Sample records for conventional air sampling

  1. Passive Samplers for Investigations of Air Quality: Method Description, Implementation, and Comparison to Alternative Sampling Methods

    EPA Science Inventory

    This Paper covers the basics of passive sampler design, compares passive samplers to conventional methods of air sampling, and discusses considerations when implementing a passive sampling program. The Paper also discusses field sampling and sample analysis considerations to ensu...

  2. Air sampling with solid phase microextraction

    NASA Astrophysics Data System (ADS)

    Martos, Perry Anthony

    There is an increasing need for simple yet accurate air sampling methods. The acceptance of new air sampling methods requires compatibility with conventional chromatographic equipment, and the new methods have to be environmentally friendly, simple to use, yet with equal, or better, detection limits, accuracy and precision than standard methods. Solid phase microextraction (SPME) satisfies the conditions for new air sampling methods. Analyte detection limits, accuracy and precision of analysis with SPME are typically better than with any conventional air sampling methods. Yet, air sampling with SPME requires no pumps, solvents, is re-usable, extremely simple to use, is completely compatible with current chromatographic equipment, and requires a small capital investment. The first SPME fiber coating used in this study was poly(dimethylsiloxane) (PDMS), a hydrophobic liquid film, to sample a large range of airborne hydrocarbons such as benzene and octane. Quantification without an external calibration procedure is possible with this coating. Well understood are the physical and chemical properties of this coating, which are quite similar to those of the siloxane stationary phase used in capillary columns. The log of analyte distribution coefficients for PDMS are linearly related to chromatographic retention indices and to the inverse of temperature. Therefore, the actual chromatogram from the analysis of the PDMS air sampler will yield the calibration parameters which are used to quantify unknown airborne analyte concentrations (ppb v to ppm v range). The second fiber coating used in this study was PDMS/divinyl benzene (PDMS/DVB) onto which o-(2,3,4,5,6- pentafluorobenzyl) hydroxylamine (PFBHA) was adsorbed for the on-fiber derivatization of gaseous formaldehyde (ppb v range), with and without external calibration. The oxime formed from the reaction can be detected with conventional gas chromatographic detectors. Typical grab sampling times were as small as 5 seconds. With 300 seconds sampling, the formaldehyde detection limit was 2.1 ppbv, better than any other 5 minute sampling device for formaldehyde. The first-order rate constant for product formation was used to quantify formaldehyde concentrations without a calibration curve. This spot sampler was used to sample the headspace of hair gel, particle board, plant material and coffee grounds for formaldehyde, and other carbonyl compounds, with extremely promising results. The SPME sampling devices were also used for time- weighted average sampling (30 minutes to 16 hours). Finally, the four new SPME air sampling methods were field tested with side-by-side comparisons to standard air sampling methods, showing a tremendous use of SPME as an air sampler.

  3. 30 CFR 70.207 - Bimonthly sampling; mechanized mining units.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... air will be used to determine the average concentration for that mechanized mining unit. (e) Unless... sampling device as follows: (1) Conventional section using cutting machine. On the cutting machine operator or on the cutting machine within 36 inches inby the normal working position; (2) Conventional section...

  4. Indoor air quality in green vs conventional multifamily low-income housing.

    PubMed

    Colton, Meryl D; MacNaughton, Piers; Vallarino, Jose; Kane, John; Bennett-Fripp, Mae; Spengler, John D; Adamkiewicz, Gary

    2014-07-15

    Indoor air quality is an important predictor of health, especially in low-income populations. It is unclear how recent trends in "green" building affect the indoor exposure profile. In two successive years, we conducted environmental sampling, home inspections, and health questionnaires with families in green and conventional (control) apartments in two public housing developments. A subset of participants was followed as they moved from conventional to green or conventional to conventional housing. We measured particulate matter less than 2.5 μm aerodynamic diameter (PM2.5), formaldehyde, nitrogen dioxide (NO2), nicotine, carbon dioxide (CO2), and air exchange rate (AER) over a seven-day sampling period coincident with survey administration. In multivariate models, we observed 57%, 65%, and 93% lower concentrations of PM2.5, NO2, and nicotine (respectively) in green vs control homes (p=0.032, p<0.001, p=0.003, respectively), as well as fewer reports of mold, pests, inadequate ventilation, and stuffiness. Differences in formaldehyde and CO2 were not statistically significant. AER was marginally lower in green buildings (p=0.109). Participants in green homes experienced 47% fewer sick building syndrome symptoms (p<0.010). We observed significant decreases in multiple indoor exposures and improved health outcomes among participants who moved into green housing, suggesting multilevel housing interventions have the potential to improve long-term resident health.

  5. Assessment of indoor air quality at an electronic cigarette (Vaping) convention.

    PubMed

    Chen, Rui; Aherrera, Angela; Isichei, Chineye; Olmedo, Pablo; Jarmul, Stephanie; Cohen, Joanna E; Navas-Acien, Ana; Rule, Ana M

    2017-12-29

    E-cigarette (vaping) conventions are public events promoting electronic cigarettes, in which indoor use of e-cigarettes is allowed. The large concentration of people using e-cigarettes and poor air ventilation can result in indoor air pollution. In order to estimate this worst-case exposure to e-cigarettes, we evaluated indoor air quality in a vaping convention in Maryland (MD), USA. Real-time concentrations of particulate matter (PM 10 ) and real-time total volatile organic compounds (TVOCs), CO 2 and NO 2 concentrations were measured. Integrated samples of air nicotine and PM 10 concentrations were also collected. The number of attendees was estimated to range from 75 to 600 at any single observation time. The estimated 24-h time-weighted average (TWA) PM 10 was 1800 μg/m 3 , 12-fold higher than the EPA 24-h regulation (150 μg/m 3 ). Median (range) indoor TVOCs concentration was 0.13 (0.04-0.3) ppm. PM 10 and TVOC concentrations were highly correlated with CO 2 concentrations, indicating the high number of people using e-cigarettes and poor indoor air quality. Air nicotine concentration was 125 μg/m 3 , equivalent to concentrations measured in bars and nightclubs. E-cigarette aerosol in a vaping convention that congregates many e-cigarette users is a major source of PM 10 , air nicotine and VOCs, impairing indoor air quality. These findings also raise occupational concerns for e-cigarette vendors and other venue staff workers.

  6. Determination of polybrominated diphenyl ethers (PBDEs) in dust samples collected in air conditioning filters of different usage - method development.

    PubMed

    Śmiełowska, M; Zabiegała, B

    2018-06-19

    This study presents the results of studies aimed at the development of an analytical procedure for separation, identification, and determination of PBDEs compounds in dust samples collected from automotive cabin air filters and samples collected from filters installed as part of the air purification system in academic facilities. Ultrasound-assisted dispersive solid phase extraction (UA-dSPE) was found to perform better in terms of extract purification than the conventional SPE technique. GC-EIMS was used for final determination of analytes. The concentrations of PBDEs in car filters ranged from < LOD to 688 ng/g while from < LOD to 247 ng/g in dust from air conditioning filters. BDE-47 and BDE-100 were reported the dominating congeners. The estimated exposure to PBDEs via ingestion of dust from car filters varied from 0.00022 to 0.012 ng/day in toddlers and from 0.000036 to 0.0029 ng/day in adults; dust from air conditioning filters: from 0.017 to 0.25 ng/day in toddlers and from 0.0029 to 0.042 ng/day. In addition, an attempt was made at extracting PBDEs from a dust samples using the matrix solid-phase dispersion (MSPD) technique as a promising alternative to conventional SPE separations. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Comparison of coarse coal dust sampling techniques in a laboratory-simulated longwall section.

    PubMed

    Patts, Justin R; Barone, Teresa L

    2017-05-01

    Airborne coal dust generated during mining can deposit and accumulate on mine surfaces, presenting a dust explosion hazard. When assessing dust hazard mitigation strategies for airborne dust reduction, sampling is done in high-velocity ventilation air, which is used to purge the mining face and gallery tunnel. In this environment, the sampler inlet velocity should be matched to the air stream velocity (isokinetic sampling) to prevent oversampling of coarse dust at low sampler-to-air velocity ratios. Low velocity ratios are often encountered when using low flow rate, personal sampling pumps commonly used in underground mines. In this study, with a goal of employing mine-ready equipment, a personal sampler was adapted for area sampling of coarse coal dust in high-velocity ventilation air. This was done by adapting an isokinetic nozzle to the inlet of an Institute of Occupational Medicine (Edinburgh, Scotland) sampling cassette (IOM). Collected dust masses were compared for the modified IOM isokinetic sampler (IOM-MOD), the IOM without the isokinetic nozzle, and a conventional dust sampling cassette without the cyclone on the inlet. All samplers were operated at a flow rate typical of personal sampling pumps: 2 L/min. To ensure differences between collected masses that could be attributed to sampler design and were not influenced by artifacts from dust concentration gradients, relatively uniform and repeatable dust concentrations were demonstrated in the sampling zone of the National Institute for Occupational Safety and Health experimental mine gallery. Consistent with isokinetic theory, greater differences between isokinetic and non-isokinetic sampled masses were found for larger dust volume-size distributions and higher ventilation air velocities. Since isokinetic sampling is conventionally used to determine total dust concentration, and isokinetic sampling made a difference in collected masses, the results suggest when sampling for coarse coal dust the IOM-MOD may improve airborne coarse dust assessments over "off-the-shelf" sampling cassettes.

  8. Comparison of coarse coal dust sampling techniques in a laboratory-simulated longwall section

    PubMed Central

    Patts, Justin R.; Barone, Teresa L.

    2017-01-01

    Airborne coal dust generated during mining can deposit and accumulate on mine surfaces, presenting a dust explosion hazard. When assessing dust hazard mitigation strategies for airborne dust reduction, sampling is done in high-velocity ventilation air, which is used to purge the mining face and gallery tunnel. In this environment, the sampler inlet velocity should be matched to the air stream velocity (isokinetic sampling) to prevent oversampling of coarse dust at low sampler-to-air velocity ratios. Low velocity ratios are often encountered when using low flow rate, personal sampling pumps commonly used in underground mines. In this study, with a goal of employing mine-ready equipment, a personal sampler was adapted for area sampling of coarse coal dust in high-velocity ventilation air. This was done by adapting an isokinetic nozzle to the inlet of an Institute of Occupational Medicine (Edinburgh, Scotland) sampling cassette (IOM). Collected dust masses were compared for the modified IOM isokinetic sampler (IOM-MOD), the IOM without the isokinetic nozzle, and a conventional dust sampling cassette without the cyclone on the inlet. All samplers were operated at a flow rate typical of personal sampling pumps: 2 L/min. To ensure differences between collected masses that could be attributed to sampler design and were not influenced by artifacts from dust concentration gradients, relatively uniform and repeatable dust concentrations were demonstrated in the sampling zone of the National Institute for Occupational Safety and Health experimental mine gallery. Consistent with isokinetic theory, greater differences between isokinetic and non-isokinetic sampled masses were found for larger dust volume-size distributions and higher ventilation air velocities. Since isokinetic sampling is conventionally used to determine total dust concentration, and isokinetic sampling made a difference in collected masses, the results suggest when sampling for coarse coal dust the IOM-MOD may improve airborne coarse dust assessments over “off-the-shelf” sampling cassettes. PMID:27792474

  9. Air bubbles and hemolysis of blood samples during transport by pneumatic tube systems.

    PubMed

    Mullins, Garrett R; Bruns, David E

    2017-10-01

    Transport of blood samples through pneumatic tube systems (PTSs) generates air bubbles in transported blood samples and, with increasing duration of transport, the appearance of hemolysis. We investigated the role of air-bubble formation in PTS-induced hemolysis. Air was introduced into blood samples for 0, 1, 3 or 5min to form air bubbles. Hemolysis in the blood was assessed by (H)-index, lactate dehydrogenase (LD) and potassium in plasma. In an effort to prevent PTS-induced hemolysis, blood sample tubes were completely filled, to prevent air bubble formation, and compared with partially filled samples after PTS transport. We also compared hemolysis in anticoagulated vs clotted blood subjected to PTS transport. As with transport through PTSs, the duration of air bubble formation in blood by a gentle stream of air predicted the extent of hemolysis as measured by H-index (p<0.01), LD (p<0.01), and potassium (p<0.02) in plasma. Removing air space in a blood sample prevented bubble formation and fully protected the blood from PTS-induced hemolysis (p<0.02 vs conventionally filled collection tube). Clotted blood developed less foaming during PTS transport and was partially protected from hemolysis vs anticoagulated blood as indicated by lower LD (p<0.03) in serum than in plasma after PTS sample transport. Prevention of air bubble formation in blood samples during PTS transport protects samples from hemolysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Extension of the shelf life of prawns (Penaeus japonicus) by vacuum packaging and high-pressure treatment.

    PubMed

    López-Caballero, M E; Pérez-Mateos, M; Borderías, J A; Montero, P

    2000-10-01

    The present study has investigated the application of high pressures (200 and 400 MPa) in chilled prawn tails, both conventionally stored (air) and vacuum packaged. Vacuum packaging and high-pressure treatment did extend the shelf life of the prawn samples, although it did affect muscle color very slightly, giving it a whiter appearance. The viable shelf life of 1 week for the air-stored samples was extended to 21 days in the vacuum-packed samples, 28 days in the samples treated at 200 MPa, and 35 days in the samples pressurized at 400 MPa. Vacuum packaging checked the onset of blackening, whereas high-pressure treatment aggravated the problem. From a microbiological point of view, batches conventionally stored reached about 6 log CFU/g or even higher at 14 days. Similar figures were reached in total number of bacteria in vacuum-packed samples and in pressurized at 200-MPa samples at 21 days. When samples were pressurized at 400 MPa, total numbers of bacteria were below 5.5 log CFU/g at 35 days of storage. Consequently, a combination of vacuum packaging and high-pressure treatment would appear to be beneficial in prolonging freshness and preventing spotting.

  11. Microbial assessment of cabin air quality on commercial airliners

    NASA Technical Reports Server (NTRS)

    La Duc, Myron T.; Stuecker, Tara; Bearman, Gregory; Venkateswaran, Kasthuri

    2005-01-01

    The microbial burdens of 69 cabin air samples collected from commercial airliners were assessed via conventional culture-dependent, and molecular-based microbial enumeration assays. Cabin air samples from each of four separate flights aboard two different carriers were collected via air-impingement. Microbial enumeration techniques targeting DNA, ATP, and endotoxin were employed to estimate total microbial burden. The total viable microbial population ranged from 0 to 3.6 x10 4 cells per 100 liters of air, as assessed by the ATP-assay. When these same samples were plated on R2A minimal medium, anywhere from 2% to 80% of these viable populations were cultivable. Five of the 29 samples examined exhibited higher cultivable counts than ATP derived viable counts, perhaps a consequence of the dormant nature (and thus lower concentration of intracellular ATP) of cells inhabiting these air cabin samples. Ribosomal RNA gene sequence analysis showed these samples to consist of a moderately diverse group of bacteria, including human pathogens. Enumeration of ribosomal genes via quantitative-PCR indicated that population densities ranged from 5 x 10 1 ' to IO 7 cells per 100 liters of air. Each of the aforementioned strategies for assessing overall microbial burden has its strengths and weaknesses; this publication serves as a testament to the power of their use in concert.

  12. Contact resonance atomic force microscopy imaging in air and water using photothermal excitation.

    PubMed

    Kocun, Marta; Labuda, Aleksander; Gannepalli, Anil; Proksch, Roger

    2015-08-01

    Contact Resonance Force Microscopy (CR-FM) is a leading atomic force microscopy technique for measuring viscoelastic nano-mechanical properties. Conventional piezo-excited CR-FM measurements have been limited to imaging in air, since the "forest of peaks" frequency response associated with acoustic excitation methods effectively masks the true cantilever resonance. Using photothermal excitation results in clean contact, resonance spectra that closely match the ideal frequency response of the cantilever, allowing unambiguous and simple resonance frequency and quality factor measurements in air and liquids alike. This extends the capabilities of CR-FM to biologically relevant and other soft samples in liquid environments. We demonstrate CR-FM in air and water on both stiff silicon/titanium samples and softer polystyrene-polyethylene-polypropylene polymer samples with the quantitative moduli having very good agreement between expected and measured values.

  13. Blanchability and sensory quality of large runner peanuts blanched in a radiant wall oven using infrared radiation.

    PubMed

    Kettler, Katrina; Adhikari, Koushik; Singh, Rakesh K

    2017-10-01

    The main factors behind the growing popularity of infrared radiation heating in food processing include its energy efficiency, food quality retention and process speed, as well as the simplicity of equipment. Infrared radiation was employed as an alternative heat treatment to the conventional hot air method used in peanut blanching. The present study aimed to investigate the application of infrared heating for blanching peanuts and determine their blanchability and sensory quality under various processing conditions. The total blanchabilities (expressed as a percentage of total blanched) of the infrared radiation trials (radiant wall oven) at 343 °C for 1.5 min, 316 °C for 1.5 min, 288 °C for 1.5 min and 343 °C for 1 min did not differ significantly compared to the hot air control trials (impingement oven) at 100 °C for 30 and 20 min. All infrared trials had significantly lower (P < 0.05) numbers of split kernels compared to those of the conventional trials and all blanched peanuts in the experiment remained raw. A descriptive sensory shelf-life study with one control and three infrared samples demonstrated the possible initiation of oxidation for the conventionally blanched sample at 18 weeks of storage at 24 °C (room temperature), with no indication of oxidation in the infrared samples stored at the same temperature. Infrared radiation peanut blanching is a viable alternative to conventional hot air blanching because of the shorter process time and longer shelf-life, as evident from the sensory storage study. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. Effect of different conventional melt quenching technique on purity of lithium niobate (LiNbO3) nano crystal phase formed in lithium borate glass

    NASA Astrophysics Data System (ADS)

    Kashif, Ismail; Soliman, Ashia A.; Sakr, Elham M.; Ratep, Asmaa

    2012-01-01

    The glass system (45Li2O + 45B2O3 + 10Nb2O5) was fabricated by the conventional melt quenching technique poured in water, at air, between two hot plates and droplets at the cooled surface. The glass and glass ceramics were studied by differential thermal analysis (DTA) and X-ray diffraction (XRD). The as quenched samples poured in water and between two hot plates were amorphous. The samples poured at air and on cooled surface were crystalline as established via X-ray powder diffraction (XRD) studies. Differential thermal analysis was measured. The glass transition temperature (Tg) and the crystallization temperatures were calculated. Lithium niobate (LiNbO3) was the main phase in glass ceramic poured at air, droplets at the cooled surface and the heat treated glass sample at 500, 540 and 580 °C in addition to traces from LiNb3O8. Crystallite size of the main phases determined from the X-ray diffraction peaks is in the range of <100 nm. The fraction of crystalline (LiNbO3) phase decreases with increase in the heat treatment temperature.

  15. Determination of 14C/ 12C of acetaldehyde in indoor air by compound specific radiocarbon analysis

    NASA Astrophysics Data System (ADS)

    Kato, Yoshimi; Shinohara, Naohide; Yoshinaga, Jun; Uchida, Masao; Matsuda, Ayuri; Yoneda, Minoru; Shibata, Yasuyuki

    A method of compound-specific radiocarbon analysis (CSRA) for acetaldehyde in indoor air was established for the source apportionment purpose and the methodology was applied to indoor air samples. Acetaldehyde in indoor air samples was collected using the conventional 2,4-dinitrophenylhydrazine (DNPH) derivatization method. Typically 24-h air sampling at 5-10 L min -1 allowed collection of adequate amount of acetaldehyde for radiocarbon analysis by accelerator mass spectrometry (AMS). The 14C abundance of acetaldehyde in indoor air was measured by AMS after solvent extraction of derivatized acetaldehyde and sequential purification by a preparative liquid chromatography system and a preparative capillary gas chromatography system. The recovery and purity of the derivatized acetaldehyde was satisfactory for 14C analysis by AMS. 14C abundance of acetaldehyde was calculated by considering that of derivatizing agent DNPH. Our preliminary survey showed that percent modern carbon (pMC) values of acetaldehyde isolated from indoor air sampled in newly built, unoccupied housings ( n=5) in the suburb of Tokyo ranged from 49.4 to 67.0. This result indicated that contribution of anthropogenic source was greater than previously expected.

  16. Contact resonance atomic force microscopy imaging in air and water using photothermal excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocun, Marta; Labuda, Aleksander; Gannepalli, Anil

    2015-08-15

    Contact Resonance Force Microscopy (CR-FM) is a leading atomic force microscopy technique for measuring viscoelastic nano-mechanical properties. Conventional piezo-excited CR-FM measurements have been limited to imaging in air, since the “forest of peaks” frequency response associated with acoustic excitation methods effectively masks the true cantilever resonance. Using photothermal excitation results in clean contact, resonance spectra that closely match the ideal frequency response of the cantilever, allowing unambiguous and simple resonance frequency and quality factor measurements in air and liquids alike. This extends the capabilities of CR-FM to biologically relevant and other soft samples in liquid environments. We demonstrate CR-FM inmore » air and water on both stiff silicon/titanium samples and softer polystyrene-polyethylene-polypropylene polymer samples with the quantitative moduli having very good agreement between expected and measured values.« less

  17. Performance assessment of conventional and base-isolated nuclear power plants for earthquake and blast loadings

    NASA Astrophysics Data System (ADS)

    Huang, Yin-Nan

    Nuclear power plants (NPPs) and spent nuclear fuel (SNF) are required by code and regulations to be designed for a family of extreme events, including very rare earthquake shaking, loss of coolant accidents, and tornado-borne missile impacts. Blast loading due to malevolent attack became a design consideration for NPPs and SNF after the terrorist attacks of September 11, 2001. The studies presented in this dissertation assess the performance of sample conventional and base isolated NPP reactor buildings subjected to seismic effects and blast loadings. The response of the sample reactor building to tornado-borne missile impacts and internal events (e.g., loss of coolant accidents) will not change if the building is base isolated and so these hazards were not considered. The sample NPP reactor building studied in this dissertation is composed of containment and internal structures with a total weight of approximately 75,000 tons. Four configurations of the reactor building are studied, including one conventional fixed-base reactor building and three base-isolated reactor buildings using Friction Pendulum(TM), lead rubber and low damping rubber bearings. The seismic assessment of the sample reactor building is performed using a new procedure proposed in this dissertation that builds on the methodology presented in the draft ATC-58 Guidelines and the widely used Zion method, which uses fragility curves defined in terms of ground-motion parameters for NPP seismic probabilistic risk assessment. The new procedure improves the Zion method by using fragility curves that are defined in terms of structural response parameters since damage and failure of NPP components are more closely tied to structural response parameters than to ground motion parameters. Alternate ground motion scaling methods are studied to help establish an optimal procedure for scaling ground motions for the purpose of seismic performance assessment. The proposed performance assessment procedure is used to evaluate the vulnerability of the conventional and base-isolated NPP reactor buildings. The seismic performance assessment confirms the utility of seismic isolation at reducing spectral demands on secondary systems. Procedures to reduce the construction cost of secondary systems in isolated reactor buildings are presented. A blast assessment of the sample reactor building is performed for an assumed threat of 2000 kg of TNT explosive detonated on the surface with a closest distance to the reactor building of 10 m. The air and ground shock waves produced by the design threat are generated and used for performance assessment. The air blast loading to the sample reactor building is computed using a Computational Fluid Dynamics code Air3D and the ground shock time series is generated using an attenuation model for soil/rock response. Response-history analysis of the sample conventional and base isolated reactor buildings to external blast loadings is performed using the hydrocode LS-DYNA. The spectral demands on the secondary systems in the isolated reactor building due to air blast loading are greater than those for the conventional reactor building but much smaller than those spectral demands associated with Safe Shutdown Earthquake shaking. The isolators are extremely effective at filtering out high acceleration, high frequency ground shock loading.

  18. Contamination of dental unit water and air outlets following use of clean head system and conventional handpieces.

    PubMed

    Toomarian, Lida; Rikhtegaran, Sahand; Sadighi, Mehrnoosh; Savadi Oskoee, Siavash; Alizadeh Oskoee, Parnian

    2007-01-01

    Dental handpiece is a source of contamination because it is in constant touch with the oral cavity. Sterilization does not seem to be sufficient to prevent penetration of microorganisms into air and water lines of the unit, because negative pressure developed by valves (which are placed in water outlets) and post shut-off inertial rotation of handpiece result in water and debris being sucked into air and water outlets of dental unit. The aim of this study was to compare dental unit contamination following use of clean head system handpieces and conventional handpieces. Twenty-two dental units in the Department of Pediatric Dentistry in Shahid Beheshti Faculty of Dentistry were used for the purpose of this study. A 1.5×108 cfu/mm3 concentration of Staphylococcus epidermis (SE) was used to contaminate the air and water outlets of dental units. Ten clean head system handpieces and 10 conventional handpieces were used for 30 seconds in the above-mentioned suspension. Microbial samples were collected from the air and water lines. Culturing and colony counting procedures were carried out. Data was analyzed by t-test; a value of p<0.01 was considered significant. Results demonstrated a significantly lower SE contamination in water outlets following the use of clean head system (p<0.01). A lower tendency of clean head system handpieces to transmit SE compared to conventional system makes them a better choice for infection control.

  19. Adventures in the Environmental World and Environmental Microbiology Sampling of Air for Pharmaceutical Sterile Compounding.

    PubMed

    Ligugnana, Roberto

    2017-01-01

    Chapter <797> issued by the United States Pharmacopeial Convention, Inc. is the standard for sterile compounding. It is designed to reduce the number of patient infections due to contaminated pharmaceutical preparation. This regulation applies to all staff who prepare compounded sterile preparations and all places where they are produced, including hospitals, clinics, pharmacies, and physician's offices. This article provides the history of environmental microbiology and provides a discussion on environmental microbiology sampling of air for pharmaceutical sterile compounding. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  20. Polyurethane foam (PUF) disks passive air samplers: wind effect on sampling rates.

    PubMed

    Tuduri, Ludovic; Harner, Tom; Hung, Hayley

    2006-11-01

    Different passive sampler housings were evaluated for their wind dampening ability and how this might translate to variability in sampler uptake rates. Polyurethane foam (PUF) disk samplers were used as the sampling medium and were exposed to a PCB-contaminated atmosphere in a wind tunnel. The effect of outside wind speed on PUF disk sampling rates was evaluated by exposing polyurethane foam (PUF) disks to a PCB-contaminated air stream in a wind tunnel over air velocities in the range 0 to 1.75 m s-1. PUF disk sampling rates increased gradually over the range 0-0.9 m s-1 at approximately 4.5-14.6 m3 d-1 and then increased sharply to approximately 42 m3 d-1 at approximately 1.75 m s-1 (sum of PCBs). The results indicate that for most field deployments the conventional 'flying saucer' housing adequately dampens the wind effect and will yield approximately time-weighted air concentrations.

  1. Bedside diagnosis of alcohol intoxication with a pocket-size breath-alcohol device: sampling from unconscious subjects and specificity for ethanol.

    PubMed

    Falkensson, M; Jones, W; Sörbo, B

    1989-06-01

    We describe a novel mouth-cup device for sampling breath from unconscious subjects and analysis with a hand-held breath-alcohol instrument, the "Alcolmeter SD-2." This equipment was evaluated in healthy volunteers after they drank a moderate dose of alcohol. Three kinds of breath were analyzed: (a) end-expired air from a conventional mouth-tube, (b) breath sampled from the mouth-cup, and (c) air from a nasal tube supplied with the breath analyzer. The ethanol concentration in breath from the mouth-cup was slightly less than in end-expired air but significantly greater than in nasal air. Results with mouth-tube and mouth-cup correlated highly with blood-ethanol concentration as determined by gas chromatography; nasal-tube air correlated less well. The Alcolmeter responded not only to ethanol but also to methanol, 1-propanol, and 2-propanol, whereas ethylene glycol gave no response. The time-response curve for methanol was different, and this might permit differential diagnosis of methanol poisoning.

  2. Impacts of the Convention on Long-range Transboundary Air Pollution on air quality in Europe.

    PubMed

    Bull, Keith; Johansson, Matti; Krzyzanowski, Michal

    2008-01-01

    The Convention on Long-range Transboundary Air Pollution has been one of the main ways of protecting the environment in Europe from air pollution. This convention has successfully bridged different political systems even through times of political change, and is a prime example of what can be achieved through intergovernmental cooperation. Through creating an effective framework for controlling and reducing the damage to human health and the environment from transboundary air pollution, this convention has proved successful. This article considers the development of the convention and its work on adverse air pollution effects, in particular on activities related to quantifying effects on human health as carried out by the convention's joint (with WHO) Task Force on the Health Effects of Air Pollution (Task Force on Health), and concludes with some indications of the convention's future priorities.

  3. Air-coupled ultrasound: a novel technique for monitoring the curing of thermosetting matrices.

    PubMed

    Lionetto, Francesca; Tarzia, Antonella; Maffezzoli, Alfonso

    2007-07-01

    A custom-made, air-coupled ultrasonic device was applied to cure monitoring of thick samples (7-10 mm) of unsaturated polyester resin at room temperature. A key point was the optimization of the experimental setup in order to propagate compression waves during the overall curing reaction by suitable placement of the noncontact transducers, placed on the same side of the test material, in the so-called pitch-catch configuration. The progress of polymerization was monitored through the variation of the time of flight of the propagating longitudinal waves. The exothermic character of the polymerization was taken into account by correcting the measured value of time of flight with that one in air, obtained by sampling the air velocity during the experiment. The air-coupled ultrasonic results were compared with those obtained from conventional contact ultrasonic measurements. The good agreement between the air-coupled ultrasonic results and those obtained by the rheological analysis demonstrated the reliability of air-coupled ultrasound in monitoring the changes of viscoelastic properties at gelation and vitrification. The position of the transducers on the same side of the sample makes this technique suitable for on-line cure monitoring during several composite manufacturing technologies.

  4. Evaluation of Air Coupled Ultrasound for Composite Aerospace Structure

    NASA Astrophysics Data System (ADS)

    Tat, H.; Georgeson, G.; Bossi, R.

    2009-03-01

    Non-contact air coupled ultrasound suffers from the high acoustic impedance mismatch characteristics of air to solid interfaces. Advances in transducer technology, particularly MEMS, have improved the acoustic impedance match at the transmission stage and the signal to noise at the reception stage. Comparisons of through transmission (TTU) scanning of laminate and honeycomb test samples using conventional piezoelectric air coupled transducers, new MEMS air coupled transducers, and standard water coupled inspections have been performed to assess the capability. An additional issue for air coupled UT inspection is the need for a lean implementation for both manufacturing and in-service operations. Concepts and applications utilizing magnetic coupling of transducers have been developed that allows air coupled inspection operations in compact low cost configurations.

  5. Environmentally critical elements in channel and cleaned samples of Illinois coals

    USGS Publications Warehouse

    Demir, I.; Ruch, R.R.; Damberger, H.H.; Harvey, R.D.; Steele, J.D.; Ho, K.K.

    1998-01-01

    Sixteen trace and minor elements that occur in coal are listed among 189 substances identified as 'hazardous air pollutants' (HAPs) in the US Clean Air Act Amendments of 1990. We investigated the occurrence and cleanability of the 16 HAPs in Illinois coals, as a contribution to the discussion about the potential effect of pending environmental regulations on the future use of these coals in power generation. The average ash content of the samples of conventionally cleaned as-shipped coals is about 20% lower than that of standard channel samples. Conventional cleaning reduces the average concentrations of As, Cd, Co, Hg, Mn, Ni, Pb, Sb and Th in the as-shipped coals by more than 20% relative to channel samples. Thus, basing assessments of health risks from emissions of HAPs during coal combustion on channel samples without appropriate adjustment would overestimate the risk. Additional cleaning by froth-flotation reduces the ash content of finely-ground as-shipped coals by as much as 76% at an 80% combustibles recovery. Although the average froth-flotation cleanability for the majority of HAPs is less than that for ash, the cleanabilities in some individual cases approaches, or even exceeds, the cleanability for ash, depending on the modes of occurrences of the elements. ?? 1997 Elsevier Science Ltd.

  6. Detection limits of Legionella pneumophila in environmental samples after co-culture with Acanthamoeba polyphaga

    PubMed Central

    2013-01-01

    Background The efficiency of recovery and the detection limit of Legionella after co-culture with Acanthamoeba polyphaga are not known and so far no investigations have been carried out to determine the efficiency of the recovery of Legionella spp. by co-culture and compare it with that of conventional culturing methods. This study aimed to assess the detection limits of co-culture compared to culture for Legionella pneumophila in compost and air samples. Compost and air samples were spiked with known concentrations of L. pneumophila. Direct culturing and co-culture with amoebae were used in parallel to isolate L. pneumophila and recovery standard curves for both methods were produced for each sample. Results The co-culture proved to be more sensitive than the reference method, detecting 102-103 L. pneumophila cells in 1 g of spiked compost or 1 m3 of spiked air, as compared to 105-106 cells in 1 g of spiked compost and 1 m3 of spiked air. Conclusions Co-culture with amoebae is a useful, sensitive and reliable technique to enrich L. pneumophila in environmental samples that contain only low amounts of bacterial cells. PMID:23442526

  7. Organic composition of fogwater in the Texas-Louisiana gulf coast corridor

    NASA Astrophysics Data System (ADS)

    Raja, Suresh; Raghunathan, Ravikrishna; Kommalapati, Raghava R.; Shen, Xinhua; Collett, Jeffrey L.; Valsaraj, Kalliat T.

    Fogwater and air samples were collected in Baton Rouge between November 2004-February 2005 and during February 2006 at Houston. Organic compounds present in the fog samples were detected, quantified and then grouped into different compound classes based on molecular size, solubility and polarity using gas chromatography/mass spectrometry, high performance liquid chromatography with diode array detection and ion chromatography. Organic compounds were grouped as n-alkanes, aromatics and polycyclic aromatics, carbonyls, alcohols, amides and esters. Organic compounds in fog and air samples in Houston indicated clear urban/industrial anthropogenic origin, while compounds detected in Baton Rouge fog and air samples showed a mix of both agricultural and urban/industrial anthropogenic inputs. Among the various polycyclic aromatic compounds detected, the total concentration of naphthalene and its derivatives was 2.8 μg m -3 in Houston and 0.08 μg m -3 in Baton Rouge air. Analysis of concentrations of organic compounds pre- and post- fog revealed that compounds with low vapor pressure had higher scavenging efficiency in fog sampled at the two locations. Concentrations of organic compounds in fog samples were higher than those predicted by conventional air-water Henry's law equilibrium. Observed higher concentrations in the aqueous phase were modeled accounting for surface adsorption and accumulation of gas phase species and the presence of humic-like substances in fogwater.

  8. Site Environmental Report for 2009, Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Suying

    2010-08-19

    Volume II of the Site Environmental Report for 2009 is provided by Ernest Orlando Lawrence Berkeley National Laboratory as a supplemental appendix to Volume I, which contains the body of the report. Volume II contains the environmental monitoring and sampling data used to generate summary results of routine and nonroutine sampling at the Laboratory, except for groundwater sampling data, which may be found in the reports referred to in Chapter 4 of Volume I. The results from sample collections are more comprehensive in Volume II than in Volume I: for completeness, all results from sample collections that began or endedmore » in calendar year (CY) 2009 are included in this volume. However, the samples representing CY 2008 data have not been used in the summary results that are reported in Volume I. (For example, although ambient air samples collected on January 6, 2009, are presented in Volume II, they represent December 2008 data and are not included in Table 4-2 in Volume I.) When appropriate, sampling results are reported in both conventional and International System (SI) units. For some results, the rounding procedure used in data reporting may result in apparent differences between the numbers reported in SI and conventional units. (For example, stack air tritium results reported as < 1.5 Bq/m3 are shown variously as < 39 and < 41 pCi/m3. Both of these results are rounded correctly to two significant digits.)« less

  9. Low concentrations of persistent organic pollutants (POPs) in air at Cape Verde.

    PubMed

    Nøst, Therese Haugdahl; Halse, Anne Karine; Schlabach, Martin; Bäcklund, Are; Eckhardt, Sabine; Breivik, Knut

    2018-01-15

    Ambient air is a core medium for monitoring of persistent organic pollutants (POPs) under the Stockholm Convention and is used in studies of global transports of POPs and their atmospheric sources and source regions. Still, data based on active air sampling remain scarce in many regions. The primary objectives of this study were to (i) monitor concentrations of selected POPs in air outside West Africa, and (ii) to evaluate potential atmospheric processes and source regions affecting measured concentrations. For this purpose, an active high-volume air sampler was installed on the Cape Verde Atmospheric Observatory at Cape Verde outside the coast of West Africa. Sampling commenced in May 2012 and 43 samples (24h sampling) were collected until June 2013. The samples were analyzed for selected polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), hexachlorobenzene (HCB) and chlordanes. The concentrations of these POPs at Cape Verde were generally low and comparable to remote sites in the Arctic for several compounds. Seasonal trends varied between compounds and concentrations exhibited strong temperature dependence for chlordanes. Our results indicate net volatilization from the Atlantic Ocean north of Cape Verde as sources of these POPs. Air mass back trajectories demonstrated that air masses measured at Cape Verde were generally transported from the Atlantic Ocean or the North African continent. Overall, the low concentrations in air at Cape Verde were likely explained by absence of major emissions in areas from which the air masses originated combined with depletion during long-range atmospheric transport due to enhanced degradation under tropical conditions (high temperatures and concentrations of hydroxyl radicals). Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  10. Investigation of bioaerosols released from swine farms using conventional and alternative waste treatment and management technologies

    USGS Publications Warehouse

    Ko, G.; Simmons, O. D.; Likirdopulos, C.A.; Worley-Davis, L.; Williams, M.; Sobsey, M.D.

    2008-01-01

    Microbial air pollution from concentrated animal feeding operations (CAFOs) has raised concerns about potential public health and environmental impacts. We investigated the levels of bioaerosols released from two swine farms using conventional lagoon-sprayfield technology and ten farms using alternative waste treatment and management technologies in the United States. In total, 424 microbial air samples taken at the 12 CAFOs were analyzed for several indicator and pathogenic microorganisms, including culturable bacteria and fungi, fecal coliform, Escherichia coli, Clostridium perfringens, bacteriophage, and Salmonella. At all of the investigated farms, bacterial concentrations at the downwind boundary were higher than those at the upwind boundary, suggesting that the farms are sources of microbial air contamination. In addition, fecal indicator microorganisms were found more frequently near barns and treatment technology sites than upwind or downwind of the farms. Approximately 4.5% (19/424), 1.2% (5/424), 22.2% (94/424), and 12.3% (53/424) of samples were positive for fecal coliform, E. coli, Clostridium, and total coliphage, respectively. Based on statistical comparison of airborne fecal indicator concentrations at alternative treatment technology farms compared to control farms with conventional technology, three alternative waste treatment technologies appear to perform better at reducing the airborne release of fecal indicator microorganisms during on-farm treatment and management processes. These results demonstrate that airborne microbial contaminants are released from swine farms and pose possible exposure risks to farm workers and nearby neighbors. However, the release of airborne microorganisms appears to decrease significantly through the use of certain alternative waste management and treatment technologies. ?? 2008 American Chemical Society.

  11. Automated Smartphone Threshold Audiometry: Validity and Time Efficiency.

    PubMed

    van Tonder, Jessica; Swanepoel, De Wet; Mahomed-Asmail, Faheema; Myburgh, Hermanus; Eikelboom, Robert H

    2017-03-01

    Smartphone-based threshold audiometry with automated testing has the potential to provide affordable access to audiometry in underserved contexts. To validate the threshold version (hearTest) of the validated hearScreen™ smartphone-based application using inexpensive smartphones (Android operating system) and calibrated supra-aural headphones. A repeated measures within-participant study design was employed to compare air-conduction thresholds (0.5-8 kHz) obtained through automated smartphone audiometry to thresholds obtained through conventional audiometry. A total of 95 participants were included in the study. Of these, 30 were adults, who had known bilateral hearing losses of varying degrees (mean age = 59 yr, standard deviation [SD] = 21.8; 56.7% female), and 65 were adolescents (mean age = 16.5 yr, SD = 1.2; 70.8% female), of which 61 had normal hearing and the remaining 4 had mild hearing losses. Threshold comparisons were made between the two test procedures. The Wilcoxon signed-ranked test was used for comparison of threshold correspondence between manual and smartphone thresholds and the paired samples t test was used to compare test time. Within the adult sample, 94.4% of thresholds obtained through smartphone and conventional audiometry corresponded within 10 dB or less. There was no significant difference between smartphone (6.75-min average, SD = 1.5) and conventional audiometry test duration (6.65-min average, SD = 2.5). Within the adolescent sample, 84.7% of thresholds obtained at 0.5, 2, and 4 kHz with hearTest and conventional audiometry corresponded within ≤5 dB. At 1 kHz, 79.3% of the thresholds differed by ≤10 dB. There was a significant difference (p < 0.01) between smartphone (7.09 min, SD = 1.2) and conventional audiometry test duration (3.23 min, SD = 0.6). The hearTest application with calibrated supra-aural headphones provides a cost-effective option to determine valid air-conduction hearing thresholds. American Academy of Audiology

  12. Air exposure and sample storage time influence on hydrogen release from tungsten

    NASA Astrophysics Data System (ADS)

    Moshkunov, K. A.; Schmid, K.; Mayer, M.; Kurnaev, V. A.; Gasparyan, Yu. M.

    2010-09-01

    In investigations of hydrogen retention in first wall components the influence of the conditions of the implanted target storage prior to analysis and the storage time is often neglected. Therefore we have performed a dedicated set of experiments. The release of hydrogen from samples exposed to ambient air after irradiation was compared to samples kept in vacuum. For air exposed samples significant amounts of HDO and D 2O are detected during TDS. Additional experiments have shown that heavy water is formed by recombination of releasing D and H atoms with O on the W surface. This water formation can alter hydrogen retention results significantly, in particular - for low retention cases. In addition to the influence of ambient air exposure also the influence of storage time in vacuum was investigated. After implantation at 300 K the samples were stored in vacuum for up to 1 week during which the retained amount decreased significantly. The subsequently measured TDS spectra showed that D was lost from both the high and low energy peaks during storage at ambient temperature of ˜300 K. An attempt to simulate this release from both peaks during room temperature storage by TMAP 7 calculations showed that this effect cannot be explained by conventional diffusion/trapping models.

  13. Microbial Dynamics during Aerobic Exposure of Corn Silage Stored under Oxygen Barrier or Polyethylene Films▿

    PubMed Central

    Dolci, Paola; Tabacco, Ernesto; Cocolin, Luca; Borreani, Giorgio

    2011-01-01

    The aims of this study were to compare the effects of sealing forage corn with a new oxygen barrier film with those obtained by using a conventional polyethylene film. This comparison was made during both ensilage and subsequent exposure of silage to air and included chemical, microbiological, and molecular (DNA and RNA) assessments. The forage was inoculated with a mixture of Lactobacillus buchneri, Lactobacillus plantarum, and Enterococcus faecium and ensiled in polyethylene (PE) and oxygen barrier (OB) plastic bags. The oxygen permeability of the PE and OB films was 1,480 and 70 cm3 m−2 per 24 h at 23°C, respectively. The silages were sampled after 110 days of ensilage and after 2, 5, 7, 9, and 14 days of air exposure and analyzed for fermentation characteristics, conventional microbial enumeration, and bacterial and fungal community fingerprinting via PCR-denaturing gradient gel electrophoresis (DGGE) and reverse transcription (RT)-PCR-DGGE. The yeast counts in the PE and OB silages were 3.12 and 1.17 log10 CFU g−1, respectively, with corresponding aerobic stabilities of 65 and 152 h. Acetobacter pasteurianus was present at both the DNA and RNA levels in the PE silage samples after 2 days of air exposure, whereas it was found only after 7 days in the OB silages. RT-PCR-DGGE revealed the activity of Aspergillus fumigatus in the PE samples from the day 7 of air exposure, whereas it appeared only after 14 days in the OB silages. It has been shown that the use of an oxygen barrier film can ensure a longer shelf life of silage after aerobic exposure. PMID:21821764

  14. Isolation of bacteriophages from air using vacuum filtration technique: an improved and novel method.

    PubMed

    Magare, B; Nair, A; Khairnar, K

    2017-10-01

    Development of a simple and economical air sampler for isolation and enrichment of bacteriophages from air samples. A vacuum filtration unit with simple modifications was used for isolation of bacteriophages from air sampled in the lavatory. Air was sampled at the rate of 62 l min -1 by bubbling into Mcllvaine buffer for 30 min, which was used as bacteriophage solution for enrichment and plaque assessment against individual hosts. Alternatively, the aforementioned phage solution was enriched using a host consortium before plaque assessment. Phages were isolated in the range of 1-12 PFU per ml by the first method, whereas enrichment with host consortium gave phages around 10- to 1000-folds higher in number. Combining with established enrichment method, an improvement of about 10 times in phage isolation efficiency was attained. The method is very useful for studying the natural bacteriophages of air, requiring only a basic microbiological laboratory setup making it simple and economical. This study brings out a simple, economical air sampler for assessing air bacteriophages that can be employed by any microbial laboratory. Although various methods are available for studying bacteriophages in water and soil, very limited are available for air. To the best of our knowledge, the method developed in this study is unique in its design and concept for studying bacteriophages in air. The sampler is sterilizable by autoclaving and maintains a healthy rate of airflow provided by conventional vacuum pumps. The use of a nonspecific 'trapping solution' allows for the qualitative and quantitative study of air bacteriophages. © 2017 The Society for Applied Microbiology.

  15. A passive integrative sampler for mercury vapor in air and neutral mercury species in water

    USGS Publications Warehouse

    Brumbaugh, W.G.; Petty, J.D.; May, T.W.; Huckins, J.N.

    2000-01-01

    A passive integrative mercury sampler (PIMS) based on a sealed polymeric membrane was effective for the collection and preconcentration of Hg0. Because the Hg is both oxidized and stabilized in the PIMS, sampling intervals of weeks to months are possible. The effective air sampling rate for a 15 x 2.5 cm device was about 21-equivalents/day (0.002 m3/day) and the detection limit for 4-week sampling was about 2 ng/m3 for conventional ICP-MS determination without clean-room preparation. Sampling precision was ??? 5% RSD for laboratory exposures, and 5-10% RSD for field exposures. These results suggest that the PIMS could be useful for screening assessments of Hg contamination and exposure in the environment, the laboratory, and the workplace. The PIMS approach may be particularly useful for applications requiring unattended sampling for extended periods at remote locations. Preliminary results indicate that sampling for dissolved gaseous mercury (DGM) and potentially other neutral mercury species from water is also feasible. Rigorous validation of the sampler performance is currently in progress. (C) 1999 Elsevier Science Ltd.A passive integrative mercury sampler (PIMS) based on a sealed polymeric membrane was effective for the collection and preconcentration of Hg0. Because the Hg is both oxidized and stabilized in the PIMS, sampling intervals of weeks to months are possible. The effective air sampling rate for a 15??2.5 cm device was about 21-equivalents/day (0.002 m3/day) and the detection limit for 4-week sampling was about 2 ng/m3 for conventional ICP-MS determination without clean-room preparation. Sampling precision was ???5% RSD for laboratory exposures, and 5-10% RSD for field exposures. These results suggest that the PIMS could be useful for screening assessments of Hg contamination and exposure in the environment, the laboratory, and the workplace. The PIMS approach may be particularly useful for applications requiring unattended sampling for extended periods at remote locations. Preliminary results indicate that sampling for dissolved gaseous mercury (DGM) and potentially other neutral mercury species from water is also feasible. Rigorous validation of the sampler performance is currently in progress.

  16. The tropospheric distribution of formaldehyde

    NASA Astrophysics Data System (ADS)

    Lowe, D. C.; Schmidt, U.; Ehhalt, D. H.

    1981-12-01

    A measurement technique for determining the very low formaldehyde concentrations in clean air is described. The method is based on the standard derivation of formaldehyde with 2,4-dinitrophenylhydrazine. The derivative is separated, using high performance liquid chromatography, and detected at 254 nm with a conventional UV absorption detector. The sampling and analysis technique was used to measure tropospheric mixing ratios at various places in Europe and New Zealand as well as during a cruise in the North and South Atlantic. The results of the measurements show that formaldehyde mixing ratios in clean air are very low. In clean maritime air no significant difference in the formaldehyde mixing ratio between the hemispheres is observed.

  17. Development and validation of a sensitive thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) method for the determination of phosgene in air samples.

    PubMed

    Juillet, Y; Dubois, C; Bintein, F; Dissard, J; Bossée, A

    2014-08-01

    A new rapid, sensitive and reliable method was developed for the determination of phosgene in air samples using thermal desorption (TD) followed by gas chromatography-mass spectrometry (GC-MS). The method is based on a fast (10 min) active sampling of only 1 L of air onto a Tenax® GR tube doped with 0.5 mL of derivatizing mixture containing dimercaptotoluene and triethylamine in hexane solution. Validation of the TD-GC-MS method showed a low limit of detection (40 ppbv), acceptable repeatability, intermediate fidelity (relative standard deviation within 12 %) and excellent accuracy (>95%). Linearity was demonstrated for two concentration ranges (0.04 to 2.5 ppmv and 2.5 to 10 ppmv) owing to variation of derivatization recovery between low and high concentration levels. Due to its simple on-site implementation and its close similarity with recommended operating procedure (ROP) for chemical warfare agents vapour sampling, the method is particularly useful in the process of verification of the Chemical Weapons Convention.

  18. Assessing polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans in air across Latin American countries using polyurethane foam disk passive air samplers.

    PubMed

    Schuster, Jasmin K; Harner, Tom; Fillmann, Gilberto; Ahrens, Lutz; Altamirano, Jorgelina C; Aristizábal, Beatriz; Bastos, Wanderley; Castillo, Luisa Eugenia; Cortés, Johana; Fentanes, Oscar; Gusev, Alexey; Hernandez, Maricruz; Ibarra, Martín Villa; Lana, Nerina B; Lee, Sum Chi; Martínez, Ana Patricia; Miglioranza, Karina S B; Puerta, Andrea Padilla; Segovia, Federico; Siu, May; Tominaga, Maria Yumiko

    2015-03-17

    A passive air sampling network has been established to investigate polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) at Global Atmospheric Passive Sampling (GAPS) sites and six additional sites in the Group of Latin American and Caribbean Countries (GRULAC) region. The air sampling network covers background, agricultural, rural, and urban sites. Samples have been collected over four consecutive periods of 6 months, which started in January 2011 [period 1 (January to June 2011), period 2 (July to December 2011), period 3 (January to June 2012), and period 4 (July 2012 to January 2013)]. Results show that (i) the GAPS passive samplers (PUF disk type) and analytical methodology are adequate for measuring PCDD/F burdens in air and (ii) PCDD/F concentrations in air across the GRULAC region are widely variable by almost 2 orders of magnitude. The highest concentrations in air of Σ4-8PCDD/Fs were found at the urban site São Luis (Brazil, UR) (i.e., 2560 fg/m3) followed by the sites in São Paulo (Brazil, UR), Mendoza (Argentina, RU), and Sonora (Mexico, AG) with values of 1690, 1660, and 1610 fg/m3, respectively. Very low concentrations of PCDD/Fs in air were observed at the background site Tapanti (Costa Rica, BA), 10.8 fg/m3. This variability is attributed to differences in site characteristics and potential local/regional sources as well as meteorological influences. The measurements of PCDD/Fs in air agree well with model-predicted concentrations performed using the Global EMEP Multimedia Modeling System (GLEMOS) and emission scenario constructed on the basis of the UNEP Stockholm Convention inventory of dioxin and furan emissions.

  19. Polystyrene Foam EOS as a Function of Porosity and Fill Gas

    NASA Astrophysics Data System (ADS)

    Mulford, Roberta; Swift, Damian

    2009-06-01

    An accurate EOS for polystyrene foam is necessary for analysis of numerous experiments in shock compression, inertial confinement fusion, and astrophysics. Plastic to gas ratios vary between various samples of foam, according to the density and cell-size of the foam. A matrix of compositions has been investigated, allowing prediction of foam response as a function of the plastic-to-air ratio. The EOS code CHEETAH allows participation of the air in the decomposition reaction of the foam, Differences between air-filled, nitrogen-blown, and CO2-blown foams are investigated, to estimate the importance of allowing air to react with plastic products during decomposition. Results differ somewhat from the conventional EOS, which are generated from values for plastic extrapolated to low densities.

  20. Microbiological Surveillance of Operation Theatres: Five Year Retrospective Analysis from a Tertiary Care Hospital in North India

    PubMed Central

    Najotra, Dipender Kaur; Malhotra, Aneeta Singh; Slathia, Poonam; Raina, Shivani; Dhar, Ashok

    2017-01-01

    Introduction: Microbiological contamination of air and environment in the operation theaters (OTs) are major risk factor for surgical site and other hospital-associated infections. Objectives: The aim was to identify bacterial colonization of surfaces and equipment and to determine the microbial contamination of air in the OTs of a tertiary care hospital. Materials and Methods: Five years (January 2010–December 2014) retrospective analysis of the data obtained from routine microbiological surveillance of the five OTs of the hospital was done. Surface samples were taken with wet swabs from different sites and equipment. Bacterial species were isolated and identified by conventional methods. Air quality surveillance of OTs was done by settle plate method. Results: A total of 4387 samples were collected from surfaces and articles of various OTs. Out of these only 195 (4.4%), samples showed bacterial growth and yielded 210 isolates. The predominant species isolated was Bacillus with 184 (87.6%) isolates followed by coagulase-negative Staphylococcus 17 (8.1%), Staphylococcus aureus 6 (2.9%), and Enteroccoccus spp. 3 (1.4%). Analysis of the OT air samples showed least colony forming unit (cfu) rate of air (27 cfu/m3) in ophthalmology OT and highest rate of 133 cfu/m3 in general surgery OT. Conclusion: The study shows that OTs of our hospital showed a very low bacterial contamination rate on surface swabbing and a cfu count per m3 of air well within permissible limits. PMID:28904915

  1. Environmental scanning electron microscope imaging examples related to particle analysis.

    PubMed

    Wight, S A; Zeissler, C J

    1993-08-01

    This work provides examples of some of the imaging capabilities of environmental scanning electron microscopy applied to easily charged samples relevant to particle analysis. Environmental SEM (also referred to as high pressure or low vacuum SEM) can address uncoated samples that are known to be difficult to image. Most of these specimens are difficult to image by conventional SEM even when coated with a conductive layer. Another area where environmental SEM is particularly applicable is for specimens not compatible with high vacuum, such as volatile specimens. Samples from which images were obtained that otherwise may not have been possible by conventional methods included fly ash particles on an oiled plastic membrane impactor substrate, a one micrometer diameter fiber mounted on the end of a wire, uranium oxide particles embedded in oil-bearing cellulose nitrate, teflon and polycarbonate filter materials with collected air particulate matter, polystyrene latex spheres on cellulosic filter paper, polystyrene latex spheres "loosely" sitting on a glass slide, and subsurface tracks in an etched nuclear track-etch detector. Surface charging problems experienced in high vacuum SEMs are virtually eliminated in the low vacuum SEM, extending imaging capabilities to samples previously difficult to use or incompatible with conventional methods.

  2. Phytochemicals, Monosaccharides and Elemental Composition of the Non-Pomace Constituent of Organic and Conventional Grape Juices (Vitis labrusca L.): Effect of Drying on the Bioactive Content.

    PubMed

    Haas, Isabel Cristina da Silva; Toaldo, Isabela Maia; de Gois, Jefferson Santos; Borges, Daniel L G; Petkowicz, Carmen Lúcia de Oliveira; Bordignon-Luiz, Marilde T

    2016-12-01

    Grape and grape derivatives contain a variety of antioxidants that have gain increasing interest for functional foods applications. The chemical composition of grapes is mainly related to grape variety and cultivation factors, and each grape constituent exhib its unique characteristics regarding its bioactive properties. This study investigated the chemical composition and the effect of drying on the bioactive content of the non-pomace constituent obtained in the processing of organic and conventional grape juices from V. labrusca L. The non-pomace samples were analyzed for polyphenols, monosaccharides, antioxidant activity and elemental composition and the effect of drying on the bioactive composition was evaluated in samples subjected to lyophilization and drying with air circulation. The analyses revealed high concentrations of proanthocyanidins, flavanols and anthocyanins, and high antioxidant capacity of the organic and conventional samples. The drying processes reduced significantly (P < 0.05) the total phenolic content that ranged from 13.23 to 36.36 g/kg. Glucose, xylose, and mannose were the predominant monosaccharides, whereas K, Ca and Mg were the most abundant minerals. Variations in the chemical composition of organic and conventional samples were associated with cultivation factors. Nevertheless, this non-pomace constituent is a promising source of nutrients and polyphenols with bioactive potential.

  3. Near-Patient Sampling to Assist Infection Control—A Case Report and Discussion

    PubMed Central

    Tang, Julian W.; Hoyle, Elizabeth; Moran, Sammy; Pareek, Manish

    2018-01-01

    Air sampling as an aid to infection control is still in an experimental stage, as there is no consensus about which air samplers and pathogen detection methods should be used, and what thresholds of specific pathogens in specific exposed populations (staff, patients, or visitors) constitutes a true clinical risk. This case report used a button sampler, worn or held by staff or left free-standing in a fixed location, for environmental sampling around a child who was chronically infected by a respiratory adenovirus, to determine whether there was any risk of secondary adenovirus infection to the staff managing the patient. Despite multiple air samples taken on difference days, coinciding with high levels of adenovirus detectable in the child’s nasopharyngeal aspirates (NPAs), none of the air samples contained any detectable adenovirus DNA using a clinically validated diagnostic polymerase chain reaction (PCR) assay. Although highly sensitive, in-house PCR assays have been developed to detect airborne pathogen RNA/DNA, it is still unclear what level of specific pathogen RNA/DNA constitutes a true clinical risk. In this case, the absence of detectable airborne adenovirus DNA using a conventional diagnostic assay removed the requirement for staff to wear surgical masks and face visors when they entered the child’s room. No subsequent staff infections or outbreaks of adenovirus have so far been identified. PMID:29385031

  4. Indoor air quality in green buildings: A case-study in a residential high-rise building in the northeastern United States.

    PubMed

    Xiong, Youyou; Krogmann, Uta; Mainelis, Gediminas; Rodenburg, Lisa A; Andrews, Clinton J

    2015-01-01

    Improved indoor air quality (IAQ) is one of the critical components of green building design. Green building tax credit (e.g., New York State Green Building Tax Credit (GBTC)) and certification programs (e.g., Leadership in Energy & Environmental Design (LEED)) require indoor air quality measures and compliance with allowable maximum concentrations of common indoor air pollutants. It is not yet entirely clear whether compliance with these programs results in improved IAQ and ultimately human health. As a case in point, annual indoor air quality measurements were conducted in a residential green high-rise building for five consecutive years by an industrial hygiene contractor to comply with the building's GBTC requirements. The implementation of green design measures resulted in better IAQ compared to data in references of conventional homes for some parameters, but could not be confirmed for others. Relative humidity and carbon dioxide were satisfactory according to existing standards. Formaldehyde levels during four out of five years were below the most recent proposed exposure limits found in the literature. To some degree, particulate matter (PM) levels were lower than that in studies from conventional residential buildings. Concentrations of Volatile Organic Compounds (VOCs) with known permissible exposure limits were below levels known to cause chronic health effects, but their concentrations were inconclusive regarding cancer health effects due to relatively high detection limits. Although measured indoor air parameters met all IAQ maximum allowable concentrations in GBTC and applicable LEED requirements at the time of sampling, we argue that these measurements were not sufficient to assess IAQ comprehensively because more sensitive sampling/analytical methods for PM and VOCs are needed; in addition, there is a need for a formal process to ensure rigor and adequacy of sampling and analysis methods. Also, we suggest that a comprehensive IAQ assessment should include mixed mode thermal comfort models, semi-volatile organic compounds, assessment of new chemicals, and permissible exposure levels of many known indoor VOCs and bioaerosols. Plus, the relationship between energy consumption and IAQ, and tenant education on health effects of indoor pollutants and their sources may need more attention in IAQ investigations in green buildings.

  5. Measurement of the resistivity of porous materials with an alternating air-flow method.

    PubMed

    Dragonetti, Raffaele; Ianniello, Carmine; Romano, Rosario A

    2011-02-01

    Air-flow resistivity is a main parameter governing the acoustic behavior of porous materials for sound absorption. The international standard ISO 9053 specifies two different methods to measure the air-flow resistivity, namely a steady-state air-flow method and an alternating air-flow method. The latter is realized by the measurement of the sound pressure at 2 Hz in a small rigid volume closed partially by the test sample. This cavity is excited with a known volume-velocity sound source implemented often with a motor-driven piston oscillating with prescribed area and displacement magnitude. Measurements at 2 Hz require special instrumentation and care. The authors suggest an alternating air-flow method based on the ratio of sound pressures measured at frequencies higher than 2 Hz inside two cavities coupled through a conventional loudspeaker. The basic method showed that the imaginary part of the sound pressure ratio is useful for the evaluation of the air-flow resistance. Criteria are discussed about the choice of a frequency range suitable to perform simplified calculations with respect to the basic method. These criteria depend on the sample thickness, its nonacoustic parameters, and the measurement apparatus as well. The proposed measurement method was tested successfully with various types of acoustic materials.

  6. Modelling and mapping long-term risks due to reactive nitrogen effects: an overview of LRTAP convention activities.

    PubMed

    Spranger, T; Hettelingh, J-P; Slootweg, J; Posch, M

    2008-08-01

    Long-range transboundary air pollution has caused severe environmental effects in Europe. European air pollution abatement policy, in the framework of the UNECE Convention on Long-range Transboundary Air Pollution (LRTAP Convention) and the European Union Clean Air for Europe (CAFE) programme, has used critical loads and their exceedances by atmospheric deposition to design emission abatement targets and strategies. The LRTAP Convention International Cooperative Programme on Modelling and Mapping Critical Loads and Levels and Air Pollution Effects, Risks and Trends (ICP M&M) generates European critical loads datasets to enable this work. Developing dynamic nitrogen flux models and using them for a prognosis and assessment of nitrogen effects remains a challenge. Further research is needed on links between nitrogen deposition effects, climate change, and biodiversity.

  7. Spatial gradients of OCPs in European butter--integrating environmental and exposure information.

    PubMed

    Weiss, Jana; Müller, Anne; Vives, Ingrid; Mariani, Giulio; Umlauf, Gunther

    2013-05-01

    The Stockholm Convention and the Global Monitoring Plan encourage the production of monitoring data to effectively evaluate the presence of the persistent organic pollutants (POPs) in all regions, in order to identify changes in levels over time, as well as to provide information on their regional and global environmental transport. Here, we report the first step of two to investigate whether butter is a feasible matrix to screen with the purpose to reflect regional ambient atmospheric air levels of POPs. The first step described here is to generate monitoring data; the second is to investigate the relationship between the two matrixes, i.e., POP concentrations in air and butter, which will be reported in another article published in this journal. Here, the 27 organochlorine pesticides listed under the Stockholm Convention have been analyzed in 75 butter samples from Europe. The general conclusions were as follows: Total organochlorine pesticide concentration is lower in butter from northern and central Europe. The spatial gradient of 1,1,1-trichloro-2,2-di(4-chlorophenyl)ethane and hexachlorocyclohexane is increasing in the eastern region of Europe (Romania, Bulgaria, and Ukraine), dieldrin towards France, and endosulfan levels were elevated on the Azores Island in the Atlantic Ocean. One butter sample from Romania exceeded the European Maximum Residue Limit value for lindane, but the other butter pesticide levels were all below the limit values. The dataset reported here can be used for the calibration of the air-grass-dairy products model, which would support the feasibility to use butter as biomonitor for measuring POP levels in ambient air.

  8. An Automated Air Sampling System Comprising an OPTIC GC Injector II, Quantification of VX Vapour

    DTIC Science & Technology

    2006-01-01

    Convention in 1989. In 1990 a Canadian research institute reported their work on the thermodesorption of VX using Tenax minitubes [3]. They obtained best...is to convert VX to a volatile derivative which is then trapped on Tenax and easily desorbed. This approach is used by Robert B. Walton [4] in...measure levels of 0.001 mg/m3 with a 20 minutes sampling time. With the Hapsite as well as with the abovementioned minitubes no cold trap is used

  9. Field evaluations of newly available "interference-free" monitors for nitrogen dioxide and ozone at near-road and conventional National Ambient Air Quality Standards compliance sites.

    PubMed

    Leston, Alan R; Ollison, Will M

    2017-11-01

    Long-standing measurement techniques for determining ground-level ozone (O 3 ) and nitrogen dioxide (NO 2 ) are known to be biased by interfering compounds that result in overestimates of high O 3 and NO 2 ambient concentrations under conducive conditions. An increasing near-ground O 3 gradient (NGOG) with increasing height above ground level is also known to exist. Both the interference bias and NGOG were investigated by comparing data from a conventional Federal Equivalent Method (FEM) O 3 photometer and an identical monitor upgraded with an "interference-free" nitric oxide O 3 scrubber that alternatively sampled at 2 m and 6.2 m inlet heights above ground level (AGL). Intercomparison was also made between a conventional nitrogen oxide (NO x ) chemiluminescence Federal Reference Method (FRM) monitor and a new "direct-measure" NO 2 NO x 405 nm photometer at a near-road air quality measurement site. Results indicate that the O 3 monitor with the upgraded scrubber recorded lower regulatory-oriented concentrations than the deployed conventional metal oxide-scrubbed monitor and that O 3 concentrations 6.2 m AGL were higher than concentrations 2.0 m AGL, the nominal nose height of outdoor populations. Also, a new direct-measure NO 2 photometer recorded generally lower NO 2 regulatory-oriented concentrations than the conventional FRM chemiluminescence monitor, reporting lower daily maximum hourly average concentrations than the conventional monitor about 3 of every 5 days. Employing bias-prone instruments for measurement of ambient ozone or nitrogen dioxide from inlets at inappropriate heights above ground level may result in collection of positively biased data. This paper discusses tests of new regulatory instruments, recent developments in bias-free ozone and nitrogen dioxide measurement technology, and the presence/extent of a near-ground O 3 gradient (NGOG). Collection of unbiased monitor inlet height-appropriate data is crucial for determining accurate design values and meeting National Ambient Air Quality Standards.

  10. Conventional wastewater treatment and reuse site practices modify bacterial community structure but do not eliminate some opportunistic pathogens in reclaimed water.

    PubMed

    Kulkarni, Prachi; Olson, Nathan D; Paulson, Joseph N; Pop, Mihai; Maddox, Cynthia; Claye, Emma; Rosenberg Goldstein, Rachel E; Sharma, Manan; Gibbs, Shawn G; Mongodin, Emmanuel F; Sapkota, Amy R

    2018-10-15

    Water recycling continues to expand across the United States, from areas that have access to advanced, potable-level treated reclaimed water, to those having access only to reclaimed water treated at conventional municipal wastewater treatment plants. This expansion makes it important to further characterize the microbial quality of these conventionally-treated water sources. Therefore, we used 16S rRNA gene sequencing to characterize total bacterial communities present in differentially-treated wastewater and reclaimed water (n = 67 samples) from four U.S. wastewater treatment plants and one associated spray irrigation site conducting on-site ultraviolet treatment and open-air storage. The number of observed operational taxonomic units was significantly lower (p < 0.01) in effluent, compared to influent, after conventional treatment. Effluent community structure was influenced more by treatment method than by influent community structure. The abundance of Legionella spp. increased as treatment progressed in one treatment plant that performed chlorination and in another that seasonally chlorinated. Overall, the alpha-diversity of bacterial communities in reclaimed water decreased (p < 0.01) during wastewater treatment and spray irrigation site ultraviolet treatment (p < 0.01), but increased (p < 0.01) after open-air storage at the spray irrigation site. The abundance of Legionella spp. was higher at the sprinkler system pumphouse at the spray irrigation site than in the influent from the treatment plant supplying the site. Legionella pneumophila was detected in conventionally treated effluent samples and in samples collected after ultraviolet treatment at the spray irrigation site, while Legionella feeleii persisted throughout on-site treatment at the spray irrigation site, and, along with Mycobacterium gordonae, was also detected at the sprinkler system pumphouse at the spray irrigation site. These data could inform the development of future treatment technologies and reuse guidelines that address a broader assemblage of the bacterial community of reclaimed water, resulting in reuse practices that may be more protective of public health. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Evaluation of the particle infiltration efficiency of three passive samplers and the PS-1 active air sampler

    NASA Astrophysics Data System (ADS)

    Markovic, Milos Z.; Prokop, Sebastian; Staebler, Ralf M.; Liggio, John; Harner, Tom

    2015-07-01

    The particle infiltration efficiencies (PIE) of three passive and one active air samplers were evaluated under field conditions. A wide-range particle spectrometer operating in the 250-4140 nm range was used to acquire highly temporally resolved particle-number and size distributions for the different samplers compared to ambient air. Overall, three of the four evaluated samplers were able to acquire a representative sample of ambient particles with PIEs of 91.5 ± 13.7% for the GAPS Network sampler, 103 ± 15.5% for the Lancaster University sampler, and 89.6 ± 13.4% for a conventional PS-1 high-volume active air sampler (Hi-Vol). Significantly (p = 0.05) lower PIE of 54 ± 8.0% was acquired for the passive sampler used under the MONET program. These findings inform the comparability and use of passive and active samplers for measuring particle-associated priority chemicals in air.

  12. Comparison of computed radiography and conventional radiography in detection of small volume pneumoperitoneum.

    PubMed

    Marolf, Angela; Blaik, Margaret; Ackerman, Norman; Watson, Elizabeth; Gibson, Nicole; Thompson, Margret

    2008-01-01

    The role of digital imaging is increasing as these systems are becoming more affordable and accessible. Advantages of computed radiography compared with conventional film/screen combinations include improved contrast resolution and postprocessing capabilities. Computed radiography's spatial resolution is inferior to conventional radiography; however, this limitation is considered clinically insignificant. This study prospectively compared digital imaging and conventional radiography in detecting small volume pneumoperitoneum. Twenty cadaver dogs (15-30 kg) were injected with 0.25, 0.25, and 0.5 ml for 1 ml total of air intra-abdominally, and radiographed sequentially using computed and conventional radiographic technologies. Three radiologists independently evaluated the images, and receiver operating curve (ROC) analysis compared the two imaging modalities. There was no statistical difference between computed and conventional radiography in detecting free abdominal air, but overall computed radiography was relatively more sensitive based on ROC analysis. Computed radiographic images consistently and significantly demonstrated a minimal amount of 0.5 ml of free air based on ROC analysis. However, no minimal air amount was consistently or significantly detected with conventional film. Readers were more likely to detect free air on lateral computed images than the other projections, with no significant increased sensitivity between film/screen projections. Further studies are indicated to determine the differences or lack thereof between various digital imaging systems and conventional film/screen systems.

  13. Quantitative measurement of airborne cockroach allergen in New York City apartments

    PubMed Central

    Esposito, W. A.; Chew, G. L.; Correa, J. C.; Chillrud, S. N.; Miller, R. L.; Kinney, P. L.

    2013-01-01

    We designed and tested a sampling and analysis system for quantitative measurement of airborne cockroach allergen with sufficient sensitivity for residential exposure assessment. Integrated 1-week airborne particle samples were collected at 10–15 LPM in 19 New York City apartments in which an asthmatic child who was allergic to cockroach allergen resided. Four simultaneous air samples were collected in each home: at heights of 0.3 and 1 m in the child's bedroom and in the kitchen. Extracts of air samples were analyzed by ELISA for the cockroach allergen Bla g2, modified by amplifying the colorimetric signal generated via use of AMPLI-Q detection system (DAKO Corporation, Carpinteria, CA, USA). Settled dust samples were quantified by conventional ELISA. Of the homes where cockroach allergen was detected in settled dust, Bla g2 also was detected in 87% and 93% of air samples in the bedroom and kitchen, respectively. Airborne Bla g2 levels were highly correlated within and between the bedroom and kitchen locations (P < 0.001). Expressed as picogram per cubic meter, the room average geometric mean for Bla g2 concentrations was 1.9 pg/m3 (95% CI 0.63, 4.57) and 3.8 pg/m3 (95% CI 1.35, 9.25) in bedrooms and kitchens, respectively. This method offers an attractive supplement to settled dust sampling for cockroach allergen exposure health studies. PMID:21658130

  14. Preliminary assessment of using tree-tissue analysis and passive-diffusion samplers to evaluate trichloroethene contamination of ground water at Site SS-34N, McChord Air Force Base, Washington, 2001

    USGS Publications Warehouse

    Cox, S.E.

    2002-01-01

    Two low-cost innovative sampling procedures for characterizing trichloroethene (TCE) contamination in ground water were evaluated for use at McChord Air Force Base (AFB) by the U.S. Geological Survey, in cooperation with the U.S. Air Force McChord Air Force Base Installation Restoration Program, in 2001. Previous attempts to characterize the source of ground-water contamination in the heterogeneous glacial outwash aquifer at McChord site SS-34N using soil-gas surveys, direct-push exploration, and more than a dozen ground-water monitoring wells have had limited success. The procedures assessed in this study involved analysis of tree-tissue samples to map underlying ground-water contamination and deploying passive-diffusion samplers to measure TCE concentrations in existing monitoring wells. These procedures have been used successfully at other U.S. Department of Defense sites and have resulted in cost avoidance and accelerated site characterization. Despite the presence of TCE in ground water at site SS-34N, TCE was not detected in any of the 20 trees sampled at the site during either early spring or late summer sampling. The reason the tree tissue procedure was not successful at the McChord AFB site SS-34N may have been due to an inability of tree roots to extract moisture from a water table 30 feet below the land surface, or that concentrations of TCE in ground water were not large enough to be detectable in the tree tissue at the sampling point. Passive-diffusion samplers were placed near the top, middle, and bottom of screened intervals in three monitoring wells and TCE was observed in all samplers. Concentrations of TCE from the passive-diffusion samplers were generally similar to concentrations found in samples collected in the same wells using conventional pumping methods. In contrast to conventional pumping methods, the collection of ground-water samples using the passive-diffusion samples did not generate waste purge water that would require hazardous-waste disposal. In addition, the results from the passive-diffusion samples may show that TCE concentrations are stratified across some screened intervals. The overall results of the limited test of passive-diffusion samplers at site SS-34N were similar to more detailed tests conducted at other contaminated sites across the country and indicate that further evaluation of the use of passive-diffusion samplers at McChord site SS-34N is warranted.

