to be appropriate for heterogeneous models where vertical heterogeneity is introduced by including a random distribution of impermeable barriers.

  7. Effectiveness of arthroscopic versus open surgical stabilisation for the management of traumatic anterior glenohumeral instability.

    PubMed

    Ng, Choong; Bialocerkowski, Andrea; Hinman, Rana

    2007-06-01

    Background  Anterior instability is a frequent complication following a traumatic glenohumeral dislocation. Frequently the underlying pathology associated with recurrent instability is a Bankart lesion. Surgical correction of Bankart lesions and other associated pathology is the key to successful treatment. Open surgical glenohumeral stabilisation has been advocated as the gold standard because of consistently low postoperative recurrent instability rates. However, arthroscopic glenohumeral stabilisation could challenge open surgical repair as the gold standard treatment for traumatic anterior glenohumeral instability. Objectives  Primary evidence that compared the effectiveness of arthroscopic versus open surgical glenohumeral stabilisation was systematically collated regarding best-practice management for adults with traumatic anterior glenohumeral instability. Search strategy  A systematic search was performed using 14 databases: MEDLINE, Cumulative Index of Nursing and Allied Health (CINAHL), Allied and Complementary Medicine Database (AMED), ISI Web of Science, Expanded Academic ASAP, Proquest Medical Library, Evidence Based Medicine Reviews, Physiotherapy Evidence Database, TRIP Database, PubMed, ISI Current Contents Connect, Proquest Digital Dissertations, Open Archives Initiative Search Engine, Australian Digital Thesis Program. Studies published between January 1984 and December 2004 were included in this review. No language restrictions were applied. Selection criteria  Eligible studies were those that compared the effectiveness of arthroscopic versus open surgical stabilisation for the management of traumatic anterior glenohumeral instability, which had more than 2 years of follow up and used recurrent instability and a functional shoulder questionnaire as primary outcomes. Studies that used non-anatomical open repair techniques, patient groups that were specifically 40 years or older, or had multidirectional instability or other concomitant

  8. Evolution of Soil Moisture-Convection Interactions against the Backdrop of Global Oscillations

    NASA Astrophysics Data System (ADS)

    Tawfik, A. B.; Dirmeyer, P.

    2014-12-01

    Interannual changes in how soil moisture can trigger convection are explored within the context of known global-scale oscillations, such as ENSO. Because soil moisture-convection interactions are a local phenomenon that require a sufficiently moist and unstable atmosphere to initiate convection, any systematic changes to water vapor produced by these global circulation changes may manifest in disrupting or promoting the soil moisture-precipitation feedback chain. Using a new framework, the Heated Condensation Framework (HCF; Tawfik and Dirmeyer 2014), local land-atmosphere coupling can be examined by separating the atmospheric background state from the land surface state in terms of convective initiation. The current work explores how the soil moisture-convection relationship changes from year-to-year and during influential El Nino and La Nina events. This is done using several global and regional reanalysis products, as well as observations where available.

  9. Internal Wave Generation by Convection

    NASA Astrophysics Data System (ADS)

    Lecoanet, Daniel Michael

    In nature, it is not unusual to find stably stratified fluid adjacent to convectively unstable fluid. This can occur in the Earth's atmosphere, where the troposphere is convective and the stratosphere is stably stratified; in lakes, where surface solar heating can drive convection above stably stratified fresh water; in the oceans, where geothermal heating can drive convection near the ocean floor, but the water above is stably stratified due to salinity gradients; possible in the Earth's liquid core, where gradients in thermal conductivity and composition diffusivities maybe lead to different layers of stable or unstable liquid metal; and, in stars, as most stars contain at least one convective and at least one radiative (stably stratified) zone. Internal waves propagate in stably stratified fluids. The characterization of the internal waves generated by convection is an open problem in geophysical and astrophysical fluid dynamics. Internal waves can play a dynamically important role via nonlocal transport. Momentum transport by convectively excited internal waves is thought to generate the quasi-biennial oscillation of zonal wind in the equatorial stratosphere, an important physical phenomenon used to calibrate global climate models. Angular momentum transport by convectively excited internal waves may play a crucial role in setting the initial rotation rates of neutron stars. In the last year of life of a massive star, convectively excited internal waves may transport even energy to the surface layers to unbind them, launching a wind. In each of these cases, internal waves are able to transport some quantity--momentum, angular momentum, energy--across large, stable buoyancy gradients. Thus, internal waves represent an important, if unusual, transport mechanism. This thesis advances our understanding of internal wave generation by convection. Chapter 2 provides an underlying theoretical framework to study this problem. It describes a detailed calculation of the

  10. ARM - Midlatitude Continental Convective Clouds

    DOE Data Explorer

    Jensen, Mike; Bartholomew, Mary Jane; Genio, Anthony Del; Giangrande, Scott; Kollias, Pavlos

    2012-01-19

    Convective processes play a critical role in the Earth's energy balance through the redistribution of heat and moisture in the atmosphere and their link to the hydrological cycle. Accurate representation of convective processes in numerical models is vital towards improving current and future simulations of Earths climate system. Despite improvements in computing power, current operational weather and global climate models are unable to resolve the natural temporal and spatial scales important to convective processes and therefore must turn to parameterization schemes to represent these processes. In turn, parameterization schemes in cloud-resolving models need to be evaluated for their generality and application to a variety of atmospheric conditions. Data from field campaigns with appropriate forcing descriptors have been traditionally used by modelers for evaluating and improving parameterization schemes.

  11. The Role of the Velocity Gradient in Laminar Convective Heat Transfer through a Tube with a Uniform Wall Heat Flux

    ERIC Educational Resources Information Center

    Wang, Liang-Bi; Zhang, Qiang; Li, Xiao-Xia

    2009-01-01

    This paper aims to contribute to a better understanding of convective heat transfer. For this purpose, the reason why thermal diffusivity should be placed before the Laplacian operator of the heat flux, and the role of the velocity gradient in convective heat transfer are analysed. The background to these analyses is that, when the energy…

  12. Mesoscale aspects of convective storms

    NASA Technical Reports Server (NTRS)

    Fujita, T. T.

    1981-01-01

    The structure, evolution and mechanisms of mesoscale convective disturbances are reviewed and observation techniques for "nowcasting" their nature are discussed. A generalized mesometeorological scale is given, classifying both low and high pressure systems. Mesoscale storms are shown often to induce strong winds, but their wind speeds are significantly less than those accompanied by submesoscale disturbances, such as tornadoes, downbursts, and microbursts. Mesoscale convective complexes, severe storm wakes, and flash floods are considered. The understanding of the evolution of supercells is essential for improving nowcasting capabilities and a very accurate combination of radar and satellite measurements is required.

  13. Wavenumber selection in Benard convection

    SciTech Connect

    Catton, I.

    1988-11-01

    The results of three related studies dealing with wavenumber selection in Rayleigh--Benard convection are reported. The first, an extension of the power integral method, is used to argue for the existence of multi-wavenumbers at all supercritical wavenumbers. Most existing closure schemes are shown to be inadequate. A thermodynamic stability criterion is shown to give reasonable results but requires empirical measurement of one parameter for closure. The third study uses an asymptotic approach based in part on geometric considerations and requires no empiricism to obtain good predictions of the wavenumber. These predictions, however, can only be used for certain planforms of convection.

  14. Test method selection, validation against field data, and predictive modelling for impact evaluation of stabilised waste disposal.

    PubMed

    van der Sloot, Hans A; van Zomeren, Andre; Meeussen, Johannes C L; Seignette, Paul; Bleijerveld, Rob

    2007-03-15

    In setting criteria for landfill classes in Annex II of the EU Landfill Directive, it proved to be impossible to derive criteria for stabilised monolithic waste due to the lack of information on release and release controlling factors in stabilised waste monofills. In this study, we present a scientific basis, which enables a realistic description of the environmental impact of stabilised waste landfills. The work in progress involves laboratory testing of different stabilisation recipes, pilot scale studies on site and evaluation of field leachate from a full-scale stabilisation landfill. We found that the pHs in run-off and in percolate water from the pilot experiment are both around neutral. The neutral pH in run-off is apparently caused by the rapid atmospheric carbonation of those alkaline constituents that are released. The soil, used as a liner protection layer, controls the release to the subsurface below the landfill. This soil layer buffers pH and binds metals. The modelling results show that the chemistry is understood rather well. Differences between predicted and actual leaching might then be attributed to discrepancies in the description of sorption processes, complexation to organic matter and/or kinetic effects in the leaching tests. We conclude that this approach resulted in a new scientific basis for environmental impact assessment of stabilised waste landfills. The integrated approach has already resulted in a number of very valuable observations, which can be used to develop a sustainable landfill for monolithic waste and to provide guidance for the management of waste to be stabilised (e.g. improved waste mix design).

  15. Convection induced by radiative cooling of a layer of participating medium

    SciTech Connect

    Prasanna, Swaminathan; Venkateshan, S. P.

    2014-05-15

    Simulations and experiments have been conducted to study the effect of radiative cooling on natural convection in a horizontal layer of a participating medium enclosed between isothermal opaque wall and radiatively transparent wall and exposed to a cold background. The study is of relevance to a nocturnal boundary layer under clear and calm conditions. The focus of the study is to capture the onset of convection caused by radiative cooling. The experiments have been designed to mimic the atmospheric radiative boundary conditions, and hence decoupling convection and radiation boundary conditions. Planck number Pl and optical thickness of the layer τ{sub H} are the two important parameters that govern the interaction between radiation and convection. The radiation-convection coupling is a strong function of length scale. Convection sets up within first few seconds for all the experiments. Strong plume like convection is observed for the experimental conditions used in the present study. Both simulations and experiments confirm that radiative cooling increases substantially with decrease in emissivity of the bottom wall. Radiative cooling is strongly influenced by the nongray nature of the participating medium, especially when strong emission from the medium escapes to space, in the window region of the atmosphere. Accurate representation of radiative properties is critical. Linear stability analysis of onset of convection indicates that radiation stabilizes convection as Pl decreases. The observations are similar to the case of Rayleigh Bénard convection in a radiating gas. However, for both experimental and numerical conditions, the observed Rayleigh numbers are much greater than the critical Rayleigh number. To conclude, the role of radiation is to drive and sustain convection in the unstable layer.

  16. Ray-tracing simulation and SABER satellite observations of convective gravity waves

    NASA Astrophysics Data System (ADS)

    Kalisch, Silvio; Eckermann, Stephen; Ern, Manfred; Preusse, Peter; Riese, Martin; Trinh, Quang Thai; Kim, Young-Ha; Chun, Hye-Yeong

    Gravity waves (GWs) are known as a coupling mechanism between different atmospheric layers. They contribute to the wave-driving of the QBO and are also responsible for driving large scale circulations like the Brewer-Dobson circulation. One major and highly variable source of GWs is convection. Deep convection in the tropics excites GWs with prominent amplitudes and horizontal phase speeds of up to 90 m/s. These GWs propagate upward and, when breaking, release the wave's momentum, thus accelerate the background flow. Direction and magnitude of the acceleration strongly depends on wind filtering between the convective GW source and the considered altitude. Both, the generation mechanism of GWs close to the top of deep convective towers and the wind filtering process during GW propagation largely influence the GW spectrum found in the tropical middle atmosphere and therefore magnitude and direction of the acceleration. We present the results of GW ray-tracing calculations from tropospheric (convective) sources up to the mesosphere. The Gravity wave Regional Or Global RAy-Tracer (GROGRAT) was used to perform the GW trajectory calculations. The convective GW source scheme from Yonsei University (South Korea) served as the lower boundary condition to quantify the GW excitation from convection. Heating rates, cloud top data, and atmospheric background data were provided by the MERRA dataset for the calculation of convective forcing from deep convection and for the atmospheric background of the ray-tracing calculations afterwards. In order to validate our ray-tracing simulation results, we compare them to satellite measurements of temperature amplitudes and momentum fluxes from the SABER instrument. Therefore, observational constrains from limb-sounding instruments have been quantified. Influences of orbit geometry, the instrument's observational filter, and the wavelength shift in the observed GW spectrum are discussed. Geographic structures in the observed global

  17. Turbulent thermal convection in a rotating stratified fluid

    NASA Astrophysics Data System (ADS)

    Levy, M. A.; Fernando, H. J. S.

    2002-09-01

    Turbulent convection induced by heating the bottom boundary of a horizontally homogeneous, linearly (temperature) stratified, rotating fluid layer is studied using a series of laboratory experiments. It is shown that the growth of the convective mixed layer is dynamically affected by background rotation (or Coriolis forces) when the parameter R = (h2[Omega]3/q0)2/3 exceeds a critical value of Rc [approximate] 275. Here h is the depth of the convective layer, [Omega] is the rate of rotation, and q0 is the buoyancy flux at the bottom boundary. At larger R, the buoyancy gradient in the mixed layer appears to scale as (db/dz)ml = C[Omega]2, where C [approximate] 0.02. Conversely, when R < Rc, the buoyancy gradient is independent of [Omega] and approaches that of the non-rotating case. The entrainment velocity, ue, for R > Rc was found to be dependent on [Omega] according to E = [Ri(1 + C[Omega]2/N2)][minus sign]1, where E is the entrainment coefficient based on the convective velocity w[low asterisk] = (q0h)1/3, E = ue/w[low asterisk], Ri is the Richardson number Ri = N2h2/w2[low asterisk], and N is the buoyancy frequency of the overlying stratified layer. The results indicate that entrainment in this case is dominated by non-penetrative convection, although the convective plumes can penetrate the interface in the form of lenticular protrusions.

  18. Three-dimensional spherical models of layered and whole mantle convection

    NASA Technical Reports Server (NTRS)

    Glatzmaier, Gary A.; Schubert, Gerald

    1993-01-01

    We present numerical calculations of three-dimensional spherical shell thermal convection for constant viscosity and stratified viscosity models of whole-layer and two-layer mantle convection. These four examples are intended to provide theoretical guidance for determining the style of convection that is occurring in Earth's mantle. An impermeable interface between the upper and lower convecting shells in the two-layer solutions is placed at a depth of 670 km to coincide with the mantle seismic discontinuity that divides the upper and lower mantle. The interface results in an internal thermal boundary layer that raises the mean temperature in the lower shell by about 1400 K compared to the whole-layer solutions. The patterns of convection in the upper part of the whole-layer solutions are dominated by narrow arcuate sheetlike downflows in a background of weak upflow. In contrast, the upper shells of the two-layer solutions have complicated networks of convective rolls with the upflows and downflows having very similar structure. The structure of convection in the lower shells is similar to that in the lower part of the whole-layer solutions. Based on the horizontal structure of subduction zones on Earth's surface and on tomographic images of temperature variations in Earth's mantle, we conclude that the style of convection in Earth's mantle is more like that of the whole-mantle models.

  19. Convective organization in the super-parameterized community atmosphere model with constant surface temperature

    NASA Astrophysics Data System (ADS)

    Kuang, Z.

    2015-12-01

    Organization in a moist convecting atmosphere is investigated using the super-parameterized community atmosphere model (SPCAM) in aquaplanet setting with constant surface temperature, with and without planetary rotation. Without radiative and surface feedbacks, convective organization is dominated by convectively coupled gravity waves without planetary rotation and convectively coupled equatorial waves when there is planetary rotation. This behavior is well captured when the cloud resolving model (CRM) in SPCAM is replaced by its linear response function, computed following Kuang (2010), for the state of radiative convective equilibrium (RCE). With radiative feedback, however, convection self-aggregates, and with planetary rotation, the tropical zonal wavenumber-frequency spectrum features a red noise background. These behaviors in the presence of the radiative feedback are not captured when the CRM is replaced by its linear response function around the RCE state with radiative feedback included in the construction. Implications to organization in a moist convecting atmosphere will be discussed. Kuang, Z., Linear response functions of a cumulus ensemble to temperature and moisture perturbations and implication to the dynamics of convectively coupled waves, J. Atmos. Sci., 67, 941-962, (2010)

  20. Stochastic microhertz gravitational radiation from stellar convection

    SciTech Connect

    Bennett, M. F.; Melatos, A.

    2014-09-01

    High Reynolds-number turbulence driven by stellar convection in main-sequence stars generates stochastic gravitational radiation. We calculate the wave-strain power spectral density as a function of the zero-age main-sequence mass for an individual star and for an isotropic, universal stellar population described by the Salpeter initial mass function and redshift-dependent Hopkins-Beacom star formation rate. The spectrum is a broken power law, which peaks near the turnover frequency of the largest turbulent eddies. The signal from the Sun dominates the universal background. For the Sun, the far-zone power spectral density peaks at S(f {sub peak}) = 5.2 × 10{sup –52} Hz{sup –1} at frequency f {sub peak} = 2.3 × 10{sup –7} Hz. However, at low observing frequencies f < 3 × 10{sup –4} Hz, the Earth lies inside the Sun's near zone and the signal is amplified to S {sub near}(f {sub peak}) = 4.1 × 10{sup –27} Hz{sup –1} because the wave strain scales more steeply with distance (∝d {sup –5}) in the near zone than in the far zone (∝d {sup –1}). Hence the Solar signal may prove relevant for pulsar timing arrays. Other individual sources and the universal background fall well below the projected sensitivities of the Laser Interferometer Space Antenna and next-generation pulsar timing arrays. Stellar convection sets a fundamental noise floor for more sensitive stochastic gravitational-wave experiments in the more distant future.

  1. Control of oscillatory thermocapillary convection in microgravity

    NASA Technical Reports Server (NTRS)

    Neitzel, G. Paul

    1994-01-01

    Laboratory and numerical experiments are underway to generate, and subsequently suppress, oscillatory thermocapillary convection in thin layer of silicone oil. The laboratory experiments have succeeded in characterizing the flow state in a limited range of Bond number-Marangoni number space of interest, identifying states of: (1) steady, unicellular, thermocapillary convection; (2) steady, multicellular, thermocapillary convection; and (3) oscillatory thermocapillary convection. Comparisons between experimental results and stability computations for a related basic state will be made.

  2. Numerical modeling of enclosure convection

    NASA Technical Reports Server (NTRS)

    Duh, J. C.

    1989-01-01

    A numerical study on the steady and unsteady natural convection in two-dimensional rectangular enclosures has been performed by a time-accurate ADI finite difference scheme. The study covered a range of Rayleigh numbers between 1000 and 10 to the 7th, aspect ratios between 0.2 and 10.0, and tilt angles between -90 (heating from bottom) and +90 deg (heating from top). Various Prandtl numbers have been studied, but only the results of water (Pr = 7.0) are reported here due to space limitations. The physics revealed, however, includes the convection phenomena and the Rayleigh-Benard stability, as well as the combined mechanism of these two. The onset of secondary cells is determined by using a velocity map, which is simpler and cleaner, instead of a streamline plot. The critical Ra number for the occurrence of these secondary cells is shown to be lower than can be detected by experimental studies. On the Rayleigh-Benard stability part, a second transition from stable single-cell convection to periodic multicellular convection is disclosed.

  3. Compositional convection in viscous melts

    NASA Astrophysics Data System (ADS)

    Tait, Stephen; Jaupart, Claude

    1989-04-01

    DURING solidification of multi-component melts, gradients in temperature and composition develop on different scales because of the large difference between their respective molecular diffusivities. Two consequences are the development of double-diffusive convection1 and the creation of mushy zones in which solid and liquid intimately coexist with a complex small-scale geometry2,3. Theoretical analysis requires simplifying assumptions that must be verified by laboratory experiments. Hitherto, experiments have been carried out with aqueous solutions which do not accurately represent the dynamics of melts with high Prandtl numbers, such as magmas. Here we describe the characteristics of compositional convection using a new experimental technique which allows the viscosity of the solution to be varied independently of chemical composition and liquidus temperature. A supereutectic melt was cooled from below, causing the growth of a horizontal layer of crystals. Convective instability occurred when the local solutal Rayleigh number of the compositional boundary layer ahead of the advancing crystallization front attained a value of ~3 on average. We observed a novel regime of convection in which the thermal boundary layer above the crystallization front was essentially unmodified by the motion of the plumes. The plumes carried a small heat flux and did not mix the fluid to a uniform temperature.

  4. How stratified is mantle convection?

    NASA Astrophysics Data System (ADS)

    Puster, Peter; Jordan, Thomas H.

    1997-04-01

    We quantify the flow stratification in the Earth's mid-mantle (600-1500 km) in terms of a stratification index for the vertical mass flux, Sƒ (z) = 1 - ƒ(z) / ƒref (z), in which the reference value ƒref(z) approximates the local flux at depth z expected for unstratified convection (Sƒ=0). Although this flux stratification index cannot be directly constrained by observations, we show from a series of two-dimensional convection simulations that its value can be related to a thermal stratification index ST(Z) defined in terms of the radial correlation length of the temperature-perturbation field δT(z, Ω). ST is a good proxy for Sƒ at low stratifications (Sƒ<0.2), where it rises with stratification strength much more rapidly than Sƒ. Assuming that the shear-speed variations δβ(z, Ω) imaged by seismic tomography are primarily due to convective temperature fluctuations, we can approximate ST by Sβ, the analogous index for the radial correlation length of δβ, and thereby construct bounds on Sƒ. We discuss several key issues regarding the implementation of this strategy, including finite resolution of the seismic data, biases due to the parameterization of the tomographic models, and the bias and variance due to noise. From the comparison of the numerical simulations with recent tomographic structures, we conclude that it is unlikely that convection in the Earth's mantle has Sƒ≳0.15. We consider the possibility that this estimate is biased because mantle convection is intermittent and therefore that the present-day tomographic snapshot may differ from its time average. Although this possibility cannot be dismissed completely, we argue that values of Sƒ≳0.2 can be discounted under a weak version of the Uniformitarian Principle. The bound obtained here from global tomography is consistent with local seismological evidence for slab flux into the lower mantle; however, the total material flux has to be significantly greater (by a factor of 2-3) than that

  5. Influence of convection on microstructure

    NASA Technical Reports Server (NTRS)

    Wilcox, William R.; Regel, Liya L.

    1992-01-01

    The primary motivation for this research has been to determine the cause for space processing altering the microstructure of some eutectics, especially the MnBi-Bi eutectic. Prior experimental research at Grumman and here showed that the microstructure of MnBi-Bi eutectic is twice as fine when solidified in space or in a magnetic field, is uninfluenced by interfacial temperature gradient, adjusts very quickly to changes in freezing rate, and becomes coarser when spin-up/spin-down (accelerated crucible rotation technique) is used during solidification. Theoretical work at Clarkson predicted that buoyancy driven convection on earth could not account for the two fold change in fiber spacing caused by solidification in space. However, a lamellar structure with a planar interface was assumed, and the Soret effect was not included in the analysis. Experimental work at Clarkson showed that the interface is not planar, and that MnBi fibers project out in front of the Bi matrix on the order of one fiber diameter. Originally four primary hypotheses were to be tested under this current grant: (1) a fibrous microstructure is much more sensitive to convection than a lamellar microstructure, which was assumed in our prior theoretical treatment; (2) an interface with one phase projecting out into the melt is much more sensitive to convection than a planar interface, which was assumed in our prior theoretical treatment; (3) the Soret effect is much more important in the absence of convection and has a sufficiently large influence on microstructure that its action can explain the flight results; and (4) the microstructure is much more sensitive to convection when the composition of the bulk melt is off eutectic. As reported previously, we have learned that while a fibrous microstructure and a non-planar interface are more sensitive to convection than a lamellar microstructure with a planar interface, the influence of convection remains too small to explain the flight and magnetic

  6. Mantle convection, topography and geoid

    NASA Astrophysics Data System (ADS)

    Golle, Olivia; Dumoulin, Caroline; Choblet, Gaël.; Cadek, Ondrej

    2010-05-01

    The internal evolution of planetary bodies often include solid-state convection. This phenomenon may have a large impact on the various interfaces of these bodies (dynamic topography occurs). It also affects their gravity field (and the geoid). Since both geoid and topography can be measured by a spacecraft, and are therefore available for several planetary bodies (while seismological measurements are still lacking for all of them but the Moon and the Earth), these are of the first interest for the study of internal structures and processes. While a classical approach now is to combine gravity and altimetry measurements to infer the internal structure of a planet [1], we propose to complement it by the reverse problem, i.e., producing synthetic geoid and dynamic topography from numerical models of convection as proposed by recent studies (e.g. for the CMB topography of the Earth,[2]). This procedure first include a simple evaluation of the surface topography and geoid from the viscous flow obtained by the 3D numerical tool OEDIPUS [3] modeling convection in a spherical shell. An elastic layer will then be considered and coupled to the viscous model - one question being whether the elastic shell shall be included 'on top' of the convective domain or within it, in the cold 'lithospheric' outer region. What we will present here corresponds to the first steps of this work: the comparison between the response functions of the topography and the geoid obtained from the 3D convection program to the results evaluated by a spectral method handling radial variations of viscosity [4]. We consider the effect of the elastic layer whether included in the convective domain or not. The scale setting in the context of a full thermal convection model overlaid by an elastic shell will be discussed (thickness of the shell, temperature at its base...). References [1] A.M. Wieczorek, (2007), The gravity and topography of the terrestrial planets, Treatise on Geophysics, 10, 165-206. [2

  7. Stabilisation of strawberry (Fragaria x ananassa Duch.) anthocyanins by different pectins.

    PubMed

    Buchweitz, M; Speth, M; Kammerer, D R; Carle, R

    2013-12-01

    The objective of the present study was to evaluate the effects of different pectins on strawberry anthocyanins in viscous model solutions at pH 3.0. For this purpose, low esterified amidated, low and high methyl esterified citrus and apple pectins, and a sugar beet pectin (SBP), respectively, were added to strawberry extracts. The latter were predominantly composed of pelargonidin-glycosides, containing either reduced (E-1) or original amounts of non-anthocyanin phenolics (E-2). Model systems were stored for 18 weeks at 20±0.5 °C protected from light, and anthocyanins were quantitated in regular intervals by HPLC-DAD analyses. Half-life (t1/2) and destruction (D) values were calculated based on first-order kinetics. Generally, significant differences in pigment retention could be ascribed to differing pectin sources, while variation in the degree of esterification and amidation, respectively, had negligible effects. Compared to systems without added pectin, apple pectins and SPB enhanced anthocyanin stability moderately, while stabilising effects of citrus pectins were poor or even imperceptible. Generally, the amount of non-anthocyanin phenolics and the addition of citrate did not markedly affect anthocyanin stability. However, pectins had no influence on total phenolic contents (Folin-Ciocalteu assay) and antioxidant capacities (FRAP and TEAC assay) of strawberry phenolics over time. For pelargonidin-3-glucoside and -rutinoside largely consistent stabilities were found in all model systems. In contrast, pelargonidin-3-malonylglucoside was less stable in the blank, and stabilisation by pectins was always negligible. The findings of the present study are contrary to results reported previously for the stabilisation of cyanidin- and delphinidin-glycosides in similar model systems prepared with black currant extracts, indicating a high impact of the number of hydroxyl groups in the anthocyanin B-ring.

  8. Mathematical modelling of postbuckling in a slender beam column for active stabilisation control with respect to uncertainty

    NASA Astrophysics Data System (ADS)

    Enss, Georg C.; Platz, Roland; Hanselka, Holger

    2012-04-01

    Buckling is an important design constraint in light-weight structures as it may result in the collapse of an entire structure. When a mechanical beam column is loaded above its critical buckling load, it may buckle. In addition, if the actual loading is not fully known, stability becomes highly uncertain. To control uncertainty in buckling, an approach is presented to actively stabilise a slender flat column sensitive to buckling. For this purpose, actively controlled forces applied by piezoelectric actuators located close to the column's clamped base stabilise the column against buckling at critical loading. In order to design a controller to stabilise the column, a mathematical model of the postcritically loaded system is needed. Simulating postbuckling behaviour is important to study the effect of axial loads above the critical axial buckling load within active buckling control. Within this postbuckling model, different kinds of uncertainty may occur: i) error in estimation of model parameters such as mass, damping and stiffness, ii) non-linearities e. g. in the assumption of curvature of the column's deflection shapes and many more. In this paper, numerical simulations based on the mathematical model for the postcritically axially loaded column are compared to a mathematical model based on experiments of the actively stabilised postcritically loaded real column system using closed loop identification. The motivation to develop an experimentally validated mathematical model is to develop of a model based stabilising control algorithm for a real postcritically axially loaded beam column.

  9. Spectroscopic properties of erbium-doped yttria-stabilised zirconia crystals

    SciTech Connect

    Ryabochkina, P A; Sidorova, N V; Ushakov, S N; Lomonova, E E

    2014-02-28

    Yttria-stabilised zirconia crystals ZrO{sub 2} – Y{sub 2}O{sub 3} (6 mol %) – Er{sub 2}O{sub 3} (5.85 mol %) are grown by directional crystallisation in a cold container using direct RF melting. The spectral and luminescent properties of these crystals are studied in order to use them as active media of solid state lasers emitting in the wavelength range 1.5 – 1.7 μm. (active media)

  10. Stabilisation of a class of 2-DOF underactuated mechanical systems via direct Lyapunov approach

    NASA Astrophysics Data System (ADS)

    Turker, Turker; Gorgun, Haluk; Cansever, Galip

    2013-06-01

    This paper represents an alternative stabilisation procedure for a class of two degree-of-freedom underactuated mechanical systems based on a set of transformations and a Lyapunov function. After simplifying dynamic equations of the system via partial feedback linearisation and coordinate changes, the stability of the system is provided with Lyapunov's direct method. Proposed control scheme is used on two different examples and asymptotic convergence for each system is proven by means of La Salle's invariance principle. The designed controller is successfully illustrated through numerical simulations for each example.

  11. Arm-length stabilisation for interferometric gravitational-wave detectors using frequency-doubled auxiliary lasers.

    PubMed

    Mullavey, Adam J; Slagmolen, Bram J J; Miller, John; Evans, Matthew; Fritschel, Peter; Sigg, Daniel; Waldman, Sam J; Shaddock, Daniel A; McClelland, David E

    2012-01-02

    Residual motion of the arm cavity mirrors is expected to prove one of the principal impediments to systematic lock acquisition in advanced gravitational-wave interferometers. We present a technique which overcomes this problem by employing auxiliary lasers at twice the fundamental measurement frequency to pre-stabilise the arm cavities' lengths. Applying this approach, we reduce the apparent length noise of a 1.3 m long, independently suspended Fabry-Perot cavity to 30 pm rms and successfully transfer longitudinal control of the system from the auxiliary laser to the measurement laser.

  12. Global adaptive exponential stabilisation for nonlinear systems with multiple unknown control directions

    NASA Astrophysics Data System (ADS)

    Sun, Xifang; Chen, Weisheng; Wu, Jian

    2016-12-01

    In this paper, we address the global generalised exponential stabilisation problem for a class of lower-triangular systems with multiple unknown directions. Instead of the well-known Nussbaum-gain adaptive rule, a Lyapunov-based adaptive logic switching rule is proposed to seek the correct control directions for such systems. The main advantage of the proposed controller is that it can guarantee the global generalised exponential stability of closed-loop systems. Simulation examples are given to verify the effectiveness of the developed control approach.

  13. Semi-global decentralised output feedback stabilisation for a class of uncertain nonlinear systems

    NASA Astrophysics Data System (ADS)

    Zhai, Jun-yong; Zha, Wen-ting; Fei, Shu-min

    2013-06-01

    This paper discusses the problem of semi-global decentralised output feedback control for a class of uncertain nonlinear systems. Based on the ideas of the homogeneous systems theory and the adding a power integrator technique, we first design a homogeneous observer and an output feedback control law for each nominal subsystem without the nonlinearities. Then, using the homogeneous domination approach, we relax the linear growth condition to a polynomial one and construct decentralised stabilisers to render the nonlinear system semi-globally asymptotically stable. Two simulation examples are provided to show the effectiveness of the control scheme.

  14. Granular convection observed by magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Ehrichs, E. E.; Jaeger, H. M.; Karczmar, Greg S.; Knight, James B.; Kuperman, Vadim Yu.; Nagel, Sidney R.

    1995-03-01

    Vibrations in a granular material can spontaneously produce convection rolls reminiscent of those seen in fluids. Magnetic resonance imaging provides a sensitive and noninvasive probe for the detection of these convection currents, which have otherwise been difficult to observe. A magnetic resonance imaging study of convection in a column of poppy seeds yielded data about the detailed shape of the convection rolls and the depth dependence of the convection velocity. The velocity was found to decrease exponentially with depth; a simple model for this behavior is presented here.

  15. Granular convection observed by magnetic resonance imaging

    SciTech Connect

    Ehrichs, E.E.; Jaeger, H.M.; Knight, J.B.; Nagel, S.R.; Karczmar, G.S.; Kuperman, V.Yu.

    1995-03-17

    Vibrations in a granular material can spontaneously produce convection rolls reminiscent of those seen in fluids. Magnetic resonance imaging provides a sensitive and noninvasive probe for the detection of these convection currents, which have otherwise been difficult to observe. A magnetic resonance imaging study of convection in a column of poppy seeds yielded data about the detailed shape of the convection rolls and the depth dependence of the convection velocity. The velocity was found to decrease exponentially with depth; a simple model for this behavior is presented here. 31 refs., 4 figs.

  16. A transilient matrix for moist convection

    SciTech Connect

    Romps, D.; Kuang, Z.

    2011-08-15

    A method is introduced for diagnosing a transilient matrix for moist convection. This transilient matrix quantifies the nonlocal transport of air by convective eddies: for every height z, it gives the distribution of starting heights z{prime} for the eddies that arrive at z. In a cloud-resolving simulation of deep convection, the transilient matrix shows that two-thirds of the subcloud air convecting into the free troposphere originates from within 100 m of the surface. This finding clarifies which initial height to use when calculating convective available potential energy from soundings of the tropical troposphere.

  17. Tropical Convection's Roles in Tropical Tropopause Cirrus

    NASA Technical Reports Server (NTRS)

    Boehm, Matthew T.; Starr, David OC.; Verlinde, Johannes; Lee, Sukyoung

    2002-01-01

    The results presented here show that tropical convection plays a role in each of the three primary processes involved in the in situ formation of tropopause cirrus. First, tropical convection transports moisture from the surface into the upper troposphere. Second, tropical convection excites Rossby waves that transport zonal momentum toward the ITCZ, thereby generating rising motion near the equator. This rising motion helps transport moisture from where it is detrained from convection to the cold-point tropopause. Finally, tropical convection excites vertically propagating tropical waves (e.g. Kelvin waves) that provide one source of large-scale cooling near the cold-point tropopause, leading to tropopause cirrus formation.

  18. L ∞ and L 2 semi-global stabilisation of continuous-time periodic linear systems with bounded controls

    NASA Astrophysics Data System (ADS)

    Zhou, Bin; Hou, Ming-Zhe; Duan, Guang-Ren

    2013-04-01

    This article is concerned with L ∞ and L 2 semi-global stabilisation of continuous-time periodic linear systems with bounded controls. Two problems, namely L ∞ semi-global stabilisation with controls having bounded magnitude and L 2 semi-global stabilisation with controls having bounded energy, are solved based on solutions to a class of periodic Lyapunov differential equations (PLDEs) resulting from the problem of minimal energy control with guaranteed convergence rate. Under the assumption that the open-loop system is (asymptotically) null controllable with constrained controls, periodic feedback are established to solve the concerned problems. The proposed PLDE-based approaches possess the advantage that the resulting controllers are easy to implement since the designers need only to solve a linear differential equation. A numerical example is worked out to illustrate the effectiveness of the proposed approach.

  19. Generalized Convective Quasi-Equilibrium Closure

    NASA Astrophysics Data System (ADS)

    Yano, Jun-Ichi; Plant, Robert

    2016-04-01

    Arakawa and Schubert proposed convective quasi-equilibrium as a basic principle for closing their spectrum mass-flux convection parameterization. In deriving this principle, they show that the cloud work function is a key variable that controls the growth of convection. Thus, this closure hypothesis imposes a steadiness of the cloud work function tendency. This presentation shows how this principle can be generalized so that it can also encompasses both the CAPE and the moisture-convergence closures. Note that the majority of the current mass-flux convection parameterization invokes a CAPE closure, whereas the moisture-convergence closure was extremely popular historically. This generalization, in turn, includes both closures as special cases of convective quasi-equilibrium. This generalization further suggests wide range of alternative possibilities for convective closure. In general, a vertical integral of any function depending on both large-scale and convective-scale variables can be adopted as an alternative closure variables, leading to an analogous formulation as Arakawa and Schubert's convective quasi-equilibrium formulation. Among those, probably the most fascinating possibility is to take a vertical integral of the convective-scale moisture for the closure. Use of a convective-scale variable for closure has a particular appeal by not suffering from a loss of predictability of any large-scale variables. That is a main problem with any of the current convective closures, not only for the moisture-convergence based closure as often asserted.

  20. Seismic Constraints on Interior Solar Convection

    NASA Technical Reports Server (NTRS)

    Hanasoge, Shravan M.; Duvall, Thomas L.; DeRosa, Marc L.

    2010-01-01

    We constrain the velocity spectral distribution of global-scale solar convective cells at depth using techniques of local helioseismology. We calibrate the sensitivity of helioseismic waves to large-scale convective cells in the interior by analyzing simulations of waves propagating through a velocity snapshot of global solar convection via methods of time-distance helioseismology. Applying identical analysis techniques to observations of the Sun, we are able to bound from above the magnitudes of solar convective cells as a function of spatial convective scale. We find that convection at a depth of r/R(solar) = 0.95 with spatial extent l < 30, where l is the spherical harmonic degree, comprise weak flow systems, on the order of 15 m/s or less. Convective features deeper than r/R(solar) = 0.95 are more difficult to image due to the rapidly decreasing sensitivity of helioseismic waves.

  1. Aerosol-radiation-cloud interactions in a regional coupled model: the effects of convective parameterisation and resolution

    NASA Astrophysics Data System (ADS)

    Archer-Nicholls, Scott; Lowe, Douglas; Schultz, David M.; McFiggans, Gordon

    2016-05-01

    The Weather Research and Forecasting model with Chemistry (WRF-Chem) has been used to simulate a region of Brazil heavily influenced by biomass burning. Nested simulations were run at 5 and 1 km horizontal grid spacing for three case studies in September 2012. Simulations were run with and without fire emissions, convective parameterisation on the 5 km domain, and aerosol-radiation interactions in order to explore the differences attributable to the parameterisations and to better understand the aerosol direct effects and cloud responses. Direct aerosol-radiation interactions due to biomass burning aerosol resulted in a net cooling, with an average short-wave direct effect of -4.08 ± 1.53 Wm-2. However, around 21.7 Wm-2 is absorbed by aerosol in the atmospheric column, warming the atmosphere at the aerosol layer height, stabilising the column, inhibiting convection, and reducing cloud cover and precipitation. The changes to clouds due to radiatively absorbing aerosol (traditionally known as the semi-direct effects) increase the net short-wave radiation reaching the surface by reducing cloud cover, producing a secondary warming that counters the direct cooling. However, the magnitude of the semi-direct effect was found to be extremely sensitive to the model resolution and the use of convective parameterisation. Precipitation became organised in isolated convective cells when not using a convective parameterisation on the 5 km domain, reducing both total cloud cover and total precipitation. The SW semi-direct effect varied from 6.06 ± 1.46 with convective parameterisation to 3.61 ± 0.86 Wm-2 without. Convective cells within the 1 km domain are typically smaller but with greater updraft velocity than equivalent cells in the 5 km domain, reducing the proportion of the domain covered by cloud in all scenarios and producing a smaller semi-direct effect. Biomass burning (BB) aerosol particles acted as cloud condensation nuclei (CCN), increasing the droplet number

  2. Sludge digestion instead of aerobic stabilisation - a cost benefit analysis based on experiences in Germany.

    PubMed

    Gretzschel, Oliver; Schmitt, Theo G; Hansen, Joachim; Siekmann, Klaus; Jakob, Jürgen

    2014-01-01

    As a consequence of a worldwide increase of energy costs, the efficient use of sewage sludge as a renewable energy resource must be considered, even for smaller wastewater treatment plants (WWTPs) with design capacities between 10,000 and 50,000 population equivalent (PE). To find the lower limit for an economical conversion of an aerobic stabilisation plant into an anaerobic stabilisation plant, we derived cost functions for specific capital costs and operating cost savings. With these tools, it is possible to evaluate if it would be promising to further investigate refitting aerobic plants into plants that produce biogas. By comparing capital costs with operation cost savings, a break-even point for process conversion could be determined. The break-even point varies depending on project specific constraints and assumptions related to future energy and operation costs and variable interest rates. A 5% increase of energy and operation costs leads to a cost efficient conversion for plants above 7,500 PE. A conversion of WWTPs results in different positive effects on energy generation and plant operations: increased efficiency, energy savings, and on-site renewable power generation by digester gas which can be used in the plant. Also, the optimisation of energy efficiency results in a reduction of primary energy consumption.

  3. Characterisation of Physicochemical Properties of Propionylated Corn Starch and Its Application as Stabiliser.

    PubMed

    Hong, Lee-Fen; Cheng, Lai-Hoong; Lee, Chong Yew; Peh, Kok Khiang

    2015-09-01

    A series of propionylated starches with different degrees of substitution (DS) was synthesised and their physicochemical properties and application as a stabiliser were investigated. Starch propionates with moderate DS were prepared by esterification of native corn starch with propionic anhydride. By varying the reaction times of the esterification process, twelve starch propionates with DS of 0.47 to 0.94 were prepared. FTIR and NMR confirmed the introduction of propionyl groups to the starch. X-ray diffraction pattern showed reduced crystallinity in the starch propionates. The contact angle was found to increase proportionately with the increase in DS. Swelling power results showed that starch propionates were able to swell more than native corn starch at low temperature (40 °C). Oil-in- -water (O/W) emulsions prepared using starch propionates (DS of 0.64 to 0.86) showed exceptional stability when challenged by centrifugation stress test. These stable O/W emulsions had viscosities in the range of 1236.7-3330.0 mPa·s. In conclusion, moderately substituted short-chain (propionylated) starches could be a promising cold swelling starch, thickener and O/W emulsion stabiliser in food, pharmaceutical and cosmetic industries.

  4. Enamel subsurface lesion remineralisation with casein phosphopeptide stabilised solutions of calcium, phosphate and fluoride.

    PubMed

    Cochrane, N J; Saranathan, S; Cai, F; Cross, K J; Reynolds, E C

    2008-01-01

    Casein phosphopeptide stabilised amorphous calcium phosphate (CPP-ACP) and amorphous calcium fluoride phosphate (CPP-ACFP) solutions have been shown to remineralise enamel subsurface lesions. The aim of this study was to determine the effect of ion composition of CPP-ACP and CPP-ACFP solutions on enamel subsurface lesion remineralisation in vitro. CPP-bound and free calcium, phosphate and fluoride ion concentrations in the solutions were determined after ultrafiltration. The ion activities of the free ion species present were calculated using an iterative computational program. The mineral deposited in the subsurface lesions was analysed using transverse microradiography and electron microprobe. CPP was found to stabilise high concentrations of calcium, phosphate and fluoride ions at all pH values (7.0-4.5). Remineralisation of the subsurface lesions was observed at all pH values tested with a maximum at pH 5.5. The CPP-ACFP solutions produced greater remineralisation than the CPP-ACP solutions at pH 5.5 and below. The mineral formed in the subsurface lesions was consistent with hydroxyapatite and fluorapatite for remineralisation with CPP-ACP and CPP-ACFP, respectively. The activity gradient of the neutral ion pair CaHPO(4)(0) into the lesion was significantly correlated with remineralisation and together with HF(0) were identified as important species for diffusion.

  5. Integration of vehicle yaw stabilisation and rollover prevention through nonlinear hierarchical control allocation

    NASA Astrophysics Data System (ADS)

    Alberding, Matthäus B.; Tjønnås, Johannes; Johansen, Tor A.

    2014-12-01

    This work presents an approach to rollover prevention that takes advantage of the modular structure and optimisation properties of the control allocation paradigm. It eliminates the need for a stabilising roll controller by introducing rollover prevention as a constraint on the control allocation problem. The major advantage of this approach is the control authority margin that remains with a high-level controller even during interventions for rollover prevention. In this work, the high-level control is assigned to a yaw stabilising controller. It could be replaced by any other controller. The constraint for rollover prevention could be replaced by or extended to different control objectives. This work uses differential braking for actuation. The use of additional or different actuators is possible. The developed control algorithm is computationally efficient and suitable for low-cost automotive electronic control units. The predictive design of the rollover prevention constraint does not require any sensor equipment in addition to the yaw controller. The method is validated using an industrial multi-body vehicle simulation environment.