  15. The atmospheric inventory of Xenon and noble cases in shales The plastic bag experiment

    NASA Technical Reports Server (NTRS)

    Bernatowicz, T. J.; Podosek, F. A.; Honda, M.; Kramer, F. E.

    1984-01-01

    A novel trapped gas analysis protocol is applied to five shales in which the samples are sealed in air to eliminate the possibility of gas loss in the preanalysis laboratory vacuum exposure of a conventional protocol. The test is aimed at a determination concerning the hypothesis that atmospheric noble gases occur in the same proportion as planetary gases in meteorites, and that the factor-of-23 deficiency of air Xe relative to planetary Xe is made up by Xe stored in shales or other sedimentary rocks. The results obtained do not support the shale hypothesis.

  16. Plasma-surface modification vs air oxidation on carbon obtained from peach stone: Textural and chemical changes and the efficiency as adsorbents

    NASA Astrophysics Data System (ADS)

    De Velasco Maldonado, Paola S.; Hernández-Montoya, Virginia; Montes-Morán, Miguel A.

    2016-10-01

    Carbons were prepared from peach stones (Prunus persica) using different carbonization temperatures (600, 800 and 1000 °C). A selected sample was modified by oxidation using conventional oxidation techniques (thermal treatment in air atmosphere) and with cold oxygen plasma oxidation, under different conditions. Samples were characterized using elemental analysis, FT-IR spectroscopy, nitrogen adsorption isotherms at -196 °C, SEM/EDX analysis, potentiometric titration and XPS analysis. Carbons with and without oxidation were employed in the adsorption of Pb2+ in aqueous solution. Results obtained indicated that the materials with high contents of acidic oxygen groups were more efficient in the removal of Pb2+, values as high as approx. 40 mg g-1 being obtained for the best performing carbon. Textural properties of the original, un-oxidized carbon were significantly altered only after oxidation under air atmosphere at 450 °C. On the other hand, the samples oxidized with plasma show little changes in the textural parameters and a slight increase in the specific surface was observed for the sample treated at high RF power (100 W). Additionally, a significant increment of the oxygen content was observed for the plasma oxidized samples, as measured by XPS.

  17. Serving Real-Time Point Observation Data in netCDF using Climate and Forecasting Discrete Sampling Geometry Conventions

    NASA Astrophysics Data System (ADS)

    Ward-Garrison, C.; May, R.; Davis, E.; Arms, S. C.

    2016-12-01

    NetCDF is a set of software libraries and self-describing, machine-independent data formats that support the creation, access, and sharing of array-oriented scientific data. The Climate and Forecasting (CF) metadata conventions for netCDF foster the ability to work with netCDF files in general and useful ways. These conventions include metadata attributes for physical units, standard names, and spatial coordinate systems. While these conventions have been successful in easing the use of working with netCDF-formatted output from climate and forecast models, their use for point-based observation data has been less so. Unidata has prototyped using the discrete sampling geometry (DSG) CF conventions to serve, using the THREDDS Data Server, the real-time point observation data flowing across the Internet Data Distribution (IDD). These data originate in text format reports for individual stations (e.g. METAR surface data or TEMP upper air data) and are converted and stored in netCDF files in real-time. This work discusses the experiences and challenges of using the current CF DSG conventions for storing such real-time data. We also test how parts of netCDF's extended data model can address these challenges, in order to inform decisions for a future version of CF (CF 2.0) that would take advantage of features of the netCDF enhanced data model.

  18. Aerosols and Particulates Workshop Sampling Procedures and Venues Working Group Summary

    NASA Technical Reports Server (NTRS)

    Pachlhofer, Peter; Howard, Robert

    1999-01-01

    The Sampling Procedures and Venues Workgroup discussed the potential venues available and issues associated with obtaining measurements. Some of the issues included Incoming Air Quality, Sampling Locations, Probes and Sample Systems. The following is a summary of the discussion of the issues and venues. The influence of inlet air to the measurement of exhaust species, especially trace chemical species, must be considered. Analysis procedures for current engine exhaust emissions regulatory measurements require adjustments for air inlet humidity. As a matter of course in scientific investigations, it is recommended that "background" measurements for any species, particulate or chemical, be performed during inlet air flow before initiation of combustion, if possible, and during the engine test period as feasible and practical. For current regulatory measurements, this would be equivalent to setting the "zero" level for conventional gas analyzers. As a minimum, it is recommended that measurements of the humidity and particulates in the incoming air be taken at the start and end of each test run. Additional measurement points taken during the run are desirable if they can be practically obtained. It was felt that the presence of trace gases in the incoming air is not a significant problem. However, investigators should consider the ambient levels and influences of local air pollution for species of interest. Desired measurement locations depend upon the investigation requirements. A complete investigation of phenomenology of particulate formation and growth requires measurements at a number of locations both within the engine and in the exhaust field downstream of the nozzle exit plane. Desirable locations for both extractive and in situ measurements include: (1) Combustion Zone (Multiple axial locations); (2) Combustor Exit (Multiple radial locations for annular combustors); (3) Turbine Stage (Inlet and exit of the stage); (4) Exit Nozzle (Multiple axial locations downstream of the nozzle). Actual locations with potential for extractive or non-intrusive measurements depend upon the test article and test configuration. Committee members expressed the importance of making investigators aware of various ports that could allow access to various stages of the existing engines. Port locations are engine si)ecific and might allow extractive sampling or innovative hybrid optical-probe access. The turbine stage region was one the most desirable locations for obtaining samples and might be accessed through boroscope ports available in some engine designs. Discussions of probes and sampling systems quickly identified issues dependent on particular measurement quantities. With general consensus, the group recommends SAE procedures for measurements and data analyses of currently regulated exhaust species (CO2, CO, THC, NO(x),) using conventional gas sampling techniques. Special procedures following sound scientific practices must be developed as required for species and/or measurement conditions not covered by SAE standards. Several issues arose concerning short lived radicals and highly reactive species. For conventional sampling, there are concerns of perturbing the sample during extraction, line losses, line-wall reactions, and chemical reactions during the sample transport to the analyzers. Sample lines coated with quartz.or other materials should be investigated for minimization of such effects. The group advocates the development of innovative probe techniques and non-intrusive optical techniques for measurement of short lived radicals and highly reactive species that cannot be sampled accurately otherwise. Two innovative probe concepts were discussed. One concept uses specially designed probes to transfer optical beams to and from a region of flow inaccessible by traditional ports or windows. The probe can perturb the flow field but must have a negligible impact on the region to be optically sampled. Such probes are referred to as hybrid probes and are under development at AEDC for measurement in the high pressure, high temperature of a combustor under development for power generation. The other concept consists of coupling an instrument directly to the probe. The probe would isolate a representative sample stream, freeze chemical reactions and direct the sample into the analyzer portion of the probe. Thus, the measurement would be performed in situ without sample line losses due either to reactions or binding at the wall surfaces. This concept was used to develop a fast, in situ, time-of-flight mass spectrometer measurement system for temporal quantification of NO in the IMPULSE facility at AEDC. Additional work is required in this area to determine the best probe and sampling technique for each species measurement requirement identified by the Trace Chemistry Working Group. A partial list of Venues was used as a baseline for discussion. Additional venues were added to the list and the list was broken out into the following categories: (1)Engines (a) Sea Level Test Stands (b) Altitude Chambers; (2) Annular Combustor Test Stands, (3) Sector Flametube Test Stands, (4) Fundamentals Rigs/Experiments.

  19. A novel method for effective diffusion coefficient measurement in gas diffusion media of polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Yang, Linlin; Sun, Hai; Fu, Xudong; Wang, Suli; Jiang, Luhua; Sun, Gongquan

    2014-07-01

    A novel method for measuring effective diffusion coefficient of porous materials is developed. The oxygen concentration gradient is established by an air-breathing proton exchange membrane fuel cell (PEMFC). The porous sample is set in a sample holder located in the cathode plate of the PEMFC. At a given oxygen flux, the effective diffusion coefficients are related to the difference of oxygen concentration across the samples, which can be correlated with the differences of the output voltage of the PEMFC with and without inserting the sample in the cathode plate. Compared to the conventional electrical conductivity method, this method is more reliable for measuring non-wetting samples.

  20. [The effect of the ventilation rate on air particle and air microbe concentration in operating rooms with conventional ventilation. 1. Measurement without surgical activity].

    PubMed

    Kruppa, B; Rüden, H

    1993-05-01

    The question was if a reduction of airborne particles and bacteria in conventionally (turbulently), ventilated operating theatres in comparison to Laminar-Airflow (LAF) operating theatres does occur at high air-exchange-rates. Within the framework of energy consumption measures the influence of air-exchange-rates on airborne particle and bacteria concentrations was determined in two identical operating theatres with conventional ventilation (wall diffusor panel) at the air-exchange-rates 7.5, 10, 15 and 20/h without surgical activity. This was established by means of the statistical procedure of analysis of variance. Especially for the comparison of the air-exchange-rates 7.5 and 15/h statistical differences were found for airborne particle concentrations in supply and ambient air. Concerning airborne bacteria concentrations no differences were found among the various air-exchange-rates. Explanation of variance is quite high for non-viable particles (supply air: 37%, ambient air: 81%) but negligible for viable particles (bacteria) with values below 15%.

  1. Characterization of the air pollution in the urban area of Madrid

    NASA Astrophysics Data System (ADS)

    Climent-Font, Aurelio; Swietlicki, Erik; Revuelta, Antonio

    1994-03-01

    An attempt is made to characterize for the first time the urban pollution of Madrid using the combination of conventional gas measurements and an ion beam analytical technique (PIXE) for aerosol monitoring. Different sets of samples were collected selecting different seasons of the year; winter and summer 1992, and also different sampling times; 3 h and 24 h. A group of 18 elements in the mass range from Si to Pb could be analyzed. Concentration of gases in the air was recorded for the following: CO, NO x, NO 2, SO 2 and C xH y. Four sources contributing to the air pollution were obtained by means of absolute principal component analysis where automotive transport emerges as the dominating one. The combination of aerosol (PIXE) and gas data as input to a receptor model proved to be fruitful for the understanding of the underlying chemical and physical processes governing the observed pollution levels. This is a preliminary study whose results will supply the trends and strategies for a more thorough characterization.

  2. Imaging of subunit complexes of thermophilic bacterium H(+)-ATPase with scanning tunneling microscopy.

    PubMed

    Masai, J; Shibata, T; Kagawa, Y; Kondo, S

    1992-07-01

    Using a scanning tunneling microscope (STM), we observed reconstructed subunit complexes of H(+)-ATPase of a thermophilic bacterium. The measurement was carried out in air without conductive coating on the samples deposited on a highly oriented pyrolytic graphite (HOPG). The F1 subunit complex of the H(+)-ATPase, and an H(+)-ATPase whose F0 portion was embedded into liposomes prepared from soybean lecithin were imaged. Overall structural images of the subunit complex F1 were obtained: the structural dimensions of the STM images are in agreement with those deduced from conventional methods such as an transmission electron microscopy (TEM) and small-angle X-ray scattering (SAX) experimentation. Regarding the STM imaging of these samples, we discuss the advantages and disadvantages of the STM over those of conventional methods such as a TEM and SAX.

  3. Hydrogen isotope correction for laser instrument measurement bias at low water vapor concentration using conventional isotope analyses: application to measurements from Mauna Loa Observatory, Hawaii.

    PubMed

    Johnson, L R; Sharp, Z D; Galewsky, J; Strong, M; Van Pelt, A D; Dong, F; Noone, D

    2011-03-15

    The hydrogen and oxygen isotope ratios of water vapor can be measured with commercially available laser spectroscopy analyzers in real time. Operation of the laser systems in relatively dry air is difficult because measurements are non-linear as a function of humidity at low water concentrations. Here we use field-based sampling coupled with traditional mass spectrometry techniques for assessing linearity and calibrating laser spectroscopy systems at low water vapor concentrations. Air samples are collected in an evacuated 2 L glass flask and the water is separated from the non-condensable gases cryogenically. Approximately 2 µL of water are reduced to H(2) gas and measured on an isotope ratio mass spectrometer. In a field experiment at the Mauna Loa Observatory (MLO), we ran Picarro and Los Gatos Research (LGR) laser analyzers for a period of 25 days in addition to periodic sample collection in evacuated flasks. When the two laser systems are corrected to the flask data, they are strongly coincident over the entire 25 days. The δ(2)H values were found to change by over 200‰ over 2.5 min as the boundary layer elevation changed relative to MLO. The δ(2)H values ranged from -106 to -332‰, and the δ(18)O values (uncorrected) ranged from -12 to -50‰. Raw data from laser analyzers in environments with low water vapor concentrations can be normalized to the international V-SMOW scale by calibration to the flask data measured conventionally. Bias correction is especially critical for the accurate determination of deuterium excess in dry air. Copyright © 2011 John Wiley & Sons, Ltd.

  4. Focusing of ferroelectret air-coupled ultrasound transducers

    NASA Astrophysics Data System (ADS)

    Gaal, Mate; Bartusch, Jürgen; Dohse, Elmar; Schadow, Florian; Köppe, Enrico

    2016-02-01

    Air-coupled ultrasound has been applied increasingly as a non-destructive testing method for lightweight construction in recent years. It is particularly appropriate for composite materials being used in automotive and aviation industry. Air-coupled ultrasound transducers mostly consist of piezoelectric materials and matching layers. However, their fabrication is challenging and their signal-to-noise ratio often not sufficient for many testing requirements. To enhance the efficiency, air-coupled ultrasound transducers made of cellular polypropylene have been developed. Because of its small density and sound velocity, this piezoelectric ferroelectret matches the small acoustic impedance of air much better than matching layers applied in conventional transducers. In our contribution, we present two different methods of spherical focusing of ferroelectret transducers for the further enhancement of their performance in NDT applications. Measurements on carbon-fiber-reinforced polymer (CFRP) samples and on metal adhesive joints performed with commercially available focused air-coupled ultrasound transducers are compared to measurements executed with self-developed focused ferroelectret transducers.

  5. Aspergillus spp. prevalence in different Portuguese occupational environments: What is the real scenario in high load settings?

    PubMed

    Viegas, Carla; Faria, Tiago; Caetano, Liliana Aranha; Carolino, Elisabete; Gomes, Anita Quintal; Viegas, Susana

    2017-10-01

    The genus Aspergillus is one of the most prevalent regarding fungi in several highly contaminated occupational environments. The goal of the current study was to assess the prevalence of Aspergillus spp. in different settings, focusing on those where a higher load of fungal contamination is expected according to the European Agency for Safety and Health at Work. A specific protocol to ensure a more accurate assessment of the exposure to Aspergillus spp. is proposed aimed at allowing a detailed risk characterization and management. Two wastewater treatment plants, one wastewater elevation plant, four waste treatment plants, three cork industries, five slaughter houses, four feed industries, one poultry pavilion, and two swineries, all located in the outskirts of Lisbon, were assessed. In total, 125 air samples and 125 surface samples were collected and analysed by culture-based methods. Real-time polymerase chain reaction was performed to detect fungal presence in 100 samples, targeting the Aspergillus sections Circumdati, Flavi, and Fumigati. The highest prevalence of Aspergillus spp. was found in wastewater treatment plants (69.3%; 31.1%), waste treatment plants (34.8%; 73.6%), and poultry feed industry (6.3%; 26.1%), in air and surfaces, respectively. Aspergillus spp. was also prevalent in cork industry (0.9%; 23.4%), slaughter houses (1.6%; 17.7%), and swineries (7.4%; 9.5%), in air and surfaces, respectively. The Aspergillus sections more prevalent in the air and surfaces of all the assessed settings were the Nigri section (47.46%; 44.71%, respectively), followed by Fumigati (22.28%; 27.97%, respectively) and Flavi (10.78%; 11.45%, respectively) sections. Aspergillus section Fumigati was successfully amplified by qPCR in 18 sampling sites where the presence of this fungal species had not been identified by conventional methods. It should be highlighted that the occupational exposure burden is due not only to the Aspergillus load, but also to the toxigenic potential of this genus. Based on our results, a protocol relied in the application of conventional and molecular methods in parallel is herein suggested aimed at allowing a better risk characterization and management.

  6. An investigation of the internal and external aerodynamics of cattle trucks

    NASA Technical Reports Server (NTRS)

    Muirhead, V. U.

    1983-01-01

    Wind tunnel tests were conducted on a one-tenth scale model of a conventional tractor trailer livestock hauler to determine the air flow through the trailer and the drag of the vehicle. These tests were conducted with the trailer empty and with a full load of simulated cattle. Additionally, the drag was determined for six configurations, of which details for three are documented herein. These are: (1) conventional livestock trailer empty, (2) conventional trailer with smooth sides (i.e., without ventilation openings), and (3) a stream line tractor with modified livestock trailer (cab streamlining and gap fairing). The internal flow of the streamlined modification with simulated cattle was determined with two different ducting systems: a ram air inlet over the cab and NACA submerged inlets between the cab and trailer. The air flow within the conventional trailer was random and variable. The streamline vehicle with ram air inlet provided a nearly uniform air flow which could be controlled. The streamline vehicle with NACA submerged inlets provided better flow conditions than the conventional livestock trailer but not as uniform or controllable as the ram inlet configuration.

  7. Solid phase microextraction Arrow for the sampling of volatile amines in wastewater and atmosphere.

    PubMed

    Helin, Aku; Rönkkö, Tuukka; Parshintsev, Jevgeni; Hartonen, Kari; Schilling, Beat; Läubli, Thomas; Riekkola, Marja-Liisa

    2015-12-24

    A new method is introduced for the sampling of volatile low molecular weight alkylamines in ambient air and wastewater by utilizing a novel SPME Arrow system, which contains a larger volume of sorbent compared to a standard SPME fiber. Parameters affecting the extraction, such as coating material, need for preconcentration, sample volume, pH, stirring rate, salt addition, extraction time and temperature were carefully optimized. In addition, analysis conditions, including desorption temperature and time as well as gas chromatographic parameters, were optimized. Compared to conventional SPME fiber, the SPME Arrow had better robustness and sensitivity. Average intermediate reproducibility of the method expressed as relative standard deviation was 12% for dimethylamine and 14% for trimethylamine, and their limit of quantification 10μg/L and 0.13μg/L respectively. Working range was from limits of quantification to 500μg/L for dimethylamine and to 130μg/L for trimethylamine. Several alkylamines were qualitatively analyzed in real samples, while target compounds dimethyl- and trimethylamines were quantified. The concentrations in influent and effluent wastewater samples were almost the same (∼80μg/L for dimethylamine, 120μg/L for trimethylamine) meaning that amines pass the water purification process unchanged or they are produced at the same rate as they are removed. For the air samples, preconcentration with phosphoric acid coated denuder was required and the concentration of trimethylamine was found to be around 1ng/m(3). The developed method was compared with optimized method based on conventional SPME and advantages and disadvantages of both approaches are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Thermodynamic correction of particle concentrations measured by underwing probes on fast flying aircraft

    NASA Astrophysics Data System (ADS)

    Weigel, R.; Spichtinger, P.; Mahnke, C.; Klingebiel, M.; Afchine, A.; Petzold, A.; Krämer, M.; Costa, A.; Molleker, S.; Jurkat, T.; Minikin, A.; Borrmann, S.

    2015-12-01

    Particle concentration measurements with underwing probes on aircraft are impacted by air compression upstream of the instrument body as a function of flight velocity. In particular for fast-flying aircraft the necessity arises to account for compression of the air sample volume. Hence, a correction procedure is needed to invert measured particle number concentrations to ambient conditions that is commonly applicable for different instruments to gain comparable results. In the compression region where the detection of particles occurs (i.e. under factual measurement conditions), pressure and temperature of the air sample are increased compared to ambient (undisturbed) conditions in certain distance away from the aircraft. Conventional procedures for scaling the measured number densities to ambient conditions presume that the particle penetration speed through the instruments' detection area equals the aircraft speed (True Air Speed, TAS). However, particle imaging instruments equipped with pitot-tubes measuring the Probe Air Speed (PAS) of each underwing probe reveal PAS values systematically below those of the TAS. We conclude that the deviation between PAS and TAS is mainly caused by the compression of the probed air sample. From measurements during two missions in 2014 with the German Gulfstream G-550 (HALO - High Altitude LOng range) research aircraft we develop a procedure to correct the measured particle concentration to ambient conditions using a thermodynamic approach. With the provided equation the corresponding concentration correction factor ξ is applicable to the high frequency measurements of each underwing probe which is equipped with its own air speed sensor (e.g. a pitot-tube). ξ-values of 1 to 0.85 are calculated for air speeds (i.e. TAS) between 60 and 260 m s-1. From HALO data it is found that ξ does not significantly vary between the different deployed instruments. Thus, for the current HALO underwing probe configuration a parameterisation of ξ as a function of TAS is provided for instances if PAS measurements are lacking. The ξ-correction yields higher ambient particle concentration by about 15-25 % compared to conventional procedures - an improvement which can be considered as significant for many research applications. The calculated ξ-values are specifically related to the considered HALO underwing probe arrangement and may differ for other aircraft or instrument geometries. Moreover, the ξ-correction may not cover all impacts originating from high flight velocities and from interferences between the instruments and, e.g., the aircraft wings and/or fuselage. Consequently, it is important that PAS (as a function of TAS) is individually measured by each probe deployed underneath the wings of a fast-flying aircraft.

  9. Bias from two analytical laboratories involved in a long-term air monitoring program measuring organic pollutants in the Arctic: a quality assurance/quality control assessment.

    PubMed

    Su, Yushan; Hung, Hayley; Stern, Gary; Sverko, Ed; Lao, Randy; Barresi, Enzo; Rosenberg, Bruno; Fellin, Phil; Li, Henrik; Xiao, Hang

    2011-11-01

    Initiated in 1992, air monitoring of organic pollutants in the Canadian Arctic provided spatial and temporal trends in support of Canada's participation in the Stockholm Convention of Persistent Organic Pollutants. The specific analytical laboratory charged with this task was changed in 2002 while field sampling protocols remained unchanged. Three rounds of intensive comparison studies were conducted in 2004, 2005, and 2008 to assess data comparability between the two laboratories. Analysis was compared for organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) in standards, blind samples of mixed standards and extracts of real air samples. Good measurement accuracy was achieved for both laboratories when standards were analyzed. Variation of measurement accuracy over time was found for some OCPs and PCBs in standards on a random and non-systematic manner. Relatively low accuracy in analyzing blind samples was likely related to the process of sample purification. Inter-laboratory measurement differences for standards (<30%) and samples (<70%) were generally less than or comparable to those reported in a previous inter-laboratory study with 21 participating laboratories. Regression analysis showed inconsistent data comparability between the two laboratories during the initial stages of the study. These inter-laboratory differences can complicate abilities to discern long-term trends of pollutants in a given sampling site. It is advisable to maintain long-term measurements with minimal changes in sample analysis.

  10. Thermal environment in eight low-energy and twelve conventional Finnish houses.

    PubMed

    Kähkönen, Erkki; Salmi, Kari; Holopainen, Rauno; Pasanen, Pertti; Reijula, Kari

    2015-11-01

    We assessed the thermal environment of eight recently built low-energy houses and twelve conventional Finnish houses. We monitored living room, bedroom and outdoor air temperatures and room air relative humidity from June 2012 to September 2013. Perceived thermal environment was evaluated using a questionnaire survey during the heating, cooling and interim seasons. We compared the measured and perceived thermal environments of the low-energy and conventional houses. The mean air temperature was 22.8 °C (21.9-23.8 °C) in the low-energy houses, and 23.3 °C (21.4-26.5 °C) in the conventional houses during the summer (1. June 2013-31. August 2013). In the winter (1. December 2012-28. February 2013), the mean air temperature was 21.3 °C (19.8-22.5 °C) in the low-energy houses, and 21.6 °C (18.1-26.4 °C) in the conventional houses. The variation of the air temperature was less in the low-energy houses than that in the conventional houses. In addition, the occupants were on average slightly more satisfied with the indoor environment in the low-energy houses. However, there was no statistically significant difference between the mean air temperature and relative humidity of the low-energy and conventional houses. Our measurements and surveys showed that a good thermal environment can be achieved in both types of houses. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  11. Performance and economics of the ACES and alternative residential heating and air conditioning systems in 115 US cities

    NASA Astrophysics Data System (ADS)

    Abbatiello, L. A.; Nephew, E. A.; Ballou, M. L.

    1981-03-01

    The efficiency and life cycle costs of the brine chiller minimal annual cycle energy system (ACES) for residential space heating, air conditioning, and water heating requirements are compared with three conventional systems. The conventional systems evaluated are a high performance air-to-air heat pump with an electric resistance water heater, an electric furnace with a central air conditioner and an electric resistance water heater, and a high performance air-to-air heat pump with a superheater unit for hot water production. Monthly energy requirements for a reference single family house are calculated, and the initial cost and annual energy consumption of the systems, providing identical energy services, are computed and compared. The ACES consumes one third to one half ot the electrical energy required by the conventional systems and delivers the same annual loads at comparable costs.

  12. Impact of production systems on swine confinement buildings bioaerosols.

    PubMed

    Létourneau, Valérie; Nehmé, Benjamin; Mériaux, Anne; Massé, Daniel; Duchaine, Caroline

    2010-02-01

    Hog production has been substantially intensified in Eastern Canada. Hogs are now fattened in swine confinement buildings with controlled ventilation systems and high animal densities. Newly designed buildings are equipped with conventional manure handling and management systems, shallow or deep litter systems, or source separation systems to manage the large volumes of waste. However, the impacts of those alternative production systems on bioaerosol concentrations within the barns have never been evaluated. Bioaerosols were characterized in 18 modern swine confinement buildings, and the differences in bioaerosol composition in the three different production systems were evaluated. Total dust, endotoxins, culturable actinomycetes, fungi, and bacteria were collected with various apparatuses. The total DNA of the air samples was extracted, and quantitative polymerase chain reaction (PCR) was used to assess the total number of bacterial genomes, as a total (culturable and nonculturable) bacterial assessment. The measured total dust and endotoxin concentrations were not statistically different in the three studied production systems. In buildings with sawdust beds, actinomycetes and molds were found in higher concentrations than in the conventional barns. Aspergillus, Cladosporium, Penicillium, and Scopulariopsis species were identified in all the studied swine confinement buildings. A. flavus, A. terreus, and A. versicolor were abundantly present in the facilities with sawdust beds. Thermotolerant A. fumigatus and Mucor were usually found in all the buildings. The culturable bacteria concentrations were higher in the barns with litters than in the conventional buildings, while real-time PCR revealed nonstatistically different concentrations of total bacteria in all the studied swine confinement buildings. In terms of workers' respiratory health, barns equipped with a solid/liquid separation system may offer better air quality than conventional buildings or barns with sawdust beds. The impact of ventilation rates, air distribution, or building design still has to be explored.

  13. Isolation of potentially pathogenic fungi from selected pigeons' feeding sites in Karachi: A new dimension to health hazard.

    PubMed

    Naz, Sehar Afshan; Yaseen, Muhammad; Jabeen, Nusrat; Shafique, Maryam

    2017-06-01

    To determine the presence of pathogenic fungal strains in areas where pigeons are present in a large number. This study was conducted at the Federal Urdu University of Arts, Science and Technology, Karachi, from February 2015 to March2016, and comprised samples of soil contaminated with pigeons' excreta. The samples were collected from 20 different pigeon-feeding places in the city. These samples were processed for the isolation and identification of fungi by using standard conventional methods. The fungal strains isolated were also tested for their susceptibility to commonly used antifungal agents by disc diffusion technique. There were 105 samples. A wide variety of fungal strains belonging to different genera of Aspergillus, Rhizopus, Penicillium, Fusarium and Candida were isolated and identified by using conventional methods. The antifungal resistance pattern of these strains also depicts emergence of resistance against commonly used antifungal agents such as amphotericin B and fluconazole. The soil and air of places densely populated with pigeons were found to be loaded with fungal spores and many of them were potential pathogens.

  14. Slaughterhouses Fungal Burden Assessment: A Contribution for the Pursuit of a Better Assessment Strategy

    PubMed Central

    Viegas, Carla; Faria, Tiago; dos Santos, Mateus; Carolino, Elisabete; Sabino, Raquel; Quintal Gomes, Anita; Viegas, Susana

    2016-01-01

    In slaughterhouses, the biological risk is present not only from the direct or indirect contact with animal matter, but also from the exposure to bioaerosols. Fungal contamination was already reported from the floors and walls of slaughterhouses. This study intends to assess fungal contamination by cultural and molecular methods in poultry, swine/bovine and large animal slaughterhouses. Air samples were collected through an impaction method, while surface samples were collected by the swabbing method and subjected to further macro- and micro-scopic observations. In addition, we collected air samples using the impinger method in order to perform real-time quantitative PCR (qPCR) amplification of genes from specific fungal species, namely A. flavus, A. fumigatus and A. ochraceus complexes. Poultry and swine/bovine slaughterhouses presented each two sampling sites that surpass the guideline of 150 CFU/m3. Scopulariopsis candida was the most frequently isolated (59.5%) in poultry slaughterhouse air; Cladosporium sp. (45.7%) in the swine/bovine slaughterhouse; and Penicillium sp. (80.8%) in the large animal slaughterhouse. Molecular tools successfully amplified DNA from the A. fumigatus complex in six sampling sites where the presence of this fungal species was not identified by conventional methods. This study besides suggesting the indicators that are representative of harmful fungal contamination, also indicates a strategy as a protocol to ensure a proper characterization of fungal occupational exposure. PMID:27005642

  15. MO-D-213-07: RadShield: Semi- Automated Calculation of Air Kerma Rate and Barrier Thickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeLorenzo, M; Wu, D; Rutel, I

    2015-06-15

    Purpose: To develop the first Java-based semi-automated calculation program intended to aid professional radiation shielding design. Air-kerma rate and barrier thickness calculations are performed by implementing NCRP Report 147 formalism into a Graphical User Interface (GUI). The ultimate aim of this newly created software package is to reduce errors and improve radiographic and fluoroscopic room designs over manual approaches. Methods: Floor plans are first imported as images into the RadShield software program. These plans serve as templates for drawing barriers, occupied regions and x-ray tube locations. We have implemented sub-GUIs that allow the specification in regions and equipment for occupancymore » factors, design goals, number of patients, primary beam directions, source-to-patient distances and workload distributions. Once the user enters the above parameters, the program automatically calculates air-kerma rate at sampled points beyond all barriers. For each sample point, a corresponding minimum barrier thickness is calculated to meet the design goal. RadShield allows control over preshielding, sample point location and material types. Results: A functional GUI package was developed and tested. Examination of sample walls and source distributions yields a maximum percent difference of less than 0.1% between hand-calculated air-kerma rates and RadShield. Conclusion: The initial results demonstrated that RadShield calculates air-kerma rates and required barrier thicknesses with reliable accuracy and can be used to make radiation shielding design more efficient and accurate. This newly developed approach differs from conventional calculation methods in that it finds air-kerma rates and thickness requirements for many points outside the barriers, stores the information and selects the largest value needed to comply with NCRP Report 147 design goals. Floor plans, parameters, designs and reports can be saved and accessed later for modification and recalculation. We have confirmed that this software accurately calculates air-kerma rates and required barrier thicknesses for diagnostic radiography and fluoroscopic rooms.« less

  16. Characterization by culture-dependent and culture-independent methods of the bacterial population of suckling-lamb packaged in different atmospheres.

    PubMed

    Osés, Sandra M; Diez, Ana M; Melero, Beatriz; Luning, Pieternel A; Jaime, Isabel; Rovira, Jordi

    2013-12-01

    This study offers insight into the dynamics of bacterial populations in fresh cuts of suckling lamb under four different atmospheric conditions: air (A), and three Modified Atmosphere Packaging (MAP) environments, 15%O2/30%CO2/55%N2 (C, commercial), 70%O2/30%CO2 (O), and 15%O2/85%CO2 (H) for 18 days. Microbial analyses by both conventional methods and PCR-DGGE were performed. Controversial and surprising results emerged from comparing both methods in relation to the genus Pseudomonas. Thus, conventional methods detected the presence of high numbers of Pseudomonas colonies, although PCR-DGGE only detected this genus in air-packaged samples. PCR-DGGE detected higher microbial diversity in the control samples (A) than in the modified atmospheres (C, O, H), having atmosphere H the fewest number of species. Brochothrix thermosphacta, LAB (Carnobacterium divergens and Lactobacillus sakei), and Escherichia spp. were detected in all the atmospheres throughout storage. Moreover, previously undescribed bacteria from lamb meat such as Enterobacter hormaechei, Staphylococcus equorum and Jeotgalicoccus spp. were also isolated in this study by DGGE. Additionally, qPCR analysis was used to detect and characterize strains of Escherichia coli. Virulence genes (stx1, stx2 and eae) were detected throughout storage in 97% of the samples. A high CO2 atmosphere was the most effective packaging combination doubling storage time in comparison with commercial atmosphere. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Cosmic veto gamma-spectrometry for Comprehensive Nuclear-Test-Ban Treaty samples

    NASA Astrophysics Data System (ADS)

    Burnett, J. L.; Davies, A. V.

    2014-05-01

    The Comprehensive Nuclear-Test-Ban Treaty (CTBT) is supported by a global network of monitoring stations that perform high-resolution gamma-spectrometry on air filter samples for the identification of 85 radionuclides. At the UK CTBT Radionuclide Laboratory (GBL15), a novel cosmic veto gamma-spectrometer has been developed to improve the sensitivity of station measurements, providing a mean background reduction of 80.8% with mean MDA improvements of 45.6%. The CTBT laboratory requirement for a 140Ba MDA is achievable after 1.5 days counting compared to 5-7 days using conventional systems. The system consists of plastic scintillation plates that detect coincident cosmic-ray interactions within an HPGe gamma-spectrometer using the Canberra LynxTM multi-channel analyser. The detector is remotely configurable using a TCP/IP interface and requires no dedicated coincidence electronics. It would be especially useful in preventing false-positives at remote station locations (e.g. Halley, Antarctica) where sample transfer to certified laboratories is logistically difficult. The improved sensitivity has been demonstrated for a CTBT air filter sample collected after the Fukushima incident.

  18. Prevention of microbial contamination of the dental unit caused by suction into the turbine drive air lines.

    PubMed

    Ojajärvi, J

    1996-01-01

    To determine whether a specially designed antisuction device can prevent the bacterial contamination of the drive air lines of the dental turbine that is caused by suction when the turbine is stopped. A dental unit with and without the antisuction device and three different types of sterilized handpieces were used in the tests. Each turbine was operated in air, then submerged into a bacterial suspension of E. coli and enterococci for 3 seconds, removed, and stopped. This procedure was repeated 10 times. Possible bacterial contamination of the drive air lines was examined by submersing the head of a sterilized handpiece with the turbine running into a nutrient broth for 30 seconds. The broth was incubated at 35 degrees C up to 2 days. After use of the conventional dental unit, bacterial growth of drive air lines was found in 10 of 150 broth samples. After the installation of the antisuction device no bacterial growth was found in any of the 138 samples. The difference in the contamination frequencies is statistically significant (p = 0.011, Fisher's two-sided exact test). The drive air lines of the turbine in the dental unit may become contaminated despite the sterilization of handpieces. The antisuction device installed into the dental unit was found to prevent the contamination. With the exception of possibly immunocompromised patients, the transmission of microbes by exhaust air may be too small to cause infections. However, transmission of oral material between patients should be prevented in dental practice.

  19. An ethanol-based fixation method for anatomical and micro-morphological characterization of leaves of various tree species.

    PubMed

    Chieco, C; Rotondi, A; Morrone, L; Rapparini, F; Baraldi, R

    2013-02-01

    The use of formalin constitutes serious health hazards for laboratory workers. We investigated the suitability and performance of the ethanol-based fixative, FineFIX, as a substitute for formalin for anatomical and cellular structure investigations of leaves by light microscopy and for leaf surface and ultrastructural analysis by scanning electron microscopy (SEM). We compared the anatomical features of leaf materials prepared using conventional formalin fixation with the FineFIX. Leaves were collected from ornamental tree species commonly used in urban areas. FineFIX was also compared with glutaraldehyde fixation and air drying normally used for scanning electron microscopy to develop a new method for evaluating leaf morphology and microstructure in three ornamental tree species. The cytological features of the samples processed for histological analysis were well preserved by both fixatives as demonstrated by the absence of nuclear swelling or shrinkage, cell wall detachment or tissue flaking, and good presentation of cytoplasmic vacuolization. In addition, good preservation of surface details and the absence of shrinkage artefacts confirmed the efficacy of FineFIX fixation for SEM analysis. Cuticular wax was preserved only in air dried samples. Samples treated with chemical substances during the fixation and dehydration phases showed various alterations of the wax structures. In some air dried samples a loss of turgidity of the cells was observed that caused general wrinkling of the epidermal surfaces. Commercial FineFIX is an adequate substitute for formalin in histology and it can be applied successfully also for SEM investigation, while reducing the health risks of glutaraldehyde or other toxic fixatives. To investigate the potential for plants to absorb and capture particulates in air, which requires preservation of the natural morphology of trichomes and epicuticular waxes, a combination of FineFIX fixation and air drying is recommended.

  20. A UAV-based active AirCore system for measurements of greenhouse gases

    NASA Astrophysics Data System (ADS)

    Andersen, Truls; Scheeren, Bert; Peters, Wouter; Chen, Huilin

    2018-05-01

    We developed and field-tested an unmanned aerial vehicle (UAV)-based active AirCore for atmospheric mole fraction measurements of CO2, CH4, and CO. The system applies an alternative way of using the AirCore technique invented by NOAA. As opposed to the conventional concept of passively sampling air using the atmospheric pressure gradient during descent, the active AirCore collects atmospheric air samples using a pump to pull the air through the tube during flight, which opens up the possibility to spatially sample atmospheric air. The active AirCore system used for this study weighs ˜ 1.1 kg. It consists of a ˜ 50 m long stainless-steel tube, a small stainless-steel tube filled with magnesium perchlorate, a KNF micropump, and a 45 µm orifice working together to form a critical flow of dried atmospheric air through the active AirCore. A cavity ring-down spectrometer (CRDS) was used to analyze the air samples on site not more than 7 min after landing for mole fraction measurements of CO2, CH4, and CO. We flew the active AirCore system on a UAV near the atmospheric measurement station at Lutjewad, located in the northwest of the city of Groningen in the Netherlands. Five consecutive flights took place over a 5 h period on the same morning, from sunrise until noon. We validated the measurements of CO2 and CH4 from the active AirCore against those from the Lutjewad station at 60 m. The results show a good agreement between the measurements from the active AirCore and the atmospheric station (N = 146; R2CO2: 0.97 and R2CH4: 0.94; and mean differences: ΔCO2: 0.18 ppm and ΔCH4: 5.13 ppb). The vertical and horizontal resolution (for CH4) at typical UAV speeds of 1.5 and 2.5 m s-1 were determined to be ±24.7 to 29.3 and ±41.2 to 48.9 m, respectively, depending on the storage time. The collapse of the nocturnal boundary layer and the buildup of the mixed layer were clearly observed with three consecutive vertical profile measurements in the early morning hours. Besides this, we furthermore detected a CH4 hotspot in the coastal wetlands from a horizontal flight north to the dike, which demonstrates the potential of this new active AirCore method to measure at locations where other techniques have no practical access.

  1. A simple methodological validation of the gas/particle fractionation of polycyclic aromatic hydrocarbons in ambient air

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Hyun; Kim, Ki-Hyun

    2015-07-01

    The analysis of polycyclic aromatic hydrocarbons (PAH) in ambient air requires the tedious experimental steps of both sampling and pretreatment (e.g., extraction or clean-up). To replace pre-existing conventional methods, a simple, rapid, and novel technique was developed to measure gas-particle fractionation of PAH in ambient air based on ‘sorbent tube-thermal desorption-gas chromatograph-mass spectrometer (ST-TD-GC-MS)’. The separate collection and analysis of ambient PAHs were achieved independently by two serially connected STs. The basic quality assurance confirmed good linearity, precision, and high sensitivity to eliminate the need for complicated pretreatment procedures with the detection limit (16 PAHs: 13.1 ± 7.04 pg). The analysis of real ambient PAH samples showed a clear fractionation between gas (two-three ringed PAHs) and particulate phases (five-six ringed PAHs). In contrast, for intermediate (four ringed) PAHs (fluoranthene, pyrene, benz[a]anthracene, and chrysene), a highly systematic/gradual fractionation was established. It thus suggests a promising role of ST-TD-GC-MS as measurement system in acquiring a reliable database of airborne PAH.

  2. Optimal activation condition of nonpolar a-plane p-type GaN layers grown on r-plane sapphire substrates by MOCVD

    NASA Astrophysics Data System (ADS)

    Son, Ji-Su; Hyeon Baik, Kwang; Gon Seo, Yong; Song, Hooyoung; Hoon Kim, Ji; Hwang, Sung-Min; Kim, Tae-Geun

    2011-07-01

    The optimal conditions of p-type activation for nonpolar a-plane (1 1 -2 0) p-type GaN films on r-plane (1 -1 0 2) sapphire substrates with various off-axis orientations have been investigated. Secondary ion mass spectrometry (SIMS) measurements show that Mg doping concentrations of 6.58×10 19 cm -3 were maintained in GaN during epitaxial growth. The samples were activated at various temperatures and periods of time in air, oxygen (O 2) and nitrogen (N 2) gas ambient by conventional furnace annealing (CFA) and rapid thermal annealing (RTA). The activation of nonpolar a-plane p-type GaN was successful in similar annealing times and temperatures when compared with polar c-plane p-type GaN. However, activation ambient of nonpolar a-plane p-type GaN was clearly different, where a-plane p-type GaN was effectively activated in air ambient. Photoluminescence shows that the optical properties of Mg-doped a-plane GaN samples are enhanced when activated in air ambient.

  3. South Dakota Air National Guard Joe Foss Field, Sioux Falls, SD. Remedial Investigation

    DTIC Science & Technology

    1990-09-01

    obtaining a National Pollutant Discharge Elimination System (NPDES) permit relative to the remedial actions for groundwater treatment at Site 1...I Water samples are collected from these locations on a monthly basis and analyzed for conventional, inorganic, and bacteriological pollutants (fecal...cadmium, arsenic, and silver in the Big Sioux River at North Cliff Avenue just below the water treatment plant , approximately 1 mile east of the Base

  4. Air-powder polishing on self-ligating brackets after clinical use: effects on debris levels.

    PubMed

    Aragón, Mônica L S Castro; Lima, Leandro Santiago; Normando, David

    2016-01-01

    Debris buildup on brackets and arch surfaces is one of the main factors that can influence the intensity of friction between bracket and orthodontic wire. This study sought to evaluate the effect of air-powder polishing cleaning on debris levels of self-ligating ceramic brackets at the end of orthodontic treatment, compared to the behavior of conventional brackets. Debris levels were evaluated in metal conventional orthodontic brackets (n = 42) and ceramic self-ligating brackets (n = 42) on canines and premolars, arranged in pairs. There were brackets with and without air-powder polishing. At the end of orthodontic treatment, a hemiarch served as control and the contralateral hemiarch underwent prophylaxis with air-powder polishing. Debris buildup in bracket slots was assessed through images, and Wilcoxon test was used to analyze the results. The median debris levels were statistically lower in the conventional metal brackets compared to self-ligating ones (p = 0.02), regarding brackets not submitted to air-powder polishing. Polishing significantly reduced debris buildup to zero in both systems, without differences between groups. Ceramic self-ligating brackets have a higher debris buildup in comparison to conventional metal brackets in vivo, but prophylaxis with sodium bicarbonate jet was effective in reducing debris levels in self-ligating and also in conventional brackets.

  5. A fast infrared scanning technique for nondestructive testing

    NASA Astrophysics Data System (ADS)

    Hartikainen, Jari

    1989-04-01

    A simple and fast thermal NDT measurement system is described and its usefulness is demonstrated using a honeycomb structure as a test sample. The sample is heated with a hot air jet and the surface temperature differences due to subsurface defects are detected with a single HgCdTe detector. An image of the sample is formed by scanning over the sample surface with a deflection mirror in the y direction while moving the sample in the x direction. The measurement time is typically 6 s per image and several images are averaged to improve signal to noise ratio. The main advantages of this system compared to conventional infrared camera techniques are considerably reduced cost and the ease with which the system can be modified to various applications.

  6. Performance evaluation of radiant cooling system integrated with air system under different operational strategies

    DOE PAGES

    Khan, Yasin; Khare, Vaibhav Rai; Mathur, Jyotirmay; ...

    2015-03-26

    The paper describes a parametric study developed to estimate the energy savings potential of a radiant cooling system installed in a commercial building in India. The study is based on numerical modeling of a radiant cooling system installed in an Information Technology (IT) office building sited in the composite climate of Hyderabad. To evaluate thermal performance and energy consumption, simulations were carried out using the ANSYS FLUENT and EnergyPlus softwares, respectively. The building model was calibrated using the measured data for the installed radiant system. Then this calibrated model was used to simulate the energy consumption of a building usingmore » a conventional all-air system to determine the proportional energy savings. For proper handling of the latent load, a dedicated outside air system (DOAS) was used as an alternative to Fan Coil Unit (FCU). A comparison of energy consumption calculated that the radiant system was 17.5 % more efficient than a conventional all-air system and that a 30% savings was achieved by using a DOAS system compared with a conventional system. Computational Fluid Dynamics (CFD) simulation was performed to evaluate indoor air quality and thermal comfort. It was found that a radiant system offers more uniform temperatures, as well as a better mean air temperature range, than a conventional system. To further enhance the energy savings in the radiant system, different operational strategies were analyzed based on thermal analysis using EnergyPlus. Lastly, the energy savings achieved in this parametric run were more than 10% compared with a conventional all-air system.« less

  7. Effectiveness of traffic-related elements in tree bark and pollen abortion rates for assessing air pollution exposure on respiratory mortality rates.

    PubMed

    Carvalho-Oliveira, Regiani; Amato-Lourenço, Luís F; Moreira, Tiana C L; Silva, Douglas R Rocha; Vieira, Bruna D; Mauad, Thais; Saiki, Mitiko; Saldiva, Paulo H Nascimento

    2017-02-01

    The majority of epidemiological studies correlate the cardiorespiratory effects of air pollution exposure by considering the concentrations of pollutants measured from conventional monitoring networks. The conventional air quality monitoring methods are expensive, and their data are insufficient for providing good spatial resolution. We hypothesized that bioassays using plants could effectively determine pollutant gradients, thus helping to assess the risks associated with air pollution exposure. The study regions were determined from different prevalent respiratory death distributions in the Sao Paulo municipality. Samples of tree flower buds were collected from twelve sites in four regional districts. The genotoxic effects caused by air pollution were tested through a pollen abortion bioassay. Elements derived from vehicular traffic that accumulated in tree barks were determined using energy-dispersive X-ray fluorescence spectrometry (EDXRF). Mortality data were collected from the mortality information program of Sao Paulo City. Principal component analysis (PCA) was applied to the concentrations of elements accumulated in tree barks. Pearson correlation and exponential regression were performed considering the elements, pollen abortion rates and mortality data. PCA identified five factors, of which four represented elements related to vehicular traffic. The elements Al, S, Fe, Mn, Cu, and Zn showed a strong correlation with mortality rates (R 2 >0.87) and pollen abortion rates (R 2 >0.82). These results demonstrate that tree barks and pollen abortion rates allow for correlations between vehicular traffic emissions and associated outcomes such as genotoxic effects and mortality data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. REMOVAL OF HUMICSUBSTANCES AND ALGAE BY DISSOLVED AIR FLOTATION

    EPA Science Inventory

    Dissolved air flotation (DAF) is used in place of conventional gravity settling as a means to separate low density floc particles from water. The following objectives were: (1) to compare DAF to conventional water treatment of coagulation-flocculation followed by gravity settling...

  9. Trace element determination using static high-sensitivity inductively coupled plasma optical emission spectrometry (SHIP-OES).

    PubMed

    Engelhard, Carsten; Scheffer, Andy; Nowak, Sascha; Vielhaber, Torsten; Buscher, Wolfgang

    2007-02-05

    A low-flow air-cooled inductively coupled plasma (ICP) design for optical emission spectrometry (OES) with axial plasma viewing is described and an evaluation of its analytical capabilities in trace element determinations is presented. Main advantage is a total argon consumption of 0.6 L min(-1) in contrast to 15 L min(-1) using conventional ICP sources. The torch was evaluated in trace element determinations and studied in direct comparison with a conventional torch under the same conditions with the same OES system, ultrasonic nebulization (USN) and single-element optimization. A variety of parameters (x-y-position of the torch, rf power, external air cooling, gas flow rates and USN operation parameters) was optimized to achieve limits of detection (LOD) which are competitive to those of a conventional plasma source. Ionic to atomic line intensity ratios for magnesium were studied at different radio frequency (rf) power conditions and different sample carrier gas flows to characterize the robustness of the excitation source. A linear dynamic range of three to five orders of magnitude was determined under compromise conditions in multi-element mode. The accuracy of the system was investigated by the determination of Co, Cr, Mn, Zn in two certified reference materials (CRM): CRM 075c (Copper with added impurities), and CRM 281 (Trace elements in rye grass). With standard addition values of 2.44+/-0.04 and 3.19+/-0.21 microg g(-1) for Co and Mn in the CRM 075c and 2.32+/-0.09, 81.8+/-0.4, 32.2+/-3.9 for Cr, Mn and Zn, respectively, were determined in the samples and found to be in good agreement with the reported values; recovery rates in the 98-108% range were obtained. No influence on the analysis by the matrix load in the sample was observed.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Yasin; Khare, Vaibhav Rai; Mathur, Jyotirmay

    The paper describes a parametric study developed to estimate the energy savings potential of a radiant cooling system installed in a commercial building in India. The study is based on numerical modeling of a radiant cooling system installed in an Information Technology (IT) office building sited in the composite climate of Hyderabad. To evaluate thermal performance and energy consumption, simulations were carried out using the ANSYS FLUENT and EnergyPlus softwares, respectively. The building model was calibrated using the measured data for the installed radiant system. Then this calibrated model was used to simulate the energy consumption of a building usingmore » a conventional all-air system to determine the proportional energy savings. For proper handling of the latent load, a dedicated outside air system (DOAS) was used as an alternative to Fan Coil Unit (FCU). A comparison of energy consumption calculated that the radiant system was 17.5 % more efficient than a conventional all-air system and that a 30% savings was achieved by using a DOAS system compared with a conventional system. Computational Fluid Dynamics (CFD) simulation was performed to evaluate indoor air quality and thermal comfort. It was found that a radiant system offers more uniform temperatures, as well as a better mean air temperature range, than a conventional system. To further enhance the energy savings in the radiant system, different operational strategies were analyzed based on thermal analysis using EnergyPlus. Lastly, the energy savings achieved in this parametric run were more than 10% compared with a conventional all-air system.« less

  11. Development of energy saving automatic air conditioner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okada, T.; Iijima, T.; Kakinuma, A.

    1986-01-01

    This paper discusses an automatic air conditioner which adopts a new energy saving control method for controlling heat exchange at the heater and the cooler instead of the conventional reheat air-mix one. In this new air conditioner, the cooler does not work when the passenger room is heated and similarly the heater does not work when the passenger room is cooled, minimizing the use rate of the cooler which accounts for the most of the air conditioner's power consumption. Nonetheless, the heat released from the air conditioner to the room can be adjusted smoothly from maximum cooling to maximum heatingmore » just the same as in the conventional type. The results of on-vehicle comparison tests of the above two methods have shown that the energy saving control method saves nearly half of the energy which is consumed in a year with the conventional one, with the room being kept around 25/sup 0/C (77/sup 0/F).« less

  12. Possible emissions of POPs in plain and hilly areas of Nepal: Implications for source apportionment and health risk assessment.

    PubMed

    Yadav, Ishwar Chandra; Devi, Ningombam Linthoingambi; Li, Jun; Zhang, Gan; Breivik, Knut

    2017-01-01

    Ambient air is a core media chosen for monitoring under the Stockholm Convention on POPs. While extensive monitoring of POPs in ambient air has been carried out in some parts of the globe, there are still regions with very limited information available, such as some developing countries as Nepal. This study therefore aims to target the occurrence of selected POPs in Nepal in suspected source areas/more densely populated regions. Four potential source regions in Nepal were furthermore targeted as it was hypothesized that urban areas at lower altitudes (Birgunj and Biratnagar located at approximately 86 and 80 m.a.s.l.) would be potentially more affected by OCPs because of more intensive agricultural activities in comparison to urban areas at higher altitudes (Kathmandu, Pokhara located 1400 and 1135 m.a.s.l). As some of these areas could also be impacted by LRAT, air mass back trajectories during the sampling period were additionally evaluated using HYSPLIT. The concentrations of overall POPs were twice as high in plain areas in comparison to hilly areas. DDTs and HCHs were most frequently detected in the air samples. The high p,p'-DDT/(pp'-DDE + pp'-DDD) ratio as well as the low o,p'-DDT/p,p'-DDT ratio observed in this study was inferred as continuing use of technical DDT. High levels of ∑ 26 PCBs were linked to proximity to highly urbanized and industrial areas, indicating the potential source of PCBs. The measured concentrations of legacy POPs in air from this study is assumed to represent a negligible health risk through inhalation of ambient air, however, other modes of human exposure could still be relevant in Nepal. The air mass backward trajectory analysis revealed that most of the air masses sampled originated from India and the Bay of Bengal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Performance characteristic of hybrid cooling system based on cooling pad and evaporator

    NASA Astrophysics Data System (ADS)

    Yoon, J. I.; Son, C. H.; Choi, K. H.; Kim, Y. B.; Sung, Y. H.; Roh, S. J.; Kim, Y. M.; Seol, S. H.

    2018-01-01

    In South Korea, most of domestic animals such as pigs and chickens might die due to thermal diseases if they are exposed to the high temperature consistently. In order to save them from the heat wave, numerous efforts have been carried out: installing a shade net, adjusting time of feeding, spraying mist and setting up a circulation fan. However, these methods have not shown significant improvements. Thus, this study proposes a hybrid cooling system combining evaporative cooler and air-conditioner in order to resolve the conventional problems caused by the high temperature in the livestock industry. The problem of cooling systems using evaporative cooling pads is that they are not effective for eliminating huge heat load due to their limited capacity. And, temperature of the supplied air cannot be low enough compared to conventional air-conditioning systems. On the other hand, conventional air-conditioning systems require relatively expensive installation cost, and high operating cost compared to evaporative cooling system. The hybrid cooling system makes up for the lack of cooling capacity of the evaporative cooler by employing the conventional air-conditioner. Additionally, temperature of supplied air can be lowered enough. In the hybrid cooling system, induced air by a fan is cooled by the evaporation of water in the cooling pad, and it is cooled again by an evaporator in the air-conditioner. Therefore, the more economical operation is possible due to additionally obtained cooling capacity from the cooling pads. Major results of experimental analysis of hybrid cooling system are as follows. The compressor power consumption of the hybrid cooling system is about 23% lower, and its COP is 17% higher than that of the conventional air-conditioners. Regarding the condition of changing ambient temperature, the total power consumption decreased by about 5% as the ambient temperature changed from 28.7°C to 31.7°C. Cooling capacity and COP also presented about 3% and 1% of minor difference at the same comparison condition.

  14. Investigation of levels in ambient air near sources of Polychlorinated Biphenyls (PCBs) in Kanpur, India, and risk assessment due to inhalation.

    PubMed

    Goel, Anubha; Upadhyay, Kritika; Chakraborty, Mrinmoy

    2016-05-01

    Polychlorinated biphenyls (PCBs) are a class of organic compounds listed as persistent organic pollutant and have been banned for use under Stockholm Convention (1972). They were used primarily in transformers and capacitors, paint, flame retardants, plasticizers, and lubricants. PCBs can be emitted through the primary and secondary sources into the atmosphere, undergo long-range atmospheric transport, and hence have been detected worldwide. Reported levels in ambient air are generally higher in urban areas. Active sampling of ambient air was conducted in Kanpur, a densely populated and industrialized city in the Indo-Gangetic Plain, for detection of 32 priority PCBs, with the aim to determine the concentration in gas/particle phase and assess exposure risk. More than 50 % of PCBs were detected in air. Occurrence in particles was dominated by heavier congeners, and levels in gas phase were below detection. Levels determined in this study are lower than the levels in Coastal areas of India but are at par with other Asian countries where majority of sites chosen for sampling were urban industrial areas. Human health risk estimates through air inhalation pathway were made in terms of lifetime average daily dose (LADD) and incremental lifetime cancer risks (ILCR). The study found lower concentrations of PCBs than guideline values and low health risk estimates through inhalation within acceptable levels, indicating a minimum risk to the adults due to exposure to PCBs present in ambient air in Kanpur.

  15. Environmental Perception and Citizen Response: a Denver, Colorado Air Pollution Case Study.

    NASA Astrophysics Data System (ADS)

    Naomi, Leaura M.

    Denver, a high altitude city, suffers from air pollution. Automobile emissions, as well as wood and coal burning contribute to Denver's air pollution. In order to reduce its air pollution, Denver hosted a no-drive campaign, The Better Air Campaign. This study examined how Denver -area citizens perceived their air pollution, responded to their air pollution, and responded to their no-drive campaign. First, I conducted personal interviews of twenty Denver air pollution decision-makers to ascertain their perceptions and definitions of Denver's air pollution problem. Second, I created a theoretical model of environmental perception and behavioral response to air pollution. Third, I conducted a telephone survey of 500 Denver-area residents to examine the usefulness of the model. By segmenting a sample of 500 Denver-area residents via a modified values and lifestyles (VALS) technique included in a telephone survey, the perceptions and behaviors of residents fell into a clear pattern. This values and lifestyles pattern coincided with a conventional innovation-adoption pattern, including innovators, the bandwagon, and laggards. Thus, the research determined the population's perceptions and behavioral responses to their air pollution. The research also pointed a direction for Denver's air pollution decision-makers to follow in order to reduce use of the gasoline-powered automobile. And, for those interested in encouraging public acceptance of ecological sustainability, it suggested application of the VALS technique for reaching the public.

  16. PCDD, PCDF, dl-PCB and organochlorine pesticides monitoring in São Paulo City using passive air sampler as part of the Global Monitoring Plan.

    PubMed

    Tominaga, M Y; Silva, C R; Melo, J P; Niwa, N A; Plascak, D; Souza, C A M; Sato, M I Z

    2016-11-15

    The persistent organic pollutants (POPs), such as organochlorine pesticides and PCBs, are ordinarily monitored in the aquatic environment or in soil in the environmental quality monitoring programs in São Paulo, Brazil. One of the core matrices proposed in the POPs Global Monitoring Plan (GMP) from the Stockholm Convention list is the ambient air, which is not a usual matrix for POPs monitoring in the country. In this study POP levels were evaluated in the air samples from an urban site in São Paulo City over five years, starting in 2010 as a capacity building project for Latin America and the Caribbean region for POP monitoring in ambient air using passive samplers. Furthermore, after the end of the Project in 2012, the monitoring continued in the same sampling site as means to improving the analytical capacity building and contribute to the GMP data. The POPs monitored were 17 congeners of 2,3,7,8 chloro-substituted PCDDs and PCDFs, dioxin-like PCBs, indicator PCBs, organochlorine pesticides and toxaphene. The results show a slight decrease in PCDD/F, dl-PCBs and indicator PCBs levels along the five years. The organochlorine pesticide endosulfan was present at its highest concentration at the beginning of the monitoring period, but it was below detection level in the last year of the monitoring. Some other organochlorine pesticides were detected close to or below quantitation limits. The compounds identified were dieldrin, chlordane, α-HCH, γ-HCH, heptachlor, heptachlor epoxide, hexachlorobenzene and DDTs. Toxaphene congeners were not detected. These results have confirmed the efficacy of passive sampling for POP monitoring and the capacity building for POP analysis and monitoring was established. However more needs to be done, including expansion of sampling sites, new POPs and studies on sampling rates to be considered in calculating the concentration of POPs in ambient air using a passive sampler. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Dual resonant frequencies effects on an induction-based oil palm fruit sensor.

    PubMed

    Harun, Noor Hasmiza; Misron, Norhisam; Mohd Sidek, Roslina; Aris, Ishak; Wakiwaka, Hiroyuki; Tashiro, Kunihisa

    2014-11-19

    As the main exporter in the oil palm industry, the need to improve the quality of palm oil has become the main interest among all the palm oil millers in Malaysia. To produce good quality palm oil, it is important for the miller to harvest a good oil palm Fresh Fruit Bunch (FFB). Conventionally, the main reference used by Malaysian harvesters is the manual grading standard published by the Malaysian Palm Oil Board (MPOB). A good oil palm FFB consists of all matured fruitlets, aged between 18 to 21 weeks of antheses (WAA). To expedite the harvesting process, it is crucial to implement an automated detection system for determining the maturity of the oil palm FFB. Various automated detection methods have been proposed by researchers in the field to replace the conventional method. In our preliminary study, a novel oil palm fruit sensor to detect the maturity of oil palm fruit bunch was proposed. The design of the proposed air coil sensor based on the inductive sensor was further investigated mainly in the context of the effect of coil diameter to improve its sensitivity. In this paper, the sensitivity of the inductive sensor was further examined with a dual flat-type shape of air coil. The dual air coils were tested on fifteen samples of fruitlet from two categories, namely ripe and unripe. Samples were tested within 20 Hz to 10 MHz while evaluations on both peaks were done separately before the gap between peaks was analyzed. A comparative analysis was conducted to investigate the improvement in sensitivity of the induction-based oil palm fruit sensor as compared to previous works. Results from the comparative study proved that the inductive sensor using a dual flat-type shape air coil has improved by up to 167%. This provides an indication in the improvement in the coil sensitivity of the palm oil fruit sensor based on the induction concept.

  18. Dual Resonant Frequencies Effects on an Induction-Based Oil Palm Fruit Sensor

    PubMed Central

    Harun, Noor Hasmiza; Misron, Norhisam; Sidek, Roslina Mohd; Aris, Ishak; Wakiwaka, Hiroyuki; Tashiro, Kunihisa

    2014-01-01

    As the main exporter in the oil palm industry, the need to improve the quality of palm oil has become the main interest among all the palm oil millers in Malaysia. To produce good quality palm oil, it is important for the miller to harvest a good oil palm Fresh Fruit Bunch (FFB). Conventionally, the main reference used by Malaysian harvesters is the manual grading standard published by the Malaysian Palm Oil Board (MPOB). A good oil palm FFB consists of all matured fruitlets, aged between 18 to 21 weeks of antheses (WAA). To expedite the harvesting process, it is crucial to implement an automated detection system for determining the maturity of the oil palm FFB. Various automated detection methods have been proposed by researchers in the field to replace the conventional method. In our preliminary study, a novel oil palm fruit sensor to detect the maturity of oil palm fruit bunch was proposed. The design of the proposed air coil sensor based on the inductive sensor was further investigated mainly in the context of the effect of coil diameter to improve its sensitivity. In this paper, the sensitivity of the inductive sensor was further examined with a dual flat-type shape of air coil. The dual air coils were tested on fifteen samples of fruitlet from two categories, namely ripe and unripe. Samples were tested within 20 Hz to 10 MHz while evaluations on both peaks were done separately before the gap between peaks was analyzed. A comparative analysis was conducted to investigate the improvement in sensitivity of the induction-based oil palm fruit sensor as compared to previous works. Results from the comparative study proved that the inductive sensor using a dual flat-type shape air coil has improved by up to 167%. This provides an indication in the improvement in the coil sensitivity of the palm oil fruit sensor based on the induction concept. PMID:25414970

  19. Headspace solid-phase microextraction for the determination of volatile and semi-volatile pollutants in water and air.

    PubMed

    Llompart, M; Li, K; Fingas, M

    1998-10-16

    In this work we report the use of solid-phase microextraction (SPME) to extract and concentrate water-soluble volatile as well as semi-volatile pollutants. Both methods of exposing the SPME fibre were utilised: immersion in the aqueous solution (SPME) and in the headspace over the solution (HSSPME). The proposed HSSPME procedure was compared to conventional static headspace (HS) analysis for artificially spiked water as well as real water samples, which had been, equilibrated with various oil and petroleum products. Both techniques gave similar results but HSSPME was much more sensitive and exhibited better precision. Detection limits were found to be in the sub-ng/ml level, with precision better than 5% R.S.D. in most cases. To evaluate the suitability of SPME for relatively high contamination level analysis, the proposed HSSPME method was applied to the screening of run-off water samples that had heavy oil suspended in them from a tire fire incident. HSSPME results were compared with liquid--liquid extraction. Library searches were conducted on the resulting GC-MS total ion chromatograms to determine the types of compounds found in such samples. Both techniques found similar composition in the water samples with the exception of alkylnaphthalenes that were detected only by HSSPME. A brief study was carried out to assess using SPME for air monitoring. By sampling and concentrating the volatile organic compounds in the coating of the SPME fibre without any other equipment, this new technique is useful as an alternative to active air monitoring by means of sampling pumps and sorbent tubes.

  20. Robotic air vehicle. Blending artificial intelligence with conventional software

    NASA Technical Reports Server (NTRS)

    Mcnulty, Christa; Graham, Joyce; Roewer, Paul

    1987-01-01

    The Robotic Air Vehicle (RAV) system is described. The program's objectives were to design, implement, and demonstrate cooperating expert systems for piloting robotic air vehicles. The development of this system merges conventional programming used in passive navigation with Artificial Intelligence techniques such as voice recognition, spatial reasoning, and expert systems. The individual components of the RAV system are discussed as well as their interactions with each other and how they operate as a system.

  1. Emerging developments in the standardized chemical characterization of indoor air quality.

    PubMed

    Nehr, Sascha; Hösen, Elisabeth; Tanabe, Shin-Ichi

    2017-01-01

    Despite the fact that the special characteristics of indoor air pollution make closed environments quite different from outdoor environments, the conceptual ideas for assessing air quality indoors and outdoors are similar. Therefore, the elaboration of International Standards for air quality characterization in view of controlling indoor air quality should resort to this common basis. In this short review we describe the possibilities of standardization of tools dedicated to indoor air quality characterization with a focus on the tools permitting to study the indoor air chemistry. The link between indoor exposure and health as well as the critical processes driving the indoor air quality are introduced. Available International Standards for the assessment of indoor air quality are depicted. The standards comprise requirements for the sampling on site, the analytical procedures, and the determination of material emissions. To date, these standardized procedures assure that indoor air, settled dust and material samples are analyzed in a comparable manner. However, existing International Standards exclusively specify conventional, event-driven target-screening using discontinuous measurement methods for long-lived pollutants. Therefore, this review draws a parallel between physico-chemical processes in indoor and outdoor environments. The achievements in atmospheric sciences also improve our understanding of indoor environments. The community of atmospheric scientists can be both ideal and supporter for researchers in the area of indoor air quality characterization. This short review concludes with propositions for future standardization activities for the chemical characterization of indoor air quality. Future standardization efforts should focus on: (i) the elaboration of standardized measurement methods and measurement strategies for online monitoring of long-lived and short-lived pollutants, (ii) the assessment of the potential and the limitations of non-target screening, (iii) the paradigm shift from event-driven investigations to systematic approaches to characterize indoor environments, and (iv) the development of tools for policy implementation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. A review of the impacts of tobacco heating system on indoor air quality versus conventional pollution sources.

    PubMed

    Kaunelienė, Violeta; Meišutovič-Akhtarieva, Marija; Martuzevičius, Dainius

    2018-05-08

    With the introduction of novel and potentially less polluting nicotine containing products to the market, the impacts of their usage to indoor air quality as opposed to conventional pollution sources must be reviewed and considered. This review study aimed to comparatively analyse changes in indoor air quality as the consequence of tobacco heating system (THS) generated pollution against general indoor air quality in various micro-environments, especially with combustion-based pollution sources present. Indoor concentrations of formaldehyde, acetaldehyde, benzene, toluene, nicotine and PM 2.5 were reviewed and compared; concentrations of other harmful and potentially harmful substances (HPHCs) were discussed. Generally, the usage of THS has been associated with lower or comparable indoor air pollutant concentrations compared against other conventional indoor sources or environments, in most cases distinguishable above background, thus potentially being associated with health effects at prolonged exposures as any other artificial air pollution source. In the controlled environment the use of THS (as well as an electronic cigarette) resulted in the lowest concentrations of formaldehyde, benzene, toluene, PM 2.5, among majority researched pollution sources (conventional cigarettes, waterpipe, incense, mosquito coils). The exposure to significantly higher pollution levels of benzene, toluene, and formaldehyde occurred in public environments, especially transport micro-environments. Such low levels of conventionally-assessed indoor pollutants resulting from the use of new nicotine containing products raise challenges for epidemiological studies of second-hand exposure to THS aerosol in real-life environments. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Mixed species radioiodine air sampling readout and dose assessment system

    DOEpatents

    Distenfeld, Carl H.; Klemish, Jr., Joseph R.

    1978-01-01

    This invention provides a simple, reliable, inexpensive and portable means and method for determining the thyroid dose rate of mixed airborne species of solid and gaseous radioiodine without requiring highly skilled personnel, such as health physicists or electronics technicians. To this end, this invention provides a means and method for sampling a gas from a source of a mixed species of solid and gaseous radioiodine for collection of the mixed species and readout and assessment of the emissions therefrom by cylindrically, concentrically and annularly molding the respective species around a cylindrical passage for receiving a conventional probe-type Geiger-Mueller radiation detector.

  4. A double sealing technique for increasing the precision of headspace-gas chromatographic analysis.

    PubMed

    Xie, Wei-Qi; Yu, Kong-Xian; Gong, Yi-Xian

    2018-01-19

    This paper investigates a new double sealing technique for increasing the precision of the headspace gas chromatographic method. The air leakage problem caused by the high pressure in the headspace vial during the headspace sampling process has a great impact to the measurement precision in the conventional headspace analysis (i.e., single sealing technique). The results (using ethanol solution as the model sample) show that the present technique is effective to minimize such a problem. The double sealing technique has an excellent measurement precision (RSD < 0.15%) and accuracy (recovery = 99.1%-100.6%) for the ethanol quantification. The detection precision of the present method was 10-20 times higher than that in earlier HS-GC work that use conventional single sealing technique. The present double sealing technique may open up a new avenue, and also serve as a general strategy for improving the performance (i.e., accuracy and precision) of headspace analysis of various volatile compounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. High-Resolution Air Pollution Mapping with Google Street View Cars: Exploiting Big Data.

    PubMed

    Apte, Joshua S; Messier, Kyle P; Gani, Shahzad; Brauer, Michael; Kirchstetter, Thomas W; Lunden, Melissa M; Marshall, Julian D; Portier, Christopher J; Vermeulen, Roel C H; Hamburg, Steven P

    2017-06-20

    Air pollution affects billions of people worldwide, yet ambient pollution measurements are limited for much of the world. Urban air pollution concentrations vary sharply over short distances (≪1 km) owing to unevenly distributed emission sources, dilution, and physicochemical transformations. Accordingly, even where present, conventional fixed-site pollution monitoring methods lack the spatial resolution needed to characterize heterogeneous human exposures and localized pollution hotspots. Here, we demonstrate a measurement approach to reveal urban air pollution patterns at 4-5 orders of magnitude greater spatial precision than possible with current central-site ambient monitoring. We equipped Google Street View vehicles with a fast-response pollution measurement platform and repeatedly sampled every street in a 30-km 2 area of Oakland, CA, developing the largest urban air quality data set of its type. Resulting maps of annual daytime NO, NO 2 , and black carbon at 30 m-scale reveal stable, persistent pollution patterns with surprisingly sharp small-scale variability attributable to local sources, up to 5-8× within individual city blocks. Since local variation in air quality profoundly impacts public health and environmental equity, our results have important implications for how air pollution is measured and managed. If validated elsewhere, this readily scalable measurement approach could address major air quality data gaps worldwide.

  6. Predictive monitoring and diagnosis of periodic air pollution in a subway station.

    PubMed

    Kim, YongSu; Kim, MinJung; Lim, JungJin; Kim, Jeong Tai; Yoo, ChangKyoo

    2010-11-15

    The purpose of this study was to develop a predictive monitoring and diagnosis system for the air pollutants in a subway system using a lifting technique with a multiway principal component analysis (MPCA) which monitors the periodic patterns of the air pollutants and diagnoses the sources of the contamination. The basic purpose of this lifting technique was to capture the multivariate and periodic characteristics of all of the indoor air samples collected during each day. These characteristics could then be used to improve the handling of strong periodic fluctuations in the air quality environment in subway systems and will allow important changes in the indoor air quality to be quickly detected. The predictive monitoring approach was applied to a real indoor air quality dataset collected by telemonitoring systems (TMS) that indicated some periodic variations in the air pollutants and multivariate relationships between the measured variables. Two monitoring models--global and seasonal--were developed to study climate change in Korea. The proposed predictive monitoring method using the lifted model resulted in fewer false alarms and missed faults due to non-stationary behavior than that were experienced with the conventional methods. This method could be used to identify the contributions of various pollution sources. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Combined micro-droplet and thin-film-assisted pre-concentration of lead traces for on-line monitoring using anodic stripping voltammetry.

    PubMed

    Belostotsky, Inessa; Gridin, Vladimir V; Schechter, Israel; Yarnitzky, Chaim N

    2003-02-01

    An improved analytical method for airborne lead traces is reported. It is based on using a Venturi scrubber sampling device for simultaneous thin-film stripping and droplet entrapment of aerosol influxes. At least threefold enhancement of the lead-trace pre-concentration is achieved. The sampled traces are analyzed by square-wave anodic stripping voltammetry. The method was tested by a series of pilot experiments. These were performed using contaminant-controlled air intakes. Reproducible calibration plots were obtained. The data were validated by traditional analysis using filter sampling. LODs are comparable with the conventional techniques. The method was successfully applied to on-line and in situ environmental monitoring of lead.

  8. Identification of active fluorescence stained bacteria by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Krause, Mario; Beyer, Beatrice; Pietsch, Christian; Radt, Benno; Harz, Michaela; Rösch, Petra; Popp, Jürgen

    2008-04-01

    Microorganisms can be found everywhere e.g. in food both as useful ingredients or harmful contaminations causing food spoilage. Therefore, a fast and easy to handle analysis method is needed to detect bacteria in different kinds of samples like meat, juice or air to decide if the sample is contaminated by harmful microorganisms. Conventional identification methods in microbiology require always cultivation and therefore are time consuming. In this contribution we present an analysis approach to identify fluorescence stained bacteria on strain level by means of Raman spectroscopy. The stained bacteria are highlighted and can be localized easier against a complex sample environment e.g. in food. The use of Raman spectroscopy in combination with chemometrical methods allows the identification of single bacteria within minutes.

  9. Interleaved Spiral-In/Out with Application to fMRI

    PubMed Central

    Law, Christine S.; Glover, Gary H.

    2009-01-01

    The conventional spiral-in/out trajectory samples k-space sufficiently in the spiral-in path and sufficiently in the spiral-out path to enable creation of separate images. We propose an interleaved spiral-in/out trajectory comprising a spiral-in path that gathers half of the k-space data, and a complimentary spiral-out path that gathers the other half. The readout duration is thereby reduced by approximately half, offering two distinct advantages: reduction of signal dropout due to susceptibility-induced field gradients (at the expense of signal-to-noise ratio), and the ability to achieve higher spatial resolution when the readout duration is identical to the conventional method. Two reconstruction methods are described; both involve temporal filtering to remove aliasing artifacts. Empirically, interleaved spiral-in/out images are free from false activation resulting from signal pileup around the air/tissue interface, which is common in the conventional spiral-out method. Comparisons with conventional methods using a hyperoxia stimulus reveal greater frontal-orbital activation volumes but a slight reduction of overall activation in other brain regions. PMID:19449373

  10. Ballistic parameters of .177 (4.5 mm) caliber plastic-sleeved composite projectiles compared to conventional lead pellets.

    PubMed

    Frank, Matthias; Schönekeß, Holger; Jäger, Frank; Herbst, Jörg; Ekkernkamp, Axel; Nguyen, Thanh Tien; Bockholdt, Britta

    2013-11-01

    The capability of conventional air gun lead pellets (diabolo pellets) to cause severe injuries or fatalities even at low kinetic energy levels is well documented in medical literature. Modern composite hunting pellets, usually a metal core (made of steel, lead, zinc, or a zinc and aluminum alloy) encased in a plastic sleeve, are of special forensic and traumatological interest. These projectiles are advertised by the manufacturers to discharge at higher velocities than conventional air gun pellets, thus generating very high tissue-penetrating capabilities. Lack of experimental data on these uncommon air gun projectiles induced this work. Ballistic parameters of 12 different caliber .177 (4.5 mm) composite pellets, discharged from two spring-piston air guns (Weihrauch HW 35, Webley CUB) and three pneumatic air guns (Walther LGR, Walther LG400, Walther LP300), were investigated using a ballistic speed measurement system and compared to a conventional diabolo pellet (RWS Meisterkugel) as reference projectile. Although overall results were inconsistent, for some projectile-weapon combinations (particularly spring-piston air guns), a significant change of the kinetic energy (-53 up to +48 %) to the reference projectile was observed. The data provided in this work may serve as a basis for forensic investigation as well as traumatological diagnosis and treatment of injuries caused by these uncommon projectiles.

  11. Mechanical Properties of Misers Bluff Sand.

    DTIC Science & Technology

    1986-09-01

    in Chapter 4. 4 .7 Y~ e -~1 % CHAPTER 2 LABORATORY TESTS 2.1 CONVENTIONAL SOIL TESTS Samples of MB sand were split from the available supply of...air Va , and void ratio e (the ratio of void volume to solid volume). These composition data are listed in Table 2.1 for each test. 5 2.3 MECHANICAL...and diameter changes are made. The data can be plotted as principal stress difference versus axial strain, the slope of which is Young’s modulus E

  12. Thermodynamic correction of particle concentrations measured by underwing probes on fast-flying aircraft

    NASA Astrophysics Data System (ADS)

    Weigel, Ralf; Spichtinger, Peter; Mahnke, Christoph; Klingebiel, Marcus; Afchine, Armin; Petzold, Andreas; Krämer, Martina; Costa, Anja; Molleker, Sergej; Reutter, Philipp; Szakáll, Miklós; Port, Max; Grulich, Lucas; Jurkat, Tina; Minikin, Andreas; Borrmann, Stephan

    2016-10-01

    Particle concentration measurements with underwing probes on aircraft are impacted by air compression upstream of the instrument body as a function of flight velocity. In particular, for fast-flying aircraft the necessity arises to account for compression of the air sample volume. Hence, a correction procedure is needed to invert measured particle number concentrations to ambient conditions that is commonly applicable to different instruments to gain comparable results. In the compression region where the detection of particles occurs (i.e. under factual measurement conditions), pressure and temperature of the air sample are increased compared to ambient (undisturbed) conditions in certain distance away from the aircraft. Conventional procedures for scaling the measured number densities to ambient conditions presume that the air volume probed per time interval is determined by the aircraft speed (true air speed, TAS). However, particle imaging instruments equipped with pitot tubes measuring the probe air speed (PAS) of each underwing probe reveal PAS values systematically below those of the TAS. We conclude that the deviation between PAS and TAS is mainly caused by the compression of the probed air sample. From measurements during two missions in 2014 with the German Gulfstream G-550 (HALO - High Altitude LOng range) research aircraft we develop a procedure to correct the measured particle concentration to ambient conditions using a thermodynamic approach. With the provided equation, the corresponding concentration correction factor ξ is applicable to the high-frequency measurements of the underwing probes, each of which is equipped with its own air speed sensor (e.g. a pitot tube). ξ values of 1 to 0.85 are calculated for air speeds (i.e. TAS) between 60 and 250 m s-1. For different instruments at individual wing position the calculated ξ values exhibit strong consistency, which allows for a parameterisation of ξ as a function of TAS for the current HALO underwing probe configuration. The ability of cloud particles to adopt changes of air speed between ambient and measurement conditions depends on the cloud particles' inertia as a function of particle size (diameter Dp). The suggested inertia correction factor μ (Dp) for liquid cloud drops ranges between 1 (for Dp < 70 µm) and 0.8 (for 100 µm < Dp < 225 µm) but it needs to be applied carefully with respect to the particles' phase and nature. The correction of measured concentration by both factors, ξ and μ (Dp), yields higher ambient particle concentration by about 10-25 % compared to conventional procedures - an improvement which can be considered as significant for many research applications. The calculated ξ values are specifically related to the considered HALO underwing probe arrangement and may differ for other aircraft. Moreover, suggested corrections may not cover all impacts originating from high flight velocities and from interferences between the instruments and e.g. the aircraft wings and/or fuselage. Consequently, it is important that PAS (as a function of TAS) is individually measured by each probe deployed underneath the wings of a fast-flying aircraft.

  13. Mainshaft seals for small gas turbine engines

    NASA Technical Reports Server (NTRS)

    Ludwig, L. P.; Lynwander, P.

    1974-01-01

    An experimental evaluation of mainshaft seals for small gas turbine engines was conducted with shaft speeds to 213 m/s (700 ft/sec), air pressures to 148 Newtons per square centimeter abs. (215 psia), and air temperatures to 412k(282 F). A radial face seal incorporating self-acting geometry for lift augmentation was evaluated. In addition, three conventional carbon seal types (face, circumferential segmented, and rotating ring) were run for comparison. Test results indicated that the conventional seals used in this evaluation may not be satisfactory in future advanced engines because of excessive air leakage. On the other hand, the self-acting face seal was shown to have the potential capability of limiting leakages to one-half that of the conventional face seals and one-fifth that of conventional ring seals. A 150-hour endurance test of the self-acting face seal was conducted.

  14. Preparation of Fiber Based Binder Materials to Enhance the Gas Adsorption Efficiency of Carbon Air Filter.

    PubMed

    Lim, Tae Hwan; Choi, Jeong Rak; Lim, Dae Young; Lee, So Hee; Yeo, Sang Young

    2015-10-01

    Fiber binder adapted carbon air filter is prepared to increase gas adsorption efficiency and environmental stability. The filter prevents harmful gases, as well as particle dusts in the air from entering the body when a human inhales. The basic structure of carbon air filter is composed of spunbond/meltblown/activated carbon/bottom substrate. Activated carbons and meltblown layer are adapted to increase gas adsorption and dust filtration efficiency, respectively. Liquid type adhesive is used in the conventional carbon air filter as a binder material between activated carbons and other layers. However, it is thought that the liquid binder is not an ideal material with respect to its bonding strength and liquid flow behavior that reduce gas adsorption efficiency. To overcome these disadvantages, fiber type binder is introduced in our study. It is confirmed that fiber type binder adapted air filter media show higher strip strength, and their gas adsorption efficiencies are measured over 42% during 60 sec. These values are higher than those of conventional filter. Although the differential pressure of fiber binder adapted air filter is relatively high compared to the conventional one, short fibers have a good potential as a binder materials of activated carbon based air filter.

  15. Micromachined ultrasonic transducers for air-coupled nondestructive evaluation

    NASA Astrophysics Data System (ADS)

    Hansen, Sean T.; Degertekin, F. Levent; Khuri-Yakub, Butrus T.

    1999-01-01

    Conventional methods of ultrasonic non-destructive evaluation (NDE) use liquids to couple sound waves into the test samples. This either requires immersion of the parts to be examined or the use of complex and bulky water squirting systems that must be scanned over the structure. Air-coupled ultrasonic systems eliminate these requirements if the losses at air-solid interfaces are tolerable. Micromachined capacitive ultrasonic transducers (cMUTs) have been shown to have more than 100 dB dynamic range when used in the bistatic transmission mode. In this paper, we present results of a pitch-catch transmission system using cMUTs that achieves a 103 dB dynamic range. Each transducer consists of 10,000 silicon nitride membranes of 100 micrometers diameter connected in parallel. This geometry result in transducers with a resonant frequency around 2.3 MHz. These transducers can be used in transmission experiments at normal incident to the sample or to excite and detect guided waves in aluminum and composite plates. In this paper we present ultrasonic defect detection results from both through transmission and guided Lamb wave experiments in aluminum and composite plates, such as those used in aircraft.

  16. Source identification of combustion-related air pollution during an episode and afterwards in winter-time in Istanbul.

    PubMed

    Kuzu, S Levent

    2016-10-11

    Conventional air pollutants (PM 10 , CO, NO x ) gradually increased from fall to winter during 2015 in Istanbul. Several air pollution episodes were observed during this period. This study was made in order to determine polycyclic aromatic hydrocarbon (PAH) levels, identify the sources of air pollution, and make toxicity assessment based on Benzo(a)pyrene equivalent concentrations. The sampling took 14 sequential days during winter. High-pressure weather conditions prevailed at the start of the sampling. The conditions were then changed to low-pressure condition towards the end of the sampling. Strong inversion was effective on the onset of the sampling. Strong inversion was effective at the onset of the sampling. A high-volume sampler was used to collect gas and particle phase samples. Total suspended particle concentrations were between 27 and 252 μg m -3 . Sixteen PAH species were investigated. Total (gas + particle) PAH concentrations were between 76.4 and 1280.3 ng m -3 , with an average of 301.4 ng m -3 . Individual PAH concentrations were between not detected (n.d.) and 99.2 ng m -3 in the gaseous phase, and between n.d. and 11.5 ng m -3 in the particle phase. Phenanthrene had the highest share among 16 PAH compounds. Benzo(a)pyrene was not detected in 8 days. On the remaining days, its concentration ranged between 5.5 and 14.8 ng m -3 with an average of 3.7 ng m -3 . Low-molecular-weight PAHs dominated gaseous phase; inversely, high-molecular-weight PAHs dominated particle phase. Possible sources were identified by diagnostic ratios. These ratios suggested that coal combustion and diesel vehicle exhaust emissions had a substantial impact on ambient air quality. Benzo(a)pyrene equivalencies were calculated for each PAH compound in order to make toxicity assessment. Total benzo(a)pyrene equivalencies ranged between 0.4 and 30.0 ng m -3 with an average of 7.2 ng m -3 .

  17. Improving the method of low-temperature anisotropy of magnetic susceptibility (LT-AMS) measurements in air

    NASA Astrophysics Data System (ADS)

    Issachar, R.; Levi, T.; Lyakhovsky, V.; Marco, S.; Weinberger, R.

    2016-07-01

    This study examines the limitations of the method of low-temperature anisotropy of magnetic susceptibility (LT-AMS) measurements in air and presents technical improvements that significantly reduce the instrumental drift and measurement errors. We analyzed the temperature profile of porous chalk core after cooling in liquid nitrogen and found that the average temperature of the sample during the LT-AMS measurement in air is higher than 77K and close to 92K. This analysis indicates that the susceptibility of the paramagnetic minerals are amplified by a factor ˜3.2 relative to that of room temperature AMS (RT-AMS). In addition, it was found that liquid nitrogen was absorbed in the samples during immersing and contributed diamagnetic component of ˜-9 × 10-6 SI to the total mean susceptibility. We showed that silicone sheet placed around and at the bottom of the measuring coil is an effective thermal protection, preventing instrument drift by the cold sample. In this way, the measuring errors of LT-AMS reduced to the level of RT-AMS, allowing accurate comparison with standard AMS measurements. We examined the applicability of the LT-AMS measurements on chalk samples that consist <5% (weight) of paramagnetic minerals and showed that it helps to efficiently enhance the paramagnetic fabric. The present study offers a practical approach, which can be applied to various types of rocks to better delineate the paramagnetic phase using conventional equipment.

  18. Air Pollution: Current and Future Challenges

    EPA Pesticide Factsheets

    Despite the dramatic progress to date, air pollution continues to threaten Americans’ health and welfare. The main obstacles are climate change, conventional air pollution, and ozone layer depletion.

  19. Impact of the electric compressor for automotive air conditioning system on fuel consumption and performance analysis

    NASA Astrophysics Data System (ADS)

    Zulkifli, A. A.; Dahlan, A. A.; Zulkifli, A. H.; Nasution, H.; Aziz, A. A.; Perang, M. R. M.; Jamil, H. M.; Misseri, M. N.

    2015-12-01

    Air conditioning system is the biggest auxiliary load in a vehicle where the compressor consumed the largest. Problem with conventional compressor is the cooling capacity cannot be control directly to fulfill the demand of thermal load inside vehicle cabin. This study is conducted experimentally to analyze the difference of fuel usage and air conditioning performance between conventional compressor and electric compressor of the air conditioning system in automobile. The electric compressor is powered by the car battery in non-electric vehicle which the alternator will recharge the battery. The car is setup on a roller dynamometer and the vehicle speed is varied at 0, 30, 60, 90 and 110 km/h at cabin temperature of 25°C and internal heat load of 100 and 400 Watt. The results shows electric compressor has better fuel consumption and coefficient of performance compared to the conventional compressor.

  20. Extraction studies. Final report, May 6, 1996--September 30, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    During the first week of this effort, an Alpkem RFA-300 4-channel automated chemical analyzer was transferred to the basement of building 42 at TA-46 for the purpose of performing extraction studies. Initially, this instrumentation was applied to soil samples known to contain DNA. Using the SFA (Segmented Flow Analysis) technique, several fluidic systems were evaluated to perform on-line filtration of several varieties of soil obtained from Cheryl Kuske and Kaysie Banton (TA-43, Bldg. 1). Progress reports were issued monthly beginning May 15, 1996. Early in 1997 there was a shift from the conventional 2-phase system (aqueous + air) to amore » 3-phase system (oil + aqueous + air) to drastically reduce sample size and reagent consumption. Computer animation was recorded on videotape for presentations. The time remaining on the subcontract was devoted to setting up existing equipment to incorporate the 3rd phase (a special fluorocarbon oil obtained from DuPont).« less

  1. Novel approach to the exploitation of the tidal energy. Volume 1: Summary and discussion

    NASA Astrophysics Data System (ADS)

    Gorlov, A. M.

    1981-12-01

    The hydropneumatic concept in the approach to harnessing low tidal hydropower is discussed. The energy of water flow is converted into the energy of an air jet by a specialized air chamber which is placed on the ocean floor across a flowing watercourse. Water passes through the chamber where it works as a natural piston compressing air in the upper part of the closure. Compressed air is used as a new working plenum to drive air turbines. The kinetic energy of an air jet provided by the air chamber is sufficient for stable operation of industrial air turbines. It is possible to use light plastic barriers instead of conventional rigid dams (the water sail concept). It is confirmed that the concept can result in a less expensive and more effective tidal power plant project than the conventional hydroturbine approach.

  2. Impact of Air Entraining Method on the Resistance of Concrete to Internal Cracking

    NASA Astrophysics Data System (ADS)

    Wawrzeńczyk, Jerzy; Molendowska, Agnieszka

    2017-10-01

    This paper presents the test results of air entrained concrete mixtures made at a constant W/C ratio of 0.44. Three different air entraining agents were used: polymer microspheres, glass microspheres and a conventional air entraining admixture. The aim of this study was to compare the effectiveness of the air entraining methods. Concrete mixture tests were performed for consistency (slump test), density and, in the case of AEA series, air content by pressure method. Hardened concrete tests were performed for compressive strength, water absorption, resistance to chloride ingress, and freeze-thaw durability - resistance to internal cracking tests were conducted in accordance with PN-88/B-06250 on cube specimens and with the modified ASTM C666 A test method on beam specimens; porosity characteristics (A, A300, \\bar L) were determined to PN-EN 480-11:1998. No significant mass and length changes were recorded for the concrete air entrained with the conventional methods or with polymer microspheres. The results indicate that polymer microspheres are a very good alternative to traditional air entraining methods for concrete, providing effective air entrainment and protection from freezing and thawing. The glass microsphere-based concretes showed insufficient freeze-thaw resistance. The test results indicate that both the conventional methods (AEA) and the air entrainment by polymer microspheres are effective air entraining methods. It has to be noted that in the case of the use of polymer microspheres, a comparable value of \\bar L and a very good freeze-thaw resistance can be achieved at a noticeably lower air and micropore contents and at lower strength loss.

  3. Thermal Desorption Analysis of Effective Specific Soil Surface Area

    NASA Astrophysics Data System (ADS)

    Smagin, A. V.; Bashina, A. S.; Klyueva, V. V.; Kubareva, A. V.

    2017-12-01

    A new method of assessing the effective specific surface area based on the successive thermal desorption of water vapor at different temperature stages of sample drying is analyzed in comparison with the conventional static adsorption method using a representative set of soil samples of different genesis and degree of dispersion. The theory of the method uses the fundamental relationship between the thermodynamic water potential (Ψ) and the absolute temperature of drying ( T): Ψ = Q - aT, where Q is the specific heat of vaporization, and a is the physically based parameter related to the initial temperature and relative humidity of the air in the external thermodynamic reservoir (laboratory). From gravimetric data on the mass fraction of water ( W) and the Ψ value, Polyanyi potential curves ( W(Ψ)) for the studied samples are plotted. Water sorption isotherms are then calculated, from which the capacity of monolayer and the target effective specific surface area are determined using the BET theory. Comparative analysis shows that the new method well agrees with the conventional estimation of the degree of dispersion by the BET and Kutilek methods in a wide range of specific surface area values between 10 and 250 m2/g.

  4. An EPA pilot study characterizing fungal and bacterial ...

    EPA Pesticide Factsheets

    The overall objective of this program is to characterize fungal and bacterial populations in the MPC residences in San Juan, Puerto Rico, following flooding events. These profiles will be generated by comparing the fungal and bacterial populations in two groups of residences: homes with flooding events and non-flooded homes. Dust and air samples from indoors and outdoors will be collected at all homes participating in the study. The characterization of fungal and bacterial populations from the dust and air samples will be done using culture-independent molecular technologies and conventional volumetric microbiological methods. This study will attempt to address the following environmental questions: (1) how do flooding events impact the types of fungal and bacterial populations inside affected homes? (2) are there any differences in the absolute abundances of fungi and bacteria in flooded relative to non-flooded homes? and (3) if there are noticeable effects of flooding on the fungal and bacterial composition and/or abundance, can the effects of flooding be correlated with other environmental variables such as % relative humidity, air exchange rate and temperature inside the homes? The proposed study has selected the Martin Peña Channel (MPC) urban community located within the San Juan National Estuary in the northeastern region of the island as a case study to advance the research into indoor air quality improvement at MPC residences with flooding events. T

  5. Crystallization to polycrystalline silicon thin film and simultaneous inactivation of electrical defects by underwater laser annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Machida, Emi; Research Fellowships of the Japan Society for the Promotion of Science, Japan Society for the Promotion of Science, 1-8 Chiyoda, Tokyo 102-8472; Horita, Masahiro

    2012-12-17

    We propose a low-temperature laser annealing method of a underwater laser annealing (WLA) for polycrystalline silicon (poly-Si) films. We performed crystallization to poly-Si films by laser irradiation in flowing deionized-water where KrF excimer laser was used for annealing. We demonstrated that the maximum value of maximum grain size of WLA samples was 1.5 {mu}m, and that of the average grain size was 2.8 times larger than that of conventional laser annealing in air (LA) samples. Moreover, WLA forms poly-Si films which show lower conductivity and larger carrier life time attributed to fewer electrical defects as compared to LA poly-Si films.

  6. Heat tube device

    NASA Technical Reports Server (NTRS)

    Khattar, Mukesh K. (Inventor)

    1990-01-01

    The present invention discloses a heat tube device through which a working fluid can be circulated to transfer heat to air in a conventional air conditioning system. The heat tube device is disposable about a conventional cooling coil of the air conditioning system and includes a plurality of substantially U-shaped tubes connected to a support structure. The support structure includes members for allowing the heat tube device to be readily positioned about the cooling coil. An actuatable adjustment device is connected to the U-shaped tubes for allowing, upon actuation thereof, for the heat tubes to be simultaneously rotated relative to the cooling coil for allowing the heat transfer from the heat tube device to air in the air conditioning system to be selectively varied.

  7. Real-time explosive particle detection using a cyclone particle concentrator.

    PubMed

    Hashimoto, Yuichiro; Nagano, Hisashi; Takada, Yasuaki; Kashima, Hideo; Sugaya, Masakazu; Terada, Koichi; Sakairi, Minoru

    2014-06-30

    There is a need for more rapid methods for the detection of explosive particles. We have developed a novel real-time analysis technique for explosive particles that uses a cyclone particle concentrator. This technique can analyze sample surfaces for the presence of particles from explosives such as TNT and RDX within 3 s, which is much faster than is possible by conventional methods. Particles are detached from the sample surface with air jet pulses, and then introduced into a cyclone particle concentrator with a high pumping speed of about 80 L/min. A vaporizer placed at the bottom of the cyclone particle concentrator immediately converts the particles into a vapor. The vapor is then ionized in the atmospheric pressure chemical ionization (APCI) source of a linear ion trap mass spectrometer. An online connection between the vaporizer and a mass spectrometer enables high-speed detection within a few seconds, compared with the conventional off-line heating method that takes more than 10 s to raise the temperature of a sample filter unit. Since the configuration enriched the number density of explosive particles by about 80 times compared with that without the concentrator, a sub-ng amount of TNT particles on a surface was detectable. The detection limit of our technique is comparable with that of an explosives trace detector using ion mobility spectrometry. The technique will be beneficial for trace detection in security applications, because it detects explosive particles on the surface more speedily than conventional methods. Copyright © 2014 John Wiley & Sons, Ltd.

  8. High-pressure combustor exhaust emissions with improved air-atomizing and conventional pressure-atomizing fuel nozzles

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.; Norgren, C. T.

    1973-01-01

    A high-pressure combustor segment 0.456 meter (18 in.) long with a maximum cross section of 0.153 by 0.305 meter (6 by 12 in.) was tested with specially designed air-atomizing and conventional pressure-atomizing fuel nozzles at inlet-air temperatures of 340 to 755 k (610 deg to 1360 R), reference velocities of 12.4 to 26.1 meters per second (41 to 86 ft/sec), and fuel-air ratios of 0.008 to 0.020. Increasing inlet-air pressure from 4 to 20 atmospheres generally increased smoke number and nitric oxide, but decreased carbon monoxide and unburned hydrocarbon concentrations with air-atomizing and pressure-atomizing nozzles. Emission indexes for carbon monoxide and unburned hydrocarbons were lower at 4, 10, and 20 atmospheres, and nitric oxide emission indexes were lower at 10 and 20 atmospheres with air-atomizing than with pressure-atomizing nozzles.

  9. Low-cost, high-density sensor network for urban emission monitoring: BEACO2N

    NASA Astrophysics Data System (ADS)

    Kim, J.; Shusterman, A.; Lieschke, K.; Newman, C.; Cohen, R. C.

    2017-12-01

    In urban environments, air quality is spatially and temporally heterogeneous as diverse emission sources create a high degree of variability even at the neighborhood scale. Conventional air quality monitoring relies on continuous measurements with limited spatial resolution or passive sampling with high-density and low temporal resolution. Either approach averages the air quality information over space or time and hinders our attempts to understand emissions, chemistry, and human exposure in the near-field of emission sources. To better capture the true spatio-temporal heterogeneity of urban conditions, we have deployed a low-cost, high-density air quality monitoring network in San Francisco Bay Area distributed at 2km horizontal spacing. The BErkeley Atmospheric CO2 Observation Network (BEACO2N) consists of approximately 50 sensor nodes, measuring CO2, CO, NO, NO2, O­3, and aerosol. Here we describe field-based calibration approaches that are consistent with the low-cost strategy of the monitoring network. Observations that allow inference of emission factors and identification of specific local emission sources will also be presented.

  10. Use of 137Cs measurements to estimate changes in soil erosion rates associated with changes in soil management practices on cultivated land.

    PubMed

    Schuller, P; Walling, D E; Sepúlveda, A; Trumper, R E; Rouanet, J L; Pino, I; Castillo, A

    2004-05-01

    Intensification of agricultural production in south-central Chile since the 1970s has caused problems of increased soil erosion and associated soil degradation. These problems have prompted a shift from conventional tillage to no-till management practices. Faced with the need to establish the impact of this shift in soil management on rates of soil loss, the use of caesium-137 (137Cs) measurements has been explored. A novel procedure for using measurements of the 137Cs depth distribution to estimate rates of soil loss at a sampling point under the original conventional tillage and after the shift to no-till management has been developed. This procedure has been successfully applied to a study site at Buenos Aires farm near Carahue in the 9th region of Chile. The results obtained indicate that the shift from conventional tillage to no-till management has caused net rates of soil loss to decrease to about 40% of those existing under conventional tillage. This assessment of the impact of introducing no-till management at the study site must, however, be seen as provisional, since only a limited number of sampling points were used. A simplified procedure aimed at documenting the reduction in erosion rates at additional sampling points, based solely on measurements of the 137Cs inventory of bulk cores and the 137Cs activity in the upper part of the soil has been developed and successfully tested at the study site. Previous application of 137Cs measurements to estimate erosion rates has been limited to estimation of medium-term erosion rates during the period extending from the beginning of fallout receipt to the time of sampling. The procedures described in this paper, which permits estimation of the change in erosion rates associated with a shift in land management practices, must be seen as representing a novel application of 137Cs measurements in soil erosion investigations.

  11. Transportation management and security during the 2004 Democratic National Convention

    DOT National Transportation Integrated Search

    2005-01-05

    The transportation operations plan for the 2004 Democratic National Convention (DNC) in Boston, Massachusetts, was not a typical transportation plan driven by goals such as mobility and air quality. The DNC was the first national political convention...

  12. Space charge distributions in insulating polymers: A new non-contacting way of measurement.

    PubMed

    Marty-Dessus, D; Ziani, A C; Petre, A; Berquez, L

    2015-04-01

    A new technique for the determination of space charge profiles in insulating polymers is proposed. Based on the evolution of an existing thermal wave technique called Focused Laser Intensity Modulation Method ((F)LIMM), it allows non-contact measurements on thin films exhibiting an internal charge to be studied. An electrostatic model taking into account the new sample-cell geometry proposed was first developed. It has been shown, in particular, that it was theoretically possible to calculate the internal charge from experimental measurements while allowing an evaluation of the air layer appearing between the sample and the electrode when non-contact measurements are performed. These predictions were confirmed by an experimental implementation for two thin polymer samples (25 μm-polyvinylidenefluoride and 50 μm-polytetrafluoroethylene (PTFE)) used as tests. In these cases, minimum air-layer thickness was determined with an accuracy of 3% and 20%, respectively, depending on the signal-to-noise ratio during the experimental procedure. In order to illustrate the reachable possibilities of this technique, 2D and 3D cartographies of a negative space charge implanted by electron beam within the PTFE test sample were depicted: like in conventional (F)LIMM, a multidimensional representation of a selectively implanted charge remains possible at a few microns depth, but using a non-contacting way of measurement.

  13. Detection of Methyl Salicylate Transforted by Honeybees (Apis mellifera) Using Solid Phase Microextration (SPME) Fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BENDER, SUSAN FAE ANN; RODACY, PHILIP J.; BARNETT, JAMES L.

    The ultimate goal of many environmental measurements is to determine the risk posed to humans or ecosystems by various contaminants. Conventional environmental monitoring typically requires extensive sampling grids covering several media including air, water, soil and vegetation. A far more efficient, innovative and inexpensive tactic has been found using honeybees as sampling mechanisms. Members from a single bee colony forage over large areas ({approx}2 x 10{sup 6} m{sup 2}), making tens of thousands of trips per day, and return to a fixed location where sampling can be conveniently conducted. The bees are in direct contact with the air, water, soilmore » and vegetation where they encounter and collect any contaminants that are present in gaseous, liquid and particulate form. The monitoring of honeybees when they return to the hive provides a rapid method to assess chemical distributions and impacts (1). The primary goal of this technology is to evaluate the efficiency of the transport mechanism (honeybees) to the hive using preconcentrators to collect samples. Once the extent and nature of the contaminant exposure has been characterized, resources can be distributed and environmental monitoring designs efficiently directed to the most appropriate locations. Methyl salicylate, a chemical agent surrogate was used as the target compound in this study.« less

  14. Innovative Monitoring of Atmospheric Gaseous Hydrogen Fluoride

    PubMed Central

    Bonari, Alessandro; Pompilio, Ilenia; Monti, Alessandro; Arcangeli, Giulio

    2016-01-01

    Hydrogen fluoride (HF) is a basic raw material for a wide variety of industrial products, with a worldwide production capacity of more than three million metric tonnes. A novel method for determining particulate fluoride and gaseous hydrogen fluoride in air is presented herewith. Air was sampled using miniaturised 13 mm Swinnex two-stage filter holders in a medium-flow pumping system and through the absorption of particulate fluoride and HF vapours on cellulose ester filters uncoated or impregnated with sodium carbonate. Furthermore, filter desorption from the holders and the extraction of the pentafluorobenzyl ester derivative based on solid-phase microextraction were performed using an innovative robotic system installed on an xyz autosampler on-line with gas chromatography (GC)/mass spectrometry (MS). After generating atmospheres of a known concentration of gaseous HF, we evaluated the agreement between the results of our sampling method and those of the conventional preassembled 37 mm cassette (±8.10%; correlation coefficient: 0.90). In addition, precision (relative standard deviation for n = 10, 4.3%), sensitivity (0.2 μg/filter), and linearity (2.0–4000 μg/filter; correlation coefficient: 0.9913) were also evaluated. This procedure combines the efficiency of GC/MS systems with the high throughput (96 samples/day) and the quantitative accuracy of pentafluorobenzyl bromide on-sample derivatisation. PMID:27829835

  15. Development of fuzzy air quality index using soft computing approach.

    PubMed

    Mandal, T; Gorai, A K; Pathak, G

    2012-10-01

    Proper assessment of air quality status in an atmosphere based on limited observations is an essential task for meeting the goals of environmental management. A number of classification methods are available for estimating the changing status of air quality. However, a discrepancy frequently arises from the quality criteria of air employed and vagueness or fuzziness embedded in the decision making output values. Owing to inherent imprecision, difficulties always exist in some conventional methodologies like air quality index when describing integrated air quality conditions with respect to various pollutants parameters and time of exposure. In recent years, the fuzzy logic-based methods have demonstrated to be appropriated to address uncertainty and subjectivity in environmental issues. In the present study, a methodology based on fuzzy inference systems (FIS) to assess air quality is proposed. This paper presents a comparative study to assess status of air quality using fuzzy logic technique and that of conventional technique. The findings clearly indicate that the FIS may successfully harmonize inherent discrepancies and interpret complex conditions.

  16. On the Job Education: An Alternative for Special Operations Forces Officers

    DTIC Science & Technology

    2010-04-01

    flexibility of the ACSC OLMP has great advantages to support the alternative education for SOF majors. The OLMP executes the entire curriculum every...AIR COMMAND AND STAFF COLLEGE AIR UNIVERSITY ON THE JOB EDUCATION : AN ALTERNATIVE FOR SPECIAL OPERATIONS FORCES OFFICERS by...relatively low compared to conventional officers. Conventional officers have educational institutions at the major level that prepare them to understand

  17. A Field Investigation of Bacillus anthracis Contamination of U.S. Department of Agriculture and Other Washington, D.C., Buildings during the Anthrax Attack of October 2001

    PubMed Central

    Higgins, James A.; Cooper, Mary; Schroeder-Tucker, Linda; Black, Scott; Miller, David; Karns, Jeffrey S.; Manthey, Erlynn; Breeze, Roger; Perdue, Michael L.

    2003-01-01

    In response to a bioterrorism attack in the Washington, D.C., area in October 2001, a mobile laboratory (ML) was set up in the city to conduct rapid molecular tests on environmental samples for the presence of Bacillus anthracis spores and to route samples for further culture analysis. The ML contained class I laminar-flow hoods, a portable autoclave, two portable real-time PCR devices (Ruggedized Advanced Pathogen Identification Device [RAPID]), and miscellaneous supplies and equipment to process samples. Envelopes and swab and air samples collected from 30 locations in the metropolitan area once every three days were subjected to visual examination and DNA extraction, followed by real-time PCR using freeze-dried, fluorescent-probe-based reagents. Surface swabs and air samples were also cultured for B. anthracis at the National Veterinary Service Laboratory (NVSL) in Ames, Iowa. From 24 October 2001 to 15 September 2002, 2,092 pieces of mail were examined, 405 real-time PCR assays were performed (comprising 4,639 samples), and at the NVSL 6,275 samples were subjected to over 18,000 platings. None of the PCR assays on DNA extracted from swab and air samples were positive, but viable spores were cultured from surface swabs taken from six locations in the metropolitan area in October, November, and December 2001 and February, March, and May 2002. DNA extracted from these suspected B. anthracis colonies was positive by real-time and conventional PCRs for the lethal factor, pXO1, and for capA and vrr genes; sequence analysis of the latter amplicons indicated >99% homology with the Ames, vollum, B6273-93, C93022281, and W-21 strains of B. anthracis, suggesting they arose from cross-contamination during the attack through the mail. The RAPID-based PCR analysis provided fast confirmation of suspect colonies from an overnight incubation on agar plates. PMID:12514046

  18. Apple snack enriched with L-arginine using vacuum impregnation/ohmic heating technology.

    PubMed

    Moreno, Jorge; Echeverria, Julian; Silva, Andrea; Escudero, Andrea; Petzold, Guillermo; Mella, Karla; Escudero, Carlos

    2017-07-01

    Modern life has created a high demand for functional food, and in this context, emerging technologies such as vacuum impregnation and ohmic heating have been applied to generate functional foods. The aim of this research was to enrich the content of the semi-essential amino acid L-arginine in apple cubes using vacuum impregnation, conventional heating, and ohmic heating. Additionally, combined vacuum impregnation/conventional heating and vacuum impregnation/ohmic heating treatments were evaluated. The above treatments were applied at 30, 40 and 50  ℃ and combined with air-drying at 40 ℃ in order to obtain an apple snack rich in L-arginine. Both the impregnation kinetics of L-arginine and sample color were evaluated. The impregnated samples created using vacuum impregnation/ohmic heating at 50 ℃ presented a high content of L-arginine, an effect attributed primarily to electropermeabilization. Overall, vacuum impregnation/ohmic heating treatment at 50 ℃, followed by drying at 40 ℃, was the best process for obtaining an apple snack rich in L-arginine.

  19. Survey of hazardous organic compounds in the groundwater, air and wastewater effluents near the Tehran automobile industry.

    PubMed

    Kargar, Mahdi; Nadafi, Kazem; Nabizadeh, Ramin; Nasseri, Simin; Mesdaghinia, Alireza; Mahvi, Amir Hossein; Alimohammadi, Mahmood; Nazmara, Shahrokh; Rastkari, Noushin

    2013-02-01

    Potential of wastewater treatment in car industry and groundwater contamination by volatile organic compounds include perchloroethylene (PCE), trichloroethylene (TCE) and dichloromethane (DCM) near car industry was conducted in this study. Samples were collected in September through December 2011 from automobile industry. Head-space Gas chromatography with FID detector is used for analysis. Mean PCE levels in groundwater ranged from 0 to 63.56 μg L(-1) with maximum level of 89.1 μg L(-1). Mean TCE from 0 to 76.63 μg L(-1) with maximum level of 112 μg L(-1). Due to the data obtained from pre treatment of car staining site and conventional wastewater treatment in car factory, the most of TCE, PCE and DCM removed by pre aeration. Therefor this materials entry from liquid phase to air phase and by precipitation leak out to the groundwater. As a consequence these pollutants have a many negative health effect on the workers by air and groundwater.

  20. Bacterial aerosol emission rates from municipal wastewater aeration tanks.

    PubMed Central

    Sawyer, B; Elenbogen, G; Rao, K C; O'Brien, P; Zenz, D R; Lue-Hing, C

    1993-01-01

    In this report we describe the results of a study conducted to determine the rates of bacterial aerosol emission from the surfaces of the aeration tanks of the Metropolitan Water Reclamation District of Greater Chicago John E. Egan Water Reclamation Plant. This study was accomplished by conducting test runs in which Andersen six-stage viable samplers were used to collect bacterial aerosol samples inside a walled tower positioned above an aeration tank liquid surface at the John E. Egan Water Reclamation Plant. The samples were analyzed for standard plate counts (SPC), total coliforms (TC), fecal coliforms, and fecal streptococci. Two methods of calculation were used to estimate the bacterial emission rate. The first method was a conventional stack emission rate calculation method in which the measured air concentration of bacteria was multiplied by the air flow rate emanating from the aeration tanks. The second method was a more empirical method in which an attempt was made to measure all of the bacteria emanating from an isolated area (0.37 m2) of the aeration tank surface over time. The data from six test runs were used to determine bacterial emission rates by both calculation methods. As determined by the conventional calculation method, the average SPC emission rate was 1.61 SPC/m2/s (range, 0.66 to 2.65 SPC/m2/s). As determined by the empirical calculation method, the average SPC emission rate was 2.18 SPC/m2/s (range, 1.25 to 2.66 SPC/m2/s). For TC, the average emission rate was 0.20 TC/m2/s (range, 0.02 to 0.40 TC/m2/s) when the conventional calculation method was used and 0.27 TC/m2/s (range, 0.04 to 0.53 TC/m2/s) when the empirical calculation method was used.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8250547

  1. 40 CFR 63.801 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... devices used to reduce emissions to the atmosphere. Conventional air spray means a spray coating method in... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission...

  2. 40 CFR 63.801 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... devices used to reduce emissions to the atmosphere. Conventional air spray means a spray coating method in... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission...

  3. 40 CFR 63.801 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... devices used to reduce emissions to the atmosphere. Conventional air spray means a spray coating method in... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission...

  4. 40 CFR 63.801 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... devices used to reduce emissions to the atmosphere. Conventional air spray means a spray coating method in... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission...

  5. Water Collection from Air Humidity in Bahrain

    NASA Astrophysics Data System (ADS)

    Dahman, Nidal A.; Al Juboori, Khalil J.; BuKamal, Eman A.; Ali, Fatima M.; AlSharooqi, Khadija K.; Al-Banna, Shaima A.

    2017-11-01

    The Kingdom of Bahrain falls geographically in one of the driest regions in the world. Conventional fresh surface water bodies, such as rivers and lakes, are nonexistent and for water consumption, Bahrain prominently relies on the desalination of sea water. This paper presents an ongoing project that is being pursued by a group of student and their advising professors to investigate the viability of extracting water from air humidity. Dehumidifiers have been utilized as water extraction devices. Those devices have been distributed on six areas that were selected based on a rigorous geospatial modeling of historical meteorological data. The areas fall in residential and industrial neighborhoods that are located in the main island and the island of Muharraq. Water samples have been collected three times every week since May of 2016 and the collection process will continue until May of 2017. The collected water samples have been analyzed against numerous variables individually and in combinations including: amount of water collected per hour versus geographical location, amount of water collected per hour versus meteorological factors, suitability of collected water for potable human consumption, detection of air pollution in the areas of collection and the economy of this method of water collection in comparison to other nonconventional methods. An overview of the completed analysis results is presented in this paper.

  6. Creating a Methodology for Coordinating High-resolution Air Quality Improvement Map and Greenhouse Gas Mitigation Strategies in Pittsburgh City

    NASA Astrophysics Data System (ADS)

    Shi, J.; Donahue, N. M.; Klima, K.; Blackhurst, M.

    2016-12-01

    In order to tradeoff global impacts of greenhouse gases with highly local impacts of conventional air pollution, researchers require a method to compare global and regional impacts. Unfortunately, we are not aware of a method that allows these to be compared, "apples-to-apples". In this research we propose a three-step model to compare possible city-wide actions to reduce greenhouse gases and conventional air pollutants. We focus on Pittsburgh, PA, a city with consistently poor air quality that is interested in reducing both greenhouse gases and conventional air pollutants. First, we use the 2013 Pittsburgh Greenhouse Gas Inventory to update the Blackhurst et al. model and conduct a greenhouse gas abatement potentials and implementation costs of proposed greenhouse gas reduction efforts. Second, we use field tests for PM2.5, NOx, SOx, organic carbon (OC) and elemental carbon (EC) data to inform a Land-use Regression Model for local air pollution at a 100m x 100m spatial level, which combined with a social cost of air pollution model (EASIUR) allows us to calculate economic social damages. Third, we combine these two models into a three-dimensional greenhouse gas cost abatement curve to understand the implementation costs and social benefits in terms of air quality improvement and greenhouse gas abatement for each potential intervention. We anticipated such results could provide policy-maker insights in green city development.

  7. Field Demonstration of Active Desiccant-Based Outdoor Air Preconditioning Systems, Final Report: Phase 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, J.

    2001-07-09

    This report summarizes an investigation of the performance of two active desiccant cooling systems that were installed as pilot systems in two locations--a college dormitory and a research laboratory--during the fall of 1999. The laboratory system was assembled in the field from commercially available Trane air-handling modules combined with a standard total energy recovery module and a customized active desiccant wheel, both produced by SEMCO. The dormitory system was a factory-built, integrated system produced by SEMCO that included both active desiccant and sensible-only recovery wheels, a direct-fired gas regeneration section, and a pre-piped Trane heat pump condensing section. Both systemsmore » were equipped with direct digital control systems, complete with full instrumentation and remote monitoring capabilities. This report includes detailed descriptions of these two systems, installation details, samples of actual performance, and estimations of the energy savings realized. These pilot sites represent a continuation of previous active desiccant product development research (Fischer, Hallstrom, and Sand 2000; Fischer 2000). Both systems performed as anticipated, were reliable, and required minimal maintenance. The dehumidification/total-energy-recovery hybrid approach was particularly effective in all respects. System performance showed remarkable improvement in latent load handling capability and operating efficiency compared with the original conventional cooling system and with the conventional system that remained in another, identical wing of the facility. The dehumidification capacity of the pilot systems was very high, the cost of operation was very low, and the system was cost-effective, offering a simple payback for these retrofit installations of approximately 5 to 6 years. Most important, the dormitory system resolved numerous indoor air quality problems in the dormitory by providing effective humidity control and increased, continuous ventilation air.« less

  8. Kinetic mechanism of molecular energy transfer and chemical reactions in low-temperature air-fuel plasmas.

    PubMed

    Adamovich, Igor V; Li, Ting; Lempert, Walter R

    2015-08-13

    This work describes the kinetic mechanism of coupled molecular energy transfer and chemical reactions in low-temperature air, H2-air and hydrocarbon-air plasmas sustained by nanosecond pulse discharges (single-pulse or repetitive pulse burst). The model incorporates electron impact processes, state-specific N(2) vibrational energy transfer, reactions of excited electronic species of N(2), O(2), N and O, and 'conventional' chemical reactions (Konnov mechanism). Effects of diffusion and conduction heat transfer, energy coupled to the cathode layer and gasdynamic compression/expansion are incorporated as quasi-zero-dimensional corrections. The model is exercised using a combination of freeware (Bolsig+) and commercial software (ChemKin-Pro). The model predictions are validated using time-resolved measurements of temperature and N(2) vibrational level populations in nanosecond pulse discharges in air in plane-to-plane and sphere-to-sphere geometry; temperature and OH number density after nanosecond pulse burst discharges in lean H(2)-air, CH(4)-air and C(2)H(4)-air mixtures; and temperature after the nanosecond pulse discharge burst during plasma-assisted ignition of lean H2-mixtures, showing good agreement with the data. The model predictions for OH number density in lean C(3)H(8)-air mixtures differ from the experimental results, over-predicting its absolute value and failing to predict transient OH rise and decay after the discharge burst. The agreement with the data for C(3)H(8)-air is improved considerably if a different conventional hydrocarbon chemistry reaction set (LLNL methane-n-butane flame mechanism) is used. The results of mechanism validation demonstrate its applicability for analysis of plasma chemical oxidation and ignition of low-temperature H(2)-air, CH(4)-air and C(2)H(4)-air mixtures using nanosecond pulse discharges. Kinetic modelling of low-temperature plasma excited propane-air mixtures demonstrates the need for development of a more accurate 'conventional' chemistry mechanism. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  9. Compressed air noise reductions from using advanced air gun nozzles in research and development environments.

    PubMed

    Prieve, Kurt; Rice, Amanda; Raynor, Peter C

    2017-08-01

    The aims of this study were to evaluate sound levels produced by compressed air guns in research and development (R&D) environments, replace conventional air gun models with advanced noise-reducing air nozzles, and measure changes in sound levels to assess the effectiveness of the advanced nozzles as engineering controls for noise. Ten different R&D manufacturing areas that used compressed air guns were identified and included in the study. A-weighted sound level and Z-weighted octave band measurements were taken simultaneously using a single instrument. In each area, three sets of measurements, each lasting for 20 sec, were taken 1 m away and perpendicular to the air stream of the conventional air gun while a worker simulated typical air gun work use. Two different advanced noise-reducing air nozzles were then installed. Sound level and octave band data were collected for each of these nozzles using the same methods as for the original air guns. Both of the advanced nozzles provided sound level reductions of about 7 dBA, on average. The highest noise reductions measured were 17.2 dBA for one model and 17.7 dBA for the other. In two areas, the advanced nozzles yielded no sound level reduction, or they produced small increases in sound level. The octave band data showed strong similarities in sound level among all air gun nozzles within the 10-1,000 Hz frequency range. However, the advanced air nozzles generally had lower noise contributions in the 1,000-20,000 Hz range. The observed decreases at these higher frequencies caused the overall sound level reductions that were measured. Installing new advanced noise-reducing air nozzles can provide large sound level reductions in comparison to existing conventional nozzles, which has direct benefit for hearing conservation efforts.

  10. Air Structures. Educational Facilities Review Series Number 23.

    ERIC Educational Resources Information Center

    Finne, Mary Lou

    Air structures can be erected quickly, cover large areas, cost substantially less than conventional buildings, and use less natural resources. Air structures are economically utilized for many facilities, such as athletic fields, swimming pools, high schools, day care centers, and college campuses. The literature on air structures covered in this…

  11. Improved system for floor cleaning in health care facilities.

    PubMed Central

    Schmidt, E A; Coleman, D L; Mallison, G F

    1984-01-01

    A new system has been developed for sanitizing floors in hospitals; this system replaces the traditional procedure of daily dusting and wet mopping with a disinfectant-detergent solution and periodic buffing . This new system relies on a sequence of procedures consisting of dust mopping using a chemically treated dust mop, machine buffing of a sprayed-on polymer treatment, and a second dust mopping . The effectiveness of the procedures was evaluated by means of surface sampling for bacterial contamination and air sampling for airborne bacteria and dust. The level of bacterial contamination on the floors was reduced by 93.6% by using the new system, compared with 79.8% by using the conventional process of dust mopping and wet mopping with a disinfectant solution. The levels of airborne bacteria during and after the individual procedures did not vary significantly from the initial level (123.6 CFU/per m3 of air). A survey of representative colonies from air samples revealed staphylococci, gram-positive bacilli, gram-positive diplococci, yeast cells, and infrequent gram-negative rods. The distribution at the conclusion of the sanitizing process was similar to that at the outset. Similarly, the levels of airborne dust measured during and after the individual procedures did not vary significantly from the initial level. When compared with the traditional method of cleaning by wet mopping , the new method was significantly more effective in removal of microbial contamination and required less labor. PMID:6742835

  12. Comparison between conventional biofilters and biotrickling filters applied to waste bio-drying in terms of atmospheric dispersion and air quality.

    PubMed

    Schiavon, Marco; Ragazzi, Marco; Torretta, Vincenzo; Rada, Elena Cristina

    2016-01-01

    Biofiltration has been widely applied to remove odours and volatile organic compounds (VOCs) from industrial off-gas and mechanical-biological waste treatments. However, conventional open biofilters cannot guarantee an efficient dispersion of air pollutants emitted into the atmosphere. The aim of this paper is to compare conventional open biofilters with biotrickling filters (BTFs) in terms of VOC dispersion in the atmosphere and air quality in the vicinity of a hypothetical municipal solid waste bio-drying plant. Simulations of dispersion were carried out regarding two VOCs of interest due to their impact in terms of odours and cancer risk: dimethyl disulphide and benzene, respectively. The use of BTFs, instead of conventional biofilters, led to significant improvements in the odour impact and the cancer risk: when adopting BTFs instead of an open biofilter, the area with an odour concentration > 1 OU m(-3) and a cancer risk > 10(-6) was reduced by 91.6% and 95.2%, respectively. When replacing the biofilter with BTFs, the annual mean concentrations of odorants and benzene decreased by more than 90% in the vicinity of the plant. These improvements are achieved above all because of the higher release height of BTFs and the higher velocity of the outgoing air flow.

  13. Polarization Stability of Amorphous Piezoelectric Polyimides

    NASA Technical Reports Server (NTRS)

    Park, C.; Ounaies, Z.; Su, J.; Smith, J. G., Jr.; Harrison, J. S.

    2000-01-01

    Amorphous polyimides containing polar functional groups have been synthesized and investigated for potential use as high temperature piezoelectric sensors. The thermal stability of the piezoelectric effect of one polyimide was evaluated as a function of various curing and poling conditions under dynamic and static thermal stimuli. First, the polymer samples were thermally cycled under strain by systematically increasing the maximum temperature from 50 C to 200 C while the piezoelectric strain coefficient was being measured. Second, the samples were isothermally aged at an elevated temperature in air, and the isothermal decay of the remanent polarization was measured at room temperature as a function of time. Both conventional and corona poling methods were evaluated. This material exhibited good thermal stability of the piezoelectric properties up to 100 C.

  14. Characterization of Conventional and High-Translucency Y-TZP Dental Ceramics Submitted to Air Abrasion.

    PubMed

    Tostes, Bhenya Ottoni; Guimarães, Renato Bastos; Noronha-Filho, Jaime Dutra; Botelho, Glauco Dos Santos; Guimarães, José Guilherme Antunes; Silva, Eduardo Moreira da

    2017-01-01

    This study evaluated the effect of air-abrasion on t®m phase transformation, roughness, topography and the elemental composition of three Y-TZP (Yttria-stabilized tetragonal zirconia polycrystal) dental ceramics: two conventional (Lava Frame and IPS ZirCad) and one with high-translucency (Lava Plus). Plates obtained from sintered blocks of each ceramic were divided into four groups: AS (as-sintered); 30 (air-abrasion with 30 mm Si-coated Al2O3 particles); 50 (air-abrasion with 50 mm Al2O3 particles) and 150 (air-abrasion with 150 mm Al2O3 particles). After the treatments, the plates were submitted to X-ray diffractometry; 3-D profilometry and SEM/EDS. The AS surfaces were composed of Zr and t phases. All treatments produced t®m phase transformation in the ceramics. The diameter of air-abrasion particles influenced the roughness (150>50>30>AS) and the topography. SEM analysis showed that the three treatments produced groove-shaped microretentions on the ceramic surfaces, which increased with the diameter of air-abrasion particles. EDS showed a decrease in Zr content along with the emergence of O and Al elements after air-abrasion. Presence of Si was also detected on the plates air-abraded with 30 mm Si-coated Al2O3 particles. It was concluded that irrespective of the type and diameter of the particles, air-abrasion produced t®m phase transformation, increased the roughness and changed the elemental composition of the three Y-TZP dental ceramics. Lava Plus also behaved similarly to the conventional Y-TZP ceramics, indicating that this high translucency ceramic could be more suitable to build monolithic ceramic restorations in the aesthetic restorative dentistry field.

  15. Forest health status in Europe.

    PubMed

    Lorenz, Martin; Mues, Volker

    2007-03-21

    Forest health status in Europe is assessed by the International Cooperative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests). Established by the Convention on Long-Range Transboundary Air Pollution (CLRTAP) under the United Nations Economic Commission for Europe (UNECE), the ICP Forests has been monitoring forest condition in close cooperation with the European Commission (EC) for 20 years. The present paper describes the latest results of the deposition measurements on permanent monitoring plots and of the extensive defoliation sample survey. The findings reveal marked spatial patterns in bulk and throughfall depositions of nitrate (N-NO3(-)), ammonium (N-NH4(+)), and sulfate (S-SO4(2-)), as well as an obvious decrease in bulk and throughfall deposition of sulfate. Latest analyses of defoliation data confirm previous results, indicating a high correlation with weather extremes.

  16. A Side by Side Comparison of Filter-Based PM(sub 2.5) Measurements at a Suburban Site: A Closure Study

    NASA Technical Reports Server (NTRS)

    Haines, Jennifer C.; Chen, Lung-Wen A.; Taubman, Brett F.; Doddridge, Bruce G.; Dickerson, Russell R.

    2007-01-01

    Reliable determination of the effects of air quality on public health and the environment requires accurate measurement of PM(sub 2.5) mass and the individual chemical components of fine aerosols. This study seeks to evaluate PM(sub 2.5) measurements that are part of a newly established national network by comparing them with a more conventional sampling system. Experiments were carried out during 2002 at a suburban site in Maryland, United States, where two samplers from the U.S. Environmental Protection Agency (USEPA) Speciation Trends Network: Met One Speciation Air Sampling System STNS and Thermo Scientific Reference Ambient Air Sampler STNR, two Desert Research Institute Sequential Filter Samplers DRIF, and a continuous TEOM monitor (Thermo Scientific Tapered Element Oscillating Microbalance) were sampling air in parallel. These monitors differ not only in sampling configuration but also in protocol-specific sample analysis procedures. Measurements of PM(sub 2.5) mass and major contributing species were well correlated among the different methods with r-values > 0.8. Despite the good correlations, daily concentrations of PM(sub 2.5) mass and major contributing species were significantly different at the 95% confidence level from 5 to 100% of the time. Larger values of PM(sub 2.5) mass and individual species were generally reported from STNR and STNS. The January STNR average PM(sub 2.5) mass (8.8 (micro)g/per cubic meter) was 1.5 (micro)g/per cubic meter larger than the DRIF average mass. The July STNS average PM(sub 2.5) mass (27.8 (micro)g/per cubic meter) was 3.8 (micro)g/per cubic meter larger than the DRIF average mass. These differences can only be partially accounted for by known random errors. Variations in flow control, face velocity, and sampling artifacts likely influence the measurement of PM(sub 2.5) speciation and mass closure. Simple statistical tests indicate that the current uncertainty estimates used in the STN network may underestimate the actual uncertainty.

  17. Effects of chilling rate and spray-chilling on weight loss and tenderness in beef strip loin steaks.

    PubMed

    Prado, C S; de Felício, P E

    2010-10-01

    We evaluated the effects of chilling rate and the use of a spray-chilling system on the weight loss by evaporation on carcasses. We also evaluated the effects on meat purge in vacuum package, cooking losses, and on parameters related to the tenderness of strip loin steaks (M. longissimus lumborum). Forty non-castrated males of approximately 12 months old, finished in feed-lot were harvested in 16 Montana cattle (a composite breed), and 24 SimmentalxNellore crossbred cattle. After bleeding, the bodies were electrically stimulated and assigned to one of the four treatments: conventional air-chilling (CAC), conventional spray-chilling (CSC), slow air-chilling (SAC), and slow spray-chilling (SSC). Strip loin steaks (M. longissimus lumborum) of approximately 2.5 cm thick were removed, vacuum packed and aged for 7, 14, 30 or 60 days. Samples were analyzed for sarcomere length, myofibrillar fragmentation index, Warner-Bratzler shear force, and weight losses by purge and cooking. Spraying was efficient in reducing weight loss by evaporation (P<0.05). Effects of treatments and aging period on purge losses were observed, where samples from sprayed carcasses or aged cuts showed higher losses. Cooking losses were not affected either by spraying or aging. The slow chilling, with or without spraying, was more efficient in producing strip loin steaks with lower average shear force and longer sarcomere. The myofibrillar fragmentation index increased with aging time, but was not affected by carcasses spraying. Copyright (c) 2010 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.

  18. Air void analyzer for plastic concrete : technical summary report.

    DOT National Transportation Integrated Search

    2008-11-01

    The best protection against freeze-thaw cycles in concrete is to have a good air void : system. Although microscopic, concrete is a porous material. Conventional field tests, : the volumetric or pressure tests, only provide the volume of air voids in...

  19. Evaluating Environmental Impact of Traffic Congestion in Real Time Based on Sparse Mobile Crowd-sourced Data

    DOT National Transportation Integrated Search

    2018-02-02

    Traffic congestion at arterial intersections and freeway bottlenecks degrades the air quality and threatens the public health. Conventionally, air pollutants are monitored by sparsely-distributed Quality Assurance Air Monitoring Sites. Sparse mobile ...

  20. Hemoglobin Adducts of Benzene Oxide in Neonatal and Adult Dried Blood Spots

    PubMed Central

    Funk, William E.; Waidyanatha, Suramya; Chaing, Shu H.; Rappaport, Stephen M.

    2010-01-01

    Adducts of reactive chemicals with hemoglobin (Hb) or human serum albumin can be used as biomarkers of internal doses of carcinogens. Since dried blood spots (DBS) are easier to collect and store than conventional venous blood samples, they encourage applications of biomarkers of exposure in large epidemiology studies. Also, neonatal DBS can be used to investigate chemical exposures in utero. Here, we report a simple method to isolate Hb from DBS with high recovery and purity using the addition of ethanol to aqueous DBS extracts. To prove the concept that DBS-derived proteins can be used to assay for adducts, we measured Hb adducts of benzene oxide, a reactive metabolite of the ubiquitous air pollutant, benzene, in 9 neonatal and 9 adult DBS (from volunteer subjects), using a gas chromatography-mass spectrometry method that we had previously developed. For comparison, benzene oxide-Hb adducts (BO-Hb) were measured in the same 9 adult subjects, using Hb that had been isolated and purified using our conventional method for venous blood. The geometric mean BO-Hb levels in all DBS samples ranged from 27.7 to 33.1 pmol/g globin. Neither of the comparisons of mean (logged) BO-Hb levels between sources (adult conventional vs. adult DBS and adult DBS vs. newborn DBS) showed a significant difference. Based upon the estimated variance of the BO-Hb levels, we had 80% power to detect a 1.7-fold difference in geometric mean levels of BO-Hb in our samples of 9 subjects. PMID:18708378

  1. Miniaturized sample preparation needle: a versatile design for the rapid analysis of smoking-related compounds in hair and air samples.

    PubMed

    Saito, Yoshihiro; Ueta, Ikuo; Ogawa, Mitsuhiro; Hayashida, Makiko; Jinno, Kiyokatsu

    2007-05-09

    Miniaturized needle extraction device has been developed as a versatile sample preparation device designed for the rapid and simple analysis of smoking-related compounds in smokers' hair samples and environmental tobacco smoke. Packed with polymeric particle, the resulting particle-packed needle was employed as a miniaturized sample preparation device for the analysis of typical volatile organic compounds in tobacco smoke. Introducing a bundle of polymer-coated filaments as the extraction medium, the needle was further applied as a novel sample preparation device containing simultaneous derivatization/extraction process of volatile aldehydes. Formaldehyde (FA) and acetaldehyde (AA) in smoker's breath during the smoking were successfully derivatized with two derivatization reagents in the polymer-coated fiber-packed needle device followed by the separation and determination in gas chromatography (GC). Smokers' hair samples were also packed into the needle, allowing the direct extraction of nicotine from the hair sample in a conventional GC injector. Optimizing the main experimental parameters for each technique, successful determination of several smoking-related compounds with these needle extraction methods has been demonstrated.

  2. Morphology Control for Fully Printable Organic-Inorganic Bulk-heterojunction Solar Cells Based on a Ti-alkoxide and Semiconducting Polymer.

    PubMed

    Kato, Takehito; Oinuma, Chihiro; Otsuka, Munechika; Hagiwara, Naoki

    2017-01-10

    The photoactive layer of a typical organic thin-film bulk-heterojunction (BHJ) solar cell commonly uses fullerene derivatives as the electron-accepting material. However, fullerene derivatives are air-sensitive; therefore, air-stable material is needed as an alternative. In the present study, we propose and describe the properties of Ti-alkoxide as an alternative electron-accepting material to fullerene derivatives to create highly air-stable BHJ solar cells. It is well-known that controlling the morphology in the photoactive layer, which is constructed with fullerene derivatives as the electron acceptor, is important for obtaining a high overall efficiency through the solvent method. The conventional solvent method is useful for high-solubility materials, such as fullerene derivatives. However, for Ti-alkoxides, the conventional solvent method is insufficient, because they only dissolve in specific solvents. Here, we demonstrate a new approach to morphology control that uses the molecular bulkiness of Ti-alkoxides without the conventional solvent method. That is, this method is one approach to obtain highly efficient, air-stable, organic-inorganic bulk-heterojunction solar cells.

  3. Accumulation and Translocation of Essential and Nonessential Elements by Tomato Plants (Solanum lycopersicum) Cultivated in Open-Air Plots under Organic or Conventional Farming Techniques.

    PubMed

    Liñero, Olaia; Cidad, Maite; Carrero, Jose Antonio; Nguyen, Christophe; de Diego, Alberto

    2015-11-04

    A 5-month experiment was performed to study the accumulation of several inorganic elements in tomato plants cultivated using organic or synthetic fertilizer. Plants were harvested in triplicate at six sampling dates during their life cycle. Statistical and chemometric analysis of data indicated the sequestration of toxic elements and of Na, Zn, Fe, and Co in roots, while the rest of the elements, including Cd, were mainly translocated to aboveground organs. A general decreasing trend in element concentrations with time was observed for most of them. A negative correlation between some element concentrations and ripening stage of fruits was identified. Conventionally grown plants seemed to accumulate more Cd and Tl in their tissues, while organic ones were richer in some nutrients. However, there was no clear effect of the fertilizer used (organic vs synthetic) on the elemental composition of fruits.

  4. Use of a Terrestrial LIDAR Sensor for Drift Detection in Vineyard Spraying

    PubMed Central

    Gil, Emilio; Llorens, Jordi; Llop, Jordi; Fàbregas, Xavier; Gallart, Montserrat

    2013-01-01

    The use of a scanning Light Detection and Ranging (LIDAR) system to characterize drift during pesticide application is described. The LIDAR system is compared with an ad hoc test bench used to quantify the amount of spray liquid moving beyond the canopy. Two sprayers were used during the field test; a conventional mist blower at two air flow rates (27,507 and 34,959 m3·h−1) equipped with two different nozzle types (conventional and air injection) and a multi row sprayer with individually oriented air outlets. A simple model based on a linear function was used to predict spray deposit using LIDAR measurements and to compare with the deposits measured over the test bench. Results showed differences in the effectiveness of the LIDAR sensor depending on the sprayed droplet size (nozzle type) and air intensity. For conventional mist blower and low air flow rate; the sensor detects a greater number of drift drops obtaining a better correlation (r = 0.91; p < 0.01) than for the case of coarse droplets or high air flow rate. In the case of the multi row sprayer; drift deposition in the test bench was very poor. In general; the use of the LIDAR sensor presents an interesting and easy technique to establish the potential drift of a specific spray situation as an adequate alternative for the evaluation of drift potential. PMID:23282583

  5. Resistance of Nanostructured Environmental Barrier Coatings to the Movement of Molten Salts

    NASA Astrophysics Data System (ADS)

    Rao, S.; Frederick, L.; McDonald, A.

    2012-09-01

    Corrosion of components in a recovery boiler is a major problem faced by the pulp and paper industry. The superheater tubes become severely corroded due to the presence of sulfidic gases in the boiler and molten salts which are deposited on the surface of the tubes. As a result, the boiler must be decommissioned for expensive maintenance and repairs. Yttria-stabilized zirconia (YSZ) coatings have been shown to provide corrosion resistance when applied on gas turbines operating at high temperatures. Air plasma-sprayed YSZ environmental barrier coatings on Type 309 stainless steel were exposed to three different corrosive environments: Test A—600 °C, salt vapors, flue gases, 168 h; Test B—600 °C, molten salt, air, 168 h; and Test C—600 °C, molten salt, flue gases, 168 h. Two different types of YSZ coatings—conventional YSZ and nanostructured YSZ—were tested to study their resistance to corrosion and molten salt penetration. The performances of both types of coatings were evaluated, and a comparative study was conducted. It was found that the nanostructured YSZ samples protected the stainless steel substrate better than their conventional counterparts. This superior performance was attributed to the presence of semi-molten nano-agglomerates present in the coating microstructure, which acted as collection points for the penetrating molten salts.

  6. A critical assessment of passive air samplers for per- and polyfluoroalkyl substances

    NASA Astrophysics Data System (ADS)

    Karásková, Pavlína; Codling, Garry; Melymuk, Lisa; Klánová, Jana

    2018-07-01

    Since their inclusion in the Stockholm Convention, there has been a need for global monitoring of perfluorooctane sulfonate (PFOS), its salts and perfluorooctanesulfonyl fluoride (PFOSF), along with other non-listed highly fluorinated compounds. Passive air samplers (PAS) are ideal for geographic coverage of atmospheric monitoring. The most common type of PAS, using polyurethane foam (PUF) as a sorbent, was primarily developed for non-polar semivolatile organic compounds (SVOCs) and are not well-validated for polar substances such as the per- and polyfluoroalkyl substances (PFASs), however, they have been used for some PFASs, particularly PFOS. To evaluate their applicability, PAS were deployed for measurement of PFASs in outdoor and indoor air. Outdoors, two types of PAS, one consisting of PUF and one of XAD-2 resin, were deployed in an 18-week calibration study in parallel with a low-volume active air sampler (LV-AAS) in a suburban area. Indoors, PUF-PAS were similarly deployed over 12 weeks to evaluate their applicability for indoor monitoring. Samples were analysed for perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkyl sulfonates (PFSAs), perfluorooctane sulfonamides (FOSAs), and perfluorooctane sulfonamidoethanols (FOSEs). In outdoor air, 17 out of the 21 PFAS were detected in more than 50% of samples, with a median ∑17PFASs of 18.0 pg m-3 while 20 compounds were detected in indoor air with a median concentration ∑20PFASs of 76.6 pg m-3 using AAS samplers. PFOS was the most common PFAS in the outdoor air while PFBA was most common indoors. Variability between PAS and AAS was observed and comparing gas phase and particle phase separately or in combination did not account for the variation observed. PUF-PAS may still have a valuable use in PFAS monitoring but more work is needed to identify the applicability of passive samplers for ionic PFAS.

  7. Hydrocarbon removal from bilgewater by a combination of air-stripping and photocatalysis.

    PubMed

    Cazoir, D; Fine, L; Ferronato, C; Chovelon, J-M

    2012-10-15

    In order to prevent hydrocarbon discharge at sea from the bilge of ships, the International Maritime Organization (IMO) enacted the MARPOL 73/78 convention in which effluents are now limited to those with maximum oil content of 15 ppmv. Thus, photocatalysis and air-stripping were combined for the hydrocarbon removal from a real oily bilgewater sample and an original monitoring of both aqueous and gaseous phases was performed by GC/MS to better understand the process. Our results show that the hydrocarbon oil index [HC] can be reduced to its maximum permissible value of 15 ppmv (MARPOL) in only 8.5h when photocatalysis and air-stripping are used together in a synergistic way, as against 17 h when photocatalysis is used alone. However, this air-assisted photocatalytic process emits a large quantity of volatile organic compounds (VOC) and, within the first four hours, ca. 10% of the hydrocarbon removal in the aqueous phase is actually just transferred into the gaseous one. Finally, we highlight that the n-alkanes with a number of carbon atoms higher than 15 (N(C)>15) are those which most decrease the rate of [HC] removal. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Enabling low-noise null-point scanning thermal microscopy by the optimization of scanning thermal microscope probe through a rigorous theory of quantitative measurement.

    PubMed

    Hwang, Gwangseok; Chung, Jaehun; Kwon, Ohmyoung

    2014-11-01

    The application of conventional scanning thermal microscopy (SThM) is severely limited by three major problems: (i) distortion of the measured signal due to heat transfer through the air, (ii) the unknown and variable value of the tip-sample thermal contact resistance, and (iii) perturbation of the sample temperature due to the heat flux through the tip-sample thermal contact. Recently, we proposed null-point scanning thermal microscopy (NP SThM) as a way of overcoming these problems in principle by tracking the thermal equilibrium between the end of the SThM tip and the sample surface. However, in order to obtain high spatial resolution, which is the primary motivation for SThM, NP SThM requires an extremely sensitive SThM probe that can trace the vanishingly small heat flux through the tip-sample nano-thermal contact. Herein, we derive a relation between the spatial resolution and the design parameters of a SThM probe, optimize the thermal and electrical design, and develop a batch-fabrication process. We also quantitatively demonstrate significantly improved sensitivity, lower measurement noise, and higher spatial resolution of the fabricated SThM probes. By utilizing the exceptional performance of these fabricated probes, we show that NP SThM can be used to obtain a quantitative temperature profile with nanoscale resolution independent of the changing tip-sample thermal contact resistance and without perturbation of the sample temperature or distortion due to the heat transfer through the air.

  9. A solvent replenishment solution for managing evaporation of biochemical reactions in air-matrix digital microfluidics devices.

    PubMed

    Jebrail, Mais J; Renzi, Ronald F; Sinha, Anupama; Van De Vreugde, Jim; Gondhalekar, Carmen; Ambriz, Cesar; Meagher, Robert J; Branda, Steven S

    2015-01-07

    Digital microfluidics (DMF) is a powerful technique for sample preparation and analysis for a broad range of biological and chemical applications. In many cases, it is desirable to carry out DMF on an open surface, such that the matrix surrounding the droplets is ambient air. However, the utility of the air-matrix DMF format has been severely limited by problems with droplet evaporation, especially when the droplet-based biochemical reactions require high temperatures for long periods of time. We present a simple solution for managing evaporation in air-matrix DMF: just-in-time replenishment of the reaction volume using droplets of solvent. We demonstrate that this solution enables DMF-mediated execution of several different biochemical reactions (RNA fragmentation, first-strand cDNA synthesis, and PCR) over a range of temperatures (4-95 °C) and incubation times (up to 1 h or more) without use of oil, humidifying chambers, or off-chip heating modules. Reaction volumes and temperatures were maintained roughly constant over the course of each experiment, such that the reaction kinetics and products generated by the air-matrix DMF device were comparable to those of conventional benchscale reactions. This simple yet effective solution for evaporation management is an important advance in developing air-matrix DMF for a wide variety of new, high-impact applications, particularly in the biomedical sciences.

  10. A solvent replenishment solution for managing evaporation of biochemical reactions in air-matrix digital microfluidics devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jebrail, Mais J.; Renzi, Ronald F.; Sinha, Anupama

    Digital microfluidics (DMF) is a powerful technique for sample preparation and analysis for a broad range of biological and chemical applications. In many cases, it is desirable to carry out DMF on an open surface, such that the matrix surrounding the droplets is ambient air. However, the utility of the air-matrix DMF format has been severely limited by problems with droplet evaporation, especially when the droplet-based biochemical reactions require high temperatures for long periods of time. We present a simple solution for managing evaporation in air-matrix DMF: just-in-time replenishment of the reaction volume using droplets of solvent. We demonstrate thatmore » this solution enables DMF-mediated execution of several different biochemical reactions (RNA fragmentation, first-strand cDNA synthesis, and PCR) over a range of temperatures (4–95 °C) and incubation times (up to 1 h or more) without use of oil, humidifying chambers, or off-chip heating modules. Reaction volumes and temperatures were maintained roughly constant over the course of each experiment, such that the reaction kinetics and products generated by the air-matrix DMF device were comparable to those of conventional benchscale reactions. As a result, this simple yet effective solution for evaporation management is an important advance in developing air-matrix DMF for a wide variety of new, high-impact applications, particularly in the biomedical sciences.« less

  11. A solvent replenishment solution for managing evaporation of biochemical reactions in air-matrix digital microfluidics devices

    DOE PAGES

    Jebrail, Mais J.; Renzi, Ronald F.; Sinha, Anupama; ...

    2014-10-01

    Digital microfluidics (DMF) is a powerful technique for sample preparation and analysis for a broad range of biological and chemical applications. In many cases, it is desirable to carry out DMF on an open surface, such that the matrix surrounding the droplets is ambient air. However, the utility of the air-matrix DMF format has been severely limited by problems with droplet evaporation, especially when the droplet-based biochemical reactions require high temperatures for long periods of time. We present a simple solution for managing evaporation in air-matrix DMF: just-in-time replenishment of the reaction volume using droplets of solvent. We demonstrate thatmore » this solution enables DMF-mediated execution of several different biochemical reactions (RNA fragmentation, first-strand cDNA synthesis, and PCR) over a range of temperatures (4–95 °C) and incubation times (up to 1 h or more) without use of oil, humidifying chambers, or off-chip heating modules. Reaction volumes and temperatures were maintained roughly constant over the course of each experiment, such that the reaction kinetics and products generated by the air-matrix DMF device were comparable to those of conventional benchscale reactions. As a result, this simple yet effective solution for evaporation management is an important advance in developing air-matrix DMF for a wide variety of new, high-impact applications, particularly in the biomedical sciences.« less

  12. Air-cathode microbial fuel cell array: a device for identifying and characterizing electrochemically active microbes.