  6. Lipid oxidation in minced beef meat with added Krebs cycle substrates to stabilise colour.

    PubMed

    Yi, G; Grabež, V; Bjelanovic, M; Slinde, E; Olsen, K; Langsrud, O; Phung, V T; Haug, A; Oostindjer, M; Egelandsdal, B

    2015-11-15

    Krebs cycle substrates (KCS) can stabilise the colour of packaged meat by oxygen reduction. This study tested whether this reduction releases reactive oxygen species that may lead to lipid oxidation in minced meat under two different storage conditions. KCS combinations of succinate and glutamate increased peroxide forming potential (PFP, 1.18-1.32 mmol peroxides/kg mince) and thiobarbituric acid reactive substances (TBARS, 0.30-0.38 mg malondialdehyde (MDA) equivalents/kg mince) under low oxygen storage conditions. Both succinate and glutamate were metabolised. Moreover, under high oxygen (75%) storage conditions, KCS combinations of glutamate, citrate and malate increased PFP (from 1.22 to 1.29 mmol peroxides/kg) and TBARS (from 0.37 to 0.40 mg MDA equivalents/kg mince). Only glutamate was metabolised. The KCS combinations that were added to stabilise colour were metabolised during storage, and acted as pro-oxidants that promoted lipid oxidation in both high and low oxygen conditions.

  7. Characterisation of Physicochemical Properties of Propionylated Corn Starch and Its Application as Stabiliser

    PubMed Central

    Hong, Lee-Fen; Cheng, Lai-Hoong; Lee, Chong Yew

    2015-01-01

    Summary A series of propionylated starches with different degrees of substitution (DS) was synthesised and their physicochemical properties and application as a stabiliser were investigated. Starch propionates with moderate DS were prepared by esterification of native corn starch with propionic anhydride. By varying the reaction times of the esterification process, twelve starch propionates with DS of 0.47 to 0.94 were prepared. FTIR and NMR confirmed the introduction of propionyl groups to the starch. X-ray diffraction pattern showed reduced crystallinity in the starch propionates. The contact angle was found to increase proportionately with the increase in DS. Swelling power results showed that starch propionates were able to swell more than native corn starch at low temperature (40 °C). Oil-in- -water (O/W) emulsions prepared using starch propionates (DS of 0.64 to 0.86) showed exceptional stability when challenged by centrifugation stress test. These stable O/W emulsions had viscosities in the range of 1236.7–3330.0 mPa·s. In conclusion, moderately substituted short-chain (propionylated) starches could be a promising cold swelling starch, thickener and O/W emulsion stabiliser in food, pharmaceutical and cosmetic industries. PMID:27904359

  8. Electrical in-situ characterisation of interface stabilised organic thin-film transistors.

    PubMed

    Striedinger, Bernd; Fian, Alexander; Petritz, Andreas; Lassnig, Roman; Winkler, Adolf; Stadlober, Barbara

    2015-07-14

    We report on the electrical in-situ characterisation of organic thin film transistors under high vacuum conditions. Model devices in a bottom-gate/bottom-contact (coplanar) configuration are electrically characterised in-situ, monolayer by monolayer (ML), while the organic semiconductor (OSC) is evaporated by organic molecular beam epitaxy (OMBE). Thermal SiO2 with an optional polymer interface stabilisation layer serves as the gate dielectric and pentacene is chosen as the organic semiconductor. The evolution of transistor parameters is studied on a bi-layer dielectric of a 150 nm of SiO2 and 20 nm of poly((±)endo,exo-bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid, diphenylester) (PNDPE) and compared to the behaviour on a pure SiO2 dielectric. The thin layer of PNDPE, which is an intrinsically photo-patternable organic dielectric, shows an excellent stabilisation performance, significantly reducing the calculated interface trap density at the OSC/dielectric interface up to two orders of magnitude, and thus remarkably improving the transistor performance.

  9. Electrical in-situ characterisation of interface stabilised organic thin-film transistors

    PubMed Central

    Striedinger, Bernd; Fian, Alexander; Petritz, Andreas; Lassnig, Roman; Winkler, Adolf; Stadlober, Barbara

    2015-01-01

    We report on the electrical in-situ characterisation of organic thin film transistors under high vacuum conditions. Model devices in a bottom-gate/bottom-contact (coplanar) configuration are electrically characterised in-situ, monolayer by monolayer (ML), while the organic semiconductor (OSC) is evaporated by organic molecular beam epitaxy (OMBE). Thermal SiO2 with an optional polymer interface stabilisation layer serves as the gate dielectric and pentacene is chosen as the organic semiconductor. The evolution of transistor parameters is studied on a bi-layer dielectric of a 150 nm of SiO2 and 20 nm of poly((±)endo,exo-bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid, diphenylester) (PNDPE) and compared to the behaviour on a pure SiO2 dielectric. The thin layer of PNDPE, which is an intrinsically photo-patternable organic dielectric, shows an excellent stabilisation performance, significantly reducing the calculated interface trap density at the OSC/dielectric interface up to two orders of magnitude, and thus remarkably improving the transistor performance. PMID:26457122

  10. Physiological bicarbonate buffers: stabilisation and use as dissolution media for modified release systems.

    PubMed

    Fadda, Hala M; Merchant, Hamid A; Arafat, Basel T; Basit, Abdul W

    2009-12-01

    Bicarbonate media are reflective of the ionic composition and buffer capacity of small intestinal luminal fluids. Here we investigate methods to stabilise bicarbonate buffers which can be readily applied to USP-II dissolution apparatus. The in vitro drug release behaviour of three enteric coated mesalazine (mesalamine) products is investigated. Asacol 400 mg and Asacol 800 mg (Asacol HD) and the new generation, high dose (1200 mg) delayed and sustained release formulation, Mezavant (Lialda), are compared in pH 7.4 Krebs bicarbonate and phosphate buffers. Bicarbonate stabilisation was achieved by: continuous sparging of the medium with 5% CO(2)(g), application of a layer of liquid paraffin above the medium, or a specially designed in-house seal device that prevents CO(2)(g) loss. Each of the products displayed a delayed onset of drug release in physiological bicarbonate media compared to phosphate buffer. Moreover, Mezavant displayed a zero-order, sustained release profile in phosphate buffer; in bicarbonate media, however, this slow drug release was no longer apparent and a profile similar to that of Asacol 400 mg was observed. These similar release patterns of Asacol 400 mg and Mezavant displayed in bicarbonate media are in agreement with their pharmacokinetic profiles in humans. Bicarbonate media provide a better prediction of the in vivo behaviour of the mesalazine preparations investigated.

  11. A Scott bench with ergonomic thorax stabilisation pad improves body posture during preacher arm curl exercise.

    PubMed

    Biscarini, Andrea; Benvenuti, Paolo; Busti, Daniele; Zanuso, Silvano

    2016-05-01

    We assessed whether the use of an ergonomic thorax stabilisation pad, during the preacher arm curl exercise, could significantly reduce the excessive shoulder protraction and thoracic kyphosis induced by the standard flat pad built into the existing preacher arm curl equipment. A 3D motion capture system and inclinometers were used to measure shoulder protraction and thoracic kyphosis in 15 subjects performing preacher arm curl with a plate-loaded machine provided with the standard flat pad. The same measures were repeated after replacing the flat pad with a new ergonomic pad, specifically designed to accommodate the thorax profile and improve body posture. Pad replacement significantly (p < 0.001) reduced shoulder protraction (from [Formula: see text] to [Formula: see text]) and thoracic kyphosis (from [Formula: see text] to [Formula: see text]), enabling postural and functional improvements within the entire spine, shoulder girdle and rib cage. The ergonomic pad may potentially allow a more effective training, prevent musculoskeletal discomfort and reduce the risk of injury. Practitioner summary: We have designed an ergonomic thorax stabilisation pad for the preacher arm curl exercise. The new ergonomic pad improves the poor posture conditions induced by the standard flat pad and may potentially allow a more effective training, prevent musculoskeletal discomfort, improve the breathing function and reduce the risk of injury.

  12. Chemistry of guanidinate-stabilised diboranes: transition-metal-catalysed dehydrocoupling and hydride abstraction.

    PubMed

    Wagner, Arne; Litters, Sebastian; Elias, Jana; Kaifer, Elisabeth; Himmel, Hans-Jörg

    2014-09-22

    Herein, we analyse the catalytic boron-boron dehydrocoupling reaction that leads from the base-stabilised diborane(6) [H2 B(hpp)]2 (hpp=1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidinate) to the base-stabilised diborane(4) [H2 B(hpp)]2 . A number of potential transition-metal precatalysts was studied, including transition-metal complexes of the product diborane(4). The synthesis and structural characterisation of two further examples of such complexes is presented. The best results for the dehydrocoupling reactions were obtained with precatalysts of Group 9 metals in the oxidation state of +I. The active catalyst is formed in situ through a multistep process that involves reduction of the precatalyst by the substrate [H2 B(hpp)]2 , and mechanistic investigations indicate that both heterogeneous and (slower) homogeneous reaction pathways play a role in the dehydrocoupling reaction. In addition, hydride abstraction from [H2 B(hpp)]2 and related diboranes is analysed and the possibility for subsequent deprotonation is discussed by probing the protic character of the cationic boron-hydrogen compounds with NMR spectroscopic analysis.

  13. The effect of environmental conditions and soil physicochemistry on phosphate stabilisation of Pb in shooting range soils.

    PubMed

    Sanderson, Peter; Naidu, Ravi; Bolan, Nanthi

    2016-04-01

    The stabilisation of Pb in the soil by phosphate is influenced by environmental conditions and physicochemical properties of the soils to which it is applied. Stabilisation of Pb by phosphate was examined in four soils under different environmental conditions. The effect of soil moisture and temperature on stabilisation of Pb by phosphate was examined by measurement of water extractable and bioaccessible Pb, sequential fractionation and X-ray absorption spectroscopy. The addition of humic acid, ammonium nitrate and chloride was also examined for inhibition or improvement of Pb stability with phosphate treatment. The effect of moisture level varied between soils. In soil MB and DA a soil moisture level of 50% water holding capacity was sufficient to maximise stabilisation of Pb, but in soil TV and PE reduction in bioaccessible Pb was inhibited at this moisture level. Providing moisture at twice the soil water holding capacity did not enhance the effect of phosphate on Pb stabilisation. The difference of Pb stability as a result of incubating phosphate treated soils at 18 °C and 37 °C was relatively small. However wet-dry cycles decreased the effectiveness of phosphate treatment. The reduction in bioaccessible Pb obtained was between 20 and 40% with the most optimal treatment conditions. The reduction in water extractable Pb by phosphate was substantial regardless of incubation conditions and the effect of different temperature and soil moisture regimes was not significant. Selective sequential extraction showed phosphate treatment converted Pb in fraction 1 (exchangeable, acid and water soluble) to fraction 2 (reducible). There were small difference in fraction 4 (residual) Pb and fraction 1 as a result of treatment conditions. X-ray absorption spectroscopy of stabilised PE soil revealed small differences in Pb speciation under varying soil moisture and temperature treatments. The addition of humic acid and chloride produced the greatest effect on Pb speciation in

  14. The use of biogas plant fermentation residue for the stabilisation of toxic metals in agricultural soils

    NASA Astrophysics Data System (ADS)

    Geršl, Milan; Šotnar, Martin; Mareček, Jan; Vítěz, Tomáš; Koutný, Tomáš; Kleinová, Jana

    2015-04-01

    Our department has been paying attention to different methods of soil decontamination, including the in situ stabilisation. Possible reagents to control the toxic metals mobility in soils include a fermentation residue (FR) from a biogas plant. Referred to as digestate, it is a product of anaerobic decomposition taking place in such facilities. The fermentation residue is applied to soils as a fertiliser. A new way of its use is the in situ stabilisation of toxic metals in soils. Testing the stabilisation of toxic metals made use of real soil samples sourced from five agriculturally used areas of the Czech Republic with 3 soil samples taken from sites contaminated with Cu, Pb and Zn and 2 samples collected at sites of natural occurrence of Cu, Pb and Zn ores. All the samples were analysed using the sequential extraction procedure (BCR) (determine the type of Cu, Pb and Zn bonds). Stabilisation of toxic metals was tested in five soil samples by adding reagents as follows: dolomite, slaked lime, goethite, compost and fermentation residue. A single reagent was added at three different concentrations. In the wet state with the added reagents, the samples were left for seven days, shaken twice per day. After seven days, metal extraction was carried out: samples of 10 g soil were shaken for 2 h in a solution of 0.1M NH4NO3 at a 1:2.5 (g.ml-1), centrifuged for 15 min at 5,000 rpm and then filtered through PTFE 0.45 μm mesh filters. The extracts were analysed by ICP-OES. Copper The best reduction of Cu concentration in the extract was obtained at each of the tested sites by adding dolomite (10 g soil + 0.3 g dolomite). The concentration of Cu in the leachate decreased to 2.1-18.4% compare with the leachate without addition. Similar results were also shown for the addition of fermentation residue (10 g soil + 1 g FR). The Cu concentration in the leachate decreased to 16.7-26.8% compared with the leachate without addition. Lead The best results were achieved by adding

  15. Power spectra of solar convection

    NASA Technical Reports Server (NTRS)

    Chou, D.-Y.; Labonte, B. J.; Braun, D. C.; Duvall, T. L., Jr.

    1991-01-01

    The properties of convective motions on the sun are studied using Kitt Peak Doppler images and power spectra of convection. The power peaks at a scale of about 29,000 km and drops off smoothly with wavenumber. There is no evidence of apparent energy excess at the scale of the mesogranulation proposed by other authors. The vertical and horizontal power for each wavenumber are obtained and used to calculate the vertical and horizontal velocities of the supergranulation. The amplitude of vertical and horizontal velocities of the supergranulation are 0.034 (+ or - 0.002) km/s and 0.38 (+ or - 0.01) km/s, respectively. The corresponding rms values are 0.024 (+ or - 0.002) km/s and 0.27 (+ or - 0.01) km/s.

  16. Slantwise convection on fluid planets

    NASA Astrophysics Data System (ADS)

    O'Neill, Morgan E.; Kaspi, Yohai

    2016-10-01

    Slantwise convection should be ubiquitous in the atmospheres of rapidly rotating fluid planets. We argue that convectively adjusted lapse rates should be interpreted along constant angular momentum surfaces instead of lines parallel to the local gravity vector. Using Cassini wind observations of Jupiter and different lapse rates to construct toy atmospheres, we explore parcel paths in symmetrically stable and unstable weather layers by the numerically modeled insertion of negatively buoyant bubbles. Low-Richardson number atmospheres are very susceptible to transient symmetric instability upon local diabatic forcing, even outside of the tropics. We explore parcel paths in symmetrically stable and unstable weather layer environments, the latter by adding thermal bubbles to the weather layer. Parcels that cool in Jupiter's belt regions have particularly horizontal paths, with implications for jetward angular momentum fluxes. These considerations may be relevant to the interpretation of Juno's ongoing observations of Jupiter's weather layer.

  17. Combination microwave gas convection oven

    SciTech Connect

    Day, W.J. Jr.

    1984-02-07

    A combination microwave gas convection oven is described having a tubular burner operating in an induced draft environment. A blower system draws air from a combustion chamber forcing it into the heating cavity. The slight pressure created in the combustion chamber draws in air from the heating cavity through perforations communicating therebetween completing the convection recirculation. The negative pressure in the combustion chamber also causes secondary combustion air to be drawn up along the sides of the burner which is positioned adjacent to an aperture in the floor of the combustion chamber. A plurality of top ports in the burner provides low port loading. The structure provides good flame characteristics with low noise of combustion.

  18. An improved stability test and stabilisation of linear time-varying systems governed by second-order vector differential equations

    NASA Astrophysics Data System (ADS)

    Tung, Shen-Lung; Juang, Yau-Tarng; Wu, Wei-Ying; Shieh, Wern-Yarng

    2011-12-01

    In this article, the problems of exponential stability analysis and stabilisation of linear time-varying systems described by a class of second-order vector differential equations are considered. Using bounding techniques on the trajectories of a linear time-varying system, the stability problem of the time-varying system is transformed to that of a time-invariant system and a new sufficient condition for the exponential stability is obtained. Moreover, the new criterion is proven to be superior to a test presented in the recent literature. Finally, the proposed criterion is applied to the exponential stabilisation problem via state feedback. The results are illustrated by several numerical examples.

  19. Marangoni convection under microgravity conditions

    NASA Astrophysics Data System (ADS)

    Akiyoshi, Ryo; Enya, Shintaro

    An evaluation is presented of the consequences for crystal growth of the dominant effect exerted by Marangoni convection during microgravity crystallization experiments conducted on PbSnTe. During the aircraft experiments in question, 0.02 G was sustained for more than 20 sec. The lessons learned from this experiment will inform the design of Japan's First Material Processing Test, which will be conducted aboard the Space Shuttle.

  20. Ice Nucleation in Deep Convection

    NASA Technical Reports Server (NTRS)

    Jensen, Eric; Ackerman, Andrew; Stevens, David; Gore, Warren J. (Technical Monitor)

    2001-01-01

    The processes controlling production of ice crystals in deep, rapidly ascending convective columns are poorly understood due to the difficulties involved with either modeling or in situ sampling of these violent clouds. A large number of ice crystals are no doubt generated when droplets freeze at about -40 C. However, at higher levels, these crystals are likely depleted due to precipitation and detrainment. As the ice surface area decreases, the relative humidity can increase well above ice saturation, resulting in bursts of ice nucleation. We will present simulations of these processes using a large-eddy simulation model with detailed microphysics. Size bins are included for aerosols, liquid droplets, ice crystals, and mixed-phase (ice/liquid) hydrometers. Microphysical processes simulated include droplet activation, freezing, melting, homogeneous freezing of sulfate aerosols, and heterogeneous ice nucleation. We are focusing on the importance of ice nucleation events in the upper part of the cloud at temperatures below -40 C. We will show that the ultimate evolution of the cloud in this region (and the anvil produced by the convection) is sensitive to these ice nucleation events, and hence to the composition of upper tropospheric aerosols that get entrained into the convective column.

  1. Influence of convection on microstructure

    NASA Technical Reports Server (NTRS)

    Wilcox, William R.; Caram, Rubens; Mohanty, A. P.; Seth, Jayshree

    1990-01-01

    The mechanism responsible for the difference in microstructure caused by solidifying the MnBi-Bi eutectic in space is sought. The objectives for the three year period are as follows: (1) completion of the following theoretical analyses - determination of the influence of the Soret effect on the average solid composition versus distance of off-eutectic mixtures directionally solidified in the absence of convection, determination of the influence of convection on the microstructure of off-eutectic mixtures using a linear velocity profile in the adjacent melt, determination of the influence of volumetric changes during solidification on microconvection near the freezing interface and on microstructure, and determination of the influence of convection on microstructure when the MnBi fibers project out in front of the bismuth matrix; (2) search for patterns in the effect of microgravity on different eutectics (for example, eutectic composition, eutectic temperature, usual microstructure, densities of pure constituents, and density changes upon solidification); and (3) determination of the Soret coefficient and the diffusion coefficient for Mn-Bi melts near the eutectic composition, both through laboratory experiements to be performed here and from data from Shuttle experiments.

  2. Instability of spiral convective vortex

    NASA Astrophysics Data System (ADS)

    Evgrafova, Anna; Andrey, Sukhanovsky; Elena, Popova

    2014-05-01

    Formation of large-scale vortices in atmosphere is one of the interesting problems of geophysical fluid dynamics. Tropical cyclones are examples of atmospheric spiral vortices for which convection plays an important role in their formation and evolution. Our study is focused on intensive cyclonic vortex produced by heating in the central part of the rotating layer. The previous studies made by Bogatyrev et al, showed that structure of such vortex is very similar to the structure of tropical cyclones. Qualitative observations described in (Bogatyrev, 2009) showed that the evolution of large-scale vortex in extreme regimes can be very complicated. Our main goal is the study of evolution of convective cyclonic vortex at high values of Grasshof number by PIV system. Experimental setup is a rotating cylindrical tank of fluid (radius 150 mm, depth 30 mm, free upper surface). Velocity fields for different values of heat flux were obtained and temporal and spatial structure of intensive convective vortex were studied in details. With the use of PIV data vorticity fields were reconstructed in different horizontal cross-sections. Physical interpretation of mechanisms that lead to the crucial change in the vortex structure with the growth of heat rate is described. Financial support from program of UD RAS, the International Research Group Program supported by Perm region Government is gratefully acknowledged.

  3. Compressible Quasi-geostrophic Convection without the Anelastic Approximation

    NASA Astrophysics Data System (ADS)

    Calkins, M. A.; Marti, P.; Julien, K. A.

    2014-12-01

    Fluid compressibility is known to be an important, non-negligible component of the dynamics of many planetary atmospheres and stellar convection zones, yet imposes severe computational constraints on numerical simulations of the compressible Navier-Stokes equations (NSE). An often employed reduced form of the NSE are the anelastic equations, which maintain fluid compressibility in the form of a depth varying, adiabatic background state onto which the perturbations cannot feed back. We present the linear theory of compressible rotating convection in a local-area, plane layer geometry. An important dimensionless parameter in convection is the ratio of kinematic viscosity to thermal diffusivity, or the Prandtl number, Pr. It is shown that the anelastic approximation cannot capture the linear instability of gases with Prandtl numbers less than approximately 0.5 in the limit of rapid rotation; the time derivative of the density fluctuation appearing in the conservation of mass equation remains important for these cases and cannot be neglected. An alternative compressible, geostrophically balanced equation set has been derived and preliminary results utilizing this new equation set are presented. Notably, this new set of equations satisfies the Proudman-Taylor theorem on small axial scales even for strongly compressible flows, does not require the flow to be nearly adiabatic, and thus allows for feedback onto the background state.

  4. Background sources at PEP

    SciTech Connect

    Lynch, H.; Schwitters, R.F.; Toner, W.T.

    1988-01-01

    Important sources of background for PEP experiments are studied. Background particles originate from high-energy electrons and positrons which have been lost from stable orbits, ..gamma..-rays emitted by the primary beams through bremsstrahlung in the residual gas, and synchrotron radiation x-rays. The effect of these processes on the beam lifetime are calculated and estimates of background rates at the interaction region are given. Recommendations for the PEP design, aimed at minimizing background are presented. 7 figs., 4 tabs.

  5. Evidence for Gravity Wave Seeding of Convective Ionosphere Storms Initiated by Deep Troposphere Convection

    NASA Astrophysics Data System (ADS)

    Kelley, M. C.; Pfaff, R. F., Jr.; Dao, E. V.; Holzworth, R. H., II

    2014-12-01

    With the increase in solar activity, the Communications/Outage Forecast System satellite (C/NOFS) now goes below the F peak. As such, we now can study the development of Convective Ionospheric Storms (CIS) and, most importantly, large-scale seeding of the low growth-rate Rayleigh-Taylor (R-T) instability. Two mechanisms have been suggested for such seeding: the Collisional Kelvin-Helmholtz Instability (CKHI) and internal atmospheric gravity waves. A number of observations have shown that the spectrum of fully developed topside structures peaks at 600 km and extends to over 1000 km. These structures are exceedingly difficult to explain by CKHI. Here we show that sinusoidal plasma oscillations on the bottomside during daytime develop classical R-T structures on the nightside with the background 600 km structure still apparent. In two case studies, thunderstorm activity was observed east of the sinusoidal features in the two hours preceding the C/NOFS passes. Thus, we argue that convective tropospheric storms are a likely source of these sinusoidal features.

  6. Finite-time observer-based output-feedback control for the global stabilisation of the PVTOL aircraft with bounded inputs

    NASA Astrophysics Data System (ADS)

    Zavala-Río, A.; Fantoni, I.; Sanahuja, G.

    2016-05-01

    In this work, an output-feedback scheme for the global stabilisation of the planar vertical take-off and landing aircraft with bounded inputs is developed taking into account the positive nature of the thrust. The global stabilisation objective is proven to be achieved avoiding input saturation and by exclusively considering the system positions in the feedback. To cope with the lack of velocity measurements, the proposed algorithm involves a finite-time observer. The generalised versions of the involved finite-time stabilisers have not only permitted to solve the output-feedback stabilisation problem avoiding input saturation, but also provide additional flexibility in the control design that may be used in aid of performance improvements. With respect to previous approaches, the developed finite-time observer-based scheme guarantees the global stabilisation objective disregarding velocity measurements in a bounded input context. Simulation tests corroborate the analytical developments. The study includes further experimental results on an actual flying device.

  7. On the Sensitivity of the Diurnal Cycle in the Amazon to Convective Intensity

    NASA Astrophysics Data System (ADS)

    Itterly, K. F.; Taylor, P. C.

    2015-12-01

    The sensitivity of the diurnal cycle to convective intensity is investigated for the wet season (DJF) and dry season (JJA) in the Amazon region. Model output reveals large water and energy budget errors in tropical rainforests, arising from a misrepresentation of the diurnal cycle of the complex processes inherent to diurnally forced moist convection. Daily, 3-hourly satellite observations of CERES Ed3a SYN1DEG TOA fluxes and 3-hourly TRMM 3B42 precipitation rate from 2002-2012 are split into regimes of convective intensity using percentile definitions for both daily minimum OLR and daily maximum precipitation rate to define regimes. These satellite-defined regimes are then co-located with convective parameters calculated from radiosonde observations. Diurnal statistics from satellite include: phase, amplitude, precipitation onset, precipitation duration and diurnal mean. The diurnal phase of outgoing longwave radiation (OLR) and longwave cloud forcing (LWCF) occurs several hours earlier on convective days compared to stable days, however, climatological precipitation phase is less sensitive to convective intensity, occurring between 1-4PM local time for all regimes and 1-2 hours later on very convective days, which is related to longer duration precipitation events from increased humidity. Diurnal convection in the Amazon is strongly related to 8AM values of both dynamic and thermodynamic variables, most of which are related to: the background moisture content of the troposphere, the stability of the lower troposphere, convective inhibition (CIN) and wind speed and direction in the column. Morning values of CIN, lifted condensation level (LCL), level of free convection (LFC) and equilibrium level (EL) are lower in DJF than JJA, and lower on very convective days than stable days for all stations. Higher background humidity is related to longer duration precipitation events (r-values between 0.4-0.6, depending on station and season), earlier phases and onset times

  8. Stabilisation of spent mushroom substrate for application as a plant growth-promoting organic amendment.

    PubMed

    Paula, Fabiana S; Tatti, Enrico; Abram, Florence; Wilson, Jude; O'Flaherty, Vincent

    2017-03-23

    Over three million tonnes of spent mushroom substrate (SMS) are produced in Europe every year as a by-product of the cultivation of Agaricus bisporus. The management of SMS has become an increasing challenge for the mushroom production industry, and finding environmentally and economically sustainable solutions for this organic residue is, therefore, highly desirable. Due to its physical properties and nutrient content, SMS has great potential to be employed in agricultural and horticultural sectors, and further contribute to reduce the use of non-renewable resources, such as peat. However, SMS is often regarded as not being stable and/or mature, which hampers its wide use for crop production. Here, we demonstrate the stabilisation of SMS and its subsequent use as organic fertiliser and partial peat replacement in horticulture. The stabilisation was performed in a laboratory-scale composting system, with controlled temperature and aeration. Physical and chemical parameters were monitored during composting and provided information on the progress of the process. Water soluble carbohydrates (WSC) content was found to be the most reliable parameter to predict SMS stability. In situ oxygen consumption indicated the main composting phases, reflecting major changes in microbial activity. The structure of the bacterial community was also found to be a potential predictor of stability, as the compositional changes followed the composting progress. By contrast, the fungal community did not present clear successional process along the experiment. Maturity and quality of the stabilised SMS were assessed in a horticultural growing trial. When used as the sole fertiliser source, SMS was able to support Lolium multiflorum (Italian ryegrass) growth and significantly improved grass yield with a concentration-dependent response, increasing grass biomass up to 300%, when compared to the untreated control. In summary, the results indicated that the method employed was efficient in

  9. Stabilisation de poussieres de four a arc electrique dans les matrices cimentaires

    NASA Astrophysics Data System (ADS)

    Laforest, Guylaine

    L'etude de la stabilisation des poussieres de four a arc electrique (EAFD) par le laitier de haut-fourneau (GGBFS) et le ciment Portland (OPC) a ete realisee en trois parties. D'abord, la problematique de fixation du Cr dans les matrices cimentaires a ete etudiee en soumettant differents liants a des solutions de Cr lors d'essais de lixiviation en vrac et d'essais d'isothermes d'absorption. Ensuite, la caracterisation des EAFD a ete effectuee. Finalement, la stabilisation des EAFD dans les matrices cimentaires a ete etudiee en soumettant differents melanges liant-EAFD a des essais de lixiviation en vrac, de competition ionique, de solubilisation a differents pH et de lixiviation sur monolithes. Les resultats ont demontre que le OPC et le GGBFS sont efficaces pour la fixation du Cr. Les silicates de calcium hydrates, la chromatite et l'hydrocalumite ont ete identifiees comme etant des phases jouant un role dans la fixation du Cr. Les EAFD ont montre une mineralogie complexe, heterogene, riche en spinelles et oxydes metalliques. Un important pourcentage des metaux lourds (Cr, Zn, Ni et Pb) des EAFD a ete identifie lixiviable. Les EAFD etablissent un controle de solubilite sur ces metaux, mais ce controle n'est pas suffisant pour diminuer les concentrations en metaux du lixiviat sous les limites permises. Ainsi, les resulats des essais sur la stabilisation des EAFD ont demontre qu'il etait possible, avec le OPC et le GGBFS, de diminuer les concentrations en metaux lourds des lixiviats sous les limites acceptees. Les phases incorporant les metaux, ((Ni,Zn)Fe2O4, (Zn,Mo)O, Ni(OH)2 et Pb(OH) 2), ont ete determinees par SEM, XRD et par modelisation geochimique. L'hydrocalumite et le Cr(VI)-ettringite ont ete etablies comme etant des phases potentiellement capables de fixer le Cr. L'etude de la competition ionique a montre que la fixation du Cr par le GGBFS diminue legerement en presence du Pb. L'etude des monolithes, composes de EAFD et de OPC ou GGBFS et soumis a une

  10. Freshwater dispersion stability of PAA-stabilised cerium oxide nanoparticles and toxicity towards Pseudokirchneriella subcapitata.

    PubMed

    Booth, Andy; Størseth, Trond; Altin, Dag; Fornara, Andrea; Ahniyaz, Anwar; Jungnickel, Harald; Laux, Peter; Luch, Andreas; Sørensen, Lisbet

    2015-02-01

    An aqueous dispersion of poly (acrylic acid)-stabilised cerium oxide (CeO₂) nanoparticles (PAA-CeO₂) was evaluated for its stability in a range of freshwater ecotoxicity media (MHRW, TG 201 and M7), with and without natural organic matter (NOM). In a 15 day dispersion stability study, PAA-CeO₂ did not undergo significant aggregation in any media type. Zeta potential varied between media types and was influenced by PAA-CeO₂ concentration, but remained constant over 15 days. NOM had no influence on PAA-CeO₂ aggregation or zeta potential. The ecotoxicity of the PAA-CeO₂ dispersion was investigated in 72 h algal growth inhibition tests using the freshwater microalgae Pseudokirchneriella subcapitata. PAA-CeO₂ EC₅₀ values for growth inhibition (GI; 0.024 mg/L) were 2-3 orders of magnitude lower than pristine CeO₂ EC₅₀ values reported in the literature. The concentration of dissolved cerium (Ce(3+)/Ce(4+)) in PAA-CeO₂ exposure suspensions was very low, ranging between 0.5 and 5.6 μg/L. Free PAA concentration in the exposure solutions (0.0096-0.0384 mg/L) was significantly lower than the EC10 growth inhibition (47.7 mg/L) value of pure PAA, indicating that free PAA did not contribute to the observed toxicity. Elemental analysis indicated that up to 38% of the total Cerium becomes directly associated with the algal cells during the 72 h exposure. TOF-SIMS analysis of algal cell wall compounds indicated three different modes of action, including a significant oxidative stress response to PAA-CeO₂ exposure. In contrast to pristine CeO₂ nanoparticles, which rapidly aggregate in standard ecotoxicity media, PAA-stabilised CeO₂ nanoparticles remain dispersed and available to water column species. Interaction of PAA with cell wall components, which could be responsible for the observed biomarker alterations, could not be excluded. This study indicates that the increased dispersion stability of PAA-CeO₂ leads to an increase in toxicity compared to

  11. Stellar convection 3: Convection at large Rayleigh numbers

    NASA Technical Reports Server (NTRS)

    Marcus, P. S.

    1979-01-01

    A three dimensional study of convection in a self gravitating sphere of Boussinesq fluid with a Rayleigh number of 10 to the 10th power and a Prandtl of 1 is presented. The velocity and temperature of the fluid are computed at the largest wavelengths using spectral methods. A confirmation that the fluid is anisotropic and that the energy spectra are not smooth functions of wavelength but have a large amount of fine structure is discussed. The parameterization of the transport properties of the unresolvable inertial subrange with eddy viscosities and diffusivities is described. The time dependent fluctuations in the energy spectra and how they cascade from large to small wavelengths is examined.

  12. Changes in Muscarinic M2 Receptor Levels in the Cortex of Subjects with Bipolar Disorder and Major Depressive Disorder and in Rats after Treatment with Mood Stabilisers and Antidepressants

    PubMed Central

    Gibbons, Andrew Stuart; Jeon, Won Je; Scarr, Elizabeth; Dean, Brian

    2016-01-01

    Background: Increasingly, data are implicating muscarinic receptors in the aetiology and treatment of mood disorders. This led us to measure levels of different muscarinic receptor-related parameters in the cortex from people with mood disorders and the CNS of rats treated with mood stabilisers and antidepressant drugs. Methods: We measured [3H]AF-DX 384 binding in BA 46 and BA 24 from subjects with bipolar disorders (n = 14), major depressive disorders (n = 19), as well as age- and sex-matched controls (n = 19) and the CNS of rats treated with fluoxetine or imipramine. In addition, we used Western blots to measure levels of CHRM2 protein and oxotremorine-M stimulated [35S]GTPγS binding as a measure of CHRM 2 / 4 signaling. Results: Compared with controls, [3H]AF-DX 384 binding was lower in BA 24 and BA 46 in bipolar disorders and major depressive disorders, while CHRM2 protein and oxotremorine-M stimulated [35S]GTPγS binding was only lower in BA 24. Compared with vehicle, treatment with mood stabilisers, antidepressant drugs for 10 days, or imipramine for 28 days resulted in higher levels of in [3H]AF-DX 384 binding select regions of rat CNS. Conclusions: Our data suggest that levels of CHRM2 are lower in BA 24 from subjects with mood disorders, and it is possible that signalling by that receptor is also less in this cortical region. Our data also suggest increasing levels of CHRM2 may be involved in the mechanisms of action of mood stabilisers and tricyclic antidepressants. PMID:26475745

  13. Double-Diffusive Convection in Rotational Shear

    DTIC Science & Technology

    2015-03-01

    CONVECTION IN ROTATIONAL SHEAR by James S. Ball March 2015 Thesis Advisor: Timour Radko Second Reader: John Colosi THIS PAGE...AND SUBTITLE 5. FUNDING NUMBERS DOUBLE-DIFFUSIVE CONVECTION IN ROTATIONAL SHEAR 6. AUTHOR(S) James S. Ball 7. PERFORMING ORGANIZATION NAME(S) AND...INTENTIONALLY LEFT BLANK ii Approved for public release;distribution is unlimited DOUBLE-DIFFUSIVE CONVECTION IN ROTATIONAL SHEAR James S. Ball

  14. Convective Heat Transfer for Ship Propulsion.

    DTIC Science & Technology

    1981-04-01

    OF RILJORT 6 PelIOO COVERED Convective Heat Transfer for Ship Propulsion . Annual gummary Report / (Sixth Annual Sumary Report) //115 Jan 180-30 Mard...DO* IrCOVE) Sixth Annual Summary Report CONVECTIVE HEAT TRANSFER FOR SHIP PROPULSION By M. A. Habib and D. M. McEligot Aerospace and Mechanical...permitted for any purpose of the United States Government. ._ _ _ _ _ _ I CONVECTIVE HEAT TRANSFER FOR SHIP PROPULSION M. A. Habib* and D. M. McEligot

  15. Observed Climate Properties of Tropical Precipitating Convection

    NASA Technical Reports Server (NTRS)

    DelGenio, Anthony

    2002-01-01

    Conflicting theories about the contribution of convective systems to cloud feedback highlight the need for observational constraints on the properties of these storms. The NASA Tropical Rainfall Measuring Mission (TRMM) satellite provides unprecedented information on the hydrological properties and energetics of tropical convection. We present an analysis of almost 9,000 TRMM storms, focusing on how convection strength affects storm cloud properties and rainfall, and what this implies for the opposing "adaptive iris" and "thermostat" hypotheses.

  16. Remediation by in-situ solidification/stabilisation of Ardeer landfill, Scotland

    SciTech Connect

    Wyllie, M.; Esnault, A.; Barker, P.

    1997-12-31

    The Ardeer Landfill site at ICI Explosives factory on the west coast of Scotland had been a repository for waste from the site for 40 years. In order to safeguard the local environment ICI Explosives, with approval of Local Authorities and the Clyde River Purification Board put into action a programme of investigation and planning which culminated in the in-situ treatment of 10,000 m3 of waste within the landfill by a deep mixing method using the {open_quotes}Colmix{close_quotes} system. The paper describes in varying degrees of detail the remediation from investigation to the execution of the in-situ stabilisation and presents the post construction monitoring results.

  17. Global ?-exponential stabilisation of a class of nonlinear networked control systems

    NASA Astrophysics Data System (ADS)

    Shen, Yan-Jun; Zhang, Daoyuan; Huang, Yuehua; Liu, Yungang

    2016-11-01

    In this paper, we investigate global ?-exponential stabilisation of a class of nonlinear networked control systems. The network-induced delays are assumed to be random and significantly smaller than the sampling period. First, sufficient conditions are presented to ensure global ?-exponential stability for a class of hybrid systems with time delay. Then, the networked control systems are modelled as the hybrid systems with time delay. By the techniques of adding a power integrator and a recursive argument, a sampled-data state feedback control law is presented. Sufficient conditions are given to ensure global ?-exponential stability of the closed-loop system by constructing a Lyapunov-Krasovskii function. Finally, a numerical example is presented to show the validity of the new methods.

  18. Stabilisation of a fibre frequency synthesiser using acousto-optical and electro-optical modulators

    NASA Astrophysics Data System (ADS)

    Koliada, N. A.; Nyushkov, B. N.; Pivtsov, V. S.; Dychkov, A. S.; Farnosov, S. A.; Denisov, V. I.; Bagayev, S. N.

    2016-12-01

    A fibre-optic frequency synthesiser is developed that is stabilised to the optical frequency standard based on molecular iodine ({\\text{Nd : YAG/I}}2). The possibility of transferring stability of the optical frequency standard to other optical frequencies in the IR range 1 - 2 \\unicode{956}{\\text{m}} and to the RF range by using synthesiser phase-locked loops (PLLs) with acousto-optical and electro-optical modulators is experimentally demonstrated. The additive instability introduced into the optical frequency comb of the synthesiser (which arises due to PLL residual random errors) is several orders less than the intrinsic instability of the reference optical frequency standard employed (i.e., is noticeably less than 1 × 10-13 for 1 {\\text{s}} and 5 × 10-15 for 1000 {\\text{s}}).

  19. Observer-based stabilisation of linear systems with parameter uncertainties by using enhanced LMI conditions

    NASA Astrophysics Data System (ADS)

    Kheloufi, Houria; Bedouhene, Fazia; Zemouche, Ali; Alessandri, Angelo

    2015-06-01

    This paper deals with the problem of observer-based stabilisation for linear systems with structured norm-bounded parameter uncertainties. A new design methodology is established thanks to a judicious use of some mathematical artefacts such as the well-known Young inequality and various matrix decompositions. The proposed method allows one to compute simultaneously the observer and controller gains by solving a single bilinear matrix inequality (BMI), which becomes a linear matrix inequality (LMI) by freezing some scalars. Furthermore, we show that some existing and elegant results reported in the literature can be regarded as particular cases of the stability conditions presented here. Numerical examples and evaluations of the conservatism are provided to show the effectiveness of the proposed design methodology.

  20. Inacessible Andean sites reveal land-use induced stabilisation of soil organic carbon

    NASA Astrophysics Data System (ADS)

    Heitkamp, Felix; Maqsood, Shafique; Sylvester, Steven; Kessler, Michael; Jungkunst, Hermann

    2015-04-01

    Human activity affects properties and development of ecosystems across the globe to such a degree that it is challenging to get baseline values for undisturbed ecosystems. This is especially true for soils, which are affected by land-use history and hold a legacy of past human interventions. Therefore, it is still largely unknown how soil would have developed "naturally" and if processes of organic matter stabilisation would be different in comparison to managed soils. Here, we show undisturbed soil development, i.e., the processes of weathering and accumulation of soil organic carbon (SOC), by comparing pristine with grazed sites in the high Andes (4500 m) of southern Peru. We located study plots on a large ledge (0.2 km²) that is only accessible with mountaineering equipment. Plots with pristine vegetation were compared to rangeland plots that were constantly under grazing management for at least four millennia. All "state factors"; climate, potential biota, topography, parent material and time; besides "land-use" were, therefore, identical. Vegetation change, induced by grazing management, led to lower vegetation cover of the soil, thereby increasing soil surface temperatures and soil acidification. Both factors increased weathering in rangeland soils, as indicated by the presence of pedogenic oxides, especially amorphous Al-(oxy)hydroxides (oxalate-extractable Al). Higher losses of base cations (K, Na, Ca) and lower pH-values were related to a low base saturation of exchange sites in rangelands. Therefore, rangeland soils were classified as Umbrisol, whereas soils under pristine vegetation were classified as Phaeozeme. All profiles were rich in SOC (100 to 126 g kg-1) with no significant differences in concentrations or stocks. SOC of rangeland soils was, however, less available for microorganisms (proportion of microbial C on SOC: 1.8 vs. 0.6% in pristine and rangeland soils, respectively) and showed higher stability against thermal degradation. Reasons for

  1. Synthesis, structural studies and ligand influence on the stability of aryl-NHC stabilised trimethylaluminium complexes.

    PubMed

    M, Melissa Wu; Gill, Arran M; Yunpeng, Lu; Falivene, Laura; Yongxin, Li; Ganguly, Rakesh; Cavallo, Luigi; García, Felipe

    2015-09-14

    Treatment of a series of aromatic NHCs (IMes, SIMes, IPr and SIPr) with trimethylaluminium produced their corresponding Lewis acid-base adducts: IMes·AlMe3 (1), SIMes·AlMe3 (2), IPr·AlMe3 (3), and SIPr·AlMe3 (4). These complexes expand the few known examples of saturated NHC stabilised Group 13 complexes. Furthermore, compounds 1-4 show differential stability depending on the nature of the NHC ligand. Analyses of topographic steric maps and NHC %V(Bur) were used to explain these differences. All the compounds have been fully characterised by multinuclear NMR spectroscopy, IR and single crystal X-ray analysis together with computational studies.

  2. Oil-in-water emulsions stabilised by cellulose ethers: stability, structure and in vitro digestion.

    PubMed

    Borreani, Jennifer; Espert, María; Salvador, Ana; Sanz, Teresa; Quiles, Amparo; Hernando, Isabel

    2017-03-09

    The effect of cellulose ethers in oil-in-water emulsions on stability during storage and on texture, microstructure and lipid digestibility during in vitro gastrointestinal digestion was investigated. All the cellulose ether emulsions showed good physical and oxidative stability during storage. In particular, the methylcellulose with high methoxyl substituents (HMC) made it possible to obtain emulsions with high consistency which remained almost unchanged during gastric digestion, and thus could enhance fullness and satiety perceptions at gastric level. Moreover, the HMC emulsion slowed down lipid digestion to a greater extent than a conventional protein emulsion or the emulsions stabilised by the other cellulose ethers. Therefore, HMC emulsions could be used in weight management to increase satiation capacity and decrease lipid digestion.