    PubMed

    Hou, Huijie; Li, Lei; de Figueiredo, Paul; Han, Arum

    2011-01-15

    Microbial fuel cells (MFCs) have generated excitement in environmental and bioenergy communities due to their potential for coupling wastewater treatment with energy generation and powering diverse devices. The pursuit of strategies such as improving microbial cultivation practices and optimizing MFC devices has increased power generating capacities of MFCs. However, surprisingly few microbial species with electrochemical activity in MFCs have been identified because current devices do not support parallel analyses or high throughput screening. We have recently demonstrated the feasibility of using advanced microfabrication methods to fabricate an MFC microarray. Here, we extend these studies by demonstrating a microfabricated air-cathode MFC array system. The system contains 24 individual air-cathode MFCs integrated onto a single chip. The device enables the direct and parallel comparison of different microbes loaded onto the array. Environmental samples were used to validate the utility of the air-cathode MFC array system and two previously identified isolates, 7Ca (Shewanella sp.) and 3C (Arthrobacter sp.), were shown to display enhanced electrochemical activities of 2.69 mW/m(2) and 1.86 mW/m(2), respectively. Experiments using a large scale conventional air-cathode MFC validated these findings. The parallel air-cathode MFC array system demonstrated here is expected to promote and accelerate the discovery and characterization of electrochemically active microbes. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Space charge distributions in insulating polymers: A new non-contacting way of measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marty-Dessus, D., E-mail: marty@laplace.univ-tlse.fr; Ziani, A. C.; Berquez, L.

    2015-04-15

    A new technique for the determination of space charge profiles in insulating polymers is proposed. Based on the evolution of an existing thermal wave technique called Focused Laser Intensity Modulation Method ((F)LIMM), it allows non-contact measurements on thin films exhibiting an internal charge to be studied. An electrostatic model taking into account the new sample-cell geometry proposed was first developed. It has been shown, in particular, that it was theoretically possible to calculate the internal charge from experimental measurements while allowing an evaluation of the air layer appearing between the sample and the electrode when non-contact measurements are performed. Thesemore » predictions were confirmed by an experimental implementation for two thin polymer samples (25 μm-polyvinylidenefluoride and 50 μm-polytetrafluoroethylene (PTFE)) used as tests. In these cases, minimum air-layer thickness was determined with an accuracy of 3% and 20%, respectively, depending on the signal-to-noise ratio during the experimental procedure. In order to illustrate the reachable possibilities of this technique, 2D and 3D cartographies of a negative space charge implanted by electron beam within the PTFE test sample were depicted: like in conventional (F)LIMM, a multidimensional representation of a selectively implanted charge remains possible at a few microns depth, but using a non-contacting way of measurement.« less

  14. Widespread Anthropogenic Nitrogen in Northwestern Pacific Ocean Sediment.

    PubMed

    Kim, Haryun; Lee, Kitack; Lim, Dhong-Il; Nam, Seung-Il; Kim, Tae-Wook; Yang, Jin-Yu T; Ko, Young Ho; Shin, Kyung-Hoon; Lee, Eunil

    2017-06-06

    Sediment samples from the East China and Yellow seas collected adjacent to continental China were found to have lower δ 15 N values (expressed as δ 15 N = [ 15 N: 14 N sample / 15 N: 14 N air - 1] × 1000‰; the sediment 15 N: 14 N ratio relative to the air nitrogen 15 N: 14 N ratio). In contrast, the Arctic sediments from the Chukchi Sea, the sampling region furthest from China, showed higher δ 15 N values (2-3‰ higher than those representing the East China and the Yellow sea sediments). Across the sites sampled, the levels of sediment δ 15 N increased with increasing distance from China, which is broadly consistent with the decreasing influence of anthropogenic nitrogen (N ANTH ) resulting from fossil fuel combustion and fertilizer use. We concluded that, of several processes, the input of N ANTH appears to be emerging as a new driver of change in the sediment δ 15 N value in marginal seas adjacent to China. The present results indicate that the effect of N ANTH has extended beyond the ocean water column into the deep sedimentary environment, presumably via biological assimilation of N ANTH followed by deposition. Further, the findings indicate that N ANTH is taking over from the conventional paradigm of nitrate flux from nitrate-rich deep water as the primary driver of biological export production in this region of the Pacific Ocean.

  15. 40 CFR Appendix P to Part 50 - Interpretation of the Primary and Secondary National Ambient Air Quality Standards for Ozone

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Secondary National Ambient Air Quality Standards for Ozone P Appendix P to Part 50 Protection of Environment... Air Quality Standards for Ozone 1. General (a) This appendix explains the data handling conventions... air quality standards for ozone (O3) specified in § 50.15 are met at an ambient O3 air quality...

  16. 40 CFR Appendix P to Part 50 - Interpretation of the Primary and Secondary National Ambient Air Quality Standards for Ozone

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Secondary National Ambient Air Quality Standards for Ozone P Appendix P to Part 50 Protection of Environment... Air Quality Standards for Ozone 1. General (a) This appendix explains the data handling conventions... air quality standards for ozone (O3) specified in § 50.15 are met at an ambient O3 air quality...

  17. 40 CFR Appendix P to Part 50 - Interpretation of the Primary and Secondary National Ambient Air Quality Standards for Ozone

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Secondary National Ambient Air Quality Standards for Ozone P Appendix P to Part 50 Protection of Environment... Air Quality Standards for Ozone 1. General (a) This appendix explains the data handling conventions... air quality standards for ozone (O3) specified in § 50.15 are met at an ambient O3 air quality...

  18. 40 CFR Appendix P to Part 50 - Interpretation of the Primary and Secondary National Ambient Air Quality Standards for Ozone

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Secondary National Ambient Air Quality Standards for Ozone P Appendix P to Part 50 Protection of Environment... Air Quality Standards for Ozone 1. General (a) This appendix explains the data handling conventions... air quality standards for ozone (O3) specified in § 50.15 are met at an ambient O3 air quality...

  19. 40 CFR Appendix P to Part 50 - Interpretation of the Primary and Secondary National Ambient Air Quality Standards for Ozone

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Secondary National Ambient Air Quality Standards for Ozone P Appendix P to Part 50 Protection of Environment... Air Quality Standards for Ozone 1. General (a) This appendix explains the data handling conventions... air quality standards for ozone (O3) specified in § 50.15 are met at an ambient O3 air quality...

  20. The National Shipbuilding Research Program. Application of Industrial Engineering Techniques to Reduce Workers’ Compensation and Environmental Costs - Deliverable D

    DTIC Science & Technology

    1999-10-01

    Electrostatic guns provide opportunities for exterior application of topcoats such as urethanes, acrylics , alkyds and epoxies. Most shipbuilding...A hybrid of airless spray and conventional air-atomized spray, this kind of gun uses fluid pressures higher than those used in conventional air...voltage) by simply flipping a switch. All essential controls are located right at the back of the gun. Other electrostatic systems require constant

  1. Persistent Organic Pollutants (POPs) in the atmosphere of three Chilean cities using passive air samplers.

    PubMed

    Pozo, Karla; Oyola, Germán; Estellano, Victor H; Harner, Tom; Rudolph, Anny; Prybilova, Petra; Kukucka, Petr; Audi, Ondrej; Klánová, Jana; Metzdorff, America; Focardi, Silvano

    2017-05-15

    In this study passive air samplers containing polyurethane foam (PUF) disks were deployed in three cities across Chile; Santiago (STG) (n=5, sampling sites), Concepciόn (CON) (n=6) and Temuco (TEM) (n=6) from 2008 to 2009. Polychlorinated biphenyls (PCBs) (7 indicator congeners), chlorinated pesticides hexachlorocyclohexanes (HCHs), dichlorodiphenyl trichloroethanes (DDTs) and flame retardants such as polybrominated diphenyl ethers (PBDEs) were determined by gas chromatography coupled mass spectrometry (GC/MS). A sampling rate (R) typical of urban sites (4m 3 /day) was used to estimate the atmospheric concentrations of individual compounds. PCB concentrations in the air (pg/m 3 ) ranged from ~1-10 (TEM), ~1-40 (STG) and 4-30 (CON). Higher molecular weight PCBs (PCB-153, -180) were detected at industrial sites (in Concepción). The HCHs showed a prevalence of γ-HCH across all sites, indicative of inputs from the use of lindane but a limited use of technical HCHs in Chile. DDTs were detected with a prevalence of p,p'-DDE accounting for ~50% of the total DDTs. PBDE concentrations in air (pg/m 3 ) ranged from 1 to 55 (STG), 0.5 to 20 (CON) and from 0.4 to 10 (TEM), and were generally similar to those reported for many other urban areas globally. The pattern of PBDEs was different among the three cities; however, PBDE-209 was dominant at most of the sites. These results represent one of the few assessments of air concentrations of POPs across different urban areas within the same country. These data will support Chilean commitments as a signatory to the Stockholm Convention on POPs and for reporting as a member country of the Group of Latin America and Caribbean Countries (GRULAC) region. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Effect of mobile laminar airflow units on airborne bacterial contamination during neurosurgical procedures.

    PubMed

    von Vogelsang, A-C; Förander, P; Arvidsson, M; Löwenhielm, P

    2018-03-24

    Surgical site infections (SSIs) after neurosurgery are potentially life-threatening and entail great costs. SSIs may occur from airborne bacteria in the operating room, and ultraclean air is desired during infection-prone cleaning procedures. Door openings and the number of persons present in the operating room affect the air quality. Mobile laminar airflow (MLAF) units, with horizontal laminar airflow, have previously been shown to reduce airborne bacterial contamination. To assess the effect of MLAF units on airborne bacterial contamination during neurosurgical procedures. In a quasi-experimental design, bacteria-carrying particles (colony-forming units: cfu) during neurosurgical procedures were measured with active air-sampling in operating rooms with conventional turbulent ventilation, and with additional MLAF units. The MLAF units were shifted between operating rooms monthly. Colony-forming unit count and bacterial species detection were conducted after incubation. Data was collected for a period of 18 months. A total of 233 samples were collected during 45 neurosurgical procedures. The use of MLAF units significantly reduced the numbers of cfu in the surgical site area (P < 0.001) and above the instrument table (P < 0.001). Logistic regression showed that the only significant predictor affecting cfu count was the use of MLAF units (odds ratio: 41.6; 95% confidence interval: 11.3-152.8; P < 0.001). The most frequently detected bacteria were coagulase-negative staphylococci. MLAF successfully reduces cfu during neurosurgery to ultraclean air levels. MLAF units are valuable when the main operating room ventilation system is unable to produce ultraclean air in infection-prone clean neurosurgery. Copyright © 2018 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  3. MULTI-SCALE MODELING AND APPROXIMATION ASSISTED OPTIMIZATION OF BARE TUBE HEAT EXCHANGERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bacellar, Daniel; Ling, Jiazhen; Aute, Vikrant

    2014-01-01

    Air-to-refrigerant heat exchangers are very common in air-conditioning, heat pump and refrigeration applications. In these heat exchangers, there is a great benefit in terms of size, weight, refrigerant charge and heat transfer coefficient, by moving from conventional channel sizes (~ 9mm) to smaller channel sizes (< 5mm). This work investigates new designs for air-to-refrigerant heat exchangers with tube outer diameter ranging from 0.5 to 2.0mm. The goal of this research is to develop and optimize the design of these heat exchangers and compare their performance with existing state of the art designs. The air-side performance of various tube bundle configurationsmore » are analyzed using a Parallel Parameterized CFD (PPCFD) technique. PPCFD allows for fast-parametric CFD analyses of various geometries with topology change. Approximation techniques drastically reduce the number of CFD evaluations required during optimization. Maximum Entropy Design method is used for sampling and Kriging method is used for metamodeling. Metamodels are developed for the air-side heat transfer coefficients and pressure drop as a function of tube-bundle dimensions and air velocity. The metamodels are then integrated with an air-to-refrigerant heat exchanger design code. This integration allows a multi-scale analysis of air-side performance heat exchangers including air-to-refrigerant heat transfer and phase change. Overall optimization is carried out using a multi-objective genetic algorithm. The optimal designs found can exhibit 50 percent size reduction, 75 percent decrease in air side pressure drop and doubled air heat transfer coefficients compared to a high performance compact micro channel heat exchanger with same capacity and flow rates.« less

  4. AFM nanoscale indentation in air of polymeric and hybrid materials with highly different stiffness

    NASA Astrophysics Data System (ADS)

    Suriano, Raffaella; Credi, Caterina; Levi, Marinella; Turri, Stefano

    2014-08-01

    In this study, nanomechanical properties of a variety of polymeric materials was investigated by means of AFM. In particular, selecting different AFM probes, poly(methyl methacrylate) (PMMA), polydimethylsiloxane (PDMS) bulk samples, sol-gel hybrid thin films and hydrated hyaluronic acid hydrogels were indented in air to determine the elastic modulus. The force-distance curves and the indentation data were found to be greatly affected by the cantilever stiffness and by tip geometry. AFM indentation tests show that the choice of the cantilever spring constant and of tip shape is crucially influenced by elastic properties of samples. When adhesion-dominated interactions occur between the tip and the surface of samples, force-displacement curves reveal that a suitable functionalization of AFM probes allows the control of such interactions and the extraction of Young' modulus from AFM curves that would be otherwise unfeasible. By applying different mathematical models depending on AFM probes and materials under investigation, the values of Young's modulus were obtained and compared to those measured by rheological and dynamic mechanical analysis or to literature data. Our results show that a wide range of elastic moduli (10 kPa-10 GPa) can be determined by AFM in good agreement with those measured by conventional macroscopic measurements.

  5. Cost characteristics of tilt-rotor, conventional air and high speed rail short-haul intercity passenger service

    NASA Technical Reports Server (NTRS)

    Schoendorfer, David L.; Morlok, Edward K.

    1985-01-01

    The cost analysis done to support an assessment of the potential for a small tilt-rotor aircraft to operate in short-haul intercity passenger service is described in detail. Anticipated costs of tilt-rotor air service were compared to the costs of two alternatives: conventional air and high speed rail (HSR). Costs were developed for corridor service, varying key market characteristics including distance, passenger volumes, and minimum frequency standards. The resulting cost vs output information can then be used to compare modal costs for essentially identical service quality and passenger volume or for different service levels and volumes for each mode, as appropriate. Extensive sensitivity analyses are performed. The cost-output features of these technologies are compared. Tilt-rotor is very attractive compared to HSR in terms of costs over the entire range of volume. It also has costs not dramatically different from conventional air, but tilt-rotor costs are generally higher. Thus some of its other advantages, such as the VTOL capability, must offset the cost disadvantage for it to be a preferred or competitive mode in any given market. These issues are addressed in the companion report which considers strategies for tilt-rotor development in commercial air service.

  6. A novel Fast Gas Chromatography based technique for higher time resolution measurements of speciated monoterpenes in air

    NASA Astrophysics Data System (ADS)

    Jones, C. E.; Kato, S.; Nakashima, Y.; Kajii, Y.

    2013-12-01

    Biogenic emissions supply the largest fraction of non-methane volatile organic compounds (VOC) from the biosphere to the atmospheric boundary layer, and typically comprise a complex mixture of reactive terpenes. Due to this chemical complexity, achieving comprehensive measurements of biogenic VOC (BVOC) in air within a satisfactory time resolution is analytically challenging. To address this, we have developed a novel, fully automated Fast Gas Chromatography (Fast-GC) based technique to provide higher time resolution monitoring of monoterpenes (and selected other C9-C15 terpenes) during plant emission studies and in ambient air. To our knowledge, this is the first study to apply a Fast-GC based separation technique to achieve quantification of terpenes in air. Three chromatography methods have been developed for atmospheric terpene analysis under different sampling scenarios. Each method facilitates chromatographic separation of selected BVOC within a significantly reduced analysis time compared to conventional GC methods, whilst maintaining the ability to quantify individual monoterpene structural isomers. Using this approach, the C10-C15 BVOC composition of single plant emissions may be characterised within a ~ 14 min analysis time. Moreover, in situ quantification of 12 monoterpenes in unpolluted ambient air may be achieved within an ~ 11 min chromatographic separation time (increasing to ~ 19 min when simultaneous quantification of multiple oxygenated C9-C10 terpenoids is required, and/or when concentrations of anthropogenic VOC are significant). This corresponds to a two- to fivefold increase in measurement frequency compared to conventional GC methods. Here we outline the technical details and analytical capability of this chromatographic approach, and present the first in situ Fast-GC observations of 6 monoterpenes and the oxygenated BVOC linalool in ambient air. During this field deployment within a suburban forest ~ 30 km west of central Tokyo, Japan, the Fast-GC limit of detection with respect to monoterpenes was 4-5 ppt, and the agreement between Fast-GC and PTR-MS derived total monoterpene mixing ratios was consistent with previous GC/PTR-MS comparisons. The measurement uncertainties associated with the Fast-GC quantification of monoterpenes are ≤ 10%, while larger uncertainties (up to ~ 25%) are associated with the OBVOC and sesquiterpene measurements.

  7. Parallel-plate wet denuder coupled ion chromatograph for near-real-time detection of trace acidic gases in clean room air.

    PubMed

    Takeuchi, Masaki; Tsunoda, Hiromichi; Tanaka, Hideji; Shiramizu, Yoshimi

    2011-01-01

    This paper describes the performance of our automated acidic (CH(3)COOH, HCOOH, HCl, HNO(2), SO(2), and HNO(3)) gases monitor utilizing a parallel-plate wet denuder (PPWD). The PPWD quantitatively collects gaseous contaminants at a high sample flow rate (∼8 dm(3) min(-1)) compared to the conventional methods used in a clean room. Rapid response to any variability in the sample concentration enables near-real-time monitoring. In the developed monitor, the analyte collected with the PPWD is pumped into one of two preconcentration columns for 15 min, and determined by means of ion chromatography. While one preconcentration column is used for chromatographic separation, the other is used for loading the sample solution. The system allows continuous monitoring of the common acidic gases in an advanced semiconductor manufacturing clean room. 2011 © The Japan Society for Analytical Chemistry

  8. Evaluation of volatile organic emissions from hazardous waste incinerators.

    PubMed Central

    Sedman, R M; Esparza, J R

    1991-01-01

    Conventional methods of risk assessment typically employed to evaluate the impact of hazardous waste incinerators on public health must rely on somewhat speculative emissions estimates or on complicated and expensive sampling and analytical methods. The limited amount of toxicological information concerning many of the compounds detected in stack emissions also complicates the evaluation of the public health impacts of these facilities. An alternative approach aimed at evaluating the public health impacts associated with volatile organic stack emissions is presented that relies on a screening criterion to evaluate total stack hydrocarbon emissions. If the concentration of hydrocarbons in ambient air is below the screening criterion, volatile emissions from the incinerator are judged not to pose a significant threat to public health. Both the screening criterion and a conventional method of risk assessment were employed to evaluate the emissions from 20 incinerators. Use of the screening criterion always yielded a substantially greater estimate of risk than that derived by the conventional method. Since the use of the screening criterion always yielded estimates of risk that were greater than that determined by conventional methods and measuring total hydrocarbon emissions is a relatively simple analytical procedure, the use of the screening criterion would appear to facilitate the evaluation of operating hazardous waste incinerators. PMID:1954928

  9. Simple method to make a supersaturated oxygen fluid.

    PubMed

    Tange, Yoshihiro; Yoshitake, Shigenori; Takesawa, Shingo

    2018-01-22

    Intravenous oxygenation has demonstrated significant increase in partial pressure of oxygen (PO 2 ) in animal models. A highly dissolved oxygen solution might be able to provide a sufficient level of oxygen delivery to the tissues and organs in patients with hypoxia. However, conventional fluid oxygenation methods have required the use of original devices. If simpler oxygenation of a solution is possible, it will be a useful strategy for application in clinical practice. We simply developed its administration by injection of either air or oxygen gas into conventional saline. We determined the PO 2 values in the solutions in comparison with conventional saline in vitro. To examine the effects of the administration of the new solutions on the blood gas profile, we diluted bovine blood with either conventional or the new solutions and analyzed PO 2 , oxygen saturation (SO 2 ) and total oxygen content. PO 2 levels in the blood and new solution mixture significantly increased with each additional injected gas volume. Significant increases in the PO 2 and SO 2 of the bovine blood were found in those blood samples with the new solution, as compared with those with the control solution. These results suggest that this solution promotes oxygen delivery to the hypoxic tissue and recovery from hypoxia. This method is simpler and easier than previous methods.

  10. Experimental study of wood downdraft gasification for an improved producer gas quality through an innovative two-stage air and premixed air/gas supply approach.

    PubMed

    Jaojaruek, Kitipong; Jarungthammachote, Sompop; Gratuito, Maria Kathrina B; Wongsuwan, Hataitep; Homhual, Suwan

    2011-04-01

    This study conducted experiments on three different downdraft gasification approaches: single stage, conventional two-stage, and an innovative two-stage air and premixed air/gas supply approach. The innovative two-stage approach has two nozzle locations, one for air supply at combustion zone and the other located at the pyrolysis zone for supplying the premixed gas (air and producer gas). The producer gas is partially bypassed to mix with air and supplied to burn at the pyrolysis zone. The result shows that producer gas quality generated by the innovative two-stage approach improved as compared to conventional two-stage. The higher heating value (HHV) increased from 5.4 to 6.5 MJ/Nm(3). Tar content in producer gas reduced to less than 45 mg/Nm(3). With this approach, gas can be fed directly to an internal combustion engine. Furthermore, the gasification thermal efficiency also improved by approximately 14%. The approach gave double benefits on gas qualities and energy savings. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Spray drift and off-target loss reduction with a precision air-assisted sprayer

    USDA-ARS?s Scientific Manuscript database

    Spray drift and off-target losses are inherent problems of conventional air-assisted sprayers. Their low efficiencies cause environmental pollutions resulting in public anxieties. A new drift reduction technology incorporating laser scanning capabilities with a variable-rate air-assisted sprayer w...

  12. Air-atomizing splash-cone fuel nozzle reduces pollutant emissions from turbojet engines

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.; Norgren, C. T.

    1973-01-01

    Advantages of fuel nozzle over conventional pressure-atomizing fuel nozzles: simplicity of construction, ability to distribute fuel-air mixture uniformly across full height of combustor without using auxiliary air supply, reliability when using contaminated fuels, and durability of nozzle at high operating temperatures.

  13. Broadband Phase Spectroscopy over Turbulent Air Paths

    NASA Astrophysics Data System (ADS)

    Giorgetta, Fabrizio R.; Rieker, Gregory B.; Baumann, Esther; Swann, William C.; Sinclair, Laura C.; Kofler, Jon; Coddington, Ian; Newbury, Nathan R.

    2015-09-01

    Broadband atmospheric phase spectra are acquired with a phase-sensitive dual-frequency-comb spectrometer by implementing adaptive compensation for the strong decoherence from atmospheric turbulence. The compensation is possible due to the pistonlike behavior of turbulence across a single spatial-mode path combined with the intrinsic frequency stability and high sampling speed associated with dual-comb spectroscopy. The atmospheric phase spectrum is measured across 2 km of air at each of the 70 000 comb teeth spanning 233 cm-1 across hundreds of near-infrared rovibrational resonances of CO2 , CH4 , and H2O with submilliradian uncertainty, corresponding to a 10-13 refractive index sensitivity. Trace gas concentrations extracted directly from the phase spectrum reach 0.7 ppm uncertainty, demonstrated here for CO2 . While conventional broadband spectroscopy only measures intensity absorption, this approach enables measurement of the full complex susceptibility even in practical open path sensing.

  14. Effect of laser and air abrasion pretreatment on the microleakage of a fissure sealant applied with conventional and self etch adhesives.

    PubMed

    Tirali, R E; Celik, C; Arhun, N; Berk, G; Cehreli, S B

    2013-01-01

    The purpose of this study was to investigate the effects of different pretreatment protocols along with different bonding agents on the microleakage of a fissure sealant material. A total of 144 freshly extracted noncarious human third molars were used The teeth were randomly assigned into three groups with respect to the pretreatment protocol employed: A. Air Abrasion B. Er,Cr:YSGG laser C. No pretreatment (Control). In each group specimens were further subjected to one of the following procedures before application of the sealant: 1. %36 Phosphoric acid-etch (AE) (DeTrey Conditioner 36/Denstply, UK) 2.AE+Prime&Bond NT (Dentsply, UK) 3. Clearfil S3 Bond (Kuraray, Japan) 4. Clearfil SE Bond (Kuraray, Japan). All teeth were sealed with the same fissure sealant material (Conseal F/SDI, Australia). Sealed teeth were further subjected to thermocycling, dye penetration test, sectioning and quantitative image analysis. Statistical evaluation of the microleakage data was performed with two way independent ANOVA and multiple comparisons test at p = 0.05. For qualitative evaluation 2 samples from each group were examined under Scanning Electron Microscopy. Microleakage was affected by both the type of pretreatment and the subsequent bonding protocols employed (p < 0.05). Overall, the highest (Mean = 0.36 mm) and lowest (Mean = 0.06 mm) microleakage values were observed in samples with unpretreated enamel sealed by S3+Conseal F and samples with laser pretreated enamel sealed by Acid Etch+Prime&-Bond+Conseal F protocols, respectively (p < 0.05). In the acid-etch group samples pretreated with laser yielded in slightly lower microleakage scores when compared with unpretreated samples and samples pretreated with air abrasion but the statistical significance was not important (p = 0,179). Similarly, when bonding agent is applied following acid-etching procedure, microleakage scores were not affected from pretreatment protocol (p = 0,615) (intact enamel/laser or air-abrasion). For both all-in one and two step self etch adhesive systems, unpretreated samples demonstrated the highest microleakage scores. For the groups in which bonding agent was utilized, pretreatments did not effected microleakage. Both the tested pretreatment protocols and adhesive procedures had different effects on the sealing properties of Conseal F in permanent tooth enamel.

  15. Microfluidic Air Sampler for Highly Efficient Bacterial Aerosol Collection and Identification.

    PubMed

    Bian, Xiaojun; Lan, Ying; Wang, Bing; Zhang, Yu Shrike; Liu, Baohong; Yang, Pengyuan; Zhang, Weijia; Qiao, Liang

    2016-12-06

    The early warning capability of the presence of biological aerosol threats is an urgent demand in ensuing civilian and military safety. Efficient and rapid air sample collection in relevant indoor or outdoor environment is a key step for subsequent analysis of airborne microorganisms. Herein, we report a portable battery-powered sampler that is capable of highly efficient bioaerosol collection. The essential module of the sampler is a polydimethylsiloxane (PDMS) microfluidic chip, which consisted of a 3-loop double-spiral microchannel featuring embedded herringbone and sawtooth wave-shaped structures. Vibrio parahemolyticus (V. parahemolyticus) as a model microorganism, was initially employed to validate the bioaerosol collection performance of the device. Results showed that the sampling efficacy reached as high as >99.9%. The microfluidic sampler showed greatly improved capturing efficiency compared with traditional plate sedimentation methods. The high performance of our device was attributed to the horizontal inertial centrifugal force and the vertical turbulence applied to airflow during sampling. The centrifugation field and turbulence were generated by the specially designed herringbone structures when air circulated in the double-spiral microchannel. The sawtooth wave-shaped microstructure created larger specific surface area for accommodating more aerosols. Furthermore, a mixture of bacterial aerosols formed by V. parahemolyticus, Listeria monocytogenes, and Escherichia coli was extracted by the microfluidic sampler. Subsequent integration with mass spectrometry conveniently identified the multiple bacterial species captured by the sampler. Our developed stand-alone and cable-free sampler shows clear advantages comparing with conventional strategies, including portability, easy-to-use, and low cost, indicating great potential in future field applications.

  16. Organic compounds in indoor air—their relevance for perceived indoor air quality?

    NASA Astrophysics Data System (ADS)

    Wolkoff, Peder; Nielsen, Gunnar D.

    It is generally believed that indoor air pollution, one way or another may cause indoor air complaints. However, any association between volatile organic compounds (VOCs) concentrations and increase of indoor climate complaints, like the sick-building syndrome symptoms, is not straightforward. The reported symptom rates of, in particular, eye and upper airway irritation cannot generally be explained by our present knowledge of common chemically non-reactive VOCs measured indoors. Recently, experimental evidence has shown those chemical reactions between ozone (either with or without nitrogen dioxide) and unsaturated organic compounds (e.g. from citrus and pine oils) produce strong eye and airway irritating species. These have not yet been well characterised by conventional sampling and analytical techniques. The chemical reactions can occur indoors, and there is indirect evidence that they are associated with eye and airway irritation. However, many other volatile and non-volatile organic compounds have not generally been measured which could equally well have potent biological effects and cause an increase of complaint rates, and posses a health/comfort risk. As a consequence, it is recommended to use a broader analytical window of organic compounds than the classic VOC window as defined by the World Health Organisation. It may include hitherto not yet sampled or identified intermediary species (e.g., radicals, hydroperoxides and ionic compounds like detergents) as well as species deposited onto particles. Additionally, sampling strategies including emission testing of building products should carefully be linked to the measurement of organic compounds that are expected, based on the best available toxicological knowledge, to have biological effects at indoor concentrations.

  17. Effect of mechanical alloying synthesis process on the dielectric properties of (Bi{sub 0.5}Na{sub 0.5}){sub 0.94}Ba{sub 0.06}TiO{sub 3} piezoceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghazanfari, Mohammad Reza, E-mail: Ghazanfari.mr@gmail.com; Amini, Rasool; Shams, Seyyedeh Fatemeh

    Highlights: • MA samples show higher dielectric permittivity and Curie temperature. • In MA samples, dielectric loss is almost 27% less than conventional ones. • In MA samples, sintering time and temperature are lower than conventional ones. • In MA samples, particle morphology is more homogeneous conventional ones. • In MA samples, crystallite size is smaller conventional ones. - Abstract: In present work, in order to study the effects of synthesis techniques on dielectric properties, the BNBT lead-free piezoceramics with (Bi{sub 0.5}Na{sub 0.5}){sub 0.94}Ba{sub 0.06}TiO{sub 3} stoichiometry (called as BNBT6) were synthesized by mechanical alloying (MA) and conventional mixed oxidesmore » methods. The structural, microstructural, and dielectric properties were carried out by X-ray diffractometer (XRD), scanning electron microscope (SEM), and impedance analyzer LCR meter, respectively. Based on results, the density of MA samples is considerably higher than conventional samples owning to smaller particles size and more uniformity of particle shape of MA samples. Moreover, the dielectric properties of MA samples are comparatively improved in which the dielectric loss of these samples is almost 27% less than conventional ones. Furthermore, MA samples exhibit obviously higher dielectric permittivity and Curie temperature compared to the conventional samples.« less

  18. Improved aqueous scrubber for collection of soluble atmospheric trace gases

    NASA Technical Reports Server (NTRS)

    Cofer, W. R., III; Talbot, R. W.; Collins, V. G.

    1985-01-01

    A new concentration technique for the extraction and enrichment of water-soluble atmospheric trace gases has been developed. The gas scrubbing technique efficiently extracts soluble gases from a large volume flow rate of air sample into a small volume of refluxed trapping solution. The gas scrubber utilizes a small nebulizing nozzle that mixes the incoming air with an aqueous extracting solution to form an air/droplet mist. The mist provides excellent interfacial surface areas for mass transfer. The resulting mist sprays upward through the reaction chamber until it impinges upon a hydrophobic membrane that virtually blocks the passage of droplets but offers little resistance to the existing gas flow. Droplets containing the scrubbed gases coalesce on the membrane and drip back into the reservoir for further refluxing. After a suitable concentration period, the extracting solution containing the analyte can be withdrawn for analysis. The nebulization-reflex concentration technique is more efficient (maximum flow of gas through the minimum volume of extractant) than conventional bubbler/impinger gas extraction techniques and is offered as an alternative method.

  19. Comparison of air space measurement imaged by CT, small-animal CT, and hyperpolarized Xe MRI

    NASA Astrophysics Data System (ADS)

    Madani, Aniseh; White, Steven; Santyr, Giles; Cunningham, Ian

    2005-04-01

    Lung disease is the third leading cause of death in the western world. Lung air volume measurements are thought to be early indicators of lung disease and markers in pharmaceutical research. The purpose of this work is to develop a lung phantom for assessing and comparing the quantitative accuracy of hyperpolarized xenon 129 magnetic resonance imaging (HP 129Xe MRI), conventional computed tomography (HRCT), and highresolution small-animal CT (μCT) in measuring lung gas volumes. We developed a lung phantom consisting of solid cellulose acetate spheres (1, 2, 3, 4 and 5 mm diameter) uniformly packed in circulated air or HP 129Xe gas. Air volume is estimated based on simple thresholding algorithm. Truth is calculated from the sphere diameters and validated using μCT. While this phantom is not anthropomorphic, it enables us to directly measure air space volume and compare these imaging methods as a function of sphere diameter for the first time. HP 129Xe MRI requires partial volume analysis to distinguish regions with and without 129Xe gas and results are within %5 of truth but settling of the heavy 129Xe gas complicates this analysis. Conventional CT demonstrated partial-volume artifacts for the 1mm spheres. μCT gives the most accurate air-volume results. Conventional CT and HP 129Xe MRI give similar results although non-uniform densities of 129Xe require more sophisticated algorithms than simple thresholding. The threshold required to give the true air volume in both HRCT and μCT, varies with sphere diameters calling into question the validity of thresholding method.

  20. 40 CFR 60.2810 - What is an air curtain incinerator?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Commercial and Industrial Solid Waste Incineration Units that Commenced Construction On or Before November 30... conventional combustion devices with enclosed fireboxes and controlled air technology such as mass burn... “Air Curtain Incinerators” (§§ 60.2810 through 60.2870). (1) 100 percent wood waste. (2) 100 percent...

  1. Analytical Studies of the Lift and Roll Stability of a Ram Air Cushion Vehicle

    DOT National Transportation Integrated Search

    1972-12-01

    A ram air cushion vehicle (a type of ram wing) is described schematically and compared with a conventional air cushion vehicle design. The nonlinear equations for the flow in the cushion region are derived. A review is made of the most recent literat...

  2. Conventional freezing plus high pressure-low temperature treatment: Physical properties, microbial quality and storage stability of beef meat.

    PubMed

    Fernández, Pedro P; Sanz, Pedro D; Molina-García, Antonio D; Otero, Laura; Guignon, Bérengère; Vaudagna, Sergio R

    2007-12-01

    Meat high-hydrostatic pressure treatment causes severe decolouration, preventing its commercialisation due to consumer rejection. Novel procedures involving product freezing plus low-temperature pressure processing are here investigated. Room temperature (20°C) pressurisation (650MPa/10min) and air blast freezing (-30°C) are compared to air blast freezing plus high pressure at subzero temperature (-35°C) in terms of drip loss, expressible moisture, shear force, colour, microbial quality and storage stability of fresh and salt-added beef samples (Longissimus dorsi muscle). The latter treatment induced solid water transitions among ice phases. Fresh beef high pressure treatment (650MPa/20°C/10min) increased significantly expressible moisture while it decreased in pressurised (650MPa/-35°C/10min) frozen beef. Salt addition reduced high pressure-induced water loss. Treatments studied did not change fresh or salt-added samples shear force. Frozen beef pressurised at low temperature showed L, a and b values after thawing close to fresh samples. However, these samples in frozen state, presented chromatic parameters similar to unfrozen beef pressurised at room temperature. Apparently, freezing protects meat against pressure colour deterioration, fresh colour being recovered after thawing. High pressure processing (20°C or -35°C) was very effective reducing aerobic total (2-log(10) cycles) and lactic acid bacteria counts (2.4-log(10) cycles), in fresh and salt-added samples. Frozen+pressurised beef stored at -18°C during 45 days recovered its original colour after thawing, similarly to just-treated samples while their counts remain below detection limits during storage.

  3. Optimization of the solvent-based dissolution method to sample volatile organic compound vapors for compound-specific isotope analysis.

    PubMed

    Bouchard, Daniel; Wanner, Philipp; Luo, Hong; McLoughlin, Patrick W; Henderson, James K; Pirkle, Robert J; Hunkeler, Daniel

    2017-10-20

    The methodology of the solvent-based dissolution method used to sample gas phase volatile organic compounds (VOC) for compound-specific isotope analysis (CSIA) was optimized to lower the method detection limits for TCE and benzene. The sampling methodology previously evaluated by [1] consists in pulling the air through a solvent to dissolve and accumulate the gaseous VOC. After the sampling process, the solvent can then be treated similarly as groundwater samples to perform routine CSIA by diluting an aliquot of the solvent into water to reach the required concentration of the targeted contaminant. Among solvents tested, tetraethylene glycol dimethyl ether (TGDE) showed the best aptitude for the method. TGDE has a great affinity with TCE and benzene, hence efficiently dissolving the compounds during their transition through the solvent. The method detection limit for TCE (5±1μg/m 3 ) and benzene (1.7±0.5μg/m 3 ) is lower when using TGDE compared to methanol, which was previously used (385μg/m 3 for TCE and 130μg/m 3 for benzene) [2]. The method detection limit refers to the minimal gas phase concentration in ambient air required to load sufficient VOC mass into TGDE to perform δ 13 C analysis. Due to a different analytical procedure, the method detection limit associated with δ 37 Cl analysis was found to be 156±6μg/m 3 for TCE. Furthermore, the experimental results validated the relationship between the gas phase TCE and the progressive accumulation of dissolved TCE in the solvent during the sampling process. Accordingly, based on the air-solvent partitioning coefficient, the sampling methodology (e.g. sampling rate, sampling duration, amount of solvent) and the final TCE concentration in the solvent, the concentration of TCE in the gas phase prevailing during the sampling event can be determined. Moreover, the possibility to analyse for TCE concentration in the solvent after sampling (or other targeted VOCs) allows the field deployment of the sampling method without the need to determine the initial gas phase TCE concentration. The simplified field deployment approach of the solvent-based dissolution method combined with the conventional analytical procedure used for groundwater samples substantially facilitates the application of CSIA to gas phase studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Pilot Implementation of a Field Study Design to Evaluate the Impact of Source Control Measures on Indoor Air Quality in High Performance Homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widder, Sarah H.; Chamness, Michele A.; Petersen, Joseph M.

    2014-10-01

    To improve the indoor air quality in new, high performance homes, a variety of standards and rating programs have been introduced to identify building materials that are designed to have lower emission rates of key contaminants of concern and a number of building materials are being introduced that are certified to these standards. For example, the U.S. Department of Energy (DOE) Zero Energy Ready Home program requires certification under the U.S. Environmental Protection Agency (EPA) Indoor airPLUS (IaP) label, which requires the use of PS1 or PS2 certified plywood and OSB; low-formaldehyde emitting wood products; low- or no-VOC paints andmore » coatings as certified by Green Seal Standard GS-11, GreenGuard, SCS Indoor Advantage Gold Standard, MPI Green Performance Standard, or another third party rating program; and Green Label-certified carpet and carpet cushions. However, little is known regarding the efficacy of the IAP requirements in measurably reducing contaminant exposures in homes. The goal of this project is to develop a robust experimental approach and collect preliminary data to support the evaluation of indoor air quality (IAQ) measures linked to IAP-approved low-emitting materials and finishes in new residential homes. To this end, the research team of Pacific Northwest National Laboratory (PNNL) and Lawrence Berkeley National Laboratory (LBNL) developed a detailed experimental plan to measure IAQ constituents and other parameters, over time, in new homes constructed with materials compliant with IAP’s low-emitting material and ventilation requirements (i.e., section 6.1, 6.2, 6.3, and 7.2) and similar homes constructed to the state building code with conventional materials. The IAQ in IAP and conventional homes of similar age, location, and construction style is quantified as the differences in the speciated VOC and aldehyde concentrations, normalized to dilution rates. The experimental plan consists of methods to evaluate the difference between low-emitting and “conventional” materials as installed in newly constructed residential homes using both (1) highly controlled, short-term active samples to precisely characterize the building-related chemical emissions and building contents and (2) a week-long passive sample designed to capture the impact of occupant behavior and related activities on measured IAQ contaminant levels indoors. The combination of detailed short-term measurements with the home under controlled/consistent conditions during pre- and post-occupancy and the week-long passive sampling data provide the opportunity to begin to separate the different emission sources and help isolate and quantify variability in the monitored homes. Between April and August 2014, the research team performed pre-occupancy and post-occupancy sampling in one conventional home and two homes built with low-emitting materials that were generally consistent with EPA’s Indoor airPLUS guidelines. However, for a number of reasons, the full experimental plan was not implemented. The project was intended to continue for up to three years to asses long-term changes in IAQ but the project was limited to one calendar year. As a result, several of the primary research questions related to seasonal impacts and the long-term trends in IAQ could not be addressed. In addition, there were several unexpected issues related to recruiting, availability of home types, and difficulty coordinating with builders/realtors/homeowners. Several field monitoring issues also came up that provide “lessons learned” that led to improvements to the original monitoring plan. The project produced a good experimental plan that is expected to be be useful for future efforts collecting data to support answering these same or similar research questions.« less

  5. Field testing of new-technology ambient air ozone monitors.

    PubMed

    Ollison, Will M; Crow, Walt; Spicer, Chester W

    2013-07-01

    Multibillion-dollar strategies control ambient air ozone (O3) levels in the United States, so it is essential that the measurements made to assess compliance with regulations be accurate. The predominant method employed to monitor O3 is ultraviolet (UV) photometry. Instruments employ a selective manganese dioxide or heated silver wool "scrubber" to remove O3 to provide a zero reference signal. Unfortunately, such scrubbers remove atmospheric constituents that absorb 254-nm light, causing measurement interference. Water vapor also interferes with the measurement under some circumstances. We report results of a 3-month field test of two new instruments designed to minimize interferences (2B Technologies model 211; Teledyne-API model 265E) that were operated in parallel with a conventional Thermo Scientific model 49C O3 monitor. The field test was hosted by the Houston Regional Monitoring Corporation (HRM). The model 211 photometer scrubs O3 with excess nitric oxide (NO) generated in situ by photolysis of added nitrous oxide (N2O) to provide a reference signal, eliminating the need for a conventional O3 scrubber. The model 265E analyzer directly measures O3-NO chemiluminescence from added excess NO to quantify O3 in the sample stream. Extensive quality control (QC) and collocated monitoring data are assessed to evaluate potential improvements to the accuracy of O3 compliance monitoring. Two new-technology ozone monitors were compared with a conventional monitor under field conditions. Over 3 months the conventional monitor reported more exceedances of the current standard than the new instruments, which could potentially result in an area being misjudged as "nonattainment." Instrument drift can affect O3 data accuracy, and the same degree of drift has a proportionally greater compliance effect as standard stringency is increased. Enhanced data quality assurance and data adjustment may be necessary to achieve the improved accuracy required to judge compliance with tighter standards.

  6. An evaluation of retrofit engineering control interventions to reduce perchloroethylene exposures in commercial dry-cleaning shops.

    PubMed

    Earnest, G Scott; Ewers, Lynda M; Ruder, Avima M; Petersen, Martin R; Kovein, Ronald J

    2002-02-01

    Real-time monitoring was used to evaluate the ability of engineering control devices retrofitted on two existing dry-cleaning machines to reduce worker exposures to perchloroethylene. In one dry-cleaning shop, a refrigerated condenser was installed on a machine that had a water-cooled condenser to reduce the air temperature, improve vapor recovery, and lower exposures. In a second shop, a carbon adsorber was retrofitted on a machine to adsorb residual perchloroethylene not collected by the existing refrigerated condenser to improve vapor recovery and reduce exposures. Both controls were successful at reducing the perchloroethylene exposures of the dry-cleaning machine operator. Real-time monitoring was performed to evaluate how the engineering controls affected exposures during loading and unloading the dry-cleaning machine, a task generally considered to account for the highest exposures. The real-time monitoring showed that dramatic reductions occurred in exposures during loading and unloading of the dry-cleaning machine due to the engineering controls. Peak operator exposures during loading and unloading were reduced by 60 percent in the shop that had a refrigerated condenser installed on the dry-cleaning machine and 92 percent in the shop that had a carbon adsorber installed. Although loading and unloading exposures were dramatically reduced, drops in full-shift time-weighted average (TWA) exposures were less dramatic. TWA exposures to perchloroethylene, as measured by conventional air sampling, showed smaller reductions in operator exposures of 28 percent or less. Differences between exposure results from real-time and conventional air sampling very likely resulted from other uncontrolled sources of exposure, differences in shop general ventilation before and after the control was installed, relatively small sample sizes, and experimental variability inherent in field research. Although there were some difficulties and complications with installation and maintenance of the engineering controls, this study showed that retrofitting engineering controls may be a feasible option for some dry-cleaning shop owners to reduce worker exposures to perchloroethylene. By installing retrofit controls, a dry-cleaning facility can reduce exposures, in some cases dramatically, and bring operators into compliance with the Occupational Safety and Health Administration (OSHA) peak exposure limit of 300 ppm. Retrofit engineering controls are also likely to enable many dry-cleaning workers to lower their overall personal TWA exposures to perchloroethylene.

  7. Levels and Seasonal Variability of Persistent Organic Pollutants in Rural and Urban Atmosphere of Southern Ghana

    NASA Astrophysics Data System (ADS)

    Adu-Kumi, Sam; Klanova, Jana; Holoubek, Ivan

    2010-05-01

    Concentrations of persistent organic pollutants (POPs) in air are reported from the first full year of the RECETOX-Africa Air Monitoring (MONET_AFRICA) Project. Passive air samplers composed of polyurethane foam disks (PUF-disk samplers) were deployed for sampling background air concentrations from January-December 2008 at two urban sites in Ghana, namely, Ghana Atomic Energy Commission (Biotechnology and Nuclear Agricultural Research Institute, Kwabenya); and Ghana Meteorological Agency (East Legon). Another set of PUF-disk samplers were deployed at a rural/agricultural location (Lake Bosumtwi) from July-November 2008. For the purposes of this study, 28 days was the sampling period for polyaromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs); and 3 months for OCPs (Drins) and dioxins/furans (PCDD/Fs) respectively. MONET_AFRICA constituted part of the activities under the Global Monitoring Plan (GMP) for the effectiveness evaluation (Article 16) of the Stockholm Convention on POPs and the air sampling survey was conducted at 26 sites across the African continent with the aim to establish baseline information on contamination of ambient air with persistent organic pollutants (POPs) as a reference for future monitoring programmes in the region. For the pesticides, endosulfans constituted the highest contaminants measured followed by HCHs and DDTs in that order. The large temporal variability in the pesticide concentrations suggested seasonal application of endosulfans and γ-HCH. Levels of endosulfans were initially found to be below detection limit during the first sampling period (January - March 2008) but recorded the highest concentration than any other pesticide from all 16 sites in the African region during the second sampling period (April - June 2008). Concentrations of DDTs and HCHs were generally low throughout the sampling periods. p,p'-DDE/p,p'-DDT ratio in ambient air showed that the metabolite DDE was the most abundant and the concentrations of sums of DDTs were in tens of pg m-3. This suggests that the main source of DDTs was possibly due to past agricultural and public health usage. The soil concentrations of DDTs at the various sites were however negligible (approx. 1 ngg-1). The highest levels of HCHs were recorded in November and December 2008. HCB and PeCB concentrations in air were low and uniform and soil levels of HCB and PeCB were negligible. Only traces of aldrin, dieldrin, heptachlor and mirex were detected from both sites. PCBs were found at levels typical for the urban sites and the levels at the Kwabenya site were slightly lower than those measured at the East Legon site. Levels of PCBs at the rural/agricultural site (Lake Bosumtwi) were relatively lower than those measured at the urban sites. The levels of PAHs in ambient air were quite high at all sites with phenanthrene being the most abundant. Benzo(a)pyrene (a known carcinogen) levels in ambient air were however very low. The highest levels of PAHs were detected in January 2008, February 2008 and July/August 2008 at Kwabenya, East Legon, and Lake Bosumtwi, respectively. PCDD/F levels were also quite high, maximal I-TEQ was the third highest in the African region (after Egypt and Senegal). Keywords: Persistent Organic Pollutants; Background Concentrations; Ghana; PUF-disk sampler

  8. Development and Deployment of an Aerospace Recommended Practice (ARP) Compliant Measurement System for nvPM Certification Measurements of Aircraft Engines - Current Status.

    NASA Astrophysics Data System (ADS)

    Whitefield, P. D.; Hagen, D. E.; Lobo, P.; Miake-Lye, R. C.

    2015-12-01

    The Society of Automotive Engineers (SAE) Aircraft Exhaust Emissions Measurement Committee (E-31) has published an Aerospace Information Report (AIR) 6241 detailing the sampling system for the measurement of non-volatile particulate matter (nvPM) from aircraft engines (SAE 2013). The system is designed to operate in parallel with existing International Civil Aviation Organization (ICAO) Annex 16 compliant combustion gas sampling systems used for emissions certification from aircraft engines captured by conventional (Annex 16) gas sampling rakes (ICAO, 2008). The SAE E-31 committee is also working to ballot an Aerospace Recommended Practice (ARP) that will provide the methodology and system specification to measure nvPM from aircraft engines. The ARP is currently in preparation and is expected to be ready for ballot in 2015. A prototype AIR-compliant nvPM measurement system - The North American Reference System (NARS) has been built and evaluated at the MSTCOE under the joint sponsorship of the FAA, EPA and Transport Canada. It has been used to validate the performance characteristics of OEM AIR-compliant systems and is being used in engine certification type testing at OEM facilities to obtain data from a set of representative engines in the fleet. The data collected during these tests will be used by ICAO/CAEP/WG3/PMTG to develop a metric on which on the regulation for nvPM emissions will be based. This paper will review the salient features of the NARS including: (1) emissions sample transport from probe tip to the key diagnostic tools, (2) the mass and number-based diagnostic tools for nvPM mass and number concentration measurement and (3) methods employed to assess the extent of nvPM loss throughout the sampling system. This paper will conclude with a discussion of the recent results from inter-comparison studies conducted with other US - based systems that gives credence to the ARP's readiness for ballot.

  9. Interdiction and Conventional Strategy: Prevailing Perceptions

    DTIC Science & Technology

    1990-06-01

    Andrew Vallance of the RAF Command and Staff College; Air Vice-Marshal R. A. Mason (Ret.); Air Chief Marshal Sir Michael Armitage, Royal College of...The RAND Corporation, N-1743-PAE, September 1981. Dinges, Edward A., and Richard H. Sinnreich, "Battlefield Interdiction: Old Tenn. New Problem...34 Military Affairs, October 1988. McDow, Richard H., Air Interdiction Targeting Priorities, Air University, Maxwell AFB, 1985. Molnar, Alexander

  10. A novel high energy density rechargeable lithium/air battery.

    PubMed

    Zhang, Tao; Imanishi, Nobuyuki; Shimonishi, Yuta; Hirano, Atsushi; Takeda, Yasuo; Yamamoto, Osamu; Sammes, Nigel

    2010-03-14

    A novel rechargeable lithium/air battery was fabricated, which consisted of a water-stable multilayer Li-metal anode, acetic acid-water electrolyte, and a fuel-cell analogous air-diffusion cathode and possessed a high energy density of 779 W h kg(-1), twice that of the conventional graphite/LiCoO(2) cell.

  11. Assessment of atmospheric distribution of polycyclic aromatic hydrocarbons using a molecular structure model

    NASA Astrophysics Data System (ADS)

    Turk Sekulić, Maja; Okuka, Marija; Šenk, Nevena; Radonić, Jelena; Vojinović Miloradov, Mirjana; Vidicki, Branko

    2013-07-01

    In this paper, a comparison of experimentally obtained and SPARC software v4.6 modelled values of gas/particle partitioning coefficients was conducted to determine whether the evaluation of atmospheric distribution of PAH molecules can be performed using a molecular structure model. Partitioning coefficients were calculated for sixteen EPA PAHs, in thirty-nine samples of ambient air collected at nineteen urban, industrial, highly contaminated and background sites in the Republic of Serbia and Bosnia and Herzegovina. For obtaining samples of ambient air, the conventional high volume (Hi-Vol) methodology was applied, whereby gaseous and particulate phase data collection was conducted simultaneously by glass fibre filters (GFFs) and polyurethane foam filters (PUFs). The best prediction was for PAHs with 5 or more rings (benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)perylene and benzo(ghi)perylene). For evaluating the applicability of SPARC software predictions of gas/particle partitioning coefficients for the existing conditions, the results were compared with those obtained by applying other frequently used and highly ranked theoretical models of phase distributions, namely Junge-Pankow adsorption model, KOA absorption model, Dachs-Eisenreich dual model and PP-LFER model.

  12. Cosmic radiation exposure during air travel.

    DOT National Transportation Integrated Search

    1980-03-01

    In 1967 the FAA appointed an advisory committee on radiation biology aspects of SST flight. Some of the committee members were subsequently appointed to a working group to study radiation exposure during air travel in conventional jet aircraft. : Pre...

  13. Indoor Environmental Quality in Mechanically Ventilated, Energy-Efficient Buildings vs. Conventional Buildings.

    PubMed

    Wallner, Peter; Munoz, Ute; Tappler, Peter; Wanka, Anna; Kundi, Michael; Shelton, Janie F; Hutter, Hans-Peter

    2015-11-06

    Energy-efficient buildings need mechanical ventilation. However, there are concerns that inadequate mechanical ventilation may lead to impaired indoor air quality. Using a semi-experimental field study, we investigated if exposure of occupants of two types of buildings (mechanical vs. natural ventilation) differs with regard to indoor air pollutants and climate factors. We investigated living and bedrooms in 123 buildings (62 highly energy-efficient and 61 conventional buildings) built in the years 2010 to 2012 in Austria (mainly Vienna and Lower Austria). Measurements of indoor parameters (climate, chemical pollutants and biological contaminants) were conducted twice. In total, more than 3000 measurements were performed. Almost all indoor air quality and room climate parameters showed significantly better results in mechanically ventilated homes compared to those relying on ventilation from open windows and/or doors. This study does not support the hypothesis that occupants in mechanically ventilated low energy houses are exposed to lower indoor air quality.

  14. Final Environmental Assessment for Conventional Strike Missile Demonstration

    DTIC Science & Technology

    2010-08-11

    impacts of conducting a single demonstration flight test of the Conventional Strike Missile (CSM). The CSM Demonstration flight test vehicle would...Vehicle would glide at hypersonic velocities in the upper atmosphere, prior to a land or ocean impact at the US Army Kwajalein Atoll/Reagan Test Site...SIGNIFICANT IMPACT ENVIRONMENTAL ASSESSMENT FOR CONVENTIONAL STRIKE MISSILE DEMONSTRATION AGENCY: United States Air Force (USAF) BACKGROUND

  15. Radon in earth-sheltered structures

    USGS Publications Warehouse

    Landa, E.R.

    1984-01-01

    Radon concentration in the indoor air of six residential and three non-residential earth-sheltered buildings in eastern Colorado was monitored quarterly over a nine-month period using passive, integrating detectors. Average radon concentrations during the three-month sampling periods ranged from about 1 to 9 pCi/L, although one building, a poorly ventilated storage bunker, had concentrations as high as 39 pCi/L. These radon concentrations are somewhat greater than those typically reported for conventional buildings (around 1 pCi/L); but they are of the same order of magnitude as radon concentrations reported for energy-efficient buildings which are not earth-sheltered. ?? 1984.

  16. Fluorescence-Assisted Gamma Spectrometry for Surface Contamination Analysis

    NASA Astrophysics Data System (ADS)

    Ihantola, Sakari; Sand, Johan; Perajarvi, Kari; Toivonen, Juha; Toivonen, Harri

    2013-02-01

    A fluorescence-based alpha-gamma coincidence spectrometry approach has been developed for the analysis of alpha-emitting radionuclides. The thermalization of alpha particles in air produces UV light, which in turn can be detected over long distances. The simultaneous detection of UV and gamma photons allows detailed gamma analyses of a single spot of interest even in highly active surroundings. Alpha particles can also be detected indirectly from samples inside sealed plastic bags, which minimizes the risk of cross-contamination. The position-sensitive alpha-UV-gamma coincidence technique reveals the presence of alpha emitters and identifies the nuclides ten times faster than conventional gamma spectrometry.

  17. Novel method to sample very high power CO2 lasers: II Continuing Studies

    NASA Astrophysics Data System (ADS)

    Eric, John; Seibert, Daniel B., II; Green, Lawrence I.

    2005-04-01

    For the past 28 years, the Laser Hardened Materials Evaluation Laboratory (LHMEL) at the Wright-Patterson Air Force Base, OH, has worked with CO2 lasers capable of producing continuous energy up to 150 kW. These lasers are used in a number of advanced materials processing applications that require accurate spatial energy measurements of the laser. Conventional non-electronic methods are not satisfactory for determining the spatial energy profile. This paper describes continuing efforts in qualifying the new method in which a continuous, real-time electronic spatial energy profile can be obtained for very high power, (VHP) CO2 lasers.

  18. Low-power noncontact photoacoustic microscope for bioimaging applications

    NASA Astrophysics Data System (ADS)

    Sathiyamoorthy, Krishnan; Strohm, Eric M.; Kolios, Michael C.

    2017-04-01

    An inexpensive noncontact photoacoustic (PA) imaging system using a low-power continuous wave laser and a kilohertz-range microphone has been developed. The system operates in both optical and PA imaging modes and is designed to be compatible with conventional optical microscopes. Aqueous coupling fluids are not required for the detection of the PA signals; air is used as the coupling medium. The main component of the PA system is a custom designed PA imaging sensor that consists of an air-filled sample chamber and a resonator chamber that isolates a standard kilohertz frequency microphone from the input laser. A sample to be examined is placed on the glass substrate inside the chamber. A laser focused to a small spot by a 40× objective onto the substrate enables generation of PA signals from the sample. Raster scanning the laser over the sample with micrometer-sized steps enables high-resolution PA images to be generated. A lateral resolution of 1.37 μm was achieved in this proof of concept study, which can be further improved using a higher numerical aperture objective. The application of the system was investigated on a red blood cell, with a noise-equivalent detection sensitivity of 43,887 hemoglobin molecules (72.88×10-21 mol or 72.88 zeptomol). The minimum pressure detectable limit of the system was 19.1 μPa. This inexpensive, compact noncontact PA sensor is easily integrated with existing commercial optical microscopes, enabling optical and PA imaging of the same sample. Applications include forensic measurements, blood coagulation tests, and monitoring the penetration of drugs into human membrane.

  19. Application of the UTCHEM simulator to DNAPL site characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, G.W.

    1995-12-31

    Numerical simulation using the University of Texas Chemical Flood Simulator (UTCHEM) was used to evaluate two dense, nonaqueous phase liquid (DNAPL) characterization methods. The methods involved the use of surfactants and partitioning tracers to characterize a suspected trichloroethene (TCE) DNAPL zone beneath a US Air Force Plant in Texas. The simulations were performed using a cross-sectional model of the alluvial aquifer in an area that is believed to contain residual TCE at the base of the aquifer. Characterization simulations compared standard groundwater sampling, an interwell NAPL Solubilization Test, and an interwell NAPL Partitioning Tracer Test. The UTCHEM simulations illustrated howmore » surfactants and partitioning tracers can be used to give definite evidence of the presence and volume of DNAPL in a situation where conventional groundwater sampling can only indicate the existence of the dissolved contaminant plume.« less

  20. Short-Term Audiological Results of Diode Laser in Comparison with Manual Perforation in Stapes Surgery

    PubMed Central

    Hamerschmidt, Rogerio; Saab, Stephanie Sbizera; Carvalho, Bettina; Carmo, Carolina do

    2018-01-01

    Introduction  Diode laser is a new alternative in stapes surgery for otosclerosis. The present study is the first to compare the short-term results of the surgery performed using diode laser to those obtained through the conventional fenestration technique. Objective  To use audiometry to establish a comparative analysis between the functional results obtained through surgery for otosclerosis using diode laser and the conventional technique. Method  Audiometric evaluation of 12 patients submitted to stapes surgery for otosclerosis, using diode laser or conventional fenestration by needle and drills, between 2014 and 2015. Each group was composed of 6 patients. Pre and post-operative measures were compared for three months in both groups. The speech recognition threshold, the air and bone conduction threshold, as well as the gap between them at 500 Hz, 1 KHz, 2 KHz and 4 KHz were measured. Results  Significant difference in bone conduction and SRT was observed when compared post- and preoperative results in the diode group. However diode and conventional technique groups presented significant differences in air conduction and air-bone gap, suggesting that both can provide functional improvement. Conclusion  Laser stapedotomy is a safe technique with good results. Both laser surgery and the conventional technique have improved the hearing of patients with a discreet advantage for the diode laser. Further prospective and randomized clinical trials are required to disclose all possible benefits of the stapes surgery using diode laser. PMID:29619098

  1. Short-Term Audiological Results of Diode Laser in Comparison with Manual Perforation in Stapes Surgery.

    PubMed

    Hamerschmidt, Rogerio; Saab, Stephanie Sbizera; Carvalho, Bettina; Carmo, Carolina do

    2018-04-01

    Introduction  Diode laser is a new alternative in stapes surgery for otosclerosis. The present study is the first to compare the short-term results of the surgery performed using diode laser to those obtained through the conventional fenestration technique. Objective  To use audiometry to establish a comparative analysis between the functional results obtained through surgery for otosclerosis using diode laser and the conventional technique. Method  Audiometric evaluation of 12 patients submitted to stapes surgery for otosclerosis, using diode laser or conventional fenestration by needle and drills, between 2014 and 2015. Each group was composed of 6 patients. Pre and post-operative measures were compared for three months in both groups. The speech recognition threshold, the air and bone conduction threshold, as well as the gap between them at 500 Hz, 1 KHz, 2 KHz and 4 KHz were measured. Results  Significant difference in bone conduction and SRT was observed when compared post- and preoperative results in the diode group. However diode and conventional technique groups presented significant differences in air conduction and air-bone gap, suggesting that both can provide functional improvement. Conclusion  Laser stapedotomy is a safe technique with good results. Both laser surgery and the conventional technique have improved the hearing of patients with a discreet advantage for the diode laser. Further prospective and randomized clinical trials are required to disclose all possible benefits of the stapes surgery using diode laser.

  2. Clinical Comparison of Conventional and Mobile Endockscope Videocystoscopy Using an Air or Fluid Medium.

    PubMed

    Dutta, Rahul; Yoon, Renai; Patel, Roshan M; Spradling, Kyle; Okhunov, Zhamshid; Sohn, William; Lee, Hak J; Landman, Jaime; Clayman, Ralph V

    2017-06-01

    To compare conventional videocystoscopy (CVC) with a novel and affordable (approximately $45) mobile cystoscopy system, the Endockscope (ES). We evaluated the ES system using both fluid (Endockscope-Fluid [ES-F]) and air (Endockscope-Air [ES-A]) to fill the bladder in an effort to expand the global range of flexible cystoscopy. The ES system comprised a portable 1000 lumen LED self-contained cordless light source and a three-dimensional printed adaptor that connects a mobile phone to a flexible fiber-optic cystoscope. Patients undergoing in-office cystoscopic evaluation for either stent removal or bladder cancer surveillance received three examinations: conventional, ES-F, and ES-A cystoscopy. Videos of each examination were recorded and analyzed by expert endoscopists for image quality/resolution, brightness, color quality, sharpness, overall quality, and whether or not they were acceptable for diagnostic purposes. Six of the 10 patients for whom the conventional videos were 100% acceptable for diagnostic purposes were included in our analysis. The conventional videos scored higher on every metric relative to both the ES-F and ES-A videos (p < 0.05). There was no difference between ES-F and ES-A videos on any metric. Fifty-two percent and 44% of the ES-F and ES-A videos, respectively, were considered acceptable for diagnostic purposes (p = 0.384). The ES mobile cystoscopy system may be a reasonable option in settings where electricity, sterile fluid irrigant, or access to CVC equipment is unavailable.

  3. Gamma inert sterilization: a solution to polyethylene oxidation?

    PubMed

    Medel, Francisco J; Kurtz, Steven M; Hozack, William J; Parvizi, Javad; Purtill, James J; Sharkey, Peter F; MacDonald, Daniel; Kraay, Matthew J; Goldberg, Victor; Rimnac, Clare M

    2009-04-01

    In the 1990s, oxidation was found to occur in ultra-high molecular weight polyethylene total joint replacement components following gamma irradiation and prolonged shelf aging in air. Orthopaedic manufacturers developed barrier packaging to reduce oxidation during and after radiation sterilization. The present study explores the hypothesis that polyethylene components sterilized in a low-oxygen environment undergo similar in vivo oxidative mechanisms as inserts sterilized in air. In addition, the potential influence of the different sterilization processes on the wear performance of the polyethylene components was examined. An analysis of oxidation, wear, and surface damage was performed for forty-eight acetabular liners and 123 tibial inserts. The mean implantation time was 12.3+/-3.7 years for thirty-one acetabular liners that had been gamma sterilized in air and 4.0+/-2.5 years for the seventeen acetabular liners that had been gamma sterilized in inert gas. The mean implantation time was 11.0+/-3.2 years for the twenty-six tibial inserts that had been sterilized in air and 2.8+/-2.2 years for the ninety-seven tibial inserts that had been gamma sterilized in inert gas. Oxidation and hydroperoxide levels were characterized in loaded and unloaded regions of the inserts. Measurable oxidation and oxidation potential were observed in all cohorts. The oxidation and hydroperoxide levels were regional. Surfaces with access to body fluids were more heavily oxidized than protected bearing surfaces were. This variation appeared to be greater in historical (gamma-in-air-sterilized) components. Regarding wear performance, historical and conventional acetabular liners showed similar wear penetration rates, whereas a low incidence of delamination was confirmed for the conventional tibial inserts in the first decade of implantation. The present study explores the impact of industry-wide changes in sterilization practices for polyethylene. We found lower oxidation and oxidation potential in the conventional acetabular liners and tibial inserts that had been gamma sterilized in inert gas as compared with the historical components that had been gamma sterilized in air. However, we also found strong evidence that conventional components undergo mechanisms of in vivo oxidation similar to those observed following gamma irradiation in air. In addition, gamma sterilization in inert gas did not provide polyethylene with a significant improvement in terms of wear resistance as compared with gamma sterilization in air, except for a lower incidence of delamination in the first decade of implantation for tibial inserts.

  4. Volatile Organic Compounds (VOCs) in Conventional and High Performance School Buildings in the U.S.

    PubMed

    Zhong, Lexuan; Su, Feng-Chiao; Batterman, Stuart

    2017-01-21

    Exposure to volatile organic compounds (VOCs) has been an indoor environmental quality (IEQ) concern in schools and other buildings for many years. Newer designs, construction practices and building materials for "green" buildings and the use of "environmentally friendly" products have the promise of lowering chemical exposure. This study examines VOCs and IEQ parameters in 144 classrooms in 37 conventional and high performance elementary schools in the U.S. with the objectives of providing a comprehensive analysis and updating the literature. Tested schools were built or renovated in the past 15 years, and included comparable numbers of conventional, Energy Star, and Leadership in Energy and Environmental Design (LEED)-certified buildings. Indoor and outdoor VOC samples were collected and analyzed by thermal desorption, gas chromatography and mass spectroscopy for 94 compounds. Aromatics, alkanes and terpenes were the major compound groups detected. Most VOCs had mean concentrations below 5 µg/m³, and most indoor/outdoor concentration ratios ranged from one to 10. For 16 VOCs, the within-school variance of concentrations exceeded that between schools and, overall, no major differences in VOC concentrations were found between conventional and high performance buildings. While VOC concentrations have declined from levels measured in earlier decades, opportunities remain to improve indoor air quality (IAQ) by limiting emissions from building-related sources and by increasing ventilation rates.

  5. Volatile Organic Compounds (VOCs) in Conventional and High Performance School Buildings in the U.S.

    PubMed Central

    Zhong, Lexuan; Su, Feng-Chiao; Batterman, Stuart

    2017-01-01

    Exposure to volatile organic compounds (VOCs) has been an indoor environmental quality (IEQ) concern in schools and other buildings for many years. Newer designs, construction practices and building materials for “green” buildings and the use of “environmentally friendly” products have the promise of lowering chemical exposure. This study examines VOCs and IEQ parameters in 144 classrooms in 37 conventional and high performance elementary schools in the U.S. with the objectives of providing a comprehensive analysis and updating the literature. Tested schools were built or renovated in the past 15 years, and included comparable numbers of conventional, Energy Star, and Leadership in Energy and Environmental Design (LEED)-certified buildings. Indoor and outdoor VOC samples were collected and analyzed by thermal desorption, gas chromatography and mass spectroscopy for 94 compounds. Aromatics, alkanes and terpenes were the major compound groups detected. Most VOCs had mean concentrations below 5 µg/m3, and most indoor/outdoor concentration ratios ranged from one to 10. For 16 VOCs, the within-school variance of concentrations exceeded that between schools and, overall, no major differences in VOC concentrations were found between conventional and high performance buildings. While VOC concentrations have declined from levels measured in earlier decades, opportunities remain to improve indoor air quality (IAQ) by limiting emissions from building-related sources and by increasing ventilation rates. PMID:28117727

  6. Fundamental understanding of the thermal degradation mechanisms of waste tires and their air pollutant generation in a N2 atmosphere.

    PubMed

    Kwon, Eilhann; Castaldi, Marco J

    2009-08-01

    The thermal decomposition of waste tires has been characterized via thermo-gravimetric analysis (TGA) tests, and significant mass loss has been observed between 300 and 500 degrees C. A series of gas chromatography-mass spectrometer (GC-MS) measurements, in which the instrument was coupled to a TGA unit, have been carried out to investigate the thermal degradation mechanisms as well as the air pollutant generation including volatile organic carbons (VOCs) and polycyclic aromatic hydrocarbons (PAHs) in a nitrogen atmosphere. In order to understand fundamental information on the thermal degradation mechanisms of waste tires, the main constituents of tires, poly-isoprene rubber (IR) and styrene butadiene rubber (SBR), have been studied under the same conditions. All of the experimental work indicated that the bond scission on each monomer of the main constituents of tires was followed by hydrogenation and gas phase reactions. This helped to clarify the independent pathways and species attributable to IR and SBR during the pyrolysis process. To extend that understanding to a more practical level, a flow-through reactor was used to test waste tire, SBR and IR samples in the temperature range of 500-800 degrees C at a heating rate of approximately 200 degrees C. Lastly, the formation of VOCs (approximately 1-50 PPMV/10 mg of sample) and PAHs (approximately 0.2-7 PPMV/10 mg of sample) was observed at relatively low temperatures compared to conventional fuels, and its quantified concentration was significantly high due to the chemical structure of SBR and IR. The measurement of chemicals released during pyrolysis suggests not only a methodology for reducing the air pollutants but also the feasibility of petrochemical recovery during thermal treatment.

  7. European Adrenal Insufficiency Registry (EU-AIR): a comparative observational study of glucocorticoid replacement therapy.

    PubMed

    Ekman, Bertil; Fitts, David; Marelli, Claudio; Murray, Robert D; Quinkler, Marcus; Zelissen, Pierre M J

    2014-05-09

    Increased morbidity and mortality associated with conventional glucocorticoid replacement therapy for primary adrenal insufficiency (primary AI; estimated prevalence 93-140/million), secondary AI (estimated prevalence, 150-280/million, respectively) or congenital adrenal hyperplasia (estimated prevalence, approximately 65/million) may be due to the inability of typical glucocorticoid treatment regimens to reproduce the normal circadian profile of plasma cortisol. A once-daily modified-release formulation of hydrocortisone has been developed to provide a plasma cortisol profile that better mimics the daytime endogenous profile of cortisol. Here, we describe the protocol for the European Adrenal Insufficiency Registry (EU-AIR), an observational study to assess the long-term safety of modified-release hydrocortisone compared with conventional glucocorticoid replacement therapies in routine clinical practice (ClinicalTrials.gov identifier: NCT01661387). Patients enrolled in EU-AIR have primary or secondary AI and are receiving either modified-release or conventional glucocorticoid replacement therapy. The primary endpoints of EU-AIR are the incidence of intercurrent illness, adrenal crisis and serious adverse events (SAEs), as well as the duration of SAEs and dose changes related to SAEs. Data relating to morbidity, mortality, adverse drug reactions, dosing and concomitant therapies will be collected. Patient diaries will record illness-related dose changes between visits. All decisions concerning medical care are made by the registry physician and patient. Enrolment is targeted at achieving 3600 patient-years of treatment (1800 patient-years per group) for the primary analysis, which is focused on determining the non-inferiority of once-daily modified-release replacement therapy compared with conventional glucocorticoid therapy. Recruitment began in August 2012 and, as of March 2014, 801 patients have been enrolled. Fifteen centres are participating in Germany, the UK and Sweden, with recruitment soon to be initiated in the Netherlands. EU-AIR will provide a unique opportunity not only to collect long-term safety data on a modified-release preparation of glucocorticoid but also to evaluate baseline data on conventional glucocorticoid replacement. Such data should help to improve the treatment of AI.

  8. Mass Airflow Cabinet for Control of Airborne Infection of Laboratory Rodents

    PubMed Central

    McGarrity, Gerard J.; Coriell, Lewis L.

    1973-01-01

    A mass airflow cabinet for handling and housing of laboratory rodents has been developed and tested. The unit consists of a high-efficiency particulate air filter and uniform distribution of air at a vertical velocity of 19 cm per s. Animals are maintained without bedding in mesh-bottomed cages that rest on rollers for rotation inside the cabinet. There is an air barrier of 90 cm per s separating the cabinet air from room air. Sampling for airborne bacteria yielded an average of 0.03 colony-forming units (CFU) per ft3 of air inside the cabinet, whereas 28.8 CFU per ft3 was simultaneously detected outside the cabinet during housekeeping, a reduction of almost three logs. The efficiency of the air barrier was tested by aerosolization of T3 phage. When phage was aerosolized 5 cm outside the cabinet, no phage could be detected 5 cm inside when the fans were operating; with the fans off an average of 1.6 × 104 plaque-forming units (PFU) per ft3 was detected in six tests. Aerosolization of phage inside the cabinet yielded an average of 9 × 10 PFU per ft3 outside; an average of 4.1 × 106 PFU per ft3 were detected with the fans not in operation, a reduction of more than four logs. In-use studies on effectiveness showed that the cabinet significantly reduced the incidence of mice originally titer-free to Reo-3 virus. Hemagglutination inhibition antibodies to Reo-3 were detected in 9/22 (42%) mice housed in a conventionally ventilated animal laboratory while no seroconversion was detected in any of 22 mice housed in the mass air flow cabinet in the same laboratory. Images PMID:4355261

  9. Mass airflow cabinet for control of airborne infection of laboratory rodents.

    PubMed

    McGarrity, G J; Coriell, L L

    1973-08-01

    A mass airflow cabinet for handling and housing of laboratory rodents has been developed and tested. The unit consists of a high-efficiency particulate air filter and uniform distribution of air at a vertical velocity of 19 cm per s. Animals are maintained without bedding in mesh-bottomed cages that rest on rollers for rotation inside the cabinet. There is an air barrier of 90 cm per s separating the cabinet air from room air. Sampling for airborne bacteria yielded an average of 0.03 colony-forming units (CFU) per ft(3) of air inside the cabinet, whereas 28.8 CFU per ft(3) was simultaneously detected outside the cabinet during housekeeping, a reduction of almost three logs. The efficiency of the air barrier was tested by aerosolization of T3 phage. When phage was aerosolized 5 cm outside the cabinet, no phage could be detected 5 cm inside when the fans were operating; with the fans off an average of 1.6 x 10(4) plaque-forming units (PFU) per ft(3) was detected in six tests. Aerosolization of phage inside the cabinet yielded an average of 9 x 10 PFU per ft(3) outside; an average of 4.1 x 10(6) PFU per ft(3) were detected with the fans not in operation, a reduction of more than four logs. In-use studies on effectiveness showed that the cabinet significantly reduced the incidence of mice originally titer-free to Reo-3 virus. Hemagglutination inhibition antibodies to Reo-3 were detected in 9/22 (42%) mice housed in a conventionally ventilated animal laboratory while no seroconversion was detected in any of 22 mice housed in the mass air flow cabinet in the same laboratory.

  10. Cracking of porcelain surfaces arising from abrasive grinding with a dental air turbine.

    PubMed

    Chang, Chee W; Waddell, J Neil; Lyons, Karl M; Swain, Michael V

    2011-12-01

    The purpose of this in vitro study was to evaluate porcelain cracking induced by abrasive grinding with a conventional dental air turbine and abrasive diamond burs. Four commercially available porcelains were examined-Wieland ALLUX, Wieland ZIROX, IPS e.max Ceram, and IPS Empress Esthetic Veneering porcelain. Sixty discs of each porcelain type were fabricated according to manufacturer instructions, followed by an auto-glaze cycle. Abrasive grinding using fine, extra-fine, and ultra-fine diamond burs was carried out, using a conventional dental air turbine. The grinding parameters were standardized with regard to the magnitude of the force applied, rotational speed of the diamond bur, and flow rate of the water coolant. A testing apparatus was used to control the magnitude of force applied during the grinding procedure. The ground surfaces were then examined under scanning electron microscope. Cracking was seen for all porcelain types when ground with the fine bur. Cracking was not seen for specimens ground with the extra-fine or the ultra-fine bur. Wet abrasive grinding with a conventional dental air turbine and fine grit diamond burs has the potential to cause cracking in the four porcelain types tested. Similar abrasive grinding with smaller grit size particles does not cause similar observable cracking. © 2011 by the American College of Prosthodontists.

  11. Fuel-cycle emissions for conventional and alternative fuel vehicles : an assessment of air toxics

    DOT National Transportation Integrated Search

    2000-08-01

    This report provides information on recent efforts to use the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) fuel-cycle model to estimate air toxics emissions. GREET, developed at Argonne National Laboratory, currentl...

  12. Selection of air traffic controllers : complexity, requirements, and public interest.

    DOT National Transportation Integrated Search

    1991-05-01

    The essays in this technical report represent presentations made as part of a symposium entitled "Selection of Air Traffic Controllers: Complexity, Requirements, and Public Interest." The symposium was presented at the 98th Annual Convention of the A...

  13. Real-time vehicle emissions monitoring using a compact LiDAR system and conventional instruments: first results of an experimental campaign in a suburban area in southern Italy

    NASA Astrophysics Data System (ADS)

    Parracino, Stefano; Richetta, Maria; Gelfusa, Michela; Malizia, Andrea; Bellecci, Carlo; De Leo, Leonardo; Perrimezzi, Carlo; Fin, Alessandro; Forin, Marco; Giappicucci, Francesca; Grion, Massimo; Marchese, Giuseppe; Gaudio, Pasquale

    2016-10-01

    Urban air pollution causes deleterious effects on human health and the environment. To meet stringent standards imposed by the European Commission, advanced measurement methods are required. Remote sensing techniques, such as light detection and ranging (LiDAR), can be a valuable option for evaluating particulate matter (PM), emitted by vehicles in urban traffic, with high sensitivity and in shorter time intervals. Since air quality problems persist not only in large urban areas, a measuring campaign was specifically performed in a suburban area of Crotone, Italy, using both a compact LiDAR system and conventional instruments for real-time vehicle emissions monitoring along a congested road. First results reported in this paper show a strong dependence between variations of LiDAR backscattering signals and traffic-related air pollution levels. Moreover, time-resolved LiDAR data averaged in limited regions, directly above conventional monitoring stations at the border of an intersection, were found to be linearly correlated to the PM concentration levels with a correlation coefficient between 0.75 and 0.84.

  14. Characterization of Sulfur and Nanostructured Sulfur Battery Cathodes in Electron Microscopy Without Sublimation Artifacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levin, Barnaby D. A.; Zachman, Michael J.; Werner, Jörg G.

    Abstract Lithium sulfur (Li–S) batteries have the potential to provide higher energy storage density at lower cost than conventional lithium ion batteries. A key challenge for Li–S batteries is the loss of sulfur to the electrolyte during cycling. This loss can be mitigated by sequestering the sulfur in nanostructured carbon–sulfur composites. The nanoscale characterization of the sulfur distribution within these complex nanostructured electrodes is normally performed by electron microscopy, but sulfur sublimates and redistributes in the high-vacuum conditions of conventional electron microscopes. The resulting sublimation artifacts render characterization of sulfur in conventional electron microscopes problematic and unreliable. Here, we demonstratemore » two techniques, cryogenic transmission electron microscopy (cryo-TEM) and scanning electron microscopy in air (airSEM), that enable the reliable characterization of sulfur across multiple length scales by suppressing sulfur sublimation. We use cryo-TEM and airSEM to examine carbon–sulfur composites synthesized for use as Li–S battery cathodes, noting several cases where the commonly employed sulfur melt infusion method is highly inefficient at infiltrating sulfur into porous carbon hosts.« less

  15. Force Tests of a 1/5-Scale Model of the McDonnell XP-85 Airplane with Conventional Tail Assembly in the Langley Free-Flight Tunnel

    NASA Technical Reports Server (NTRS)

    Paulson, John W.; Johnson, Joseph L.

    1947-01-01

    At the request of the Air Materiel Command, Army Air Forces an investigation of the low-speed, power-off stability and control characteristics of the McDonnell XP-85 airplane is being conducted in the Langley free-flight tunnel. The XP-85 airplane is a parasite fighter carried in a bomb bay of the B-36 airplane. As a part of the investigation a few force tests were made of a 1/5 scale model of the XP-85 with a conventional tail assembly installed in place of the original design five-unit tail assembly. The total area of the conventional assembly was approximately 80 percent of the area of the five-unit assembly. The results of this investigation showed that the conventional tail assembly gave about the same longitudinal stability characteristics as the original configuration and improved the directional and lateral stability.

  16. Conceptual Design of a 150-Passenger Civil Tiltrotor

    NASA Technical Reports Server (NTRS)

    Costa, Guillermo

    2012-01-01

    The conceptual design of a short-haul civil tiltrotor aircraft is presented. The concept vehicle is designed for runway-independent operations to increase the capacity of the National Airspace System without the need for increased infrastructure. This necessitates a vehicle that is capable of integrating with conventional air traffic without interfering with established flightpaths. The NASA Design and Analysis of Rotorcraft software was used to size the concept vehicle based on the mission requirements of this market. The final configuration was selected based upon performance metrics such as acquisition and maintenance costs, fuel fraction, empty weight, and required engine power. The concept presented herein has a proposed initial operating capability date of 2035, and is intended to integrate with conventional air traffic as well as proposed future air transportation concepts.

  17. A novel fast gas chromatography method for higher time resolution measurements of speciated monoterpenes in air

    NASA Astrophysics Data System (ADS)

    Jones, C. E.; Kato, S.; Nakashima, Y.; Kajii, Y.

    2014-05-01

    Biogenic emissions supply the largest fraction of non-methane volatile organic compounds (VOC) from the biosphere to the atmospheric boundary layer, and typically comprise a complex mixture of reactive terpenes. Due to this chemical complexity, achieving comprehensive measurements of biogenic VOC (BVOC) in air within a satisfactory time resolution is analytically challenging. To address this, we have developed a novel, fully automated Fast Gas Chromatography (Fast-GC) based technique to provide higher time resolution monitoring of monoterpenes (and selected other C9-C15 terpenes) during plant emission studies and in ambient air. To our knowledge, this is the first study to apply a Fast-GC based separation technique to achieve quantification of terpenes in ambient air. Three chromatography methods have been developed for atmospheric terpene analysis under different sampling scenarios. Each method facilitates chromatographic separation of selected BVOC within a significantly reduced analysis time compared to conventional GC methods, whilst maintaining the ability to quantify individual monoterpene structural isomers. Using this approach, the C9-C15 BVOC composition of single plant emissions may be characterised within a 14.5 min analysis time. Moreover, in-situ quantification of 12 monoterpenes in unpolluted ambient air may be achieved within an 11.7 min chromatographic separation time (increasing to 19.7 min when simultaneous quantification of multiple oxygenated C9-C10 terpenoids is required, and/or when concentrations of anthropogenic VOC are significant). These analysis times potentially allow for a twofold to fivefold increase in measurement frequency compared to conventional GC methods. Here we outline the technical details and analytical capability of this chromatographic approach, and present the first in-situ Fast-GC observations of 6 monoterpenes and the oxygenated BVOC (OBVOC) linalool in ambient air. During this field deployment within a suburban forest ~30 km west of central Tokyo, Japan, the Fast-GC limit of detection with respect to monoterpenes was 4-5 ppt, and the agreement between Fast-GC and PTR-MS derived total monoterpene mixing ratios was consistent with previous GC/PTR-MS comparisons. The measurement uncertainties associated with the Fast-GC quantification of monoterpenes are ≤ 12%, while larger uncertainties (up to ~25%) are associated with the OBVOC and sesquiterpene measurements.

  18. To Investigate the Absorption, Dynamic Contact Angle and Printability Effects of Synthetic Zeolite Pigments in an Inkjet Receptive Coating

    NASA Astrophysics Data System (ADS)

    Jalindre, Swaraj Sunil

    Ink absorption performance in inkjet receptive coatings containing synthetic zeolite pigments was studied. Coating pigment pore and particle size distribution are the key parameters that influence in modifying media surface properties, thus affecting the rate of ink penetration and drying time (Scholkopf, et al. 2004). The primary objective of this study was: (1) to investigate the synthetic zeolite pigment effects on inkjet ink absorption, dynamic contact angle and printability, and (2) to evaluate these novel synthetic zeolite pigments in replacing the fumed silica pigments in conventional inkjet receptive coatings. In this research study, single pigment coating formulations (in equal P:B ratio) were prepared using microporous synthetic zeolite pigments (5A, Organophilic and 13X) and polyvinyl alcohol (PVOH) binder. The laboratory-coated samples were characterized for absorption, air permeance, roughness, drying time, wettability and print fidelity. Based on the rheological data, it was found that the synthetic zeolite formulated coatings depicted a Newtonian flow behavior at low shear; while the industry accepted fumed silica based coatings displayed a characteristically high pseudoplastic flow behavior. Our coated samples generated using microporous synthetic zeolite pigments produced low absorption, reduced wettability and accelerated ink drying characteristics. These characteristics were caused due to the synthetic zeolite pigments, which resulted in relatively closed surface structure coated samples. The research suggested that no single selected synthetic zeolite coating performed better than the conventional fumed silica based coatings. Experimental data also showed that there was no apparent relationship between synthetic zeolite pigment pore sizes and inkjet ink absorption. For future research, above coated samples should be evaluated for pore size distribution using Mercury Porosimeter, which quantifies surface porosity of coated samples. This presented approach can be easily used for investigating other such microporous coating pigments in formulating inkjet receptive coating. The research findings will benefit the coating formulators, engineers and material science students, in understanding the absorption characteristics of selected synthetic zeolite pigments thereby encouraging them in identifying other such alternative pigments in conventional inkjet receptive coatings.

  19. Simple system for measuring tritium Ad/absorption using a 2. pi. counter and thermal desorption spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyake, H.; Matsuyama, M.; Watanabe, K.

    1992-03-01

    In this paper, the authors develop a simple system using tritium tracer and thermal desorption techniques to measure the tritium adsorption and/or absorption on/in a material having typical surface conditions: namely, not cleaned surface. The tritium counting devices used were a 2{pi} counter and conventional proportional counter. With this system, the amounts of ad/absorption could be measured without exposing the samples to air after exposing them to tritium gas. The overall efficiency (F) of the 2{pi} counter was described at F = exp({minus}2.64h), where h is the distance from the sample to the detector. Ad/absorption measurements were carried out formore » several materials used for fabricating conventional vacuum systems. The results were, in the order of decreasing amounts of ad/absorption, as (fiber reinforced plastics(FRP)) {gt} (nickel(Ni), molybdenum disulfide(MoS{sub 2})) {gt} (stainless steel (SS304), iron(Fe), aluminum alloy(A2219)) {gt} (boron nitride(h-BN), silicon carbide (SiC), SS304 passivated by anodic oxidation layers(ASS) and that by boron nitride segregation layers (BSS)). The relative amounts were abut 100 for Ni and 0.1 for ASS and BSS, being normalized to Fe = 1.« less

  20. Methodology for Examining Effects of Arms Control Reduction on Tactical Air Forces. An Example from Conventional Forces in Europe (CFE) Treaty Analysis

    DTIC Science & Technology

    1993-01-01

    H. Wegner for developing the tactical air and ground force databases and producing the campaign results. Thanks are also due to Group Captain Michael ... Jackson , RAF, for developing the evaluation criteria for NATO’s tactical air force reductions during his stay at RAND. -xi. CONTENTS PREFACE

  1. The rise of low-cost sensing for managing air pollution in cities.

    PubMed

    Kumar, Prashant; Morawska, Lidia; Martani, Claudio; Biskos, George; Neophytou, Marina; Di Sabatino, Silvana; Bell, Margaret; Norford, Leslie; Britter, Rex

    2015-02-01

    Ever growing populations in cities are associated with a major increase in road vehicles and air pollution. The overall high levels of urban air pollution have been shown to be of a significant risk to city dwellers. However, the impacts of very high but temporally and spatially restricted pollution, and thus exposure, are still poorly understood. Conventional approaches to air quality monitoring are based on networks of static and sparse measurement stations. However, these are prohibitively expensive to capture tempo-spatial heterogeneity and identify pollution hotspots, which is required for the development of robust real-time strategies for exposure control. Current progress in developing low-cost micro-scale sensing technology is radically changing the conventional approach to allow real-time information in a capillary form. But the question remains whether there is value in the less accurate data they generate. This article illustrates the drivers behind current rises in the use of low-cost sensors for air pollution management in cities, while addressing the major challenges for their effective implementation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Probing emissions of military cargo aircraft: description of a joint field measurement Strategic Environmental Research and Development Program.

    PubMed

    Cheng, Meng-Dawn; Corporan, Edwin; DeWitt, Matthew J; Spicer, Chester W; Holdren, Michael W; Cowen, Kenneth A; Laskin, Alex; Harris, David B; Shores, Richard C; Kagann, Robert; Hashmonay, Ram

    2008-06-01

    To develop effective air quality control strategies for military air bases, there is a need to accurately quantify these emissions. In support of the Strategic Environmental Research and Development Program project, the particulate matter (PM) and gaseous emissions from two T56 engines on a parked C-130 aircraft were characterized at the Kentucky Air National Guard base in Louisville, KY. Conventional and research-grade instrumentation and methodology were used in the field campaign during the first week of October 2005. Particulate emissions were sampled at the engine exit plane and at 15 m downstream. In addition, remote sensing of the gaseous species was performed via spectroscopic techniques at 5 and 15 m downstream of the engine exit. It was found that PM mass and number concentrations measured at 15-m downstream locations, after dilution-correction generally agreed well with those measured at the engine exhaust plane; however, higher variations were observed in the far-field after natural dilution of the downstream measurements was accounted for. Using carbon dioxide-normalized data we demonstrated that gas species measurements by extractive and remote sensing techniques agreed reasonably well.

  3. Field calibration of polyurethane foam (PUF) disk passive air samplers for PCBs and OC pesticides.

    PubMed

    Chaemfa, Chakra; Barber, Jonathan L; Gocht, Tilman; Harner, Tom; Holoubek, Ivan; Klanova, Jana; Jones, Kevin C

    2008-12-01

    Different passive air sampler (PAS) strategies have been developed for sampling in remote areas and for cost-effective simultaneous spatial mapping of POPs (persistent organic pollutants) over differing geographical scales. The polyurethane foam (PUF) disk-based PAS is probably the most widely used. In a PUF-based PAS, the PUF disk is generally mounted inside two stainless steel bowls to buffer the air flow to the disk and to shield it from precipitation and light. The field study described in this manuscript was conducted to: compare performance of 3 different designs of sampler; to further calibrate the sampler against the conventional active sampler; to derive more information on field-based uptake rates and equilibrium times of the samplers. Samplers were also deployed at different locations across the field site, and at different heights up a meteorological tower, to investigate the possible influence of sampler location. Samplers deployed <5m above ground, and not directly sheltered from the wind gave similar uptake rates. Small differences in dimensions between the 3 designs of passive sampler chamber had no discernable effect on accumulation rates, allowing comparison with previously published data.

  4. Influence of Agronomic and Climatic Factors on Fusarium Infestation and Mycotoxin Contamination of Cereals in Norway

    PubMed Central

    Bernhoft, A.; Torp, M.; Clasen, P.-E.; Løes, A.-K.; Kristoffersen, A.B.

    2012-01-01

    A total of 602 samples of organically and conventionally grown barley, oats and wheat was collected at grain harvest during 2002–2004 in Norway. Organic and conventional samples were comparable pairs regarding cereal species, growing site and harvest time, and were analysed for Fusarium mould and mycotoxins. Agronomic and climatic factors explained 10–30% of the variation in Fusarium species and mycotoxins. Significantly lower Fusarium infestation and concentrations of important mycotoxins were found in the organic cereals. The mycotoxins deoxynivalenol (DON) and HT-2 toxin (HT-2) constitute the main risk for human and animal health in Norwegian cereals. The impacts of various agronomic and climatic factors on DON and HT-2 as well as on their main producers F. graminearum and F. langsethiae and on total Fusarium were tested by multivariate statistics. Crop rotation with non-cereals was found to reduce all investigated characteristics significantly – mycotoxin concentrations as well as various Fusarium infestations. No use of mineral fertilisers and herbicides was also found to decrease F. graminearum, whereas lodged fields increased the occurrence of this species. No use of herbicides was also found to decrease F. langsethiae, but for this species the occurrence was lower in lodged fields. Total Fusarium infestation was decreased with no use of fungicides or mineral fertilisers, and with crop rotation, as well as by using herbicides and increased by lodged fields. Clay and to some extent silty soils seemed to reduce F. graminearum in comparison with sandy soils. Concerning climate factors, low temperature before grain harvest was found to increase DON; and high air humidity before harvest to increase HT-2. F. graminearum was negatively correlated with precipitation in July but correlated with air humidity before harvest. F. langsethiae was correlated with temperature in July. Total Fusarium increased with increasing precipitation in July. Organic cereal farmers have fewer cereal intense rotations than conventional farmers. Further, organic farmers do not apply mineral fertiliser or pesticides (fungicides, herbicides or insecticides), and have less problem with lodged fields. The study showed that these agronomic factors were related to the infestation of Fusarium species and the concentration of mycotoxins. Hence, it is reasonable to conclude that farming system (organic versus conventional) impacts Fusarium infestation, and that organic management tends to reduce Fusarium and mycotoxins. However, Fusarium infestation and mycotoxin concentrations may be influenced by a range of factors not studied here, such as local topography and more local climate, as well as cereal species and variety. PMID:22494553

  5. EXPOSURE MONITORING COMPONENT FOR DETROIT CHILDREN'S HEALTH STUDY ( DCHS )

    EPA Science Inventory

    Conventional, regulatory-based air monitoring is expensive and, thus, conducted at one or few locations in a city. This provides limited info on intra-urban variability and spatial distribution of air pollution. Research-oriented urban network monitoring has progressed with inc...

  6. Emissions from gas fired agricultural burners

    USDA-ARS?s Scientific Manuscript database

    Because of the Federal Clean Air Act, the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) began defining Best Available Control Technology (BACT) for NOx emissions from cotton gin drying system gas fired burners in its jurisdiction. The NOx emission levels of conventionally used...

  7. REUSABLE PROPULSION ARCHITECTURE FOR SUSTAINABLE LOW-COST ACCESS TO SPACE

    NASA Technical Reports Server (NTRS)

    Bonometti, Joseph; Frame, Kyle L.; Dankanich, John W.

    2005-01-01

    Two transportation architecture changes are presented at either end of a conventional two-stage rocket flight: 1) Air launch using a large, conventional, pod hauler design (i.e., Crossbow)ans 2) Momentum exchange tether (i.e., an in-space asset like MXER). Air launch has ana analytically justified cost reduction of approx. 10%, but its intangible benefits suggest real-world operations cost reductions much higher: 1) Inherent launch safety; 2) Mission Risk Reduction; 3) Favorable payload/rocket limitations; and 4) Leveraging the aircraft for other uses (military transport, commercial cargo, public outreach activities, etc.)

  8. Some factors affecting the use of lighter than air systems. [economic and performance estimates for dirigibles and semi-buoyant hybrid vehicles

    NASA Technical Reports Server (NTRS)

    Havill, C. D.

    1974-01-01

    The uses of lighter-than-air vehicles are examined in the present day transportation environment. Conventional dirigibles were found to indicate an undesirable economic risk due to their low speeds and to uncertainties concerning their operational use. Semi-buoyant hybrid vehicles are suggested as an alternative which does not have many of the inferior characteristics of conventional dirigibles. Economic and performance estimates for hybrid vehicles indicate that they are competitive with other transportation systems in many applications, and unique in their ability to perform some highly desirable emergency missions.

  9. Microbiological contamination of compressed air used in dentistry: an investigation.

    PubMed

    Conte, M; Lynch, R M; Robson, M G

    2001-11-01

    The purpose of this preliminary investigation was twofold: 1) to examine the possibility of cross-contamination between a dental-evacuation system and the compressed air used in dental operatories and 2) to capture and identify the most common microflora in the compressed-air supply. The investigation used swab, water, and air sampling that was designed to track microorganisms from the evacuation system, through the air of the mechanical room, into the compressed-air system, and back to the patient. Samples taken in the vacuum system, the air space in the mechanical room, and the compressed-air storage tank had significantly higher total concentrations of bacteria than the outside air sampled. Samples of the compressed air returning to the operatory were found to match the outside air sample in total bacteria. It was concluded that the air dryer may have played a significant role in the elimination of microorganisms from the dental compressed-air supply.

  10. Aerated biofilters with multiple-level air injection configurations to enhance biological treatment of methane emissions.

    PubMed

    Farrokhzadeh, Hasti; Hettiaratchi, J Patrick A; Jayasinghe, Poornima; Kumar, Sunil

    2017-09-01

    Aiming to improve conventional methane biofilter performance, a multiple-level aeration biofilter design is proposed. Laboratory flow-through column experiments were conducted to evaluate three actively-aerated methane biofilter configurations. Columns were aerated at one, two, and three levels of the bed depth, with air introduced at flow rates calculated from methane oxidation reaction stoichiometry. Inlet methane loading rates were increased in five stages between 6 and 18mL/min. The effects of methane feeding rate, levels of aeration, and residence time on methane oxidation rates were determined. Samples collected after completion of flow-through experiments were used to determine methane oxidation kinetic parameters, V max , K m , and methanotrophic community distribution across biofilter columns. Results obtained from mixed variances analysis and response surfaces, as well as methanotrophic activity data, suggested that, biofilter column with two aeration levels has the most even performance over time, maintaining 85.1% average oxidation efficiency over 95days of experiments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Consequences of air around an ionization chamber: Are existing solid phantoms suitable for reference dosimetry on an MR-linac?

    PubMed

    Hackett, S L; van Asselen, B; Wolthaus, J W H; Kok, J G M; Woodings, S J; Lagendijk, J J W; Raaymakers, B W

    2016-07-01

    A protocol for reference dosimetry for the MR-linac is under development. The 1.5 T magnetic field changes the mean path length of electrons in an air-filled ionization chamber but has little effect on the electron trajectories in a surrounding phantom. It is therefore necessary to correct the response of an ionization chamber for the influence of the magnetic field. Solid phantoms are used for dosimetry measurements on the MR-linac, but air is present between the chamber wall and phantom insert. This study aimed to determine if this air influences the ion chamber measurements on the MR-linac. The absolute response of the chamber and reproducibility of dosimetry measurements were assessed on an MR-linac in solid and water phantoms. The sensitivity of the chamber response to the distribution of air around the chamber was also investigated. Measurements were performed on an MR-linac and replicated on a conventional linac for five chambers. The response of three waterproof chambers was measured with air and with water between the chamber and the insert to measure the influence of the air volume on absolute chamber response. The distribution of air around the chamber was varied indirectly by rotating each chamber about the longitudinal chamber axis in a solid phantom and a water phantom (waterproof chambers only) and measuring the angular dependence of the chamber response, and varied directly by displacing the chamber in the phantom insert using a paper shim positioned at different orientations between the chamber casing and the insert. The responses of the three waterproof chambers measured on the MR-linac were 0.7%-1.2% higher with water than air in the chamber insert. The responses of the chambers on the conventional linac changed by less than 0.3% when air in the insert was replaced with water. The angular dependence of the chambers ranged from 0.6% to 1.9% in the solid phantom on the MR-linac but was less than 0.5% in water on the MR-linac and less than 0.3% in the solid phantom on the conventional linac. Inserting a shim around the chamber induced changes of the chamber response in a magnetic field of up to 2.2%, but the change in chamber response on the conventional linac was less than 0.3%. The interaction between the magnetic field and secondary electrons in the air around the chamber reduces the charge collected from 0.7% to 1.2%. The large angular dependence of ion chambers measured in the plastic phantom in a magnetic field appears to arise from a change of air distribution as the chamber is moved within the insert, rather than an intrinsic isotropy of the chamber sensitivity to radiation. It is recommended that reference dosimetry measurements on the MR-linac can be performed only in water, rather than in existing plastic phantoms.

  12. Metal speciation of environmental samples using SPE and SFC-AED analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, S.C.; Burford, M.D.; Robson, M.

    1995-12-31

    Due to growing public concern over heavy metals in the environment, soil, water and air particulate samples azre now routinely screened for their metal content. Conventional metal analysis typically involves acid digestion extraction and results in the generation of large aqueous and organic solvent waste. This harsh extraction process is usually used to obtain the total metal content of the sample, the extract being analysed by atomic emission or absorption spectroscoply techniques. A more selective method of metal extraction has been investigated which uses a supercritical fluid modified with a complexing agent. The relatively mild extraction method enables both organometallicmore » and inorganic metal species to be recovered intact. The various components from the supercritical fluid extract can be chromatographically separated using supercritical fluid chromatography (SFC) and positive identification of the metals achieved using atomic emission detection (AED). The aim of the study is to develop an analytical extraction procedure which enables a rapid, sensitive and quantitative analysis of metals in environmental samples, using just one extraction (eg SFE) and one analysis (eg SFC-AED) procedure.« less

  13. An Integrated Approach to Economic and Environmental Aspects of Air Pollution and Climate Interactions

    NASA Astrophysics Data System (ADS)

    Sarofim, M. C.

    2007-12-01

    Emissions of greenhouses gases and conventional pollutants are closely linked through shared generation processes and thus policies directed toward long-lived greenhouse gases affect emissions of conventional pollutants and, similarly, policies directed toward conventional pollutants affect emissions of greenhouse gases. Some conventional pollutants such as aerosols also have direct radiative effects. NOx and VOCs are ozone precursors, another substance with both radiative and health impacts, and these ozone precursors also interact with the chemistry of the hydroxyl radical which is the major methane sink. Realistic scenarios of future emissions and concentrations must therefore account for both air pollution and greenhouse gas policies and how they interact economically as well as atmospherically, including the regional pattern of emissions and regulation. We have modified a 16 region computable general equilibrium economic model (the MIT Emissions Prediction and Policy Analysis model) by including elasticities of substitution for ozone precursors and aerosols in order to examine these interactions between climate policy and air pollution policy on a global scale. Urban emissions are distributed based on population density, and aged using a reduced form urban model before release into an atmospheric chemistry/climate model (the earth systems component of the MIT Integrated Global Systems Model). This integrated approach enables examination of the direct impacts of air pollution on climate, the ancillary and complementary interactions between air pollution and climate policies, and the impact of different population distribution algorithms or urban emission aging schemes on global scale properties. This modeling exercise shows that while ozone levels are reduced due to NOx and VOC reductions, these reductions lead to an increase in methane concentrations that eliminates the temperature effects of the ozone reductions. However, black carbon reductions do have significant direct effects on global mean temperatures, as do ancillary reductions of greenhouse gases due to the pollution constraints imposed in the economic model. Finally, we show that the economic benefits of coordinating air pollution and climate policies rather than separate implementation are on the order of 20% of the total policy cost.

  14. SU-F-T-442: Dose Distribution Comparison for Post-Laryngectomy Stoma Area Between Conventional AP and VMAT Plans with Or Without Bolus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, B; Zhang, J; Cho-Lim, J

    Purpose: To compare dose distributions of conventional AP vs. VMAT treatment plans with or without bolus around post-laryngectomy stoma. Methods: Radiation dose coverage for post-laryngectomy stoma was analyzed using a set of real-case CT-simulation images. After meticulous contouring of the catheter cuff, stoma lumen, peri-stoma skin and subclinical tumor bed at the larynx, the resulting dosimetry plans were analyzed with or without a 5 mm bolus placement. Wet gauze was used to minimize the effect of any air gap. Four plans were generated: AP superclavicular (SCV) plan with or without bolus, and VMAT plan with or without bolus. A dosemore » of 60Gy in 30 fractions was prescribed at 3 cm depth for AP SCV plan, and to 95% of the PTV volume for VMAT plan. Results: For the conventional AP SCV plan, the peri-stoma skin dose is sensitive to bolus placement as well as air gap compensation by wetted gauze (V95% of 20.7%, 33.0% and 94.8% for no bolus, bolus without and with air gap compensation, respectively). For stoma lumen, the dose drops off rapidly in depth. The catheter cuff may have certain dose-buildup effect, but air gap around it and under the bolus placed can pose a more serious problem. The dose distributions of the two VMAT plans are moderately different for peri-stoma skin (V95% of 95.0% with bolus and air gap compensation, and 82.3% without bolus), but nearly identical for stoma lumen (V95% of 91.5% and 92.0%, respectively). VMAT allows beamlets with different angles of incidence that helped achieve such dose distribution around the stoma even without bolus placement. Conclusion: Overall, the dose coverage around the stoma in the VMAT plan is better than the conventional AP SCV plan. To achieve optimal dose distribution, it is still recommended to place physical bolus and reduce the air gaps.« less

  15. The high throughput virtual slit enables compact, inexpensive Raman spectral imagers

    NASA Astrophysics Data System (ADS)

    Gooding, Edward; Deutsch, Erik R.; Huehnerhoff, Joseph; Hajian, Arsen R.

    2018-02-01

    Raman spectral imaging is increasingly becoming the tool of choice for field-based applications such as threat, narcotics and hazmat detection; air, soil and water quality monitoring; and material ID. Conventional fiber-coupled point source Raman spectrometers effectively interrogate a small sample area and identify bulk samples via spectral library matching. However, these devices are very slow at mapping over macroscopic areas. In addition, the spatial averaging performed by instruments that collect binned spectra, particularly when used in combination with orbital raster scanning, tends to dilute the spectra of trace particles in a mixture. Our design, employing free space line illumination combined with area imaging, reveals both the spectral and spatial content of heterogeneous mixtures. This approach is well suited to applications such as detecting explosives and narcotics trace particle detection in fingerprints. The patented High Throughput Virtual Slit1 is an innovative optical design that enables compact, inexpensive handheld Raman spectral imagers. HTVS-based instruments achieve significantly higher spectral resolution than can be obtained with conventional designs of the same size. Alternatively, they can be used to build instruments with comparable resolution to large spectrometers, but substantially smaller size, weight and unit cost, all while maintaining high sensitivity. When used in combination with laser line imaging, this design eliminates sample photobleaching and unwanted photochemistry while greatly enhancing mapping speed, all with high selectivity and sensitivity. We will present spectral image data and discuss applications that are made possible by low cost HTVS-enabled instruments.

  16. A novel test cage with an air ventilation system as an alternative to conventional cages for the efficacy testing of mosquito repellents.

    PubMed

    Obermayr, U; Rose, A; Geier, M

    2010-11-01

    We have developed a novel test cage and improved method for the evaluation of mosquito repellents. The method is compatible with the United States Environmental Protection Agency, 2000 draft OPPTS 810.3700 Product Performance Test Guidelines for Testing of Insect Repellents. The Biogents cages (BG-cages) require fewer test mosquitoes than conventional cages and are more comfortable for the human volunteers. The novel cage allows a section of treated forearm from a volunteer to be exposed to mosquito probing through a window. This design minimizes residual contamination of cage surfaces with repellent. In addition, an air ventilation system supplies conditioned air to the cages after each single test, to flush out and prevent any accumulation of test substances. During biting activity tests, the untreated skin surface does not receive bites because of a screen placed 150 mm above the skin. Compared with the OPPTS 810.3700 method, the BG-cage is smaller (27 liters, compared with 56 liters) and contains 30 rather than hundreds of blood-hungry female mosquitoes. We compared the performance of a proprietary repellent formulation containing 20% KBR3023 with four volunteers on Aedes aegypti (L.) (Diptera: Culicidae) in BG- and conventional cages. Repellent protection time was shorter in tests conducted with conventional cages. The average 95% protection time was 4.5 +/- 0.4 h in conventional cages and 7.5 +/- 0.6 h in the novel BG-cages. The protection times measured in BG-cages were more similar to the protection times determined with these repellents in field tests.

  17. Diagnosing AIRS Sampling with CloudSat Cloud Classes

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric; Yue, Qing; Guillaume, Alexandre; Kahn, Brian

    2011-01-01

    AIRS yield and sampling vary with cloud state. Careful utilization of collocated multiple satellite sensors is necessary. Profile differences between AIRS and ECMWF model analyses indicate that AIRS has high sampling and excellent accuracy for certain meteorological conditions. Cloud-dependent sampling biases may have large impact on AIRS L2 and L3 data in climate research. MBL clouds / lower tropospheric stability relationship is one example. AIRS and CloudSat reveal a reasonable climatology in the MBL cloud regime despite limited sampling in stratocumulus. Thermodynamic parameters such as EIS derived from AIRS data map these cloud conditions successfully. We are working on characterizing AIRS scenes with mixed cloud types.

  18. Evaluation of Legionella Air Contamination in Healthcare Facilities by Different Sampling Methods: An Italian Multicenter Study.

    PubMed

    Montagna, Maria Teresa; De Giglio, Osvalda; Cristina, Maria Luisa; Napoli, Christian; Pacifico, Claudia; Agodi, Antonella; Baldovin, Tatjana; Casini, Beatrice; Coniglio, Maria Anna; D'Errico, Marcello Mario; Delia, Santi Antonino; Deriu, Maria Grazia; Guida, Marco; Laganà, Pasqualina; Liguori, Giorgio; Moro, Matteo; Mura, Ida; Pennino, Francesca; Privitera, Gaetano; Romano Spica, Vincenzo; Sembeni, Silvia; Spagnolo, Anna Maria; Tardivo, Stefano; Torre, Ida; Valeriani, Federica; Albertini, Roberto; Pasquarella, Cesira

    2017-06-22

    Healthcare facilities (HF) represent an at-risk environment for legionellosis transmission occurring after inhalation of contaminated aerosols. In general, the control of water is preferred to that of air because, to date, there are no standardized sampling protocols. Legionella air contamination was investigated in the bathrooms of 11 HF by active sampling (Surface Air System and Coriolis ® μ) and passive sampling using settling plates. During the 8-hour sampling, hot tap water was sampled three times. All air samples were evaluated using culture-based methods, whereas liquid samples collected using the Coriolis ® μ were also analyzed by real-time PCR. Legionella presence in the air and water was then compared by sequence-based typing (SBT) methods. Air contamination was found in four HF (36.4%) by at least one of the culturable methods. The culturable investigation by Coriolis ® μ did not yield Legionella in any enrolled HF. However, molecular investigation using Coriolis ® μ resulted in eight HF testing positive for Legionella in the air. Comparison of Legionella air and water contamination indicated that Legionella water concentration could be predictive of its presence in the air. Furthermore, a molecular study of 12 L. pneumophila strains confirmed a match between the Legionella strains from air and water samples by SBT for three out of four HF that tested positive for Legionella by at least one of the culturable methods. Overall, our study shows that Legionella air detection cannot replace water sampling because the absence of microorganisms from the air does not necessarily represent their absence from water; nevertheless, air sampling may provide useful information for risk assessment. The liquid impingement technique appears to have the greatest capacity for collecting airborne Legionella if combined with molecular investigations.

  19. Evaluation of Legionella Air Contamination in Healthcare Facilities by Different Sampling Methods: An Italian Multicenter Study

    PubMed Central

    Montagna, Maria Teresa; De Giglio, Osvalda; Cristina, Maria Luisa; Napoli, Christian; Pacifico, Claudia; Agodi, Antonella; Baldovin, Tatjana; Casini, Beatrice; Coniglio, Maria Anna; D’Errico, Marcello Mario; Delia, Santi Antonino; Deriu, Maria Grazia; Guida, Marco; Laganà, Pasqualina; Liguori, Giorgio; Moro, Matteo; Mura, Ida; Pennino, Francesca; Privitera, Gaetano; Romano Spica, Vincenzo; Sembeni, Silvia; Spagnolo, Anna Maria; Tardivo, Stefano; Torre, Ida; Valeriani, Federica; Albertini, Roberto; Pasquarella, Cesira

    2017-01-01

    Healthcare facilities (HF) represent an at-risk environment for legionellosis transmission occurring after inhalation of contaminated aerosols. In general, the control of water is preferred to that of air because, to date, there are no standardized sampling protocols. Legionella air contamination was investigated in the bathrooms of 11 HF by active sampling (Surface Air System and Coriolis®μ) and passive sampling using settling plates. During the 8-hour sampling, hot tap water was sampled three times. All air samples were evaluated using culture-based methods, whereas liquid samples collected using the Coriolis®μ were also analyzed by real-time PCR. Legionella presence in the air and water was then compared by sequence-based typing (SBT) methods. Air contamination was found in four HF (36.4%) by at least one of the culturable methods. The culturable investigation by Coriolis®μ did not yield Legionella in any enrolled HF. However, molecular investigation using Coriolis®μ resulted in eight HF testing positive for Legionella in the air. Comparison of Legionella air and water contamination indicated that Legionella water concentration could be predictive of its presence in the air. Furthermore, a molecular study of 12 L. pneumophila strains confirmed a match between the Legionella strains from air and water samples by SBT for three out of four HF that tested positive for Legionella by at least one of the culturable methods. Overall, our study shows that Legionella air detection cannot replace water sampling because the absence of microorganisms from the air does not necessarily represent their absence from water; nevertheless, air sampling may provide useful information for risk assessment. The liquid impingement technique appears to have the greatest capacity for collecting airborne Legionella if combined with molecular investigations. PMID:28640202

  20. The impact of satellite temperature soundings on the forecasts of a small national meteorological service

    NASA Technical Reports Server (NTRS)

    Wolfson, N.; Thomasell, A.; Alperson, Z.; Brodrick, H.; Chang, J. T.; Gruber, A.; Ohring, G.

    1984-01-01

    The impact of introducing satellite temperature sounding data on a numerical weather prediction model of a national weather service is evaluated. A dry five level, primitive equation model which covers most of the Northern Hemisphere, is used for these experiments. Series of parallel forecast runs out to 48 hours are made with three different sets of initial conditions: (1) NOSAT runs, only conventional surface and upper air observations are used; (2) SAT runs, satellite soundings are added to the conventional data over oceanic regions and North Africa; and (3) ALLSAT runs, the conventional upper air observations are replaced by satellite soundings over the entire model domain. The impact on the forecasts is evaluated by three verification methods: the RMS errors in sea level pressure forecasts, systematic errors in sea level pressure forecasts, and errors in subjective forecasts of significant weather elements for a selected portion of the model domain. For the relatively short range of the present forecasts, the major beneficial impacts on the sea level pressure forecasts are found precisely in those areas where the satellite sounding are inserted and where conventional upper air observations are sparse. The RMS and systematic errors are reduced in these regions. The subjective forecasts of significant weather elements are improved with the use of the satellite data. It is found that the ALLSAT forecasts are of a quality comparable to the SAR forecasts.

  1. Baxter Community—High Performance Green Building

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-02-16

    This case study describes the Baxter community built by David Weekley Homes, which is reducing their energy demand through a number of techniques including advanced air sealing techniques, the installation of SEER 14 air conditioners, and Low-e windows in conjunction with conventional framing and insulation.

  2. Temporal trends of Persistent Organic Pollutants (POPs) in arctic air: 20 years of monitoring under the Arctic Monitoring and Assessment Programme (AMAP).

    PubMed

    Hung, Hayley; Katsoyiannis, Athanasios A; Brorström-Lundén, Eva; Olafsdottir, Kristin; Aas, Wenche; Breivik, Knut; Bohlin-Nizzetto, Pernilla; Sigurdsson, Arni; Hakola, Hannele; Bossi, Rossana; Skov, Henrik; Sverko, Ed; Barresi, Enzo; Fellin, Phil; Wilson, Simon

    2016-10-01

    Temporal trends of Persistent Organic Pollutants (POPs) measured in Arctic air are essential in understanding long-range transport to remote regions and to evaluate the effectiveness of national and international chemical control initiatives, such as the Stockholm Convention (SC) on POPs. Long-term air monitoring of POPs is conducted under the Arctic Monitoring and Assessment Programme (AMAP) at four Arctic stations: Alert, Canada; Stórhöfði, Iceland; Zeppelin, Svalbard; and Pallas, Finland, since the 1990s using high volume air samplers. Temporal trends observed for POPs in Arctic air are summarized in this study. Most POPs listed for control under the SC, e.g. polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethanes (DDTs) and chlordanes, are declining slowly in Arctic air, reflecting the reduction of primary emissions during the last two decades and increasing importance of secondary emissions. Slow declining trends also signifies their persistence and slow degradation under the Arctic environment, such that they are still detectable after being banned for decades in many countries. Some POPs, e.g. hexachlorobenzene (HCB) and lighter PCBs, showed increasing trends at specific locations, which may be attributable to warming in the region and continued primary emissions at source. Polybrominated diphenyl ethers (PBDEs) do not decline in air at Canada's Alert station but are declining in European Arctic air, which may be due to influence of local sources at Alert and the much higher historical usage of PBDEs in North America. Arctic air samples are screened for chemicals of emerging concern to provide information regarding their environmental persistence (P) and long-range transport potential (LRTP), which are important criteria for classification as a POP under SC. The AMAP network provides consistent and comparable air monitoring data of POPs for trend development and acts as a bridge between national monitoring programs and SC's Global Monitoring Plan (GMP). Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  3. Biobriefcase aerosol collector

    DOEpatents

    Bell, Perry M [Tracy, CA; Christian, Allen T [Madison, WI; Bailey, Christopher G [Pleasanton, CA; Willis, Ladona [Manteca, CA; Masquelier, Donald A [Tracy, CA; Nasarabadi, Shanavaz L [Livermore, CA

    2009-09-22

    A system for sampling air and collecting particles entrained in the air that potentially include bioagents. The system comprises providing a receiving surface, directing a liquid to the receiving surface and producing a liquid surface. Collecting samples of the air and directing the samples of air so that the samples of air with particles entrained in the air impact the liquid surface. The particles potentially including bioagents become captured in the liquid. The air with particles entrained in the air impacts the liquid surface with sufficient velocity to entrain the particles into the liquid but cause minor turbulence. The liquid surface has a surface tension and the collector samples the air and directs the air to the liquid surface so that the air with particles entrained in the air impacts the liquid surface with sufficient velocity to entrain the particles into the liquid, but cause minor turbulence on the surface resulting in insignificant evaporation of the liquid.

  4. Development and testing of a portable wind sensitive directional air sampler

    NASA Technical Reports Server (NTRS)

    Deyo, J.; Toma, J.; King, R. B.

    1975-01-01

    A portable wind sensitive directional air sampler was developed as part of an air pollution source identification system. The system is designed to identify sources of air pollution based on the directional collection of field air samples and their analysis for TSP and trace element characteristics. Sources can be identified by analyzing the data on the basis of pattern recognition concepts. The unit, designated Air Scout, receives wind direction signals from an associated wind vane. Air samples are collected on filter slides using a standard high volume air sampler drawing air through a porting arrangement which tracks the wind direction and permits collection of discrete samples. A preset timer controls the length of time each filter is in the sampling position. At the conclusion of the sampling period a new filter is automatically moved into sampling position displacing the previous filter to a storage compartment. Thus the Air Scout may be set up at a field location, loaded with up to 12 filter slides, and left to acquire air samples automatically, according to the wind, at any timer interval desired from 1 to 30 hours.

  5. Fissureless fissure-last video-assisted thoracoscopic lobectomy for all lung lobes: a better alternative to decrease the incidence of prolonged air leak?

    PubMed

    Stamenovic, Davor; Bostanci, Korkut; Messerschmidt, Antje; Jahn, Tillmann; Schneider, Thomas

    2016-07-01

    Prolonged air leak (PAL) after major lung resections is a common postoperative complication that leads to extended length of hospital stay (LOS) and increased hospital costs. Dissection of the lung tissue through the fissure may increase the incidence of PAL especially in the patients with incomplete fissures. The objective of this study was to evaluate the impact of the fissureless fissure-last technique in VATS lobectomy on immediate outcome, especially relating to air leak and LOS. This is an observational analysis on prospectively collected data of a single thoracic surgery unit. A total of 54 consecutive patients underwent VATS lobectomy and mediastinal lymphadenectomy-in 24 patients conventional VATS lobectomy (Group 1), in 30 patients fissureless VATS lobectomy (Group 2) was performed. The two groups were compared according to preoperative, operative and postoperative parameters. No differences were found when comparing patient characteristics, operation time (M1 = 185 min; M2 = 176 min; P = 0.52) and number of staplers used (M1 = 6.2; M2 = 7.7; P = 0.088). The presence of air leak (P = 0.004; RR = 3.5), PAL (P = 0.003; RR = 10), in days with chest tube (M1 = 7.2; M2 = 4.2; P = 0.028) and LOS (M1 = 12.7; M2 = 8.9; P = 0.020) was significantly more frequent in patients that underwent conventional VATS lobectomy. Focusing on the air leak, significance was present in male gender (P = 0.034; RR = 2.41), higher ASA (M1 = 3.04; M2 = 2.67; P = 0.012), postoperative complications other than air leak (P = 0.001; RR = 5.78) and age between groups with and without air leak (M1 = 63.9; M2 = 74.1; P < 0.001). Fissureless fissure-last VATS lobectomy is a feasible and equivalent to conventional VATS lobectomy in terms of operation time, stapler use and complications. Fissureless fissure-last VATS lobectomy, however, appears to be a superior technique to conventional VATS lobectomy in terms of preventing PAL and reducing the LOS. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  6. Airblast Simulator Studies.

    DTIC Science & Technology

    1984-02-01

    RAREFACTION WAVE ELIMINATOR CONSIDERATIONS 110 5.1 FLIP CALCULATIONS 110 5.2 A PASSIVE/ACTIVE RWE 118 6 DISTRIBUTED FUEL AIR EXPLOSIVES 120 REFERENCES 123 TA...conventional and distributed-charge fuel- air explosive charges used in a study of the utility of distributed charge FAE systems for blast simulation. The...limited investigation of distributed charge fuel air explosive configurations for blast simulator applications. During the course of this study

  7. 14 CFR 221.105 - Special notice of limited liability for death or injury under the Warsaw Convention.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... air carrier and foreign air carrier which, to any extent, avails itself of the limitation on liability... statement prescribed herein shall be printed in type at least as large as 10-point modern type and in ink... with the ticket or attached to the ticket; or (iii) The ticket envelope. (b) Each air carrier and...

  8. Germany and NATO

    DTIC Science & Technology

    1987-01-01

    its force targets, with 12 Army divi- sions, 15 naval squadrons, 10 air force wings, and two Nike antiaircraft battalions. -7 Equipping the Bundeswehr...replacement of nuclear- armed Nike r-,issiles with conventional Patriot and Roland Air Defen;e Systems that have no offensive capability whatsoever...that would intercept and destroy attacking aircraft penetrating NATO’s air defense missile belts. By 1980, the Nike high-altitude component of the NATO

  9. A Comprehensive Characterization of Microorganisms and Allergens in Spacecraft Environment

    NASA Technical Reports Server (NTRS)

    Castro, V.A.; Ott, C.M.; Garcia, V.M.; John, J.; Buttner, M.P.; Cruz, P.; Pierson, D.L.

    2009-01-01

    The determination of risk from infectious disease during long-duration missions is composed of several factors including the concentration and the characteristics of the infectious agent. Thus, a thorough knowledge of the microorganisms aboard spacecraft is essential in mitigating infectious disease risk to the crew. While stringent steps are taken to minimize the transfer of potential pathogens to spacecraft, several medically significant organisms have been isolated from both the Mir and International Space Station (ISS). Historically, the method for isolation and identification of microorganisms from spacecraft environmental samples depended upon their growth on culture media. Unfortunately, only a fraction of the organisms may grow on a culture medium, potentially omitting those microorganisms whose nutritional and physical requirements for growth are not met. Thus, several pathogens may not have been detected, such as Legionella pneumophila, the etiological agent of Legionnaire s disease. We hypothesize that environmental analysis using non-culture-based technologies will reveal microorganisms, allergens, and microbial toxins not previously reported in spacecraft, allowing for a more complete health assessment. The development of techniques for this flight experiment, operationally named SWAB, has already provided advances in NASA laboratory processes and beneficial information toward human health risk assessment. The translation of 16S ribosomal DNA sequencing for the identification of bacteria from the SWAB experiment to nominal operations has increased bacterial speciation of environmental isolates from previous flights three fold compared to previous conventional methodology. The incorporation of molecular-based DNA fingerprinting using repetitive sequence-based polymerase chain reaction (rep-PCR) into the capabilities of the laboratory has provided a methodology to track microorganisms between crewmembers and their environment. Both 16S ribosomal DNA identification and bacterial fingerprinting have improved NASA s capability to better understand spacecraft environments and determine the source of contamination events. Preflight sampling has been completed for air, surface, and water samples. In-flight sample collection has been completed for a total of 8 air and surface sample collection sessions. In-flight hardware has performed well and the surface sampling device received positive feedback from the crew for its ease of use. While processing and analysis continue for these samples, early results have begun to provide information on the spacecraft environment. Using a method called Denaturing Gradient Gel Electrophoresis (DGGE), several air and samples were evaluated to determine the types of organisms that were present. Using only molecular techniques, DGGE does not depend on any microbial growth on culture media, allowing a more comprehensive assessment of the spacecraft interior. Preliminary results have identified several microorganisms that would not have been isolated using current technology, though none of these organisms would be considered medically significant. Interestingly, the isolation of Gram negative organisms is greater using DGGE than conventional media based isolation. The cause of this finding is unclear, though it may be the result of the technique s ability to isolate both viable and non-viable bacteria. The next phase of the SWAB sample analysis is the use of quantitative polymerase chain reaction (QPCR) to look for specific medically significant organisms. While not as broad as DGGE, QPCR is much more sensitive and may reveal findings that were not seen during the initial evaluation. Together, this information will lead toward an accurate microbial risk assessment to help set flight requirements to protect the safety, health, and performance of the crew.

  10. First survey of atmospheric heavy metal deposition in Kosovo using moss biomonitoring.

    PubMed

    Maxhuni, Albert; Lazo, Pranvera; Kane, Sonila; Qarri, Flora; Marku, Elda; Harmens, Harry

    2016-01-01

    Bryophytes act as bioindicators and bioaccumulators of metal deposition in the environment. The atmospheric deposition of Cd, Cr, Cu, Fe, Hg, Ni, Mn, Pb, and Zn in Kosovo was investigated by using carpet-forming moss species (Pseudocleropodium purum and Hypnum cupressiforme) as bioindicators. This research is part of the European moss survey coordinated by the ICP Vegetation, an International Cooperative Programme reporting on the effects of air pollution on vegetation to the UNECE Convention on Long-range Transboundary Air Pollution. Sampling was performed during the summer of 2011 at 25 sampling sites homogenously distributed over Kosovo. Unwashed, dried samples were digested by using wet digestion in Teflon tubes. The concentrations of metal elements were determined by atomic absorption spectrometry (AAS) equipped with flame and/or furnace systems. The heavy metal concentration in mosses reflected local emission sources. The data obtained in this study were compared with those of similar studies in neighboring countries and Europe (2010-2014 survey). The geographical distribution maps of the elements over the sampled territory were constructed using geographic information system (GIS) technology. The concentrations of Cr, Ni, Pb, and Zn were higher than the respective median values of Europe, suggesting that the zones with heavy vehicular traffic and industry emission input are important emitters of these elements. Selected zones are highly polluted particularly by Cd, Pb, Hg, and Ni. The statistical analyses revealed that a strong correlation exists between the Pb and Cd content in mosses, and the degree of pollution in the studied sites was assessed.

  11. Advanced Soil Moisture Network Technologies; Developments in Collecting in situ Measurements for Remote Sensing Missions

    NASA Astrophysics Data System (ADS)

    Moghaddam, M.; Silva, A. R. D.; Akbar, R.; Clewley, D.

    2015-12-01

    The Soil moisture Sensing Controller And oPtimal Estimator (SoilSCAPE) wireless sensor network has been developed to support Calibration and Validation activities (Cal/Val) for large scale soil moisture remote sensing missions (SMAP and AirMOSS). The technology developed here also readily supports small scale hydrological studies by providing sub-kilometer widespread soil moisture observations. An extensive collection of semi-sparse sensor clusters deployed throughout north-central California and southern Arizona provide near real time soil moisture measurements. Such a wireless network architecture, compared to conventional single points measurement profiles, allows for significant and expanded soil moisture sampling. The work presented here aims at discussing and highlighting novel and new technology developments which increase in situ soil moisture measurements' accuracy, reliability, and robustness with reduced data delivery latency. High efficiency and low maintenance custom hardware have been developed and in-field performance has been demonstrated for a period of three years. The SoilSCAPE technology incorporates (a) intelligent sensing to prevent erroneous measurement reporting, (b) on-board short term memory for data redundancy, (c) adaptive scheduling and sampling capabilities to enhance energy efficiency. A rapid streamlined data delivery architecture openly provides distribution of in situ measurements to SMAP and AirMOSS cal/val activities and other interested parties.

  12. Enhancement in sample collection for the detection of MDMA using a novel planar SPME (PSPME) device coupled to ion mobility spectrometry (IMS).

    PubMed

    Gura, Sigalit; Guerra-Diaz, Patricia; Lai, Hanh; Almirall, José R

    2009-07-01

    Trace detection of illicit drugs challenges the scientific community to develop improved sensitivity and selectivity in sampling and detection techniques. Ion mobility spectrometry (IMS) is one of the prominent trace detectors for illicit drugs and explosives, mostly due to its portability, high sensitivity and fast analysis. Current sampling methods for IMS rely on wiping suspected surfaces or withdrawing air through filters to collect particulates. These methods depend greatly on the particulates being bound onto surfaces or having sufficient vapour pressure to be airborne. Many of these compounds are not readily available in the headspace due to their low vapour pressure. This research presents a novel SPME device for enhanced air sampling and shows the use of optimized IMS by genetic algorithms to target volatile markers and/or odour signatures of illicit substances. The sampling method was based on unique static samplers, planar substrates coated with sol-gel polydimethyl siloxane (PDMS) nanoparticles, also known as planar solid-phase microextraction (PSPME). Due to its surface chemistry, high surface area and capacity, PSPME provides significant increases in sensitivity over conventional fibre SPME. The results show a 50-400 times increase in the detection capacity for piperonal, the odour signature of 3,4-methylenedioxymethamphetamine (MDMA). The PSPME-IMS technique was able to detect 600 ng of piperonal in a 30 s extraction from a quart-sized can containing 5 MDMA tablets, while detection using fibre SPME-IMS was not attainable. In a blind study of six cases suspected to contain varying amounts of MDMA in the tablets, PSPME-IMS successfully detected five positive cases and also produced no false positives or false negatives. One positive case had minimal amounts of MDMA resulting in a false negative response for fibre SPME-IMS.

  13. Air-assisted liquid-liquid microextraction by solidifying the floating organic droplets for the rapid determination of seven fungicide residues in juice samples.

    PubMed

    You, Xiangwei; Xing, Zhuokan; Liu, Fengmao; Zhang, Xu

    2015-05-22

    A novel air assisted liquid-liquid microextraction using the solidification of a floating organic droplet method (AALLME-SFO) was developed for the rapid and simple determination of seven fungicide residues in juice samples, using the gas chromatography with electron capture detector (GC-ECD). This method combines the advantages of AALLME and dispersive liquid-liquid microextraction based on the solidification of floating organic droplets (DLLME-SFO) for the first time. In this method, a low-density solvent with a melting point near room temperature was used as the extraction solvent, and the emulsion was rapidly formed by pulling in and pushing out the mixture of aqueous sample solution and extraction solvent for ten times repeatedly using a 10-mL glass syringe. After centrifugation, the extractant droplet could be easily collected from the top of the aqueous samples by solidifying it at a temperature lower than the melting point. Under the optimized conditions, good linearities with the correlation coefficients (γ) higher than 0.9959 were obtained and the limits of detection (LOD) varied between 0.02 and 0.25 μgL(-1). The proposed method was applied to determine the target fungicides in juice samples and acceptable recoveries ranged from 72.6% to 114.0% with the relative standard deviations (RSDs) of 2.3-13.0% were achieved. Compared with the conventional DLLME method, the newly proposed method will neither require a highly toxic chlorinated solvent for extraction nor an organic dispersive solvent in the application process; hence, it is more environmentally friendly. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Evaluation of thermal cooling mechanisms for laser application to teeth.

    PubMed

    Miserendino, L J; Abt, E; Wigdor, H; Miserendino, C A

    1993-01-01

    Experimental cooling methods for the prevention of thermal damage to dental pulp during laser application to teeth were compared to conventional treatment in vitro. Pulp temperature measurements were made via electrical thermistors implanted within the pulp chambers of extracted human third molar teeth. Experimental treatments consisted of lasing without cooling, lasing with cooling, laser pulsing, and high-speed dental rotary drilling. Comparisons of pulp temperature elevation measurements for each group demonstrated that cooling by an air and water spray during lasing significantly reduced heat transfer to dental pulp. Laser exposures followed by an air and water spray resulted in pulp temperature changes comparable to conventional treatment by drilling. Cooling by an air water spray with evacuation appears to be an effective method for the prevention of thermal damage to vital teeth following laser exposure.

  15. Fixing the DOTMLPF Handicap: Effectively Integrating the Conventional Combat Air Force Into Special Operations Forces Missions

    DTIC Science & Technology

    2010-04-01

    conventional aircrews pierce the veil of secrecy and truly learn about the SOF missions, capabilities, and limitations. These select aviators then walk...operators and 316 SOF banding together with local militias in Afghanistan and using airpower to defeat the Taliban and destroy Al Qaeda. 2 The...wing conventional aircraft. Named the Afghan Model, after its development in OEF, this strategy pairs SOF with indigenous fighters and overwhelming

  16. VapeCons: E-cigarette user conventions.

    PubMed

    Williams, Rebecca S

    2015-11-01

    E-cigarette 'vaping conventions' provide a venue for user social networking, parties, and 'try before you buy' access to a wide range of e-cigarette products. This study identifies and describes vaping conventions, raising awareness of this potentially problematic practice. Conventions were identified via Google searches in April and May 2014 and August 2015. Details captured included location, sponsors, admission cost, event features, and promotions. 41 distinct organizations have planned 90 vaping conventions in 37 different locations since 2010. Conventions promoted access to a wide range of product vendors, seminars, social interactions with other users, parties, gifts, vaping contests, and other events. E-cigarette use at conventions was encouraged. Vaping conventions promote e-cigarette use and social norms without public health having a voice to educate attendees about negative consequences of use. Future research should focus on the effects of attending these conventions on attendees and on indoor air quality in vapor-filled convention rooms.

  17. Effects of an Air-Powder Abrasive Device When Used during Periodontal Flap Surgery in Dogs.

    DTIC Science & Technology

    1983-01-01

    instru- ments, ultrasonic devices, air driven reciprocating hand- pieces, and air driven rotary handpieces (Schaffer, 1967). None of these techniques...system, the Prophy-Jet Mark IV C-100 , may be an alternative to conventional mechanical and chemical methods of detoxifying roots. The handpiece is...electric current and uses inlet air pressure of 65 to 100 p.s.i. and inlet water pressure of 25 to 60 p.s.i. The handpiece propels particles of the

  18. Integrated Nuclear and Conventional Theater Warfare Simulation (INWARS) Level III Specifications. Volume III. Air Combat Modeling.

    DTIC Science & Technology

    1978-07-24

    will include an implicit air function that will perform the air planning and requesting associated with the various headquarters. The decision structure...air headquarters (The ATAF/TAA) will be included in the CIC to perform the implementation of the decisions /goals of the C21 elements, 1-4...realistic fashion. Once the AMPs have been formed, the operational process of launching, mission implementation etc. is no longer keyed to the decision cycle

  19. A flow boiling microchannel thermosyphon for fuel cell thermal management

    NASA Astrophysics Data System (ADS)

    Garrity, Patrick Thomas

    To provide a high power density thermal management system for proton exchange membrane (PEM) fuel cell applications, a passively driven thermal management system was assembled to operate in a closed loop two-phase thermosyphon. The system has two major components; a microchannel evaporator plate and a condenser. The microchannel evaporator plate was fabricated with 56 square channels that have a 1 mm x 1 mm cross section and are 115 mm long. Experiments were conducted with a liquid cooled condenser with heat flux as the control variable. Measurements of mass flow rate, temperature field, and pressure drop have been made for the thermosyphon loop. A model is developed to predict the system characteristics such as the temperature and pressure fields, flow rate, flow regime, heat transfer coefficient, and maximum heat flux. When the system is subjected to a heat load that exceeds the maximum heat flux, an unstable flow regime is observed that causes flow reversal and eventual dryout near the evaporator plate wall. This undesirable phenomenon is modeled based on a quasi-steady state assumption, and the model is capable of predicting the heat flux at the onset of instability for quasi-steady two-phase flow. Another focus of this work is the performance of the condenser portion of the loop, which will be air cooled in practice. The aim is to reduce air side thermal resistance and increase the condenser performance, which is accomplished with extended surfaces. A testing facility is assembled to observe the air side heat transfer performance of three aluminum foam samples and three modified carbon foam samples, used as extended surfaces. The aluminum foam samples have a bulk density of 216 kilograms per cubic meter with pore sizes of 0.5, 1, and 2 mm. The modified carbon foam samples have bulk densities of 284, 317, and 400 kilograms per cubic meter and machined flow passages of 3.2 mm. in diameter. Each sample is observed under forced convection with air velocity as the control variable. Thermocouples and pressure taps are distributed axially along the test section and measurements of pressure and temperature are recorded for air velocities ranging from 1-6 meters per second. Using the Darcy-Forcheimer equation, the porosity is determined for each sample. The volumetric heat transfer coefficient is extracted by means of solving the coupled energy equations of both the solid and fluid respectively. Nusselt number is correlated with Reynolds number. The optimal foam configuration is explored based on a Coefficient of Performance, (COP), Compactness Factor (CF) and Power Density (PD). The COP is the ratio of total heat removed to electrical heat consumption of the blower, CF is the total heat removed per unit volume, and PD is the total heat removed per unit mass. These performance parameters are computed for a hypothetical heat exchanger using each foam sample at various fluid velocities. They are also compared against those for the hypothetical heat exchanger fitted with conventional louvered fins. Given a proper weighting function based on the importance of CF, COP, and PD in the condenser design, an optimal configuration for an air cooled condenser can be obtained for various operating conditions.

  20. Spray deposition inside tree canopies from a newly developed variable-rate air assisted sprayer

    USDA-ARS?s Scientific Manuscript database

    Conventional spray applications in orchards and ornamental nurseries are not target-oriented, resulting in significant waste of pesticides and contamination of the environment. To address this problem, a variable-rate air-assisted sprayer implementing laser scanning technology was developed to apply...

  1. 50 CFR 23.56 - What U.S. CITES document conditions do I need to follow?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... wildlife and plants, transport conditions must comply with the International Air Transport Association Live Animals Regulations (for animals) or the International Air Transport Association Perishable Cargo..., EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS (CONTINUED) CONVENTION ON INTERNATIONAL TRADE IN...

  2. Adaptive Sampling for Urban Air Quality through Participatory Sensing

    PubMed Central

    Zeng, Yuanyuan; Xiang, Kai

    2017-01-01

    Air pollution is one of the major problems of the modern world. The popularization and powerful functions of smartphone applications enable people to participate in urban sensing to better know about the air problems surrounding them. Data sampling is one of the most important problems that affect the sensing performance. In this paper, we propose an Adaptive Sampling Scheme for Urban Air Quality (AS-air) through participatory sensing. Firstly, we propose to find the pattern rules of air quality according to the historical data contributed by participants based on Apriori algorithm. Based on it, we predict the on-line air quality and use it to accelerate the learning process to choose and adapt the sampling parameter based on Q-learning. The evaluation results show that AS-air provides an energy-efficient sampling strategy, which is adaptive toward the varied outside air environment with good sampling efficiency. PMID:29099766

  3. High-speed broadband nanomechanical property quantification and imaging of life science materials using atomic force microscope

    NASA Astrophysics Data System (ADS)

    Ren, Juan

    Nanoscale morphological characterization and mechanical properties quantification of soft and biological materials play an important role in areas ranging from nano-composite material synthesis and characterization, cellular mechanics to drug design. Frontier studies in these areas demand the coordination between nanoscale morphological evolution and mechanical behavior variations through simultaneous measurement of these two aspects of properties. Atomic force microscope (AFM) is very promising in achieving such simultaneous measurements at high-speed and broadband owing to its unique capability in applying force stimuli and then, measuring the response at specific locations in a physiologically friendly environment with pico-newton force and nanometer spatial resolution. Challenges, however, arise as current AFM systems are unable to account for the complex and coupled dynamics of the measurement system and probe-sample interaction during high-speed imaging and broadband measurements. In this dissertation, the creation of a set of dynamics and control tools to probe-based high-speed imaging and rapid broadband nanomechanical spectroscopy of soft and biological materials are presented. Firstly, advanced control-based approaches are presented to improve the imaging performance of AFM imaging both in air and in liquid. An adaptive contact mode (ACM) imaging scheme is proposed to replace the traditional contact mode (CM) imaging by addressing the major concerns in both the speed and the force exerted to the sample. In this work, the image distortion caused by the topography tracking error is accounted for in the topography quantification and the quantified sample topography is utilized in a gradient-based optimization method to adjust the cantilever deflection set-point for each scanline closely around the minimal level needed for maintaining a stable probe-sample contact, and a data-driven iterative feedforward control that utilizes a prediction of the next-line tracking is implemented to enhance the sample topography tracking. An adaptive multi-loop mode (AMLM) imaging approach is proposed to substantially increase the imaging speed of tapping mode (TM) while preserving the advantages of TM over CM by integrating an inner-outer feedback control loop to regulate the TM-deflection on top of the conventional TM-amplitude feedback control to improve the sample topography tracking. Experiments demonstrated that the proposed ACM and AMLM are capable of increasing the imaging speed by at least 20 times for conventional contact and tapping mode imaging, respectively, with no loss of imaging quality and well controlled tip-sample interaction force. In addition, an adaptive mode imaging for in-liquid topography quantification on live cells is presented. The experiment results demonstrated that instead of keeping constant scanning speed, the proposed speed optimization scheme is able to increase the imaging speed on live human prostate cancer cells by at least eight-fold with no loss of imaging quality. Secondly, control based approaches to accurate nanomechanical quantification on soft materials for both broadband and in-liquid force-curve measurements are proposed to address the adverse effects caused by the system coupling dynamics and the cantilever acceleration, which were not compensated for by the conventional AFM measurement approach. The proposed nanomechanical measurement approaches are demonstrated through experiments to measure the viscoelastic properties of different polymer samples in air and live human cells in liquid to study the variation of rate-dependent elastic modulus of cervix cancer cell during the epithelial-mesenchymal transition process.

  4. [Change in soil enzymes activities after adding biochar or straw by fluorescent microplate method].

    PubMed

    Zhang, Yu-Lan; Chen, Li-Jun; Duan, Zheng-Hu; Wu, Zhi-Jie; Sun, Cai-Xia; Wang, Jun-Yu

    2014-02-01

    The present work was aimed to study soil a-glucosidase and beta-glucosidase activities of and red soils based on fluorescence detection method combined with 96 microplates with TECAN Infinite 200 Multi-Mode Microplate Reader. We added biochar or straw (2.5 g air dry sample/50g air dry soil sample) into and red soils and the test was carried under fixed temperature and humidity condition (25 degrees C, 20% soil moisture content). The results showed that straw addition enhances soil alpha-glucosidase and beta-glucosidase activities, beta-glucosidase activity stimulated by rice straw treatment was higher than that of corn straw treatment, and activity still maintains strong after 40 days, accounting for increasing soil carbon transformation with straw inputting. Straw inputting increased soil nutrients contents and may promote microbial activity, which also lead to the increase oin enzyme Straw inputting increased soil nutrients contents and may promote microbial activity, which also lead to the increase oin enzyme activities. Different effects of straw kinds may be related to material source that needs further research. However, biochar inputting has little effect on soil alpha-glucosidase and beta-glucosidase activity. Biochar contains less available nutrients than straw and have degradation-resistant characteristics. Compared with the conventional spectrophotometric method, fluorescence microplate method is more sensitive to soil enzyme activities in suspension liquid, which can be used in a large number of samples. In brief, fluorescence microplate method is fast, accurate, and simple to determine soil enzymes activities.

  5. Development of methodologies for identification and quantification of hazardous air pollutants from turbine engine emissions.

    PubMed

    Anneken, David; Striebich, Richard; DeWitt, Matthew J; Klingshirn, Christopher; Corporan, Edwin

    2015-03-01

    Aircraft turbine engines are a significant source of particulate matter (PM) and gaseous emissions in the vicinity of airports and military installations. Hazardous air pollutants (HAPs) (e.g., formaldehyde, benzene, naphthalene and other compounds) associated with aircraft emissions are an environmental concern both in flight and at ground level. Therefore, effective sampling, identification, and accurate measurement of these trace species are important to assess their environmental impact. This effort evaluates two established ambient air sampling and analysis methods, U.S. Environmental Protection Agency (EPA) Method TO-11A and National Institute for Occupational Safety and Health (NIOSH) Method 1501, for potential use to quantify HAPs from aircraft turbine engines. The techniques were used to perform analysis of the exhaust from a T63 turboshaft engine, and were examined using certified gas standards transferred through the heated sampling systems used for engine exhaust gaseous emissions measurements. Test results show that the EPA Method TO-11A (for aldehydes) and NIOSH Method 1501 (for semivolatile hydrocarbons) were effective techniques for the sampling and analysis of most HAPs of interest. Both methods showed reasonable extraction efficiencies of HAP species from the sorbent tubes, with the exception of acrolein, styrene, and phenol, which were not well quantified. Formaldehyde measurements using dinitrophenylhydrazine (DNPH) tubes (EPA method TO-11A) were accurate for gas-phase standards, and compared favorably to measurements using gas-phase Fourier-transform infrared (FTIR) spectroscopy. In general, these two standard methodologies proved to be suitable techniques for field measurement of turbine engine HAPs within a reasonable (5-10 minutes) sampling period. Details of the tests, the analysis methods, calibration procedures, and results from the gas standards and T63 engine tested using a conventional JP-8 jet fuel are provided. HAPs from aviation-related sources are important because of their adverse health and environmental impacts in and around airports and flight lines. Simpler, more convenient techniques to measure the important HAPs, especially aldehydes and volatile organic HAPs, are needed to provide information about their occurrence and assist in the development of engines that emit fewer harmful emissions.

  6. Design, construction, testing and evaluation of a residential ice storage air conditioning system

    NASA Astrophysics Data System (ADS)

    Santos, J. J.; Ritz, T. A.

    1982-12-01

    The experimental system was used to supply cooling to a single wide trailer and performance data were compared to a conventional air conditioning system of the some capacity. Utility rate information was collected from over one hundred major utility companies and used to evaluate economic comparison of the two systems. The ice storage system utilized reduced rate time periods to accommodate ice while providing continuous cooling to the trailer. The economic evaluation resulted in finding that the ice storage system required over 50% more energy than the conventional system. Although a few of the utility companies offered rate structures which would result in savings of up to $200 per year, this would not be enough to offset higher initial costs over the life of the storage system. Recommendations include items that would have to be met in order for an ice storage system to be an economically viable alternative to the conventional system.

  7. Survey of Aerothermodynamics Facilities Useful for the Design of Hypersonic Vehicles Using Air-Breathing Propulsion

    NASA Technical Reports Server (NTRS)

    Arnold, James O.; Deiwert, George S.

    1997-01-01

    This paper surveys the use of aerothermodynamic facilities which have been useful in the study of external flows and propulsion aspects of hypersonic, air-breathing vehicles. While the paper is not a survey of all facilities, it covers the utility of shock tunnels and conventional hypersonic blow-down facilities which have been used for hypersonic air-breather studies. The problems confronting researchers in the field of aerothermodynamics are outlined. Results from the T5 GALCIT tunnel for the shock-on lip problem are outlined. Experiments on combustors and short expansion nozzles using the semi-free jet method have been conducted in large shock tunnels. An example which employed the NASA Ames 16-Inch shock tunnel is outlined, and the philosophy of the test technique is described. Conventional blow-down hypersonic wind tunnels are quite useful in hypersonic air-breathing studies. Results from an expansion ramp experiment, simulating the nozzle on a hypersonic air-breather from the NASA Ames 3.5 Foot Hypersonic wind tunnel are summarized. Similar work on expansion nozzles conducted in the NASA Langley hypersonic wind tunnel complex is cited. Free-jet air-frame propulsion integration and configuration stability experiments conducted at Langley in the hypersonic wind tunnel complex on a small generic model are also summarized.