  3. Investigation of 4-year-old stabilised/solidified and accelerated carbonated contaminated soil.

    PubMed

    Antemir, A; Hills, C D; Carey, P J; Magnié, M-C; Polettini, A

    2010-09-15

    The investigation of the pilot-scale application of two different stabilisation/solidification (S/S) techniques was carried out at a former fireworks and low explosives manufacturing site in SE England. Cores and granular samples were recovered from uncovered accelerated carbonated (ACT) and cement-treated soils (S/S) after 4 years to evaluate field-performance with time. Samples were prepared for microstructural examination and leaching testing. The results indicated that the cement-treated soil was progressively carbonated over time, whereas the mineralogy of the carbonated soil remained essentially unchanged. Distinct microstructures were developed in the two soils. Although Pb, Zn and Cu leached less from the carbonated soil, these metals were adequately immobilised by both treatments. Geochemical modeling of pH-dependent leaching data suggested that the retention of trace metals resulted from different immobilisation mechanisms operating in the two soils examined.

  4. Stabilisation of bank slopes that are prone to liquefaction in ecologically sensitive areas.

    PubMed

    Nestler, P; Stoll, R D

    2001-01-01

    A consequence of lignite stripping in the Lusatia mining district (East Germany) is the backfilling of dumps that mainly consist of low-compacted fine and medium-grained sands. When the ground-water table, which had been lowered while stripping the coal, is rising again, these dumps might be affected by a settlement flow due to the liquefaction of soils. Common methods for stabilisation as, for instance, blasting or vibrator-jetting deep compaction, are not very useful in ecologically sensitive areas, where dumps have been afforested and embankment areas of residual lakes have developed into highly valuable biotopes. A new so-called air-impulse method in combination with directional horizontal drilling has been developed, which does not have a considerably negative impact on the vegetation during compaction. The experience gained during the first employment of this method at the lake "Katja", a residual lake of lignite stripping, is presented in this paper.

  5. Three-axis active control system for gravity gradient stabilised microsatellite

    NASA Astrophysics Data System (ADS)

    Si Mohammed, A. M.; Benyettou, M.; Bentoutou, Y.; Boudjemai, A.; Hashida, Y.; Sweeting, M. N.

    2009-04-01

    In this paper, the control system of the first Algerian microsatellite in orbit Alsat-1 is presented. Alsat-1 is a 3-axis stabilised microsatellite, using a pitch momentum wheel and yaw reaction wheel, with dual redundant 3-axis magnetorquers. A gravity gradient boom is employed to provide a high degree of platform stability. Two vector magnetometers and four dual sun sensors are carried in order to determine the attitude. This paper examines the low Earth orbit (LEO) control system requirements and design in the context of a real system, the Surrey Satellite Technology Limited (SSTL) advanced microsatellite platform and puts forward designs for the control system to match the advanced capability of the enhanced microsatellite platform. Numerical results show the effectiveness of the implementation. Comparison with in orbit results is presented to evaluate the performance of the control system during accurate Nadir pointing control.

  6. Acquired phototrophy stabilises coexistence and shapes intrinsic dynamics of an intraguild predator and its prey.

    PubMed

    Moeller, Holly V; Peltomaa, Elina; Johnson, Matthew D; Neubert, Michael G

    2016-04-01

    In marine ecosystems, acquired phototrophs - organisms that obtain their photosynthetic ability by hosting endosymbionts or stealing plastids from their prey - are omnipresent. Such taxa function as intraguild predators yet depend on their prey to periodically obtain chloroplasts. We present a new theory for the effects of acquired phototrophy on community dynamics by analysing a mathematical model of this predator-prey interaction and experimentally verifying its predictions with a laboratory model system. We show that acquired phototrophy stabilises coexistence, but that the nature of this coexistence exhibits a 'paradox of enrichment': as light increases, the coexistence between the acquired phototroph and its prey transitions from a stable equilibrium to boom-bust cycles whose amplitude increases with light availability. In contrast, heterotrophs and mixotrophic acquired phototrophs (that obtain < 30% of their carbon from photosynthesis) do not exhibit such cycles. This prediction matches field observations, in which only strict ( > 95% of carbon from photosynthesis) acquired phototrophs form blooms.

  7. The design of suboptimal asymptotic stabilising controllers for nonlinear slowly varying systems

    NASA Astrophysics Data System (ADS)

    Binazadeh, T.; Shafiei, M. H.

    2014-04-01

    The design of asymptotic stabilising controllers for slowly varying nonlinear systems is considered in this paper. The designed control law is based on finding a slowly varying control Lyapunov function. Also, consideration of the Hamilton-Jacobi-Bellman equation showed that the proposed controller is a suboptimal controller and the response of the system may be very close to its optimal solution. The maximum admissible rate of changes of the system dynamic is also evaluated. This technique is first applied to a created example and then to a practical example (optimal autopilot design for an air vehicle). The air vehicle is modelled as a nonlinear slowly varying system and the efficiency of the designed autopilot in terms of transient responses, control signals and the values of cost function are shown by numerical simulations.

  8. Stabilisation and humanitarian access in a collapsed state: the Somali case.

    PubMed

    Menkhaus, Ken

    2010-10-01

    Somalia today is the site of three major threats: the world's worst humanitarian crisis; the longest-running instance of complete state collapse; and a robust jihadist movement with links to Al-Qa'ida. External state-building, counter-terrorism and humanitarian policies responding to these threats have worked at cross-purposes. State-building efforts that insist humanitarian relief be channelled through the nascent state in order to build its legitimacy and capacity undermine humanitarian neutrality when the state is a party to a civil war. Counter-terrorism policies that seek to ensure that no aid benefits terrorist groups have the net effect of criminalising relief operations in countries where poor security precludes effective accountability. This paper argues that tensions between stabilisation and humanitarian goals in contemporary Somalia reflect a long history of politicisation of humanitarian operations in the country.

  9. Synthesis of dense yttrium-stabilised hafnia pellets for nuclear applications by spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Tyrpekl, Vaclav; Holzhäuser, Michael; Hein, Herwin; Vigier, Jean-Francois; Somers, Joseph; Svora, Petr

    2014-11-01

    Dense yttrium-stabilised hafnia pellets (91.35 wt.% HfO2 and 8.65 wt.% Y2O3) were prepared by spark plasma sintering consolidation of micro-beads synthesised by the “external gelation” sol-gel technique. This technique allows a preparation of HfO2-Y2O3 beads with homogenous yttria-hafnia solid solution. A sintering time of 5 min at 1600 °C was sufficient to produce high density pellets (over 90% of the theoretical density) with significant reproducibility. The pellets have been machined in a lathe to the correct dimensions for use as neutron absorbers in an experimental test irradiation in the High Flux Reactor (HFR) in Petten, Holland, in order to investigate the safety of americium based nuclear fuels.

  10. Characterization and stabilising dynamic phase fluctuations in large mode area fibres

    NASA Astrophysics Data System (ADS)

    Jones, D. C.; Scott, A. M.

    2007-02-01

    Fibre amplifiers exhibit rapid time dependent phase fluctuations due to the environment and to thermal and other effects associated with the pumping and lasing processes. We characterise these effects in a large mode area fibre amplifier having an output power of 260W limited only by pump power. The amplifier retains its coherence even at the highest available output power with negligible linewidth broadening. Phase fluctuations are characterised by a low-amplitude power-independent jitter superimposed on a power-dependent drift due to heating. We also measure the phase fluctuations in a COTS fibre preamplifier and find they are predominantly large amplitude periodic oscillations at 110Hz, probably induced by pump power fluctuations. The two amplifiers were combined in series to give a high gain amplifier chain and actively phase stabilised to high precision (~λ/37 rms) using a piezo-ceramic fibre stretcher incorporated into a PC-based feedback loop.

  11. Comparing and validating models of driver steering behaviour in collision avoidance and vehicle stabilisation

    NASA Astrophysics Data System (ADS)

    Markkula, G.; Benderius, O.; Wahde, M.

    2014-12-01

    A number of driver models were fitted to a large data set of human truck driving, from a simulated near-crash, low-friction scenario, yielding two main insights: steering to avoid a collision was best described as an open-loop manoeuvre of predetermined duration, but with situation-adapted amplitude, and subsequent vehicle stabilisation could to a large extent be accounted for by a simple yaw rate nulling control law. These two phenomena, which could be hypothesised to generalise to passenger car driving, were found to determine the ability of four driver models adopted from the literature to fit the human data. Based on the obtained results, it is argued that the concept of internal vehicle models may be less valuable when modelling driver behaviour in non-routine situations such as near-crashes, where behaviour may be better described as direct responses to salient perceptual cues. Some methodological issues in comparing and validating driver models are also discussed.

  12. Stabilisation and consensus of linear systems with multiple input delays by truncated pseudo-predictor feedback

    NASA Astrophysics Data System (ADS)

    Zhou, Bin; Cong, Shen

    2016-01-01

    This paper provides a new approach referred to as pseudo-predictor feedback (PPF) for stabilisation of linear systems with multiple input delays. Differently from the traditional predictor feedback which is from the model reduction appoint of view, the proposed PPF utilises the idea of prediction by generalising the corresponding results for linear systems with a single input delay to the case of multiple input delays. Since the PPF will generally lead to distributed controllers, a truncated pseudo-predictor feedback (TPPF) approach is established instead, which gives finite dimensional controllers. It is shown that the TPPF can compensate arbitrarily large yet bounded delays as long as the open-loop system is only polynomially unstable. The proposed TPPF approach is then used to solve the consensus problems for multi-agent systems characterised by linear systems with multiple input delays. Numerical examples show the effectiveness of the proposed approach.

  13. Input-output finite-time stabilisation of nonlinear stochastic system with missing measurements

    NASA Astrophysics Data System (ADS)

    Song, Jun; Niu, Yugang; Jia, Tinggang

    2016-09-01

    This paper considers the problem of the input-output finite-time stabilisation for a class of nonlinear stochastic system with state-dependent noise. The phenomenon of the missing measurements may occur when state signals are transmitted via communication networks. An estimating method is proposed to compensate the lost state information. And then, a compensator-based controller is designed to ensure the input-output finite-time stochastic stability (IO-FTSS) of the closed-loop system. Some parameters-dependent sufficient conditions are derived and the corresponding solving approach is given. Finally, numerical simulations are provided to demonstrate the feasibility and effectiveness of the developed IO-FTSS scheme.

  14. Global finite-time stabilisation of a class of switched nonlinear systems

    NASA Astrophysics Data System (ADS)

    Liang, Ying-Jiu; Ma, Ruicheng; Wang, Min; Fu, Jun

    2015-12-01

    This paper is concerned with the global finite-time stabilisation problem for a class of switched nonlinear systems under arbitrary switchings. All subsystems of the studied switched system under consideration are in lower triangular form. Based on the adding one power integrator technique, both a class of non-Lipschitz continuous state feedback controllers and a common Lyapunov function are simultaneously constructed such that the closed-loop switched system is global finite-time stable under arbitrary switchings. In the controller design process, a common coordinate transformation of all subsystems is exploited to avoid using individual coordinate transformations for subsystems. Finally, two examples are given to show the effectiveness of the proposed method.

  15. Le facteur XII de la coagulation: bien plus qu’un stabilisant de la fibrine

    PubMed Central

    Messaoudi, N.; Lamaalmi, F.; Chakour, M.; Belmekki, A.; Naji, M.

    2011-01-01

    Summary Les Auteurs considèrent le rôle du facteur XIII de la coagulation dans la cicatrisation. Identifié depuis 1923, le rôle du facteur XIII ou le facteur stabilisant de la fibrine dans la coagulation a été bien élucidé. Son rôle dans la cicatrisation suggéré dès 1960 est méconnu par les hématologistes et les médecins prenant en charge les brûlés. Les Auteurs se proposent de mettre la lumière sur ce rôle, qui reste encore mystérieux et mérite d’être élucidé. PMID:21991236

  16. Interfacing living unicellular algae cells with biocompatible polyelectrolyte-stabilised magnetic nanoparticles.

    PubMed

    Fakhrullin, Rawil F; Shlykova, Lubov V; Zamaleeva, Alsu I; Nurgaliev, Danis K; Osin, Yuri N; García-Alonso, Javier; Paunov, Vesselin N

    2010-10-08

    Green algae are a promising platform for the development of biosensors and bioelectronic devices. Here we report a reliable single-step technique for the functionalisation of living unicellular green algae Chlorella pyrenoidosa with biocompatible 15 nm superparamagnetic nanoparticles stabilised with poly(allylamine hydrochloride). The magnetised algae cells can be manipulated and immobilised using external permanent magnets. The distribution of the nanoparticles on the cell walls of C. pyrenoidosa was studied by optical and fluorescence microscopy, TEM, SEM and EDX spectroscopy. The viability and the magnetic properties of the magnetised algae are studied in comparison with the native cells. The technique may find a number of potential applications in biotechnology and bioelectronics.

  17. Convective transport over the central United States and its role in regional CO and ozone budgets

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Pickering, Kenneth E.; Dickerson, Russell R.; Ellis, William G., Jr.; Jacob, Daniel J.; Scala, John R.; Tao, Wei-Kuo; Mcnamara, Donna P.; Simpson, Joanne

    1994-01-01

    We have constructed a regional budget for boundary layer carbon monoxide over the central United States (32.5 deg - 50 deg N, 90 deg - 105 deg W), emphasizing a detailed evaluation of deep convective vertical fluxes appropriate for the month of June. Deep convective venting of the boundary layer (upward) dominates other components of the CO budget, e.g., downward convective transport, loss of CO by oxidation, anthropogenic emissions, and CO produced from oxidation of methane, isoprene, and anthropogenic nonmethane hydrocarbons (NMHCs). Calculations of deep convective venting are based on the method pf Pickering et al.(1992a) which uses a satellite-derived deep convective cloud climatology along with transport statistics from convective cloud model simulations of observed prototype squall line events. This study uses analyses of convective episodes in 1985 and 1989 and CO measurements taken during several midwestern field campaigns. Deep convective venting of the boundary layer over this moderately polluted region provides a net (upward minus downward) flux of 18.1 x 10(exp 8) kg CO/month to the free troposphere during early summer. Shallow cumulus and synoptic-scale weather systems together make a comparable contribution (total net flux 16.2 x 10(exp 8) kg CO/month). Boundary layer venting of CO with other O3 precursors leads to efficient free troposheric O3 formation. We estimate that deep convective transport of CO and other precursors over the central United States in early summer leads to a gross production of 0.66 - 1.1 Gmol O3/d in good agreement with estimates of O3 production from boundary layer venting in a continental-scale model (Jacob et al., 1993a, b). On this respect the central U.S. region acts as s `chimney' for the country, and presumably this O3 contributes to high background levels of O3 in the eastern United States and O3 export to the North Atlantic.

  18. Modeling of heat explosion with convection.

    PubMed

    Belk, Michael; Volpert, Vitaly

    2004-06-01

    The work is devoted to numerical simulations of the interaction of heat explosion with natural convection. The model consists of the heat equation with a nonlinear source term describing heat production due to an exothermic chemical reaction coupled with the Navier-Stokes equations under the Boussinesq approximation. We show how complex regimes appear through successive bifurcations leading from a stable stationary temperature distribution without convection to a stationary symmetric convective solution, stationary asymmetric convection, periodic in time oscillations, and finally aperiodic oscillations. A simplified model problem is suggested. It describes the main features of solutions of the complete problem.

  19. A Study of Detrainment from Deep Convection

    NASA Astrophysics Data System (ADS)

    Glenn, I. B.; Krueger, S. K.

    2014-12-01

    Uncertainty in the results of Global Climate Model simulations has been attributed to errors and simplifications in how parameterizations of convection coarsely represent the processes of entrainment, detrainment, and mixing between convective clouds and their environment. Using simulations of convection we studied these processes at a resolution high enough to explicitly resolve them. Two of several recently developed analysis techniques that allow insight into these processes at their appropriate scale are an Eulerian method of directly measuring entrainment and detrainment, and a Lagrangian method that uses particle trajectories to map convective mass flux over height and a cloud variable of interest. The authors of the Eulerian technique used it to show that the dynamics of shells of cold, humid air that surround shallow convective updrafts have important effects on the properties of air entrained and detrained from the updrafts. There is some evidence for the existence of such shells around deep convective updrafts as well, and that detrainment is more important than entrainment in determining the ultimate effect of the deep convection on the large scale environment. We present results from analyzing a simulation of deep convection through the Eulerian method as well as using Lagrangian particle trajectories to illustrate the role of the shell in the process of detrainment and mixing between deep convection and its environment.

  20. Forced convection around the human head.

    PubMed Central

    Clark, R P; Toy, N

    1975-01-01

    1. The parameters determining the forced convective heat loss from a heated body in an air stream are outlined. 2. Local forced convective heat transfer distributions around the human head and a heated vertical cylinder at various wind speeds in a climatic chamber have been found to be similar and related to the aerodynamic flow patterns. 3. From the local convective coefficient distribution, values for the overall convective coefficient h-c at various wind speeds have been evaluated. These are seen to agree closely with existing whole body coefficients determined by other methods. PMID:1142119

  1. Internally cooled convection: A fillip for Philip

    NASA Astrophysics Data System (ADS)

    Berlengiero, M.; Emanuel, K. A.; von Hardenberg, J.; Provenzale, A.; Spiegel, E. A.

    2012-05-01

    We discuss a simplified mathematical description of internally cooled convection that includes a constant adiabatic lapse rate and an internal energy sink. The latter provides a representation of radiative cooling and, in combination, these two effects break the up-down symmetry of the vertical motions by making the convection penetrative in the upper portion of the fluid layer. At large enough turbulent intensity of the motion, the dynamics is dominated by intense convective updrafts that generate a strongly skewed distribution of vertical velocities. The numerical exploration of this model system exhibits a qualitatively useful description of atmospheric convection.

  2. Transient magmatic convection prolonged by solidification

    NASA Technical Reports Server (NTRS)

    Brandeis, Genevieve; Marsh, Bruce D.

    1990-01-01

    Fluid dynamic experiments have been conducted on the solidification of a paraffin layer, in order to elucidate the transient stage of convection created in cooling magma by the fact that strong changes in viscosity with crystallization lock up within an inwardly propagating crust much buoyancy that would otherwise be available to drive convection. The interior of the magma remains isothermal, and the temperature decreases uniformly until it is locked at the convective liquidus; the crystals are fine hairlike dendrites without major compositional differentiations. Measurements over time are presented of crust thickness, convective velocity, and heat transfer.

  3. Stabilisation of medically refractory ventricular arrhythmia by intra-aortic balloon counterpulsation

    PubMed Central

    Fotopoulos, G; Mason, M; Walker, S; Jepson, N; Patel, D; Mitchell, A; Ilsley, C; Paul, V

    1999-01-01

    OBJECTIVE—To review the efficacy of intra-aortic balloon counterpulsation (IABCP) in medically refractory ventricular arrhythmia.
DESIGN—Retrospective analysis of the outcome of patients with ventricular arrhythmia treated with IABCP after transfer between 1992 and 1997.
SETTING—Tertiary cardiac referral centre.
PATIENTS—21 patients (mean age 58 years) who underwent IABCP for control of ventricular arrhythmia. All had significant left ventricular impairment (mean ejection fraction 28.6%); 18 had coronary artery disease.
RESULTS—Before IABCP, 10 patients had incessant monomorphic ventricular tachycardia and 11 had paroxysmal ventricular tachycardia and/or ventricular fibrillation (VT/VF). IABCP resulted in suppression of ventricular arrhythmia in 18 patients, of whom 13 were weaned from IABCP. After stabilisation of ventricular arrhythmia, 10 patients were maintained on medical treatment alone and one underwent endocardial resection. IABCP was maintained until cardiac transplantation in five patients. One patient had a fatal arrest before discharge and one died from progressive heart failure. IABCP failed to control ventricular arrhythmia in three patients and was subsequently discontinued. A cardiac assist device was employed in one of these until cardiac transplantation; the other two were eventually stabilised on medical treatment. Nineteen patients were discharged from hospital. Overall survival was 95% at mean follow up of 25.7 months.
CONCLUSIONS—IABCP can be an effective means of controlling refractory ventricular arrhythmia, allowing time for the institution of more definitive treatment.


Keywords: ventricular arrhythmia; intra-aortic balloon counterpulsation PMID:10377318

  4. Production of nabumetone nanoparticles: Effect of molecular weight, concentration and nature of cellulose ether stabiliser.

    PubMed

    Goodwin, D J; Martini, L G; Lawrence, M J

    2016-12-05

    The ability of a range of hydrophilic nonionic cellulose ethers (CEs) (namely methylhydroxethylcellulose, hydroxypropylmethylcellulose, ethylhydroxyethylcellulose, hydroxyethylcellulose and hydroxypropylcellulose) to prepare stable nabumetone nanoparticles (<1000nm, as measured by laser diffraction) using wet-bead milling has been investigated. Due to the limited range of CE molecular weights commercially available, the CEs were degraded using ultrasonication for varying lengths of time to yield CEs of lower molecular weight. Of the CEs tested, only hydroxyethylcellulose was found not to stabilise the production of nabumetone nanoparticles at any of the molecular weights tested, namely viscosity average molecular weights (Mv) in the range of 236-33kg/mol. All other CEs successfully stabilised nabumetone nanoparticles, with the lower molecular weight/viscosity polymers within a series being more likely to result in nanoparticle production than their higher molecular weight counterparts. Unfortunately due to the nature of the ultrasonication process, it was not possible to compare the size of nabumetone particles produced using polymers of identical Mv. There was, however, enough similarity in the Mv of the various polymers to draw the general conclusion that there was no strong correlation between the Mv of the various polymers and their ability to produce nanoparticles. For example hydroxypropylcellulose of 112.2kg/mol or less successfully produced nanoparticles while only ethylhydroxyethylcellulose and hydroxypropylmethyl polymers of 52 and 38.8kg/mol or less produced nanoparticles. These results suggest that polymer molecular weight is not the only determinant of nanoparticle production and that structure of the polymer is at least as important as its molecular weight. In particular the hydrophobic nature of the CE was thought to be an important factor in the production of nabumetone nanoparticles: the more hydrophobic the polymer, the stronger its interaction

  5. A nonoscillatory, characteristically convected, finite volume scheme for multidimensional convection problems

    NASA Technical Reports Server (NTRS)

    Yokota, Jeffrey W.; Huynh, Hung T.

    1989-01-01

    A new, nonoscillatory upwind scheme is developed for the multidimensional convection equation. The scheme consists of an upwind, nonoscillatory interpolation of data to the surfaces of an intermediate finite volume; a characteristic convection of surface data to a midpoint time level; and a conservative time integration based on the midpoint rule. This procedure results in a convection scheme capable of resolving discontinuities neither aligned with, nor convected along, grid lines.

  6. Osmium isotopes and mantle convection.

    PubMed

    Hauri, Erik H

    2002-11-15

    The decay of (187)Re to (187)Os (with a half-life of 42 billion years) provides a unique isotopic fingerprint for tracing the evolution of crustal materials and mantle residues in the convecting mantle. Ancient subcontinental mantle lithosphere has uniquely low Re/Os and (187)Os/(188)Os ratios due to large-degree melt extraction, recording ancient melt-depletion events as old as 3.2 billion years. Partial melts have Re/Os ratios that are orders of magnitude higher than their sources, and the subduction of oceanic or continental crust introduces into the mantle materials that rapidly accumulate radiogenic (187)Os. Eclogites from the subcontinental lithosphere have extremely high (187)Os/(188)Os ratios, and record ages as old as the oldest peridotites. The data show a near-perfect partitioning of Re/Os and (187)Os/(188)Os ratios between peridotites (low) and eclogites (high). The convecting mantle retains a degree of Os-isotopic heterogeneity similar to the lithospheric mantle, although its amplitude is modulated by convective mixing. Abyssal peridotites from the ocean ridges have low Os isotope ratios, indicating that the upper mantle had undergone episodes of melt depletion prior to the most recent melting events to produce mid-ocean-ridge basalt. The amount of rhenium estimated to be depleted from the upper mantle is 10 times greater than the rhenium budget of the continental crust, requiring a separate reservoir to close the mass balance. A reservoir consisting of 5-10% of the mantle with a rhenium concentration similar to mid-ocean-ridge basalt would balance the rhenium depletion of the upper mantle. This reservoir most likely consists of mafic oceanic crust recycled into the mantle over Earth's history and provides the material that melts at oceanic hotspots to produce ocean-island basalts (OIBs). The ubiquity of high Os isotope ratios in OIB, coupled with other geochemical tracers, indicates that the mantle sources of hotspots contain significant quantities

  7. Bursts in inclined layer convection

    NASA Astrophysics Data System (ADS)

    Busse, F. H.; Clever, R. M.

    2000-08-01

    A new instability of longitudinal rolls in an inclined fluid layer heated from below is analyzed in the case of the Prandtl number P=0.71. The instability assumes the form of subharmonic undulations and evolves into a spatially chaotic pattern when the angle of inclination is of the order of 20°. The chaotic state rapidly decays and longitudinal rolls recover until the next burst of chaotic convection occurs. The theoretical findings closely correspond to recent experimental observations by Daniels et al. [Phys. Rev. Lett. (to be published)].

  8. The Cosmic Background Explorer.

    ERIC Educational Resources Information Center

    Gulkis, Samuel; And Others

    1990-01-01

    Outlines the Cosmic Background Explorer (COBE) mission to measure celestial radiation. Describes the instruments used and experiments involving differential microwave radiometers, and a far infrared absolute spectrophotometer. (YP)

  9. Mechanisms of secondary convection within a Mei-Yu frontal mesoscale convective system in eastern China

    NASA Astrophysics Data System (ADS)

    Xu, Xin; Xue, Ming; Wang, Yuan; Huang, Hao

    2017-01-01

    The generation of secondary convection, following an earlier episode of convection, within a heavy-rain-producing mesoscale convective system (MCS) along a Mei-Yu front in eastern China on 6-8 July 2013 is studied based on convection-permitting Weather Research and Forecasting simulations. The initiation of the secondary convection is found to be directly linked to the downward development of a mesoscale convective vortex (MCV) spawn by the MCS. In the early and mature stage, the MCV center is located at the middle troposphere; it descends gradually with time as the parent MCS began to decay, with the associated convection transitioning from deep to shallow convection. The descent of the MCV occurs in response to the lowering of the maximum diabatic heating within the convective system, which increases positive potential vorticity down below. When the MCV reaches the lower troposphere, it becomes coupled with the prefrontal southwesterly low-level jet (LLJ). The confluence of the MCV rotational flow with the LLJ notably enhances the convergence on the southern flank of the MCV, where the secondary convection is triggered and swapped through the southeastern flank of the MCV. Unlike that found in the MCV of the U.S. Central Plains, the cold pool produced by the Mei-Yu frontal MCS is rather weak and shallow and appears to play only a minor role in promoting convection. The balanced isentropic lifting by the MCV circulation is also weak, although the MCV circulation does help localize the secondary convection.

  10. Properties of semi-convection and convective overshooting for massive stars

    NASA Astrophysics Data System (ADS)

    Ding, C. Y.; Li, Y.

    2014-02-01

    The properties of semi-convection and core convective overshooting of stars with masses of 15 and 30 M⊙ are calculated in the present article. New methods are used to deal with semi-convection. Different entropy gradients are used when adopting the Schwarzschild and Ledoux methods, which are used to confine the convective boundary and calculate the turbulent quantities: {{partial } overline{s}}/{{partial } r}=-({c_p}/{H_P})(nabla -nabla _ad) when the Schwarzschild method is adopted and {{partial } overline{s}}/{{partial } r}=-({c_p}/{H_P})(nabla -nabla _ad-nabla _{μ }) when the Ledoux method is adopted. Core convective overshooting and semi-convection are treated as a whole and their development is found to present almost opposing tendencies: more intensive core convective overshooting leads to weaker semi-convection. The influence of different parameters and convection processing methods on the turbulent quantities is analysed in this article. Increasing the mixing-length parameter α leads to more turbulent dynamic energy in the convective core and prolongs the overshooting distance but depresses the development of semi-convection. Adoption of the Ledoux method leads to overshooting extending further and semi-convection development being suppressed.

  11. A Dynamically Computed Convective Time Scale for the Kain–Fritsch Convective Parameterization Scheme

    EPA Science Inventory

    Many convective parameterization schemes define a convective adjustment time scale τ as the time allowed for dissipation of convective available potential energy (CAPE). The Kain–Fritsch scheme defines τ based on an estimate of the advective time period for deep con...

  12. A Generalized Convective Inhibition Energy

    NASA Astrophysics Data System (ADS)

    Tailleux, R.

    2002-12-01

    The common view about preconvecting soundings is that they possess both CAPE (Convective Available Potential Energy) and CINE (Convective INhibition Energy), the latter preventing the former to be spontaneously released. The two concepts of CAPE and CINE are ambiguous, however, because they depend upon the parcel used to compute the work of buoyancy forces, as well as upon the thermodynamic transformation (adiabatic, pseudo-adiabatic) assumed in lifting the parcel. To remove the ambiguity intrinsically associated with CAPE, Randall and Wang (1992) introduced the concept of GCAPE (Generalized CAPE), defined as the minimum achievable energy difference between the total nonkinetic energy (NKE) of the column of air considered minus the total NKE of a reference soundings obtained by reorganizing the parcels along the vertical by conserving mass. Because the method focuses on how to achieve a global energy minimum without addressing the issue of whether it is achievable or how to achieve it, the concept of CINE is lost. The present work shows how to remedy to this problem, and how to define a Generalized CINE within the same framework serving to define the GCAPE.

  13. Structure in turbulent thermal convection

    NASA Astrophysics Data System (ADS)

    Balachandar, S.

    1992-12-01

    Small-scale features of vorticity, strain rate, and temperature gradients are considered in a Rayleigh-Bénard convection. The results reported are from a direct numerical simulation of turbulent convection performed in a rectangular box of aspect ratio 2√2 at a Rayleigh number of 6.5×106 and a Prandtl number of 0.72. In agreement with earlier results [Ashurst et al., Phys. Fluids 30, 2343 (1987) and Ruetsch and Maxey, Phys. Fluids A 3, 1587 (1991)], the intermediate strain rate is on an average positive, but the ratio of alpha, beta, and gamma strain rates are measured to be 5.3:1.0:-6.3. This result differs from the earlier result of 3:1:-4 obtained in homogeneous isotropic and shear turbulences. Buoyancy-induced vorticity production makes significant contribution to the overall enstrophy balance, especially close to the boundaries. Vorticity production by buoyancy is exclusively in the horizontal direction and is balanced by preferred production by stretching and tilting in the vertical direction, due to the preferred alignment of extensional alpha strain rate with the vertical direction. Such directional alignment of vorticity, strain rate, and scalar gradient is explained on the basis of preferred spatial orientation of coherent structures in thermal turbulence.

  14. Correlators in nontrivial backgrounds

    SciTech Connect

    Mello Koch, Robert de; Ives, Norman; Stephanou, Michael

    2009-01-15

    Operators in N=4 super Yang-Mills theory with an R-charge of O(N{sup 2}) are dual to backgrounds which are asymtotically AdS{sub 5}xS{sup 5}. In this article we develop efficient techniques that allow the computation of correlation functions in these backgrounds. We find that (i) contractions between fields in the string words and fields in the operator creating the background are the field theory accounting of the new geometry, (ii) correlation functions of probes in these backgrounds are given by the free field theory contractions but with rescaled propagators and (iii) in these backgrounds there are no open string excitations with their special end point interactions; we have only closed string excitations.

  15. The Athena Background

    NASA Astrophysics Data System (ADS)

    Piro, Luigi; Lotti, Simone; Macculi, Claudio; Molendi, Silvano; Eraerds, Tanja; Laurent, Philippe

    2015-09-01

    Estimating, reducing and controlling the residual particle background is fundamental for achieving the objectives of several science topics of Athena, in particular those connected with background dominated observations of faint and/or diffuse sources. This requires assessing the particle environment in L2, propagating the various particle components throughout the mirror, spacecraft, and instruments via proper modelling and simulations of various physical processes, implementing design and h/w measures at instrument and mission level to reduce the un-rejected background and identifying proper calibration methods to control the background variations. Likewise, an adequate knowledge of the XRB, made of components that may vary spatially or temporally, is required as well. Here we will review the present status of the background knowledge, and summarize the activities on-going within Athena at various levels.

  16. Shallow Convection along the Sea Breeze Front and its Interaction with Horizontal Convective Rolls and Convective Cells

    NASA Astrophysics Data System (ADS)

    Khan, B. A.; Stenchikov, G. L.; Abualnaja, Y.

    2014-12-01

    Shallow convection has been studied in the sea breeze frontal zone along the Arabian Red Sea coast. This convection is forced by thermal and dynamic instabilities and generally is capped below 500 hPa. The thermally induced sea breeze modifies the desert Planetary Boundary Layer (PBL) and propagates inland as a density current. The leading edge of the denser marine air rapidly moves inland undercutting the hot and dry desert air mass. The warm air lifts up along the sea breeze front (SBF). Despite large moisture flux from the sea, the shallow convection in SBF does not cause precipitation on the most part of the Arabian coastal plane. The main focus of this research is to study the vertical structure and extent of convective activity in SBF and to differentiate flow regimes that lead to dry and wet convection. The Weather Research and Forecasting Model (WRF) has been employed at a high spatial resolution of 500 m to investigate the thermodynamic structure of the atmospheric column along the SBF. We found that convection occurs during offshore and cross-shore mean wind conditions; precipitation in SBF frequently develops in the southern region of the Red Sea along the high terrain of Al-Sarawat Mountains range, while on most of the days convection is dry in the middle region and further north of the Red Sea. The coherent structures in the PBL, horizontal convective rolls (HCRs) and open convective cells (OCCs), play an important role shaping interaction of SBF with the desert boundary layer. The HCRs develop in the midmorning along the mean wind vector and interact with the SBF. Later in the afternoon HCRs evolve into OCCs. The convection is strongest, where the HCR and OCC updrafts overlap with SBF and is weakest in their downdraft regions.

  17. The parameter space of windy convection

    NASA Astrophysics Data System (ADS)

    Goluskin, David

    2016-11-01

    In horizontally periodic Rayleigh-Bénard convection at large Rayleigh numbers (Ra), wavenumber-zero horizontal winds can arise spontaneously and dramatically alter the flow. The resulting "windy convection" has been observed in 2D domains and horizontally anisotropic 3D domains. As Ra is raised, the fraction of total kinetic energy contained in the wind approaches 100%. Vertical heat transport is greatly depressed by the wind and grows very slowly (if at all) as Ra is raised. Two different types of windy convection have been observed at different Prandtl numbers (Pr). At smaller Pr, heat is vertically convected almost exclusively during discrete bursts that are separated by long quiescent phases. At larger Pr, convective transport remains significant at all times. Convection can thus be identified as either windy or non-windy, and windy states can be either bursting or non-bursting. The regions of the Ra-Pr parameter plane in which each type of convection can occur remain poorly understood, as do transitions between these regions. This talk will summarize the phenomenon of windy convection in 2D and 3D and present a preliminary exploration of the Ra-Pr plane in the 2D case. Partially supported by NSF award DMS-1515161.

  18. Introductory Analysis of Benard-Marangoni Convection

    ERIC Educational Resources Information Center

    Maroto, J. A.; Perez-Munuzuri, V.; Romero-Cano, M. S.

    2007-01-01

    We describe experiments on Benard-Marangoni convection which permit a useful understanding of the main concepts involved in this phenomenon such as, for example, Benard cells, aspect ratio, Rayleigh and Marangoni numbers, Crispation number and critical conditions. In spite of the complexity of convection theory, we carry out a simple and…

  19. Generalized convective quasi-equilibrium principle

    NASA Astrophysics Data System (ADS)

    Yano, Jun-Ichi; Plant, Robert S.

    2016-03-01

    A generalization of Arakawa and Schubert's convective quasi-equilibrium principle is presented for a closure formulation of mass-flux convection parameterization. The original principle is based on the budget of the cloud work function. This principle is generalized by considering the budget for a vertical integral of an arbitrary convection-related quantity. The closure formulation includes Arakawa and Schubert's quasi-equilibrium, as well as both CAPE and moisture closures as special cases. The formulation also includes new possibilities for considering vertical integrals that are dependent on convective-scale variables, such as the moisture within convection. The generalized convective quasi-equilibrium is defined by a balance between large-scale forcing and convective response for a given vertically-integrated quantity. The latter takes the form of a convolution of a kernel matrix and a mass-flux spectrum, as in the original convective quasi-equilibrium. The kernel reduces to a scalar when either a bulk formulation is adopted, or only large-scale variables are considered within the vertical integral. Various physical implications of the generalized closure are discussed. These include the possibility that precipitation might be considered as a potentially-significant contribution to the large-scale forcing. Two dicta are proposed as guiding physical principles for the specifying a suitable vertically-integrated quantity.

  20. Extremely tall convection: characteristics and controls

    NASA Astrophysics Data System (ADS)

    Nesbitt, S. W.; Rasmussen, K. L.

    2015-12-01

    Tall continental convective structures are observed in several climatological regions, and have been shown to be related with severe weather and extreme hydrologic events. Recent work has defined tall convection as regions with precipitation structures observed with spaceborne radar echo extending into the upper troposphere/lower stratosphere. While these climatological regions are known for these tall convective structures (subtropical South America, equatorial Africa, southcentral USA, South Asia), not all observed convective eventsin these regions contain strong structures, and the characteristics of the meteorological environments, including sounding profiles, that dictate the strength of the spectrum of convective systems are poorly constrained. In this study, precipitation radar (PR) data from the Tropical Rainfall Measuring Mission (TRMM) and dual-frequency precipitation radar (DPR) from the Global Precipitation Measurement (GPM) satellites will be examined alongside composites of atmospheric reanalysis data to examine the structural and meteorological environments surrounding observed tall convective systems. Environments of convective systems of various vertical extents will be contrasted with less extreme convection to infer physical causal mechanisms and to examine issues of predictability of these events.

  1. A Texture-Polarization Method for Estimating Convective/Stratiform Precipitation Area Coverage from Passive Microwave Radiometer Data

    NASA Technical Reports Server (NTRS)

    Olson, William S.; Hong, Ye; Kummerow, Christian D.; Turk, Joseph; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Observational and modeling studies have described the relationships between convective/stratiform rain proportion and the vertical distributions of vertical motion, latent heating, and moistening in mesoscale convective systems. Therefore, remote sensing techniques which can quantify the relative areal proportion of convective and stratiform, rainfall can provide useful information regarding the dynamic and thermodynamic processes in these systems. In the present study, two methods for deducing the convective/stratiform areal extent of precipitation from satellite passive microwave radiometer measurements are combined to yield an improved method. If sufficient microwave scattering by ice-phase precipitating hydrometeors is detected, the method relies mainly on the degree of polarization in oblique-view, 85.5 GHz radiances to estimate the area fraction of convective rain within the radiometer footprint. In situations where ice scattering is minimal, the method draws mostly on texture information in radiometer imagery at lower microwave frequencies to estimate the convective area fraction. Based upon observations of ten convective systems over ocean and nine systems over land, instantaneous 0.5 degree resolution estimates of convective area fraction from the Tropical Rainfall Measuring Mission Microwave Imager (TRMM TMI) are compared to nearly coincident estimates from the TRMM Precipitation Radar (TRMM PR). The TMI convective area fraction estimates are slightly low-biased with respect to the PR, with TMI-PR correlations of 0.78 and 0.84 over ocean and land backgrounds, respectively. TMI monthly-average convective area percentages in the tropics and subtropics from February 1998 exhibit the greatest values along the ITCZ and in continental regions of the summer (southern) hemisphere. Although convective area percentages. from the TMI are systematically lower than those from the PR, monthly rain patterns derived from the TMI and PR rain algorithms are very similar

  2. A year of convective vortex activity at Gale crater

    NASA Astrophysics Data System (ADS)

    Steakley, Kathryn; Murphy, James

    2016-11-01

    Atmospheric convective vortices, which become dust devils when they entrain dust from the surface, are prominent features within Mars' atmosphere which are thought to be a primary contributor to the planet's background dust opacity. Buoyantly produced in convectively unstable layers at a planet's surface, these vertically aligned vortices possess rapidly rotating and ascending near-surface warm air and are readily identified by temporal signatures of reduced atmospheric surface pressure measured within the vortex as it passes by. We investigate such signatures in surface pressure measurements acquired by the Rover Environmental Monitoring Station aboard the Mars Science Laboratory rover located within Gale crater. During the first 707 sols of the mission, 245 convective vortices are identified with pressure drops in the range of 0.30-2.86 Pa with a median value of 0.67 Pa. The cumulative distribution of their pressure drops follows a power law of slope -2.77 and we observe seasonal and diurnal trends in their activity. The vast majority of these pressure signatures lack corresponding reductions in REMS-measured UV flux, suggesting that these vortices rarely cast shadows upon the rover and therefore are most often dust-free. The relatively weak-magnitude, dustless vortices at Gale crater are consistent with predictions from mesoscale modeling indicating that the planetary boundary layer is suppressed within the crater and are also consistent with the almost complete absence of both dust devils within Mars Science Laboratory camera images and Gale crater surface dust devil streaks within orbiter images.

  3. Magnetospheric convection pattern and its implications

    NASA Technical Reports Server (NTRS)

    Zhu, Xiaoming

    1993-01-01

    When we use 14 months of the Fast Plasma Experiment ion velocity measurements, the mean magnetospheric circulation pattern is constructed. It is shown that the magnetospheric convection velocity is of the order tens of kilometers per second. The convection is largely restricted to the outer magnetosphere. During magnetically active periods the convection velocity increases and the convection boundary extends to the region closer to the Earth, indicating more magnetic field flux is being transported to the dayside magnetosphere. It is also shown that the convective flows tend to follow contours of constant unit flux volume as they move around the Earth, especially on the duskside of the magnetosphere. This helps to avoid the pressure balance inconsistency often found in two-dimensional magnetotail models.

  4. Natural convection around the human head.

    PubMed Central

    Clark, R P; Toy, N

    1975-01-01

    1. Factors determining the convective flow patterns around the human head in 'still' conditions are discussed in relation to body posture. 2. The flow patterns have been visualized using a schlieren optical system which reveals that the head has a thicker 'insulating' layer of convecting air in the erect posture than in the supine position. 3. Local convective and radiative heat transfer measurements from the head have been using surface calorimeters. These results are seen to be closely related to the thickness of the convective boundary layer flows. 4. The total convective and radiative heat loss from the head of a subject in the erect and supine position has been evaluated from the local measurements. For the head of the supine subject the heat loss was found to be 30% more than when the subject was standing. Images Plate 1 PMID:1142118

  5. The Turbulent Diffusivity of Convective Overshoot

    NASA Astrophysics Data System (ADS)

    Lecoanet, Daniel; Schwab, Josiah; Quataert, Eliot; Bildsten, Lars; Timmes, Frank; Burns, Keaton; Vasil, Geoffrey; Oishi, Jeffrey; Brown, Benjamin

    2016-11-01

    There are many natural systems with convectively unstable fluid adjacent to stably stratified fluid; including the Earth's atmosphere, most stars, and perhaps even the Earth's liquid core. The convective motions penetrating into the stable region can enhance mixing, leading to changes in transport within the stable region. This work describes convective overshoot simulations. To study the extra mixing due to overshoot, we evolve a passive tracer field. The horizontal average of the passive tracer quickly approaches a self-similar state. The self-similar state is the solution to a diffusion equation with a spatially dependent turbulent diffusivity. We find the extra mixing due to convection can be accurately modeled as a turbulent diffusivity, and discuss implications of this turbulent diffusivity for the astrophysical problem of mixing in convectively bounded carbon flames.

  6. Collective phase description of oscillatory convection

    SciTech Connect

    Kawamura, Yoji; Nakao, Hiroya

    2013-12-15

    We formulate a theory for the collective phase description of oscillatory convection in Hele-Shaw cells. It enables us to describe the dynamics of the oscillatory convection by a single degree of freedom which we call the collective phase. The theory can be considered as a phase reduction method for limit-cycle solutions in infinite-dimensional dynamical systems, namely, stable time-periodic solutions to partial differential equations, representing the oscillatory convection. We derive the phase sensitivity function, which quantifies the phase response of the oscillatory convection to weak perturbations applied at each spatial point, and analyze the phase synchronization between two weakly coupled Hele-Shaw cells exhibiting oscillatory convection on the basis of the derived phase equations.

  7. Low Mach Number Simulation of Core Convection in Massive Stars

    NASA Astrophysics Data System (ADS)

    Gilet, Candace Elise

    This work presents three-dimensional simulations of core convection in a 15 solar mass star halfway through its main sequence lifetime. We examine the effects of two common modeling choices on the resulting convective flow: using a reduced domain size and using a monatomic, or single species, approximation. We compare a multi-species simulation on a full sphere (360 degree) domain with a multi-species simulation on an octant domain and also with a single species simulation on a full sphere domain. To perform the long-time calculations, we use the new low Mach number code MAESTRO. The first part of this work deals with numerical aspects of using MAESTRO for the core convection system, a new application for MAESTRO. We extend MAESTRO to include two new models, a single species model and a simplified two-dimensional planar model, to aid in the exploration of using MAESTRO for core convection in massive stars. We discuss using MAESTRO with a novel spherical geometry domain configuration, namely, with the outer boundary located in the interior of the star, and show how this can create spurious velocities that must be numerically damped using a sponging layer. We describe the preparation of the initial model for the simulation. We find that assuring neutral stratification in the convective core and reasonable resolution of the gravity waves in the stable layer are key factors in generating suitable initial conditions for the simulation. Further, we examine a numerical aspect of the velocity constraint that is part of the low Mach number formulation of the Euler equations. In particular, we investigate the numerical procedure for computing beta0, the density-like variable that captures background stratification in the velocity constraint, and find that the original method of computation remains a good choice. The three-dimensional simulation results show that using a single species model actually increases the computational cost of the simulation because the single

  8. Nature, theory and modelling of geophysical convective planetary boundary layers

    NASA Astrophysics Data System (ADS)

    Zilitinkevich, Sergej

    2015-04-01

    horizontal branches of organised structures. This mechanism (Zilitinkevich et al., 2006), was overlooked in conventional local theories, such as the Monin-Obukhov similarity theory, and convective heat/mass transfer law: Nu~Ra1/3, where Nu and Ra are the Nusselt number and Raleigh numbers. References Hellsten A., Zilitinkevich S., 2013: Role of convective structures and background turbulence in the dry convective boundary layer. Boundary-Layer Meteorol. 149, 323-353. Zilitinkevich, S.S., 1973: Shear convection. Boundary-Layer Meteorol. 3, 416-423. Zilitinkevich, S.S., 1991: Turbulent Penetrative Convection, Avebury Technical, Aldershot, 180 pp. Zilitinkevich S.S., 2012: The Height of the Atmospheric Planetary Boundary layer: State of the Art and New Development - Chapter 13 in 'National Security and Human Health Implications of Climate Change', edited by H.J.S. Fernando, Z. Klaić, J.L. McKulley, NATO Science for Peace and Security Series - C: Environmental Security (ISBN 978-94-007-2429-7), Springer, 147-161. Zilitinkevich S.S., 2013: Atmospheric Turbulence and Planetary Boundary Layers. Fizmatlit, Moscow, 248 pp. Zilitinkevich, S.S., Hunt, J.C.R., Grachev, A.A., Esau, I.N., Lalas, D.P., Akylas, E., Tombrou, M., Fairall, C.W., Fernando, H.J.S., Baklanov, and A., Joffre, S.M., 2006: The influence of large convective eddies on the surface layer turbulence. Quart. J. Roy. Met. Soc. 132, 1423-1456. Zilitinkevich S.S., Tyuryakov S.A., Troitskaya Yu. I., Mareev E., 2012: Theoretical models of the height of the atmospheric planetary boundary layer and turbulent entrainment at its upper boundary. Izvestija RAN, FAO, 48, No.1, 150-160 Zilitinkevich, S.S., Elperin, T., Kleeorin, N., Rogachevskii, I., Esau, I.N., 2013: A hierarchy of energy- and flux-budget (EFB) turbulence closure models for stably stratified geophysical flows. Boundary-Layer Meteorol. 146, 341-373.

  9. The cosmic neutrino background

    NASA Technical Reports Server (NTRS)

    Dar, Arnon

    1991-01-01

    The cosmic neutrino background is expected to consist of relic neutrinos from the big bang, of neutrinos produced during nuclear burning in stars, of neutrinos released by gravitational stellar collapse, and of neutrinos produced by cosmic ray interactions with matter and radiation in the interstellar and intergalactic medium. Formation of baryonic dark matter in the early universe, matter-antimatter annihilation in a baryonic symmetric universe, and dark matter annihilation could have also contributed significantly to the cosmic neutrino background. The purpose of this paper is to review the properties of these cosmic neutrino backgrounds, the indirect evidence for their existence, and the prospects for their detection.

  10. Background Underground at WIPP

    NASA Astrophysics Data System (ADS)

    Esch, Ernst-Ingo; Hime, A.; Bowles, T. J.

    2001-04-01

    Recent interest to establish a dedicated underground laboratory in the United States prompted an experimental program at to quantify the enviromental backgrounds underground at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. An outline of this program is provided along with recent experimental data on the cosmic ray muon flux at the 650 meter level of WIPP. The implications of the cosmic ray muon and fast neutron background at WIPP will be discussed in the context of new generation, low background experiments envisioned in the future.

  11. Free tropospheric ozone production following entrainment of urban plumes into deep convection

    NASA Technical Reports Server (NTRS)

    Pickering, Kenneth E.; Thompson, Anne M.; Scala, John R.; Tao, Wei-Kuo; Dickerson, Russell R.; Simpson, Joanne

    1992-01-01

    It is shown that rapid vertical transport of air from urban plumes through deep convective clouds can cause substantial enhancement of the rate of O3 production in the free troposphere. Simulation of convective redistribution and subsequent photochemistry of an urban plume from Oklahoma City during the 1985 PRESTORM campaign shows enhancement of O3 production in the free tropospheric cloud outflow layer by a factor of almost 4. In contrast, simulation of convective transport of an urban plume from Manaus, Brazil, into a prestine free troposphere during GTE/ABLE 2B (1987), followed by a photochemical simulation, showed enhancement of O3 production by a factor of 35. The reasons for the different enhancements are (1) intensity of cloud vertical motion; (2) initial boundary layer O3 precursor concentrations; and (3) initial amount of background free tropospheric NO(x). Convective transport of ozone precursors to the middle and upper troposphere allows the resulting O3 to spread over large geographic regions, rather than being confined to the lower troposphere where loss processes are much more rapid. Conversely, as air with lower NO descends and replaces more polluted air, there is greater O3 production efficiency per molecule of NO in the boundary layer following convective transport. As a result, over 30 percent more ozone could be produced in the entire tropospheric column in the first 24 hours following convective transport of urban plumes.

  12. A convective model of water flow in Mururoa basalts

    NASA Astrophysics Data System (ADS)

    Henry, P.; Guy, C.; Cattin, R.; Dudoignon, P.; Sornein, J. F.; Caristan, Y.

    1996-06-01

    Even long after the end of volcanic activity, the background geothermal flux of Mururoa atoll (French Polynesia) maintains fluid convection. We present evidences that interstitial water is continuously renewed in the carbonate platform, as well as in the volcanic basement. In the carbonate rocks, the presence of a karst system allows convective fluxes high enough for the thermal equilibration of the formation with the ocean around. On the contrary, convection in the volcanic basement is, in most places, too slow to cause a measurable disturbance of temperature profiles. Thermal convection models indicate that the average permeability of the volcanic basement cannot be more than a few 10 mD (10 -14 m 2), implying a residence time of more than 10,000 years. The concentration of Sr in porewaters is used as an indicator of the rock/water ratio and of the residence time of the fluid. Considering the measured permeabilities and the estimated rates of reaction, residence times of more than 1 My, corresponding to average permeabilities of less than 10 -16 m 2, are unlikely in the studied upper kilometer of the volcano. However, the extrapolation of the rates of dissolution for basaltic glass measured in the laboratory to in situ conditions apparently leads to overestimate the rates of reaction. Chemically reactive surface area per volume of fluid is a critical parameter in this extrapolation and its value is dependent on the method used to measure it. Although it may not be the only explanation, the discrepancies can be caused by the presence of clays in conduits for fluid flow and as a replacement product of glass. Comparing our results with studies of Quaternary basalts in Iceland, the 10 Ma alteration history of the Mururoa basalt results in a decrease of the permeability of the aquifers by several orders of magnitude, but does not cause a large change of the chemically reactive surface area.

  13. Notification: Background Investigation Services

    EPA Pesticide Factsheets

    Project #OA-FY15-0029, February 26, 2015. The Office of Inspector General (OIG) for the U.S. Environmental Protection Agency (EPA) plans to begin field work for our audit of background investigation services.

  14. The GLAST Background Model

    SciTech Connect

    Ormes, J. F.; Atwood, W.; Burnett, T.; Grove, E.; Longo, F.; McEnery, J.; Ritz, S.; Mizuno, T.

    2007-07-12

    In order to estimate the ability of the GLAST/LAT to reject unwanted background of charged particles, optimize the on-board processing, size the required telemetry and optimize the GLAST orbit, we developed a detailed model of the background particles that would affect the LAT. In addition to the well-known components of the cosmic radiation, we included splash and reentrant components of protons, electrons (e+ and e-) from 10 MeV and beyond as well as the albedo gamma rays produced by cosmic ray interactions with the atmosphere. We made estimates of the irreducible background components produced by positrons and hadrons interacting in the multilayered micrometeorite shield and spacecraft surrounding the LAT and note that because the orbital debris has increased, the shielding required and hence the background are larger than were present in EGRET. Improvements to the model are currently being made to include the east-west effect.

  15. The GLAST Background Model

    SciTech Connect

    Ormes, J.F.; Atwood, W.; Burnett, T.; Grove, E.; Longo, F.; McEnery, J.; Mizuno, T.; Ritz, S.; /NASA, Goddard

    2007-10-17

    In order to estimate the ability of the GLAST/LAT to reject unwanted background of charged particles, optimize the on-board processing, size the required telemetry and optimize the GLAST orbit, we developed a detailed model of the background particles that would affect the LAT. In addition to the well-known components of the cosmic radiation, we included splash and reentrant components of protons, electrons (e+ and e-) from 10 MeV and beyond as well as the albedo gamma rays produced by cosmic ray interactions with the atmosphere. We made estimates of the irreducible background components produced by positrons and hadrons interacting in the multilayered micrometeorite shield and spacecraft surrounding the LAT and note that because the orbital debris has increased, the shielding required and hence the background are larger than were present in EGRET. Improvements to the model are currently being made to include the east-west effect.

  16. Two-dimensional convective turbulence

    SciTech Connect

    Gruzinov, A.V.; Kukharkin, N.; Sudan, R.N.

    1996-02-01

    We show that 2D {bold E{times}B} ionospheric turbulence of the electron density in the equatorial electrojet is isomorphic to the viscous convection of an ordinary fluid in a porous medium due to temperature gradients. Numerical simulations reveal the strong anisotropy in the turbulence, which consists of rising hot bubbles and falling cool bubbles. These bubbles break up into fingers leading to the formation of stable shear flows. After reaching a quasisteady state, the omnidirectional energy spectrum approaches a {ital k}{sup {minus}2} behavior, rather than {ital k}{sup {minus}5/3} as expected from isotropic turbulence. Physical mechanisms that lead to anisotropy are analyzed. {copyright} {ital 1996 The American Physical Society.}

  17. Localized structures in convective experiments

    NASA Astrophysics Data System (ADS)

    Burguete, J.; Mancini, H.

    2014-01-01

    In this work we review localized structures appearing in thermo-convective experiments performed in extended (large "aspect ratio") fluid layers. After a brief general review (not exhaustive), we focus on some results obtained in pure fluids in a Bénard-Marangoni system with non-homogeneous heating where some structures of this kind appear. The experimental results are compared in reference to the most classical observed in binary mixtures experiments or simulations. In the Bénard-Marangoni experiment we present the stability diagram where localized structures appear and the typical situations where these local mechanisms have been studied experimentally. Some new experimental results are also included. The authors want to honor Prof. H. Brand in his 60th. birthday and to thank him for helpful discussions.

  18. Natural convection between concentric spheres

    NASA Technical Reports Server (NTRS)

    Garg, Vijay K.

    1992-01-01

    A finite-difference solution for steady natural convective flow in a concentric spherical annulus with isothermal walls has been obtained. The stream function-vorticity formulation of the equations of motion for the unsteady axisymmetric flow is used; interest lying in the final steady solution. Forward differences are used for the time derivatives and second-order central differences for the space derivatives. The alternating direction implicit method is used for solution of the discretization equations. Local one-dimensional grid adaptation is used to resolve the steep gradients in some regions of the flow at large Rayleigh numbers. The break-up into multi-cellular flow is found at high Rayleigh numbers for air and water, and at significantly low Rayleigh numbers for liquid metals. Excellent agreement with previous experimental and numerical data is obtained.

  19. Thermal balance in convective therapies.

    PubMed

    Santoro, Antonio; Mancini, Elena; Canova, Cristina; Mambelli, Emanuele

    2003-08-01

    Among the factors causing intradialytic haemodynamic instability, dialysate temperature has been shown to play a relevant role. An improved cardiovascular response during isolated ultrafiltration or with cooled dialysate has been described in the past. Cold dialysate may increase the external heat loss compensating for the increase in core temperature, thus avoiding vasodilatation, but it also increases myocardial contractility. However, a better haemodynamic response to dialysis treatment has long been known in convective therapies as well, and the hypothesis of a leading role for thermal balance is under discussion. In conventional haemofiltration (HF), venous blood cooling is expected, on the basis of the infusate temperature and the filtration fraction. In on-line HF, the infusate temperature and its volume may have a different impact on thermal balance depending on the site of infusion (pre- or post-dialyser). In an in vitro study comparing haemodialysis (HD) (conventional HD, dialysate 37 degrees C; and cold HD, dialysate 35.5 degrees C) with HF (pre- and post-dilution, 37 degrees C), we observed a more negative thermal balance with cold HD (-130 kJ/h) and with post-dilution HF (-75 kJ/h). The beneficial pressor effects of HF have been confirmed even in on-line HF, which actually has very few differences in the thermal balance compared with conventional HD (dialysate 37 degrees C). In on-line HF, the amount of warm infusion, often exceeding the blood flow, makes the achievement of a negative thermal balance highly unlikely. Thus, there is not sufficient evidence that vascular stability in on-line HF is solely related to different thermal energy balances. Other factors playing a relevant role in the cardiocirculatory response to convective dialysis should thus be considered.

  20. Actively convected liquid metal divertor

    NASA Astrophysics Data System (ADS)

    Shimada, Michiya; Hirooka, Yoshi

    2014-12-01

    The use of actively convected liquid metals with j × B force is proposed to facilitate heat handling by the divertor, a challenging issue associated with magnetic fusion experiments such as ITER. This issue will be aggravated even more for DEMO and power reactors because the divertor heat load will be significantly higher and yet the use of copper would not be allowed as the heat sink material. Instead, reduced activation ferritic/martensitic steel alloys with heat conductivities substantially lower than that of copper, will be used as the structural materials. The present proposal is to fill the lower part of the vacuum vessel with liquid metals with relatively low melting points and low chemical activities including Ga and Sn. The divertor modules, equipped with electrodes and cooling tubes, are immersed in the liquid metal. The electrode, placed in the middle of the liquid metal, can be biased positively or negatively with respect to the module. The j × B force due to the current between the electrode and the module provides a rotating motion for the liquid metal around the electrodes. The rise in liquid temperature at the separatrix hit point can be maintained at acceptable levels from the operation point of view. As the rotation speed increases, the current in the liquid metal is expected to decrease due to the v × B electromotive force. This rotating motion in the poloidal plane will reduce the divertor heat load significantly. Another important benefit of the convected liquid metal divertor is the fast recovery from unmitigated disruptions. Also, the liquid metal divertor concept eliminates the erosion problem.

  1. Erosion/redeposition analysis of the ITER first wall with convective and non-convective plasma transport

    SciTech Connect

    Brooks, J. N.; Allain, J. P.; Rognlien, T. D.

    2006-12-15

    Sputtering erosion/redeposition is analyzed for IAEA [Report GA10FDR1-01-07-13 (2001)] plasma facing components, with scrape-off layer (SOL) plasma convective radial transport and nonconvective (diffusion-only) transport. The analysis uses the UEDGE code [T .D. Rognlien et al., J. Nucl. Mater. 196, 347 (1992)] and DEGAS code [D. P. Stotler et al., Contrib. Plasma Phys. 40, 221 (2000) ] to compute plasma SOL profiles and ion and neutral fluxes to the wall, TRIM-SP code [J. P. Biersack, W. Eckstein, J. Appl. Phys. A34, 73 (1984)] to compute sputter yields, and the REDEP/WBC code package [J. N. Brooks, Fusion Eng. Des. 60, 515 (2002)] for three-dimensional kinetic modeling of sputtered particle transport. Convective transport is modeled for the background plasma by a radially varying outward-flow component of the fluid velocity, and for the impurity ions by three models designed to bracket existing models/data. Results are reported here for the first wall with the reference beryllium coating and an alternative tungsten coating. The analysis shows: (1) sputtering erosion for convective flow is 20-40 times higher than for diffusion-only but acceptably low ({approx}0.3 nm/s) for beryllium, and very low ({approx}0.002 nm/s) for tungsten; (2) plasma contamination by wall sputtering, with convective flow, is of order 1% for beryllium and negligible for tungsten; (3) wall-to-divertor beryllium transport may be significant ({approx}10%-60% of the sputtered Be current); (4) tritium co-deposition in redeposited beryllium may be high ({approx}1-6 gT/400 s pulse)

  2. Cerium reduction at the interface between ceria and yttria-stabilised zirconia and implications for interfacial oxygen non-stoichiometry

    NASA Astrophysics Data System (ADS)

    Song, Kepeng; Schmid, Herbert; Srot, Vesna; Gilardi, Elisa; Gregori, Giuliano; Du, Kui; Maier, Joachim; van Aken, Peter A.

    2014-03-01

    Epitaxial CeO2 films with different thickness were grown on Y2O3 stabilised Zirconia substrates. Reduction of cerium ions at the interface between CeO2 films and yttria stabilised zirconia substrates is demonstrated using aberration-corrected scanning transmission electron microscopy combined with electron energy-loss spectroscopy. It is revealed that most of the Ce ions were reduced from Ce4+ to Ce3+ at the interface region with a decay of several nanometers. Several possibilities of charge compensations are discussed. Irrespective of the details, such local non-stoichiometries are crucial not only for understanding charge transport in such hetero-structures but also for understanding ceria catalytic properties.

  3. An improved sufficient condition for stabilisation of unstable first-order processes by observer-state feedback

    NASA Astrophysics Data System (ADS)

    Francisco Marquez Rubio, Juan; del Muro Cuéllar, Basilio; Velasco Villa, Martín; de Jesús Álvarez Ramírez, José

    2015-02-01

    This work considers the stabilisation and control of unstable first-order linear systems subject to a relatively large I/O time delay. First, it is proposed an observer strategy to predict a specific internal signal in the process. The adequate prediction convergence is obtained and formally stated. Then, it is proposed an estimated state feedback control. Necessary and sufficient stability conditions with respect to time delay size and unstable time constant are provided. The proposed control strategy allows to address time delays as large as four times the unstable time constant of the open-loop system, in contrast with most of the reported related literature. Numerical examples are used for illustrating the parametric stabilisation region as a function of the time delay.

  4. Cerium reduction at the interface between ceria and yttria-stabilised zirconia and implications for interfacial oxygen non-stoichiometry

    SciTech Connect

    Song, Kepeng; Schmid, Herbert; Srot, Vesna; Aken, Peter A. van; Gilardi, Elisa; Gregori, Giuliano; Maier, Joachim; Du, Kui

    2014-03-01

    Epitaxial CeO{sub 2} films with different thickness were grown on Y{sub 2}O{sub 3} stabilised Zirconia substrates. Reduction of cerium ions at the interface between CeO{sub 2} films and yttria stabilised zirconia substrates is demonstrated using aberration-corrected scanning transmission electron microscopy combined with electron energy-loss spectroscopy. It is revealed that most of the Ce ions were reduced from Ce{sup 4+} to Ce{sup 3+} at the interface region with a decay of several nanometers. Several possibilities of charge compensations are discussed. Irrespective of the details, such local non-stoichiometries are crucial not only for understanding charge transport in such hetero-structures but also for understanding ceria catalytic properties.

  5. Stabilisation of high-activity 99mTc-d,l-HMPAO preparations with cobalt chloride and their biological behaviour.

    PubMed

    Mang'era, K O; Vanbilloen, H P; Schiepers, C W; Verbruggen, A M

    1995-10-01

    It has been reported that the stability of a 1.11-GBq (30 mCi) technetium-99m d,l-hexamethyl-propylene amine oxime (HMPAO) preparation can be improved to up to 5 h by the addition of 200 micrograms CoCl2.6H2O within 2 min after reconstitution. However, it is not clear whether this method is also efficient for high-activity preparations (5.55 GBq) and whether this modified 99mTc-d,l-HMPAO has the same biological properties and can safely be used. We have now studied CoCl2-stabilised 99mTc-d,l-HMPAO preparations containing different amounts of "in-house" HMPAO ligand and SnCl2 and reconstituted with activities from 1.11 GBq to 5.55 GBq 99mTc. The characteristics of the generator eluates were also divergent, ranging from fresh eluates from a generator eluted less than 2 h previously to 4-h-old eluates from a generator not eluted during the preceding 72 h. Preparations containing up to 5.55 GBq 99mTc and as low as 2 micrograms SnCl2.2H2O can be efficiently stabilised for at least 6 h by the addition of CoCl2 shortly after reconstitution. Interestingly, it was found that the stabilisation method is not efficient if the cobalt ions are added prior to reconstitution of the preparation. This implies that the cobalt chloride cannot be incorporated in the labelling kit. Also, preparations with amounts of the ligand lower or higher than 0.5 mg formed the 99mTc-d,l-HMPAO complex with low radiochemical yield or showed rapid degradation. Therefore, combination of a subdivision and storage of Ceretec kits in fractions (as reported in the literature) is contra-indicated with this CoCl2 stabilisation method. CoCl2-stabilised Ceretec kits reconstituted with 5550 MBq 99mTcO4- and used 4-5 h after preparation retain the diagnostic usefulness of the fresh 1110-MBq preparation with regard to leucocyte labelling and brain imaging. Although baboon brain uptake of the stabilised preparation was 6%-9% lower, this small difference could not be distinguished in the tomographic images. The

  6. Global state feedback stabilisation of stochastic high-order nonlinear systems with high-order and low-order nonlinearities

    NASA Astrophysics Data System (ADS)

    Gao, Fangzheng; Wu, Yuqiang; Yu, Xin

    2016-12-01

    In this paper, the problem of global stabilisation by state feedback is investigated for a class of stochastic high-order nonlinear systems with both high-order and low-order nonlinearities, to which the existing control methods are inapplicable. Based on the generalised stochastic Lyapunov theorem, and by skillfully using the method of adding a power integrator, a continuous state feedback controller is successfully constructed, which can guarantee the global asymptotic stability in probability of the resulting closed-loop system in the sense of weak solution, and also is able to lead to an interesting result of finite-time stabilisation under appropriate conditions. Finally, two simulation examples are provided to demonstrate the effectiveness of the proposed approach.

  7. Effect of human and simulated gastric juices on the digestion of whey proteins and carboxymethylcellulose-stabilised O/W emulsions.

    PubMed

    Malinauskytė, Ernesta; Ramanauskaitė, Jovita; Leskauskaitė, Daiva; Devold, Tove G; Schüller, Reidar B; Vegarud, Gerd E

    2014-12-15

    In this study, we analysed the impact of carboxymethylcellulose (CMC) on lipid digestion and physicochemical properties of whey proteins (WP)-stabilised emulsions during in vitro digestion with either artificial or human gastrointestinal juices. The emulsions were made by adsorbing WP on the fat droplets and subsequently adding CMC, which does not interact with the adsorbed proteins. The limited hydrolysis of lipids and their higher physical stability was recorded for WP-stabilised emulsions in the presence of CMC under simulated gastrointestinal conditions. The possible mechanism by which CMC lowers the digestion of WP-stabilised emulsions is related to the limited interaction of fat droplets with gastrointestinal fluids due to the extended thickening network formed by CMC in the continuous phase. The digestion of WP- and CMC-stabilised emulsions in the in vitro model with human gastric fluids led to greater lipid hydrolysis, although the enzymatic activity in both in vitro models was observed at the same level.

  8. Magnetic Control of Solutal Buoyancy Driven Convection

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Leslie, F. W.

    2003-01-01

    Volumetric forces resulting from local density variations and gravitational acceleration cause buoyancy induced convective motion in melts and solutions. Solutal buoyancy is a result of concentration differences in an otherwise isothermal fluid. If the fluid also exhibits variations in magnetic susceptibility with concentration then convection control by external magnetic fields can be hypothesized. Magnetic control of thermal buoyancy induced convection in ferrofluids (dispersions of ferromagnetic particles in a carrier fluid) and paramagnetic fluids have been demonstrated. Here we show the nature of magnetic control of solutal buoyancy driven convection of a paramagnetic fluid, an aqueous solution of Manganese Chloride hydrate. We predict the critical magnetic field required for balancing gravitational solutal buoyancy driven convection and validate it through a simple experiment. We demonstrate that gravity driven flow can be completely reversed by a magnetic field but the exact cancellation of the flow is not possible. This is because the phenomenon is unstable. The technique can be applied to crystal growth processes in order to reduce convection and to heat exchanger devices for enhancing convection. The method can also be applied to impose a desired g-level in reduced gravity applications.

  9. The diurnal cycle of rainfall over New Guinea in convection-permitting WRF simulations

    NASA Astrophysics Data System (ADS)

    Hassim, M. E. E.; Lane, T. P.; Grabowski, W. W.

    2016-01-01

    In this study, we examine the diurnal cycle of rainfall over New Guinea using a series of convection-permitting numerical simulations with the Weather Research and Forecasting (WRF) model. We focus our simulations on a period of suppressed regional-scale conditions (February 2010) during which local diurnal forcings are maximised. Additionally, we focus our study on the occurrence and dynamics of offshore-propagating convective systems that contribute to the observed early-morning rainfall maximum north-east of New Guinea.

    In general, modelled diurnal precipitation shows good agreement with satellite-observed rainfall, albeit with some timing and intensity differences. The simulations also reproduce the occurrence and variability of overnight convection that propagate offshore as organised squall lines north-east of New Guinea. The occurrence of these offshore systems is largely controlled by background conditions. Days with offshore-propagating convection have more middle tropospheric moisture, larger convective available potential energy, and greater low-level moisture convergence. Convection has similar characteristics over the terrain on days with and without offshore propagation.

    The offshore-propagating convection manifests via a multi-stage evolutionary process. First, scattered convection over land, which is remnant of the daytime maximum, moves towards the coast and becomes reorganised near the region of coastal convergence associated with the land breeze. The convection then moves offshore in the form of a squall line at ˜ 5 ms-1. In addition, cool anomalies associated with gravity waves generated by precipitating land convection propagate offshore at a dry hydrostatic gravity wave speed (of ˜ 15 ms-1) and act to destabilise the coastal/offshore environment prior to the arrival of the squall line. Although the gravity

  10. Towards convection-resolving climate modeling

    NASA Astrophysics Data System (ADS)

    Schar, C.; Ban, N.; Fuhrer, O.; Keller, M.; Lapillonne, X.; Leutwyler, D.; Lüthi, D.; Schlemmer, L.; Schmidli, J.; Schulthess, T. C.

    2015-12-01

    Moist convection is a fundamental process in our climate system, but is usually parameterized in climate models. The underlying approximations introduce significant uncertainties and biases, and there is thus a general thrust towards the explicit representation of convection. For climate applications, convection-resolving simulations are still very expensive, but are increasingly becoming feasible. Here we present recent results pertaining to the development and exploitation of convection-resolving regional climate models. We discuss the potential and challenges of the approach, highlight validation using decade-long simulations, explore convection-resolving climate change scenarios, and provide an outlook on the use of next-generation supercomputing architectures. Detailed results will be presented using the COSMO model over two computational domains at a horizontal resolution of 2.2 km. The first covers an extended Alpine region from Northern Italy to Northern Germany. For this domain decade-long simulations have been conducted, driven by both reanalysis as well as CMIP5 model data. Results show that explicit convection leads to significant improvements in the representation of summer precipitation, and to substantial differences in climate projections in terms of precipitation statistics. The second domain covers European (with 1536x1536x60 grid points) and the respective simulations exploit heterogeneous many-core hardware architectures. Results demonstrate realistic mesoscale processes embedded in synoptic-scale features, such as line convection along cold frontal systems, or the triggering of moist convection by propagating cold-air pools. Currently a 10-year simulation using this set up is near completion. To efficiently use GPU-based high-performance computers, the model code underwent significant development, including a rewrite of the dynamical core in C++. It is argued that today's largest supercomputers would in principle be able to support - already

  11. The active disturbance rejection control approach to stabilisation of coupled heat and ODE system subject to boundary control matched disturbance

    NASA Astrophysics Data System (ADS)

    Guo, Bao-Zhu; Liu, Jun-Jun; AL-Fhaid, A. S.; Younas, Arshad Mahmood M.; Asiri, Asim

    2015-08-01

    We consider stabilisation for a linear ordinary differential equation system with input dynamics governed by a heat equation, subject to boundary control matched disturbance. The active disturbance rejection control approach is applied to estimate, in real time, the disturbance with both constant high gain and time-varying high gain. The disturbance is cancelled in the feedback loop. The closed-loop systems with constant high gain and time-varying high gain are shown, respectively, to be practically stable and asymptotically stable.

  12. Predator-prey dynamics stabilised by nonlinearity explain oscillations in dust-forming plasmas

    NASA Astrophysics Data System (ADS)

    Ross, A. E.; McKenzie, D. R.

    2016-04-01

    Dust-forming plasmas are ionised gases that generate particles from a precursor. In nature, dust-forming plasmas are found in flames, the interstellar medium and comet tails. In the laboratory, they are valuable in generating nanoparticles for medicine and electronics. Dust-forming plasmas exhibit a bizarre, even puzzling behaviour in which they oscillate with timescales of seconds to minutes. Here we show how the problem of understanding these oscillations may be cast as a predator-prey problem, with electrons as prey and particles as predators. The addition of a nonlinear loss term to the classic Lotka-Volterra equations used for describing the predator-prey problem in ecology not only stabilises the oscillations in the solutions for the populations of electrons and particles in the plasma but also explains the behaviour in more detail. The model explains the relative phase difference of the two populations, the way in which the frequency of the oscillations varies with the concentration of the precursor gas, and the oscillations of the light emission, determined by the populations of both species. Our results demonstrate the value of adopting an approach to a complex physical science problem that has been found successful in ecology, where complexity is always present.

  13. Chemical stabilisation of lead in shooting range soils with phosphate and magnesium oxide: Synchrotron investigation.

    PubMed

    Sanderson, Peter; Naidu, Ravi; Bolan, Nanthi; Lim, Jung Eun; Ok, Yong Sik

    2015-12-15

    Three Australian shooting range soils were treated with phosphate and magnesium oxide, or a combination of both to chemically stabilize Pb. Lead speciation was determined after 1 month ageing by X-ray absorption spectroscopy combined with linear combination fitting in control and treated soils. The predominant Pb species in untreated soils were iron oxide bound Pb, humic acid bound Pb and the mineral litharge. Treatment with phosphate resulted in substantial pyromorphite formation in two of the soils (TV and PE), accounting for up to 38% of Pb species present, despite the addition of excess phosphate. In MgO treated soils only, up to 43% of Pb was associated with MgO. Litharge and Pb hydroxide also formed as a result of MgO addition in the soils. Application of MgO after P treatment increased hydroxypyromorphite/pyromorphite formation relative to soils teated with phosphate only. X-ray diffraction and Scanning electron microscopy revealed PbO precipitate on the surface of MgO. Soil pH, (5.3-9.3) was an important parameter, as was the solubility of existing Pb species. The use of direct means of determination of the stabilisation of metals such as by X-ray absorption spectroscopy is desirable, particularly in relation to understanding long term stability of the immobilised contaminants.

  14. Delay-dependent resilient-robust stabilisation of uncertain networked control systems with variable sampling intervals

    NASA Astrophysics Data System (ADS)

    Yang, Feisheng; Zhang, Huaguang; Liu, Zhenwei; Li, Ranran

    2014-03-01

    This work is concerned with the robust resilient control problem for uncertain networked control systems (NCSs) with variable sampling intervals, variant-induced delays and possible data dropouts, which is seldom considered in current literature. It is mainly based on the continuous time-varying-delay system approach. Followed by the nominal case, delay-dependent resilient robust stabilising conditions for the closed-loop NCS against controller gain variations are derived by employing a novel Lyapunov-Krasovskii functional which makes good use of the information of both lower and upper bounds on the varying input delay, and the upper bound on the variable sampling interval as well. A feasible solution of the obtained criterion formulated as linear matrix inequalities can be gotten. A tighter bounding technique is presented for acquiring the time derivative of the functional so as to utilise many more useful elements, meanwhile neither slack variable nor correlated augmented item is introduced to reduce overall computational burden. Two examples are given to show the effectiveness of the proposed method.

  15. Modelling waste stabilisation ponds with an extended version of ASM3.

    PubMed

    Gehring, T; Silva, J D; Kehl, O; Castilhos, A B; Costa, R H R; Uhlenhut, F; Alex, J; Horn, H; Wichern, M

    2010-01-01

    In this paper an extended version of IWA's Activated Sludge Model No 3 (ASM3) was developed to simulate processes in waste stabilisation ponds (WSP). The model modifications included the integration of algae biomass and gas transfer processes for oxygen, carbon dioxide and ammonia depending on wind velocity and a simple ionic equilibrium. The model was applied to a pilot-scale WSP system operated in the city of Florianópolis (Brazil). The system was used to treat leachate from a municipal waste landfill. Mean influent concentrations to the facultative pond of 1,456 g(COD)/m(3) and 505 g(NH4-N)/m(3) were measured. Experimental results indicated an ammonia nitrogen removal of 89.5% with negligible rates of nitrification but intensive ammonia stripping to the atmosphere. Measured data was used in the simulations to consider the impact of wind velocity on oxygen input of 11.1 to 14.4 g(O2)/(m(2) d) and sun radiation on photosynthesis. Good results for pH and ammonia removal were achieved with mean stripping rates of 18.2 and 4.5 g(N)/(m(2) d) for the facultative and maturation pond respectively. Based on measured chlorophyll a concentrations and depending on light intensity and TSS concentration it was possible to model algae concentrations.

  16. Highly water-soluble mast cell stabiliser-encapsulated solid lipid nanoparticles with enhanced oral bioavailability.

    PubMed

    Patel, Ravi R; Chaurasia, Sundeep; Khan, Gayasuddin; Chaubey, Pramila; Kumar, Nagendra; Mishra, Brahmeshwar

    2016-05-01

    Cromolyn sodium (CS), a mast cell stabiliser, is widely employed for the prevention and treatment of allergic conditions. However, high hydrophilicity and poor oral permeability hinder its oral clinical translation. Here, solid lipid nanoparticles (SLNs) have been developed for the purpose of oral bioavailability enhancement. The CS-SLNs were engineered by double emulsification method (W1/O/W2) and optimised by using Box-Behnken experimental design. The surface and solid-state characterisations revealed the presence of CS in an amorphous form without any interactions inside the spherical-shaped SLNs. The in-vitro release study showed an extended release up to 24 hr by diffusion controlled process. Ex-vivo and in-vivo intestinal permeation study showed ∼2.96-fold increase in permeability of CS by presentation as SLNs (p < 0.05). Further, in-vivo pharmacokinetic study exhibited ∼2.86-fold enhancements in oral bioavailability of CS by encapsulating inside SLNs, which clearly indicate that SLNs can serve as the potential therapeutic carrier system for oral delivery of CS.

  17. Nanobiotechnology as a novel paradigm for enzyme immobilisation and stabilisation with potential applications in biodiesel production.

    PubMed

    Verma, Madan Lal; Barrow, Colin J; Puri, Munish

    2013-01-01

    Nanobiotechnology is emerging as a new frontier of biotechnology. The potential applications of nanobiotechnology in bioenergy and biosensors have encouraged researchers in recent years to investigate new novel nanoscaffolds to build robust nanobiocatalytic systems. Enzymes, mainly hydrolytic class of enzyme, have been extensively immobilised on nanoscaffold support for long-term stabilisation by enhancing thermal, operational and storage catalytic potential. In the present report, novel nanoscaffold variants employed in the recent past for enzyme immobilisation, namely nanoparticles, nanofibres, nanotubes, nanopores, nanosheets and nanocomposites, are discussed in the context of lipase-mediated nanobiocatalysis. These nanocarriers have an inherently large surface area that leads to high enzyme loading and consequently high volumetric enzyme activity. Due to their high tensile strengths, nanoscale materials are often robust and resistant to breakage through mechanical shear in the running reactor making them suitable for multiple reuses. The optimisation of various nanosupports process parameters, such as the enzyme type and selection of suitable immobilisation method may help lead to the development of an efficient enzyme reactor. This might in turn offer a potential platform for exploring other enzymes for the development of stable nanobiocatalytic systems, which could help to address global environmental issues by facilitating the production of green energy. The successful validation of the feasibility of nanobiocatalysis for biodiesel production represents the beginning of a new field of research. The economic hurdles inherent in viably scaling nanobiocatalysts from a lab-scale to industrial biodiesel production are also discussed.

  18. Stabilisation of composite LSFCO-CGO based anodes for methane oxidation in solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Sin, A.; Kopnin, E.; Dubitsky, Y.; Zaopo, A.; Aricò, A. S.; Gullo, L. R.; Rosa, D. La; Antonucci, V.

    A La 0.6Sr 0.4Fe 0.8Co 0.2O 3-Ce 0.8Gd 0.2O 1.9 (LSFCO-CGO) composite anode material was investigated for the direct electrochemical oxidation of methane in intermediate temperature solid oxide fuel cells (IT-SOFCs). A maximum power density of 0.17 W cm -2 at 800 °C was obtained with a methane-fed ceria electrolyte-supported SOFC. A progressive increase of performance was recorded during 140 h operation with dry methane. The anode did not show any structure degradation after the electrochemical testing. Furthermore, no formation of carbon deposits was detected by electron microscopy and elemental analysis. Alternatively, this perovskite material showed significant chemical and structural modifications after high temperature treatment in a dry methane stream in a packed-bed reactor. It is derived that the continuous supply of mobile oxygen anions from the electrolyte to the LSFCO anode, promoted by the mixed conductivity of CGO electrolyte at 800 °C, stabilises the perovskite structure near the surface under SOFC operation and open circuit conditions.

  19. Shape stabilised phase change materials (SSPCMs): High density polyethylene and hydrocarbon waxes

    SciTech Connect

    Mu, Mulan E-mail: m.basheer@qub.ac.uk; Basheer, P. A. M. E-mail: m.basheer@qub.ac.uk; Bai, Yun; McNally, Tony

    2014-05-15

    Shape stabilised phase change materials (SSPCMs) based on high density polyethylene (HDPE) with high (HPW, T{sub m}=56-58 °C) and low (L-PW, T{sub m}=18-23 °C) melting point waxes were prepared by melt-mixing in a twin-screw extruder and their potential in latent heat thermal energy storage (LHTES) applications for housing assessed. The structure and morphology of these blends were investigated by scanning electron microscopy (SEM). Both H-PW and L-PW were uniformly distributed throughout the HDPE matrix. The melting point and latent heat of the SSPCMs were determined by differential scanning calorimetry (DSC). The results demonstrated that both H-PW and L-PW have a plasticisation effect on the HDPE matrix. The tensile and flexural properties of the samples were measured at room temperature (RT, 20±2 °C) and 70 °C, respectively. All mechanical properties of HDPE/H-PW and HDPE/L-PW blends decreased from RT to 70 °C. In all instances at RT, modulus and stress, irrespective of the mode of deformation was greater for the HDPE/H-PW blends. However, at 70 °C, there was no significant difference in mechanical properties between the HDPE/H-PW and HDPE/L-PW blends.

  20. Stabilisation of phytosterols by natural and synthetic antioxidants in high temperature conditions.

    PubMed

    Kmiecik, Dominik; Korczak, Józef; Rudzińska, Magdalena; Gramza-Michałowska, Anna; Hęś, Marzanna; Kobus-Cisowska, Joanna

    2015-04-15

    The aim of the study was to assess the potential applicability of natural antioxidants in the stabilisation of phytosterols. A mixture of β-sitosterol and campesterol was incorporated into triacylglycerols (TAGs). The following antioxidants were added to the prepared matrix: green tea extract, rosemary extract, a mix of tocopherols from rapeseed oil, a mix of synthetic tocopherols, phenolic compounds extracted from rapeseed meal, sinapic acid and butylated hydroxytoluene (BHT). Samples were heated at a temperature of 180 °C for 4 h. After the completion of heating, the losses of phytosterols were analysed, as well as the contents of β-sitosterol and campesterol oxidation products. The total content of phytosterol oxidation products in samples ranged from 96.69 to 268.35 μg/g of oil. The effectiveness of antioxidants decreased in the following order: phenolic compounds from rapeseed meal>rosemary extract>mix of tocopherols from rapeseed oil>mix of synthetic tocopherols>green tea extract>sinapic acid>BHT.

  1. Preparation and characterisation of hydroxide stabilised ZnO(0001)-Zn-OH surfaces.

    PubMed

    Valtiner, Markus; Borodin, Sergiy; Grundmeier, Guido

    2007-05-21

    Two different approaches under ambient conditions were developed for the preparation of clean, non-reconstructed, single crystalline ZnO(0001)-Zn surfaces. The surface preparation by a wet chemical etching procedure was compared with the same treatment in combination with a subsequent heat treatment in humidified oxygen atmosphere. Depending on the preparation technique, atomically flat terraces with a width of 100 nm to several micrometers were observed using an atomic force microscope (AFM). The obtained surface structures were further characterized by means of angle resolved X-ray photoelectron spectroscopy (AR-XPS), time-of-flight secondary ion mass spectroscopy (ToF-SIMS), Auger electron spectroscopy (AES) and low energy electron diffraction (LEED) measurements. Based on these results it is shown that the obtained surfaces are, in contrast to surfaces prepared under UHV conditions, stabilised by the adsorption of a monolayer of hydroxides. The important role of H(2)O during the heat treatment is pointed out by comparing the results of the same heat treatment in the absence of water. H(2)O turned out to play an important role in the reorganization process of the surface at elevated temperatures, thereby yielding extremely large atomically flat terraces. The terminating edges of these terraces were found to include 120 degrees and 60 degrees angles, thus perfectly reflecting the hexagonal surface structure.

  2. Microstructural evolution of viscoelastic emulsions stabilised by sodium caseinate and xanthan gum.

    PubMed

    Moschakis, Thomas; Murray, Brent S; Dickinson, Eric

    2005-04-15

    The time-dependent evolution of the phase-separated microstructure of a caseinate-stabilised emulsion containing xanthan gum added before emulsification has been investigated by confocal laser scanning microscopy, image analysis and rheology. Moderately low levels of xanthan addition lead to depletion flocculation and gravity-induced phase separation. Increasing the polysaccharide concentration causes immobilisation of the microstructure due to an increase in the local viscoelasticity: that is, the emulsion structure cannot easily rearrange to expel xanthan-enriched aqueous serum phase because a weak gel-like network is generated. The effect of xanthan on the evolving microstructure of phase-separated regions, which reflects indirectly the local emulsion micro-rheology, has been estimated from image analysis of time sequences of confocal micrographs. A comparison has been made between object shape analysis using four different shape descriptors. The roundness parameter has been found to be a convenient descriptor for reliably quantifying the structural change in terms of the relaxation rate of xanthan-rich aqueous drops. The Taylor parameter has been used to link the kinetics of drop relaxation to the time-dependent small-deformation rheological behaviour. The analysis of the combined experimental data reveals the difficulty of relating the evolving microstructure to bulk rheological measurements.

  3. Luxury uptake of phosphorus by microalgae in full-scale waste stabilisation ponds.

    PubMed

    Powell, N; Shilton, A; Pratt, S; Chisti, Y

    2011-01-01

    Biological phosphorus removal was studied in two full-scale waste stabilisation ponds (WSP). Luxury uptake by microalgae was confirmed to occur and in one pond the biomass contained almost four times the phosphorus required by microalgae for normal metabolism. However, the phosphorus content within the biomass was variable. This finding means that assumptions made in prior publications on modelling of phosphorus removal in WSP are questionable. While fluctuations in microalgal growth causes variation in many water quality parameters, this further variation in luxury uptake explains the high degree of variability in phosphorus removal commonly reported in the literature. To achieve effective biological phosphorus removal high levels of both luxury uptake and microalgal concentration are needed. The findings of this work show that while high levels of these parameters did occur at times in the WSP monitored, they did not occur simultaneously. This is explained because accumulated phosphorus is subsequently consumed during rapid growth of biomass resulting in a high biomass concentration with a low phosphorus content. Previous laboratory research has allowed a number of key considerations to be proposed to optimise both luxury uptake and biomass concentration. Now that is has been shown that high levels of biomass concentration and luxury uptake can occur in the field it may be possible to redesign WSP to optimise these parameters.