  8. Pilot demonstration of energy-efficient membrane bioreactor (MBR) using reciprocating submerged membrane.

    PubMed

    Ho, Jaeho; Smith, Shaleena; Patamasank, Jaren; Tontcheva, Petia; Kim, Gyu Dong; Roh, Hyung Keun

    2015-03-01

    Membrane bioreactor (MBR) is becoming popular for advanced wastewater treatment and water reuse. Air scouring to "shake" the membrane fibers is most suitable and applicable to maintain filtration without severe and rapidfouling. However, membrane fouling mitigating technologies are energy intensive. The goal of this research is to develop an alternative energy-saving MBR system to reduce energy consumption; a revolutionary system that will directly compete with air scouring technologies currently in the membrane water reuse market. The innovative MBR system, called reciprocation MBR (rMBR), prevents membrane fouling without the use of air scouring blowers. The mechanism featured is a mechanical reciprocating membrane frame that uses inertia to prevent fouling. Direct strong agitation of the fiber is also beneficial for the constant removal of solids built up on the membrane surface. The rMBR pilot consumes less energy than conventional coarse air scouring MBR systems. Specific energy consumption for membrane reciprocation for the pilot rMBR system was 0.072 kWh/m3 permeate produced at 40 LMH, which is 75% less than the conventional air scouring in an MBR system (0.29 kWh/m3). Reciprocation of the hollow-fiber membrane can overcome the hydrodynamic limitations of air scouring or cross-flow membrane systems with less energy consumption and/or higher energy efficiency.

  9. European Union emission inventory report 1990-2008 : under the UNECE Convention on Long-range Transboundary Air Pollution (LRTAP)

    DOT National Transportation Integrated Search

    2010-07-01

    This report describes the EU27 emission trends for : a number of air pollutants for the period 19902008. : An improved gap-filling methodology used in : compiling this year's EU27 emission inventory : means that for the first time a complete...

  10. Low cost sensors for PM and related air pollutants in the US and India

    EPA Science Inventory

    Emerging air quality sensors have a variety of possible applications. If accurate and reliable, they have a number of benefits over conventional monitors. They are low-cost, lightweight, and have low power consumption. Because of their low cost, a dense array of sensors instal...

  11. Aerobiology in the operating room and its implications for working standards.

    PubMed

    Friberg, B; Friberg, S

    2005-01-01

    Two novel operating room (OR) ventilation concepts, i.e. the upward displacement or thermal convection system and the exponential ultra-clean laminar air flow (LAF) designed to function without extra walls, were evaluated from a bacteriological point of view. The thermal convection system (17 air changes/h) was compared with conventional ventilation (16 air changes/h) with an air inlet at the ceiling and evacuation at floor level. The exponential LAF was compared with the vertical ultra-clean LAF and the horizontal ultra-clean LAF, both with extra side walls. The comparison was made using strictly standardized simulated operations and, except for the horizontal LAF, it was performed in the same OR where the type of ventilation was changed. In the different areas important for surgical asepsis, the thermal system resulted in a twofold to threefold increase in bacterial air and surface counts compared to the conventional system (statistical significance = p < 0.05-0.0001). The bacteriological efficiency of the exponential LAF was equal to the horizontal and vertical LAF units with extra walls in the OR, and all three systems easily fulfilled the criteria for ultra-clean air, i.e. bacteria-carrying particles < 10/m3. In the areas important for surgical asepsis the turbulent ventilation systems yielded highly significant correlation between air and surface contamination (p < 0.02-0.0006). No such correlation existed in the LAF systems.

  12. Influence of enamel conditioning on the shear bond strength of different adhesives.

    PubMed

    Brauchli, Lorenz; Muscillo, Teodoro; Steineck, Markus; Wichelhaus, Andrea

    2010-11-01

    Phosphoric acid etching is the gold standard for enamel conditioning. However, it is possible that air abrasion or a combination of air abrasion and etching might result in enhanced adhesion. The aim of this study was to investigate the effect of different enamel conditioning methods on the bond strength of six adhesives. Three different enamel conditioning procedures (phosphoric acid etching, air abrasion, air abrasion + phosphoric acid etching) were evaluated for their influence on the shear bond strength of six different adhesives (Transbond™ XT, Cool-Bond™, Fuji Ortho LC, Ultra Band-Lok, Tetric(®) Flow, Light-Bond™). Each group consisted of 15 specimens. Shear forces were measured with a universal testing machine. The scores of the Adhesive Remnant Index (ARI) were also analyzed. There were no significant differences between phosphoric acid etching and air abrasion + phosphoric acid etching. Air abrasion as a single conditioning technique led to significantly lower shear forces. The ARI scores did not correlate with the shear strengths measured. There were greater variations in shear forces for the different adhesives than for the conditioning techniques. The highest shear forces were found for the conventional composites Transbond™ XT and Cool- Bond™ in combination with conventional etching. Air abrasion alone and in combination with phosphoric acid etching showed no advantages compared with phosphoric acid etching alone and, therefore, cannot be recommended.

  13. Eight Year Climatologies from Observational (AIRS) and Model (MERRA) Data

    NASA Technical Reports Server (NTRS)

    Hearty, Thomas; Savtchenko, Andrey; Won, Young-In; Theobalk, Mike; Vollmer, Bruce; Manning, Evan; Smith, Peter; Ostrenga, Dana; Leptoukh, Greg

    2010-01-01

    We examine climatologies derived from eight years of temperature, water vapor, cloud, and trace gas observations made by the Atmospheric Infrared Sounder (AIRS) instrument flying on the Aqua satellite and compare them to similar climatologies constructed with data from a global assimilation model, the Modern Era Retrospective-Analysis for Research and Applications (MERRA). We use the AIRS climatologies to examine anomalies and trends in the AIRS data record. Since sampling can be an issue for infrared satellites in low earth orbit, we also use the MERRA data to examine the AIRS sampling biases. By sampling the MERRA data at the AIRS space-time locations both with and without the AIRS quality control we estimate the sampling bias of the AIRS climatology and the atmospheric conditions where AIRS has a lower sampling rate. While the AIRS temperature and water vapor sampling biases are small at low latitudes, they can be more than a few degrees in temperature or 10 percent in water vapor at higher latitudes. The largest sampling biases are over desert. The AIRS and MERRA data are available from the Goddard Earth Sciences Data and Information Services Center (GES DISC). The AIRS climatologies we used are available for analysis with the GIOVANNI data exploration tool. (see, http://disc.gsfc.nasa.gov).

  14. 77 FR 9625 - Presentation of Final Conventional Conformance Test Criteria and Common Air Interface (CAI...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-17

    ... Tests for Inclusion in the Program AGENCY: National Institute of Standards and Technology (NIST... meeting is to present the final requirements for CAI conventional conformance tests for inclusion in the... suitability for inclusion in the P25 CAP is below: Conformance tests should limit devices in the test...

  15. A special ionisation chamber for quality control of diagnostic and mammography X ray equipment.

    PubMed

    Costa, A M; Caldas, L V E

    2003-01-01

    A quality control program for X ray equipment used for conventional radiography and mammography requires the constancy check of the beam qualities in terms of the half-value layers. In this work, a special double-faced parallel-plate ionisation chamber was developed with inner electrodes of different materials, in a tandem system. Its application will be in quality control programs of diagnostic and mammography X ray equipment for confirmation of half-value layers previously determined by the conventional method. Moreover, the chamber also may be utilised for measurements of air kerma values (and air kerma rates) in X radiation fields used for conventional radiography and mammography. The chamber was studied in relation to the characteristics of saturation, ion collection efficiency, polarity effects, leakage current, and short-term stability. The energy dependence in response of each of the two faces of the chamber was determined over the conventional radiography and mammography X ray ranges (unattenuated beams). The different energy response of the two faces of the chamber allowed the formation of a tandem system useful for the constancy check of beam qualities.

  16. Preliminary analysis of hub and spoke air freight distribution system

    NASA Technical Reports Server (NTRS)

    Whitehead, A. H., Jr.

    1978-01-01

    A brief analysis is made of the hub and spoke air freight distribution system which would employ less than 15 hub centers world wide with very large advanced distributed-load freighters providing the line-haul delivery between hubs. This system is compared to a more conventional network using conventionally-designed long-haul freighters which travel between numerous major airports. The analysis calculates all of the transportation costs, including handling charges and pickup and delivery costs. The results show that the economics of the hub/spoke system are severely compromised by the extensive use of feeder aircraft to deliver cargo into and from the large freighter terminals. Not only are the higher costs for the smaller feeder airplanes disadvantageous, but their use implies an additional exchange of cargo between modes compared to truck delivery. The conventional system uses far fewer feeder airplanes, and in many cases, none at all. When feeder aircraft are eliminated from the hub/spoke system, however, that system is universally more economical than any conventional system employing smaller line-haul aircraft.

  17. Oxygen Selective Membranes for Li-Air (O2) Batteries

    PubMed Central

    Crowther, Owen; Salomon, Mark

    2012-01-01

    Lithium-air (Li-air) batteries have a much higher theoretical energy density than conventional lithium batteries and other metal air batteries, so they are being developed for applications that require long life. Water vapor from air must be prevented from corroding the lithium (Li) metal negative electrode during discharge under ambient conditions, i.e., in humid air. One method of protecting the Li metal from corrosion is to use an oxygen selective membrane (OSM) that allows oxygen into the cell while stopping or slowing the ingress of water vapor. The desired properties and some potential materials for OSMs for Li-air batteries are discussed and the literature is reviewed. PMID:24958173

  18. Air-insufflated high-definition dacryoendoscopy yields significantly better image quality than conventional dacryoendoscopy.

    PubMed

    Sasaki, Tsugihisa; Sounou, Tsutomu; Tsuji, Hideki; Sugiyama, Kazuhisa

    2017-01-01

    To facilitate the analysis of lacrimal conditions, we utilized high-definition dacryoendoscopy (HDD) and undertook observations with a pressure-controlled air-insufflation system. We report the safety and performance of HDD. In this retrospective, non-randomized clinical trial, 46 patients (14 males and 32 females; age range 39-91 years; mean age ± SD 70.3±12.0 years) who had lacrimal disorders were examined with HDD and conventional dacryoendoscopy (CD). The high-definition dacryoendoscope had 15,000 picture element image fibers and an advanced objective lens. Its outer diameter was 0.9-1.2 mm. Air insufflation was controlled at 0-20 kPa with a digital manometer-based pressure-controlled air-insufflation system to evaluate the quality of the image. The HDD had an air/saline irrigation channel between the outer sheath (outer diameter =1.2 mm) and the metal inner sheath of the endoscope. We used it and the CD in air, saline, and diluted milk saline with and without manual irrigation to quantitatively evaluate the effect of air pressure and saline irrigation on image quality. In vivo, the most significant improvement in image quality was demonstrated with air-insufflated (5-15 kPa) HDD, as compared with saline-irrigated HDD and saline-irrigated CD. No emphysema or damage was noted under observation with HDD. In vitro, no significant difference was demonstrated between air-insufflated HDD and saline-irrigated HDD. In vitro, the image quality of air-insufflated HDD was significantly improved as compared with that of saline-irrigated CD. Pressure-controlled (5-15 kPa) air-insufflated HDD is safe, and yields significantly better image quality than CD and saline-irrigated HDD.

  19. Effect of rolling bed on decubitus in bedridden nursing home patients.

    PubMed

    Izutsu, T; Matsui, T; Satoh, T; Tsuji, T; Sasaki, H

    1998-02-01

    Decubitus is one of the most difficult management problems encountered in bedridden elderly patients. Relief of pressure over decubitus is the most important principle of the management. We developed a rolling air cushion bed which turns the patient to a 15-degree inclined lateral position with an inflating ripple mattress, a longitudinally aligned air inflatable tube. The position of the patients was changed between right and left laterals and to supine every 15 minutes automatically. Nineteen bedridden patients with decubitus used the rolling air cushion bed for 3 months and 12 bedridden patients with decubitus used a conventional bed and had their position changes every 2 hours by care givers. Severity of decubitus was divided into 4 grades and the decubitus significantly improved from 2.8 (S.E. 0.2) to 2.0 (S.E. 0.3) after 3 months in patients using the rolling air cushion bed, while in patients with conventional beds it changed from 3.0 (S.E. 0.2) to 3.2 (S.E. 0.2) (not statistically significant). We suggest that the rolling air cushion bed would be beneficial to decubitus relief in bedridden elderly and may relieve labor by care givers.

  20. Consequences of air around an ionization chamber: Are existing solid phantoms suitable for reference dosimetry on an MR-linac?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hackett, S. L., E-mail: S.S.Hackett@umcutrecht.nl

    Purpose: A protocol for reference dosimetry for the MR-linac is under development. The 1.5 T magnetic field changes the mean path length of electrons in an air-filled ionization chamber but has little effect on the electron trajectories in a surrounding phantom. It is therefore necessary to correct the response of an ionization chamber for the influence of the magnetic field. Solid phantoms are used for dosimetry measurements on the MR-linac, but air is present between the chamber wall and phantom insert. This study aimed to determine if this air influences the ion chamber measurements on the MR-linac. The absolute responsemore » of the chamber and reproducibility of dosimetry measurements were assessed on an MR-linac in solid and water phantoms. The sensitivity of the chamber response to the distribution of air around the chamber was also investigated. Methods: Measurements were performed on an MR-linac and replicated on a conventional linac for five chambers. The response of three waterproof chambers was measured with air and with water between the chamber and the insert to measure the influence of the air volume on absolute chamber response. The distribution of air around the chamber was varied indirectly by rotating each chamber about the longitudinal chamber axis in a solid phantom and a water phantom (waterproof chambers only) and measuring the angular dependence of the chamber response, and varied directly by displacing the chamber in the phantom insert using a paper shim positioned at different orientations between the chamber casing and the insert. Results: The responses of the three waterproof chambers measured on the MR-linac were 0.7%–1.2% higher with water than air in the chamber insert. The responses of the chambers on the conventional linac changed by less than 0.3% when air in the insert was replaced with water. The angular dependence of the chambers ranged from 0.6% to 1.9% in the solid phantom on the MR-linac but was less than 0.5% in water on the MR-linac and less than 0.3% in the solid phantom on the conventional linac. Inserting a shim around the chamber induced changes of the chamber response in a magnetic field of up to 2.2%, but the change in chamber response on the conventional linac was less than 0.3%. Conclusions: The interaction between the magnetic field and secondary electrons in the air around the chamber reduces the charge collected from 0.7% to 1.2%. The large angular dependence of ion chambers measured in the plastic phantom in a magnetic field appears to arise from a change of air distribution as the chamber is moved within the insert, rather than an intrinsic isotropy of the chamber sensitivity to radiation. It is recommended that reference dosimetry measurements on the MR-linac can be performed only in water, rather than in existing plastic phantoms.« less

  1. Integrating conventional and inverse representation for face recognition.

    PubMed

    Xu, Yong; Li, Xuelong; Yang, Jian; Lai, Zhihui; Zhang, David

    2014-10-01

    Representation-based classification methods are all constructed on the basis of the conventional representation, which first expresses the test sample as a linear combination of the training samples and then exploits the deviation between the test sample and the expression result of every class to perform classification. However, this deviation does not always well reflect the difference between the test sample and each class. With this paper, we propose a novel representation-based classification method for face recognition. This method integrates conventional and the inverse representation-based classification for better recognizing the face. It first produces conventional representation of the test sample, i.e., uses a linear combination of the training samples to represent the test sample. Then it obtains the inverse representation, i.e., provides an approximation representation of each training sample of a subject by exploiting the test sample and training samples of the other subjects. Finally, the proposed method exploits the conventional and inverse representation to generate two kinds of scores of the test sample with respect to each class and combines them to recognize the face. The paper shows the theoretical foundation and rationale of the proposed method. Moreover, this paper for the first time shows that a basic nature of the human face, i.e., the symmetry of the face can be exploited to generate new training and test samples. As these new samples really reflect some possible appearance of the face, the use of them will enable us to obtain higher accuracy. The experiments show that the proposed conventional and inverse representation-based linear regression classification (CIRLRC), an improvement to linear regression classification (LRC), can obtain very high accuracy and greatly outperforms the naive LRC and other state-of-the-art conventional representation based face recognition methods. The accuracy of CIRLRC can be 10% greater than that of LRC.

  2. Effect of environment on fatigue failure of controlled memory wire nickel-titanium rotary instruments.

    PubMed

    Shen, Ya; Qian, Wei; Abtin, Houman; Gao, Yuan; Haapasalo, Markus

    2012-03-01

    This study examined the fatigue behavior of 2 types of nickel-titanium (NiTi) instruments made from a novel controlled memory NiTi wire (CM wire) under various environment conditions. Three conventional superelastic NiTi instruments of ProFile (Dentsply Maillefer, Ballaigues, Switzerland), Typhoon (Clinician's Choice Dental Products, New Milford, CT), and DS-SS0250425NEYY (Clinician's Choice Dental Products) and 2 new CM wire instruments of Typhoon CM and DS-SS0250425NEYY CM were subjected to rotational bending at the curvature of 35° in air, deionized water, 17% EDTA, or deionized water after immersion in 6% sodium hypochlorite for 25 minutes, and the number of revolutions of fracture (N(f)) was recorded. The fracture surface of all fragments was examined by a scanning electron microscope. The crack-initiation sites and the percentage of dimple area to the whole fracture cross-section were noted. Two new CM Wire instruments yielded an improvement of >4 to 9 times in N(f) than conventional NiTi files with the same design under various environments (P < .05). The fatigue life of 3 conventional superelastic NiTi instruments was similar under various environments, whereas the N(f) of 2 new CM Wire instruments was significantly longer in liquid media than in air (P < .05). The vast majority of CM instruments showed multiple crack origins, whereas most instruments made from conventional NiTi wire had one crack origin. The values of the area fraction occupied by the dimple region were significantly smaller on CM NiTi instruments than in conventional NiTi instruments under various environments (P < .05). Within the limitations of this study, the type of NiTi metal alloy (CM files vs conventional superelastic NiTi files) influences the cyclic fatigue resistance under various environments. The fatigue life of CM instruments is longer in liquid media than in air. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  3. Assessment of POPs in air from Spain using passive sampling from 2008 to 2015. Part II: Spatial and temporal observations of PCDD/Fs and dl-PCBs.

    PubMed

    Muñoz-Arnanz, Juan; Roscales, Jose L; Vicente, Alba; Ros, María; Barrios, Laura; Morales, Laura; Abad, Esteban; Jiménez, Begoña

    2018-09-01

    Time series (2008-2015) of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (dl-PCBs) in ambient air from the Spanish Monitoring Program were analyzed. A total of 321 samples were collected seasonally each year in 5 urban and 7 background sites by means of passive air sampling. Air concentrations were higher at urban than background sites (urban vs. background concentration ranges): PCDD/Fs (26.9-1010 vs. 20.0-357 fg/m 3 ), non-ortho PCBs (0.113-3.14 vs. 0.042-2.00 pg/m 3 ) and mono-ortho PCBs (0.644-41.3 vs. 0.500-32.8 pg/m 3 ). Results showed significant decreases from 2009 for non-ortho PCBs and PCDD/Fs as well as for WHO 2006 -TEQs. These declines were sharper, and sometimes only significant, in urban places resulting in converging levels at urban and background sites for these pollutants at the end of the study period. In contrast, mono-ortho PCBs did not show any significant variation but a steady flat temporal behavior in their concentrations, suggesting the existence of different sources between mono-ortho and non-ortho PCBs. Seasonality was observed for air burdens of all these POPs. PCDD/Fs were mostly measured at higher concentrations in colder than in hot seasons, and the opposite was true for dl-PCBs. Seasonal variations for PCDD/Fs appeared to be related to changes in their sources (e.g. domestic heating, open burning) rather than to temperature per se. In contrast, environmental temperature dependent factors (e.g. increased partitioning into the gas phase) drove seasonal variations in dl-PCBs instead of seasonal changes in their sources. Regarding spatial patterns, significant greater levels of PCDD/Fs and dl-PCBs were generally found in cities compared to background areas, pointing out the role of densely populated areas as sources for these pollutants in Spain. As proven by our results, long-term monitoring activities are essential to assess and understand temporal behaviors for these POPs, as well as to evaluate the achievement of Stockholm Convention objectives. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Uncertainties in monitoring of SVOCs in air caused by within-sampler degradation during active and passive air sampling

    NASA Astrophysics Data System (ADS)

    Melymuk, Lisa; Bohlin-Nizzetto, Pernilla; Prokeš, Roman; Kukučka, Petr; Přibylová, Petra; Vojta, Šimon; Kohoutek, Jiří; Lammel, Gerhard; Klánová, Jana

    2017-10-01

    Degradation of semivolatile organic compounds (SVOCs) occurs naturally in ambient air due to reactions with reactive trace gases (e.g., ozone, NOx). During air sampling there is also the possibility for degradation of SVOCs within the air sampler, leading to underestimates of ambient air concentrations. We investigated the possibility of this sampling artifact in commonly used active and passive air samplers for seven classes of SVOCs, including persistent organic pollutants (POPs) typically covered by air monitoring programs, as well as SVOCs of emerging concern. Two active air samplers were used, one equipped with an ozone denuder and one without, to compare relative differences in mass of collected compounds. Two sets of passive samplers were also deployed to determine the influence of degradation during longer deployment times in passive sampling. In active air samplers, comparison of the two sampling configurations suggested degradation of particle-bound polycyclic aromatic hydrocarbons (PAHs), with concentrations up to 2× higher in the denuder-equipped sampler, while halogenated POPs did not have clear evidence of degradation. In contrast, more polar, reactive compounds (e.g., organophosphate esters and current use pesticides) had evidence of losses in the sampler with denuder. This may be caused by the denuder itself, suggesting sampling bias for these compounds can be created when typical air sampling apparatuses are adapted to limit degradation. Passive air samplers recorded up to 4× higher concentrations when deployed for shorter consecutive sampling periods, suggesting that within-sampler degradation may also be relevant in passive air monitoring programs.

  5. Direct and precise determination of environmental radionuclides in solid materials using a modified Marinelli beaker and a HPGe detector.

    PubMed

    Seo, B K; Lee, K Y; Yoon, Y Y; Lee, D W

    2001-06-01

    A simple but precise detection method was studied for the determination of natural radionuclides using a conventional HPGe detector. A new aluminium beaker instead of a plastic Marinelli beaker was constructed and examined to reach radioactive equilibrium conditions between radon and its daughter elements without the escape of gaseous radon. Using this beaker fifteen natural radionuclides from three natural decay series could be determined by direct gamma-ray measurement and sixteen radionuclides could be determined indirectly after radioactive equilibrium had been reached. Analytical results from ground water were compared with those from conventional alpha spectroscopy and the results agreed well within 12% difference. Nitrogen gas purge was used to replace the surrounding air of the detector to obtain a stable background and reducing the interference of radon daughter nuclides in the atmosphere. The use of nitrogen purging and the aluminium Marinelli beaker results in an approximately tenfold increase of sensitivity and a decrease of the detection limit of 226Ra to about 0.74 Bq kg(-1) in soil samples.

  6. Synthetic Musk Fragrances in a Conventional Drinking Water Treatment Plant with Lime Softening

    PubMed Central

    Wombacher, William D.; Hornbuckle, Keri C.

    2009-01-01

    Synthetic musk fragrances are common personal care product additives and wastewater contaminants that are routinely detected in the environment. This study examines the presence eight synthetic musk fragrances (AHTN, HHCB, ATII, ADBI, AHMI, musk xylene, and musk ketone) in source water and the removal of these compounds as they flow through a Midwestern conventional drinking water plant with lime softening. The compounds were measured in water, waste sludge, and air throughout the plant. HHCB and AHTN were detected in 100% of the samples and at the highest concentrations. A mass balance on HHCB and AHTN was performed under warm and cold weather conditions. The total removal efficiency for HHCB and AHTN, which averaged between 67% to 89%, is dominated by adsorption to water softener sludge and its consequent removal by sludge wasting and media filtration. Volatilization, chlorine disinfection, and the disposal of backwash water play a minor role in the removal of both compounds. As a result of inefficient overall removal, HHCB and AHTN are a constant presence at low levels in finished drinking water. PMID:20126513

  7. Synthetic Musk Fragrances in a Conventional Drinking Water Treatment Plant with Lime Softening.

    PubMed

    Wombacher, William D; Hornbuckle, Keri C

    2009-11-01

    Synthetic musk fragrances are common personal care product additives and wastewater contaminants that are routinely detected in the environment. This study examines the presence eight synthetic musk fragrances (AHTN, HHCB, ATII, ADBI, AHMI, musk xylene, and musk ketone) in source water and the removal of these compounds as they flow through a Midwestern conventional drinking water plant with lime softening. The compounds were measured in water, waste sludge, and air throughout the plant. HHCB and AHTN were detected in 100% of the samples and at the highest concentrations. A mass balance on HHCB and AHTN was performed under warm and cold weather conditions. The total removal efficiency for HHCB and AHTN, which averaged between 67% to 89%, is dominated by adsorption to water softener sludge and its consequent removal by sludge wasting and media filtration. Volatilization, chlorine disinfection, and the disposal of backwash water play a minor role in the removal of both compounds. As a result of inefficient overall removal, HHCB and AHTN are a constant presence at low levels in finished drinking water.

  8. Fluorometric Method for Determining the Efficiency of Spun-Glass Air Filtration Media

    PubMed Central

    Sullivan, James F.; Songer, Joseph R.; Mathis, Raymond G.

    1967-01-01

    The procedures and equipment needed to measure filtration efficiency by means of fluorescent aerosols are described. The filtration efficiency of individual lots of spun-glass air filtration medium or of entire air filtration systems employing such media was determined. Data relating to the comparative evaluation of spun-glass filter media by means of the fluorometric method described, as well as by conventional biological procedures, are presented. PMID:6031433

  9. Impacts of Marcellus Shale Natural Gas Production on Regional Air Quality

    NASA Astrophysics Data System (ADS)

    Swarthout, R.; Russo, R. S.; Zhou, Y.; Mitchell, B.; Miller, B.; Lipsky, E. M.; Sive, B. C.

    2012-12-01

    Natural gas is a clean burning alternative to other fossil fuels, producing lower carbon dioxide (CO2) emissions during combustion. Gas deposits located within shale rock or tight sand formations are difficult to access using conventional drilling techniques. However, horizontal drilling coupled with hydraulic fracturing is now widely used to enhance natural gas extraction. Potential environmental impacts of these practices are currently being assessed because of the rapid expansion of natural gas production in the U.S. Natural gas production has contributed to the deterioration of air quality in several regions, such as in Wyoming and Utah, that were near or downwind of natural gas basins. We conducted a field campaign in southwestern Pennsylvania on 16-18 June 2012 to investigate the impact of gas production operations in the Marcellus Shale on regional air quality. A total of 235 whole air samples were collected in 2-liter electropolished stainless- steel canisters throughout southwestern Pennsylvania in a regular grid pattern that covered an area of approximately 8500 square km. Day and night samples were collected at each grid point and additional samples were collected near active wells, flaring wells, fluid retention reservoirs, transmission pipelines, and a processing plant to assess the influence of different stages of the gas production operation on emissions. The samples were analyzed at Appalachian State University for methane (CH4), CO2, C2-C10 nonmethane hydrocarbons (NMHCs), C1-C2 halocarbons, C1-C5 alkyl nitrates and selected reduced sulfur compounds. In-situ measurements of ozone (O3), CH4, CO2, nitric oxide (NO), total reactive nitrogen (NOy), formaldehyde (HCHO), and a range of volatile organic compounds (VOCs) were carried out at an upwind site and a site near active gas wells using a mobile lab. Emissions associated with gas production were observed throughout the study region. Elevated mixing ratios of CH4 and CO2 were observed in the southwest and northeast portions of the study area indicating multiple emission sources. We also present comparisons of VOC fingerprints observed in the Marcellus Shale to our previous observations of natural gas emissions from the Denver-Julesburg Basin in northeast Colorado to identify tracers for these different natural gas sources.

  10. Cost Evaluation of Dried Blood Spot Home Sampling as Compared to Conventional Sampling for Therapeutic Drug Monitoring in Children

    PubMed Central

    Martial, Lisa C.; Aarnoutse, Rob E.; Schreuder, Michiel F.; Henriet, Stefanie S.; Brüggemann, Roger J. M.; Joore, Manuela A.

    2016-01-01

    Dried blood spot (DBS) sampling for the purpose of therapeutic drug monitoring can be an attractive alternative for conventional blood sampling, especially in children. This study aimed to compare all costs involved in conventional sampling versus DBS home sampling in two pediatric populations: renal transplant patients and hemato-oncology patients. Total costs were computed from a societal perspective by adding up healthcare cost, patient related costs and costs related to loss of productivity of the caregiver. Switching to DBS home sampling was associated with a cost reduction of 43% for hemato-oncology patients (€277 to €158) and 61% for nephrology patients (€259 to €102) from a societal perspective (total costs) per blood draw. From a healthcare perspective, costs reduced with 7% for hemato-oncology patients and with 21% for nephrology patients. Total savings depend on the number of hospital visits that can be avoided by using home sampling instead of conventional sampling. PMID:27941974

  11. Cost Evaluation of Dried Blood Spot Home Sampling as Compared to Conventional Sampling for Therapeutic Drug Monitoring in Children.

    PubMed

    Martial, Lisa C; Aarnoutse, Rob E; Schreuder, Michiel F; Henriet, Stefanie S; Brüggemann, Roger J M; Joore, Manuela A

    2016-01-01

    Dried blood spot (DBS) sampling for the purpose of therapeutic drug monitoring can be an attractive alternative for conventional blood sampling, especially in children. This study aimed to compare all costs involved in conventional sampling versus DBS home sampling in two pediatric populations: renal transplant patients and hemato-oncology patients. Total costs were computed from a societal perspective by adding up healthcare cost, patient related costs and costs related to loss of productivity of the caregiver. Switching to DBS home sampling was associated with a cost reduction of 43% for hemato-oncology patients (€277 to €158) and 61% for nephrology patients (€259 to €102) from a societal perspective (total costs) per blood draw. From a healthcare perspective, costs reduced with 7% for hemato-oncology patients and with 21% for nephrology patients. Total savings depend on the number of hospital visits that can be avoided by using home sampling instead of conventional sampling.

  12. Generalizable, Electroless, Template-Assisted Synthesis and Electrocatalytic Mechanistic Understanding of Perovskite LaNiO3 Nanorods as Viable, Supportless Oxygen Evolution Reaction Catalysts in Alkaline Media.

    PubMed

    McBean, Coray L; Liu, Haiqing; Scofield, Megan E; Li, Luyao; Wang, Lei; Bernstein, Ashley; Wong, Stanislaus S

    2017-07-26

    The oxygen evolution reaction (OER) is a key reaction for water electrolysis cells and air-powered battery applications. However, conventional metal oxide catalysts, used for high-performing OER, tend to incorporate comparatively expensive and less abundant precious metals such as Ru and Ir, and, moreover, suffer from poor stability. To attempt to mitigate for all of these issues, we have prepared one-dimensional (1D) OER-active perovskite nanorods using a unique, simple, generalizable, and robust method. Significantly, our work demonstrates the feasibility of a novel electroless, seedless, surfactant-free, wet solution-based protocol for fabricating "high aspect ratio" LaNiO 3 and LaMnO 3 nanostructures. As the main focus of our demonstration of principle, we prepared as-synthesized LaNiO 3 rods and correlated the various temperatures at which these materials were annealed with their resulting OER performance. We observed generally better OER performance for samples prepared with lower annealing temperatures. Specifically, when annealed at 600 °C, in the absence of a conventional conductive carbon support, our as-synthesized LaNiO 3 rods not only evinced (i) a reasonable level of activity toward OER but also displayed (ii) an improved stability, as demonstrated by chronoamperometric measurements, especially when compared with a control sample of commercially available (and more expensive) RuO 2 .

  13. Effect of air removal with extracorporeal balloon inflation on incidence of asymptomatic cerebral embolism during cryoballoon ablation of atrial fibrillation.

    PubMed

    Tokuda, Michifumi; Matsuo, Seiichiro; Kato, Mika; Sato, Hidenori; Oseto, Hirotsuna; Okajima, Eri; Ikewaki, Hidetsugu; Isogai, Ryota; Tokutake, Kenichi; Yokoyama, Kenichi; Narui, Ryohsuke; Tanigawa, Shin-Ichi; Yamashita, Seigo; Inada, Keiichi; Yoshimura, Michihiro; Yamane, Teiichi

    2017-09-01

    Asymptomatic cerebral embolism (ACE) is sometimes detected after cryoballoon ablation of atrial fibrillation. The removal of air bubbles from the cryoballoon before utilization may reduce the rate of ACE. This study aims to compare the incidence of ACE between a conventional and a novel balloon massaging method during cryoballoon ablation. Of 175 consecutive patients undergoing initial cryoballoon ablation of paroxysmal atrial fibrillation, 60 (34.3%) patients underwent novel balloon massaging with extracorporeal balloon inflation in saline water (group N) before the cryoballoon was inserted into the body. The remaining 115 (65.7%) patients underwent conventional balloon massaging in saline water while the balloon remained folded (group C). Of those, 86 propensity score-matched patients were included. The baseline characteristics were similar between the 2 groups. In group N, even after balloon massaging in saline water was carefully performed, multiple air bubbles remained on the balloon surface when the cryoballoon was inflated in all cases. Postprocedural cerebral magnetic resonance imaging detected ACE in 14.0% of all patients. The incidence of ACE was significantly lower in group N than in group C (4.7% vs 23.3%; P = .01). According to multivariable analysis, the novel method was the sole factor associated with the presence of ACE (odds ratio 0.161; 95% confidence interval 0.033-0.736; P = .02). Preliminary removal of air bubbles in heparinized saline water with extracorporeal balloon inflation reduced the incidence of ACE. Since conventional balloon massaging failed to remove air bubbles completely, this novel balloon massaging method should be recommended before cryoballoon utilization. Copyright © 2017 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  14. Assessment of tobacco heating product THP1.0. Part 4: Characterisation of indoor air quality and odour.

    PubMed

    Forster, Mark; McAughey, John; Prasad, Krishna; Mavropoulou, Eleni; Proctor, Christopher

    2018-03-01

    The tobacco heating product THP1.0, which heats but does not burn tobacco, was tested as part of a modified-risk tobacco product assessment framework for its impacts on indoor air quality and residual tobacco smoke odour. THP1.0 heats the tobacco to less than 240 °C ± 5 °C during puffs. An environmentally controlled room was used to simulate ventilation conditions corresponding to residential, office and hospitality environments. An analysis of known tobacco smoke constituents, included CO, CO 2 , NO, NO 2 , nicotine, glycerol, 3-ethenyl pyridine, sixteen polycyclic aromatic hydrocarbons, eight volatile organic compounds, four carbonyls, four tobacco-specific nitrosamines and total aerosol particulate matter. Significant emissions reductions in comparison to conventional cigarettes were measured for THP1.0. Levels of nicotine, acetaldehyde, formaldehyde and particulate matter emitted from THP1.0 exceeded ambient air measurements, but were more than 90% reduced relative to cigarette smoke emissions within the laboratory conditions defined Residual tobacco smoke odour was assessed by trained sensory panels after exposure of cloth, hair and skin to both mainstream and environmental emissions from the test products. Residual tobacco smoke odour was significantly lower from THP1.0 than from a conventional cigarette. These data show that using THP1.0 has the potential to result in considerably reduced environmental emissions that affect indoor air quality relative to conventional cigarettes. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Dilute Oxygen Combustion Phase IV Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, M.F.

    2003-04-30

    Novel furnace designs based on Dilute Oxygen Combustion (DOC) technology were developed under subcontract by Techint Technologies, Coraopolis, PA, to fully exploit the energy and environmental capabilities of DOC technology and to provide a competitive offering for new furnace construction opportunities. Capital cost, fuel, oxygen and utility costs, NOx emissions, oxide scaling performance, and maintenance requirements were compared for five DOC-based designs and three conventional air5-fired designs using a 10-year net present value calculation. A furnace direct completely with DOC burners offers low capital cost, low fuel rate, and minimal NOx emissions. However, these benefits do not offset the costmore » of oxygen and a full DOC-fired furnace is projected to cost $1.30 per ton more to operate than a conventional air-fired furnace. The incremental cost of the improved NOx performance is roughly $6/lb NOx, compared with an estimated $3/lb. NOx for equ8pping a conventional furnace with selective catalytic reduction (SCCR) technology. A furnace fired with DOC burners in the heating zone and ambient temperature (cold) air-fired burners in the soak zone offers low capital cost with less oxygen consumption. However, the improvement in fuel rate is not as great as the full DOC-fired design, and the DOC-cold soak design is also projected to cost $1.30 per ton more to operate than a conventional air-fired furnace. The NOx improvement with the DOC-cold soak design is also not as great as the full DOC fired design, and the incremental cost of the improved NOx performance is nearly $9/lb NOx. These results indicate that a DOC-based furnace design will not be generally competitive with conventional technology for new furnace construction under current market conditions. Fuel prices of $7/MMBtu or oxygen prices of $23/ton are needed to make the DOC furnace economics favorable. Niche applications may exist, particularly where access to capital is limited or floor space limitations are critical. DOC technology will continue to have a highly competitive role in retrofit applications requiring increases in furnace productivity.« less

  16. Technology evaluation of heating, ventilation, and air conditioning for MIUS application

    NASA Technical Reports Server (NTRS)

    Gill, W. L.; Keough, M. B.; Rippey, J. O.

    1974-01-01

    Potential ways of providing heating, ventilation, and air conditioning for a building complex serviced by a modular integrated utility system (MIUS) are examined. Literature surveys were conducted to investigate both conventional and unusual systems to serve this purpose. The advantages and disadvantages of the systems most compatible with MIUS are discussed.

  17. Air pressures in wood frame walls

    Treesearch

    Anton TenWolde; Charles G. Carll; Vyto Malinauskas

    1998-01-01

    Wind pressures can play an important role in the wetting of exterior walls (driving rain). In response, the rain screen concept, including compartmentalization and air spaces, has been developed to provide pressure equalization and limit water entry into the wall. However, conventional construction such as wood lap siding has not been evaluated as to its ability to...

  18. 76 FR 72006 - Draft Interim Staff Guidance: Evaluations of Uranium Recovery Facility Surveys of Radon and Radon...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-21

    .... Discussion Uranium recovery facility licensees, including in-situ recovery facilities and conventional... Recovery Facility Surveys of Radon and Radon Progeny in Air and Demonstrations of Compliance AGENCY... Staff Guidance, ``Evaluations of Uranium Recovery Facility Surveys of Radon and Radon Progeny in Air and...

  19. Vapor compression heat pump system field tests at the TECH complex

    NASA Astrophysics Data System (ADS)

    Baxter, V. D.

    1985-07-01

    The Tennessee Energy Conservation In Housing (TECH) complex has been utilized since 1977 as a field test site for several novel and conventional heat pump systems for space conditioning and water heating. Systems tested include the Annual Cycle Energy System (ACES), solar assisted heat pumps (SAHP) both parallel and series, two conventional air-to-air heat pumps, an air-to-air heat pump with desuperheater water heater, and horizontal coil and multiple shallow vertical coil ground-coupled heat pumps (GCHP). A direct comparison of the measured annual performance of the test systems was not possible. However, a cursory examination revealed that the ACES had the best performance. However, its high cost makes it unlikely that it will achieve widespread use. Costs for the SAHP systems are similar to those of the ACES but their performance is not as good. Integration of water heating and space conditioning functions with a desuperheater yielded significant efficiency improvement at modest cost. The GCHP systems performed much better for heating than for cooling and may well be the most efficient alternative for residences in cold climates.

  20. Vapor compression heat pump system field tests at the tech complex

    NASA Astrophysics Data System (ADS)

    Baxter, Van D.

    1985-11-01

    The Tennessee Energy Conservation In Housing (TECH) complex has been utilized since 1977 as a field test site for several novel and conventional heat pump systems for space conditioning and water heating. Systems tested include the Annual Cycle Energy System (ACES), solar assisted heat pumps (SAHP) both parallel and series, two conventional air-to-air heat pumps, an air-to-air heat pump with desuperheater water heater, and horizontal coil and multiple shallow vertical coil ground-coupled heat pumps (GCHP). A direct comparison of the measured annual performance of the test systems was not possible. However, a cursory examination revealed that the ACES had the best performance, however, its high cost makes it unlikely that it will achieve wide-spread use. Costs for the SAHP systems are similar to those of the ACES but their performance is not as good. Integration of water heating and space conditioning functions with a desuperheater yielded significant efficiency improvement at modest cost. The GCHP systems performed much better for heating than for cooling and may well be the most efficient alternative for residences in cold climates.

  1. Preliminary analysis of long-range aircraft designs for future heavy airlift missions

    NASA Technical Reports Server (NTRS)

    Nelms, W. P., Jr.; Murphy, R.; Barlow, A.

    1976-01-01

    A computerized design study of very large cargo aircraft for the future heavy airlift mission was conducted using the Aircraft Synthesis program (ACSYNT). The study was requested by the Air Force under an agreement whereby Ames provides computerized design support to the Air Force Flight Dynamics Laboratory. This effort is part of an overall Air Force program to study advanced technology large aircraft systems. Included in the Air Force large aircraft program are investigations of missions such as heavy airlift, airborne missile launch, battle platform, command and control, and aerial tanker. The Ames studies concentrated on large cargo aircraft of conventional design with payloads from 250,000 to 350,000 lb. Range missions up to 6500 n.mi. and radius missions up to 3600 n.mi. have been considered. Takeoff and landing distances between 7,000 and 10,000 ft are important constraints on the configuration concepts. The results indicate that a configuration employing conventional technology in all disciplinary areas weighs approximately 2 million pounds to accomplish either a 6500-n.mi. range mission or a 3600-n.mi. radius mission with a 350,000-lb payload.

  2. Conventional Prompt Global Strike and Long-Range Ballistic Missiles: Background and Issues

    DTIC Science & Technology

    2015-02-06

    Air Force Programs ................................................................................................................. 13 The FALCON ...glide technologies that would mate a rocket booster with a hypersonic glide vehicle. Congress has generally supported the rationale for the PGS mission...M., “U.S. General: Precise Long-Range Missiles may Enable Big Nuclear Cuts,” Inside the Pentagon, April 28, 2005. Conventional Prompt Global Strike

  3. NASA and Industry Partners Co-sponsor 2015 Unmanned Aircraft Systems Traffic Management (UTM) Convention

    NASA Image and Video Library

    2015-08-07

    With issues about drones becoming front page news, NASA recently co-sponsored the 2015 Unmanned Aerial Systems Traffic Management Convention. Held at NASA’s Ames Research Center, the event brought together representatives from the public, from industry, academia, government and the international community to shape the future of low-altitude air traffic management.

  4. Low Temperature Powder Coating

    DTIC Science & Technology

    2011-02-09

    of volatile organic compounds (VOCs) and hazardous air pollutants (HAPs) • Legacy primers contain hexavalent chrome • Conventional powder coatings...coatings both in laboratory and field service evaluations • LTCPC allows environmental cost reductions through VOC/HAP elimination and hexavalent ... chrome reduction. • The LTCPC process greatly shortens the coating operation (LTCPC cures much more rapidly then conventional wet coatings) resulting in

  5. [Comparison of preventive effects of two kinds of dental handpieces on viral contamination at different rotating times].

    PubMed

    Hu, Tao; Zuo, Yu-ling; Zhou, Xue-dong

    2004-08-01

    It has been demonstrated that when a high-speed handpiece stops rotating, negative pressure will form. Thus, contaminating fluid in which there are many kinds of bacteria and viruses from the external environment will retract into various compartments of the handpiece and the dental unit. The purpose of the study is to compare the preventing effect of antisuction designed handpiece and conventional handpiece on viral contamination at different rotating times. Twenty handpieces with or without antisuction device (10 of each) were used in the study. Each handpiece was submerged into 10(-6) microg/microl HBV particle solution rotating 5 and 10 times respectively (every time rotating for 10 seconds). Samples were obtained from the water line and chip air line of the handpieces and examined by RT-PCR. At the same rotating times, there was statistical significance of the viral concentration between the two kinds of handpieces (P < 0.05) . However, there was no statistical significance of the viral concentration between different rotating times in each group (P > 0.05). Contamination taking place in both water and air lines of dental handpiece was not enhanced by increasing the number of rotating times of the handpiece. The antisuction devices installed into the water line and chip air line were demonstrated to prevent viral contamination effectively.

  6. Differentiating organic from conventional peppermints using chromatographic and flow-injection mass spectrometric (FIMS) fingerprints

    USDA-ARS?s Scientific Manuscript database

    High performance liquid chromatography (HPLC) and flow-injection mass spectrometric (FIMS) fingerprinting techniques were tested for their potential in differentiating organic and conventional peppermint samples. Ten organic and ten conventional peppermint samples were examined using HPLC-UV and FI...

  7. Air-coupled laser vibrometry: analysis and applications.

    PubMed

    Solodov, Igor; Döring, Daniel; Busse, Gerd

    2009-03-01

    Acousto-optic interaction between a narrow laser beam and acoustic waves in air is analyzed theoretically. The photoelastic relation in air is used to derive the phase modulation of laser light in air-coupled reflection vibrometry induced by angular spatial spectral components comprising the acoustic beam. Maximum interaction was found for the zero spatial acoustic component propagating normal to the laser beam. The angular dependence of the imaging efficiency is determined for the axial and nonaxial acoustic components with the regard for the laser beam steering in the scanning mode. The sensitivity of air-coupled vibrometry is compared with conventional "Doppler" reflection vibrometry. Applications of the methodology for visualization of linear and nonlinear air-coupled fields are demonstrated.

  8. Validation of the portable Air-Smart Spirometer

    PubMed Central

    Núñez Fernández, Marta; Pallares Sanmartín, Abel; Mouronte Roibas, Cecilia; Cerdeira Domínguez, Luz; Botana Rial, Maria Isabel; Blanco Cid, Nagore; Fernández Villar, Alberto

    2018-01-01

    Background The Air-Smart Spirometer is the first portable device accepted by the European Community (EC) that performs spirometric measurements by a turbine mechanism and displays the results on a smartphone or a tablet. Methods In this multicenter, descriptive and cross-sectional prospective study carried out in 2 hospital centers, we compare FEV1, FVC, FEV1/FVC ratio measured with the Air Smart-Spirometer device and a conventional spirometer, and analyze the ability of this new portable device to detect obstructions. Patients were included for 2 consecutive months. We calculate sensitivity, specificity, positive and negative predictive value (PPV and NPV) and likelihood ratio (LR +, LR-) as well as the Kappa Index to evaluate the concordance between the two devices for the detection of obstruction. The agreement and relation between the values of FEV1 and FVC in absolute value and the FEV1/FVC ratio measured by both devices were analyzed by calculating the intraclass correlation coefficient (ICC) and the Pearson correlation coefficient (r) respectively. Results 200 patients (100 from each center) were included with a mean age of 57 (± 14) years, 110 were men (55%). Obstruction was detected by conventional spirometry in 73 patients (40.1%). Using a FEV1/FVC ratio smaller than 0.7 to detect obstruction with the Air Smart-Spirometer, the kappa index was 0.88, sensitivity (90.4%), specificity (97.2%), PPV (95.7%), NPV (93.7%), positive likelihood ratio (32.29), and negative likelihood ratio (0.10). The ICC and r between FEV1, FVC, and FEV1 / FVC ratio measured by the Air Smart Spirometer and the conventional spirometer were all higher than 0.94. Conclusion The Air-Smart Spirometer is a simple and very precise instrument for detecting obstructive airway diseases. It is easy to use, which could make it especially useful non-specialized care and in other areas. PMID:29474502

  9. Utilization of biosensors and chemical sensors for space applications

    NASA Technical Reports Server (NTRS)

    Bonting, S. L.

    1992-01-01

    There will be a need for a wide array of chemical sensors for biomedical experimentation and for the monitoring of water and air recycling processes on Space Station Freedom. The infrequent logistics flights of the Space Shuttle will necessitate onboard analysis. The advantages of biosensors and chemical sensors over conventional analysis onboard spacecraft are manifold. They require less crew time, space, and power. Sample treatment is not needed. Real time or near-real time monitoring is possible, in some cases on a continuous basis. Sensor signals in digitized form can be transmitted to the ground. Types and requirements for chemical sensors to be used in biomedical experimentation and monitoring of water recycling during long-term space missions are discussed.

  10. Environment Monitor

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Viking landers touched down on Mars equipped with a variety of systems to conduct automated research, each carrying a compact but highly sophisticated instrument for analyzing Martian soil and atmosphere. Instrument called a Gas Chromatography/Mass Spectrometer (GC/MS) had to be small, lightweight, shock resistant, highly automated and extremely sensitive, yet require minimal electrical power. Viking Instruments Corporation commercialized this technology and targeted their primary market as environmental monitoring, especially toxic and hazardous waste site monitoring. Waste sites often contain chemicals in complex mixtures, and the conventional method of site characterization, taking samples on-site and sending them to a laboratory for analysis is time consuming and expensive. Other terrestrial applications are explosive detection in airports, drug detection, industrial air monitoring, medical metabolic monitoring and for military, chemical warfare agents.

  11. Calculating Measurement Uncertainty of the “Conventional Value of the Result of Weighing in Air”

    DOE PAGES

    Flicker, Celia J.; Tran, Hy D.

    2016-04-02

    The conventional value of the result of weighing in air is frequently used in commercial calibrations of balances. The guidance in OIML D-028 for reporting uncertainty of the conventional value is too terse. When calibrating mass standards at low measurement uncertainties, it is necessary to perform a buoyancy correction before reporting the result. When calculating the conventional result after calibrating true mass, the uncertainty due to calculating the conventional result is correlated with the buoyancy correction. We show through Monte Carlo simulations that the measurement uncertainty of the conventional result is less than the measurement uncertainty when reporting true mass.more » The Monte Carlo simulation tool is available in the online version of this article.« less

  12. 40 CFR 61.34 - Air sampling.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Air sampling. 61.34 Section 61.34... sampling. (a) Stationary sources subject to § 61.32(b) shall locate air sampling sites in accordance with a... concentrations calculated within 30 days after filters are collected. Records of concentrations at all sampling...

  13. Ultraclean air for prevention of postoperative infection after posterior spinal fusion with instrumentation: a comparison between surgeries performed with and without a vertical exponential filtered air-flow system.

    PubMed

    Gruenberg, Marcelo F; Campaner, Gustavo L; Sola, Carlos A; Ortolan, Eligio G

    2004-10-15

    This study retrospectively compared infection rates between adult patients after posterior spinal instrumentation procedures performed in a conventional versus an ultraclean air operating room. To evaluate if the use of ultraclean air technology could decrease the infection rate after posterior spinal arthrodesis with instrumentation. Postoperative wound infection after posterior arthrodesis remains a feared complication in spinal surgery. Although this frequent complication results in a significant problem, the employment of ultraclean air technology, as it is commonly used for arthroplasty, has not been reported as a possible alternative to reduce the infection rate after complex spine surgery. One hundred seventy-nine patients having posterior spinal fusion with instrumentation were divided into 2 groups: group I included 139 patients operated in a conventional operating room, and group II included 40 patients operated in a vertical laminar flow operating room. Patient selection was performed favoring ultraclean air technology for elective cases in which high infection risk was considered. A statistical analysis of the infection rate and its associated risk factors between both groups was assessed. We observed 18 wound infections in group I and 0 in group II. Comparison of infection rates using the chi-squared test showed a statistically significant difference (P <0.017). The use of ultraclean air technology reduced the infection rate after complex spinal procedures and appears to be an interesting alternative that still needs to be prospectively studied with a randomized protocol.

  14. NHEXAS PHASE I ARIZONA STUDY--METALS IN AIR ANALYTICAL RESULTS

    EPA Science Inventory

    The Metals in Air data set contains analytical results for measurements of up to 11 metals in 369 air samples over 175 households. Samples were taken by pumping standardized air volumes through filters at indoor and outdoor sites around each household being sampled. The primary...

  15. Characterization of organic and conventional sweet basil leaves using chromatographic and flow-injection mass spectrometric (FIMS) fingerprints combined with principal component analysis

    PubMed Central

    Lu, Yingjian; Gao, Boyan; Chen, Pei; Charles, Denys; Yu, Liangli (Lucy)

    2014-01-01

    Sweet basil, Ocimum basilicum., is one of the most important and wildly used spices and has been shown to have antioxidant, antibacterial, and anti-diarrheal activities. In this study, high performance liquid chromatographic (HPLC) and flow-injection mass spectrometric (FIMS) fingerprinting techniques were used to differentiate organic and conventional sweet basil leaf samples. Principal component analysis (PCA) of the fingerprints indicated that both HPLC and FIMS fingerprints could effectively detect the chemical differences in the organic and conventional sweet basil leaf samples. This study suggested that the organic basil sample contained greater concentrations of almost all the major compounds than its conventional counterpart on a per same botanical weight basis. The FIMS method was able to rapidly differentiate the organic and conventional sweet basil leaf samples (1 min analysis time), whereas the HPLC fingerprints provided more information about the chemical composition of the basil samples with a longer analytical time. PMID:24518341

  16. Characterisation of organic and conventional sweet basil leaves using chromatographic and flow-injection mass spectrometric (FIMS) fingerprints combined with principal component analysis.

    PubMed

    Lu, Yingjian; Gao, Boyan; Chen, Pei; Charles, Denys; Yu, Liangli Lucy

    2014-07-01

    Sweet basil, Ocimum basilicum, is one of the most important and wildly used spices and has been shown to have antioxidant, antibacterial, and anti-diarrheal activities. In this study, high performance liquid chromatographic (HPLC) and flow-injection mass spectrometric (FIMS) fingerprinting techniques were used to differentiate organic and conventional sweet basil leaf samples. Principal component analysis (PCA) of the fingerprints indicated that both HPLC and FIMS fingerprints could effectively detect the chemical differences in the organic and conventional sweet basil leaf samples. This study suggested that the organic basil sample contained greater concentrations of almost all the major compounds than its conventional counterpart on a per same botanical weight basis. The FIMS method was able to rapidly differentiate the organic and conventional sweet basil leaf samples (1min analysis time), whereas the HPLC fingerprints provided more information about the chemical composition of the basil samples with a longer analytical time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Whole house particle removal and clean air delivery rates for in-duct and portable ventilation systems.

    PubMed

    Macintosh, David L; Myatt, Theodore A; Ludwig, Jerry F; Baker, Brian J; Suh, Helen H; Spengler, John D

    2008-11-01

    A novel method for determining whole house particle removal and clean air delivery rates attributable to central and portable ventilation/air cleaning systems is described. The method is used to characterize total and air-cleaner-specific particle removal rates during operation of four in-duct air cleaners and two portable air-cleaning devices in a fully instrumented test home. Operation of in-duct and portable air cleaners typically increased particle removal rates over the baseline rates determined in the absence of operating a central fan or an indoor air cleaner. Removal rates of 0.3- to 0.5-microm particles ranged from 1.5 hr(-1) during operation of an in-duct, 5-in. pleated media filter to 7.2 hr(-1) for an in-duct electrostatic air cleaner in comparison to a baseline rate of 0 hr(-1) when the air handler was operating without a filter. Removal rates for total particulate matter less than 2.5 microm in aerodynamic diameter (PM2.5) mass concentrations were 0.5 hr(-1) under baseline conditions, 0.5 hr(-1) during operation of three portable ionic air cleaners, 1 hr(-1) for an in-duct 1-in. media filter, 2.4 hr(-1) for a single high-efficiency particle arrestance (HEPA) portable air cleaner, 4.6 hr(-1) for an in-duct 5-in. media filter, 4.7 hr(-1) during operation of five portable HEPA filters, 6.1 hr(-1) for a conventional in-duct electronic air cleaner, and 7.5 hr(-1) for a high efficiency in-duct electrostatic air cleaner. Corresponding whole house clean air delivery rates for PM2.5 attributable to the air cleaner independent of losses within the central ventilation system ranged from 2 m3/min for the conventional media filter to 32 m3/min for the high efficiency in-duct electrostatic device. Except for the portable ionic air cleaner, the devices considered here increased particle removal indoors over baseline deposition rates.

  18. Vortex-augmented cooling tower-windmill combination

    DOEpatents

    McAllister, Jr., John E.

    1985-01-01

    A cooling tower for cooling large quantities of effluent water from a production facility by utilizing natural wind forces includes the use of a series of helically directed air inlet passages extending outwardly from the base of the tower to introduce air from any direction in a swirling vortical pattern while the force of the draft created in the tower makes it possible to place conventional power generating windmills in the air passages to provide power as a by-product.

  19. Vortex-augmented cooling tower - windmill combination

    DOEpatents

    McAllister, J.E. Jr.

    1982-09-02

    A cooling tower for cooling large quantities of effluent water from a production facility by utilizing natural wind forces includes the use of a series of helically directed air inlet passages extending outwardly from the base of the tower to introduce air from any direction in a swirling vortical pattern while the force of the draft created in the tower makes it possible to place conventional power generating windmills in the air passage to provide power as a by-product.

  20. Real-Time Aerodynamic Parameter Estimation without Air Flow Angle Measurements

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2010-01-01

    A technique for estimating aerodynamic parameters in real time from flight data without air flow angle measurements is described and demonstrated. The method is applied to simulated F-16 data, and to flight data from a subscale jet transport aircraft. Modeling results obtained with the new approach using flight data without air flow angle measurements were compared to modeling results computed conventionally using flight data that included air flow angle measurements. Comparisons demonstrated that the new technique can provide accurate aerodynamic modeling results without air flow angle measurements, which are often difficult and expensive to obtain. Implications for efficient flight testing and flight safety are discussed.

  1. Use of dust fall filters as passive samplers for metal concentrations in air for communities near contaminated mine tailings

    PubMed Central

    Beamer, P.I.; Sugeng, A. J.; Kelly, M.D.; Lothrop, N.; Klimecki, W.; Wilkinson, S.T.; Loh, M.

    2014-01-01

    Mine tailings are a source of metal exposures in many rural communities. Multiple air samples are necessary to assess the extent of exposures and factors contributing to these exposures. However, air sampling equipment is costly and requires trained personnel to obtain measurements, limiting the number of samples that can be collected. Simple, low-cost methods are needed to allow for increased sample collection. The objective of our study was to assess if dust fall filters can serve as passive air samplers and be used to characterize potential exposures in a community near contaminated mine tailings. We placed filters in cylinders, concurrently with active indoor air samplers, in 10 occupied homes. We calculated an estimated flow rate by dividing the mass on each dust fall filter by the bulk air concentration and the sampling duration. The mean estimated flow rate for dust fall filters was significantly different during sampling periods with precipitation. The estimated flow rate was used to estimate metal concentration in the air of these homes, as well as in 31 additional homes in another rural community impacted by contaminated mine tailings. The estimated air concentrations had a significant linear association with the measured air concentrations for beryllium, manganese and arsenic (p<0.05), whose primary source in indoor air is resuspended soil from outdoors. In the second rural community, our estimated metal concentrations in air were comparable to active air sampling measurements taken previously. This passive air sampler is a simple low-cost method to assess potential exposures near contaminated mining sites. PMID:24469149

  2. 10 CFR 429.23 - Conventional cooking tops, conventional ovens, microwave ovens.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Conventional cooking tops, conventional ovens, microwave... Conventional cooking tops, conventional ovens, microwave ovens. (a) Sampling plan for selection of units for... and microwave ovens; and (2) For each basic model of conventional cooking tops, conventional ovens and...

  3. 10 CFR 429.23 - Conventional cooking tops, conventional ovens, microwave ovens.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Conventional cooking tops, conventional ovens, microwave... Conventional cooking tops, conventional ovens, microwave ovens. (a) Sampling plan for selection of units for... and microwave ovens; and (2) For each basic model of conventional cooking tops, conventional ovens and...

  4. 10 CFR 429.23 - Conventional cooking tops, conventional ovens, microwave ovens.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Conventional cooking tops, conventional ovens, microwave... Conventional cooking tops, conventional ovens, microwave ovens. (a) Sampling plan for selection of units for... and microwave ovens; and (2) For each basic model of conventional cooking tops, conventional ovens and...

  5. Deterrence of ballistic missile systems and their effects on today's air operations

    NASA Astrophysics Data System (ADS)

    Durak, Hasan

    2015-05-01

    Lately, the effect-based approach has gained importance in executing air operations. Thus, it makes more successful in obtaining the desired results by breaking the enemy's determination in a short time. Air force is the first option to be chosen in order to defuse the strategic targets. However, the problems such as the defense of targets and country, radars, range…etc. becoming serious problems. At this level ballistic missiles emerge as a strategic weapon. Ultimate emerging technologies guided by the INS and GPS can also be embedded with multiple warheads and reinforced with conventional explosive, ballistic missiles are weapons that can destroy targets with precision. They have the advantage of high speed, being easily launched from every platform and not being easily detected by air defense systems contrary to other air platforms. While these are the advantages, there are also disadvantages of the ballistic missiles. The high cost, unavailability of nuclear, biological and chemical weapons, and its limited effect while using conventional explosives against destroying the fortified targets are the disadvantages. The features mentioned above should be considered as limitation to the impact of the ballistic missiles. The aim is to impose the requests on enemies without starting a war with all components and to ensure better implementation of the operation functions during the air operations. In this study, effects of ballistic missiles in the future on air battle theatre will be discussed in the beginning, during the process and at the end phase of air operations within the scope of an effect-based approach.

  6. LaSVM-based big data learning system for dynamic prediction of air pollution in Tehran.

    PubMed

    Ghaemi, Z; Alimohammadi, A; Farnaghi, M

    2018-04-20

    Due to critical impacts of air pollution, prediction and monitoring of air quality in urban areas are important tasks. However, because of the dynamic nature and high spatio-temporal variability, prediction of the air pollutant concentrations is a complex spatio-temporal problem. Distribution of pollutant concentration is influenced by various factors such as the historical pollution data and weather conditions. Conventional methods such as the support vector machine (SVM) or artificial neural networks (ANN) show some deficiencies when huge amount of streaming data have to be analyzed for urban air pollution prediction. In order to overcome the limitations of the conventional methods and improve the performance of urban air pollution prediction in Tehran, a spatio-temporal system is designed using a LaSVM-based online algorithm. Pollutant concentration and meteorological data along with geographical parameters are continually fed to the developed online forecasting system. Performance of the system is evaluated by comparing the prediction results of the Air Quality Index (AQI) with those of a traditional SVM algorithm. Results show an outstanding increase of speed by the online algorithm while preserving the accuracy of the SVM classifier. Comparison of the hourly predictions for next coming 24 h, with those of the measured pollution data in Tehran pollution monitoring stations shows an overall accuracy of 0.71, root mean square error of 0.54 and coefficient of determination of 0.81. These results are indicators of the practical usefulness of the online algorithm for real-time spatial and temporal prediction of the urban air quality.

  7. Filter for on-line air monitor unaffected by radon progeny and method of using same

    DOEpatents

    Phillips, Terrance D.; Edwards, Howard D.

    1999-01-01

    An apparatus for testing air having contaminants and radon progeny therein. The apparatus includes a sampling box having an inlet for receiving the air and an outlet for discharging the air. The sampling box includes a filter made of a plate of sintered stainless steel. The filter traps the contaminants, yet allows at least a portion of the radon progeny to pass therethrough. A method of testing air having contaminants and radon progeny therein. The method includes providing a testing apparatus that has a sampling box with an inlet for receiving the air and an outlet for discharging the air, and has a sintered stainless steel filter disposed within said sampling box; drawing air from a source into the sampling box using a vacuum pump; passing the air through the filter; monitoring the contaminants trapped by the filter; and providing an alarm when a selected level of contaminants is reached. The filter traps the contaminants, yet allows at least a portion of the radon progeny to pass therethrough.

  8. PROBABILITY SAMPLING AND POPULATION INFERENCE IN MONITORING PROGRAMS

    EPA Science Inventory

    A fundamental difference between probability sampling and conventional statistics is that "sampling" deals with real, tangible populations, whereas "conventional statistics" usually deals with hypothetical populations that have no real-world realization. he focus here is on real ...

  9. Airborne detection and quantification of swine influenza a virus in air samples collected inside, outside and downwind from swine barns.

    PubMed

    Corzo, Cesar A; Culhane, Marie; Dee, Scott; Morrison, Robert B; Torremorell, Montserrat

    2013-01-01

    Airborne transmission of influenza A virus (IAV) in swine is speculated to be an important route of virus dissemination, but data are scarce. This study attempted to detect and quantify airborne IAV by virus isolation and RRT-PCR in air samples collected under field conditions. This was accomplished by collecting air samples from four acutely infected pig farms and locating air samplers inside the barns, at the external exhaust fans and downwind from the farms at distances up to 2.1 km. IAV was detected in air samples collected in 3 out of 4 farms included in the study. Isolation of IAV was possible from air samples collected inside the barn at two of the farms and in one farm from the exhausted air. Between 13% and 100% of samples collected inside the barns tested RRT-PCR positive with an average viral load of 3.20E+05 IAV RNA copies/m³ of air. Percentage of exhaust positive air samples also ranged between 13% and 100% with an average viral load of 1.79E+04 RNA copies/m³ of air. Influenza virus RNA was detected in air samples collected between 1.5 and 2.1 Km away from the farms with viral levels significantly lower at 4.65E+03 RNA copies/m³. H1N1, H1N2 and H3N2 subtypes were detected in the air samples and the hemagglutinin gene sequences identified in the swine samples matched those in aerosols providing evidence that the viruses detected in the aerosols originated from the pigs in the farms under study. Overall our results indicate that pigs can be a source of IAV infectious aerosols and that these aerosols can be exhausted from pig barns and be transported downwind. The results from this study provide evidence of the risk of aerosol transmission in pigs under field conditions.

  10. Airborne Detection and Quantification of Swine Influenza A Virus in Air Samples Collected Inside, Outside and Downwind from Swine Barns

    PubMed Central

    Corzo, Cesar A.; Culhane, Marie; Dee, Scott; Morrison, Robert B.; Torremorell, Montserrat

    2013-01-01

    Airborne transmission of influenza A virus (IAV) in swine is speculated to be an important route of virus dissemination, but data are scarce. This study attempted to detect and quantify airborne IAV by virus isolation and RRT-PCR in air samples collected under field conditions. This was accomplished by collecting air samples from four acutely infected pig farms and locating air samplers inside the barns, at the external exhaust fans and downwind from the farms at distances up to 2.1 km. IAV was detected in air samples collected in 3 out of 4 farms included in the study. Isolation of IAV was possible from air samples collected inside the barn at two of the farms and in one farm from the exhausted air. Between 13% and 100% of samples collected inside the barns tested RRT-PCR positive with an average viral load of 3.20E+05 IAV RNA copies/m3 of air. Percentage of exhaust positive air samples also ranged between 13% and 100% with an average viral load of 1.79E+04 RNA copies/m3 of air. Influenza virus RNA was detected in air samples collected between 1.5 and 2.1 Km away from the farms with viral levels significantly lower at 4.65E+03 RNA copies/m3. H1N1, H1N2 and H3N2 subtypes were detected in the air samples and the hemagglutinin gene sequences identified in the swine samples matched those in aerosols providing evidence that the viruses detected in the aerosols originated from the pigs in the farms under study. Overall our results indicate that pigs can be a source of IAV infectious aerosols and that these aerosols can be exhausted from pig barns and be transported downwind. The results from this study provide evidence of the risk of aerosol transmission in pigs under field conditions. PMID:23951164

  11. U.S.-MEXICO BORDER PROGRAM ARIZONA BORDER STUDY--METALS IN AIR ANALYTICAL RESULTS

    EPA Science Inventory

    The Metals in Air data set contains analytical results for measurements of up to 11 metals in 344 air samples over 86 households. Samples were taken by pumping standardized air volumes through filters at indoor and outdoor sites around each household being sampled. The primary ...

  12. Control of aerosol contaminants in indoor air: combining the particle concentration reduction with microbial inactivation.

    PubMed

    Grinshpun, Sergey A; Adhikari, Atin; Honda, Takeshi; Kim, Ki Youn; Toivola, Mika; Rao, K S Ramchander; Reponen, Tiina

    2007-01-15

    An indoor air purification technique, which combines unipolar ion emission and photocatalytic oxidation (promoted by a specially designed RCI cell), was investigated in two test chambers, 2.75 m3 and 24.3 m3, using nonbiological and biological challenge aerosols. The reduction in particle concentration was measured size selectively in real-time, and the Air Cleaning Factor and the Clean Air Delivery Rate (CADR) were determined. While testing with virions and bacteria, bioaerosol samples were collected and analyzed, and the microorganism survival rate was determined as a function of exposure time. We observed that the aerosol concentration decreased approximately 10 to approximately 100 times more rapidly when the purifier operated as compared to the natural decay. The data suggest that the tested portable unit operating in approximately 25 m3 non-ventilated room is capable to provide CADR-values more than twice as great than the conventional closed-loop HVAC system with a rating 8 filter. The particle removal occurred due to unipolar ion emission, while the inactivation of viable airborne microorganisms was associated with photocatalytic oxidation. Approximately 90% of initially viable MS2 viruses were inactivated resulting from 10 to 60 min exposure to the photocatalytic oxidation. Approximately 75% of viable B. subtilis spores were inactivated in 10 min, and about 90% or greater after 30 min. The biological and chemical mechanisms that led to the inactivation of stress-resistant airborne viruses and bacterial spores were reviewed.

  13. Synthesis of Sr0.9K0.1FeO3-δ electrocatalysts by mechanical activation

    NASA Astrophysics Data System (ADS)

    Monteiro, J. F.; Waerenborgh, J. C.; Kovalevsky, A. V.; Yaremchenko, A. A.; Frade, J. R.

    2013-02-01

    Potassium-substituted SrFeO3-δ for possible application as oxygen evolution electrode in alkaline or molten salt media was prepared by mechanical activation and characterized by X-ray diffraction, dilatometric and thermogravimetric analysis, Mössbauer spectroscopy, and electrical conductivity measurements. Room temperature mechanical activation of a mixture of oxide precursors with subsequent thermal treatments at 700-900 °C results in the formation of Sr0.9K0.1FeO3-δ with tetragonal perovskite-like structure. Such allows to decrease the synthesis temperature, if compared to the conventional solid-state route, and to prevent possible volatilization of potassium. The results of Mössbauer spectroscopy studies indicate that the oxygen nonstoichiometry in the samples annealed in air at 900-1100 °C with subsequent rapid cooling vary in the range δ=0.30-0.32. The electrical conductivity in air exhibits a metal-like behaviour at temperatures above 400 °C and semiconductor behaviour in the low-temperature range, reaching 13-30 S/cm under prospective operation conditions for alkaline electrolyzers (≤90 °C).

  14. Measurement of fission product gases in the atmosphere

    NASA Astrophysics Data System (ADS)

    Schell, W. R.; Tobin, M. J.; Marsan, D. J.; Schell, C. W.; Vives-Batlle, J.; Yoon, S. R.

    1997-01-01

    The ability to quickly detect and assess the magnitude of releases of fission-produced radioactive material is of significant importance for ongoing operations of any conventional nuclear power plant or other activities with a potential for fission product release. In most instances, the control limits for the release of airborne radioactivity are low enough to preclude direct air sampling as a means of detection, especially for fission gases that decay by beta or electron emission. It is, therefore, customary to concentrate the major gaseous fission products (krypton, xenon and iodine) by cryogenic adsorption for subsequent separation and measurement. This study summarizes our initial efforts to develop an automated portable system for on-line separation and concentration with the potential for measuring environmental levels of radioactive gases, including 85Kr, 131,133,135Xe, 14C, 3H, 35S, 125,131I, etc., without using cryogenic fluids. Bench top and prototype models were constructed using the principle of heatless fractionation of the gases in a pressure swing system. This method removes the requirement for cryogenic fluids to concentrate gases and, with suitable electron and gamma ray detectors, provides for remote use under automatic computer control. Early results using 133Xe tracer show that kinetic chromatography, i.e., high pressure adsorption of xenon and low pressure desorption of air, using specific types of molecular sieves, permits the separation and quantification of xenon isotopes from large volume air samples. We are now developing the ability to measure the presence and amounts of fission-produced xenon isotopes that decay by internal conversion electrons and beta radiation with short half-lives, namely 131mXe, 11.8 d, 133mXe, 2.2 d, 133Xe, 5.2 d and 135Xe, 9.1 h. The ratio of the isotopic concentrations measured can be used to determine unequivocally the amount of fission gas and time of release of an air parcel many kilometers downwind from a nuclear activity where the fission products were discharged.

  15. Quantitative DNA Analyses for Airborne Birch Pollen

    PubMed Central

    Müller-Germann, Isabell; Vogel, Bernhard; Vogel, Heike; Pauling, Andreas; Fröhlich-Nowoisky, Janine; Pöschl, Ulrich; Després, Viviane R.

    2015-01-01

    Birch trees produce large amounts of highly allergenic pollen grains that are distributed by wind and impact human health by causing seasonal hay fever, pollen-related asthma, and other allergic diseases. Traditionally, pollen forecasts are based on conventional microscopic counting techniques that are labor-intensive and limited in the reliable identification of species. Molecular biological techniques provide an alternative approach that is less labor-intensive and enables identification of any species by its genetic fingerprint. A particularly promising method is quantitative Real-Time polymerase chain reaction (qPCR), which can be used to determine the number of DNA copies and thus pollen grains in air filter samples. During the birch pollination season in 2010 in Mainz, Germany, we collected air filter samples of fine (<3 μm) and coarse air particulate matter. These were analyzed by qPCR using two different primer pairs: one for a single-copy gene (BP8) and the other for a multi-copy gene (ITS). The BP8 gene was better suitable for reliable qPCR results, and the qPCR results obtained for coarse particulate matter were well correlated with the birch pollen forecasting results of the regional air quality model COSMO-ART. As expected due to the size of birch pollen grains (~23 μm), the concentration of DNA in fine particulate matter was lower than in the coarse particle fraction. For the ITS region the factor was 64, while for the single-copy gene BP8 only 51. The possible presence of so-called sub-pollen particles in the fine particle fraction is, however, interesting even in low concentrations. These particles are known to be highly allergenic, reach deep into airways and cause often severe health problems. In conclusion, the results of this exploratory study open up the possibility of predicting and quantifying the pollen concentration in the atmosphere more precisely in the future. PMID:26492534

  16. NHEXAS PHASE I ARIZONA STUDY--STANDARD OPERATING PROCEDURE FOR PREPARATION OF FILTERS AND PUF FOR FIELD COLLECTION OF METALS AND PESTICIDES IN AIR (BCO-L-2.0)

    EPA Science Inventory

    The purpose of this SOP is to describe the procedures for pre-cleaning filters and polyurethane foam (PUF) plug prior to air sampling with these media. The sampling media are used for sampling indoor air, outdoor air, and personal air. This procedure was followed to ensure consi...