  4. Thermal annealing behaviour and defect evolution of helium in fully stabilised zirconia

    NASA Astrophysics Data System (ADS)

    Damen, P. M. G.; van Veen, A.; Labohm, F.; Schut, H.; van Huis, M. A.

    2003-06-01

    Helium implantations in fully stabilised zirconia have been performed with 30 keV ions with high doses (5.1 × 10 16 and 2.6 × 10 16 cm -2) and low doses (6.3 × 10 15 and 1.7 × 10 15 cm -2). The retained amount of helium and depth profiles have been monitored with neutron depth profiling and the damage distribution with positron beam analysis (PBA) after several annealing steps. The temperature dependent helium release was investigated by thermal helium desorption spectrometry. In the low dose samples, helium is released through diffusion as seen by a broadening of the helium distribution peak. PBA, performed with a two-layer model, shows shrinkage of the damage layer during annealing. For the high dose samples the helium peak does not broaden after annealing. Helium is retained up to high temperatures which is ascribed to bubble formation during thermal annealing. Fitting of the PBA results to a three-layer model shows that the ion implanted layer gets narrower after annealing at 600 K, up to 1000 K the S-parameter is increasing because helium is released from the bubbles, whereby vacancy clusters are left behind.

  5. Management of sleep-time masticatory muscle activity using stabilisation splints affects psychological stress.

    PubMed

    Takahashi, H; Masaki, C; Makino, M; Yoshida, M; Mukaibo, T; Kondo, Y; Nakamoto, T; Hosokawa, R

    2013-12-01

    To treat sleep bruxism (SB), symptomatic therapy using stabilisation splints (SS) is frequently used. However, their effects on psychological stress and sleep quality have not yet been examined fully. The objective of this study was to clarify the effects of SS use on psychological stress and sleep quality. The subjects (11 men, 12 women) were healthy volunteers. A crossover design was used. Sleep measurements were performed for three consecutive days or longer without (baseline) or with an SS or palatal splint (PS), and data for the final day were evaluated. We measured masseter muscle activity during sleep using portable electromyography to evaluate SB. Furthermore, to compare psychological stress before and after sleep, assessments were made based on STAI-JYZ and the measurement of salivary chromogranin A. To compare each parameter among the three groups (baseline, SS and PS), Friedman's and Dunn's tests were used. From the results of the baseline measurements, eight subjects were identified as high group and 15 as low group. Among the high group, a marked decrease in the number of bruxism events per hour and an increase in the difference in the total STAI Y-1 scores were observed in the SS group compared with those at baseline (P < 0·05). No significant difference was observed in sleep stages. SS use may be effective in reducing the number of SB events, while it may increase psychological stress levels, and SS use did not apparently influence sleep stages.

  6. UV-Enhanced Sacrificial Layer Stabilised Graphene Oxide Hollow Fibre Membranes for Nanofiltration.

    PubMed

    Chong, J Y; Aba, N F D; Wang, B; Mattevi, C; Li, K

    2015-11-03

    Graphene oxide (GO) membranes have demonstrated great potential in gas separation and liquid filtration. For upscale applications, GO membranes in a hollow fibre geometry are of particular interest due to the high-efficiency and easy-assembly features at module level. However, GO membranes were found unstable in dry state on ceramic hollow fibre substrates, mainly due to the drying-related shrinkage, which has limited the applications and post-treatments of GO membranes. We demonstrate here that GO hollow fibre membranes can be stabilised by using a porous poly(methyl methacrylate) (PMMA) sacrificial layer, which creates a space between the hollow fibre substrate and the GO membrane thus allowing stress-free shrinkage. Defect-free GO hollow fibre membrane was successfully determined and the membrane was stable in a long term (1200 hours) gas-tight stability test. Post-treatment of the GO membranes with UV light was also successfully accomplished in air, which induced the creation of controlled microstructural defects in the membrane and increased the roughness factor of the membrane surface. The permeability of the UV-treated GO membranes was greatly enhanced from 0.07 to 2.8 L m(-2) h(-1) bar(-1) for water, and 0.14 to 7.5 L m(-2) h(-1) bar(-1) for acetone, with an unchanged low molecular weight cut off (~250 Da).

  7. Aqueous stabilisation of carbon-encapsulated superparamagnetic α-iron nanoparticles for biomedical applications.

    PubMed

    Aguiló-Aguayo, Noemí; Maurizi, Lionel; Galmarini, Sandra; Ollivier-Beuzelin, Marie Gabrielle; Coullerez, Géraldine; Bertran, Enric; Hofmann, Heinrich

    2014-09-28

    Carbon-based nanomaterials, such as carbon-encapsulated magnetic nanoparticles (CEMNP, core@shell), show a wide range of desirable properties for applications in the biomedical field (clinical MRI, hyperthermia), for energy production and storage (hydrogen storage), for the improvement of electronic components and for environmental applications (water-treatment). However, this kind of nanoparticle tends to aggregate in water suspensions. This often hampers the processability of the suspensions and presents an obstacle to their application in many fields. Here the stabilisation of core-shell Fe-C nanoparticles by surface adsorbed polyvinyl-alcohol (PVA) is presented. Different PVA/CEMNP mass ratios (9, 36, 144 and 576 w/w) were studied. Several characterisation techniques were used in order to determine the size distribution of the particles and to optimize the PVA/CEMNP ratio. A good colloidal stability was obtained for spherical nanoparticles about 50 nm in diameter containing several superparamagnetic Fe cores. The nanoparticles were found to be isolated and well dispersed in solution. The use of PVA for coating carbon-encapsulated Fe nanoparticles does not only result in a good colloidal stability in aqueous suspensions, but the resulting particles also show low cytotoxicity and an interesting cell internalization behaviour. The simple stabilization method developed here can likely be extended to other core@shell nanoparticle systems as well as other carbon-based nanomaterials in the future.

  8. Adaptive output feedback stabilisation for planar nonlinear systems with unknown control coefficients

    NASA Astrophysics Data System (ADS)

    Shang, Fang; Liu, Yungang

    2015-08-01

    The paper is concerned with the global adaptive stabilisation via output feedback for a class of uncertain planar nonlinear systems. Remarkably, the unknowns in the systems are rather serious: the control coefficients are unknown constants which do not belong to any known interval, and the growth of the systems heavily depends on the unmeasured states and has the rate of unknown polynomial of output. First, a delicate state transformation is introduced to collect the unknown control coefficients, and subsequently, a suitable state observer is successfully designed with two different dynamic gains. Then, an adaptive output feedback controller is proposed by flexibly combining the universal control idea and the backstepping technique. Meanwhile, an appropriate estimation law is constructed to overcome the negative effect caused by the unknown control coefficients. It is shown that, with the appropriate choice of the design parameters, all the states of the resulting closed-loop system are globally bounded, and furthermore, the states of the original system converge to zero.

  9. Metal concentrations in lime stabilised, thermally dried and anaerobically digested sewage sludges.

    PubMed

    Healy, M G; Fenton, O; Forrestal, P J; Danaher, M; Brennan, R B; Morrison, L

    2016-02-01

    Cognisant of the negative debate and public sentiment about the land application of treated sewage sludges ('biosolids'), it is important to characterise such wastes beyond current regulated parameters. Concerns may be warranted, as many priority metal pollutants may be present in biosolids. This study represents the first time that extensive use was made of a handheld X-ray fluorescence (XRF) analyser to characterise metals in sludges, having undergone treatment by thermal drying, lime stabilisation, or anaerobic digestion, in 16 wastewater treatment plants (WWTPs) in Ireland. The concentrations of metals, expressed as mgkg(-1) dry solids (DS), which are currently regulated in the European Union, ranged from 11 (cadmium, anaerobically digested (AD) biosolids) to 1273mgkg(-1) (zinc, AD biosolids), and with the exception of lead in one WWTP (which had a concentration of 3696mgkg(-1)), all metals were within EU regulatory limits. Two potentially hazardous metals, antimony (Sb) and tin (Sn), for which no legislation currently exists, were much higher than their baseline concentrations in soils (17-20mgSbkg(-1) and 23-55mgSnkg(-1)), meaning that potentially large amounts of these elements may be applied to the soil without regulation. This study recommends that the regulations governing the values for metal concentrations in sludges for reuse in agriculture are extended to include Sb and Sn.

  10. UV-Enhanced Sacrificial Layer Stabilised Graphene Oxide Hollow Fibre Membranes for Nanofiltration

    PubMed Central

    Chong, J. Y.; Aba, N. F. D.; Wang, B.; Mattevi, C.; Li, K.

    2015-01-01

    Graphene oxide (GO) membranes have demonstrated great potential in gas separation and liquid filtration. For upscale applications, GO membranes in a hollow fibre geometry are of particular interest due to the high-efficiency and easy-assembly features at module level. However, GO membranes were found unstable in dry state on ceramic hollow fibre substrates, mainly due to the drying-related shrinkage, which has limited the applications and post-treatments of GO membranes. We demonstrate here that GO hollow fibre membranes can be stabilised by using a porous poly(methyl methacrylate) (PMMA) sacrificial layer, which creates a space between the hollow fibre substrate and the GO membrane thus allowing stress-free shrinkage. Defect-free GO hollow fibre membrane was successfully determined and the membrane was stable in a long term (1200 hours) gas-tight stability test. Post-treatment of the GO membranes with UV light was also successfully accomplished in air, which induced the creation of controlled microstructural defects in the membrane and increased the roughness factor of the membrane surface. The permeability of the UV-treated GO membranes was greatly enhanced from 0.07 to 2.8 L m−2 h−1 bar−1 for water, and 0.14 to 7.5 L m−2 h−1 bar−1 for acetone, with an unchanged low molecular weight cut off (~250 Da). PMID:26527173

  11. Three strategies to stabilise nearly monodispersed silver nanoparticles in aqueous solution

    NASA Astrophysics Data System (ADS)

    Stevenson, Amadeus PZ; Blanco Bea, Duani; Civit, Sergi; Antoranz Contera, Sonia; Iglesias Cerveto, Alberto; Trigueros, Sonia

    2012-02-01

    Silver nanoparticles are extensively used due to their chemical and physical properties and promising applications in areas such as medicine and electronics. Controlled synthesis of silver nanoparticles remains a major challenge due to the difficulty in producing long-term stable particles of the same size and shape in aqueous solution. To address this problem, we examine three strategies to stabilise aqueous solutions of 15 nm citrate-reduced silver nanoparticles using organic polymeric capping, bimetallic core-shell and bimetallic alloying. Our results show that these strategies drastically improve nanoparticle stability by distinct mechanisms. Additionally, we report a new role of polymer functionalisation in preventing further uncontrolled nanoparticle growth. For bimetallic nanoparticles, we attribute the presence of a higher valence metal on the surface of the nanoparticle as one of the key factors for improving their long-term stability. Stable silver-based nanoparticles, free of organic solvents, will have great potential for accelerating further environmental and nanotoxicity studies. PACS: 81.07.-b; 81.16.Be; 82.70.Dd.

  12. Global adaptive stabilisation for nonlinear systems with unknown control directions and input disturbance

    NASA Astrophysics Data System (ADS)

    Man, Yongchao; Liu, Yungang

    2016-05-01

    This paper addresses the global adaptive stabilisation via switching and learning strategies for a class of uncertain nonlinear systems. Remarkably, the systems in question simultaneously have unknown control directions, unknown input disturbance and unknown growth rate, which makes the problem in question challenging to solve and essentially different from those in the existing literature. To solve the problem, an adaptive scheme via switching and learning is proposed by skilfully integrating the techniques of backstepping design, adaptive learning and adaptive switching. One key point in the design scheme is the introduction of the learning mechanism, in order to compensate the unknown input disturbance, and the other one is the design of the switching mechanism, through tuning the design parameters online to deal with the unknown control directions, unknown bound and period of input disturbance and unknown growth rate. The designed controller guarantees that all the signals of the resulting closed-loop systems are bounded, and furthermore, the closed-loop system states globally converge to zero.

  13. Global stabilisation of nonlinear delay systems with a compact absorbing set

    NASA Astrophysics Data System (ADS)

    Karafyllis, Iasson; Krstic, Miroslav; Ahmed-Ali, Tarek; Lamnabhi-Lagarrigue, Francoise

    2014-05-01

    Predictor-based stabilisation results are provided for nonlinear systems with input delays and a compact absorbing set. The control scheme consists of an inter-sample predictor, a global observer, an approximate predictor, and a nominal controller for the delay-free case. The control scheme is applicable even to the case where the measurement is sampled and possibly delayed. The input and measurement delays can be arbitrarily large but both of them must be constant and accurately known. The closed-loop system is shown to have the properties of global asymptotic stability and exponential convergence in the disturbance-free case, robustness with respect to perturbations of the sampling schedule, and robustness with respect to measurement errors. In contrast to existing predictor feedback laws, the proposed control scheme utilises an approximate predictor of a dynamic type that is expressed by a system described by integral delay equations. Additional results are provided for systems that can be transformed to systems with a compact absorbing set by means of a preliminary predictor feedback.

  14. Shape stabilised phase change materials (SSPCMs): High density polyethylene and hydrocarbon waxes

    NASA Astrophysics Data System (ADS)

    Mu, Mulan; Basheer, P. A. M.; Bai, Yun; McNally, Tony

    2014-05-01

    Shape stabilised phase change materials (SSPCMs) based on high density polyethylene (HDPE) with high (HPW, Tm=56-58 °C) and low (L-PW, Tm=18-23 °C) melting point waxes were prepared by melt-mixing in a twin-screw extruder and their potential in latent heat thermal energy storage (LHTES) applications for housing assessed. The structure and morphology of these blends were investigated by scanning electron microscopy (SEM). Both H-PW and L-PW were uniformly distributed throughout the HDPE matrix. The melting point and latent heat of the SSPCMs were determined by differential scanning calorimetry (DSC). The results demonstrated that both H-PW and L-PW have a plasticisation effect on the HDPE matrix. The tensile and flexural properties of the samples were measured at room temperature (RT, 20±2 °C) and 70 °C, respectively. All mechanical properties of HDPE/H-PW and HDPE/L-PW blends decreased from RT to 70 °C. In all instances at RT, modulus and stress, irrespective of the mode of deformation was greater for the HDPE/H-PW blends. However, at 70 °C, there was no significant difference in mechanical properties between the HDPE/H-PW and HDPE/L-PW blends.

  15. An assessment of theoretical procedures for π-conjugation stabilisation energies in enones

    NASA Astrophysics Data System (ADS)

    Yu, Li-Juan; Sarrami, Farzaneh; Karton, Amir; O'Reilly, Robert J.

    2015-06-01

    We introduce a representative database of 22 α,β- to β,γ-enecarbonyl isomerisation energies (to be known as the EIE22 data-set). Accurate reaction energies are obtained at the complete basis-set limit CCSD(T) level by means of the high-level W1-F12 thermochemical protocol. The isomerisation reactions involve a migration of one double bond that breaks the conjugated π-system. The considered enecarbonyls involve a range of common functional groups (e.g., Me, NH2, OMe, F, and CN). Apart from π-conjugation effects, the chemical environments are largely conserved on the two sides of the reactions and therefore the EIE22 data-set allows us to assess the performance of a variety of density functional theory (DFT) procedures for the calculation of π-conjugation stabilisation energies in enecarbonyls. We find that, with few exceptions (M05-2X, M06-2X, BMK, and BH&HLYP), all the conventional DFT procedures attain root mean square deviations (RMSDs) between 5.0 and 11.7 kJ mol-1. The range-separated and double-hybrid DFT procedures, on the other hand, show good performance with RMSDs below the 'chemical accuracy' threshold. We also examine the performance of composite and standard ab initio procedures. Of these, SCS-MP2 offers the best performance-to-computational cost ratio with an RMSD of 0.8 kJ mol-1.

  16. UV-Enhanced Sacrificial Layer Stabilised Graphene Oxide Hollow Fibre Membranes for Nanofiltration

    NASA Astrophysics Data System (ADS)

    Chong, J. Y.; Aba, N. F. D.; Wang, B.; Mattevi, C.; Li, K.

    2015-11-01

    Graphene oxide (GO) membranes have demonstrated great potential in gas separation and liquid filtration. For upscale applications, GO membranes in a hollow fibre geometry are of particular interest due to the high-efficiency and easy-assembly features at module level. However, GO membranes were found unstable in dry state on ceramic hollow fibre substrates, mainly due to the drying-related shrinkage, which has limited the applications and post-treatments of GO membranes. We demonstrate here that GO hollow fibre membranes can be stabilised by using a porous poly(methyl methacrylate) (PMMA) sacrificial layer, which creates a space between the hollow fibre substrate and the GO membrane thus allowing stress-free shrinkage. Defect-free GO hollow fibre membrane was successfully determined and the membrane was stable in a long term (1200 hours) gas-tight stability test. Post-treatment of the GO membranes with UV light was also successfully accomplished in air, which induced the creation of controlled microstructural defects in the membrane and increased the roughness factor of the membrane surface. The permeability of the UV-treated GO membranes was greatly enhanced from 0.07 to 2.8 L m-2 h-1 bar-1 for water, and 0.14 to 7.5 L m-2 h-1 bar-1 for acetone, with an unchanged low molecular weight cut off (~250 Da).

  17. Predator-prey dynamics stabilised by nonlinearity explain oscillations in dust-forming plasmas

    PubMed Central

    Ross, A. E.; McKenzie, D. R.

    2016-01-01

    Dust-forming plasmas are ionised gases that generate particles from a precursor. In nature, dust-forming plasmas are found in flames, the interstellar medium and comet tails. In the laboratory, they are valuable in generating nanoparticles for medicine and electronics. Dust-forming plasmas exhibit a bizarre, even puzzling behaviour in which they oscillate with timescales of seconds to minutes. Here we show how the problem of understanding these oscillations may be cast as a predator-prey problem, with electrons as prey and particles as predators. The addition of a nonlinear loss term to the classic Lotka-Volterra equations used for describing the predator-prey problem in ecology not only stabilises the oscillations in the solutions for the populations of electrons and particles in the plasma but also explains the behaviour in more detail. The model explains the relative phase difference of the two populations, the way in which the frequency of the oscillations varies with the concentration of the precursor gas, and the oscillations of the light emission, determined by the populations of both species. Our results demonstrate the value of adopting an approach to a complex physical science problem that has been found successful in ecology, where complexity is always present. PMID:27046237

  18. Importance of combining convection with film cooling

    NASA Technical Reports Server (NTRS)

    Colladay, R. S.

    1971-01-01

    The interaction of film and convection cooling and its effect on wall cooling efficiency is investigated analytically for two cooling schemes for advanced gas turbine applications. The two schemes are full coverage- and counterflow-film cooling. In full coverage film cooling, the cooling air issues from a large number of small discrete holes in the surface. Counterflow film cooling is a film-convection scheme with film injection from a slot geometry. The results indicate that it is beneficial to utilize as much of the cooling air heat sink as possible for convection cooling prior to ejecting it as a film.

  19. Importance of combining convection with film cooling.

    NASA Technical Reports Server (NTRS)

    Colladay, R. S.

    1972-01-01

    The interaction of film and convection cooling and its effect on wall cooling efficiency is investigated analytically for two cooling schemes for advanced gas turbine applications. The two schemes are full coverage- and counterflow-film cooling. In full coverage film cooling, the cooling air issues from a large number of small discrete holes in the surface. Counterflow film cooling is a film-convection scheme with film injection from a slot geometry. The results indicate that it is beneficial to utilize as much of the cooling air heat sink as possible for convection cooling prior to ejecting it as a film.

  20. Heat flow and convection demonstration (Apollo 14)

    NASA Technical Reports Server (NTRS)

    Bannister, T. C.

    1973-01-01

    Apollo 14 Astronaut Stuart A. Roosa conducted a group of experiments during the lunar flyback on February 7, 1971, to obtain information on heat flow and convection in gases and liquids in an environment of less than 0.000001 g. Flow observations and thermal data have shown that: (1) as expected, there are convective motions caused by surface tension gradients in a plane liquid layer with a free upper surface; (2) heat flow in enclosed liquids and gases occurs mainly by diffusive heat conduction; and (3) some convective processes, whose characteristics are not fully known, add to the heat transfer. The raw data are presented, and the analysis approach is given.

  1. Transient Mixed Convection Validation for NGNP

    SciTech Connect

    Smith, Barton; Schultz, Richard

    2015-10-19

    The results of this project are best described by the papers and dissertations that resulted from the work. They are included in their entirety in this document. They are: (1) Jeff Harris PhD dissertation (focused mainly on forced convection); (2) Blake Lance PhD dissertation (focused mainly on mixed and transient convection). This dissertation is in multi-paper format and includes the article currently submitted and one to be submitted shortly; and, (3) JFE paper on CFD Validation Benchmark for Forced Convection.

  2. Skylab M518 multipurpose furnace convection analysis

    NASA Technical Reports Server (NTRS)

    Bourgeois, S. V.; Spradley, L. W.

    1975-01-01

    An analysis was performed of the convection which existed on ground tests and during skylab processing of two experiments: vapor growth of IV-VI compounds growth of spherical crystals. A parallel analysis was also performed on Skylab experiment indium antimonide crystals because indium antimonide (InSb) was used and a free surface existed in the tellurium-doped Skylab III sample. In addition, brief analyses were also performed of the microsegregation in germanium experiment because the Skylab crystals indicated turbulent convection effects. Simple dimensional analysis calculations and a more accurate, but complex, convection computer model, were used in the analysis.

  3. Effects of Deep Convection on Atmospheric Chemistry

    NASA Technical Reports Server (NTRS)

    Pickering, Kenneth E.

    2007-01-01

    This presentation will trace the important research developments of the last 20+ years in defining the roles of deep convection in tropospheric chemistry. The role of deep convection in vertically redistributing trace gases was first verified through field experiments conducted in 1985. The consequences of deep convection have been noted in many other field programs conducted in subsequent years. Modeling efforts predicted that deep convection occurring over polluted continental regions would cause downstream enhancements in photochemical ozone production in the middle and upper troposphere due to the vertical redistribution of ozone precursors. Particularly large post-convective enhancements of ozone production were estimated for convection occurring over regions of pollution from biomass burning and urban areas. These estimates were verified by measurements taken downstream of biomass burning regions of South America. Models also indicate that convective transport of pristine marine boundary layer air causes decreases in ozone production rates in the upper troposphere and that convective downdrafts bring ozone into the boundary layer where it can be destroyed more rapidly. Additional consequences of deep convection are perturbation of photolysis rates, effective wet scavenging of soluble species, nucleation of new particles in convective outflow, and the potential fix stratosphere-troposphere exchange in thunderstorm anvils. The remainder of the talk will focus on production of NO by lightning, its subsequent transport within convective clouds . and its effects on downwind ozone production. Recent applications of cloud/chemistry model simulations combined with anvil NO and lightning flash observations in estimating NO Introduction per flash will be described. These cloud-resolving case-study simulations of convective transport and lightning NO production in different environments have yielded results which are directly applicable to the design of lightning

  4. Convective heat transfer inside passive solar buildings

    NASA Astrophysics Data System (ADS)

    Jones, R. W.; Balcomb, J. D.; Yamaguchi, K.

    1983-11-01

    Natural convection between spaces in a building which play a major role in energy transfer are discussed. Two situations are investigated: Convection through a single doorway into a remote room, and a convective loop in a two story house with a south sunspace where a north stairway serves as the return path. A doorway sizing equation is given for the single door case. Data from airflow monitoring in one two-story house and summary data for five others are presented. The nature of the airflow and design guidelines are presented.

  5. Performance evaluation of the bioreactor landfill in treatment and stabilisation of mechanically biologically treated municipal solid waste.

    PubMed

    Lakshmikanthan, P; Sivakumar Babu, G L

    2017-03-01

    The potential of bioreactor landfills to treat mechanically biologically treated municipal solid waste is analysed in this study. Developing countries like India and China have begun to investigate bioreactor landfills for municipal solid waste management. This article describes the impacts of leachate recirculation on waste stabilisation, landfill gas generation, leachate characteristics and long-term waste settlement. A small-scale and large-scale anaerobic cell were filled with mechanically biologically treated municipal solid waste collected from a landfill site at the outskirts of Bangalore, India. Leachate collected from the same landfill site was recirculated at the rate of 2-5 times a month on a regular basis for 370 days. The total quantity of gas generated was around 416 L in the large-scale reactor and 21 L in the small-scale reactor, respectively. Differential settlements ranging from 20%-26% were observed at two different locations in the large reactor, whereas 30% of settlement was observed in the small reactor. The biological oxygen demand/chemical oxygen demand (COD) ratio indicated that the waste in the large reactor was stabilised at the end of 1 year. The performance of the bioreactor with respect to the reactor size, temperature, landfill gas and leachate quality was analysed and it was found that the bioreactor landfill is efficient in the treatment and stabilising of mechanically biologically treated municipal solid waste.

  6. Three-year performance of in-situ mass stabilised contaminated site soils using MgO-bearing binders.

    PubMed

    Wang, Fei; Jin, Fei; Shen, Zhengtao; Al-Tabbaa, Abir

    2016-11-15

    This paper provides physical and chemical performances of mass stabilised organic and inorganic contaminated site soils using a new group of MgO-bearing binders over 3 years and evaluated the time-dependent performance during the 3 years. This study took place at a contaminated site in Castleford, UK in 2011, where MgO, ground granulated blastfurnace slag (GGBS) and Portland cement (PC) were mixed with the contaminated soils in a dry form using the ALLU mass mixing equipment. Soil cores were retrieved 40-day, 1-year and 3-year after the treatment. The core quality, strength, and the leaching properties were determined via physical observation, unconfined compressive strength (UCS) and batch leaching tests. After 3-year treatment, the UCS values of ALLU mixes were in the range of 50-250kPa; the leachate concentrations of Cd, Pb, Cu and Zn (except Ni) in all mixes were lower than their drinking water standards; and the leachability of total organics was in the range of 10-105mg/L. No apparent degradation of the mass stabilised materials after 3 years' exposure to the field conditions was found. MgO-GGBS blends were found able to provide higher strength and less leachability of contaminants compared to PC and MgO-only mixes in mass stabilised soils.

  7. Pedicle screw-based posterior dynamic stabilisation of the lumbar spine: in vitro cadaver investigation and a finite element study.

    PubMed

    Oktenoglu, T; Erbulut, D U; Kiapour, A; Ozer, A F; Lazoglu, I; Kaner, T; Sasani, M; Goel, V K

    2015-08-01

    Pedicle screw-based dynamic constructs either benefit from a dynamic (flexible) interconnecting rod or a dynamic (hinged) screw. Both types of systems have been reported in the literature. However, reports where the dynamic system is composed of two dynamic components, i.e. a dynamic (hinged) screw and a dynamic rod, are sparse. In this study, the biomechanical characteristics of a novel pedicle screw-based dynamic stabilisation system were investigated and compared with equivalent rigid and semi-rigid systems using in vitro testing and finite element modelling analysis. All stabilisation systems restored stability after decompression. A significant decrease in the range of motion was observed for the rigid system in all loadings. In the semi-rigid construct the range of motion was significantly less than the intact in extension, lateral bending and axial rotation loadings. There were no significant differences in motion between the intact spine and the spine treated with the dynamic system (P>0.05). The peak stress in screws was decreased when the stabilisation construct was equipped with dynamic rod and/or dynamic screws.

  8. The Cosmic Background Explorer

    NASA Technical Reports Server (NTRS)

    Gulkis, Samuel; Lubin, Philip M.; Meyer, Stephan S.; Silverberg, Robert F.

    1990-01-01

    The Cosmic Background Explorer (CBE), NASA's cosmological satellite which will observe a radiative relic of the big bang, is discussed. The major questions connected to the big bang theory which may be clarified using the CBE are reviewed. The satellite instruments and experiments are described, including the Differential Microwave Radiometer, which measures the difference between microwave radiation emitted from two points on the sky, the Far-Infrared Absolute Spectrophotometer, which compares the spectrum of radiation from the sky at wavelengths from 100 microns to one cm with that from an internal blackbody, and the Diffuse Infrared Background Experiment, which searches for the radiation from the earliest generation of stars.

  9. Berkeley Low Background Facility

    SciTech Connect

    Thomas, K. J.; Norman, E. B.; Smith, A. R.; Poon, A. W. P.; Chan, Y. D.; Lesko, K. T.

    2015-08-17

    The Berkeley Low Background Facility (BLBF) at Lawrence Berkeley National Laboratory (LBNL) in Berkeley, California provides low background gamma spectroscopy services to a wide array of experiments and projects. The analysis of samples takes place within two unique facilities; locally within a carefully-constructed, low background laboratory on the surface at LBNL and at the Sanford Underground Research Facility (SURF) in Lead, SD. These facilities provide a variety of gamma spectroscopy services to low background experiments primarily in the form of passive material screening for primordial radioisotopes (U, Th, K) or common cosmogenic/anthropogenic products; active screening via neutron activation analysis for U,Th, and K as well as a variety of stable isotopes; and neutron flux/beam characterization measurements through the use of monitors. A general overview of the facilities, services, and sensitivities will be presented. Recent activities and upgrades will also be described including an overview of the recently installed counting system at SURF (recently relocated from Oroville, CA in 2014), the installation of a second underground counting station at SURF in 2015, and future plans. The BLBF is open to any users for counting services or collaboration on a wide variety of experiments and projects.

  10. Nonthermal cosmic neutrino background

    NASA Astrophysics Data System (ADS)

    Chen, Mu-Chun; Ratz, Michael; Trautner, Andreas

    2015-12-01

    We point out that, for Dirac neutrinos, in addition to the standard thermal cosmic neutrino background (C ν B ), there could also exist a nonthermal neutrino background with comparable number density. As the right-handed components are essentially decoupled from the thermal bath of standard model particles, relic neutrinos with a nonthermal distribution may exist until today. The relic density of the nonthermal (nt) background can be constrained by the usual observational bounds on the effective number of massless degrees of freedom Neff and can be as large as nν nt≲0.5 nγ. In particular, Neff can be larger than 3.046 in the absence of any exotic states. Nonthermal relic neutrinos constitute an irreducible contribution to the detection of the C ν B and, hence, may be discovered by future experiments such as PTOLEMY. We also present a scenario of chaotic inflation in which a nonthermal background can naturally be generated by inflationary preheating. The nonthermal relic neutrinos, thus, may constitute a novel window into the very early Universe.

  11. China: Background Notes Series.

    ERIC Educational Resources Information Center

    Reams, Joanne Reppert

    Concise background information on the People's Republic of China is provided. The publication begins with a profile of the country, outlining the people, geography, economy, and membership in international organizations. The bulk of the document then discusses in more detail China's people, geography, history, government, education, economy, and…

  12. Building Background Knowledge

    ERIC Educational Resources Information Center

    Fisher, Douglas; Ross, Donna; Grant, Maria

    2010-01-01

    Too often, students enter our classrooms with insufficient knowledge of physical science. As a result, they have a difficult time understanding content in texts, lectures, and laboratory activities. This lack of background knowledge can have an impact on their ability to ask questions and wonder--both key components of inquiry. In this article,…

  13. Ultimate regime of high Rayleigh number convection in a porous medium.

    PubMed

    Hewitt, Duncan R; Neufeld, Jerome A; Lister, John R

    2012-06-01

    Well-resolved direct numerical simulations of 2D Rayleigh-Bénard convection in a porous medium are presented for Rayleigh numbers Ra≤4×10(4) which reveal that, contrary to previous indications, the linear classical scaling for the Nusselt number, Nu~Ra, is attained asymptotically. The flow dynamics are analyzed, and the interior of the vigorously convecting system is shown to be increasingly well described as Ra→∞ by a simple columnar "heat-exchanger" model with a single horizontal wave number k and a linear background temperature field. The numerical results are approximately fitted by k~Ra(0.4).

  14. Tachocline dynamics: convective overshoot at stiff interfaces

    NASA Astrophysics Data System (ADS)

    Brown, Benjamin; Lecoanet, Daniel; Oishi, Jeffrey S.; Burns, Keaton; Vasil, Geoffrey M.

    2016-05-01

    The solar tachocline lies at the base of the solar convection zone. At this internal interface, motions from the unstable convection zone above overshoot and penetrate downward into the stiffly stable radiative zone below, driving gravity waves, mixing, and possibly pumping and storing magnetic fields. Here we study the dynamics of convective overshoot across very stiff interfaces with some properties similar to the internal boundary layer within the Sun. We use the Dedalus pseudospectral framework and study fully compressible dynamics at moderate to high Peclet number and low Mach number, probing a regime where turbulent transport is important. In this preliminary work, we find that the depth of convective overshoot is well described by a simple buoyancy equilibration model, and we consider implications for dynamics at the solar tachocline.

  15. Convective Radio Occultations Final Campaign Summary

    SciTech Connect

    Biondi, R.

    2016-03-01

    Deep convective systems are destructive weather phenomena that annually cause many deaths and injuries as well as much damage, thereby accounting for major economic losses in several countries. The number and intensity of such phenomena have increased over the last decades in some areas of the globe. Damage is mostly caused by strong winds and heavy rain parameters that are strongly connected to the structure of the particular storm. Convection over land is usually stronger and deeper than over the ocean and some convective systems, known as supercells, also develop tornadoes through processes that remain mostly unclear. The intensity forecast and monitoring of convective systems is one of the major challenges for meteorology because in situ measurements during extreme events are too sparse or unreliable and most ongoing satellite missions do not provide suitable time/space coverage.

  16. Electrodynamics of convection in the inner magnetosphere

    NASA Technical Reports Server (NTRS)

    Spiro, R. W.; Wolf, R. A.

    1984-01-01

    During the past ten years, substantial progress has been made in the development of quantitative models of convection in the magnetosphere and of the electrodynamic processes that couple that magnetosphere and ionosphere. Using a computational scheme first proposed by Vasyliunas, the convection models under consideration separate the three-dimensional problem of convection in the inner magnetosphere/ionosphere into a pair of two-dimensional problems coupled by Birkeland currents flowing between the two regions. The logic, development, and major results of the inner magnetosphere convection model are reviewed with emphasis on ionospheric and magnetospheric currents. A major theoretical result of the models has been the clarification of the relationship between the region 1/region 2 picture of field-aligned currents and the older partial ring current/tail current interruption picture of substorm dynamics.

  17. Transverse Bursts in Inclined Layer Convection: Experiment

    NASA Astrophysics Data System (ADS)

    Daniels, Karen; Wiener, Richard; Bodenschatz, Eberhard

    2002-03-01

    We report experimental results on inclined layer convection in a fluid of Prandtl number σ ≈ 1. A codimension-two point divides regions of buoyancy-driven convection (longitudinal rolls) at lower angles from shear-driven convection (transverse rolls) at higher angles (Daniels et al. PRL 84: 5320, 2000). In the region of buoyancy-driven convection, near the codimension-two point, we observe longitudinal rolls with intermittent, localized, subharmonic transverse bursts. The patterns are spatiotemporally chaotic. With increasing temperature difference the bursts increase in duration and number. We examine the details of the bursting process (e.g. the energy of longitudinal, transverse, and mixed modes) and compare our results to bursting processes in other systems. This work is supported by the National Science Foundation under grant DMR-0072077 and the IGERT program in nonlinear systems, grant DGE-9870631.

  18. Non-Newtonian Convection and Compositional Buoyancy: Advances in Modeling Convection and Dome Formation on Europa

    NASA Technical Reports Server (NTRS)

    Pappalardo, R. T.; Barr, A. C.

    2004-01-01

    Numerical modeling of non-Newtonian convection in ice shows that convection controlled by grain boundary sliding rheology may occur in Europa. This modeling confirms that thermal convection alone cannot produce significant dome elevations. Domes may instead be produced by diapirs initiated by thermal convection that in turn induces compositional segregation. Exclusion of impurities from warm upwellings would allow sufficient buoyancy for icy plumes to account for the observed approximately 100 m topography of domes, provided the ice shell has a small effective elastic thickness (approximately 0.2 to 0.5 km) and contains low eutectic-point impurities at the few percent level.

  19. Convection in pulsating stars. I - Nonlinear hydrodynamics. II - RR Lyrae convection and stability

    NASA Astrophysics Data System (ADS)

    Stellingwerf, R. F.

    1982-11-01

    A nonlinear, nonlocal, time-dependent treatment of convection suitable for use in models of cool giant stars is presented. Local conservation equations plus a diffusive transport equation are used to derive the convective hydrodynamic equations for the case in which turbulent pressure, energy, and viscosity cannot be ignored. The effects of convective overshooting, superadiabatic gradients, convection/pulsation interaction, and time dependence enter this treatment in a natural way. Methods of treating turbulent viscosity and acoustic losses are discussed. Also, an efficient computational scheme for computing the derivatives needed for an implicit hydrodynamic code is outlined. Application to RR Lyrae star envelopes will be presented in a companion paper.

  20. Eye formation in rotating convection

    NASA Astrophysics Data System (ADS)

    Oruba, L.; Davidson, P. A.; Dormy, E.

    2017-02-01

    We consider rotating convection in a shallow, cylindrical domain. We examine the conditions under which the resulting vortex develops an eye at its core; that is, a region where the poloidal flow reverses and the angular momentum is low. For simplicity, we restrict ourselves to steady, axisymmetric flows in a Boussinesq fluid. Our numerical experiments show that, in such systems, an eye forms as a passive response to the development of a so-called eyewall, a conical annulus of intense, negative azimuthal vorticity that can form near the axis and separates the eye from the primary vortex. We also observe that the vorticity in the eyewall comes from the lower boundary layer, and relies on the fact the poloidal flow strips negative vorticity out of the boundary layer and carries it up into the fluid above as it turns upward near the axis. This process is effective only if the Reynolds number is sufficiently high for the advection of vorticity to dominate over diffusion. Finally we observe that, in the vicinity of the eye and the eyewall, the buoyancy and Coriolis forces are negligible, and so although these forces are crucial to driving and shaping the primary vortex, they play no direct role in eye formation in a Boussinesq fluid.

  1. Influence of convection on microstructure

    NASA Technical Reports Server (NTRS)

    Wilcox, William R.; Caram, Rubens; Mohanty, A. P.; Seth, Jayshree

    1990-01-01

    In eutectic growth, as the solid phases grow they reject atoms to the liquid. This results in a variation of melt composition along the solid/liquid interface. In the past, mass transfer in eutectic solidification, in the absence of convection, was considered to be governed only by the diffusion induced by compositional gradients. However, mass transfer can also be generated by a temperature gradient. This is called thermotransport, thermomigration, thermal diffusion or the Soret effect. A theoretical model of the influence of the Soret effect on the growth of eutectic alloys is presented. A differential equation describing the compositional field near the interface during unidirectional solidification of a binary eutectic alloy was formulated by including the contributions of both compositional and thermal gradients in the liquid. A steady-state solution of the differential equation was obtained by applying appropriate boundary conditions and accounting for heat flow in the melt. Following that, the average interfacial composition was converted to a variation of undercooling at the interface, and consequently to microstructural parameters. The results obtained show that thermotransport can, under certain circumstances, be a parameter of paramount importance.

  2. Convective Heat Transfer for Ship Propulsion.

    DTIC Science & Technology

    1982-04-01

    RD-A124 Wi CONVECTIVE HEAT TRANSFER FOR SHIP PROPULSION (U) ARIZONA 112 UNIV TUCSON ENGINEERING EXPERIMENT STATION PARK ET AL. 01 APR 82 1248-9 N814...395 CONVECTIVE HEAT TRANSFER FOR SHIP PROPULSION Prepared for Office of Naval Research Code 431 Arlington, Virginia Prepared by J. S. Park, M. F...FOR SHIP PROPULSION By J. S. Park, M. F. Taylor and D. M. McEligot Aerospace and Mechanical Engineering Department University of Arizona Tucson

  3. Subcooled forced convection boiling of trichlorotrifluoroethane

    NASA Technical Reports Server (NTRS)

    Dougall, R. S.; Panian, D. J.

    1972-01-01

    Experimental heat-transfer data were obtained for the forced-convection boiling of trichlorotrifluoroethane (R-113 or Freon-113) in a vertical annular test annular test section. The 97 data points obtained covered heat transfer by forced convection, local boiling, and fully-developed boiling. Correlating methods were obtained which accurately predicted the heat flux as a function of wall superheat (boiling curve) over the range of parameters studied.

  4. A numerical investigation of convective sedimentation

    NASA Astrophysics Data System (ADS)

    Snyder, Patrick J.; Hsu, Tian-Jian

    2011-09-01

    Understanding the fate of riverine sediment in the coastal environment is critical to the health of the coastal ecosystem and the changing morphology. One of the least understood mechanisms of initial deposition is the convective sedimentation of hypopycnal plumes. This study aims at investigating convective sedimentation by means of a numerical model for fine sediment transport solving the non-hydrostatic Reynolds-averaged Navier-Stokes equations for stratified turbulent flow. Model validation is sought by comparison to laboratory results for turbidity and saline currents over a changing slope. The model is shown to be capable of predicting both the upstream supercritical and the downstream subcritical flows. The numerical model is then utilized to study convective sedimentation and its depositional and mixing characteristics. By analyzing model results of more than 40 runs for different inlet sediment concentration (density ratio γ), settling velocity (particle Reynolds number Rep), and inlet velocity/height (inlet Reynolds number Re), four distinct flow regimes are revealed. For large γ, we observe divergent plumes with significant deposits near the inlet. For intermediate γ and large Rep, intense convective fingers are predicted which are only marginally affected by ambient shear flow. Further reducing the density ratio γ or Rep gives weak convective fingers that are significantly affected by the ambient shear flow. Eventually, no convective fingers are observed during the computation for very small γ or Rep. Sediment deposits in the divergent plume and intense convective finger regimes are relatively insensitive to Re. Deposit increases with Re in the weak convective finger regime.

  5. Numerical Study of a Convective Turbulence Encounter

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.; Hamilton, David W.; Bowles, Roland L.

    2002-01-01

    A numerical simulation of a convective turbulence event is investigated and compared with observational data. The specific case was encountered during one of NASA's flight tests and was characterized by severe turbulence. The event was associated with overshooting convective turrets that contained low to moderate radar reflectivity. Model comparisons with observations are quite favorable. Turbulence hazard metrics are proposed and applied to the numerical data set. Issues such as adequate grid size are examined.

  6. Exponential DNA Replication by Laminar Convection

    NASA Astrophysics Data System (ADS)

    Braun, Dieter; Goddard, Noel L.; Libchaber, Albert

    2003-10-01

    It is shown that laminar thermal convection can drive a chain reaction of DNA replication. The convection is triggered by a constant horizontal temperature gradient, moving molecules along stationary paths between hot and cold regions. This implements the temperature cycling for the classical polymerase chain reaction (PCR). The amplification is shown to be exponential and reaches 100 000-fold gains within 25min. Besides direct applications, the mechanism might have implications for the molecular evolution of life.

  7. Aerosol-radiation-cloud interactions in a regional coupled model: the effects of convective parameterisation and resolution

    NASA Astrophysics Data System (ADS)

    Archer-Nicholls, S.; Lowe, D.; Schultz, D. M.; McFiggans, G.

    2015-10-01

    The Weather Research and Forecasting model with Chemistry (WRF-Chem) has been used to simulate a region of Brazil heavily influenced by biomass burning. Nested simulations were run at 5 km and 1 km horizontal grid spacing for three case studies in September 2012. Simulations were run with and without fire emissions, convective parameterisation on the 5 km domain and aerosol-radiation interactions in order to explore the differences attributable to the parameterisations and to better understand the aerosol direct effects and cloud responses. Direct aerosol-radiation interactions due to biomass burning aerosol resulted in a net cooling, with an average reduction of downwelling shortwave radiation at the surface of -24.7 W m-2 over the three case studies. However, around 21.7 W m-2 is absorbed by aerosol in the atmospheric column, warming the atmosphere at the aerosol layer height, stabilising the column, inhibiting convection and reducing cloud cover and precipitation. The changes to clouds due to radiatively interacting aerosol (traditionally known as the semi-direct effects) increase net shortwave radiation reaching the surface by reducing cloud cover, producing a secondary warming that largely counters the direct cooling. However, the magnitude of the semi-direct effect was difficult to quantify, being extremely sensitive to the model resolution and use of convective parameterisation. The 1 km domain simulated clouds less horizontally spread, reducing the proportion of the domain covered by cloud in all scenarios and producing a smaller semi-direct effect. Not having a convective parameterisation on the 5 km domain reduced total cloud cover, but also total precipitation. BB aerosol particles acted as CCN, increasing the droplet number concentration of clouds. However, the changes to cloud properties had negligible impact on net radiative balance on either domain, with or without convective parameterisation. Sensitivity to the uncertainties relating to the semi

  8. NMR imaging of thermal convection patterns.

    PubMed

    Weis, J; Kimmich, R; Müller, H P

    1996-01-01

    Two special magnetic resonance imaging techniques were applied to the Rayleigh/Bénard problem of thermal convection for the first time. The methods were tested using a water cell with horizontal bottom and top covers kept at different temperatures with a downward gradient. Using Fourier encoding velocity imaging (FEVI) a five-dimensional image data set was recorded referring to two space dimensions of slice-selective images and all three components of the local velocity vector. On this basis, the fields of the velocity components or of the velocity magnitude were evaluated quantitatively and rendered as gray shade images. Furthermore the convection rolls were visualized with the aid of two- or three-dimensional multistripe/multiplane tagging imaging pulse sequences based on two or three DANTE combs for the space directions to be probed. Movies illustrating the fluid motions by convection in all three space dimensions were produced. It is demonstrated that the full spatial information of the convection rolls is accessible with microscopic resolution of typically 100 x 100 x 100 microns3. This resolution is effectively limited by flow displacements in the echo time, which should be well within the voxel dimension. The main perspective of this work is that the combined application of FEVI and multistripe/multiplane tagging imaging permits quantitative examinations of thermal convection for arbitrary boundary conditions and with imposed through-flow apart from the direct visualization of convective flow in the form of movies.

  9. EFFECTS OF PENETRATIVE CONVECTION ON SOLAR DYNAMO

    SciTech Connect

    Masada, Youhei; Yamada, Kohei; Kageyama, Akira

    2013-11-20

    Spherical solar dynamo simulations are performed. A self-consistent, fully compressible magnetohydrodynamic system with a stably stratified layer below the convective envelope is numerically solved with a newly developed simulation code based on the Yin-Yang grid. The effects of penetrative convection are studied by comparing two models with and without the stable layer. The differential rotation profile in both models is reasonably solar-like with equatorial acceleration. When considering the penetrative convection, a tachocline-like shear layer is developed and maintained beneath the convection zone without assuming any forcing. While the turbulent magnetic field becomes predominant in the region where the convective motion is vigorous, mean-field components are preferentially organized in the region where the convective motion is less vigorous. Particularly in the stable layer, the strong, large-scale field with a dipole symmetry is spontaneously built up. The polarity reversal of the mean-field component takes place globally and synchronously throughout the system regardless of the presence of the stable layer. Our results suggest that the stably stratified layer is a key component for organizing the large-scale strong magnetic field, but is not essential for the polarity reversal.

  10. Theory and simulations of rotating convection

    SciTech Connect

    Barker, Adrian J.; Dempsey, Adam M.; Lithwick, Yoram

    2014-08-10

    We study thermal convection in a rotating fluid in order to better understand the properties of convection zones in rotating stars and planets. We first derive a mixing-length theory for rapidly rotating convection, arriving at the results of Stevenson via simple physical arguments. The theory predicts the properties of convection as a function of the imposed heat flux and rotation rate, independent of microscopic diffusivities. In particular, it predicts the mean temperature gradient, the rms velocity and temperature fluctuations, and the size of the eddies that dominate heat transport. We test all of these predictions with high resolution three-dimensional hydrodynamical simulations of Boussinesq convection in a Cartesian box. The results agree remarkably well with the theory across more than two orders of magnitude in rotation rate. For example, the temperature gradient is predicted to scale as the rotation rate to the four-fifths power at fixed flux, and the simulations yield 0.75 ± 0.06. We conclude that the mixing-length theory is a solid foundation for understanding the properties of convection zones in rotating stars and planets.

  11. Compressible convection under hyper-gravity

    NASA Astrophysics Data System (ADS)

    Huguet, L.; Le Reun, T.; Alboussiere, T.; Bergman, M. I.; Labrosse, S. J.

    2013-12-01

    Convection plays an important role for heat transfer from the deep interior of planets and stars. In the Earth's core, it is responsible for the magnetic field. We often use the Boussinesq approximation for incompressible convection, and for compressible convection, we can use the anelastic liquid approximation. However, there is a lack of experimental results to check the validity of the anelastic approximation when the dissipation number is not negligible, because of the difficulty in obtaining an adiabatic gradient in the lab. Increasing the effective gravity and using a gas with a small specific heat capacity is a good way to observe a compressible convection, because for an ideal gas, the adiabatic gradient is g/Cp. We have carried out some experiments on convection in xenon gas in a cell in a centrifuge, which allows us to reach 10,000g, yielding a maximum of about 10 K across the height of the cell. In our experimental device, we measure a temperature with 11 platinum resistance thermal detectors, and the fluctuations of pressure. We can also acquire ultrasonic measurements through the cell. A Peltier module heats the bottom and PID control keeps the bottom temperature constant. The cell is insulated by perplex walls and the xenon gas in the cell is under pressure to increase the thermal inertia. We observe an adiabatic gradient at different effective gravities with different boundary conditions, and the fluctuations of temperature and pressure due to convection.

  12. Modeling deep convection in the Greenland Sea

    NASA Technical Reports Server (NTRS)

    Hakkinen, S.; Mellor, G. L.; Kantha, L. H.

    1992-01-01

    The development of deep convective events in the high-latitude ocean is studied using a three-dimensional, coupled ice-ocean model. Oceanic mixing is described according to the level 2.5 turbulence closure scheme in which convection occurs in a continuous way, i.e., convective adjustment is not invoked. The model is forced by strong winds and surface cooling. Strong upwelling at the multilyear ice edge and consequent entrainment of warm Atlantic waters into the mixed layer is produced by winds parallel to the ice edge. Concomitant cooling drives deep convection and produces chimneylike structures. Inclusion of a barotropic mean flow over topography to the model provides important preconditioning and selects the location of deep convection. The most efficient preconditioning occurs at locations where the flow ascends a slope. In a stratified environment similar to the Greenland Sea with a 12 m/s wind the model simulations show that localized deep convection takes place after about 10 days to depths of 1000 m.

  13. Theory and Simulations of Rotating Convection

    NASA Astrophysics Data System (ADS)

    Barker, Adrian J.; Dempsey, Adam M.; Lithwick, Yoram

    2014-08-01

    We study thermal convection in a rotating fluid in order to better understand the properties of convection zones in rotating stars and planets. We first derive a mixing-length theory for rapidly rotating convection, arriving at the results of Stevenson via simple physical arguments. The theory predicts the properties of convection as a function of the imposed heat flux and rotation rate, independent of microscopic diffusivities. In particular, it predicts the mean temperature gradient, the rms velocity and temperature fluctuations, and the size of the eddies that dominate heat transport. We test all of these predictions with high resolution three-dimensional hydrodynamical simulations of Boussinesq convection in a Cartesian box. The results agree remarkably well with the theory across more than two orders of magnitude in rotation rate. For example, the temperature gradient is predicted to scale as the rotation rate to the four-fifths power at fixed flux, and the simulations yield 0.75 ± 0.06. We conclude that the mixing-length theory is a solid foundation for understanding the properties of convection zones in rotating stars and planets.

  14. Driving forces: Slab subduction and mantle convection

    NASA Technical Reports Server (NTRS)

    Hager, Bradford H.

    1988-01-01

    Mantle convection is the mechanism ultimately responsible for most geological activity at Earth's surface. To zeroth order, the lithosphere is the cold outer thermal boundary layer of the convecting mantle. Subduction of cold dense lithosphere provides tha major source of negative buoyancy driving mantle convection and, hence, surface tectonics. There are, however, importnat differences between plate tectonics and the more familiar convecting systems observed in the laboratory. Most important, the temperature dependence of the effective viscosity of mantle rocks makes the thermal boundary layer mechanically strong, leading to nearly rigid plates. This strength stabilizes the cold boundary layer against small amplitude perturbations and allows it to store substantial gravitational potential energy. Paradoxically, through going faults at subduction zones make the lithosphere there locally weak, allowing rapid convergence, unlike what is observed in laboratory experiments using fluids with temperature dependent viscosities. This bimodal strength distribution of the lithosphere distinguishes plate tectonics from simple convection experiments. In addition, Earth has a buoyant, relatively weak layer (the crust) occupying the upper part of the thermal boundary layer. Phase changes lead to extra sources of heat and bouyancy. These phenomena lead to observed richness of behavior of the plate tectonic style of mantle convection.

  15. Sunward convection in both polar caps

    SciTech Connect

    Reiff, P.H.

    1982-08-01

    The geomagnetic storm of July 29, 1977 has been the object of concentrated study. The latter part of the day (1800--2300 UT) is particularly interesting because it is a period of extremely strong, almost directly northward interplanetary magnetic fields (IMF). Such northward IMF's have been related to periods of reversed (i.e., sunward) convection in the polar cap, and this day is no exception. Zanetti et al. (1981), using Triad magnetometer data, show magnetic perturbations implying reversed convection in the northern polar cap, while the Birkeland currents in the southern polar cap are very weak. They give two possible interpretations: (1) merging occurs preferentially in the northern cusp region, and therefore reversed convection is restricted to the northern polar cap or (2) the currents flow predominantly in the sunlit northern polar cap because its conductivity is higher. This paper shows convection data from both the northern polar cap (S3-3) and the southern polar cap (AE-C). In both cases, regions of reversed convection are seen. Therefore the asymmetry of the Birkeland currents is more likely caused by a conductivity asymmetry than a convection asymmetry. It is likely that the low-energy ions seen deep in the polar cap may be traped on closed field lines after merging on both tail lobe boundaries.

  16. Convective overshoot at stiffly stable interfaces

    NASA Astrophysics Data System (ADS)

    Brown, Benjamin; Oishi, Jeffrey; Lecoanet, Daniel; Burns, Keaton; Vasil, Geoffrey

    2016-11-01

    Convective overshoot is an important non-local mixing and transport process in stars, extending the influence of turbulent stellar convection beyond the unstable portions of the atmosphere. In the Sun, overshoot into the tachocline at the base of the convection zone has been ascribed a major role in the storage and organization of the global-scale magnetic fields within the solar dynamo. In massive stars, overshooting convection plays an important role in setting the lifespan of the star by mixing fuel into the nuclear burning core. Here we narrowly consider the properties of convective overshoot across very stiff interfaces within fully compressible dynamics across convection zones with significant stratification. We conduct these studies using the Dedalus pseudospectral framework. We extend prior studies of overshoot substantially and find that the depth of overshoot in DNS simulations of a typical plume is well-predicted by a simple buoyancy equilibration model. The implications of this model, extended into the stellar regime, are that very little overshoot should occur under solar conditions. This would seem to sharply limit the role of the tachocline within the global solar dynamo.

  17. The diurnal cycle of rainfall over New Guinea in convection-permitting WRF simulations

    NASA Astrophysics Data System (ADS)

    Hassim, M. E. E.; Lane, T. P.; Grabowski, W. W.

    2015-07-01

    In this study, we examine the diurnal cycle of rainfall over New Guinea using a series of convection-permitting numerical simulations with the Weather Research and Forecasting (WRF) model. We focus our simulations on a period of suppressed regional-scale conditions (February 2010) during which local diurnal forcings are maximised. Additionally, we focus our study on the occurrence and dynamics of offshore propagating convective systems that contribute to the observed early-morning rainfall maximum north-east of New Guinea. In general, modelled diurnal precipitation shows good agreement with satellite-observed rainfall, albeit with some timing and intensity differences. The simulations also reproduce the occurrence and variability of overnight convection that propagate offshore as organised squall lines north-east of New Guinea. The occurrence of these offshore systems is largely controlled by background conditions. Days with offshore propagating convection have more middle tropospheric moisture, larger CAPE and greater low-level moisture convergence. Convection has similar characteristics over the terrain on days with and without offshore propagation. The offshore propagating convection manifests via a multi-stage evolutionary process. First, scattered convection over land, which is remnant of the daytime maximum, moves towards the coast and becomes re-organised near the region of coastal convergence associated with the land breeze. The convection then moves offshore in the form of a squall line at ~5 m s-1. In addition, cool anomalies associated with gravity waves generated by precipitating land convection propagate offshore at a dry hydrostatic gravity wave speed (of ~15 m s-1), and act to destabilise the coastal/offshore environment prior to the arrival of the squall line. Although the gravity wave does not appear to initiate the convection or control its propagation, it should contribute to its longevity and maintenance. The results highlight the importance of

  18. Complexation of bovine serum albumin and sugar beet pectin: stabilising oil-in-water emulsions.

    PubMed

    Li, Xiangyang; Fang, Yapeng; Al-Assaf, Saphwan; Phillips, Glyn O; Jiang, Fatang

    2012-12-15

    In a previous study (Langmuir 28 (2012) 10164-10176.), we investigated the complexation of bovine serum albumin (BSA) with sugar beet pectin (SBP). A pH-composition phase diagram was established and structural transitions in relation to the phase diagram during complexation were identified. The present study examines the implications of these interactions on the emulsifying performance of BSA/SBP mixtures. Middle-chain triglycerides (MCTs) in water emulsions were prepared using conditions corresponding to different regions of the phase diagram. At high pHs and in the stable region of mixed individual soluble polymers where complexation is absent, there is no improved emulsifying performance, compared with the individual protein and polysaccharide. For these mixtures, the emulsion characteristics are controlled by the major component in the solutions, as determined by the competitive adsorption of the two components at the oil-water interface. At low pHs and low BSA/SBP ratios, and so mainly within the stable region of intramolecular soluble complexes, BSA/SBP mixtures greatly improve the stability of emulsions. Here, stabilisation is controlled by the cooperative adsorption of the two components at the oil-water interface. Through electrostatic complexation BSA promotes the adsorption of SBP on to interfaces to form a thick steric layer around emulsion droplets and thus providing better stability. At low pHs and high BSA/SBP ratios, that is, mainly within the unstable region of intermolecular insoluble complexes, emulsions prepared are extremely unstable due to bridging flocculation between emulsion droplets.

  19. Long-term olfactory memories are stabilised via protein synthesis in Camponotus fellah ants.

    PubMed

    Guerrieri, Fernando J; d'Ettorre, Patrizia; Devaud, Jean-Marc; Giurfa, Martin

    2011-10-01

    Ants exhibit impressive olfactory learning abilities. Operant protocols in which ants freely choose between rewarded and non-rewarded odours have been used to characterise associative olfactory learning and memory. Yet, this approach precludes the use of invasive methods allowing the dissection of molecular bases of learning and memory. An open question is whether the memories formed upon olfactory learning that are retrievable several days after training are indeed based on de novo protein synthesis. Here, we addressed this question in the ant Camponotus fellah using a conditioning protocol in which individually harnessed ants learn an association between odour and reward. When the antennae of an ant are stimulated with sucrose solution, the insect extends its maxilla-labium to absorb the solution (maxilla-labium extension response). We differentially conditioned ants to discriminate between two long-chain hydrocarbons, one paired with sucrose and the other with quinine solution. Differential conditioning leads to the formation of a long-term memory retrievable at least 72 h after training. Long-term memory consolidation was impaired by the ingestion of cycloheximide, a protein synthesis blocker, prior to conditioning. Cycloheximide did not impair acquisition of either short-term memory (10 min) or early and late mid-term memories (1 or 12 h). These results show that, upon olfactory learning, ants form different memories with variable molecular bases. While short- and mid-term memories do not require protein synthesis, long-term memories are stabilised via protein synthesis. Our behavioural protocol opens interesting research avenues to explore the cellular and molecular bases of olfactory learning and memory in ants.

  20. Calculations of single crystal elastic constants for yttria partially stabilised zirconia from powder diffraction data

    SciTech Connect

    Lunt, A. J. G. Xie, M. Y.; Baimpas, N.; Korsunsky, A. M.; Zhang, S. Y.; Kabra, S.; Kelleher, J.; Neo, T. K.

    2014-08-07

    Yttria Stabilised Zirconia (YSZ) is a tough, phase-transforming ceramic that finds use in a wide range of commercial applications from dental prostheses to thermal barrier coatings. Micromechanical modelling of phase transformation can deliver reliable predictions in terms of the influence of temperature and stress. However, models must rely on the accurate knowledge of single crystal elastic stiffness constants. Some techniques for elastic stiffness determination are well-established. The most popular of these involve exploiting frequency shifts and phase velocities of acoustic waves. However, the application of these techniques to YSZ can be problematic due to the micro-twinning observed in larger crystals. Here, we propose an alternative approach based on selective elastic strain sampling (e.g., by diffraction) of grain ensembles sharing certain orientation, and the prediction of the same quantities by polycrystalline modelling, for example, the Reuss or Voigt average. The inverse problem arises consisting of adjusting the single crystal stiffness matrix to match the polycrystal predictions to observations. In the present model-matching study, we sought to determine the single crystal stiffness matrix of tetragonal YSZ using the results of time-of-flight neutron diffraction obtained from an in situ compression experiment and Finite Element modelling of the deformation of polycrystalline tetragonal YSZ. The best match between the model predictions and observations was obtained for the optimized stiffness values of C11 = 451, C33 = 302, C44 = 39, C66 = 82, C12 = 240, and C13 = 50 (units: GPa). Considering the significant amount of scatter in the published literature data, our result appears reasonably consistent.

  1. A stabilised nodal spectral element method for fully nonlinear water waves

    NASA Astrophysics Data System (ADS)

    Engsig-Karup, A. P.; Eskilsson, C.; Bigoni, D.

    2016-08-01

    We present an arbitrary-order spectral element method for general-purpose simulation of non-overturning water waves, described by fully nonlinear potential theory. The method can be viewed as a high-order extension of the classical finite element method proposed by Cai et al. (1998) [5], although the numerical implementation differs greatly. Features of the proposed spectral element method include: nodal Lagrange basis functions, a general quadrature-free approach and gradient recovery using global L2 projections. The quartic nonlinear terms present in the Zakharov form of the free surface conditions can cause severe aliasing problems and consequently numerical instability for marginally resolved or very steep waves. We show how the scheme can be stabilised through a combination of over-integration of the Galerkin projections and a mild spectral filtering on a per element basis. This effectively removes any aliasing driven instabilities while retaining the high-order accuracy of the numerical scheme. The additional computational cost of the over-integration is found insignificant compared to the cost of solving the Laplace problem. The model is applied to several benchmark cases in two dimensions. The results confirm the high order accuracy of the model (exponential convergence), and demonstrate the potential for accuracy and speedup. The results of numerical experiments are in excellent agreement with both analytical and experimental results for strongly nonlinear and irregular dispersive wave propagation. The benefit of using a high-order - possibly adapted - spatial discretisation for accurate water wave propagation over long times and distances is particularly attractive for marine hydrodynamics applications.

  2. Ecosystem function in waste stabilisation ponds: Improving water quality through a better understanding of biophysical coupling

    NASA Astrophysics Data System (ADS)

    Ghadouani, Anas; Reichwaldt, Elke S.; Coggins, Liah X.; Ivey, Gregory N.; Ghisalberti, Marco; Zhou, Wenxu; Laurion, Isabelle; Chua, Andrew

    2014-05-01

    Wastewater stabilisation ponds (WSPs) are highly productive systems designed to treat wastewater using only natural biological and chemical processes. Phytoplankton, microbial communities and hydraulics play important roles for ecosystem functionality of these pond systems. Although WSPs have been used for many decades, they are still considered as 'black box' systems as very little is known about the fundamental ecological processes which occur within them. However, a better understanding of how these highly productive ecosystems function is particularly important for hydrological processes, as treated wastewater is commonly discharged into streams, rivers, and oceans, and subject to strict water quality guidelines. WSPs are known to operate at different levels of efficiency, and treatment efficiency of WSPs is dependent on physical (flow characteristics and sludge accumulation and distribution) and biological (microbial and phytoplankton communities) characteristics. Thus, it is important to gain a better understanding of the role and influence of pond hydraulics and vital microbial communities on pond performance and WSP functional stability. The main aim of this study is to investigate the processes leading to differences in treatment performance of WSPs. This study uses a novel and innovative approach to understand these factors by combining flow cytometry and metabolomics to investigate various biochemical characteristics, including the metabolite composition and microbial community within WSPs. The results of these analyses will then be combined with results from the characterisation of pond hydrodynamics and hydraulic performance, which will be performed using advanced hydrodynamic modelling and advanced sludge profiling technology. By understanding how hydrodynamic and biological processes influence each other and ecosystem function and stability in WSPs, we will be able to propose ways to improve the quality of the treatment using natural processes, with

  3. Greenhouse gas emissions from waste stabilisation ponds in Western Australia and Quebec (Canada).

    PubMed

    Glaz, Patricia; Bartosiewicz, Maciej; Laurion, Isabelle; Reichwaldt, Elke S; Maranger, Roxane; Ghadouani, Anas

    2016-09-15

    Waste stabilisation ponds (WSPs) are highly enriched environments that may emit large quantities of greenhouse gases (GHG), including CO2, CH4 and N2O. However, few studies provide detailed reports on these emissions. In the present study, we investigated GHG emissions from WSPs in Western Australia and Quebec, Canada, and compared emissions to WSPs from other climatic regions and to other types of aquatic ecosystems. Surface water GHG concentrations were related to phytoplankton biomass and nutrients. The CO2 was either emitted or absorbed by WSPs, largely as a function of phytoplankton dynamics and strong stratification in these shallow systems, whereas efflux of CH4 and N2O to the atmosphere was always observed albeit with highly variable emission rates, dependent on treatment phase and time of the day. The total global warming potential index (GWP index, calculated as CO2 equivalent) of emitted GHG from WSPs in Western Australia averaged 12.8 mmol m(-2) d(-1) (median), with CO2, CH4 and N2O respectively contributing 0%, 96.7% and 3.3% of the total emissions, while in Quebec WSPs this index was 194 mmol m(-2) d(-1), with a relative contribution of 93.8, 3.0 and 3.2% respectively. The CO2 fluxes from WSPs were of the same order of magnitude as those reported in hydroelectric reservoirs and constructed wetlands in tropical climates, whereas CH4 fluxes were considerably higher compared to other aquatic ecosystems. N2O fluxes were in the same range of values reported for WSPs in subtropical climate.

  4. Robust gain-scheduling energy-to-peak control of vehicle lateral dynamics stabilisation

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Zhang, Xinjie; Wang, Junmin

    2014-03-01

    In this paper, we investigate the vehicle lateral dynamics stabilisation problem to enhance vehicle handling by considering time-varying longitudinal velocity. The longitudinal velocity is described by a polytope with finite vertices and a novel technique is proposed to reduce the number of vertices. Since the tyre dynamics is nonlinear, the cornering stiffness is represented via the norm-bounded uncertainty. Concerning the time-varying velocity and the nonlinear tyre model, a linear parameter-varying vehicle model is obtained. As the velocity and the states are measurable, a gain-scheduling state-feedback controller is introduced. In the lateral control, the sideslip angle is required to be as small as possible and the yaw rate is constrained to a certain level. Thus, the control objective is to minimise the sideslip angle while the yaw rate is under a prescribed level or constrain both the sideslip angle and the yaw rate to prescribed levels. To consider the transient response of the closed-loop system, the ?-stability is also employed in the energy-to-peak control. The optimal controller can be obtained by solving a set of linear matrix inequalities. A nonlinear vehicle model is utilised to illustrate the design procedure and the effectiveness of the proposed design method. Finally, simulations and comparisons are carried out to show the significant advantage of the designed controller. Compared to the open-loop system, the closed-loop system with the designed controller can achieve much smaller sideslip angle and the yaw rate is closer to the desired yaw rate from a reference model. Therefore, the vehicle safety and the handling are both improved in our simulation cases.

  5. Soil stabilisation using AMD sludge, compost and lignite: TCLP leachability and continuous acid leaching.

    PubMed

    Tsang, Daniel C W; Olds, William E; Weber, Paul A; Yip, Alex C K

    2013-11-01

    Utilising locally available industrial by-products for in situ metal stabilisation presents a low-cost remediation approach for contaminated soil. This study explored the potential use of inorganic (acid mine drainage (AMD) sludge and zero-valent iron) and carbonaceous materials (green waste compost, manure compost, and lignite) for minimising the environmental risks of As and Cu at a timber treatment site. After 9-month soil incubation, significant sequestration of As and Cu in soil solution was accomplished by AMD sludge, on which adsorption and co-precipitation could take place. The efficacy of AMD sludge was comparable to that of zero-valent iron. There was marginal benefit of adding carbonaceous materials. However, in a moderately aggressive environment (Toxicity Characteristic Leaching Procedure), AMD sludge only suppressed the leachability of As but not Cu. Therefore, the provision of compost and lignite augmented the simultaneous reduction of Cu leachability, probably via surface complexation with oxygen-containing functional groups. Under continuous acid leaching in column experiments, combined application of AMD sludge with compost proved more effective than AMD sludge with lignite. This was possibly attributed to the larger amount of dissolved organic matter with aromatic moieties from lignite, which may enhance Cu and As mobility. Nevertheless, care should be taken to mitigate ecological impact associated with short-term substantial Ca release and continuous release of Al at a moderate level under acid leaching. This study also articulated the engineering implications and provided recommendations for field deployment, material processing, and assessment framework to ensure an environmentally sound application of reactive materials.

  6. Electromyographic response of global abdominal stabilisers in response to stable- and unstable-base isometric exercise.

    PubMed

    Atkins, Stephen

    2014-12-24

    Core stability training traditionally uses stable base techniques. Less is known as to the use of unstable base techniques, such as suspension training, to activate core musculature. This study sought to assess the neuromuscular activation of global core stabilisers when using suspension training techniques, compared to more traditional forms of isometric exercise. Eighteen elite level, male youth swimmers (Age 15.5yrs ± 2.3yrs; Stature - 163.3cm ± 12.7cm; Body Mass 62.2kg ± 11.9 kg) participated in the current study. Surface electromyography (sEMG) was used to determine the rate of muscle contraction in postural musculature, associated with core stability and torso bracing (rectus abdominus-RA, external oblique's-EO, erector spinae-ES). A maximal voluntary contraction (MVC) test was used to determine peak amplitude for all muscles. Static bracing of the core was achieved using a modified 'plank' position, with and without a Swiss ball, and held for 30 seconds. A mechanically similar 'plank' was then held using suspension straps. Analysis of sEMG revealed that suspension produced higher peak amplitude in the RA than using a prone or Swiss Ball 'plank' (p=0.04). This difference was not replicated in either the EO or ES musculature. We conclude that suspension training noticeably improves engagement of anterior core musculature when compared to both lateral and posterior muscles. Further research is required to determine how best to activate both posterior and lateral musculature when using all forms of core stability training.

  7. Reducing the mobility of arsenic in brownfield soil using stabilised zero-valent iron nanoparticles.

    PubMed

    Gil-Díaz, Mar; Alonso, Juan; Rodríguez-Valdés, Eduardo; Pinilla, Paloma; Lobo, Maria Carmen

    2014-01-01

    The use of nanoscale zero-valent iron (nZVI) as a new tool for the treatment of polluted soils and groundwater has received considerable attention in recent years due to its high reactivity, in situ application and cost-effectiveness. The objectives of this study were to investigate the effectiveness of using a commercial stabilised suspension of nZVI to immobilise As in brownfield soil and to investigate its impact on Fe availability in the treated soil. The phytotoxicities of the soil samples were also evaluated using a germination test with two plant species: barley (Hordeum vulgare L) and common vetch (Vicia sativa L). Two doses of the commercial nZVI suspension were studied, 1% and 10%, and two soil-nanoparticle interaction times, 72 h and 3 mo, were used to compare the stabilities of the soils treated with nZVI. The As availability was evaluated using a sequential extraction procedure and the toxicity characteristics leaching procedure (TCLP) test. The application of nZVI significantly decreased the availability of As in the soil. The immobilisation of As was more effective and more stable over time with the 10% dose than with the 1% dose of the commercial nZVI suspension. The application of nZVI did not induce an important increase in Fe mobility because the Fe leachability was less than 2 mg L(-1) over the time period studied. The lower availability of As in the soil led to a decrease in the phytotoxicity of the soil to barley and vetch germination. Thus, the proposed nanotechnology could be a potential alternative for the in situ remediation of As-polluted soils and could be combined with remediation processes where plants are involved.

  8. Solidification/stabilisation of electric arc furnace waste using low grade MgO.

    PubMed

    Cubukcuoglu, B; Ouki, S K

    2012-02-01

    This study aims to evaluate the potential of low grade MgO (LGMgO) for the stabilisation/solidification (S/S) of heavy metals in steel electric arc furnace wastes. Relevant characteristics such as setting time, unconfined compressive strength (UCS) and leaching behaviour assessed by acid neutralisation capacity (ANC), monolithic and granular leaching tests were examined in light of the UK landfill Waste Acceptance Criteria (WAC) for disposal. The results demonstrated that all studied mix designs with Portland cement type 1 (CEM1) and LGMgO, CEM1-LGMgO 1:2 and 1:4 at 40% and 70% waste addition met the WAC requirements by means of UCS, initial and final setting times and consistence. Most of the ANC results met the WAC limits where the threshold pH values without acid additions were stable and between 11.9 and 12.2 at 28d. Granular leaching results indicate fixation of most of the metals at all mix ratios. An optimum ratio was obtained at CEM1-LGMgO 1:4 at 40% waste additions where none of the metals leaching exceeded the WAC limits and hence may be considered for landfill disposal. The monolithic leaching test results showed that LGMgO performed satisfactorily with respect to S/S of Zn, as the metal component present at the highest concentration level in the waste exhibited very little leaching and passed the leaching test requirement at all mix ratios studied. However, its performance with respect to Pb, Cd and Cr was less effective in reducing their leaching suggesting a higher cumulative rate under those leaching regimes.

  9. Nonlinear hydrodynamic and thermoacoustic oscillations of a bluff-body stabilised turbulent premixed flame

    NASA Astrophysics Data System (ADS)

    Lee, Chin Yik; Li, Larry Kin Bong; Juniper, Matthew P.; Cant, Robert Stewart

    2016-01-01

    Turbulent premixed flames often experience thermoacoustic instabilities when the combustion heat release rate is in phase with acoustic pressure fluctuations. Linear methods often assume a priori that oscillations are periodic and occur at a dominant frequency with a fixed amplitude. Such assumptions are not made when using nonlinear analysis. When an oscillation is fully saturated, nonlinear analysis can serve as a useful avenue to reveal flame behaviour far more elaborate than period-one limit cycles, including quasi-periodicity and chaos in hydrodynamically or thermoacoustically self-excited system. In this paper, the behaviour of a bluff-body stabilised turbulent premixed propane/air flame in a model jet-engine afterburner configuration is investigated using computational fluid dynamics. For the frequencies of interest in this investigation, an unsteady Reynolds-averaged Navier-Stokes approach is found to be appropriate. Combustion is represented using a modified laminar flamelet approach with an algebraic closure for the flame surface density. The results are validated by comparison with existing experimental data and with large eddy simulation, and the observed self-excited oscillations in pressure and heat release are studied using methods derived from dynamical systems theory. A systematic analysis is carried out by increasing the equivalence ratio of the reactant stream supplied to the premixed flame. A strong variation in the global flame structure is observed. The flame exhibits a self-excited hydrodynamic oscillation at low equivalence ratios, becomes steady as the equivalence ratio is increased to intermediate values, and again exhibits a self-excited thermoacoustic oscillation at higher equivalence ratios. Rich nonlinear behaviour is observed and the investigation demonstrates that turbulent premixed flames can exhibit complex dynamical behaviour including quasiperiodicity, limit cycles and period-two limit cycles due to the interactions of various

  10. Recycling vs. stabilisation of soil sugars - a long-term laboratory incubation experiment

    NASA Astrophysics Data System (ADS)

    Basler, A.; Dippold, M.; Helfrich, M.; Dyckmans, J.

    2015-06-01

    Independent of its chemical structure carbon (C) persists in soil for several decades, controlled by stabilisation and recycling. To disentangle the importance of the two factors on the turnover dynamics of soil sugars, an important compound of soil organic matter (SOM), a three year incubation experiment was conducted on a silty loam soil under different types of land use (arable land, grassland and forest) by adding 13C-labeled glucose. The compound specific isotope analysis of soil sugars was used to examine the dynamics of different sugars during incubation. Sugar dynamics were dominated by a pool of high mean residence times (MRT) indicating that recycling plays an important role for sugars. However, this was not substantially affected by soil C content. Six months after label addition the contribution of the label was much higher for microbial biomass than for CO2 production for all examined soils, corroborating that substrate recycling was very effective within the microbial biomass. Two different patterns of tracer dynamics could be identified for different sugars: while fucose (fuc) and mannose (man) showed highest label contribution at the beginning of the incubation with a subsequent slow decline, galactose (gal) and rhamnose (rha) were characterised by slow label incorporation with subsequently constant levels, which indicates that recycling is dominating the dynamics of these sugars. This may correspond to (a) different microbial growing strategies (r and K-strategist) or (b) location within or outside the cell membrane (lipopolysaccharides vs. exopolysaccharides) and thus be subject of different re-use within the microbial food web. Our results show how the microbial community recycles substrate very effectively and that high losses of substrate only occur during initial stages after substrate addition.

  11. Entropy Production in Convective Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Boersing, Nele; Wellmann, Florian; Niederau, Jan

    2016-04-01

    Exploring hydrothermal reservoirs requires reliable estimates of subsurface temperatures to delineate favorable locations of boreholes. It is therefore of fundamental and practical importance to understand the thermodynamic behavior of the system in order to predict its performance with numerical studies. To this end, the thermodynamic measure of entropy production is considered as a useful abstraction tool to characterize the convective state of a system since it accounts for dissipative heat processes and gives insight into the system's average behavior in a statistical sense. Solving the underlying conservation principles of a convective hydrothermal system is sensitive to initial conditions and boundary conditions which in turn are prone to uncertain knowledge in subsurface parameters. There exist multiple numerical solutions to the mathematical description of a convective system and the prediction becomes even more challenging as the vigor of convection increases. Thus, the variety of possible modes contained in such highly non-linear problems needs to be quantified. A synthetic study is carried out to simulate fluid flow and heat transfer in a finite porous layer heated from below. Various two-dimensional models are created such that their corresponding Rayleigh numbers lie in a range from the sub-critical linear to the supercritical non-linear regime, that is purely conductive to convection-dominated systems. Entropy production is found to describe the transient evolution of convective processes fairly well and can be used to identify thermodynamic equilibrium. Additionally, varying the aspect ratio for each Rayleigh number shows that the variety of realized convection modes increases with both larger aspect ratio and higher Rayleigh number. This phenomenon is also reflected by an enlarged spread of entropy production for the realized modes. Consequently, the Rayleigh number can be correlated to the magnitude of entropy production. In cases of moderate

  12. Amphiphilic brush polymers produced using the RAFT polymerisation method stabilise and reduce the cell cytotoxicity of lipid lyotropic liquid crystalline nanoparticles.

    PubMed

    Zhai, Jiali; Suryadinata, Randy; Luan, Bao; Tran, Nhiem; Hinton, Tracey M; Ratcliffe, Julian; Hao, Xiaojuan; Drummond, Calum J

    2016-10-06

    Self-assembled lipid lyotropic liquid crystalline nanoparticles such as hexosomes and cubosomes contain internal anisotropic and isotropic nanostructures, respectively. Despite the remarkable potential of such nanoparticles in various biomedical applications, the stabilisers used in formulating the nanoparticles are often limited to commercially available polymers such as the Pluronic block copolymers. This study explored the potential of using Reversible Addition-Fragmentation chain Transfer (RAFT) technology to design amphiphilic brush-type polymers for the purpose of stabilising phytantriol and monoolein-based lipid dispersions. The synthesised brush-type polymers consisted of a hydrophobic C12 short chain and a hydrophilic poly(ethylene glycol)methyl ether acrylate (PEGA) long chain with multiple 9-unit poly(ethylene oxide) (PEO) brushes with various molecular weights. It was observed that increasing the PEO brush density and thus the length of the hydrophilic component improved the stabilisation effectiveness for phytantriol and monoolein-based cubosomes. Synchrotron small-angle X-ray scattering (SAXS) experiments confirmed that the RAFT polymer-stabilised cubosomes had an internal double-diamond cubic phase with tunable water channel sizes. These properties were dependent on the molecular weight of the polymers, which were considered in some cases to be anisotropically distributed within the cubosomes. The in vitro toxicity of the cubosomes was assessed by cell viability of two human adenocarcinoma cell lines and haemolytic activities to mouse erythrocytes. The results showed that phytantriol cubosomes stabilised by the RAFT polymers were less toxic compared to their Pluronic F127-stabilised analogues. This study provides valuable insight into designing non-linear amphiphilic polymers for the effective stabilisation and cellular toxicity improvement of self-assembled lipid lyotropic liquid crystalline nanoparticles.

  13. Ultraviolet Background Radiation (Preprint)

    DTIC Science & Technology

    1991-03-01

    5.4 Apollo-Soyuz 3 5 5.5 Evidence for Scattering From Dust ? 3 8 5.6 More Evidence For Scattering From Dust ? 4 0 5.7 More Observations 4 2...Emission from cold interstellar dust . This has been observed by IRAS as the 100 u.m cosmic cirrus (64). The existence of such dust at moderate and... DUST 4 6 CONCLUSIONS 4 7 6.1 Spectral Structure in the Diffuse 4 7 Ultraviolet Background 6.2 Is There Light Scattered From Dust ? 4 7 6.3

  14. Cosmic Background Radiation

    NASA Astrophysics Data System (ADS)

    Sidharth, B. G.; Valluri, S. R.

    2015-08-01

    It is shown that a collection of photons with nearly the same frequency exhibits a "condensation" type of phenomenon corresponding to a peak intensity. The observed cosmic background radiation can be explained from this standpoint. We have obtained analogous results by extremization of the occupation number for photons with the use of the Lambert W function. Some of the interesting applications of this function are briefly discussed in the context of graphene which exhibits an interesting two dimensional structure with several characteristic properties and diverse practical applications.

  15. The Backgrounds Data Center

    NASA Technical Reports Server (NTRS)

    Snyder, W. A.; Gursky, H.; Heckathorn, H. M.; Lucke, R. L.; Berg, S. L.; Dombrowski, E. G.; Kessel, R. A.

    1993-01-01

    The Strategic Defense Initiative Organization has created data centers for midcourse, plumes, and backgrounds phenomenologies. The Backgrounds Data Center (BDC) has been designated as the prime archive for data collected by SDIO programs. The BDC maintains a Summary Catalog that contains 'metadata,' that is, information about data, such as when the data were obtained, what the spectral range of the data is, and what region of the Earth or sky was observed. Queries to this catalog result in a listing of all data sets (from all experiments in the Summary Catalog) that satisfy the specified criteria. Thus, the user can identify different experiments that made similar observations and order them from the BDC for analysis. On-site users can use the Science Analysis Facility (SAFE for this purpose. For some programs, the BDC maintains a Program Catalog, which can classify data in as many ways as desired (rather than just by position, time, and spectral range as in the Summary Catalog). For example, data sets could be tagged with such diverse parameters as solar illumination angle, signal level, or the value of a particular spectral ratio, as long as these quantities can be read from the digital record or calculated from it by the ingest program. All unclassified catalogs and unclassified data will be remotely accessible.

  16. Extragalactic Backgrounds after Planck

    NASA Astrophysics Data System (ADS)

    Dore, Olivier

    Among the potentially most important results of cosmology in the last decade is the realization that the star formation rate at redshifts greater than 1 is higher than at present by about an order of magnitude, and that half of the energy produced since the surface of last scattering has been absorbed and reemitted by dust. Most of the light produced by stars at high redshifts thus reaches us in the far infrared. This radiation is referred to as the cosmic infrared background (CIB) and is emitted primarily by dusty, star-forming galaxies at redshift z=1-4. Embedded in far infrared emission of the CIB is the history of star formation, dust production, and the growth of large scale structures. Our research project aims at shedding new light on several extragalactic backgrounds investigated by NASA surveys, in light of recent observational progresses in mapping the CIB. Most lately, two new missions, Planck and Herschel, released ground-breaking measurements of the CIB. These measurements are an order of magnitude deeper and wider than previous ones, and they are literally revolutionizing the field. Our understanding of these data is now advanced enough for us to leverage our measurement of the CIB in Planck and Herschel, in order to extract new scientific insights from past missions. We propose to combine Planck and Herschel public data with archival data from WISE, GALEX, Chandra and Fermi. Not only original, the impact of our research project should be immediate. Using the CIB as a full sky, bright, high redshift reference extragalactic background, we will exploit the underlying physical connection among these various cosmological datasets. We expect new insights about the CIB, but also about the multiple extragalactic backgrounds probed in combination with it. In particular, we will investigate the cosmic star formation history at a period where it peaks, and because the clustering of matter is driven by dark matter, the measurement of the CIB clustering also

  17. High-performance liquid chromatographic analysis of as-synthesised N,N'-dimethylformamide-stabilised gold nanoclusters product

    NASA Astrophysics Data System (ADS)

    Xie, Shunping; Paau, Man Chin; Zhang, Yan; Shuang, Shaomin; Chan, Wan; Choi, Martin M. F.

    2012-08-01

    Reverse-phase high-performance liquid chromatographic (RP-HPLC) separation and analysis of polydisperse water-soluble gold nanoclusters (AuNCs) stabilised with N,N'-dimethylformamide (DMF) were investigated. Under optimal elution gradient conditions, the separation of DMF-AuNCs was monitored by absorption and fluorescence spectroscopy. The UV-vis spectral characteristics of the separated DMF-AuNCs have been captured and they do not possess distinct surface plasmon resonance bands, indicating that all DMF-AuNCs are small AuNCs. The photoluminescence emission spectra of the separated DMF-AuNCs are in the blue-light region. Moreover, cationic DMF-AuNCs are for the first time identified by ion chromatography. Our proposed RP-HPLC methodology has been successfully applied to separate AuNCs of various Au atoms as well as DMF-stabilised ligands. Finally, the composition of the separated DMF-AuNCs was confirmed by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry and electrospray ionisation mass spectrometry, proving that the as-synthesised DMF-AuNCs product consists of Au10+, Au10, Au11, Au12, Au13, and Au14 NCs stabilised with various numbers of DMF ligands.Reverse-phase high-performance liquid chromatographic (RP-HPLC) separation and analysis of polydisperse water-soluble gold nanoclusters (AuNCs) stabilised with N,N'-dimethylformamide (DMF) were investigated. Under optimal elution gradient conditions, the separation of DMF-AuNCs was monitored by absorption and fluorescence spectroscopy. The UV-vis spectral characteristics of the separated DMF-AuNCs have been captured and they do not possess distinct surface plasmon resonance bands, indicating that all DMF-AuNCs are small AuNCs. The photoluminescence emission spectra of the separated DMF-AuNCs are in the blue-light region. Moreover, cationic DMF-AuNCs are for the first time identified by ion chromatography. Our proposed RP-HPLC methodology has been successfully applied to separate AuNCs of

  18. The potential for free and mixed convection in sedimentary basins

    USGS Publications Warehouse

    Raffensperger, J.P.; Vlassopoulos, D.

    1999-01-01

    Free thermal convection and mixed convection are considered as potential mechanisms for mass and heat transport in sedimentary basins. Mixed convection occurs when horizontal flows (forced convection) are superimposed on thermally driven flows. In cross section, mixed convection is characterized by convection cells that migrate laterally in the direction of forced convective flow. Two-dimensional finite-element simulations of variable-density groundwater flow and heat transport in a horizontal porous layer were performed to determine critical mean Rayleigh numbers for the onset of free convection, using both isothermal and semi-conductive boundaries. Additional simulations imposed a varying lateral fluid flux on the free-convection pattern. Results from these experiments indicate that forced convection becomes dominant, completely eliminating buoyancy-driven circulation, when the total forced-convection fluid flux exceeds the total flux possible due to free convection. Calculations of the thermal rock alteration index (RAI=q????T) delineate the patterns of potential diagenesis produced by fluid movement through temperature gradients. Free convection produces a distinct pattern of alternating positive and negative RAIs, whereas mixed convection produces a simpler layering of positive and negative values and in general less diagenetic alteration. ?? Springer-Verlag.