  17. VapeCons: E-cigarette user conventions

    PubMed Central

    Williams, Rebecca S.

    2015-01-01

    Introduction E-cigarette ‘vaping conventions’ provide a venue for user social networking, parties, and ‘try before you buy’ access to a wide range of e-cigarette products. This study identifies and describes vaping conventions, raising awareness of this potentially problematic practice. Methods Conventions were identified via Google searches in April and May 2014 and August 2015. Details captured included location, sponsors, admission cost, event features, and promotions. Results 41 distinct organizations have planned 90 vaping conventions in 37 different locations since 2010. Conventions promoted access to a wide range of product vendors, seminars, social interactions with other users, parties, gifts, vaping contests, and other events. E-cigarette use at conventions was encouraged. Conclusions Vaping conventions promote e-cigarette use and social norms without public health having a voice to educate attendees about negative consequences of use. Future research should focus on the effects of attending these conventions on attendees and on indoor air quality in vapor-filled convention rooms. PMID:26424201

  18. 22 CFR 103.3 - Requirement to provide a sample.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... IMPLEMENTATION OF THE CHEMICAL WEAPONS CONVENTION AND THE CHEMICAL WEAPONS CONVENTION IMPLEMENTATION ACT OF 1998... accordance with the applicable provisions contained in the Chemical Weapons Convention and the CWCIA. (d... for personal safety; (6) The taking of a sample does not pose a threat to the national security...

  19. 22 CFR 103.3 - Requirement to provide a sample.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... IMPLEMENTATION OF THE CHEMICAL WEAPONS CONVENTION AND THE CHEMICAL WEAPONS CONVENTION IMPLEMENTATION ACT OF 1998... accordance with the applicable provisions contained in the Chemical Weapons Convention and the CWCIA. (d... for personal safety; (6) The taking of a sample does not pose a threat to the national security...

  20. Observations and Modeling of Turbulent Air-Sea Coupling in Coastal and Strongly Forced Condition

    NASA Astrophysics Data System (ADS)

    Ortiz-Suslow, David G.

    The turbulent fluxes of momentum, mass, and energy across the ocean-atmosphere boundary are fundamental to our understanding of a myriad of geophysical processes, such as wind-wave generation, oceanic circulation, and air-sea gas transfer. In order to better understand these fluxes, empirical relationships were developed to quantify the interfacial exchange rates in terms of easily observed parameters (e.g., wind speed). However, mounting evidence suggests that these empirical formulae are only valid over the relatively narrow parametric space, i.e. open ocean conditions in light to moderate winds. Several near-surface processes have been observed to cause significant variance in the air-sea fluxes not predicted by the conventional functions, such as a heterogeneous surfaces, swell waves, and wave breaking. Further study is needed to fully characterize how these types of processes can modulate the interfacial exchange; in order to achieve this, a broad investigation into air-sea coupling was undertaken. The primary focus of this work was to use a combination of field and laboratory observations and numerical modeling, in regimes where conventional theories would be expected to breakdown, namely: the nearshore and in very high winds. These seemingly disparate environments represent the marine atmospheric boundary layer at its physical limit. In the nearshore, the convergence of land, air, and sea in a depth-limited domain marks the transition from a marine to a terrestrial boundary layer. Under extreme winds, the physical nature of the boundary layer remains unknown as an intermediate substrate layer, sea spray, develops between the atmosphere and ocean surface. At these ends of the MABL physical spectrum, direct measurements of the near-surface processes were made and directly related to local sources of variance. Our results suggest that the conventional treatment of air-sea fluxes in terms of empirical relationships developed from a relatively narrow set of environmental conditions do not generalize to the coastal and extreme wind environments. This body of work represents a multi-faceted approach to understanding physical air-sea interactions in varied regimes and using a wide array of investigatory methods.

  1. An automated atmospheric sampling system operating on 747 airliners

    NASA Technical Reports Server (NTRS)

    Perkins, P.; Gustafsson, U. R. C.

    1975-01-01

    An air sampling system that automatically measures the temporal and spatial distribution of selected particulate and gaseous constituents of the atmosphere has been installed on a number of commercial airliners and is collecting data on commercial air routes covering the world. Measurements of constituents related to aircraft engine emissions and other pollutants are made in the upper troposphere and lower stratosphere (6 to 12 km) in support of the Global Air Sampling Program (GASP). Aircraft operated by different airlines sample air at latitudes from the Arctic to Australia. This system includes specialized instrumentation for measuring carbon monoxide, ozone, water vapor, and particulates, a special air inlet probe for sampling outside air, a computerized automatic control, and a data acquisition system. Air constituents and related flight data are tape recorded in flight for later computer processing on the ground.

  2. European Community emission inventory report 1990-2007 : under the UNECE Convention on Long-range Transboundary Air Pollution (LRTAP)

    DOT National Transportation Integrated Search

    2009-08-01

    The main air pollutant emission trends in the period 19902007 for NOX, CO, NMVOCs, SOX, NH3, PM10 and PM2.5 by country, and aggregated for the EU-27 are described in this report. Due to various gaps in the underlying data reported by Member States...

  3. Air Policing

    DTIC Science & Technology

    2009-05-01

    the pushing home of advantages gained by the air.” Within the context of this paper, the ...Control, “ The economic cost of policing the … vast Middle East territories between the Palestinian coast and the Mesopotamian plain by conventional means...Salim’s house; no action however was taken against the tribesman in Chabaish. Observing the destruction of Salim’s home , and knowing that it

  4. Green roof valuation: a probabilistic economic analysis of environmental benefits.

    PubMed

    Clark, Corrie; Adriaens, Peter; Talbot, F Brian

    2008-03-15

    Green (vegetated) roofs have gained global acceptance as a technologythat has the potential to help mitigate the multifaceted, complex environmental problems of urban centers. While policies that encourage green roofs exist atthe local and regional level, installation costs remain at a premium and deter investment in this technology. The objective of this paper is to quantitatively integrate the range of stormwater, energy, and air pollution benefits of green roofs into an economic model that captures the building-specific scale. Currently, green roofs are primarily valued on increased roof longevity, reduced stormwater runoff, and decreased building energy consumption. Proper valuation of these benefits can reduce the present value of a green roof if investors look beyond the upfront capital costs. Net present value (NPV) analysis comparing a conventional roof system to an extensive green roof system demonstrates that at the end of the green roof lifetime the NPV for the green roof is between 20.3 and 25.2% less than the NPV for the conventional roof over 40 years. The additional upfront investment is recovered at the time when a conventional roof would be replaced. Increasing evidence suggests that green roofs may play a significant role in urban air quality improvement For example, uptake of N0x is estimated to range from $1683 to $6383 per metric ton of NOx reduction. These benefits were included in this study, and results translate to an annual benefit of $895-3392 for a 2000 square meter vegetated roof. Improved air quality leads to a mean NPV for the green roof that is 24.5-40.2% less than the mean conventional roof NPV. Through innovative policies, the inclusion of air pollution mitigation and the reduction of municipal stormwater infrastructure costs in economic valuation of environmental benefits of green roofs can reduce the cost gap that currently hinders U.S. investment in green roof technology.

  5. Multichannel High Resolution Wide Swath SAR Imaging for Hypersonic Air Vehicle with Curved Trajectory.

    PubMed

    Zhou, Rui; Sun, Jinping; Hu, Yuxin; Qi, Yaolong

    2018-01-31

    Synthetic aperture radar (SAR) equipped on the hypersonic air vehicle in near space has many advantages over the conventional airborne SAR. However, its high-speed maneuvering characteristics with curved trajectory result in serious range migration, and exacerbate the contradiction between the high resolution and wide swath. To solve this problem, this paper establishes the imaging geometrical model matched with the flight trajectory of the hypersonic platform and the multichannel azimuth sampling model based on the displaced phase center antenna (DPCA) technology. Furthermore, based on the multichannel signal reconstruction theory, a more efficient spectrum reconstruction model using discrete Fourier transform is proposed to obtain the azimuth uniform sampling data. Due to the high complexity of the slant range model, it is difficult to deduce the processing algorithm for SAR imaging. Thus, an approximate range model is derived based on the minimax criterion, and the optimal second-order approximate coefficients of cosine function are obtained using the two-population coevolutionary algorithm. On this basis, aiming at the problem that the traditional Omega-K algorithm cannot compensate the residual phase with the difficulty of Stolt mapping along the range frequency axis, this paper proposes an Exact Transfer Function (ETF) algorithm for SAR imaging, and presents a method of range division to achieve wide swath imaging. Simulation results verify the effectiveness of the ETF imaging algorithm.

  6. Multichannel High Resolution Wide Swath SAR Imaging for Hypersonic Air Vehicle with Curved Trajectory

    PubMed Central

    Zhou, Rui; Hu, Yuxin; Qi, Yaolong

    2018-01-01

    Synthetic aperture radar (SAR) equipped on the hypersonic air vehicle in near space has many advantages over the conventional airborne SAR. However, its high-speed maneuvering characteristics with curved trajectory result in serious range migration, and exacerbate the contradiction between the high resolution and wide swath. To solve this problem, this paper establishes the imaging geometrical model matched with the flight trajectory of the hypersonic platform and the multichannel azimuth sampling model based on the displaced phase center antenna (DPCA) technology. Furthermore, based on the multichannel signal reconstruction theory, a more efficient spectrum reconstruction model using discrete Fourier transform is proposed to obtain the azimuth uniform sampling data. Due to the high complexity of the slant range model, it is difficult to deduce the processing algorithm for SAR imaging. Thus, an approximate range model is derived based on the minimax criterion, and the optimal second-order approximate coefficients of cosine function are obtained using the two-population coevolutionary algorithm. On this basis, aiming at the problem that the traditional Omega-K algorithm cannot compensate the residual phase with the difficulty of Stolt mapping along the range frequency axis, this paper proposes an Exact Transfer Function (ETF) algorithm for SAR imaging, and presents a method of range division to achieve wide swath imaging. Simulation results verify the effectiveness of the ETF imaging algorithm. PMID:29385059

  7. A nuclear magnetic resonance spectrometer concept for hermetically sealed magic angle spinning investigations on highly toxic, radiotoxic, or air sensitive materials.

    PubMed

    Martel, L; Somers, J; Berkmann, C; Koepp, F; Rothermel, A; Pauvert, O; Selfslag, C; Farnan, I

    2013-05-01

    A concept to integrate a commercial high-resolution, magic angle spinning nuclear magnetic resonance (MAS-NMR) probe capable of very rapid rotation rates (70 kHz) in a hermetically sealed enclosure for the study of highly radiotoxic materials has been developed and successfully demonstrated. The concept centres on a conventional wide bore (89 mm) solid-state NMR magnet operating with industry standard 54 mm diameter probes designed for narrow bore magnets. Rotor insertion and probe tuning take place within a hermetically enclosed glovebox, which extends into the bore of the magnet, in the space between the probe and the magnet shim system. Oxygen-17 MAS-NMR measurements demonstrate the possibility of obtaining high quality spectra from small sample masses (~10 mg) of highly radiotoxic material and the need for high spinning speeds to improve the spectral resolution when working with actinides. The large paramagnetic susceptibility arising from actinide paramagnetism in (Th(1-x)U(x))O2 solid solutions gives rise to extensive spinning sidebands and poor resolution at 15 kHz, which is dramatically improved at 55 kHz. The first (17)O MAS-NMR measurements on NpO(2+x) samples spinning at 55 kHz are also reported. The glovebox approach developed here for radiotoxic materials can be easily adapted to work with other hazardous or even air sensitive materials.

  8. Prevalence of Herbal Therapy Use in Active Duty Air Force Women

    DTIC Science & Technology

    2001-04-24

    Effects and Drug Interactions............................ 22 xi Health Perception and Herbal Use..................................................... 25...required of conventional drugs , and they are not subject to the approval process of the FDA (Cupp, 1999). Also, unlike conventional drugs , herbal...batch-to-batch variability can cause adverse effects and drug interactions. 3 Controlled studies of herbal medicines are not profitable, so there is

  9. A proposed global metric to aid mercury pollution policy

    NASA Astrophysics Data System (ADS)

    Selin, Noelle E.

    2018-05-01

    The Minamata Convention on Mercury entered into force in August 2017, committing its currently 92 parties to take action to protect human health and the environment from anthropogenic emissions and releases of mercury. But how can we tell whether the convention is achieving its objective? Although the convention requires periodic effectiveness evaluation (1), scientific uncertainties challenge our ability to trace how mercury policies translate into reduced human and wildlife exposure and impacts. Mercury emissions to air and releases to land and water follow a complex path through the environment before accumulating as methylmercury in fish, mammals, and birds. As these environmental processes are both uncertain and variable, analyzing existing data alone does not currently provide a clear signal of whether policies are effective. A global-scale metric to assess the impact of mercury emissions policies would help parties assess progress toward the convention's goal. Here, I build on the example of the Montreal Protocol on Substances that Deplete the Ozone Layer to identify criteria for a mercury metric. I then summarize why existing mercury data are insufficient and present and discuss a proposed new metric based on mercury emissions to air. Finally, I identify key scientific uncertainties that challenge future effectiveness evaluation.

  10. Biofuel blending reduces particle emissions from aircraft engines at cruise conditions

    NASA Astrophysics Data System (ADS)

    Moore, Richard H.; Thornhill, Kenneth L.; Weinzierl, Bernadett; Sauer, Daniel; D'Ascoli, Eugenio; Kim, Jin; Lichtenstern, Michael; Scheibe, Monika; Beaton, Brian; Beyersdorf, Andreas J.; Barrick, John; Bulzan, Dan; Corr, Chelsea A.; Crosbie, Ewan; Jurkat, Tina; Martin, Robert; Riddick, Dean; Shook, Michael; Slover, Gregory; Voigt, Christiane; White, Robert; Winstead, Edward; Yasky, Richard; Ziemba, Luke D.; Brown, Anthony; Schlager, Hans; Anderson, Bruce E.

    2017-03-01

    Aviation-related aerosol emissions contribute to the formation of contrail cirrus clouds that can alter upper tropospheric radiation and water budgets, and therefore climate. The magnitude of air-traffic-related aerosol-cloud interactions and the ways in which these interactions might change in the future remain uncertain. Modelling studies of the present and future effects of aviation on climate require detailed information about the number of aerosol particles emitted per kilogram of fuel burned and the microphysical properties of those aerosols that are relevant for cloud formation. However, previous observational data at cruise altitudes are sparse for engines burning conventional fuels, and no data have previously been reported for biofuel use in-flight. Here we report observations from research aircraft that sampled the exhaust of engines onboard a NASA DC-8 aircraft as they burned conventional Jet A fuel and a 50:50 (by volume) blend of Jet A fuel and a biofuel derived from Camelina oil. We show that, compared to using conventional fuels, biofuel blending reduces particle number and mass emissions immediately behind the aircraft by 50 to 70 per cent. Our observations quantify the impact of biofuel blending on aerosol emissions at cruise conditions and provide key microphysical parameters, which will be useful to assess the potential of biofuel use in aviation as a viable strategy to mitigate climate change.

  11. Biofuel blending reduces particle emissions from aircraft engines at cruise conditions.

    PubMed

    Moore, Richard H; Thornhill, Kenneth L; Weinzierl, Bernadett; Sauer, Daniel; D'Ascoli, Eugenio; Kim, Jin; Lichtenstern, Michael; Scheibe, Monika; Beaton, Brian; Beyersdorf, Andreas J; Barrick, John; Bulzan, Dan; Corr, Chelsea A; Crosbie, Ewan; Jurkat, Tina; Martin, Robert; Riddick, Dean; Shook, Michael; Slover, Gregory; Voigt, Christiane; White, Robert; Winstead, Edward; Yasky, Richard; Ziemba, Luke D; Brown, Anthony; Schlager, Hans; Anderson, Bruce E

    2017-03-15

    Aviation-related aerosol emissions contribute to the formation of contrail cirrus clouds that can alter upper tropospheric radiation and water budgets, and therefore climate. The magnitude of air-traffic-related aerosol-cloud interactions and the ways in which these interactions might change in the future remain uncertain. Modelling studies of the present and future effects of aviation on climate require detailed information about the number of aerosol particles emitted per kilogram of fuel burned and the microphysical properties of those aerosols that are relevant for cloud formation. However, previous observational data at cruise altitudes are sparse for engines burning conventional fuels, and no data have previously been reported for biofuel use in-flight. Here we report observations from research aircraft that sampled the exhaust of engines onboard a NASA DC-8 aircraft as they burned conventional Jet A fuel and a 50:50 (by volume) blend of Jet A fuel and a biofuel derived from Camelina oil. We show that, compared to using conventional fuels, biofuel blending reduces particle number and mass emissions immediately behind the aircraft by 50 to 70 per cent. Our observations quantify the impact of biofuel blending on aerosol emissions at cruise conditions and provide key microphysical parameters, which will be useful to assess the potential of biofuel use in aviation as a viable strategy to mitigate climate change.

  12. Development of Al2O3 electrospun fibers prepared by conventional sintering method or plasma assisted surface calcination

    NASA Astrophysics Data System (ADS)

    Mudra, E.; Streckova, M.; Pavlinak, D.; Medvecka, V.; Kovacik, D.; Kovalcikova, A.; Zubko, P.; Girman, V.; Dankova, Z.; Koval, V.; Duzsa, J.

    2017-09-01

    In this paper, the electrospinning method was used for preparation of α-Al2O3 microfibers from PAN/Al(NO3)3 precursor solution. The precursor fibers were thermally treated by conventional method in furnace or low-temperature plasma induced surface sintering method in ambient air. The four different temperatures of PAN/Al(NO3)3 precursors were chosen for formation of α-Al2O3 phase by conventional sintering way according to the transition features observed in the TG/DSC analysis. In comparison, the low-temperature plasma treatment at atmospheric pressure was used as an alternative sintering method at the exposure times of 5, 10 and 30 min. FTIR analysis was used for evaluation of residual polymer after plasma induced calcination and for studying the mechanism of polymer degradation. The polycrystalline alumina fibers arranged with the nanoparticles was created continuously throughout the whole volume of the sample. On the other side the low temperature approach, high density of reactive species and high power density of plasma generated at atmospheric pressure by used plasma source allowed rapid removal of polymer in preference from the surface of fibers leading to the formation of composite ceramic/polymer fibers. This plasma induced sintering of PAN/Al(NO3)3 can have obvious importance in industrial applications where the ceramic character of surface with higher toughness of the fibers are required.

  13. HIGH VOLUME INJECTION FOR GCMS ANALYSIS OF PARTICULATE ORGANIC SPECIES IN AMBIENT AIR

    EPA Science Inventory

    Detection of organic species in ambient particulate matter typically requires large air sample volumes, frequently achieved by grouping samples into monthly composites. Decreasing the volume of air sample required would allow shorter collection times and more convenient sample c...

  14. Monitoring airborne fungal spores in an experimental indoor environment to evaluate sampling methods and the effects of human activity on air sampling.

    PubMed Central

    Buttner, M P; Stetzenbach, L D

    1993-01-01

    Aerobiological monitoring was conducted in an experimental room to aid in the development of standardized sampling protocols for airborne microorganisms in the indoor environment. The objectives of this research were to evaluate the relative efficiencies of selected sampling methods for the retrieval of airborne fungal spores and to determine the effect of human activity on air sampling. Dry aerosols containing known concentrations of Penicillium chrysogenum spores were generated, and air samples were taken by using Andersen six-stage, Surface Air System, Burkard, and depositional samplers. The Andersen and Burkard samplers retrieved the highest numbers of spores compared with the measurement standard, an aerodynamic particle sizer located inside the room. Data from paired samplers demonstrated that the Andersen sampler had the highest levels of sensitivity and repeatability. With a carpet as the source of P. chrysogenum spores, the effects of human activity (walking or vacuuming near the sampling site) on air sampling were also examined. Air samples were taken under undisturbed conditions and after human activity in the room. Human activity resulted in retrieval of significantly higher concentrations of airborne spores. Surface sampling of the carpet revealed moderate to heavy contamination despite relatively low airborne counts. Therefore, in certain situations, air sampling without concomitant surface sampling may not adequately reflect the level of microbial contamination in indoor environments. PMID:8439150

  15. Carter Carburetor Weekly Air Monitoring & Sampling Report - March 7, 2013 - March 13, 2016

    EPA Pesticide Factsheets

    Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati

  16. A knowledge-based control system for air-scour optimisation in membrane bioreactors.

    PubMed

    Ferrero, G; Monclús, H; Sancho, L; Garrido, J M; Comas, J; Rodríguez-Roda, I

    2011-01-01

    Although membrane bioreactors (MBRs) technology is still a growing sector, its progressive implementation all over the world, together with great technical achievements, has allowed it to reach a mature degree, just comparable to other more conventional wastewater treatment technologies. With current energy requirements around 0.6-1.1 kWh/m3 of treated wastewater and investment costs similar to conventional treatment plants, main market niche for MBRs can be areas with very high restrictive discharge limits, where treatment plants have to be compact or where water reuse is necessary. Operational costs are higher than for conventional treatments; consequently there is still a need and possibilities for energy saving and optimisation. This paper presents the development of a knowledge-based decision support system (DSS) for the integrated operation and remote control of the biological and physical (filtration and backwashing or relaxation) processes in MBRs. The core of the DSS is a knowledge-based control module for air-scour consumption automation and energy consumption minimisation.

  17. Design, construction, testing and evaluation of a residential ice storage air conditioning system. Doctoral thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos, J.J.; Ritz, T.A.

    1982-11-01

    The experimental system was used to supply cooling to a single wide trailer and performance data were compared to a conventional air conditioning system of the some capacity. Utility rate information was collected from over one hundred major utility companies and used to evaluate economic comparison of the two systems. The ice storage system utilized reduced rate time periods to accommodate ice while providing continuous cooling to the trailer. The economic evaluation resulted in finding that the ice storage system required over 50% more energy than the conventional system. Although a few of the utility companies offered rate structures whichmore » would result in savings of up to $200 per year, this would not be enough to offset higher initial costs over the life of the storage system. Recommendations include items that would have to be met in order for an ice storage system to be an economically viable alternative to the conventional system.« less

  18. Air sampling workshop: October 24-25, 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-06-01

    A two-day workshop was held in October 1978 on air sampling strategies for the occupational environment. Strategies comprise the elements of implementing an air sampling program including deciding on the extent of sampling, selecting appropriate types of measurement, placing sampling instruments properly, and interpreting sample results correctly. All of these elements are vital in the reliable assessment of occupational exposures yet their coverage in the industrial hygiene literature is meager. Although keyed to a few introductory topics, the agenda was sufficiently informal to accommodate extemporaneous discussion on any subject related to sampling strategies. Questions raised during the workshop mirror themore » status of air sampling strategy as much as the factual information that was presented. It may be concluded from the discussion and questions that air sampling strategy is an elementary state and urgently needs concerted attention from the industrial hygiene profession.« less

  19. An automated atmospheric sampling system operating on 747 airliners

    NASA Technical Reports Server (NTRS)

    Perkins, P. J.; Gustafsson, U. R. C.

    1976-01-01

    An air sampling system that automatically measures the temporal and spatial distribution of particulate and gaseous constituents of the atmosphere is collecting data on commercial air routes covering the world. Measurements are made in the upper troposphere and lower stratosphere (6 to 12 km) of constituents related to aircraft engine emissions and other pollutants. Aircraft operated by different airlines sample air at latitudes from the Arctic to Australia. This unique system includes specialized instrumentation, a special air inlet probe for sampling outside air, a computerized automatic control, and a data acquisition system. Air constituent and related flight data are tape recorded in flight for later computer processing on the ground.

  20. Exhaust Air Dust Monitoring is Superior to Soiled Bedding Sentinels for the Detection of Pasteurella pneumotropica in Individually Ventilated Cage Systems.

    PubMed

    Miller, Manuel; Ritter, Brbel; Zorn, Julia; Brielmeier, Markus

    2016-11-01

    Reliable detection of unwanted organisms is essential for meaningful health monitoring in experimental animal facilities. Currently, most rodents are housed in IVC systems, which prevent the aerogenic transmission of pathogens between cages. Typically soiled-bedding sentinels (SBS) exposed to soiled bedding collected from a population of animals within an IVC rack are tested as representatives, but infectious agents often go undetected due to inefficient transmission. Pasteurellaceae are among the most prevalent bacterial pathogens isolated from experimental mice, and the failure of SBS to detect these bacteria is well established. In this study, we investigated whether analysis of exhaust air dust (EAD) samples by using a sensitive and specific real-time PCR assay is superior to conventional SBS monitoring for the detection of Pasteurella pneumotropica (Pp) infections. In a rack with a known prevalence of Pp-positive mice, weekly EAD sampling was compared with the classic SBS method over 3 mo. In 6 rounds of testing, with a prevalence of 5 infected mice in each of 7 cages in a rack of 63 cages, EAD PCR detected Pp at every weekly time point; SBS failed to detect Pp in all cases. The minimal prevalence of Pp-infected mice required to obtain a reliable positive result by EAD PCR testing was determined to be 1 in 63 cages. Reliable detection of Pp was achieved after only 1 wk of exposure. Analysis of EAD samples by real-time PCR assay provides a sensitive, simple, and reliable approach for Pp identification in laboratory mice.

  1. Exhaust Air Dust Monitoring is Superior to Soiled Bedding Sentinels for the Detection of Pasteurella pneumotropica in Individually Ventilated Cage Systems

    PubMed Central

    Miller, Manuel; Ritter, Bärbel; Zorn, Julia; Brielmeier, Markus

    2016-01-01

    Reliable detection of unwanted organisms is essential for meaningful health monitoring in experimental animal facilities. Currently, most rodents are housed in IVC systems, which prevent the aerogenic transmission of pathogens between cages. Typically soiled-bedding sentinels (SBS) exposed to soiled bedding collected from a population of animals within an IVC rack are tested as representatives, but infectious agents often go undetected due to inefficient transmission. Pasteurellaceae are among the most prevalent bacterial pathogens isolated from experimental mice, and the failure of SBS to detect these bacteria is well established. In this study, we investigated whether analysis of exhaust air dust (EAD) samples by using a sensitive and specific real-time PCR assay is superior to conventional SBS monitoring for the detection of Pasteurella pneumotropica (Pp) infections. In a rack with a known prevalence of Pp-positive mice, weekly EAD sampling was compared with the classic SBS method over 3 mo. In 6 rounds of testing, with a prevalence of 5 infected mice in each of 7 cages in a rack of 63 cages, EAD PCR detected Pp at every weekly time point; SBS failed to detect Pp in all cases. The minimal prevalence of Pp-infected mice required to obtain a reliable positive result by EAD PCR testing was determined to be 1 in 63 cages. Reliable detection of Pp was achieved after only 1 wk of exposure. Analysis of EAD samples by real-time PCR assay provides a sensitive, simple, and reliable approach for Pp identification in laboratory mice. PMID:27931316

  2. Biases in Total Precipitable Water Vapor Climatologies from Atmospheric Infrared Sounder and Advanced Microwave Scanning Radiometer

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric J.; Lambrigtsen, Bjorn H.; Eldering, Annmarie; Aumann, Hartmut H.; Chahine, Moustafa T.

    2006-01-01

    We examine differences in total precipitable water vapor (PWV) from the Atmospheric Infrared Sounder (AIRS) and the Advanced Microwave Scanning Radiometer (AMSR-E) experiments sharing the Aqua spacecraft platform. Both systems provide estimates of PWV over water surfaces. We compare AIRS and AMSR-E PWV to constrain AIRS retrieval uncertainties as functions of AIRS retrieved infrared cloud fraction. PWV differences between the two instruments vary only weakly with infrared cloud fraction up to about 70%. Maps of AIRS-AMSR-E PWV differences vary with location and season. Observational biases, when both instruments observe identical scenes, are generally less than 5%. Exceptions are in cold air outbreaks where AIRS is biased moist by 10-20% or 10-60% (depending on retrieval processing) and at high latitudes in winter where AIRS is dry by 5-10%. Sampling biases, from different sampling characteristics of AIRS and AMSR-E, vary in sign and magnitude. AIRS sampling is dry by up to 30% in most high-latitude regions but moist by 5-15% in subtropical stratus cloud belts. Over the northwest Pacific, AIRS samples conditions more moist than AMSR-E by a much as 60%. We hypothesize that both wet and dry sampling biases are due to the effects of clouds on the AIRS retrieval methodology. The sign and magnitude of these biases depend upon the types of cloud present and on the relationship between clouds and PWV. These results for PWV imply that climatologies of height-resolved water vapor from AIRS must take into consideration local meteorological processes affecting AIRS sampling.

  3. 40 CFR 86.537-90 - Dynamometer test runs.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... “transient” formaldehyde exhaust sample, the “transient” dilution air sample bag, the “transient” methanol... start “transient” exhaust and dilution air bag samples to the analytical system and process the samples... Section 86.537-90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS...

  4. 40 CFR 86.537-90 - Dynamometer test runs.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... “transient” formaldehyde exhaust sample, the “transient” dilution air sample bag, the “transient” methanol... start “transient” exhaust and dilution air bag samples to the analytical system and process the samples... Section 86.537-90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS...

  5. 40 CFR 86.537-90 - Dynamometer test runs.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... “transient” formaldehyde exhaust sample, the “transient” dilution air sample bag, the “transient” methanol... start “transient” exhaust and dilution air bag samples to the analytical system and process the samples... Section 86.537-90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS...

  6. Exposure risk to carcinogenic PAHs in indoor-air during biomass combustion whilst cooking in rural India

    NASA Astrophysics Data System (ADS)

    Bhargava, Anuj; Khanna, R. N.; Bhargava, S. K.; Kumar, Sushil

    In India, a vast majority of rural household burns unprocessed biomass, as an energy source, to cook food. The biomass is burnt indoors in conventionally homemade clay-stoves, called 'Chulha', which results in the generation of a variety of airborne products along with polycyclic aromatic hydrocarbons (PAHs) in an uncontrolled manner. We report here the concentrations and profile of carcinogenic PAHs, co-sampled with respirable suspended particulate matter, in rural indoors during burning of biomass vis-à-vis liquified petroleum gas as the energy source. There is a limited data on the subject in the literature. The seasonal variation has also been studied. Sampling was done in breathing zone and in surrounding areas concurrent with cooking on chulha. PAHs were extracted in methylene chloride and analyzed over HPLC after column clean up on silica gel. Our study revealed that the concentrations of carcinogenic PAHs were fairly high in breathing zone and in surrounding areas while cooking over chulha in rural India. PAHs concentrations increased substantially during biomass combustion. Concentrations were high during CDC combustion and low during LPG combustion or the non-cooking period. This trend was conserved in both the seasons. Concentrations of total PAHs were greater in winter as compared to summer and greatest in the breathing zone. Di-benz( a,h)anthracene, benzo( k)-fluoranthene and chrysene contributed maximum. Benzo( a)pyrene contributed moderately. Maximum concentrations of indoor air benzo( a)pyrene (>1.5 μg/m 3) were found in breathing zone in winter. The daily exposure to high concentrations of carcinogenic PAHs in indoor air environment while cooking food could be impacting for chronic pulmonary illnesses in rural Indian women.

  7. Using big data from air quality monitors to evaluate indoor PM2.5 exposure in buildings: Case study in Beijing.

    PubMed

    Zuo, JinXing; Ji, Wei; Ben, YuJie; Hassan, Muhammad Azher; Fan, WenHong; Bates, Liam; Dong, ZhaoMin

    2018-05-19

    Due to time- and expense- consuming of conventional indoor PM 2.5 (particulate matter with aerodynamic diameter of less than 2.5 μm) sampling, the sample size in previous studies was generally small, which leaded to high heterogeneity in indoor PM 2.5 exposure assessment. Based on 4403 indoor air monitors in Beijing, this study evaluated indoor PM 2.5 exposure from 15th March 2016 to 14th March 2017. Indoor PM 2.5 concentration in Beijing was estimated to be 38.6 ± 18.4 μg/m 3 . Specifically, the concentration in non-heating season was 34.9 ± 15.8 μg/m 3 , which was 24% lower than that in heating season (46.1 ± 21.2 μg/m 3 ). A significant correlation between indoor and ambient PM 2.5 (p < 0.05) was evident with an infiltration factor of 0.21, and the ambient PM 2.5 contributed approximately 52% and 42% to indoor PM 2.5 for non-heating and heating seasons, respectively. Meanwhile, the mean indoor/outdoor (I/O) ratio was estimated to be 0.73 ± 0.54. Finally, the adjusted PM 2.5 exposure level integrating the indoor and outdoor impact was calculated to be 46.8 ± 27.4 μg/m 3 , which was approximately 42% lower than estimation only relied on ambient PM 2.5 concentration. This study is the first attempt to employ big data from commercial air monitors to evaluate indoor PM 2.5 exposure and risk in Beijing, which may be instrumental to indoor PM 2.5 pollution control. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Multi-platform metabolomics assays for human lung lavage fluids in an air pollution exposure study.

    PubMed

    Surowiec, Izabella; Karimpour, Masoumeh; Gouveia-Figueira, Sandra; Wu, Junfang; Unosson, Jon; Bosson, Jenny A; Blomberg, Anders; Pourazar, Jamshid; Sandström, Thomas; Behndig, Annelie F; Trygg, Johan; Nording, Malin L

    2016-07-01

    Metabolomics protocols are used to comprehensively characterize the metabolite content of biological samples by exploiting cutting-edge analytical platforms, such as gas chromatography (GC) or liquid chromatography (LC) coupled to mass spectrometry (MS) assays, as well as nuclear magnetic resonance (NMR) assays. We have developed novel sample preparation procedures combined with GC-MS, LC-MS, and NMR metabolomics profiling for analyzing bronchial wash (BW) and bronchoalveolar lavage (BAL) fluid from 15 healthy volunteers following exposure to biodiesel exhaust and filtered air. Our aim was to investigate the responsiveness of metabolite profiles in the human lung to air pollution exposure derived from combustion of biofuels, such as rapeseed methyl ester biodiesel, which are increasingly being promoted as alternatives to conventional fossil fuels. Our multi-platform approach enabled us to detect the greatest number of unique metabolites yet reported in BW and BAL fluid (82 in total). All of the metabolomics assays indicated that the metabolite profiles of the BW and BAL fluids differed appreciably, with 46 metabolites showing significantly different levels in the corresponding lung compartments. Furthermore, the GC-MS assay revealed an effect of biodiesel exhaust exposure on the levels of 1-monostearylglycerol, sucrose, inosine, nonanoic acid, and ethanolamine (in BAL) and pentadecanoic acid (in BW), whereas the LC-MS assay indicated a shift in the levels of niacinamide (in BAL). The NMR assay only identified lactic acid (in BW) as being responsive to biodiesel exhaust exposure. Our findings demonstrate that the proposed multi-platform approach is useful for wide metabolomics screening of BW and BAL fluids and can facilitate elucidation of metabolites responsive to biodiesel exhaust exposure. Graphical Abstract Graphical abstract illustrating the study workflow. NMR Nuclear Magnetic Resonance, LC-TOFMS Liquid chromatography-Time Of Flight Mass Spectrometry, GC Gas Chromatography-Mass spectrometry.

  9. Two stroke homogenous charge compression ignition engine with pulsed air supplier

    DOEpatents

    Clarke, John M.

    2003-08-05

    A two stroke homogenous charge compression ignition engine includes a volume pulsed air supplier, such as a piston driven pump, for efficient scavenging. The usage of a homogenous charge tends to decrease emissions. The use of a volume pulsed air supplier in conjunction with conventional poppet type intake and exhaust valves results in a relatively efficient scavenging mode for the engine. The engine preferably includes features that permit valving event timing, air pulse event timing and injection event timing to be varied relative to engine crankshaft angle. The principle use of the invention lies in improving diesel engines.

  10. Air blast type coal slurry fuel injector

    DOEpatents

    Phatak, Ramkrishna G.

    1986-01-01

    A device to atomize and inject a coal slurry in the combustion chamber of an internal combustion engine, and which eliminates the use of a conventional fuel injection pump/nozzle. The injector involves the use of compressed air to atomize and inject the coal slurry and like fuels. In one embodiment, the breaking and atomization of the fuel is achieved with the help of perforated discs and compressed air. In another embodiment, a cone shaped aspirator is used to achieve the breaking and atomization of the fuel. The compressed air protects critical bearing areas of the injector.

  11. Air data system optimization using a genetic algorithm

    NASA Technical Reports Server (NTRS)

    Deshpande, Samir M.; Kumar, Renjith R.; Seywald, Hans; Siemers, Paul M., III

    1992-01-01

    An optimization method for flush-orifice air data system design has been developed using the Genetic Algorithm approach. The optimization of the orifice array minimizes the effect of normally distributed random noise in the pressure readings on the calculation of air data parameters, namely, angle of attack, sideslip angle and freestream dynamic pressure. The optimization method is applied to the design of Pressure Distribution/Air Data System experiment (PD/ADS) proposed for inclusion in the Aeroassist Flight Experiment (AFE). Results obtained by the Genetic Algorithm method are compared to the results obtained by conventional gradient search method.

  12. Long-range airplane study: The consumer looks at SST travel

    NASA Technical Reports Server (NTRS)

    Landes, K. H.; Matter, J. A.

    1980-01-01

    The attitudes of long-range air travelers toward several basic air travel decisions, were surveyed. Of interest were tradeoffs involving time versus comfort and time versus cost as they pertain to supersonic versus conventional wide-body aircraft on overseas routes. The market focused upon was the segment of air travelers most likely to make that type of tradeoff decision: those having flown overseas routes for business or personal reasons in the recent past. The information generated is intended to provide quantifiable insight into consumer demand for supersonic as compared to wide-body aircraft alternatives for long-range overseas air travel.

  13. Air blast type coal slurry fuel injector

    DOEpatents

    Phatak, R.G.

    1984-08-31

    A device to atomize and inject a coal slurry in the combustion chamber of an internal combustion engine is disclosed which eliminates the use of a conventional fuel injection pump/nozzle. The injector involves the use of compressed air to atomize and inject the coal slurry and like fuels. In one embodiment, the breaking and atomization of the fuel is achieved with the help of perforated discs and compressed air. In another embodiment, a cone shaped aspirator is used to achieve the breaking and atomization of the fuel. The compressed air protects critical bearing areas of the injector.

  14. Application of Coamplification at Lower Denaturation Temperature-PCR Sequencing for Early Detection of Antiviral Drug Resistance Mutations of Hepatitis B Virus

    PubMed Central

    Wong, Danny Ka-Ho; Tsoi, Ottilia; Huang, Fung-Yu; Seto, Wai-Kay; Fung, James; Lai, Ching-Lung

    2014-01-01

    Nucleoside/nucleotide analogue for the treatment of chronic hepatitis B virus (HBV) infection is hampered by the emergence of drug resistance mutations. Conventional PCR sequencing cannot detect minor variants of <20%. We developed a modified co-amplification at lower denaturation temperature-PCR (COLD-PCR) method for the detection of HBV minority drug resistance mutations. The critical denaturation temperature for COLD-PCR was determined to be 78°C. Sensitivity of COLD-PCR sequencing was determined using serially diluted plasmids containing mixed proportions of HBV reverse transcriptase (rt) wild-type and mutant sequences. Conventional PCR sequencing detected mutations only if they existed in ≥25%, whereas COLD-PCR sequencing detected mutations when they existed in 5 to 10% of the viral population. The performance of COLD-PCR was compared to conventional PCR sequencing and a line probe assay (LiPA) using 215 samples obtained from 136 lamivudine- or telbivudine-treated patients with virological breakthrough. Among these 215 samples, drug resistance mutations were detected in 155 (72%), 148 (69%), and 113 samples (53%) by LiPA, COLD-PCR, and conventional PCR sequencing, respectively. Nineteen (9%) samples had mutations detectable by COLD-PCR but not LiPA, while 26 (12%) samples had mutations detectable by LiPA but not COLD-PCR, indicating both methods were comparable (P = 0.371). COLD-PCR was more sensitive than conventional PCR sequencing. Thirty-five (16%) samples had mutations detectable by COLD-PCR but not conventional PCR sequencing, while none had mutations detected by conventional PCR sequencing but not COLD-PCR (P < 0.0001). COLD-PCR sequencing is a simple method which is comparable to LiPA and superior to conventional PCR sequencing in detecting minor lamivudine/telbivudine resistance mutations. PMID:24951803

  15. Meso-Scale Wetting of Paper Towels

    NASA Astrophysics Data System (ADS)

    Abedsoltan, Hossein

    In this study, a new experimental approach is proposed to investigate the absorption properties of some selected retail paper towels. The samples were selected from two important manufacturing processes, conventional wet pressing (CWP) considered value products, and through air drying (TAD) considered as high or premium products. The tested liquids were water, decane, dodecane, and tetradecane with the total volumes in micro-liter range. The method involves the point source injection of liquid with different volumetric flowrates, in the nano-liter per second range. The local site for injection was chosen arbitrarily on the sample surface. The absorption process was monitored and recorded as the liquid advances, with two distinct imaging system methods, infrared imaging and optical imaging. The microscopic images were analyzed to calculate the wetted regions during the absorption test, and the absorption diagrams were generated. These absorption diagrams were dissected to illustrate the absorption phenomenon, and the absorption properties of the samples. The local (regional) absorption rates were computed for Mardi Gras and Bounty Basic as the representative samples for CWP and TAD, respectively in order to be compared with the absorption capacity property of these two samples. Then, the absorption capacity property was chosen as an index factor to compare the absorption properties of all the tested paper towels.

  16. Investigation of the continuous flow of the sample solution on the performance of electromembrane extraction: Comparison with conventional procedure.

    PubMed

    Nojavan, Saeed; Sirani, Mahsa; Asadi, Sakine

    2017-10-01

    In this study, electromembrane extraction from a flowing sample solution, termed as continuous-flow electromembrane extraction, was developed and compared with conventional procedures for the determination of four basic drugs in real samples. Experimental parameters affecting the extraction efficiency were further studied and optimized. Under optimum conditions, linearity of continuous-flow procedure was within 8.0-500 ng/mL, while it was wider for conventional procedures (2.0-500 ng/mL). Moreover, repeatability (percentage relative standard deviation) was found to range between 5.6 and 10.4% (n = 3) for the continuous-flow procedure, with a better repeatability than that of conventional procedures (2.3-5.5% (n = 3)). Also, for the continuous-flow procedure, the estimated detection limit (signal-to-noise ratio = 3) was less than 2.4 ng/mL and extraction recoveries were within 8-10%, while the corresponding figures for conventional procedures were less than 0.6 ng/mL and 42-60%, respectively. Thus, the results showed that both continuous flow and conventional procedures were applicable for the extraction of model compounds. However, the conventional procedure was more convenient to use, and thus it was applied to determine sample drugs in real urine and wastewater samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. 40 CFR 61.34 - Air sampling.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Air sampling. 61.34 Section 61.34 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Beryllium § 61.34 Air...

  18. 40 CFR 61.34 - Air sampling.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Air sampling. 61.34 Section 61.34 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Beryllium § 61.34 Air...

  19. Carter Carburetor Weekly Air Monitoring & Sampling Report - November 30, 2015 – December 6, 2015

    EPA Pesticide Factsheets

    Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati

  20. Carter Carburetor Weekly Air Monitoring & Sampling Report - October 26, 2015 – November 1, 2015

    EPA Pesticide Factsheets

    Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati

  1. Carter Carburetor Weekly Air Monitoring & Sampling Report - February 15, 2016 – February 21, 2016

    EPA Pesticide Factsheets

    Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati

  2. Carter Carburetor Weekly Air Monitoring & Sampling Report - October 12, 2015 – October 18, 2015

    EPA Pesticide Factsheets

    Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati

  3. Carter Carburetor Weekly Air Monitoring & Sampling Report - November 23, 2015 – November 29, 2015

    EPA Pesticide Factsheets

    Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati

  4. Carter Carburetor Weekly Air Monitoring & Sampling Report - October 5, 2015 – October 11, 2015

    EPA Pesticide Factsheets

    Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati

  5. Carter Carburetor Weekly Air Monitoring & Sampling Report - February 1, 2016 – February 7, 2016

    EPA Pesticide Factsheets

    Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati

  6. Carter Carburetor Weekly Air Monitoring & Sampling Report - September 28, 2015 – October 4, 2015

    EPA Pesticide Factsheets

    Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati

  7. Carter Carburetor Weekly Air Monitoring & Sampling Report - November 16, 2015 – November 22, 2015

    EPA Pesticide Factsheets

    Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati

  8. Carter Carburetor Weekly Air Monitoring & Sampling Report - November 9, 2015 – November 15, 2015

    EPA Pesticide Factsheets

    Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati

  9. Carter Carburetor Weekly Air Monitoring & Sampling Report - October 19, 2015 – October 25, 2015

    EPA Pesticide Factsheets

    Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati

  10. Carter Carburetor Weekly Air Monitoring & Sampling Report - November 2, 2015 – November 8, 2015

    EPA Pesticide Factsheets

    Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati

  11. High Sensitivity Gas Detection Using a Macroscopic Three-Dimensional Graphene Foam Network

    PubMed Central

    Yavari, Fazel; Chen, Zongping; Thomas, Abhay V.; Ren, Wencai; Cheng, Hui-Ming; Koratkar, Nikhil

    2011-01-01

    Nanostructures are known to be exquisitely sensitive to the chemical environment and offer ultra-high sensitivity for gas-sensing. However, the fabrication and operation of devices that use individual nanostructures for sensing is complex, expensive and suffers from poor reliability due to contamination and large variability from sample-to-sample. By contrast, conventional solid-state and conducting-polymer sensors offer excellent reliability but suffer from reduced sensitivity at room-temperature. Here we report a macro graphene foam-like three-dimensional network which combines the best of both worlds. The walls of the foam are comprised of few-layer graphene sheets resulting in high sensitivity; we demonstrate parts-per-million level detection of NH3 and NO2 in air at room-temperature. Further, the foam is a mechanically robust and flexible macro-scale network that is easy to contact (without Lithography) and can rival the durability and affordability of traditional sensors. Moreover, Joule-heating expels chemisorbed molecules from the foam's surface leading to fully-reversible and low-power operation. PMID:22355681

  12. Effect of surface hydroxyl groups on heat capacity of mesoporous silica

    NASA Astrophysics Data System (ADS)

    Marszewski, Michal; Butts, Danielle; Lan, Esther; Yan, Yan; King, Sophia C.; McNeil, Patricia E.; Galy, Tiphaine; Dunn, Bruce; Tolbert, Sarah H.; Hu, Yongjie; Pilon, Laurent

    2018-05-01

    This paper quantifies the effect of surface hydroxyl groups on the effective specific and volumetric heat capacities of mesoporous silica. To achieve a wide range of structural diversity, mesoporous silica samples were synthesized by various methods, including (i) polymer-templated nanoparticle-based powders, (ii) polymer-templated sol-gel powders, and (iii) ambigel silica samples dried by solvent exchange at room temperature. Their effective specific heat capacity, specific surface area, and porosity were measured using differential scanning calorimetry and low-temperature nitrogen adsorption-desorption measurements. The experimentally measured specific heat capacity was larger than the conventional weight-fraction-weighted specific heat capacity of the air and silica constituents. The difference was attributed to the presence of OH groups in the large internal surface area. A thermodynamic model was developed based on surface energy considerations to account for the effect of surface OH groups on the specific and volumetric heat capacity. The model predictions fell within the experimental uncertainty.

  13. Optimization and Validation of Thermal Desorption Gas Chromatography-Mass Spectrometry for the Determination of Polycyclic Aromatic Hydrocarbons in Ambient Air

    PubMed Central

    Durana, Nieves; García, José Antonio; Gómez, María Carmen; Alonso, Lucio

    2018-01-01

    Thermal desorption (TD) coupled with gas chromatography/mass spectrometry (TD-GC/MS) is a simple alternative that overcomes the main drawbacks of the solvent extraction-based method: long extraction times, high sample manipulation, and large amounts of solvent waste. This work describes the optimization of TD-GC/MS for the measurement of airborne polycyclic aromatic hydrocarbons (PAHs) in particulate phase. The performance of the method was tested by Standard Reference Material (SRM) 1649b urban dust and compared with the conventional method (Soxhlet extraction-GC/MS), showing a better recovery (mean of 97%), precision (mean of 12%), and accuracy (±25%) for the determination of 14 EPA PAHs. Furthermore, other 15 nonpriority PAHs were identified and quantified using their relative response factors (RRFs). Finally, the proposed method was successfully applied for the quantification of PAHs in real 8 h-samples (PM10), demonstrating its capability for determination of these compounds in short-term monitoring. PMID:29854561

  14. Smartphone threshold audiometry in underserved primary health-care contexts.

    PubMed

    Sandström, Josefin; Swanepoel, De Wet; Carel Myburgh, Hermanus; Laurent, Claude

    2016-01-01

    To validate a calibrated smartphone-based hearing test in a sound booth environment and in primary health-care clinics. A repeated-measure within-subject study design was employed whereby air-conduction hearing thresholds determined by smartphone-based audiometry was compared to conventional audiometry in a sound booth and a primary health-care clinic environment. A total of 94 subjects (mean age 41 years ± 17.6 SD and range 18-88; 64% female) were assessed of whom 64 were tested in the sound booth and 30 within primary health-care clinics without a booth. In the sound booth 63.4% of conventional and smartphone thresholds indicated normal hearing (≤15 dBHL). Conventional thresholds exceeding 15 dB HL corresponded to smartphone thresholds within ≤10 dB in 80.6% of cases with an average threshold difference of -1.6 dB ± 9.9 SD. In primary health-care clinics 13.7% of conventional and smartphone thresholds indicated normal hearing (≤15 dBHL). Conventional thresholds exceeding 15 dBHL corresponded to smartphone thresholds within ≤10 dB in 92.9% of cases with an average threshold difference of -1.0 dB ± 7.1 SD. Accurate air-conduction audiometry can be conducted in a sound booth and without a sound booth in an underserved community health-care clinic using a smartphone.

  15. Linking environment-productivity trade-offs and correlated uncertainties: Greenhouse gas emissions and crop productivity in paddy rice production systems.

    PubMed

    Hayashi, Kiyotada; Nagumo, Yoshifumi; Domoto, Akiko

    2016-11-15

    In comparative life cycle assessments of agricultural production systems, analyses of both the trade-offs between environmental impacts and crop productivity and of the uncertainties specific to agriculture such as fluctuations in greenhouse gas (GHG) emissions and crop yields are crucial. However, these two issues are usually analyzed separately. In this paper, we present a framework to link trade-off and uncertainty analyses; correlated uncertainties are integrated into environment-productivity trade-off analyses. We compared three rice production systems in Japan: a system using a pelletized, nitrogen-concentrated organic fertilizer made from poultry manure using closed-air composting techniques (high-N system), a system using a conventional organic fertilizer made from poultry manure using open-air composting techniques (low-N system), and a system using a chemical compound fertilizer (conventional system). We focused on two important sources of uncertainties in paddy rice cultivation-methane emissions from paddy fields and crop yields. We found trade-offs between the conventional and high-N systems and the low-N system and the existence of positively correlated uncertainties in the conventional and high-N systems. We concluded that our framework is effective in recommending the high-N system compared with the low-N system, although the performance of the former is almost the same as the conventional system. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Comparison of Conventional Versus Spiral Computed Tomography with Three Dimensional Reconstruction in Chronic Otitis Media with Ossicular Chain Destruction.

    PubMed

    Naghibi, Saeed; Seifirad, Sirous; Adami Dehkordi, Mahboobeh; Einolghozati, Sasan; Ghaffarian Eidgahi Moghadam, Nafiseh; Akhavan Rezayat, Amir; Seifirad, Soroush

    2016-01-01

    Chronic otitis media (COM) can be treated with tympanoplasty with or without mastoidectomy. In patients who have undergone middle ear surgery, three-dimensional spiral computed tomography (CT) scan plays an important role in optimizing surgical planning. This study was performed to compare the findings of three-dimensional reconstructed spiral and conventional CT scan of ossicular chain study in patients with COM. Fifty patients enrolled in the study underwent plane and three dimensional CT scan (PHILIPS-MX 8000). Ossicles changes, mastoid cavity, tympanic cavity, and presence of cholesteatoma were evaluated. Results of the two methods were then compared and interpreted by a radiologist, recorded in questionnaires, and analyzed. Logistic regression test and Kappa coefficient of agreement were used for statistical analyses. Sixty two ears with COM were found in physical examination. A significant difference was observed between the findings of the two methods in ossicle erosion (11.3% in conventional CT vs. 37.1% in spiral CT, P = 0.0001), decrease of mastoid air cells (82.3% in conventional CT vs. 93.5% in spiral CT, P = 0.001), and tympanic cavity opacity (12.9% in conventional CT vs. 40.3% in spiral CT, P=0.0001). No significant difference was observed between the findings of the two methods in ossicle destruction (6.5% conventional CT vs. 56.4% in spiral CT, P = 0.125), and presence of cholesteatoma (3.2% in conventional CT vs. 42% in spiral CT, P = 0.172). In this study, spiral CT scan demonstrated ossicle dislocation in 9.6%, decrease of mastoid air cells in 4.8%, and decrease of volume in the tympanic cavity in 1.6%; whereas, none of these findings were reported in the patients' conventional CT scans. Spiral-CT scan is superior to conventional CT in the diagnosis of lesions in COM before operation. It can be used for detailed evaluation of ossicular chain in such patients.

  17. 30 CFR 90.205 - Approved sampling devices; operation; air flowrate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Approved sampling devices; operation; air... LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-COAL MINERS WHO HAVE EVIDENCE OF THE DEVELOPMENT OF PNEUMOCONIOSIS Sampling Procedures § 90.205 Approved sampling devices; operation; air flowrate...

  18. Analysis of EPA and DOE WIPP Air Sampling Data

    EPA Pesticide Factsheets

    During the April 2014 EPA visit to WIPP, EPA co-located four ambient air samplers with existing Department of Energy (DOE) ambient air samplers to independently corroborate DOE's reported air sampling results.

  19. Air and surface contamination patterns of meticillin-resistant Staphylococcus aureus on eight acute hospital wards.

    PubMed

    Creamer, E; Shore, A C; Deasy, E C; Galvin, S; Dolan, A; Walley, N; McHugh, S; Fitzgerald-Hughes, D; Sullivan, D J; Cunney, R; Coleman, D C; Humphreys, H

    2014-03-01

    Meticillin-resistant Staphylococcus aureus (MRSA) can be recovered from hospital air and from environmental surfaces. This poses a potential risk of transmission to patients. To investigate associations between MRSA isolates recovered from air and environmental surfaces with those from patients when undertaking extensive patient and environmental sampling. This was a prospective observational study of patients and their environment in eight wards of a 700-bed tertiary care hospital during 2010 and 2011. Sampling of patients, air and surfaces was carried out on all ward bays, with more extended environmental sampling in ward high-dependency bays and at particular times of the day. The genetic relatedness of isolates was determined by DNA microarray profiling and spa typing. MRSA was recovered from 30/706 (4.3%) patients and from 19/132 (14.4%) air samples. On 9/132 (6.8%) occasions both patient and air samples yielded MRSA. In 32 high-dependency bays, MRSA was recovered from 12/161 (7.4%) patients, 8/32 (25%) air samples, and 21/644 (3.3%) environmental surface samples. On 10/132 (7.6%) occasions, MRSA was isolated from air in the absence of MRSA-positive patients. Patient demographic data combined with spa typing and DNA microarray profiling revealed four likely transmission clusters, where patient and environmental isolates were deemed to be very closely related. Air sampling yielded MRSA on frequent occasions, especially in high-dependency bays. Environmental and air sampling combined with patient demographic data, spa typing and DNA microarray profiling indicated the presence of clusters that were not otherwise apparent. Copyright © 2014 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  20. Application of Micro-Electro-Mechanical Sensors Contactless NDT of Concrete Structures.

    PubMed

    Ham, Suyun; Popovics, John S

    2015-04-17

    The utility of micro-electro-mechanical sensors (MEMS) for application in air-coupled (contactless or noncontact) sensing to concrete nondestructive testing (NDT) is studied in this paper. The fundamental operation and characteristics of MEMS are first described. Then application of MEMS sensors toward established concrete test methods, including vibration resonance, impact-echo, ultrasonic surface wave, and multi-channel analysis of surface waves (MASW), is demonstrated. In each test application, the performance of MEMS is compared with conventional contactless and contact sensing technology. Favorable performance of the MEMS sensors demonstrates the potential of the technology for applied contactless NDT efforts. To illustrate the utility of air-coupled MEMS sensors for concrete NDT, as compared with conventional sensor technology.

  1. Composite Matrix Cooling Scheme for Small Gas Turbine Combustors

    NASA Technical Reports Server (NTRS)

    Paskin, Marc D.; Ross, Phillip T.; Mongia, Hukam C.; Acosta, Waldo A.

    1990-01-01

    The design, manufacture, and testing of a compliant metal/ceramic (CMC) wall cooling concept-implementing combustor for small gas turbine engines has been undertaken by a joint U.S. Army/NASA technology development program. CMC in principle promises greater wall cooling effectiveness than conventional designs and materials, thereby facilitating a substantial reduction in combustor cooling air requirements and furnishing greater airflow for the control of burner outlet temperature patterns as well as improving thermodynamic efficiency and reducing pollutant emissions and smoke levels. Rig test results have confirmed the projected benefits of the CMC concept at combustor outlet temperatures of the order of 2460 F, at which approximately 80 percent less cooling air than conventionally required was being employed by the CMC combustor.

  2. Storage battery aspects of air-electrode research

    NASA Astrophysics Data System (ADS)

    Buzelli, E. S.; Berk, L. B.; Demczyk, B. G.; Zuckerbrod, D.

    The use of air electrodes in secondary, alkaline energy storage systems offers several significant advantages over other conventional cathode systems. The oxygen, required for operation, is not stored or carried within the battery system. The weight of the air electrode is significantly lower than alternative cathode couples for the same mission. The cost of the air electrode is potentially low. As a result of these characteristics, alkaline electrolyte energy storage systems with air electrodes have the potential for achieving energy density levels in excess of 150 Whr/kg at low costs, $30-$40/kWh. The primary key to a successful metal-air secondary battery for an EV application is the development of a bifunctinal air electrode. This paper discusses the various aspects of air electrode research for this application, as well as the physical and performance requirements of the air electrode in this advanced technology battery system.

  3. Storage battery aspects of air-electrode research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buzzelli, E.S.; Berk, L.B.; Demczyk, B.G.

    1983-08-01

    The use of air electrodes in secondary, alkaline energy storage systems offers several significant advantages over other conventional cathode systems. The oxygen, required for operation, is not stored or carried within the battery system. The weight of the air electrode is significantly lower than alternative cathode couples for the same mission. The cost of the air electrode is potentially low. As a result of these characteristics, alkaline electrolyte energy storage systems with air electrodes have the potential for achieving energy density levels in excess of 150 Whr/kg at low costs, $30-$40/kWh. The primary key to a successful metal-air secondary batterymore » for an EV application is the development of a bifunctional air electrode. This paper discusses the various aspects of air electrode research for this application, as well as the physical and performance requirements of the air electrode in this advanced technology battery system.« less

  4. A compilation of K-Ar-ages for southern California

    USGS Publications Warehouse

    Miller, Fred K.; Morton, Douglas M.; Morton, Janet L.; Miller, David M.

    2014-01-01

    The purpose of this report is to make available a large body of conventional K-Ar ages for granitic, volcanic, and metamorphic rocks collected in southern California. Although one interpretive map is included, the report consists primarily of a systematic listing, without discussion or interpretation, of published and unpublished ages that may be of value in future regional and other geologic studies. From 1973 to 1979, 468 rock samples from southern California were collected for conventional K-Ar dating under a regional geologic mapping project of Southern California (predecessor of the Southern California Areal Mapping Project). Most samples were collected and dated between 1974 and 1977. For 61 samples (13 percent of those collected), either they were discarded for varying reasons, or the original collection data were lost. For the remaining samples, 518 conventional K-Ar ages are reported here; coexisting mineral pairs were dated from many samples. Of these K-Ar ages, 225 are previously unpublished, and identified as such in table 1. All K-Ar ages are by conventional K-Ar analysis; no 40Ar/39Ar dating was done. Subsequent to the rock samples collected in the 1970s and reported here, 33 samples were collected and 38 conventional K-Ar ages determined under projects directed at (1) characterization of the Mesozoic and Cenozoic igneous rocks in and on both sides of the Transverse Ranges and (2) clarifying the Mesozoic and Cenozoic tectonics of the eastern Mojave Desert. Although previously published (Beckerman et al., 1982), another eight samples and 11 conventional K-Ar ages are included here, because they augment those completed under the previous two projects.

  5. Trends and Variations of Ocean Surface Latent Heat Flux: Results from GSSTF2c Data Set

    NASA Technical Reports Server (NTRS)

    Gao, Si; Chiu, Long S.; Shie, Chung-Lin

    2013-01-01

    Trends and variations of Goddard Satellite-based Surface Turbulent Fluxes (GSSTF) version 2c (GSSTF2c) latent heat flux (LHF) are examined. This version of LHF takes account of the correction in Earth incidence angle. The trend of global mean LHF for GSSTF2c is much reduced relative to GSSTF version 2b Set 1 and Set 2 for the same period 1988-2008. Temporal increase of GSSTF2c LHF in the two decades is 11.0%, in which 3.1%, 5.8%, and 2.1% are attributed to the increase in wind, the increase in sea surface saturated air humidity, and the decrease in near-surface air humidity, respectively. The first empirical orthogonal function of LHF is a conventional El Nino Southern Oscillation (ENSO) mode. However, the trends in LHF are independent of conventional ENSO phenomena. After removing ENSO signal, the pattern of LHF trends is primarily determined by the pattern of air-sea humidity difference trends.

  6. Air gasification of rice husk in bubbling fluidized bed reactor with bed heating by conventional charcoal.

    PubMed

    Makwana, J P; Joshi, Asim Kumar; Athawale, Gaurav; Singh, Dharminder; Mohanty, Pravakar

    2015-02-01

    An experimental study of air gasification of rice husk was conducted in a bench-scale fluidized bed gasifier (FBG) having 210 mm diameter and 1600 mm height. Heating of sand bed material was performed using conventional charcoal fuel. Different operating conditions like bed temperature, feeding rate and equivalence ratio (ER) varied in the range of 750-850 °C, 25-31.3 kg/h, and 0.3-0.38, respectively. Flow rate of air was kept constant (37 m(3)/h) during FBG experiments. The carbon conversion efficiencies (CCE), cold gas efficiency, and thermal efficiency were evaluated, where maximum CCE was found as 91%. By increasing ER, the carbon conversion efficiency was decreased. Drastic reduction in electric consumption for initial heating of gasifier bed with charcoal compared to ceramic heater was ∼45%. Hence rice husk is found as a potential candidate to use directly (without any processing) in FBG as an alternative renewable energy source from agricultural field. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Accuracy of reading liquid based cytology slides using the ThinPrep Imager compared with conventional cytology: prospective study

    PubMed Central

    d'Assuncao, Jefferson; Irwig, Les; Macaskill, Petra; Chan, Siew F; Richards, Adele; Farnsworth, Annabelle

    2007-01-01

    Objective To compare the accuracy of liquid based cytology using the computerised ThinPrep Imager with that of manually read conventional cytology. Design Prospective study. Setting Pathology laboratory in Sydney, Australia. Participants 55 164 split sample pairs (liquid based sample collected after conventional sample from one collection) from consecutive samples of women choosing both types of cytology and whose specimens were examined between August 2004 and June 2005. Main outcome measures Primary outcome was accuracy of slides for detecting squamous lesions. Secondary outcomes were rate of unsatisfactory slides, distribution of squamous cytological classifications, and accuracy of detecting glandular lesions. Results Fewer unsatisfactory slides were found for imager read cytology than for conventional cytology (1.8% v 3.1%; P<0.001). More slides were classified as abnormal by imager read cytology (7.4% v 6.0% overall and 2.8% v 2.2% for cervical intraepithelial neoplasia of grade 1 or higher). Among 550 patients in whom imager read cytology was cervical intraepithelial neoplasia grade 1 or higher and conventional cytology was less severe than grade 1, 133 of 380 biopsy samples taken were high grade histology. Among 294 patients in whom imager read cytology was less severe than cervical intraepithelial neoplasia grade 1 and conventional cytology was grade 1 or higher, 62 of 210 biopsy samples taken were high grade histology. Imager read cytology therefore detected 71 more cases of high grade histology than did conventional cytology, resulting from 170 more biopsies. Similar results were found when one pathologist reread the slides, masked to cytology results. Conclusion The ThinPrep Imager detects 1.29 more cases of histological high grade squamous disease per 1000 women screened than conventional cytology, with cervical intraepithelial neoplasia grade 1 as the threshold for referral to colposcopy. More imager read slides than conventional slides were satisfactory for examination and more contained low grade cytological abnormalities. PMID:17604301

  8. Microbial air quality in mass transport buses and work-related illness among bus drivers of Bangkok Mass Transit Authority.

    PubMed

    Luksamijarulkul, Pipat; Sundhiyodhin, Viboonsri; Luksamijarulkul, Soavalug; Kaewboonchoo, Orawan

    2004-06-01

    The air quality in mass transport buses, especially air-conditioned buses may affect bus drivers who work full time. Bus numbers 16, 63, 67 and 166 of the Seventh Bus Zone of Bangkok Mass Transit Authority were randomly selected to investigate for microbial air quality. Nine air-conditioned buses and 2-4 open-air buses for each number of the bus (36 air-conditioned buses and 12 open-air buses) were included. Five points of in-bus air samples in each studied bus were collected by using the Millipore A ir Tester Totally, 180 and 60 air samples collected from air-conditioned buses and open-air buses were cultured for bacterial and fungal counts. The bus drivers who drove the studied buses were interviewed towards histories of work-related illness while working. The results revealed that the mean +/- SD of bacterial counts in the studied open-air buses ranged from 358.50 +/- 146.66 CFU/m3 to 506 +/- 137.62 CFU/m3; bus number 16 had the highest level. As well as the mean +/- SD of fungal counts which ranged from 93.33 +/- 44.83 CFU/m3 to 302 +/- 294.65 CFU/m3; bus number 166 had the highest level. Whereas, the mean +/- SD of bacterial counts in the studied air-conditioned buses ranged from 115.24 +/- 136.01 CFU/m3 to 244.69 +/- 234.85 CFU/m3; bus numbers 16 and 67 had the highest level. As well as the mean +/- SD of fungal counts which rangedfrom 18.84 +/- 39.42 CFU/m3 to 96.13 +/- 234.76 CFU/m3; bus number 166 had the highest level. When 180 and 60 studied air samples were analyzed in detail, it was found that 33.33% of the air samples from open-air buses and 6.11% of air samples from air-conditioned buses had a high level of bacterial counts (> 500 CFU/m3) while 6.67% of air samples from open-air buses and 2.78% of air samples from air-conditioned buses had a high level of fungal counts (> 500 CFU/m3). Data from the history of work-related illnesses among the studied bus drivers showed that 91.67% of open-air bus drivers and 57.28% of air-conditioned bus drivers had symptoms of work-related illnesses, p = 0.0185.

  9. Method of thermally processing superplastically formed aluminum-lithium alloys to obtain optimum strengthening

    NASA Technical Reports Server (NTRS)

    Anton, Claire E. (Inventor)

    1993-01-01

    Optimum strengthening of a superplastically formed aluminum-lithium alloy structure is achieved via a thermal processing technique which eliminates the conventional step of solution heat-treating immediately following the step of superplastic forming of the structure. The thermal processing technique involves quenching of the superplastically formed structure using static air, forced air or water quenching.

  10. COMPARISON OF THE OCTANOL-AIR PARTITION COEFFICIENT AND LIQUID-PHASE VAPOR PRESSURE AS DESCRIPTORS FOR PARTICLE/GAS PARTITIONING USING LABORATORY AND FIELD DATA FOR PCBS AND PCNS

    EPA Science Inventory

    The conventional Junge-Pankow adsorption model uses the sub-cooled liquid vapor pressure (pLo) as a correlation parameter for gas/particle interactions. An alternative is the octanol-air partition coefficient (Koa) absorption model. Log-log plots of the particle-gas partition c...

  11. Enhancing Air Interdiction of WMD

    DTIC Science & Technology

    2014-04-01

    The Convention on International Civil Aviation, 9th ed., 9 and 10 and Jennifer K. Elsa , Weapons of Mass Destruction Counterproliferation: Legal...Issues for Ships and Aircraft, CRS Report RL32097, (Washington D.C: CRS, 1 October 2003), 24. 15 Elsa , Weapons of Mass Destruction Counterproliferation...Legal Issues for Ships and Aircraft, 20. 16 The Convention on International Civil Aviation, 9th ed., 4. 17 Elsa , Weapons of Mass Destruction

  12. Autonomous Aerodynamic Control of Micro Air Vehicles

    DTIC Science & Technology

    2009-10-19

    Wind tunnel studies have also begun in which detailed aerodynamic quantification can be mad regarding MAV performance with flexible airframes...research. The design is similar to existing MAVs. The airframe has a conventional aircraft design to allow for easy determination of aerodynamic...exceeded in normal flight by conventional aircraft ; however, it is not uncommon for a MAV to surpass the limits due to its low inertia. While collecting

  13. Effects of mesh type on a non-premixed model in a flameless combustion simulation

    NASA Astrophysics Data System (ADS)

    Komonhirun, Seekharin; Yongyingsakthavorn, Pisit; Nontakeaw, Udomkiat

    2018-01-01

    Flameless combustion is a recently developed combustion system, which provides zero emission product. This phenomenon requires auto-ignition by supplying high-temperature air with low oxygen concentration. The flame is vanished and colorless. Temperature of the flameless combustion is less than that of a conventional case, where NOx reactions can be well suppressed. To design a flameless combustor, the computational fluid dynamics (CFD) is employed. The designed air-and-fuel injection method can be applied with the turbulent and non-premixed models. Due to the fact that nature of turbulent non-premixed combustion is based on molecular randomness, inappropriate mesh type can lead to significant numerical errors. Therefore, this research aims to numerically investigate the effects of mesh type on flameless combustion characteristics, which is a primary step of design process. Different meshes, i.e. tetrahedral, hexagonal are selected. Boundary conditions are 5% of oxygen and 900 K of air-inlet temperature for the flameless combustion, and 21% of oxygen and 300 K of air-inlet temperature for the conventional case. The results are finally presented and discussed in terms of velocity streamlines, and contours of turbulent kinetic energy and viscosity, temperature, and combustion products.

  14. A new technique for preliminary estimates of TRU activity on air sample filters and radiological smears.

    PubMed

    Hayes, Robert

    2004-10-01

    In most nuclear facilities, fixed air samplers and sometimes portable air samplers are used where some probability of a release exists but is not expected, and so the added expense and effort of using a continuous air monitor is not deemed justified. When a release is suspected, naturally occurring radioactive material buildup on the filter typically prevents any quantitative measurements within the first day or so. Likewise, outdoor air measurements suffer from the same limitations (such as those taken during the Los Alamos fires) and so any rapid quantifiable measurements of fixed air sampler/portable air sampler filters which are technically defendable (even though conservative) are of use. The technique presented here is only intended for use in routine health physics survey applications and does not presently appear to be appropriate for sub pico Curie activity determinations. This study evaluates the utility of using a portable continuous air monitor as an alpha spectrometer to make transuranic activity determinations of samples using both the built in algorithm for air monitoring and a simple region of interest analysis. All samples evaluated were from air sample filters taken using a portable air sampler. Samples were taken over many months to quantify effects from natural variation in radon progeny activity distributions.

  15. Performance of personal inhalable aerosol samplers in very slowly moving air when facing the aerosol source.

    PubMed

    Witschger, O; Grinshpun, S A; Fauvel, S; Basso, G

    2004-06-01

    While personal aerosol samplers have been characterized primarily based on wind tunnel tests conducted at relatively high wind speeds, modern indoor occupational environments are usually represented by very slow moving air. Recent surveys suggest that elevated levels of occupational exposure to inhalable airborne particles are typically observed when the worker, operating in the vicinity of the dust source, faces the source. Thus, the first objective of this study was to design and test a new, low cost experimental protocol for measuring the sampling efficiency of personal inhalable aerosol samplers in the vicinity of the aerosol source when the samplers operate in very slowly moving air. In this system, an aerosol generator, which is located in the centre of a room-sized non-ventilated chamber, continuously rotates and omnidirectionally disperses test particles of a specific size. The test and reference samplers are equally distributed around the source at the same distance from the centre and operate in parallel (in most of our experiments, the total number of simultaneously operating samplers was 15). Radial aerosol transport is driven by turbulent diffusion and some natural convection. For each specific particle size and the sampler, the aerosol mass concentration is measured by weighing the collection filter. The second objective was to utilize the new protocol to evaluate three widely used aerosol samplers: the IOM Personal Inhalable Sampler, the Button Personal Inhalable Aerosol Sampler and the 25 mm Millipore filter holder (closed-face C25 cassette). The sampling efficiencies of each instrument were measured with six particle fractions, ranging from 6.9 to 76.9 micro m in their mass median aerodynamic diameter. The Button Sampler efficiency data demonstrated a good agreement with the standard inhalable convention and especially with the low air movement inhalabilty curve. The 25 mm filter holder was found to considerably under-sample the particles larger than 10 micro m; its efficiency did not exceed 7% for particles of 40-100 micro m. The IOM Sampler facing the source was found to over-sample compared with the data obtained previously with a slowly rotating, freely suspended sampler in a low air movement environment. It was also found that the particle wall deposition in the IOM metallic cartridge was rather significant and particle size-dependent. For each sampler (IOM, Button and C25) the precision was characterized through the relative standard deviation (RSD) of the aerosol concentration obtained with identical samplers in a specific experiment. The average RSD was 14% for the IOM Sampler, 11% for the Button Sampler and 35% for the 25 mm filter cassette. A separate set of experiments, performed with the Simplified Torso showed that in very slowly moving air a personal sampler can be adequately evaluated even when it is not attached to a body but freely suspended (confirming the data reported previously).

  16. [Legionella spp. contamination in indoor air: preliminary results of an Italian multicenter study].