  19. Non-Maxwellian background effects in gyrokinetic simulations with GENE

    NASA Astrophysics Data System (ADS)

    Di Siena, A.; Görier, T.; Doerk, H.; Citrin, J.; Johnson, T.; Schneider, M.; Poli, E.; Contributors, JET

    2016-11-01

    The interaction between fast particles and core turbulence has been established as a central issue for a tokamak reactor. Recent results predict significant enhancement of electromagnetic stabilisation of ITG turbulence in the presence of fast ions. However, most of these simulations were performed with the assumption of equivalent Maxwellian distributed particles, whereas to rigorously model fast ions, a non-Maxwellian background distribution function is needed. To this aim, the underlying equations in the gyrokinetic code GENE have been re-derived and implemented for a completely general background distribution function. After verification studies, a previous investigation on a particular JET plasma has been revised with linear simulations. The plasma is composed by Deuterium, electron, Carbon impurities, NBI fast Deuterium and ICRH 3He. Fast particle distributions have been modelled with a number of different analytic choices in order to study the impact of non-Maxwellian distributions on the plasma turbulence: slowing down and anisotropic Maxwellian. Linear growth rates are studied as a function of the wave number and compared with those obtained using an equivalent Maxwellian. Generally, the choice of the 3He distribution seems to have a stronger impact on the microinstabilities than that of the fast Deuterium.

  20. Convective Regimes in Crystallizing Basaltic Magma Chambers

    NASA Astrophysics Data System (ADS)

    Gilbert, A. J.; Neufeld, J. A.; Holness, M. B.

    2015-12-01

    Cooling through the chamber walls drives crystallisation in crustal magma chambers, resulting in a cumulate pile on the floor and mushy regions at the walls and roof. The liquid in many magma chambers, either the bulk magma or the interstitial liquid in the mushy regions, may convect, driven either thermally, due to cooling, or compositionally, due to fractional crystallization. We have constructed a regime diagram of the possible convective modes in a system containing a basal mushy layer. These modes depend on the large-scale buoyancy forcing characterised by a global Rayleigh number and the proportion of the chamber height constituting the basal mushy region. We have tested this regime diagram using an analogue experimental system composed of a fluid layer overlying a pile of almost neutrally buoyant inert particles. Convection in this system is driven thermally, simulating magma convection above and within a porous cumulate pile. We observe a range of possible convective regimes, enabling us to produce a regime diagram. In addition to modes characterised by convection of the bulk and interstitial fluid, we also observe a series of regimes where the crystal pile is mobilised by fluid motions. These regimes feature saltation and scouring of the crystal pile by convection in the bulk fluid at moderate Rayleigh numbers, and large crystal-rich fountains at high Rayleigh numbers. For even larger Rayleigh numbers the entire crystal pile is mobilised in what we call the snowglobe regime. The observed mobilisation regimes may be applicable to basaltic magma chambers. Plagioclase in basal cumulates crystallised from a dense magma may be a result of crystal mobilisation from a plagioclase-rich roof mush. Compositional convection within such a mush could result in disaggregation, enabling the buoyant plagioclase to be entrained in relatively dense descending liquid plumes and brought to the floor. The phenocryst load in porphyritic lavas is often interpreted as a

  1. Tropical convection and climate sensitivity

    NASA Astrophysics Data System (ADS)

    Williams, Ian Nobuo

    Surface temperature has become a popular measure of climate change, but it does not provide the most critical test of climate models. This thesis presents new methods to evaluate climate models based on processes determining the climate sensitivity to radiative forcing from atmospheric greenhouse gases. Cloud radiative feedbacks depend on temperature and relative humidity profiles in addition to surface temperature, through the dependence of cloud type on boundary layer buoyancy. Buoyancy provides a reference to which the onset of deep convection is invariant, and gives a compact description of sea surface temperature changes and cloud feedbacks suitable for diagnostics and as a basis for simplified climate models. This thesis also addresses uncertainties in climate sensitivity involving terrestrial ecosystem responses to global warming. Different diagnostics support different conclusions about atmospheric transport model errors that could imply either stronger or weaker northern terrestrial carbon sinks. Equilibrium boundary layer concepts were previously used in idealized tropical climate models, and are extended here to develop a diagnostic of boundary layer trace gas transport and mixing. Hypotheses linking surface temperature to climate and precipitation sensitivity were tested in this thesis using comprehensive and idealized climate model simulations, and observational datasets. The results do not support the thermostat hypothesis that predicts deep cloud cover will increase with radiative forcing and limit sea surface temperatures to the maximum present-day warm pool temperature. Warm pool temperatures increased along with or even faster than the tropical average over the past several decades, while diagnosed deep cloud cover has not significantly increased, in agreement with global warming simulations. Precipitation sensitivity also depends on more than surface temperature alone, including thermodynamic profiles and air-sea temperature differences. The

  2. Stochastic models for convective momentum transport.

    PubMed

    Majda, Andrew J; Stechmann, Samuel N

    2008-11-18

    The improved parameterization of unresolved features of tropical convection is a central challenge in current computer models for long-range ensemble forecasting of weather and short-term climate change. Observations, theory, and detailed smaller-scale numerical simulations suggest that convective momentum transport (CMT) from the unresolved scales to the resolved scales is one of the major deficiencies in contemporary computer models. Here, a combination of mathematical and physical reasoning is utilized to build simple stochastic models that capture the significant intermittent upscale transports of CMT on the large scales due to organized unresolved convection from squall lines. Properties of the stochastic model for CMT are developed below in a test column model environment for the large-scale variables. The effects of CMT from the stochastic model on a large-scale convectively coupled wave in an idealized setting are presented below as a nontrivial test problem. Here, the upscale transports from stochastic effects are significant and even generate a large-scale mean flow which can interact with the convectively coupled wave.

  3. Nonlinear anelastic modal theory for solar convection

    NASA Technical Reports Server (NTRS)

    Latour, J.; Toomre, J.; Zahn, J.-P.

    1983-01-01

    Solar envelope models are developed using single-mode anelastic equations as a description of turbulent convection which provide estimates for the variation with depth of the largest convective cellular flows, with horizontal sizes comparable to the total depth of the convection zone. These models can be used to describe compressible motions occurring over many density scale heights. Single-mode anelastic solutions are obtained for a solar envelope whose mean stratification is nearly adiabatic over most of its vertical extent because of the enthalpy flux explicitly carried by the big cell, while a subgrid scale representation of turbulent heat transport is incorporated into the treatment near the surface. It is shown that the single-mode equations allow two solutions for the same horizontal wavelength which are distinguished by the sense of the vertical velocity at the center of the three-dimensional cell. It is found that the upward directed flow experiences large pressure effects which can modify the density fluctuations so that the sense of the buoyancy force is changed, with buoyancy braking actually achieved near the top of the convection zone. It is suggested that such dynamical processes may explain why the amplitudes of flows related to the largest scales of convection are so weak in the solar atmosphere.

  4. Convection in Oblate Late-Type Stars

    NASA Astrophysics Data System (ADS)

    Wang, Junfeng

    2015-08-01

    In this talk, we present recent investigations of the convection, oblateness and differential rota-tion in rapidly rotating late-type stars with a novel and powerful Compressible High-ORder Un-structured Spectral-difference (CHORUS) code (J. Comput. Physics Vol. 290, 190-211, 2015). Recent observations have revealed the drastic effects of rapid rotation on stellar structure, including centrifugal deformation and gravity darkening. The centrifugal force counteracts gravity, causing the equatorial region to expand. Consequently, rapidly rotating stars are oblate and cannot be described by an one-dimensional spherically symmetric model. If convection establishes a substantial differential rotation, as in the envelopes of late-type stars, this can considerably increase the oblateness. We have successfully extended the CHORUS code to model rapidly rotating stars on fixed unstructured grids. In the CHORUS code, the hydrodynamic equations are discretized by a robust and efficient high-order Spectral Difference Method (SDM). The discretization stencil of the spectral difference method is compact and advantageous for parallel processing. CHORUS has been verified by comparing to spherical anelastic convection simulations on benchmark problems. This talk will be centred on the first global simulations by CHORUS for convection in oblate stars with different rotating rates. We quantify the influence of the oblateness on the mean flows and the thermal structure of the convection zone through these new simulations and implications of these results for stellar observations will be discussed.

  5. Convection in Oblate Solar-Type Stars

    NASA Astrophysics Data System (ADS)

    Wang, Junfeng; Miesch, Mark S.; Liang, Chunlei

    2016-10-01

    We present the first global 3D simulations of thermal convection in the oblate envelopes of rapidly rotating solar-type stars. This has been achieved by exploiting the capabilities of the new compressible high-order unstructured spectral difference (CHORUS) code. We consider rotation rates up to 85% of the critical (breakup) rotation rate, which yields an equatorial radius that is up to 17% larger than the polar radius. This substantial oblateness enhances the disparity between polar and equatorial modes of convection. We find that the convection redistributes the heat flux emitted from the outer surface, leading to an enhancement of the heat flux in the polar and equatorial regions. This finding implies that lower-mass stars with convective envelopes may not have darker equators as predicted by classical gravity darkening arguments. The vigorous high-latitude convection also establishes elongated axisymmetric circulation cells and zonal jets in the polar regions. Though the overall amplitude of the surface differential rotation, ΔΩ, is insensitive to the oblateness, the oblateness does limit the fractional kinetic energy contained in the differential rotation to no more than 61%. Furthermore, we argue that this level of differential rotation is not enough to have a significant impact on the oblateness of the star.

  6. Suppression of Marangoni Convection in Float Zones

    NASA Technical Reports Server (NTRS)

    Dressler, R. F.

    1985-01-01

    The basic purpose of this program is to demonstrate by means of an Earth-based 1-g experiment that the undesirable Marangoni (surface tension) convection can be suppressed or significantly reduced by means of gas jets directed tangentially to the free surface of the liquid in a float zone. These jets will establish the tangential shear stress field over the surface which must be adjusted to equal the counter-stress resultant of the Marangoni shear stress which causes the convection. For proposed materials processing in space (o-g), particularly of important, highly reactive semiconductor materials, e.g., silicon, microgravity will virtually eliminate the unwanted thermal-buoyancy convection in the liquid silicon, but will have no effect in reducing the Marangoni convection. Unless this can be sufficiently suppressed by other means, there may be no significant advantages to the proposed space processing of reactive semiconductors. Although some inert gas such as argon must be used for the corrosive liquid silicon, the Earth-based experiment uses air jets and various transparent oils, since the basic principle involved is the same. The first float zone is enclosed in a very small rectangular box with a quasi-planar free surface. Stable Marangoni convection has been achieved and velocities measured photographically. The air jet system with variable velocity and temperature is under construction. Three independent parameters must be optimized to attain maximum suppression: the gas velocity, angle of attack, and gas temperature.

  7. Diagnosing convective instability using VAS data

    NASA Technical Reports Server (NTRS)

    Petersen, R. A.; Uccellini, L. W.; Chesters, D.; Mostek, A.; Keyser, D.

    1983-01-01

    The utility of combining visible and various infrared images from the VAS to produce a forecasting tool, that can be available on a near real time basis, to predict severe weather development is shown. Areas where dry air in the midtroposphere overlays substantial moisture at low levels are used to diagnose mesoscale regions that have the potential for being convectively unstable before the onset of severe convection. Specifically, 6.7 micron water vapor imagery, used for isolating regions of substantial midlevel dryness, are combined with images of low level clouds or with split-window low level moisture images to delineate regions that have the potential for convective instability. In areas where scattered low level clouds are present, computer generated, color image combinations are used to isolate those warm, low level clouds that are in potential convectively unstable environments from clouds that exist under a deeply moist atmosphere. In clear regions, the split window technique is used for delineating areas of substantial boundary layer moisture. These images are again computer overlayed by the midlevel dryness to produce a color coded image of potential convective instability.

  8. CONVECTIVE BABCOCK-LEIGHTON DYNAMO MODELS

    SciTech Connect

    Miesch, Mark S.; Brown, Benjamin P.

    2012-02-20

    We present the first global, three-dimensional simulations of solar/stellar convection that take into account the influence of magnetic flux emergence by means of the Babcock-Leighton (BL) mechanism. We have shown that the inclusion of a BL poloidal source term in a convection simulation can promote cyclic activity in an otherwise steady dynamo. Some cycle properties are reminiscent of solar observations, such as the equatorward propagation of toroidal flux near the base of the convection zone. However, the cycle period in this young sun (rotating three times faster than the solar rate) is very short ({approx}6 months) and it is unclear whether much longer cycles may be achieved within this modeling framework, given the high efficiency of field generation and transport by the convection. Even so, the incorporation of mean-field parameterizations in three-dimensional convection simulations to account for elusive processes such as flux emergence may well prove useful in the future modeling of solar and stellar activity cycles.

  9. Parameterization of Oceanic Convection In Primary Production

    NASA Astrophysics Data System (ADS)

    Wehde, Henning

    The influence of Oceanic Convection in Primary Production was investigated in a numerical model study. Lagrangian tracers were introduced to a 2.5 dimensional non- hydrostatic convection model. Model domain is a vertical ocean slice with an isotropic grid size of 5 meters, vanishing gradients normal to the plane and cyclic lateral bound- ary conditions. The horizontal dimension is chosen according to the expected convec- tive aspect ratios that vary between 1 and 3. For each tracer a simple phytoplankton model predicts growth dependent on light conditions. The mean amount of light avail- able for growth for a plankton cell depends on the thickness of the mixed layer and the convective activity. The model was applied to several shelf and open ocean strat- ifications and forced with varying atmospheric conditions to study the sensitivity and to quantify the contact duration and return frequency of plankton into the euphotic zone. The phytoplankton concentration is closely related to the depth of the convec- tively mixed layer. The oceanic convection forms the actual mixed layer depth and was found to heavily influence the contact duration and return frequency of a plank- ton cell into the euphotic zone. Phytoplankton is dispersed by convection in vertical orbit cells. The vertical motion allow for the frequent return of plankton cells to the euphotic zone.

  10. Heterogeneous nanofluids: natural convection heat transfer enhancement

    PubMed Central

    2011-01-01

    Convective heat transfer using different nanofluid types is investigated. The domain is differentially heated and nanofluids are treated as heterogeneous mixtures with weak solutal diffusivity and possible Soret separation. Owing to the pronounced Soret effect of these materials in combination with a considerable solutal expansion, the resulting solutal buoyancy forces could be significant and interact with the initial thermal convection. A modified formulation taking into account the thermal conductivity, viscosity versus nanofluids type and concentration and the spatial heterogeneous concentration induced by the Soret effect is presented. The obtained results, by solving numerically the full governing equations, are found to be in good agreement with the developed solution based on the scale analysis approach. The resulting convective flows are found to be dependent on the local particle concentration φ and the corresponding solutal to thermal buoyancy ratio N. The induced nanofluid heterogeneity showed a significant heat transfer modification. The heat transfer in natural convection increases with nanoparticle concentration but remains less than the enhancement previously underlined in forced convection case. PMID:21711755

  11. Local structure in solid solutions of stabilised zirconia with actinide dioxides (UO{sub 2}, NpO{sub 2})

    SciTech Connect

    Walter, Marcus; Somers, Joseph; Bouexiere, Daniel; Rothe, Joerg

    2011-04-15

    The local structure of (Zr,Lu,U)O{sub 2-x} and (Zr,Y,Np)O{sub 2-x} solid solutions has been investigated by extended X-ray absorption fine structure (EXAFS). Samples were prepared by mixing reactive (Zr,Lu)O{sub 2-x} and (Zr,Y)O{sub 2-x} precursor materials with the actinide oxide powders, respectively. Sintering at 1600 {sup o}C in Ar/H{sub 2} yields a fluorite structure with U(IV) and Np(IV). As typical for stabilised zirconia the metal-oxygen and metal-metal distances are characteristic for the different metal ions. The bond lengths increase with actinide concentration, whereas highest adaptation to the bulk stabilised zirconia structure was observed for U---O and Np---O bonds. The Zr---O bond shows only a slight increase from 2.14 A at 6 mol% actinide to 2.18 A at infinite dilution in UO{sub 2} and NpO{sub 2}. The short interatomic distance between Zr and the surrounding oxygen and metal atoms indicate a low relaxation of Zr with respect to the bulk structure, i.e. a strong Pauling behaviour. -- Graphical abstract: Metal-oxygen bond distances in (Zr,Lu,U)O{sub 2-x} solid solutions with different oxygen vacancy concentrations (Lu/Zr=1 and Lu/Zr=0.5). Display Omitted Research Highlights: {yields} EXAFS indicates high U and Np adaption to the bulk structure of stabilised zirconia. {yields} Zr---O bond length is 2.18 A at infinite Zr dilution in UO{sub 2} and NpO{sub 2}. {yields} Low relaxation (strong Pauling behaviour) of Zr explains its low solubility in UO{sub 2}.

  12. Erosion and stabilisation sequences in relation to base level changes in the El Cautivo badlands, SE Spain

    NASA Astrophysics Data System (ADS)

    Alexander, R. W.; Calvo-Cases, A.; Arnau-Rosalén, E.; Mather, A. E.; Lázaro-Suau, R.

    2008-08-01

    The complex multiple-age badlands at El Cautivo are cut in upper Miocene marls of the uplifted and dissected Tabernas Basin, Almería, in semi-arid SE Spain. Previous work identified six episodes of erosion and subsequent stabilisation, with ages ranging from the late Pleistocene to the present day. This paper uses newly-acquired digital elevation models, orthorectified aerial photographs, and field survey data to illustrate the development sequence of a series of gullies which drain into the Rambla de Tabernas. Changing drainage directions and phases of incision and stabilisation are related to the filling and subsequent dissection of the Tabernas lower lake sediments, differential material strengths, changing process mixes on hillslopes and, in more recent times, land-use changes. We propose that the erosional phases differed considerably in both time-span and depth of incision. A long period of stability during the existence of the lake led to extensive pediment development in the area. Subsequent incision into the lake sediments by the Rambla de Tabernas produced a limited amount of localised pediment incision in the tributary catchment. Subsequent aggradation occurred in the lower reaches of gullies when incision by the Rambla de Tabernas reached the underlying bedrock. Following incision through the lip of the lake the Rambla de Tabernas cut rapidly into the bedrock leading to an altered drainage direction in the tributary catchments and the major phase of badland development visible today. Stabilisation of the pediments and some of the north-facing slopes occurred subsequently. Increased sediment loads, caused by climatic shift, a change in land use, or both, gave rise to a later phase of valley fill in the gullies. The modern channels have reduced this fill to isolated terrace benches and there are also localised remnants of a lower, more recent fill. Whilst supporting the general interpretation of the site's development by Alexander et al. [Alexander, R

  13. Electrically switchable polymer stabilised broadband infrared reflectors and their potential as smart windows for energy saving in buildings

    PubMed Central

    Khandelwal, Hitesh; Loonen, Roel C. G. M.; Hensen, Jan L. M.; Debije, Michael G.; Schenning, Albertus P. H. J.

    2015-01-01

    Electrically switchable broadband infrared reflectors that are relatively transparent in the visible region have been fabricated using polymer stabilised cholesteric liquid crystals. The IR reflectors can change their reflection/transmission properties by applying a voltage in response to changes in environmental conditions. Simulations predict that a significant amount of energy can be saved on heating, cooling and lighting of buildings in places such as Madrid by using this switchable IR reflector. We have also fabricated a switchable IR reflector which can also generate electricity. These polymer based switchable IR reflectors are of high potential as windows of automobiles and buildings to control interior temperatures and save energy. PMID:26132328

  14. Electrically switchable polymer stabilised broadband infrared reflectors and their potential as smart windows for energy saving in buildings

    NASA Astrophysics Data System (ADS)

    Khandelwal, Hitesh; Loonen, Roel C. G. M.; Hensen, Jan L. M.; Debije, Michael G.; Schenning, Albertus P. H. J.

    2015-07-01

    Electrically switchable broadband infrared reflectors that are relatively transparent in the visible region have been fabricated using polymer stabilised cholesteric liquid crystals. The IR reflectors can change their reflection/transmission properties by applying a voltage in response to changes in environmental conditions. Simulations predict that a significant amount of energy can be saved on heating, cooling and lighting of buildings in places such as Madrid by using this switchable IR reflector. We have also fabricated a switchable IR reflector which can also generate electricity. These polymer based switchable IR reflectors are of high potential as windows of automobiles and buildings to control interior temperatures and save energy.

  15. Electrically switchable polymer stabilised broadband infrared reflectors and their potential as smart windows for energy saving in buildings.

    PubMed

    Khandelwal, Hitesh; Loonen, Roel C G M; Hensen, Jan L M; Debije, Michael G; Schenning, Albertus P H J

    2015-07-01

    Electrically switchable broadband infrared reflectors that are relatively transparent in the visible region have been fabricated using polymer stabilised cholesteric liquid crystals. The IR reflectors can change their reflection/transmission properties by applying a voltage in response to changes in environmental conditions. Simulations predict that a significant amount of energy can be saved on heating, cooling and lighting of buildings in places such as Madrid by using this switchable IR reflector. We have also fabricated a switchable IR reflector which can also generate electricity. These polymer based switchable IR reflectors are of high potential as windows of automobiles and buildings to control interior temperatures and save energy.

  16. Asymptotic stabilisation of the ball and beam system: design of energy-based control law and experimental results

    NASA Astrophysics Data System (ADS)

    Muralidharan, Vijay; Anantharaman, S.; Mahindrakar, Arun D.

    2010-06-01

    We present a new nonlinear control law to stabilise the ball and beam system at a desired operating point. The control law is based on the interconnection and damping assignment-passivity-based control (IDA-PBC) methodology developed in Ortega, Spong, Gomez-Estern, and Blankenstien (Ortega, R., Spong, M., Gomez-Estern, F., and Blankenstien, G. (2002), 'Stabilization of Underactuated Mechanical Systems via Interconnection and Damping Assignment', IEEE Transactions on Automatic Control, 47, 1218-1233) that guarantees stability in the sense of Lyapunov. We present a novel proof of the asymptotic stability of the desired operating point. The validity of the proposed control law is demonstrated through the experimental results.

  17. Backstepping designs for the stabilisation of nonlinear sampled-data systems via approximate discrete-time model

    NASA Astrophysics Data System (ADS)

    Üstüntürk, Ahmet; Kocaoğlan, Erol

    2013-05-01

    The problems of backstepping, adaptive backstepping and reduced order observer based output feedback control of sampled-data nonlinear systems in strict feedback form are considered. Controller design methods based on the Euler approximate model are presented for these problems. The controllers are designed to compensate the effects of the discrepancy between the Euler approximate model and exact discrete time model, parameter estimation error in adaptive control and observer error in output feedback control, which behave as disturbance. It is shown that the obtained controllers semi-globally practically asymptotically stabilise the plant model under standard assumptions. Then numerical examples are given to illustrate the design methods.

  18. Embolisation of pheochromocytoma to stabilise and wean a patient in cardiogenic shock from emergency extracorporeal life support

    PubMed Central

    Hey, Thomas Morris; Elle, Bo; Jensen, Marianne Kjær

    2015-01-01

    Pheochromocytoma is a catecholamine-secreting tumour associated with varying symptoms ranging from episodic headache, sweating, paroxysmal hypertension and tachycardia to intractable cardiogenic shock. Cardiogenic shock is rare but well-described and the timing of correct management is crucial since mortality is high. Fifty per cent of pheochromocytomas are diagnosed on autopsy. We report on a case of embolisation of the adrenal artery during ongoing extracorporeal life support (ECLS) in order to stabilise and wean the patient from ECLS as a bridge to final surgery. PMID:25737217

  19. Convective heat transfer in buildings: Recent research results

    NASA Astrophysics Data System (ADS)

    Bauman, F. S.; Gadgil, A.; Kammerud, R. C.; Altmayer, E.; Nansteel, M.

    1982-04-01

    Small scale water filled enclosures were used to study convective heat transfer in buildings. The convective processes investigated are: (1) natural convective heat transfer between room surfaces and the adjacent air; (2) natural convective heat transfer between adjacent rooms through a doorway or other openings; and (3) forced convection between the building and its external environment (such as, wind driven ventilation through windows, doors, or other openings). Results for surface convection coefficients are compared with existing ASHRAE coorelations and differences of as much as 20% are observed. Numerical simulations of wind driven natural ventilation exhibit good qualitative agreement with published wind tunnel data.

  20. Confined States in Large-Aspect-Ratio Thermosolutal Convection

    NASA Technical Reports Server (NTRS)

    Spina, Alejandro; Toomre, Juri; Knobloch, Edgar

    1998-01-01

    Two-dimensional thermosolutal convection with no-slip boundary conditions is studied using numerical simulations in a periodic domain. The domain is large enough to follow the evolution of phase instabilities of fully nonlinear traveling waves. In the parameter regime studied these instabilities evolve, without loss of phase or hysteresis, into a series of confined states or pulses characterized by locally enhanced heat and solute transport. The wavelength and phase velocity of the traveling rolls within a pulse differ substantially from those in the background. The pulses drift in the same direction as the convection rolls on which they ride but more slowly, and are characterized by an exponential leading front and an oscillatory trailing end. Multiple, apparently stable, states are found for identical parameter values. The qualitative properties of the pulses are in good agreement with the predictions of a third-order phase equation which accounts for the relation between wave number and phase velocity, the oscillatory tails and the multiplicity of states. These properties of the pulses are shown to be a consequence of Shil'nikov dynamics in the spatial domain.

  1. Ecotoxicity of chemically stabilised metal(loid)s in shooting range soils.

    PubMed

    Sanderson, Peter; Naidu, Ravi; Bolan, Nanthi

    2014-02-01

    Five chemical amendments (soft rock phosphate, lime, commercial phosphate amendment, red mud and magnesium oxide) were applied across four different shooting range soils to chemically stabilise metal(loid)s in the soils. Soils were contaminated with Pb between 2330 and 12,167 mg/kg, Sb from 7.4 to 325 mg/kg and soil pH ranged from 5.43 to 9.29. Amendments were tested for their ability to reduce the bioavailability of Pb, Sb, Zn, Ni, Cu and As in the soils to soil organisms after one year of aging, by measuring a series of ecotoxicological endpoints for earthworms and plants and soil microbial activity. Growth-based endpoints for earthworms and plants were not significantly affected by amendment addition, except in the most contaminated soil. Per cent survival and weight-loss reduction of earthworms was enhanced by amendment addition in only the most contaminated soil. Plant biomass and root elongation was not significantly affected by amendment addition (p=<0.05). Red mud and magnesium oxide appeared toxic to plants and earthworms, probably due to highly alkaline pH (9-12). Lead in soil organisms was relatively low despite the high concentrations of Pb in the soils, suggesting low bioavailability of Pb. Uptake of Pb by earthworms was reduced by between 40 and 96 per cent by amendments, but not across all soils. Amendments reduced Sb in earthworms in Townsville soil by up to 92 per cent. For lettuce the average uptake of Pb was reduced by 40 to 70 per cent with amendment addition in Townsville, Darwin and Perth soil. The effect of amendments on the uptake of Sb, Zn, Ni, Cu and As was variable between soils and amendments. Microbial activity was increased by greater than 50 per cent with amendments addition, with soft rock phosphate and lime being the most effective in Murray Bridge and TV soils and commercial phosphate and MgO being the most effective in Darwin and Perth soils.

  2. Cruciate Retaining Versus Cruciate Stabilising Total Knee Arthroplasty – A Prospective Randomised Kinematic Study

    PubMed Central

    Godwin, T L; Bayan, A

    2016-01-01

    Objective: While there is a large body of research in regards to cruciate retaining(CR) and cruciate sacrificing total condylar knee replacement, the literature is spars in regards to highly conforming polyetheylene such as the triatholon cruciate stabilising tibial insert (CS).The aim was to determine whether there is a difference in the range of motion, kinematics as well as the functional outcome for Triathlon CS and CR TKJR. Methods: A single hospital consecutive series of one surgeon between 2011 and 2013 were enrolled. Kinematic data recorded prospectively at the time of surgery utilizing imageless navigation included preoperative and post-replacement extension, gravity flexion, passive flexion and rotation. Intraoperative femoral and tibial cuts and definitive implants were also recorded. Statistically analysis performed to compare CS and CR TKJR range of motion, deformity correction, and rotation pre and post-operatively. Oxford functional scores were obtained at the final follow up. 124 patients were randomised to 71 CS and 53 CR TKJR. The demographics were comparable between the two groups. Results: No significant difference was found between the groups’ preoperative range of motion. The net gain in extension for the CS group was 5.65 degrees (4.14-7.17) and for CR 5.64 degrees (4.24-7.04, p=0.99) with no significant difference shown. Post-operative gravity flexion significantly increased in CS TKJR with 129.01 degrees (127.37130.66) compared with 126.35 degrees (124.39-128.30, p =0.04) for CR. A weak positive correlation was shown between the size of distal femoral cut and post-operative extension for both CS and CR TKJR. A weak positive correlation was also shown for the difference between the intraoperative cuts (tibial and femoral) and the size of the implants used, in relation to post-operative extension. Post-operative oxford scores at average of 3.4 year follow up comparable between groups. Conclusion: The kinematics of CS and CR TKJR are

  3. Failure of Polyethelene Insert Locking Mechanism after a Posterior Stabilised Total Knee Arthroplasty- A Case Report

    PubMed Central

    Reddy, AY Gurava; Rajan, D Soundar; Chiranjeevi, T; Karthik, C; Kiran, E Krishna

    2016-01-01

    Introduction: Disengagement of polyethylene insert used in total knee arthroplasty is a rare but serious complication. Still rarer is disengagement because of failure of tibial insert locking mechanism. We report a previously unpublished complication of polyethylene insert locking mechanism failure in a 10-months-old posterior stabilized total knee arthroplasty in a 70-year-old woman with osteoarthritis for whom Attune (Depuy) knee implant was used. Case Presentation: A 70-year-old female underwent (Attune, Depuy) primary bilateral posterior stabilised total knee arthroplasty in a private hospital. The patient did not have any complaints and had had been functioning well post her arthroplasty. After five months of surgery she had a fall and sustained injury over right hip which was treated with Cemented Bipolar Hemiarthroplasty. Ten months after index surgery, she sustained trivial fall and presented to the same hospital with knee pain and swelling, where the right knee prosthesis was found to be dislocated. An attempted closed reduction under anaesthesia failed, after which she was referred to our centre with an unstable, painful, swollen right knee in a long knee brace. The physical examination at the time of admission showed posterior sag of the tibia, fullness in the postero-lateral corner, quadriceps muscle atrophy without any neurovascular deficit oflower leg. Postero-lateral dislocation was confirmed with radiographs. Surgical error as a possible causative factor was excluded because patient had been functioning well after surgery. Her comorbidities included hypertension and hyponatremia. ESR and CRP were within normal limits. An open reduction surgery was planned. On exposure, polyethylene was found in the postero-lateral corner of the knee. We were not sure that revising the polyethylene alone would suffice as the poly and locking mechanism was of a relatively new design and hence it was decided to proceed with revision of the components. Revision was done

  4. Local curvature measurements of a lean, partially premixed swirl-stabilised flame

    NASA Astrophysics Data System (ADS)

    Bayley, Alan E.; Hardalupas, Yannis; Taylor, Alex M. K. P.

    2012-04-01

    A swirl-stabilised, lean, partially premixed combustor operating at atmospheric conditions has been used to investigate the local curvature distributions in lifted, stable and thermoacoustically oscillating CH4-air partially premixed flames for bulk cold-flow Reynolds numbers of 15,000 and 23,000. Single-shot OH planar laser-induced fluorescence has been used to capture instantaneous images of these three different flame types. Use of binary thresholding to identify the reactant and product regions in the OH planar laser-induced fluorescence images, in order to extract accurate flame-front locations, is shown to be unsatisfactory for the examined flames. The Canny-Deriche edge detection filter has also been examined and is seen to still leave an unacceptable quantity of artificial flame-fronts. A novel approach has been developed for image analysis where a combination of a non-linear diffusion filter, Sobel gradient and threshold-based curve elimination routines have been used to extract traces of the flame-front to obtain local curvature distributions. A visual comparison of the effectiveness of flame-front identification is made between the novel approach, the threshold binarisation filter and the Canny-Deriche filter. The novel approach appears to most accurately identify the flame-fronts. Example histograms of the curvature for six flame conditions and of the total image area are presented and are found to have a broader range of local flame curvatures for increasing bulk Reynolds numbers. Significantly positive values of mean curvature and marginally positive values of skewness of the histogram have been measured for one lifted flame case, but this is generally accounted for by the effect of flame brush curvature. The mean local flame-front curvature reduces with increasing axial distance from the burner exit plane for all flame types. These changes are more pronounced in the lifted flames but are marginal for the thermoacoustically oscillating flames. It is

  5. A new conceptual model of convection

    SciTech Connect

    Walcek, C.

    1995-09-01

    Classical cumulus parameterizations assume that cumulus clouds are entraining plumes of hot air rising through the atmosphere. However, ample evidence shows that clouds cannot be simulated using this approach. Dr. Walcek suggests that cumulus clouds can be reasonably simulated by assuming that buoyant plumes detrain mass as they rise through the atmosphere. Walcek successfully simulates measurements of tropical convection using this detraining model of cumulus convection. Comparisons with measurements suggest that buoyant plumes encounter resistance to upward movement as they pass through dry layers in the atmosphere. This probably results from turbulent mixing and evaporation of cloud water, which generates negatively buoyant mixtures which detrain from the upward moving plume. This mass flux model of detraining plumes is considerably simpler than existing mass flux models, yet reproduces many of the measured effects associated with convective activity. 1 fig.

  6. A global radiative-convective feedback

    NASA Technical Reports Server (NTRS)

    Fowler, Laura D.; Randall, David A.

    1994-01-01

    We have investigated the sensitivity of the intensity of convective activity and atmospheric radiative cooling to radiatively thick upper-tropospheric clouds using a new version of the Colorado State University General Circulation Model (CSU GCM). The model includes a bulk cloud microphysics scheme to predict the formation of cloud water, cloud ice, rain, and snow. The cloud optical properties are interactive and dependent upon the cloud water and cloud ice paths. We find that the formation of a persistent upper tropospheric cloud ice shield leads to decreased atmospheric radiative cooling and increased static stability. Convective activity is then strongly suppressed. In this way, upper-tropospheric clouds act as regulators of the global hydrologic cycle, and provide a negative feedback between atmospheric radiative cooling and convective activity.

  7. Salt-finger convection under reduced gravity

    NASA Technical Reports Server (NTRS)

    Chen, C. F.

    1990-01-01

    Salt-finger convection in a double-diffusive system is a motion driven by the release of gravitational potential due to differential diffusion rates. Because of the fact that the destabilizing effect of the concentration gradient is amplified by the Lewis number (the ratio of thermal diffusivity to solute diffusivity) salt-finger convection can be generated at very much reduced gravity levels. This effect may be of importance in the directional solidification of binary alloys carried out in space. The transport of solute and heat by salt-finger convection at microgravity conditions is considered; instability arising from surface tension gradients, the Marangoni instability, is discussed, and the possible consequences of combined salt-finger and Marangoni instability are considered.

  8. Viscous stratification of the earth and convection

    NASA Technical Reports Server (NTRS)

    Elsasser, W. M.

    1972-01-01

    The shallow model of the earth's mantle is discussed along with a variety of geophysical arguments for its correctness and against the existence of deep convection. The main agrument is summarized in the proposal that the astheno sphere is less viscous (by a factor of 10 to 100) than has generally been assumed. In this shallow model, the return flow is essentially through the asthenosphere. The dynamical agent is the steep temperature gradient in the upper mantle. Speculations as to the historical variation of this gradient are advanced. The effects on the model of a nonuniform earth aggregation are considered and shown to favor shallow convection as well as a top convective layer (lithosphere plus asthenosphere) whose depth increases slowly over the earth's life, leading to a tectonic activity that increases gradually with time.

  9. Diffusion-convection function of cosmic rays

    NASA Technical Reports Server (NTRS)

    Zhang, G.; Yang, G.

    1985-01-01

    The fundamental properties and some numerical results of the solution of the diffusion equation of an impulsive cosmic-ray point source in an uniform, unbounded and spherically symmetrical moving medium is presented. The diffusion-convection(D-C) function is an elementary composite function of the solution of the D-C equation for the particles injected impulsively from a diffusive point source into the medium. It is the analytic solution derived by the dimensional method for the propagation equation of solar cosmic rays in the heliosphere, i.e. the interplanetary space. Because of the introduction of convection effect of solar wind, a nonhomogeneous term appears in the propagation equation, it is difficult to express its solution in terms of the ordinary special functions. The research made so far has led to a solution containing only the first order approximation of the convection effect.

  10. Eclogites, pyroxene geotherm, and layered mantle convection.

    PubMed

    Basu, A R; Ongley, J S; Macgregor, I D

    1986-09-19

    Temperatures of equilibration for the majority (81 percent) of the eclogite xenoliths of the Roberts Victor kimberlite pipe in South Africa range between 1000 degrees and 1250 degrees C, falling essentially on the gap of the lower limb of the subcontinental inflected geotherm derived from garnet peridotite xenoliths. In view of the Archean age (>2.6 x 10(9) years) of these eclogites and their stratigraphic position on the geotherm, it is proposed that the inflected part of the geotherm represents the convective boundary layer beneath the conductive lid of the lithospheric plate. The gradient of 8 Celsius degrees per kilometer for the inflection is characteristic of a double thermal boundary layer and suggests layered convection rather than whole mantle convection for the earth.

  11. Minimal Joule dissipation models of magnetospheric convection

    NASA Astrophysics Data System (ADS)

    Barbosa, D. D.

    This paper gives a topical review of theoretical models of magnetospheric convection based on the concept of minimal Joule dissipation. A two-dimensional slab model of the ionosphere featuring an enhanced conductivity auroral oval is used to compute high-latitude electric fields and currents. Mathematical methods used in the modeling include Fourier analysis, fast Fourier transforms, and variational calculus. Also, conformal transformations are introduced in the analysis, which enable the auroral oval to be represented as a nonconcentric, crescent-shaped figure. Convection patterns appropriate to geomagnetic quiet and disturbed conditions are computed, the differentiating variable being the relative amount of power dissipated in the magnetospheric ring current. When ring current dissipation is small, the convection electric field is restricted to high latitudes (shielding regime), and when it is large, a significant penetration of the field to low latitudes occurs, accompanied by an increase in the ratio of the region I current to the region 2 current.

  12. Laser-induced natural convection and thermophoresis

    NASA Astrophysics Data System (ADS)

    Wang, C. Y.; Morse, T. F.; Cipolla, J. W., Jr.

    1985-02-01

    The influence of axial laser volumetric heating and forced convection on the motion of aerosol particles in a vertical tube has been studied using the Boussinesq approximation. For constant wall temperature, an asymptotic case provides simple temperature and velocity profiles that determine the convection and thermophoretic motion of small aerosol particles. Laser heating induces upward buoyant motion near the tube center, and when forced convection is downward, there may be an inflection in the velocity profile. For constant laser heating (a small absorption limit), a velocity profile may be found that will minimize the distance over which particles are deposited on the wall. Such an observation may have some bearing on the manufacture of preforms from which optical fibers are drawn.

  13. Basics of lava-lamp convection.

    PubMed

    Gyüre, Balázs; Jánosi, Imre M

    2009-10-01

    Laboratory experiments are reported in an immiscible two-fluid system, where thermal convection is initiated by heating at the bottom and cooling at the top. The lava-lamp regime is characterized by a robust periodic exchange process where warm blobs rise from the bottom, attach to the top surface for a while, then cold blobs sink down again. Immiscibility allows to reach real steady (dynamical equilibrium) states which can be sustained for several days. Two modes of lava-lamp convection could be identified by recording and evaluating temperature time series at the bottom and at the top of the container: a "slow" mode is determined by an effective heat transport speed at a given temperature gradient, while a second mode of constant periodicity is viscosity limited. Contrasting of laboratory and geophysical observations yields the conclusion that the frequently suggested lava-lamp analogy fails for the accepted models of mantle convection.

  14. Minimal Joule dissipation models of magnetospheric convection

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.

    1988-01-01

    This paper gives a topical review of theoretical models of magnetospheric convection based on the concept of minimal Joule dissipation. A two-dimensional slab model of the ionosphere featuring an enhanced conductivity auroral oval is used to compute high-latitude electric fields and currents. Mathematical methods used in the modeling include Fourier analysis, fast Fourier transforms, and variational calculus. Also, conformal transformations are introduced in the analysis, which enable the auroral oval to be represented as a nonconcentric, crescent-shaped figure. Convection patterns appropriate to geomagnetic quiet and disturbed conditions are computed, the differentiating variable being the relative amount of power dissipated in the magnetospheric ring current. When ring current dissipation is small, the convection electric field is restricted to high latitudes (shielding regime), and when it is large, a significant penetration of the field to low latitudes occurs, accompanied by an increase in the ratio of the region I current to the region 2 current.

  15. Numerical Archetypal Parameterization for Mesoscale Convective Systems

    NASA Astrophysics Data System (ADS)

    Yano, J. I.

    2015-12-01

    Vertical shear tends to organize atmospheric moist convection into multiscale coherent structures. Especially, the counter-gradient vertical transport of horizontal momentum by organized convection can enhance the wind shear and transport kinetic energy upscale. However, this process is not represented by traditional parameterizations. The present paper sets the archetypal dynamical models, originally formulated by the second author, into a parameterization context by utilizing a nonhydrostatic anelastic model with segmentally-constant approximation (NAM-SCA). Using a two-dimensional framework as a starting point, NAM-SCA spontaneously generates propagating tropical squall-lines in a sheared environment. A high numerical efficiency is achieved through a novel compression methodology. The numerically-generated archetypes produce vertical profiles of convective momentum transport that are consistent with the analytic archetype.

  16. Free convection in the Matian atmosphere

    NASA Technical Reports Server (NTRS)

    Clow, G. D.; Haberle, R. M.

    1990-01-01

    The 'free convective' regime for the Martian atmospheric boundary layer (ABL) was investigated. This state occurs when the mean windspeed at the top of the ABL drops below some critical value U(sub c) and positive buoyant forces are present. Such forces can arise either from vertical temperature or water vapor gradients across the atmospheric surface layer. During free convection, buoyant forces drive narrow plumes that ascend to the inversion height with a return circulation consisting of broad slower-moving downdraughts. Horizontal pressure, temperature, windspeed, and water vapor fluctuations resulting form this circulation pattern can be quite large adjacent to the ground (within the surface layer). The local turbulent fluctuations cause non-zero mean surface stresses, sensible heat fluxes, and latent heat fluxes, even when the mean regional windspeed is zero. Although motions above the surface layer are insensitive to the nature of the surface, the sensible and latent heat fluxes are primarily controlled by processes within the interfacial sublayer immediately adjacent to the ground during free convection. Thus the distinction between aerodynamically smooth and rough airflow within the interfacial sublayer is more important than for the more typical situation where the mean regional windspeed is greater than U(sub c). Buoyant forces associated with water vapor gradients are particularly large on Mars at low pressures and high temperatures when the surface relative humidity is 100 percent, enhancing the likelihood of free convection under these conditions. On this basis, Ingersol postulated the evaporative heat losses from an icy surface on Mars at 237 K and current pressures would exceed the available net radiative flux at the surface, thus prohibiting ice from melting at low atmospheric pressures. Schumann has developed equations describing the horizontal fluctuations and mean vertical gradients occurring during free convection. Schumann's model was

  17. Resurfacing of Uranus' Moon Miranda by Convection: Understanding the Influence of Core Size on Convection Geometry

    NASA Astrophysics Data System (ADS)

    Hammond, N. P.; Barr, A. C.

    2014-12-01

    Miranda is a small icy moon of Uranus. Three remarkable regions of intense deformation, called coronae, are visible in southern hemisphere of Miranda. Coronae are ~200 km wide, and are surrounded by concentric, sub-parrallel lineations, that have been interpreted as extensional tectonic and volcanic landforms. Here we test the hypothesis coronae formed as a result of convection in Miranda's ice mantle during an episode of tidal heating. Using numerical models of spherical convection, we show that if Miranda's surface is weak, sluggish lid convection can occur, which simultaneously generates the concentric deformation patterns observed in the coronae, the inferred thermal gradient predicted by models of flexure, and the approximate number of plumes necessary to form the coronae. We have tested the influence of core size on convection geometry. For basal Rayleigh numbers between 10^5 and 10^8, and for effective viscosity contrasts less than 10^4, we found that low-order convection patterns only remain stable for core radii less than half the satellite radius. This suggests that low-order convection patterns may be more likely to develop in planets and satellites with small cores, however we find that the distribution of tidal heating within icy satellites also strongly influences convection geometry.

  18. Impacts of Convective Triggering on Convective Variability in a Climate Model

    NASA Astrophysics Data System (ADS)

    Wang, Y. C.

    2015-12-01

    In this study, we investigated the impacts of the triggering designs of the deep convection scheme on convective variability from diurnal rainfall cycle to intraseasonal rainfall variability by using NCAR CAM5 model. Using single-column simulations at the Southern Great Plains site, we found that the underestimated nighttime rainfall of diurnal cycle can be greatly improved when two convective triggering designs from the Simplified Arakawa-Schubert scheme (SAS) are implemented into the default Zhang-Mcfarlane (ZM) scheme. We further conducted AMIP-type climate simulations with this modified ZM scheme (ZMMOD), and found that improvements can also be seen for the diurnally propagating convection over topographical regions, such as Maritime Continent and the western coast of Columbia. We further examined the rainfall variability from synoptic to intraseasonal scales, and found that using ZMMOD scheme increases rainfall variability of 2-10-day over South America and Africa land regions. However, this improvement does not seem to transfer to the intraseasonal convective organization (20-100 days), such as the MJO. This study demonstrates the importance of convective triggering and its impacts on convective variability. This work is still on-going to understand the physical processes of such impacts and how they might affect climate systems through multiscale interactions.

  19. Thermal convection in a liquid metal battery

    NASA Astrophysics Data System (ADS)

    Shen, Yuxin; Zikanov, Oleg

    2016-08-01

    Generation of thermal convection flow in the liquid metal battery, a device recently proposed as a promising solution for the problem of the short-term energy storage, is analyzed using a numerical model. It is found that convection caused by Joule heating of electrolyte during charging or discharging is virtually unavoidable. It exists in laboratory prototypes larger than a few centimeters in size and should become much stronger in larger-scale batteries. The phenomenon needs further investigation in view of its positive (enhanced mixing of reactants) and negative (loss of efficiency and possible disruption of operation due to the flow-induced deformation of the electrolyte layer) effects.

  20. Convective Heat Transfer for Ship Propulsion.

    DTIC Science & Technology

    1980-01-30

    Report Contract No. N00014-75-C-0694 Contract Authority NR-097-395 I0 I CONVECTIVE HEAT TRANSFER FOR SHIP PROPULSION Prepared for Office of Naval...Vj~ / TITE find~&ie S.~ TYPE OF REPOAT-& PERIOD COVERED CovcieHeat Transfer for Ship Propulsion # nna umary /epS’Ptoi ", 1’ . Anua MING 14G RE an...ee Fifth Annual Summary Report CONVECTIVE HEAT TRANSFER FOR SHIP PROPULSION By S. E. Faas and D. M. McEligot Aerospace and Mechanical Engineering

  1. Double-diffusive inner core convective translation

    NASA Astrophysics Data System (ADS)

    Deguen, Renaud; Alboussière, Thierry; Labrosse, Stéphane

    2016-04-01

    The hemispherical asymmetry of the inner core has been interpreted as resulting form a high-viscosity mode of inner core convection, consisting in a translation of the inner core. With melting on one hemisphere and crystallization on the other one, inner core translation would impose a strongly asymmetric buoyancy flux at the bottom of the outer core, with likely strong implications for the dynamics of the outer core and the geodynamo. The main requirement for convective instability in the inner core is an adverse radial density gradient. While older estimates of the inner core thermal conductivity favored a superadiabatic temperature gradient and the existence of thermal convection, the much higher values recently proposed makes thermal convection very unlikely. Compositional convection might be a viable alternative to thermal convection: an unstable compositional gradient may arise in the inner core either because the light elements present in the core are predicted to become increasingly incompatible as the inner core grows (Gubbins et al. 2013), or because of a possibly positive feedback of the development of the F-layer on inner core convection. Though the magnitude of the destabilizing effect of the compositional field is predicted to be similar to or smaller than the stabilizing effect of the thermal field, the huge difference between thermal and chemical diffusivities implies that double-diffusive instabilities can still arise even if the net density decreases upward. We propose here a theoretical and numerical study of double diffusive convection in the inner core that demonstrate that a translation mode can indeed exist if the compositional field is destabilizing, even if the temperature profile is subadiabatic, and irrespectively of the relative magnitude of the destabilizing compositional gradient and stabilizing temperature field. The predicted inner core translation rate is similar to the mean inner core growth rate, which is more consistent with

  2. Geothermal reservoirs in hydrothermal convection systems

    SciTech Connect

    Sorey, M.L.

    1982-01-01

    Geothermal reservoirs commonly exist in hydrothermal convection systems involving fluid circulation downward in areas of recharge and upwards in areas of discharge. Because such reservoirs are not isolated from their surroundings, the nature of thermal and hydrologic connections with the rest of the system may have significant effects on the natural state of the reservoir and on its response to development. Conditions observed at numerous developed and undeveloped geothermal fields are discussed with respect to a basic model of the discharge portion of an active hydrothermal convection system. Effects of reservoir development on surficial discharge of thermal fluid are also delineated.

  3. Convective, intrusive geothermal plays: what about tectonics?

    NASA Astrophysics Data System (ADS)

    Santilano, A.; Manzella, A.; Gianelli, G.; Donato, A.; Gola, G.; Nardini, I.; Trumpy, E.; Botteghi, S.

    2015-09-01

    We revised the concept of convective, intrusive geothermal plays, considering that the tectonic setting is not, in our opinion, a discriminant parameter suitable for a classification. We analysed and compared four case studies: (i) Larderello (Italy), (ii) Mt Amiata (Italy), (iii) The Geysers (USA) and (iv) Kizildere (Turkey). The tectonic settings of these geothermal systems are different and a matter of debate, so it is hard to use this parameter, and the results of classification are ambiguous. We suggest a classification based on the age and nature of the heat source and the related hydrothermal circulation. Finally we propose to distinguish the convective geothermal plays as volcanic, young intrusive and amagmatic.

  4. Solutal Convection in a Magnetic Fluid

    NASA Technical Reports Server (NTRS)

    Leslie, Fred; Ramachandran, N.

    2003-01-01

    A theoretical and experimental study is presented on the stability of solutal convection of a magnetized fluid in the presence of a magnetic field. The total force on the fluid is derived and equilibrium positions are computed establishing the field necessary to counter fluid buoyancy. The requirements for stability are developed and compared with experiments with a paramagnetic fluid. The experiments are in good agreement not only with the theoretical predictions for equilibrium but also verify the stability theory which predicts both horizontal and vertical stability. Analogous to results for levitation, the theory indicates that solutal convection in paramagnetic fluids cannot be completely stabilized while that in diamagnetic liquid are possible.

  5. Convective heat transfer during dendritic growth

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.; Huang, S. C.

    1979-01-01

    Axial growth rate measurements were carried out at 17 levels of supercooling between 0.043 C and 2 C, a temperature range in which convection, instead of diffusion, becomes the controlling mechanism of heat transfer in the dentritic growth process. The growth velocity, normalized to that expected for pure diffusive heat transfer, displays a dependence on orientation. The ratio of the observed growth velocity to that for convection-free growth and the coefficients of supercooling are formulated. The dependence of normalized growth rate in supercooling is described for downward growing dendrites. These experimental correlations can be justified theoretically only to a limited extent.

  6. A vortex flow intensified by thermal convection

    NASA Astrophysics Data System (ADS)

    Makhmalbaf, M. H.; Liu, Tianshu; Merati, Parviz

    2017-01-01

    This paper describes a thermal-convection-intensified vortex flow within a rotating cylinder with a counter-rotating heated disk located below. This flow tends to mimic certain aspects of the intriguing flow structure of the great red spot in Jupiter by using a simple laboratory setup. Particle image velocimetry measurements reveal the counter-rotating torus vortices in the lower and upper domains and the complex mixing-layer features in the transitional domain between them. In particular, it is found that the vortex structures are significantly intensified by the thermal convection from the heated disk.

  7. Comparing convective heat fluxes derived from thermodynamics to a radiative-convective model and GCMs

    NASA Astrophysics Data System (ADS)

    Dhara, Chirag; Renner, Maik; Kleidon, Axel

    2015-04-01

    The convective transport of heat and moisture plays a key role in the climate system, but the transport is typically parameterized in models. Here, we aim at the simplest possible physical representation and treat convective heat fluxes as the result of a heat engine. We combine the well-known Carnot limit of this heat engine with the energy balances of the surface-atmosphere system that describe how the temperature difference is affected by convective heat transport, yielding a maximum power limit of convection. This results in a simple analytic expression for convective strength that depends primarily on surface solar absorption. We compare this expression with an idealized grey atmosphere radiative-convective (RC) model as well as Global Circulation Model (GCM) simulations at the grid scale. We find that our simple expression as well as the RC model can explain much of the geographic variation of the GCM output, resulting in strong linear correlations among the three approaches. The RC model, however, shows a lower bias than our simple expression. We identify the use of the prescribed convective adjustment in RC-like models as the reason for the lower bias. The strength of our model lies in its ability to capture the geographic variation of convective strength with a parameter-free expression. On the other hand, the comparison with the RC model indicates a method for improving the formulation of radiative transfer in our simple approach. We also find that the latent heat fluxes compare very well among the approaches, as well as their sensitivity to surface warming. What our comparison suggests is that the strength of convection and their sensitivity in the climatic mean can be estimated relatively robustly by rather simple approaches.

  8. Mantle Convection in a Microwave Oven: New Perspectives for the Internally Heated Convection

    NASA Astrophysics Data System (ADS)

    Limare, A.; Fourel, L.; Surducan, E.; Neamtu, C.; Surducan, V.; Vilella, K.; Farnetani, C. G.; Kaminski, E. C.; Jaupart, C. P.

    2015-12-01

    The thermal evolution of silicate planets is primarily controlled by the balance between internal heating - due to radioactive decay - and heat transport by mantle convection. In the Earth, the problem is particularly complex due to the heterogeneous distribution of heat sources in the mantle and the non-linear coupling between this distribution and convective mixing. To investigate the behaviour of such systems, we have developed a new technology based on microwave absorption to study internally-heated convection in the laboratory. This prototype offers the ability to reach the high Rayleigh-Roberts and Prandtl numbers that are relevant for planetary convection. Our experimental results obtained for a uniform distribution of heat sources were compared to numerical calculations reproducing exactly experimental conditions (3D Cartesian geometry and temperature-dependent physical properties), thereby providing the first cross validation of experimental and numerical studies of convection in internally-heated systems. We find that the thermal boundary layer thickness and interior temperature scale with RaH-1/4, where RaH is the Rayleigh-Roberts number, as theoretically predicted by scaling arguments on the dissipation of kinetic energy. Our microwave-based method offers new perspectives for the study of internally-heated convection in heterogeneous systems which have been out of experimental reach until now. We are able to selectively heat specific regions in the convecting layer, through the careful control of the absorption properties of different miscible fluids. This is analogous to convection in the presence of chemical reservoirs with different concentration of long-lived radioactive isotopes. We shall show results for two different cases: the stability of continental lithosphere over a convective fluid and the evolution of a hidden enriched reservoir in the lowermost mantle.

  9. Effect of high-latitude ionospheric convection on Sun-aligned polar caps

    NASA Technical Reports Server (NTRS)

    Sojka, J. J.; Zhu, L.; Crain, D. J.; Schunk, R. W.

    1994-01-01

    A coupled magnetospheric-ionospheric (M-I) magnetohydrodynamic (MHD) model has been used to simulate the formation of Sun-aligned polar cap arcs for a variety of interplanetary magnetic field (IMF) dependent polar cap convection fields. The formation process involves launching an Alfven shear wave from the magnetosphere to the ionosphere where the ionospheric conductance can react self-consistently to changes in the upward currents. We assume that the initial Alfven shear wave is the result of solar wind-magnetosphere interactions. The simulations show how the E region density is affected by the changes in the electron precipitation that are associated with the upward currents. These changes in conductance lead to both a modified Alfven wave reflection at the ionosphere and the generation of secondary Alfven waves in the ionosphere. The ensuing bouncing of the Alfven waves between the ionosphere and magnetosphere is followed until an asymptotic solution is obtained. At the magnetosphere the Alfven waves reflect at a fixed boundary. The coupled M-I Sun-aligned polar cap arc model of Zhu et al.(1993a) is used to carry out the simulations. This study focuses on the dependence of the polar cap arc formation on the background (global) convection pattern. Since the polar cap arcs occur for northward and strong B(sub y) IMF conditions, a variety of background convection patterns can exist when the arcs are present. The study shows that polar cap arcs can be formed for all these convection patterns; however, the arc features are dramatically different for the different patterns. For weak sunward convection a relatively confined single pair of current sheets is associated with the imposed Alfven shear wave structure. However, when the electric field exceeds a threshold, the arc structure intensifies, and the conductance increases as does the local Joule heating rate. These increases are faster than a linear dependence on the background electric field strength. Furthermore

  10. The cosmic background explorer

    SciTech Connect

    Gulkis, G. ); Lubin, P.M. ); Meyer, S.S. ); Silverberg, R.F.

    1990-01-01

    Late last year the National Aeronautics and Space Administration launched its first satellite dedicated to the study of phenomena related to the origins of the universe. The satellite, called the Cosmic Background Explorer (COBE), carries three complementary detectors that will make fundamental measurements of the celestial radiation. Part of that radiation is believed to have originated in processes that occurred at the very dawn of the universe. By measuring the remnant radiation at wavelengths from one micrometer to one centimeter across the entire sky, scientists hope to be able to solve many mysteries regarding the origin and evolution of the early universe. Unfortunately, these radiative relics of the early universe are weak and veiled by local astrophysical and terrestrial sources of radiation. The wavelengths of the various cosmic components may also overlap, thereby making the understanding of the diffuse celestial radiation a challenge. Nevertheless, the COBE instruments, with their full-sky coverage, high sensitivity to a wide range of wavelengths and freedom from interference from the earth's atmosphere, will constitute for astrophysicists an observatory of unprecedented sensitivity and scope. The interesting cosmic signals will then be separated from one another and from noncosmic radiation sources by a comprehensive analysis of the data.

  11. Use of the AO veterinary mini 'T'-plate for stabilisation of distal radius and ulna fractures in toy breed dogs.

    PubMed

    Hamilton, M H; Langley Hobbs, S J

    2005-01-01

    The use of the AO (Arbeitsgemeinschaft für Osteosynthesefragen) veterinary mini 'T'-plate for stabilisation of distal radius and ulna fractures in toy breed dogs was evaluated in a retrospective study. All of the 14 dogs in the study weighed 3.5 kg or less. The AO mini 'T'-plate was used as the final means of fixation in all cases. It was used as the primary form of stabilisation in ten dogs, and in four dogs it was used at revision surgery. In all cases, of the fractures healed. Return to function was graded 'as excellent' in six cases, 'good' in four and 'fair' in two. Two dogs were lost to long-term follow up. It was concluded that the AO veterinary mini 'T'-plate is a suitable choice of implant for stabilisation of distal radius and ulna fractures in toy breed dogs, especially when the distal fragment is very small.

  12. Double-diffusive natural convection in a fluid saturated porous cavity with a freely convecting wall

    SciTech Connect

    Nithiarasu, P.; Sundararajan, T.; Seetharamu, K.N.

    1997-12-01

    Double-diffusive natural convection in fluid saturated porous medium has been investigated using a generalized porous medium model. One of the vertical walls of the porous cavity considered is subjected to convective heat and mass transfer conditions. The results show that the flow, heat and mass transfer become sensitive to applied mass transfer coefficient in both the Darcy and non-Darcy flow regimes. It is also observed that the Sherwood number approaches a constant value as the solutal Biot number increases. Double-diffusive natural convection in fluid saturated porous medium is encountered in applications such as food processing, contaminant transport in ground water, and others.

  13. Ergodicity in randomly forced Rayleigh-Bénard convection

    NASA Astrophysics Data System (ADS)

    Földes, J.; Glatt-Holtz, N. E.; Richards, G.; Whitehead, J. P.

    2016-11-01

    We consider the Boussinesq approximation for Rayleigh-Bénard convection perturbed by an additive noise and with boundary conditions corresponding to heating from below. In two space dimensions, with sufficient stochastic forcing in the temperature component and large Prandtl number Pr  >  0, we establish the existence of a unique ergodic invariant measure. In three space dimensions, we prove the existence of a statistically invariant state, and establish unique ergodicity for the infinite Prandtl Boussinesq system. Throughout this work we provide streamlined proofs of unique ergodicity which invoke an asymptotic coupling argument, a delicate usage of the maximum principle, and exponential martingale inequalities. Lastly, we show that the background method of Constantin and Doering (1996 Nonlinearity 9 1049-60) can be applied in our stochastic setting, and prove bounds on the Nusselt number relative to the unique invariant measure.

  14. Physicochemical properties of whey protein, lactoferrin and Tween 20 stabilised nanoemulsions: Effect of temperature, pH and salt.

    PubMed

    Teo, Anges; Goh, Kelvin K T; Wen, Jingyuan; Oey, Indrawati; Ko, Sanghoon; Kwak, Hae-Soo; Lee, Sung Je

    2016-04-15

    Oil-in-water nanoemulsions were prepared by emulsification and solvent evaporation using whey protein isolate (WPI), lactoferrin and Tween 20 as emulsifiers. Protein-stabilised nanoemulsions showed a decrease in particle size with increasing protein concentration from 0.25% to 1% (w/w) level with Z-average diameter between 70 and 90 nm. However, larger droplets were produced by Tween 20 (120-450 nm) especially at concentration above 0.75% (w/w). The stability of nanoemulsions to temperature (30-90°C), pH (2-10) and ionic strength (0-500 mM NaCl or 0-90 mM CaCl2) was also tested. Tween 20 nanoemulsions were unstable to heat treatment at 90°C for 15 min. WPI-stabilised nanoemulsions exhibited droplet aggregation near the isoelectric point at pH 4.5 and 5 and they were also unstable at salt concentration above 30 mM CaCl2. These results indicated that stable nanoemulsions can be prepared by careful selection of emulsifiers.

  15. Comparative antibacterial activity of silver nanoparticles synthesised by biological and chemical routes with pluronic F68 as a stabilising agent.

    PubMed

    Santos, Carolina Alves Dos; Seckler, Marcelo Martins; Ingle, Avinash P; Rai, Mahendra

    2016-08-01

    The authors report the comparative antibacterial activity of silver nanoparticles synthesised by biological (using Fusarium oxysporum) and chemical routes in the presence and absence of pluronic F68 as a stabilising agent. The production of silver nanoparticles was evidenced by UV-visible spectra, with absorbance at about 420 nm in the case of both biological and chemical synthesis. X-ray diffraction pattern confirmed the presence of face-centred cubic structure (FCC plane). The nanoparticles characterised by transmission and scanning electron microscopy showed spherical silver nanoparticles with size range of 5-40 and 10-70 nm in the case of biologically and chemically synthesised nanoparticles, respectively. Addition of pluronic F68 showed the stabilisation of silver nanoparticles. Antibacterial efficacy of silver nanoparticles demonstrated different inhibitory activity against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Overall, biologically synthesised silver nanoparticles showed higher activity as compared with chemically synthesised nanoparticles. Silver nanoparticles synthesised in the presence of pluronic F68 by the chemical route exhibited synergism in antibacterial activity as compared with those synthesised without pluronic F68. On the contrary, biogenic silver nanoparticles without pluronic F68 showed higher antibacterial potential.

  16. Structural, functional and in vitro digestion characteristics of spray dried fish roe powder stabilised with gum arabic.

    PubMed

    Binsi, P K; Natasha, Nayak; Sarkar, P C; Muhamed Ashraf, P; George, Ninan; Ravishankar, C N

    2017-04-15

    Fish roes are considered as nutritionally valuable for their high content of essential fatty acids and amino acids. However, roe lipids undergo considerable extent of oxidation during processing and storage, imparting objectionable bitter taste and rancid flavour to roe products. Hence, the objective of the study was to reconstitute the roe mass and microencapsulate lipid fraction, so that small oil droplets are entrapped within a dry matrix of roe proteins during spray drying. Prior to spray drying, the emulsion was stabilised with gum arabic as it also act as a co-wall polymer. The microscopic images indicated presence of larger aggregates in unstabilised powder (RC) compared to well-separated particles in stabilised powder (RG). Incorporation of gum arabic retarded rancidity development during storage. In vitro digestive pattern of roe powder indicated higher amount of oil release in RG. These observations highlight the potential of converting the soft textured carp roe mass into stable fish roe powder with superior storage stability and functionality.

  17. ? and ? nonquadratic stabilisation of discrete-time Takagi-Sugeno systems based on multi-instant fuzzy Lyapunov functions

    NASA Astrophysics Data System (ADS)

    Tognetti, Eduardo S.; Oliveira, Ricardo C. L. F.; Peres, Pedro L. D.

    2015-01-01

    The problem of state feedback control design for discrete-time Takagi-Sugeno (TS) (T-S) fuzzy systems is investigated in this paper. A Lyapunov function, which is quadratic in the state and presents a multi-polynomial dependence on the fuzzy weighting functions at the current and past instants of time, is proposed.This function contains, as particular cases, other previous Lyapunov functions already used in the literature, being able to provide less conservative conditions of control design for TS fuzzy systems. The structure of the proposed Lyapunov function also motivates the design of a new stabilising compensator for Takagi-Sugeno fuzzy systems. The main novelty of the proposed state feedback control law is that the gain is composed of matrices with multi-polynomial dependence on the fuzzy weighting functions at a set of past instants of time, including the current one. The conditions for the existence of a stabilising state feedback control law that minimises an upper bound to the ? or ? norms are given in terms of linear matrix inequalities. Numerical examples show that the approach can be less conservative and more efficient than other methods available in the literature.

  18. [Interactions between cyclodextrins and triglycerides: from emulsion stabilisation to the emergence of a new drug delivery system called "beads"].

    PubMed

    Hamoudi, M; Trichard, L; Grossiord, J-L; Chaminade, P; Duchêne, D; Le Bas, G; Fattal, E; Bochot, A

    2009-11-01

    Natural cyclodextrins are cyclic oligosaccharides which can be modified to obtain more water soluble or insoluble derivatives. The main interest of cyclodextrins results from their ability to form an inclusion complex with hydrophobic molecules. Inclusion constitutes a true molecular encapsulation. This property is employed in pharmaceutical industry to facilitate the formulation of poorly water soluble and/or fragile drugs. A more recent application of cyclodextrins consists in their use in the preparation of dispersed systems such as micro- and nanoparticles or even liposomes. When incorporated in dispersed systems, cyclodextrin can enhance drug solubility, drug stability and drug loading. Interestingly, cyclodextrins themselves can also be employed to form or stabilise dispersed systems (material or emulsifying agent). For example, the interactions between cyclodextrins with components of the vegetable oils (more especially with triglycerides) allow to stabilise simple or multiple emulsions but also to form particles called "beads". Very rich in oil, this novel lipid carrier presents an important potential for the encapsulation of highly lipophilic compounds and their delivery by topical and oral routes. These two applications are more particularly developed in the present paper.

  19. Sidewall-driven convection in a thermally and compositionally stratified fluid

    NASA Astrophysics Data System (ADS)

    Burns, Keaton; Flierl, Glenn; Wells, Andrew

    2016-11-01

    We present direct numerical simulations of incompressible turbulent convection along a heated sidewall in a thermally and compositionally stratified fluid, as a simplified model of meltwater flows along marine-terminating glaciers. Our model considers a 2D domain that is horizontally bounded and vertically periodic, with constant background thermal and compositional buoyancy gradients. We apply a fixed thermal perturbation along one sidewall, driving upward convective plumes and horizontally spreading layers with compensating thermal and compositional buoyancy perturbations. We examine the formation and structure of these layers as the background stratification is varied from thermally to compositionally dominated, and as the sidewall is tilted away from vertical. We also examine the variations in heat flux along the sidewall that arise with the layers.

  20. Convective plasma stability consistent with MHD equilibrium in magnetic confinement systems with a decreasing field

    SciTech Connect

    Tsventoukh, M. M.

    2010-10-15

    A study is made of the convective (interchange, or flute) plasma stability consistent with equilibrium in magnetic confinement systems with a magnetic field decreasing outward and large curvature of magnetic field lines. Algorithms are developed which calculate convective plasma stability from the Kruskal-Oberman kinetic criterion and in which the convective stability is iteratively consistent with MHD equilibrium for a given pressure and a given type of anisotropy in actual magnetic geometry. Vacuum and equilibrium convectively stable configurations in systems with a decreasing, highly curved magnetic field are calculated. It is shown that, in convectively stable equilibrium, the possibility of achieving high plasma pressures in the central region is restricted either by the expansion of the separatrix (when there are large regions of a weak magnetic field) or by the filamentation of the gradient plasma current (when there are small regions of a weak magnetic field, in which case the pressure drops mainly near the separatrix). It is found that, from the standpoint of equilibrium and of the onset of nonpotential ballooning modes, a kinetic description of convective stability yields better plasma confinement parameters in systems with a decreasing, highly curved magnetic field than a simpler MHD model and makes it possible to substantially improve the confinement parameters for a given type of anisotropy. For the Magnetor experimental compact device, the maximum central pressure consistent with equilibrium and stability is calculated to be as high as {beta} {approx} 30%. It is shown that, for the anisotropy of the distribution function that is typical of a background ECR plasma, the limiting pressure gradient is about two times steeper than that for an isotropic plasma. From a practical point of view, the possibility is demonstrated of achieving better confinement parameters of a hot collisionless plasma in systems with a decreasing, highly curved magnetic field

  1. Influence of Convective Momentum Transport on Tropical Waves

    NASA Astrophysics Data System (ADS)

    Zhou, L.

    2012-12-01

    Convective momentum transport (CMT) has been found to play an important role during the Madden-Julian Oscillation (MJO). Influences of CMT on tropical waves are analytically studied in a two-layer model, which captures the first-order baroclinic structure in the vertical. Since CMT is the momentum exchange between the lower and the upper troposphere during convection, the easterly and westerly vertical shears of background zonal winds lead to different CMT influences. Generally, CMT plays more important roles than a damping term to tropical waves. CMT is a critical factor for determining the meridional scale of tropical waves and leads to kinetic energy transfer against the direction of background wind shear in the vertical. CMT can also be favorable for internal instability and induce upscale momentum transfer. Specifically, due to CMT, the meridional scale in the two-layer model is wider than the Rossby radius of deformation (RL, the meridional scale of tropical waves in the classical theory) over the Indo-Pacific warm pool, but narrower than RL from the central to the eastern Pacific Ocean and over the Atlantic Ocean. Such variation is consistent with observations. CMT results in minor modifications to the speeds of Rossby waves, inertial gravity waves, and Kelvin waves. Nevertheless, CMT has significant influences on the mixed Rossby-gravity (MRG) waves, especially over the Indo-Pacific warm pool where the vertical wind shear in easterly. Westward propagating MRG waves with small wavenumber become unstable under the influence of CMT. The phase relation between the convergence and geopotential is no longer in quadrature, which is different from classical MRG waves. As a result, there is a net source of mechanical energy within one period and there is an upscale momentum transfer from the perturbed field to large scale velocities. This theoretical study sheds lights on the relation between CMT and slow variations in the atmosphere, including MJO.

  2. Observations of a quasi shear-free lacustrine convective boundary layer: Stratification and its implications on turbulence

    NASA Astrophysics Data System (ADS)

    Jonas, Tobias; Stips, Adolf; Eugster, Werner; Wüest, Alfred

    2003-10-01

    Convection due to surface cooling has been investigated in the surface boundary layer of a small lake under near-ideal conditions undisturbed by wind, large-scale currents, and differential cooling. Successive temperature microstructure profiles revealed a stable stratification in the lower bulk of the convective boundary layer despite strong cooling over the entire layer. Lateral heat fluxes as well as heat exchange with the thermocline could be excluded as driving mechanism of the observed stratification. Acoustic Doppler current profiler (ADCP) measurements indicated an asymmetric pattern of vertical velocities: strong downward plumes were observed upon a background of slow upflow. We suggest that this asymmetry allows cold water from the super-adiabatic surface layer to intrude at the base of the convective layer, thus causing the observed stratification. This in particular involves downward plumes that feature a relatively low entrainment rate in the center bulk of the convective layer. Corresponding large-eddy simulation studies, as well as thermistor string and ADCP data, were found consistent with this scenario. The dissipation rate of turbulent kinetic energy (TKE) was estimated on the basis of the temperature microstructure profiles and from the ADCP data. Mean dissipation rates of only about 20% of the surface buoyancy flux were typically identified. This finding is attributed to respectively low buoyant production rates of TKE, attenuated by strong convective plumes penetrating through the stable stratification in the lower bulk of the convective layer into the thermocline.

  3. Marangoni Convection and Deviations from Maxwells' Evaporation Model

    NASA Technical Reports Server (NTRS)

    Segre, P. N.; Snell, E. H.; Adamek, D. H.

    2003-01-01

    We investigate the convective dynamics of evaporating pools of volatile liquids using an ultra-sensitive thermal imaging camera. During evaporation, there are significant convective flows inside the liquid due to Marangoni forces. We find that Marangoni convection during evaporation can dramatically affect the evaporation rates of volatile liquids. A simple heat balance model connects the convective velocities and temperature gradients to the evaporation rates.

  4. Integrable Background Geometries

    NASA Astrophysics Data System (ADS)

    Calderbank, David M. J.

    2014-03-01

    This work has its origins in an attempt to describe systematically the integrable geometries and gauge theories in dimensions one to four related to twistor theory. In each such dimension, there is a nondegenerate integrable geometric structure, governed by a nonlinear integrable differential equation, and each solution of this equation determines a background geometry on which, for any Lie group G, an integrable gauge theory is defined. In four dimensions, the geometry is selfdual conformal geometry and the gauge theory is selfdual Yang-Mills theory, while the lower-dimensional structures are nondegenerate (i.e., non-null) reductions of this. Any solution of the gauge theory on a k-dimensional geometry, such that the gauge group H acts transitively on an ℓ-manifold, determines a (k+ℓ)-dimensional geometry (k+ℓ≤4) fibering over the k-dimensional geometry with H as a structure group. In the case of an ℓ-dimensional group H acting on itself by the regular representation, all (k+ℓ)-dimensional geometries with symmetry group H are locally obtained in this way. This framework unifies and extends known results about dimensional reductions of selfdual conformal geometry and the selfdual Yang-Mills equation, and provides a rich supply of constructive methods. In one dimension, generalized Nahm equations provide a uniform description of four pole isomonodromic deformation problems, and may be related to the {SU}(∞) Toda and dKP equations via a hodograph transformation. In two dimensions, the {Diff}(S^1) Hitchin equation is shown to be equivalent to the hyperCR Einstein-Weyl equation, while the {SDiff}(Σ^2) Hitchin equation leads to a Euclidean analogue of Plebanski's heavenly equations. In three and four dimensions, the constructions of this paper help to organize the huge range of examples of Einstein-Weyl and selfdual spaces in the literature, as well as providing some new ! ones. The nondegenerate reductions have a long ancestry. More ! recently

  5. Meniscus height controlled convective self-assembly

    NASA Astrophysics Data System (ADS)

    Choudhary, Satyan; Crosby, Alfred

    Convective self-assembly techniques based on the 'coffee-ring effect' allow for the fabrication of materials with structural hierarchy and multi-functionality across a wide range of length scales. The coffee-ring effect describes deposition of non-volatiles at the edge of droplet due to capillary flow and pattern formations due to pinning and de-pinning of meniscus with the solvent evaporation. We demonstrate a novel convective self-assembly method which uses a piezo-actuated bending motion for driving the de-pinning step. In this method, a dilute solution of nanoparticles or polymers is trapped by capillary forces between a blade and substrate. As the blade oscillates with a fixed frequency and amplitude and the substrate translates at a fixed velocity, the height of the capillary meniscus oscillates. The meniscus height controls the contact angle of three phase contact line and at a critical angle de-pinning occurs. The combination of convective flux and continuously changing contact angle drives the assembly of the solute and subsequent de-pinning step, providing a direct means for producing linear assemblies. We demonstrate a new method for convective self-assembly at an accelerated rate when compared to other techniques, with control over deposit dimensions. Army Research Office (W911NF-14-1-0185).

  6. Crystal-Growing Crucible To Suppress Convection

    NASA Technical Reports Server (NTRS)

    Richter, R.

    1986-01-01

    Platform under growth region stabilizes melt for more uniform crystal growth. In new crucible, platform just below growth interface so melt is too shallow to support convection. Critical depth for onset of pertinent instability calculated from heat flux through surface of melt, volume coefficient of thermal expansion, thermal conductivity, thermal diffusivity, and kinematic viscosity.

  7. Convective mixing in homogeneous porous media flow

    NASA Astrophysics Data System (ADS)

    Ching, Jia-Hau; Chen, Peilong; Tsai, Peichun Amy

    2017-01-01

    Inspired by the flow processes in the technology of carbon dioxide (CO2) storage in saline formations, we modeled a homogeneous porous media flow in a Hele-Shaw cell to investigate density-driven convection due to dissolution. We used an analogy of the fluid system to mimic the diffusion and subsequent convection when CO2 dissolves in brine, which generates a heavier solution. By varying the permeability, we examined the onset of convection, the falling dynamics, the wavelengths of fingers, and the rate of dissolution, for the Rayleigh number Ra (a dimensionless forcing term which is the ratio of buoyancy to diffusivity) in the range of 2.0 ×104≤Ra≤8.26 ×105 . Our results reveal that the effect of permeability influences significantly the initial convective speed, as well as the later coarsening dynamics of the heavier fingering plumes. However, the total dissolved mass, characterized by a nondimensional Nusselt number Nu, has an insignificant dependence on Ra. This implies that the total dissolution rate of CO2 is nearly constant in high Ra geological porous structures.

  8. Thermal convection in vertically suspended soap films

    NASA Astrophysics Data System (ADS)

    Zhang, Jie

    In normal fluids, a temperature difference can create a density difference. In the presence of the gravitational field, denser fluid will fall and lighter fluid will rise, causing fluid motion known as thermal convection. This type of convection can occur on different scales, from a single growing crystal to mantle movement inside the earth. Although many experiments have been conducted in unstably stratified fluids, there have been few laboratory experiments studying convective turbulence in stably stratified fluids, which is more common in nature. Here I present a two-dimensional (2D) convection in a stably stratified vertical soap film. It was found that the interaction between the gravitational potential energy, due to the 2D density fluctuation, and the kinetic energy is important. This interplay between the two energy sources manifests itself in the statistical properties of velocity and 2D density fluctuations in the system. Our experimental findings shed new lights to a turbulent system that strongly couples to a non-passive field.

  9. A Simple Classroom Demonstration of Natural Convection

    ERIC Educational Resources Information Center

    Wheeler, Dean R.

    2005-01-01

    This article explains a simple way to demonstrate natural convection, such as from a lit candle, in the classroom using an overhead projector. The demonstration is based on the principle of schlieren imaging, commonly used to visualize variations in density for gas flows.

  10. Solar Hot Water Heating by Natural Convection.

    ERIC Educational Resources Information Center

    Noble, Richard D.

    1983-01-01

    Presents an undergraduate laboratory experiment in which a solar collector is used to heat water for domestic use. The working fluid is moved by natural convection so no pumps are required. Experimental apparatus is simple in design and operation so that data can be collected quickly and easily. (Author/JN)

  11. Layer formation in sedimentary fingering convection

    NASA Astrophysics Data System (ADS)

    Reali, J. F.; Garaud, P.; Alsinan, A.; Meiburg, E.

    2017-04-01

    When particles settle through a stable temperature or salinity gradient they can drive an instability known as sedimentary fingering convection. This phenomenon is thought to occur beneath sediment-rich river plumes in lakes and oceans, in the context of marine snow where decaying organic materials serve as the suspended particles, or in the atmosphere in the presence of aerosols or volcanic ash. Laboratory experiments of Houk and Green (1973) and Green (1987) have shown sedimentary fingering convection to be similar to the more commonly known thermohaline fingering convection in many ways. Here, we study the phenomenon using 3D direct numerical simulations. We find evidence for layer formation in sedimentary fingering convection in regions of parameter space where it does not occur for non-sedimentary systems. This is due to two complementary effects. Sedimentation affects the turbulent fluxes and broadens the region of parameter space unstable to the $\\gamma$-instability (Radko 2003) to include systems at larger density ratios. It also gives rise to a new layering instability that exists in $\\gamma-$stable regimes. The former is likely quite ubiquitous in geophysical systems for sufficiently large settling velocities, while the latter probably grows too slowly to be relevant, at least in the context of sediments in water.

  12. Forced Convection Heat Transfer in Circular Pipes

    ERIC Educational Resources Information Center

    Tosun, Ismail

    2007-01-01

    One of the pitfalls of engineering education is to lose the physical insight of the problem while tackling the mathematical part. Forced convection heat transfer (the Graetz-Nusselt problem) certainly falls into this category. The equation of energy together with the equation of motion leads to a partial differential equation subject to various…

  13. Convectively driven PCR thermal-cycling

    DOEpatents

    Benett, William J.; Richards, James B.; Milanovich, Fred P.

    2003-07-01

    A polymerase chain reaction system provides an upper temperature zone and a lower temperature zone in a fluid sample. Channels set up convection cells in the fluid sample and move the fluid sample repeatedly through the upper and lower temperature zone creating thermal cycling.

  14. MAGNETIC WREATHS AND CYCLES IN CONVECTIVE DYNAMOS

    SciTech Connect

    Nelson, Nicholas J.; Toomre, Juri; Brown, Benjamin P.; Brun, Allan Sacha

    2013-01-10

    Solar-type stars exhibit a rich variety of magnetic activity. Seeking to explore the convective origins of this activity, we have carried out a series of global three-dimensional magnetohydrodynamic simulations with the anelastic spherical harmonic code. Here we report on the dynamo mechanisms achieved as the effects of artificial diffusion are systematically decreased. The simulations are carried out at a nominal rotation rate of three times the solar value (3 {Omega}{sub Sun }), but similar dynamics may also apply to the Sun. Our previous simulations demonstrated that convective dynamos can build persistent toroidal flux structures (magnetic wreaths) in the midst of a turbulent convection zone and that high rotation rates promote the cyclic reversal of these wreaths. Here we demonstrate that magnetic cycles can also be achieved by reducing the diffusion, thus increasing the Reynolds and magnetic Reynolds numbers. In these more turbulent models, diffusive processes no longer play a significant role in the key dynamical balances that establish and maintain the differential rotation and magnetic wreaths. Magnetic reversals are attributed to an imbalance in the poloidal magnetic induction by convective motions that is stabilized at higher diffusion levels. Additionally, the enhanced levels of turbulence lead to greater intermittency in the toroidal magnetic wreaths, promoting the generation of buoyant magnetic loops that rise from the deep interior to the upper regions of our simulated domain. The implications of such turbulence-induced magnetic buoyancy for solar and stellar flux emergence are also discussed.

  15. Density Limit due to SOL Convection

    NASA Astrophysics Data System (ADS)

    D'Ippolito, D. A.; Myra, J. R.; Russell, D. A.

    2004-11-01

    Recent measurements on C-Mod(M. Greenwald, Plasma Phys. Contr. Fusion 44), R27 (2002). suggest there is a density limit due to rapid convection in the SOL: this region starts in the far SOL but expands inward to the separatrix as the density approaches the Greenwald limit. This idea is supported by a recent analysis(D. A. Russell et al., Lodestar Report LRC-04-99 (2004).) of a 3D BOUT code turbulence simulation(X. Q. Xu et al., Bull. APS 48), 184 (2003), paper KP1-20. with neutral fueling of the X-point region. Our work suggests that rapid outwards convection of plasma by turbulent coherent structures (``blobs'') occurs when the X-point collisionality is sufficiently large. Here, we calculate a density limit due to loss of thermal equilibrium in the edge plasma due to rapid radial convective heat transport. We expect a synergistic effect between blob convection and X-point cooling. The cooling increases the parallel resistivity at the X-point, ``disconnects'' the blobs electrically from the sheaths, and increases their radial velocity,(D.A. D'Ippolito et al., 2004 Sherwood Meeting, paper 1C 43.) which in turn further cools the X-points. Progress on a theoretical model will be reported.

  16. White Dwarf Convection Preceding Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Zingale, Michael; Almgren, A. S.; Bell, J. B.; Malone, C. M.; Nonaka, A.; Woosley, S. E.

    2010-01-01

    In the single degenerate scenario for Type Ia supernovae, a Chandrasekhar mass white dwarf `simmers' for centuries preceding the ultimate explosion. During this period, reactions near the center drive convection throughout most of the interior of the white dwarf. The details of this convective flow determine how the first flames in the white dwarf ignite. Simulating this phase is difficult because the flows are highly subsonic. Using the low Mach number hydrodynamics code, MAESTRO, we present 3-d, full star models of the final hours of this convective phase, up to the point of ignition of a Type Ia supernova. We discuss the details of the convective velocity field and the locations of the initial hot spots. Finally, we show some preliminary results with rotation. Support for this work came from the DOE/Office of Nuclear Physics, grant No. DE-FG02-06ER41448 (Stony Brook), the SciDAC Program of the DOE Office of Mathematics, Information, and Computational Sciences under the DOE under contract No. DE-AC02-05CH11231 (LBNL), and the DOE SciDAC program, under grant No. DE-FC02-06ER41438 (UCSC). We made use of the jaguar machine via a DOE INCITE allocation at the Oak Ridge Leadership Computational Facility.

  17. Probability distribution functions in turbulent convection

    NASA Technical Reports Server (NTRS)

    Balachandar, S.; Sirovich, L.

    1991-01-01

    Results of an extensive investigation of probability distribution functions (pdfs) for Rayleigh-Benard convection, in hard turbulence regime, are presented. It is shown that the pdfs exhibit a high degree of internal universality. In certain cases this universality is established within two Kolmogorov scales of a boundary. A discussion of the factors leading to the universality is presented.

  18. Convection in Slab and Spheroidal Geometries

    NASA Technical Reports Server (NTRS)

    Porter, David H.; Woodward, Paul R.; Jacobs, Michael L.

    2000-01-01

    Three-dimensional numerical simulations of compressible turbulent thermally driven convection, in both slab and spheroidal geometries, are reviewed and analyzed in terms of velocity spectra and mixing-length theory. The same ideal gas model is used in both geometries, and resulting flows are compared. The piecewise-parabolic method (PPM), with either thermal conductivity or photospheric boundary conditions, is used to solve the fluid equations of motion. Fluid motions in both geometries exhibit a Kolmogorov-like k(sup -5/3) range in their velocity spectra. The longest wavelength modes are energetically dominant in both geometries, typically leading to one convection cell dominating the flow. In spheroidal geometry, a dipolar flow dominates the largest scale convective motions. Downflows are intensely turbulent and up drafts are relatively laminar in both geometries. In slab geometry, correlations between temperature and velocity fluctuations, which lead to the enthalpy flux, are fairly independent of depth. In spheroidal geometry this same correlation increases linearly with radius over the inner 70 percent by radius, in which the local pressure scale heights are a sizable fraction of the radius. The effects from the impenetrable boundary conditions in the slab geometry models are confused with the effects from non-local convection. In spheroidal geometry nonlocal effects, due to coherent plumes, are seen as far as several pressure scale heights from the lower boundary and are clearly distinguishable from boundary effects.

  19. Water content in convective storm clouds.

    PubMed

    Kyle, T G; Sand, W R

    1973-06-22

    The condensed water content of convective storms was measured by the use of a penetrating aircraft. Regions 1 to 2 kilometers in extent and having condensed water contents of about 20 grams per cubic meter were found to be definite features of the cloud interior.

  20. Education: DNA replication using microscale natural convection.

    PubMed

    Priye, Aashish; Hassan, Yassin A; Ugaz, Victor M

    2012-12-07

    There is a need for innovative educational experiences that unify and reinforce fundamental principles at the interface between the physical, chemical, and life sciences. These experiences empower and excite students by helping them recognize how interdisciplinary knowledge can be applied to develop new products and technologies that benefit society. Microfluidics offers an incredibly versatile tool to address this need. Here we describe our efforts to create innovative hands-on activities that introduce chemical engineering students to molecular biology by challenging them to harness microscale natural convection phenomena to perform DNA replication via the polymerase chain reaction (PCR). Experimentally, we have constructed convective PCR stations incorporating a simple design for loading and mounting cylindrical microfluidic reactors between independently controlled thermal plates. A portable motion analysis microscope enables flow patterns inside the convective reactors to be directly visualized using fluorescent bead tracers. We have also developed a hands-on computational fluid dynamics (CFD) exercise based on modeling microscale thermal convection to identify optimal geometries for DNA replication. A cognitive assessment reveals that these activities strongly impact student learning in a positive way.