    PubMed

    Montagna, Maria Teresa; De Giglio, Osvalda; Napoli, Christian; Cannova, Lucia; Cristina, Maria Luisa; Deriu, Maria Grazia; Delia, Santi Antonino; Giuliano, Ada; Guida, Marco; Laganà, Pasqualina; Liguori, Giorgio; Mura, Ida; Pennino, Francesca; Rossini, Angelo; Tardivo, Stefano; Torre, Ida; Torregrossa, Maria Valeria; Villafrate, Maria Rosaria; Albertini, Roberto; Pasquarella, Cesira

    2014-01-01

    To propose a standardized protocol for the evaluation of Legionella contamination in air. A bathroom having a Legionella contamination in water >1,000 cfu/l was selected in 10 different healthcare facilities. Air contamination was assessed by active (Surface Air System, SAS) and passive (Index of Microbial Air, IMA) sampling for 8 hours, about 1 m away from the floor and 50 cm from the tap water. Two hundred liters of air were sampled by SAS every 12 min, after flushing water for 2 min. The IMA value was calculated as the mean value of colony forming units/16 plates exposed during sampling (2 plates/hour). Water contamination was evaluated at T0, after 4 and 8 hours, according to the standard methods. Air contamination by Legionella was found in three healthcare facilities (one with active and two with passive sampling), showing a concomitant tap water contamination (median=40,000; range 1,100-43,000 cfu/l). The remaining seven hospitals isolated Legionella spp. exclusively from water samples (median=8,000; range 1,200-70,000 cfu/l). Our data suggest that environmental Legionella contamination cannot be assessed only through the air sampling, even in the presence of an important water contamination.

  17. Comparison of a new air-assisted sprayer and two conventional sprayers in terms of deposition, loss to the soil and residue of azoxystrobin and tebuconazole applied to sunlit greenhouse tomato and field cucumber.

    PubMed

    Li, Yanjie; Li, Yifan; Pan, Xiang; Li, Qing X; Chen, Ronghua; Li, Xuesheng; Pan, Canping; Song, Jianli

    2018-02-01

    Plant protection products (PPPs) are applied in China and many other developing countries with knapsack sprayers at high volumes with coarse spray quality, resulting in a high percentage of pesticide losses. In this study, a new air-assisted electric knapsack sprayer and two conventional knapsack sprayers were evaluated in terms of pesticide deposition, residues and loss into the soil. Artificial targets fixed to the upper side and underside of the leaf surface in six zones (at two depths and three heights) were used to collect the deposition, which were analyzed by liquid chromatography triple-quadrupole mass spectrometry. The air-assisted electric knapsack sprayer produced more deposition and better penetrability and uniformity than the two traditional spraying methods. In particular, the air-assisted electric knapsack sprayer reduced pesticide losses to the soil by roughly 37% to 75% and deposited 1.18 and 1.24 times more pesticide than the manual air-pressure and battery-powered knapsack sprayers, respectively. The residues of azoxystrobin and tebuconazole in tomato and cucumber were below the maximum residue limits (MRLs). In general, use of the the air-assisted electric knapsack sprayer in tomato and cucumber crops could improve the effectiveness of PPPs, reduce the risk of contamination and protect food safety. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air Part 1: Sorbent-based air monitoring options.

    PubMed

    Woolfenden, Elizabeth

    2010-04-16

    Sorbent tubes/traps are widely used in combination with gas chromatographic (GC) analytical methods to monitor the vapour-phase fraction of organic compounds in air. Target compounds range in volatility from acetylene and freons to phthalates and PCBs and include apolar, polar and reactive species. Airborne vapour concentrations will vary depending on the nature of the location, nearby pollution sources, weather conditions, etc. Levels can range from low percent concentrations in stack and vent emissions to low part per trillion (ppt) levels in ultra-clean outdoor locations. Hundreds, even thousands of different compounds may be present in any given atmosphere. GC is commonly used in combination with mass spectrometry (MS) detection especially for environmental monitoring or for screening uncharacterised workplace atmospheres. Given the complexity and variability of organic vapours in air, no one sampling approach suits every monitoring scenario. A variety of different sampling strategies and sorbent media have been developed to address specific applications. Key sorbent-based examples include: active (pumped) sampling onto tubes packed with one or more sorbents held at ambient temperature; diffusive (passive) sampling onto sorbent tubes/cartridges; on-line sampling of air/gas streams into cooled sorbent traps; and transfer of air samples from containers (canisters, Tedlar) bags, etc.) into cooled sorbent focusing traps. Whichever sampling approach is selected, subsequent analysis almost always involves either solvent extraction or thermal desorption (TD) prior to GC(/MS) analysis. The overall performance of the air monitoring method will depend heavily on appropriate selection of key sampling and analytical parameters. This comprehensive review of air monitoring using sorbent tubes/traps is divided into 2 parts. (1) Sorbent-based air sampling option. (2) Sorbent selection and other aspects of optimizing sorbent-based air monitoring methods. The paper presents current state-of-the-art and recent developments in relevant areas such as sorbent research, sampler design, enhanced approaches to analytical quality assurance and on-tube derivatisation. Copyright 2009 Elsevier B.V. All rights reserved.

  19. Effects of conventional welding and laser welding on the tensile strength, ultimate tensile strength and surface characteristics of two cobalt-chromium alloys: a comparative study.

    PubMed

    Madhan Kumar, Seenivasan; Sethumadhava, Jayesh Raghavendra; Anand Kumar, Vaidyanathan; Manita, Grover

    2012-06-01

    The purpose of this study was to evaluate the efficacy of laser welding and conventional welding on the tensile strength and ultimate tensile strength of the cobalt-chromium alloy. Samples were prepared with two commercially available cobalt-chromium alloys (Wironium plus and Diadur alloy). The samples were sectioned and the broken fragments were joined using Conventional and Laser welding techniques. The welded joints were subjected to tensile and ultimate tensile strength testing; and scanning electron microscope to evaluate the surface characteristics at the welded site. Both on laser welding as well as on conventional welding technique, Diadur alloy samples showed lesser values when tested for tensile and ultimate tensile strength when compared to Wironium alloy samples. Under the scanning electron microscope, the laser welded joints show uniform welding and continuous molt pool all over the surface with less porosity than the conventionally welded joints. Laser welding is an advantageous method of connecting or repairing cast metal prosthetic frameworks.

  20. Molecular detection of airborne Coccidioides in Tucson, Arizona

    USGS Publications Warehouse

    Chow, Nancy A.; Griffin, Dale W.; Barker, Bridget M.; Loparev, Vladimir N.; Litvintseva, Anastasia P.

    2016-01-01

    Environmental surveillance of the soil-dwelling fungus Coccidioides is essential for the prevention of Valley fever, a disease primarily caused by inhalation of the arthroconidia. Methods for collecting and detectingCoccidioides in soil samples are currently in use by several laboratories; however, a method utilizing current air sampling technologies has not been formally demonstrated for the capture of airborne arthroconidia. In this study, we collected air/dust samples at two sites (Site A and Site B) in the endemic region of Tucson, Arizona, and tested a variety of air samplers and membrane matrices. We then employed a single-tube nested qPCR assay for molecular detection. At both sites, numerous soil samples (n = 10 at Site A and n = 24 at Site B) were collected and Coccidioides was detected in two samples (20%) at Site A and in eight samples (33%) at Site B. Of the 25 air/dust samples collected at both sites using five different air sampling methods, we detected Coccidioides in three samples from site B. All three samples were collected using a high-volume sampler with glass-fiber filters. In this report, we describe these methods and propose the use of these air sampling and molecular detection strategies for environmental surveillance of Coccidioides.

  1. The NYC native air sampling pilot project: using HVAC filter data for urban biological incident characterization.

    PubMed

    Ackelsberg, Joel; Leykam, Frederic M; Hazi, Yair; Madsen, Larry C; West, Todd H; Faltesek, Anthony; Henderson, Gavin D; Henderson, Christopher L; Leighton, Terrance

    2011-09-01

    Native air sampling (NAS) is distinguished from dedicated air sampling (DAS) devices (eg, BioWatch) that are deployed to detect aerosol disseminations of biological threat agents. NAS uses filter samples from heating, ventilation, and air conditioning (HVAC) systems in commercial properties for environmental sampling after DAS detection of biological threat agent incidents. It represents an untapped, scientifically sound, efficient, widely distributed, and comparably inexpensive resource for postevent environmental sampling. Calculations predict that postevent NAS would be more efficient than environmental surface sampling by orders of magnitude. HVAC filter samples could be collected from pre-identified surrounding NAS facilities to corroborate the DAS alarm and delineate the path taken by the bioaerosol plume. The New York City (NYC) Native Air Sampling Pilot Project explored whether native air sampling would be acceptable to private sector stakeholders and could be implemented successfully in NYC. Building trade associations facilitated outreach to and discussions with property owners and managers, who expedited contact with building managers of candidate NAS properties that they managed or owned. Nominal NAS building requirements were determined; procedures to identify and evaluate candidate NAS facilities were developed; data collection tools and other resources were designed and used to expedite candidate NAS building selection and evaluation in Manhattan; and exemplar environmental sampling playbooks for emergency responders were completed. In this sample, modern buildings with single or few corporate tenants were the best NAS candidate facilities. The Pilot Project successfully demonstrated that in one urban setting a native air sampling strategy could be implemented with effective public-private collaboration.

  2. Rapid detection of Salmonella spp. in food by use of the ISO-GRID hydrophobic grid membrane filter.

    PubMed Central

    Entis, P; Brodsky, M H; Sharpe, A N; Jarvis, G A

    1982-01-01

    A rapid hydrophobic grid-membrane filter (HGMF) method was developed and compared with the Health Protection Branch cultural method for the detection of Salmonella spp. in 798 spiked samples and 265 naturally contaminated samples of food. With the HGMF method, Salmonella spp. were isolated from 618 of the spiked samples and 190 of the naturally contaminated samples. The conventional method recovered Salmonella spp. from 622 spiked samples and 204 unspiked samples. The isolation rates from Salmonella-positive samples for the two methods were not significantly different (94.6% overall for the HGMF method and 96.7% for the conventional approach), but the HGMF results were available in only 2 to 3 days after sample receipt compared with 3 to 4 days by the conventional method. Images PMID:7059168

  3. Simple, miniaturized blood plasma extraction method.

    PubMed

    Kim, Jin-Hee; Woenker, Timothy; Adamec, Jiri; Regnier, Fred E

    2013-12-03

    A rapid plasma extraction technology that collects a 2.5 μL aliquot of plasma within three minutes from a finger-stick derived drop of blood was evaluated. The utility of the plasma extraction cards used was that a paper collection disc bearing plasma was produced that could be air-dried in fifteen minutes and placed in a mailing envelop for transport to an analytical laboratory. This circumvents the need for venipuncture and blood collection in specialized vials by a phlebotomist along with centrifugation and refrigerated storage. Plasma extraction was achieved by applying a blood drop to a membrane stack through which plasma was drawn by capillary action. During the course of plasma migration to a collection disc at the bottom of the membrane stack blood cells were removed by a combination of adsorption and filtration. After the collection disc filled with an aliquot of plasma the upper membranes were stripped from the collection card and the collection disc was air-dried. Intercard differences in the volume of plasma collected varied approximately 1% while volume variations of less than 2% were seen with hematocrit levels ranging from 20% to 71%. Dried samples bearing metabolites and proteins were then extracted from the disc and analyzed. 25-Hydroxy vitamin D was quantified by LC-MS/MS analysis following derivatization with a secosteroid signal enhancing tag that imparted a permanent positive charge to the vitamin and reduced the limit of quantification (LOQ) to 1 pg of collected vitamin on the disc; comparable to values observed with liquid-liquid extraction (LLE) of a venipuncture sample. A similar study using conventional proteomics methods and spectral counting for quantification was conducted with yeast enolase added to serum as an internal standard. The LOQ with extracted serum samples for enolase was 1 μM, linear from 1 to 40 μM, the highest concentration examined. In all respects protein quantification with extracted serum samples was comparable to that observed with serum samples obtained by venipuncture.

  4. Phase contrast portal imaging using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Umetani, K.; Kondoh, T.

    2014-07-01

    Microbeam radiation therapy is an experimental form of radiation treatment with great potential to improve the treatment of many types of cancer. We applied a synchrotron radiation phase contrast technique to portal imaging to improve targeting accuracy for microbeam radiation therapy in experiments using small animals. An X-ray imaging detector was installed 6.0 m downstream from an object to produce a high-contrast edge enhancement effect in propagation-based phase contrast imaging. Images of a mouse head sample were obtained using therapeutic white synchrotron radiation with a mean beam energy of 130 keV. Compared to conventional portal images, remarkably clear images of bones surrounding the cerebrum were acquired in an air environment for positioning brain lesions with respect to the skull structure without confusion with overlapping surface structures.

  5. Assessment of Air Quality in the Shuttle and International Space Station (ISS) Based on Samples Returned by STS-104 at the Conclusion of 7A

    NASA Technical Reports Server (NTRS)

    James, John T.

    2001-01-01

    The toxicological assessment of air samples returned at the end of the STS-l04 (7 A) flight to the ISS is reported. ISS air samples were taken in June and July 2001 from the Service Module, FGB, and U.S. Laboratory using grab sample canisters (GSCs) and/or formaldehyde badges. Preflight and end-of-mission samples were obtained from Atlantis using GSCs. Solid sorbent air sampler (SSAS) samples were obtained from the ISS in April, June, and July. Analytical methods have not changed from earlier reports, and all quality control measures were met.

  6. MULTI-LAYER SAMPLING IN CONVENTIONAL MONITORING WELLS FOR IMPROVED ESTIMATION OF VERTICAL CONTAMINANT DISTRIBUTIONS AND MASS

    EPA Science Inventory

    "Traditional" approaches to sampling groundwater and interpreting monitoring well data often provide misleading pictures of plume shape and location in the subsurface and the true extent of contamination. Groundwater samples acquired using pumps and bailers in conventional monito...

  7. Passive Sampling for Indoor and Outdoor Exposures to Chlorpyrifos, Azinphos-Methyl, and Oxygen Analogs in a Rural Agricultural Community.

    PubMed

    Gibbs, Jenna L; Yost, Michael G; Negrete, Maria; Fenske, Richard A

    2017-03-01

    Recent studies have highlighted the increased potency of oxygen analogs of organophosphorus pesticides. These pesticides and oxygen analogs have previously been identified in the atmosphere following spray applications in the states of California and Washington. We used two passive sampling methods to measure levels of the ollowing organophosphorus pesticides: chlorpyrifos, azinphos-methyl, and their oxygen analogs at 14 farmworker and 9 non-farmworker households in an agricultural region of central Washington State in 2011. The passive methods included polyurethane foam passive air samplers deployed outdoors and indoors and polypropylene deposition plates deployed indoors. We collected cumulative monthly samples during the pesticide application seasons and during the winter season as a control. Monthly outdoor air concentrations ranged from 9.2 to 199 ng/m 3 for chlorpyrifos, 0.03 to 20 ng/m 3 for chlorpyrifos-oxon, < LOD (limit of detection) to 7.3 ng/m 3 for azinphos-methyl, and < LOD to 0.8 ng/m 3 for azinphos-methyl-oxon. Samples from proximal households (≤ 250 m) had significantly higher outdoor air concentrations of chlorpyrifos, chlorpyrifos-oxon, and azinphos-methyl than did samples from nonproximal households ( p ≤ 0.02). Overall, indoor air concentrations were lower than outdoors. For example, all outdoor air samples for chlorpyrifos and 97% of samples for azinphos-methyl were > LOD. Indoors, only 78% of air samples for chlorpyrifos and 35% of samples for azinphos-methyl were > LOD. Samples from farmworker households had higher indoor air concentrations of both pesticides than did samples from non-farmworker households. Mean indoor and outdoor air concentration ratios for chlorpyrifos and azinphos-methyl were 0.17 and 0.44, respectively. We identified higher levels in air and on surfaces at both proximal and farmworker households. Our findings further confirm the presence of pesticides and their oxygen analogs in air and highlight their potential for infiltration of indoor living environments. Citation: Gibbs JL, Yost MG, Negrete M, Fenske RA. 2017. Passive sampling for indoor and outdoor exposures to chlorpyrifos, azinphos-methyl, and oxygen analogs in a rural agricultural community. Environ Health Perspect 125:333-341; http://dx.doi.org/10.1289/EHP425.

  8. DC magnetron sputtered polyaniline-HCl thin films for chemical sensing applications.

    PubMed

    Menegazzo, Nicola; Boyne, Devon; Bui, Holt; Beebe, Thomas P; Booksh, Karl S

    2012-07-03

    Thin films of conducting polymers exhibit unique chemical and physical properties that render them integral parts in microelectronics, energy storage devices, and chemical sensors. Overall, polyaniline (PAni) doped in acidic media has shown metal-like electronic conductivity, though exact physical and chemical properties are dependent on the polymer structure and dopant type. Difficulties arising from poor processability render production of doped PAni thin films particularly challenging. In this contribution, DC magnetron sputtering, a physical vapor deposition technique, is applied to the preparation of conductive thin films of PAni doped with hydrochloric acid (PAni-HCl) in an effort to circumvent issues associated with conventional thin film preparation methods. Samples manufactured by the sputtering method are analyzed along with samples prepared by conventional drop-casting. Physical characterization (atomic force microscopy, AFM) confirm the presence of PAni-HCl and show that films exhibit a reduced roughness and potentially pinhole-free coverage of the substrate. Spectroscopic evidence (UV-vis, FT-IR, and X-ray photoelectron spectroscopy (XPS)) suggests that structural changes and loss of conductivity, not uncommon during PAni processing, does occur during the preparation process. Finally, the applicability of sputtered films to gas-phase sensing of NH(3) was investigated with surface plasmon resonance (SPR) spectroscopy and compared to previous contributions. In summary, sputtered PAni-HCl films exhibit quantifiable, reversible behavior upon exposure to NH(3) with a calculated LOD (by method) approaching 0.4 ppm NH(3) in dry air.

  9. Generalizable, Electroless, Template-Assisted Synthesis and Electrocatalytic Mechanistic Understanding of Perovskite LaNiO 3 Nanorods as Viable, Supportless Oxygen Evolution Reaction Catalysts in Alkaline Media

    DOE PAGES

    McBean, Coray L.; Liu, Haiqing; Scofield, Megan E.; ...

    2017-07-17

    We present that the oxygen evolution reaction (OER) is a key reaction for water electrolysis cells and air-powered battery applications. However, conventional metal oxide catalysts, used for high-performing OER, tend to incorporate comparatively expensive and less abundant precious metals such as Ru and Ir, and, moreover, suffer from poor stability. To attempt to mitigate for all of these issues, we have prepared one-dimensional (1D) OER-active perovskite nanorods using a unique, simple, generalizable, and robust method. Significantly, our work demonstrates the feasibility of a novel electroless, seedless, surfactant-free, wet solution-based protocol for fabricating “high aspect ratio” LaNiO 3 and LaMnO 3more » nanostructures. As the main focus of our demonstration of principle, we prepared as-synthesized LaNiO 3 rods and correlated the various temperatures at which these materials were annealed with their resulting OER performance. In addition, we observed generally better OER performance for samples prepared with lower annealing temperatures. Specifically, when annealed at 600 °C, in the absence of a conventional conductive carbon support, our as-synthesized LaNiO 3 rods not only evinced (i) a reasonable level of activity toward OER but also displayed (ii) an improved stability, as demonstrated by chronoamperometric measurements, especially when compared with a control sample of commercially available (and more expensive) RuO 2.« less

  10. Breathing zone air sampler

    DOEpatents

    Tobin, John

    1989-01-01

    A sampling apparatus is provided which comprises a sampler for sampling air in the breathing zone of a wearer of the apparatus and a support for the sampler preferably in the form of a pair of eyeglasses. The sampler comprises a sampling assembly supported on the frame of the eyeglasses and including a pair of sample transport tubes which are suspended, in use, centrally of the frame so as to be disposed on opposite sides of the nose of the wearer and which each include an inlet therein that, in use, is disposed adjacent to a respective nostril of the nose of the wearer. A filter holder connected to sample transport tubes supports a removable filter for filtering out particulate material in the air sampled by the apparatus. The sample apparatus is connected to a pump for drawing air into the apparatus through the tube inlets so that the air passes through the filter.

  11. Performance analysis of underwater pump for water-air dual-use engine

    NASA Astrophysics Data System (ADS)

    Xia, Jun; Wang, Yun; Chen, Yu

    2017-10-01

    To make water-air dual-use engine work both in air and under water, the compressor of the engine should not only meet the requirements of air flight, but also must have the ability to work underwater. To verify the performance of the compressor when the water-air dual-use engine underwater propulsion mode, the underwater pumping water model of the air compressor is simulated by commercial CFD software, and the flow field analysis is carried out. The results show that conventional air compressors have a certain ability to work in the water environment, however, the blade has a great influence on the flow, and the compressor structure also affects the pump performance. Compressor can initially take into account the two modes of water and air. In order to obtain better performance, the structure of the compressor needs further improvement and optimization.

  12. Fabrication of VB2/Air Cells for Electrochemical Testing

    PubMed Central

    Stuart, Jessica; Lopez, Ruben; Lau, Jason; Li, Xuguang; Waje, Mahesh; Mullings, Matthew; Rhodes, Christopher; Licht, Stuart

    2013-01-01

    A technique to investigate the properties and performance of new multi-electron metal/air battery systems is proposed and presented. A method for synthesizing nanoscopic VB2 is presented as well as step-by-step procedure for applying a zirconium oxide coating to the VB2 particles for stabilization upon discharge. The process for disassembling existing zinc/air cells is shown, in addition construction of the new working electrode to replace the conventional zinc/air cell anode with a the nanoscopic VB2 anode. Finally, discharge of the completed VB2/air battery is reported. We show that using the zinc/air cell as a test bed is useful to provide a consistent configuration to study the performance of the high-energy high capacity nanoscopic VB2 anode. PMID:23962835

  13. Air Conditioning with Magnetic Refrigeration : An Efficient, Green Compact Cooling System Using Magnetic Refrigeration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-09-01

    BEETIT Project: Astronautics is developing an air conditioning system that relies on magnetic fields. Typical air conditioners use vapor compression to cool air. Vapor compression uses a liquid refrigerant to circulate within the air conditioner, absorb the heat, and pump the heat out into the external environment. Astronautics’ design uses a novel property of certain materials, called “magnetocaloric materials”, to achieve the same result as liquid refrigerants. These magnetocaloric materials essentially heat up when placed within a magnetic field and cool down when removed, effectively pumping heat out from a cooler to warmer environment. In addition, magnetic refrigeration uses nomore » ozone-depleting gases and is safer to use than conventional air conditioners which are prone to leaks.« less

  14. Effect on the grain size of single-mode microwave sintered NiCuZn ferrite and zinc titanate dielectric resonator ceramics.

    PubMed

    Sirugudu, Roopas Kiran; Vemuri, Rama Krishna Murthy; Venkatachalam, Subramanian; Gopalakrishnan, Anisha; Budaraju, Srinivasa Murty

    2011-01-01

    Microwave sintering of materials significantly depends on dielectric, magnetic and conductive Losses. Samples with high dielectric and magnetic loss such as ferrites could be sintered easily. But low dielectric loss material such as dielectric resonators (paraelectrics) finds difficulty in generation of heat during microwave interaction. Microwave sintering of materials of these two classes helps in understanding the variation in dielectric and magnetic characteristics with respect to the change in grain size. High-energy ball milled Ni0.6Cu0.2Zn0.2Fe1.98O4-delta and ZnTiO3 are sintered in conventional and microwave methods and characterized for respective dielectric and magnetic characteristics. The grain size variation with higher copper content is also observed with conventional and microwave sintering. The grain size in microwave sintered Ni0.6Cu0.2Zn0.2Fe1.98O4-delta is found to be much small and uniform in comparison with conventional sintered sample. However, the grain size of microwave sintered sample is almost equal to that of conventional sintered sample of Ni0.3Cu0.5Zn0.2Fe1.98O4-delta. In contrast to these high dielectric and magnetic loss ferrites, the paraelectric materials are observed to sinter in presence of microwaves. Although microwave sintered zinc titanate sample showed finer and uniform grains with respect to conventional samples, the dielectric characteristics of microwave sintered sample are found to be less than that of conventional sample. Low dielectric constant is attributed to the low density. Smaller grain size is found to be responsible for low quality factor and the presence of small percentage of TiO2 is observed to achieve the temperature stable resonant frequency.

  15. Sequential air sampler system : its use by the Virginia Department of Highways & Transportation.

    DOT National Transportation Integrated Search

    1975-01-01

    The Department of Highways & Transportation needs an economical and efficient air quality sampling system for meeting requirements on air monitoring for proposed projects located In critical areas. Two sequential air sampling systems, the ERAI and th...

  16. A Comparison of the Red Green Blue (RGB) Air Mass Imagery and Hyperspectral Infrared Retrieved Profiles and NOAA G-IV Dropsondes

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Folmer, Michael; Dunion, Jason

    2014-01-01

    RGB air mass imagery is derived from multiple channels or paired channel differences. The combination of channels and channel differences means the resulting imagery does not represent a quantity or physical parameter such as brightness temperature in conventional single channel imagery. Without a specific quantity to reference, forecasters are often confused as to what RGB products represent. Hyperspectral infrared retrieved profiles and NOAA G-IV dropsondes provide insight about the vertical structure of the air mass represented on the RGB air mass imagery and are a first step to validating the imagery.

  17. High strength air-dried aerogels

    DOEpatents

    Coronado, Paul R.; Satcher, Jr., Joe H.

    2012-11-06

    A method for the preparation of high strength air-dried organic aerogels. The method involves the sol-gel polymerization of organic gel precursors, such as resorcinol with formaldehyde (RF) in aqueous solvents with R/C ratios greater than about 1000 and R/F ratios less than about 1:2.1. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be air dried at ambient temperatures and pressures. The method significantly reduces the time and/or energy required to produce a dried aerogel compared to conventional methods using either supercritical solvent extraction. The air dried gel exhibits typically less than 5% shrinkage.

  18. Estimating daily air temperature across the Southeastern United States using high-resolution satellite data: a statistical modeling study

    PubMed Central

    Shi, Liuhua; Liu, Pengfei; Kloog, Itai; Lee, Mihye; Kosheleva, Anna; Schwartz, Joel

    2015-01-01

    Accurate estimates of spatio-temporal resolved near-surface air temperature (Ta) are crucial for environmental epidemiological studies. However, values of Ta are conventionally obtained from weather stations, which have limited spatial coverage. Satellite surface temperature (Ts) measurements offer the possibility of local exposure estimates across large domains. The Southeastern United States has different climatic conditions, more small water bodies and wetlands, and greater humidity in contrast to other regions, which add to the challenge of modeling air temperature. In this study, we incorporated satellite Ts to estimate high resolution (1 km × 1 km) daily Ta across the southeastern USA for 2000-2014. We calibrated Ts to Ta measurements using mixed linear models, land use, and separate slopes for each day. A high out-of-sample cross-validated R2 of 0.952 indicated excellent model performance. When satellite Ts were unavailable, linear regression on nearby monitors and spatio-temporal smoothing was used to estimate Ta. The daily Ta estimations were compared to the NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA) model. A good agreement with an R2 of 0.969 and a mean squared prediction error (RMSPE) of 1.376 °C was achieved. Our results demonstrate that Ta can be reliably predicted using this Ts-based prediction model, even in a large geographical area with topography and weather patterns varying considerably. PMID:26717080

  19. Identification of Chemicals of Interest to the Department of Defense and U.S. Air Force Among the U.S. Environmental Protection Agency’s Integrated Risk Information System Chemicals that are Due for Reassessment of their Toxicity Values

    DTIC Science & Technology

    2010-03-16

    Exceeded at ERP Soil and Groundwater Sites 86 A-2a. Identification of IRIS Chemicals of Interest on the ATSDR CERCLA Priority List of Hazardous...the Number (Bold Font) of Air Force ERP Samples in Which They Were Detected 317 A-4d. Air Force ERP Soil Samples: IRIS Chemicals of Interest...Ranked by the Number (Bold Font) of Air Force ERP Soil Samples in Which They Were Detected 333 A-4e. Air Force ERP Groundwater Samples: IRIS Chemicals of

  20. Management of Pleural Space After Lung Resection by Cryoneuroablation of Phrenic Nerve: A Randomized Study.

    PubMed

    Pan, Xiao-Jie; Ou, De-Bin; Lin, Xing; Ye, Ming-Fang

    2017-06-01

    Residual air space problems after pulmonary lobectomy are an important concern in thoracic surgical practice, and various procedures have been applied to manage them. This study describes a novel technique using controllable paralysis of the diaphragm by localized freezing of the phrenic nerve, and assesses the effectiveness of this procedure to reduce air space after pulmonary lobectomy. In this prospective randomized study, 207 patients who underwent lobectomy or bilobectomy and systematic mediastinal node dissection in our department between January 2009 and November 2013 were randomly allocated to a cryoneuroablation group or a conventional group. Patients in the cryoneuroablation group (n = 104) received phrenic nerve cryoneuroablation after lung procedures, and patients in the conventional group (n = 103) did not receive cryoneuroablation after the procedure. Data regarding preoperative clinical and surgical characteristics in both groups were collected. Both groups were compared with regard to postoperative parameters such as total amount of pleural drainage, duration of chest tube placement, length of hospital stay, requirement for repeat chest drain insertion, prolonged air leak, and residual space. Perioperative lung function was also compared in both groups. Recovery of diaphragmatic movement in the cryoneuroablation group was checked by fluoroscopy on the 15th, 30th, and 60th day after surgery. There was no statistically significant difference in patient characteristics between the 2 groups; nor was there a difference in terms of hospital stay, new drain requirement, and incidence of empyema. In comparison with the conventional group, the cryoneuroablation group had less total drainage (1024 ± 562 vs 1520 ± 631 mL, P < .05), fewer cases of residual space (9 vs 2, P < .05), fewer cases of prolonged air leak (9 vs 1, P < .01), and shorter duration of drainage (3.2 ± 0.2 vs 4.3 + 0.3 days, P < .01). Diaphragmatic paralyses caused by cryoneuroablation reversed within 30 to 60 days. Cryoneuroablation of the phrenic nerve offers a reasonable option for prevention of residual air space following major pulmonary resection.

  1. Presence of pathogenic microorganisms in power-plant cooling waters. Final report, October 1, 1981-June 30, 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyndall, R.L.

    1983-07-01

    Air was sampled at the point of discharge and at short distances downwind and upwind from industrial and power-plant cooling towers. Both high-volume electrostatic and impinger type samplers were used. Concentrates of the air samples were analyzed for Legionnaires' Disease Bacteria (LDB). In some cases, the samples were also tested for the presence of free-living amoebae. The concentrations of LDB in the air samples were well below the minimal infectious dose for guinea pigs and precluded testing of the samples for infectious LDB. Results of LDB analysis were related to the meteorological conditions at the time of sampling. Generally, themore » concentrations of LDB in the air at the discharge of the cooling towers were 1 x 10/sup -6/ to 1 x 10/sup -7/ of that found in comparable volumes of tower basin water. During periods of high humidity and wind speed, LDB was detected in a few downwind samples and one upwind sample. One site with extensive construction and excavation activity had higher LDB concentrations in air samples relative to other sites. Nonpathogenic Naegleria were present in one of two air samples taken in the mist at the base of a natural-draft cooling tower.« less

  2. Quantitative evaluation of the disintegration of orally rapid disintegrating tablets by X-ray computed tomography.

    PubMed

    Otsuka, Makoto; Yamanaka, Azusa; Uchino, Tomohiro; Otsuka, Kuniko; Sadamoto, Kiyomi; Ohshima, Hiroyuki

    2012-01-01

    To measure the rapid disintegration of Oral Disintegrating Tablets (ODT), a new test (XCT) was developed using X-ray computing tomography (X-ray CT). Placebo ODT, rapid disintegration candy (RDC) and Gaster®-D-Tablets (GAS) were used as model samples. All these ODTs were used to measure oral disintegration time (DT) in distilled water at 37±2°C by XCT. DTs were affected by the width of mesh screens, and degree to which the tablet holder vibrated from air bubbles. An in-vivo tablet disintegration test was performed for RDC using 11 volunteers. DT by the in-vivo method was significantly longer than that using the conventional tester. The experimental conditions for XCT such as the width of the mesh screen and degree of vibration were adjusted to be consistent with human DT values. Since DTs by the XCT method were almost the same as the human data, this method was able to quantitatively evaluate the rapid disintegration of ODT under the same conditions as inside the oral cavity. The DTs of four commercially available ODTs were comparatively evaluated by the XCT method, conventional tablet disintegration test and in-vivo method.

  3. Air sampling results in relation to extent of fungal colonization of building materials in some water-damaged buildings.

    PubMed

    Miller, J D; Haisley, P D; Reinhardt, J H

    2000-09-01

    We studied the extent and nature of fungal colonization of building materials in 58 naturally ventilated apartments that had suffered various kinds of water damage in relation to air sampling done before the physical inspections. The results of air samples from each apartment were compared by rank order of species with pooled data from outdoor air. Approximately 90% of the apartments that had significant amounts of fungi in wall cavities were identified by air sampling. There was no difference in the average fungal colony forming unit values per m3 between the 15 apartments with the most fungal contamination and the 15 with the least. In contrast, the prevalence of samples with fungal species significantly different than the pooled outdoor air between the more contaminated versus the less contaminated apartments was approximately 10-fold. We provide information on methods to document fungal contamination in buildings.

  4. Detection of the urban release of a bacillus anthracis simulant by air sampling.

    PubMed

    Garza, Alexander G; Van Cuyk, Sheila M; Brown, Michael J; Omberg, Kristin M

    2014-01-01

    In 2005 and 2009, the Pentagon Force Protection Agency (PFPA) staged deliberate releases of a commercially available organic pesticide containing Bacillus amyloliquefaciens to evaluate PFPA's biothreat response protocols. In concert with, but independent of, these releases, the Department of Homeland Security sponsored experiments to evaluate the efficacy of commonly employed air and surface sampling techniques for detection of an aerosolized biological agent. High-volume air samplers were placed in the expected downwind plume, and samples were collected before, during, and after the releases. Environmental surface and personal air samples were collected in the vicinity of the high-volume air samplers hours after the plume had dispersed. The results indicate it is feasible to detect the release of a biological agent in an urban area both during and after the release of a biological agent using high-volume air and environmental sampling techniques.

  5. Legionnaires' Disease Bacteria in power plant cooling systems: downtime report. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyndall, R.L.; Solomon, J.A.; Christensen, S.W.

    1985-04-01

    Legionnaires' Disease Bacteria (Legionella) are a normal part of the aquatic community that, when aerosolized, can be pathogenic to man. The downtime study was designed to determine the degree to which Legionella populations are aerosolized during cleaning and maintenance operations in a closed-cycle steam-electric power plant. Both high-volume and impinger air samples were collected prior to and during downtime operations. Emphasis was placed on sampling inside or adjacent to water boxes, condensers, and cooling towers. Control air samples were taken upwind from the plant site. Water and sludge samples were also collected at various locations. In the laboratory, the concentrationsmore » of Groups A, B, and C Legionella were determined using the direct fluorescent antibody method. All positive air samples, and other selected air samples, were injected into guinea pigs to detect infectious Legionella. Legionella could be detected in only 12 of the 126 air samples collected. These were predominantly Group A Legionella (L. pneumophila, serogroups 1 to 6). All 12 positive samples had been collected in the vicinity of water boxes, condensers, detention ponds, and cooling towers during downtime operations where aerosolization of Legionella populations would be expected. None of the air samples yielded infectious Legionella when injected into guinea pigs. Detection of Legionella in air samples taken during downtime was significantly more likely than detection during normal operating conditions (p <0.01). 13 refs., 4 figs., 10 tabs.« less

  6. 10 CFR Appendix I to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Conventional Ranges, Conventional...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., set the clock time to 3:23 and use the average power approach described in Section 5, Paragraph 5.3.2... circulates air internally or externally to the cooking product for a finite period of time after the end of... persist for an indefinite time. An indicator that only shows the user that the product is in the off...

  7. Improving Store Separation Six-Degree-of-Freedom Tools (ISSSDF)

    DTIC Science & Technology

    2007-01-01

    the Australian Air Force. NAVAIR is in the process of preparing a flight clearance for the High Speed Anti- radiation Demonstrator ( HSAD ...program. This clearance will be prepared using the conventional tool NAVSEP. The HSAD missile, however, utilizes an autopilot to move four movable...conventional NAVSEP approach to clear the HSAD missile, it would be desirable to test the TGP and STEME codes for the same case. It would be

  8. Air Traffic Controller Performance and Acceptability of Multiple UAS in a Simulated NAS Environment

    NASA Technical Reports Server (NTRS)

    Vu, Kim-Phuong L.; Strybel, Thomas; Chiappe, Dan; Morales, Greg; Battiste, Vernol; Shively, Robert Jay

    2014-01-01

    Previously, we showed that air traffic controllers (ATCos) rated UAS pilot verbal response latencies as acceptable when a 1.5 s delay was added to the UAS pilot responses, but a 5 s delay was rated as mostly unacceptable. In the present study we determined whether a 1.5 s added delay in the UAS pilots' verbal communications would affect ATCos interactions with UAS and other conventional aircraft when the number and speed of the UAS were manipulated. Eight radar-certified ATCos participated in this simulation. The ATCos managed a medium altitude sector containing arrival aircraft, en route aircraft, and one to four UAS. The UAS were conducting a surveillance mission and flew at either a "slow" or "fast" speed. We measured both UAS and conventional pilots' verbal communication latencies, and obtained ATCos' acceptability ratings for these latencies. Although the UAS pilot response latencies were longer than those of conventional pilots, the ATCos rated UAS pilot verbal communication latencies to be as acceptable as those of conventional pilots. Because the overall traffic load within the sector was held constant, ATCos only performed slightly worse when multiple UAS were in their sector compared to when only one UAS was in the sector. Implications of these findings for UAS integration in the NAS are discussed.

  9. Can Simulator Immersion Change Cognitive Style? Results from a Cross-Sectional Study of Field-Dependence--Independence in Air Traffic Control Students

    ERIC Educational Resources Information Center

    Van Eck, Richard N.; Fu, Hongxia; Drechsel, Paul V. J.

    2015-01-01

    Air traffic control (ATC) operations are critical to the U.S. aviation infrastructure, making ATC training a critical area of study. Because ATC performance is heavily dependent on visual processing, it is important to understand how to screen for or promote relevant visual processing abilities. While conventional wisdom has maintained that such…

  10. Challenges in Understanding and Development of Predictive Models of Plasma Assisted Combustion

    DTIC Science & Technology

    2014-01-01

    and electron temperature in transient plasmas sustained by nanosecond pulse duration discharges, and their comparison with modeling predictions, are...in nanosecond pulse discharge in nitrogen at 0.25 bar, using the kinetic model developed in Ref. [11]. Rapid electric field reduction during...discharge pulses with kinetic modeling calculations, using conventional hydrocarbon-air combustion mechanisms. Although modeling predictions for H2-air

  11. Air Cushion Crash Rescue Vehicle (ACCRV)

    DTIC Science & Technology

    1987-10-01

    capability to operate over rough and low strength ground surfaces, especially soft, wet ground or marsh and snow, with no capability for overwater...operation. In a wartime environment , fire fighting and res- cue will be further restricted because of craters, debris or unexploded bombs. Improved...swamps and, of course, in more conventional environments on or about airports. The integration of an air cushion system with a paddle track propulsor

  12. Financial Summary Tables. Department of Defense Budget for Fiscal Year 1984

    DTIC Science & Technology

    1983-01-31

    000 Navy Management Fund 1,000 554.989 554,989 000 Air Force Manegeent Fund 79 1 - - 1,000 Army Conventional Ammo Working Cap Fund - 2,200.920...10,756 59.2 Navy Maneg % ent Fund -12,680 - 43,880 1.L Air Force M.,noo,-mnt Fund 2 209 1,108 127.1 Arry Cooventionnl Amno Working Cap Fund -40,910

  13. The role of photoionization in negative corona discharge: The influences of temperature, humidity, and air pressure on a corona

    NASA Astrophysics Data System (ADS)

    Sun, H. Y.; Lu, B. X.; Wang, M.; Guo, Q. F.; Feng, Q. K.

    2017-10-01

    The swarm parameters of the negative corona discharge are improved to calculate the discharge model under different environmental conditions. The effects of temperature, humidity, and air pressure are studied using a conventional needle-to-plane configuration in air. The electron density, electric field, electron generation rate, and photoelectron generation rate are discussed in this paper. The role of photoionization under these conditions is also studied by numerical simulation. The photoelectrons generated in weak ionization region are proved to be dominant.

  14. International Safety Regulation and Standards for Space Travel and Commerce

    NASA Astrophysics Data System (ADS)

    Pelton, J. N.; Jakhu, R.

    The evolution of air travel has led to the adoption of the 1944 Chicago Convention that created the International Civil Aviation Organization (ICAO), headquartered in Montreal, Canada, and the propagation of aviation safety standards. Today, ICAO standardizes and harmonizes commercial air safety worldwide. Space travel and space safety are still at an early stage of development, and the adoption of international space safety standards and regulation still remains largely at the national level. This paper explores the international treaties and conventions that govern space travel, applications and exploration today and analyzes current efforts to create space safety standards and regulations at the national, regional and global level. Recent efforts to create a commercial space travel industry and to license commercial space ports are foreseen as means to hasten a space safety regulatory process.

  15. Study on the marine ejector refrigeration-rotary desiccant air-conditioning system

    NASA Astrophysics Data System (ADS)

    Zheng, C. Y.; Zheng, G. J.; Yu, W. S.; Chen, W.

    2017-08-01

    A newly developed ejector refrigeration-rotary desiccant air-conditioning (ERRD A/C) system is proposed to recover ship waste heat as far as possible. Its configuration is built firstly, then its advantages are analyzed, after that, with the help of psychrometric chart, some important parameters such as power consumption, steam consumption and COP of ERRD A/C system are calculated theoretically under design conditions of a real marine A/C, and comparative analysis with conventional A/C is deployed. The results show that the power consumption of ERRD A/C system is only 32.87% of conventional A/C, which meant that ERRD A/C system has potential to make full use of ship waste heat to realize energy saving and environmental protection when using green refrigerant such as water.

  16. [Microbial air monitoring in operating theatre: active and passive samplings].

    PubMed

    Pasquarella, C; Masia, M D; Nnanga, Nga; Sansebastiano, G E; Savino, A; Signorelli, C; Veronesi, L

    2004-01-01

    Microbial air contamination was evaluated in 11 operating theatres using active and passive samplings. SAS (Surface Air System) air sampling was used to evaluate cfu/m3 and settle plates were used to measure the index of microbial air contamination (IMA). Samplings were performed at the same time on three different days, at three different times (before, during and after the surgical activity). Two points were monitored (patient area and perimeter of the operating theatre). Moreover, the cfu/m3 were evaluated at the air inlet of the conditioner system. 74.7% of samplings performed at the air inlet and 66.7% of the samplings performed at the patient area before the beginning of the surgical activity (at rest) exceeded the 35 cfu/m3 used as threshold value. 100% of IMA values exceeded the threshold value of 5. Using both active and passive sampling, the microbial contamination was shown to increase significantly during activity. The cfu values were higher at the patient area than at the perimeter of the operating theatre. Mean values of the cfu/m3 during activity at the patient area ranged from a minimum of 61+/-41 cfu/m3 to a maximum of 242+/-136 cfu/m3; IMA values ranged from a minimum of 19+/-10 to a maximum of 129+/-60. 15.2% of samplings performed at the patient area using SAS and 75.8% of samplings performed using settle plates exceeded the threshold values of 180 cfu/m3 and 25 respectively, with a significant difference of the percentages. The highest values were found in the operating theatre with inadequate structural and managerial conditions. These findings confirm that the microbiological quality of air may be considered a mirror of the hygienic conditions of the operating theatre. Settle plates proved to be more sensitive in detecting the increase of microbial air contamination related to conditions that could compromise the quality of the air in operating theatres.

  17. Comparison of indoor air sampling and dust collection methods for fungal exposure assessment using quantitative PCR.

    PubMed

    Cox, Jennie; Indugula, Reshmi; Vesper, Stephen; Zhu, Zheng; Jandarov, Roman; Reponen, Tiina

    2017-10-18

    Evaluating fungal contamination indoors is complicated because of the many different sampling methods utilized. In this study, fungal contamination was evaluated using five sampling methods and four matrices for results. The five sampling methods were a 48 hour indoor air sample collected with a Button™ inhalable aerosol sampler and four types of dust samples: a vacuumed floor dust sample, newly settled dust collected for four weeks onto two types of electrostatic dust cloths (EDCs) in trays, and a wipe sample of dust from above floor surfaces. The samples were obtained in the bedrooms of asthmatic children (n = 14). Quantitative polymerase chain reaction (qPCR) was used to analyze the dust and air samples for the 36 fungal species that make up the Environmental Relative Moldiness Index (ERMI). The results from the samples were compared by four matrices: total concentration of fungal cells, concentration of fungal species associated with indoor environments, concentration of fungal species associated with outdoor environments, and ERMI values (or ERMI-like values for air samples). The ERMI values for the dust samples and the ERMI-like values for the 48 hour air samples were not significantly different. The total cell concentrations of the 36 species obtained with the four dust collection methods correlated significantly (r = 0.64-0.79, p < 0.05), with the exception of the vacuumed floor dust and newly settled dust. In addition, fungal cell concentrations of indoor associated species correlated well between all four dust sampling methods (r = 0.68-0.86, p < 0.01). No correlation was found between the fungal concentrations in the air and dust samples primarily because of differences in concentrations of Cladosporium cladosporioides Type 1 and Epicoccum nigrum. A representative type of dust sample and a 48 hour air sample might both provide useful information about fungal exposures.

  18. Catalytic activity of Ru-Sn/Al2O3 in reduction reaction of pollutant 4-Nitrophenol

    NASA Astrophysics Data System (ADS)

    Rini, A. S.; Radiman, S.; Yarmo, M. A.

    2018-03-01

    Ru-Sn/Al2O3 bimetallic nanocatalysts have been synthesized by using conventional and microwave impregnation methods. Structure and morphology of the samples were characterized using XRD, XPS, and TEM. XRD and XPS measurement have confirmed the presence of Ru and Sn in the samples. According to TEM results, the morphology of the catalyst strongly depends on the preparation route and stabilizing agent (i.e. PVP). The sample with PVP (polyvinylpyrrolidone) has better nanoparticles distribution over the support. A sample prepared by conventional method has an agglomeration of nanoparticles on the support. Catalytic activities of both samples were examined in the reduction reaction of pollutant, i.e. 4-nitrophenol. Catalytic examination showed that reaction rate of 4-nitrophenol reduction by using microwave-assisted sample has improved 3.5 times faster than conventional impregnation sample.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The project objective is to demonstrate removal of 90--95% or more of the SO{sub 2} at approximately one-half the cost of conventional scrubbing technology; and to demonstrate significant reduction of space requirements. In this project, Pure Air has built a single SO{sub 2} absorber for a 528-MWe power plant. The absorber performs three functions in a single vessel: prequencher, absorber, and oxidation of sludge to gypsum. Additionally, the absorber is of a co- current design, in which the flue gas and scrubbing slurry move in the same direction and at a relatively high velocity compared to conventional scrubbers. These featuresmore » all combine to yield a state- of-the-art SO{sub 2} absorber that is more compact and less expensive than conventional scrubbers. The project incorporated a number of technical features including the injection of pulverized limestone directly into the absorber, a device called an air rotary sparger located within the base of the absorber, and a novel wastewater evaporation system. The air rotary sparger combines the functions of agitation and air distribution into one piece of equipment to facilitate the oxidation of calcium sulfite to gypsum. Additionally, wastewater treatment is being demonstrated to minimize water disposal problems inherent in many high-chloride coals. Bituminous coals primarily from the Indiana, Illinois coal basin containing 2--4.5% sulfur were tested during the demonstration. The Advanced Flue Gas Desulfurization (AFGD) process has demonstrated removal of 95% or more of the SO{sub 2} while providing a commercial gypsum by-product in lieu of solid waste. A portion of the commercial gypsum is being agglomerated into a product known as PowerChip{reg_sign} gypsum which exhibits improved physical properties, easier flowability and more user friendly handling characteristics to enhance its transportation and marketability to gypsum end-users.« less

  20. Solid oxide fuel cell/gas turbine trigeneration system for marine applications

    NASA Astrophysics Data System (ADS)

    Tse, Lawrence Kar Chung; Wilkins, Steven; McGlashan, Niall; Urban, Bernhard; Martinez-Botas, Ricardo

    2011-03-01

    Shipping contributes 4.5% to global CO2 emissions and is not covered by the Kyoto Agreement. One method of reducing CO2 emissions on land is combined cooling heating and power (CCHP) or trigeneration, with typical combined thermal efficiencies of over 80%. Large luxury yachts are seen as an ideal entry point to the off-shore market for this developing technology considering its current high cost. This paper investigates the feasibility of combining a SOFC-GT system and an absorption heat pump (AHP) in a trigeneration system to drive the heating ventilation and air conditioning (HVAC) and electrical base-load systems. A thermodynamic model is used to simulate the system, with various configurations and cooling loads. Measurement of actual yacht performance data forms the basis of this system simulation. It is found that for the optimum configuration using a double effect absorption chiller in Ship 1, the net electric power increases by 47% relative to the electrical power available for a conventional SOFC-GT-HVAC system. This is due to more air cooled to a lower temperature by absorption cooling; hence less electrical cooling by the conventional HVAC unit is required. The overall efficiency is 12.1% for the conventional system, 34.9% for the system with BROAD single effect absorption chiller, 43.2% for the system with double effect absorption chiller. This shows that the overall efficiency of a trigeneration system is far higher when waste heat recovery happens. The desiccant wheel hardly reduces moisture from the outdoor air due to a relative low mass flow rate of fuel cell exhaust available to dehumidify a very large mass flow rate of HVAC air, Hence, desiccant wheel is not recommended for this application.

  1. The addition of a mobile ultra-clean exponential laminar airflow screen to conventional operating room ventilation reduces bacterial contamination to operating box levels.

    PubMed

    Friberg, S; Ardnor, B; Lundholm, R; Friberg, B

    2003-10-01

    A mobile screen producing ultra-clean exponential laminar airflow (LAF) was investigated as an addition to conventional turbulent/mixing operating room (OR) ventilation (16 air changes/h). The evaluation was performed in a small OR (50 m(3)) during 60 standardized operations for groin hernia including mesh implantation. The additional ventilation was used in 50 of the operations. The LAF passed from the foot-end of the OR table over the instrument and surgical area. Strict hygiene OR procedures including tightly woven and non-woven OR clothing were used. Sedimentation rates were recorded at the level of the patients' chests (N=60) (i.e. the air had passed the surgical team) and in the periphery of the OR. In addition bacterial air contamination was studied above the patients' chests in all 10 operations without the additional LAF and in 12 with the LAF. The screen reduced the mean counts of sedimenting bacteria (cfu/m(2)/h) on the patients' chests from 775 without the screen to 355 (P=0.0003). The screen also reduced the mean air counts of bacteria (cfu/m(3)) above the patients' chests from 27 to 9 (P=0.0001). No significant differences in mean sedimentation rates (cfu/m(2)/h) existed in the periphery of the OR where 628 without and 574 with screen were recorded. During the follow-up period of six months no surgical site infections were detected. In conclusion when the mobile LAF screen was added to conventional OR ventilation the counts of aerobic airborne and sedimenting bacteria-carrying particles downstream of the surgical team were reduced to the levels achieved with complete ultra-clean LAF OR ventilation (operating box).

  2. Technology options for an enhanced air cargo system

    NASA Technical Reports Server (NTRS)

    Winston, M. M.

    1979-01-01

    A view of potential enhancements to the air cargo system through technology application is provided. NASA's role in addressing deficiencies of the current civil and military air cargo systems is outlined. The evolution of conventional airfreighter design is traced and projected through the 1990's. Also, several advanced airfreighter concepts incorporating unconventional design features are described to show their potentials benefits. A number of ongoing NASA technology programs are discussed to indicate the wide range of advanced technologies offering potential benefits to the air cargo system. The promise of advanced airfreighters is then viewed in light of the future air cargo infrastructure predicted by extensive systems studies. The derived outlook concludes that the aircraft technology benefits may be offset somewhat by adverse economic, environmental, and institutional constraints.

  3. Improved Dielectric Properties via Mechano-Chemical Activation in Ba0.80Pb0.20TiO3 Ceramics

    NASA Astrophysics Data System (ADS)

    Kumar, Parveen; Rani, Renu; Singh, Sangeeta; Juneja, J. K.; Prakash, Chandra; Raina, K. K.

    2011-12-01

    The present report is about the preparation and dielectric properties of commonly used Ba0.80Pb0.20TiO3 (BPT) ferroelectric ceramic via Mechano-Chemical Activation (MCA). Results were compared by the BPT sample prepared by conventional solid state method. The BPT sample prepared via MCA technique was found to have decreased tetragonality, dielectric constant value (ɛRT = 450 and ɛmax = 6170) approximately double the value for sample prepared by conventional method (ɛRT = 260 and ɛmax = 3275). Also, the sample prepared by MCA was found to be less frequency dependent. Thus, the BPT sample prepared via MCA is more suitable for capacitor applications requiring lesser frequency dependency than the conventionally prepared BPT sample.

  4. Differentiating organically and conventionally grown oregano using ultraperformance liquid chromatography mass spectrometry (UPLC-MS), headspace gas chromatography with flame ionization detection (headspace-GC-FID), and flow injection mass spectrum (FIMS) fingerprints combined with multivariate data analysis.

    PubMed

    Gao, Boyan; Qin, Fang; Ding, Tingting; Chen, Yineng; Lu, Weiying; Yu, Liangli Lucy

    2014-08-13

    Ultraperformance liquid chromatography mass spectrometry (UPLC-MS), flow injection mass spectrometry (FIMS), and headspace gas chromatography (headspace-GC) combined with multivariate data analysis techniques were examined and compared in differentiating organically grown oregano from that grown conventionally. It is the first time that headspace-GC fingerprinting technology is reported in differentiating organically and conventionally grown spice samples. The results also indicated that UPLC-MS, FIMS, and headspace-GC-FID fingerprints with OPLS-DA were able to effectively distinguish oreganos under different growing conditions, whereas with PCA, only FIMS fingerprint could differentiate the organically and conventionally grown oregano samples. UPLC fingerprinting provided detailed information about the chemical composition of oregano with a longer analysis time, whereas FIMS finished a sample analysis within 1 min. On the other hand, headspace GC-FID fingerprinting required no sample pretreatment, suggesting its potential as a high-throughput method in distinguishing organically and conventionally grown oregano samples. In addition, chemical components in oregano were identified by their molecular weight using QTOF-MS and headspace-GC-MS.

  5. KSC-05PD-1461

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. At the Shuttle Landing Facility on NASAs Kennedy Space Center, KSC Director Jim Kennedy talks to attendees at the ribbon-cutting ceremony for the new NASA Air Traffic Control Tower. The dedication took place in the SLFs new media facilities, which were built for the Return to Flight mission STS-114 and the landing of Shuttle Discovery. The facilities are co-located with the new control tower. The dedication and ribbon cutting were held at the base of the tower and included Center Director Jim Kennedy, Space Gateway Support President William A. Sample, External Relations Director Lisa Malone, Center Operations Director Scott D. Kerr, and KSC Safety Aviation Officer Albert E. Taff. The structure rises 110 feet over the midpoint of the runway and offers air traffic controllers a magnificent 360-degree view of Kennedy Space Center, Cape Canaveral Air Force Station and north Brevard County. It replaces the small, portable tower installed at the edge of the runway in 1986. The new control tower will manage all landings and departures from the SLF, including air traffic within the Kennedy Space Center-Cape Canaveral restricted airspace. The facility provides a 24-hour weather-observing facility providing official hourly weather observations for the SLF and the Cape Canaveral vicinity, including special observations for all launches and landings. State-of-the-art, weather-observing equipment has been installed for Space Shuttle landings and for serving conventional aircraft landing at the SLF. At this location, weather observers will have a multi- directional view of the weather conditions at the runway and Launch Complex 39.

  6. In vivo effect of a self-etching primer on dentin.

    PubMed

    Milia, E; Lallai, M R; García-Godoy, F

    1999-08-01

    To determine the ultrastructural aspects of the dentin collagen area in the cavity preparation floor produced in vivo after phosphoric acid acid-etching or after using Clearfil Liner Bond 2 self-etching primer (LB2 Primer). Twenty-four non-carious third molars scheduled for extraction from young adult patients (16-30 years old) were used. Conventional Class I cavities (+/- 2 mm deep) were prepared on the occlusal surfaces of all teeth using a cylindrical diamond bur on a high-speed handpiece with copious water spray. To avoid dehydration of the dentin, the smear layer-covered dentin was briefly air-dried for 2 seconds. Cavities were assigned at random to the following groups: Group A: Dentin etched for 15 seconds with 34% phosphoric acid, rinsed for 20 seconds and then briefly air-dried for 2 seconds with oil-free compressed air leaving the surfaces slightly moist. Group B: LB2 Primer was applied to the cavity surfaces for 30 seconds and then briefly air-dried to remove the solvent. Group C: The untreated dentin smear layer was used as a control. In all three groups, the cavities were filled incrementally with a resin-based composite (APX), light curing every increment for 40 seconds. After 30 minutes, the teeth were extracted atraumatically and the samples immediately prepared for evaluation with the transmission electron microscope. The use of a self-etching primer did not produce significant morphological changes in the moist dentin substrate. Adverse morphological conditions where observed when there was an excess water on the dentin surface. Phosphoric acid altered the collagen more severely than the self-etching primer.

  7. Isokinetic air sampler

    DOEpatents

    Sehmel, George A.

    1979-01-01

    An isokinetic air sampler includes a filter, a holder for the filter, an air pump for drawing air through the filter at a fixed, predetermined rate, an inlet assembly for the sampler having an inlet opening therein of a size such that isokinetic air sampling is obtained at a particular wind speed, a closure for the inlet opening and means for simultaneously opening the closure and turning on the air pump when the wind speed is such that isokinetic air sampling is obtained. A system incorporating a plurality of such samplers provided with air pumps set to draw air through the filter at the same fixed, predetermined rate and having different inlet opening sizes for use at different wind speeds is included within the ambit of the present invention as is a method of sampling air to measure airborne concentrations of particulate pollutants as a function of wind speed.

  8. Evaluation of the microbiological quality of conventional and organic leafy greens at the time of purchase from retail markets in Alexandria, Egypt.

    PubMed

    Khalil, Rowaida; Gomaa, Mohamed

    2014-01-01

    This is a pioneer study in Egypt that provides some assessment of the microbiological quality of conventional and organic leafy green vegetables that constitute an essential component of the Egyptians' daily diet. A total of 380 samples of unpackaged whole conventional and 84 packaged whole organic leafy greens were collected from retail markets in Alexandria, and analyzed for total aerobic mesophilic count (AMC) and total E. coli count (ECC) using the standard spread plate method. Mean AMC values for organic samples were statistically less (p < 0.05) than those of the corresponding conventional samples. Conventional radish and organic parsley samples had the highest AMC of 7.17 and 7.68 log CFU/g respectively, while conventional green cabbage and organic basil had the lowest AMC of 3.63 and 3.23 log CFU/g respectively. The presence of E. coli in 100% of the studied leafy greens was indicative of potential fecal contamination, in view of open and unhygienic environmental and unsanitary handling conditions, as leafy green items are available for sale by street-vendors. Unsatisfactory AMC and ECC levels encountered in the studied samples, warrant future investigations to determine the potential prevalence of foodborne pathogens, and to identify sources of dominating microorganisms, which could make a contribution to the field of food safety

  9. Infrequent air contamination with Acinetobacter baumannii of air surrounding known colonized or infected patients.

    PubMed

    Rock, Clare; Harris, Anthony D; Johnson, J Kristie; Bischoff, Werner E; Thom, Kerri A

    2015-07-01

    Using a validated air sampling method we found Acinetobacter baumannii in the air surrounding only 1 of 12 patients known to be colonized or infected with A. baumannii. Patients' closed-circuit ventilator status, frequent air exchanges in patient rooms, and short sampling time may have contributed to this low burden.

  10. The effect of a cannula milk sampling technique on the microbiological diagnosis of bovine mastitis.

    PubMed

    Friman, M; Hiitiö, H; Niemi, M; Holopainen, J; Pyörälä, S; Simojoki, H

    2017-08-01

    Two methods of collecting milk samples from mastitic bovine mammary quarters were compared. Samples were taken in a consistent order in which standard aseptic technique sampling was done first, followed by insertion of a sterile cannula through the teat canal and collection of a second sample. Microbiological results of those two sampling techniques were compared. Milk samples were analysed using multiplex real-time polymerase chain reaction (PCR). The cannula technique produced a reduced number of microbial species or groups of species per sample compared with conventional sampling. Staphylococcus spp. were the most common species identified and were detected more often during conventional sampling than with cannula sampling. Staphylococcus spp. identified in milk samples could also have originated from the teat canal without being present in the milk. The number of samples positive for Trueperella pyogenes or yeasts in the conventional samples was twice as high as in the cannula samples, indicating that the presence of Trueperella pyogenes and yeast species should not necessarily be interpreted as being the causative agents of bovine intra-mammary infections (IMI). Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Molecular comparison of the sampling efficiency of four types of airborne bacterial samplers.

    PubMed

    Li, Kejun

    2011-11-15

    In the present study, indoor and outdoor air samples were collected using four types of air samplers often used for airborne bacterial sampling. These air samplers included two solid impactors (BioStage and RCS), one liquid impinger (BioSampler), and one filter sampler with two kinds of filters (a gelatin and a cellulose acetate filter). The collected air samples were further processed to analyze the diversity and abundance of culturable bacteria and total bacteria through standard culture techniques, denaturing gradient gel electrophoresis (DGGE) fingerprinting and quantitative polymerase chain reaction (qPCR) analysis. The DGGE analysis indicated that the air samples collected using the BioStage and RCS samplers have higher culturable bacterial diversity, whereas the samples collected using the BioSampler and the cellulose acetate filter sampler have higher total bacterial diversity. To obtain more information on the sampled bacteria, some gel bands were excised and sequenced. In terms of sampling efficiency, results from the qPCR tests indicated that the collected total bacterial concentration was higher in samples collected using the BioSampler and the cellulose acetate filter sampler. In conclusion, the sampling bias and efficiency of four kinds of air sampling systems were compared in the present study and the two solid impactors were concluded to be comparatively efficient for culturable bacterial sampling, whereas the liquid impactor and the cellulose acetate filter sampler were efficient for total bacterial sampling. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Air Sampling Logbook of Region 4 Yellow Bluff Air Study Wilcox County, Alabama SESD Project Identification Number:11-0068

    EPA Pesticide Factsheets

    Contains the Air Sampling Logbook between 1-24-2011 thru 1-28-2011 from the Region 4 Yellow Bluff Air Study Wilcox County, Alabama SESD Project Identification Number:11-0068 November 2010-December 2010

  13. Air Sample Conditioner Helps the Waste Treatment Plant Meet Emissions Standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glissmeyer, John A.; Flaherty, Julia E.; Pekour, Mikhail S.

    2014-12-02

    The air in three of the Hanford Site Waste Treatment and Immobilization Plant (WTP) melter off-gas discharge stacks will be hot and humid after passing through the train of emission abatement equipment. The off-gas temperature and humidity levels will be incompatible with the airborne emissions monitoring equipment required for this type of stack. To facilitate sampling from these facilities, an air sample conditioner system will be installed to introduce cool, dry air into the sample stream to reduce the temperature and dew point. This will avoid thermal damage to the instrumentation and problematic condensation. The complete sample transport system mustmore » also deliver at least 50% of the particles in the sample airstream to the sample collection and on-line analysis equipment. The primary components of the sample conditioning system were tested in a laboratory setting. The sample conditioner itself is based on a commercially-available porous tube filter design. It consists of a porous sintered metal tube inside a coaxial metal jacket. The hot gas sample stream passes axially through the porous tube, and the dry, cool air is injected into the jacket and through the porous wall of the inner tube, creating an effective sample diluter. The dilution and sample air mix along the entire length of the porous tube, thereby simultaneously reducing the dew point and temperature of the mixed sample stream. Furthermore, because the dilution air enters through the porous tube wall, the sample stream does not come in contact with the porous wall and particle deposition is reduced in this part of the sampling system. Tests were performed with an environmental chamber to supply air with the temperature and humidity needed to simulate the off-gas conditions. Air from the chamber was passed through the conditioning system to test its ability to reduce the temperature and dew point of the sample stream. To measure particle deposition, oil droplets in the range of 9 to 11 micrometer aerodynamic diameter were injected into the environmental chamber and drawn through the conditioning system, which included a filter to capture droplets that passed through the conditioner. The droplets were tagged with a fluorescent dye which allowed quantification of droplet deposition on each component of the system. The tests demonstrated the required reductions in temperature and moisture, with no condensation forming when heat tracing was added on the upstream end of the sample conditioner. Additionally, tests indicated that the system, operating at several flow rates and in both vertical and horizontal orientations, delivers nearly all of the sampled particles for analysis. Typical aerosol penetration values were between 98 and 99%. PNNL, Bechtel National Inc., and the instrument vendor are working to implement the sample conditioner into the air monitoring systems used for the melter off-gas exhaust streams. Similar technology may be useful for processes in other facilities with air exhaust streams with elevated temperature and/or humidity.« less

  14. Risk exposure assessment of per- and polyfluoroalkyl substances (PFASs) in drinking water and atmosphere in central eastern China.

    PubMed

    Lu, Zhibo; Lu, Rong; Zheng, Hongyuan; Yan, Jing; Song, Luning; Wang, Juan; Yang, Haizhen; Cai, Minghong

    2018-04-01

    We examined per- and polyfluoroalkyl substances (PFASs) in air from eight cities, and in water from six drinking-water treatment plants (DWTPs), in central eastern China. We analyzed raw and treated water samples from the DWTPs for 17 ionic PFASs with high-performance liquid chromatography/negative-electrospray-ionization tandem mass spectrometry (HPLC/(-)ESI-MS/MS), and analyzed the gas and particle phases of atmospheric samples for 12 neutral PFASs by gas chromatography-mass spectrometry (GC-MS). Perfluorooctanoic acid (PFOA) and perfluorohexanoic acid (PFHxA) were the dominant compounds in drinking water, and fluorotelomer alcohols (FTOHs) dominated in atmospheric samples. Of all the compounds in the treated water samples, the concentration of PFOA, at 51.0 ng L -1 , was the highest. Conventional treatments such as coagulation (COA), flocculation (FOC), sedimentation (SED), and sand filtration (SAF) did not remove PFASs. Advanced treatments, however, including ultrafiltration (UF) and activated carbon (AC), removed the majority of PFASs except for shorter-chain PFASs such as perfluorobutanoic acid (PFBA) and perfluoropentanoic acid (PFPA). We also investigated human exposure to PFASs via drinking water and the atmosphere and found that the mean daily intake of PFASs was 0.43 ng kg -1  day -1 .

  15. Multiplex polymerase chain reaction detection of black-pigmented bacteria in infections of endodontic origin.

    PubMed

    Seol, Jung-Hwan; Cho, Byung-Hoon; Chung, Chong-Pyoung; Bae, Kwang-Shik

    2006-02-01

    The purpose of this study was to detect the presence of Porphyromonas endodontalis, P. gingivalis, Prevotella intermedia, P. nigrescens, and P. tannerae from clinical samples using multiplex polymerase chain reactions (PCR). Two different multiplex PCR protocols were used (one for the two Porphyromonas species and the other for the three Prevotella species), each one using a primer pair specific for each target species. The results were compared to those of the conventional culture procedures. Microbial samples were taken aseptically from 40 infected root canals and abscesses from patients. Samples were cultured in an anaerobic condition for conventional identification using a Rapid ID 32 A kit. Multiplex PCR was processed using the DNA extracted from each sample. At least one of the five species of black-pigmented bacteria (BPB) were detected in 65% (26 of 40) of the samples using multiplex PCR, and in 15% (6 of 40) using the conventional culture procedures. Multiplex PCR was more rapid, sensitive, specific, and effective in detecting BPB than the conventional culture procedures.

  16. Finite Element Aircraft Simulation of Turbulence

    NASA Technical Reports Server (NTRS)

    McFarland, R. E.

    1997-01-01

    A turbulence model has been developed for realtime aircraft simulation that accommodates stochastic turbulence and distributed discrete gusts as a function of the terrain. This model is applicable to conventional aircraft, V/STOL aircraft, and disc rotor model helicopter simulations. Vehicle angular activity in response to turbulence is computed from geometrical and temporal relationships rather than by using the conventional continuum approximations that assume uniform gust immersion and low frequency responses. By using techniques similar to those recently developed for blade-element rotor models, the angular-rate filters of conventional turbulence models are not required. The model produces rotational rates as well as air mass translational velocities in response to both stochastic and deterministic disturbances, where the discrete gusts and turbulence magnitudes may be correlated with significant terrain features or ship models. Assuming isotropy, a two-dimensional vertical turbulence field is created. A novel Gaussian interpolation technique is used to distribute vertical turbulence on the wing span or lateral rotor disc, and this distribution is used to compute roll responses. Air mass velocities are applied at significant centers of pressure in the computation of the aircraft's pitch and roll responses.

  17. Measurements for the BETC in-situ combustion experiment. [Post test surveys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wayland, J.R.; Bartel, L.C.

    The Bartlesville Energy Technology Center (BETC) in situ combustion pilot project near Bartlette, Kansas, was studied using controlled source audio-magnetotelluric (CSAMT) mapping, thermal gravimetric analysis (TGA), conventional geophysical logging and modeling of the fireflood. Measurements of formation resistivity changes induced by in situ combustion indicate that CSAMT resistivity maps should show an increase in apparent resistivity. The substantial decrease of apparent resistivity measured within the five spot pattern indicated a complex sequence of events. Using the results from the CSAMT surveys the fire front was located and posttest core samples were obtained. The posttest core samples were examined using TGAmore » techniques, and using information from combustion tube runs as standards, the location of the fire front in the core samples from the posttest holes was inferred. Models of the reservoir in situ combustion process were developed to help analyze the field results. The combustion kinematics, when used in conjunction with CSAMT and TGA techniques, indicated that considerable bypass of injected air occurred with an influx of brine into previously burned zones. This experiment offered an opportunity to integrate several new techniques into a systematic study of a difficult problem.« less

  18. Detection and molecular characterization of Acanthamoeba spp. in stray cats from Madrid, Spain.

    PubMed

    Montoya, Ana; Miró, Guadalupe; Saugar, José María; Fernández, Beatriz; Checa, Rocío; Gálvez, Rosa; Bailo, Begoña; Marino, Valentina; Piñero, José E; Lorenzo-Morales, Jacob; Fuentes, Isabel

    2018-05-01

    Acanthamoeba spp. is a widespread protozoan that has been isolated from air, dust, soil, water and biological samples. An opportunistic pathogen of humans and animals, it may cause ocular keratitis, encephalitis, and even multisystem disease. The frequency of Acanthamoeba in animals is unknown. The aim of present study was determine the presence of Acanthamoeba spp. in immunocompromised stray cats - animals possibly more likely to harbour the infection given their immunocompromised status and frequenting of contaminated environments. Of 307 cats examined, 55 were positive for feline immunodeficiency virus and/or feline leukaemia virus and therefore included in the study. Corneal scrapings were obtained to isolate Acanthamoeba spp. by culture and molecular detection by conventional and real time PCR. None of the samples examined directly by molecular methods were positive for Acanthamoeba spp. However, two (3.6%) cases of the cultured samples provided positive results, which were confirmed by subsequent molecular analysis. Sequencing assigned one isolate to genotype T4 and the other to T2. Since Acanthamoeba spp. may also infect animals and humans, the present findings may raise some public health and veterinary concerns. Copyright © 2018. Published by Elsevier Inc.

  19. Laser-induced breakdown spectroscopy for identification and characterization of aluminum

    NASA Astrophysics Data System (ADS)

    Dimas Prasetya, Oki; Maulana, Trisna; Khumaeni, Ali

    2018-05-01

    Identification of aluminum is required to evaluate the quality of metallic products in industry. In this study, identification and characterization of aluminum has been carried out by using Laser Induced Breakdown Spectroscopy (LIBS). LIBS can be analyzed elements in metal rapidly and does not require more sample preparation, and is a low-cost compared to other conventional methods. The samples used in this study were pure aluminum plate and Indonesian currency coin. Experimentally, a pulse neodymium yttrium aluminum garnet (Nd:YAG laser, 1064 nm) was irradiated on a metal sample surface at a reduced pressure of air to produce a luminous plasma. The plasma was then detected by optical multichannel analyzer to get emission spectrum. Emission spectrum of neutral and ionic aluminum (Al) lines of Al I (309,28 nm), Al II (359,75 nm), Al I (396,15 nm), Al II (448,98 nm), Al II (561,32 nm), Al II (660,96 nm), Al II (781,23 nm) was clearly detected from the pure aluminum plate. The same spectrum of Al was also detected from the Indonesian currency coin. However, the emission intensity of Al is lower for Indonesian currency coin.

  20. Synthesis and luminescence behavior of SrGd1.76Eu0.24O4 host for display and dosimetric applications

    NASA Astrophysics Data System (ADS)

    Singh, Jyoti; Manam, J.; Singh, Fouran

    2018-05-01

    Novel SrGd1.76Eu0.24O4 materials were synthesized by conventional high-temperature solid-state reaction method in air ambiance. The structural and luminescence properties of as-prepared phosphors were explored by XRD, FESEM, TEM, PL and TL techniques. The confirmation of orthorhombic phase formation was obtained by XRD studies. The agglomerated ginger-like morphology of as-synthesized SrGd1.76Eu0.24O4 samples was unfolded by FESEM and TEM studies. Upon 276 and 395 nm UV excitation, SrGd1.76Eu0.24O4 phosphors showed intense red emission. The TL glow curve of SrGd1.76Eu0.24O4 irradiated with γ-rays exhibits two well-resolved peaks at 393 K and 598 K having a shoulder at 537 K. Linearity in a wide dose range 500 Gy-3 kGy are observed in the as-formed SrGd1.76Eu0.24O4 samples. Intense red emission, linear dose response and high reproducibility of SrGd1.76Eu0.24O4 samples broadly indicated its suitability for display and TL dosimetry applications.

Top